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ABSTRACT 

Colorectal cancer is the third leading cause of cancer and the second leading cause of cancer-

related mortality worldwide. Over the last decades, the surgical approach to colorectal cancer has 

significantly changed, including the introduction of innovative surgical techniques such as total 

mesorectal excision (TME) and complete mesocolic excision (CME), advances in minimally 

invasive procedures, and near-infrared fluorescence (NIRF) image-guided surgery.  

In colorectal cancer surgery, ‘en bloc’ tumor resection, including nourishing vessels and lymph 

nodes which have shown to have a clear impact on recurrence is still one of the primary mainstays 

of treatment. CME with central vascular ligation (CVL) for colon cancer and TME for rectal cancer 

have been proposed as surgical approaches that require a thorough understanding of the anatomical 

dissection planes to prevent any recurrences. During such surgery, it is essential to distinguish the 

tumor’s nourishing vessels from the main lymphatic drainage.  

A second key mainstay of treatment consists of creating an intestinal anastomosis to maintain 

hindgut continuity. Complications such as leaks and strictures may arise, hence representing a 

major surgical concern; they are closely correlated with insufficient perfusion. The conventional 

assessment via the surgeon’s eye perception of the anatomical embryological planes and the 

intestinal viability has been used for several decades. However, the naked eye is insufficient to 

detect small variabilities with potential clinical repercussions. As a result, intraoperative optical 

imaging has been particularly helpful in providing a precise and quantitative method to recognize 

the correct dissection layers and bowel perfusion with the ultimate objective of reducing 

recurrences and complications. The overgrowing significant progress of intraoperative image-

guided surgery accounts for its seminal place in the surgical field, along with new symposia and 

sessions being regularly organized during international surgical conferences.  
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The present research has focused on implementing novel approaches in colorectal surgery using 

intraoperative optical imaging to promote better clinical outcomes and prevent recurrences and 

complications.  

This research aims to implement a new approach using intraoperative optical imaging, with the 

following three specific main research objectives; (1) to develop new imaging strategies to assess 

the complete resection of colorectal cancer, (2) to evaluate new imaging technologies enabling the 

accurate evaluation of perfusion to prevent complications such as leaks, and (3) to evaluate new 

fluorescent imaging techniques to improve the accuracy of intraoperative lymph node detection. 

These three objectives are correlated with colorectal cancer recurrence, leading to better clinical 

outcomes.  

We studied "Computer-Assisted Differentiation between Colon-Mesocolon and Retroperitoneum 

Using Hyperspectral Imaging (HSI) Technology" (1) in order to obtain "Quantification of bowel 

ischaemia using real-time multispectral Single Snapshot Imaging of Optical Properties (SSOP)" 

(2) "Simultaneous, multi-channel, near-infrared fluorescence visualization of mesenteric lymph 

nodes using indocyanine green and methylene blue: a demonstration in a porcine model" (3). 
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Positionnement de la recherche 

 

Le cancer colorectal est la troisième cause de cancer et la deuxième cause de mortalité liée au 

cancer dans le monde [1]. Au cours des dernières décennies, l'approche chirurgicale du cancer 

colorectal a considérablement évolué, notamment grâce à l'introduction de techniques 

chirurgicales innovantes comme l'excision totale du mésorectum et l'excision complète du 

mésocôlon, grâce aux progrès des procédures mini-invasives et au recours à la chirurgie guidée 

par imagerie par fluorescence dans le proche infrarouge. 

Dans la chirurgie du cancer colorectal, la résection "en bloc" de la tumeur, y compris des vaisseaux 

nourriciers et des ganglions lymphatiques demeure l'un des principaux piliers thérapeutiques, dont 

l'impact sur les récidives est évident. L'excision complète du mésocôlon avec ligature vasculaire 

centrale pour traiter le cancer du côlon et l'excision totale du mésorectum pour traiter le cancer du 

rectum ont été proposées comme des approches chirurgicales qui permettent de réduire tout risque 

de récidives et nécessitent une compréhension approfondie des plans anatomiques de dissection 

[2, 3]. Au cours de ces opérations, il est crucial de discerner les vaisseaux nourriciers de la tumeur 

du drainage lymphatique principal. 

Un deuxième élément clé consiste à créer une anastomose intestinale pour maintenir la continuité 

de l'intestin grêle postérieur. Des complications telles que les fistules et les sténoses peuvent 

survenir, représentant une préoccupation chirurgicale majeure ; elles sont étroitement corrélées à 

une perfusion insuffisante. L'évaluation classique via la perception oculaire du chirurgien des plans 

anatomiques embryologiques et de la viabilité intestinale s’effectue depuis plusieurs décennies. 

Toutefois, une vision à l'œil nu est insuffisante pour détecter de petites variations susceptibles 

d’entraîner une répercussion clinique potentielle. Par conséquent, l'imagerie optique peropératoire 
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s'est avérée particulièrement utile en apportant une stratégie précise et quantitative permettant de 

reconnaître les couches de dissection adéquates et la perfusion intestinale afin de réduire toutes 

récidives et complications. 

Les progrès significatifs et croissants de la chirurgie guidée par l'image peropératoire s’incarnent 

à travers son rôle déterminant dans le domaine chirurgical, comme en témoignent les nombreux 

symposiums régulièrement organisés lors de congrès de chirurgie dans le monde [4]. 

La présente recherche s'est polarisée sur la mise en œuvre de nouvelles approches en chirurgie 

colorectale utilisant l'imagerie optique peropératoire afin de promouvoir de meilleurs résultats 

cliniques et prévenir toutes récidives et complications. 
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Objectifs de la recherche 

 

Cette recherche vise à développer une nouvelle approche utilisant l'imagerie optique peropératoire, 

avec les trois principaux objectifs de recherche spécifiques suivants : (1) créer de nouvelles 

stratégies d'imagerie pour évaluer la résection complète du cancer colorectal, (2) évaluer de 

nouvelles technologies d'imagerie permettant une évaluation précise de la perfusion pour prévenir 

les complications comme les fistules et (3) évaluer de nouvelles techniques d'imagerie par 

fluorescence afin d’améliorer la précision de la détection peropératoire des ganglions lymphatiques 

qui sont corrélés avec la récidive du cancer colorectal, ouvrant la voie à de meilleurs résultats 

cliniques. Nous avons étudié (1) la « Différenciation assistée par ordinateur entre le côlon-

mésocôlon et le rétropéritoine à l'aide de la technologie d'imagerie hyperspectrale.» pour (2) 

obtenir une « Quantification de l'ischémie intestinale à l'aide de l'imagerie multispectrale en temps 

réel des propriétés optiques par instantané unique » et pour (3) obtenir une « Visualisation 

simultanée, multicanaux et par fluorescence dans le proche infrarouge des ganglions lymphatiques 

mésentériques à l'aide du vert d’indocyanine et du bleu de méthylène : une démonstration sur 

modèle porcin » dans le programme du cours de doctorat. 
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Etapes expérimentales 

 1) Différenciation assistée par ordinateur entre le côlon-mésocôlon et le rétropéritoine à 

l'aide de la technologie d'imagerie hyperspectrale 

L'excision complète du mésocôlon qui implique la résection adéquate du segment colique porteur 

de la tumeur avec ablation "en bloc" de son mésocôlon le long des plans fasciaux embryologiques, 

est associée à des résultats oncologiques supérieurs. Toutefois, cette excision complète du 

mésocôlon (CME) présente un taux de complication plus élevé que les résections non CME en 

raison d'un risque plus élevé de lésion vasculaire. L'imagerie hyperspectrale (HSI) est une 

technologie d'imagerie optique sans contraste, qui facilite l'imagerie quantitative des paramètres 

physiologiques des tissus et la visualisation des structures anatomiques. Cette étude évalue la 

précision cette technologie associée au deep learning ou apprentissage profond afin de différencier 

le côlon et son tissu mésentérique du tissu rétropéritonéal. Matériels et méthodes : Dans une étude 

animale incluant 20 modèles porcins, des images hyperspectrales peropératoires du côlon sigmoïde, 

du mésentère sigmoïde et du rétropéritoine ont été enregistrées. Un réseau neuronal convolutif 

(CNN) a été entraîné à distinguer les deux classes de tissus à l'aide des données de la technologie 

HSI, validées par un processus de validation croisée d’un contre tous ("leave-one-out"). Résultats : 

La sensibilité globale de reconnaissance des tissus à préserver (rétropéritoine) et des tissus à 

réséquer (côlon et mésentère) était respectivement de 79,0 ± 21,0 % et 86,0 ± 16,0 %. Conclusion : 

La classification automatique s’appuyant sur les technologies HSI et CNN est un outil prometteur 

qui permet de différencier automatiquement le côlon et son mésentère du tissu rétropéritonéal, de 

manière non invasive et objective. 
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2) Quantification de l'ischémie intestinale à l'aide du multispectrale en temps réel des 

propriétés optiques par instantané unique 

L'imagerie instantanée des propriétés optiques (SSOP) est une technologie relativement nouvelle 

d'imagerie optique non invasive, en temps réel et sans contraste, qui permet l'évaluation 

quantitative en temps réel des propriétés physiologiques, dont notamment l'oxygénation des tissus 

(StO2). Cette étude évalue la précision de la SSOP multispectrale pour quantifier l'ischémie 

intestinale dans un modèle expérimental préclinique. Méthodes : Dans 6 modèles porcins, un 

segment d'intestin ischémique a été créé en divisant les branches de l'arcade vasculaire. Cinq 

régions d'intérêt (ROIs) ont été identifiées sur la boucle intestinale, comme suit : ROI 1 : 

ischémique centrale ; ROI 2 : marginale gauche ; ROI 3 : vascularisée gauche ; ROI 4 : marginale 

droite ; et ROI 5 : vascularisée droite. Le système d'imagerie Trident, spécialement conçu pour 

l'imagerie de l'oxygénation du tissu en temps réel à l'aide de l’imagerie SSOP, a été utilisé pour 

obtenir des images avant (T0) et après l'induction de l'ischémie. Les lactates capillaires et 

systémiques ont été mesurés à chaque point temporel (T0, T15, T30, T45, T60), ainsi que les 

valeurs de StO2 acquises au moyen de l’imagerie SSOP (SSOP-StO2). Résultats : La valeur 

moyenne de StO2 acquise au moyen de l’imagerie SSOP dans la ROI 1 était de 30,08 ± 6,963 et 

était significativement plus faible par rapport aux ROIs marginales (ROI 2 + ROI 4 : 45,67 ± 10,02 

p = <0,0001) et aux ROIs vascularisées (ROI 3 + ROI 5 : 48,08 ± 7,083 p = <0,0001). La valeur 

moyenne de StO2 acquise au moyen de l’imagerie SSOP était significativement corrélée aux 

lactates normalisés r = - 0.5892 (p <0.0001) et à l'histologie r =- 0.6251 (p = 0.0002). Conclusion : 

L’imagerie SSOP multispectrale permet une évaluation précise et sans contraste de la perfusion de 

l'intestin grêle en identifiant l'oxygénation physiologique des tissus, confirmée par les 

biomarqueurs de perfusion. 
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3) Visualisation simultanée, multicanaux et par fluorescence dans le proche infrarouge des 

ganglions lymphatiques mésentériques à l'aide du vert d’indocyanine et du bleu de 

méthylène : une démonstration sur modèle porcin 

La chirurgie guidée par imagerie en fluorescence proche infrarouge (NIRF) est un outil utile qui 

peut contribuer à réduire les complications péri-opératoires et à améliorer la reconnaissance des 

tissus. Bien que le colorant vert d’indocyanine (ICG) soit le plus couramment utilisé dans les 

études cliniques, il est de plus en plus évident que le bleu de méthylène (MB), un autre colorant 

fluorescent disponible en milieu clinique, peut également être utile pour l'identification guidée par 

fluorescence des uretères, des glandes thyroïdes et parathyroïdes, des tumeurs neuroendocrines 

pancréatiques et des ganglions lymphatiques sentinelles dans le cancer du sein, entre autres. 

L'objectif de cette étude était d'évaluer la faisabilité de la détection peropératoire par fluorescence 

des ganglions lymphatiques en utilisant du bleu de méthylène administré par voie intraveineuse 

(IV) et de le comparer au vert d’indocyanine. Méthodes : Trois modèles porcins ont été utilisés 

dans cette étude. Le vert d’indocyanine (0,2 mg/kg) a été administré via un cathéter veineux 

périphérique, suivi par l'administration immédiate de bleu de méthylène (0,25 mg/kg). Les images 

en fluorescence proche infrarouge ont été acquises sous forme d'enregistrements vidéo à différents 

moments (toutes les 10 minutes) pendant une heure à l'aide du système d’imagerie QUEST 

SPECTRUM® 3 (Quest Medical Imaging, Middenmeer, Pays-Bas), qui possède deux canaux en 

proche infrarouge dédiés au guidage peropératoire simultané par fluorescence. Le canal de 800 nm 

a été utilisé pour capturer la fluorescence par vert d’indocyanine et le canal de 700 nm a été utilisé 

pour le bleu de méthylène. La cible (ganglions lymphatiques et intestin grêle) et le fond (champ 

avasculaire du mésentère) ont été mis en évidence en tant que région d'intérêt (ROI) et les intensités 

de fluorescence (IF) correspondantes à ces ROI ont été mesurées. L'intensité de fluorescence a été 



 13 

mesurée à l'aide du logiciel Quest Artemis (Quest Medical Imaging, Middenmeer, Pays-Bas) (TBR 

tool v1.0.). Le rapport cible/arrière-plan (TBR) a ensuite été calculé comme étant l'IF moyen de la 

cible moins l'IF moyen de l'arrière-plan divisé par l'IF moyen de l'arrière-plan. Résultats : Chez 

tous les animaux inclus, une identification claire des ganglions lymphatiques a été obtenue à tous 

les points temporels. Le TBR moyen du vert d’indocyanine dans les ganglions lymphatiques et 

l'intestin grêle était de 4,57 ± 1,00 et 4,37 ± 1,70 respectivement, pour l'ensemble du temps 

expérimental. En ce qui concerne le bleu de méthylène, le TBR moyen dans les ganglions 

lymphatiques et l'intestin grêle était de 4,60 ± 0,92 et 3,27 ± 0,62 respectivement. Le test U de 

Mann-Whitney du TBR des ganglions lymphatiques divisé par le TBR de l'intestin grêle a montré 

que le rapport TBR du bleu de méthylène était statistiquement plus élevé que celui du vert 

d’indocyanine. Conclusion : La technologie d'imagerie optique par fluorescence utilisée permet 

une évaluation à plusieurs longueurs d'onde. Cette étude de faisabilité prouve que les ganglions 

lymphatiques peuvent être détectés en utilisant deux fluorophores différents (bleu de méthylène et 

vert d’indocyanine) avec des longueurs d'onde différentes. La performance du bleu de méthylène 

peut représenter un moyen plus précis permettant de détecter les tissus lymphatiques pendant une 

chirurgie guidée par l'image. D'autres essais précliniques de confirmation sont nécessaires avant 

toute application clinique. 
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1. Colorectal cancer surgery 

Colorectal cancer (CRC) is the third leading cause of cancer and the second leading cause of 

cancer-related mortality worldwide [1]. In France, CRC was diagnosed in 43,000 persons and was 

accountable for 17,000 deaths in 2018. It is estimated that there were approximately 1 million 

cases of CRC and 88,000 deaths worldwide in 2018 [5]. Typical symptoms of CRC include rectal 

bleeding, bloody stools, altered bowel habits, and chronic abdominal pain [6]. The number of cases 

of CRC under the age of 50 is still small (approximately 10% [7]), but increases each year. Morbid 

obesity, diets high in processed food, and a sedentary lifestyle may contribute [8, 9]. 

The surgical approach to CRC has changed significantly over the last few decades, including the 

introduction of innovative surgical techniques such as total mesorectal excision (TME) and 

complete mesocolic excision (CME), advances in minimally invasive procedures, and near-

infrared fluorescence (NIRF) image-guided surgery.  

In oncological surgery, accurate lymph node assessment enables pathological staging and 

prognosis and guiding postoperative therapies. Indeed, an adequate lymphadenectomy has shown 

to improve overall survival [10]. In CRC, the main objective of oncologic resection consists of 

resecting the primary tumor along with its blood supply and lymph node drainage [3, 11–15]. 

While the primary objective is the complete removal of cancerous tissue, the prevention of 

postoperative complications and recurrence remains one of the most significant issues.  
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1.1. Total mesorectal excision (TME) 

In the surgical treatment of rectal cancer, ways of preventing local recurrence remain a major 

concern. Since rectal cancer has a higher postoperative local recurrence rate than colon cancer, 

various efforts have been made to reduce the local recurrence rate and improve postoperative 

oncological outcomes. Total mesorectal excision (TME) represents one of the most significant 

pivotal advances in the history of CRC treatment over the past 50 years. 

Histological assessment provided by Cuthbert Dukes allowed to conclude that the majority of 

lymph nodes were running either parallel or proximal to the level of the primary tumor [16]. As a 

result, in the 1980s, there was a growing interest in studying circumferential margins. In 1982, 

Heald et al. proposed TME as a surgical technique which accomplished lower local recurrences. 

Heald’s TME was based on a thorough understanding of rectal embryology, which included the 

mesorectum [2].  

Distal tumor spread was also considered a major recurrence factor by Scott et al. Authors 

performed a histopathological analysis of 20 rectal cancer TME specimens. After slicing TME 

specimens every 1 cm, the authors observed cancer invasion both macroscopically and 

microscopically with mesorectal invasion on the anal side of the tumor in 4 cases, which was 1 cm 

to 3 cm on the distal side of the tumor [17].  

The rectum and mesorectum constitute a single package surrounded by the visceral pelvic fascia, 

and TME is an ‘en bloc’ intact resection of the rectum and its mesorectum, which includes the 

majority of regional lymph nodes, lymph vessels, and surrounding adipose tissue, without 

damaging this package [18]. In 1986, this essential understanding on anatomical planes led Quirke 

et al. to report the importance of the circumferential resection margin (CRM) [19]. Afterwards, 
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Adam et al. showed that the local recurrence rate was significantly higher in circumferential 

margin-positive cases than in negative ones [20].  

Completion of TME and CRM have significantly contributed to reducing the local recurrence rate 

after rectal cancer surgery, decreasing the incidence of permanent stomas, improving the curative 

resection rate, and improving survival and tumor-free survival rates. TME has become the "gold 

standard" treatment for rectal cancer worldwide [21, 22]. 

 

 

Figure 1. Drawing showing the principles and extent of TME (from Lirici MM et Hüscher CG. Techniques and 

technology evolution of rectal cancer surgery: a history of more than a hundred years. Minim Invasive Ther Allied 

Technol. 2016 Oct;25(5):226-33). 

 

 

1.2. Complete mesocolic excision (CME) 

Over the past few decades, the management of CRC has improved significantly due to better 

screening policies and to the introduction of extended radical ‘en bloc’ surgical resection based on 

TME principles such as complete mesocolic excision (CME) [23]. Hohenberger proposed CME 

for colon cancer treatment in 2009 [3]. CME consists of the substantial resection of tumor-bearing 

bowel segments with ‘en bloc’ removal of the mesocolon along embryological fascial planes 
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(Figure 2). Although CME has been associated with adverse outcomes such as a greater 

intraoperative blood loss and a higher incidence of postoperative surgical complications [24], 

several studies have shown that CME has superior oncological outcomes [25–28]. As previously 

emphasized, the number of lymph nodes harvested in oncological resection is an independent 

prognostic factor for survival [29–31], and CME specimens provide a better quality with a higher 

number of lymph nodes as compared to non-CME resections, which may account for the lower 

risk of local recurrence [32]. In a systematic review including 18,989 patients comparing CME 

with conventional colorectal resection for CRC, CME was associated with improved 3- and 5-year 

overall survival, improved 3-year disease-free survival, and decreased local and distant recurrences. 

Additionally, the study reported that CME did not increase the risk of postoperative mortality or 

anastomotic leakage [33, 34]. However, CME was associated with an increased risk of 

postoperative complications such as splenic and superior mesenteric vein injuries. Additionally, 

structures behind the peritoneum are called ‘retroperitoneal’, and the ureter and gonadal vessels 

stand for primary retroperitoneal organs [35]. 

 

 

Figure 2. (a) Overview of standard arterial anatomy of the colon. (b) In right-sided colon cancer, the mesentery should 

be resected to the extent indicated in blue. (c) In left-sided colon cancer, the mesentery should be resected to the extent 

indicated in purple (from Bates DDB et al. Complete mesocolic excision and central vascular ligation for right colon 

cancer: an introduction for abdominal radiologists. Abdom Radiol (NY). 2019 Nov;44(11):3518-3526).  

 

The figure under copyright,
unauthorized distribution
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1.3. Minimally invasive colorectal surgery 

Since the 1990s, the biggest innovation in digestive and colorectal surgery has been the 

introduction of laparoscopic surgery. Initially, laparoscopic surgery was used for purely diagnostic 

purposes. Semm introduced laparoscopic appendicectomy in 1983 [36], and developments in 

surgical techniques led to its use for more advanced therapeutic procedures. Subsequently, 

laparoscopic surgery gained prominence after Muhe in Germany and Mouret in France performed 

laparoscopic cholecystectomy in 1985 and 1987, respectively [37, 38]. 

In 1991, Jacobs et al. successfully performed the first laparoscopic sigmoid resection for cancer 

[39]. However, laparoscopic colon resection for cancer was not readily accepted because of early 

reports of port-site metastases, which questioned its safety.  

Since the year 2000, randomized controlled trials of laparoscopic versus open colectomy such as 

the Barcelona, COST, and CLASSIC trials demonstrated that laparoscopic colectomy for cancer 

was oncologically safe [40–42]. In respect to rectal cancer, in 2015, a randomized controlled trial 

(COLORII Tri-al) of laparoscopy versus open surgery showed that laparoscopic surgery had a 

similar survival rate compared to open surgery [43]. 

Minimally invasive surgical techniques have reduced the physical burden on the patient and 

provided benefits such as fast postoperative recovery, less pain, and early return to daily activities 

even though they maintained the same oncologic outcomes as open surgery. In addition, 

intraoperative real-time sharing of surgical knowledge with trainees and the magnification effect 

on structures that are conventionally difficult to see represent another major benefit of laparoscopic 

surgery. Surgical techniques have been effectively demonstrated, contributing to surgical 

education and enabling precise procedures following anatomical dissection planes. 
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However, smaller incision sites have led to limitations in the size and view of the surgical field, 

which has greatly impacted the difficulties and limitations related to the surgical techniques. In 

rectal cancer, the positive CRM rate in the ALaCaRT Trial from Australia was 3% for open surgery, 

whereas it was as high as 7% for laparoscopic surgery, and similarly [44], in the ACOSOG trial, 

8% for open surgery and 12% for laparoscopic surgery [45], pinpointing certain concerns about 

laparoscopic surgery. Laparoscopic outcomes tend to depend on the surgeon's level of skills. In 

our recent published study, we surveyed 440 surgeons who performed right hemicolectomy from 

78 countries all over the world. It shows that over half of the respondents perform < 25% of right 

hemicolectomies laparoscopically [46]. We also conducted a survey of rectal surgical strategy 

including 535 surgeons who performed rectal cancer surgery in 89 countries and found similar 

results. Survey results highlight the real worldwide use of laparoscopic surgery for CRC treatment, 

stressing the need for training and, resource allocation, thereby improving intraoperative guidance 

[47]. 

In light of this situation, the focus of attention has been on "the augmented hand", i.e. the 

improvement of surgical instruments including robotic technology, and "the augmented eye", i.e. 

the development of image-guided surgery concepts, with the aim of solving problems in terms of 

surgical techniques and treatment strategies [48]. Laparoscopic CRC surgery still needs to be 

improved and the introduction of various surgical technologies may lead to better clinical 

outcomes in the future. 
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1.4 Major complications 

1.4.1. Recurrence 

Thirty to 40% of advanced CRC can be resected, and patients experience a recurrence within five 

years after the surgical resection [49, 50]. Rectal cancer has a higher recurrence rate compared to 

colon cancer. About 80% of recurrences are distant metastases [51], and the liver is the most 

common metastatic site, followed by the lungs and pelvic region. Local recurrence is about 20% 

[52], and perhaps due to the difficulty of surgical techniques, local recurrence is more common in 

the rectum [50]. Lymph node recurrence is also relatively common, particularly in rectal cancer 

[52, 53]. 

There are multiple risk factors correlated with recurrence [53]. Demographic factors include older 

age and male gender [54]. Factors related to tumor morphology and histopathology include higher 

T or N stage at diagnosis and the presence of extramural vascular invasion, signet cells, and tumor 

budding [51, 55–57]. Treatment-related factors include a positive CRM, anastomotic leakage, 

suboptimal preoperative (neoadjuvant) or postoperative (adjuvant) therapy, and a suboptimal 

number of lymph nodes in the resected specimen [49, 52, 58–60]. Other factors include high 

preoperative carcinoembryonic antigen (CEA) levels [61]. 

 

1.4.2. Anastomotic leak 

Anastomotic leak (AL) is a major complication in digestive surgery. It is accountable for 

considerable morbidity and mortality [62, 63]. The AL incidence is particularly high following 

oesophageal (20–35%) and colorectal resections (4–19%) [64], and in cases which require 

extraperitoneal anastomosis [65]. The pathophysiology of AL is multifactorial and includes patient 

non-modifiable factors such as associated medical conditions, nutritional score, and oncological 
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status including neoadjuvant treatment. On the other hand, there are surgical modifiable factors, 

which influence the incidence of AL such as the transection level ensuring optimal perfusion. 

Adequate perfusion is a key component of the anastomotic healing process. However, an 

intraoperative evaluation of perfusion is mostly based on often unreliable clinical criteria, namely 

serosal discoloration, blood flow from the marginal artery, and pulsatile bleeding at the cut edge 

of the bowel [66]. As a result, there is a compelling clinical need to develop intraoperative 

technologies which enhance the surgeon’s ability to quantify and identify transection and 

anastomotic sites. 

 

1.4.2. Ureteral injury 

Ureteral injury is a serious complication during intrapelvic surgery, and the majority of iatrogenic 

ureteral injuries may lead to severe morbidity and even mortality [67, 68]. 

The incidence of ureteral injury in colorectal surgery is not that high (0.25-1.1%). However, 

several studies showed that only 15 to 30% of intraoperative ureteral injuries are recognized [69–

73]. Ureteral injury most frequently occurs during proctectomy and sigmoidectomy [74, 75]. 

Andersen et al. reviewed 18,474 colorectal resections based on the Danish National Colorectal 

Cancer database and reported that laparoscopic procedures were correlated with the risk of 

iatrogenic ureteral injury [76]. Surgeons should be familiar with the anatomy of the ureter and risk 

factors for injury [77], and research should be focused on finding accurate optical imaging 

modalities in order to prevent ureteral injury. 
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2. Image-guided surgery 

One of the most important factors in performing a precise and safe surgery is the visibility of the 

anatomical structures of interest. The acquisition of high-quality information on tissues/structures 

in the body that cannot be seen with the naked eye without an incision in the body, or noninvasive 

imaging diagnostic technologies, began with the discovery of X-rays by Röntgen [78], and the 

development of ultrasound, X-ray computed tomography (CT) [79], as well as nuclear magnetic 

resonance imaging (MRI) [80] have made it possible to obtain multiple, high-quality in vivo 

images. 

As mentioned earlier, minimally invasive surgery contributes to a reduced physical burden on the 

patient, such as early postoperative recovery, less pain, and shorter hospital stays, without 

compromising the outcomes of cancer treatment. However, there are some problems such as 

decreased visibility of lesions in the operating field and diminished tactile feedback. In 

conventional open surgery, the range of structures visible to the naked eye is wide, and the surgeon 

can directly touch and recognize key structures such as tumor-bearing organs and blood vessels 

which are not visible to the naked eye. In minimally invasive surgery, it is more difficult to confirm 

the anatomical structures of interest. It is crucial to assess the anatomical information obtained 

through diagnostic imaging modalities in the therapeutic strategy.  

One of the solutions to this problem is to perform intraoperative diagnostic imaging to visualize 

the anatomy of the patient and the placement of surgical instruments. However, the use of X-rays 

and MRI during surgery mandates for hybrid operative rooms and adds complexity to the surgery. 

These intraoperative imaging technologies and equipment occupy a large surface area at the OR, 

and can only be introduced in very few facilities [81]. 
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The second solution for surgical guidance is image-assisted navigation surgery, which aligns the 

patient with preoperative images taken by means of CT or MRI and presents the positional 

relationship between the lesion or surrounding tissues to the surgeon during the operation in real 

time. It has been used to provide surgeons with objective, quantitative, and accurate information 

on the location of tissues that cannot be seen during minimally invasive surgery and that have until 

now been assessed by the physician's experience and spatial cognitive abilities in the body. This 

system has the potential to contribute to the improvement of surgical accuracy and procedural 

safety. Many studies have been published showing the usefulness of this system in medical practice 

in orthopedics [82, 83] and neurosurgery [84] for rigid bones or stable organs surrounded by bones, 

urology for retroperitoneal organs [85], and thyroid surgery [86] surrounded by muscles. Surgical 

image-assisted navigation technology has made remarkable progress over the last decade. 
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Figure 3. A) Segmentation of a magnetic resonance, showing the fat around the rectum (=mesorectum) in orange, the 

rectum in brown, a tumour in green and the urinary bladder in yellow. B) 3D Virtual Reality model of the anatomy 

viewed on VR headset (HoloLens, Microsoft); the arrow displays the urethra (yellow circle); C) Intraoperative 

alignment of the virtual model to patient anatomy (Augmented Reality) using surface anatomy marking. D) Surgeon 

aligning the 3D virtual model. 

 

However, preoperative images cannot accommodate intraoperative changes in the surgical field. 

In abdominal surgery, the intraoperative anatomy of soft organs, which are not rigid, is very 

different from that of preoperative imaging because soft organs are easily deformed and moved by 

respiratory and pulsatile motion and gravity, not to mention direct interference by the surgeon 

during surgery and this system is not easy to implement. 

 

2.1. Near-infrared fluorescence (NIRF) image-guided surgery 

NIRF image-guided surgery is a real-time medical imaging technique designed to intraoperatively 

guide the surgeon using an optical phenomenon [87].  

Fluorescence is characterized by the emission of light via molecules (i.e. the fluorophores) excited 

by absorbing the energy of photons. In other words, the fluorophore (fluorescent contrast agent) 

absorbs (excites) light energy and becomes electronically excited. The fluorophore then emits 

photons and returns to its initial state. This post-excitation emission can be as small or as large as 

the same wavelength as the excitation wavelength. The magnitude of the displacement of the 

emission signal in the spectrum correlates with the detectability of the fluorescence. In Figure 4, 

we refer to fluorescence in the near-infrared (NIR) visible spectrum, although this phenomenon 

concerns the entire electromagnetic spectrum.  
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Figure 4. Basic schematic of the fluorescence-guided surgery principle. 

 

Intraoperative fluorescence imaging is performed by administering an agent (fluorophore) locally 

or intravenously and irradiating a NIR light source with a wavelength of 700-900 nm into the 

surgical field. The NIR light source excites the fluorophore by changing its energy state, causing 

it to emit a fluorescent signal. Both the fluorescence excitation and fluorescence wavelengths are 

outside the absorption wavelength range of hemoglobin (<600 nm) and water (>900 nm), which 

exist in large amounts in the blood, and outside of the wavelength range of autofluorescence of 

living tissue (450 to 700 nm). NIR light has the advantages of a deeper tissue penetration depth 

and less autofluorescence than visible light, allowing visualization of not only the surface of the 

structure/tissue but also the inside of the structure/tissue.  
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NIRF imaging enhances intraoperative visualization of anatomical structures that should be 

respected during surgery. It can thereby influence surgical outcomes, such as the prevention of 

complications, diagnosis, staging, and improved radical resection of cancer. 

 

Figure 5. Schematic image showing the basic components required for NIRF imaging. The figure shows intravenous 

administration and visualization of a fluorescent contrast agent during laparoscopic surgery using a NIRF imaging 

system that includes a light source, optical filters, camera, image processing software, and hardware (©WebSurg® 

IRCAD®). 

 

 

 

Figure 6. Image of NIRF currently used in rectal surgery to evaluate blood flow. (A) Red, Green, Blue(RGB) image. 

The white arrow is at the level of planned transection. (B) NIR camera image. The anastomosis was performed with 

the planned transection line (white arrow) (from Watanabe et al. Indocyanine green fluorescence imaging to reduce 

the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched 

cohort study. Surg Endosc 2020 Jan;34(1):202-208). 
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2.1.1. Selection of the dye 

Various fluorophores, which can be characterized by their excitation and emission spectra, are 

available or under development. They can be classified into targeted and non-targeted fluorescent 

agents [88]. Non-targeted fluorescent agents are more common than targeted dyes, and more 

clinical trials are being performed. 

It is essential to select the appropriate agent dependent on the targeted organ to obtain the correct 

image because each agent has different pharmacodynamic profiles including renal or hepatic 

clearance. In addition, the selection of a fluorescent dye requires consideration of 1) dosage, 2) 

time from administration to visualization, 3) pharmacological effects, and 4) route of 

administration (systemic or local).  

 

2.1.1.1. Non-targeted agents 

Indocyanine green 

Indocyanine green (ICG) is currently the most widely used cyanine-based non-targeted 

fluorescent dye. Since ICG was approved by Food and Drug Administration (FDA) in 1959, it has 

been used primarily for the evaluation of blood vessels in contrast studies. In 1960, it was reported 

that it was used in transvenous administration in the evaluation of blood vessels in the ocular retina 

[89], and since then, other uses have expanded to include the assessment of cardiac output, 

assessment of liver function, measurement of blood flow in the liver, and ophthalmic angiography. 

Indocyanine green is a powder with a molecular weight of 775 and when it is bound to α1 

lipoprotein in the body, it absorbs light at 790 to 805 nm and has a peak emission at 835 nm [90]. 

ICG has a half-life of 150 to 180 seconds and is removed from circulation rapidly and exclusively 

by the liver to bile juice. ICG is a non-toxic dye and the probability of allergy is very low (1:40,000 
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- 1:60,000) [91–94]. Intravenous administration of ICG has been used in, among others, 

intraoperative tumor demarcation [95], perfusion assessment at the level of the anastomosis [95–

99], and extrahepatic bile duct differentiation [11, 101]. 

 

Methylene blue 

Methylene blue (MB) has an excitation peak of about 700 nm, an excitation wavelength of 668 

nm, and an emission of 688 nm [102–104]. It has also been approved by the FDA. However, it has 

lower fluorescence properties than ICG, displaying an excitation coefficient and quantum yield 

below the one of ICG. It has been used to identify sentinel lymph nodes in breast surgery [105]. 

In abdominal surgery, MB, which is partially cleared by the kidneys, is used to visualize the ureter 

[101, 102, 106]. However, Al-Taher et al. stated that its additional value for ureteral delineation 

in clinical practice is limited [107]. 

 
Sodium fluorescein 

Sodium fluorescein (SF) is FDA-approved for ophthalmic applications (retinal and iris 

vasculature). It has a peak emission wavelength of 520 nm and it is used as a fluorescent contrast 

agent in multiple applications off-label or for research purposes [108]. SF is an essential 

fluorophore for confocal laser endoscopy imaging.  

 
5-aminolevulinic acid 

5-aminolevulinic acid (5-ALA), which has an emission peak at 635 nm, is a bioactive fluorophore 

and it has been used in a broad spectrum of surgical techniques such as guided ablation of 

malignant gliomas in neurosurgery [109] and detection of bladder cancer [110]. In recent years, it 
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has been successfully used to detect CRC [111]. The mechanism by which it selectively 

accumulates in tumors is unknown. 

 

2.1.1.2. Targeted agents 

Targeted agents are designed to bind to specific sites (ligands) and allow for the clear visualization 

of target tissues/structures where the ligand is highly expressed. Visualization of cancer cells by 

means of targeted agents is expected to allow very early-stage cancer detection and precise tumor 

demarcation and resection. 

Anti-CA19-9 [112], anti-CEA [113], anti-EPCAM [114], anti-PSMA [115], and anti-EGFR [116] 

are some of the available target-specific fluorescent probes. However, there are significant 

regulatory barriers to this type of approach, as it takes a very long time to obtain approval for the 

clinical translation of these dyes [117]. 
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2.1.2. Current situation 

Over the past few decades, surgeons have made use of optical imaging technologies to enhance 

their vision in digestive surgery. The advantages of NIRF-guided surgery include high sensitivity, 

rapid feedback, no radiation, safety, user-friendliness, and this surgery does not require large 

devices that would take up the entire operating room space, and that do not interfere with the 

surgical workflow [118]. It is increasingly adopted, or at least for research, in the surgical field 

[48]. 

In colorectal surgery, there are a large number of studies on intraoperative NIRF surgery, which 

have been used to characterize tumors [95] and to evaluate perfusion at the level of anastomoses 

[90–93]. It is also known that ICG has a tendency to migrate to lymphoid tissues as well. It has 

also been used to identify sentinel lymph nodes [119], and to visualize real-time lymphatic flow 

intraoperatively [10, 120].  

However, due to the limitation of the fluorescence intensity and the scattering effect of light by 

the tissue, the maximum wavelength is a few millimeters to 1cm from the tissue surface even with 

a relatively high-sensitivity camera [121]. Its limitation makes it challenging to visualize deeper 

anatomical structures. In addition, the narrow range of optimal concentrations makes it difficult to 

improve administration protocols (concentration, dose, and timing). For example, NIRF-guided 

surgery using ICG lymphadenectomy in CME requires endoscopic submucosal injection into the 

proximity of the tumor for at least 12 hours prior to the operation for precise intraoperative 

mapping [122]. Subserosal dye injection has also been studied to intraoperatively demonstrate 

lymphatic drainage [123]. However, one of the drawbacks of ICG is its water-soluble nature; as it 

diffuses over time, the ability to accurately locate affected areas is reduced. 
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2.2. Non-invasive contrast-free real-time optical imaging technologies 

In NIRF imaging, the slow consistent diffusion of the fluorophore from perfused to non-perfused 

areas, as well as the lack of quantification of the fluorescence signal may lead to errors in the 

identification of marginal zones. Additionally, the estimation of perfusion using fluorescence 

angiography is limited to perfusion-only metrics (as opposed to the functional tissue status) and 

necessitates the injection of an exogenous agent [66]. 

In parallel to exogenous fluorescence, non-invasive contrast-free (i.e. endogenous) real-time 

optical imaging technologies have been developed. They are promising tools since they allow for 

an adequate surgical workflow without the constraints of administering external chemical 

compounds to the human body. Consequently, the clinical translation of endogenous optical 

imaging devices is strongly accelerating and disseminated. 

In order to obtain physiological local information, most devices used are based on NIR 

spectroscopy, such as hyperspectral and multispectral imaging technologies [124–126]. 

Spectroscopic imaging allows for the non-contact reading of StO2 with high spatial resolution and 

with a large field of view (>15 by 15 cm2), thereby improving intraoperative decision-making by 

adding quantitative information. 

 

2.2.1. Hyperspectral imaging 

Hyperspectral imaging (HSI) is a contrast-free optical imaging technology, which combines a 

photo camera and a spectroscope. It originated from remote sensing and was developed by NASA. 

It has been explored for various applications such as aerospace, vegetation analysis, and crime 

scene detection [127].  
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Most conventional optical imaging methods can only capture gray or Red, Green, Blue (RGB) 

color images. On the other hand, HSI, extending information beyond the boundaries of visible 

light to ultraviolet (UV) and NIR, can acquire two-dimensional images over a wide range of 

electromagnetic radiation (Figure 7). 

 

 

Figure 7. Schematic diagram of the electromagnetic spectrum; HSI can acquire images of a wide range of the 

electromagnetic spectrum beyond visible light (© 2016 SUNTORY GLOBAL INNOVATION CENTER LTD). 

 

HSI acquires a three-dimensional dataset called a hypercube with two spatial dimensions (x, y) 

and one spectral dimension (λ). This spatial information allows the source of each spectrum on the 

sample to be identified [127] (Figure 8). As a result, it can be used to detect changes in the chemical 

composition of an object that cannot be identified via conventional imaging or spectroscopy alone.  

The figure under copyright,
unauthorized distribution
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Figure 8. Comparison between hypercube and RGB image. Hypercube is a three-dimensional dataset of a two-

dimensional image on each wavelength. The lower left is the reflectance curve (spectral signature) of a pixel in the 

image. The RGB color image only has three image bands on red, green, and blue wavelengths respectively. The lower 

right is the intensity curve of a pixel in the RGB image (from Lu G et Fei B. Medical hyperspectral imaging: a review. 

J Biomed Opt. 2014 Jan;19(1):10901).  

 

HSI has the potential to be a useful tool in the medical field because it can expand the field of 

vision at molecular, cellular, and tissue levels. It is widely recognized that monochrome and RGB 

color imaging methods have limitations in detecting tissue abnormalities [128]. HSI can identify 

various abnormal conditions from the spectral features of each pixel in the image.  

In surgery, HSI provides intraoperative and contactless quantitative imaging of intrinsic 

physiological properties [129], including tissue oxygenation, tumor identification [130, 131], and 

organ perfusion assessment [132, 133] (Figure 9). 
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Figure 9. Hyperspectral imaging acquisition. The following images and biological parameters are acquired in a single 

shot; (A) RGB image, (B) Tissue oxygen saturation (StO2 [%]), (C) NIR Perfusion Index (NIR [index value]), (D) 

Organ Hemoglobin Index (OHI [index value]), (E) Tissue Water Index (TWI [index value]) (TIVITA Tissue, i) age 

reproduced (from Diaspective Vision GmbH, Germany, all rights reserved). 

 

The research units at the Research Institute against Digestive Cancer (IRCAD) and The Institute 

of Image-Guided Surgery (IHU) of Strasbourg have developed a method of computer‐assisted 

overlay of hyperspectral images to real images, defined as HYPER (HYPerspectral-based 

Enhanced Reality), and published their studies on intraoperative real-time bowel perfusion 

assessment [64] and the application for hepatic resection [134] as an image-guided surgical tool. 

The extracted hyperspectral data are also used to feed a machine learning system which enables 

automatic tissue recognition of tissues, and several studies have been published by their respective 

research units on the automatic recognition of nerves, blood vessels, and other key anatomical 

structures that are critical during surgery [135, 136], although research is still in its experimental 

stage. 
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2.2.2. Multispectral (MSI) imaging 

An imaging technique using spectroscopy to measure light in multiple spectral bands is called 

multispectral imaging (MSI). Multispectral means multiple spectral bands. Whereas conventional 

RGB imaging uses three spectral bands (red, blue, and green), MSI acquires images by measuring 

multiple spectral bands (typically 4 to 15 bands) [137]. It was originally developed for military 

target identification and reconnaissance. MSI has been mounted on a small satellite to map the 

Earth's details regarding coastal boundaries, vegetation, and topography [138]. This image 

processing has also been used to analyze documents and works of art [137, 139]. 

The main differences between RGB imaging, spectroscopy, multispectral and hyperspectral 

imaging are listed in Table 1. 

 

 

Table 1. Main differences between monochrome, RGB, spectroscopy, MSI, and HSI (from Li Q et al. Review of 
spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt. 2013 
Oct;18(10):100901). 
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HSI has more spectral bands (up to several hundreds) and a higher spectral resolution than MSI. 

However, it takes longer to acquire and measure images. On the other hand, MSI can measure 

wavelength-dependent changes in the amount of light reflected by tissue and uses it to infer 

fundamental real-time physical properties such as oxygen saturation [140]. This technique has 

been demonstrated, albeit in its experimental stage, to be available in several organs, including the 

kidney [141], liver [142], brain [143], breast [144], as well as head and neck [145, 146]. In the 

field of digestive surgery, it has been demonstrated as a surgical application for the assessment of 

intestinal perfusion.  
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3. Current issues 

Unfortunately, the recurrence rate remains high with a large worldwide variation. Almost 55% of 

CRC cases occur in more developed regions of the world, mortality is higher in underdeveloped 

countries [147]. Partially, this can be attributed to insufficient screening and to the difficulty 

related to rectal cancer surgery. 

As previously referred to, results from our right colectomy survey including 440 surgeons from 78 

countries and from our rectal surgery survey including 535 surgeons from 89 countries provided a 

general overview of the current situation. Over half of the respondents performed <25% of 

laparoscopic surgeries, stressing the low rate of laparoscopic surgery particularly in Africa and the 

Middle East. These surveys yielded a variety of valuable results [46, 47].  

First, from an anatomical standpoint, a large heterogeneity was found in the respondents’ definition 

of the rectosigmoid junction. Accurately defining the upper limit of the rectum is essential since 

preoperative staging, (neo)adjuvant radiotherapy/chemotherapy, surgical approaches, and 

adjuvant treatment differ significantly between sigmoid and rectal cancers. As a result, the accurate 

localization of a tumor originating from the sigmoid colon or rectum can have a significant impact 

on therapeutic decisions. However, accurately defining the upper limit of the rectum remains 

challenging to clinicians, and this is perhaps best illustrated by the variety of definitions described 

in clinical practice guidelines [148–150]. The most commonly chosen definition of the upper limit 

of the rectum was a fixed distance from the anal verge (23.4%). This definition is in line with the 

most recently published guideline on rectal cancer by the American Society of Colorectal Surgeons 

(ASCRS) [148]. The ASCRS classifies tumors with a distal extension to ≤15cm from the anal 

margin as rectal and more proximal tumors as colonic. However, this definition might not be a 

stable landmark as the length of the rectum may vary, depending on habitus and gender [148]. The 
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European Society for Medical Oncology (ESMO) defines tumors above the peritoneal reflection 

as colonic [150]. Nineteen percent of respondents used the sigmoid takeoff as the definition of the 

upper limit of the rectum. The sigmoid takeoff is defined as the transition of the sigmoid mesocolon 

to the mesorectum. In an international Delphi consensus survey, the most agreed consensus 

definition was the sigmoid takeoff (56% of respondents agreed upon this definition [151]) among 

132 experts in CRC. Several retrospective studies and a surgical specimen validation study found 

that the sigmoid takeoff was a stable and consistent radiographic landmark which was less affected 

by the tumor’s extent [152–154]. In our survey, only 19% of respondents used this landmark as 

the definition of the upper limit of the rectum. Inter-observer variability remains an issue [153].  

Secondly, regarding surgical techniques, there is a large variation in anastomotic methods among 

institutions. In the laparoscopic right hemicolectomy, the majority of respondents (68.6%) stated 

that they perform an extracorporeal anastomosis. There are several studies comparing 

extracorporeal anastomosis with intracorporeal anastomosis [155–159]. A recently published 

meta-analysis including 4,450 patients showed that intracorporeal anastomoses are associated with 

smaller extraction site incisions, earlier bowel recovery, fewer complications, and lower rates of 

conversion, surgical site infections, anastomotic leakage, and incisional hernia as compared to 

extracorporeal anastomosis [160]. However, many of the included studies have a short-term 

follow-up and remain unclear with regards to both groups for oncological outcomes.  

In rectal surgery, more than half of the respondents routinely used a high-tie technique as opposed 

to a low-tie technique during TME. A ‘low-tie’ is performed by ligating the inferior mesenteric 

artery (IMA) peripheral from the origin of the left colic artery, whereas a high tie is performed by 

ligating the IMA close to its origin from the aorta. The reported advantages of a high ligation 

included an improved surgical radicalization, an improved nodal harvesting, and reduced 
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anastomotic tension [161–164]. However, the high ligation of the IMA might result in a decreased 

anastomotic perfusion, which may result in a higher rate of anastomotic leakage [165–167]. 

Several systematic reviews, meta-analyses, and randomized controlled trials found no significant 

difference in anastomotic leakage, survival, lymph node harvesting rate, oncological outcomes, 

bleeding risk, postoperative complications, and operative time between low-tie and high-tie 

ligations [168–171]. The HIGHLOW trial, a prospective randomized controlled trial demonstrated 

that a low ligation in low anterior resection (LAR) resulted in a superior genitourinary function 

preservation as opposed to a high ligation [171]. The ASCRS does not recommend the routine use 

of a high-tie ligation due to insufficient evidence supporting its oncological superiority, a potential 

increased risk of anastomotic leakage, and a decreased preservation of genitourinary function as 

opposed to a low-tie ligation [172]. The ASCRS only recommends to use a high-tie technique in 

selected patients when clinically suspicious lymph nodes are present at the level of the IMA and/or 

when a high tie is necessary to provide mobilization and achieve an adequate length for a tension-

free anastomosis [172]. The ESMO, NCCN, and the Society of American Gastrointestinal and 

Endoscopic Surgeons (SAGES) guidelines do not provide recommendations on the choice of the 

tie technique.  

In CRC surgery, it is necessary to resect not only the colon or rectum but also the mesentery which 

includes the lymph nodes and the lymphatic flow, to prevent any recurrence. However, such an 

extensive resection also increases the risk of complications. The balance of such factors is of 

paramount importance. Although the anatomical definitions and surgical techniques described 

above are based on efforts to reduce complications and recurrences, they remain controversial. 



 41 

In addition, as this survey shows, there is still a significant gap between the recommendations of 

international guidelines and surgical societies and the procedures performed in the current medical 

practice. This gap is even more marked in centers where laparoscopic surgery is not used. 

Image-guided surgery materializes the invisible during surgery. For example, visualization of 

vessels and assessment of intestinal perfusion can help to determine the line of bowel dissection, 

assess blood flow at the bowel anastomosis, and identify the lymph nodes that need to be removed, 

thereby simplifying surgery and potentially filling the gap. 
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4. Outline of this thesis 

The scope of this thesis is to examine the adaptation and feasibility of novel approaches and 

techniques for the complete resection of CRC by means of image-guided surgery in order to 

promote better clinical outcomes and prevent recurrences and complications related to CRC.  

Study 1 aimed to develop a new image-guided surgical technique to reduce the risk of CME, which 

is not yet widespread due to the risk of complications, and to perform CME more simply and 

accurately. We examined the feasibility of using an HSI system to capture anatomical tissues 

around the colon and analyze the image data using deep learning to automatically recognize the 

areas that should be resected and those that should be preserved.  

Study 2 examined whether contrast-free MSI could be used in digestive surgery to assess intestinal 

blood flow that should be evaluated to prevent anastomotic leakage, a fatal complication that is 

common in colorectal surgery. 

Study 3 investigated whether the use of an imaging system that has multiple NIR channels with 

fluorescent dyes (i.e., ICG and MB injected simultaneously) can detect mesenteric lymph nodes, 

a common cause of recurrence in CRC surgery. This study also assessed the use of two NIR dyes 

to mitigate individual disadvantages allowing for a thorough NIRF image-guided surgery.  
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Background and aims 

STUDY 1: Computer-assisted differentiation Between Colon-Mesocolon and 

Retroperitoneum Using Hyperspectral Imaging (HSI) Technology 

A sound understanding of colorectal anatomy is crucial to the correct performance of CME and 

prevention of surgical complications. Culligan et al. [173] precisely described the fusion fascia, 

which is located between the mesentery, the retroperitoneum, and a surgical exfoliation layer that 

is formed within the fusion fascia. The authors demonstrated that the surgical exfoliation layer can 

be deliberately dissected when mobilizing the colon and its mesentery. This extensive dissection 

between the mesentery and the retroperitoneum in CME is generally performed by visually 

assessing differences in the microvasculature, which is subjective and requires a high level of 

expertise. In addition, in some cases, it is challenging to recognize these subtle patterns with the 

naked eye or with white light laparoscopy. These technical details represent major obstacles to the 

identification of adequate cleavage and dissection planes during CME. The intraoperative 

identification of anatomical layers can protect organs from iatrogenic damage during colorectal 

surgery.  

Machine learning and deep learning (DL), combined with optical imaging, are gaining popularity 

in the medical field to support surgical decision-making using large training datasets. Artificial 

intelligence (AI) and computer vision have improved computer-assisted diagnosis by recognizing 

dysplastic/neoplastic polyps in image-guided surgery by detecting critical steps during minimally 

invasive procedures such as endoscopic sleeve gastrectomy (ESG) [174]. At present, AI algorithms 

are frequently developed using standard color images with three optical channels of RGB, which 

have significant limitations, such as the lack of quantitative parameters. AI automatic recognition 

of colorectal tumors is still in its infancy and quantitative optical imaging modalities such HSI 
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could help further advance AI algorithms for higher accuracy and precision. The combination of 

HSI and AI has recently reported promising results. Using a four-layer neural network, Boris 

Jansen-Winkeln et al. achieved an 86% sensitivity and a 95% specificity in identifying CRC [175]. 

Barberio and Collins et al. show that HSI combined with convolutional neural networks (CNNs) 

could be used to automatically recognize key anatomical structures such as blood vessels and 

nerves [135]. Collins and Maktabi et al. [136] showed that colorectal and esophagogastric cancer 

could also be detected with various machine learning models, and a convolutional neural network 

(CNN) often produced the best results. 

The aim of this study was to assess the accuracy of HSI technology in combination with CNNs to 

automatically distinguish colonic and mesenteric tissue (which are to be resected in CME) from 

retroperitoneal tissue (which is to be spared).  
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STUDY 2: Quantification of bowel ischaemia using real‐time multispectral 

Single Snapshot Imaging of Optical Properties (SSOP) 

Single snapshot of imaging optical properties (SSOP) has recently been developed and it is a 

contrast-free, real-time, non-invasive optical imaging technique, which allows to evaluate 

physiological tissue properties [176]. SSOP is based on the well-known diffuse optimal imaging 

method named spatial frequency domain imaging (SFDI), which uses light propagation models to 

quantify optical properties discriminating physiological contrast from tissue constituents [177]. As 

a result, multispectral SSOP can determine tissue oxygenation (StO2) by computing the fraction 

of oxygenated over total haemoglobin in real time. It has proven to be an efficient method since it 

allows to reduce the number of image acquisitions to a single frame, which is very convenient in 

the surgical setting, hence allowing for real time video-rate imaging of StO2 and preventing from 

workflow disruption [178]. The performance of multispectral SFDI and SSOP have previously 

been evaluated both ex vivo and in vivo and they have proven to achieve a high accuracy (i.e. less 

than a 10% error) [179–181]. 

The aim of this experimental study was to preclinically evaluate the accuracy of multispectral 

SSOP in quantifying bowel perfusion using normalised capillary lactate as a validated perfusion 

biomarker. 

 

 

 

 

 

 



 47 

Study 3: Simultaneous, multi-channel, near-infrared fluorescence visualization 

of mesenteric lymph nodes using indocyanine green and methylene blue: a 

demonstration in a porcine model 

NIRF imaging with ICG has also been used for sentinel node identification [119, 182, 183], and 

intraoperative real-time lymph flow visualization [10, 120, 184] since it is known that ICG has a 

tendency to migrate to lymphatic tissues. However, one of the drawbacks of ICG is its high affinity 

for albumin and progressive diffusion in tissues, which reduces its capacity to accurately locate 

affected areas [185].  

NIRF imaging with MB has mostly been used in CRC surgery for intraoperative visualization of 

the urinary tract, and in particular, the ureter, due to its renal clearance [102, 107, 186]. There have 

been several studies using MB to detect sentinel lymph nodes in CRC [187] and for postoperative 

lymph node harvesting [188, 189]. 

MB has an excitation peak at 688 nm, which restricts its use to few optical imaging devices since 

most NIRF imaging systems are designed for imaging with ICG. An example of a dual imaging 

system in the QUEST SPECTRUM® 3 (Quest Medical Imaging, Middenmeer, The Netherlands), 

camera which has two dedicated NIR channels for simultaneous intraoperative fluorescence 

guidance, which thus enables imaging of both MB and ICG. As previously stated, the differences 

in peak excitation and pharmacodynamics between MB and ICG reflect their different principal 

applications in the clinical setting. In colorectal surgery, Polom et al. were able to identify the 

location of the ureter using MB while assessing intestinal perfusion to determine the optimal 

anastomotic site with ICG using a single camera system. Their results highlight the feasibility of 

multi-wave imaging to aid in preventing two of the most common complications in colorectal 

surgery, namely anastomotic leak and ureteral injury. The relevance of simultaneous, multi-
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channel, near-infrared fluorescence imaging may represent a pathway towards increased surgical 

safety [190].  

This study’s primary aim was to validate whether intravenously administered MB and ICG act 

simultaneously as fluorescence dyes for lymph node detection. As a secondary aim, we compared 

the fluorescence performance of MB and ICG in lymph node detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49 

 

 

 

 

 

 

Materials and methods 
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Ethics and animal models 

STUDY 1: Computer-assisted differentiation Between Colon-Mesocolon and 

Retroperitoneum Using Hyperspectral Imaging (HSI)Technology 

All experiments were performed at IRCAD (Strasbourg, France). A total of 20 adult pig models 

(Sus scrofa domesticus, ssp. large white, mean weight: 40 kg) were included. The study was part 

of the ELIOS protocol (Endoscopic Luminescent Imaging for Oncology Surgery), fully approved 

by the local Ethical Committee on Animal Experimentation (ICOMETH No. 38.2016.01.085) and 

by the French Ministry of Superior Education and Research (MESR) (APAFIS#8721-

2017013010316298-v2). All animals used in the experimental laboratory were managed according 

to French laws for animal use and care and according to the directives of the European Community 

Council (2010/63/EU) and ARRIVE guidelines [191]. The animals were housed and acclimatized 

for 48 h in an enriched environment, respecting circadian cycles of light/darkness, and with 

constant humidity and temperature conditions. They were fasted 24 h before surgery, with ad 

libitum access to water, and finally sedated (zolazepam + tiletamine 10 mg/kg IM) 30 min before 

the procedure in order to decrease stress. Anesthesia induction was administered with propofol (3 

mg/kg) injected intravenously (18 G IV catheter in an ear vein). The animals were maintained with 

rocuronium (0.8 mg/kg) along with inhaled isoflurane 2%. At the end of the protocol, animals 

were euthanized with a lethal dose of pentobarbital (40 mg/kg). 
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STUDY 2: Quantification of bowel ischaemia using real‐time multispectral 

Single Snapshot Imaging of Optical Properties (SSOP) 

All experiments were performed at IRCAD (Strasbourg, France). A total of 6 adult pig models 

(Sus scrofa domesticus, ssp. Large white, mean weight: 40 kg) were involved in this non-survival 

study. The present experimental study is part of the QuantSURG (Quantitative Surgical Guidance 

for Colorectal Surgery) project, which received full approval from the local Ethical Committee on 

Animal Experimentation (ICOMETH No. 038.2019.01.121) and from the French Ministry of 

Superior Education and Research (MESR) under the following reference: APAFIS #20,819–

2,019,052,411,591,088 v3. All animals used in the experimental laboratory were managed 

according to French laws for animal use and care and according to the directives of the European 

Community Council (2010/63/EU) and ARRIVE guidelines [191]. The animals were fasted for 24 

h with free access to water before surgery. Animals were premedicated, 10 min before surgery 

with an intramuscular injection of ketamine (20 mg/kg) and azaperone (2 mg/kg) (Stresnil; 

Janssen-Cilag, Belgium). Intravenous propofol (3 mg/kg) combined with rocuronium (0.8 mg/kg) 

were used for induction. Anaesthesia was maintained with 2% isoflurane. At the end of the 

procedures, pigs were sacrificed with an intravenous injection of a lethal dose of potassium 

chloride. 
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Study 3: Simultaneous, multi-channel, near-infrared fluorescence visualization 

of mesenteric lymph nodes using indocyanine green and methylene blue: a 

demonstration in a porcine model 

This study was performed at the animal laboratory of the Maastricht University Medical Center 

(MUMC+, Maastricht, The Netherlands). The experiments were performed in three female Dutch 

landrace pigs (mean weight: 40 kg). Animals were used in compliance with Dutch regulations and 

legislation concerning animal research, and the study was performed according to a protocol 

approved by the local animal ethics committee. All surgical procedures were performed under 

general anesthesia. Intramuscular injection of azaperone 3 mg/kg, ketamine 10 mg/kg, atropine 

0.05 mg/kg, thiopental 10-15 mg/kg, isoflurane (dose depending on the effect), and oxygen 20-40 

mL/kg/min was used as standard medication to ensure appropriate sedation and analgesia. All 

variations in vital parameters were continuously monitored. At the end of the protocol, animals 

were euthanized with a lethal dose of pentobarbital (40 mg/Kg). 
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Methods 

STUDY 1: Computer-assisted differentiation Between Colon-Mesocolon and 

Retroperitoneum Using Hyperspectral Imaging (HSI)Technology 

Hyperspectral Camera 

The HSI camera (TIVITA®, Diaspective Vision GmbH, Germany) was a push-broom scanning 

device with a complementary metal oxide semiconductor (CMOS) image sensor with a spatial 

resolution of 640 × 476 pixels and a spectral range from 500 to 1000 nm (5 nm spectral resolution 

increments, totaling 100 bins). In the first increment, 501 wavelength bands were used from 500 

to 1000 nm. In a second increment, 5x binning in wavelength direction was performed. The final 

cube included 100 bins, that is, the wavelength from 500 to 995 nm, but because of the binning 

the wavelength from 996 to 999 was included. The camera system is attached to a side arm of a 

medical cart carrying the PC (Figure 10).  

 

Figure 10. The TIVITA® Tissue System is composed of the HSI camera attached to a side arm and integrated on a 

cart together with the PC; image © Diaspective Vision GmbH, Germany 2022 
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The HSI camera was positioned 50 cm above the ROI and, immediately before and during image 

capture, environmental lights and ventilation were paused. Capture time took approximately 6 s, 

and the placement of the camera during the procedure is represented in Figure 11. 

 

 

Figure 11. Set-up during experiments: The abdominal cavity was accessed via a midline laparotomy to expose the 

regions of interest (i.e., sigmoid colon, sigmoid mesocolon, and retroperitoneum). The distal lens of the hyperspectral 

camera was positioned 50 cm above the regions of interest. External light interference was avoided during the 

acquisition of images. The TIVITA™ tissue camera is composed of a lightning unit (white arrow), a medical cart (red 

arrow), and a Box PC (blue arrow). 

 

Deep learning model 

Based on a previous animal study from Barberio and Collins et al. comparing the two most 

successful deep learning models, support vector machines (SVMs) [192–194] and CNNs for HSI 

image segmentation, the CNN model achieved an overall higher sensitivity for all tissue classes 

(89.4%) except for the nerve class, which had a sensitivity of 76.3%  [135]. Therefore, HSI 
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combined with deep learning allows to automatically discriminate six different tissue classes 

(artery, vein, adipose, muscle, skin, and nerve) supporting our decision to adopt the CNN model 

in this study. 

  
Anatomical relevance and surgical procedure 

Anatomical structures and their embryological phylogeny should be understood during surgery. 

The mesentery and the retroperitoneum are derived from the same embryological structure 

referred to as mesoderm and they are connected to the abdominal cavity. The mesentery is a 

double layer of peritoneum, which includes retroperitoneum, connective tissue, blood vessels, 

nerves, lymph nodes, and adipose tissue [195]. The mesentery and retroperitoneum spectral 

profiles differ based on several parameters, including but not limited to water content (peaking at 

about 980 nm) and adipose content (peaking at about 740 nm) [140]. In addition, the spectral 

profile of hemoglobin (Hb) significantly differs between the oxygenated and deoxygenated states 

and strongly contributes to the overall tissue spectral profile [196]. Changes in hemoglobin 

concentration and oxygen saturation due to vascular content can be measured using HSI. To 

expose intraperitoneal and retroperitoneal structures, the abdominal cavity was accessed via a 

midline laparotomy and a self-retaining retractor was placed to expose the region of interest (ROI). 

HSI images were obtained from the right or left side of the sigmoid colon mesentery at the level 

of the inferior mesenteric artery, including the sigmoid colon and the retroperitoneum. 

  

Annotation 

Immediately after each image acquisition, the operating surgeons used an image manipulation 

software (GIMP, GNU Image Manipulation Program, open source) to manually annotate the RGB 

images associated with each HSI (Figure 12A). Figure 12B shows example annotated images 
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visualized in grayscale with overlaid annotations represented as colored regions. Annotations in 

green represent tissue to be removed (colon and mesocolon), and purple annotations were used for 

the tissue to be preserved (retroperitoneum). The total number of annotated colon-mesocolon 

pixels was 357,811, with an average of 17890 ± 12438 (SD) per image. The total number of 

annotated peritoneum pixels was 81,655, with an average of 4083 ± 3749 (SD) per image. 

Consequently, the data had a moderate class imbalance of 4.32:1. 

A CNN was then trained to distinguish colon and mesocolon tissue from retroperitoneal tissue 

using deep learning. 

 

 

Figure 12. Example visualization of automatic tissue recognition results provided by CNN model automatic 

recognition. A. The RGB image was extracted from HSI data. B. The image was annotated by expert surgeons. C. The 

predicted classifications from the CNN model. D. The error map. Green annotations represent tissues to be resected 

(colon and mesocolon) and purple annotations are for the tissues to be preserved (retroperitoneum) during CME. 

 

CNN model training and evaluation 

Image processing pipeline with a trained CNN 

For each pixel of interest in an HSI, one HSI sub-volume was extracted and centered on the 

corresponding spatial coordinates of the pixel. This sub-volume was then integrated into a trained 

CNN, which generated a predictive score for the two tissue classes, and the tissue class with the 
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highest score was associated with the pixel. This process was then repeated for each pixel, 

generating a spatial tissue prediction map (also known as image segmentation). 

  

CNN architecture 

CNNs have been the dominant machine learning model for pattern recognition in optical image 

data, including HSI [197, 198]. A CNN learns relevant spatio-spectral features through a series of 

trainable convolutional filters (hidden layers). The extracted features are fed to the following layer 

in order to generate a hierarchy of spatio-spectral features. The filter weights are trainable 

parameters, which are automatically adjusted during training. Deeper hidden layers are used to 

extract higher level features. Based on the extracted features, the last layer determines the 

classification prediction. 

The CNN architecture that we selected [199] has been shown to work well on related tissue 

recognition problems [135, 136], and its architecture is provided in Table 1 in the supplementary 

material. The architecture of the CNN is provided in Figure 13. The CNN used a spatial window 

of 5 by 5 pixels, and had 31,532 trainable parameters with 7 hidden layers, including 6 

convolutional layers with ReLU activations. It had one fully connected final layer with 2 output 

neurons corresponding to two classes; the first class was colon or mesocolon tissue (colon-

mesocolon), and the second class was retroperitoneal tissue. Class imbalance was handled in the 

training loss function by down-weighting the majority class using Inverse Frequency Median 

Weighting [200]. 
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Figure 13. Convolutional neural network architecture: The input is an HSI sub-volume cube centered on a given pixel, 

with 5 × 5 spatial dimensions and 100 wavelength dimensions. The input is transformed into a final 1D feature space 

vector using down-sampling convolutional operations a. This is followed by a final, fully-connected layer to produce 

the tissue prediction scores. (From: Barberio, Collins, et al. Deep Learning Analysis of In Vivo Hyperspectral Images 

for Automated Intraoperative Nerve Detection. Diagnostics (Basel). 2021 Aug 21;11(8):1508.) 
 

 
Table 2. Details of the CNN architecture. The CNN comprises three convolutional layers (Conv1, Conv2, and Conv3) 

and three pooling layers (Pool1, Pool2, and Pool3). All 3 pooling layers were implemented as 1D convolutional filters 

(filtering in the spectral dimension), and they included a stride of 2in the spectral dimension, and a stride of 1in the 

two spatial dimensions. The stride had the effect of reducing the spectral dimension by one half at each pooling layer. 

 

 

Table 2: Details of the CNN architecture

Layer Filter shape Number of output channels Stride Number of trainable parameters

Conv1 (3.3.3) 20 (1.1.1) 560

ReLU / / / /

Pool1 (3.1.1) 20 (2.1.1) 1220

Conv2 (3.3.3) 35 (1.1.1) 18935

ReLU / / / /

Pool2 (3.1.1) 35 (2.1.1) 3710

Conv3 (3.1.1) 35 (1.1.1) 3710

ReLU / / / /

Pool3 (2.1.1) 35 (2.1.1) 2485

ReLU / / / /

FC (455.2.1) 2 / 912

Total trainable parameters: 31532
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CNN training 

HSI sub-volumes were centered on every annotated hyperspectral image pixel, forming spatial 

patches of 5 by 5 pixels, corresponding to 5 by 5 by 100 sub-volumes. The third sub-volume 

dimension corresponded to the spectral dimension, which represented 100 spectral wavelengths 

produced by the camera. In total, there were 439,466 training samples. To train and test the CNN, 

annotated sub-volume samples were split into training and test sets using 5-fold cross-validation 

(CV). Importantly, this was conducted so that the CNN was never trained and tested on data from 

the same animal. The 20 hyperspectral images (1 per animal) were randomly partitioned into 5 sets 

(S1, ...S5), with each set having 4 HSIs. Five CNN models were then trained. The first CNN was 

trained using the annotated HSI sub-volumes in sets S1, S2, S3, and S4, (16 images) then its 

performance was tested on the annotated sub-volumes in set S5 (4 images). Four other CNN 

models were trained similarly, each using a different test set that was excluded from its training 

set. The CNNs were trained using batch gradient descent with binary cross entropy loss function 

and inverse median frequency class balancing. Training was run for 250 epochs using a batch size 

of 8192, a learning rate of 0.01 and a weight decay of 0.0005. The CNNs were implemented using 

PyTroch v1.4. 

  

Performance metrics and statistical methods 

Performance was evaluated with standard metrics used in machine learning, implemented by 

means of Python scikit-learn (https://scikit-learn.org). Sensitivity, specificity, and two other well-

established performance metrics were used, i.e., the F1 score, and the Receiver operator curve 

area-under-curve (ROC AUC). Unlike sensitivity and specificity, F1 gives a single performance 

score (the harmonic mean of recall and precision). The ROC-AUC is a complementary 
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performance statistic, which shows the model’s ability to rank samples (it gives a higher score for 

a true class compared to a false class). Unlike sensitivity, specificity and F1, ROC AUC is popular 

since it indicates the model’s predictive performance without requiring any decision threshold. 

 

 

STUDY 2: Quantification of bowel ischaemia using real‐time multispectral 

Single Snapshot Imaging of Optical Properties (SSOP) 

SSOP imaging 

SSOP is based on the projection of spatially modulated patterns of light on the sample and on the 

acquisition with a camera of the diffused back reflected light. SSOP was developed as a real-time 

implementation of more time-consuming spatial frequency domain imaging (SFDI) methods, 

which require several frames for the extraction of the optical properties of tissues. Indeed, in a 

standard SFDI workflow, two different spatial frequency (fx) profiles (e.g. fx = 0 mm−1, fx = 0.2 

mm−1) with three-phase shifts for each of them are projected on the sample surface, allowing for 

the demodulation of the signal into its DC and AC components [201]. Differently, SSOP requires 

only a single high-frequency pattern to be projected on the tissue, thanks to a Fourier’s domain 

filtering approach for the demodulation step [176, 179, 181], thereby reducing from 6 to 1 the 

number of frames required for the acquisition and allowing for a real-time capability of the imaging 

system. Further to the demodulation, both SFDI and SSOP share the same workflow starting from 

a calibration step involving the measurement of a calibration phantom with known optical 

properties. The measurements of this tissue-mimicking phantom allow to compute the diffuse 

reflectance maps for the sample, i.e. RDC (fx = 0 mm−1) and RAC (fx = 0.2 mm−1). Finally, a Monte 

Carlo-based lookup table (MCLUT) algorithm allows to retrieve the optical properties of the 
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sample (i.e. absorption and reduced scattering coefficients) for each pixel of the image [202]. The 

natural consequences of the single frame approach are a degradation in image quality and the 

presence of edge artefacts. Nevertheless, significant improvements have been achieved in recent 

years by first optimising the filtering technique [203] and by adopting deep neural network 

approaches for the demodulation [179, 181]. Additionally, the latest developments on SSOP also 

account for a tridimensional profile correction of the sample in order to reduce the quantification 

error of SSOP associated with a variation of light intensity across non-flat sample surfaces [179]. 

Further information regarding SFDI is available as follows: http://opensfdi.org. 

 

Deep learning method for SSOP 

For this study, the latest SSOP deep learning-based approach has replaced the standard Fourier’s 

domain filtering technique to improve the overall image quality, as described by Aguénounon et 

al. [179]. In brief, two dedicated CNNs based on a U-Net architecture were used for the extraction 

of the modulation amplitude of the signal for each spatial frequency, and for the profilometry 

analysis of the surface profile of the sample. Both networks were trained using high-quality images 

obtained with SFDI acquisition sequences (with 7-phase shifts instead of 3 in order to enhance 

quantification accuracy and image quality) and optimised for efficient and low-cost computation 

performances, allowing for a real-time capability and achieving high visual quality optical property 

quantification for up to 1-megapixel images. The training dataset consisted of a total of 200 high-

quality images divided into n = 40 images of tissue-mimicking silicone phantoms with different 

optical properties ranging from μa = 0.005 to 0.05 mm− 1 for absorption and from μs’ = 0.5 to 3 

mm−1 for reduced scattering; n = 52 images of hands from different Caucasian men and women in 

various configurations; n = 108 images from ex vivo and in vivo swine organs in several 
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orientations (stomach, small bowel, colon, kidney, pancreas, liver, and spleen). Additional 

information regarding SSOP and its deep learning implementation (code and sample data) are 

available as follows: https://healthphotonics.org/ressources/ sfdi-resources/. 

 

Trident imaging system 

The Trident imaging system is based on a digital micro-mirror device (DMD, Vialux GmbH, 

Chemnitz, Sachsen, Germany) to project structured light in the form of sinusoidal patterns at a 45 

± 5 cm working distance. The projection system is fibre-coupled to a dedicated, custom-made class 

3R high-power laser source composed of laser diodes (LDX Optronics, Maryville, TN, United 

States), which is used to project patterns at 2 wavelengths (i.e. 665 nm and 860 nm) for oxygen 

saturation multispectral measurements [204]. A white high-power LED lamp (FTIII24017-12, 

Fiberoptics Technology Inc., Pomfret Center, CT, United States) is also used to illuminate the 

surgical field to provide anatomical visualisation specifically filtered to prevent impeding oxygen 

saturation measurements. The imaging head is built with three CMOS cameras (JAI GO-5000 M-

USB, JAI Ltd., Kanagawa, Japan, PCO.edge 4.2, Excelitas PCO GmbH, Kelheim, Germany, JAI 

GO-5000C-USB, JAI Ltd., Kanagawa, Japan) sharing the same field of view of 15 by 15 cm2 for 

the collection of the NIR1 (665 nm), NIR2 (860 nm), and the RGB channels with a resolution of 

1024 by 1280 pixels. In addition, low-pass and high-pass filters are used in the optical path to 

isolate the different wavelengths (Chroma Technology Corp., Bellows Falls, VT, United States). 

A pair of linear polarisers (PPL05C, Moxtek, Orem, UT, United States) in a crossed configuration 

are also used at the projection and imaging sides to reject the contribution from specular reflections 

at the surface of the sample. 
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A silicone-based optical phantom (21 by 21 by 2 cm) with known optical properties (μa = 0.01 

mm−1 and μs’ = 1.1 mm−1 at 665 nm, and μa = 0.02mm−1 and μs’ = 0.8mm−1 at 860 nm) is used for 

the calibration of the Trident imaging system. The imaging workflow consists of the simultaneous 

projection of a high-frequency sinusoidal pattern (here fx = 0.3mm−1) at the two wavelengths (665 

nm and 860 nm) followed by the three-channel acquisition of the images for the extraction of the 

oxygen saturation level of the tissue. 

 

Surgical set‐up of pure ischaemia model 

A central venous line was placed by means of an internal jugular vein dissection. A midline 

laparotomy was performed using electrocautery. A self-retaining retractor was then placed and a 

10 cm small bowel loop was exposed in order to create bowel ischaemia by dividing arcade 

branches. Five regions of interest (ROIs) were marked with an interrupted suture in the 

antimesenteric border (ROI 1: central ischaemic; ROI 2: left marginal; ROI 3: left vascularised 

(2.5 cm from ROI 2); ROI 4: right marginal; ROI 5: right vascularised (2.5 cm from ROI 4)). The 

small bowel was imaged with the multispectral camera through SSOP before and after ischaemia 

at different time points (T0, T15, T30, T45, T60 min). The SSOP image acquisitions were 

performed in the dark (i.e. with the light turned off in the operating room), in order to reduce the 

risk of bias. Nevertheless, the system can also be operated in standard ambient light conditions via 

an adapted calibration routine. 

 

Surgical set‐up of ischaemia/reperfusion model 

To assess the accuracy of the Trident system in detecting oxygenation changes, we created a short 

ischaemia/reperfusion model. Same surgical principles were respected for laparotomy. Six 10 cm 



 64 

small bowel loops were exposed in order to create short bowel ischaemia by dividing the peritoneal 

layer of the mesentery with sufficient length to apply a bulldog clamp. Similarly, to the pure 

ischaemic model, five regions of interest (ROIs) were marked with an interrupted suture in the 

antimesenteric border (ROI 1: central ischae- mic; ROI 2: left marginal; ROI 3: left vascularised 

(2.5 cm from ROI 2); ROI 4: right marginal; ROI 5: right vascularised (2.5 cm from ROI 4) in 

each loop. Small bowel loops were imaged with the Trident system through SSOP before, during 

clamping, and after declamping at the reperfusion phase (T0, and T10, and T15 min, respectively). 

 

Figure 14: (A) The ischaemic bowel loop is placed in a standard position in order to facilitate image acquisition using 

the Trident imaging system. The white arrow points to the camera head, which is mounted onto an articulated arm. A 

standardised picture orientation and distance is used, in order to prevent any bias. It should be noted that light 

interference is avoided during image acquisition.  

(B) Preclinical patient cart of the Trident imaging system for fluorescence, SFDI, and SSOP imaging. Imaging head 

enclose three separate channels for RGB, NIR1, and NIR2 imaging. A DMD-based projection system is also mounted 

onto the head for the generation of structured illumination over the field of view. The light source is delivered to the 

projector via a fiber-based coupling system. An illumination ring is used to homogeneously deliver white light 

illumination of the surgical field and fluorescence excitation wavelength. The main body of the cart contains the laser 

sources, the white light lamp, and the PC workstation.  

(C) Schematics of the optical path in the trident imaging system for the co-registration of the 3 imaging channels, 

together with the configuration of the DMD-based projector. A pair of filtering cubes are used to isolate the NIR1 and 

NIR2 channels, polarisers (P) are used to reduce the influence of specular reflections, and a set of mirrors are used to 

align the field of view of the 3 cameras. 
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Analysis of capillary and systemic lactates 

At each time point, capillary lactates (mmol/L) were measured by means of a portable analyser 

(EDGE ®lactate analyser, ApexBio, Taipei, Taiwan, People’s Republic of China) by puncturing 

the bowel’s serosal side at each ROI. Lactate is the product of glycolysis and its accumulation 

reflects a lowered mitochondrial activity in the presence of reduced O2 concentration. This method 

has been described earlier in studies on the metabolic effect of bowel resection [205, 206]. 

Systemic lactates were also measured in venous blood retrieved from the central line and using the 

EPOC® Blood Analysis System (Siemens Healthineers, Erlangen, Ger- many), a portable blood 

analyser. 

 

Pathological examination 

For the pure ischaemic model, full-thickness biopsies were retrieved at the end of the procedure, 

and specimens were fixed in a 4% formalin solution for at least 24 h. Four-μm- thick sections were 

cut from paraffin-embedded tissues and stained with haematoxylin and eosin. Biopsies were taken 

from each ROI after 60 min of ischaemia and one from a distal part before the creation of the 

ischaemic loop, which served as a control. A microscopic assessment was made (Leica 2000 LED, 

Leica Biosystems GmbH, Wetzlar, Germany) using Park/Chiu’s scoring system of intestinal 

ischaemic damage [207, 208]. 
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Statistical analysis 

All statistical analyses were performed using the GraphPad Prism software for macOS (GraphPad 

Software, Inc., San Diego, CA, United States), version 9.1.1. Data are shown as mean and standard 

deviations (SD) unless otherwise indicated. Capillary lactates were normalised according to 

systemic lactates to reduce variability. In order to assess a possible correlation between normalised 

lactates and SSOP-StO2, a Pearson’s rank correlation coefficient was calculated. A Student’s t-

test was used to compare continuous variables after confirmation of a parametric distribution using 

the Kolmogorov-Smirnov normality test. A p value < 0.05 was considered statistically significant. 
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Study 3: Simultaneous, multi-channel, near-infrared fluorescence visualization 

of mesenteric lymph nodes using indocyanine green and methylene blue: a 

demonstration in a porcine model 

 

Fluorescence imaging system 

The QUEST SPECTRUM® 3 system was developed for NIRF image-guided surgery in an open 

surgical setting. This fluorescence imaging system has two dedicated NIR channels in the 

electromagnetic spectrum (700 and 800 nm), which allows for simultaneously visualization of ICG 

and MB. The channels were changed directly on the monitor touchscreen by simply clicking on 

the preferred channel. Screen settings included the RGB image, NIRF response in grayscale image, 

overlay of fluorescent image in green with the color image, and overlay of the fluorescent response 

image in Color (Blue to Red) on the Color image in grayscale. 

 

Preparation of the dyes 

ICG (Verdye, Diagnostic Green GmbH, Aschheim, Germany) was diluted in a sterile H2O solution 

to a concentration of 2.5 mg/mL and was injected intravenously at a concentration of 0.2 mg/kg 

body weight via a peripheral venous line. The dose is based on the findings of our previous 

publication in which this was the most frequently used dose in clinical settings [100]. 

MB (Provepharm Life Solutions, Marseille, France) was diluted in a sterile phosphate-buffered 

saline solution to a concentration of 1 mg/mL and was injected intravenously at a concentration of 

0.25 mg/kg body immediately following the injection of ICG. This dosage was determined based 

on previous literature [101, 107]. 
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Surgical procedure 

To expose the ROI mesenteric lymph nodes and small bowel, the abdominal cavity was accessed 

via a midline laparotomy, and a self-retaining abdominal wall retractor was placed. The camera 

tip was positioned at 15 cm above the ROI. During NIRF imaging, environmental lights were 

turned off preventing ambient light interference, and the average capture time was 20 seconds per 

image. The experimental surgical setting is represented in Figure 15. 

 

Figure 15. Set-up during experiments: The abdominal cavity was accessed via a midline laparotomy to expose 

the regions of interest (i.e., small bowel and mesenteric lymph nodes). The distal lens of the QUEST camera® 

3 (Quest Medical Imaging, Middenmeer, The Netherlands) was positioned 15 cm above the regions of interest. 

External light interference was avoided during the acquisition of images. 
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Image acquisition and statistical analysis 

NIRF images were acquired from video recording after 1, 10, 20, 30, 40, 50, and 60 minutes of 

dye administration, respectively, using the QUEST SPECTRUM® 3. 

First, the target (mesenteric lymph nodes and small bowel) and the background (vessels-free field 

of the mesentery) were highlighted as ROI, and corresponding fluorescence intensities (FI) which 

were expressed in arbitrary units (a.u.) from these ROIs were measured. Fluorescence intensity 

measurement was performed using the Quest Artemis (Quest Medical Imaging, Middenmeer, The 

Netherlands) software (TBR tool v1.0.). The target-to-background ratio (TBR) was then computed 

as the mean FI of the target divided by the mean FI of the background. 

To identify any potential superiority in terms of dye performance, ratios were used dividing lymph 

node TBR/small bowel TBR per dye. A ratio comparison of MB and ICG was made using a Mann-

Whitney U test for continuous variables. A two-tailed analysis with a p value <0.05 was considered 

statistically significant. These analyses were performed using commercially available database 

software (Excel version 2021, Microsoft Corporation, Redmond, WA, USA). 

 

 

 

 

 

 

 

 

 



 70 

 

 

 

 

 

 

 

 

 

 

Results 

 

 

 

 

 

 

 

 

 



 71 

STUDY 1: Computer-assisted differentiation Between Colon-Mesocolon and 

Retroperitoneum Using Hyperspectral Imaging (HSI)Technology 

 

Performance visualization 

Visually, the CNNs performed differentiation well between colon-mesocolon and retroperitoneum 

with minimal errors. Representative results are shown in Figure 12. Figure 12C is the predicted 

tissue annotations computed by the model. Figure 12D represents the error map. It can be seen that 

the majority of colon-mesocolon tissue has been correctly recognized (green regions), in 

accordance with the relatively high colon-mesocolon sensitivity score of 0.86 (Table 3). Most of 

the retroperitoneum tissue has been correctly recognized (blue regions), however there is some 

mis-classification with colon-mesocolon. This is in line with the lower retroperitoneum sensitivity 

score of 0.79 (Table 3). 

 

  

Table 3. Model performance metrics: sensitivity, specificity, F1 score, MCC, and ROC AUC. 

  

  

 

 

Table 3: Performance Metrics
Mean ± SD Recall (Sensitivity) Specificity F1 score MCC ROC AUC

Tissue to be resected
(Colon-Masocolon)

n = 20

Tissue to be left
(Retroperitneum)

n = 20
MCC: Matthews correlation coefficient; ROC AUC: Receiver Operator Curve Area-Under-Curve

0.86 +/- 0.16

0.79 +/- 0.21 0.86 +/- 0.16 0.65 +/- 0.25 0.60 +/- 0.23 0.92 +/- 0.12

0.79 +/- 0.21 0.90 +/- 0.11 0.60 +/- 0.23 0.92 +/- 0.12
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Performance metrics 

The quantitative results are summarized in Table 2. The CNNs achieved relatively high sensitivity 

for colon-mesocolon (86.0 ± 16.0 %) and retroperitoneum (79.0 ± 21.0 %). The mean F1 score 

was 0.90 ± 0.11 for colon-mesocolon and 0.65 ± 0.25 for retroperitoneum. The mean ROC-AUC 

was 0.92 ± 0.12 for colon-mesocolon and 0.92 ± 0.12 for retroperitoneum, both of which are 

considered outstanding performances [209] (Figure 16). 

 

Figure 16. Predictive performance visualized as a confusion matrix: the X-axis represents predic-tive labels, and the 

Y-axis represents true labels. The navy-blue boxes represent true positives. 
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STUDY 2: Quantification of bowel ischaemia using real‐time multispectral 

Single Snapshot Imaging of Optical Properties (SSOP) 

In the pure ischaemia model, the oxygenation parameter for each ROI was assessed using SSOP-

StO2 (Figure 17). The mean value of SSOP-StO2 in ROI 1 was 30.08% ± 6.963 and significantly 

lower when compared to marginal ROIs (ROI 2 + ROI 4: 45.67% ± 10.02, p = < 0.0001), and to 

vascular- ised ROIs (ROI 3 + ROI 5: 48.08% ± 7.083, p = < 0.0001). Although the SSOP-StO2 

was higher in vascularised ROIs, this difference was not statistically significant (p = 0.1298) 

(Figure 18A and B). 

The mean value of normalised lactates in ROI 1 was 4.804 mmol/L ± 2.591 and significantly 

higher when compared to marginal ROIs (ROI 2 + ROI 4: 1.026 mmol/L ± 0.472 p < 0.0001), and 

to vascularised ROIs (ROI 3 + ROI 5: 0.749 ± 0.246 mmol/L, p < 0.0001). The difference between 

marginal and vascularised ROIs also showed a statistically significant difference (p < 0.0001) 

(Figure 18C and D). The cumulative Pearson’s correlation analysis between normalised lactates 

and SSOP-StO2 was -0.5892, p < 0.0001 (Figure 18E). 

 

Figure 17. SSOP images showing StO2% during the full ischaemic period in the small bowel loop from baseline to 

T60, and corresponding true colour (RGB) images. 
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Figure 18. (A) SSOP-StO2 values during 1 h of ischaemia: the mean value of SSOP-StO2 in ROI 1 was 30.08± 6.963 

and significantly lower when compared to marginal ROIs (ROI 2+ROI 4: 45.67 ± 10.02 p = < 0.0001), and to 

vascularised ROIs (ROI 3 + ROI 5: 48.08 ± 7.083, p = < 0.0001). Although SSOP-StO2 was higher in vascularised 

ROIs, it did not show any statistically significant difference (p=0.1298). (B) Kinetics of StO2 cartography in each 

ROI. (C) Normalised lactates (mmol/L) during 1 h of ischaemia: the mean value of normalised lactates in ROI 1 was 

4.804 ± 2.591 and significantly higher when compared to marginal ROIs (ROI 2+ROI 4: 1.026± 0.472, p<0,0001), 

and to vascularised ROIs (ROI 3+ROI 5: 0.749± 0.246, p<0.0001). The difference between marginal and vascularised 

ROIs also showed a statistically significant difference p<0.0001. (D) Kinetics of normalised lactates (mmol/L). (E) 

Pearson’s correlation analysis between normalised lactates and SSOP- StO2 in correspondence to all ROIs. (F) 

Histopathological report: the mean Park/Chiu’s score at ROI 1 was 4.500± 0.8367 and significantly higher than 

marginal zones (ROI 2 and ROI 4: 1.583± 1.097, p<0,0001) and vascularised (ROI 3 and ROI 5: 0.667± 0.650, p < 

0.0001) 

 

As for the histopathological confirmation, the mean Park/Chiu’s score at ROI 1 was 4.500 ± 0.8367 

and was significantly higher than marginal zones (ROI 2+ROI 4: 1.583 ± 1.097) p < 0.0001 and 

vascularised ROIs (ROI 3 + ROI 5: 0.667 ± 0.650), p < 0.0001 (Figure. 18F).  

At T65, the Park/Chiu’s score correlation between SSOP- StO2 was r =− 0.6251, p = 0.0002 and 

between normalised lactates was r = 0.7102, p < 0.0001. 
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In the short ischaemia/reperfusion model, we found that ROI 1 has a mean 57.54 ± 5.35, 37.6 ± 

4.12, and 62.40 ± 7.28 SSOP-StO2 at T0, T10, and T15, respectively. The difference in terms of 

SSOP-StO2 value from occlusion to reperfusion was statistically significant (p = 0.00017) 

(Figuress. 19 and 20). Marginal ROIs (ROI 2 + ROI 4) had a mean of 57.22 ± 5.61, 56.89 ± 5.49, 

and 60.93 ± 6.91 SSOP-StO2 at T0, T10, and T15, respectively, while vascularised ROIs (ROI 3 

+ ROI 5) had a mean of 62.53 ± 5.43, 59.71 ± 6.37, and 64.40 ± 6.80 SSOP-StO2 at T0, T10, and 

T15, respectively. In marginal ROIs (ROI 2 + ROI 4), the differences in terms of SSOP-StO2 from 

occlusion to reperfusion were not statistically significantly different (p = 0.1511), similarly to 

vascularised ones (p = 0.1167). 

 

Figure 19. Ischaemia/reperfusion model. Characteristic SSOP GPU-accelerated DL (upper row) and RGB small 

bowel images (lower row) at baseline, during occlusion and after clamp release corresponding to reperfusion phase. 

ROIs are also represented by red squares. 
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Figure 20. Over-time evolution of small bowel SSOP-StO2 in the ischaemia/reperfusion model. The graph shows the 

overtime evolution of StO2 parameter at the central ROI which reflects a decrease SSOP-StO2 during the ischaemic 

period (red lines) and saturation improvement after clamp releases (10 minutes). 
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Study 3: Simultaneous, multi-channel, near-infrared fluorescence visualization 

of mesenteric lymph nodes using indocyanine green and methylene blue: a 

demonstration in a porcine model 

In all three animals included, it was possible to clearly visualize the lymph nodes under NIRF 

imaging using either of the dyes administered during the overall surgical procedure (Figure 21).  

 

 

Figure 21. Picture of mesenteric lymph nodes and bowel after 20 minutes of intravenous MB and ICG administrations. 

(A) The RGB image. (B) Overlay fluorescence picture at 700 nm (fluorescence for MB). (C) Overlay fluorescence 

picture at 800 nm (fluorescence for ICG).  

 

Subjective evaluation of lymph node visualization with two dyes by two experienced surgeons was 

performed on a 4-point scale (Excellent / Good / Average / Poor), with Good or Excellent at all 

intraoperative time points. The TBR for each time point is represented in Figure 22. The TBRs of 

MB and ICG were greater than 2.0 at all measured time points. The mean TBR of ICG in lymph 

nodes and small bowel was 4.57 ± 1.00 and 4.37 ± 1.70, respectively, for the overall experimental 

time. Regarding MB, the mean TBR in lymph nodes and small bowel was 4.60 ± 0.92 and 3.27 ± 

0.62, respectively. The Mann-Whitney U test of lymph node TBR/small bowel TBR comparing 

ICG to MB showed that the value for MB was statistically significantly higher (p = 0.012). No 

complications related to dye administrations occurred. 
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Figure 22. The TBR over time, (A) MB (B) ICG 
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Discussion 
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STUDY 1: Computer-assisted differentiation Between Colon-Mesocolon and 

Retroperitoneum Using Hyperspectral Imaging (HSI)Technology 

The highlight of this study is the demonstrated ability of the combination HSI and CNNs trained 

with deep learning to discriminate between tissues to be resected (colon and mesocolon) from 

tissues to be preserved (retroperitoneum) during colorectal resection. 

The mainstay of image-guided surgery in recent decades has been NIRF. NIRF-guided surgery has 

had excellent results in improving the visualization of tissue with blood and lymphatic flow [10, 

95–99, 119, 120]. However, the recognition of the dissection planes necessary for accurate 

colorectal surgery is difficult to distinguish using NIRF. As previously stated, this requires the 

injection of a dye into the blood stream to map vascular structures. However, the relevant 

anatomical dissection plane during CME is the so-called “avascular plane” in which only 

microscopic blood vessels pass [210]. Therefore, NIRF has limitations in discriminating relevant 

anatomical layers in colorectal surgery [136, 175]. Although NIRF may support surgeons in better 

defining vascular structures within the mesentery and therefore guiding CME dissection there are 

drawbacks such as ICG allergy related issues. ICG is a non-toxic dye with a very low allergy 

probability (1:42,000 - 1:60,000) and is considered a contrast agent that does not interfere with 

blood composition or the coagulation system [91–93]. However, there have been several reports 

of fatal anaphylaxis in the past 40 years, and preoperative allergy testing is considered necessary 

[93]. Additionally, in case of diffuse bleeding, ICG diffusion in the surgical field can lead to 

inaccurate differentiation [185]. 

HSI has become a powerful tool to objectively assess the unseen, based on the interaction of 

emitted, absorbed, reflected, and scattered light with biochemical tissue components. This 

technique, which is contrast-free and non-invasive, has the potential to become future 
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intraoperative guidance and a valuable navigation tool [64, 134]. However, HSI data is very 

difficult for the surgeon to directly interpret. Surgeons must have access to advanced machine 

learning algorithms to process such data to automatically recognize tissue patterns based on their 

spatio-spectral signatures; this provides surgeons with precise and relevant tissue information 

which is not visible with the naked eye or a standard RGB camera. 

In the current in vivo non-survival porcine model, using HSI in combination with a CNN, we were 

able to automatically recognize the anatomy of the mesothelial layer that needs to be dissected 

during CME and constitutes a critical key step during colonic resection. 

The potential clinical relevance of HSI lies in the better replicability of CME assuring removal of 

all lymph nodes while decreasing the recurrence rate. An HSI-guided dissection could help achieve 

more accurate and extensive dissection adhering to embryological planes while preventing damage 

to other retroperitoneal organs, and also preventing neoplastic tissue from being unresected. 

Very promising results were obtained in this study. However, there are some limitations. The HSI 

camera system had a limited electromagnetic spectral range (500–1000 nm), a relatively low 

spectral resolution (5 nm), and low spatial resolution (640 by 476 pixels). Consequently, the use 

of low-resolution images could well decrease accuracy in the annotation process, even when 

performed by experienced hands, which may introduce errors in the dataset. To minimize such 

errors, two experienced surgeons made annotations in the operating room while controlling 

dissection planes intraoperatively. The main reason for using this type of camera was that the 

spectral profile could be understood at the molecular level in this spectral range (500–1000 nm) 

[196]. It also did not disrupt the surgical workflow (approximately 6 s in acquisition time), and it 

was clinically approved, making it easier to translate our study results into clinical trials and future 

research applications in colorectal surgery. 
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A second limitation lies in the fact that this is a small number of samples using porcine models in 

which the mesentery is significantly thinner as compared to human models that have more adipose 

tissue. As a result, it is uncertain whether similar results could be obtained in clinical human studies. 

In humans, there is a well-described fusion fascia between the retroperitoneum and the mesocolon 

dissected during CME. Because pig models do not have a fusion fascia, this study used HSI to 

recognize the mesentery and retroperitoneum in the sigmoid colon only before any dissection took 

place and the potential effects of energy sources on spectral images were not evaluated. Previously, 

our group identified that electrocautery resulted in low-level oxygen perfusion while using HSI 

data in a liver resection model [134]. The peritoneum is a thin mesothelial layer. Consequently, 

the use of electrocautery could cause inaccurate recognition during surgical dissection. The next 

sensible step including the clinical translation of using HSI in combination with a CNN as a 

navigation tool for colorectal surgery is to study whether the system can achieve high sensitivity 

and specificity in humans. The objective would be to recognize the boundary of the mesothelial 

layer that needs to be dissected and determine whether surgical techniques that are essential in 

performing the dissections required in CME affect the accuracy of the recognition system. 

Finally, due to the camera set-up, a laparotomy was required for the acquisition of images. At 

present, minimally invasive laparoscopic surgery is the standard of care in oncological colorectal 

resections. Zuzak et al. developed a NIR laparoscopic HSI system prototype to guide laparoscopic 

liver resection and differentiate the portal vein from the extrahepatic biliary duct and the hepatic 

artery [95]. Recently, HSI-equipped laparoscopic cameras are now commercially available. As a 

result, further studies are necessary to establish the accuracy of HSI systems during minimally 

invasive surgery. 
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STUDY 2: Quantification of bowel ischaemia using real‐time multispectral 

Single Snapshot Imaging of Optical Properties (SSOP) 

In the present experimental pure bowel ischaemia model, the Trident imaging system could 

provide accurate quantification of tissue StO2, which is a useful biomarker of tissue viability and 

is also correlated with a validated marker of tissue perfusion [206]. Capillary lactates have been 

substantially studied by our research group as a ground truth assessing NIR optical imaging 

technologies [124, 211]. 

Local bowel capillary lactates were normalised via systemic lactates to reduce the variability 

between animals. The high number of paired normalised capillary lactates and StO2 datasets (175) 

at different time points allowed to compute a negative correlation between those two parameters. 

Previously, our group reported a correlation between StO2 and lactates using HSI within similar 

ranges (r = − 0.7) [134]. 

Additionally, StO2 images from the Trident imaging system were also correlated with the 

Park/Chiu’s score which is based on histopathological assessment of all intestinal layers. Although 

it is well-known that the intestinal mucosa and submucosa are the first ones affected by impaired 

perfusion since they receive most of the mesenteric blood flow (70%), the muscularis and serosal 

layers can also be damaged during ischaemic periods [211]. Since the evaluation of the StO2 

images was performed on the serosal side, histopathological repercussions in external layers were 

elements of interest. Nevertheless, this was a short-term ischaemia model (1 h), and transmural 

necrosis is mostly developed after longer ischaemic periods (6 h) [211]. In fact, the higher 

Park/Chiu’s score of 6 was found in one case only. 
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To verify the accuracy of the Trident system, we created the short ischaemia/reperfusion model in 

which the Trident system could detect the variation of StO2 as soon as the vascular clamp was 

applied and released. 

Intraoperative perfusion assessment constitutes a critical issue during digestive surgery. In NIR-

FA, ICG has so far been the most commonly used fluorophore to evaluate local microperfusion 

[212]. ICG-FA has been rapidly expanded by the increasing availability of optical imaging systems 

[213–215]. However, most ICG-FA optical systems are based on relative fluorescence intensity 

(FI) without considering diffusion, which can potentially lead to overestimation on non-perfused 

areas. Secondly, FI is inversely correlated to the source-to-target distance. This fact makes those 

structures closer to the source brighter than areas far away. To prevent any distance bias, distance 

standardization between the NIR endoscope and the surgical field and/or the use of a reference 

calibration tool must be performed during image acquisition [216]. 

In order to overcome ICG-FA drawbacks, quantification methods which are irrespective of 

distance have been developed to obtain a perfusion cartogram based on the dynamic uptake of the 

fluorophore over time such as FLER [211] or Q-ICG [217, 218]. Although the use of quantitative 

methods offers a reproducible and robust solution, they have not been extensively adopted at 

present and there is still no standardised approach regarding its use as reported in the IHU‐ IRCAD‐

EAES EURO‐FIGS registry [100]. 

As compared to FA, endogenous imaging methods including SSOP can provide a greater amount 

of quantitatively significant data by characterising several tissue components including StO2, 

which reflects intracellular metabolic changes induced by ischaemia. HSI is an eminent well-

known example of endogenous imaging. Its accuracy in assessing perfusion during 

oesophagectomy has been studied in 22 patients by discriminating between gastric conduits with 
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and without laparoscopic ischaemic preconditioning (StO2 66 vs. 78%, p = 0.03) [131]. In 

colorectal surgery, HSI has been compared between to FA, showing comparable results in 

detecting the optimal demarcation line [219]. 

Although HSI is an efficient technology, it does not allow for a video-rate acquisition and the large 

datasets require postprocessing algorithms to discriminate features according to spectral curves. 

To overcome this limitation, our group created the concept of HYPerspectral Enhanced Reality 

(HYPER) which had promising results in the preclinical setting [124]. However, HYPER requires 

image superimposition using augmented reality onto real-time videos to achieve real-time 

intraoperative guidance, making its use currently limited [64]. 

At present, SSOP is a more adapted surgical navigation system method since it allows for a video 

rate (> 25 frames per second), and a wide-field (> 100 cm2), non-invasive, quantitative 

multispectral characterisation of metabolic properties through a single frame acquisition [201, 220, 

221]. 

A strong point is that SSOP is based on SFDI that in one of the first in-human pilot trials has 

proven to be accurate in assessing the oxygenation of microsurgical deep inferior epigastric 

perforator flaps during reconstructive breast surgery [222]. However, standard SFDI is time-

consuming since it requires the acquisition of several images (in this case, 6 images), being 

inconvenient for the surgical workflow. 

To address such constraints, SSOP was developed as an enhanced fast optical intraoperative 

navigation tool. However, with the conventional process using image reduction, SSOP initially 

suffered from degraded visual quality as compared to the 7-phase SFDI. Artificial intelligence has 

been used to overcome such issues. A Graphics Processing Units (GPU)-accelerated DL as a 

processing technology has been previously described. SSOP GPU-accelerated DL evaluation of in 
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vivo human hands and ex vivo animal organs showed superiority in terms of image resolution and 

degradation as compared to a classical SSOP-filtering approach. The DL processing methodology 

has shown errors as low as 7.5 ± 2.7% [179]. 

In this study, the Trident imaging system uses SSOP GPU-accelerated DL using CCNs and allows 

for a non-contrast physiological real-time multispectral assessment in an in vivo one-hour 

ischaemic model (Figure 17). Additionally, the use of artificial intelligence helped to maintain 

high image quality comparable to the 7-phase SFDI. The promising results presented in this article 

of SSOP-StO2 can be potentially expanded into other fields for surgical guidance. 

This study relies on a robust methodology. The limited number of animals represents a constraint 

since only 6 pigs were studied, in which SSOP-StO2 and capillary lactates standard deviations 

between marginal and vascularised ROIs were high. Although SSOP-StO2 was high in 

vascularised compared to marginal ROIs, it was not statistically significant. Less variability could 

be encountered if sample size is increased during future experiments. Another downside of the 

present study lies in the postprocessing time GPU-accelerated DL and in its non-survival design, 

which does not make it possible to evaluate the impact of multispectral SSOP on anastomotic 

healing. As a result, the next logical step would be to evaluate multispectral SSOP performance in 

a survival anastomotic model. 

Since the current SSOP-based optical imaging system is designed for open settings, a potential 

improvement making way for clinical translation relies on hardware refinement. Presently, our 

group is strongly considering this parameter to enhance such an optical imaging technology. 
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Study 3: Simultaneous, multi-channel, near-infrared fluorescence visualization 

of mesenteric lymph nodes using indocyanine green and methylene blue: a 

demonstration in a porcine model 

In CRC, lymph node metastasis modifies staging, and the stage determines whether postoperative 

adjuvant chemotherapy is indicated. Results of a secondary analysis of the Intergroup trial INT-

0089 showed that an increased number of lymph nodes retrieved correlates with a prolonged 

survival rate in both negative and positive cases of lymph node metastasis [223]. Swanson et al. 

showed that the number of lymph nodes examined, even in T3N0 colon cancer without 

preoperative lymph node metastasis, linearly correlated with 5-year survival [224]. International 

guidelines recommend the evaluation of 12 or more lymph nodes [225–227]. However, scientific 

evidence is still lacking and it is still unclear if there is an absolute number that is considered as a 

gold standard for routine analysis [228]. Goldstein stated that a minimum of 30 lymph nodes in a 

hypothetical specimen was required to reach a probability of 80% to identify a single metastasis 

[229]. In other words, intraoperative lymph node detection and resection represent an essential 

component in predicting the long-term prognosis of CRC and in determining postoperative 

treatment strategies. 

In this study, we validated that the two dyes (MB and ICG) can be used in parallel in an animal 

model for the identification of lymph nodes. After simultaneous intravenous administration in both 

modes, the NIRF imaging of lymph nodes and bowel was possible with the TBR of MB in 

mesenteric lymph nodes, and was not inferior to that of ICG. The potential explanation for these 

results is correlated with the lower MB FI in the small bowel than the ICG FI and the higher overall 

ICG FI in perfused areas as compared to MB. ICG possesses a higher FI background even in the 

vessels-free field of the mesentery. Additionally, since MB has a shorter washout time from the 
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bowel than ICG, it may offer an enhanced capacity for mesenteric lymph node detection as the FI 

background decreases more rapidly than when using ICG.  

A systematic review and meta-analysis by Emile et al. showed that studies on fluorescent lymph 

node imaging differ with respect to ICG concentration, dose, injection site (submucosal, subserosal, 

combined submucosal and subserosal, intravenous), and timing of injection (preoperative, 

intraoperative, both preoperative and intraoperative) [230]. 

For fluorescence lymph node detection and lymphatic mapping using ICG, the dye is often injected 

in the subserosal or the submucosal layers where the main lymphatic network is located around 

the cancerous tissue [230–232]. However, this technique requires high technical precision during 

injection to prevent dye spillage, since abdominal cavity leakage alters the surgical field with false-

positive fluorescence regions [123]. Regarding technical details during laparoscopic subserosal 

ICG injection, the lack of tactile feedback could cause the needle tip to reach the muscle layer, 

hence injecting the wrong layer resulting in inadequate dye absorption into the lymphatics [230]. 

Nishigori et al. studied 21 patients who underwent laparoscopic CRC surgery to evaluate both 

lymphatic and blood flow with ICG fluorescence imaging. To evaluate lymph flow, authors 

injected ICG into the submucosa around the tumor under colonoscopic guidance, with a timing of 

injection comprised either between 1 and 3 days before surgery or intraoperatively. To evaluate 

blood flow, ICG was injected intravenously during the procedure. Inadequate lymphatic flow 

delineation resulted in non-detection in three cases. In the two cases involving intraoperative IV 

injection, ICG leakage was a problem in both [10]. 

On the other hand, Liberale et al. reported that intraoperative IV administration of ICG for lymph 

node detection was feasible. Authors showed that intraoperative and postoperative fluorescence 

imaging might be a new tool to detect metastatic lymph nodes in patients with CRC, allowing for 



 89 

a more accurate staging [233]. In the previously quoted systematic review, the IV administration 

of ICG showed the second highest sensitivity, specificity, and accuracy for lymph node detection 

behind the combined subserosal and submucosal injection [230]. However, pooled results were 

based on only two lymph node mapping studies using IV ICG. At present, the preferred method 

of administration and dosage of ICG for fluorescence lymph node mapping is still under debate, 

and further clinical trials are highly necessary to establish the best reliable technique. ICG also 

diffuses into ascites and edema because of its albumin binding. In this experiment, some animals 

developed a degree of ascites or mesenteric edema after laparotomy. In those that did, ICG 

fluorescence images showed comparable FI in edema ROIs to that of the lymph nodes (Figure 23).  

 

 

Figure 23. Picture of mesenteric edema after 40 minutes of IV ICG administration. (A) The RGB image. (B) 

Fluorescence picture at 800 nm (C) Overlay fluorescence picture at 800 nm  

 

As a result, the ICG fluorescence present in either ascites or edema may reduce the sensitivity of 

mesenteric lymph node detection during NIRF-guided surgery. 

MB is hydrophobic and does not bind to albumin as opposed to ICG. Jun Li et al. reported NIRF 

imaging using MB for the identification of lymphatic vessels, sentinel lymph node location, and 

breast lymphatic flow patterns in breast cancer. They reported that MB causes less background 

fluorescence contamination than ICG, and MB could be suitable for observation due to its higher 

absorption and to the fact that it can be clearly detected across the skin and adipose tissue [234]. 
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The fluorescence of MB injected simultaneously with ICG could be used to confirm whether the 

fluorescent ROIs are either mesenteric lymph nodes or mesenteric edema. The intravenous 

injection of two dyes may increase the sensitivity of mesenteric lymph node detection, thereby 

avoiding complex procedures such as subserosal and submucosal injections. In addition, this may 

prevent any excessive mesenteric injury or inadequate lymph node resection that could occur when 

ICG is administered alone. 

Additionally, MB in the lymphatic network and lymph nodes stains a blue color in the specimen. 

The number of detectable lymph nodes depends on age, gender, type of malignancy, and tumor 

location [235]. Besides, preoperative adjuvant chemoradiation has become the standard of care for 

advanced rectal cancer in recent years. Neoadjuvant chemoradiotherapy reduces lymph node size, 

which causes a decrease in lymph node harvesting [236–238]. Märkl et al. reported a study in 

which MB was injected into the superior rectal artery ex vivo, originally performed to evaluate the 

accuracy of TME [239]. Other authors found that injecting MB postoperatively directly into the 

vessels of rectal resection specimens improved the lymph node detection rate [188]. Although it 

must be mentioned that this is an arterial injection and the concentration administered is high, they 

have shown that MB transferred from the blood vessels into the lymphatic flow stains the lymph 

nodes. Several studies have shown that higher doses of MB improved postoperative lymph node 

harvesting from rectal cancer specimens [188, 189]. 

Another potential application of the presented imaging set-up, apart from the tested lymph node 

and bowel detection, is to assess blood flow and ureteral recognition as these are two other 

properties of the ICG and MB dyes. Ureteral injury is a serious complication during intrapelvic 

surgery, and the majority of iatrogenic ureteral injuries may lead to severe morbidity and even 

mortality [67, 68]. Visualization of the ureter is extremely important, especially after reoperation 
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or radiation therapy. Intraoperative ureteral identification also contributes to the education of 

young surgeons in the field of anatomy. As referred to earlier, ICG is cleared via the bile juice. 

The fluorescent urinary tract visualization with ICG requires the insertion of one or several ureteral 

catheter(s) via cystoscopy requiring an additional invasive procedure which may increase the risk 

of perioperative complications [240]. Several studies have been published on ureteral fluorescence 

using preclinical fluorophores with emission peaks similar to ICG. Since these novel fluorophores 

(including IRDye® 800CW, IRDye® 800BK, IRDye® 800NOS [241], and IS-001 [242]) 

contribute to urinary clearance, they have shown promising results in detecting the ureter. However, 

further clinical translation is necessary since these dyes are currently not available in the 

marketplace.  

As a result, since MB is excreted through the urine, it may represent the best way to 

intraoperatively identify ureters during colorectal surgery. Several studies have been published in 

which MB is injected intravenously and the ureter is visualized with fluorescence [102, 107, 243]. 

The first study of NIRF visualization of the ureter using MB was proposed by Verbeek et al. in 12 

patients. In this study, the authors showed correct visualization of both ureters after intravenous 

injection of MB [243]. Later on, Polom et al. published a study on simultaneous fluorescent 

visualization of ureter and bowel perfusion via the administration of MB and ICG respectively 

using the laparoscopic camera system that was used in our study. The fluorescent visualization of 

the ureter was successful in 11 out of 12 patients (96.1%), and in all patients, bowel perfusion by 

means of ICG was successfully confirmed [190]. As a result, simultaneous assessment using MB 

and ICG is feasible and represent a comprehensive NIR guidance, helping surgeons to detect 

lymph nodes, to reduce the risk of anastomotic leakage by assessing local tissue perfusion, and to 

reduce the risk of complications by detecting ureters. 
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However, there are some drawbacks regarding the administration of MB that should be discussed. 

MB is contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and 

Heinz body anemia. MB is a safe agent when used at therapeutic doses of 2mg/kg or less [244]. In 

high doses or in patients with renal failure, MB may induce severe adverse effects, such as 

coronary vasoconstriction, arrhythmias, and hemolytic anemia [104]. While it is prudent to use the 

lowest dose of MB necessary for a given case to minimize the potential for toxic manifestations 

[106], several studies of fluorescence ureteral visualization with the administration of MB showed 

that higher doses of MB resulted in better ureteral visualization [107, 243]. MB administration 

may cause false elevations in methemoglobin levels with CO-oximetry and pulse oximetry [245]. 

Finally, excess doses of MB may paradoxically increase oxidant stress and methemoglobinemia 

[246]. During this experiment, we did not observe any such changes in vital signs after MB 

administration. 

Further experiments are necessary to determine the optimal method of administration, timing, and 

dosage of MB dye, particularly for lymph node mapping based on these previous studies. 

The limitation of the present study lies in the fact that a small-number pilot study using porcine 

models was used. The mesentery of an adult human is not as thin as that of a pig. The mesenteric 

lymph nodes of humans, which are usually embedded in adipose tissue, are generally more difficult 

to detect, impairing our ability to predict whether this method can be generalized to humans. 

Additionally, the system was used in open surgery settings, and laparotomy was required for image 

acquisition. Currently, minimally invasive laparoscopic surgery has become the standard treatment 

in CRC surgery. At present, a laparoscopic camera equipped with a double-wavelength imaging 

system is available, enabling further research to establish the accuracy of this imaging system in 

minimally invasive surgery settings. 
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Conclusion 

We have studied three methods of intraoperative image guidance for CRC surgery in this work.  

The first method is the automatic recognition of the anatomical structures necessary for accurate 

colorectal surgery using the HSI camera and artificial intelligence (AI). HSI has been combined 

with CNNs and deep learning (DL) to accurately distinguish two tissue groups (i.e., the colon and 

its mesentery from the retroperitoneum). HSI recognition may have a potential role in 

intraoperative guidance for CME. 

The second method is the quantification of bowel ischemia using real‐time multispectral SSOP. It 

shows that multispectral SSOP allows for a contrast-free accurate assessment of small bowel 

perfusion identifying physiological tissue oxygenation as confirmed with perfusion biomarkers.  

The third method is the use of fluorescence optical imaging technology, that allows for double-

wavelength assessment. This feasibility study proves that lymph nodes can be discriminated using 

two different fluorophores (MB and ICG) with different wavelengths. The results suggest that MB 

performance may represent a more accurate way of detecting lymphatic tissue during image-

guided surgery.  

This feasibility study proves that mesenteric lymph nodes can be discriminated using two different 

fluorophores (MB and ICG) at different wavelengths. Based on a superior discrimination from the 

background, MB performance may represent a pathway to better detect lymphatic tissue during 

image-guided surgery. 

These new surgical methods and imaging techniques were shown to be feasible in animal 

experiments and demonstrated equal or better results than conventional methods. They may 

replace conventional technologies in the future. 
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Further research will need to investigate whether such technologies may be applied to the human 

body with similar accuracy and determine whether they can be applied to the clinical practice. 
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Nariaki OKAMOTO 

L'application de l'imagerie optique peropératoire 
pour optimiser la chirurgie oncologique 

colorectale et prévenir les complications. 
 

 

Résumé 

Le cancer colorectal est la troisième cause de cancer et la deuxième cause de mortalité liée au cancer dans le 
monde. Au cours des dernières décennies, l'approche chirurgicale du cancer colorectal a considérablement 
évolué, notamment grâce à l'introduction de techniques chirurgicales innovantes comme l'excision totale du 
mésorectum et l'excision complète du mésocôlon, grâce aux progrès des procédures mini-invasives et au 
recours à la chirurgie guidée par imagerie par fluorescence dans le proche infrarouge. 

Les progrès significatifs et croissants de la chirurgie guidée par l'image peropératoire s’incarnent à travers son 
rôle déterminant dans le domaine chirurgical, comme en témoignent les nombreux symposiums régulièrement 
organisés lors de congrès de chirurgie dans le monde. 

La présente recherche s'est polarisée sur la mise en œuvre de nouvelles approches en chirurgie colorectale 
utilisant l'imagerie optique peropératoire afin de promouvoir de meilleurs résultats cliniques et prévenir toutes 
récidives et complications. 
 
 
Mots clés : Chirurgie du cancer colorectal, Imagerie optique, Imagerie hyperspectrale, Imagerie multispectrale, Chirurgie 
guidée par l'image de fluorescence, Intelligence artificielle, Apprentissage profond 

 
 
 

Résumé en anglais 

Colorectal cancer is the third leading cause of cancer and the second leading cause of cancer-related mortality worldwide. Over 
the last decades, the surgical approach to colorectal cancer has significantly changed, including the introduction of innovative 
surgical techniques such as total mesorectal excision (TME) and complete mesocolic excision (CME), advances in minimally 
invasive procedures, and near-infrared fluorescence (NIRF) image-guided surgery.  
The overgrowing significant progress of intraoperative image-guided surgery accounts for its seminal place in the surgical field, 
along with new symposia and sessions being regularly organized during international surgical conferences.  
The present research has focused on implementing novel approaches in colorectal surgery using intraoperative optical imaging 
to promote better clinical outcomes and prevent recurrences and complications.  
 
 
 
Keywords : Colorectal cancer surgery, Optical imaging, Hyperspectral imaging, Multispectral imaging, Fluorescence image–
guided surgery, Artificial intelligence, Deep learning 

 

 


