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Abstract

With the increasing capacity of smart devices and challenges in deploying pri-
vacy or latency sensitive applications to the cloud, edge computing has emerged as
the best deployment solution for such workloads. In this context, this thesis studies
the acceleration of heavy workloads in smart device edge networks, by providing
observability through filtering of telemetry data, and a pipelining framework for
throughput acceleration of heavy workloads. This thesis proposes a hybrid approach
between cloud-out and edge-in methodologies, which leverages the multiplicity of
edge compute by locally offloading computation. The thesis initially focuses on net-
work state observability and fault diagnosis at the edge. A data-driven method to
extract intelligible selections of operational features from high-dimensional network
telemetry data is introduced, combining data-driven metrics and semantic informa-
tion contained in meta-data, to produce selections of features which best represent
an underlying event. The thesis illustrates the benefits of such a complementary
meta-data analysis for data-driven fault diagnosis, highlighting the robustness of
the studied approach against variations in the input feature set. With an improved
understanding of the state of the edge, this thesis then studies heavy workload dis-
tribution in such environments, through the example of DNN partitioning, which
consists of distributing inference workloads over several available edge devices, tak-
ing into account the edge network properties and the DNN structure, with the
objective of maximizing the inference throughput. The thesis describes a process to
identify partitionings which maximize the DNN inference throughput while keeping
computation on the edge. The analysis of this method has lead to a set of conditions
on the link between the edge network and application properties to anticipate the
achieved performance and complexity, and effectively size an edge network environ-
ment. Finally, the thesis describes a dynamic partitioning framework to improve
the system performance and robustness, which leverages the observability of the
network to adapt to heterogeneous and dynamic edge networks.

Keywords — Distributed Computing, Edge Computing
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Résumé

Avec la capacité croissante des appareils intelligents et une incompatibilité des
applications sensibles la latence et la préservation de la vie privée avec le cloud
computing, l’informatique en périphérie (edge computing) est devenue la meilleure
solution de déploiement pour ce genre de charges de travail. Dans ce contexte,
cette thèse étudie l’accélération d’importantes charges de travail dans les réseaux de
périphérie d’appareils intelligents, en fournissant une observabilité par filtrage des
données de télémétrie, ainsi qu’un cadre de pipelinage pour l’accélération du débit
de ces charges. Cette thèse propose une approche hybride entre les méthodologies
cloud-out et edge-in, en exploitant la multiplicité des appareils en périphérie afin de
décharger localement le calcul. La thèse se concentre initialement sur l’observabilité
de l’état du réseau et le diagnostic des pannes en périphérie. Cette thèse présente
une méthode de sélection sémantique de caractéristiques opérationnelles à partir de
données de télémétrie de réseau à haute dimension, combinant des métriques axées
sur les données et des informations sémantiques contenues dans les métadonnées, afin
de filtrer des caractéristiques représentant au mieux un événement sous-jacent. La
thèse illustre les avantages d’une telle analyse complémentaire de métadonnées dans
le diagnostic de pannes, mettant en évidence la robustesse de l’approche étudiée face
aux variations des caractéristiques d’entrée. Avec une meilleure compréhension de
l’état du réseau de périphérie, cette thèse étudie ensuite la distribution des charges de
travail lourdes dans de tels environnements, à travers l’exemple du partitionnement
de réseaux de neurones profonds, qui consiste à distribuer ces travaux d’inférence
sur plusieurs appareils disponibles, en prenant en compte à la fois les propriétés
du réseau et la structure du réseau de neurone, dans le but de maximiser le débit
d’inférence. La thèse décrit un processus pour identifier les partitions qui maximisent
le débit d’inférence, en maintenant le calcul localement. L’analyse de cette méthode
conduit à un ensemble de conditions sur le lien entre le réseau de périphérie et les
propriétés de l’application pour en anticiper les performances et la complexité, et
dimensionner efficacement un environnement de réseau en périphérie. Enfin, la thèse
décrit un cadre de partitionnement dynamique pour améliorer les performances et
la robustesse du système, qui tire parti de l’observabilité du réseau pour s’adapter
à ces réseaux hétérogènes et dynamiques.

Mots-clefs — Calcul distribué, informatique en périphérie de réseau
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Chapter 1

Introduction

In the 2020s, the availability of computing and networking technologies, along
with their decreasing cost, has made a commodity of smart devices, i.e., electronic
devices that are connected to the Internet and can communicate with each other.
These devices range from smart home appliances, e.g., thermostats and security
systems, to wearable technology, e.g., fitness trackers and smartwatches. Smart de-
vices can make daily tasks more convenient and efficient, e.g., a smart thermostat
can learn a user’s schedule and adjust the temperature of a home accordingly, saving
energy and money, and they also have the potential to improve safety and security
by providing real-time monitoring and alerts. Smart devices close to end users are
found in homes, in healthcare, networking, in smart cities, in industry, in energy, or
in agriculture. Across all these applications, connected devices have continuously
generated an estimated 2.5 quintillion bytes of data every day in 20201. Storing,
transporting, and processing this information have been among the principal fac-
tors behind evolutions of distributed computing. In the early days of computing,
when device capacity was insufficient to consume data close to its source, mainframe
computing was the norm, i.e., a large computer received instructions from smaller
terminals. In the 1980s, with the advent of personal computers, came the popu-
larization of software which could be run entirely on devices close to users. In the
2010s, with the rise of cloud computing, the computation moved ”back” to some
distant data center. This, as the size of the workloads increased and needed more
resources to compute.

These incremental changes in the location of data processing are also linked to
emerging trends in technology. Different types of workloads, e.g., Artificial Intelli-
gence, Internet of Things, or Virtual Network Functions, each have a different profile
of transmitted data volumes and processing complexity, which match a specific de-
ployment paradigm. For example, Artificial Intelligence usually requires a lot of
computing capacity to run with dedicated hardware, but has little requirements on
the network, while Virtual Network Functions are less computing resource intensive
but require network bandwidth, by nature. Because of these profiles, in 2019, 96%
of Artificial Intelligence tasks were computed in the cloud2, because it allowed devel-
opers to deploy with large controllable capacities, while Virtual Network Functions

1According to the Data Never Sleeps annual study from Domo https://www.domo.com/learn/
infographic/data-never-sleeps-8

2According to a survey from Nucleus Research Inc., 96% of Deep Learning based applications
ran in the cloud in 2019. https://d1.awsstatic.com/whitepapers/Deep%20learning%20on%

20AWS.pdf

3
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such as firewalls or encryption were kept on premise. Every technology trend can
be mapped to a deployment model that fits its computational needs and maximizes
its performance.

External requirements such as privacy considerations can restrain workloads from
being run in their highest performing location. For example, self-driving cars heav-
ily rely on Artificial Intelligence to analyze their environment and take decisions.
Response times of autonomous vehicles are required to remain under 100 ms [1] to
ensure road safety. However, because of the mobility of autonomous vehicles, and
their geographical distance from cloud data centers, the data acquired by the vehicle
can not be exported for computation, the communication latency would exceed the
100 ms response time constraint. Consequently, although these workloads require
capacities mainly found in data centers, the nature of autonomous driving is incom-
patible with cloud computing. Additionally, the collected data can be sensitive and
protected by privacy policies, e.g., the General Data Protection Regulation in the
European Union (GDPR) [2]. Exporting private data to a public cloud for process-
ing is, in many cases, prohibited by privacy considerations, forcing the processing to
be located close to the data source, in a secure environment. More generally, some
technologies may have strong links with a specific computing paradigm, but prop-
erties of the data (e.g., privacy restrictions) or of the expected performance (e.g.,
low-latency/high-bandwidth applications) can restrain workloads from accessing the
needed resources. In the examples above, the high latency of cloud computing and
privacy considerations restrain these workloads from running in the cloud.

As a result, the edge computing paradigm has emerged, and captures use-cases
in which computation is required to stay close to data sources, and the available
resource do not match the required capacity.

The overarching question explored in this thesis is whether, and how, it is possi-
ble to provide tools for deploying and monitoring resource-intensive applications at
the edge while preserving the convenience and performance of cloud deployments.

The remainder of this chapter is organised as follows: Section 1.1 presents back-
ground on distributed computing and the evolution in platform and applications
which have led to developments of the cloud and edge computing paradigms. Sec-
tion 1.2 presents the existing technologies and mechanisms which enable computa-
tion at the edge, by distinguishing two main approaches, respectively derived from
the cloud and the IoT. Finally, section 1.3 argues for the description of a hybrid ap-
proach, which leverages mechanisms from both methods to exploit idle smart device
resources and enhance the performance of latency and privacy sensitive workloads.
This chapter concludes by providing general assumptions and notations which will
be used throughout this thesis in section 1.4.

1.1 Background

This section introduces background on distributed computing systems, with evo-
lutions in platforms and applications, leading to the definition of edge computing.
Section 1.1.1 presents the history of computing platforms from the 1960s to the
adoption of cloud computing. Section 1.1.2 presents implications of these platform
changes in the design and deployment of applications over time. Section 1.1.3 out-
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lines the definition and advantages of edge computing by depicting its dual origin
in both cloud computing and IoT. Finally, section 1.1.4 presents properties of the
resulting distributed systems and their advantages.

1.1.1 From mainframe to cloud computing

In the 1960s, with mainframe computing, computing units provided time-sharing
services to clients interacting via local ”dumb” terminals which allows only data
entry and its visualization. Mainframes were entirely deployed and maintained in
each organization, to deliver domain-specific services.

With the development of digital networks in the late 1960s and early 1970s, clus-
ters of interconnected computing units showed similar performance to mainframes
and supercomputers, leading the way for new resource abstractions and program-
ming frameworks. The idea that higher computing performances could be achieved
by interconnecting off-the-shelf computing elements led to the creation of ARPANET
in 1969, and later the TCP/IP communication protocol which standardized com-
munication between independent networks.

In the 1980s, the development of the Internet, facilitated by TCP/IP and the
formalization of the Domain Name System (DNS), which facilitates the addressing
of connected devices, gave rise to the emergence of personal computers (PCs). This
period led to the creation of the World Wide Web, which eventually allowed appli-
cations to be accessible from anywhere in the world, further abstracting application
deployment localisation, and allowing use-cases to transition from specialized re-
search applications to the broader public, with services accessible to everyone from
home.

In the 1990s, content delivery networks (CDNs) emerged, as a consequence of
the large demands in Web services causing congestion and bottlenecks when serving
large volumes of data over long distances [3]. Efficient data delivery was achieved
by adding caching proxies, i.e., servers which store the frequently or most recently
requested content close to the requests. CDNs rely on the structure of their network
and the strategic placement of these caching proxies to ensure good quality of service
to the end users. This mechanism lowers the request latency for the end user, di-
minishes the bandwidth consumption, while lowering the computational load on the
centralized server [4]. These systems were among the first standardized distributed
systems used to enhance service performance.

The concept of grid computing emerged around the same time, in the late 1990s.
Grid computing consists of sharing resources in a large-scale network environment
to perform tasks which would otherwise take significantly more time on a single
machine [5]. This distributed computing paradigm consists in connecting remote
and diverse computers together to jointly perform a resource intensive task. This
implies integrating open standards and collaboration mechanisms between devices
in order to offer services which share large pools of resources across a large number
of clients. In opposition to supercomputers, which interconnect processors through
high speed connectors to transmit computation results, grid computing workloads
are highly parallelizable and are processed on individual and complete computers.
In parallel, with the development of Napster, a music file sharing network, came the
development of peer-to-peer overlay networks. Peer-to-peer networks are defined as
virtual networks in which nodes share a part of their own resource (content, storage,
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or computing cycles), and are simultaneously consumer and producer of these re-
sources [6]. Such networks leverage the same connectivity as grid computing, but all
nodes (or peers) have identical roles, and interact directly between each other, rather
than through a centralized server or authority. In addition to enabling shared and
increased computing capacity, peer-to-peer networks allowed for the implementation
of properties such as fault-tolerance, the adaptability to dynamic network topolo-
gies, object location and load balancing. What grid computing and peer-to-peer
computing have illustrated is the ability to reach a computing capacity compara-
ble with supercomputers, based solely on interconnected commodity hardware, at a
much lower cost.

In the 2000s, developments in virtualization, cluster computing and middleware
resulted in the creation of what has become known as ”cloud computing”. Cloud
computing is a model for on-demand access to a pool of shared resources that sup-
port virtualization and can be easily provisioned, along with development platforms
and services. Cloud computing allows applications to be deployed and scaled with-
out the hardship of managing the underlying infrastructure [7]. This model allows
users to benefit from powerful hardware and scale their infrastructure needs quickly
and on-demand. There are several types of cloud: public clouds, for which all soft-
ware, hardware, and infrastructure is operated by cloud vendors and shared with
other users (e.g., Amazon Web Service, Google Cloud Platform, Microsoft Azure)
private clouds, in which the infrastructure is reserved for a single organization and
services and applications are kept on a private network, and hybrid clouds which
allow applications to use ressources simultaneously from private and public cloud
infrastructures.

1.1.2 Evolutions in application structure

The evolutions in computing platforms and paradigms described in section 1.1.1
have also impacted the way applications were designed.

With mainframe computing, applications were only required to run on a single
computer, often located in an organization, with domain-specific knowledge kept in
a single location. Applications were monolithic, i.e., all components were combined
into a single program, and for a single platform. With the adoption of personal
computers, users became able to design their own applications, further driving de-
velopment of software engineering. Personal computers also caused users to handle
and store data for the first time, with the implied security considerations. This cre-
ated a large scale development of single-tiered applications, which are not required
to interact with a remote entity to deliver a service, and are either installed on a
personal computer or on-premise, e.g., the Microsoft Office suite, or simple data
stores.

The development of the Internet, and later the World Wide Web, changed ap-
plication structures. Instead of being single-tier, applications initially became com-
posed of two components: a light-weight application on the user side, communicating
with a heavier server-side application, which handles the business logic. Standard-
ization led to the definition of a client-server topology, with organizations deploying
and maintaining their own infrastructure to support growing request volumes from
clients. The user-side application mostly consists of a user interface (UI), i.e., a
graphical representation of the offered service for users to interact with, which com-
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municates through an application programmable interface (API), i.e., a standard
communications protocol with the server, which handles all the business logic. The
advantage of such a topology is to keep the client side application as light-weight as
possible to improve performance and to facilitate testing and maintenance.

Increasing demands have led applications to become more and more distributed,
with organizations growing towards higher geographical distribution of sites. This
implies that an organization could require access to common resources among sites.
This distribution, along with the ability to access anything anywhere, accelerated
the definition of new application topologies, e.g., the 3-tier architecture, with the
server-side application separated into a back-end application and a data store.

Further modularity in applications have extended the above principles to the def-
inition of N-tier applications, and Service Oriented Architectures (SOAs) in which
application architectures were defined based on application logic, rather than plat-
form constraints. This allows developers to develop, test, and maintain individual
components individually, with the World Wide Web allowing placement of each
component in any of the organization data-center, all around the world.

Even with N-tier applications, managing and provisioning the infrastructure re-
quires continuous efforts, with continuous updates and security patches. Further-
more, administrators are required to dimension their hardware in order to handle
peak load on an applications, which implies that most of the hardware is idle for
the majority of the application life cycle.

With virtualization and cloud computing, applications moved to third-party
cloud providers, where resources could be allocated and shared dynamically, al-
lowing applications to only pay for the necessary hardware, while out-sourcing the
infrastructure maintenance. Containerization allowed applications to be even more
compartmentalized, abstracting everything below the application from developers,
e.g., infrastructure, operating system, security, and networking. As a result, modern
applications are compounds of micro-services, i.e., compact and portable instances
of standardized programs which can be easily deployed anywhere. This convenience
for developers has led to a wide adoption of the cloud, where applications could be
easily deployed to hardware.

1.1.3 The smart device edge

Edge computing is a distributed computing paradigm that brings computation
and data storage closer to the edge of the network, where devices and end users are
located. This approach has gained popularity in the 2020s due to the proliferation
of Internet-connected devices and the emergence of applications that require low
latency and privacy. However, this definition can cover different contexts, as there
are different types of edge networks, as depicted in figure 1.1. To better understand
the range of edge computing applications, it is important to know where the concept
originated. With this in mind, there are two ways to think of the edge, referenced
as cloud-out and edge-in.

Cloud-out

The cloud-out approach refers to the edge as a computing paradigm which re-
locates computation tasks from data centers to the close proximity of data sources,
while keeping the experience of the cloud. Cloud computing has proven to be a
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Figure 1.1: The edge computing continuum, from constrained devices to centralized
data centers [8].

popular medium for deploying applications, due to the availability of large control-
lable computational resources, without the hardship of infrastructure management.
With computing, storage, and network management functions off-loaded to cloud
providers, application developers found, in cloud computing, an easy solution for
fast application deployment. However, the early 2020s have shown that more and
more developers are choosing to bring computation back on premise, close to data
sources 3. The reason for this migration is two fold. Firstly, depending on the local-
ity of an application, using public clouds can induce important latencies, caused by
the wide area network (WAN), or simply the geographical distance to the cloud net-
work. Cloud computing solutions can also be expensive, with important monetary
costs of computation and storage in a public cloud. Secondly, in the 2020s, use-cases
with incompatible requirements with the cloud have become prevalent. In addition
to latency restrictions, privacy policies can restrict the data and computation from
leaving a proprietary or secure network. In such cases, privacy considerations make
it impossible for some applications to run in the cloud. However, the cloud comput-
ing paradigm still attractive for its convenience in terms of deployment, continuous
development and integration, the cloud-out vision of the edge focuses on maintaining
the same convenience, while keeping data and computation locally.

Edge-in

The edge-in vision considers the edge as an up-scaling of computation capacities
of devices close to data sources, to keep computation and storage close to devices and
users. The edge can be defined from the evolution of constrained devices and the
Internet of Things (IoT). With the proliferation of connected devices and the pop-
ularization of 4G/5G networking, IoT has created a new means of consuming and
processing data. Advances in systems on a chip have allowed operating systems to
be embedded on constrained devices, and to run heavier computation close to data
sources. Standard IoT devices are defined by two elements: a sensor and an ability
to connect to the Internet to transmit sensor data. With increasing computation ca-
pabilities, devices have gained the ability to run workloads in the close proximity of

3Gartner Infographic: Understanding Edge Computing, https://www.gartner.com/en/doc/
750789-infographic-understanding-edge-computing

https://www.gartner.com/en/doc/750789-infographic-understanding-edge-computing
https://www.gartner.com/en/doc/750789-infographic-understanding-edge-computing
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the sensor, i.e., on the same edge device. As IoT and other applications that require
low latency and high bandwidth have become more prevalent, edge computing was
developed as a way to address these device capacity limitations by bringing compu-
tation and data storage closer to the edge of the network. This reduces the need for
data to be transmitted over long distances, improving the speed and reliability of
data processing.

Whether the edge is defined from its origin in the cloud or in IoT, the reality
it embodies is somewhere in this middle ground, covering many different settings.
There are different edges depending on two factors, i.e., the closeness to the network
edge and the computation capacity. Figure 1.1 [8] depicts the edge computing
continuum, displaying the different edges from closest to the network edge with
the least computing capacity (left), i.e., IoT or constrained device edge, to furthest
from the edge with most computing capacity (right), i.e., data centers in the regional
edge.

No matter the context, when modeling the edge, there are two main invariants
that appear in each of the categories in the edge continuum of Figure 1.1.

• Locality : The main defining characteristic of the edge, is its proximity to the
edge of the network, where devices and users are located.

• Data source: The edge is located close to data sources. Edge applications focus
on enhancing the computing capacity of sensor networks to process information
on their environment.

• Low latency and privacy : As a consequence, the edge serves applications which
need to stay close to data sources and users, i.e., low latency and privacy con-
strained applications such as video streaming, augmented reality, or artificial
intelligence.

The remainder of this work focuses on the smart device edge. This category
corresponds to devices located outside of centralized data centers, close to the data
sources, but with some ability to contain heavier workloads. Hardware in this cate-
gory can support virtualization or containerization, as well as cloud-native applica-
tions, i.e., applications taking advantage of the distributed computing capacity of
the cloud. Such devices include consumer mobile devices, e.g., smart phones or PCs,
gateways and servers for IoT applications, or connected objects with efficient com-
pute, e.g., smart cameras. While powerful enough to run general workloads, smart
devices are still much more constrained than servers available in data centers.

1.1.4 The benefits of distributed computing

The term distributed computing can refer to a variety of different approaches,
including the use of multiple computers connected by a network to work on a single
problem, the use of a grid of computers to perform independent tasks in parallel,
or the use of distributed systems to manage and coordinate the actions of multiple
devices. Overall, a distributed system can be defined as a group of independent
entities interacting with each other to achieve a common goal [9]. With distribution
enabling complex application structures, designing distributed systems consists of
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identifying service-level properties, e.g., redundancy, load-balancing, fault-tolerance,
etc, which are enhanced by a given distributed application architecture.

When modeling distributed computing systems, the individual entities are re-
ferred to as compute nodes and a computation or a run is the execution of a work-
load across these compute nodes. The basic assumptions that define a distributed
computing system are (i) the set of compute nodes appears as a single system to the
end user, (ii) the individual compute nodes do not share a common memory or a
common clock, and (iii) the individual compute nodes communicate with each other
via message passing through a communications network.

Examples of distributed computing systems include Apache Spark [10], based
on the MapReduce framework [11], or the bitcoin network [12]. There are several
common topologies, or types of interactions between compute nodes, e.g., the client-
server relationship consists of clients sending instructions to a server concentrating
the majority of the computation and data, the multi-tier relationship separates
parts of the compute to different compute nodes according to functional separations,
or the peer-to-peer relationship considers all nodes to be equally responsible for
the management and computation of workloads. Depending on the architecture,
distributed computing systems can be designed to offer different advantages, when
compared to single node systems:

• Sharing of data and resources : One of the main benefits of distributed systems
is their ability to handle large amounts of data and computation efficiently.
By dividing a problem into smaller parts and distributing it across multiple
devices or computers, a distributed system can process data in parallel. Some
applications are also geographically distributed by nature, e.g., with data lo-
cated in different locations and unable to be replicated at every compute node.

• Robustness : Due to their distributed nature, distributed systems can be de-
signed to be less vulnerable to single points of failure. If one device or computer
fails in a distributed system, provided the system is designed to detect and
exclude the failing device, can continue to function, ensuring that the overall
system remains operational. Robustness includes availability, i.e., resources
should be available at any time when requested, and partition-tolerance, i.e.,
the system should be able to function with individual compute node failures
or loss of connectivity.

• Scalability : As the needs of an application change, a distributed system can
easily add or remove devices to meet the demand for computation. This allows
a distributed system to adapt to changing conditions and grow or shrink as
needed.

• Modularity or flexibility : Separating functions to individual compute nodes al-
lows components of the system to be modified and updated without impacting
the overall performance.

These characteristics and design decisions heavily rely on properties of the data,
i.e., volume, type, locality, or privacy considerations. The increasing production and
processing demands of data is often described by the four Vs: volume, i.e., large
quantities of data and workloads, velocity, i.e., data and workloads are generated at
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great speed, variety, i.e., heterogeneity in the type of data produced, and veracity,
i.e., data can have different degrees of truthfulness or relevance in this large influx.

In this context, distributed computing over smart devices at the edge of a network
offers a number of benefits. For example, edge devices can process data locally,
reducing the amount of data that needs to be transmitted over the network and
improving the speed and efficiency of the overall system. Edge devices can also
operate independently, allowing them to continue functioning even if the rest of the
network is unavailable or offline. In addition, edge devices can be used to perform
tasks that require low latency, such as real-time control of industrial processes or
self-driving vehicles.

1.2 Distributed computing at the edge

This section presents related work on computing paradigms at the edge. As de-
scribed in section 1.1.3, there are two main strategies for bringing compute capacity
in edge networks. Section 1.2.1 describes related work on computation offloading of
workloads to higher capacity environments (cloud-out approach), and section 1.2.2
presents solutions embedding compute close to the edge (edge-in approach).

1.2.1 Cloud-out: Computation offloading at the edge

There are three tiers of computing resources considered, when modeling the edge:
(i) the constrained devices, i.e., devices producing data with limited processing ca-
pacity, (ii) the edge computing, i.e., some computing device located close to data
sources, e.g., a smart device or a dedicated server, and (iii) the cloud. From these
three tiers, there are two general architectures when considering computation of-
floading at the edge: the two-tier architecture, which consists of constrained devices
and edge computing (better suited for latency or privacy-sensitive applications since
workloads are processed at the edge), and the three-tier architecture, which consists
of constrained devices, edge computing, and cloud computing (better suited for
modeling performance optimization and application management) [13]. The main
models presented in this section are cloudlets, and Mobile-Edge Computing (MEC).

Cloudlets [14] seek to solve the latency problem when accessing the cloud, by
adding cloud-like computing resources at the edge of the network for task offloading.
To support heterogeneous workloads, cloudlets support virtualization and container-
ization to allow computation offloading of low footprint virtual machines and con-
tainers, allowing cloudlets to only store soft states, and lower the impact of the com-
putation. Cloudlets are decentralized and widely dispersed Internet infrastructure
components which are made available to edge devices, in this two-tier architecture.

Mobile-Edge Computing (MEC) provides cloud computing capabilities within a
Radio Access Network (RAN). MEC contributions consist of partitioning and/or
offloading computation tasks. MEC computing systems typically consist of three
components: (i) a task partitioning mechanism, i.e., a partitioning policy defining
whether tasks can be partitioned and in what manner, (ii) an offloading decision or
task placement, i.e., deciding which device will receive the whole or partitioned task
to process, e.g., locally, in an edge server, or in the cloud, and (iii) resource allocation,
i.e., determining the amount of resources allocated, e.g., computing, communication,
and energy. Offloading can be done in a centralized or decentralized manner, with
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either a global or local view in the decision process. Depending on the number of
edge devices and offloading capabilities involved (edge or cloud), offloading scenarios
can be one-to-one, one-to-many, many-to-one, or many-to-many.

Computation offloading is often defined as an optimal placement problem, with
a defined optimization objective, e.g., latency minimization, energy consumption
minimization, drop rate minimization, throughput maximization, computation effi-
ciency maximization, or monetary cost minimization. The offloading problem can
be defined based on one or a combination of these metrics. There are three main the-
ories for partition offloading and scheduling: (i) Convex, non-convex and Lyapunov
optimization processes, (ii) Markov Decision Process (MDP) and Reinforcement
Learning (RL), and (iii) game theory.

Related Work

Gabriel [15], a system for wearable cognitive assistance, uses a cloudlet archi-
tecture to support intensive low-latency computation. Similarly, Content Delivery
Networks or Web service can benefit from addition of cloudlet capacities [16], by
optimizing computing load on edge devices.

Within MEC, with a fixed set of resources, related work focuses on defining an
optimization problem that optimizes certain objectives. MULTIUSER MECO and
EPCO [17,18] minimize energy consumption of EDs, by defining models for compu-
tation and transmission of data, and assuming that nearby edge servers are available
with sufficient capacity. Both methods use Karush–Kuhn–Tucker (KKT) conditions
to solve the optimization problem. SDTO [19, 20] minimizes latency by defining a
Mixed Integer Nonlinear Programming (MINLP) problem and solving it as a 0-1
integer programming problem. HGPCA [21] uses more parameters which makes the
problem unsolvable, and they therefore use a combination of two heuristics. The
throughput problem is modeled in [22,23] and solved by using the Alternating Direc-
tion Method of Multipliers (ADMM) method to separate and solve the optimization
problem. In fog computing use-cases with three-tier architectures, another ADMM-
based method is presented in [24], in a context with EC servers offloading sub-tasks
to the cloud while preserving privacy. Multi-factor objective functions, e.g., join-
ing latency and energy consumption, are considered in [25] which uses the Interior
Point Method (IPM) to solve the optimization problem, or [26] which relaxes the
NP-hard problem by using the Semi Definite Relaxation (SDR) method to find a
near optimal solution. All previous optimization methods can be inconvenient at the
edge, since they require a powerful centralized node to run the optimization. [27–29]
use Lyapunov optimization to model one-to-one or many-to-one offloading from en-
ergy harvesting devices to an edge server, with the objective of minimizing both
the latency and dropping of workloads. Lyapunov optimization doesn’t support
time-dependant variables but the weighted perturbation method can be used for
this purpose. [30] extends the offloading modeling by including the edge server’s
queue in the optimization process. [31] focuses on energy harvesting in offloading
for multi-user, multi-task MEC. However Lyapunov optimization (i) doesn’t reach
an optimal solution, and (ii) assumes time independence in actions, which usually
is not the case, e.g., for energy queues.

Using Markov Decision Processes (MDP) can allow each agent to make a place-
ment or offloading decision for itself, which enables a decentralized system. For
example, ST-CODA [32] defines a MDP in an three-tier environment to model the
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processing time and energy consumption of different computation nodes, as a func-
tion of the transmission cost in heterogeneous networks. Similarly, the MDPs defined
in [33, 34] are used to minimize edge device energy consumption while satisfying a
delay requirement and use the Post-Decision State (PDS) method to solve the prob-
lem in real-time. The curse of dimensionality can quickly become an issue when
modeling offloading problems with MDPs. Therefore, some research work [35–38]
uses Q-learning [39] to simultaneously optimize metrics such as latency and energy
consumption, when the dimensionality of the problem is too high or when the statis-
tical distributions of the metrics are unknown due to the nature of the edge devices,
e.g., energy harvesting or highly mobile edge devices. The use of DNNs to solve the
Reinforcement Learning (RL) problem can also help deal with the high complexity.
For example, deep RL can be used to model the complexity of the Q-table and make
decisions on offloading to road side units in [40], or to aerial vehicles in [41], both
acting as edge compute. Game theory can also allow for decentralized decision,
e.g., [42] describes a potential game, defining a potential function and searching for
the Nash equilibrium with several methods such as Fully Distributed Computation
Offloading (FDCO) [43]. [44] defines the problem as a General Nash Equilibrium
Problem (GNEP), i.e., with edge devices strategies depending on other devices.

1.2.2 Edge-in: Enhancing connected device capacity

The principal enabler of heavy workload computation at the edge is the evolution
of the available computing capacity of edge devices. Processor capacity has increased
from a few MHz in the 1980s, e.g., with the Intel 8080 processor reaching a process-
ing speed between 2MHz and 3MHz, to several GHz in 2020, e.g., with the ARM
Cortex-A72 processing unit used on a Raspberry Pi 4, containing four 1.5GHz cores.
Development of systems on a chip (SoC) were driven by increased demand in cell
phones in the 1990s, and IoT in the early 2000s. Commonly used SoCs in 2020, such
as the Raspberry Pi or the NVIDIA Jetson Nano, contain general-purpose operating
systems, with CPUs, GPUs, memory, and input/output management. In the tran-
sition from IoT to edge, limited, power-efficient, and application-specific hardware
has become more and more general-purpose, with higher computing capacities.

However, several technological trends also revolve around leveraging the avail-
able hardware to perform heavy computation locally. One of the earlier instances
of such a technology is described in 1997, with pervasive or ubiquitous computing,
introduced as a paradigm which takes advantage of the multiplicity and connectivity
of devices with available computing capabilities to create spaces where the computa-
tion physically moves with the user [45]. Ubiquitous computing revolves around the
design of smart spaces which integrate computing capabilities in infrastructure, e.g.,
in meeting rooms, corridors, etc. The key concept of ubiquitous computing is invis-
ibility, i.e., the users become unaware of the technology around them. ”The most
profound technologies are those that disappear. They weave themselves into the fab-
ric of everyday life until they are indistinguishable from it.” [46]. This paradigm was
one of the first to study computation embedded in devices close to end users. The
field of ubiquitous computing mainly tackled issues surrounding (i) scalability, with
the smart spaces and number of users growing, and leading to exploding complexity
in the interactions between personal computing spaces [47], and (ii) heterogeneity,
with protocols needing to mask the differences in the ”smartness” of different de-
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vices, to make mobility seamless. The concept of ubiquitous computing and the
progressing development of information technology, have led to the description of
the Internet of Things (IoT). This field of study focuses on the interconnectivity of
sensors and devices which continuously collect and exchange data.

Ubiquitous computing and IoT are related to edge computing, since these con-
cepts pursue similar use-cases. The main differences lie in the point of focus of each
of these fields of study [48]: while ubiquitous computing focuses on invisibility of
the computing capacity embedded in physical objects, IoT rather focuses on connec-
tivity, and edge computing on the performance enhancement of these environments.
Ubiquitous computing and IoT have allowed to move the network edge closer to
end users. As a result, edge computing brings higher compute capacity to this ex-
tended network edge, when the latency constraint of the WAN, and the constrained
resources of IoT/embedded devices, cannot respond to the increasing application
requirements.

The concept of fog computing was introduced in 2012, and is designed for scal-
ability, i.e., to handle a large number of IoT devices and big data volumes for
real-time low-latency applications. Fog computing is a paradigm that models com-
puting resources between end devices and the cloud. According to the OpenFog
reference definition [49,50], fog architectures selectively move compute, storage, com-
munication, control, and decision making closer to the network edge where data is
being generated in order to solve the limitations in current infrastructure to enable
mission-critical, data-dense use case. Fog computing contains both cloud-out and
edge-in approaches, since it considers placement of edge servers close to data sources,
i.e., dedicated servers designed to receive offloaded computation tasks, and meth-
ods which leverage otherwise useful devices (access points, routers, switches, etc.).
Resources made available at the edge in the context of fog computing are called fog
nodes, and can range from low capacity devices such as sensors, connected devices,
access points or routers, to higher capacity devices such as cloudlets [51].

Related Work

Computing capacities of systems on a chip (SoC) illustrate evolutions in edge
network capacity. Early small-sized processors were originally used in calculators
and electronic watches. In 1972, when Intel introduced the Intel 8008 8-bit CPU,
with a processing rate of approximately 500 kHz, followed by the Intel 8080, released
in 1974, reaching 2 to 3 MHz. Other 8-bit processors, released in the 1970s, with
comparable processing rates, include the Motorola 6800, the MOS 6502, the Zilog
Z80, or the Intel 8086, reaching a maximum clock rate or around 10 MHz. These
processors were later included in the first instances of personal home computers,
such as the Apple II, the Commodore PET, or TRS-80, which were 8-bit personal
computers including MHz processors, and 4kB or memory. Around the same time,
in the late 1970s, came the first SoCs which could also include input/output man-
agement, storage, and a graphical processing unit. In 2022, the Raspberry Pi 4, a
common single-board computer used in edge computing applications, includes four
1.5GHz CPU cores, with 2 to 8 GB of memory. This evolution in capacity has
allowed such devices to support general-purpose operating systems and support a
variety of applications and virtualization. Specialized hardware such as the NVIDIA
Jetson graphical processing units, or the Google Coral tensor processing units are
included in such systems in support of developments in Artificial Intelligence at the
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edge.
Ubiquitous computing efforts include projects such as Aura (Carnegie Mellon

University), Endeavour (University of California, Berkeley), Oxygen (Massachusetts
Institute of Technology), Portalano (University of Washington), and industrial at-
tempts at AT&T Research in Cambridge, and at the IBM T.J. Watson research
center. These research efforts consist of embedding computing capabilities in every
day objects, and making mobility of workloads invisible to the end users.

The fog computing paradigm is introduced in 2012, and its most significant con-
tribution is the IOx network infrastructure products4, which is a framework for
making computing capacity available on network infrastructure, mainly to support
IoT applications. Applications of fog computing include real-time video analytics,
virtual or augmented reality (VR/AR), autonomous driving, and networking solu-
tions such as network function virtualization (NFV) [51].

1.3 Thesis statement: Distributed computing at

the smart device edge

The evolution of distributed computing platforms and applications described in
sections 1.1.1 and 1.1.2 have depicted changes in the locality of computing driven by
performance, with applications requiring more and more resources over time. Sec-
tion 1.1.4 has described the many other advantages of distributed systems, which
implies that all these properties have been secondary since the 1960s, and that
placement was always chosen based on available computing capacity and conve-
nience. With this observation, section 1.1.3 has described edge computing, a com-
puting platform development driven by latency and privacy motivations, and not
availability of computing resources. Then, section 1.2 has introduced two main con-
cepts for enabling computation at the edge, with instances of cloud-out approaches,
which consist of processes for offloading workloads to nearby servers, and edge-in
approaches, which consist of increasing the computing capacity of edge devices to
leverage the available computing resource.

With these methodologies described, the smart device edge can also be, in itself,
a good candidate for hosting heavy workload computation at the edge.

• In 2022, general-purpose smart devices with GHz capacity and specialized
hardware are a commodity (e.g., Raspberry Pi or NVIDIA Jetson Nano),
making the smart device edge a good candidate platform, for heavy latency
and privacy sensitive applications.

• High degrees of connectivity and available bandwidth in smart device edge
networks (e.g., through 4G/5G cellular networks) facilitates communications
among smart devices in edge networking contexts, enabling pooling of smart
device resources to increase individual device capacity.

• Cloud-out approaches, which enable heavy workload computation by plac-
ing nearby computing elements to receive offloaded tasks, requires continuous

4https://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.

html

https://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
https://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
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deployment and maintenance of computing capacity in order to meet. Fur-
thermore, increased mobility complicates cloudlet-type applications, or sizing
of specialized hardware such as fog nodes, since demands at the edge are chal-
lenging to predict.

These arguments favor hybrid deployments at the edge, with a combination of
cloud-out and edge-in approaches, to favor the exploitation of idle smart device
resources across the edge network to increase the overall computation capacity.

Pooling resources together in a smart device edge environment implies, similarly
to distributed computing environments, to have a sufficient understanding of the
state of the system, and of its individual parts, and to find orchestration mecha-
nisms for the computation. However, the fact that these distributed systems run
on the smart device edge involves specific constraints. In addition to being limited
in compute compared to edge servers or dedicated compute, smart devices have, by
definition, a primary workload continuously running (e.g., forwarding packets for
routers, recording for smart cameras, etc.), with varying capacity left for secondary
tasks. Similarly, edge environments imply heterogeneity in connectivity and band-
width between smart devices, which needs to be taken into account in the modeling.
Finally, this thesis focuses on workloads which are too heavy to be run on a single
device, favoring distribution on the edge.

Therefore, the different steps in the design of distributed systems for the smart
device edge, which are explored throughout this thesis, are:

• identification of the limiting resources in a smart device edge between band-
width and processing capacity, and extraction of their states in a constrained
environment (part II).

• data-driven detection and explanation of events or faults occurring on the
smart device edge network, without knowledge of the event profile and be-
haviour (part II).

• data-driven detection and explanation of events or faults occurring on the
smart device processors and computing capabilities (part II).

• modeling and profiling of heavy workloads to run on the smart device edge,
to learn a computation profile with satisfactory levels of precision (part III).

• definition of a partitioning and workload placement scheme to leverage the
smart device edge according to a pre-defined objective (part III).

• identification of deterministic conditions on the smart device edge network
properties leading to the possibility of performance improvement by resource
pooling (part III).

• dynamic monitoring of telemetry and state adjustment to keep optimizing the
performance and adapting to state changes in the system (part III).

In sum, such a distributed system on the ”smart device edge” offers observability
over the network and device state (part II), event detection and explanation (part II),
and dynamic application profiling and distribution (part III), to fully leverage the
computing capability of the edge.
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As will be studied throughout this manuscript, these systems show benefits in
processing capability and observability, while preserving latency and privacy require-
ments of applications.

1.4 Definitions and working assumptions

This section introduces the working assumptions that will be used throughout
the manuscript, and defines notations which will be used recurrently.

• A smart device is a computing device, capable of performing data process-
ing and analysis at or near the source of the data. Such devices are often
equipped with sensors, processors, and storage capabilities, and they can be
programmed to perform a wide range of tasks, such as data filtering, aggre-
gation, and analysis. Examples of smart devices at the edge include security
cameras, networking equipment, and wearable devices that can perform data
processing and analysis locally. The principal assumption for the remainder
of this manuscript is that smart devices have autonomy, connectivity, context-
awareness, and a purpose-built task.

• A feature describes a measurable property or characteristic of a monitored
object, i.e., the columns of the telemetry dataset. For example, in a dataset
containing medical records, features might include a person’s name, gender,
age, height, weight, etc. Each of these features provides a different piece of
information about the presented individual. Features can be categorical or
numerical. Categorical features take on values from a finite set of categories
or labels, while numerical features take on numeric values.

• A time-series is a set of data points that are collected at regular intervals
over time. Time-series data is commonly used to analyze trends, forecast
future events, and understand patterns over time. In a time-series, the data is
organized into a sequence of observations, where each observation corresponds
to a specific point in time. Time-series data can be univariate or multivariate,
depending on whether they consist of a one or multiple observed features over
time.

Finally, generic mathematical notations used throughout this thesis are specified
in table 1.1
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Notation Definition

N Set of positive natural integers
[[n,m]] Set of integers between n and m(

n
k

)
Binomial coefficient

|x| Absolute value of x
|S| Cardinality of set S
S||S ′ Concatenation of sets S and S ′

S \ S ′ Subtraction of set S ′ from set S
log x Natural logarithm of x
p(X) Probability of random variable X
E(X) Expected value of random variable X

DKL (p||q) Kullback-Leibler divergence of distributions p and q
A Matrix notation
v Vector notation

Ai,j Value of matrix A at row i and column j
A⊤ Transpose of matrix A

Table 1.1: Generic mathematical notations



Chapter 2

Thesis contributions

This chapter concludes this introductory part by providing a summary of con-
tributions in section 2.1 and a list of publications in section 2.2.

2.1 Thesis summary and outline

This thesis studies acceleration of heavy workloads in smart device edge networks
by providing observability and filtering of telemetry data, and a pipe-lining frame-
work for processing throughput acceleration. It comprises 4 parts and 8 chapters,
structured as follows.

Part I provides an introductory discussion, including a background on evolutions
in application design and distributed computing, leading to the emergence of edge
computing, are introduced, along with the constraints and limitations of this en-
vironment. Then, two relevant methodologies to improve the performance of the
constrained smart device edge are presented, the cloud-out and edge-in approaches,
which look at workload offloading and device improvement respectively to achieve
better performance. Finally, a discussion is made about how increasing capacities in
smart devices argues in favor of a hybrid approach, which leverages the multiplicity
of edge compute by locally offloading computation.

Part II studies network state observability and fault diagnosis at the edge.
Expert systems are computationally expensive to build and maintain, and lack scal-
ability and inherent adaptability to unknown events or modifications in the topology
of the edge network. In this context, chapter 3 (published in [52]) presents a data-
driven method to extract intelligible selections of operational features from high
dimensional network telemetry data, in order to provide visibility on the state of
the edge, and facilitate fault diagnosis for operators. The presented method is based
on extraction of information from meta-data information contained in feature names,
through the example of Model Driven Telemetry (MDT) and the YANG modeling
language. This is achieved by quantifying the information preserved in the feature
selection for fault diagnosis process through a measure of cross-entropy, defined
over a space of tokens contained in the YANG nomenclature. This measure leads to
the definition of a selection quality score, in favour of selection preserving intelligible
information for network operators.

With this semantic importance metric defined, chapter 4 (published in [53])
presents an evaluation of semantic feature selection in the context of fault diag-
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nosis. This chapter advocates for semantic analysis in fault diagnosis from teleme-
try data, after having illustrated the shortcomings of three categories of data-driven
methods. Purely data-driven mechanisms lack understanding of semantic impor-
tance within a feature set, and would benefit from additional domain knowledge.
Using the methodology of chapter 3, this chapter explores the assumption that
part of this additional knowledge can be extracted from meta-data. The proposed
approach combines data-driven metrics and semantic information contained in the
feature names to produce selections of features which best represent an underly-
ing event. This study extends the cross-entropy based importance estimation, into
an optimization method which joins semantic importance with data behavior. A
benchmarking architecture is then introduced, to evaluate the benefits of this se-
mantic analysis, and demonstrate the performance and robustness of semantic fea-
ture selection on different types of faults in network telemetry datasets, modeled
with the YANG data modeling language. The results illustrate the interest of such
a complementary meta-data analysis for data-driven fault diagnosis, and highlight
the robustness of the studied approach against variations in the input feature set.
The addition of a semantic analysis to a data-driven fault diagnosis process enables
outstanding benefits in completeness of feature selections, as well as an important
removal of parasite selection of features (i.e., an increased precision).

Part III studies heavy workload distribution in edge environments, through
the example of Deep Neural Network (DNN) inference throughput acceleration (pub-
lished in [54]). DNN inference on streaming data requires significant computing
resources to satisfy inference throughput requirements. However, latency and pri-
vacy sensitive deep learning applications, e.g., in edge computing use-cases, cannot
afford to offload computation to remote clouds because of the implied transmission
cost and lack of trust in third-party cloud providers. However, within standard
acceleration mechanisms, hardware acceleration can be onerous, and model opti-
mization requires extensive design efforts while hindering accuracy. In chapter 5,
DNN partitioning is presented as a third complementary approach, which consists
of distributing the inference workload over several available edge devices, taking into
account the edge network properties and the DNN structure, with the objective of
maximizing the inference throughput (number of inferences per second). This chap-
ter introduces a method to predict inference and transmission latencies for multi-
threaded distributed DNN deployments and highlights issues linked in prediction
accuracy linked to model run-time optimizations and heterogeneous hardware accel-
eration. With this representation of the inference behaviour, this chapter explicitly
describes the potential service level objectives of DNN partitioning, i.e., end-to-end
latency, energy consumption, and inference throughput. After having identified this
problem as a Mixed Integer Non Linear Programming (MINLP) problem, this chap-
ter describes a branch and bound (B&B) optimization process with the objective
of identifying partitionings which maximize the DNN inference throughput, while
keeping computation on the edge. This method is compared with standard MINLP
solvers to prove that B&B is better fit for edge computing contexts, because it
solves simple cases quickly, and an early stopping mechanism is described to limit
its complexity in corner cases.

In chapter 6, the DNN partitioning B&B solver is analyzed to quantify bounds on
its performance and complexity. First, simulations are presented in a homogeneous
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edge network environment (identical nodes and links) to explore the influence of
the problem’s input parameters on the achieved inference throughput and B&B
complexity. The first simulations highlight the influence of the number of nodes and
maximum number of split points on the performance and complexity, which leads
to the identification of a bound on the necessary number of split points, hereby
allowing network operators to limit the complexity of B&B. The second simulations
depict the nodes and links on the network, showing that the effective number of
iterations of B&B depends on a single parameter, i.e., the link throughput to node
processing rate ratio. Furthermore, these simulations identify three values of this
parameter which delimit between regions with different behaviours in performance
and complexity. This analysis has led to the definition of the acceleration region,
which describes deterministic conditions on the DNN and network properties under
which DNN partitioning is beneficial. Finally, experimental results are presented
to confirm the simulations and show inference throughput improvements in sample
edge deployments. The results also show of simple heterogeneous set-up in which
the performance approaches the previously defined theoretical upper bound. The
chapter ends in a summary of findings, which can be leveraged by operators and
application developers to size their edge network and best take advantage of DNN
partitioning, prior to the deployment.

In chapter 7, a dynamic DNN partitioning system is presented to study
the robustness of DNN partitioning and its behaviour in unstable network environ-
ments. Edge networks being highly dynamic, this chapter illustrates the importance
of timely re-evaluation of the optimal partitioning, since the previous chapters only
presented a methodology for stable network conditions. First, this chapter illustrates
the two principal benefits of dynamic re-computation: (i) the ability to compensate
for the inference latency prediction inaccuracy by learning from run-time measure-
ments, and (ii) the ability to adapt to different levels of persistent network changes.
In this context,the presented simulation results show that DNN partitioning enables
better robustness to perturbations, and dynamic partitioning allows the performance
to remain optimal, even for important perturbations. Then, this chapter provides
indications on a dynamic partitioning system design, and re-computation policies.
Three policies are presented and compared: (i) a periodic re-computation policy, (ii)
a reactive re-computation policy, which re-evaluates the partitioning when the infer-
ence throughput drops below a given threshold, and (iii) a proactive re-computation
policy, which relies on the monitoring of telemetry data to trigger re-computations.
This chapter concludes by identifying the link throughput to node processing rate
ratio as a key factor in the choice of re-computation policy, because it defines the
ratio between the B&B computational footprint, and that of actively monitoring the
network telemetry.

Finally, part IV concludes this manuscript, and a summary in French is provided
in appendix 8.

2.2 List of publications

The following contributions were published during the course of this PhD.
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Journal publications

• Thomas Feltin, Léo Marché, Juan Antonio Cordero Fuertes, Frank Brockners,
Thomas Heide Clausen, DNN partitioning for inference throughput acceleration
at the edge, IEEE Access 2023 (chapter 5).

Conference or workshop publications

• Thomas Feltin, Parisa Foroughi, Wenqin Shao, Frank Brockners, Thomas
Heide Clausen, Semantic feature selection for network telemetry event descrip-
tion, NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium (chapter 3).

• Thomas Feltin, Juan Antonio Cordero Fuertes, Frank Brockners, Thomas
Heide Clausen, Understanding Semantics in Feature Selection for Fault Di-
agnosis in Network Telemetry Data, NOMS 2023 - 2023 IEEE/IFIP Network
Operations and Management Symposium (chapter 4).



Part II

Understanding the state of the
edge
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Chapter 3

Information theory in network
telemetry

Understanding the state of an edge device commonly involves a domain expert,
who interprets a selected set of operational data to enable behavior monitoring,
traffic engineering, anomaly detection, or fault analysis, based on domain knowledge
and past experience. However, with the expansion of network sizes, the complexity
of network structures, and the increasing volume of transiting data, monitoring the
state of a network is a complex challenge.

Traditional measurement methods are separated into active and passive meth-
ods [55]. Active measurement methods consist of analyzing the behaviour of probe
packets sent over the network, through mechanisms such as Ping [56] or Tracer-
oute [57]. However, active measurement methods can create additional overhead,
with an important impact on the observed network traffic. To prevent this ”ob-
server effect”, passive methods consist of the exportation and analysis of telemetry
data extracted to an external proxy, which aggregates data outside of the scope of
the observed network. Passive mechanisms include NetFlow [58], sFlow [59], or IP-
FIX [60], which focus on the analysis of flows instead of individual packets, for better
scalability. In order to unify the extraction of telemetry data from devices from dif-
ferent vendors, some efforts have focused on the standardization of the protocol and
extracted data structure. Examples of such standards include the Simple Network
Management Protocol (SNMP) [61] and SYSLOG [62], which define data structures
to retrieve from heterogeneous devices. In 2006, the Internet Engineering Task
Force (IETF) presented the Network Configuration Management protocol (NET-
CONF) [63], to improve the properties of SNMP, with additional capabilities such
as structured representation of device configuration, using the Extended Markup
Language (XML), different types of configurations, as well as tooling to facilitate
concurrent access, validation of configurations, and event notification. In addition,
the IETF presented the YANG data modelling language [64], which complements
the NETCONF protocol, by representing the semantics of network configurations in
a vendor-neutral way. The main advantage of NETCONF and YANG is the ability
to define a network-wide configuration in a dedicated data-store, used to generate
configurations for all devices, and removing the need for operators to push individ-
ual configurations on every device. Additionally, this enabled the development of
Model-Driven Telemetry (MDT), a paradigm in which every device streams teleme-
try data to a dedicated server according to a network-wide configuration, instead of
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the traditional intrusive pulling mechanisms. In sum, the emergence of MDT en-
ables automated and frequent retrieval of all the available operational counters on a
router, in a semantically consistent way through a collection of YANG modules [64].

The resulting telemetry datasets can be of large dimensionality, and distilling
the information which best describes the device state can be challenging. Because
of the dependencies between the different operational counters, the majority of these
features is highly impacted in value when events occur in the network, i.e., network
or hardware-related faults which cause the global state of the device or network to
change, e.g., network loops, black holes, interface failures, memory leaks. Among all
the thousands of features changing in value, only a few are really interesting for the
diagnosis process. The majority of features are either (i) frequently changing in value
independently of events, or (ii) only describing the consequences an actual event.
For example, an interface failure will cause packet losses, route re-convergence, TCP
connection changes, traffic changes, etc. which constitute the majority of changing
features, while the features describing the actual root cause, e.g., interface counts,
will only be a few instances among the several thousands. An approach that takes
all available features into account and distills those which are most descriptive of an
event in an automated data-driven way is still missing.

3.1 Related work

Feature selection is the process of selecting the most important features in a
dataset, in order to remove the irrelevant or redundant features [65]. Unsupervised
feature selection performs this selection without the use of labels. Unsupervised
feature selection methods can be categorized in three groups [65, 66]: wrapper, fil-
ter, and hybrid methods. Wrapper methods [67] select the subset of features which
optimizes the result of a specific clustering algorithm, and have shown to be compu-
tationally expensive for high dimensionality problems [65]. Filter methods rely only
on properties of the data to assign a relevance score and rank each feature in the
dataset. The score of each feature can either be computed in isolation (univariate
filter method), or in conjunction with the other features in the dataset (multivariate
filter methods). The first filter method relying on information theory is sequential
backward selection for unsupervised data [68], and is based on a measure of entropy
with regard to the distances between features. SVD-Entropy [69] also uses the con-
tribution of every feature to the entropy of the dataset to rank the features and find
the subset with highest entropy. Similarly, [70] uses the concept of representation
entropy to capture the amount of information contained in a selection. The idea be-
hind [68–70] is that a high entropy translates to a balanced cluster structure, which
implies that the features best represent the data. Multivariate methods such as
Feature Selection using Feature Similarity (FSFS) [71] use statistical dependencies
to further remove redundancy from a selection.

What the methods presented above have in common is their principal objective:
finding the most relevant features, i.e., features which contribute most to preserv-
ing the manifold structure of the original data, or features with highest or lowest
correlation with the other features in the dataset [65]. The problem space of event
description introduces a new constraint on the selected subsets, since they must not
only preserve the information of the original set, but also be descriptive of occurring
events. In this problem space, the objectives in this study differ from those of un-
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supervised feature selection, and are modified to include the two notions mentioned
above. In that respect, methods from information retrieval in text provide tools
to exploit the feature names, e.g., TF-IDF [72], which estimates the importance of
words in a document with respect to a corpus of documents, based on the compared
occurrences of the words.

3.2 Statement of purpose

This chapter proposes a data-driven method to extract an intelligible selection
of operational features, i.e., features that can be easily understood and analyzed by
a human, and which best describe an event occurring on an edge network, based on
network telemetry data. This implies extracting feature importance from teleme-
try data, without the use of domain knowledge. Indeed, using domain knowledge
would require a domain expert to annotate all features, which would not only imply
annotating thousands of features for every possible event, but would also create a
subjective view on feature importance. Every domain expert will look for differ-
ent features in their diagnosis, which implies that features do not have an absolute
importance value, i.e., the ground truth cannot be defined in this problem space.

In order to design a data-driven analysis of the data, an assumption is made
that, like in most telemetry datasets, features are labelled with a feature name
which gives some information on the feature and/or the group they belong to. Raw
feature names can be used as an indication of what functionality or what subgroup
the feature refers to, i.e., its semantic meaning. Therefore, this chapter uses feature
names to help selection, in addition to raw data behavior.

The problem is naturally formulated as a feature selection problem [65], i.e.,
the extraction of the most important features in a dataset, with revised objectives,
to fit this problem space. While the literature focuses on preserving the overall
information contained in the original dataset, this method generates selections which
are (i) descriptive of an event, i.e., contain features which see a significant change
in value, and (ii) intelligible to a network engineer.

While the reaction of a counter to an event can be quantified from data behaviour,
the intelligibility of a counter in a dataset, i.e., how useful it is in helping a human
explain the event, is strictly defined by domain knowledge. To this end, this chapter
presents a metric to quantify the abstract notion of how intelligible a counter is
in the dataset, based on the counter’s rareness in the feature set. This metric is
extended into a cross-entropy based metric to describe the overall intelligibility of
a selection of features. The method then combines this estimation of intelligibility
(domain knowledge) with a score for how strongly the features react to a change
(data behaviour) to define an optimization score. This score allows the computation
of optimal selections to help operators explain network events.

3.3 Chapter outline

The remainder of this chapter is organized as follows: Section 3.4 presents as-
sumptions on telemetry data properties and preprocessing. Section 3.5 describes a
method for estimating the relative importance of features, based on their feature
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names. Finally, section 3.6 presents a metric to evaluate the semantic information
contained in a selection of features, using a measure of cross-entropy.

3.4 Data description and preprocessing

This section presents the data particularities of telemetry datasets and prepro-
cessing mechanisms in the context of fault diagnosis.

3.4.1 Telemetry data properties

Telemetry data takes the form of a time-series, with each feature representing
the value of one particular sensor in a system over time. Specifically, in the context
of network telemetry, the following data properties can be described.

High, variable dimensionality

In telemetry applications where the cost of an individual sensor, or of measur-
ing an individual feature, is relatively low (as it is the case in networking, software
engineering, IoT), telemetry datasets may be high-dimensional. In dynamic sys-
tems, dimensionality itself may change over time, as features appear or disappear.
In particular, in network telemetry, performance of a network interface i may be
described through ni features or dimensions including interface i’s byte count, data
rate, queue occupation, etc. Enabling or disabling interface i on a device thus leads
to an increase or decrease of the dimensionality of corresponding network telemetry
dataset by ni. Dealing with missing data resulting from such variability may require
additional data preprocessing.

Heterogeneity

The data values can be of different data types and formats, e.g., in the network
telemetry datasets used in this study, on an individual router, the numerical features
can be positive incremental integer values ranging in the billions, e.g., byte counts,
or non-monotonic functions ranging from 0 to 1, e.g., CPU consumption. Comparing
data of different nature also requires additional preprocessing.

Aggregation level

Telemetry datasets are also heterogeneous in the aggregation level of each fea-
ture. Telemetry applications usually monitor complex systems, composed of differ-
ent subsystems or services, such as network routers or mechanical systems composed
of individual components and services. Telemetry data is usually composed of (i)
features describing the state of a single element (referred as individual feature, e.g.,
a single byte counter), and (ii) features which are aggregations of several sources of
information (referred as compound features, e.g., the total number of open connec-
tions on a router).
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3.4.2 Telemetry data preprocessing

The properties presented in section 3.4.1 highlight the challenges of data-driven
fault diagnosis. The high and varying dimensionality cause dimensions to appear and
disappear from the feature set dynamically, without indication on their signification
or relevance. Heterogeneity complicates the use of most data-driven approaches,
which assume the identical nature of all features. Different aggregation levels im-
ply different levels of importance in the feature set, which only stem from domain
knowledge. However, with the assumption that the data around an event is fixed,
it is possible to define a window around the time of the event where the data can
be relieved of some of these properties. For example, differentiating the incremental
features and performing min-max scaling can solve the heterogeneity problem. This
differentiation can be performed in real-time by estimating which features are incre-
mental during a bootstrapping period, the duration of this period being considered
long enough to simply estimate that any monotonously increasing features is incre-
mental. The dynamic dimension problem can be handled by padding missing values
with zeros, which narrows down the dataset to a time-series of fixed dimension for
further processing.

This preprocessing is not optimal: (i) min-max scaling does not handle un-
balanced data well, (ii) the bootstrapping period can be too short and consider
non-incremental data as incremental, and (iii) zero-padding dynamic dimensions
can create artificial abrupt changes in the data which alter detection and diagno-
sis. Further optimization is outside of the scope of this study, since the presented
preprocessing mechanism has proven to provide reasonable results in chapter 4.

3.5 Estimating semantic importance

This section presents an estimation of the relative importance of features for fault
diagnosis, by exploiting available meta-data, which carries semantic information.

As described in section 3.1, the notion of relevance in the literature is most often
linked to a measure of information contained in the resulting selection of features.
In the context of fault diagnosis, this translates in a selection which needs to be
as intelligible as possible, to help understand an event. The ideal selection in this
problem space is one that distills the counters that are both describing the event,
and meaningful to an operator, which needs to be defined.

Since this notion of meaningfulness is abstract and strictly depends on domain
knowledge, this section proposes an approximation. This approximation allows the
method to leverage the contextual information derived from the feature names, and
offers a complementary analysis to what can be extracted from the data behavior.

3.5.1 Term Frequency-Inverse Document Frequency

Not all features in a telemetry dataset have the same relevance for the diagnosis
of a given fault. Compound features are usually more relevant because they offer an
aggregated perspective of the state of the system, compared to individual features
which only describe a single component. For example, Bidirectional Forwarding
Detection (BFD) [73] session counters (2 occurrences out of 6622 in the example
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dataset1) are more meaningful to an operator than one of the many features counting
the number of bytes sent counters on the router’s interfaces (570 occurrences). More
generally, it can be observed that semantic importance can be linked to a notion
of rareness of a feature name, e.g., with compound features containing the words
summary or total in their feature name.

Standard methods to estimate semantic importance include the Term Frequency-
Inverse Document Frequency (TF-IDF) [72] metric. TF-IDF quantifies the impor-
tance of a word (or term) in a document, within a corpus of documents; word im-
portance is quantified as the relative frequency of the word in the document (term
frequency), divided over an estimation of the information provided by the word in
the whole corpus of documents (inverse document frequency), as follows:

tfidf = tf · log (N/df) (3.1)

When applied to telemetry, documents translate into feature names, and words
translate into the different tokens forming a feature name. Tokens can be individ-
ual words or groups of words that have collective semantic meaning in a feature
name. For example, the feature name up-interface-count consists of three tokens
(individual words): up, interface, and count.

In equation 3.1, tf is thus the number of times the token appears in the feature
name, df the number of feature names containing the token, and N the dimension of
the dataset. The importance of an entire feature name, i.e., the semantic importance
of one feature in the dataset, can be estimated as the average importance of its
tokens.

Feature names are usually short and contain very few token repetitions. It can
be estimated that the number of times a token appears in a feature name tf ≈ 1,
in which case the importance of a token can simply be approximated by the inverse
frequency of its occurrence in the dataset. This observation shows that this metric
is relying on the discriminative power of a feature name: the more unique a feature
is in a dataset, the more information it contains when impacted by an event. Token
importance is defined as a distribution over T , the space of all existing tokens in
the feature set. Considering τ ∈ T a token, the importance of this token in the set
is approximated as p:

p(τ) = n(τ)/T (3.2)

with n(τ) the number of times the token τ appears in the set, and T the sum of the
number of tokens in each feature name in the set.

3.5.2 Extension to model-driven telemetry

The definition of frequencies in this section must describe the rareness of feature
names in a dataset, i.e., frequently occurring feature names must have a higher
frequency value than less frequently occurring ones. Any method for generating
frequencies with such properties is considered valid — this chapter will use the
method described below.

As described in the previous section, a simple method for using descriptive fea-
ture names to quantify the rareness of a feature is to simply consider their occur-
rences in the dataset. In the case of MDT, the feature names are referred to as

1https://github.com/cisco-ie/telemetry

https://github.com/cisco-ie/telemetry
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sensor paths [74], and are part of a 3-layered hierarchical name space. A sensor
path corresponds to a branch in this topology, for example:

tcp node statistics︸ ︷︷ ︸
token type 1

: interface 1︸ ︷︷ ︸
token type 2

: bytes-sent︸ ︷︷ ︸
token type 3

In YANG, sensor paths can be parsed to extract three components: a module
name, a key value array, and a leaf name, as described in [64]. Using the method
presented in section 3.5.1, the rareness of a feature name is defined as the frequency
of these individual components. These three tokens are instances within a token
type. In the example above, sensor paths consist of three token types, and can be
parsed into three tokens: tcp node statistics is a token within the token type of
module names, interface 1 is a token within the token type of key value arrays,
and bytes-sent is a token within the token type of leaf names.

More generally, feature names can be parsed when their format is consistent,
in order to make token types correspond to precise attributes. This distinction
between module name, key value array, and leaf name, can be generalized to the
distinction of K token types as the different attributes parsed in a feature name (in
this case, K = 3). Within each type, the rareness of a feature name is defined as
the frequencies of its tokens within their type in the set (giving K frequency values
for a single feature name).

For a token type 0 < k ≤ K, Tk is the total number of unique tokens found
among token type k in the entire set of feature names. For 0 < i ≤ Tk, tk,i the i-th
individual token among the tokens of type k, and nk,i is the number of times token
tk,i appears as the k-th token type in a feature name. In other words, this value is
counting the occurrences of every unique token among the tokens of the same type.
Finally, for 0 < k ≤ K the frequencies {pk,i}0<i≤Tk

are defined as pk,i = nk,i/N ,
where N is the total number of features in the set.

For example, the frequency associated with module name tcp node statistics

(token type 1), the key value array interface 1 (token type 2), or the leaf name
bytes-sent (token type 3), will be the number of times each token appears divided
by the total number of features in the dataset, giving one probability distribution
pk for each token type (3 in this case).

For each token type k, pk,i is a measure for how rare token tk,i is, within the
token type k, and estimates how meaningful tk,i is to a network engineer (low values
of pk,i translate to the token tk,i being most meaningful).

3.6 Semantic importance of a selection

With semantic importance of individual features defined, this section presents
a method for defining the quality of a selection of features. For the remainder of
this section, p refers to the distribution of tokens defined on the full set of feature
names, and q refers to the distribution of tokens in the subset of features selected
by a hypothetical feature selection method.

3.6.1 Quantifying selection quality

In the problem space described in this chapter, the objective is to produce selec-
tions which are both intelligible and semantically related to the event.
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In the related work presented in section 3.1, a measure of entropy is often used,
because it is correlated to balanced cluster structures in the data [65]. However,
the objectives of the methods presented in the related work section are different,
because they focus on reducing the size of the data to lower its impact, while an ideal
selection in this study is one that is specific to a particular event, i.e., corresponds
to an unbalanced cluster structure. Entropy of a distribution p is defined as:

H (p) = −
∑
τ∈T

p(τ) log p(τ) (3.3)

The more specific to a given functionality, or to a given element of hardware,
the more information a selection will provide to an operator, and the lower the en-
tropy value will be. On the contrary, if the selection is very diverse and contains
features describing many different functionalities, interpretation will be more com-
plicated , and the value of entropy will be high. In other words, if the entropy is
low, the selection will be more intelligible, because it will be focused on a specific
functionality.

3.6.2 Cross-entropy

Entropy does not capture the difference pointed out in section 3.5, i.e., if the
selected features are focused on a component which is rare in the original set, it will
have the same score as if it was focused on an originally frequent functionality. The
score for this feature selection method should be greater if the selection focuses on
the rarest features in the dataset, estimated to be correlated to semantic importance.

In that respect, cross-entropy, i.e., the relative entropy of a distribution com-
pared to a reference, quantifies how focused/specific a selection is, along with how
much it differs from the reference dataset. Cross-entropy captures how specific the
information is in the selection, with the original distribution as reference distribu-
tion.

For the remainder of this chapter, it is assumed that the hypothetical selection
process extracts a subset of features with a token distribution q from the original
feature set with token distribution p. To describe an event, this subset is expected
to preserve tokens from the original set which carry the most information, i.e., rare
token instances in distribution p. This is quantified through the measure of cross-
entropy H(p, q) between the initial and final token distributions p and q, defined as:

H(p, q) = −
∑
τ∈T

p(τ) log q(τ) (3.4)

A high cross-entropy implies a low likelihood, and is related to semantic quality,
i.e., the ability for an operator to understand the selection. The advantage of
using this metric is twofold: (i) it favors the selection of features composed of rare
tokens, identified as carrying the most information, and (ii) it favors specificity in
the distribution, which favors feature selections with a small number of tokens.

When applied to different token types, as described in YANG, for a given token
type 0 < k ≤ K, cross-entropy is expressed as follows:

H (pk, qk) = −
∑
i∈P

pk,i log qk,i (3.5)
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If p = q, the cross-entropy value will simply be the entropy of the original
distribution q. This means that random selections will have an average cross-entropy
value of H(q), while the scores of selections which focus on a specific functionality
will be H(p, q) > H(q). Additionally, the cross-entropy value will be greater if the
focus is on a rare functionality, since the metric captures the difference in entropy
between the two distributions.

Cross-entropy is very close to a divergence metric between two distributions.
Compared to e.g., the Kullback-Leibler (KL) divergence [75] DKL, cross-entropy
also indicates the specificity of the selection. When the difference between cross-
entropy and the entropy of the original distribution is computed (to remove the
constant component H(q)), it can be expressed as the sum of the KL-divergence
and the difference in entropy between the two distributions, i.e., the information
gain IG(q|S).

H (p, q)−H (q) = DKL (p||q) +H (p)−H (q)

= DKL (p||q)− IG(q|S)
(3.6)

Not only does this score describe the distance from the original distribution
(divergence), it also provides an indication on how much information is preserved in
the selection, compared with the original dataset (specificity).

Notably, the selection which maximizes the cross entropy value is just the one
feature which contains the rarest tokens in the set. Having a single feature as
selection is trivial to interpret, even more so when its tokens preserve the most
information from the original set. However, in the context of fault diagnosis, this
needs to be joined with feature contributions to the event, which is why cross-entropy
is insufficient in itself, and needs to be complemented by a change amplitude metric,
presented in chapter 4.

3.7 Summary of results

This chapter has proposed a general method for estimating feature importance, in
the context of event description, in multivariate time-series data, through semantic
information retrieved on the feature names only.

The proposed estimation of the intelligibility of a selection is based on TF-IDF,
a measure of word importance in a corpus of texts, and is based on the occurrence
of its components. In the context of telemetry, this metric is adapted to show the
link between token rareness and semantic feature importance in telemetry datasets,
illustrated through the example of MDT YANG datasets.

With this estimation of feature importance, this chapter has identified that a
measure of cross-entropy on the token distributions in the features of a telemetry
dataset represents the quality of a selection process. This selection quality score
is an indicator of the information contained in a selection in the context of fault
diagnosis, i.e., how interpretable this selection is.
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Chapter 4

Semantic feature selection

Fault diagnosis, i.e., identifying the root cause of an event, has been studied
in communication networks, manufacturing, maintenance of mechanical systems,
transportation, and software engineering. By mimicking processes of human rea-
soning, expert or rule-based systems have proven to be useful for in-depth diag-
nosis [76]. Most efforts of expert systems for fault diagnosis rely on the definition
of a state graph, representing the known and unknown states of the system, with
defined transitions, depending on the available features [77]. Typical methods in-
clude probabilistic automata and Petri nets [78, 79]. However, such fault diagnosis
systems present severe scalability and adaptability issues. They require an extensive
modeling stage, with full knowledge of the fault behavior, which does not scale in
large, relatively complex systems. In applications such as the IoT, where a variety
of technologies and sensors interact with each other, or in network telemetry, where
the dimension of the data changes with the network topology, telemetry data is
often heterogeneous and of varying and high dimension, making it difficult to de-
sign a system which covers the entire fault behavior. Graph-based expert systems
also imply high computational costs in the diagnosis process when the dimension
increases [80]. Being hand-crafted and domain-dependent, expert systems also lack
the ability to adapt to new, unseen data [76].

In this context, robust data-driven approaches allow to (i) avoid the cost of expert
systems conception and maintenance, and (ii) leverage high dimensional telemetry
data to robustly diagnose events with limited domain knowledge. Insight about the
inner structure of the feature set (semantics, relations, relative importance) may
overcome the absence or scarceness of explicit domain knowledge. Extracting and
integrating that insight about inner structure and realtions within the feature set is
thus a major challenge for improving the performance of fault diagnosis systems.

One way to provide a data-driven diagnosis is distilling a set of features that
are of operational importance. Selecting original features can be a simple way to
assist fault diagnosis while avoiding the modeling stage. Instead of presenting an
expert with high dimensional data, feature selection narrows down the scope of
investigation, based on a given metric, e.g., individual amplitude of change, variance,
or difference from a standard value.

35
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4.1 Related work

In the literature, explanation refers to the identification of the input features,
which contribute most to a model’s decision [81,82]. Although this chapter presents
a method with the same objective, it does not consider any model, but rather isolated
events at a given moment in a multivariate time-series. In this study, the process is
entirely data-driven, and is rather considered as a features selection problem.

Typical feature selection methods [65] identify the most important features in
a dataset without the objective of explanation or fault diagnosis. Feature selec-
tion is usually intended for dimension reduction. Classical dimension reduction
methods such as Principal Component Analysis, Linear Discriminant Analysis, or
t-Distributed Stochastic Neighbor Embedding (t-SNE) [83–85] produce artificial di-
mensions, i.e., dimensions which are combinations (linear or not) of the original
features. For the purpose of interpretability in fault diagnosis, the returned features
need to correspond to original dimensions.

Efforts in feature selection of original dimensions include wrapper methods [67],
which select the original features with regards to a given clustering algorithm, and
filter methods, which rely on data collections to define a relevance score, often
based on metrics derived from entropy [68–70], or statistical dependencies [71] to
capture the amount of information contained in the selected features. However, these
selection methods have a different objective than those discussed in this chapter,
which selects original features for explanation instead of computational efficiency.

Feature selection for fault diagnosis has been studied to detect faults in mechan-
ical systems and modern process industries [86]. These applications consider small
input dimensions compared to this study. Other selection mechanisms for diagnosis
include explanation methods in Deep Learning applications. The explanation pro-
cess aims at selecting the original features responsible for a classification decision.
Computation of the Shapley values [81] or LIME [82] score the contributions of each
input feature to a classifier, in order to better understand a decision process. Al-
though the process of selecting original features for fault diagnosis is similar, the
purpose of explainable AI methods is to describe the reason for a given classifi-
cation (that is, for their own decisions), whereas the objective of this study is to
describe the underlying data itself. A first specification and preliminary results of
this method for fault diagnosis was presented in [52].

4.2 Statement of purpose

This chapter presents an evaluation of the semantic feature selection method,
presented in chapter 3 [52] and summarized in figure 4.1, on network telemetry
datasets. This method is a hybrid selection process which combines data-driven
metrics and semantic analysis of meta-data. This approach produces a representa-
tion for network fault events, extracted from the telemetry available, that can be
used for fault diagnosis. The contributions of this chapter are the following:

• The demonstration that data-driven feature selection methods fail to identify
semantic feature importance relations.

• This introduction of a novel benchmark for evaluating the performance and
robustness of selection methods for event diagnosis on telemetry data.
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Figure 4.1: Semantic feature selection for fault diagnosis in network telemetry data.
Instead of exporting large volumes of telemetry data to centralized servers, semantic
feature selection can filter the interesting information for fault diagnosis.

• The presentation of benchmarking results, for both data-driven and seman-
tic feature selection methods, on data retrieved from routers running the
Cisco IOS-XR operating system, modeled with the YANG data modeling lan-
guage [64]. This benchmark demonstrates both the performance and robust-
ness of the semantic feature selection method for fault diagnosis.

4.3 Chapter outline

The remainder of this chapter is organized as follows: section 4.4 presents the
limitations of data-driven selection methods and highlights the need for additional
information. Section 4.5 presents the semantic feature selection method based on
the meta-data analysis presented in chapter 3. Finally, section 4.6 presents the
experiment setup and results for performance and robustness evaluation on network
telemetry datasets.

4.4 Data-driven methods

This section presents data-driven selection methods for fault diagnosis. These
methods take an event time, t0, as a given input1, and return a ranking of the
features with weights representing how much each feature changes within a window
around the event time [t0 − w, t0 + w]. Throughout this section, the pre-processed
time-series data is annotated as S = {sn,t}n≤N,t≤T with sn,t being the value of feature
n at time t.

Three approaches are tested on network telemetry datasets to cover a range of
data-driven change amplitude metrics: the univariate change amplitude method,
which computes the change amplitude for every feature independently by looking
at univariate time-series data (section 4.4.1), a linear multivariate change ampli-
tude method, which considers N -dimensional data points for every time step (sec-

1Event detection itself and mechanisms for determining the time t0 = t(e) of an event e are
outside the scope of this study. A change-point detection method [87] can be used for this purpose.
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Mean change Spike Variance change Frequency change

Figure 4.2: Change shapes present in telemetry datasets. For simplicity, the uni-
variate change amplitude metric only considers mean and spike changes.

tion 4.4.2), and a non-linear N -dimensional method which identifies feature con-
tributions to a non-linear classifier (section 4.4.3). A comparative analysis of the
examined methods concludes the section (section 4.4.4).

4.4.1 Univariate Change Amplitude (UCA)

The univariate change amplitude is defined, for every feature, as the maximum
value between the normalized mean value change between windows respectively be-
fore and after the time of the event, and the normalized spike amplitude at the time
of the event. With Et∈[ti,tf ](sn,t) being the temporal-mean value of the normalized
data between times ti and tf , and A the value of the spike amplitude on a window
around the time of the event [t0−ϵ, t0+ϵ], for every feature n, the univariate change
amplitude is expressed as:

σ(sn, t0) = max
(∣∣Et∈[t0−w,t0](sn,t)− Et∈[t0,t0+w](sn,t)

∣∣∣∣∣∣A− 1

2
(Et∈[t0−w,t0−ϵ](sn,t) + Et∈[t0+ϵ,t0+w](sn,t)

∣∣∣∣) (4.1)

The univariate change amplitude metric scores every feature independently by
looking only at the univariate data in a given time frame. Given this data, when
an event occurs in the system, the observed change can show several patterns, as
shown in figure 4.2, e.g., mean value change, variance change, spikes, frequency
change. The metric needs to provide comparable values for different shapes or data
type, e.g., numerical, categorical, incremental or not. Limiting this metric to first
moment statistics, i.e., changes in mean value or spikes, simplifies the metric which
can be used as a baseline for comparison with the more elaborate methods below.

4.4.2 Linear Discriminant Analysis (LDA)

The approach in this section considers N -dimensional data points instead of uni-
variate time-series. The method used is the Linear Discriminant Analysis (LDA) [84],
which computes the coordinates of the hyperplane which maximizes separability be-
tween N -dimensional data points before and after the event. With st defined as the
N -dimensional vector of feature values at time t, the weights in the final ranking
correspond to the coefficients of the hyperplane v∗, defined as:

v∗ = (Σ− +Σ+)
−1(µ− − µ+)
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with µ± = Et∈[t0,t0±w](st)

and Σ± =
∑

t∈[t0,t0±w]

(st − µ±)(st − µ±)
⊤ (4.2)

With this classification between points in windows around the event, the rank-
ing will be less sensitive to outliers and represent general tendencies in the data.
However, the classifier will be unable to discriminate between classes if the data is
structured non linearly, i.e., this method makes assumptions on the distribution of
the measurements being Gaussian within both classes.

4.4.3 Non-linear classifier

The chosen non-linear classifier is a random forest, trained to classify points
before and after the event time, and the feature contributions are extracted by
leveraging the SHAP methodology [81], which relies on the computation of the
Shapley values.

Similarly to LDA, this ranking considers N -dimensional points at any given time
t, without assuming a distribution over the two classes, which enables the consider-
ation of non-linear relations between points before and after the event time t0. The
SHAP methodology is originally designed for explainable AI, where methods are
developed to find the original features which contribute most to a classifier decision.
In order to apply this method, the binary random forest classifier is first trained
to classify points before and after the event time, before applying the explanation
methodology which ranks features by their contribution to the classifier predictions.

4.4.4 Limitations illustration

The three methods are applied on an example network telemetry dataset of
23650 individual features, describing the state of a router running the Cisco IOS-
XR operating system, when an interface shuts down2.

• Univariate change amplitude: Among the highest ranked features are mostly
compound features such as interface counters, BFD sessions state counters,
Border Gateway Protocol (BGP) neighbour counters, as well as individual
features such as the last Routing Information Base (RIB) version, or negotiated
intervals.

• Linear discriminant analysis : The highest contributing features are traffic
counters, data rates and neighbour advertisement message counters.

• Non-linear classifier : The highest ranked features are exclusively packet coun-
ters and data rates related to the state of the interfaces neighbouring the
shutdown interface.

Although all the selected features are either relevant to the interface shutdown,
or linked to a consequence of this event, none of the methods above place the most

2Because of the solutions verbosity, the 50 highest ranking features for each method can be
found at https://github.com/tfeltin/sefset_results/blob/master/datadriven.md

https://github.com/tfeltin/sefset_results/blob/master/datadriven.md
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important compound features first, i.e., features representing the number of active
interfaces. This suggest that the highest ranked features are highly changing in
value, but do not necessarily contribute anything meaningful to the diagnosis.

Some features are more important than others in the diagnosis process, albeit
identical from a data-driven point of view. For example, the feature counting ac-
tive interfaces up-interface-count and the feature describing the last version of
the RIB table last-rib-version have an identical behavior around the event,
i.e., a step from an integer value to another, yet up-interface-count can be
considered as the most important indicator of an interface shutting down, while
last-rib-version describes a consequence, as a part of the re-routing mechanism.
From a purely data-driven approach, the two features are indistinguishable and are
both included among the highest ranked features.

From this analysis, the conclusion is drawn that the described data-driven ap-
proaches cannot capture importance relations between features, and additional in-
formation needs to be taken into account to identify important features in telemetry
datasets.

4.5 Optimization problem definition

This section describes the semantic feature selection method, which jointly opti-
mizes data-driven change and semantic information contained in the selected subset
of features.

4.5.1 Defining the optimization objective

Considering a multivariate time-series of dimension N > 0, the frequencies de-
scribing token occurrences p and q are defined as in section 3.5. At a given time
t0, each uni-variate time-series s has an associated score σ(s, t0) that quantifies the
amount of change in the feature (cf. section 4.4). This section presents a method to
find the subset of features S which best describes what is changing at a given time.

This can be expressed as an optimization process, which aims at selecting features
which both maximize the data-driven change score, and the cross-entropy, through
the product of both metrics (change score σ(s, t0) and cross-entropy H(p, q)). The
idea behind this optimization process is that optimal selections will both picture the
change around a given time, with the change score, and diverge from the original
feature set with high specificity, with the cross-entropy.

The product of both metrics is taken as optimization score L′, and is defined as
follows:

L′(S, p, q) = H (p, q)
1

|S|
∑
s∈S

σ (s, t0) (4.3)

where σ(s, t0) is the univariate change amplitude score from section 4.4.1. When
using several token types, the resulting scores can be aggregated by summing the
values of token-specific cross-entropy, in order to take all token types into account,
giving L′, with p = {pk}0<k≤K , and q = {qk}0<k≤K the distribution of tokens within
a token type:
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Figure 4.3: Flow chart of semantic feature selection for fault diagnosis. It is assumed
that the diagnosis process is associated with a change-point detector (outside of the
scope of this work), which produces time stamps t0 of detected events from stream-
ing telemetry data S. The semantic feature selection uses a data-driven change
amplitude metric σ(S, t0) to define the optimization objective based on cross en-
tropy H(p, q) in equation 4.5.

L′(S, pk, qk) =
K∑
k=1

H (pk, qk)
1

|S|
∑
s∈S

σ(s, t0) (4.4)

However, looking for results which optimize this score results in fixed size selec-
tions. This can cause selections to be too long, i.e., containing parasite information,
or too narrow, i.e., lacking some level of detail, for interpretability. In order to relax
this constraint, and to have the method offer configurable amounts of features to
describe the event, a regularization term is added to the score to penalize very small
selections and arrive at the final definition of L [52]:

Lα(S, t0, p, q) = (1− e−
|S|
α )H(p, q)

1

|S|
∑
s∈S

σ(s, t0) (4.5)

Lα(S, p, q) =
(
1− e−

|S|
α

) K∑
k=1

H (pk, qk)
1

|S|
∑
s∈S

σ(s, t0) (4.6)

where α is the regularization parameter, which aims at penalizing very small selec-
tions, and which can be used as a tuning parameter for the size of the selection.
This regularization parameter defines how much smaller subsets are penalized. A
higher value of α leads to selections with higher cardinality.

A flow chart of semantic feature selection showing how the optimization objective
is defined to jointly maximize the data-driven change metric and the cross-entropy
based semantic importance estimation is shown in figure 4.3.

4.5.2 Optimization process

The semantic feature selection algorithm is described in algorithm 1. The chosen
optimization process is greedy: after initializing a selection by selecting the features
with highest change score, at every, the impact of the addition/removal of each
feature in the selected set is computed. Only those additions/removals that improve
the optimization score (L) are maintained/removed from the set. This process is
repeated until no further additions/removals can improve the score.
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Algorithm 1 Semantic feature selection

Input: S (time-series), t0 (event time), α (regularization parameter), Imax (early
stopping)
Output: S′′ (selection)

S′ ← σ (S, t0) // Sorted by highest change amplitude
I ← 0 // Counting the number of iterations
S′′ ← the first Ni elements of S′

while S′′ keeps changing after an iteration, or I < Imax do
Snew ← {}
for s in S′ do
if s ∈ S′ \ S′′ and Lα (S

′′ ∥ {s} , p, q) > Lα (S
′′, p, q) then

Snew ← Snew ∥ {s}
else if s ∈ S′′ and Lα (S

′′ \ {s} , p, q) < Lα (S
′′, p, q) then

Snew ← Snew ∥ {s}
end if

end for
S′′ ← Snew

I ← I + 1
end while

The input variables are the multivariate time-series data S, the event time t0,
the regularization parameter α, and the maximum number of iterations for early
stopping Imax. Firstly, the change score σ(S, t0) is computed for the multi-variate
time-series S, as depicted in figure 4.3, and the features are ranked in descending
order. The initializing step selects the Ni features with highest change scores as
the initial selection, with Ni defined depending on the use-case (Ni = 500 in the
network telemetry application used in section 4.6). Then, at every step, the selection
mechanism performs the two previously mentioned operations: (i) for every feature
that is not in the selection, the score is computed for the selection with this extra
feature included, and every feature which improves the score of the current selection
when added is appended to the current selection; then, (ii) the same operation is
performed, by instead trying to remove each feature in the selection, and every
removed feature which improves the score is removed from the current selection.
The optimization process stops when no addition or removal improves the score. If
this criterion is not reached after Imax iterations, the process stops and returns the
current selection with the notification that an optimum was not reached.

At the end of the optimization process, the selected features are ordered by their
contribution to the score (computed by leave-one-out), in order to have the most
important features first.

4.5.3 Illustration

The output of the selection method is a list of original input features which
maximizes the score defined in equation 4.5.

To illustrate the results, the process was run on MDT datasets where the feature
names follow the nomenclature of an associated YANG model [64]. The data was
extracted from a router through MDT collections in a lab environment, where typical
network events were inserted, such as interface failures, routing loops, traffic black
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holes, etc.
The results showcased below were obtained by running algorithm 1 on a dataset

created, by retrieving several MDT collections with a cadence of 10s over several
periods, in a lab environment. The resulting set consists of over 40 thousand features
describing the router state, with triggered enables/disables on interface 10 to trigger
interface shutdowns, enables/disables of a bidirectional forwarding detection (BFD)
session to trigger failure of BFD sessions, and addition of routing entries to trigger
routing loops. The time-stamps at which the events occur are known, and the
change score (σ) for each uni-variate time series was computed as the univariate
change amplitude metric described in section 4.4.1.

The output of semantic feature selection on a routing loop, an interface shutting
down, and breaking a BFD session, for α = 1, are the following 3:

Routing loop

• Cisco-IOS-XR-ipv4-io-oper:ipv4-network/nodes/node/statistics/traffic

[node-name=0/1/CPU0]output

• Cisco-IOS-XR-ipv4-io-oper:ipv4-network/nodes/node/statistics/traffic

[node-name=0/1/CPU0]hopcount-sent

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/

latest/protocols/protocol[interface-name=HundredGigE0/1/0/34 protocol

-name=IPV4 UNICAST]bytes-sent

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/

latest/interfaces-mib-counters[interface-name=HundredGigE0/1/0/34]

bytes-sent

• Cisco-IOS-XR-infra-statsd-oper:infra-statistics/interfaces/interface/

latest/generic-counters[interface-name=HundredGigE0/1/0/34]bytes-sent

• Cisco-IOS-XR-pfi-im-cmd-oper:interfaces/interface-xr/interface

[interface-name=HundredGigE0/1/0/34]bytes-sent

The first two features in this list are the ICMP output and hop count exceeded
features, followed by traffic counters on the interface which is seeing the incoming
traffic from the loop.

Admin Interface 10 shutdown

• bfd summary::session-state down-count

• bfd summary::session-state up-count

• interface-summary::admin-down-interface-count

• interface-summary::up-interface-count

3The sensor paths in the rest of the chapter were abbreviated for the sake of readability, but
the detailed features names can be found in the publicly available dataset https://github.com/
cisco-ie/telemetry/tree/master/11.

https://github.com/cisco-ie/telemetry/tree/master/11
https://github.com/cisco-ie/telemetry/tree/master/11
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• bfd counters:HundredGigE0/0/0/10:hello-transmit-count

• bfd session:HundredGigE0/0/0/10:negotiated-local-transmit-interval

• bfd session:HundredGigE0/0/0/10:negotiated-remote-transmit-interval

The selected features are the ones counting acitve interfaces, and the BFD session
monitoring the impacted interface.

Breaking BFD session

• bfd summary::session-state up-count

• bfd summary::session-state down-count

• bfd counters:HundredGigE0/0/0/16:hello-receive-count

• bfd counters:HundredGigE0/0/0/16:hello-transmit-count

• bfd session:HundredGigE0/0/0/16:negotiated-remote-transmit-interval

• bfd session:HundredGigE0/0/0/16:negotiated-local-transmit-interval

The selected features are all BFD session counters.

4.5.4 Discussion

The resulting selections for α = 1 are both intelligible and descriptive of the
corresponding events. The selection process has allowed the selection of less than 10
of the most important features, out of the initial tens of thousands, and these features
can be categorized as meaningful to an operator (ICMP hop counts, BFD sessions
counts, and active interface counts). With the removal of the many counters that
can obscure a user’s analysis, it will be easier for an operator with this condensed
view to infer an explanation of the event.

Figure 4.5.4 shows the size of the selections compared to the original number
of features for the different types of events contained in the dataset. Figure 4.5.4
also displays the number of changed features around the time of the event, and the
number of features whose values have changed by more than 95% in absolute value.

As a comparison, the simple method of extracting the top 10 features with high-
est value of σi (normalized difference in mean value on windows of 10 points before
and after the timestamp) for the interface 10 shutdown would return:

Interface 10 shutdown

• fib-statistics:0/0/CPU0:incomplete-adjacency-packets

• bgp:ipv4:performance-statistics vrf update-generation-prefixes-count

• bgp default-vrf afs-process-info:ipv6:global label-version

• bgp default-vrf afs-process-info:ipv6:global last-rib-version
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Figure 4.4: Number of selected features with α = 1 compared to the original number
of features and the number of changing features (logarithmic scale) around given
events in the dataset. ”Changed” describes the number of features which change in
value around the event, and ”Changed>95%” are the ones which see a change of
more than 95% of their absolute value.

• bgp default-vrf afs-process-info:ipv6:local-paths-freed-num

• bgp default-vrf afs-process-info:ipv6:local-paths-malloced-num

• bgp default-vrf afs-process-info:ipv6:paths-freed-num

• bgp default-vrf afs-process-info:ipv6:paths-malloced-num

• bgp default-vrf afs-process-info:ipv6:rib-acked-table-version

• bgp default-vrf afs-process-info:ipv6:rib-bgp-version

Although these features are actually caused by the event (re-routing caused by
the interface shutting down), they are unrelated to the nature of the event itself.
This specific dataset contains 8% of Virtual Routing and Forwarding (VRF) related
sensor paths. As discussed in section 3.5, because of their high occurrence in the
dataset, they are estimated to convey less meaning to the network engineers. As
an indication, in the selection made by this method with α = 1, the change scores
(σi) of the selected features ranged from 51th to 109th highest change score. This
implies that the contribution of cross-entropy to the optimization score resulted in
the selection of the features which carry most information (e.g., interface counts)
and the removal of those that did not, among the features changing most in value.
This observation confirms the contribution of both components of the optimization
score (L): while the change score (σi) allows the method to select the counters that
see a change in value around the event, the cross-entropy (H(p, q)) selects those
which are most meaningful to a network engineer (i.e., rare in the dataset).
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The α parameter further allows the tuning of the verbosity of the selection. For
example, with lower values of α, the selection for the interface 10 shutdown becomes:

Admin interface 10 shutdown: (α = 0.47)

• bfd summary::session-state down-count

• bfd summary::session-state up-count

• interface-summary::admin-down-interface-count

• interface-summary::up-interface-count

Admin interface 10 shutdown: (α = 0.1)

• bfd summary::session-state down-count

• bfd summary::session-state up-count

A higher value of α can allow for a more detailed view (which can hint at the
details of the events, e.g., locality) whereas lower values can result in scarce selec-
tions.

4.6 Benchmark

Comparing this feature selection for fault diagnosis method to existing solutions
is difficult because the literature lacks a dedicated evaluation. This section therefore
proposes a benchmark to address this issue, and identify the added benefit of a
semantic analysis of meta-data for fault diagnosis. This approach also aims to
evaluate the robustness of the method with variations in the collected input features,
in order to quantify the dependency of the semantic method on the input feature
set.

4.6.1 Datasets

The datasets used in this benchmark are extracted from several devices in a
Clos-topology lab environment with simulated traffic and inserted events4. Each
dataset contains 20 to 40 thousand individual features depending on the device.
The datasets in the benchmark each contain one single inserted event. The time of
the event is known to the selection mechanism. The purpose is to evaluate every
selection output in an isolated way.

Four injected events are used in this benchmark and for each event, data was
collected from different devices : (i) interface admin shutdown, on the two devices at
the ends of the disconnected link, (ii) BFD failure (filtering BFD message to trigger a
failure), (iii) black hole (removing FIB entries to cause silent packet drops), collected
on the concerned device, and (iv) a routing loop (by adding static routes), with data
collected from the three devices concerned by the loop.

4Details on the topology in https://github.com/cisco-ie/telemetry

https://github.com/cisco-ie/telemetry


4.6. BENCHMARK 47

4.6.2 Metrics for feature selection

Objectively evaluating a feature selection for a diagnosis process is complicated:
the feature importance during diagnosis is subjective and operator dependent. With
this observation, defining a metric which quantifies precisely how far the output
is from an ideal is impossible. Although the precise ground truth is intractable,
the metrics defined in this section aim to get an assessment of how the method is
performing.

The idea is to define an upper and lower bound on what the acceptable outputs
are for this method, based on the described event. This chapter defines the following
two metrics that will act as such:

• Precision: defined as the proportion of features in the output selection that are
related to the input event. Among all features, those related to an event are
defined as a pre-established subset which are deemed relevant to select when
an even occurs. This metric quantifies the relevancy of the selected features
with regards to the input event.

• Completeness : Within the list of all acceptable features to describe an input
event, a subset of these features are essential to diagnosis. Completeness
quantifies whether the output contains this very minimal requirement, i.e.,
completeness is the proportion of this minimal subset which is present in the
output.

Along with performance, this chapter defines one other metric to evaluate the
robustness of the method. As the selection method highly depends on the input
data, over-fitting to either the raw data or the feature set is a possibility. Therefore,
the following metric is used:

• Robustness : quantifies the degree of variation in the output when the input
collection (feature set) is modified. Intuitively, since the importance estimation
highly depends on the probability distributions defined in section 3.6, it is
expected that variations in the feature set may cause significant variations in
the selection. The robustness evaluation aims at identifying precisely which
type of variation in the feature set is associated with which degree of variation
in the final selection.

4.6.3 Ground-truth definition for evaluation

For each event type, computing the performance and robustness metrics depends
on the definition of a set of features which act as ground truth for both precision
and completeness. The precision ground truth feature set should contain all features
which are linked to the event, and the completeness ground truth feature set should
contain the minimal set of features expected from the selection. For simplicity in
this network telemetry use-case, the two feature sets are defined as a collection of
regular expressions. This benchmark defines a ground truth for four event types in
the context of network telemetry: interface shutdowns, routing loops, BFD session
failures, and black holes. Figure 4.6 shows the ground truth definition for datasets
using YANG models.
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Figure 4.5: Comparative benchmarking results between semantic and data-driven
feature selection methods for event diagnosis in telemetry data. Figure 4.5(a) shows
the amount of dimensions reduced. Figure 4.5(b) shows the benchmarking scores of
the data-driven methods described in section 4.4 and compares them to semantic
feature selection on an interface shutdown. Figure 4.5(c) shows the benchmarking
results of semantic feature selection on the four events in the benchmark.
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Event type Regular expressions

Interface Shutdown
P : interface.*summary / HundredGigE0/0/0/N

C : interface-count

BFD Failure
P : bfd
C : bfd.*summary.*count

Routing Loop
P : icmp / bgp / hopcount / bytes-(sent|received) /

ipv4-io-oper.*traffic

C : hopcount

Black Hole
P : rate / load / icmp / ipv4-io-oper.*traffic /

connections-(established|accepted|closed)

C : unreachable-received

Figure 4.6: Ground truth definition for the four event types contained in the bench-
mark, for network telemetry data modeled with YANG. Regular expressions are
defined for precision (P) and completeness (C).

4.6.4 Robustness evaluation

The space of all possible input subscriptions is too large to be fully enumer-
ated. The robustness evaluations presented in this study target two scenarios: (i)
incomplete feature sets, e.g., caused by collection errors, and (ii) variations in token
distributions, e.g., caused by different subscriptions or operators.

Random removal of entire modules

From the list of subscriptions contained in the datasets, this method measures
the impact of removing all the data contained in one or more modules on the se-
lection output. Different quantities of removal are tested, i.e., 25%, 50%, and 75%
of modules. Two metrics are extracted from this evaluation based on whether the
removed features belong to the ground truth defined in section 4.6.3 or not: sen-
sitivity, i.e., score variations when ground truth related features are removed, and
consistency, i.e., score variations when non ground truth features are removed.

Changing feature name distribution

This methodology willingly makes frequent tokens rarer, as frequency is the
determining factor in the importance estimation. Since YANG paths can be split
into three types of tokens, i.e., modules, keys, and leaves [64], this process is done
independently for each token. The top 5%, 10%, 25%, 50% most frequent tokens in
each type are made rare, by keeping only one feature among all the ones containing
the given token. Robustness scores are computed for precision and completeness for
each token type, for a more granular view. The robustness scores are the average
score variations caused by altering one token frequency.
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Figure 4.7: Robustness evaluation. Figure 4.7(a) (resp. figure 4.7(b)) shows the
evolution of the precision and completeness of selections when removing modules
which are not included in the ground truth (resp. which are included in the ground
truth). Figure 4.7(c) shows the impact of altering token distributions for three token
types in YANG, as described in section 4.6.4.
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4.6.5 Results and discussion

Figure 4.5 shows the number of selected features and their performance evalua-
tion results on the benchmark for the four previous event types, and compares them
with data-driven methods. The results vary depending on the event, with perfect
completeness scores and varying precision5. Good completeness with lower values
in precision, such as is the case for the black hole evaluated in the benchmark, cor-
responds to verbose selections with parasite information, but still the right essential
indicators of the event. Overall, the semantic analysis identifies the 10 to 20 counters
which best represent an event in datasets of 20 to 40 thousand individual counters.
Additionally, the comparison with a data-driven method shows the effect of seman-
tic analysis. Although the data-driven methods find features which are linked to the
event, they are unable to find the most important feature which are related to an
event, as hinted in section 3.4, and confirmed by the completeness score.

Figure 4.7 shows the results of the robustness evaluation. Figure 4.7(a) and
4.7(b) show the robustness evaluation scores from the first method, i.e., the achieved
variations in precision and completeness when removing features from the input set.
As disclosed by the first robustness test, when removing 25% to 50% of the input
features, the selections are still relevant. Additionally, with around 60 modules
in the studied feature sets, when dividing these results by the number of removed
modules, it can be argued that removing a single module has very little impact
overall.

Figure 4.7(c) shows the robustness evaluation using the second method, i.e.,
willingly altering the distribution of tokens in the feature set. The main takeaway
is that the impact of drastically changing a token’s frequency is almost insignificant
on the final selection, which is unexpected. Changing the frequency should mean
changing its importance estimation, and break the logic of the semantic analysis, yet
the selections stay similar. One potential cause is the intrinsic logic that exists in
the combinations between the different tokens in the naming model. When remov-
ing all the features that contain one given leaf name, the modules and key values
consequently removed from the dataset are not randomly selected. This robustness
evaluation shows that making the most frequent tokens rare does not impact the
importance estimation severely enough to invalidate the semantic analysis.

4.7 Summary of results

Telemetry data often being heterogeneous, high dimensional, and of varying
dimensionality, traditional expert systems lack adaptability and require extensive
design and maintenance efforts. Data-driven approaches can be studied as light-
weight and robust solutions. In that regard, semantic feature selection for diagnosis
is a general solution offering a hint as to which original features best represent the
event.

This chapter has illustrated how purely data-driven feature selection methods
for fault diagnosis can be inefficient, and unable to identify the most important
features to describe an event. Although such importance relations are defined by
domain knowledge, this chapter studies an approach for estimating these semantic

5The complete selection results can be found at https://github.com/tfeltin/sefset_

results/blob/master/results.md

https://github.com/tfeltin/sefset_results/blob/master/results.md
https://github.com/tfeltin/sefset_results/blob/master/results.md
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importance relations by studying the meta-data information contained in available
feature names. This semantic analysis produces more complete and precise selec-
tions, while significantly reducing the number of features to analyze.

With the elaboration of a benchmark for evaluating feature selection methods
for fault diagnosis, this study has also shown the performance and robustness of a
semantic approach on network telemetry datasets, with feature names derived from
associated YANG models. The benchmarking results show the added improvement
of semantic analysis compared to data-driven methods, with an average precision
score 1.5x higher than data-driven methods and a significant completeness score im-
provement (0% for purely data-driven methods). Additionally, this study has evalu-
ated the method robustness to variations in the monitored dataset, i.e., removed and
altered modules. This evaluation has illustrated robustness of the semantic analysis
against strong variations in the input feature set, indicating its ability to capture se-
mantic relation between features independently of the input feature set. This study
has shown experimental results on four event types, for telemetry datasets using the
YANG modeling language. A potential extension of this work could include testing
with a higher variety of fault types, and potentially other modeling structures (e.g.,
SMI, OpenConfig), to confirm its applicability.

The method produces intelligible selections, which can ease the interpretation
of events by a network operator, while allowing the exploitation of all the available
counters in the dataset. This prevents operators from having to tediously hand
pick which features to monitor, in cases where the data is of high dimension. The
proposed method is equipped with a single value regularization parameter, allowing
the adjustment of the desired output verbosity. This allows to find the selection size
which best fits a given use case, by distilling the right amount of information. This
regularization has shown to generate selections of less than ten highly meaningful
features out of thousands in the dataset, for events with different root causes.

Although a univariate change amplitude and simple token distributions may
produce intelligible results for network telemetry datasets, they need to be further
evaluated, in cases where (i) the changes in the data are more complex, or (ii)
the relative rareness of a feature is not the best indicator of its relevance. These
assumptions were taken based on the general observation that it is usually the
case in network telemetry datasets. These two metrics are nevertheless defined
independently from the general method to compute optimal selections, and they
can be adapted to any other problem space.
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Chapter 5

DNN partitioning at the edge

Connected devices generated an estimated 2.5 quintillion bytes of data every
day in 20201. In this context, Artificial Intelligence (AI) is one of the technologies
that can best cope with the always growing amount of produced data, in a range of
fields such as object detection in computer vision, facial recognition, speech recogni-
tion, natural language processing, or autonomous driving. AI, and specifically Deep
Learning (DL), requires, in addition to large amounts of data, significant capabilities
in processing power and memory, which makes cloud computing the de facto hosting
solution for AI workloads. Consequently, in 2019, 96% of AI tasks were run in the
cloud2.

Some AI applications have strong latency constraints, e.g., in autonomous driv-
ing, manufacturing monitoring, or any real-time inference involving a real world
interaction. For example, average response times in autonomous driving are re-
quired to be under 100 milliseconds [1], making round trip times to the cloud too
long for such applications. Similarly, some applications may introduce a signifi-
cant link usage on the network, e.g., in the case of high quality video processing
in computer vision, which prevents them from running in the cloud. Data privacy
policies or data protection regulations may also prohibit data from leaving specific
environments. This encourages AI deployments in edge computing, which consists
of relocating computation tasks from data centers closer to edge devices, i.e., in
proximity to the data sources.

In comparison with public clouds, the edge is a resource-constrained environ-
ment with important limitations [88], and developing AI for the edge is therefore
intrinsically different from developing AI for the cloud. Analyzing data close to
its source can be challenging because of lower device capacities, inelasticity of the
available resources, and heterogeneity of edge networks. Lowering the computing
capacity implies lowering the achievable inference throughput, further complicating
relocation of heavy workloads from the cloud to the edge. In some applications,
the inference throughput, i.e., the achievable inferences per second of a DNN, can
be linked to the DNN accuracy, e.g., with object tracking in video streams, where
dropping the inference rate from 15 to 5 inferences per seconds has shown to lower
the F1 score3 of an object detector by 10% [89]. In other words, deployments with

1According to the Data Never Sleeps annual study from Domo
https://www.domo.com/learn/infographic/data-never-sleeps-8

2According to a survey from Nucleus Research Inc., 96% of Deep Learning based applications ran
in the cloud in 2019. https://d1.awsstatic.com/whitepapers/Deep%20learning%20on%20AWS.pdf

3The F1 score is a measure of a model’s accuracy on classification tasks.
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Figure 5.1: Timeline of multi-threaded inference partitioning over 2 devices com-
pared with unpartitioned inference. The figure shows the computation (T c

i ) and
transmission (T t

i ) latencies. The inference throughput is improved by partitioning,
and bound by the slowest element in the network (T).

low inference throughput can cause critical information loss, e.g., loss of detections
in video surveillance applications.

There are two main methods to meet performance requirements on constrained
edge networks: model compression or hardware acceleration. Model compression
consists of reducing and optimizing neural networks to a light-weight, often under-
performing, version of the model. Standard model compression methods include
pruning [90], i.e., removing unnecessary parameters in the model, quantization [91],
i.e., reducing the allocated memory to store the model, and knowledge distilla-
tion [92], i.e., training a smaller neural network with knowledge extracted from
a larger one. Model optimization requires extensive design efforts and can be an
impediment to model accuracy. Hardware acceleration on edge devices implies iden-
tifying and adding hardware which can be both power efficient and light-weight,
while still being able to run inference with sufficient performance. There are several
types of candidate hardware for acceleration at the edge, varying in efficiency and
specificity, but standard processing units fail to meet expectations and dedicated
hardware such as ASICs have been found to be unpractical and expensive [93].

DNN partitioning is a complementary method to these two, for accelerating
inference by leveraging the multiplicity of existing devices on edge networks to dis-
tribute the inference computation – which can be used alone, or in conjunction with
the two other methods. DNN partitioning consists of considering a neural network
as a pipeline to segment into partitions, and distributing these partitions on edge
devices. The placement of these partitions is based on both the DNN and the under-
lying network characteristics. DNN partitioning relies on the identification of split
points, which are points in the model graph where the model is separated into par-
titions. During run-time, partitions are run sequentially, each sending intermediary
inference results to the next partition. This allows each partition to start comput-
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ing the next input data while the other devices continue processing the offloaded
one, hereby improving the inference throughput, as shown in figure 5.1. For the
remainder of this chapter, DNN partitioning is illustrated through the example of
real-time inference on video streams.

5.1 Related work

Methods for DNN partitioning, derived from mobile edge-cloud offloading, seek
to optimize varying performance indicators, such as computing latency, energy con-
sumption, resource utilization, cost, or throughput. DNN partitioning relies on the
association of one or several of these metrics to define an optimization goal, and
a method which exploits this metric to find partitioning schemes. For example,
Neurosurgeon [94] seeks a single split point, keeping the first partition at the edge
and offloading the second partition to the cloud, to minimize latency and energy
consumption. Applications in IoT have also considered the joint partitioning and
offloading of several DNNs to optimize energy, delay, and/or cost, using different
solvers such as SPSO-GA [95] combining Particle Swarm Optimization (PSO) and
Genetics Algorithm (GA), or DDPQN [96] which uses Deep Reinforcement Learn-
ing to find partitioning schemes. Other examples include DINA [97], which defines
an Integer Non Linear Programming (INLP) problem, and uses a matching theory
based solver, to optimize delay and resource utilization in fog networks. Methods
optimizing inference throughput include DNN surgery [98], which uses the lower size
of intermediary DNN layer outputs to partition the inference computation between
the edge and the cloud. Both algorithms create two partitions, one at the edge
and the other in the cloud. Other studies in the field of mobile edge-cloud [99] also
include multi-threaded computation in the cloud to further accelerate the overall
inference throughput. Relying on the cloud for the second partition inference com-
putation assumes good network connectivity, which can be uncertain with the poor
connectivity of some isolated edge deployments. Edgent [100] adapts the previous
methodology to mobile devices and available edge servers, relaxing the constraint
of offloading to the cloud. This method is linked to a specific training and model
architecture, and still limits the partitioning to two partitions. Other methods have
considered multiple split points, e.g., IONN [101], which describes the problem of
partitioning to minimize latency and energy consumption, also taking into account
the time to upload the models to edge servers.

These methods are either interacting with remote clouds, or are limited in the
nature of the partitioning, e.g., required to split in exactly two parts, with or without
multi-threading. None of the listed DNN partitioning studies considers both multiple
split points and multi-threading.

5.2 Statement of purpose

This chapter presents a distributed inference framework to maximize the infer-
ence throughput of real-time DNN computation on streaming data, with multiple
split points and multi-threaded partitioning. The contributions of this chapter are
the following:
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• A model for computing and transmission latencies of a distributed DNN,
through which the expected inference throughput of a given partitioning scheme
can be estimated.

• Formulation of the optimization problem for DNN partitioning, implemen-
tation of a branch and bound solver for this problem, and evaluation of its
complexity.

For the remainder of this chapter, to avoid confusion, the partitioned deep neural
network will be referenced as DNN, and the term network will denote the underlying
physical communications network.

5.3 Chapter outline

The remainder of this chapter is organized as follows. Section 5.4 presents back-
ground of Deep Learning and DNN representation in this study. Section 5.5 details
the inference and transmission latency prediction methods, required for section 5.6,
which defines the optimization problem, as well as the branch and bound algorithm
to take partitioning decisions.

5.4 Background

This section presents background on artificial intelligence at the smart device
edge, as well as deep learning and feed-forward deep neural networks.

5.4.1 AI at the smart device edge

Since the adoption of cloud computing, one of the technology trends that has
driven developments in edge and cloud is Artificial Intelligence (AI). Artificial In-
telligence encompasses all tasks where computers exhibit intelligence and has been
tightly linked to advances in the location of data processing. This technology has
shown tremendous capabilities, e.g., the ability to detect objects in images for video
surveillance or self-driving cars, process speech and text for translation and virtual
assistants, or process audio streams. In some applications, those capabilities even
exceed humans, e.g., composing entire symphonies, defeating humans in strategic
games such as chess or go, or writing eloquent speeches and texts.

Artificial Intelligence has shown tremendous capabilities in a large range of fields
such as object detection in computer vision, facial recognition, speech recognition,
natural language processing, autonomous-driving, or home electronics. However,
AI and Deep Learning algorithms require large computing capabilities, making the
cloud the obvious hosting solution for such workloads. Nevertheless, the drawbacks
of cloud computing, detailed in Section 1.1.3, apply very well to AI. Latency can be
paramount in applications such as autonomous driving, operations on factory floors,
or any real-time inference involving a real world interaction. For example, average
response times in autonomous driving are required to be below 100 milliseconds [1],
making round trip times to the cloud too high for such applications. Similarly, the
link usage over the WAN can be significant, e.g., in the case of high quality video
processing for computer vision, making it impossible to reasonably rely on the cloud.
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Privacy can also be essential in fields such as surveillance or cybersecurity. Although
AI has gained in popularity in the cloud, the edge is the logical place for running
inference with any of the previous requirements.

Although better fitted to serve latency and privacy sensitive AI applications
than the cloud, the edge still remains a resource constrained environment with im-
portant limitations [88]. The three main constraints at the smart device edge are
the following:

• Power efficiency and form factor : Edge devices supporting AI workloads need
to be both powerful enough to comply with large computational requirements,
and efficient enough to comply with the limited energy and form factor re-
quirements of the edge. For this purpose, several computation units can serve
this purpose. Although general purpose processing units, i.e., CPU and GPU,
are more broadly used for simplicity, they can be inefficient for long lasting
workloads, mainly in energy consumption. Specific solutions, e.g., DSP-based
processors, are more power efficient but are also less flexible during develop-
ment.

• Computational optimization: Limitations in computing resources along with
requirements in latency imply strong optimizations in the development of al-
gorithms for the edge.

• Privacy : Security and privacy are essential to the deployment of edge appli-
cations. Edge devices are by nature exposed to threats and closer to sensitive
data. Implementing security in restrained edge devices is a challenge.

Developing AI for the edge is intrinsically different than developing AI for the
cloud, where efficiency, optimization, and privacy are not an issue. Heavy Deep
Learning workloads designed to process sensitive data are even more difficult to
develop with power efficiency, computational optimality, and privacy in mind.

5.4.2 DNN inference

The term Artificial Intelligence (AI) is a broad denomination that references
intelligence exhibited by machines [102]. It refers to any process that learns from
its environment and produces conclusions or decisions to maximize its probability
of success at some goal. Capabilities of AI include detecting, classifying, and seg-
menting objects in images and videos, understanding and translating human speech,
competing in strategic games, piloting self-driving vehicles, and interpreting com-
plex data [103]. AI has shown abilities that out-perform humans, e.g., , with GPT-3
deemed able to write better than most humans [104], or AlphaZero developed by
DeepMind which has shown superhuman capabilities at chess and go4.

Within the field of Artificial Intelligence, Machine Learning (ML) focuses on
processes with the ability to learn without being explicitly programmed to [105].
Machine Learning algorithms rely on statistical analysis of data to automatically
improve through experience. Machine Learning generally relies on a performance

4https://www.deepmind.com/blog/alphago-zero-starting-from-scratch

https://www.deepmind.com/blog/alphago-zero-starting-from-scratch
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metric and consists in searching through the space of candidate programs to find
the one which best optimizes this score [106].

Machine Learning algorithms can be divided into four main categories: Super-
vised Learning, Unsupervised Learning, Semi-supervised Learning and Reinforce-
ment Learning [107].

• Supervised Learning : Given a set of labeled input data and their correspond-
ing output, supervised learning is the task of learning a function that maps an
input to an output based on example input-output pairs [102]. Typical func-
tions of supervised learning include regressions which fit data to a function, or
classifications which separate and categorize data.

• Unsupervised Learning : Given a set of unlabeled data, the unsupervised learn-
ing category covers several exploratory tasks to analyze the data, e.g., by
identifying trends, groups, or anomalies. Typical functions of unsupervised
learning include dimension reduction, visualization, clustering, feature learn-
ing, or anomaly detection.

• Semi-supervised Learning : This category covers methods in between the two
previous categories, i.e., with some labeled data and some unlabeled data. The
high-level objective of semi-supervised learning is to improve the performance
with unlabeled data compared to what the performance would be, had it been
trained only on the labeled data. Typical functions of semi-supervised learning
include text classification, fraud detection, or labeling data [107].

• Reinforcement Learning : Methods which fall into this category learn what ac-
tions to take, i.e., map situations to actions, so as to maximize a numerical
reward signal [108]. A learner is not explicitly told what to do, but rather
learns through a process of trial an error which actions will maximize a fi-
nal reward. The main applications of reinforcement learning include training
agents in robotics, autonomous driving, or manufacturing.

Depending on the application, algorithms can use one or several of the methods in
this list to best fit specific use-cases.

Within the field of Machine Learning, Deep Learning (DL) refers to methods
relying on the use of Deep Neural Networks (DNNs), i.e., artificial neural networks
or related machine learning methods containing more than one hidden layer. Most of
Deep Learning solutions involve the use of an artificial neural network, which were
originally inspired by neurons in the visual perception regions of the brain. One
of the earlier references to mention a deep learning architecture was in 1967 [109]
and described a supervised feed-forward multi layer perceptron. In the 1990s, the
backpropagation technique and convolutional networks were allied to the neural
network architecture to identify hand-written digits [110] (at the time, the training
took three days). The term itself was introduced later in 2000 [111]. It was not
until the 2010s that DL gained traction, first in speech recognition, then in object
detection in images, for the ability to capture complex relations in high dimensional
in data. Deep Learning is estimated to represent the majority of AI applications in
2022, with more than 75% of organizations using DNNs for applications that could
use classical methods5.

5https://gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai-\

technologies

https://gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai- \ technologies
https://gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai- \ technologies
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One way to look at deep learning methods is to consider ”techniques for ma-
chine learning in which hypotheses take the form of complex algebraic circuits with
tunable connection strengths” [102]. These algebraic circuits are usually organized
into layers, which form steps in the computation. The term deep refers to algo-
rithms consisting of more than one layer. An example computation graph structure
is shown in figure 5.2.

There are two main DNN structures: feed-forward neural networks and recurrent
neural networks. Both types of DNNs can be represented as computation graphs,
with the main difference being that feed-forward networks can be represented as
direct acyclic graphs (DAGs), while recurrent neural networks may contain cycles.
Recurrent neural networks are built for sequences of data, where each data point has
a potential dependency with previous data points in the sequence, while feed-forward
neural networks do not consider interactions between points in a data sequence.

The computation graph of a feed-forward neural network can be represented as
a DAG, with each node in the graph representing a layer, i.e., a linear operation
on its inputs followed by a non linear operation, called an activation function. For
layer Li in the DAG, xi the inputs for layer Li, Φ the activation function, and w the
weights and biases associated with layer Li, the output of the layer Li is expressed
as:

xi+1 = Φ
(
w⊤xi

)
It is worth noting that the activation function Φ being non-linear is what al-

lows DNNs to model complex relations between the individual dimensions of the
input. If the activation functions were linear, the model would be equivalent to a
concatenation of linear operations, and represent a linear function.

With a layer defined as a unit in the computation graph of feed-froward net-
works, developing and training a DNN consists in defining a DAG, and adjusting
the weights of these operations to fit the input data to a desired output inference.
This adjustment is achieved by defining a loss function, which is often some distance
between the expected and actual output, and use back-propagation to disperse this
error to all weights in the hidden layers of the network.

Convolutional layers differ from the fully-connected layers presented above. Fully-
connected layers on high-dimensional data, e.g., images, has a considerate impact
on computation and memory consumption. Instead of connecting every dimension
in two adjacent layers, convolutional layers use smaller weights matrices as sliding
windows over the input. This method allows to both save on computation resources,
and leverage the spatial patterns in the input data, because kernels will focus on
smaller portions of the input. Other notable layer types include pooling, which con-
sists in extracting a single value from a subset of values in the previous layer, e.g.,
max-pooling or average-pooling, taking respectively the maximum or average value
from a subset of its input values.

The remainder of this work will consider the case of feed-forward DNNs6.

5.4.3 Hardware acceleration and model optimization

This section describes optimization mechanisms that enable AI and mainly Deep
Learning at the edge. Given the computational and memory footprint of DL work-

6Feed-forward DNNs are well suited for inference on video streaming data.
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Figure 5.2: Example computation graph of a feed-forward neural network. Each
layer Li runs ci operations, sends si,j amount of data to the following layer, and is
placed on a node Np (see section 5.5.1).

loads, deploying such algorithms at the edge requires to go through optimization
steps to fit on constrained edge devices. There are two main directions taken by
developers to meet performance requirements on the edge, (i) hardware acceleration
and (ii) model optimization.

Public clouds are equipped with large numbers of specialized hardware to serve
DL tasks. Accelerating DL workloads on edge devices implies finding the similar
hardware which can both be power efficient and lightweight, while still able to run
inference with good enough performance. There are several types of candidate hard-
ware for acceleration at the edge, varying in efficiency and specificity [93]. Graphical
Processing Units (GPUs) are the more flexible solution, while power intensive, e.g.,
the NVIDIA Ampere architecture7. Field Programmable Gate Arrays (FPGAs) are
re-programmable integrated circuits, customizable through a specific programming
language, which are more efficient but less flexible than to GPUs [112]. Application
Specific Integrated Circuits (ASICs) are integrated circuits built for a specific ap-
plication, which are most efficient in computation and power consumption but can
only serve a given task, e.g., Google’s Tensor Processing Unit (TPU) [113], or the
Arm Ethos set of Neural Processing Units (NPUs) [114]. Overall the simplest way
to add capacity to an edge device would be to leverage CPUs, GPUs or DSPs, e.g.,
most ML applications on mobile phones run on CPU. These standard processing
units pain to meet expectations, but dedicated hardware such as ASICs prove to
be unpractical and expensive.A performance benchmark of different chipsets and
acceleration hardware is evaluated in [115] on mobile devices.

While hardware acceleration looks at upscaling the edge device, there are model
optimizations that can optimize the model to fit on edge devices. These optimiza-
tions fall into several categories: (i) pruning, (ii) quantization, and (iii) knowledge
distillation. Pruning methods [90] focus on removing unnecessary parameters in the

7https://www.nvidia.com/en-us/data-center/ampere-architecture/

https://www.nvidia.com/en-us/data-center/ampere-architecture/
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DNN with limited impact on the model performance. These methods include a prun-
ing phase which identifies and removes unnecessary parameters and connections in
the DNN, and a fine-tuning phase, which recovers from the performance loss caused
by the pruning. To further reduce the memory footprint of DNNs, quantization
approximates the weights of the model by lowering the allocated bit width, instead
of using floating-point numbers [91]. For example, using these methods, Deep Com-
pression [116] is able to compresses the AlexNet model to a memory footprint 35
times smaller without any loss of accuracy. Knowledge distillation [117] mimics
teacher-student learning relationships and consists in training a small low-precision
neural network with knowledge extracted from a larger model. Knowledge distilla-
tion systems are composed of a formulation of knowledge, a distillation algorithm,
and a teacher-student model pair. Knowledge distillation can significantly improve
the performance of different DNNs, and be performed online or offline, with one
or more teacher-student models. Other mechanisms include self-knowledge distil-
lation [118–120] and mutual knowledge distillation [121]. The resulting model is a
version of the faster student model which outperforms the larger teacher model [117].

Hardware acceleration and model compression have shown to provide important
performance improvements, and DNN partitioning offers a complementary solution
to further increase the inference throughput at the edge.

5.5 Distributed inference modeling

This section presents a model to represent DNN and network properties, in
order to predict computation latencies, transmission latencies, and the final inference
throughput of a given partitioning solution.

5.5.1 DNN and network representation

A feed-forward DNN ofN layers is modeled as a direct acyclic graph (DAG) GA =
(L, E) with L = (L1, ..., LL) being the layers of the DNN. The edges (Li, Lj) ∈ E are
the connections between layers Li and Lj. Each layer Li has an associated compute
consumption ci, measured in the number of floating-point operations required to
compute a forward pass through the layer. Edges (Li, Lj) are assigned a weight si,j
corresponding to the size of the data transiting between layers Li and Lj in bytes.

The physical network is modeled as a fully connected graph G = (N ,V) where
N = (N1, ..., NN) is the set of compute nodes and V is the set of links between
nodes. It is assumed that compute nodes N1, ..., NN have processing rates η1, ..., ηN ,
respectively, measured in floating-point operations per second. Finally, the link
throughput between two adjacent nodes Na and Nb is denoted as θa,b, measured in
bytes per second. Every node Ni is connected to itself with infinite throughput to
represent the loopback link, and links are assumed to be symmetrical, i.e., θa,b = θb,a.

Partitionings are defined as maps P : L → N , i.e., a partitioning assigns a node
number to each layer in the DNN. A partitioning can be described as a matrix P of
dimension (N ×L), N being the number of nodes on the network and L the number
of DNN layers and, with Pa,i = 1 if layer Li is placed on node Na, 0 otherwise.
With the example given in figure 5.2, L = 7 layers and N = 2 compute nodes,
the displayed partitioning with layers {L1, L2, L3, L6, L7} on node N1, and layers
{L4, L5} on node N2, is represented as:
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Symbol Description

G The communications network graph
GA The feed-forward network graph
L The set of layers in the DNN graph
E The set of connections between layers in the DNN graph
N The set of compute nodes
V The set of links between compute nodes
L The number of layers in the DNN
N The number of compute nodes in the network
Li The i-th DNN layer
Na The a-th compute node
ci The compute consumption of layer Li in FLOPs
si,j The size of the data transiting between layers Li and Lj

ηa The processing rate of node Na

θa,b The link bandwidth between nodes Na and Nb

P The partitioning matrix
H The inverse processing rate matrix
c The layer consumption vector
S The transmission size matrix
Θ The inverse link bandwidth matrix

T c(Na) The inference latency on node Na

Tc The inference latency matrix
T t(Na, Nb) The transmission latency on link (Na, Nb)

Tt The transmission latency matrix
C The inference throughput
ps The partial placement list of size s
p̃s The padded version of placement list ps
S The maximum allowed number of split points
α The processing rate to link throughput ratio

Table 5.1: Summary of mathematical notations
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P =

(
1 1 1 0 0 1 1
0 0 0 1 1 0 0

)
(5.1)

Given a partitioning, a thread is defined as a group of consecutive layers between
two split points, run sequentially on the same node. In the example above, node
N1 will run two threads, the first containing layers {L1, L2, L3} and the second one
containing {L6, L7}.

With these notations defined, the remainder of this section derives a closed ex-
pression of the inference throughput achieved by a given partitioning, as a function
of the inference (section 5.5.2) and transmission (section 5.5.3) latencies.

5.5.2 Inference latency prediction

Given a partitioning, this section looks at inference latency prediction on an
isolated node. The latency induced by the computation of a layer Li with con-
sumption ci, to be computed on node Na, with processing rate ηa is expressed as
T c
i (Na) = ci/ηa. Given a set of layers L′ ⊂ L across all threads running on node Na

with processing rate ηa, the inference latency can be expressed as:

T c(Na) = η−1
a

∑
Li∈L′

ci (5.2)

This expression is a first order approximation of an inference latency estimation
based on the number of floating-point operations (FLOPs) required to process the
DNN, i.e., the number of multiply-add operations in the model.

Estimation of inference latency on edge devices is complicated by run-time opti-
mizations. Existing solutions such as nn-Meter [122] predict inference latency based
on FLOPs. Other solutions rely on a look-up table with pre-computed inference
times for latency inference. For example, BRP-NAS [123] uses a pre-trained graph
convolutional network to predict inference latencies, while taking run-time model
optimizations into account.

Inference latency prediction is further complicated by its difference in behav-
ior depending on the underlying hardware. As an example, figure 5.3 depicts the
dependency between FLOPs and inference latency of a YOLOv28 [124] model on
CPU and GPU9. With a linear model as inference latency predictor, it is possible
to evaluate the accuracy of such a model by computing the correlation coefficient
R2 of the model on CPU and GPU. The coefficients, displayed in figure 5.3, depict
the difference in model accuracy between CPU and GPU.

In equation 5.2, it is further assumed that processors use their full capacity,
which implies that multi-core processors are modeled as single-core processors with a
processing rate equal to the sum of their core processing rates. It is also assumed that
the computing resource is shared evenly across threads, i.e., a processor allocates
the same proportion of its time to each thread.

Across all nodes, the thread with highest latency sets the inference throughput
for the distributed DNN. Omitting transmission latencies, this implies that once
this limiting thread is done computing a data frame, it directly starts processing the

8The YOLOv2 model was taken from the ONNX model zoo at
https://github.com/onnx/models/

9The device used for this experiment is an NVIDIA Jetson Nano
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(c) Transmission time prediction

Figure 5.3: Accuracy of linear modeling for inference and transmission latency. The
figures show (i) the dependency between number of FLOPs and inference time on an
NVIDIA Jetson Nano, running either on CPU (figure 5.3(a)), or GPU (figure 5.3(b)),
and (ii) the dependency between transmission times and the size of the intermediary
vectors sent between layers in a YOLOv2 model in figure 5.3(c). Each figure displays
the correlation coefficient R2 for a linear predictor with zero value intercept.
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next one. Other threads will have idle time before processing the next data frame
because their inference latency is lower than this maximum latency, as shown on
figure 5.1.

Given a partitioning matrix P, the inference latencies can be expressed as a
single vector Tc of size N where the a-th component is the highest thread inference
latency on node Na, i.e., T

c
a = T c(Na):

Tc = H ·P · c (5.3)

where H is the diagonal matrix of inverse node processing rates diag(η−1
1 , ..., η−1

N )
and c is the column vector of individual layer consumptions (c1, ..., cL).

5.5.3 Transmission latency prediction

The transmission latency can be predicted as follows: the time it takes to send
the amount of data si,j between layers Li and Lj on edge (Na, Nb) over a link
with measured throughput θa,b is T

t
i,j(Na, Nb) = si,j/θa,b. The time to achieve data

transfers si,j ∈ E ′ ⊂ E over link (Na, Nb) is:

T t(Na, Nb) = θ−1
a,b

∑
si,j∈E ′

si,j (5.4)

Similarly to the inference latency prediction, this implies that the links are shared
evenly between data transfers from Na to Nb. The transmission latency prediction
relies on the estimation of the link throughput between nodes, more precisely the
goodput, i.e., the amount of useful data transmitted per second.

Similarly to inference latency estimation, this is a first order approximation,
which efficiently offers good prediction results, as shown in figure 5.3(c), with a cor-
relation coefficient of R2 = 0.9998. The drawback of this method is its requirement
to saturate the links to get a throughput estimation.

Given a partitioning matrix P, the transmission latency matrix Tt can be defined
as a square matrix of size L, with Tt

a,b = T t(Na, Nb):

Tt =
(
P · S ·P⊤) ◦Θ (5.5)

where ◦ is the term by term product, or Hadamard product, Θ is the inverse
throughput matrix, i.e., a square matrix of size N with Θa,b = θ−1

a,b and S is the
transmission size matrix, i.e., a square matrix of size L with Si,j = si,j if Li sends
data to Lj, 0 otherwise.

5.5.4 Optimization objectives

DNN partitioning can be intended to satisfy different use-cases, e.g., minimize
delay, energy consumption, cost, or maximize throughput. With the modeling pre-
sented in section 5.5, these objectives can be expressed as follows:

End-to-end latency

Minimizing latency is often the principal objective in MEC, and an overall in-
dicator of quality of service in communication networks. In the context of DNN
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inference, the end-to-end latency represents the time taken for a frame to traverse
the entire network, during one forward pass. This metric can be expressed as the
sum of all the terms of both transmission and inference latency matrices:

L (P,GA,G) =
L∑
i=1

Tc
i +

N∑
a=1

N∑
b=1

Tt
a,b (5.6)

Using the matrix notations of sections 5.5.2 and 5.5.3, the optimization problem
which find partitionings minimizing the end-to-end inference latency is defined as:

min
P

h⊤Pc+ Tr
(
PSP⊤Θ⊤) (5.7)

s.t. J1,N ·P = J1,L (5.8)

Pa,i ∈ {0, 1} ∀(a, i) ∈ [[1, N ]]× [[1, L]] (5.9)

where Tr (·) denotes the trace of a matrix, h is the column vector of inverse processing
rates (η−1

1 , ..., η−1
N ), Ji,j is the all-ones matrix of size i× j, and conditions (5.14) and

(5.15) requiring that each layer be placed on one and only one node.
To solve this partitioning problem, one solution is to use the expression of the

latency gradient with regards to P. This can be expressed as:

∂L
∂P

= hc⊤ +Θ⊤PS+ΘPS⊤ (5.10)

Assuming that links are symmetric, this implies that Θ is symmetric. If Θ is also
invertible, this implies that this gradient is equal to zero if and only if:

P
(
S+ S⊤) = −Θ−1hc⊤ (5.11)

The diagonal terms of
(
S+ S⊤) being all zeros, this implies that det

(
S+ S⊤) = 0,

which means that it is not invertible. The least square method can be applied to
solve this linear matrix equation. This method will give a linear approximation of the
placement matrix, which can be converted to the closest integer matrix satisfying the
conditions of equations 5.7 and 5.9 to obtain a placement matrix which minimizes
latency. Using this metric, the DNN partitioning problem can be re-defined to
produce placements which minimize latency. However, the solution to this problem
is trivial with the modeling presented in section 5.5, i.e., the partitioning which
minimizes latency is the one with all computation on the node with the highest
processing rate.

Latency is often used in conjunction with other metrics, and optimized jointly,
e.g., with cost or energy consumption [95,96].

Energy consumption

In the fields of MEC and IoT, energy consumption can be an important factor to
control. Because of the short battery life of some IoT devices, DNN partitioning can
take this factor in consideration when optimizing other metrics such as end-to-end
latency.

Energy consumption requires additional modeling than what is presented in sec-
tion 5.5. The energy consumption caused by a DNN inference workload in the
context of DNN partitioning depends on three phases of the device lifetime [95]:
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• A switching energy consumption ℓi, which corresponds to the energy con-
sumed when turning on the device. This energy consumption is an empirically
defined, constant value.

• A run-time energy consumption δi, which corresponds to the energy consumed
during idle time. This value depends on the idle time spent by the switched
on device, and an empirically defined run-time energy consumption rate.

• A computing energy consumption ζi, which corresponds to the energy con-
sumed during the computation of the inference workload. This energy con-
sumption depends on the inference time of the partition placed on this device,
the size of this workload, and an empirically defined computing energy con-
sumption rate.

Similarly to latency and throughput, this can lead to the definition of a discrete
optimization problem, which looks for partitioning schemes which minimize the
energy consumption of the whole network.

Inference throughput

The objective of DNN partitioning presented in the remainder of this chapter is to
maximize the inference throughput, denoted by C, which corresponds to the inverse
of the maximum latency between all the different computation and transmission
latencies. Given a partitioning P, the inference throughput is defined as:

C(P,GA,G) =
(
max
i,a,b

(
Tc

i ,T
t
a,b

))−1

(5.12)

Maximizing the inference throughput amounts to finding the joint min-max be-
tween all the terms of Tc and Tt. This can be defined as a discrete optimization
problem:

min
P

max
i,a,b

(
(H ·P · c)i ,

((
P · S ·P⊤) ◦Θ)

a,b

)
(5.13)

s.t. J1,N ·P = J1,L (5.14)

Pa,i ∈ {0, 1} ∀(a, i) ∈ [[1, N ]]× [[1, L]] (5.15)

with Ji,j being the all-ones matrix of size i× j, conditions (5.14) and (5.15) require
that each layer be placed on one and only one node.

This optimization problem is a Mixed Integer Non-linear Programming (MINLP)
problem. The partitioning matrix can be seen as the one-hot encoded version of a
vector of size (1×L) with values in [[1, N ]]. MINLP problems are NP-hard, implying
that the complexity of finding an optimal DNN partitioning is O(NL) since each of
the L layers can be placed on N nodes. There are several heuristics to obtain optimal
or sub-optimal solutions to this problem in less time than a brute force algorithm,
e.g., Genetic Algorithms (GA) [125], Particle Swarm Optimization (PSO) [126],
or Branch and Bound (B&B) [127]. The chosen methodology is an adapted B&B
implementation, which is presented in section 5.6.1.
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Figure 5.4: Tree representation of the space of all potential DNN partitionings on a
physical network of N nodes.

5.6 DNN partitioning solution

This section presents the branch and bound (B&B) adaptation to the DNN
partitioning optimization problem defined in section 5.5.4.

5.6.1 Branch and bound algorithm

In B&B algorithms, the solution space is represented as a tree. The process
consists of eliminating entire branches in the tree based on the evaluation of the
score of the root node. This implies the existence of a tree topology which creates
a relation between the score of a node in the tree and the bounds on the scores of
all of its leaves.

For this purpose, a partitioning P is represented as a list p = (pi)1≤i≤L with
∀i ∈ [[1, L]], pi ∈ [[1, N ]] corresponding to the node assigned to layer i. For example,
the partitioning matrix in equation 5.1 is equivalent to list p = (1, 1, 1, 2, 2, 1, 1),
i.e., P is the one-hot encoded version of p. With this representation, the space of
all possible partitionings can be modeled as a tree, as shown in figure 5.4, with each
node being a partial version of the full partitioning list. The root node is an empty
list, and at every stage s ≤ N of the tree, the nodes are all possible lists of size s.
The children of a parent node of size s are all lists of size s+ 1 beginning with the
parent node. Partial lists of size s can represent all partitioning lists which start
with a given set of s values.

This tree representation of the solution space favors the use of the B&B algorithm
in this study. Assuming ps is a partial list of size s, the children of the node ps in
the tree topology are all lists which start with ps, i.e., all partitionings where the
first s layers are placed according to ps. The leaf node below ps corresponding
to ps padded with the last value of ps is labeled p̃s. For example, if L = 5 and
p2 = (2, 1), then p̃2 = (2, 1, 1, 1, 1). Given T t

max = maxTt(p̃s) the maximum value
of the transmission latency matrix for partitioning p̃s, all leaf nodes p below ps will
have a higher maximum transmission latency than p̃s, i.e., ∀p,maxTt(p) ≥ T t

max.
This is explained by the fact that given a partial partitioning, any displacement in
the other layers will only add data transfers between nodes.

During the process of looking for an optimal partitioning p, which maximizes the
inference throughput C(p,GA,GN), and given a current best achievable throughput
best throughput, the B&B optimization consists of eliminating entire branches of
the tree representing the solution space by evaluating transmission times in partial
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partitionings. This process allows the B&B optimization to quickly eliminate nu-
merous cases compared to a brute force algorithm. For example, if the throughput
between nodes is low compared to the compute capacity, e.g., with nodes connected
through a low throughput wireless connection, the optimal solution is often to keep
all computation on a single node. The advantage of the B&B algorithm is that it
terminates after N operations in such simple cases by eliminating all partial parti-
tionings in the first stage of the tree. Conversely, in cases where links have higher
throughputs, the complexity of the B&B can be higher since it will be unable to
eliminate large branches.

5.6.2 Complexity

The overhead caused by the total number of partitions in a real world implemen-
tation is neglected in this approach. This added latency is correlated with the total
number of partitions. With each partition, the data transfer from NIC to memory
causes an additional latency, related to the PCIe throughput, memory through-
put and size of the transferred data. Assuming that the data transfer throughput
is limited by the memory throughput, a bound on this latency would change the
computation latency in equation 5.2 to:

T c(Np) = ν−1
∑

(i,j)∈C

si,j + η−1
p

∑
Li∈L′

ci

In this expression, ν is the memory throughput, i.e., the read/write speed to and
from the memory, and (i, j) ∈ C are all the layers Li and Lj such that edge (Li, Lj)
is a split point with associated data transfer si,j.

Early stopping

With an increasing number of partitions, both the performance and inference
latency prediction accuracy will decrease. For this reason, and for the increase of
complexity in in cases with high available network throughput, an early stopping
mechanism is added to limit the number of split points in the final partitioning,
i.e., B&B will only explore partial partitioning with a maximum of S split points,
further limiting the size of the explored tree. The complete B&B algorithm with
limited split points is shown in algorithm 2.

Limiting the number of split points lowers the complexity of this MINLP prob-
lem. For N the number of nodes, and L the number of DNN layers, instead ofO(NL)
for a brute force algorithm, the number of possible partitioning schemes considered
by the algorithm is now lowered to:

S∑
k=0

(
L− 1

k

)
N (N − 1)k (5.16)

5.7 Comparison with standard MINLP solvers

To confirm the selection of B&B as a solver for the DNN partitioning problem,
this section compares the performance of B&B with two other solvers for MINLP
problems: the Genetic Algorithm (GA) [125], and Particle Swarm Optimization
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Algorithm 2 Branch and Bound Algorithm
Input: GA,GN , S
Output: best partitioning, best throughput

queue← {[ ]}
best throughput← C([1, ..., 1],GA,G)
best partitioning← [1, ..., 1]
while queue is not empty do
get p from queue
generate all children p ∥ {i} ,∀i ∈ [[1, N ]]
compute ti the maximum transmission time Tt(p ∥ {i})
for i = 1 to N do
if ti > best throughput−1 then
discard p ∥ {i}

else if ti ≤ best throughput−1 then
if S(p ∥ {i}) < S then
add p ∥ {i} to queue

end if
if C(p ∥ {i} ,GA,GN) > best throughput then
best throughput← C(p ∥ {i} ,GA,G)
best partitioning← p ∥ {i}

end if
end if

end for
end while
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Figure 5.5: Comparative analysis of Branch and Bound (B&B), Genetic Algorithm
(GA), and Particle Swarm Optimization (PSO), on the DNN partitioning problem
to maximize the inference throughput.

(PSO) [126]. The methods are evaluated on the achieved partitioning performances
and the complexity to reach these solutions.

Because the space of all potential solutions is too wide to sample fully, this
evaluation compares the solvers by isolating parameter influences, and looking at
their variations one at a time. Each of the four observed parameters has a default
value, and each figure presents how they each influence the solvers performance and
complexity. The four chosen parameters are (i) the number of nodes (default is
N = 4), (ii) the partitioned DNN model (default is YOLOv2 [124]), (iii) the link
throughput (default is 10MBps which corresponds to a 802.11 connection), and (iv)
the node processing rate, default is 5GHz which corresponds to a Raspberry Pi 410.
The results are shown in figures 5.5 and 5.6.

The figures show that the inference throughput achieved by B&B is always
greater or equal to the unpartitioned inference throughput, with varying levels of
complexity. GA and PSO show the opposite behaviour, i.e., the complexity remains
bounded (both methods run for a fixed number of iterations), but the achieved
solutions are often either sub-optimal, or worst than the unpartitioned solution.

In the case of ”simple” partitionings, i.e., cases where no partitioning can im-
prove the unpartitioned inference cadence, the figures show that B&B can reach this

10https://www.raspberrypi.com/products/raspberry-pi-4-model-b

https://www.raspberrypi.com/products/raspberry-pi-4-model-b


74 CHAPTER 5. DNN PARTITIONING AT THE EDGE

2 4 6 8 10

Number of nodes (N)

100

101

102

In
fe

re
nc

es
p

er
se

co
nd

Method

B&B

GA

PSO

SqueezeNet MobileNetv2 YOLOv4 YOLOv2

Model

100

101

102

In
fe

re
nc

es
p

er
se

co
nd

Method

B&B

GA

PSO

2 4 6 8 10

Number of nodes (N)

10−3

10−2

10−1

100

101

102

C
om

pu
ti

ng
ti

m
e

(s
)

Method

B&B

GA

PSO

SqueezeNet MobileNetv2 YOLOv4 YOLOv2

Model

10−3

10−2

10−1

100

101

102

C
om

pu
ti

ng
ti

m
e

(s
)

Method

B&B

GA

PSO

Figure 5.6: Comparative analysis of Branch and Bound (B&B), Genetic Algorithm
(GA), and Particle Swarm Optimization (PSO), on the DNN partitioning problem
to maximize the inference throughput.
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conclusion with a very low complexity, while GA and PSO fail to find the optimal
solution.

Although cases with a high complexity can cause important computation times,
these evaluations confirm the choice of B&B as a solver for the DNN partitioning
use-case, since it does not require real-time partitioning decision, and can afford to
run this optimization once before deployment, assuming stable network conditions.

5.8 Summary of results

Deploying DL applications in the cloud is convenient because it allows on-demand
easy access to computing resources. However, latency or privacy sensitive applica-
tions may not be able to exchange data and models with the cloud, while still
requiring the same inference throughput to run with good performance. In such
cases, DNN partitioning can offer a complementary alternative to hardware accel-
eration and model optimization to increase inference throughput. This chapter has
described such an approach to DNN partitioning, which extends previous works
by allowing for multiple split points and multiple threads. This enables a better
distribution of the workload, depending on the DNN and network properties.

In this context, this chapter has presented general assumptions to represent the
problem and predict the inference throughput. During this process, this chapter has
quantified the limitations of inference and transmission latency prediction in edge
environments, and what it implies when modeling DNN partitioning. With these
assumptions, the problem is defined as an optimization process, with the objective
of maximizing the overall inference throughput. This problem is a MINLP problem,
and therefore NP-hard.

This chapter has introduced a B&B solver, and compared it to other standard
solvers for MINLP problem, namely GA and PSO, to illustrate that B&B (i) always
finds better solutions than its alternatives, and that (ii) it reaches simple solutions
quickly, e.g., when no partitioning can improve the unpartitioned inference through-
put.
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Chapter 6

Performance and complexity
analysis

Although the B&B method for DNN partitioning presented in chapter 5 can
lead to inference throughput accelerations, the influence of the DNN, and of net-
work properties on the performance and complexity of the solutions remains to be
determined. Depending on the values of link throughput, processing rate, DNN and
network properties, the B&B algorithm can lead to insufficient levels of performance
improvements, and computation times which are too long in some use-cases. In a
given context, understanding these relations prior to the deployment can be essen-
tial, because it allows for proper sizing of the network equipment to satisfy service
level objectives. For a given DNN, this can determine which hardware to deploy,
in order to satisfy service level objectives. Similarly, for given hardware and link
properties of the edge network, this can influence the choice of models, which will
benefit most from DNN partitioning. This understanding is particularly important
at the edge, where hardware is subject to form factor, energy consumption, and
performance requirements.

The key performance indicators studied in this chapter are the following:

• The conditions leading to a performance improvement. The optimal solution
in the DNN partitioning problem can be to simply keep all computation on a
single node, because any split in the computation will introduce transmission
times too important, to accelerate inference throughput. This defines the
conditions under which DNN partitioning can be beneficial, and is important
to understand before dimensioning a network.

• The expected performance improvement. Similarly, some use-cases can require
a minimal inference throughput, to guarantee application service level objec-
tives, e.g., in the case of object detection and tracking in video streams, where
low inference throughputs can lead to loss of information [89].

• The expected time to reach an optimal solution. The complexity of the B&B
algorithm depends on (i) the parameters of the algorithm, (ii) the size of the
DNN, and (iii) the size of the network. Applications requiring a bounded B&B
computation time need to understand the influence of these parameters on the
algorithm complexity and the implications on the achieved performance.

77
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6.1 Statement of purpose

The purpose of this chapter is to study the DNN partitioning solution presented
in chapter 5 to identify the trade-off between performance and complexity, under
various DNN and network conditions. This chapter provides deterministic bounds
on achieved performance and complexity, to assist deployment of DNN partitioning
solutions. This chapter also presents simulations in edge computing environments,
as well as experiments in real edge deployments to confirm the simulated results.

The contributions of this chapter are the following:

• Simulations to explore the possible performance improvements with varying
network and DNN properties.

• Identification of deterministic regions in the network and DNN properties lead-
ing to the existence of optimal partitionings and the cost to compute such
solutions, i.e., the conditions under which DNN partitioning is beneficial.

• Experimental results, confirming the regions defined in the simulations, as
well as the prediction accuracy and final inference throughput acceleration for
homogeneous and heterogeneous environments.

6.2 Chapter outline

Section 6.3 presents simulation results to quantify the performance and com-
plexity of the B&B algorithm, as well as conditions leading to the existence of a
partitioning which improves the inference throughput in a homogeneous network.
Section 6.4 presents experimental results confirming the simulations of section 6.3,
and shows inference throughput improvements on a heterogeneous experimental set-
up. Finally, section 6.5 discusses the results and expands on the broader applicability
of this method.

6.3 Simulations

This section presents simulations to evaluate the impact of the algorithm param-
eters on the B&B algorithm performance and complexity. The worst case complexity
for B&B is described in equation 5.16, when all of the transmission times computed
in the partial partitionings exceed the best achieved time (cf. section 5.6), but the
effective B&B complexity varies according to the DNN and network properties. The
following variables are explored:

• The relation between number of nodes N and the maximum allowed number
of split points S, which determines the required number of B&B iterations to
reach the optimal solution.

• The relation between link throughput θ and node processing rate η, which de-
termines the existence of a partitioning which improves the inference through-
put.

These interactions are evaluated via the following metrics:
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• The inference throughput, measured in inferences per second.

• The number of B&B iterations needed to reach the solutions, i.e., the number
of explored partitionings in the solutions tree. This metric is used in place of
computation time, to abstract away the specific device performance.1

To isolate the contribution of each variable, simulations are run in a homogeneous
network scenario, i.e., where all nodes have identical processing rates, and all links
have identical throughputs.

6.3.1 Number of nodes and split points

The set-up consists of a homogeneous network with processing rates set at 5GHz
(effective processing rate of a standard edge device, e.g., a Raspberry Pi 42), and
link throughputs at 10MBps (effective throughputs for connections through 802.11).
The number of compute nodes N on the network varies between 1 and 6, and the
maximum number of split points S from 0 (keeping all computation on a single
node) to 5 (for a total of 6 partitions across the network).

The results in figure 6.1 show that (figure 6.1(a)), forN > 2 nodes in the network,
B&B finds partitionings which increase inference throughput by 1.9× to 2.3× the
throughput of the unpartitioned solution (S = 0). By increasing the maximum
number of allowed splits, S, the algorithm is able to find better partitionings and
improve the inference throughput, at the expense of additional complexity, depicted
in figure 6.1(b).

Figure 6.1(a) also illustrates that the best achievable throughput does not im-
prove above S > 3. This is an argument for limiting the B&B maximum split
point value S. Since the performance stays identical while the complexity increases
significantly, choosing S = 3 under these conditions both maintains a reasonable
complexity and reaches the optimal solution. In this case, adding a node to the net-
work, or the possibility of another split point, will not lead to a better partitioning.
In a homogeneous network, this implies that any relocation of layers to another node
will incur transmission latencies higher than the gain in computing latency of the
current partitioning. This leads to a bound on the value of S, after which point the
optimal partitioning is the best possible achievable partitioning. This bound can be
expressed as:

S =
T c
mono

T t
disp

<
θ
∑

Li∈L ci

sminη
(6.1)

with T c
mono the computing latency when keeping all computation on a single node,

T t
disp the transmission latency caused by a layer displacement η, and θ the node

processing rate and link throughput values in the homogeneous network,
∑

Li∈L ci
is the sum of all layer consumptions in the DNN, and smin is the minimal inter-layer
data transfer size. This expression can be used to define an upper bound on the
value of S, and limit the B&B computation time.

For the remainder of this chapter, experiments and simulations will be run with
a maximum number of splits S = 3 to limit the complexity of the algorithm, with

1For reference, when running B&B on a desktop computer with an Intel Core i7 processor, it
took 17 milliseconds to run through 102 iterations, 1.269 seconds to run through 104 iterations,
and 5 minutes to run through 106 iterations.

2https://www.raspberrypi.com/products/raspberry-pi-4-model-b
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Figure 6.1: Impact of the number of nodes N and the maximum number of split
points S on B&B achieved inference throughput (figure 6.1(a)), and complexity
(figure 6.1(b)), for a YOLOv2 model on a homogeneous network.
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near optimal partitioning in the described set-up, which corresponds to a typical
edge scenario.

6.3.2 Processing rate and link throughput

The simulated environment consists of a standard implementation of YOLOv2 [124],
deployed on a network with N = 4 compute nodes. B&B is run with a maximum
number of split points set to S = 3, for node processing rates between 0.1GHz and
100GHz, and link throughputs between 1MBps and 10GBps. The ranges in value
for processing rate and link throughput were chosen to cover a wide spectrum of
edge scenarios:

• Processing rates between 0.1GHz and 100GHz cover CPUs of systems on a
chip, e.g., the Qualcomm Snapdragon suite3 with processing rates between
several 500MHz and 1GHz, and specialized AI embedded systems, e.g., the
NVIDIA Jetson TX2 module4 measured at an equivalent processing rate of
30.7 GHz in the experiments of section 6.4.

• Link throughputs between 1MBps and 10GBps correspond to link throughputs
covering 802.11g connections at several MBps, and Gigabit Ethernet links.

Figure 6.2 displays the impact of link throughput and node processing rate, on both
the B&B achieved inference throughput (in inferences per second) and complexity
(in number of partitionings evaluated by B&B in the simulation). Level lines are
included to facilitate interpretation of the figures. Darker colors on the figures
correspond to lower inference throughputs (respectively B&B iterations) and lighter
colors correspond to higher values, for a set-up of devices with the corresponding
processing rate and link bandwidth value.

Results show that achieved inference throughput and B&B iterations increase
with both processing rate and link throughput. This is expected, since faster pro-
cessors yield faster inferences, and better link throughput creates possibilities for
improved partitionings.

Additionally, these simulations highlight the existence of distinguishable regions
in the two heat maps of figure 6.2, separated by boundaries, corresponding to fixed
link throughput to processing rate ratios: the partitioning improvement boundary,
the optimal partitioning boundary and the maximum complexity boundary, dis-
played by the three dotted lines of figure 6.2. These boundaries are described in the
following.

Partitioning improvement boundary

The green dotted line separates the top-left region of figures 6.2(a) and 6.2(b),
where the optimal solution consists of keeping all the computation on the same
node, and the bottom-right region, where a non-trivial partitioning that improves
inference throughput exists. This boundary corresponds to conditions on the ra-
tio between link throughput and node processing rate under which B&B starts to
explore improved solutions in algorithm 2: maxTt ≤ best throughput−1. This is

3https://www.qualcomm.com/snapdragon
4https://developer.nvidia.com/embedded/jetson-tx2
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Figure 6.2: Impact of node processing rate and link throughput on B&B achieved
inference throughput (figure 6.2(a)) and complexity (figure 6.2(b)), for a YOLOv2
model on a homogeneous network.
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validated under the condition that the smallest data transfer latency between nodes
exceeds the unpartitioned computing latency, i.e., the existence of partitionings
which improve the unpartitioned inference throughput is subject to:

smin

θ
<

∑
Li∈L ci

η
i.e.,

θ

η
>

smin∑
Li∈L ci

(6.2)

with η and θ the node processing rate and link throughput values in the homoge-
neous network,

∑
Li∈L ci the sum of all layer consumptions in the DNN, and smin

the minimal inter-layer data transfer size. This expression is a particular case of
equation 6.1, with a number of split-points S = 1.

This defines a criterion on the region where distributing inference can improve the
overall performance: in a homogeneous scenario, for every DNN, the link throughput
to node processing rate ratio θ

η
(which is a property of the network) needs to exceed

a deterministic value described in equation 6.2 (which only depends on properties
of the DNN). This boundary is represented by the green dotted line in figure 6.2.
For example, this corresponds to θ

η
≈ 1.64× 10−3 for the YOLOv2 implementation

used in the simulations.

Optimal partitioning boundary

The red dotted line in figure 6.2 corresponds to θ
η
≈ 9.52×10−3 and delimits the

point of diminishing returns, i.e., the maximum achievable inference throughput for
YOLOv2. For higher values of link throughput to processing rate ratio θ

η
(bottom

right), the inference throughput remains identical while the number of evaluated
partitionings by B&B continues to increase. The additional evaluated partitionings
have lower inference throughputs than the optimal solution. This explains why
the level lines in figure 6.2(a) are horizontal in that region, since the inference
throughput only depends on the processing rate. Increasing the ratio above this
boundary (e.g., by increasing link throughputs) does not yield better solutions, and
increases complexity.

Maximum complexity boundary

The blue dotted line in figure 6.2 corresponds to conditions under which the
number of evaluated partitionings by B&B is maximal, and corresponds to θ

η
≈ 0.168

in the simulated environment. For higher values of the ratio, i.e., on the bottom right
part of this boundary, the complexity of B&B has reached a maximum and remains
constant. Notably, this maximum number of partitionings evaluated by B&B is
around 1.7×105. This measured maximum complexity remains below the theoretical
maximal value (around 1.9 × 106 iterations in this context, cf. equation 5.16), and
orders of magnitude below the brute force algorithm complexity, which would need
to evaluate NL ≈ 1029 partitionings (for the given YOLOv2 implementation).

6.3.3 Discussion

These simulations allow to identify three boundaries, which delimit the condi-
tions under which a partitioning can improve the unpartitioned inference through-
put, in a homogeneous network, and depend on the DNN, and on the network prop-
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Figure 6.3: Achieved inference throughput and complexity for a YOLOv2 model in
homogeneous experimental set-ups (table 6.1). Figure 6.3(a) compares the achieved
inference throughput with the unpartitioned throughput, and the B&B predicted
throughput. Figure 6.3(b) compares the effective number of iterations required to
compute the partitioning with the maximum number of iterations for S = 3 split
points.
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Set-up Processor Link

1 NVIDIA Pascal GPU (256 CUDA cores) Wi-Fi
2 Quad-core ARM A57 CPU Wi-Fi
3 NVIDIA Maxwell GPU (128 CUDA cores) Ethernet
4 Quad-core ARM A57 CPU Ethernet

Set-up Processing rate (η) Link throughput (θ) Ratio (α) B&B time

1 30.7 GHz 10 MBps 3.26× 10−4 4 ms
2 1.57 GHz 10 MBps 6.37× 10−3 165 ms
3 14.7 GHz 1.4 GBps 9.52× 10−2 2.231 s
4 1.57 GHz 1.4 GBps 9.82× 10−1 2.494 s

Table 6.1: Experimental set-ups with corresponding link throughput to node pro-
cessing rate ratios, and associated B&B computation times. Each experimental
set-up corresponds to properties in one of the four separate zones identified in fig-
ure 6.2.

erties The partitioning improvement criterion defines these conditions on the link
throughput to processing rate ratio, and can be anticipated prior to the deployment.

While the optimal partitioning boundary and maximum complexity boundary
depend on the number of nodes N , and on the maximum number of split points
S, the location of the partitioning improvement boundary is independent of these
variables, or the number of layers. DNN partitioning is independent of the size of the
network and the DNN, but depends only on the relation between (i) θ

η
(a property

of the network), and (ii) smin∑
Li∈L ci

(a property of the DNN).

Regarding complexity, it has to be noted that the optimization process is a one-
time operation that decides on a partitioning which will remain relevant for long
periods, i.e., longer than the order of magnitude of B&B computation times depicted
in figure 6.1. The necessity to recompute a partitioning would only arise if the system
experiences persistent changes in the node processing rates or link throughputs. In
”healthy” network scenarios, where faults, or events causing persistent changes, are
rare, this chapter argues that partitioning computation times of B&B can fit use-
cases with one-time deployments.

In more constrained use-cases, the maximum number of split points S can further
act as a tuning parameter for the optimization complexity, e.g., if the computation
of an optimal partitioning is more frequent, at the expense of the achieved inference
throughput.

B&B can reach optimal solutions with unlimited split points (S ≥ L−1), but the
time to reach these solutions increases with α. Nevertheless, it is possible to observe
from figure 6.1(a) that this solution can lead to higher inference throughputs than
methods limited to a single point (S = 1).

6.4 Experiments

This section presents experimental results, evaluating the accuracy of the model.
Section 6.4.1 describes experiments in homogeneous scenarios with two identical
nodes, performed to test the validity the identified boundaries in the simulations
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presented in section 6.3. Section 6.4.2 describes experiments and presents results in
networks with heterogeneous nodes.

6.4.1 Homogeneous network

Table 6.1 details links, processing rates, and corresponding ratios, of the scenarios
tested.

• Set-up 1 corresponds to conditions above the partitioning improvement bound-
ary in figure 6.2 (section 6.3.2), i.e., no partitioning can improve the inference
throughput (i.e., the set-up does not satisfy the partitioning improvement
criterion of equation 6.2).

• Set-up 2 corresponds to conditions between the partitioning improvement
boundary and the optimal partitioning boundary (section 6.3.2), i.e., par-
titionings which improve the inference throughput exist.

• Set-up 3 corresponds to conditions between the optimal partitioning boundary
and the maximum complexity boundary (section 6.3.2), i.e., B&B is expected
to find the best possible partitioning.

• Set-up 4 corresponds to conditions below the maximum complexity boundary,
i.e., the partitioning is the best possible solution, and the number of B&B
iterations is maximal.

The values in table 6.1 are experimental and were measured by benchmarking
devices and links. Partitions are deployed and run for a YOLOv2 model and a
maximum number of splits S = 3, for each of the experimental set-ups. The inference
is run on a 1280x720 webcam video stream, with 30 frames available per second.

Figure 6.3 displays the inference throughputs, and compares them to the B&B
predicted inference throughputs (cf. section 5.5), and to the baseline, defined as
the throughput achieved by keeping all of the computation on a single node. The
results correspond to the simulations and confirm the existence of the four identified
regions of figure 6.2.

6.4.2 Heterogeneous network

This section presents an experiment which considers the case of adding a single
device with varying capacities to a set-up with a single device. This experiment aims
to both show results on simple heterogeneous set-ups, and to illustrate the case of
an additional device being added to a network to improve the overall performance,
e.g., adding a processor in proximity to a smart camera to increase its inference
throughput.

The node which remains unchanged in this experiment5 has a processing rate
η0=14.7GHz, and figure 6.4 shows the measured inference throughputs when adding
devices with varying processing rates to the network, with two different link through-
put values, compared with their predicted values. The figure also depicts bounds
on possible solutions: the lower bound is the unpartitioned inference throughput,

5The node processor is an NVIDIA Maxwell GPU (128 CUDA cores).
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Figure 6.4: Inference throughput improvement when adding devices with varying
processing rates η to a device with a processing rate of η0=14.7GHz. The figure
shows measured throughput values with their standard deviation and compares them
with the predicted inference throughputs.

i.e., the throughput when placing all computation on the fastest node, and the up-
per bound corresponds to a device with the sum of the two processing rates, i.e.,
corresponding to a perfectly even distribution of the inference workload.

This experiment shows that under good link conditions, i.e., above the parti-
tioning improvement boundary (section 6.2), the inference throughput can be close
to the maximum possible throughput. Notably, the expression of the partitioning
improvement boundary differs from its expression in the homogeneous case (defined
in the same way as equation 6.2):

smin

θ
<

∑
Li∈L ci

ηmax

i.e., θ >
sminηmax∑

Li∈L ci
(6.3)

for a heterogeneous case with N = 2 nodes, with ηmax being the maximum
processing rate between the two nodes.

This means that for link throughputs below the value sminηmax∑
Li∈L ci

, optimal parti-

tioning consist in keeping all layers on the fastest node, i.e., following the minimum
throughput line, as is the case when the nodes are connected via a Wi-Fi connection
with θ=10MBps in figure 6.4. For higher link throughputs, there exist partitionings
which improve the inference throughput, and inference throughput values are higher
than the lower bound in figure 6.4, as is the case when the nodes are connected via
Ethernet links with θ=1.4GBps.
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6.5 Results, scope and limitations

This section discusses the scope and limitation of the simulations and experi-
ments on DNN partitioning.

6.5.1 Conditions for homogeneous networks

Simulations (section 6.3) and experiments (section 6.4), on homogeneous net-
works, have identified conditions, bounds, and closed expressions, for performance
and complexity of DNN partitionings. Under homogeneity (i.e., nodes and links
in the underlying network having equivalent capability), these expressions allow to
dimension the underlying network, and to predict the partitioning outcome.

• The partitioning improvement boundary (section 6.3.2) describes the condi-
tions under which there are partitionings that improve the monolithic infer-
ence throughput, i.e., the throughput when placing all computation on a single
node. This is extended to the heterogeneous case in equation 6.3, and allows
to estimate the values of link bandwidth and node processing rate, necessary
to achieve an inference throughput improvement.

• The upper bound on the number of split-points necessary for an optimal solu-
tion (equation 6.1) is the number of split-points above which the complexity
increases while throughput remains constant. This allows to minimize the
B&B computing time, while accessing maximal inference throughput.

• The maximal B&B complexity, with a chosen maximum number of split-points
(equation 5.16), corresponding to the maximal number of partitionings evalu-
ated by B&B.

These results allow to derive, under conditions of perfectly even distribution
of workload over homogeneous nodes and links, an upper bound on the inference
throughput of the partitioning strategy:

C(P,GA,G) < min

(
ηmin (N,S)∑

Li∈L ci
,

θ

smin

)
(6.4)

These expressions are valid on a homogeneous network. For non-homogeneous
networks, the derivation of similar performance and complexity bounds is, of course,
specific to the characteristics of the network.

6.5.2 Scope and limitations

This section discusses the limitations of this work, and the presented assump-
tions, to illustrate their scope of applicability.

Input data

This study has presented DNN partitioning through video stream data appli-
cations. Although its applicability has not been illustrated with other data types,
there are no assumptions in the modeling restraining this method from applying to
other data types, e.g., audio, text, or telemetry data. The only limiting assumption
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in this study is that the model used a feed-forward DNN, with data of constant size
across requests.

Optimization problem definition

This study has covered use-cases which require a maximal inference through-
put, omitting optimization objectives included in the related work of section 5.1,
e.g., latency, energy consumption, cost, or a combination of these previous metrics.
However, the presented assumptions and modeling can be exploited to describe other
use-cases. For example, DNN partitioning can cover contexts which:

• jointly optimize several metrics, e.g., throughput, latency, energy consump-
tion, monetary cost, drop rate, node up-time, link usage, etc.

• dynamically adapt what metric to optimize depending on the received data.
For example, DNN partitioning application on video streams can choose to
optimize throughput to avoid missing detections, and switch to latency when
an event occurs in the system, to enable low response times.

• add other constraints to the MINLP problem, e.g., a minimal number of split
points, a partial node to layer mapping, e.g., in order to keep sensitive com-
putation on dedicated nodes.

All of these assumptions can be expressed as optimization objectives, or con-
straints in the discrete optimization problem of section 5.6.

Limits of experimental results

The experiments presented were designed to confirm the boundaries, identified
in the simulations of section 6.3, and to illustrate performance in a simple hetero-
geneous use-case. This study also has assumed that the network properties remain
fixed over time.

Completely exploring the influence of other parameters on the DNN partitioning
performance and complexity requires additional experiments, following the pattern
and methodology of those presented in this chapter. These parameters include
the number of compute nodes and number of split points in large networks, the
complexity of DNN structures, the heterogeneity of layer consumptions and data
transfer sizes, or the heterogeneity of link bandwidths and processing rates in large
networks. Additional exploration is required to provide a better understanding
of how the system behaves when (i) other processes are dynamically allocated to
compute nodes, (ii) links are dynamically used by other processes, or (iii) faults
occur on the system (e.g., node failure, routing change, packet drops).

6.6 Summary of results

This chapter has introduced a theoretical analysis of the complexity and inference
throughput results of the branch and bound algorithm, proposed in chapter 5

This analysis has led to identification of the partitioning improvement bound-
ary, deterministic conditions on the network and DNN properties leading to a per-
formance improvement through partitioning. This chapter has further allowed to
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quantify the cost to compute such solutions, and their expected performance, in a
homogeneous network context. This result defines the scope of validity of DNN par-
titioning in edge computing environments, and only depends on (i) the DNN data
transfer size to layer consumption ratio, and (ii) the link throughput to processing
rate ratio of the underlying network.

The experimental results have also illustrated the behavior of DNN partitioning
under heterogeneous network conditions, highlighting the use-case of incrementally
adding processing capacity. These results enable sizing of both DNN and network
properties to achieve inference throughput improvements, prior to the deployment,
with deterministic conditions on the necessary link throughputs, to enable a maximal
inference throughput acceleration.



Chapter 7

Dynamic DNN partitioning

DNN partitioning has proven to enable inference throughput improvements on
edge networks by pipe-lining the inference computation over available edge devices.
Additionally, chapter 6 has identified bounds on both the attainable performance
and complexity of the B&B based solver presented in chapter 5. Chapter 6 also
provided guidelines on the influence of network properties on these values, in stable
edge network environments.

However, in the context of edge computing, the underlying network is often
subject to unreliable resources, unstable connectivity, and overall dynamicity [128].
While the B&B algorithm presented in chapter 5 yields optimal solutions for fixed
DNN and network configurations, at a given point in time, this implies that a par-
titioning can become obsolete when changes occur. Such changes can be caused by
network faults, as described in chapters 3 and 4 (e.g., loss of connectivity, routing
loops, blackouts, brownouts, packet drops), or concurrent access to the edge re-
sources (e.g., workload allocation on a node, or data transiting through the edge).
This chapter extends the analysis to include behaviour over time, in order to un-
derstand the robustness and dependency to outside changes, e.g., in computing and
networking resources.

In this context, with the varying levels of complexity of B&B computations, it
is important to understand the performance/cost trade-off of dynamic partitioning,
and the influence of network parameters on this trade-off, in order to maintain a
desired level of performance, while preserving the computing resources of the edge.

7.1 Related work

Dynamic DNN Surgery [98] considers two states of the underlying network, i.e.,
a lightly and a heavily loaded condition, which trigger separate algorithms, respec-
tively optimizing the inference delay and throughput. This is intended to lower the
impact of DNN partitioning on the network.

PANDA [129], and CoEdge [130], are adaptive DNN partitioning solutions, i.e.,
solutions which make partitioning decisions adaptively, gradually converging towards
a solution which maximizes the defined optimization goal. Such methods can be
extended during run-time to adapt to unstable network conditions, although they
are not specifically built for this purpose.

The algorithm presented in [99] takes per-frame partitioning decisions, i.e., two
consecutive frames can be partitioned differently, e.g., one frame can be computed

91
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locally while another is offloaded to another device, or the cloud. This decision is also
based on online appreciation of the state of the network, and can in turn be useful
for dynamic partitioning. However, this category of work assumes independence of
each frame, and would result in irregular frame rates, requiring further regularization
mechanisms, outside of the scope of this study.

In sum, although some mechanisms have been explored to adapt to unstable
network conditions, a reactive method, which provides stable DNN partitionings
across frames, based on observability of the network, is still missing.

7.2 Statement of purpose

This chapter presents an evaluation of dynamic partitioning, i.e., the re-evaluation
of DNN partitioning over time, based on the methodology presented in chapter 5.
The cost of a single B&B computation is compared with the potential gain in per-
formance, in order to provide an insight into how to select ideal re-computation
policies for different contexts. This chapter illustrates this trade-off through several
dimensions: (i) the properties of the edge network, (ii) the desired reactivity and
performance levels, (iii) the resources available for B&B computation, and (iv) the
robustness to unstable network conditions.

In addition, this chapter details the principle elements of a dynamic DNN par-
titioning system design, as a guideline for a real-world implementation.

7.3 Chapter outline

This chapter is organised as follows: section 7.4 illustrates the motivations for dy-
namic DNN partitioning computations. Section 7.5 presents the dynamic partition-
ing system design, and compares re-computation policies to describe the trade-off
between performance and computational cost.

7.4 Benefits of dynamic partitioning

This section presents the two benefits of dynamic partitioning: the improved
prediction accuracy of B&B (section 7.4.1), and its increased resiliency to network
perturbations (section 7.4.2).

7.4.1 Improving prediction accuracy

After deployment of an initial partitioning (cf. chapter 5), monitoring the effec-
tive transmission and inference latencies allows for their comparison with predicted
values. When a re-computation is initiated, the estimated link throughput and
processing rate values used by the B&B modeling are updated to fit the observed
latencies.

Figure 7.1 illustrates this re-computation and its impact on the predicted and
actual inference throughput values, in a network of N = 2 nodes1 and a maximum
number of split points S = 3. The blue points show the inverse values of measured

1Two NVIDIA Jetson Nanos connected via a standard Ethernet link.
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Figure 7.1: Refinement of the inference throughput precision through re-
computations. At every re-computation, the processing rate and link throughput
values are refined to better fit the observed latencies.

inference latencies, and the red line their average value between re-computations,
i.e., the measured inference throughput. The grey dotted vertical lines correspond
to the re-computation times.

Figure 7.1 shows that, by triggering re-computations, and adjusting the link
throughput and node processing rate values, (i) the precision of the predicted in-
ference throughput, and (ii) the achieved inference throughput, both improve. This
mechanism is an exploratory method to refine partitionings, as it gradually refines
the network profiling of B&B, as partitions are displaced on the nodes.

7.4.2 Robustness to network variations

Dynamicity of edge computing environments can cause variations to occur on the
effective node processing rates of the network. An example here is the allocation of
an additional workload on one of the nodes performing the inference, and which will
compete for access to the processing resource, and therefore will lower the effective
processing rate seen by the DNN. The simulations presented in this section illustrate
the behaviour of DNN partitioning when subject to such variations.

Processing rate variations

To isolate the contribution of this type of perturbation, the simulation will con-
sider the following set-up: given a network of N = 3 nodes, and a maximum number
of split points S = 2 in the B&B algorithm, the simulations will add, on a randomly
selected node, a single new workload, occupying a ratio λ of the total processing re-
source of the node. This process is repeated for every node, and the resulting relative
performance change of the DNN inference rate is averaged over all the simulations.
Thus, the resulting performance drop will illustrate the average impact of a single
workload allocation on the network running the distributed DNN. To illustrate the
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Figure 7.2: Inference throughput variations to processing rate variations, for a net-
work of N = 3 nodes, a maximum number of splits S = 2 and varying node to
processing rate ratios α.

influence of the network properties on the robustness to processing rate variations,
the simulations are run using different values of the link throughput to processing
rate ratio α, the behaviour being identical for different set-ups with identical α.

The metric used to measure the impact of these perturbations is the ratio between
the inference throughput after insertion of the workload, and the initially observed
inference throughput.

The simulation results are depicted in figure 7.2, which shows that the infer-
ence throughput performance drops, as expected, with increasing size of additional
workloads. For values of α between the placement existence boundary and the
optimal partitioning boundary (cf. section 6.3.2), and low processing rate varia-
tions, the inference throughput can remain unchanged, while it is systematically
lowered outside of this region. This implies that partitioning a DNN can actually
improve its robustness to network variations. Additionally, with values of α above
the maximum complexity boundary, the inference throughput is systematically more
sensitive to processing rate variations. This implies that during sizing edge networks
for DNN partitioning, keeping a value of α between the two boundaries is prefer-
able in robustness-sensitive use-cases, with the added benefit of keeping a low B&B
complexity — section 6.3.2 having shown that complexity increases with α.

Nevertheless, for a majority of cases the performance is significantly impacted
by processing rate variations, rendering the partitioning sub-optimal, and hereby
motivating the need to re-compute the optimal partitioning.
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Figure 7.3: Achieved inference throughput after re-computation of the optimal DNN
partitioning, with persistent perturbation. In this set-up, workloads need to occupy
at least 70% of a node capacity before re-computation of the DNN partitioning
cannot recover the pre-perturbation performance.

DNN partitioning re-computation

With the impact of network variations illustrated in the previous section, the
following presents the attained inference throughput after re-computation of the
optimal partitioning. The simulations consider the re-computation of B&B after
insertion of a perturbation. The results are evaluated by the achieved inference
throughput after re-computation, compared with its original value.

Figure 7.3 shows that with levels of variations below 70% of the node processing
rate, re-deploying the DNN to the new optimal partitioning always recovers the
initial inference throughput. This observation argues in favor of implementation
of an adaptive partitioning strategy, because it maintains the optimal performance
through perturbations.

7.5 Performance-cost trade-off

Sections 7.4.1 and 7.4.2 having illustrated the benefits of dynamic re-computation
of the optimal partitioning, this section presents implementation details of the dy-
namic DNN partitioning system, and the resulting trade-off between performance
and re-deployment cost
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Figure 7.4: Functional diagram of the adaptive DNN partitioning system. The
semantic feature selection tool is used to generate triggers for B&B re-computations
whenever significant events occur on the network.

7.5.1 Dynamic partitioning system design

The dynamic DNN partitioning system components and implementation are pre-
sented in this section. The proposed adaptive partitioning system consists of two
principal components:

• The workers run on every node, and contain the DNN run-time. Workers also
contain a telemetry component that extracts information on the node, net-
work, and the DNN run-time. Additionally, to limit the footprint of telemetry
on the network bandwidth, workers contain a semantic feature selection com-
ponent, which detects and extracts significant information from telemetry data
to individually generate re-computation triggers for B&B.

• The orchestrator extracts the DNN information during the initialization step,
and aggregates information about the nodes and links, from the workers. The
orchestrator also implements the re-computation policy, i.e., it can re-compute
the DNN partitioning either periodically, based on run-time information, or
when triggered by the workers.

This separation allows for the deployment of workers independently from the
orchestrator, to form a managed cluster.

An example system diagram is shown in figure 7.4, where the re-computation
policy is based on the fault diagnosis tools presented in part II. The semantic fea-
ture selection part of the worker in figure 7.4 extracts small selections of features
summarizing network faults or events, and this selection is leveraged to generate
triggers for B&B.
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7.5.2 Re-computation policies

This section discusses re-computation policies which can be adopted to trigger
re-evaluation of the optimal partitioning.

Periodic computation

This policy consists of triggering re-computation of the optimal DNN partitioning
at regular time intervals. The benefit hereof is simplicity of implementation, and
low impact on the network, since no active monitoring of the network characteristics
is required, nor of the effective performance. However, periodic re-computations
may lack reactivity when the chosen time interval is too long. Shortening this
interval induces a higher computational footprint on the device running B&B. Thus,
adopting a periodic policy creates a trade-off between reactivity and computational
footprint, which depends on the re-computation interval.

Reactive re-computation

This policy consists of triggering re-computations when the performance differs
significantly from the one expected by B&B. After initial computation of the best
partitioning, the B&B algorithm has generated a partitioning expected to run at
some predicted inference throughput value, and this re-computation policy trig-
gers re-computations when the difference between achieved and predicted inference
throughput values exceeds a certain threshold. Similarly to the previous method,
this method has a low impact on the network because it does not involve active
monitoring of its characteristics (e.g., link throughputs and node processing rates),
but offers varying levels of reactivity, depending on the threshold value.

Proactive re-computation

This policy consists of triggering re-computations based on a dedicated monitor-
ing element. For example, this element can leverage the monitoring tools presented
in part II, which extract significant events in telemetry data. The advantage of this
method is that the triggers will only be generated when significant and persistent
changes occur on the network. Depending on implementation, implies a significant
impact on the computational resources of the network, because it requires active
extraction and monitoring of telemetry data. For example, this event-triggered
method can rely on an online change-point detection method [87] on telemetry data
extracted from the nodes.

7.5.3 Re-computation cost

To evaluate the trade-off between the performance and cost of dynamic parti-
tioning, this section describes (i) the implied latencies and performance cost, and
(ii) the computational impact of re-computation.

Re-computation latency

The different phases of adaptive DNN partitioning are shown in figure 7.5, in
the context of the system reacting to a perturbation. This section narrows its
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Figure 7.5: Metrics for adaptive DNN partitioning.

analysis on two principal latencies: (i) the reaction latency, i.e., the time between
the start of the perturbation and the B&B trigger, and (ii) the B&B computation
time. This model ignores the re-deployment latency, i.e., the time required to stop
computation, move layers between nodes, and re-start the inference, because of its
strong dependency on implementation details.

Therefore, to evaluate and compare re-computation policies, the simulations will
use the following metrics:

• The reaction latency, i.e., the time between the perturbation and the trigger
of B&B.

• The performance variation, represented in figure 7.3, i.e., the ratio be-
tween the inference throughput after re-deployment, and the initial inference
throughput.

• The number of lost frames, i.e., the number of frames lost compared to
the optimal partitioning, represented by the dashed area in figure 7.5

Computational cost

With the assumption that B&B is used as the re-computation algorithm, this
section presents an estimation of the cost to recompute a single DNN partitioning.
As shown in figure 6.2, the number of partitionings evaluated by B&B, which is
linked to its complexity, only depends on the link throughput to node processing
rate ratio α. This relation is depicted in figure 7.6(a) for a YOLOv2 DNN model, a
network of 3 nodes, and varying maximum allowed numbers of split points S. This
illustrates the possibility to estimate B&B iterations based solely on properties of
the network. Additionally, with figure 7.6(b) illustrating the linear relation between
B&B iterations and the corresponding CPU cycles required to run the computation,
it is possible to estimate the cost of this computation and its implied delay, which
are the important metrics to estimate the cost of a re-computation.
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dence between B&B iterations and properties of the network, through the link
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7.5.4 Comparison and discussion

With the re-computation cost described in sections 7.5.2 and 7.5.3, dimensioning
an adaptive partitioning system consists of identifying the trade-off between compu-
tational footprint and reactivity to faults or events persistently changing the state
of the network. A comparison of the different re-computation policies is summarize
in table 7.1.

In addition to this comparison, it is important to note the importance of the
link throughput to node processing rate ratio α in the performance-cost trade-off
of dynamic partitioning. This ratio determines the cost of a single B&B iteration,
as shown in figure 7.6, which sets the limiting computational factor between B&B
computation, and telemetry monitoring. Namely, in networks with low values of α,
the cost to run a single B&B computation is low, which argues in favor of periodic re-
computations, enabling better B&B prediction accuracy, and potentially improved
performance. Alternatively, in networks with a high α value, the cost of a single B&B
computation is too important, which argues in favor of a reactive or proactive re-
computation policy, depending on the available resources for telemetry monitoring.

7.6 Summary of results

This chapter has identified the caveat of designing dynamic DNN partitioning
systems. This chapter has shown that a dynamic DNN Partitioning scheme can
not only allow to recover from network perturbations impacting the final DNN
inference throughput, but can also compensate for the inference and transmission
latency prediction inaccuracies of the B&B modeling, enabling an increased precision
and achieved inference throughput. With both of these advantages highlighted,
this chapter has then described an example dynamic partitioning system design,
with periodic, reactive, and proactive re-computation policy options. These re-
computation policies were finally evaluated on the identified cost and performance
metrics.

This comparative analysis has allowed to identify the essential factor in the
dimensioning of a dynamic partitioning system: the link throughput to node pro-
cessing rate ratio. Once again, this ratio being linked to the B&B complexity, it
determines the relative cost of B&B computations compared with the cost of ac-
tive monitoring of network properties, to trigger re-computations. These factors
argue in favor of frequent passive re-computations in low α networks, and reactive
or proactive re-computations, in high α networks, where the cost of B&B is high.

In sum, part III has demonstrated the importance of the link throughput to node
processing rate ratio in DNN partitioning at the edge. In both static and dynamic
cases, it is critical for operators to tune this ratio on their edge networks, to fit their
desired performance, complexity, and adaptability to network variations.
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Chapter 8

Conclusion

Smart devices have become increasingly common due to the widespread avail-
ability and affordability of computing and networking technologies. These devices,
ranging from smart home appliances to wearable technology, offer convenience and
efficiency in daily tasks. They hold the potential to enhance safety and security
through real-time monitoring and alerts. This growing adoption of smart devices
has led to the generation of increasing amounts of data. In this context, the evolution
of distributed computing has been driven by the need to handle this vast data influx,
and led a wide adoption of cloud computing in the 20210s, offering large controllable
resources on-demand, to support heavy workload computation. However, external
factors, such as privacy requirements and low-latency demands are incompatible
with cloud computing deployments. For example, self-driving cars rely heavily on
Artificial Intelligence but must process data close to the source due to latency con-
straints and privacy regulations. To address these limitations, edge computing, a
computing paradigm in which computation is performed in close proximity to data
source, has emerged. Edge computing relies on the computing capacity of smart
devices, close to data sources, to provide services which maintain the convenience
and performance of the cloud. The central question investigated in this thesis is how
to deploy and monitor resource-intensive applications in resource constrained edge
networks, while maintaining the user experience associated with cloud computing.

This thesis has shown that the multiplicity and heterogeneity of edge devices can
be leveraged to enable accelerations at the smart device edge. This approach has
shown to provide (i) observability on network events occurring in high dimensional
heterogeneous telemetry data, and (ii) throughput acceleration for heavy pipe-lined
workloads. The benefits of this approach have been demonstrated through theoret-
ical results, simulations, and evaluation of experimental results in realistic environ-
ments.

The problem of observability on edge networks has been investigated through
the lens of event and fault diagnosis on network telemetry data. The methods and
metrics presented in this section facilitate the diagnosis of faults and events on
an edge network, by providing short and semantically meaningful hints to network
operators. Chapter 3 studied the question of information contained in edge device
telemetry data, through the example of network streaming telemetry. With the
problem of volume identified in MDT data, this chapter has defined a metric to
estimate the importance relations in observability data, in order to filter the relevant
information out of large volumes of data. In chapter 4, the information theory based
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approach described in chapter 3 is leveraged to define a semantic feature selection
method to help diagnosing events in network telemetry. After having identified
the lack of semantic understanding of data-driven methods for fault diagnosis, the
efficiency and robustness of this method is presented as a way to create intelligible
selections of features, to explain events occurring on an edge network. This work on
observability in network telemetry data has led to the publication of two conference
papers [52, 53].

With these observability mechanisms to understand the state of the network,
this thesis has further studied methods for performance improvement at the edge,
through the lens of throughput acceleration of heavy pipe-lined workloads at the
smart device edge, with the example of DNN partitioning. Chapter 5 has presented
(i) working assumptions and modeling to predict inference and transmission laten-
cies, inference throughput, and (ii) the B&B algorithm to find partitioning which
maximize the inference throughput. In chapter 6, simulations and experiments have
allowed for the definition of deterministic bounds on the performance and complexity
of the DNN partitioning problem. These conditions define the scope of applicabil-
ity of this method and allows developers to size their edge network to effectively
achieve the best compromise between performance and complexity. Because of the
overall dynamicity of edge network properties, chapter 7 presents an analysis of the
robustness and adaptability of DNN partitioning, describing a dynamic partition-
ing system design and re-computation policies. Once again, the properties of the
edge network are deterministic in the system design and the insights provided in
this chapter enable the optimization of performance, robustness, complexity, and
adaptability of a dynamic partitioning system. This work has led to the publication
of a journal paper [54].

In sum, the work provided in this thesis demonstrated the possibility to provide
mechanisms leveraging the available computational capacity of the smart device edge
to enhance the capacity of the edge. Future work in this field should focus on several
key aspects to further advance the deployment and monitoring of resource-intensive
applications in resource-constrained edge networks while maintaining a cloud-like
user experience. Firstly, investigations could be carried out to explore the poten-
tial of hybrid edge-cloud architectures. By integrating the strengths of both edge
computing and cloud computing, such architectures may offer a more flexible and
scalable solution to meet the varying demands of different applications. Secondly, the
development of more efficient and intelligent edge resource management techniques
is crucial. This includes exploring advanced machine learning algorithms to opti-
mize resource allocation and workload distribution dynamically based on real-time
conditions and requirements, in place or in addition to the semantic feature selection
method for event and fault diagnosis. Furthermore, the security and privacy chal-
lenges associated with edge computing need to be addressed comprehensively. As the
edge deals with sensitive data, ensuring data privacy and protection from potential
security threats is paramount. Future work could involve the development of robust
encryption and authentication mechanisms tailored for edge environments. Lastly,
as edge computing technologies evolve, it is crucial to conduct extensive real-world
deployments and large-scale testing to validate the effectiveness and practicality
of proposed solutions. Case studies and field experiments in diverse environments
would provide valuable insights into the performance, scalability, and reliability of
edge computing systems.
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Overall, addressing these challenges and exploring the opportunities for synergy
between edge and cloud computing will pave the way for a more robust and efficient
edge ecosystem. This will enable the realization of the full potential of smart devices
and edge computing, leading to a paradigm shift in the way we interact with and
benefit from the vast amount of data generated by the ever-expanding array of smart
devices.



108 CHAPTER 8. CONCLUSION



Appendix A

Résumé en français

Cette thèse étudie l’accélération de charges de travail lourdes dans les réseaux
d’appareils intelligents en périphérie de réseau, en se concentrant sur les probléma-
tiques (i) d’observabilité et de filtrage de données de télémétrie, ainsi que (ii) une
méthodologie de pipelining pour accélérer le débit de traitement d’importantes
charges de travail. Elle comprend 4 parties et 8 chapitres, structurés comme suit.

La partie I fournit une discussion introductive. Le chapitre 1 présente les évolu-
tions en conception d’applications et en informatique distribuée conduisant à l’émer-
gence de l’informatique en périphérie, ainsi que les contraintes et limitations de ce
genre environnement. Puis, deux méthodologies permettant d’améliorer les perfor-
mances d’appareils intelligents sont présentées, dans le contexte de l’informatique
en périphérie: les approches cloud-out et edge-in, qui examinent respectivement la
relocalisation de charges de travail et l’amélioration des capacités d’appareils intel-
ligents, afin d’obtenir de meilleures performances. Enfin, une discussion est menée
sur la manière dont l’augmentation des capacités des appareils intelligents plaide en
faveur d’une approche hybride, qui exploite la multiplicité des appareils en périphérie
de réseau pour localement distribuer la charge de travail.

La partie II étudie l’observabilité de l’état du réseau et le diagnostic de pannes
en périphérie de réseau. Les systèmes experts requièrent d’importants efforts de
construction et de maintenance, et manquent à la fois de scalabilité et d’adaptabilité
aux événements inconnus ou aux modifications de la topologie du réseau. Dans ce
contexte, le chapitre 3 (publié dans [52]) présente une méthode basée sur les données
pour extraire des sélections intelligibles de caractéristiques opérationnelles à partir
de données de télémétrie de réseau de haute dimension, afin de fournir une visibilité
sur l’état du réseau, et de faciliter le diagnostic de défaillance pour les opérateurs. La
méthode présentée est basée sur l’extraction d’informations à partir des métadonnées
contenues dans les noms de caractéristiques, à travers l’exemple de la télémétrie
pilotée par modèle (MDT) et le langage de modélisation YANG. Ceci est réalisé en
quantifiant les informations préservées dans la sélection de caractéristiques danas le
contexte du diagnostic, grâce à une mesure d’entropie croisée, définie sur un espace
de mots contenus dans la nomenclature YANG. Cette mesure conduit à la définition
d’un score de qualité de sélection, en faveur de sélections préservant des informations
intelligibles pour les opérateurs de réseau.

Avec cette mesure d’importance sémantique définie, le chapitre 4 présente une
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évaluation de la sélection sémantique de fonctionnalités dans le contexte du diag-
nostic de panne (publié dans [53]). Ce chapitre préconise l’utilisation d’une analyse
sémantique dans le diagnostic, après avoir illustré les lacunes de trois catégories de
méthodes basées uniquement sur des données de télémétrie. Ces mécanismes man-
quent en compréhension d’une importance sémantique dans les données et bénéficie-
raient de cette analyse sémantique supplémentaires. En utilisant la méthodologie du
chapitre 3, ce chapitre explore l’hypothèse selon laquelle une partie de ces connais-
sances supplémentaires peut être extraite des métadonnées. L’approche proposée
combine des mesures basées sur les données et des informations sémantiques con-
tenues dans les noms de fonctionnalités pour produire des sélections qui représentent
au mieux un événement sous-jacent. Cette étude étend l’estimation d’importance
sémantique basée sur l’entropie croisée à la définition d’un problème d’optimisation
qui associe cette importance sémantique au comportement des données. Une archi-
tecture de référence est ensuite introduite pour évaluer les avantages de cette analyse
sémantique et démontrer la performance et la robustesse de la sélection sémantique
de fonctionnalités, sur différents types de pannes, dans des ensembles de données de
télémétrie réseau, modélisés avec le langage de modélisation de données YANG. Les
résultats illustrent l’intérêt d’une telle analyse complémentaire pour le diagnostic
et mettent en évidence la robustesse de l’approche étudiée face aux variations de
données et métadonnées d’entrée. L’addition d’une étude sémantique dans un pro-
cessus de diagnostic permet des avantages exceptionnels en termes d’exhaustivité
des sélections, ainsi qu’une suppression importante de sélections parasite (i.e., une
augmentation de la précision).

La partie III étudie la répartition d’importantes charges de travail dans
l’informatique de périphérie, à travers l’exemple de l’accélération de débit d’inférence
de réseaux de neurones profonds (DNN) (publié dans [54]). L’inférence sur des
données en temps réel nécessite d’importantes ressources pour satisfaire les exigences
des applications. Cependant, les applications d’apprentissage profond sensibles à la
latence et à la confidentialité, e.g., dans les cas d’utilisation de l’informatique de
périphérie, ne peuvent pas se permettre de décharger le calcul vers des clouds dis-
tants en raison de l’important coût de transmission et du manque de confiance en-
vers les fournisseurs de cloud tiers. Cependant, dans les mécanismes d’accélération
standards, l’accélération matérielle peut être onéreuse et l’optimisation du modèle
nécessite des efforts de conception importants, tout en entravant la précision du
modèle. Dans le chapitre 5, une méthode de partitionnement de réseaux neuronaux
profonds est présentée comme une troisième approche complémentaire, qui con-
siste à répartir la charge de travail d’inférence sur plusieurs appareils intelligents
disponibles, en tenant compte des propriétés du réseau et de la structure du réseaux
neuronal, dans le but de maximiser le débit d’inférence (nombre d’inférences par
seconde). Ce chapitre introduit une méthode pour prédire les latences d’inférence
et de transmission dans des déploiements de réseaux de neurones distribués mul-
tithreadés et met en évidence les problèmes liés à l’exactitude de ces prédiction,
pour cause d’optimisation du modèle et d’accélération matérielle hétérogènes dans
l’environnement d’exécution. Avec cette représentation du comportement d’infé-
rence, ce chapitre décrit explicitement les potentiels objectifs de niveau de service
pour le partitionnement de DNN, i.e., la latence de bout en bout, la consomma-
tion d’énergie et le débit d’inférence. Après avoir identifié que ce problème était un
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problème d’optimisation linéaire en nombres entiers (OLNE), ce chapitre décrit un
processus d’optimisation basé sur une méthode de séparation et évaluation (S&E)
dans le but d’identifier des partitions qui maximisent le débit d’inférence du réseau
de neurone, tout en gardant le calcul sur le réseau de périphérie. Cette méthode est
comparée à des solutions de problèmes d’OLNE standards pour prouver que S&E
convient mieux au contexte de l’informatique de périphérie, car il résout rapidement
les cas simples. Un mécanisme d’arrêt précoce est décrit afin de limiter sa complexité
dans les cas extrêmes.

Dans le chapitre 6, le solveur de partitionnement S&E est analysé pour quan-
tifier les limites de sa performance et de sa complexité. Tout d’abord, des simula-
tions sont présentées dans un environnement de réseau homogène (nœuds et liens
identiques) pour explorer l’influence des paramètres d’entrée du problème sur le
débit d’inférence atteint et la complexité de S&E. Les premières simulations met-
tent en évidence l’influence du nombre de nœuds et du nombre maximal de partitions
sur les performances et la complexité, ce qui conduit à l’identification d’une limite
sur le nombre de points de division nécessaires, permettant ainsi aux opérateurs
de limiter la complexité de S&E. Les deuxièmes simulations évaluent l’influence
des nœuds et liens sur le réseau, montrant que le nombre effectif d’itérations de
S&E dépend d’un seul paramètre, à savoir le ratio entre débit des liens et vitesse
de traitement des nœuds. De plus, ces simulations identifient trois valeurs de ce
paramètre qui délimitent des régions aux comportements différents en termes de
performance et de complexité. Cette analyse conduit à la définition de la région
d’accélération, qui décrit les conditions déterministes sur les propriétés du réseau
de neurone et du réseau dans lesquelles le partitionnement est bénéfique. Enfin,
des résultats expérimentaux sont présentés pour confirmer les simulations et mon-
trer des améliorations de débit d’inférence dans des exemples de déploiements. Les
résultats montrent également une configuration hétérogène dans laquelle la perfor-
mance approche la borne supérieure théorique précédemment définie. Le chapitre se
termine par un résumé des résultats, qui peuvent être utilisés par les opérateurs et
les développeurs d’applications pour dimensionner leur réseau et profiter au mieux
du partitionnement de réseaux de neurones, avant le déploiement.

Au chapitre 7, un système de partitionnement dynamique de réseau de
neurone est présenté, afin d’étudier la robustesse du partitionnement et son com-
portement dans des environnements réseaux instables. Étant donné l’importante dy-
namicité des réseaux de périphérie, ce chapitre illustre l’importance de réévaluations
régulières du partitionnement, étant donné que la méthodologie des chapitres précé-
dents ne s’appliquent qu’à des conditions de réseau stables. Tout d’abord, ce chapitre
illustre les deux principaux avantages de la réévaluation dynamique: (i) la capacité
de compenser l’imprécision dans la prédiction de latence d’inférence, en apprenant
de valeurs mesurées pendant l’exécution, et (ii) la capacité de s’adapter à différents
niveaux de perturbations sur le réseau. Dans ce contexte, les résultats de simulation
présentés montrent que le partitionnement permet une meilleure robustesse aux per-
turbations, et que le partitionnement dynamique permet à la performance de rester
optimale, même pour des perturbations importantes. Ensuite, ce chapitre fournit
des indications sur la conception d’un système de partitionnement dynamique et
des politiques de réévaluation. Trois politiques sont présentées et comparées: (i)
une politique de réévaluation périodique, (ii) une politique de réévaluation réactive,
qui réévalue le partitionnement lorsque le débit d’inférence tombent en dessous d’un
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seuil, et (iii) une politique de réévaluation proactive, qui repose sur la surveillance
des données de télémétrie pour déclencher des réévaluations. Ce chapitre conclut
en identifiant le même ratio entre débit des liens et taux de traitement des nœuds
comme un facteur clé dans le choix de la politique de réévaluation, car il définit le
ratio entre l’empreinte computationnelle de S&E et celle de la surveillance active de
la télémétrie de réseau.

Enfin, la partie IV conclut ce manuscrit.



List of Figures

1.1 The edge computing continuum . . . . . . . . . . . . . . . . . . . . . 8

4.1 Semantic feature selection for fault diagnosis in network telemetry data 37
4.2 Change shapes present in telemetry datasets . . . . . . . . . . . . . . 38
4.3 Flow chart of semantic feature selection for fault diagnosis . . . . . . 41
4.4 Number of features selected by SEFSET on different events . . . . . . 45
4.5 Semantic feature selection benchmark . . . . . . . . . . . . . . . . . . 48
4.6 Ground truth definition for four event types . . . . . . . . . . . . . . 49
4.7 Robustness evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Timeline of multi-threaded DNN partitioning . . . . . . . . . . . . . 56
5.2 Example computation graph of a feed-forward neural network. . . . . 62
5.3 Accuracy of linear modeling for inference and transmission latency . . 66
5.4 Tree representation of DNN partitionings . . . . . . . . . . . . . . . . 70
5.5 Comparative analysis of B&B, GA, and PSO. . . . . . . . . . . . . . 73
5.6 Comparative analysis of B&B, GA, and PSO. . . . . . . . . . . . . . 74

6.1 Impact of the number of nodes and split points on B&B. . . . . . . . 80
6.2 Impact of node processing rate and link throughput on B&B. . . . . . 82
6.3 Achieved B&B performance in homogeneous experimental set-ups . . 84
6.4 Inference throughput improvement when adding a compute node . . . 87

7.1 Refinement of inference throughput precision through re-computations. 93
7.2 Inference throughput variations to processing rate variations. . . . . . 94
7.3 Achieved inference throughput after re-computation of the optimal

DNN partitioning, with persistent perturbation. . . . . . . . . . . . . 95
7.4 Functional diagram of the adaptive DNN partitioning system. . . . . 96
7.5 Metrics for adaptive DNN partitioning. . . . . . . . . . . . . . . . . . 98
7.6 B&B cost to compute estimation. . . . . . . . . . . . . . . . . . . . . 99

113



114 LIST OF FIGURES



List of Tables

1.1 Generic mathematical notations . . . . . . . . . . . . . . . . . . . . . 18

5.1 Summary of mathematical notations . . . . . . . . . . . . . . . . . . 64

6.1 DNN partitioning experimental set-ups . . . . . . . . . . . . . . . . . 85

7.1 Comparison of re-computation policies for dynamic DNN partitioning. 101

115



116 LIST OF TABLES



List of Algorithms

1 Semantic feature selection . . . . . . . . . . . . . . . . . . . . . . . . 42
2 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . 72

117



118 LIST OF ALGORITHMS



Bibliography

[1] S. Mochizuki, K. Matsubara, K. Matsumoto, C. L. P. NGuyen, T. Shibayama,
K. Iwata, K. Mizumoto, T. Irita, H. Hara, and T. Hattori, “A 197mw 70ms-
latency full-hd 12-channel video-processing soc in 16nm cmos for in-vehicle
information systems,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E100.A, no. 12, pp. 2878–2887,
2017.

[2] European Commission, “Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection Reg-
ulation) (Text with EEA relevance),” 2016.

[3] F. Douglis and M. Kaashoek, “Scalable internet services,” IEEE Internet Com-
puting, vol. 5, no. 4, pp. 36–37, 2001.

[4] A. Vakali and G. Pallis, “Content delivery networks: status and trends,” IEEE
Internet Computing, vol. 7, no. 6, pp. 68–74, 2003.

[5] J. Joseph, M. Ernest, and C. Fellenstein, “Evolution of grid computing ar-
chitecture and grid adoption models,” IBM Systems journal, vol. 43, no. 4,
pp. 624–645, 2004.

[6] R. Schollmeier, “A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications,” in Proceedings First Interna-
tional Conference on Peer-to-Peer Computing, pp. 101–102, IEEE, 2001.

[7] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” NIST
Special Publication 800-145, 2011.

[8] L. Edge, “White paper: Sharpening the edge: Overview of the lf edge taxon-
omy and framework,” tech. rep., LF Edge, 2020.

[9] A. D. Kshemkalyani and M. Singhal, Distributed computing: principles, algo-
rithms, and systems. Cambridge University Press, 2011.

[10] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing.,” in NSDI (S. D. Grib-
ble and D. Katabi, eds.), pp. 15–28, USENIX Association, 2012.

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

119



120 BIBLIOGRAPHY

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
Business Review, p. 21260, 2008.

[13] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey on com-
putation offloading modeling for edge computing,” Journal of Network and
Computer Applications, vol. 169, no. July, p. 102781, 2020.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-
based cloudlets in mobile computing,” IEEE pervasive Computing, vol. 8,
no. 4, pp. 14–23, 2009.

[15] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “To-
wards wearable cognitive assistance,” in Proceedings of the 12th annual inter-
national conference on Mobile systems, applications, and services, pp. 68–81,
2014.

[16] J. Zhu, D. S. Chan, M. S. Prabhu, P. Natarajan, H. Hu, and F. Bonomi,
“Improving web sites performance using edge servers in fog computing archi-
tecture,” in 2013 IEEE Seventh International Symposium on Service-Oriented
System Engineering, pp. 320–323, 2013.

[17] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource alloca-
tion for mobile-edge computation offloading,” IEEE Transactions on Wireless
Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[18] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling,” IEEE Trans-
actions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[19] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software
defined ultra-dense network,” IEEE Journal on Selected Areas in Communi-
cations, vol. 36, no. 3, pp. 587–597, 2018.

[20] Y. Liu, D. Niu, and B. Li, “Delay-optimized video traffic routing in software-
defined interdatacenter networks,” IEEE Transactions on Multimedia, vol. 18,
no. 5, pp. 865–878, 2016.

[21] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. M. Leung, “An efficient compu-
tation offloading management scheme in the densely deployed small cell net-
works with mobile edge computing,” IEEE/ACM Transactions on Networking,
vol. 26, no. 6, pp. 2651–2664, 2018.

[22] S. Bi and Y.-J. A. Zhang, “An admm based method for computation rate
maximization in wireless powered mobile-edge computing networks,” in 2018
IEEE International Conference on Communications (ICC), pp. 1–7, 2018.

[23] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered
mobile-edge computing with binary computation offloading,” IEEE Transac-
tions on Wireless Communications, vol. 17, no. 6, pp. 4177–4190, 2018.

[24] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog comput-
ing networks with fog node cooperation,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, pp. 1–9, 2017.



BIBLIOGRAPHY 121

[25] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective op-
timization for computation offloading in fog computing,” IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 283–294, 2018.

[26] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,” IEEE
Transactions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[27] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.

[28] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay tradeoff
for dynamic offloading in mobile-edge computing system with energy harvest-
ing devices,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4642–4655, 2018.

[29] G. Zhang, Y. Chen, Z. Shen, and L. Wang, “Energy management for multi-
user mobile-edge computing systems with energy harvesting devices and qos
constraints,” in 2018 27th International Conference on Computer Communi-
cation and Networks (ICCCN), pp. 1–6, 2018.

[30] X. Lyu, W. Ni, H. Tian, R. P. Liu, X. Wang, G. B. Giannakis, and A. Paulraj,
“Optimal schedule of mobile edge computing for internet of things using partial
information,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2606–2615, 2017.

[31] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation offload-
ing in green mobile edge cloud computing,” IEEE Transactions on Services
Computing, vol. 12, no. 5, pp. 726–738, 2019.

[32] H. Ko, J. Lee, and S. Pack, “Spatial and temporal computation offloading de-
cision algorithm in edge cloud-enabled heterogeneous networks,” IEEE Access,
vol. 6, pp. 18920–18932, 2018.

[33] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and offload-
ing strategies in cloud enabled cellular networks,” in 2015 IEEE International
Conference on Communications (ICC), pp. 5529–5534, 2015.

[34] W. Labidi, M. Sarkiss, and M. Kamoun, “Energy-optimal resource scheduling
and computation offloading in small cell networks,” in 2015 22nd International
Conference on Telecommunications (ICT), pp. 313–318, 2015.

[35] Z. Wei, B. Zhao, J. Su, and X. Lu, “Dynamic edge computation offloading for
internet of things with energy harvesting: A learning method,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4436–4447, 2019.

[36] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscaling in
energy harvesting mobile edge computing,” IEEE Transactions on Cognitive
Communications and Networking, vol. 3, no. 3, pp. 361–373, 2017.



122 BIBLIOGRAPHY

[37] X. Zheng, M. Li, M. Tahir, Y. Chen, and M. Alam, “Stochastic computation
offloading and scheduling based on mobile edge computing,” IEEE Access,
vol. 7, pp. 72247–72256, 2019.

[38] D. Van Le and C.-K. Tham, “An optimization-based approach to offloading
in ad-hoc mobile clouds,” in GLOBECOM 2017 - 2017 IEEE Global Commu-
nications Conference, pp. 1–6, 2017.

[39] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, King’s
College, Cambridge United Kingdom, 1989.

[40] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing in
vehicle networks: A deep reinforcement learning,” IEEE Transactions on Ve-
hicular Technology, vol. 67, no. 11, pp. 10190–10203, 2018.

[41] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A learning-
based approach,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 5, pp. 1117–1129, 2019.

[42] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offload-
ing for mobile-edge cloud computing,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 5, pp. 2795–2808, 2016.

[43] H. Cao and J. Cai, “Distributed multiuser computation offloading for cloudlet-
based mobile cloud computing: A game-theoretic machine learning approach,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 752–764, 2018.

[44] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation offload-
ing scheme for fog computing system with energy harvesting devices,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1869–1879, 2018.

[45] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn,
and K. R. Walker, “Agile application-aware adaptation for mobility,” ACM
SIGOPS Operating Systems Review, vol. 31, no. 5, pp. 276–287, 1997.

[46] M. Weiser, “The computer for the 21st century,” ACM SIGMOBILE mobile
computing and communications review, vol. 3, no. 3, pp. 3–11, 1999.

[47] M. Satyanarayanan, “Pervasive computing: Vision and challenges,” IEEE Per-
sonal communications, vol. 8, no. 4, pp. 10–17, 2001.

[48] M. R. Ebling, “Pervasive computing and the internet of things,” IEEE Per-
vasive Computing, vol. 15, no. 1, pp. 2–4, 2016.

[49] OpenFog Consortium and Architecture Working, “OpenFog reference archi-
tecture for fog computing,” tech. rep., OpenFog, February 2017.

[50] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pp. 13–16, 2012.



BIBLIOGRAPHY 123

[51] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications
and issues,” Proceedings of the International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), vol. 2015-June, pp. 37–42, 2015.

[52] T. Feltin, P. Foroughi, W. Shao, F. Brockners, and T. H. Clausen, “Semantic
feature selection for network telemetry event description,” in NOMS 2020-
2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–6,
IEEE, 2020.

[53] T. Feltin, J. A. Cordero Fuertes, F. Brockners, and T. H. Clausen, “Under-
standing semantics in feature selection for fault diagnosis in network telemetry
data,” in NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium, IEEE, 2023.
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Titre : Calcul distribué en périphérie de réseau
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Résumé : Avec la capacité croissante des appa-
reils intelligents et une incompatibilité des applica-
tions sensibles à la latence ou la préservation de la
vie privée avec le cloud computing, l’informatique en
périphérie (edge computing) est devenue la meilleure
solution de déploiement pour ces charges de tra-
vail. Cette thèse étudie l’accélération d’importantes
charges dans les réseaux de périphérie d’appareils
intelligents, en fournissant une observabilité par fil-
trage des données de télémétrie, ainsi qu’un cadre
de pipelinage pour l’accélération du débit de ces
charges. Cette thèse propose une approche hybride
entre les méthodologies cloud-out et edge-in, en ex-
ploitant la multiplicité des appareils en périphérie
afin de décharger localement le calcul. La thèse se
concentre initialement sur l’observabilité de l’état du
réseau et le diagnostic des pannes en périphérie, en
présentant une méthode de sélection sémantique de
caractéristiques opérationnelles à partir de données
de télémétrie de réseau à haute dimension, combi-
nant des métriques sur les données et la sémantique
contenue dans les métadonnées, afin de filtrer des ca-
ractéristiques représentant au mieux un événement

sous-jacent. La thèse illustre les avantages d’une
telle analyse complémentaire dans le diagnostic de
pannes, mettant en évidence la robustesse de l’ap-
proche étudiée. Cette thèse étudie ensuite la distribu-
tion des charges de travail lourdes dans de tels en-
vironnements, à travers l’exemple du partitionnement
de réseaux de neurones profonds, qui consiste à dis-
tribuer ces travaux d’inférence sur plusieurs appareils
disponibles, en prenant en compte à la fois les pro-
priétés du réseau et la structure du réseau de neu-
rone, dans le but de maximiser le débit d’inférence. La
thèse décrit un processus pour identifier les partitions
qui maximisent le débit d’inférence, en maintenant le
calcul localement. L’analyse de cette méthode conduit
à un ensemble de conditions sur le lien entre le réseau
de périphérie et les propriétés de l’application pour en
anticiper les performances et la complexité, et dimen-
sionner efficacement un environnement de réseau en
périphérie. Enfin, la thèse décrit un cadre de partition-
nement dynamique pour améliorer les performances
et la robustesse du système, qui tire parti de l’ob-
servabilité du réseau pour s’adapter à ces réseaux
hétérogènes et dynamiques.

Title : Distributed computing at the smart device edge

Keywords : Distributed Computing, Edge Computing

Abstract : With the increasing capacity of smart de-
vices and an incompatibility of privacy/latency sen-
sitive applications with cloud computing, edge com-
puting has emerged as the best deployment solution
for such workloads. In this context, this thesis studies
the acceleration of heavy workloads in smart device
edge networks, by providing observability through fil-
tering of telemetry data, and a pipe-lining framework
for throughput acceleration of heavy workloads. This
thesis proposes a hybrid approach between cloud-out
and edge-in methodologies, which leverages the mul-
tiplicity of edge compute by locally offloading com-
putation. The thesis initially focuses on network state
observability and fault diagnosis at the edge. A data-
driven method to extract intelligible selections of ope-
rational features from high-dimensional network tele-
metry data is introduced, combining data-driven me-
trics and semantic information contained in meta-
data, to produce selections of features which best re-
present an underlying event. The thesis illustrates the
benefits of such a complementary meta-data analysis
for data-driven fault diagnosis, highlighting the robust-

ness of the studied approach against variations in the
input feature set. With an improved understanding of
the state of the edge, this thesis then studies heavy
workload distribution in such environments, through
the example of DNN partitioning, which consists of
distributing inference workloads over several available
edge devices, taking into account the edge network
properties and the DNN structure, with the objective
of maximizing the inference throughput. The thesis
describes a process to identify partitionings which
maximize the DNN inference throughput while kee-
ping computation on the edge. The analysis of this
method has lead to a set of conditions on the link bet-
ween the edge network and application properties to
anticipate the achieved performance and complexity,
and effectively size an edge network environment. Fi-
nally, the thesis describes a dynamic partitioning fra-
mework to improve the system performance and ro-
bustness, which leverages the observability of the net-
work to adapt to heterogeneous and dynamic edge
networks.
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