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Résumé en français

Les micro-instabilités jouent un rôle clé dans divers systèmes mécaniques, tant artificiels que
biologiques. Dans le cas des systèmes artificiels, les exemples de ces instabilités peuvent inclure le
décollement d’un film d’un substrat [4–10], la propagation d’ondes dans des réseaux bistables
[11–15], la récolte d’énergie à travers des chaînes multistables [16–18], la plasticité et l’hystérésis
dans les transitions de phase et les transformations martensitiques des solides [19–29], ainsi que
la nucléation et la propagation des fissures et des dislocations dans les matériaux et les alliages
[30–38], et le frottement à l’échelle nanométrique [39–48]. D’autre part, dans le cas des systèmes
biologiques, les micro-instabilités se manifestent sous la forme de transitions conformationnelles
dans les chaînes polymères et biopolymères [49–58], le passage entre les états attachés et détachés
des fibrilles dans l’adhésion cellulaire [59–64], l’ouverture des épingles à cheveux macromoléculaires
[65–69], le comportement des sarcomères dans les muscles squelettiques [70–76], la dégradation ou
la dénaturation des acides nucléiques, des chaînes polypeptidiques et d’autres polymères [77–86],
ainsi que le frottement des macromolécules ou de la matière molle [87–90].

Dans toutes ces situations physiques, le système présente toujours un paysage énergétique
complexe caractérisé par une multitude de bassins et, selon le bassin particulier dans lequel
il se trouve d’un point de vue énergétique, le système peut se trouver dans une configuration
stable ou méta-stable. Nous soulignons que ces systèmes sont constitués d’un grand nombre
d’unités qui, prises individuellement, présentent des états physiques bien définis, mais qui,
considérées dans leur ensemble, présentent un comportement plutôt non linéaire et chaotique
difficile à décrire au premier abord. Les transitions entre ces états ou, de manière équivalente,
les explorations du paysage énergétique complexe, régissent le comportement macroscopique
de l’ensemble du système et, en particulier, ses caractéristiques statiques et dynamiques. Les
micro-instabilités peuvent être divisées en deux catégories principales. Dans un premier type, les
micro-instabilités intrinsèques peuvent décrire des unités bistables (ou multi-stables) avec des
transitions entre un état fondamental et un (ou plusieurs) état(s) métastable(s) (par exemple,
pour les transitions conformationnelles plié-déplié dans les macromolécules ou les changements de
phase martensitique dans les alliages métalliques, ou encore la friction). Ces états représentent
des conformations différentes, mais mécaniquement résistantes. Ce cas peut être représenté
dans un cadre unidimensionnel en introduisant une énergie potentielle effective à double puits
U(x) fonction d’un paramètre x ∈ R qui, dans ce cas, représente parfaitement un paramètre
d’ordre effectif utile pour décrire la transition entre les différents puits de potentiel. Dans la
deuxième classe, les micro-instabilités peuvent décrire les transitions entre les états non rompus
et rompus des unités cassables du système (par exemple, dans l’ouverture des épingles à cheveux,
la dénaturation des macromolécules, l’adhésion biologique fibrillaire, le décollement des films,
la propagation des fissures, et ainsi de suite). Ce processus peut être réversible, partiellement
réversible ou irréversible en fonction du phénomène physique spécifique. Là encore, le paysage
énergétique unidimensionnel considéré dans ce second cas peut être modélisé par une fonction
potentielle unidimensionnelle où la configuration non rompue correspond à un puits de potentiel
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viii Résumé en français

et la configuration rompue correspond à une énergie constante et à une force nulle.
Il est intéressant de noter qu’il existe un parallèle entre tous les problèmes de la biophysique

et de la science des matériaux. Cette similitude est à la base du développement de modèles
mathématiques applicables indistinctement aux deux domaines de recherche, comme nous le
verrons plus loin. En fait, le but principal de cette thèse est de développer des modèles entre la
physique et la mécanique qui sont capables d’étudier les transitions d’état (micro-instabilités) dans
tous ces systèmes biologiques et artificiels afin de mieux comprendre les effets de la température
et des actions mécaniques externes sur leur comportement.

Comme la longueur caractéristique qui sépare deux états différents ∆x est de l’ordre d’unités
de nanomètres et que les énergies impliquées dans les liaisons chimiques sont de l’ordre de
dizaines de KBT , il est crucial d’observer que les effets de la température sur ces systèmes sont
non-négligeables. En effet, les transitions entre les états dans tous les systèmes précédents sont
fortement influencées par les fluctuations thermiques, qui peuvent modifier la probabilité d’être
dans un état donné ou le taux de passage entre les puits d’énergie voisins. C’est la raison pour
laquelle le cadre correct dans lequel nous pouvons développer la modélisation théorique de ces
phénomènes est celui de la mécanique statistique classique. En particulier, les systèmes présentant
des mécanismes de commutation entre différents bassins d’énergie peuvent être étudiés au moyen
de l’approche des variables de spin, qui est basée sur l’introduction d’une série de variables
discrètes (similaires aux spins utilisés pour traiter les systèmes magnétiques), capables d’identifier
l’état associé à une unité de système donnée. Par exemple, dans le cas d’un potentiel bistable,
l’énergie décrivant le passage d’un élément de chaîne d’une conformation pliée à une conformation
dépliée peut être approximée par une fonction bi-parabolique, le passage d’un puits à l’autre étant
décrit par la variable de spin. Cela signifie que, selon la valeur de ces variables discrètes, la fonction
d’énergie peut changer de forme et, en particulier, de position et de profondeur de ses puits.
L’introduction des variables de spin simplifie fréquemment le calcul de la fonction de partition
et, par conséquent, l’analyse des quantités thermodynamiques moyennées correspondantes. Ce
dispositif théorique permet d’obtenir des résultats mathématiques en forme fermée, très utiles
pour faire progresser la compréhension de la mécanique et de la physique sous-jacentes.

Dans ce manuscrit, nous considérons deux protocoles expérimentaux différents [91–93] pour
la perturbation mécanique de petits systèmes. En particulier, les expériences réalisées à des
forces appliquées constantes (réalisées à l’aide de dispositifs extrêmement mous) correspondent à
l’ensemble statistique de Gibbs, et les expériences réalisées à des déplacements prescrits (menées à
l’aide de dispositifs extrêmement durs) sont une réalisation de l’ensemble statistique de Helmholtz.
En général, ces deux conditions limites conduisent à des réponses force-extension différentes
puisque, dans chacun des deux cas, nous explorons un espace de phase différent. En fait, en
fonction de la rigidité équivalente du dispositif, l’expérience d’étirement correspond à une situation
située entre les ensembles de Gibbs et de Helmholtz de la mécanique statistique [94, 95].

Dans le deuxième chapitre de ce manuscrit, nous introduisons et analysons un modèle simple
pour mettre en évidence les différences fondamentales entre les ensembles de Gibbs et de Helmholtz
tout en les étudiant à travers les principes de la mécanique statistique à l’équilibre. La simplicité
intrinsèque du modèle représente le terrain de départ idéal dans lequel nous sommes en mesure
d’appliquer une approximation de spin et de comprendre sa véritable signification et sa faisabilité.
Grâce à l’approche de la mécanique statistique, nous obtenons des résultats à première vue en
désaccord avec ce que nous attendrions d’un point de vue purement pratique mais, heureusement,
ces incongruités apparentes sont ensuite entièrement expliquées et résolues à l’aide d’une approche
purement axée sur le bilan énergétique.

Dans les chapitres suivants, nous appliquons ces techniques à trois cas différents. Dans le
premier, nous avons élaboré un modèle pour décrire le processus de cohésion/décohésion lié à un
film déposé sur un substrat, en nous concentrant sur les effets des fluctuations thermiques. Nous
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avons analysé ce processus sous une action mécanique supplémentaire, représentée soit par une
force externe, soit par une extension prescrite appliquée à l’extrémité de la chaîne correspondant
aux ensembles de Gibbs et de Helmholtz, respectivement, introduits précédemment. Pour aborder
le problème, nous avons combiné la méthode basée sur les variables de spin [91, 92] avec une
analyse raffinée des propriétés de certaines matrices tridiagonales [96, 97], caractérisant le système
à l’étude. Nous avons tout d’abord développé la théorie pour l’ensemble de Helmholtz, puis
nous avons obtenu les résultats pour l’ensemble de Gibbs par le biais de la transformation de
Laplace décrivant la relation entre les fonctions de partition des deux ensembles [98]. Finalement,
pour les deux ensembles statistiques, nous avons obtenu des résultats explicites donnant la
relation force-extension, le nombre moyen d’unités brisées et l’extension moyenne de tous les
éléments de la chaîne en tant que fonctions de la température et de l’action mécanique externe
(une force pour l’ensemble de Gibbs et une extension pour l’ensemble de Helmholtz). Ces
résultats, obtenus pour un nombre arbitraire N d’éléments de la chaîne, sont utiles pour bien
comprendre le comportement du système, pour comparer avec les résultats existants concernant
le pliage/dépliage des chaînes bistables macromoléculaires, et, enfin, pour effectuer l’analyse
de la limite thermodynamique. En effet, lorsque N → ∞, certains des calculs précédemment
effectués pour le nombre fini d’éléments N , peuvent être remplacés par des intégrales appropriées
en introduisant une transformation discrète à continue. Une telle analyse prouve que, dans la
limite thermodynamique, le décollement du film du substrat a lieu à une force critique donnée,
qui dépend de la température. Dans le processus de cohésion/décohésion, l’origine de la force de
décollement dépendante de la température est expliquée par l’observation d’une transition de
phase se produisant à une température critique donnée, capable de détacher complètement le film
du substrat. Dans le régime sous-critique, les fluctuations thermiques favorisent le détachement du
film et, par conséquent, une force de décollement plus faible est nécessaire pour des températures
plus élevées. La tendance à la baisse de la force de décollement avec la température est la même
pour les deux ensembles statistiques. Cependant, ces derniers ne sont pas équivalents dans la
limite thermodynamique puisqu’ils présentent une courbe force-extension différente. La relation
obtenue pour la force de dénaturation dépendant de la température a été testée par rapport à
des données expérimentales concernant la décomposition d’épingles à cheveux d’ARN et d’ADN,
ce qui a finalement permis d’obtenir un bon accord entre la théorie et les mesures. Bien que le
modèle présenté soit intéressant car il conduit à une approche entièrement analytique capable
d’expliquer l’émergence de la transition de phase et la non-équivalence des ensembles, il pourrait
être généralisé pour prendre en considération des situations plus complexes. Par exemple, la
méthodologie des variables de spin employée pour calculer les fonctions de partition est limitée
à l’étude de la thermodynamique à l’équilibre. Il pourrait être intéressant de la généraliser au
régime dynamique, où la fonction d’énergie réelle décrivant les unités du système joue un rôle
important [99–101]. De plus, notre approche pourrait être appliquée à différentes configurations
de systèmes, y compris les faisceaux de fibres avec des brins cassables, le flambage des films
déposés sur des substrats, la propagation des fissures dans les solides fragiles ou plastiques, et les
phénomènes de rupture dans les réseaux de polymères.

Dans le quatrième chapitre, nous analysons un modèle similaire à celui présenté dans le
chapitre précédent, avec la différence importante que, maintenant, les liens de liaison des unités de
la chaîne peuvent se trouver dans un troisième état de ramollissement possible avant d’atteindre
le point de rupture complet. Plus précisément, ces éléments sont décrits par un mécanisme de
ramollissement, c’est-à-dire par trois régions de fonctionnement comme suit : la première région
linéaire correspond aux éléments intacts (petite déformation), la deuxième région correspond
aux éléments ramollis avec une rigidité réduite (déformation intermédiaire), et enfin, la troisième
région correspond aux éléments cassés (grande déformation). Ce système paradigmatique a été
étudié en supposant qu’il est noyé dans un bain thermique à une température donnée et qu’il
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est soumis à une action mécanique externe. Cette dernière peut être soit une extension prescrite
(dispositif dur), soit une force appliquée (dispositif mou) au dernier élément de la chaîne, ce
qui correspond, là encore, à l’ensemble de Helmholtz (condition isométrique) et à l’ensemble de
Gibbs (condition isotensionnelle) de la mécanique statistique à l’équilibre, respectivement. Afin
de procéder à l’analyse mathématique du problème, nous avons à nouveau adopté l’approche des
variables de spin pour définir l’état de tout élément cassable [91, 92, 94, 95, 102, 103], nous avons
introduit l’hypothèse du modèle de fermeture éclair avec deux parois de domaine pour décrire les
trois régions de fonctionnement de la chaîne de liens [104–107], et nous avons finalement exploité
certaines propriétés analytiques des matrices tridiagonales [96, 97] pour obtenir des résultats sous
forme fermée dans des conditions isométriques et isotensionnelles. Dans les deux cas, nous avons
obtenu la solution générale du problème pour une chaîne composée d’un nombre N d’éléments. Ces
solutions, dans les deux cas, conduisent à une force de décohésion constante, qui représente la force
du système. Il est important de noter que cette force dépend de la température et que sa valeur
diminue avec l’augmentation de la température. L’interprétation physique de ce comportement
peut être faite en observant que les fluctuations thermiques favorisent l’endommagement des
éléments cassables, réduisant ainsi la force du système. En outre, le nombre d’éléments cassés
et ramollis a été déterminé en fonction de la température et de l’action mécanique externe
pour les deux ensembles statistiques. Il est intéressant de noter que nous avons prouvé que le
nombre d’éléments ramollis ne dépend que de la température et qu’il est indépendant de l’action
mécanique externe. Cette analyse fournit une image complète du comportement du système avec
un nombre fini N d’éléments. Pour mieux comprendre la signification de ces résultats, nous avons
analysé le comportement du système sous l’hypothèse de la limite thermodynamique, c’est-à-dire
pour N → ∞. Dans ce cas, les sommes apparaissant dans les fonctions de partition des deux
ensembles et dans les moyennes macroscopiques des variables thermodynamiques pertinentes
peuvent être remplacées par des intégrales, ce qui conduit finalement à des expressions utiles de
forme fermée. L’analyse de ces résultats fournit une explication claire de la force dépendant de la
température en termes de transitions de phase. En effet, une première température critique existe
pour le système et correspond à la rupture partielle de tous les éléments de la chaîne. Ensuite,
une deuxième température critique décrit la rupture complète de toutes les liaisons. Ce scénario
critique complexe permet de donner une explication rigoureuse de la relation entre résistance
et température dans les systèmes où se produit une transition dans le mécanisme de rupture
(ici représentée par le ramollissement des liaisons). Dans plusieurs mesures expérimentales, une
courbe à deux branches pour la relation résistance-température a effectivement été observée [33,
35, 38]. Un autre résultat intéressant concerne la non-équivalence des ensembles dans la limite
thermodynamique. Cela signifie que les courbes force-extension sont différentes pour les ensembles
de Helmholtz et de Gibbs, y compris pour N → ∞. Il est bien connu que l’équivalence des
ensembles statistiques de Gibbs et de Helmholtz a été prouvée pour une grande classe de systèmes
physiques comprenant, par exemple, des chaînes de polymères flexibles simples sans effets de
confinement et avec un potentiel d’interaction d’appariement continu entre les monomères voisins
[56, 108–112]. Cependant, il est difficile de prouver l’équivalence de l’ensemble pour des systèmes
ou des structures plus généraux. Par exemple, d’autres problèmes, concernant par exemple
l’échappement d’un polymère confiné entre deux plans ou la désorption d’un polymère attaché à
une surface, conduisent à la non-équivalence entre les ensembles statistiques définis [113–118].
Il est intéressant de noter que ces recherches sont cohérentes avec nos résultats et prouvent
définitivement la possibilité d’une non-équivalence des ensembles entre différents ensembles
statistiques dans des systèmes physiques pertinents. En outre, les généralisations possibles de
cette théorie peuvent inclure le comportement dynamique des processus de cohésion/décohésion
(où les barrières entre les puits du paysage énergétique jouent un rôle important [99–101]), ou
l’adoucissement multi-états, c’est-à-dire composé de plusieurs étapes avec une rigidité différente
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(décrite par plusieurs parois de domaine dans la chaîne).

Au chapitre 5, nous avons élaboré deux modèles distincts, avec différents niveaux de com-
plexité, pour décrire le comportement en fonction de la température de systèmes non convexes
unidimensionnels et non locaux. Le système paradigmatique étudié est composé d’une séquence
d’unités, présentant un comportement bistable décrit par une énergie potentielle à deux états,
en interaction les unes avec les autres. D’une part, ce système est capable de représenter les
caractéristiques spécifiques de plusieurs macromolécules d’origine biologique (principalement
des protéines). Dans ce cas, la non-convexité (bistabilité) décrit la commutation possible de
chaque domaine de la macromolécule entre ses états plié et déplié. En outre, la non-localité,
introduite au moyen du schéma d’Ising, décrit la coopérativité observée dans la plupart des
structures biologiques. D’autre part, le modèle proposé est également capable de représenter
les transformations de phase dans les matériaux. Les deux états du comportement bistable
représentent dans ce cas deux microstructures du matériau solide, correspondant e.g. à deux
structures cristallines ou à des phases austénitiques et martensitiques. Cela permet d’étudier la
pseudo-élasticité et les effets de mémoire de forme dans les systèmes solides tels que les trichites,
les nanofils ou les nanocomposites. Pour ces systèmes, le schéma d’interaction d’Ising reproduit le
coût énergétique de la création d’une interface entre les deux états différents de la matière en raison
de l’absence de compatibilité cinématique. Notre modèle décrit alors de manière prototypique
l’origine des phénomènes de nucléation, de propagation et, éventuellement, de coalescence, ainsi
que leur éventuelle dépendance à la température lorsque de petites dimensions sont considérées,
comme dans le cas des nanofils, de sorte que les contributions entropiques peuvent rivaliser avec
les termes d’énergie élastique globale. En effet, dans l’approche proposée, les effets thermiques
sont soigneusement pris en compte en introduisant l’analyse de la mécanique statistique du
problème, basée sur la méthode des variables de spin. Cela nous permet de développer un cadre
thermodynamique complet des processus de transformation dans les systèmes avec non-localité et
non-convexité. La première approche proposée est la plus raffinée et met en œuvre la complexité
du système dans toute sa généralité, sans hypothèses simplificatrices. Le système est constitué
d’une chaîne d’éléments bistables interagissant à travers un schéma d’Ising. Nous pouvons étudier
les ensembles de Gibbs (isotensionnels) et de Helmholtz (isométriques) de la mécanique statistique
en évaluant les fonctions de partition pertinentes sous forme fermée. Ces résultats sont valables
pour les cas ferromagnétiques (interaction d’Ising positive) et antiferromagnétiques (interaction
d’Ising négative). Cependant, dans ce chapitre, nous nous concentrons principalement sur le
comportement ferromagnétique. Dans ce modèle, chaque unité peut librement prendre l’un des
deux états admis, en fonction de la température du système et des actions mécaniques appliquées
au système. Le nombre d’interfaces entre les régions pliées et dépliées est donc libre de varier
et représente une mesure des effets entropiques sur le système. Ainsi, on peut observer une
augmentation du nombre d’interfaces avec l’augmentation de la température pour un système
ferromagnétique. Le point important est que pour les systèmes fortement ferromagnétiques
(avec un coût énergétique élevé de la génération d’interfaces), qui sont les plus courants dans
les applications pratiques, une seule interface est observée entre les deux états différents et elle
se propage le long de la chaîne lorsque la traction ou l’allongement sont appliqués au système.
Outre le phénomène de propagation de l’interface, dans le cas isométrique de Helmholtz, nous
pouvons également observer un pic initial de force vers le haut, représentant la nucléation de
la nouvelle phase dépliée, et un pic final de force vers le bas, représentant la coalescence de
la phase pliée dans la phase dépliée. Une caractéristique importante de ce système est que le
plateau de force, décrivant la propagation de l’interface à l’intérieur de la chaîne, dépend en
général de la température pour les conditions limites isotensionnelles et isométriques. L’origine
de cette dépendance réside dans la différence entre les constantes élastiques des phases dépliée
et repliée. En fait, lorsque ces constantes élastiques sont égales, le plateau de force devient
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indépendant de la température, et les résultats connus de la littérature sont retrouvés. Comme
l’analyse de la limite thermodynamique est extrêmement complexe pour le modèle d’Ising exact
(en particulier, pour le cas isométrique), et comme le cas important pour les applications est le
cas fortement ferromagnétique, nous avons introduit le modèle de fermeture éclair dans lequel
nous considérons une seule interface se propageant le long du système. Cette hypothèse rend
le calcul de la fonction de partition beaucoup plus simple dans les ensembles de Gibbs et de
Helmholtz. La limite thermodynamique pour l’ensemble de Gibbs peut être analysée directement
et les résultats sont parfaitement cohérents avec le modèle d’Ising exact étudié précédemment.
En particulier, le comportement du plateau de force en fonction de la température est également
confirmé par cette approche de fermeture éclair. L’étude de la limite thermodynamique concer-
nant le modèle de fermeture éclair en condition isométrique, i.e dans l’ensemble de Helmholtz,
représente la troisième approche de ce travail. Cette analyse est basée sur la méthode de la
phase stationnaire et permet d’obtenir trois résultats importants : (i) une expression simplifiée
de la relation force-extension dans des conditions isométriques, valable pour des chaînes très
longues et fortement ferromagnétiques (qui décrit parfaitement les phénomènes de nucléation, de
propagation et de coalescence), (ii) une expression explicite de l’amplitude du premier pic de force
(basée sur la fonction de Lambert), représentant la nucléation des unités dépliées, et (iii) une
démonstration rigoureuse de l’équivalence des ensembles de Gibbs et de Helmholtz pour le modèle
de la fermeture éclair (les pics de nucléation et de coalescence disparaissent à mesure que la
longueur augmente). Ces résultats, basés sur l’approximation de la phase stationnaire, décrivent
correctement les processus de transformation dans des objets unidimensionnels (macromolécules
ou nanofils solides) en termes de fluctuations thermiques et d’actions mécaniques appliquées
au système. Quelques exemples de comparaisons quantitatives sont présentés pour l’évolution
microstructurale des nanofils métalliques et semi-conducteurs. Bien que ce travail puisse être
généralisé et étendu de nombreuses façons, nous ne mentionnons ici que deux perspectives d’avenir
d’un certain intérêt. Le premier aspect négligé représente la microstructure réelle des états
métastables considérés. Ce point peut être amélioré en introduisant les principales propriétés
des structures moléculaires réelles des deux phases du système. Le deuxième aspect concerne le
fait que nous avons mené toute la discussion à l’équilibre thermodynamique et donc dans des
conditions statiques ou quasi-statiques. La dynamique pourrait être introduite en tenant compte
de la mécanique statistique hors équilibre et, en particulier, des méthodologies de Langevin et/ou
de Fokker-Planck. Ces deux questions seront abordées dans les développements futurs.

Dans le dernier chapitre, nous avons finalement proposé et étudié deux modèles prototypiques
capables de décrire les effets de la température dans les processus de rupture. Le premier vise
à expliquer le comportement des systèmes fragiles en fonction de la température, et le second
vise à montrer les processus d’endommagement complexes qui se produisent en présence de liens
ductiles cassables avec une possibilité de transition fragile-ductile régulée par les effets thermiques.
Les deux modèles sont basés sur une structure en treillis simple constituée de ressorts incassables
et cassables. Le système est confiné entre deux couches, l’une fixe et l’autre mobile, et est conçu
de telle sorte que le soulèvement de la couche supérieure entraîne une force subie par le système,
capable de générer une propagation de la fracture. Cette structure est censée être intégrée dans un
bain thermique à température fixe. Les modèles sont donc développés dans le cadre du formalisme
de la mécanique statistique à l’équilibre. La différence entre les deux modèles réside dans le
comportement à la rupture des ressorts cassants. Dans le premier modèle de rupture fragile,
chaque ressort cassant peut se trouver dans deux états, à savoir élastique ou cassé, en fonction de
l’extension appliquée à l’élément lui-même. La transition d’état se produit par l’absorption d’une
quantité d’énergie qui correspond à l’énergie de surface typique du critère de Griffith [119]. Dans
le second modèle, chaque ressort cassant peut se trouver dans trois états différents représentant
les régimes élastique, ramolli et cassé. L’état intermédiaire ramolli est introduit pour reproduire
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l’éventuel régime ductile du processus de rupture. Dans ce cas, nous avons un point de "résistance"
entre les régimes élastique et ductile, suivi d’un point de défaillance final correspondant à la
rupture. La transition entre l’état intact et l’état ramolli se produit après l’absorption de l’énergie
de déformation, et la transition entre l’état ramolli et l’état rompu se produit par l’absorption
d’une autre quantité d’énergie correspondant à la rupture. Ainsi, dans les deux modèles, le bilan
énergétique est similaire à ce qui est généralement supposé dans la mécanique linéaire des fractures
élastiques depuis les travaux pionniers de Griffith et Irwin [119–121], le phénomène de fracture
étant régi par l’énergie élastique, l’énergie d’endommagement et l’énergie de fracture (surface).
Cependant, l’inclusion des fluctuations thermiques modifie sensiblement les résultats et ajoute des
caractéristiques importantes à la description du système. En ce qui concerne le modèle de rupture
fragile, nous obtenons une contrainte de rupture dépendant de la température et une déformation
de rupture correspondante, représentant une transition de phase "authentique". Nous obtenons
ainsi une température critique à laquelle la contrainte et la déformation de rupture sont toutes
deux nulles et, par conséquent, le matériau est toujours cassé pour les températures supercritiques.
Il est intéressant de noter que la résistance obtenue en fonction de la température est en bon
accord avec plusieurs expériences et simulations de dynamique moléculaire, comme cela a été
démontré précédemment. Il est intéressant de noter que, bien que les ressorts cassables aient un
comportement de rupture indépendant de la température, le système global présente un point de
rupture qui dépend fortement de la température. Il s’agit d’un cas typique de système complexe
avec un comportement collectif, donnant lieu à un phénomène critique. Nous soutenons que cet
effet est pertinent dans le cas de liens faibles, tels que les liaisons hydrogène dans les matériaux
biologiques, ou dans le caoutchouc, où l’élasticité a un caractère entropique, ou dans les systèmes
métalliques ou semi-conducteurs de petite taille, tels que les nanofils considérés [122–133]. Le
modèle avec des éléments cassables ductiles présente un comportement encore plus riche. Dans ce
cas, c’est la réponse complète du système qui dépend de la température. En effet, nous avons
démontré l’existence d’une température de transition fragile-ductile T ∗ (dont l’expression est
obtenue en forme fermée) qui régule le comportement du processus de rupture. D’une part,
pour des températures inférieures à T ∗, on observe un comportement fragile caractérisé par une
transition directe des ressorts de l’état élastique à l’état cassé, sans passer par l’état ramolli
intermédiaire. En revanche, pour des températures supérieures à T ∗, nous constatons que, lorsque
l’extension appliquée au système augmente, les ressorts s’assouplissent d’abord (limite d’élasticité),
puis passent de l’état assoupli à l’état cassé (limite de rupture). La région intermédiaire ramollie
reproduit dans ce contexte discret la zone cohésive du modèle classique de Dugdale-Barenblatt de
la fracture ductile [134, 135]. Bien entendu, les points de rupture et d’affaiblissement dépendent
tous deux de la température et sont à nouveau caractérisés par des transitions de phase. En fait,
nous sommes non seulement capables de calculer la température de transition fragile-ductile, mais
aussi de prédire le comportement critique des limites d’élasticité supérieure et inférieure, ainsi
que les propriétés thermiques de la résistance à la rupture. Notre modèle est également capable
de prédire l’existence d’un régime de rupture particulier, appelé ici sur-ductile, dans lequel la
température est suffisamment élevée pour endommager tous les éléments sans action mécanique.
Dans cette situation, lorsque l’extension du système augmente, nous observons la seule transition
entre le régime ramolli et le régime rompu. D’un point de vue méthodologique, pour élaborer
l’expression en forme fermée de la fonction de partition dans les deux modèles proposés, nous
avons adopté des techniques spécifiques particulièrement adaptées au calcul du déterminant et de
l’inverse des matrices tridiagonales [96, 97]. Nous soulignons que même si les modèles présentés
ici clarifient les aspects fondamentaux des phénomènes de rupture thermiquement activés, ils
doivent être généralisés pour prendre en compte la réalité complexe de ces processus. Nous
souhaitons mentionner ici au moins quatre points qui limitent partiellement l’applicabilité de ces
modèles aux situations réelles. Le premier point concerne l’homogénéité spatiale des modèles
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adoptés. Nous avons toujours considéré que tous les ressorts des systèmes discrets avaient le
même comportement mécanique (en termes de constantes élastiques, de seuils de rupture, etc.)
En réalité, ceci n’est vrai que pour des structures monocristallines parfaites qui sont assez rares.
Il serait intéressant d’étudier ces phénomènes dans des systèmes désordonnés qui, d’une part, sont
plus proches de plusieurs structures réelles, et d’autre part, peuvent générer des comportements
critiques encore plus intéressants, typiques des systèmes complexes avec un désordre atténué
[136–147]. Le deuxième point à explorer est la cinétique des processus de rupture. Nous n’avons
considéré ici que des phénomènes quasi-statiques étudiés au moyen de la mécanique statistique de
l’équilibre. Dans les expériences réelles, la traction peut être appliquée à différentes vitesses de
traction, et la réponse dépend évidemment de ces taux de traction [148, 149]. Pour modéliser
ces phénomènes, il faudrait adopter la mécanique statistique hors équilibre, puis baser l’analyse
sur les méthodologies de Langevin ou de Fokker-Planck [100, 101, 150, 151]. En conclusion, le
troisième point à améliorer concerne le fait que le processus d’adoucissement se limite à une seule
étape de réduction de la constante élastique des ressorts cassants. Afin de mieux coller à la réalité
physique du processus d’assouplissement, il faudrait imaginer une série d’étapes où plusieurs
réductions de la constante élastique ont lieu progressivement. En ce sens, la limite d’élasticité
serait mise en œuvre par le biais d’un processus de ramollissement multiple, plus proche de ce
qui se passe dans les matériaux non linéaires réels. Le quatrième et dernier point concerne la
géométrie trop simple de notre modèle, qui devrait être améliorée (avec des treillis 2D ou 3D) afin
de pouvoir représenter des champs élastiques réels à comparer avec les modèles de la mécanique
des milieux continus.
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Chapter1
Introduction

Micro-instabilities play a key role in various mechanical systems, both artificial and biological.
In the case of artificial systems, examples of these instabilities can include the peeling of a film from
a substrate [4–10], the wave propagation in bistable lattices [11–15], the energy harvesting through
multistable chains [16–18], the plasticity and the hysteresis in phase transitions and martensitic
transformations of solids [19–29], as well as the nucleation and propagation of cracks and
dislocations in materials and alloys [30–38], and the friction at the nanoscale [39–48]. On the other
hand, in the case of biological systems, micro-instabilities manifest in the form of conformational
transitions in polymeric and biopolymeric chains [49–58], the switch between the attached and
detached states of fibrils in cell adhesion [59–64], the unzipping of macromolecular hairpins [65–69],
the sarcomeres behavior in skeletal muscles [70–76], the degradation or denaturation of nucleic
acids, polypeptide chains, and other polymers [77–86], as well as the friction of macromolecules or
soft matter [87–90]. Furthermore, it is also noteworthy to mention that friction is also essential
for the understanding of the evolution of geophysical systems [152–155] and plastic phenomena in
solid materials since it can regulate the nucleation of dislocations and fractures and control the
shear transformations and the ductile-to-brittle failure transition [156–161].

In all these physical situations, the system always presents a complex energy landscape
characterized by a multitude of basins, and, depending on which particular basin it lies in from
an energetic point of view, the system can be either in a stable or meta-stable configuration. We
point out that these systems are constituted of a large number of units that, taken individually,
present well-defined physical states, but, considered as a whole, present a rather non-linear and
chaotic behavior difficult to describe at first. The transitions between these states or, equivalently,
the explorations of the complex energy landscape, govern the macroscopic behavior of the whole
system and, in particular, its static and dynamic features. Microinstabilities can be divided into
two main classes. In one type, the intrinsic micro-instabilities may describe bistable (or multi-
stable) units with transitions between one ground state and one (or more) metastable state(s)
(e.g. for the conformational folded-to-unfolded transitions in macromolecules or martensitic phase
changes in metallic alloys or also friction). These states represent different, yet mechanically
resistant conformations. This case can be represented in a one-dimensional setting by introducing
an effective double-well potential energy U , as shown in Fig.1.1 (top-left panel). We observe that
the choice of a simple one-dimensional system is aimed at a simple presentation of the idea. In
other words, in this case, x is a variable that perfectly represents an effective order parameter
adopted to describe the transition between the different wells, whereas all other variables can be
considered to be minimized. In the second class, the micro-instabilities can describe transitions
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Figure 1.1: In the first row one can find two different energy landscapes representing two classes
of micro-instabilities: bistability between a folded (ground) state and an unfolded (metastable)
state in the left panel, and transition between attached (unbroken) and detached (broken) states
in the right panel. In the second and third rows, one finds some examples of microinstabilities
in biophysics and materials science, corresponding to conformational transitions (bistability or
multistability) in the first column, or rupture phenomena (deadhesion and decohesion) in the
second one.
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between unbroken and broken states of the breakable units of the system (e.g. in the unzipping
of hairpins, denaturation of macromolecules, fibrillar biological adhesion, peeling of films, cracks
propagation, and so on). This process can be reversible, partly reversible, or irreversible according
to the specific physical phenomenon. The one-dimensional energy landscape considered in this
second case is shown in Fig.1.1 (top-right panel). Here, the unbroken configuration corresponds
to a potential well and the broken configuration corresponds to constant energy and zero force.

In the second and third rows of Fig.1.1, one can find the most of previously mentioned
examples following the classification between folding/unfolding or breaking/unbreaking energies
(see the first row of the image). The different situations have been further subdivided between
biophysics (second row) and materials science (third row), for the sake of clarity. It is interesting
to note that there is a parallel between all the problems in biophysics and materials science.
This similarity is at the basis of the development of mathematical models that are applicable
indistinctly to both areas of research, as discussed in the following. In fact, the main goal of this
thesis is to develop models between physics and mechanics that are able to study state transitions
(micro-instabilities) in all these biological and artificial systems in order to better understand the
effects of temperature and external mechanical actions on their behavior.

Since the characteristic length that separates two different states ∆x is of the order of units of
nanometers and the energies involved in chemical bonds are of the order of tens of KBT , it is
crucial to observe that the effects of the temperature on these systems is non-negligible. As a
matter of fact, the transitions between the states in all previous systems are strongly influenced by
thermal fluctuations, which can modify the probability of being in a given state or the passage rate
between the neighboring energy wells. This is the reason why the correct framework in which we
can develop the theoretical modeling of these phenomena is within classical statistical mechanics.
In particular, the systems exhibiting switching mechanisms between different energy basins can
be studied by means of the spin variables approach which will be described more in detail in the
following discussion. For now, we just mention that the spin approach is based on the introduction
of a series of discrete variables (similar to the spins used to deal with magnetic systems), which
are able to identify the state associated with a given system unit (see the variable S in Fig.1.1,
first row). For example, the bistable potential energy of Fig.1.1 (first panel) (continuous line) can
be approximated by a bi-parabolic function (dashed lines) with the switching among the wells
described by the spin variable. It means that, depending on the value of these discrete variables,
the energy function may change its shape and, in particular, the position and the depth of its
wells.

The first theoretical approaches based on this method have been developed to model the
biomechanical response of skeletal muscles [70, 71]. Since these pioneering investigations, this
technique has been generalized to study different multi-stable systems including the folding of
macromolecules [91, 92, 94, 95, 102, 103, 162–164], the adhesion/deadhesion processes [1, 93],
the phase transformations in solids [2, 165] and the stick-slip on rigid substrate [166]. The
introduction of the spin variables frequently simplifies the calculation of the partition function
and, consequently, the analysis of the corresponding averaged thermodynamic quantities. This
theoretical device is able to give mathematical results in closed form, very useful to advance
the understanding of the underlying mechanics and physics. It is important to remark that,
as discussed in detail in Ref.[91], the evaluation of the partition function based on the spin
approach assumes that for both configurations all possible deformations (values of x in Fig.1.1,
first row) can be attained by the system. This corresponds to the assumption of a multivalued
energy function (see the superposition of dashed lines in Fig.1.1, first row). As shown numerically
in Ref.[91], with typical experimental temperatures, the effect of this approximation can be
considered (statistically) negligible since these artificial configurations (superposition of dashed
curves) have an energy sensibly higher than real configurations (continuous lines). This technique
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has been largely exploited to investigate bistable systems from biophysics and materials science,
as mentioned above.

The stretching of macromolecular chain or, more in general, the mechanical perturbation of
small systems, can be typically performed following two different experimental protocols [91–93].
In particular, experiments performed at constant applied forces (realized through extremely soft
devices) correspond to the Gibbs statistical ensemble, and experiments performed at prescribed
displacements (conducted with extremely hard devices) are a realization of the Helmholtz statistical
ensemble. In general, these two boundary conditions lead to different force-extension responses
since, in each of the two cases we explore a different phase space. Actually, depending on the
equivalent stiffness of the device, the stretching experiment corresponds to a situation placed in
between the Gibbs and Helmholtz ensembles of the statistical mechanics [94, 95].

The introduction of different boundary conditions leads to the notion of thermodynamic limit.
In particular, it is possible to prove under precise hypotheses that the two different experimental
strategies give the same results in terms of the force-extension curve when the number of units is
large enough (thermodynamic limit) [56, 98, 108–112, 167]. Therefore, it is important to remark
that the differences between the force–extension curves measured under Gibbs or Helmholtz
conditions can be noticed only for a moderately small number of domains of the chain under
consideration (small systems thermodynamics). Indeed, for a large number of domains, i.e. in
the thermodynamic limits, the different Gibbs and Helmholtz statistical ensembles are equivalent
and they are described by the same constitutive force–extension response [56, 98, 108–112, 167].
However, it is important to mention the fact that in some cases the ensemble equivalence is not
verified and we can have different macroscopic responses of the system in the thermodynamic
limit too [113–118].

1.1 Force-spectroscopy methods and micromechanical testing
Since their development and introduction in research, micro and nano force-spectroscopy

methods and micromechanical testing devices have revolutionized our understanding and manipu-
lation of matter at the smallest scales and enabled us to probe and characterize the mechanical
properties and interactions between materials and objects on the micro and nanoscale. By
applying controlled forces and measuring the corresponding responses, in fact, it is possible
to obtain valuable insights into the behavior of materials, investigate surface interactions, and
explore the fundamental forces governing the micro and nano physical world. These methods
leverage advances in nanotechnology, scanning probe microscopy, and precision instrumentation
to achieve exceptional resolution and sensitivity in force measurements in order to investigate
mechanical properties at the nano and microscale for a vast variety of physical phenomena such
as adhesion/decohesion processes, phase transformation, fracture, and crack propagation.

Usually, for biological systems, the different three-dimensional conformations of various
macromolecules, such as nucleic acids, polysaccharides, and proteins, can strongly affect their
biological functions, and, therefore, it is essential to study the possible rearrangements induced by
external factors, such as the entropic, the purely mechanical, or the chemical ones. For example,
the correlation between proteins’ structure and function is entirely determined by their tertiary
structure. Depending on the particular action applied to the proteins, their configuration can
be modified, leading to drastic changes in their chemical and/or physical properties, ultimately
resulting in the loss of their biological purpose. For instance, the capacity of these macromolecules
to keep their spatial configuration stable against mechanical factors must be tested to evaluate
their ability to preserve their original biological behavior. Indeed, if a macromolecule is pulled
with a large force, it can lose or change its biological function since the force reduces the structural
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stability and induces rearrangements. Examples of these phenomena can be the loss of catalytic
capacity for an enzyme or the inability of an antibody to bind to an antigen. Thus, mechanical
actions on biological macromolecules can cause changes in their functions, with significant
physiological consequences. Studying the link between the three-dimensional conformation of a
macromolecule and its function can be directly done by using force spectroscopy methods, which
for example can be applied to unfold, through mechanical stretching, the native folded structure
of a macromolecule. The controlled unfolding leads to the estimate of the involved forces (it is
indeed possible to measure the force-extension relation), the energy landscape, and many other
dynamic properties of the system under investigation. We remark that the energy landscape of
most biological macromolecules shows a multi-stable shape, characterized by several metastable
states corresponding to different conformations. Therefore, the paths the system follows to switch
among these local minimums are specified by characteristic times that depend on the energy
barriers between the states and the external actions applied to the system. The mechanical
experiments on single-molecule are extremely useful to study intra- and inter-molecular forces
and to obtain information about the thermodynamics and kinetics of several molecular processes.
Different force spectroscopy techniques allow the investigation of these macromolecular features.
Single-molecule experiments are indeed based on laser optical tweezers (LOT), magnetic tweezers
(MT), atomic force microscopes (AFM), and micro-electro-mechanical systems (MEMS) [168–173].

On the other hand, different force spectroscopy techniques such as the micropipette aspiration
and the tensile test are employed to study macromolecules’ attachment/detachment behavior on
a substrate or the fracture or crack propagation and nucleation in nanowires and other various
artificial micro and nanosystems. The need for a different type of experimental methodology, in
the latter cases, arises from the fact that the forces needed to start, for instance, the detachment
of a macromolecule or a cell from a substrate or the nucleation of a crack in a nanowire, are
much higher and, therefore, cannot be studied with the same single-molecule force-spectroscopy
techniques described for the biological case. In any case, all these approaches are important
not only for probing the response of a single macromolecule but also for testing the validity of
thermodynamics and statistical mechanics at the scale of atoms and molecules. In the following
discussion, we describe briefly some of the most useful techniques used to investigate micro and
nanoscale systems.

1.1.1 Optical tweezers
Optical tweezers are devices able to exploit one or more focused laser beams to hold and move

micro- or nano-particles or beads (Fig.1.2.a). The first detection of forces on micro-particles
was performed by Arthur Ashkin in 1970, paving the way for the use of this new technology
[176, 177]. Several years later, Ashkin and colleagues developed real single-beam gradient force
traps, able to control the position of microscopic particles in the three-dimensional space [178]. In
2018, Ashkin was awarded the Nobel Prize in Physics for introducing these devices, which were
eventually used to manipulate atoms, molecules, and biological structures. This technique is able
to generate an actual energy well in the three-dimensional space inducing a force applied to the
particle proportional to the displacement from the equilibrium position pinpointed by the well.
Hence, the optical tweezers act like a linear spring [174]. These devices are able to apply forces
in the range 0.1-100 pN with an intrinsic stiffness of 0.01-1 pN/nm and to measure the particle
position with sub-nanometer resolution. Because of the rather limited force range, they have
been mainly used in experiments on DNA and RNA but also with proteins or other molecules.
However, the high-intensity laser used for this optical trapping generates local heating, causing
degradation or denaturation of biological structures and an alteration of the viscosity of the
solution. A comprehensive tutorial on laser optical tweezers can be found in the literature [179].
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a) b)

Figure 1.2: Panel a) scheme of a dual-trap optical tweezers configuration. Two focused laser
beams are used to create two independent optical traps, which actuate two beads trapped at the
focal points. The distance between the beads can be varied arbitrarily, thus exerting a mechanical
force on the molecule tethered between them. The figure is reproduced from Ref.[174]. Panel
b) basic setup of magnetic tweezers. A molecule is anchored between the surface of a container
and a tiny, paramagnetic bead. When a pair of magnets generate a magnetic field, the bead
becomes magnetized and develops a magnetic moment m⃗0. As a result, the bead experiences a
force proportional to the field gradient. By rotating the external magnet, the molecule can be
coiled or twisted in various ways. The figure is reproduced from Ref.[175].

1.1.2 Magnetic tweezers

The second force-spectroscopy technique we mention is based on magnetic tweezers, which
use magnets or electromagnets to create a magnetic field gradient able to generate a force acting
on a paramagnetic bead (Fig.1.2.b). The force is applied in the direction of the field gradient.
Typically, the investigated macromolecule is attached to the bead and it is therefore stretched.
The second end-terminal of the molecule is tethered to the base or substrate, where the experiment
is performed. The position of the magnets and their velocity are controlled in order to apply
the desired molecular unfolding. The real-time detection of the bead position is realized with an
optical system and a CCD camera. From the historical point of view, Francis Crick and Arthur
Hughes first introduced a method based on magnetic particles to measure the physical properties
of the cytoplasm in 1955 [180]. This technique was later improved with the idea of studying
the rheology of the cell [181, 182]. Only in the 90s, this methodology has been applied to single
molecules and, in particular, to study the elasticity of DNA [183, 184]. In modern magnetic
devices, the force applied can reach the value of 200 pN and the magnetic trap stiffness is very
low (around 10−4 pN/nm). The damage by heating and photodamage in biological structures is
considerably reduced with magnetic tweezers based on permanent magnets. However, in some
setups with electromagnets, high electric current may generate a large amount of heat, which
requires the use of cooling systems. Importantly, magnetic tweezers, in addition to applying a
longitudinal pull on the macromolecule, can be used to generate a chain twist. This is useful for
studying conformational transitions induced by twist mechanisms. In addition, magnetic tweezers
have the advantage of being able to really exert a constant force while in atomic force microscopes
and optical tweezers, the constant-force mode can be achieved only by feedback-control systems,
which are quite complex.
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Figure 1.3: Schematic diagram of an atomic force microscope (AFM). When pressed against a
layer of protein attached to a substrate, the silicon nitride tip can adsorb a single protein molecule.
The extension of a molecule by retraction of the piezoelectric positioner results in the deflection
of the ARM cantilever. This deflection changes the angle of reflection of a laser beam striking the
cantilever, which is measured as the change in output from a photodetector. Image edited from
[185].

1.1.3 Atomic force microscope
The force-spectroscopy based on the atomic force microscope is a well-established technique

for studying strong covalent bonds and stiff intermolecular and intramolecular interactions. The
original AFM is a device useful to investigate the morphological features of a material surface,
capable of reaching an atomic resolution. This is typically done by monitoring the force between
the surface under study and the tip of a silicon (or silicon nitride) cantilever. The position of
the tip is measured by observing the deflection of the cantilever through a standard optical
method (see Fig.1.3). A piezoelectric system allows the scanning of the whole surface, eventually
producing an image corresponding to the topographical structure of the surface. This classical
atomic force microscope has been invented in 1985 by Gerd Binnig, Calvin Quate and Christoph
Gerber and commercialized for the first time in 1989 [186]. The AFM technique has been further
generalized in order to apply force on a single molecule and to measure force-extension curves
of macromolecules. In this application, the chain is stretched between the tip of the cantilever
and the substrate with forces ranging in the interval 10-20 nN, with stiffness values of 10-10000
pN/nm. The spatial resolution is around 0.2 nm. These data allow us to state that this method
is useful for large macromolecules such as proteins. While the classical pulling speeds used in
single-molecule experiments vary in the range of a few nm/s to about 10 µm/s, the recently
introduced high-speed AFM (HS-AFM) allowed to reach pulling speeds of the order of 4000 µm/s
[187–190]. This is a significant development since it permits to compare results of experiments
with those obtained by molecular dynamics simulations, which offer atomic-level descriptions of
the forced unfolding within the out-of-equilibrium statistical mechanics [191, 192].

1.1.4 MEMS devices
The last class of devices used to perform single-molecule experiments is represented by the

micro-electro-mechanical systems or MEMS devices. The development of MEMS devices started in
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a) b)

c)

Figure 1.4: Example of a MEMS device. a) Scheme of silicon nanotweezers (SNT) for the DNA
mechanical characterization in liquid where the displacement is provided by comb-drive actuators
and measured by a differential capacity sensor. Opposing tips are used for handling biomolecules,
for example, DNA molecules as shown in the inset picture. b) Top view of the SNT aligned to
insert the tips into the cavity where DNA molecules are floating in a liquid medium. c) Tips of
the SNT inside the liquid. Image edited from Ref.[84].

the 60s by means of the same technologies used for microelectronics. In fact, they are often based
on silicon substrates suitably adapted and enriched with various components [193]. In general,
they are based on the combination of microelectronic systems with partially mobile mechanical
systems. The moving components can be plates useful to change the capacitance of the structure
or electrostatically controlled cantilevers. Typically, these systems are used to obtain sensors and
captors of several physical quantities. MEMS for biological or biomedical applications are named
Bio-MEMS and may integrate micro-fluidic chambers, biosensors, microarrays, microelectrodes,
or microreactors [194]. As mentioned before, force spectroscopy techniques, based on optical or
magnetic tweezers and AFM are able to make precise measurements at the single-molecule level,
however, their implementation and use are quite complex and therefore they cannot be adopted
for intensive and systematic biosensing. In this context, the application of MEMS devices is
more suitable. For instance, a micromachined DNA manipulation MEMS platform has been
developed to stretch and rotate a single DNA molecule [195]. This device exploits the combination
of micromachined magnetic tweezers and microfluidic channels. Another example concerns a new
hybrid field microfluidics approach, employing both hydrodynamic forces and an electric field to
regulate the DNA initial conformations [196]. Moreover, micro-electro-mechanical systems have
been developed for monitoring bio/chemical interactions of biomacromolecules, by controlling
their mechanical properties [197]. To conclude, a specific MEMS device shown in Fig.1.4, referred
to as silicon nanotweezers (SNT), has been introduced to mechanically characterize a DNA bundle
exposed to ionizing radiations, delivered by a therapeutic linear particle accelerator (LINAC) [84,
85, 198]. The radiation induces a mechanical degradation i.e. a population of breaks in a DNA
bundle, which can be quantified by measuring the elastic properties of the bundle itself [199, 200].
Hence, one could provide a direct relationship between radiation dose and its damaging effects.
The real-time observation of DNA degradation under ionizing radiation is useful for developing
better techniques for the treatment of tumors.



1.1. Force-spectroscopy methods and micromechanical testing 9
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Figure 1.5: Scheme of an adhesion force measurement on an individual cell. It consists in placing
the tip of a micropipette (usually with a diameter of a few micrometers) over the cell attached to
a treated substrate and applying a suction pressure p corresponding to forces of the order of units
of µN. The force is applied for a few instants and, if the cell remains attached to the substrate,
this process is repeated increasing the applied suction force until the cell is eventually detached.
Image edited from Ref.[201].

1.1.5 Micropipette

The micropipette technique relies on the suction/aspiration of a cell by the application of
precise and sensitive negative pressure from a pressure-based controller. In this process, the cell
is first immobilized on the tip of a micropipette and suction is applied to draw the cell inside the
micropipette chamber. Usually, to quantify the distance traveled by the pipetted portion of a cell
through the micropipette tube, the cell’s position can be tracked using a microscope. This behavior
is predicted by a lumped parameter model which represents the cell as a combination of springs
and dashpots (thereby modeling stiffness and viscosity, respectively) [202]. The deformation
displayed by cells undergoing micropipette aspiration shows a linearly elastic response as a result
of its stiffness, and a creep response due to its viscous behavior. This response, in biological
systems, for example, is unique to different types of cells (e.g. white blood cells measure lower
stiffness than chondrocytes). This difference in cell stiffness affects the way in which cells interact
with one another and the way they are affected by their immediate environment. Micropipette
aspiration, then, is a very versatile technique that allows stiffness to be quantified across many
different cell types. Being able to quantify the mechanical properties of cells is a useful tool for
the study and diagnosis of different pathologies. Micropipette manipulation is often preferred over
traditional techniques because of the fragile and very small nature of the individual cells under
investigation. Furthermore, non-invasive micropipette aspiration allows repetitive measurements
on the same sample so that variations in cell tension of individual cells within a tissue can be
monitored over time. This method is also a powerful tool to trace the spatiotemporal map of
tensions inducing morphogenesis [203]. Some of the many interesting aspects of adopting this
technique are the cost accessibility, the easiness of usage, and the ease with which one can design
experiments involving micropipettes especially because of their compact dimensions (that can
usually fit into different microscopes) and the possibility to be employed in automated tasks
thanks to modern control software. This technique is also widely used to study nuclear mechanics
and provide important information on the viscoelastic behavior of the nucleus over different time
scales and that is why it is a tool that has been widely used to study many biophysic phenomena,
including the mechanical properties of the nucleus, the exclusion of nucleoplasm from chromatin,
chromatin stretching, and to study the detachment/attachment forces found in the cell-substrate
adhesion [202].
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Figure 1.6: a) Detail of the tensile gripper design. b) Example of nanocrystalline Ni tensile
dog-bone sample. Image edited from Ref. [204].

1.1.6 Small scale tensile testing

Tensile testing is a fundamental mechanical testing technique capable of evaluating the
behavior of materials under tension. It involves subjecting a sample to an applied load along its
axis, resulting in the elongation of the material until its failure point threshold. While tensile
testing is commonly performed on macroscopic samples, its recent microscopic application opened
new possibilities for exploring the mechanical properties of microstructures, including nanowires.
This technique provides valuable insights into the mechanical behavior of materials at the smallest
scale, enabling the understanding of the unique properties exhibited by microstructures. The first
step in conducting tensile testing on microscopic samples is the preparation of the specimen, and,
in the case of nanowires, this typically involves the fabrication of individual wires using techniques
such as chemical vapor deposition, electrochemical deposition, or lithography. Furthermore,
special care must be taken to ensure the nanowires are free from contaminants and defects that,
at a such small scale, could easily affect their mechanical behavior. Once the nanowire specimen
is crafted, it is attached to a suitable apparatus for testing. Manipulating and securing such small
samples requires specialized techniques and tools such as nanomanipulation systems equipped
with nanoscale grippers that allow for the accurate handling and alignment of the nanowire within
the testing apparatus. One common approach involves using a microscale probe or an atomic
force microscope (AFM) tip to exert a controlled force on the nanowire. This allows measuring
the force and displacement simultaneously, providing real-time data on the mechanical response
of the nanowire. During the tensile testing process, the nanowire is gradually stretched until
it reaches failure and its deformation behavior can be captured using high-resolution imaging
techniques, such as electron microscopy, which enable the observation of the nanowire’s structure
and any deformation mechanisms occurring during the test. The data can then be confronted with
molecular dynamics simulations or finite element analysis, thus providing detailed information
about stress distribution, strain localization, and atomistic-level interactions occurring within the
nanowire.
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1.2 Applications
The study of micro-instabilities can span many different fields of research that, at first glance,

may not appear related to each other. Micro-instabilities, in fact, are a type of phenomena
that occur at the micro and nanoscale in a multitude of cases: we can observe them in phase
transformation processes that can affect macromolecules, in biology, or nanowires, in material
science, in the adhesion and deadhesion of cells from an organic substrate as well as in the attach-
ment of gecko’s paws on a flat artificial surface to cite few. In fracture mechanics, furthermore,
microinstabilities play a crucial role in the mechanical behavior of crack propagation both in
biological and artificial systems. Of course, the behavior and nature of these systems are very
different while being considered from a macroscopic point of view but, as soon as we zoom in at
the nano and microscale, we can observe many similarities, especially from an energetic point
of view. At the microscopic scale, in fact, the macroscopic system can be subdivided modularly
into microsystems that present a more simple energy landscape that dictates the overall behavior
of the specific phenomena considered. Because of the particular scale of the systems considered
in these examples, the temperature must be taken into consideration. This is why statistical
mechanics is the perfect framework to address these problems.

In the following, we briefly describe some examples of microinstabilities in different domains
of research.

1.2.1 Phase transformations in macromolecules
Phase transformations occur when a system undergoes a structural change, resulting in a

distinct arrangement of atoms and a corresponding alteration in its properties. Usually, these
transformations can be driven by factors such as temperature, pressure, or composition variations.
Understanding phase transformations is of essential importance in both material science as well
as in biology, as they often lead to the emergence of unique properties and functionalities. One of
the main examples in biology, where a phase transformation may occur, is the DNA structure.
DNA in fact, like many other macromolecules, is susceptible to phase transformation that can
occur depending on the force applied, chemical reactions, or simply the thermal agitation of
the nearby ambient. Before understanding how these phenomena impact the functionality of
these macromolecules, we briefly describe here some of the main models still used in research to
understand the behavior of these microscopic systems.

While the structure of DNA was first elucidated in 1953 by Watson and Crick [205], who
obtained the Nobel Prize in Physiology or Medicine 1962, its mechanical behavior has been
tested by magnetic tweezers force spectroscopy only in 1992 [183], eventually obtaining the
force-extension relation. These results, for individual DNA molecules, were obtained at three
different salt concentrations and with forces in the range from 10−14 to 10−11 N [183]. These
experimental achievements have been completely understood from the theoretical point of view by
means of the statistical mechanic thanks to the works of Marko and Siggia [206, 207]. They proved
that the DNA mechanics is well reproduced by the worm-like chain (WLC) model rather than
by the freely-jointed chain (FJC) model. The ideal FJC model schematizes the macromolecule
as a sequence of N non-deformable segments of length b (referred to as Kuhn length). The
contour length LC is the total length of the macromolecule at the maximum physically possible
extension and then we have LC =Nb for a chain with N units. The FJC model does not take
physical interactions among segments into account. Hence, there is no preferred angle between
two adjacent segments. This model is useful to describe simple polymer chains but is not adapted
for the DNA. Differently, the WLC model perfectly mimics double-stranded DNA, in the first
entropic region of the force-extension curve [206, 207]. In the ideal FJC model, no forces are
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Figure 1.7: Panel (a): room temperature force-extension curves for a single dsDNA molecule in
different salt concentrations. The solid lines correspond to theoretical curves calculated using
the global coupling theory developed by [208]. Experimental data are taken from [209]. Panel
(b): zoom in on the overstretching portion of panel (a). Panels (a) and (b) are reproduced with
permission from [208]. Panel (c): force-extension curve (blue) from one dextran molecule obtained
through AFM force spectroscopy and its fit in the low-force (before the transition) and high-force
(after the transition) regime obtained by the extensible FJC model (reproduced with permission
from [210]).

necessary to fold or bend the chain. On the contrary, in the WLC model, a cost in energy,
depending on the angles between adjacent segments, is introduced. More precisely, the energy is
set to zero if all segments are aligned and therefore a force can be applied to fold or bend the
chain. This property is taken into consideration by means of a new parameter called persistence
length p, which is defined by the ratio between the mechanical flexibility or bending stiffness and
the energy of thermal fluctuations. Hence, it takes into account the balance between enthalpic
and entropic contributions [206]. From the physical point of view, the persistence length p can be
defined as the length over which correlations in the direction of the tangent are lost. The DNA
used in the first force spectroscopy experiment corresponds to a contour length LC = 32.8 µm
and a persistence length p= 53.4 nm [206, 207].

Refined experiments have been realized on DNA with magnetic torque tweezers in order to
measure the effective torsional stiffness as a function of the applied force [211, 212]. More recently,
an alternative, more refined, WLC model was proposed to correctly take account of both bending
and torsional stiffness by adding a coupling term between twist and bend deformations [213,
214]. In further investigations, the DNA molecule has been pulled with larger forces and an
intriguing overstretching phenomenon has been observed [215]. In particular, a force plateau
at around 65 pN has been measured in the force-extension curve [215]. In Fig.1.7.a) and b),
we show recent results proving the dependence of the plateau on the salt concentration. Here,
the theoretical results are taken from [208] whereas the experimental ones from [209]. The
overstretching behavior can be interpreted by means of a bistability of the DNA chain structure.
However, the real molecular origin of this transition has been largely investigated and a debate
exists on the DNA conformation after the overstretching: many researchers think that there is a
simple mechanical denaturation leading to a transformation of the double-stranded DNA into
two single-stranded DNA [216, 217]. However, other researchers have proposed the existence of a
new DNA conformation (called S-DNA or stretched DNA), which is an intermediate structure
between the double-stranded DNA and its denatured structure [218]. Finally, other researchers
thought that melting or S-DNA was depending on the composition of amino acids of the chain
[219]. Furthermore, in recent results, a discrete worm-like chain model has been implemented to
describe the DNA stretching under force and to investigate dsDNA to ssDNA and dsDNA to
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Figure 1.8: Force spectroscopy measurements on proteins based on the AFM device. Panel (a):
worm-like chain (WLC) model for a semi-flexible chain used to interpret the unfolding on each
protein domain. Here, Lc is the contour length of the chain and p is the persistent length. Panel
(b): sawtooth force-extension curve describing the sequential unfolding of the protein domains.
Panel (c): force-extension curve for the recombinant human tenascin-C. Panel (d): force-extension
curve for the cytoskeletal protein spectrin showing a heterogeneous persistence length. Panel (e):
force-extension curve for a recombinant fragment of titin consisting of titin Ig domains 27-34.
The figure is reproduced with permission from [185]

S-DNA transitions [220].
The force-extension curve exhibiting a force plateau, corresponding to a conformational

transition of the molecule, has been observed also for other macromolecules. An interesting
example concerns a polysaccharide called dextran. A dextran filament has been tethered to a gold
surface and probed with the atomic force microscope tip by means of a vertical stretching [221]. At
low forces, the deformation of dextran is dominated by entropic forces and can be described by the
FJC model with a Kuhn length of around 6 Å. At more elevated forces the dextran filament exhibits
a reversible conformational transition characterized by a force plateau [221]. This transition has
been explained in terms of a two-state model implemented through Monte Carlo simulations [222].
In Fig.1.7.c we show the force-extension curve for dextran recently obtained with AFM force
spectroscopy [210]. These measurements have been realized with a refined AFM variance analysis
able to detect conformational changes at the sub-angstrom scale [210]. Also, artificial polymers can
show conformational transitions characterized by a force plateau. The study of these structures is
referred to as covalent polymer mechanochemistry. In this context, chemical transformations are
activated by external mechanical forces applied to the polymer chain. An example of interesting
molecular architecture is given by the cyclobutane mechanophore operating as a gate to regulate
the mechanical activation of a second mechanophore, thus resulting in a mechanochemical cascade
reaction [223]. Single-molecule force spectroscopy shows a force-extension curve characterized by
a force plateau in correspondence to the opening/closing transition of the gate [223]. Also, in this
case, the underlying bistability is able to generate the conformational transition of the molecular
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Figure 1.9: Three examples of stress-strain curves of materials showing the Lüders bands in the
first case, the Portevin–Le Chatelier effect in the second case, and the Savart–Masson effect in
the third one. In all these phenomena, we observe a series of microinstabilities generating plastic
behavior. These images are respectively taken from Ref.[227], Ref.[228], and Ref.[229]

structure.
We have introduced a first class of mechanical responses characterized by a force plateau

corresponding to the transition of the units of the chain between two configurational states. This
force plateau corresponds to a synchronized transition of all the units, which is induced by the
external force applied to stretch the chain. A second class of responses has been observed in
different single-molecule experiments, typically concerning multi-domain proteins. The folding and
unfolding of these protein systems have been widely observed through AFM force spectroscopy.
Many proteins with important biological mechanical functions are composed of many units having
the same chemical composition, i.e. the same amino acid sequence. Moreover, each unit can
have one or more stable configurations and the transition between these states can be induced by
applied forces. The typical force-extension response observed for these systems is represented
by a sawtooth curve, where each force peak represents the unfolding of one unit. Therefore, in
this case, the overall unfolding process is sequential and not synchronized as discussed above for
other structures (nucleic acids and polysaccharides). The characteristic sawtooth pattern, with
the number of peaks equal to the number of domains, has been first observed with titin [224] and
later with tenascin [225] and spectrin [226]. The sequential character of the force-extension curve
can be found in Fig.1.8, where we show the WLC model for the unfolding of one unit, the overall
chain unfolding under AFM stretching and some examples of proteins [185].

1.2.2 Phase transformations in materials science
In the plastic behavior of materials, each single plastic event can be explained through the

instabilities, which are able to switch the system from a ground state to a permanently deformed
or metastable state. These forms of microinstabilities can be seen in different shapes of the
force-extension (or stress-strain) response of plastic materials. A first example of these instabilities
can be found in the so called Lüders bands (first panel of Fig.1.9) that are localized bands of
plastic deformation observed in metals experiencing tensile stresses, which usually start at one
end of the specimen and propagate toward the other one [227]. During the band propagation,
the stress-strain curve is quite flat with some fluctuations due to the internal microinstabilities.
Another example is given by the Portevin-Le Chatelier effect, which can be observed as an
unstable plastic flow during tensile tests of some dilute alloys (under certain regimes of strain
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Figure 1.10: Left panel: cross-sections of a Cu nanowire. Two different crystalline structures can
be identified and they are separated by a domain wall, which is moving in response to the applied
strain. Right panel: temperature effect on the stress-strain curves of the Cu nanowire obtained
from MD simulations. Both figures are reproduced with permission from [230].

rate and temperature) [228]. In this case, a series of peaks can be seen in a region with a positive
slope of the stress-strain curve. These peaks represent the sequence of instabilities of the plastic
phenomenon (center panel of Fig.1.9). Other manifestations of discontinuous deformation are
staircase creep and the Savart–Masson effect. They imply the formation of steps on loading
curves with a constant stress rate in a soft testing machine (right panel of Fig.1.9). There are
relatively few studies on the Savart–Masson effect [229], although it was discovered long before
the Portevin-Le Chatelier effect. Recent studies show how the plastic behavior of materials is
strongly affected by their state of disorder. In particular, amorphous solids exhibit plastic flow
which has been analysed and reproduced by means of molecular dynamic simulations [144–147].
Also failure phenomena are largely influenced by disordered geometries [136–143]. However, the
study of this topic is boyond the scope of the present thesis.

For the nanoscopic cases instead, nanowires, with diameters on the order of nanometers,
exhibit exceptional properties due to their high aspect ratios and quantum confinement effects.
Various phase transformation processes play a significant role in determining the behavior of
nanowires. For instance, the solid-to-solid phase transition from one crystal structure to another
can drastically alter the electronic and mechanical properties of nanowires. Recent research
revealed that single-crystalline metal nanowires with nanometric cross-section can exhibit a
pseudo-elastic behavior characterized by very large elongations (up to 50% of the original length)
[230–233]. This behavior, which is exceptional compared to all other shape memory alloys, can be
explained by a reversible lattice reorientation process. It means that the deformation mechanism
is characterized by a twin boundary propagation between two differently oriented face-centered
cubic (FCC) crystalline structures. This behavior is typical of Cu and Ni, where we can identify
the two following configurations: the original one named ⟨110⟩/{111} with axis ⟨110⟩ and surfaces
{111}, and the deformed one named ⟨001⟩/{100} with axis ⟨001⟩ and surfaces {100}, as shown
by [230] (see left panel of Fig.1.10). Because of the nanometric dimensions of the cross-section
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Figure 1.11: Left panel: MD simulation for the nucleation of a new phase in a helix-structure
germanium nanowire. Right panel: temperature effect on the stress-strain curves of the Ge
nanowire obtained from MD simulations. Both figures are reproduced with permission from [234].

geometry, the surface-to-volume ratio is very large, and surface energies dominate the strain
energy difference between the two different nanowire configurations. In this study, a series of
molecular dynamics simulations have been performed to numerically obtain the stress–strain
behavior of Cu nanowires at different temperatures and under quasi-static tensile deformation (see
right panel of Fig.1.10). The simulations are based on the embedded-atom-method interatomic
potential for Cu, and the uniaxial displacement-controlled loading strategy is comparable to the
Helmholtz fixed-displacement approach.

Semiconductor nanowires have been recently studied since their properties are sometimes
more interesting than those of the bulk counterpart [234]. For this reason, the thermo-mechanical
properties of ultrathin germanium nanowires have been investigated by means of molecular
dynamics simulations [234]. We consider here the results concerning the helix Ge nanowire with
a radius of 1.8 Å, for which the stress-strain curve has been obtained for temperatures of 100,
200, 300, and 400 K [234] (see right panel of Figure 1.11). The simulations for germanium were
based on the Stillinger-Weber potential, coupled with the Nosé-Hoover thermostat to impose
the system temperature. The helical structure is perfectly ordered initially, as shown for null
strains in the left panel of Figure 1.11 from [234], and exhibits a transition to an amorphous
structure, following a plastic process that begins with a peak of stress, namely the nucleation
stress. After the yielding strain, the unfolded region evolves into the one-atom chain structure.
In the two examples of nanowires discussed, we considered systems where two possible states
or configurations are present. In the first example, they correspond to two different crystal
structures, and in the second example to a regular helical structure and an irregular amorphous
structure.

1.2.3 Adhesion and deadhesion processes
Adhesion and deadhesion processes play pivotal roles in various research fields such as material

science, biophysics, and engineering. Understanding these phenomena, especially on the micro
and nanoscale, is crucial for the development of advanced materials, new effective drugs, or
elucidating biological processes. In biology, cell adhesion refers to the process where different cells
start creating bonds between each other (in the case of cell-cell adhesion) or with a substrate
in their surroundings usually called the extracellular matrix adhesions (cell-ECM). This linkage
process usually is made possible through special protein complexes. In these cases, the adhesion
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Figure 1.12: Schematic of a cell adhered to a fibrous extracellular matrix (ECM). Stress fibers
connect the focal adhesion band/plaque and the nucleus. Image edited from [235].

phenomenon involves both the recognition and binding of structural proteins as well as the
transmission of mechanical forces throughout the adhesion process [236]. More specifically, in
nature, multicellular organisms usually require a 3-dimensional structure in order to both provide
structural integrity to the organism itself and to denote functional tissue boundaries and delineate
specific microenvironments [237, 238]. Even the slightest alteration in cell adhesions can strongly
influence cellular mechanotransduction and mechanosensing in a cytoskeleton-dependent manner,
thereby linking to tissue development, immune activation, and tumorigenesis [239]. Therefore,
pinpointing the key molecules and quantifying the adhesion forces involved can reveal essential
information on the dynamic process of cell adhesions. As an example, in Fig.1.12 we show a
schematic of a coarse-grained model for the adhesion process of a biological cell on the extracellular
matrix. In this model, the stress fibers connect the focal adhesion (FA) band/plaque and the
nucleus. The FA band/plaquem then, is connected to ECM through an integrin layer whose
density is positively correlated with the fiber density underneath the cell. Furthermore, in this
case, the ECM is treated as an elastic material.

Deahdesion, on the other hand, is the process opposite to adhesion and involves the separation
or breaking of the intermolecular forces between two surfaces. Understanding deadhesion pro-
cesses, then, is essential for developing strategies to weaken or break adhesive bonds in different
applications. In material science and engineering, the study of deahdesion mechanisms is crucial
for analyzing the failure of adhesive bonds. For example, in aerospace applications, understanding
the deadhesion processes at the interface between composite materials and adhesives is essential
for ensuring structural integrity. By investigating failure modes and stress distributions, it is
possible to develop improved adhesive formulations and bonding techniques. Deadhesion is
also relevant in biophysics, particularly when studying cell-cell dissociation. During processes
like metastasis, in fact, cells detach from the primary tumor and invade surrounding tissues.
Understanding the deahdesion mechanisms involved can provide insights into cancer progression
and potential therapeutic targets. Furthermore, investigating the weakening of cell-cell adhesion
forces and the signaling pathways involved in cell dissociation can contribute to the development
of novel anti-cancer therapies.

A crucial aspect of the adhesion/deadhesion processes occurring at the micro and nanoscale
is that it is strongly affected by temperature. It has been observed in many instances, in fact,
that the increase in the temperature can be one of the main driving factors in the partial or
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Figure 1.13: Attachment strengths of HT1080 cells (with and without cations, red and black
curves respectively) monotonically increase with the decreasing temperature independently if the
substrate is fibronectin (left panel) or Collagen type 1 (right panel). Image edited from [240].

complete detachment of a cell from a substrate. In this regard, figure 1.13 from Ref.[240] shows
that the attachment strength of an HT1080 cell decreases with the increase of the temperature.
Observing the graphs from the figure, in fact, we can notice that the force necessary to detach the
cell decreases to a null force at a critical temperature meaning that the high temperatures can be
the only factor needed for the complete detachment of a cell. This is why, as mentioned before,
the investigation of how temperature affects the adhesion/deadhesion behavior process can be of
crucial importance for the study of cancer cell metastasis where the cancerous cells break away
from the original (primary) tumor, travel through the blood or lymph system, and form a new
tumor in other organs or tissues of the body. In this case, the cancer region temperature can
increase due to the body’s inflammation response leading to a detachment of these cells that can,
unfortunately, trigger a metastasis.

These phenomena are also commonly observed in most of the activities concerning DNA.
Although the DNA structure is robust in order to preserve the genetic information of life, it is
sufficiently loose to allow the opening of the double helix through the controlled detachment and
attachment of the base pairs. These phenomena are called hybridization and de-hybridization and
are fundamental processes in molecular and cell biology. Spontaneous opening of the DNA is rare
at physiological temperatures but is promoted by particular enzymes whenever the genetic code
stored in the DNA has to be accessed by molecular machinery. This can occur during transcription
(DNA translation into messenger RNA), replication (DNA copy), recombination (DNA "cut-and-
paste"), repair, or some enzyme binding on single strands. At high enough temperatures, thermal
energy promotes partial or even complete base-pairs dissociation, a phenomenon called DNA
denaturation or melting. This property is fully exploited, e.g., in Polymerase Chain Reaction
(PCR) where the DNA is denatured before short sequences are hybridized which are then extended,
this occurring during several dozen cycles controlled by the temperature. DNA hybridization
kinetics is also of importance for fast-developing nanotechnology designs. A specific example
of these denaturation processes is presented by DNA or RNA hairpins that are closed loops
composed of nucleobases of DNA or RNA (as shown in panel a of Fig.1.14). In this case, the
force spectroscopy techniques are applied to measure the force necessary to open the hairpin’s
structures by going through what can be easily modelized as an adhesion problem.

The study of the adhesion and deadhesion processes has been of course of interest to the
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a) b)

Figure 1.14: Panel a) Principle of hairpin unfolding experiments. A force f is applied to the
strands of a short DNA hairpin. For a force of about 15 pN, two states are equally accessible to
the hairpin, which is either open or closed. Image edited from [241]. Panel b) Picture of a peeling
experiment of a Pressure Sensitive Adhesive (PSA). Ldr is the characteristic extension of the
debonding region, where the adhesive is significantly strained. amax is the maximum elongation
after which the PSA linking bonds are considered completely detached from the surface. [242].

industrial sector as well. The modeling of the adherence energy during the peeling of Pressure
Sensitive Adhesives (PSA) (see panel b of Fig.1.14) has been the focus of many research and
development projects in the industry of adhesive products since the 50s, uncovering several factors
that aim at explaining their high adherence on most substrates, such as the softness and strong
viscoelastic behavior of the adhesive, the low thickness of the adhesive layer and its confinement
by a rigid backing. The more recent studies of adhesives by probe-tack methods also revealed the
importance of cavitation and stringing mechanisms during debonding, underlining the influence
of large deformations and of the related non-linear response of the material, which also intervenes
during the peeling process. The peeling of a substrate from another occurs in fact through the
inside failure of the adhesive layer (“cohesive failure”) or through the debonding of the adhesive
from the substrate (“interfacial” or “adhesive” failure). In all of these cases the temperature,
once again, plays an important role in the decohesion process by modifying the force necessary to
nucleate and propagate the peeling process through the whole specimen.

1.2.4 Fracture and crack propagation
Fracture and crack propagation are critical phenomena in material science and biophysics,

influencing the mechanical integrity and failure behavior of various materials. More specifically,
fracture mechanics is a branch of materials science that investigates the behavior of cracks and
their propagation within materials and/or biological systems. Understanding fracture and crack
propagation mechanisms is essential for predicting and preventing failure in structural materials,
as well as exploring biological systems’ resilience. We are particularly interested here in micro and
nanoscale systems, where thermal fluctuation plays a crucial role in fracture behavior and crack
propagation phenomena. It has been observed that, under specific conditions, the temperature
can be at times the main physical cause of crack propagation. The motivation behind this is that,
when it comes to the micro and nanoscale, the thermal fluctuations can significantly help the
molecular structure of the surrounding area of the crack tip to overcome the energetic threshold
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Figure 1.15: Mechanical behavior of sapphire whiskers at elevated temperatures. The experimental
average fracture strength (panel a) and the experimental maximum fracture stress (panel b), as a
function of the temperature, are reproduced from [33].

holding them from propagating the crack front. This phenomenon is particularly important when
we investigate micro and nanoscopic systems such as nanowires or biological macromolecules.
These systems often present unique size-dependent mechanical properties and therefore offer an
intriguing platform to study such temperature-driven crack propagations. The effects of the
thermal fluctuation on the fracture and crack propagation phenomena have been first investigated
by Brenner in 1962 who used sapphire whiskers (Al2O3) with a diameter between 8 and 40 µm
to lead his investigation of the matter. In such structures, the damage induced by the fracture
can be viewed as a sequence of ruptures, representing the breaking of the chemical bonds along
the direction of the crystal structure. As shown in Fig.1.15, Brenner was able to measure the
temperature dependence of the stresses necessary to completely break the specimens. From the
figure, furthermore, we can observe that the transition around T = 1550 C in the stress decrease
suggests a change in the mechanism of failure leading to complete failure.

The presence of nanoscale defects and the high surface-to-volume ratio influence the fracture
mechanics of nanowires. In addition to the temperature, crack propagation in nanowires can be
influenced by other factors such as the specific crystal structure, material composition, and external
loading conditions. For example, it has been observed that the presence of twin boundaries
in nanowires can impede or facilitate crack propagation, depending on their orientation and
interaction with the crack front. Understanding these processes is crucial for designing nanowires
with enhanced mechanical properties and reliability. An interesting example of the dependence
of the fracture phenomena on the temperature can be found in a recent study performed on
a [110]-oriented silicon nanowires [125]. In this study, the silicon nanowire behavior has been
investigated through molecular dynamic simulations that eventually highlighted the dependence
of the tensile strength, the stress in which the nanowire breaks, on the temperature. If we
observe the right panel of Figure 1.16, in fact, we can see that the tensile strength necessary to
break nanowires of different diameters decreases as the temperature increases. We emphasize
that statistical mechanics is, once again, the best frame to study these phenomena due to the
particularly small-scale system in which they occur and the fact that the thermal fluctuations
play an important role.

Similar analysis methodologies were used in a different study to investigate the case of GaN
nanowire [124] (see figure 1.17). In this case, the nanowire under investigation presented a
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Figure 1.16: Left panel: snapshots of a [110] Si nanowire with a diameter D = 7 nm during
fracutre under tensile loading with temperature T = 300 K (first columnm) and T = 1000 K
(second column). Under each figure, there is the time elapsed since the beginning of the tensile
loading. We can notice that the same nanowire breaks earlier when the temperature is higher
since the tensile loading increases with time at the same pace for both. Right panel: tensile
strength of Si nanowire as a function of temperature for different diameters. [125].

diameter of 1.92 nm and a length of 6.12 nm as reported in Figure 2(d) of Ref.[124]. Through the
molecular dynamic simulation of the stretching of the nanowires, it has been possible to observe
the brittle-to-ductile transition. Observing the right panel of Figure 1.17, in fact, we can notice
that the force-extension curve relative to lower temperatures (from the 300 K case up to the 1500
K one) presents a brittle behavior, meaning that the force applied to the nanowire increases until
reaching a final elongation point after which the nanowire completely breaks resulting in a null
applied force. On the other hand, in the 1800 K case, we can notice that exists an elongation
point (around 9% of the strain parameter) where the force drastically drops to a lower value only
to continue increasing at a slightly slower pace than before. This middle critical point represents
the ductility of the material that, contrary to the previous brittle ones, shows a plasticity behavior
when reaching a critical precise threshold. In this case, we can notice that the effect of the
temperature is not only that of lowering the fracture force threshold responsible for the complete
breaking of the examined nanowire but also that of changing the behavior of the material itself
that, as we have seen, switches from brittle to ductile.

The discovery of new characteristics at the nanoscale has prompted the advancement and
creation of nanoelectromechanical systems (NEMS) for diverse applications. Extensive research
has focused on investigating the mechanical, electrical, thermal, and optical properties at the
nanoscale of one-dimensional nanostructures such as the nanowires we showed here. Understanding
the mechanical properties, particularly the stiffness, and strength, of these nanostructures is
crucial, as they play a vital role in determining the stability and lifespan of numerous potential
applications. Recently, extensive experimental and numerical simulations have been performed to
understand the mechanical properties of carbon-based nanostructures such as graphene. Since the
initial investigations of graphene, numerous studies have provided evidence demonstrating that
graphene possesses a stable two-dimensional structure exhibiting remarkable electronic and optical
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Figure 1.17: Left panel: Atomic configurations of selected stages for the [0001]-oriented nanowire
with [101̄0]-oriented lateral facets at 1500 K, the number over each snapshot represent the strain.
Right panel: Tensile stress-strain curves of the [001]-oriented nanowires with a diameter of 1.92
nm. The lateral facets of the investigated nanowire are [112̄0]. Images edited from [124].

properties. In a recent study Ref.[124], the mechanical properties of graphene have been studied
under various temperatures and stress conditions. To do so, molecular dynamics simulations
were performed using adaptive intermolecular reactive empirical bond potential which has been
shown to accurately capture the Young’s modulus of graphene as well as bond breaking and bond
reforming between carbon atoms. More precisely, the study focused on the uniaxial tensile test of
graphene along the armchair direction. To study the mechanical properties, the simulations were
performed on a sample large enough to represent the mechanical properties of an infinitely large
graphene monolayer where a deformation-controlled uniaxial tensile test has been applied. The
stress-strain relations for various temperatures ranging between 300 K and 2400 K are shown in
figure 1.18.c. As we can see from these results, the fracture strength decreases significantly with
the increase in temperature. As a matter of fact, as shown by this study, the fracture strength
decreases as much as 60% less from a temperature of 2400 K to a room temperature of 300 K.

Since it is very probable that during the fabrication of graphene some defects can arise at
the nanoscale, it has been deemed interesting to investigate the effects of such defects, especially
slits in the nano scale, on the strenth and stiffness of graphene. To perform this investigation a 5
nm × 5 nm squarelike graphene sheet with a slit has been considered in which a strain rate was
applied along the armchair direction to perform the uniaxial tensile test (see panel a of figure
1.18). In this fracuture simulation, the bonds between carbon atoms break continuously in the
direction identifide by the slit opening, until the graphene structure complete failure. In the panel
b of figure 1.18, instead, we display the variation in the fracture strenth as a function of the slit
semilength for two different temperature, namely at T = 300 K and T = 1200 K. Again, we can
observe that the effect of the increasing temperature is that of descreasing the fracture strenght
of the graphene specimen considered in the simulation. Another important aspect we can notice
from the graph is that the fracture strenght, for both temperatures, decreases with the increase
of the slit semi-length L in perfect agreement with Griffith’s crack propagation theory [119].

Along with solid materials, it is interesting to investigate the nucleation and propagation of
cracks in soft and rubbery materials also. Many new soft materials and applications such as
stretchable electrodes, flexible prosthetics, or soft robotics continuously emerge yet an appropriate
multiscale quantitative theory of crack propagation and fracture of these materials hasn’t been
already settled.
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Figure 1.18: Panel a) atomic-scale slit structure of graphene for mode I loading, L here is the
semi-length of the slit. Panel b) fracture strength as a function of the slit semilength L for a
damaged graphene monolayer uniaxially loaded along the armchair direction. Panel c) Nominal
strain vs stress of graphene under uniaxial tensile test along the armchair direction at various
temperatures. Images edited from [243].

1.3 Motivations

The behavior of many natural and artificial systems of considerable biological and technological
importance, as discussed in previous introductory Sections, is characterized by micro-instabilities,
which generate a variety of complex responses with strongly nonlinear features. The study
of micro-instabilities in molecules of biological origin is of central importance to developing
biological applications, which can lead to a better understanding of the disease mechanisms and
improvements in some disease treatments. This is especially true in cancer research, where the
mechanical properties of macromolecules and the adhesion of cells are crucial to determine the
evolution of cancer invasion and metastasis. On the other hand, in the mechanics of materials,
and more generally in material science, similar microinstabilities have been observed in different
situations. For example, an important situation where the microinstabilities play a central role is
the adhesion of films and their peeling from a substrate. In this context, one idea to improve
and tailor the adhesion properties of artificial materials is to use bioinspired geometries and
mechanisms. Several industrial processes require indeed the peeling of layers of different kinds and
with different velocities. Additionally, it is crucial to better understanding the physics of adhesion
within a large temperature range. The combination of thermal fluctuations and microinstabilities
is also at the origin of fracture phenomena in materials. If we think of a crystalline material,
the propagation of a crack front must be identified by the gradual breaking of the atomic bonds
along a line of the crystal structure. Therefore, each single crack propagation step is a form of
instability, which can be defined by assuming a maximum length of the interatomic distance
before rupture. Of course, the thermal fluctuations influence the crack propagation, fostering the
breaking of the interatomic bonds, and for such reason they need to be take in into accuount.

There are several experimental observations showing the effect of thermal fluctuations on
system with microinstabilities, and in particular based on adhesion/cohesion processes. This
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effect is particularly pronounced in nanomaterials and nanostructures, where thermal energy can
rival mechanical energy, facilitating spontaneous de-adhesion. Indeed, in most experimental cases,
the force needed to separate a film from its substrate diminishes with rising temperature. This
reduction in adhesion strength is primarily attributed to thermal fluctuations, which facilitate the
exploration of phase space. Even when external forces alone would not lead to detachment, thermal
fluctuations can drive the system into phase space regions where rupture occurs. Sometimes,
the force required for de-adhesion reaches zero for large temperature values, marking a phase
transition characterized by a specific critical temperature. Beyond this critical temperature, the
system consistently remains in a de-bonded state, regardless of the applied mechanical conditions.
This behavior has been experimentally shown for several systems where adhesion and cohesion
phenomena occur. Concerning cell adhesion, it has been observed that the attachment strength
monotonically decreases with increasing temperature independent of substrate properties, and a
possible phase transition can be inferred from experimental data. Moreover, researchers have
conducted experimental investigations into the mechanical unfolding of nucleic acid hairpins,
aiming to establish a phase diagram within the force-temperature plane. For both RNA and DNA,
it has been observed that the force required to separate the two polynucleotide strands decreases as
temperature rises, exhibiting indications of a phase transition at a critical temperature known as
the denaturation temperature. In materials science, similar phenomena have also been observed. A
historical example can be found in the study of sapphire whisker fractures at various temperatures.
Once again, there is a discernible trend of decreasing fracture strength with increasing temperature,
culminating in a well-defined phase transition at elevated temperatures. More recent studies
have further validated these observations, extending their validity to materials engineered to
withstand high-temperature environments, including high-entropy and medium-entropy alloys.
These observed behaviors are quite similar for rather different physical systems (cells, nucleic
acids, micro- and nano-wires and so on) and need therefore to be explained by means of a unifying
theory that has not been yet completely developed and disclosed in the scientific literture. The
aim of the present manuscript is that of trying to fill this gap by proposing a mathematical and
physical approach to deal with these problems by combining the effect of thermal fluctuations
(by statistical mechanics) with the effect of mechanicam actions (by micro- and nano-mechanics)
on complex systems.

The observed similarities between the problems concerning microinstabilities in biophysics and
material science are of great importance, not only from the cultural point of view but also for the
possibility to adopt the same techniques to approach very different systems. Indeed, the common
denominator in all these examples, from both biophysics and materials science, is that some units
of the system under investigation exhibit a two-state or multi-state character. It means that such
units are allowed to be in only one of two (or more) distinct physical states, and can therefore
experience a transition between these states, characterized by specific static and dynamic features.
The large number of units in these systems generates a collective behavior of the transitions
and an interaction between the transition mechanisms. Consistently, to address the problem of
describing the behavior of systems with microinstabilities, we apply the method of the so-called
“spin variables”. It is based on the introduction of a series of discrete or spin variables to identify
the state of the system units. In a two-state instability case, for example, they can assume the
values +1 and -1, similar to a magnetic spin. As we will show in the following discussion, this
approach strongly facilitates the calculations performed to determine the behavior of the system.
In particular, this simplification allows for an easy calculation of the partition function, typically
adopted in statistical mechanics, useful to describe the system behavior and all the relevant
thermodynamic quantities. As we will see, the introduction of this technique not only helps by
lowering the degree of complexity in the evaluation of some of the most interesting quantities but
also allow us to perform closed-form analytical calculations. This was not always the case in past
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studies where often these particular equations were solved numerically. Being able to analytically
calculate the results gives us a better insight into the physics of the system studied and the
model adopted. Altough our approach proves to be useful to better understand the previously
discussed experimental situations, it shows several limitations that should be considered in further
studies. For examle, we did not consider out-of-equilibrium phenomena in our models, and we
never introduced disorder or heterogeneous structure. Also, all our models are discrete and they
should be generalized to continuous systems in ordere to foster the development of a new and
more comprhensive continuum mechanics theory.

The complexity presented by the study of such micro-instabilities has already generated a
great impulse to scientific development, in particular concerning the synergy between the force-
spectroscopy techniques (experimental investigation) and the small-systems statistical mechanics
(theoretical investigation). Importantly, when force-spectroscopy techniques are applied to a
microscopic system that presents a bi- or multi-stable behavior, they allow us to directly observe
the switching process between the states and quantify its static and dynamic features. Another
important reason to delve into the study of microinstabilities is the possibility to test and validate
the adoption of the statistical mechanics approach in the study of these phenomena. Historically
speaking, in fact, these natural and artificial systems have been mostly investigated using
continuous mechanical techniques that usually do not consider or, at best, strongly approximate
the crystalline structure of the systems. Considering these systems with a statistical mechanics
lens does not mean that we reject the extensive and sophisticated studies that have been employed
in this field in the past but, rather, we intend to give a different and integrative explanation to
better understand some features and phenomena for the instabilities. Of course, since we are
dealing with small systems, temperature plays an essential role in the dynamic evolution of all
physical and chemical quantities. Hence, the direct quantification of the mechanical response of
single molecules (force-spectroscopy) has allowed for the first time the comparison of experimental
results with those of the thermodynamics and the statistical mechanics of small systems. This
synergy between experimental and theoretical activities has delivered important outcomes and
applications. For instance, force spectroscopy is used to investigate the enzymatic activity of
proteins involved in DNA processes (replication, transcription, organization, and repair). Another
important innovation that we propose here is the extensive investigation of how the thermal effect
influences the particular systems studied. We will show that temperature plays a crucial role
in the behavior and development of the instabilities sometimes triggering phase transition that
changes the very same crystalline structure of the system.

The resulting structure of this manuscript is the following. In Chapter 2, we introduce the
spin varibale method through two simple example of application. We also discuss the statistical
mechanics based on the Gibbs and the Helmholtz statitical ensembles. In Chapter 3, we briefly
describe the simple model of adhesion processes already elaborated in our research group before
the beginning of this PhD thesis. It represents the starting point for the following generalizations
and developments. In Chapter 4, we discuss a generalization of this approach, able to take into
consideration an intermediate softened condition between the intact and the broken standard
states of the adhesion process. This is useful to take account of plastic phenomena in this
context. In Chapter 5, we elaborate a model for studying the effect of temperature on phase
transformations in one-dimensional structures. This approach considers the interaction among
the units by means of an Ising scheme, and can be applied both to proteins conformational
changes, and to pseudo-elasticity in nanowires. In Chapter 6, we finally investigate the thermal
fluctuations effect on the crack propagation. We firstly develop a model for the brittle fracture
and we are able to explain the temperature dependent fracture strength of nanomaterials. Then,
we also elaborate an approach for studying the brittle-to-ductile fracture behavior by identifying
the transition temperature betwenn the brittle and ductile regimes. To develop this second model,
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we adopt the same strategy introduced in Chaper 4, based on an intermediate softened state
between intact and broken bonds.



Chapter2
Statistical ensembles and spins

We describe here a single-unit discrete model in order to highlight the fundamental differences
between the Gibbs and the Helmholtz ensembles studied through the principles of statistical
mechanics at equilibrium. The intrinsic simplicity of the model represents the perfect starting
ground in which we can apply the spin approximation and understand its true meaning and
feasibility limits. Thanks to the statistical mechanic’s approach, we will obtain results at first
glance in disagreement with what we would expect from a merely practical point of view but,
fortunately, these apparent incongruities will be fully explained and solved later in the discussion
using a purely energetic balance approach.

Y

0

y

l

hk

Y

0

y

l

hk

f

a) Helmholtz b) GibbsY fixed f fixed

y1 y1

Figure 2.1: Scheme of the two-rigidity model in the isometric Helmholtz ensemble (left) and
in the isotensional Gibbs one (right). In both ensembles, the model consists of three springs
linking together a bottom fixed layer located at y = 0 to an upper layer located at y = Y . In the
Helmholtz case, the upper substrate is fixed at y = Y while in the Gibbs case, it is pulled with a
fixed force f .

The structure of the model studied (shown in Fig.2.1) is the same both while considering the
isometric Helmholtz ensemble (left panel in the figure) and while considering the isotensional
Gibbs ensemble (right panel) and it consists of three springs of different elastic constants k, l,
and h arranged in order to link two separate substrates. Springs k and h (in the figure in blue
and green respectively) are connected in parallel and link together the bottom substrate, fixed at
y = 0, to the lower end of spring l (in yellow), located at y = y1, with which they are connected
in series. Spring l, in turn, connects the latter parallel springs to an upper layer located at y = Y .

27
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Figure 2.2: Potential energy of a breakable spring of elastic constant h (left) and resulting force
(right). The quantity YM is the elongation after which the spring breaks resulting in an exerted
force equal to zero.

Since y1 will be the only variable of the system, from now on we refer to it simply by y. The
important aspect of this model is that, while springs l and k behave like normal linear springs,
spring h is a breakable one, meaning that it exists a threshold elongation YM after which the h
spring "breaks" or, more precisely, its potential energy Eb is constant resulting in a null force
for elongation |y|> YM . The behavior of this breakable spring h is better described through its
potential energy landscape in the left panel of Fig.2.2. Here, we observe that the breakable spring
behavior is described by a standard parabolic potential when its elongation |y|< YM does not
exceed the threshold (blue curve), meaning that in this region the spring behaves like a standard
one, and by a constant potential 1

2hY
2

M when its elongation overcome the threshold |y|> YM (red
curves), meaning that the resulting force, in this case, is null (see right panel of Fig.2.2).

The main difference between the two statistical ensembles is that in the Helmholtz ensemble,
the system is studied at equilibrium while the position of the upper layer is fixed at y = Y
instead, in the Gibbs ensemble, this upper layer is free to move and a fixed force f is applied.
In the following sections, we will analyze this system in both ensembles adopting three different
approaches: firstly, we study the model considering the exact Hamiltonian of the system, secondly,
we approximate the total energy by introducing the spin variable approach, and lastly, we perform
an analysis based on the energy balances of the system.

2.1 Exact Helmholtz ensemble

In this Section, we adopt the statistical mechanics framework and we study the system
embedded in a thermal bath at temperature T . The objective of this investigation is to examine
the model’s thermo-mechanical response at the thermodynamic equilibrium considering it in the
Helmholtz ensemble corresponding to the application of the isometric conditions. Based on the
previous premises, we can write the total energy of the system as

ΦH(y) = 1
2 l(Y − y)2 + 1

2ky
2 +Eb(y), (2.1)

where the first and second addends are the potential energy contributions related to the l and k
springs respectively while Eb(y) is the exact potential energy contribution of the breakable spring
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h defined as

Eb(y) =
{

1
2hy

2 if |y|< YM ,
1
2hY

2
M if |y| ≥ YM .

(2.2)

We notice that, introducing the following characteristic function

χA(y) =
{

1 if y ∈A,

0 if y <A,
(2.3)

where A= (−YM ,YM ), it is possible to write the previous Hamiltonian as

ΦH(y) = 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2χA(y) + 1

2hY
2

M (1 −χA(y)). (2.4)

We observe that, by considering the particular value that the characteristic function χA(y) assumes,
we are able to establish if the system is in the intact configuration, when χA(y ∈A) = 1 (meaning
that the breakable spring h is still intact), or in the broken configuration, when χA(y <A) = 0
(meaning that the breakable spring h has overcome its maximum threshold YM ). This is an
important feature for the characteristic function because it can be then used as a helpful tool in
the evaluation of some interesting quantities like the average number of intact breakable springs as
we will see in the following discussion. Thanks to the Hamiltonian, we can evaluate the partition
function of the system defined as

ZH(Y ) =
∫
R

e
−ΦH (y)

KBT dy. (2.5)

Writing explicitly the definition of χA(y) for the Hamiltonian ΦH(y) in the previous integral, we
can separate the partition function into three different domains of integration, namely

ZH(Y ) =
∫ −YM

−∞
e

− l
2KBT (Y −y)2− k

2KBT y2− h
2KBT Y 2

Mdy

+
∫ YM

−YM

e
− l

2KBT (Y −y)2− k
2KBT y2− h

2KBT y2
dy

+
∫ +∞

YM

e
− l

2KBT (Y −y)2− k
2KBT y2− h

2KBT Y 2
Mdy.

(2.6)

The last three integrals can be easily evaluated thanks to the following generalized Gaussian
integral valid for a generic domain of integration (a,b) ∈ R,

∫ b

a
e−αx2+βxdx=

√
πe

β2
4α

2
√
α

{
ϕ

[√
α

(
b− β

2α

)]
−ϕ

[√
α

(
a− β

2α

)]}
, (2.7)

where ϕ(x) is the error function defined as

ϕ(x) = 2√
π

∫ x

0
e−t2

dt, (2.8)
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and, in particular, ϕ(±∞) = ±1 and ϕ(−x) = −ϕ(x). After some long but straightforward
calculations, we can write the partition function as

ZH(Y ) = e
−

hY 2
M

2KBT − lkY 2
2KBT (l+k)

√
π

α(l+ k)

[
Γ (l+ k) + 2

2

]
− e

− l(k+h)Y 2
2KBT (l+k+h)

√
π

α(l+ k+h)

[
Γ (l+ k+h)

2

]
,

(2.9)

where, for the sake of readability, we introduced the two following functions

α(p) = p

2KBT
, (2.10)

Γ (p) = ϕ

[√
α(p)

(
−YM − lY

p

)]
−ϕ

[√
α(p)

(
YM − lY

p

)]
. (2.11)

Thanks to the partition function, we are now able to evaluate the average value of some interesting
quantities. The first quantity we are interested in is the average force applied to the upper
substrate, namely ⟨f⟩, that is given by

⟨f⟩ = 1
ZH

∫
R

fe
−ΦH (y)

KBT dy. (2.12)

Now, if we observe that the force can be derived from the potential energy as f = dΦH/dY , it is
easy to prove the validity of the following alternative compact version for Eq.(2.12)

⟨f⟩ = −KBT
∂ logZH

∂Y
. (2.13)

Another interesting quantity is the average number of intact breakable springs that, thanks to
the particular relation between the characteristic function χA(y) and the state of the breakable
spring h, can be calculated as

⟨χA(y)⟩ = 1
ZH

∫
R

χA(y)e−ΦH (y)
KBT dy. (2.14)

By deriving the logarithm of the partition function, logZH , by YM , moreover, we obtain

−KBT

hYM

∂ logZH

∂YM
= 1
ZH

∫
R

(
1 −χA(y)

)
e

−ΦH (y)
KBT dy = ⟨1 −χA(y)⟩, (2.15)

that can be used to rewrite Eq.(2.14) in the following compact version

⟨χA(y)⟩ = 1 + KBT

hYM

∂ logZH

∂YM
. (2.16)

In Fig.2.3, we show the average force ⟨f⟩ (left panel) and the average number of intact
breakable springs ⟨χA(y)⟩ (right panel) versus the dimensionless elongation Y/YM for a system
composed of springs of elastic constants identically equal to 1 (l = k = h= 1) while also varying
the thermal to elastic energy ratio KBT/(hY 2

M ). In the figure, we can observe the main effects of
the presence of a breakable spring h in the system. As one can notice from the force-extension
graph (left panel of Fig.2.3), in fact, one of the main effects of the breakable spring is that of
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Figure 2.3: Behavior of the two-rigidity model with variable thermal to elastic energy ratio
KBT/(hY 2

M ) = {0,0.01,0.02,0.03} (purple, blue, yellow and red curves respectively). Here, the
purple curves correspond to the pure mechanical case at a null temperature. The average force ⟨f⟩
and the average number of intact breakable springs ⟨χA(y)⟩ are presented versus the dimensionless
elongation Y/YM , where, in both cases, l = k = h= 1 and YM = 1. In both panels is shown the
dimensionless elongation Y ∗/YM , responsible for the change in rigidity.

changing the rigidity of the system depending on the specific elongation parameter Y/YM . In
the force-extension graph, we can notice that the slope of the curves changes from a steeper one
to a less steep one in correspondence with the rupture of the breakable spring h at a specific
total elongation that, for now, we will simply denote as Y ∗/YM . Trying to explain the system
behaviors observed in the figures, from a merely mechanical point of view, one could think that
the system reaches its rupture point simply when the breakable spring h elongation reaches its
breaking threshold YM . Keeping this in mind, if we consider the system just before its breaking
point, we know that the force exerted by the spring l has to be equal to the one exerted by the
combined actions of k and h springs, i.e. l(Y − y) = (k+h)y (where Y is the total elongation of
the system and y is the elongation of k and h parallel springs). If we then solve the latter identity
for Y and we set the breakable spiring elongation equal to its breaking threshold, y = YM , we
obtain a result, Y/YM = 3 (in the case of l = k = h= 1), apparently in disagreement with what we
observe from the force-extension curves of Fig.2.3, where the actual breaking point Y ∗/YM seems
to anticipate our merely mechanical result Y/YM = 3. This apparent incongruity, fortunately,
will be fully analyzed and explained in the following discussion thanks to the study of the same
problem from an energy-balance point of view rather than relying on the use of the statistical
mechanic’s principles alone. In the right panel of Fig.2.3, it is shown the average number of intact
breakable springs ⟨χA(y)⟩ versus the adimensional elongation parameter Y/YM . In this graph,
the average number of intact springs h, ⟨χA(y)⟩, drops to zero in correspondence to the complete
failure of the system i.e. when the elongation reaches its rupture point Y ∗/YM . We remark again
here that in the model used to obtain the results shown in the figure so far, we used three springs
of elastic constant equal to one, l = k = h = 1, and an elongation threshold for the breakable
spring h of YM = 1.

The two different slopes of the two linear branches in the force-extension curves correspond to
the effective elastic constants of the system in the intact and broken configuration and can be
evaluated using the following equation

keff =
(

1
l

+ 1
k+h

)−1
= l(k+h)
l+ k+h

. (2.17)
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Figure 2.4: Spin approach on the potential energy of a breakable spring of elastic constant h
(left) and resulting force (right). The spin assumes value S = 1 when the spring is in the intact
conformation and behaves like a standard linear spring (blue dashed curves) and S = 0 when it
is in the broken configuration (red dashed curves). The continuous curves are for reference and
correspond to the exact potential energy profile.

The effective elastic constant, then, assumes the value keff = 2
3 when (Y/YM )< (Y ∗/YM ) and all

the three springs are intact (l = k = h= 1) and the smaller value keff = 1
2 when (Y/YM )> (Y ∗/YM )

in agreement to the fact that, in this second branch, the h spring has overcome its elongation
threshold YM resulting in its breaking. Furthermore, looking at both panels of Fig.2.3, it is
interesting to observe that the breaking elongation point Y ∗/YM is independent of the temperature
T while the only effect of the temperature on the system is that of smoothing out the curves.
The independence from the temperature on the behavior of the transition of the system from the
intact to the broken configuration is the direct result of the fact that this system is composed of a
single unit. In the following discussion, we will see that the temperature does play a crucial role
in the transition of the system when this is composed of many units interacting with each other.

2.2 Helmholtz ensemble with spin approximation
In this section, we adopt a statistical mechanics approach to study the system at equilibrium

while introducing the spin variable approximation to deal with the non-convex potential energy of
the breakable spring h. This means that, instead of considering the exact profile of the potential
energy Eb(y) of the breakable spring as defined in Eq.(2.2), we approximate it by introducing
a new discrete variable called spin, S, in the phase space. This variable can assume only two
values depending on the particular state of the spring h, namely S = 1 when the h spring is intact
(|y|< YM ) or S = 0 when it is in the broken state (|y|> YM ). This new discrete variable S is then
used to approximate the potential energy of the spring h with that of a standard intact linear
spring of elastic constant h and elongation y, when S = 1 (blu dashed curve in the left panel of
Fig.2.4), or with a constant potential energy 1

2hY
2

M that corresponds to a null force, when S = 0
(red dashed curve in the left panel of Fig.2.4). It is important to remark that the evaluation of
the partition function based on the spin variable approach assumes that for both configurations,
broken and intact, all the possible deformations y can be attained by the system. This, in general,
could represent a problem in the calculation of the partition function but, as shown numerically
in Ref.[91], with typical experimental temperatures, the effects of this approximation can be
considered statistically negligible since these artificial configurations (superposition of dashed
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curves in the left panel of Fig.2.4) have energy sensibly higher than real configurations (continuous
curves of Fig.2.2). The new definition for the breakable spring contribution to the total potential
energy is then described by

Eb(y) =
{

1
2hy

2 if S = 1,
1
2hY

2
M if S = 0.

(2.18)

We can now use the spin variable S in the same way we previously used the characteristic function
χA(y) in order to write the total potential energy of the system as follows

ΦH(y,S) = 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2S+ 1

2hY
2

M (1 −S), (2.19)

depending on y and S. Observing Eq.(2.19), it is evident the similarity between the spin variable
S and the characteristic function χA(y) defined in Eq.(2.3). The crucial difference between the
two is that, now, the spin variable S belongs to the phase space. The parallelism between S and
χA(y) will become clear once we evaluate the average number of intact breakable spring h for the
spin approximation case. To evaluate the partition function of the system we have to sum over
the spin variable values

ZH(Y ) =
∑

S=0,1

∫
R

e
−ΦH (y,S)

KBT dy. (2.20)

Writing explicitly the expression for the total energy and summing over the spin variable values,
we obtain

ZH(Y ) =
∫
R

e
− l

2KBT (Y −y)2− k
2KBT y2− h

2KBT Y 2
Mdy

+
∫
R

e
− l

2KBT (Y −y)2− k
2KBT y2− h

2KBT y2
dy,

(2.21)

that is easily solved, using the Gaussian integral, eventually obtaining

ZH(Y ) =
√

2πKBT

l+ k
e

− lkY 2
2KBT (l+k) −

hY 2
M

2KBT +
√

2πKBT

l+ k+h
e

− l(k+h)Y 2
2KBT (l+k+h) . (2.22)

We note that thanks to the introduction of the spin variable approximation, the integrals that
appeared in the calculation of the partition function were now evaluated on the entire real axis
R instead of on limited domains of integration, as seen previously in the exact potential energy
calculations. This represents a huge simplification for the calculation of the partition function and,
consequently, for the evaluation of the interesting quantities like the average force ⟨f⟩, previously
introduced in Eq.(2.13), or the average number of intact breakable springs that, now, corresponds
exactly to ⟨S⟩. As briefly introduced before, we notice that the spin variable is defined exactly as
the characteristic function χA(y) introduced in Eq.(2.3) and, since the spin variable appears in
the definition of the potential energy ΦH , in the same way that χA(y) did, it is easy to see that
⟨S⟩ is exactly the average number of intact breakable springs h, namely

⟨S⟩ = 1 + KBT

hYM

∂ logZH

∂YM
. (2.23)

As shown in Fig.2.5, both the average force ⟨f⟩ and the average number of intact breakable
springs ⟨S⟩ versus the dimensionless elongation Y/YM of the system obtained with the spin
approximation (dashed curves) are in good agreement with the results obtained with the exact
calculations (continuous curves). We notice that the spin approximation is more precise for
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Figure 2.5: Comparison between the spin-approximated quantities (dashed curves) and the
corresponding exact results (continuous curves) for ⟨f⟩ and ⟨S⟩ versus the adimensional elongation
Y/YM . In both cases, the elastic constants are l = k = h= 1 and YM = 1, while the thermal to
elastic energy ratio assumes the values KBT/(hY 2

M ) = {0.01,0.2} (respectively in blue and in
red).

low temperatures. Furthermore, we observe that even in this case the rupture elongation does
not correspond to the one someone would expect but, instead, is shifted as in the exact case.
We remark again that the spin variable approximation provides a simpler and quicker way to
evaluate the partition function of the system and this is even more useful while evaluating
partition functions for a system made of several units as we will see in the next Chapters. In the
following Section, thanks to the energy-balance approach, we will understand the reason behind
the apparent discrepancy between the real breaking point of the system Y ∗/YM and the one
wrongfully predicted adopting a merely mechanic approach.

2.3 Helmholtz ensemble from an energetic perspective

In this section, we study the model in the isometric configuration adopting the principles
of energy minimization which are valid under the zero temperature assumptions. By doing so,
we can understand why it looks like the system tries to anticipate its breaking point in the
force-extension curves seen before in both the exact and the approximated calculation cases (see
Fig.2.3 and Fig.2.5).

In order to understand when the change in rigidity occurs, we need to understand in which
state the system prefers to be from an energetic point of view given a prescribed elongation Y .
The total potential energy of the system is

ΦH(y) =
{

1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2 if |y|< YM ,

1
2 l(Y − y)2 + 1

2ky
2 + 1

2hY
2

M if |y|> YM .
(2.24)

Given a prescribed elongation Y , we search for the value of y, ymin, that minimizes the potential
energy. We start considering the |y|< YM case, where the potential energy is defined as

ΦH(y) = 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2. (2.25)
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Deriving ΦH(y) by y and setting it equal to zero, ∂ΦH (y)
∂y = 0, we obtain the following minimizing

value for y
ymin = l

l+ k+h
Y, (2.26)

with the corresponding minimal potential energy

ΦH(ymin) = l

2

(
k+h

l+ k+h

)
Y 2. (2.27)

If we go through the same process for the second range, |y|> YM , where the potential energy is
defined as

ΦH(y) = 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hY
2

M , (2.28)

eventually, we obtain the following minimizing value for y

ymin = l

l+ k
Y, (2.29)

with the corresponding minimal potential energy

ΦH(ymin) = 1
2
lk

l+ k
Y 2 + 1

2hY
2

M . (2.30)

Now, by comparing when the first minimal potential energy, valid for the |y|< YM case, is greater
than the minimal potential energy valid for |y|> YM , we can find the total elongation Y ∗ that
defines the threshold in which the system switches from the hard-rigidity to the soft-rigidity
configuration,

l

2

(
k+h

l+ k+h

)
Y ∗2 >

1
2
lk

l+ k
Y ∗2 + 1

2hY
2

M (2.31)

that, after some simple calculations, eventually gives

Y ∗ >

√
(l+ k)(l+ k+h)

l2
Y M . (2.32)

This value is in agreement with the results for the average force ⟨f⟩ and the average number of
intact breakable springs ⟨χA(y)⟩ (and ⟨S⟩) shown in Fig.2.3 (and Fig.2.5) where we can confirm
that, given a system where l = k = h= 1 and YM = 1, the rupture elongation parameter is equal
to Y ∗/YM =

√
6. To conclude, this energetic approach (without thermal effects) is in agreement

with both the exact and approximated approaches and offers a useful tool to be able to evaluate
the correct threshold point of the entire system Y ∗.

2.4 Exact Gibbs ensemble

We introduce the Gibbs ensemble, characterized by the presence of a prescribed force f (see
right panel of Fig.2.1), by writing the corresponding exact Hamiltonian

ΦG(y,Y ) = −fY + 1
2 l(Y − y)2 + 1

2ky
2 +Eb(y), (2.33)
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By observing the Hamiltonian, we can notice that the addition of the potential energy contribution
deriving from the applied prescribed force f to the upper substrate is what differs from the
Helmholtz case along with the fact that, now, Y belongs to the phase space as y does. The
definition of Eb(y) instead is equal to the one introduced in Eq.(2.2), namely

Eb(y) =
{

1
2hy

2 if |y|< YM ,
1
2hY

2
M if |y| ≥ YM .

(2.34)

In the same spirit, adopting the same characteristic function χA(y) (Eq.(2.3)) introduced for the
Helmholtz case, we can write the Hamiltonian of the system as

ΦG(y,Y ) = −fY + 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2χA(y) + 1

2hY
2

M (1 −χA(y)). (2.35)

This potential energy can then be used to evaluate the partition function of the system

ZG(f) =
∫
R

dy
∫
R

e
−ΦG(y,Y )

KBT dY, (2.36)

that, now, is a function of the prescribed force f . We briefly observe that it is possible to swap
the two integrals appearing in the definition of the partition function thanks to Fubini’s theorem.
Using the Gaussian integral introduced earlier in Eq.(2.7) we can perform the integrals present in
ZG(f) eventually obtaining

ZG(f) = πKBT√
lk

e
−

hY 2
M

2KBT + f2
2KBT

l+k
lk
[
Λ(k) + 2

]
− πKBT√

l(k+h)
e

f2
2KBT

l+k+h
l(k+h) Λ(k+h),

(2.37)

where, for the sake of readability, we use the function α(p), previously defined in Eq.(2.10), and
we introduce a new function Λ(p), similar to the function Γ (p) defined in Eq.(2.11), as

α(p) = p

2KBT
, (2.38)

Λ(p) = ϕ

[√
α(p)

(
−YM − f

p

)]
−ϕ

[√
α(p)

(
YM − f

p

)]
. (2.39)

Thanks to the partition function, we can now evaluate the average value of the elongation of the
system ⟨Y ⟩ and the average number of intact springs ⟨χA(y)⟩, given a fixed applied force f

⟨Y ⟩ =KBT
∂ logZG

∂f
, (2.40)

⟨χA(y)⟩ = 1 + KBT

hYM

∂ logZG

∂YM
. (2.41)

In Fig.2.6 we show the average adimensional elongation paramter ⟨Y ⟩/YM (left panel) and the
average number of intact breakable springs ⟨χA(y)⟩ (right panel) versus the prescribed force f
for a system composed of springs of elastic constants l = k = h= 1 and for different thermal to
elastic energy ration KBT/(hY 2

M ). As we can see from the force-extension panel of the figure, the
mechanical response to the variation of the prescribed force f , especially for low temperatures,



2.5. Gibbs ensemble with spin approximation 37

Figure 2.6: Behavior of the two-rigidity model with variable thermal to elastic energy ratio
KBT/(hY 2

M ) = {0,0.01,0.02,0.03} (purple, blue, yellow and red curves respectively). The purple
curves correspond to the pure mechanical case at a null temperature. The average elongation
⟨Y ⟩ and the average number of intact breakable springs ⟨χA(y)⟩ are presented versus the fixed
force f , where, in both cases, l = k = h= 1 and YM = 1. In both panels, the force responsible for
the change in rigidity, f∗, is shown.

presents a force plateau that corresponds to a transition for the system’s rigidity. This change in
rigidity occurs when the force f reaches a specific value f = f∗ that does not correspond to the
result one could obtain basing the analysis only on mechanical principles (as seen before for the
Helmholtz case). If we think about the system from a purely mechanical point of view, in fact,
the force necessary to break the breakable spring h should be f = (k+h)YM that, in the case
shown in Fig.2.6 where the elastic constants are l = k = h = 1 and the elongation threshold is
YM = 1, is equal to f = 2 that is higher than the correct one shown in the figure (f = 2 > f∗).
This apparent discrepancy will be fully understood and explained in the following discussion
while adopting an energy-balance approach as previously done for the Helmholtz case.

The difference between the two rigidity regimes emerges from the difference in slope of the
two curve branches before and after the breaking force point and the same considerations done in
the Helmholtz case hold in this case as well. The threshold force f∗, responsible for the transition
between the two rigidity, is even more clear when observing the right panel of Fig.2.6 where
the number of intact breakable spring h changes from 1 to 0 exactly at f = f∗. Furthermore,
we stress the fact that, even in the Gibbs ensemble, f∗ does not depend on the temperature
that, instead, is responsible only for smoothing the curves while increasing. This temperature
independence of the threshold force f∗ is expected since the model is made of a single unit.

2.5 Gibbs ensemble with spin approximation
As introduced previously in the Helmholtz case, in this Section we adopt the spin variable

approach to study the system in the Gibbs ensemble. As previously done, we introduce a spin
variable S to help us approximate the total potential energy of the system. The spin variable will
then assume the value S = 0 when the breakable spring is in the break state and S = 1 when it is
in the intact conformation. By doing so, we are able to express the total energy as

ΦG(y,Y,S) = −fY + 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2S+ 1

2hY
2

M (1 −S), (2.42)
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Figure 2.7: Comparison between the spin-approximated quantities (dashed curves) and the
corresponding exact results (continuous curves) for ⟨Y ⟩/YM and ⟨S⟩ versus the applied force f .
In both cases, the elastic constants are l = k = h= 1 and YM = 1, while the thermal to elastic
energy ratio assumes the values KBT/(hY 2

M ) = {0.01,0.2} (respectively in blue and in red).

that, now, is a function of y, Y and S. We proceed by evaluating the partition function of the
system that, in the spin variable approximation, assumes the following definition

ZG(f) =
∑

S=0,1

∫
R

dy
∫
R

e
−ΦG(y,Y,S)

KBT dY (2.43)

Writing explicitly the expression for the total energy and explicitly expressing the sum over the
spin values, we obtain

ZG(f) =
∫
R

dy
∫
R

e
fY

KBT − l
2KBT (Y −y)2− k

2KBT y2− h
2KBT Y 2

MdY

+
∫
R

dy
∫
R

e
fY

KBT − l
2KBT (Y −y)2− k

2KBT y2− h
2KBT y2

dY,
(2.44)

that is easily solved using the Gaussian integral, eventually obtaining

ZG(f) = 2πKBT√
lk

e
f2

2KBT

(
l+k
lk

)
−

hY 2
M

2KBT + 2πKBT√
l(k+h)

e
f2

2KBT

(
l+k+h
l(k+h)

)
. (2.45)

Thanks to this approximated partition function we can evaluate the following quantities

⟨Y ⟩ =KBT
∂ logZG

∂f
, (2.46)

⟨S⟩ = 1 + KBT

hYM

∂ logZG

∂YM
. (2.47)

In Fig.2.7, we can see that the approximations obtained both for ⟨Y ⟩/YM and ⟨S⟩ versus the
fixed force f are in good agreement with the results obtained with the exact calculations. As in
the Helmholtz spin approximation, once again the spin approximation is more accurate for low
temperatures as we should expect. Furthermore, we observe that even in this case the rupture
force does not correspond to the one we would expect but, instead, is shifted as in the exact
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case. In the following section, we will solve this apparent dilemma by adopting an energy-balance
approach.

2.6 Gibbs ensemble from an energetic perspective

In this section, we study the model in the isotensional configuration adopting the principles
of energy minimization in order to obtain the exact rupture force f∗ responsible for the rigidity
change of the system. The total potential energy of the system is given by

ΦG(y,Y ) =
{

−fY + 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2 if |y|< YM ,

−fY + 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hY
2

M if |y|> YM .
(2.48)

Given a fixed force f , we search for the quantities y and Y that minimize the potential energy.
We start by considering our system in the |y|< YM case, where the potential energy is defined as

ΦG(y,Y ) = −fY + 1
2 l(Y − y)2 + 1

2ky
2 + 1

2hy
2. (2.49)

We derive ΦG(y,Y ) by y and Y separately, obtaining

∂ΦG(y,Y )
∂y

= −l(Y − y) +hy+ ky = 0, (2.50)

∂ΦG(y,Y )
∂Y

= −f + l(Y − y) = 0. (2.51)

After some straightforward calculations, we obtain the two minimizing values

ymin = f

h+ k
, (2.52)

Ymin = f

h+ k
+ f

l
. (2.53)

that we use to evaluate the resulting minimal potential energy, obtaining

ΦG(ymin,Ymin) = −1
2
f2

l
− 1

2
f2

h+ k
. (2.54)

Repeating the same process for the |y|> YM case, we obtain the following minimized potential
energy

ΦG(ymin,Ymin) = −1
2
f2

k
− 1

2
f2

l
+ 1

2hY
2

M , (2.55)

and, comparing the two minimized potential energy, we obtain the exact rupture force at which
the system changes its rigidity, namely

f∗ =
√
k(h+ k)YM (2.56)

We observe that using the same parameters of Fig.2.7, we have f∗ =
√

2 in agreement with the
results shown in the figure. Therefore, as in the Helmholtz ensemble, also in the present Gibbs
case, the energetic approach (without thermal effects) is in perfect agreement with the exact
calculation based on statistical mechanics and with the spin approximation. This confirms the
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value of the rupture threshold given in Eq.(2.56) and underlines the fact that the correct approach
to determining the rupture thresholds is the one based on energetic assumptions.



Chapter3
Adhesion

3.1 Introduction
As introduced earlier, microinstabilities can be divided into two different classes. On the

one side, we can have a bistable (or multistable) behavior between one ground state and one
(or more) metastable state representing different conformations or configurations of the intact
yet deformable system units, for example the conformational transitions in polymers or the
martensitic transformations in solids. On the other side, we can also have transitions between the
broken or unbroken states of some breakable units of the system. In this case, the system unit
can switch from the intact condition to the damaged condition, and this process can be reversible
or not depending on the specific situation. Examples of this scheme include the unzipping of
hairpins, denaturation of macromolecules, and peeling of films.

Figure 3.1: Paradigmatic potential energies of the system components for the two different classes
of microinstabilities: bistability between a folded (ground) state and an unfolded (metastable)
state (a), and damage process between the intact (unbroken) state and the damaged (broken)
state (b).

To better appreciate the real difference between these two classes of micro-instabilities, we can
observe from Fig.3.1 the potential energy U(x) describing the behavior of the units in both cases

41
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(we consider a one-dimensional geometry for the sake of simplicity). In the first case (Fig.3.1.a),
we have an elastic unit with two configurations (e.g. folded and unfolded) corresponding to the
two wells of the potential energy, having different equilibrium lengths and elastic constants. In
the second case (Fig.3.1.b), we have a breakable mechanical unit with the unbroken configuration
corresponding to the potential well, and the broken configuration corresponding to the horizontal
portion of the curve (red dashed line). Indeed, in this region, the exerted force is zero, which
means that we are in the broken state of the unit. In this Chapter, we will focus on the second
class of microinstabilities concerning the switch between the intact and broken state of the system.
The statistical mechanics of such a system can be studied by means of the spin variables approach
introduced earlier in the discussion.

We would like to emphasize that the author of this thesis did not make a direct contribution
to the model investigation presented in this chapter. However, it served as the initial inspiration
for our study and contributed to our understanding of the prior research conducted by our team
in this field. Nonetheless, we have included an examination of this model here to ensure continuity
and clarity for the reader [93].

1 ξ + 1 N

intact

ξ N − 1

broken

0
h

y

k

0
h

y

k

f fixed

yN+1 fixeda) Helmholtz

b) Gibbs

Figure 3.2: Scheme of the cohesion-decohesion process within both the Helmholtz (a) and the
Gibbs (b) ensembles. While in the first case, we prescribe the position yN+1 and we measure
the average force ⟨f⟩, in the second case we apply a fixed force f and we measure the average
position ⟨yN+1⟩. In both cases, we consider ξ unbroken vertical springs and N − ξ broken vertical
springs. The energy potentials φ and ψ correspond to the horizontal (continuous purple curve)
and the vertical (continuous blu and red curves) springs, respectively. Moreover, in the breakable
potential energy graph, the dashed curves correspond to the spin approximation.

We briefly recall that the main idea of the spin variables approach consists in introducing
a series of discrete or spin variables to identify the state of the system units. More precisely,
the bistable potential energy ψ of Fig.3.2, can be replaced by one quadratic function for the
intact behavior of the system (dashed blu curve corresponding to S = +1 in the figure), and
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a constant value for the broken part (dashed red line corresponding to S = −1 in the figure)
that, then, results in a net zero force. The switching among them, then, is controlled by the
associated spin variable. This strongly facilitates the calculation of the partition function and
the corresponding thermodynamic quantities, useful to describe the system behavior. While the
technique of the spin variables has been largely adopted to model units with transitions between
ground and metastable states (see Fig.3.1.a), the case of units undergoing damage processes
between unbroken ad broken states (Fig.3.1.b) has not been investigated by the same approach.
As a matter of fact, the thermal effects on the damage processes are still far from being fully
understood. Therefore, we propose here the analysis of the cohesion-decohesion process for a
film deposited on a given substrate. This system is shown in Fig.3.2, where one can find the
film represented by the horizontal mass-spring chain (purple springs of elastic constant k in the
figure), and grounded to the substrate through a series of breakable springs (intact blu springs
of elastic constant h and broken red springs exerting a null force). It is a simplified scheme
paradigmatically representing several situations including e.g. hairpin unzipping, macromolecular
denaturation, or film peeling.

The spin variables method allows for describing the system response, at a fixed temperature,
within two different statistical ensembles. Indeed, the peeling of the film can be induced by
prescribing a given extension (see Fig.3.2.a, Helmholtz ensemble), or by applying an external force
to the last unit of the chain (see Fig.3.2.b, Gibbs ensemble). From the point of view of statistical
mechanics, the analysis of both ensembles is very important since allows the investigation of
the ensembles equivalence problem in the thermodynamic limit (i.e. for very large systems)
[56, 98, 108–112]. By combining the spin variables approach with some peculiar features of the
tridiagonal matrices, we are able to present the complete mathematical solution of the problem
for an arbitrary number N of elements of the chain and we can also elaborate the limiting
case for N → ∞. We provide evidence that the peeling of the film in the thermodynamic limit
(N → ∞) occurs at a given temperature-dependent critical force, which is the same for both
Helmholtz and Gibbs’s statistical ensembles. As we will soon discover, in fact, for the peeling of
a chain of breakable springs (with energy function ψ as in Fig.3.2), we will obtain an unexpected
temperature-dependent force plateau. In particular, we prove that the force is a decreasing
function of the temperature. This is coherent with the fact that thermal fluctuations foster the
decohesion, allowing the escape from the well and, therefore, the exploration of the horizontal
region of the ψ curve in Fig.3.2. The whole process is explained by means of a phase transition
occurring at a given critical temperature, able to induce the complete decohesion of the film
even without any external mechanical action. Although the critical force is the same for both
Helmholtz and Gibbs’s statistical ensembles, it is worth noticing that these ensembles are not
equivalent in the thermodynamic limit. In fact, we verified that the ensembles exhibit different
force-extension relations for N → ∞.

To conclude, we underline that from the statistical mechanic’s point of view, the system here
investigated is particularly interesting for three reasons: (i) it can be analytically solved within
both statistical ensembles; (ii) shows a phase transition at a critical temperature that can be
calculated in closed form; and (iii) exhibits the ensembles nonequivalence in the thermodynamic
limit, which is an unusual intriguing behavior.

The structure of this Chapter follows. In section 3.2, we define the system under investigation
and the problems approached. In sections 3.3 and 3.4, we study the Helmholtz ensemble and
its thermodynamic limit. Similarly, in sections 3.5 and 3.6, we study the Gibbs ensemble and
its thermodynamic limit. In section 3.7 we show a good agreement between theoretical and
experimental results concerning the unzipping of RNA and DNA hairpins. The conclusions
(section 3.8) and a mathematical Appendix close this Chapter.
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3.2 Problem statement

We take into consideration the scheme of Fig.3.2, where two configurations of the reversible
and rate-independent cohesion-decohesion process are represented. This cohesion-decohesion
scheme of an elastic layer from a substrate has been earlier introduced to describe a wide range
of phenomena such as peeling of tapes, adhesion of geckos, and denaturation of DNA or other
chemical structures [7, 8]. However, the thermal effects have been always neglected and represent
the central point of the present investigation. In the first case (Fig.3.2.a), the process is controlled
by the prescribed position yN+1 of the last element of the chain (isometric condition within
the Helmholtz ensemble). In the second one (Fig.3.2.b), it is controlled by the applied force f
(isotensional condition within the Gibbs ensemble). In both cases, the horizontal springs (elastic
constant k) are purely harmonic with potential energy

φ= 1
2k (yi+1 − yi)2 , (3.1)

while the vertical ones (elastic constant h) can be broken or unbroken being their state depending
on their extension yi. When |yi|> yM they are broken and when |yi|< yM they are unbroken.
Therefore, an unbroken spring leads to a contribution to the potential energy equal to ψ = 1

2hy
2
i

(when |yi|< yM ) and a broken one a contribution equal to ψ = 1
2hy

2
M (when |yi|> yM ). Indeed,

we must impose the continuity of the potential energy over the whole configurational space (see
the graph of ψ in Fig.3.2). The behaviors of both the intact springs k and the breakable springs
h are shown in Fig.3.2.

The most important point, on which is grounded our approach, is that each vertical element
is characterized by two different states (broken and unbroken configurations). In general, as
previously anticipated, the statistical mechanics of a system of two-state units can be introduced
by means of the so-called spin variables approach. Briefly, it consists in associating each unit of
the system with a discrete spin variable, which can assume only two different values corresponding
to the two possible states. In our case, these two different values correspond to the broken and
unbroken states of each vertical element of the chain. Therefore, we should consider N spin
variables Si (i= 1, . . . ,N), and the energy potential of each vertical spring should be written as

ψ = 1
4(1 +Si)hy2

i + 1
4(1 −Si)hy2

M , (3.2)

where Si = +1 corresponds to the unbroken state and Si = −1 corresponds to the broken one.
With these assumptions, we have a phase space composed of the N continuous variables yi and the
N discrete variables Si. The switching of the variable Si and their statistics at thermodynamic
equilibrium are directly controlled by the statistical ensemble (Helmholtz and Gibbs in our case)
imposed on the system. This is the most general description of the system since we can envisage
all the possible combinations of broken and unbroken elements along the chain. However, this
complete model is rather complex and prevents the full mathematical analysis of the system.
Nevertheless, since we are studying the cohesion-decohesion process under an external mechanical
action applied to the right extremity of the system, we can simplify the model by assuming to
have N − ξ broken elements on the right of the chain and ξ unbroken elements on the left of
the chain. It means that we suppose to have a single moving interface or domain wall between
the intact region and the damaged region. This is a plausible hypothesis especially if we work
at sufficiently low-temperature values. Under these hypotheses, the set of the two-state spin
variables Si are substituted by the single variable ξ belonging to the phase space of the system,
and taking its values in the set {0,1,2, . . . ,N} ∋ ξ. In this regard, the variable ξ can be considered
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a multivalued spin variable. To conclude, it is worth underlining that the assumption to have a
single moving domain wall between two regions with different physical states is similar to the one
used in the so-called zipper model, largely used to describe the helix-coil transitions in proteins,
the gel-sol transition of thermo-reversible gels, and the melting or denaturation of DNA [104–107].

The aim of this Chapter is to fully analyze the cohesion-decohesion process in both the
Helmholtz and Gibbs ensembles, by providing a complete picture of the effect of the temperature
on the system.

3.3 The Helmholtz ensemble

The Helmholtz ensemble is defined by a prescribed extension yN+1 of the last element of
the chain, as represented in Fig.3.2.a (isometric condition). As previously anticipated, the
variables belonging to the phase space of this system are the extensions yi of the vertical springs
(i= 1, . . . ,N), and the number ξ of unbroken vertical springs. These considerations lead to a total
potential energy of the system given by

Φ =
N∑

i=0

1
2k(yi+1 − yi)2 +

ξ∑
i=1

1
2hy

2
i +

N∑
i=ξ+1

1
2hy

2
M , (3.3)

where y0 = 0 and yN+1 are imposed. It is worth noticing that the last term of Φ is not an
irrelevant additive constant since it depends implicitly on ξ, which is a variable of the phase space
of the system. Eq.(3.3) can be easily rewritten as follows

Φ = k

N∑
i=1

y2
i − k

N−1∑
i=1

yiyi+1 + 1
2ky

2
N+1 − kyNyN+1

+ 1
2h

ξ∑
i=1

y2
i + (N − ξ)1

2hy
2
M .

(3.4)

For further convenience, the energy function Φ can be rearranged by means of the following
matrix definition

Aξ
N (η) =



a1 −1 0 0

−1

0 0

−1
0 0 −1 aN


∈ MN,N (R). (3.5)

where the diagonal elements are defined as follows

ai =
{

2 + η if 1 ≤ i≤ ξ,

2 if ξ+ 1 ≤ i≤N,
(3.6)

The η = h/k parameter appearing in the definition of the diagonal elements is the ratio between
the elastic constants of vertical and horizontal elastic elements. The symbol Mn,m(R) represents
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the linear space of the n×m matrices with real elements. We also define the vectors

yT =
(
y1 y2 . . . yN

)
∈ R

N , (3.7)
vT =

(
0 . . . 0 1

)
∈ R

N . (3.8)

These key premises allow rewriting the energy function as follows

Φ (y, ξ;yN+1) = 1
2kyTAξ

N (η)y − kyN+1vTy + 1
2ky

2
N+1 + 1

2kη(N − ξ)y2
M , (3.9)

where y and ξ are the main variables belonging to the phase space of the system and yN+1 is the
externally applied extension of the last element of the chain. This expression of Φ is useful for the
following developments since it is constituted by the sum of a quadratic form and a linear form
in y, with an additional term independent of y. The partition function of the system analyzed
within the Helmholtz ensemble can be therefore written as

ZH(yN+1) =
∫
R

N

N∑
ξ=0

e
−

Φ(y,ξ;yN+1)
KBT dy1 . . .dyN , (3.10)

where we have integrated the continuous variable y and summed the discrete variable ξ. When
Eq.(3.9) is substituted in Eq.(3.10), we get

ZH(yN+1) = e
− k

2KBT y2
N+1

N∑
ξ=0

e
− 1

2KBT kη(N−ξ)y2
M

×
∫
R

N
e

− 1
2KBT kyTAξ

N
(η)y

e
k

KBT yN+1vTy
dy1 . . .dyN ,

(3.11)

where we can use the integral property∫
R

N
e−yTAyebTydy1 . . .dyN =

√
πN

detA
e

1
4 bTA−1b, (3.12)

holding for any symmetric and positive definite matrix A. Indeed, by considering A = 1
2KBT kAξ

N (η)
and b = k

KBT yN+1v in Eq.(3.12), we easily obtain

ZH (yN+1) = e
−

ky2
N+1

2KBT

N∑
ξ=0

e
−

ky2
M

2KBT η(N−ξ)
√

(2πKBT )N

kN detAξ
N (η)

e

ky2
N+1

2KBT vT
[
Aξ

N
(η)
]−1

v
. (3.13)

The knowledge of the partition function allows us to determine the average force necessary to
prescribe the vertical extension yN+1 of the last element of the chain. As a matter of fact, a
classical thermodynamic relation states that [98]

⟨f⟩ = −KBT
∂ logZH

∂yN+1
= −KBT

1
ZH

∂ZH

∂yN+1
, (3.14)
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which can be elaborated to give the result

⟨f⟩ = kyN+1
1
ZH

N∑
ξ=0

√
(2πKBT )N

kN detAξ
N (η)

e
−

ky2
M

2KBT η(N−ξ)

×
{

1 − vT
[
Aξ

N (η)
]−1

v
}
e

−
ky2

N+1
2KBT

{
1−vT

[
Aξ

N
(η)
]−1

v
}
.

(3.15)

Another important quantity for describing the system behavior is the average value ⟨ξ⟩ of unbroken
vertical springs. It can be directly evaluated through the expression

⟨ξ⟩ = 1
ZH

∫
R

N

N∑
ξ=0

ξe
−

Φ(y,ξ;yN+1)
KBT dy1 . . .dyN . (3.16)

Its calculation delivers

⟨ξ⟩ = 1
ZH

N∑
ξ=0

ξ

√
(2πKBT )N

kN detAξ
N (η)

e
−

ky2
M

2KBT η(N−ξ)−
ky2

N+1
2KBT

{
1−vT

[
Aξ

N
(η)
]−1

v
}
. (3.17)

In addition, it is also interesting to determine the average value of the vector y defining the
position of all the elements of the chain (corresponding to both broken and unbroken vertical
springs). By definition of average value, we have

⟨y⟩ = 1
ZH

∫
R

N

N∑
ξ=0

ye−
Φ(y,ξ;yN+1)

KBT dy1 . . .dyN . (3.18)

Then, we can use the definition of Φ, by obtaining the more explicit form

⟨y⟩ = e
− k

2KBT y2
N+1 1

ZH

N∑
ξ=0

e
− 1

2KBT kη(N−ξ)y2
M

×
∫
R

N
ye− 1

2KBT kyTAξ
N

(η)y+ k
KBT yN+1vTy

dy1 . . .dyN .

(3.19)

Now, by differentiating Eq.(3.12) with respect to an arbitrary element of the vector b, we obtain
a second integral property∫

R
N
e−yTAyebTyydy1 . . .dyN = 1

2

√
πN

detA
e

1
4 bTA−1bA−1b, (3.20)

which holds, as before, for any symmetric and positive definite matrix A and that can be used to
calculate the integral in Eq.(3.19). Straightforward calculations lead to the result

⟨y⟩ = yN+1
1
ZH

N∑
ξ=0

√
(2πKBT )N

kN detAξ
N (η)

e
−

ky2
M

2KBT η(N−ξ)

× e
−

ky2
N+1

2KBT

{
1−vT

[
Aξ

N
(η)
]−1

v
}[

Aξ
N (η)

]−1
v.

(3.21)
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Expressions for ⟨f⟩, ⟨ξ⟩ and ⟨y⟩ in terms of the applied extension yN+1 represent the main results
describing the behavior of the system under isometric conditions, i.e. within the Helmholtz
ensemble. However, in order to obtain fully explicit representations for these quantities, we need
to find closed-form expressions for the scalars detAξ

N (η) and vT
[
Aξ

N (η)
]−1

v, and the vector[
Aξ

N (η)
]−1

v. This development is performed in the Appendix at the end of this Chapter, where
we prove that

detAξ
N (η) = (N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ), (3.22)

1 − vT
[
Aξ

N (η)
]−1

v = G(ξ+ 1) −G(ξ)
(N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ) , (3.23){[

Aξ
N (η)

]−1
v
}

i

= ϑi−1
(N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ) , (3.24)

and where

G(z) = 1√
∆

(
2 + η+

√
∆

2

)z

− 1√
∆

(
2 + η−

√
∆

2

)z

, (3.25)

with ∆ = η2 + 4η and

ϑi = [G(i+ 1) − (i− ξ+ 1)G(ξ+ 1) + (i− ξ)G(ξ)]1(ξ− i)
+ [(i− ξ+ 1)G(ξ+ 1) − (i− ξ)G(ξ)] .

(3.26)

Here 1(x) represents the Heaviside step function (see Appendix for details). The main results of
this section can be therefore summed up as follows

⟨F⟩ = 2αY
D

N∑
ξ=0

G(ξ+ 1) −G(ξ)
ϑ

3/2
N

e
αηξ−αY2 G(ξ+1)−G(ξ)

ϑN , (3.27)

⟨ξ⟩ = 1
D

N∑
ξ=0

ξ

ϑ
1/2
N

e
αηξ−αY2 G(ξ+1)−G(ξ)

ϑN , (3.28)

⟨Yi⟩ = Y
D

i−1∑
ξ=0

(i− ξ)G(ξ+ 1) − (i− ξ− 1)G(ξ)
ϑ

3/2
N

e
αηξ−αY2 G(ξ+1)−G(ξ)

ϑN

+ Y
D

N∑
ξ=i

G(i)
ϑ

3/2
N

e
αηξ−αY2 G(ξ+1)−G(ξ)

ϑN ,

(3.29)

D =
N∑

ξ=0

1
ϑ

1/2
N

e
αηξ−αY2 G(ξ+1)−G(ξ)

ϑN , (3.30)

where we introduced the dimensionless quantities α = ky2
M/(2KBT ), η = h/k, Y = yN+1/yM ,

⟨F⟩ = ⟨f⟩yM/(KBT ), ⟨Yi⟩ = ⟨yi⟩/yM (i = 1, . . . ,N) and the quantity D, proportional to the
partition function ZH . This form of the solutions is particularly useful to study the thermodynamic
limit (N → ∞) of the Helmholtz ensemble, as discussed in the next Section.

A first example of application of the above results can be found in Fig.3.3, where we plotted
the number of unbroken elements ⟨ξ⟩, the average force ⟨f⟩ and the average vector ⟨y⟩ versus
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Figure 3.3: Number of unbroken elements ⟨ξ⟩, average force ⟨f⟩ and average vector ⟨y⟩ versus
yN+1 for a decohesion process (yN+1 increasing) under isometric conditions. We adopted the
parameters N = 6, k = 5, h= 20, yM = 4, and six values of KBT = 4,7.2,10.4,13.6,16.8, and 20
(in arbitrary units).

yN+1, for a case with N = 6. Since we adopted a quite large value of the rupture threshold
yM (i.e. α≫ 1), we can identify all the distinct rupture occurrences in the decreasing steps of
the quantity ⟨ξ⟩, and in the peaks of the force-extension (⟨f⟩, yN+1) curves. Besides, they can
be also recognized in the behavior of the curves representing ⟨yi⟩ versus yN+1. It means that
the discrete character of the decohesion process is directly reflected in the behavior of the main
physical quantities describing the system. Of course, for large values of the temperature T , the
curves are smoother and it is more difficult to recognize the single ruptures, due to the larger
thermal fluctuations.

A second example, with a larger number of elements N = 30, is shown in Fig.3.4, where we
plotted ⟨ξ⟩ and ⟨f⟩ versus yN+1. In this case, we can identify some rupture events only for the
smallest temperatures. While ⟨ξ⟩ is represented by the expected decreasing trend (going from
N = 30 to 0), an interesting temperature-dependent plateau behavior can be observed in the
force-extension curves. It means that the isometric detachment of a long chain from a substrate
takes place at a given constant force, and this force is sensibly dependent on the temperature of
the system. This behavior, which is related to the presence of a phase transition, is thoroughly
studied in the next Section where we consider the limiting case for N → ∞ by introducing the
discrete to continuous transformation.

In Fig.3.3 and Fig.3.4, the behavior of ⟨ξ⟩ shows that the detachment of the elements occurs
in a progressive way, described by a gradual change of ⟨ξ⟩ in response to the prescribed increasing
extension yN+1. This is a well known behavior characterizing the systems within the Helmholtz
ensemble, already observed e.g. in the unfolding of proteins or other macromolecules under
isometric conditions [91, 94, 110]. We will see that the behavior is completely different within the
Gibbs (isotensional) ensemble, where all the vertical elements break quite simultaneously, at a
given critical force. To conclude, we also observe that the behavior of the force-extension curves
(⟨f⟩ versus yN+1) in Fig.3.3 and Fig.3.4, characterized by the force plateau, is in good qualitative
agreement with several results obtained in peeling experiments and simulations concerning
adhesive films and biological structures [244–248].

3.4 Thermodynamic limit in the Helmholtz ensemble

We consider the force-extension relationship given in Eq.(3.27), where we assume to have
a large value of the number N of elements of the chain. This assumption corresponds to the
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Figure 3.4: Number of unbroken elements ⟨ξ⟩ and average force ⟨f⟩ versus yN+1 for a system with
N = 30, tested under isometric conditions. We adopted the parameters k = 5, h= 20, yM = 2,
and six values of KBT = 4,7.2,10.4,13.6,16.8, and 20 (in arbitrary units).

thermodynamic limit and allows the approximation of the arbitrary sum
∑N

ξ=0ϕ(ξ) in Eq.(3.27)
with the integral

∫ N
0 ϕ(ξ)dξ (for any function ϕ depending on ξ). It means that the original

discrete system can be considered as a continuous one for large values of N . To further simplify
the expression, we can apply the change of variable ξ =Nx. So doing, the above integral assumes
the form N

∫ 1
0 ϕ(Nx)dx. After these operations, we observe that in the new version of Eq.(3.27)

we have several terms of the form G(Nx) and G(Nx+ 1). Under the hypothesis of large values of
N , it is not difficult to realize that the function G(z), defined in Eq.(3.25), can be approximated
by G(z) = bz/

√
∆, with b= 2+η+

√
∆

2 , since the second term can be neglected with respect to the
first one. Indeed, in the second term of Eq.(3.25), the base 2+η−

√
∆

2 is always strictly less than
one, making the corresponding power negligible. It has been carefully verified also for the extreme
cases with η ≫ 1 and with η ≪ 1. Therefore, we eventually obtain from Eq.(3.27) the expression

⟨F⟩ = 2αY

∫ 1
0

e
Nx(αη− 1

2 log b)[
N(1−x)+ b

b−1

]3/2 e
−αY2 1

N(1−x)+ b
b−1 dx

∫ 1
0

e
Nx(αη− 1

2 log b)[
N(1−x)+ b

b−1

]1/2 e
−αY2 1

N(1−x)+ b
b−1 dx

. (3.31)

To simplify this result, we can apply the change of variable s=N(1 −x) + b
b−1 , by obtaining

⟨F⟩ = 2αY

∫ N+ b
b−1

b
b−1

1
s3/2 e

−s(αη− 1
2 logb)− 1

s αY2
ds∫ N+ b

b−1
b

b−1

1
s1/2 e

−s(αη− 1
2 logb)− 1

s αY2
ds
. (3.32)
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This proves that a universal force-extension curve exists in the thermodynamic limit (N → ∞)
and its shape is given by the formula

⟨F⟩ = 2αY

∫ +∞
b

b−1

1
s3/2 e

−s(αη− 1
2 logb)e− 1

s αY2
ds∫ +∞

b
b−1

1
s1/2 e

−s(αη− 1
2 logb)e− 1

s αY2
ds
, (3.33)

where it is not difficult to verify that both integrals are well defined provided that αη− 1
2 logb > 0,

a condition thoroughly discussed below. The result given in Eq.(3.33) can be used to introduce an
important property of the system, concerning the force plateau observed for N → ∞ and Y → ∞.
To this aim, we introduce another change of variable defined by 1/z = Y/s. We easily get the
relation

⟨F⟩ = 2α

∫ +∞
1
Y

b
b−1

1
z3/2 e

−Y[(αη− 1
2 logb)z+ α

z ]dz∫ +∞
1
Y

b
b−1

1
z1/2 e

−Y[(αη− 1
2 logb)z+ α

z ]dz
, (3.34)

which allows the calculation of the asymptotic value ⟨F⟩as = limY→∞⟨F⟩. First of all, we observe
that

lim
Y→∞

∫ 1
Y

b
b−1

0

1
zq
e−Y[(αη− 1

2 logb)z+ α
z ]dz = 0, (3.35)

with q = 1
2 ,

3
2 , provided that αη− 1

2 logb > 0, as before. Hence, we can write

⟨F⟩as = 2α lim
Y→∞

∫ +∞
0

1
z3/2 e

−Y[(αη− 1
2 logb)z+ α

z ]dz∫ +∞
0

1
z1/2 e

−Y[(αη− 1
2 logb)z+ α

z ]dz
, (3.36)

where we can use the tabulated integral [249, 250]∫ +∞

0
zν−1e−

(
γz+ β

z

)
dz = 2

(
β

γ

)ν/2
Kν

(
2
√
βγ
)
, (3.37)

which is valid with β > 0 and γ > 0, and where Kν(z) is a modified Bessel function of the second
kind and order ν [249, 250]. Its application to Eq.(3.36) delivers

⟨F⟩as = 2α lim
Y→∞

(
α

αη− 1
2 logb

)− 1
4
K− 1

2

(
2Y
√

α(αη− 1
2 logb)

)
(

α
αη− 1

2 logb

)+ 1
4
K+ 1

2

(
2Y
√

α(αη− 1
2 logb)

) ,

= 2

√
α

(
αη− 1

2 logb
)
, (3.38)

where we used the property Kν(z) =K−ν(z) [249, 250]. The result stated in Eq.(3.38) describes
the asymptotic value of the force plateau in terms of the temperature and the other parameters
of the system. It can be written in a more explicit form as

⟨f⟩as =
√
khyM

√√√√1 − KBT

hy2
M

log
(

2 + η+
√
η2 + 4η

2

)
, (3.39)
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Figure 3.5: Comparison between the force-extension curves given in Eq.(3.15) or Eq.(3.27) (colored
continuous curves) with the values of the force plateau obtained in Eq.(3.39) or Eq.(3.40) (gray
dashed straight lines). We underline the agreement between the asymptotic force values for
different system temperatures. We adopted the parameters N = 100, k = 5, h = 20, yM = 1.5,
and KBT = 3.0,7.25,11.5,15.75, and 20 (in arbitrary units).

or, equivalently,

⟨f⟩as =
√
khyM

√
1 − T

Tc
, (3.40)

where we introduced the critical temperature

Tc = 1
KB

hy2
M

log
(

2+η+
√

η2+4η
2

) . (3.41)

Since arccosh(x) = log
(
x+

√
x2 − 1

)
, we can give the following alternative form for the critical

temperature
Tc = 1

KB

hy2
M

arccosh
(
1 + η

2
) . (3.42)

Importantly, it is not difficult to prove that the inequality αη− 1
2 logb > 0, assuring the convergence

of the above integrals, simply means that we are working at subcritical temperatures, namely
T < Tc.

The value of the plateau force obtained in Eq.(3.39) or Eq.(3.40) must be compared with the
force-extension curve given in Eq.(3.15) or Eq.(3.27). This comparison can be found in Fig.3.5,
where we considered a system with N = 100. We observe the perfect agreement of the solution
for the original discrete system with the continuous approximation holding in the thermodynamic
limit. This explains the variation of the plateau force with the temperature in terms of the
presence of the phase transition occurring at the critical temperature Tc. The critical behavior
of the asymptotic value of the force can be observed in Fig.3.6 where we plotted ⟨f⟩as versus
KBT through Eq.(3.39) for different values of the ratio η. We note that the force approaches
zero at the critical temperature Tc, and that Tc is an increasing function of the ratio η. It is
important to remark that the value of the critical force for T = 0 is ⟨f⟩as =

√
khyM , in perfect
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Figure 3.6: Critical behavior of the asymptotic force within the Helmholtz ensemble. We plotted
⟨f⟩as versus KBT (see Eq.(3.39)) for different values of the ratio η = h/k between the elastic
constants of the vertical and horizontal elements. We adopted the parameters k = 1, yM = 1 (in
arbitrary units) and we plotted ten curves with 10−1 ≤ η ≤ 10+1.

agreement with the recent literature concerning the pure mechanical peeling [7]. Moreover, we
also remark that the critical behavior characterized by the phase transition can be obtained, from
the mathematical point of view, only if the system approaches the thermodynamic limit, i.e. for
N → ∞.

To better elucidate the meaning of the critical temperature and of the associated phase
transition we further analyze the behavior of the variable ⟨ξ⟩ given in Eq.(3.28), measuring the
average number of unbroken vertical springs. As before, by assuming a large value of N , we can
substitute the sums with the pertinent integrals and we easily find

⟨ξ⟩ =N

∫ 1
0

xe
Nx(αη− 1

2 log b)[
N(1−x)+ b

b−1

]1/2 e
−αY2 1

N(1−x)+ b
b−1 dx

∫ 1
0

e
Nx(αη− 1

2 log b)[
N(1−x)+ b

b−1

]1/2 e
−αY2 1

N(1−x)+ b
b−1 dx

. (3.43)

We can now apply the change of variable s=N(1−x)+ b
b−1 , and we get the number ⟨ζ⟩ =N−⟨ξ⟩

of broken vertical springs in the form

⟨ζ⟩ =

∫ N+ b
b−1

b
b−1

s1/2e−s(αη− 1
2 logb)e− 1

s αY2
ds∫ N+ b

b−1
b

b−1
s−1/2e−s(αη− 1

2 logb)e− 1
s αY2

ds
− b

b− 1 . (3.44)

In the thermodynamic limit, we have that N → ∞ and we can write the expression

⟨ζ⟩ =

∫ +∞
b

b−1
s1/2e−s(αη− 1

2 logb)e− 1
s αY2

ds∫ +∞
b

b−1
s−1/2e−s(αη− 1

2 logb)e− 1
s αY2

ds
− b

b− 1 , (3.45)
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Figure 3.7: Asymptotic behavior of the number of broken elements ⟨ζ⟩ within the Helmholtz
ensemble and with yN+1 → ∞. The quantities ⟨ζ⟩/yN+1 = (N − ⟨ξ⟩)/yN+1 (colored continuous
lines), calculated through Eq.(3.17) or Eq.(3.28), and ⟨ζ⟩|yN+1→∞/yN+1 (gray dashed lines),
obtained from Eq.(3.50), are represented versus yN+1. They show the same asymptotic behavior.
We adopted the parameters N = 100, k = 5, h= 20, yM = 1.5, and KBT = 3.0,7.25,11.5,15.75,
and 20 (in arbitrary units).

which proves that ⟨ζ⟩ =N − ⟨ξ⟩ is independent of N for large N . This is the expected behavior
since for a long chain the number of broken elements must depend only on the applied extension
Y and on the temperature T . This result allows us to give a clear physical interpretation of the
phase transition corresponding to the critical temperature Tc. We consider separately the cases
with Y = 0 and with large values of Y. For Y = 0 we have to calculate

⟨ζ⟩|Y=0 =

∫ +∞
b

b−1
s1/2e−s(αη− 1

2 logb)ds∫ +∞
b

b−1
s−1/2e−s(αη− 1

2 logb)ds
− b

b− 1 . (3.46)

Both integrals in the numerator and denominator can be calculated in closed form (if αη− 1
2 logb >

0, as before), and we eventually obtain the result

⟨ζ⟩|Y=0 = b

b− 1
1
Θ

1
2 −Θ +

√
Θ

π

e−Θ

1 − erf
(√

Θ

)
 , (3.47)

where

Θ = b

b− 1

(
αη− 1

2 logb
)

=
hy2

M

2KBT

e
hy2

M
KBTc

e
hy2

M
KBTc − 1

(
1 − T

Tc

)
. (3.48)

So, we directly deduce that for Θ → ∞ (or T → 0) we have ⟨ζ⟩|Y=0 = 0 and for Θ → 0 (or
T → Tc) we have ⟨ζ⟩|Y=0 → ∞. It means that at low temperatures we have no vertical springs
broken and at the critical temperature we have all the vertical springs broken. Hence, we observe
the characteristic divergence of ⟨ζ⟩|Y=0 for T → Tc. This behavior can be found in Fig.3.8, where
we plotted ⟨ζ⟩|Y=0 versus KBT for different values of η.
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Figure 3.8: Critical behavior of the number of broken elements within the Helmholtz ensemble
and with Y = 0. We plotted ⟨ζ⟩|Y=0 versus KBT (see Eq.(3.47)) for different values of the ratio
η = h/k between the elastic constants of the vertical and horizontal elements. We adopted the
parameters k = 1, yM = 1 (in arbitrary units) and we plotted ten curves with 10−1 ≤ η ≤ 10+1.

We can state that, at the critical temperature, all the vertical springs are broken independently
of the prescribed extension applied to the infinite chain. Indeed, this can be proved also for large
values of Y . In this case, we consider Eq.(3.45) where we apply the change of variable 1/z = Y/s.
We eventually obtain, for large values of Y, the relation

⟨ζ⟩|Y→∞ → Y
∫ +∞
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2 logb)e− 1

z αYdz∫ +∞
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√
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(
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√
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) 1
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− b
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= Y
√
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1 − T
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− e
hy2

M
KBTc

e
hy2

M
KBTc − 1

, (3.49)

where we used the integral given in Eq.(3.37) and the asymptotic relation of the modified Bessel
functions Kν(z) →

√
π
2z e

−z ∀ν for z → ∞ [249, 250]. It means that the number of broken elements
⟨ζ⟩ = N − ⟨ξ⟩, increasing with the applied extension Y, is described by the straight line given
in Eq.(3.49), at least for large values of Y. In other words, we have a linear relation between
⟨ζ⟩ and Y for Y → ∞. This behavior is confirmed in Fig.3.7, where for convenience we plotted
⟨ζ⟩/yN+1 = (N − ⟨ξ⟩)/yN+1, calculated through Eq.(3.17) or (3.28), and ⟨ζ⟩|yN+1→∞/yN+1,
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obtained from Eq.(3.49) and explicitly given by

⟨ζ⟩|yN+1→∞

yN+1
= 1
yM

√
k

h

1√
1 − T

Tc

− 1
yN+1

e
hy2

M
KBTc

e
hy2

M
KBTc − 1

. (3.50)

We observe the same asymptotic behavior of both quantities for different values of the temperature.
This proves that the transition from discrete to continuous systems is legitimate to analyze the
thermodynamic limit. Moreover, from Eq.(3.50), we observe that ⟨ζ⟩|yN+1→∞ diverges to infinity
when T → Tc. At the same time, we have no finite values of the prescribed yN+1 able to entirely
detach the system for subcritical temperatures T < Tc. It means that, for T < Tc, we must have
yN+1 → ∞ for inducing the complete detachment of the chain. Therefore, we conclude that for
T → Tc we have a phase transition corresponding to the rupture of all the vertical elements of
the chain, i.e. to the complete detachment of the chain from the substrate. For this reason, the
critical temperature can also be referred to as the denaturation temperature of the system. This
is the terminology often adopted in the biological context [77–79]. More details on the application
of our theory to RNA and DNA hairpins will be given in Section 3.7.

3.5 The Gibbs ensemble

The Gibbs ensemble is characterized by the applied force f , which induces the detachment
of the chain from the substrate, as shown in Fig.3.2.b (isotensional condition). To calculate
the Gibbs partition function, we observe that the total energy of the system can be written as
Φ −fyN+1, where Φ is the energy function introduced within the Helmholtz ensemble in Eq.(3.9).
The Gibbs partition function can be therefore written as

ZG (f) =
∫
R

N+1

N∑
ξ=0

e
−

Φ(y,ξ;yN+1)
KBT e

fyN+1
KBT dy1 . . .dyNdyN+1

=
∫ +∞

−∞
ZH (yN+1)e

fyN+1
KBT dyN+1, (3.51)

which corresponds to the Laplace transform of the Helmholtz partition function. By using
Eq.(3.13), we immediately get

ZG(f) =
N∑
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√
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kN detAξ
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e
−
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−∞
e

−
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N+1
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{
1−vT

[
Aξ

N
(η)
]−1

v
}
e

fyN+1
KBT dyN+1,

(3.52)

where the integral can be easily performed thanks to the classical result (see Eq.(3.12) with
N = 1) ∫ +∞

−∞
e−λz2

eγzdz =
√
π

λ
e

γ2
4λ , λ > 0. (3.53)
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Straightforward simplifications lead to

ZG(f) =
N∑

ξ=0

√√√√√ (2πKBT/k)N+1
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N (η)
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N
(η)
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v
}−1

.

(3.54)

The knowledge of the partition function allows determining the average extension ⟨yN+1⟩ of the
last element of the chain induced by the applied force f . A classical thermodynamic relation
states indeed that [98]

⟨yN+1⟩ =KBT
∂ logZG

∂f
=KBT

1
ZG

∂ZG

∂f
, (3.55)

and gives the result
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(3.56)

Similarly, we can also determine the average number of unbroken vertical springs defined as

⟨ξ⟩ = 1
ZG

∫
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ξ=0
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The explicit expression can be found in the form

⟨ξ⟩ = 1
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(3.58)

Finally, we can evaluate the average value of the positions of all the elements of the chain. This
quantity is defined by the expression

⟨y⟩ = 1
ZG

∫
R

N+1

N∑
ξ=0

ye−
Φ(y,ξ;yN+1)

KBT e
fyN+1
KBT dydyN+1. (3.59)
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The comparison of Eq.(3.59) with Eqs.(3.18) and (3.21) yields the partial result

⟨y⟩ = 1
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(3.60)

where the last integral can be evaluated by means of the relation (see Eq.(3.20) with N = 1)∫ +∞

−∞
e−λz2

eγzzdz = γ
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The calculation can be performed to eventually give the final result in the form

⟨y⟩ = f
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(3.62)

The three major achievements of this Section, describing the behavior of ⟨yN+1⟩, ⟨ξ⟩ and ⟨y⟩
as functions of f , must be complemented with the expressions for detAξ

N (η), vT
[
Aξ

N (η)
]−1

v,

and
[
Aξ

N (η)
]−1

v shown in Eqs.(3.22), (3.23) and (3.24), respectively (fully demonstrated in
Appendix). The explicit results can be summed up by using dimensionless quantities as follows

⟨Y⟩ = F
2αE

N∑
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eαηξ ϑN

[G(ξ+ 1) −G(ξ)]3/2 e
1

4α F2 ϑN
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⟨ξ⟩ = 1
E
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ξeαηξ 1
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(3.65)

E =
N∑

ξ=0
eαηξ 1

[G(ξ+ 1) −G(ξ)]1/2 e
1

4α F2 ϑN
G(ξ+1)−G(ξ) , (3.66)

where we introduced α = ky2
M/(2KBT ), η = h/k, ⟨Y⟩ = ⟨yN+1⟩/yM , F = fyM/(KBT ), ⟨Yi⟩ =

⟨yi⟩/yM (i = 1, . . . ,N) and the quantity E , proportional to the partition function ZG. This
dimensionless form of the solutions is particularly useful to study the thermodynamic limit
(N → ∞) of the Gibbs ensemble, as discussed in the next Section.
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Figure 3.9: Number of unbroken elements ⟨ξ⟩, average position ⟨yN+1⟩ and average vector ⟨y⟩
versus f for a decohesion process (f increasing) under isotensional conditions. We adopted the
parameters N = 6, k = 5, h= 20, yM = 4, and six values of KBT = 4,7.2,10.4,13.6,16.8, and 20
(in arbitrary units).

Figure 3.10: Number of unbroken elements ⟨ξ⟩ and average position ⟨yN+1⟩ versus f for a system
with N = 30, tested under isotensional conditions. We adopted the parameters k = 5, h = 20,
yM = 2, and six values of KBT = 4,7.2,10.4,13.6,16.8, and 20 (in arbitrary units).

An application of the obtained results can be found in Fig.3.9, where we show the behavior
of ⟨ξ⟩, ⟨yN+1⟩, and ⟨y⟩ as functions of f , for a small system with N = 6. Important differences
between the Helmholtz and the Gibbs responses can be recognized by comparing Fig.3.3 with
Fig.3.9. In Fig.3.9 the behavior of the number of unbroken elements ⟨ξ⟩ within the Gibbs ensemble
shows that the detachment process corresponds to the simultaneous breaking of all the vertical
elements, occurring when the force f reaches a given threshold value. On the contrary, we
observed in Fig.3.3 a completely different behavior of ⟨ξ⟩ within the Helmholtz ensemble. Indeed,
in that case, we deduced that the breaking of the elements is a sequential phenomenon, induced by
the progressive increase of the extension yN+1. This dissimilarity between the Helmholtz and the
Gibbs ensembles is sometimes underlined by affirming that the isotensional condition produces a
cooperative response while the isometric condition generates a non-cooperative response [91, 94,
110].

Another important difference concerns the shape of the force-extension curves measured within
the two statistical ensembles. While the isometric case leads to a series of peaks corresponding to
the rupture occurrences, the isotensional case is characterized by a monotone force-extension curve.
Also, this feature can be explained by the quite simultaneous rupture of all the elements observed
within the Gibbs ensemble. Again, the simultaneous or cooperative ruptures can be identified
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Figure 3.11: Comparison between the Helmholtz force-extension curves (⟨f⟩ versus yN+1, solid
curves) and the Gibbs force-extension curves (f versus ⟨yN+1⟩, dashed lines) proving the nonequiv-
alence of the two statistical ensembles in the thermodynamic limit. We adopted the parameters
N = 100, k = 5, h= 20, yM = 1.5, and KBT = 3.0,7.25,11.5,15.75, and 20 (in arbitrary units).

in the isotensional behavior of ⟨y⟩, plotted in Fig.3.9, while the sequential or non-cooperative
ruptures were observed in the isometric behavior of ⟨y⟩, plotted in Fig.3.3. All these features are
typically observed when studying the behavior of small systems within the Gibbs or Helmholtz
ensemble. In particular, they concern the folding/unfolding processes in chains of bistable units
[91, 94, 110]. However, in our study of the cohesion-decohesion process, we obtain a peculiar and
unusual behavior characterized by the temperature-dependent force plateau in the force-extension
curves (observed for large values of N). This point is also confirmed for the Gibbs ensemble as
one can see in Fig.3.10, where we plotted ⟨ξ⟩ and ⟨yN+1⟩ versus f for a system with N = 30.
Here, we observe a temperature-dependent threshold force for the detachment process in the
plot of ⟨ξ⟩ and a temperature-dependent force plateau in the plot of ⟨yN+1⟩. This behavior is
thoroughly studied in the next Section by considering the discrete to continuous transition for
N → ∞ (thermodynamic limit).

3.6 The thermodynamic limit in the Gibbs ensemble

We consider now the behavior of the system under isotensional condition when N is very
large. We apply the same technique described in Section 3.4, and, then, we substitute the sums
with the corresponding integrals. Moreover, we assume, as before, that the function G(z) can be
approximated by the exponential form G(z) = 1√

∆
bz. To begin, we consider the force-extension

relation given in Eq.(3.63), and we get the first asymptotic expression

⟨Y⟩ = F
2α

∫ 1
0

e
Nx(αη− 1

2 log b)[
N(1−x)+ b

b−1

]−1 e
1

4α F2
[
N(1−x)+ b

b−1

]
dx

∫ 1
0 e

Nx(αη− 1
2 logb)e

1
4α F2

[
N(1−x)+ b

b−1

]
dx

. (3.67)
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Figure 3.12: Behavior of the thermodynamic limit within the Gibbs ensemble in terms of force-
extension relation and the average number of broken elements. We compare the results of the
continuous approach given in Eqs.(3.78) and (3.79) (dashed lines) with their discrete counterparts
given in Eqs.(3.63) and (3.64) (continuous lines), applied to a system with N = 100. We adopted
the parameters k = 5, h = 20, yM = 1.5, and KBT = 3.0,7.25,11.5,15.75, and 20 (in arbitrary
units).

In order to obtain a simpler mathematical form, we apply the change of variable s=N(1−x)+ b
b−1 ,

yielding the result

⟨Y⟩ = F
2α

∫ N+ b
b−1

b
b−1

e−(αη− 1
2 logb)se

1
4α F2ssds∫ N+ b

b−1
b

b−1
e−(αη− 1

2 logb)se
1

4α F2sds
. (3.68)

Since we are working at the thermodynamic limit, we have that N → ∞ and we get

⟨Y⟩ = F
2α

∫ +∞
b

b−1
e−(αη− 1

2 logb− 1
4α F2)ssds∫ +∞

b
b−1

e−(αη− 1
2 logb− 1

4α F2)sds
. (3.69)

This result proves that the thermodynamic limit exists also for the Gibbs ensemble and that we
have a universal force-extension curve describing the cohesion-decohesion process. Indeed, the two
integrals in Eq.(3.69) are both convergent if αη− 1

2 logb− 1
4αF2 > 0 and can be easily calculated

yielding the following very simple closed form expression for the dimensionless force-extension
curve

⟨Y⟩ = F
2α

(
b

b− 1 + 1
αη− 1

2 logb− 1
4αF2

)
. (3.70)

This relation shows that the extension is divergent for a given value of force, thus exhibiting
a behavior similar to the one observed within the Helmholtz ensemble. It means that also in
this case we observe a force plateau characterizing the detachment process. Moreover, we can
observe that the value of this force plateau is given by the relation αη− 1

2 logb− 1
4αF2 = 0, exactly

corresponding to Eq.(3.38), obtained in Section 3.4. However, if we observe the shape of the
force-extension curves of the two different statistical ensembles (Gibbs and Helmholtz) in the
thermodynamic limit (N → ∞), we can see that they are considerably different, thus proving the
nonequivalence of the ensembles for the cohesion-decohesion process under investigation. This
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behavior can be found in Fig.3.11, where we plotted Eqs.(3.27) and (3.63) for a large value of
N and for different values of the temperature. This nonequivalence can be also appreciated
by comparing Eqs.(3.33) and (3.70), representing the force-extension curves in the continuous
limit. Indeed, this point can be formally proved by comparing the slopes of the curves given in
Eqs.(3.33) and (3.70) for small force or extension. Their calculation give

∂⟨F⟩
∂Y

∣∣∣∣
Y=0

= 4αb− 1
b

√Θ

π

e−Θ

1 − erf
(√

Θ

) −Θ

 , (3.71)

∂F
∂⟨Y⟩

∣∣∣∣
F=0

= 4αb− 1
b

[
Θ

2(1 +Θ)

]
, (3.72)

for the Helmholtz ensemble and the Gibbs ensemble, respectively. Here, we defined Θ =
b

b−1
(
αη− 1

2 logb
)
, coherently with Eq.(3.48). By defining p=

√
Θ
π

e−Θ

1−erf(
√
Θ) −Θ and q = Θ

2(1+Θ) ,
we can observe that p and q are two monotonically increasing functions of Θ with p(0) = q(0) = 0
and p(+∞) = q(+∞) = 1/2. Importantly, we have that p > q over the whole interval 0<Θ <+∞,
confirming the nonequivalence of the ensembles in the thermodynamic limit. We remark that
this behavior of the force-extension slopes is coherent with the results of Fig.3.11.

Although the equivalence of the Gibbs and Helmholtz statistical ensemble has been proved for
a large class of systems (namely single flexible polymer chains without confinement effects and
with a continuous pairing interaction potential between neighboring monomers [56, 108–112]),
it is difficult to prove general results for other structures and configurations. In any case, other
classes of problems, e.g. concerning the escape of a polymer confined between two surfaces and
the desorption of a polymer initially tethered onto a surface, exhibit an unusual non-equivalence
between the defined statistical ensembles [113–116]. These results have been theoretically proved
and confirmed by molecular dynamic simulations. Such investigations are coherent with our
achievements and prove the possibility to have a real nonequivalence between different (canonical)
ensembles in statistical mechanics.

The other important parameter of the system is the number of unbroken vertical elements,
which can be calculated through Eq.(3.64). This expression can be elaborated in the limiting
case of N → ∞, eventually obtaining the asymptotic form

⟨ξ⟩ =
∫ 1

0 Nxe
Nx(αη− 1

2 logb)e
1

4α F2
[
N(1−x)+ b

b−1

]
dx∫ 1

0 e
Nx(αη− 1

2 logb)e
1

4α F2
[
N(1−x)+ b

b−1

]
dx

. (3.73)

As done before, we can use the change of variable s=N(1 −x) + b
b−1 , which delivers

⟨ξ⟩ =

∫ N+ b
b−1

b
b−1

(
N + b

b−1 − s
)
e−(αη− 1

2 logb)se
1

4α F2sds∫ N+ b
b−1

b
b−1

e−(αη− 1
2 logb)se

1
4α F2sds

. (3.74)

From now on, it is better to consider the number of broken vertical elements ⟨ζ⟩ =N − ⟨ξ⟩ given
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by

⟨ζ⟩ =

∫ N+ b
b−1

b
b−1

e−(αη− 1
2 logb)se

1
4α F2ssds∫ N+ b

b−1
b

b−1
e−(αη− 1

2 logb)se
1

4α F2sds
− b

b− 1 . (3.75)

This result proves that the limit of ζ for N → ∞ exists and can be written as follows

⟨ζ⟩ =

∫ +∞
b

b−1
e

−
(

αη− 1
2 logb 1

4α
F2
)

s
sds∫ +∞

b
b−1

e−(αη− 1
2 logb− 1

4α F2)sds
− b

b− 1 . (3.76)

In contrast to the calculation concerning the Helmholtz ensemble, here we can evaluate Eq.(3.76)
in closed form and we eventually find that

⟨ζ⟩ = 1
αη− 1

2 logb− 1
4αF2 . (3.77)

Also in this case, we observe the divergence of ⟨ζ⟩ for a value of force exactly given by Eq.(3.38)
of Section 3.4, dealing with the isometric condition. This point confirms the presence of the phase
transition for the isotensional condition as well. To conclude, Eqs.(3.70) and (3.77) completely
describe the behavior of the cohesion-decohesion process within the Gibbs ensemble for a system
attaining the thermodynamic limit. These results can be written as follows, by making explicit
the real physical quantities

⟨yN+1⟩ = f

k

 e
hy2

M
KBTc

e
hy2

M
KBTc − 1

+ 1
hy2

M
2KBT

(
1 − T

Tc
− f2

khy2
M

)
 , (3.78)

⟨ζ⟩ = 1
hy2

M
2KBT

(
1 − T

Tc
− f2

khy2
M

) , (3.79)

where the critical temperature Tc is given in Eq.(3.41). While the first equation represents the
force-extension relation during the cohesion-decohesion process, the second one indicates the
number of broken vertical elements in terms of the applied force and the temperature. These
two results have been compared in Fig.3.12 with their discrete counterparts given in Eqs.(3.63)
and (3.64), applied to a system with N = 100. The good agreement obtained in Fig.3.12 proves
that the discrete and the continuous approaches give very similar results in the thermodynamic
limit. In both plots, we can identify the temperature-dependent critical force able to generate the
complete detachment of the chain. In addition, although we have proved the nonequivalence of
the ensembles in the thermodynamic limit, we observe that the value of the asymptotic force
and the corresponding critical temperature are the same for both the Gibbs and the Helmholtz
ensembles.

To conclude, it is interesting to remark that Eq.(3.79) can be used to trace the phase diagram
of the system, where we can identify two different regions corresponding to the states "completely
detached" and "partially detached". When ⟨ζ⟩, obtained through Eq.(3.79), is positive, or
equivalently when 1 − T

Tc
− f2

khy2
M

> 0, we are in a situation of partial detachment and we can
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Figure 3.13: Phase diagram of the isotensional detachment process obtained for different values of
the ratio η. While the external region corresponds to the complete detachment, the internal one to
the partial detachment. We adopted the parameters k = 1, yM = 1, and η = 0.1,0.316,1,3.16,10
(in arbitrary units).

increase the force and/or the temperature to bring the detachment to an end. In this case, we are
in the internal shaded areas of Fig.3.13. On the other hand, when 1 − T

Tc
− f2

khy2
M

< 0, the chain is
completely detached and we are in the external areas of Fig.3.13. We observe from Fig.3.13 that,
for a value of the applied force f in a given range, we have a value of the temperature able to
denaturate the system. In the particular case with f = 0, such a temperature is identical to the
critical temperature given in Eq.(3.41). In other words, for any subcritical temperature T < Tc,
we can identify a value of force inducing the complete detachment of the chain. In this respect, the
critical behavior of the Helmholtz ensemble is different. In fact, in the isometric condition, we have
no finite values of the prescribed yN+1 able to denaturate the system for subcritical temperatures
T < Tc. This difference between the Helmholtz and the Gibbs ensembles is consistent with their
non-cooperative and cooperative interpretation, respectively. Indeed, for the Gibbs ensemble, we
can have a value of f inducing complete decohesion for T < Tc since all vertical elements break
simultaneously and, therefore, the critical force can induce the denaturation. Conversely, for
the Helmholtz ensemble, the number of broken elements is proportional to yN+1 (for yN+1 large
enough, see Eq.(3.49)) and therefore we can not entirely detach the system with a finite value of
yN+1 for T < Tc.

3.7 Application to nucleic acid hairpins
Recently, the mechanical unfolding of nucleic acid hairpins has been experimentally and

numerically investigated in order to determine the phase diagram in the force-temperature plane
[251, 252]. Hairpins are closed loops composed of nucleobases of DNA or RNA as shown in
Fig.3.14. The force spectroscopy techniques are applied to measure the force necessary to open
the hairpin’s structures. Since the geometry of the hairpin experiments is very similar to the
one adopted in the investigation concerning adhesion/deadhesion processes, and because of the
generality of our results, we can show here the comparison between experimental and theoretical
findings. In particular, the theory previously developed can be applied to give a theoretical
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a) DNA Hairpin

b) RNA Hairpin

c) Pyrimidines d) Purines

Figure 3.14: Hairpin structures. a) DNA hairpin example composed of C, T, A, and G bases. b)
RNA hairpin example composed of C, U, A, and G bases. c) Pyrimidine nucleobases cytosine
(C), thymine (T), and uracil (U) consist of simple ring molecules. d) Purine nucleobases adenine
(A) and guanine (G) consist of fused-ring molecules. The images are adapted from Wikipedia
under CC BY 3.0 license.

interpretation of the experimental results obtained through the unfolding of RNA and DNA
hairpins by optical-thermal tweezers [253, 254]. Concerning RNA, the unfolding of a 20-base-pair
tetraloop hairpin was studied under different ionic conditions and at temperatures ranging from
22 ◦C to 42 ◦C [253]. Aluminum heating plates with thermoelectric coolers have been used to heat
the system and the temperature has been measured by a thin thermocouple. At each temperature,
single hairpin molecules have been held at constant force (Gibbs ensemble), and the transition
force has been measured versus the controlled temperature of the experiment (see Fig.3.15, top
right panel). The experimental data are also plotted in Fig.3.15 (bottom panel, red down-pointing
triangles) together with the theoretical curve obtained through Eqs.(3.40) and (3.41), with k = 0.6
N/m, h = 86.3 N/m and yM = 7.77 pm. Concerning DNA, a 6.8 kbp hairpin obtained from
λ-DNA has been used in a temperature-jump optical trap for single-molecule manipulation [254].
In this case, the temperature is controlled by a heating laser with a wavelength highly absorbed by
water in order to have a quite broad range of temperatures between 5 ◦C and 50 ◦C (see Fig.3.15,
top left panel). The resulting transition force is also plotted in Fig.3.15 (bottom panel, blue
up-pointing triangles) against the theoretical curve obtained, as before, through Eqs.(3.40) and
(3.41), and now with k = 1 N/m, h= 5.34 N/m, and yM = 19.5 pm. In Fig.3.15, bottom panel,
we also added a green square symbol corresponding to the measured denaturation temperature
of DNA (here also assumed for RNA) [255, 256]. We remark however that the denaturation
temperature is rather sensible to the solvent conditions and the base composition of the nucleic
acids [257]. The value k = 1 N/m for DNA has been imposed since a Young modulus of 300MPa
has been estimated for the linear elasticity of DNA [258]. Indeed, by assuming a Young modulus
E = 300 MPa, a DNA radius r = 1 nm and a distance between base pairs ℓ= 0.34 nm, we easily
obtained k = πr2E/ℓ≃1 N/m. Concerning the RNA stretching modulus, we adopted the value
k = 0.6 N/m since calculations and experiments indicate that the stretch modulus of dsDNA is
nearly twofold larger than that of dsRNA [259, 260]. The different mechanical behaviors of DNA
and RNA are thoroughly explained in the recent literature [259, 260]. The other parameters
(h and yM ) have been fitted to obtain a good agreement between experimental and theoretical
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Figure 3.15: Top left panel: DNA hairpin unfolding experimental data; reproduced with permission
[254]. The experimental data (blue points) are compared with two theoretical predictions, HU and
UO, described by [254]. Bottom left panel: RNA hairpin unfolding experimental data; reproduced
with permission [253]. The down-pointing triangles correspond to the unfolding, the up-pointing
triangles to the refolding and the circles to the equilibrium force (at which the unfolding and
refolding rate constants are equal). Right panel: comparison between experimental results for
the unzipping of RNA and DNA hairpins. Red down-pointing triangles: RNA hairpins [253];
blue up-pointing triangles: DNA hairpins [254]. Both sets of results are shown in the first two
panels, and our theoretical predictions are here represented by continuous lines. The green square
symbol corresponds to a measurement of the denaturation temperature [255, 256].

results for both RNA and DNA hairpins. It is interesting to note that the curves are able to
jointly represent both the experimental data with the applied force at different temperatures
[253, 254], and the measurements concerning the denaturation temperature [255, 256]. Moreover,
the obtained values of h are larger than k, coherently with other DNA models based on the
Morse potential [80]. To conclude, also the values of the extension threshold yM are reasonable
being lesser than the distance between base pairs ℓ= 0.34 nm, which is a characteristic length for
nucleic acids.

3.8 Conclusion
In this Chapter, we elaborated a model to describe the cohesion/decohesion process related to

a film deposited on a substrate, by focusing on the effects of the thermal fluctuations. We analyzed
this process under an additional mechanical action, represented by either an external force or a
prescribed extension applied to the end-terminal of the chain. These two conditions correspond
to the Gibbs and the Helmholtz ensembles of statistical mechanics, respectively. To approach the
problem, we combined the method based on the spin variables [91, 92] with a refined analysis of
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the properties of some tridiagonal matrices [96, 97], characterizing the system under investigation.
Firstly, we developed the theory for the Helmholtz ensemble and then we obtained the results for
the Gibbs one through the Laplace transform describing the relationship between the partition
functions of the two ensembles [98]. Eventually, for both statistical ensembles, we obtained explicit
results giving the force-extension relation, the average number of broken units, and the average
extension of all the elements of the chain as functions of the temperature and of the external
mechanical action (a force for the Gibbs ensemble and an extension for the Helmholtz one). These
achievements, summarized in Eqs.(3.27)-(3.30) (Helmholtz) and Eqs.(3.63)-(3.66) (Gibbs), and
obtained for an arbitrary number N of elements of the chain, are useful to fully understand the
behavior of the system, to compare with existing results concerning the folding/unfolding of
macromolecular bistable chains, and finally to perform the analysis of the thermodynamic limit.
Indeed, when N → ∞, the sums in Eqs.(3.27)-(3.30) (Helmholtz) and Eqs.(3.63)-(3.66) (Gibbs)
can be substituted by suitable integrals by introducing a discrete to continuous transformation.
Such an analysis allows proving that, in the thermodynamic limit, the peeling of the film from
the substrate takes place at a given critical force, which is temperature dependent. In the
cohesion/decohesion process, the origin of the temperature-dependent peeling force is explained
through the observation of a phase transition taking place at a given critical temperature able
to fully detach the film from the substrate. In the subcritical regime, the thermal fluctuations
promote the detachment of the film, and, therefore, a lower peeling force is needed for higher
temperatures. The decreasing trend of the peeling force with the temperature is the same for both
statistical ensembles. However, these latter are nonequivalent in the thermodynamic limit since
they show a different force-extension curve. The obtained relation for the temperature-dependent
denaturation force has been tested against experimental data concerning the unzipping of RNA
and DNA hairpins, eventually obtaining a good agreement between theory and measurements.

While the presented model is interesting since leads to a fully analytic approach able to
explain the emergence of the phase transition and the nonequivalence of the ensembles, it could
be generalized to take into consideration more complex situations. For instance, the spin variable
methodology, here employed to calculate the partition functions, is limited to the study of
equilibrium thermodynamics. It could be interesting to generalize it to the dynamic regime,
where the real energy function describing the units of the system plays an important role [99–101].
Moreover, our approach could be applied to different system configurations including fiber bundles
with breakable strands, buckling of films deposited over substrates, cracks propagation in brittle
or plastic solids, and rupture phenomena in polymer networks.

3.9 Appendix

3.9.1 Tridiagonal matrix

We prove here some properties concerning the matrix Aξ
N (η), defined in Eq.(3.5). To begin,

we consider the following arbitrary tridiagonal matrix T

T =



a1 b1 0 0

c1

0 0

bN−1
0 0 cN−1 aN


∈ MN,N (R), (3.80)
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where the diagonal is composed by the elements (a1, . . . ,aN ), the superdiagonal by (b1, . . . , bN−1)
and the subdiagonal by (c1, . . . , cN−1). It has been proved [96, 97] that the elements of the inverse
matrix T −1 can be represented as

[
T −1]

ij
=



1
ϑN

(−1)i+jbi × ·· · × bj−1ϑi−1φj+1, if i < j

1
ϑN

ϑi−1φi+1, if i= j

1
ϑN

(−1)i+jcj × ·· · × ci−1ϑj−1φi+1, if i > j

(3.81)

where the sequences ϑi and φi are given by the recursive laws{
ϑi = aiϑi−1 − bi−1ci−1ϑi−2,

ϑ−1 = 0, ϑ0 = 1, i= 1,2, . . . ,N
(3.82)

and {
φi = aiφi+1 − biciφi+2,

φN+2 = 0, φN+1 = 1, i=N,. . . ,1
(3.83)

While Eq.(3.82) is an increasing recursive law going from i= 1 to i=N , Eq.(3.83) is a decreasing
recursive law going from i=N to i= 1. We also remember that detT = ϑN [96, 97]. In the case
of the matrix Aξ

N (η), we have that bi = −1∀ i and ci = −1∀ i. Under this hypothesis, the general
result can be simplified as follows

[
T −1]

ij
=



1
ϑN

ϑi−1φj+1, if i < j

1
ϑN

ϑi−1φi+1, if i= j

1
ϑN

ϑj−1φi+1, if i > j

(3.84)

where the sequences ϑi and φi are given by the reduced recursive laws{
ϑi = aiϑi−1 −ϑi−2,

ϑ−1 = 0, ϑ0 = 1, i= 1,2, . . . ,N
(3.85)

and {
φi = aiφi+1 −φi+2,

φN+2 = 0, φN+1 = 1, i=N,. . . ,1
(3.86)
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Since we need to determine detAξ
N (η), vT

[
Aξ

N (η)
]−1

v, and
[
Aξ

N (η)
]−1

v, it is sufficient to

calculate only the sequence ϑi associated to the matrix Aξ
N (η). Indeed, we have that

detAξ
N (η) = ϑN , (3.87)

vT
[
Aξ

N (η)
]−1

v =
[
Aξ

N (η)
]−1

NN

= ϑN−1φN+1/ϑN = ϑN−1/ϑN , (3.88){[
Aξ

N (η)
]−1

v
}

i

= ϑi−1φN+1/ϑN = ϑi−1/ϑN . (3.89)

Therefore, we consider Eq.(3.85) with a1 = · · · = aξ = 2 + η and aξ+1 = · · · = aN = 2. Then, for
i ≤ ξ, we have the difference equation ϑi = (2 + η)ϑi−1 − ϑi−2, whose general solution can be
written as

ϑi = p

(
2 + η+

√
∆

2

)i

+ q

(
2 + η−

√
∆

2

)i

, (3.90)

with ∆ = η2 + 4η and where the coefficients p and q must be fixed through the conditions ϑ−1 = 0
and ϑ0 = 1. A straightforward calculation leads to the explicit solution for i≤ ξ

ϑi = 1√
∆

(
2 + η+

√
∆

2

)i+1

− 1√
∆

(
2 + η−

√
∆

2

)i+1

. (3.91)

For i > ξ, we have the simpler difference equation ϑi = 2ϑi−1 −ϑi−2, with the general solution
ϑi = r+ si. In this case, the coefficients r and s must be obtained by imposing ϑξ−1 and ϑξ by
means of Eq.(3.90). Hence, the result for i > ξ can be eventually found as

ϑi = (i− ξ+ 1)ϑξ − (i− ξ)ϑξ−1, (3.92)

where ϑξ−1 and ϑξ are given by Eq.(3.90). The obtained results can be summarized through the
final expression holding for 1 ≤ i≤N

ϑi =
{
G(i+ 1), if i≤ ξ

(i− ξ+ 1)G(ξ+ 1) − (i− ξ)G(ξ), if i > ξ
(3.93)

where the function G(z) is defined as follows

G(z) = 1√
∆

(
2 + η+

√
∆

2

)z

− 1√
∆

(
2 + η−

√
∆

2

)z

. (3.94)

A more compact form of the solution can be also written as

ϑi = [G(i+ 1) − (i− ξ+ 1)G(ξ+ 1) + (i− ξ)G(ξ)]1(ξ− i)
+ [(i− ξ+ 1)G(ξ+ 1) − (i− ξ)G(ξ)],

(3.95)
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in terms of the Heaviside step function 1(x), defined as 1(x) = 1 if x≥ 0, and 1(x) = 0 if x < 0.
To conclude, Eqs.(3.87)-(3.89) assume the final form

detAξ
N (η) = (N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ), (3.96)

1 − vT
[
Aξ

N (η)
]−1

v = G(ξ+ 1) −G(ξ)
(N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ) , (3.97){[

Aξ
N (η)

]−1
v
}

i

= ϑi−1
(N − ξ+ 1)G(ξ+ 1) − (N − ξ)G(ξ) , (3.98)

where ϑi is given in Eq.(3.95) and the function G(z) in Eq.(3.94).



Chapter4
Thermal effects on adhesion processes
with the softening mechanism

4.1 Introduction
Here we introduce an important generalization of the model presented in Chapter 3, by

introducing a softening mechanism in the breakable units of the system. More specifically, we
study a one-dimensional lattice of masses linked by harmonic springs and connected to a substrate
by breakable links subjected to a softening mechanism (see Fig.4.1). This geometry has been
previously introduced to describe a wide range of phenomena such as the peeling of tapes, adhesion
of geckos, and denaturation of macromolecules [7, 8]. However, the thermal fluctuations and the
softening mechanism have been neglected in these works, even though, in the physical systems
recalled above, they can play a crucial role that is analyzed in detail in the following development.

From the mechanical point of view, we consider two different kinds of loading, which induce
the decohesion of the system from the substrate. The decohesion process can be induced by
either prescribing a given extension of the last element of the chain (Fig.4.1.a) or by applying an
external force to the last unit of the chain (Fig.4.1.b). On one hand, the first isometric condition
corresponds to the Helmholtz ensemble of statistical mechanics and can be generated by hard
devices. On the other hand, the isotensional condition corresponds to the Gibbs ensemble of
the statistical mechanics and can be generated by soft devices. Indeed, these two boundary
conditions can be deduced as limiting cases of real loading experiments, when the stiffness of the
device is large (hard device) or is negligible (soft device) as compared with the loaded system
one, respectively [94, 95]. From a theoretical point of view, an intriguing problem concerns the
equivalence of the two ensembles in the thermodynamic limit (i.e. for very large systems) [56, 98,
108–112]. Interestingly, we will prove, in our case, the non-equivalence of the ensembles in the
thermodynamic limit. Moreover, we are able to study the force necessary to detach the chain from
the substrate as a function of the temperature and of the external mechanical action applied to the
system. In this context, we obtain a critical behavior described by specific phase transitions. Also,
the evolution of the number of intact, softened, and broken elements are thoroughly investigated
in both isometric and isotensional conditions. To conclude, the aim of this part is to fully analyze
the cohesion-decohesion process with a softening mechanism in both the Helmholtz and Gibbs
ensembles, thus providing a complete picture of the effect of the temperature and loading type on
this prototypical physical system.

71
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0

y

k

0

he

y

k

a) Helmholtz

b) Gibbs

1 ξ + 1 η + 1

intact softened

ξ N

broken

η

f fixed

yN+1 fixed

hp

he
hp

Figure 4.1: Scheme of the cohesion-decohesion process within both the Helmholtz (a) and the
Gibbs (b) ensembles. While in the first case, we prescribe the position yN+1 and we measure the
average force ⟨f⟩, in the second case we apply a force f and we measure the average position
⟨yN+1⟩. In both cases, we consider a linear elastic behavior for the horizontal springs (in purple)
and a breakable response with softening mechanism (blu, green and red springs corresponding to
the intact, softened and broken configuration of the breakable springs) for the vertical elements.
The energy potential U (top right) and its resulting force ∂U/∂yi (bottom right) corresponding
to the horizontal breakable springs are showed.

This Chapter is organized as follows. In Section 4.2 we define the problem and we simplify
the spin variable methods through the zipper assumption. Then, in Section 4.3, we introduce the
system behavior under isometric conditions, and in Section 4.4, we analyze its thermodynamic
limit. Similarly, in Section 4.5, we introduce the system behavior under isotensional conditions,
and in Section 4.6, we analyze its thermodynamic limit. The conclusions (Section 4.8) and two
mathematical Appendices close the Chapter.

4.2 Problem statement
Our prototypical system is represented in Fig.4.1. The horizontal springs of the lattice are

purely harmonic, characterized by the elastic constant k, with potential energy

W (yi+1 − yi) = 1
2k(yi+1 − yi)2. (4.1)

On the other hand, the vertical ones can be in three different states, depending on their extension
yi (as shown in the right panel of Fig.4.1). When |yi| < yp, they are intact (elastic constant
he), when yp < |yi| < yb they are softened (elastic constant hp < he), and when |yi| > yb they
are broken (they do not support forces). This scheme represents the softening mechanism of
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the breakable bonds. We describe such behavior in a spin formalism by introducing a discrete
variable Si associated with each vertical spring. Hence, we can write the potential energy of the
breakable bonds in the form

U(yi,Si) = Si(1 +Si)
2

1
2hey

2
i + (1 +Si)(1 −Si)

(
1
2hpy

2
i +∆E

)
− Si(1 −Si)

2

(
1
2hpy

2
b +∆E

)
,

(4.2)

where Si = +1 corresponds to the intact state, Si = 0 corresponds to the softened state, and
Si = −1 corresponds to the broken state (i= 1, . . . ,N). With these assumptions, we have a phase
space composed of the N continuous variables yi ∈ R and the N discrete variables Si ∈ {+1,0,−1}.
Therefore, when we calculate the partition function, we have to integrate over all the continuous
variables and sum over all the discrete ones. In doing so, the switching of the variable Si and
their statistics at thermodynamic equilibrium are directly controlled by the statistical ensemble
(Helmholtz or Gibbs in our case) imposed on the system.

The assumption of considering independent spins for all the breakable bonds is the most
rigorous approach in order to analyze the system behavior. However, on this assumption, the
statistical mechanics of the system under investigation cannot be analytically developed and also
its numerical implementation is quite expensive. Indeed, the calculation of the partition function
is rather prohibitive because of the sum over all the possible spin combinations. Nevertheless,
since we are studying the cohesion-decohesion process under an external mechanical action applied
to one endpoint of the system, suppose the right one, we can simplify the model by assuming
to have N − η broken elements on the right region of the chain, η− ξ softened elements on the
central region of the chain and ξ intact or unbroken elements on the left region of the chain (see
Fig.4.1). In other words, we suppose to have two moving interfaces or domain walls between the
three regions of the chain. This hypothesis strongly reduces the mathematical complexity of the
problem and is reasonable if we work at temperatures sufficiently low and at an applied mechanical
load sufficiently large (either extension or force). Indeed, the set of the three-state spin variables
Si is substituted by the two variables η and ξ, assuming values in the set {0,1,2, . . . ,N}. In this
sense, η and ξ can be viewed as multi-valued spin variables. Moreover, this hypothesis is similar
to the one adopted in the so-called zipper model, largely used to describe the helix-coil transitions
in proteins, the gel-sol transition of thermo-reversible gels, and the melting or denaturation of
DNA [104–107]. By implementing this simplified scheme, we deduce a fully analytical solution
of both Helmholtz and Gibbs boundary problems for an arbitrary number N of elements of the
chain, and also in the thermodynamic limit (N → ∞).

One of the most important results concerns the analytic expressions of the temperature-
dependent debonding force (or system strength) in both cases of isotensional and isometric
loading. This temperature-dependent behavior can be interpreted by observing that the thermal
fluctuations may foster the decohesion, allowing the escape from the energy well shown in the U
graph of Fig.4.1. More rigorously, we prove that this behavior can be explained in terms of a
phase transition occurring at a given critical temperature. In particular, it means that the system
can be completely detached from the substrate for supercritical temperatures even without any
external mechanical action.

This behavior has been observed in several polymeric systems subjected to a force [261–263].
In particular, several important results have been obtained for the pulling processes of adsorbed
polymers on a surface. They were found by means of directed or partially directed walk models
of lattice polymers adsorbed at a surface under the influence of an applied force [264, 265]. In
this context, a temperature-dependent critical force has been derived for semi-flexible polymers
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[266], polymers subject to an arbitrarily oriented force[267], heterogeneous adsorption surfaces
[268], striped adsorption surfaces [269], and self-avoiding chains [270–272]. From a theoretical
point of view, the main difference between these approaches and ours is that they use lattice
polymer techniques whereas we adopt continuous geometric variables. Interestingly, the lattice
methods can also describe bubbles with different physical states along the chain, without needing
the zipper simplifying assumption. In our case neglecting such simplifying assumption would lead
to a numerical treatment of the subject and we preferred the analytical clearness of the results.
Importantly, in our continuous model, we also introduced the softening mechanism, which is the
main topic of this Chapter and represents, as we show in the following, an important ingredient
to distinguish different observed regimes in the decohesion behavior.

In our system, although the decohesion force for subcritical temperatures is the same for both
statistical ensembles, they are not equivalent in the thermodynamic limit since the force-extension
curves are different under isometric and isotensional conditions. Importantly, the softening
mechanism in the breakable elements generates a strength-temperature curve composed of two
branches connected, with continuity, at a given temperature T0. From the physical point of view,
this is the temperature at which all the elements are at least softened. The interesting point is
that this transition has been experimentally observed in the strength behavior of some systems
including sapphire whiskers [33] and a number of high-entropy and medium-entropy alloys [35, 38].
In these cases, the softening mechanism comes from the emergence of a population of dislocations
beyond a certain threshold of deformation.

Another fundamental effect induced by the bonds softening is the possibility of describing a
temperature-dependent process zone that for enough high temperatures anticipates the propagation
front. As a result, we may obtain a transition between different regimes, experimentally observed
for example in polymeric materials [273, 274].

Summarizing, the proposed system is particularly important for the following reasons: (i)
once previous crucial assumptions are considered, the model can be analytically solved in both
isometric and isotensional statistical ensembles; (ii) the solution shows a phase transition at a
critical temperature that can be calculated in closed form; (iii) the studied system manifestly
shows the ensembles non-equivalence in the thermodynamic limit, which is an unusual feature in
statistical mechanics; (iv) finally, the model describes the existence of a two-branch curve for the
strength-temperature behavior, observed in real materials, as a result of a softening anticipating
breaking effects.

4.3 Hard device: Helmholtz ensemble
We consider the cohesion-decohesion process in the system represented in Fig.4.1.a, where the

detachment is generated by imposing the extension yN+1 of the last element of the chain. This
condition corresponds to the Helmholtz ensemble of the statistical mechanics and it is obtained in
the case of loading with hard devices (with a very large, ideally infinity, intrinsic elastic constant).
We identify the longitudinal springs with the potential energy W (z) = 1

2kz
2 for any z ∈ R, and the

transverse springs with the potential energy U(y) = 1
2hey

2 if |y| ≤ yp (intact), U(y) = 1
2hpy

2 +∆E

if yp < |y| ≤ yb (softened), and U(y) = 1
2hpy

2
b +∆E if |y| > yb (broken). The values ±yp of the

extension correspond to the softening points A and B of the breakable spring, where the elastic
constant switch from he to hp < he. The force jump at y = ±yp is given by

√
2∆E(he −hp) (see

bottom right panel of Fig.4.1). We simply calculate that yp =
√

2∆E/(he −hp), and we must
always impose the inequality yb > yp, where ±yb are the extensions at the breaking points C and
D of the transverse elements. As anticipated, we assume that a first group of ξ elements of the
chain are intact (i= 1, . . . , ξ), a second group of η− ξ elements are softened (i= ξ+ 1, . . . ,η), and
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a third group of N − η elements are broken (i= η+ 1, . . . ,N). These premises allow us to write
the total potential energy of the system in the following form

Φ =
N∑

i=0
W (yi+1 − yi) +

N∑
i=1

U (yi)

=
N∑

i=0

1
2k (yi+1 − yi)2 +

ξ∑
i=1

1
2hey

2
i +

η∑
i=1+ξ

[
1
2hpy

2
i +∆E

]

+
N∑

i=1+η

[
1
2hpy

2
b +∆E

]
,

(4.3)

where the applied extension yN+1 is considered as a parameter and we fix y0 = 0. The variables
belonging to the phase space are the extensions y1,. . . ,yN , and the two configurational numbers ξ
and η, characterizing the state of the breakable elements. For further convenience, the energy
function Φ can be further arranged as follows

Φ(y, ξ,η;yN+1) = 1
2kyTA(ξ,η)y − kyN+1vTy + 1

2ky
2
N+1

+ (N − ξ)∆E+ (N − η)1
2hpy

2
b ,

(4.4)

where we defined

yT =
(
y1 y2 . . . yN

)
∈ R

N , (4.5)
vT =

(
0 . . . 0 1

)
∈ R

N , (4.6)

and the tridiagonal (symmetric and positive definite) matrix

A(ξ,η) =



a1 −1 0 0

−1

0 0

−1
0 0 −1 aN


∈ MN,N (R). (4.7)

We observe that ξ and η must fulfill the condition 0 ≤ ξ ≤ η ≤N . Moreover, this matrix has all
the subdiagonal and superdiagonal elements equal to −1, and the diagonal elements are defined
as follows

ai =


2 +α if 1 ≤ i≤ ξ,

2 +β if ξ+ 1 ≤ i≤ η,

2 if η+ 1 ≤ i≤N,

(4.8)

where we introduced the rescaled elastic constants

α= he

k
, β = hp

k
. (4.9)

The algebraic properties of the matrix A(ξ,η) are thoroughly studied in the Appendix, where
we evaluate the quantities needed to obtain the temperature-dependent relations among the
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observables during the cohesion-decohesion process.

It is well known that the equilibrium statistical mechanics of a system in contact with a
reservoir at temperature T is described by the canonical distribution. The expectation values
of physical observables can be obtained by evaluating the partition function that, within the
Helmholtz ensemble, can be written as

ZH(yN+1) =
N∑

η=0

η∑
ξ=0

∫
R

N
e

−
Φ(y,ξ,η;yN+1)

KBT dy1 . . .dyN , (4.10)

where we have to integrate the continuous variables represented by the vector y and sum over
the discrete variables ξ and η, describing the state (intact, softened, or broken) of the elements of
the chain (0 ≤ ξ ≤ η ≤N). Using Eq.(4.4), ZH can be evaluated using the property of Gaussian
integrals ∫

R
N
e− 1

2 yTMyebTydy1 . . .dyN =
√

(2π)N

detM
e

1
2 yTM−1b, (4.11)

holding for any symmetric and positive definite matrix M. In particular, we can introduce
M = k

KBT A and b = kyN+1
KBT v to obtain

ZH(yN+1) =
[√

2πKBT

k
e

−
2∆E+kβy2

b
2KBT

]N N∑
η=0

η∑
ξ=0

Γξ,η(T,yN+1), (4.12)

where

Γξ,η(T,yN+1) =
exp

{
ξ ∆E

KBT + η
kβy2

b
2KBT −

ky2
N+1

2KBT

[
1 − A−1

NN (ξ,η)
]}

√
detA(ξ,η)

, (4.13)

and A−1
NN (ξ,η) = vTA−1(ξ,η)v. We can thus determine the average force associated with the

vertical extension yN+1 of the last element of the chain as [98]

⟨f⟩ = −KBT
∂ logZH

∂yN+1
= −KBT

ZH

∂ZH

∂yN+1
. (4.14)

We obtain

⟨f⟩ =
∑N

η=0
∑η

ξ=0
{

1 − A−1
NN (ξ,η)

}
Γξ,η(T,yN+1)∑N

η=0
∑η

ξ=0 Γξ,η(T,yN+1)
kyN+1. (4.15)

This expression represents the force-extension relation for the system within the Helmholtz
ensemble, or equivalently, under isometric conditions. It is also important to calculate the average
value of the number of broken elements ⟨N − η⟩ and the average number of softened elements
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⟨η− ξ⟩. These quantities can be directly evaluated through the expressions

⟨N − η⟩ = 1
ZH

N∑
η=0

η∑
ξ=0

∫
R

N
(N − η)e−

Φ(y,ξ,η;yN+1)
KBT dy1 . . .dyN

=
∑N

η=0
∑η

ξ=0(N − η)Γξ,η(T,yN+1)∑N
η=0

∑η
ξ=0 Γξ,η(T,yN+1)

, (4.16)

⟨η− ξ⟩ = 1
ZH

N∑
η=0

η∑
ξ=0

∫
R

N
(η− ξ)e−

Φ(y,ξ,η;yN+1)
KBT dy1 . . .dyN

=
∑N

η=0
∑η

ξ=0(η− ξ)Γξ,η(T,yN+1)∑N
η=0

∑η
ξ=0 Γξ,η(T,yN+1)

. (4.17)

In order to simplify the analysis it is useful to rescale the applied extension yN+1 with respect to
yb (i.e. the extension corresponding to the breaking of the link) and define the non-dimensional
extension

Y = yN+1
yb

. (4.18)

In order to further simplify the formula previously derived, we can consider the rescaled energies

δ =
ky2

b

2KBT
, φ= ∆E

KBT
. (4.19)

Thus, introducing Eqs.(4.18) and (4.19) into the expression of ⟨f⟩, ⟨N −η⟩ and ⟨η− ξ⟩, we obtain

⟨F⟩ = ⟨f⟩
kyb

= Y
ZH

N∑
η=0

η∑
ξ=0

1 − A−1
NN (ξ,η)√

detA(ξ,η)
eφξ+βδη−δY2{1−A−1

NN
(ξ,η)}, (4.20)

⟨N − η⟩ = 1
ZH

N∑
η=0

η∑
ξ=0

N − η√
detA(ξ,η)

eφξ+βδη−δY2{1−A−1
NN

(ξ,η)}, (4.21)

⟨η− ξ⟩ = 1
ZH

N∑
η=0

η∑
ξ=0

η− ξ√
detA(ξ,η)

eφξ+βδη−δY2{1−A−1
NN

(ξ,η)}, (4.22)

where we have used Eqs.(4.12) and (4.13) to define the (rescaled) partition function

ZH(Y) =
N∑

η=0

η∑
ξ=0

1√
detA(ξ,η)

eφξ+βδη−δY2{1−A−1
NN

(ξ,η)}. (4.23)

Using the properties of A(ξ,η) and the relations in Eqs.(4.94) and (4.95), it is possible to find
explicit expressions for detA(ξ,η) and A−1

NN (ξ,η) so to obtain the behavior of the relevant physical
quantities of the system.

Previous results are represented in Fig.4.2, where we study the dependence of the relevant
quantities on the temperature and size of the system. In particular, we plotted ⟨F⟩, ⟨ξ⟩, ⟨η− ξ⟩
and ⟨N − η⟩ versus the applied rescaled extension Y (changing the temperature) for two different
cases: the first one concerns a short chain with N = 5 (first row), and the second one a larger
chain with N = 50 (second row). For N = 5 (first row), and for low values of the temperature, we
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Figure 4.2: From left to right columns: force-extension curve and distribution of intact, softened,
and broken elements during the detachment of a film from a substrate for the Helmholtz ensemble
(hard device, extension applied to the last element of the chain). First row: we considered N = 5,
and 10 values of KBT from 0.5 to 5 (a.u.) from gray to red curves. Second row: we considered
N = 50, and 10 values of KBT from 2 to 20 (a.u.). The adopted parameters follows: he = 20,
hp = 15, ∆E = 2, yb = 2yp and k = 5 (all in arbitrary units).

easily identify the partial and complete rupture occurrences (see the peaks and/or steps in the
curves of ⟨F⟩, ⟨ξ⟩, ⟨η− ξ⟩ and ⟨N −η⟩). However, for larger values of the temperature, the curves
are smoother because of the increasing thermal fluctuations. We also observe that the detachment
of the elements of the chain occurs in a progressive way in response to the increasing extension Y .
This is a specific feature of the Helmholtz ensemble, typically observed in the folding/unfolding
process of bistable macromolecules stretched by hard devices [91, 92, 94, 95, 102, 103]. For
N = 50 (second row), we can identify two important properties of the detachment process in
large systems: first, increasing Y the curve approximately exhibits a temperature-dependent
plateau; second, during the decohesion process the number of softened elements is temperature
dependent and approximately constant for small values of temperature in a certain range of Y.
Although these features can be observed in the N = 50 case of Fig.4.2 only for low values of the
temperature, we will deduce in the thermodynamic limit (i.e., when N → ∞) that this behavior
can be explained in terms of a phase transition (see Section 4.4). The existence of a constant
finite softened domain shows the possibility of analytically describing the existence of a process
zone regulating the advancing of the decohesion front as observed in cohesive fracture phenomena
[273]. Interestingly, the size of the process zone increases with temperature, so that in accordance
with the experimental behavior the decohesion is ”fragile” at low temperature and ”ductile” at
higher values of the temperature [274].

4.4 Thermodynamic limit within the Helmholtz ensemble

We study here the thermodynamic limit within the Helmholtz ensemble, defined by a very
large number of elements in the chain (macroscopic limit valid for large systems). To this aim
we have to study the behavior of Eqs.(4.20), (4.21), (4.22), and (4.23) for N → ∞. In order to
perform the analysis in this limit, we formally substitute the sums appearing in these expressions
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by integrals. In particular, we will use the approximation
∑n

χ=0ϕ(χ) ≃
∫ n

0 ϕ(χ)dχ for an generic
function ϕ(χ). A better approximation could be adopted by using the Euler-McLaurin formula
[250]. However, this approach, discussed in Ref.[93], is not necessary for the purposes of the
present analysis. Moreover, due to the fact that we are considering the case of N large, it is
possible to use the simplified expressions of detA(ξ,η) and A−1

NN (ξ,η), obtained in Eqs.(4.98) and
(4.99).

From Eqs.(4.20) and (4.23) we get the following explicit result for the force-extension relation

⟨F⟩ = Y
∫ N

0 e

(
βδ− log β0

2

)
η−δY2B−1

η B
− 3

2
η dη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ∫ N

0 e

(
βδ− log β0

2

)
η−δY2B−1

η B
− 1

2
η dη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

, (4.24)

where

α0 = 2 +α+
√
α2 + 4α

2 , β0 = 2 +β+
√
β2 + 4β

2 . (4.25)

and where we introduced the function B(x) defined as

B(x) =N −x+ β0
β0 − 1 ≜Bx (4.26)

To better understand the behavior of the force-extension response for large values of N , we
first perform the integration on the variable ξ, and then we fully apply the change of variable
N − η+β0/(β0 − 1) = s, delivering the following result

⟨F⟩ = Y

∫ β0
β0−1 +N

β0
β0−1

[
e

(
φ+ 1

2 log β0
α0

)(
N−s+ β0

β0−1

)
− 1
]
e−(βδ− 1

2 logβ0)s− δY2
s ds

s3/2

∫ β0
β0−1 +N

β0
β0−1

[
e

(
φ+ 1

2 log β0
α0

)(
N−s+ β0

β0−1

)
− 1
]
e−(βδ− 1

2 logβ0)s− δY2
s ds

s1/2

. (4.27)

The behavior of the previous expression depends on the sign of the quantity φ+ 1
2 log β0

α0
, appearing

in the exponential term within the square brackets in both numerator and denominator. From
Eq.(4.19) we have

Θ = φ+ 1
2 log β0

α0
≷ 0 ⇒ T ≶

2∆E
KB log α0

β0

≜ T0, (4.28)

where we have defined the temperature T0, corresponding to a transition in the system behavior
(we will prove that all elements are at least softened for T > T0). If T < T0 and we consider large
values of N (thermodynamic limit), the exponential term in the square brackets of Eq.(4.27) is
dominant. On the other hand, if T > T0 the exponential term in the square brackets of Eq.(4.27)
is negligible for large values of N . Thus, for N → ∞ we obtain

⟨F⟩ = Y

∫ +∞
β0

β0−1
e−(βδ− 1

2 logα0+φ)s− δY2
s ds

s3/2∫ +∞
β0

β0−1
e−(βδ− 1

2 logα0+φ)s− δY2
s ds

s1/2

, for T < T0 (4.29)
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and

⟨F⟩ = Y

∫ +∞
β0

β0−1
e−(βδ− 1

2 logβ0)s− δY2
s ds

s3/2∫ +∞
β0

β0−1
e−(βδ− 1

2 logβ0)s− δY2
s ds

s1/2

, for T > T0. (4.30)

In order to ensure the convergence of the integrals in Eqs.(4.29) and (4.30) it is necessary that
the following conditions hold

βδ− 1
2 logα0 +φ >0, if T < T0, (4.31)

βδ− 1
2 logβ0 >0, if T > T0. (4.32)

These conditions have a physical interpretation that will be discussed in the following. The
integrals appearing in Eqs.(4.29)-(4.30) can be evaluated in terms of error functions as discussed
in 4.9.2. To simplify the form of the results, we define

λ1 = βδ− 1
2 logα0 +φ, λ2 = βδ− 1

2 logβ0, c= β0
β0 − 1 . (4.33)

We thus obtain

⟨F⟩ =
√
λ1
δ


2

1 + e4Y
√

λ1δ
1−erf

(√
δ
c Y+

√
λ1c

)
1+erf

(√
δ
c Y−

√
λ1c

) − 1


for T < T0, (4.34)

⟨F⟩ =
√
λ2
δ


2

1 + e4Y
√

λ2δ
1−erf

(√
δ
c Y+

√
λ2c

)
1+erf

(√
δ
c Y−

√
λ2c

) − 1


for T > T0. (4.35)

It is possible to see that the quantities in the brackets in Eqs.(4.34) and (4.35) converge to 1
when Y → ∞. Thus, the expectation value of the force ⟨F⟩ is characterized by an asymptotic
force ⟨F⟩as for large values of Y (coherently with Fig.4.2.b). In particular, we get the following
asymptotic values

⟨F⟩as =
√
λ1
δ

=

√
βδ− 1

2 logα0 +φ

δ
=
√

2∆E
ky2

b

+ hp

k

√
1 − T

Tb
for T < T0, (4.36)

where
Tb =

2∆E+hpy
2
b

KB logα0
=

2∆E+hpy
2
b

KB log 2+α+
√

α2+4α
2

, (4.37)
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and

⟨F⟩as =
√
λ2
δ

=

√
βδ− 1

2 logβ0
δ

=
√
hp

k

√
1 − T

Tc
for T > T0, (4.38)

where
Tc =

hpy
2
b

KB logβ0
=

hpy
2
b

KB log 2+β+
√

β2+4β
2

. (4.39)

The parameters Tb and Tc represent two critical temperatures for the system with ⟨F⟩as = 0 in
Eqs.(4.36) and (4.38), respectively. As we will discuss in detail, it means that all the bonds are
certainly broken for supercritical temperatures. These results also show that the conditions in
Eq.(4.31), introduced to ensure the convergence of the integrals, correspond to requiring that
the system is working at subcritical temperatures. It is possible to observe the emergence of two
different cases depending on the parameters of the system. From Eq.(4.28) and (4.39), we find

hpy
2
b

2∆E
T0
Tc

= logβ0
logα0 − logβ0

. (4.40)

As a consequence, we have

hpy
2
b

2∆E ≶
logβ0

logα0 − logβ0
⇒ Tc ≶ T0. (4.41)

We remark that this analysis is valid if yb > yp, i.e. if the softening region exists. It is possible to
verify the continuity of ⟨F⟩as for T = T0 from Eqs.(4.36) and (4.38). As a matter of fact, from
the definitions of T0, Tb and Tc in Eqs. (4.28), (4.37) and (4.39) one can verify the equality√

2∆E
ky2

b

+ hp

k

√
1 − T0

Tb
=
√
hp

k

√
1 − T0

Tc
. (4.42)

Moreover, from this equality, we obtain that

ky2
b

2∆E = Tc

T0

Tb −T0
Tc −Tb

. (4.43)

Thus, for the case with Tc > T0 (i.e. when T0 represents the crossover temperature for the
force-extension curves) in Eq.(4.41), the positivity of ky2

b/2∆E implies that Tc > Tb > T0.

This scenario is illustrated in Fig.4.3, where Eq.(4.20) is compared, for a large value of N ,
with Eqs.(4.36) and (4.38), corresponding to the thermodynamic limit. In order to show the
effect of the condition in Eq.(4.41), we have fixed the values of the constitutive parameters but
different values of the breaking extension yb in the top and bottom panels (smaller value in top
panels). This choice is reflected by the different sizes of the softening region of the potential
energy U in panels b and e. In panels a and d we plotted the force-extension curves from Eq.(4.20)
for increasing temperatures and compared it with the proper asymptotic values obtained from
Eqs.(4.36) and (4.38). The good agreement observed proves that the theoretical procedure adopted
to analyze the thermodynamic limit is correct and that the decrease of the asymptotic force,
when the temperature increases, is explained by the presence of a phase transition. The critical
point depends on the constitutive parameters of the system. When hpy2

b
2∆E < logβ0

logα0−logβ0
, we have

that T0 > Tc and, thus, the force-extension curve follows Eq.(4.36). As a consequence, the phase



82 CHAPTER 4. Thermal effects on adhesion processes with the softening mechanism

Figure 4.3: Behavior of the asymptotic force versus the temperature for a small (panels a, b, and
c) and a large (panels d, e, and f) value of the breaking extension yb. Panels a and d: comparison
between Eq.(4.20) with N = 300 (colored curves) and Eqs.(4.36) (black straight lines) and (4.38)
(red straight lines) at the thermodynamic limit (in panel a, we used 8 values of T between 0 and
Tb, from purple to red curves; in panel d, we used 10 values of T between 0 and Tc, from dark
gray to red). Panels b and e: potential energy of the adopted breakable elements with different
yb (yb = 1.5yp in panel b and yb = 3.5yp in panel e). Panels c and f: asymptotic force versus
temperature (the green lines correspond to Eqs.(4.36) and (4.38); the circles to the colored curves
of panels a and d for Y = 10). The adopted parameters follows: he = 20, hp = 1, ∆E = 2, k = 5,
and KB = 1 (all in arbitrary units).

transition appears at the critical temperature Tb. On the other hand, when hpy2
b

2∆E > logβ0
logα0−logβ0

,
we have T0 < Tc. In this case, the force-extension follows Eq.(4.36) until the temperature reaches
the value T0; when the temperature is increased, the behavior of the force is described by Eq.(4.38)
and the phase transition occurs at the critical temperature Tc. From panels c and f of Fig.4.3, we
deduce that the force needed to obtain the complete detachment of the system monotonically
decreases to zero for increasing values of the temperature. This process terminates at T = Tb in
panel c, and at T = Tc in panel f. It means that the thermal fluctuations are able to promote the
fracture of the breakable elements and that the critical temperatures Tb and Tc are sufficient to
induce complete denaturation of the system even if the resulting force experienced by the system
is zero. This phenomenon can be better clarified by studying the behavior of ⟨N − η⟩ (average
number of broken elements) and ⟨η− ξ⟩ (average number of softened elements).

We will evaluate ⟨N − η⟩ and ⟨η − ξ⟩ in the limiting case of N → ∞. By performing the
analysis used for the force-extension relation, starting from Eqs.(4.21), (4.22) and (4.23), we
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obtain

⟨N − η⟩ =

∫ N
0 e

(βδ− 1
2 logβ0)η− δY2

Bη (N − η) dη√
Bη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

∫ N
0 e

(βδ− 1
2 logβ0)η− δY2

Bη dη√
Bη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

, (4.44)

⟨η− ξ⟩ =

∫ N
0
∫ η

0 (η− ξ)e

(
φ+ 1

2 log β0
α0

)
ξ+(βδ− 1

2 logβ0)η− δY2
Bη dξdη√

Bη∫ N
0
∫ η

0 e

(
φ+ 1

2 log β0
α0

)
ξ+(βδ− 1

2 logβ0)η− δY2
Bη dξdη√

Bη

. (4.45)

Where, for the sake of readability, we used again Bη =N − η+β0/(β0 − 1). After the evaluation
of the integral on ξ, we apply the change of variable N − η+β0/(β0 − 1) = s. We get

⟨N − η⟩ =

∫ β0
β0−1 +N

β0
β0−1

(
s− β0

β0−1

)[
eΘBs − 1

]
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s∫ β0
β0−1 +N

β0
β0−1

[
eΘBs − 1

]
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s

, (4.46)

⟨η− ξ⟩ =

∫ β0
β0−1 +N

β0
β0−1

[
−Bs + 1

Θ
eΘBs − 1

Θ

]
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s∫ β0
β0−1 +N

β0
β0−1

[
eΘBs − 1

]
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s

, (4.47)

where we used Θ = φ+ 1
2 log β0

α0
defined in Eq.(4.28). As for the force-extension relation, in the

limit with N → ∞, we can consider separately the cases with Θ > 0 (T < T0, exponential term in
the brackets is dominant) and Θ < 0 (T > T0, exponential term in the brackets is negligible). As
a result, we get

T < T0


⟨N − η⟩ =

∫ +∞
β0

β0−1

(
s− β0

β0−1

)
e−(βδ− 1

2 logα0+φ)s− δY2
s ds√

s∫ +∞
β0

β0−1
e−(βδ− 1

2 logα0+φ)s− δY2
s ds√

s

,

⟨η− ξ⟩ = 1
Θ

= 1
φ+ 1

2 log β0
α0

.

(4.48)

T > T0


⟨N − η⟩ =

∫ +∞
β0

β0−1

(
s− β0

β0−1

)
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s∫ +∞
β0

β0−1
e−(βδ− 1

2 logβ0)s− δY2
s ds√

s

,

⟨η− ξ⟩ → + ∞.

(4.49)

We observe that the average number of softened elements ⟨η− ξ⟩ is independent of Y and is
varying only with the temperature T for T < T0. It means that the two domain walls between
intact and softened elements, and between softened and broken elements, move simultaneously
with increasing Y conserving a constant distance between them (which means a constant number
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of softened elements). On the other hand, the value of ⟨η−ξ⟩ is divergent to infinity when T > T0.
This divergence means that we have no intact elements and the vertical springs can be either
softened or broken. Therefore, the transition at the temperature T0 can be characterized by the
partial breaking of all the elements of the chain induced by the thermal fluctuations.

The two integrals appearing in Eqs.(4.48) and (4.49) can be calculated by using the formulas
given in Appendix B. Using the definitions of λ1, λ2 and c in Eq.(4.33), we obtain

⟨N − η⟩ =


Υ (λ1)
Ψ (λ1) − c for T < T0,

Υ (λ2)
Ψ (λ2) − c for T > T0,

(4.50)

where the functions Υ (λ) and Ψ (λ) are defined as follows

Υ (λ) = 1
2

√
π

λ

{
e2Y

√
λδ

[
1 − erf

(√
δ

c
Y +

√
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)]

+e−2Y
√
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(√
δ

c
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√
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)]}
,

(4.51)

Ψ (λ) = 1
4λ

√
π

λ
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e2Y

√
λδ
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√
λδ
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1 − erf
(√
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√
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√
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√
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(√

δ

c
Y −

√
λc

)]}

+
√
c
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e−λce− δ

c Y2
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(4.52)

We can evaluate the asymptotic behavior of ⟨N − η⟩ for large values of Y for both T < T0 and
T > T0. By means of previous results, and using the asymptotic expression 1−erf(x) ∼ e−x2

/(x
√
π)

for x→ ∞, we easily get the asymptotic formulas for Y → ∞

⟨N − η⟩ ≃


Y
√

δ

λ1
for T < T0,

Y
√

δ

λ2
for T > T0.

(4.53)

The final asymptotic result can be therefore written as

T < T0


⟨N − η⟩ ≃ Y√

2∆E
ky2

b

+ hp

k

√
1 − T

Tb

for Y → ∞,

⟨η− ξ⟩ = 1
φ+ 1

2 log β0
α0

= KBT

∆E

1
1 − T

T0

,

(4.54)

T > T0


⟨N − η⟩ ≃ Y√

hp

k

√
1 − T

Tc

for Y → ∞,

⟨η− ξ⟩ → + ∞.

(4.55)
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This result shows that the increase of the broken elements is linear with Y (for Y large),
confirming the progressive detachment process induced by the Helmholtz (isometric) condition.
We can combine Eqs.(4.36) and (4.38) with Eqs.(4.54) and (4.55) to obtain the simple relation
⟨N − η⟩⟨F⟩as = Y, which is valid for any temperature T , and for large values of the extension Y.
This relation, rewritten in terms of the real physical quantities for large yN+1, reads

⟨f⟩as = k

⟨N − η⟩
yN+1. (4.56)

The behavior of the system within the Helmholtz ensemble in the thermodynamic limit is
summarized in Fig.4.4, where we plot the most important quantities versus the temperature by
considering the two cases identified in Eq.(4.41). In particular, we fix the values of the constitutive
parameters of the system but consider two different values of yb. For small values of yb (left
panels), the temperature T0 is larger than Tb and Tc. Therefore, only the valid equations for
T < T0 must be considered (panel a). On the other hand, for larger values of yb (right panels),
T0 is smaller than Tb and Tc: thus, the force-extension exhibits different regimes for T < T0
and T > T0 (panel b). In panel a (Tc < Tb < T0), the asymptotic force ⟨F⟩as shows a monotone
decreasing behavior terminating at the critical temperature Tb corresponding to a phase transition.
The number of the softened elements ⟨η− ξ⟩ is constant with respect to Y but is an increasing
function of the temperature until point A, corresponding to the phase transition. It means
that the region of softened elements exhibits a fixed length and is gradually moved leftward by
the increasing extension Y. The extension of this region represents the temperature-dependent
analytic measure of the process zone. Coherently, the number of broken elements ⟨N − η⟩ is
linearly increasing with Y and nonlinearly increasing with T (for this reason we plotted the ratio
⟨N − η⟩/Y which is only temperature dependent). We observe that ⟨N − η⟩/Y diverges at the
critical temperature Tb. Therefore, ⟨N − η⟩ → ∞ for T → Tb for any value of the extension Y
(for large values of Y). It means that the phase transition can be explained through the total
detachment of the system induced by the strong thermal fluctuations. In panel b (T0 < Tb < Tc),
the asymptotic force ⟨F⟩as is a decreasing function of the temperature with a first transition at
the point B (temperature T0) and a second final transition at temperature Tc, where we have the
complete detachment. The transition at T0 can be explained by observing the behavior of the
number of softened elements ⟨η−ξ⟩ versus the temperature. We see that ⟨η−ξ⟩ → ∞ for T → T0,
proving that all elements are (at least) softened for temperatures larger than T0. Therefore, we
have the first transition at T0 where all the elements are softened and a second transition at
Tc where all the elements are broken. This is coherent with the plot of ⟨N − η⟩/Y versus the
temperature, from which we deduce that ⟨N − η⟩ → ∞ for T → Tc for any value of the extension
Y . Point C shows the slope transition in the evolution of the broken elements at the temperature
T0. To complete the description of Fig.4.4, we underline that the vertical dashed lines in all
panels are useful to easily identify the characteristic temperatures Tc, Tb, and T0. Moreover, the
dashed curved lines correspond to solutions that are not relevant to the behavior of the system.
More specifically, they correspond to Eqs.(4.38) and (4.55) in panel a and to Eqs.(4.36) and (4.54)
in panel b.

To conclude, the behavior of the system under isometric conditions can be usefully described
by analyzing the phase diagrams represented in Fig.4.5. Two cases are described: Tc < Tb < T0
(panel a); T0 < Tb < Tc (panel b). Observe that, since the system is symmetric (bilateral), in the
figure we considered both positive and negative values of Y . We can identify three possible phases
for the system: L corresponds to all the elements broken; M corresponds to a combination of
softened and broken elements; finally, N corresponds to a mix of intact, softened and broken
elements. These phases are separated by vertical lines corresponding to the phase transitions.
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Figure 4.4: Behavior of the main quantities describing the system in the thermodynamic limit
versus the temperature for a small (panels a, where Tc < Tb < T0) and a large (panels b, where
T0 < Tb < Tc) value of the breaking extension yb (yb = 1.5yp in panel a and yb = 3.5yp in panel b).
In each case, we plotted the asymptotic or critical force ⟨F⟩as given in Eqs.(4.36) and (4.38), the
average number of softened elements ⟨η− ξ⟩, and the average number of broken elements divided
by the applied extension ⟨N − η⟩/Y. These plots correspond to the results given in Eqs.(4.54)
and (4.55). The shaded areas correspond to supercritical temperatures. The adopted parameters
follows: he = 20, hp = 1, ∆E = 2, k = 5, and KB = 1 (all in arbitrary units).
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Figure 4.5: Phase diagrams for the system in the thermodynamic limit under Helmholtz isometric
condition for the case with Tc < Tb < T0 (panel a, where yb = 1.5yp) and for the case with
T0 < Tb < Tc (panel b, where yb = 3.5yp). We can identify three possible phases for the system: L
corresponds to a phase with all the elements broken; M corresponds to a combination of softened
and broken elements; finally, N corresponds to a mix of intact, softened and broken elements.
The adopted parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all in arbitrary
units).
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Therefore, the phase diagrams explain clearly that, for Helmholtz isometric condition, we have
no finite values of the prescribed extension Y able to induce the whole system detachment for
subcritical temperatures. We will see that the Gibbs isotensional condition leads to different
behavior.

4.5 Soft device: Gibbs ensemble

In this Section, we determine the properties of the detachment process realized within the
Gibbs ensemble, which corresponds to a soft device able to apply a force to the last element of the
chain. If we consider a force f applied to the last element with vertical extension yN+1, the total
potential energy of the system is given by Φ − fyN+1, where Φ is the Helmholtz potential energy
defined in Eq.(4.4). It follows that the Gibbs partition function is given by the Laplace transform
of the Helmholtz partition function [109]. Moreover, the knowledge of the Gibbs partition function
allows the calculation of the average extension of the last element of the chain by using classical
thermodynamic relations [98]. We can introduce the non-dimensional quantities (analogous the
those used in Section 4.3)

F = f

kyb
, ⟨Y⟩ = ⟨yN+1⟩

yb
, (4.57)

representing the rescaled applied force and average extension, respectively. Thus, we can write
the relations

ZG(F) =
∫ +∞

−∞
ZH(Y)e2δFYdY, (4.58)

⟨Y⟩ = 1
2δ

1
ZG(F)

∂ZG(F)
∂F

. (4.59)

We can easily determine the Gibbs partition function through Eqs.(4.23) and (4.58) as a gaussian
integral. We obtain (up to a multiplicative constant)

ZG(F) =
N∑

η=0

η∑
ξ=0

eφξeβδη√
detA(ξ,η)

{
1 − A−1

NN (ξ,η)
}e δF2

1−A−1
NN

(ξ,η) , (4.60)

where δ and φ have been defined in Eq.(4.19). By applying Eq.(4.59), we directly obtain the
force-extension relation as

⟨Y⟩ = F
ZG

N∑
η=0

η∑
ξ=0

eφξeβδη√
detA(ξ,η)

{
1 − A−1

NN (ξ,η)
}3/2 e

δF2

1−A−1
NN

(ξ,η) . (4.61)
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Figure 4.6: Force-extension curve and distribution of intact, softened, and broken elements during
the detachment of a film from a substrate for the Gibbs ensemble (soft device, applied force to
the last element of the chain). Panel a): we considered N = 5, and 10 values of KBT from 0.5 to
5 (a.u.). Panel b): we considered N = 50, and 10 values of KBT from 2 to 20 (a.u.), from gray to
red colors. The adopted parameters follows: he = 20, hp = 15, ∆E = 2, yb = 2yp and k = 5 (all in
arbitrary units).

We can finally calculate the average value of the number of broken elements ⟨N − η⟩ and the
average number of softened elements ⟨η− ξ⟩, eventually obtaining

⟨N − η⟩ = 1
ZG

N∑
η=0

η∑
ξ=0

(N − η)e
φξ+βδη+ δF2

1−A−1
NN

(ξ,η)√
detA(ξ,η)

{
1 − A−1

NN (ξ,η)
} , (4.62)

⟨η− ξ⟩ = 1
ZG

N∑
η=0

η∑
ξ=0

(η− ξ)e
φξ+βδη+ δF2

1−A−1
NN

(ξ,η)√
detA(ξ,η)

{
1 − A−1

NN (ξ,η)
} . (4.63)

An example of application of these results can be found in Fig.4.6, where we plotted ⟨Y⟩,
⟨ξ⟩, ⟨η− ξ⟩ and ⟨N − η⟩ versus the applied force F (using the temperature as a parameter) for
two different cases: the first one concerns a short chain with N = 5 (panel a), and the second
one a larger chain with N = 50 (panel b). Concerning the case with N = 5, it is interesting to
note the differences between the Gibbs and the Helmholtz ensemble. We, therefore, compare
panel a) of Fig.4.2 with panel a) of Fig.4.6. While the detachment of the elements is quite
simultaneous within the Gibbs ensemble (cooperative process occurring at a given threshold
force), the same phenomenon is sequential within the Helmholtz ensemble, where we observe a
gradual and progressive bond breaking (non-cooperative response). This different behavior is
well known in the context of the stretching of macromolecules by means of force-spectroscopy
techniques [91, 92, 94, 95, 102, 103]. Another difference concerns the fact that, in the Gibbs
ensemble, we are not able to identify peaks or steps in the curves of Fig.4.6, corresponding to
the single-breaking occurrences. Also, this point is clearly related to the cooperative response
characterizing the Gibbs ensemble. If we look at the case with N = 50 (panel b of Fig.4.6), we
can clearly see a force plateau corresponding to the cooperative detachment of the elements.
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This force plateau is temperature dependent, as already observed within the Helmholtz ensemble.
Moreover, we also deduce that the number of softened elements remains approximately constant
and only temperature dependent before the complete rupture of the elements. These properties
of the detachment process will be thoroughly analyzed in the next Section, by introducing the
thermodynamic limit of the Gibbs ensemble.

4.6 Thermodynamic limit within the Gibbs ensemble

In this Section, we analyze the thermodynamic limit within the Gibbs ensemble and consider
the behavior of Eqs.(4.60), (4.61), (4.62), and (4.63) for N → ∞. Following the procedure shown
in Section 4.4 and using the formula in 4.9, Eqs.(4.60) and (4.61), give the force-extension response
of the system within the Gibbs ensemble as

⟨Y⟩ = F
∫ N

0 Bηe
(βδ− 1

2 logβ0)η+δF2Bηdη
∫ η

0 e

(
φ+ 1

2 log β0
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)
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dξ∫ N

0 e(βδ− 1
2 logβ0)η+δF2Bηdη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

, (4.64)

where α0 and β0 have been defined in Eq.(4.25) and Bη has been defined in Eq.(4.26). After the
integration over ξ we can apply the change of variable N − η+β0/(β0 − 1) = s thus obtaining

⟨Y⟩ = F
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β0−1 +N
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[
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− 1
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. (4.65)

As before, this expression depends on the sign of the quantity Θ = φ+ 1
2 log β0

α0
. In the limit with

N → ∞, we consider separately the cases with Θ > 0 (T < T0, exponential term in the brackets
is dominant) and Θ < 0 (T > T0, exponential term in the brackets is negligible). We eventually
get (for N → ∞)

⟨Y⟩ = F

∫ +∞
β0

β0−1
e−(βδ− 1

2 logα0+φ)s+δF2ssds∫ +∞
β0

β0−1
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for T < T0, (4.66)

⟨Y⟩ = F

∫ +∞
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e−(βδ− 1
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β0−1
e−(βδ− 1

2 logβ0)s+δF2sds
for T > T0. (4.67)
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Finally, we obtain the force-extension formulas for N → ∞ under the same conditions for the
Helmholtz ensemble (see Eqs.(4.31) and (4.32)) as

⟨Y⟩ = F

(
β0

β0 − 1 + 1
βδ− 1

2 logα0 +φ− δF2

)
for T < T0, (4.68)

⟨Y⟩ = F

(
β0

β0 − 1 + 1
βδ− 1

2 logβ0 − δF2

)
for T > T0. (4.69)

We remark that these expressions reveal an asymptotic behavior corresponding to a force plateau,
as already observed within the Helmholtz ensemble. In particular, the values of the asymptotic
force are the same for the two statistical ensembles. Indeed, for T < T0, we deduce from Eq.(4.68)
that the asymptotic force is solution of the quadratic equation βδ− 1

2 logα0 +φ−δF2 = 0, which is
exactly solved by the Helmholtz result stated in Eq.(4.36). Similarly, for T > T0, we deduce from
Eq.(4.69) that the asymptotic force is solution of the quadratic equation βδ− 1

2 logβ0 − δF2 = 0,
which is exactly solved by the Helmholtz result stated in Eq.(4.38). While the asymptotic forces
are the same for the Helmholtz and Gibbs ensembles, it is not difficult to verify that the shape
of the force-extension response is sensibly different for the two ensembles. This can be done by
comparing the analytical solutions for the force-extension response obtained at the thermodynamic
limit in Eqs.(4.34)-(4.35) (Helmholtz) and Eqs.(4.68)-(4.69) (Gibbs). It means that the two
statistical ensembles are nonequivalent in the thermodynamic limit. For instance, this point can
be shown by calculating the slopes of the force-extensions curves at the origin (for small forces
and extensions) for both ensembles and by observing that these quantities are different. More
details, concerning the case of the adhesion-decohesion process without the softening mechanism,
can be found in [93].

To complete the analysis, we determine the average value of the number of broken elements
⟨N − η⟩ and the average number of softened elements ⟨η− ξ⟩ in the limiting case of N → ∞.
To this aim, we apply the same procedure already used for the force-extension relation. From
Eqs.(4.62) and (4.63), combined with the partition function given in Eq.(4.60), we obtain

⟨N − η⟩ =
∫ N

0 (N − η)e(βδ− 1
2 logβ0)η+δF2Bηdη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ∫ N

0 e(βδ− 1
2 logβ0)η+δF2Bηdη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

, (4.70)

⟨η− ξ⟩ =
∫ N

0 e(βδ− 1
2 logβ0)η−δF2Bηdη

∫ η
0 (η− ξ)e

(
φ+ 1

2 log β0
α0

)
ξ
dξ∫ N

0 e(βδ− 1
2 logβ0)η−δF2Bηdη

∫ η
0 e

(
φ+ 1

2 log β0
α0

)
ξ
dξ

. (4.71)
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After the integration over ξ and the change of variable N − η+β0/(β0 − 1) = s we obtain

⟨N − η⟩ =

∫ β0
β0−1 +N

β0
β0−1

(
s− β0

β0−1

)[
eΘBs − 1

]
e−(βδ− 1

2 logβ0−δF2)sds

∫ β0
β0−1 +N

β0
β0−1

[
eΘBs − 1

]
e−(βδ− 1

2 logβ0−δF2)sds

, (4.72)

⟨η− ξ⟩ =

∫ β0
β0−1 +N

β0
β0−1

[
−Bs + 1

Θ
eΘBs − 1

Θ

]
e−(βδ− 1

2 logβ0−δF2)sds

∫ β0
β0−1 +N

β0
β0−1

[
eΘBs − 1

]
e−(βδ− 1

2 logβ0−δF2)sds

, (4.73)

where, as in Section 4.4, we considered Θ = φ+ 1
2 log β0

α0
. To complete the analysis, we consider

the cases with Θ > 0 (T < T0, exponential term in the brackets is dominant) and Θ < 0 (T > T0,
exponential term in the brackets is negligible). We get

T < T0


⟨N − η⟩ = 1

βδ− 1
2 logα0 +φ− δF2 ,

⟨η− ξ⟩ = 1
Θ

= 1
φ+ 1

2 log β0
α0

,
(4.74)

T > T0


⟨N − η⟩ = 1

βδ− 1
2 logβ0 − δF2 ,

⟨η− ξ⟩ → + ∞.

(4.75)

These results can be used to understand the behavior of the detachment process within the
Gibbs ensemble in the thermodynamic limit as shown in Figs. 4.7 and 4.8. In both figures, we
have fixed the constitutive parameters of the model but the values of yb (small value in the left
panel, larger value in the right panel). We recall that in the Helmholtz ensemble, we obtained
two different responses depending on the parameters, as stated in Eq.(4.41). In panel a of Fig.4.7
and Fig.4.8 we show the results for the case with Tc < Tb < T0 (yb = 1.5yp), and in panel b those
of the case with T0 < Tb < Tc (yb = 3.5yp). While in Fig.4.7 we show the behavior of the relevant
quantities as a function of the applied force (using the temperature as a parameter), in Fig.4.8
we show the same quantities as a function of the temperature (now using the applied force as a
parameter).

In Fig.4.7 we draw a comparison between Eqs.(4.60), (4.61), (4.62), and (4.63) with a large
value of N and Eqs.(4.68), (4.69), (4.74), and (4.75) obtained for N → ∞. This comparison
proves that the mathematical treatment of the thermodynamic limit here developed is consistent
with the model of detachment proposed. Indeed, we find a very good agreement between the
general results, applied to a system with a large value of N , and the theoretical ones obtained
in the thermodynamic limit. Concerning panel a, the force-extension curves exhibit the force
plateau discussed above, which is very similar to the behavior observed within the Helmholtz
ensemble. The average number of softened elements remains constant with F and depends on
the temperature T . Finally, the number of broken elements diverges to infinity when the force
approaches its critical value. The situation is more complicated in panel b, where we have an
intermediate transition describing the partial breaking of all the elements of the system. In this
case, when T < T0 (black solid curves), the behavior is very similar to the one described in panel
a. On the other hand, when T > T0 (red solid curves), all the elements are softened due to the



4.6. Thermodynamic limit within the Gibbs ensemble 93

Figure 4.7: Force-extension curve and distribution of softened and broken elements during the
detachment of a film from a substrate with a soft device (Gibbs ensemble) in the thermodynamic
limit. Panel a: comparison of Eqs.(4.60), (4.61), (4.62), and (4.63) with N = 250 (green dashed
curves) and Eqs.(4.68), (4.69), (4.74), and (4.75) obtained for N → ∞ (gray solid curves) for
the case with Tc < Tb < T0 (yb = 1.5yp). We adopted 6 values of T between 0.4 and 2.4. Panel
b: comparison of Eqs.(4.60), (4.61), (4.62), and (4.63) with N = 250 (green dashed curves) and
Eqs.(4.68), (4.69), (4.74), and (4.75) obtained for N → ∞ (gray solid curves for T < T0 and
red solid curves for T > T0) for the case with T0 < Tb < Tc (yb = 3.5yp). We used 8 values of T
between 0.9 and 5.1. The adopted parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1, and
k = 5 (all in arbitrary units).
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Figure 4.8: Extension ⟨Y⟩, the average number of softened elements ⟨η− ξ⟩, and the average
number of broken elements ⟨N − η⟩ versus the temperature during the detachment of a film from
a substrate with a soft device (Gibbs ensemble) in the thermodynamic limit. Panel a: plots of
Eqs.(4.68), (4.69), (4.74), and (4.75) for different values of the applied force F (8 values from
0.16 to 1.3) for the case with Tc < Tb < T0 (yb = 1.5yp). Panel b: plots of Eqs.(4.68), (4.69),
(4.74), and (4.75) for different values of the applied force F (10 values from 0.058 to 0.58) for
the case with T0 < Tb < Tc (yb = 3.5yp). In both panels, shaded areas correspond to supercritical
temperatures. The adopted parameters follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all
in arbitrary units).
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thermal fluctuations, and, therefore, ⟨η− ξ⟩ → ∞ (for this reason no red curves are shown in the
plot of ⟨η− ξ⟩ versus F). It means that the detachment process consists of the complete break of
all the elements already softened.

Also in Fig.4.8, we separately show the behavior of the system with Tc < Tb < T0 (panel
a with yb = 1.5yp), and the system with T0 < Tb < Tc (panel b with yb = 3.5yp). We used a
logarithmic scale to better appreciate the shape of the plots. The representation of the extension
⟨Y⟩, the average number of softened elements ⟨η− ξ⟩, and the average number of broken elements
⟨N − η⟩ versus the temperature is particularly useful to identify a crucial difference between the
Helmholtz and the Gibbs ensembles. For the isometric condition (Helmholtz ensemble), we have
no finite values of the prescribed extension Y able to completely detach the system for subcritical
temperatures. Indeed, since the detachment progress is gradual or progressive in response to
the prescribed extension, only an infinite value of extension can cause a complete detachment
of the chain (see Fig.4.4). Differently, for the isotensional condition (Gibbs ensemble), for any
subcritical temperature, we can identify a value of force inducing the complete detachment of
the chain. This can be seen by looking at the force-extension curves in panels a and b of Fig.4.8.
Here, we observe that for any value of the temperature, we can identify a force producing an
asymptotic behavior of ⟨Y⟩, which corresponds to the total detachment of the system. The
relationships between force and temperature are given by βδ− 1

2 logα0 +φ− δF2 = 0 for T < T0,
and by βδ− 1

2 logβ0 − δF2 = 0 for T > T0, as stated in Eqs. (4.68) and (4.69) (we remember
that δ and φ, defined in Eq.(4.19), depend on T ). This is coherent with the fact that within the
Gibbs ensemble all the element break simultaneously or cooperatively, thus allowing the force
to completely detach the chain independently of the (subcritical) temperature of the system.
The average number of softened elements ⟨η− ξ⟩ is independent of the force and therefore we
find a single curve (∀F) in the corresponding plot. However, for any applied force we have a
different critical temperature of the system and then the curve of ⟨η− ξ⟩ must be considered
valid up to the red circle symbols shown in Fig.4.8. Indeed, these symbols correspond to the
critical temperature, which is, in turn, determined by the applied force. Finally, the curves of the
average number of broken elements ⟨N − η⟩ show a divergence at the critical temperature of the
system, representing the complete detachment of the chain from the substrate. The important
difference between panel a and panel b consists in the presence of the additional transition at
the temperature T0 in the case with T0 < Tb < Tc (large breaking extension yb = 3.5yp). In this
case, we observe that for T → T0 we have ⟨η− ξ⟩ → ∞ even if ⟨N − η⟩ is finite. It means that at
the temperature T ≥ T0 all the vertical elements are spontaneously softened (due to the thermal
fluctuations), and the detachment process is realized by completing their rupture thanks to the
applied force.

To conclude the discussion concerning the thermodynamic limit in the Gibbs ensemble, in
Fig.4.9 we show the phase diagram of the system in the force-temperature plane. We separately
considered the two cases with Tc < Tb < T0 (panel a) and with T0 < Tb < Tc (panel b). Again,
due to symmetry, we considered both positive and negative values of F (see the scheme in Fig.4.1
(panel b)). Moreover, we observe the same three possible cases obtained in the hard device:
the region L corresponds to a phase with all broken elements; the region M corresponds to a
combination of softened and broken elements; finally, the region N corresponds to a mixture of
intact, softened and broken elements. In Fig.4.9 we can identify the critical points (Cb in panel a,
and Cc in panel b), whose meaning is now quite clear: for temperatures larger than those of the
critical points, the chain is always completely detached from the substrate. In panel b of Fig.4.9,
we can see the triple points P+ and P−, where the three phases of the system coexist. In any case,
we observe that for a value of the applied force F (in a suitable range), we have a value of the
temperature able to detach the chain. When F = 0, such a temperature corresponds to the critical
temperature of the system. In other words, for any subcritical temperature, we can identify a
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Figure 4.9: Phase diagrams for the system in the thermodynamic limit under Gibbs isotensional
condition for the case with Tc < Tb < T0 (panel a, where yb = 1.5yp) and for the case with
T0 < Tb < Tc (panel b, where yb = 3.5yp). We can identify three possible phases for the system: L
corresponds to a phase with all the elements broken; M corresponds to a combination of softened
and broken elements; finally, N corresponds to a mix of intact, softened and broken elements.
We can also identify the critical points (Cb in panel a, and Cc in panel b) and the triple points
P+ and P− in panel b, where the three phases of the system coexist. The adopted parameters
follows: he = 20, hp = 1, ∆E = 2, KB = 1 and k = 5 (all in arbitrary units).
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a) b) c)

Figure 4.10: Mechanical behavior of sapphire whiskers at elevated temperatures. The experimental
average fracture strength (panel a) and the experimental maximum fracture stress (panel b), as a
function of temperature, are reproduced with permission from [33]. Panel c): comparison between
theoretical and experimental average and maximum strengths based on Eqs.(4.36) and (4.38).

value of force inducing the complete detachment of the chain. As previously discussed, the critical
behavior of the Helmholtz ensemble is different. In fact, for isometric conditions, we have no
finite values of the prescribed extension able to detach the system for subcritical temperatures,
as shown in Fig.4.5. This difference between the Helmholtz and the Gibbs ensembles is consistent
with their non-cooperative and cooperative interpretation, respectively.

4.7 Comparison with experimental results
In this Section, we use the obtained results to give an interpretation of some experiments

conducted to determine the tensile behavior of different materials at elevated temperatures, under
an applied mechanical load.

The first case concerns filamentary crystals or whiskers of sapphire (Al2O3) with a diameter
between 8 and 40 µm [33]. In these structures, the damage can be generated by the propagation
of the decohesion process that, at the microscopic scale, can be modeled by our theory. Indeed,
the decohesion process can be viewed as a sequence of ruptures, representing the breaking of the
chemical bonds along a direction of the crystal structure. In particular, our model will be used to
analyze the effect of the temperature on this damaging process. If we consider whiskers free of
dislocations, or, at least, without applied stress, and for low temperatures, we can assume that
the magnitudes of their strengths represent a good indication of the stresses required either for
crack propagation or for dislocation nucleation. The temperature dependence of these stresses
has been measured by [33]. The experimental average fracture strength and the experimental
maximum fracture stress as a function of temperature are reported in panels a) and b) of Fig.4.10,
respectively [33]. The transition at around T = 1550 ◦C in the stress decrease suggests a change
in the mechanism of failure leading to the complete fracture. In its studies, Brenner has proposed
the following scenario [33]. First of all, it is supposed that some defects are distributed within
the whiskers (formed during the crystal growth) and they are able to intensify the applied stress
through Griffith and/or Eshelby-like mechanisms. At a given level of applied stress, the locally
intensified stress around the defects can generate propagation of the crack or nucleation of
dislocations. Brenner provides evidence that at lower temperatures, the enhanced stress causes
crack propagation without dislocation nucleation while at elevated temperatures, dislocations are
generated before the fracture propagation. In the latter case, the population of dislocations is
able to reduce the elastic stiffness of the material. In our model, the generation of dislocations can
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b)a) c)

Figure 4.11: Mechanical behavior of high-entropy and medium-entropy alloys over a large
temperatures range. The experimental tensile yield stress (panel a) and the experimental ultimate
tensile stress (panel b), as a function of temperature, are reproduced with permission from [35].
Panel c): comparison between theoretical and experimental results for the quinary CrMnFeCoNi
alloy (also named Cantor alloy), based on Eqs.(4.36) and (4.38).

be therefore represented by the softening mechanism described by the transition of the stiffness
of the vertical springs between he and hp, shown in Fig.4.1. It is interesting to observe that the
theoretical behavior of the strength shows a transitional behavior at T0, as shown in Fig.4.3, panel
f. The temperature T0 is therefore around 1550 ◦C for the sapphire whiskers. The decohesion
forces given by Eqs.(4.36) and (4.38) are able to represent the experimental results on the strength
of the sapphire whiskers, as shown in panel c) of Fig.4.10. Quite a good agreement between
theory and experiments can be noticed.

Another class of materials where our theory can be applied is represented by high-entropy
alloys. These systems are typically composed of five or more elements with equal (or relatively
equal) stoichiometric coefficients. These materials are named high-entropy alloys since the mixing
entropy is maximized if the components are present in equal proportions, and it is an increasing
function of the number of components. Consequently, when these systems are composed of two to
four components, then they are typically named medium-entropy alloys. From a historical point of
view, the idea of creating alloys has been used to generate desirable properties in a given artificial
material. High-entropy alloys represent a new strategy introduced to exploit a multi-dimensional
compositional space in order to induce exceptional properties to these recent exotic materials.
Today, only a small region of this multi-dimensional space has been explored and many other alloys
can be discovered in the future [34]. In Fig.4.11, one can find the experimental data concerning
the tensile yield stress (panel a) and the ultimate tensile stress (panel b) of several high-entropy
alloys and medium-entropy alloys [35]. The mechanisms at the origin of the mechanical response
in these systems are very complex. The distribution of defects plays a crucial role in defining
mechanical properties. At the atomic scale, typical defects include vacancies, dislocations, and
grain boundaries. At a larger scale, other defects are represented by pores, precipitates, cracks,
and residual stresses. The static and dynamic interplay of these microstructures is able to
determine the overall mechanical response of the whole material. In spite of this complexity, the
yield and ultimate strengths, shown in panels a) and b) of Fig.4.11, decrease continuously over
the full range of temperatures. More specifically, a first region characterized by a steep drop is
followed by a second region where the decrease is slower. As before, the transition between these
regions can be interpreted as a change in the underlying damaging physical mechanism.

As a paradigmatic example, we consider the quinary CrMnFeCoNi alloy (also named Cantor
alloy), which is one of the first high-entropy alloys investigated [36]. This structure crystallizes
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a) b)

Figure 4.12: Mechanical behavior of the medium-entropy alloy CrFeCoNi over a large temperatures
range. The experimental tensile yield stress and ultimate tensile stress (panel a), as a function of
temperature, are reproduced with permission from [38]. Panel b): comparison between theoretical
and experimental results for the CrFeCoNi alloy (also named HE-4), based on Eqs.(4.36) and
(4.38).

as a single-phase FCC solid. The strength of this alloy exhibits a strong drop for temperatures
below 350 ◦K, and a weaker temperature dependence at elevated temperatures up to around
1270 ◦K. There is therefore a behavioral transition at the temperature T0 = 350 ◦K. From the
microstructural point of view, this can be explained as follows. For small deformation, the
CoCrFeMnNi alloy exhibits the development of planar dislocation glide, which is typical for
FCC metals [37]. For larger strains, dislocations lose their planar character and organize into
cell structures [37]. This modification induces a larger ductility and a lower stiffness of the
overall material. Finally, this process is represented in our model by the softening of the vertical
breakable springs, which change their elastic coefficients from he to hp, as shown in Fig.4.1. In
panel c) of Fig.4.11, we draw a comparison between the experimental and theoretical results
for both the yield and ultimate stress of the quinary CrMnFeCoNi alloy. As before, we remark
that the model is able to capture the transition in the behavior of the strength as a function of
the temperature. Another example is given in Fig.4.12, where we take into consideration the
mechanical properties of the medium-entropy alloy CrFeCoNi (also named HE-4). In panel a) of
Fig.4.12, experimental ultimate and yield stresses are reported [38]. As before, a transition can
be observed for a temperature around 200 ◦C. Also in this case, this transition can be interpreted
by a different structure and mobility of the dislocations with different strains and temperatures
[38]. The comparison with the theoretical results is drawn in panel b) of Fig.4.12, where a good
agreement can be underlined.

We described the application of the softening mechanism to the strength behavior of sapphire
whiskers and of high-entropy and medium-entropy alloys. For these material systems, we provided
evidence that the theory is able to describe the behavior of both yield and ultimate stress as a
function of the temperature.

4.8 Conclusions
We considered the cohesion/decohesion process under thermal fluctuations by means of

a paradigmatic system represented by a linear mass-spring chain, connected to a substrate
through breakable elements. These elements are described by a softening mechanism, i.e.,
by three operating regions as follows: the first linear region corresponds to intact elements
(small deformation), the second region corresponds to softened elements with a reduced stiffness
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(intermediate deformation), and finally, the third region corresponds to broken elements (large
deformation). This paradigmatic system has been studied under the assumption to be embedded
in a thermal bath at a given temperature and loaded by an external mechanical action. This
latter can be either a prescribed extension (hard device) or an applied force (soft device) to
the last element of the chain. These two configurations correspond to the Helmholtz ensemble
(isometric condition) and the Gibbs ensemble (isotensional condition) of the equilibrium statistical
mechanics, respectively. In order to cope with the mathematical analysis of the problem, we
adopted the spin variable approach for defining the state of any breakable element [91, 92, 94, 95,
102, 103], we introduced the zipper model hypothesis with two domain walls for describing the
three operating regions of the bonds chain [104–107], and we finally exploited some analytical
properties of the tridiagonal matrices [96, 97] to obtain closed form results under isometric and
isotensional conditions. In both cases, we obtained the general solution of the problem for a
chain composed of a number N of elements. These solutions, in both cases, lead to a constant
decohesion force, which represents the strength of the system. Importantly, this strength is
temperature dependent, and its value is decreasing with increasing temperature. The physical
interpretation of this behavior can be done by observing that the thermal fluctuations foster
the damaging of the breakable elements, thus reducing the strength of the system. Also, the
number of broken and softened elements has been determined as a function of the temperature
and of the external mechanical action for both statistical ensembles. Interestingly, we proved that
the number of softened elements depends only on the temperature and it is independent of the
external mechanical action. The increasing size of the softened region with the temperature gives
a thorough interpretation of the fragile-to-ductile transition of several materials. This analysis
provides a complete picture of the system behavior with a finite number N of elements. To better
understand the meaning of these results, we analyzed the system behavior under the hypothesis of
thermodynamic limit, i.e. for N → ∞. In this case, the sums appearing in the partition functions
of both ensembles and in the macroscopic averages of the relevant thermodynamic variables can
be substituted by integrals, eventually leading to useful closed-form expressions. The analysis
of these results delivers a clear explanation of the temperature-dependent strength in terms of
phase transitions. Indeed, a first critical temperature exists for the system and corresponds
to the partial breaking of all the elements of the chain. Then, a second critical temperature
describes the complete breaking of all the bonds. This complex critical scenario is able to give
a rigorous explanation of the relationship between strength and temperature in systems where
a transition in the breaking mechanism occurs (here represented by the bonds softening). In
several experimental measurements, a two-branch curve for the strength-temperature relation has
been indeed observed [33, 35, 38]. Another interesting result concerns the non-equivalence of the
ensembles in the thermodynamic limit. It means that the force-extension curves are different for
the Helmholtz and the Gibbs ensembles, also for N → ∞. It is well known that the equivalence
of the Gibbs and Helmholtz statistical ensemble has been proved for a large class of physical
systems including, e.g., single flexible polymer chains without confinement effects and with a
continuous pairing interaction potential between neighboring monomers [56, 108–112]. However,
it is difficult to prove the ensemble’s equivalence for more general systems or structures. For
instance, other problems, concerning for example the escape of a polymer confined between two
planes or the desorption of a polymer tethered on a surface, lead to the non-equivalence between
the defined statistical ensembles [113–118]. Interestingly, these investigations are coherent with
our results and definitively prove the possibility to have ensembles non-equivalence between
different statistical ensembles in relevant physical systems. Generalizations of the theory may
include the dynamic behavior of cohesion/decohesion processes (where the barriers between the
wells of the energetic landscape play an important role [99–101]), or the multi-state softening i.e.
composed of several steps with different stiffness (described by several domain walls in the chain).
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4.9 Appendix

4.9.1 Tridiagonal matrix
In this appendix, we will recall some properties of tridiagonal matrices used in the text.

In particular, we consider the matrix A(ξ,η) defined in Eq.(4.7) and obtain the formulas for
det[A(ξ,η)] and 1 − A−1

NN (ξ,η).
For sake of generality, let us consider T defined as

T =



a1 b1 0 0

c1

0 0

bN−1
0 0 cN−1 aN


∈ MN,N (R), (4.76)

where the diagonal is composed by the elements (a1, . . . ,aN ), the superdiagonal by (b1, . . . , bN−1)
and the subdiagonal by (c1, . . . , cN−1).

The elements of the inverse matrix T −1 can be written as [96, 97]

[
T −1]

ij
=



1
ϑN

(−1)i+jbi × ·· · × bj−1ϑi−1φj+1, if i < j

1
ϑN

ϑi−1φi+1, if i= j

1
ϑN

(−1)i+jcj × ·· · × ci−1ϑj−1φi+1, if i > j

(4.77)

where the sequences ϑi and φi are obtained using the recursive rules{
ϑi = aiϑi−1 − bi−1ci−1ϑi−2,

ϑ−1 = 0, ϑ0 = 1, i= 1,2, . . . ,N
(4.78)

and {
φi = aiφi+1 − biciφi+2,

φN+2 = 0, φN+1 = 1, i=N,. . . ,1
(4.79)

Notice that while Eq.(4.78) is an increasing recursive rule going from i= 1 to i=N , Eq.(4.79) is
a decreasing recursive rule for i=N to i= 1. It is possible to show [96, 97] that

detT = ϑN . (4.80)

These formulas can be specialized to the case where bi = ci = −1 ∀ i (such as for matrix A(ξ,η)
in Eq.(4.7)). The general result can thus be simplified as

[
T −1]

ij
=



1
ϑN

ϑi−1φj+1, if i < j

1
ϑN

ϑi−1φi+1, if i= j

1
ϑN

ϑj−1φi+1, if i > j

(4.81)
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where the sequences ϑi and φi are given by the reduced recursive laws{
ϑi = aiϑi−1 −ϑi−2,

ϑ−1 = 0, ϑ0 = 1, i= 1,2, . . . ,N
(4.82)

and {
φi = aiφi+1 −φi+2,

φN+2 = 0, φN+1 = 1, i=N,. . . ,1
(4.83)

In order to evaluate the physical quantities in Section 4.3 and 4.5 we need to compute detA(ξ,η)
and A−1

NN (ξ,η). We have that

detA(ξ,η) = ϑN , (4.84)
A−1

NN (ξ,η) = ϑN−1φN+1/ϑN = ϑN−1/ϑN . (4.85)

Let us consider Eq.(4.82) with a1 = · · · = aξ = 2 +α, aξ+1 = · · · = aη = 2 + β, and aη+1 = · · · =
aN = 2. Then, for i≤ ξ we have the difference equation ϑi = (2 +α)ϑi−1 −ϑi−2, whose general
solution can be written as

ϑi = p

(
2 +α+

√
∆

2

)i

+ q

(
2 +α−

√
∆

2

)i

, (4.86)

with ∆ = α2 + 4α and where the coefficients p and q must be fixed using the conditions ϑ−1 = 0
and ϑ0 = 1. A straightforward calculation leads to the explicit solution for i≤ ξ

ϑi = 1√
∆

(
2 +α+

√
∆

2

)i+1

− 1√
∆

(
2 +α−

√
∆

2

)i+1

. (4.87)

Let us define the function

G(γ,z) = 1√
γ2 + 4γ

[(
2 + γ+

√
γ2 + 4γ

2

)z

−

(
2 + γ−

√
γ2 + 4γ

2

)z]
, (4.88)

which satisfies the properties G(γ,0) = 0, G(γ,1) = 1, and G(γ,−1) = −1. We can write the final
result for i≤ ξ as

ϑi = G(α,i+ 1). (4.89)

For ξ + 1 ≤ i ≤ η, we have the difference equation ϑi = (2 + β)ϑi−1 − ϑi−2, with the general
solution

ϑi = r

(
2 +β+

√
Σ

2

)i

+ s

(
2 +β−

√
Σ

2

)i

, (4.90)

where Σ = β2 + 4β. In this case, the coefficients r and s must be obtained by imposing ϑξ−1 and
ϑξ by means of Eq.(4.89). A long but straightforward calculation yields the final solution for
ξ+ 1 ≤ i≤ η in the form

ϑi = G(β,i− ξ+ 1)G(α,ξ+ 1) − G(β,i− ξ)G(α,ξ). (4.91)

For i≥ η+1, we have the simpler difference equation ϑi = 2ϑi−1 −ϑi−2, with the general solution
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ϑi = v+wi. In this case, the coefficients v and w must be obtained by imposing ϑη−1 and ϑη by
means of Eq.(4.91). Hence, the result for i≥ η+ 1 can be eventually found as

ϑi = (i− η+ 1)ϑη − (i− η)ϑη−1, (4.92)

where ϑη−1 and ϑη are given by Eq.(4.91). The result for i≥ η+ 1 can be therefore written in
the following final form

ϑi = (i− η+ 1)[G(β,η− ξ+ 1)G(α,ξ+ 1) − G(β,η− ξ)G(α,ξ)]
− (i− η)[G(β,η− ξ)G(α,ξ+ 1) − G(β,η− ξ− 1)G(α,ξ)].

(4.93)

From Eq.(4.84) we finally find

detA(ξ,η) = (N − η+ 1)[G(β,η− ξ+ 1)G(α,ξ+ 1) − G(β,η− ξ)G(α,ξ)]
− (N − η) [G(β,η− ξ)G(α,ξ+ 1) − G(β,η− ξ− 1)G(α,ξ)] ,

(4.94)

and
1 − A−1

NN (ξ,η) = G(α,ξ+ 1)
detA(ξ,η) [G(β,η− ξ+ 1) − G(β,η− ξ)]

− G(α,ξ)
detA(ξ,η) [G(β,η− ξ) − G(β,η− ξ− 1)] .

(4.95)

These formulas are used in Section 4.3 and 4.5.
The function G(γ,z) defined in Eq.(4.88) can be simplified by observing that, the second term

is defined by a power with a base always strictly less than one. Thus, for large values of z, the
second term can be neglected with respect to the first one. More specifically, we have two different
cases:

G(α,z) ≃ 1√
∆
αz

0 with α0 = (2 +α+
√
∆)/2, ∆ = α2 + 4α, (4.96)

G(β,z) ≃ 1√
Σ
βz

0 with β0 = (2 +β+
√
Σ)/2, Σ = β2 + 4β. (4.97)

These results can be used to simplify Eq.(4.94)-(4.95) leading to

detA(ξ,η) = α0β0 − 1√
∆Σ

βη−ξ−1
0 αξ

0 ×

[(N − η+ 1)β0 − (N − η)] ,
(4.98)

1 − A−1
NN (ξ,η) = 1

N − η+ β0
β0−1

. (4.99)

These expressions are used to evaluate the formulas in Sections 4.4 and 4.6.

4.9.2 Useful integrals

In order to develop Eqs.(4.29) and (4.30) in closed form we have to consider the integrals

I1 =
∫
e−axe− b

x
dx
x3/2 , I2 =

∫
e−axe− b

x
dx
x1/2 , (4.100)
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where a and b are two real and positive constants. For obtaining an explicit expression for these
integrals, we define the quantities

I+ =
√
bI1 +

√
aI2, I− =

√
bI1 −

√
aI2. (4.101)

We can therefore write

I∓ =
∫ (√

b

x3 ∓
√
a

x

)
e−axe− b

x dx. (4.102)

Now, we can observe that (√
b

x
±

√
ax

)2

= b

x
+ ax± 2

√
ab, (4.103)

and hence, we can write Eq.(4.102) in the form

I∓ =
∫ (√

b

x3 ∓
√
a

x

)
e

−
(√

b
x ±

√
ax

)2
±2

√
ab
dx. (4.104)

To conclude, by remembering the definition of the error function [250]

erf(x) = 2√
π

∫ x

0
e−t2

dt, (4.105)

we can observe that

d
dx

erf
(√

b

x
±

√
ax

)
= − 1√

π
e

−
(√

b
x ±

√
ax

)2(√
b

x3 ∓
√
a

x

)
, (4.106)

and we directly obtain the first important result

I∓ = −
√
πe±2

√
aberf

(√
b

x
±

√
ax

)
. (4.107)

Since from Eq.(4.101) we have that I+ + I− = 2
√
bI1 and I+ − I− = 2

√
aI2, we get the final

results

I1 = − 1
2

√
π

b

[
e+2

√
aberf

(√
b

x
+

√
ax

)
+ e−2

√
aberf

(√
b

x
−

√
ax

)]
, (4.108)

I2 = + 1
2

√
π

a

[
e+2

√
aberf

(√
b

x
+

√
ax

)
− e−2

√
aberf

(√
b

x
−

√
ax

)]
. (4.109)

The two integrals appearing in Eqs.(4.48) and (4.49) can be developed by evaluating

I =
∫ √

xe−axe− b
x dx. (4.110)

Since
d
dx

(√
xe−axe− b

x

)
= e−axe− b

x

(
−ax1/2 + b

x3/2 + 1
2x1/2

)
, (4.111)
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we get the relation

√
xe−axe− b

x =
∫
e−axe− b

x

(
−ax1/2 + b

x3/2 + 1
2x1/2

)
dx. (4.112)

Therefore, we easily obtain

I +
√
x

a
e−axe− b

x = I +
∫
e−axe− b

x

(
−x1/2 + b

ax3/2 + 1
2ax1/2

)
dx

= b

a
I1 + 1

2aI2. (4.113)

This expression allows writing the final result in the form

I =
√
π

2a

[
e+2

√
ab

(
1

2
√
a

−
√
b

)
erf
(√

b

x
+

√
ax

)

−e−2
√

ab

(
1

2
√
a

+
√
b

)
erf
(√

b

x
−

√
ax

)]
−

√
x

a
e−axe− b

x .

(4.114)
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Chapter5
Phase transformations in materials science

5.1 Introduction

Several natural and artificial systems, as typically encountered in biology and modern nanotech-
nology, exhibit a combination of fundamental effects of non-locality and non-convexity, resulting
in a variety of rather complex physical responses [29, 275–277]. A deep understanding of these
phenomena is therefore essential for the analysis and design of such systems. The non-convexity
feature is related to the possibility that the potential energy of the system may have different
basins leading to wiggly energy landscapes and possibly many competing metastable states. Often,
these systems are composed of several units (which may be identical, or inhomogeneous) and each
unit is characterized by bistability or, in general, multistability. This assumption describes the
possibility for each unit to be in two (or more) distinct states. In this framework, non-locality
describes the possibility that the units can be in strong interaction with each other and thus the
state in which one unit is found affects the state of the others, particularly those that are spatially
closer. In the biological context, this form of interaction is sometimes referred to as cooperativity
[278] and may be fundamental in many crucial biological and medical phenomena such as protein
folding/unfolding, DNA degradation and resulting diseases [84, 132]. The complex response of
such systems is the result of the energy competition among the many metastable configurations,
regulated by the temperature-controlled exploration of the overall energy landscape. We show
how three different statistical mechanics approaches, taking care of the elastic properties of the
different configurations, can give important insights into many observed physical and biophysical
phenomena.

Many examples can be theoretically inscribed into the previously introduced conceptual
framework. For example, in the biological field, we may consider the conformational transitions
in bio-polymeric chains [49–52, 169, 171, 172, 215, 221, 222, 224], and the sarcomeres behavior in
skeletal muscles [70–76, 279]. On the other hand, concerning artificial systems, we can think of
waves propagation in bistable lattices [11–15, 280], energy harvesting through multistable chains
[16–18], and the plasticity and hysteresis in phase transitions and martensitic transformations of
solids [19–24, 27, 281–290].

In this Chapter, we are interested in the observed thermal effects in previous examples, which
become increasingly important as the size of the system decreases. The analysis is therefore
relevant in systems of nanoscopic dimensions [230] or when, as in biological and polymeric
soft matter, the competing contributions are of the entropic type with small energy differences
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and low barriers [165]. For this reason, in order to have a correct physical description of the
static and dynamic features of these systems, it is not sufficient to rely on classical discrete
or continuous mechanics, but we must take into account the equilibrium or non-equilibrium
statistical mechanics. By so doing, we can obtain important information on the thermodynamic
picture of the folding/unfolding process in a macromolecular chain or a detailed description of
the thermal effects on the microstructure evolution in a two-phase solid material.

Concerning materials science, and in particular the mechanics of solids for multiphase materials,
many approaches can be found in the literature to describe the microstructure evolution. The
Ericksen pioneering work proposed a variational energetic approach in the context of non-linear
continuum elasticity theory with non-convex energy densities [19]. This methodology has been
further generalized to describe phase transformations at the microstructure level [281–283].
Nevertheless, these continuum variational approaches neglect interfacial energy effects and non-
local interactions, which are crucial contributions to the description of the realistic microstructure
evolutions [284]. As a matter of fact, the minimization of the non-convex elastic energy without
non-local interactions cannot completely describe the nucleation and propagation of finite domains
[27, 285]. Therefore, surface energy contributions have been introduced by means of higher gradient
energy terms [286, 287], and by non-local interactions [288]. A similar research line, in the context
of discrete mechanics, has been developed from the pioneering work of Müller and Villaggio [20].
The basic model is composed of a one-dimensional lattice of units with non-convex potential
energy and an intrinsic length-scale [21]. This scheme allows the description of energy barriers,
metastable states, quasi-plastic and pseudo-elastic behaviors [23, 289]. Also in this context, the
model has been extended with non-local energy terms able to capture the different features of
phase nucleation and propagation [22]. Further generalizations consider the influence of boundary
conditions, enabling a more detailed identification of the internal and boundary phase nucleations
[24, 290]. Recent models investigate the austenite to martensite phase transitions in wires,
eventually describing the shape memory alloy behavior under uniaxial tension [291–293].

Many similar methods have been elaborated to describe the configurational transitions in
biological macromolecules (mainly proteins), undergoing folding/unfolding processes. In particular,
those theories are able to explain the saw-tooth-like force-extension response observed in several
experiments. A model has been proposed for macromolecules unfolded in atomic force microscopes,
and validated for titin and RNA hairpins [294]. An approach based on the equilibrium statistical
mechanics is based on a Landau-like free energy and predicts a sequence of first-order phase
transitions in correspondence to the unfolding processes [53, 54]. Further investigations are based
on the energy minimization of a bistable system and agree with the pattern observed in titin
experiments [55]. Also, the Monte-Carlo implementation of a two-state theory for single-molecule
stretching experiments has been proposed [110]. Finally, the mechanical unfolding of proteins
have been also modeled through domain interactions described by the Ising model [102, 295].

In order to properly introduce the thermodynamics on non-convex, non-local systems, we
adopt the method of the spin variables. So doing, we can consider two separated and different
quadratic functions representing the wells of the potential energy, instead of the more complicated
original bistable function. The introduction of the spin variables strongly simplifies the calculation
of the partition functions and, consequently, the analysis of the macroscopic thermodynamic
quantities. Indeed, in order to calculate these partition functions, we sum over the spin variables
and integrate over the classical continuous variables. Since the separated wells are represented by
quadratic terms, the integration can be performed straightforwardly since it acts on Gaussian
functions. This theoretical approach is therefore able to yield closed-form results useful to better
understand the underlying physics. Moreover, by means of this technique, we can study different
ensembles of statistical mechanics, corresponding to different mechanical boundary conditions.
On one hand, we can analyze the behavior of the system under an applied force (isotensional



5.1. Introduction 109

x0

a) Gibbs ensemble: f fixed

f

b) Helmholtz ensemble: xN fixed

x1 x2 xN−1 xN

S1 = −1 S2 = +1 interface

x3

Figure 5.1: Scheme of the discrete system with variable phase configuration. Top panel: isoten-
sional loading (Gibbs ensemble) of the chain with applied force f . Bottom panel: isometric
loading (Helmholtz ensemble) of the chain with the prescribed extension xN . Each chain unit, in
both ensembles, feels an Ising interaction energy J due to the nearest neighbors. As an example,
in the Gibbs and Helmholtz schemes, we show respectively three and two interfaces between
folded and unfolded domains.

condition), corresponding to the Gibbs ensemble. On the other hand, we can also investigate
the features of the system with prescribed extension (isometric condition), corresponding to the
Helmholtz ensemble. As described in Ref.[94], these boundary conditions can be considered as
limiting configurations of the more realistic case of an elastic device interacting with the system.
Moreover, from a theoretical point of view, the comparison of the force-extension response
within different ensembles is an important point useful to understand the concept of ensembles’
equivalence in the thermodynamic limit, as discussed below. The spin variable method has been
successfully used to study the nanomechanics of macromolecules [91, 92, 94, 95, 103, 163], the
denaturation of macromolecules [82, 218], the non-local or cooperative effects [102, 165], skeletal
muscles [73–76], and systems with transitions between unbroken and broken states [1, 30–32,
93]. It is interesting to observe that spin-string (in one dimension) and spin-membrane (in two
dimensions) models, which are similar in spirit to the model presented here, have been developed
also to describe transitions between zero-curvature phases and non-zero-curvature phases [296,
297]. These models are useful to give a theoretical interpretation to experimental and numerical
results concerning the buckling of low-dimensional systems [298–300].

Here, we analyze a discrete chain with N bistable units (see Fig.5.1), where the two potential
energy wells of each unit are characterized by different elastic constants k (pristine or folded
state) and αk (extended or unfolded state), where α > 0 (see Fig.5.2). In addition, the two states
are separated by an energy jump ∆E, representing the (Helmholtz) transition energy, and have
their equilibrium lengths equal to ℓ and χℓ, with a rise in length of ∆x= ℓ(χ− 1), where χ > 1
(see Fig.5.2). The assumption of considering two different elastic constants of the wells, already
considered in the purely mechanical case in Ref.[289], involves important novelties compared
to the case with identical constants. Indeed, when the folded and unfolded elastic constants
are equal (α = 1), the conformational transitions correspond to a temperature-independent
average plateau force [91, 92, 94, 95, 103, 163, 165]. This result can be simply explained in the
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framework of the Bell relation f = ∆E/∆x, discovered in the context of cell adhesion [59, 60,
110]. This plateau force, which depends neither on the spring constant nor on the temperature
T , can be explained as follows. We consider two potential energies Uf (x) = 1

2k(x− ℓ)2 − fx and
Uu(x) = ∆E + 1

2k(x− χℓ)2 − fx, corresponding to the folded and unfolded states of the unit
under force f when α= 1. In both cases, the equilibrium lengths are defined by ∂Uf/∂x= 0 and
∂Uu/∂x= 0 and we get xf = ℓ+ f/k and xu = χℓ+ f/k. Finally, the unfolded configuration is
more favorable than the folded one when Uu(xu) < Uf (xf ), which corresponds to f > ∆E/∆x.
The quantity fM = ∆E/∆x is the so-called Maxwell force for the case with α= 1. This approach
can be easily generalized to the case with α , 1 and T = 0 (purely mechanical behavior). The
same analysis yields in fact the following quadratic equation for the transition force fM

f2
M (1 −α) + 2αkfM∆x− 2αk∆E = 0, (5.1)

where ∆x = ℓ(χ− 1), as before. This value of force has two important properties (both valid
for α < 1 and α > 1): (i) on the plane (U,x) it is represented by an inclined straight line that
is the common tangent to the two parabolas of the wells (see solid green lines in Fig.5.2, top
panels); (ii) on the plane (dU/dx,x) is represented by a horizontal straight line (see solid green
lines in Fig.5.2, bottom panels) that makes equal the two areas of the indicated triangles (see
shaded regions in Fig.5.2, bottom panels). This last property gives the name Maxwell force to the
transition force because the equality of the two triangles is reminiscent of Maxwell’s construction
on the isothermal Van der Waals curves in the pressure-volume plane of a real gas [301]. The
situation becomes much more complicated when α , 1 and T > 0 and the transition force fM ,
based on statistical mechanics analysis, is temperature dependent. Indeed, the asymmetry of
energy wells makes entropic contributions crucial. It means that a temperature-dependent term
must be added to Eq.(5.1) when α , 1 and T > 0. This point is the focus of this Chapter and it
is extensively examined in the following development.

Other two special values of the force are of interest in this discussion and represent the
maximum (roof) fR and the minimum (floor) fF values of the force, such that for f ∈ (fF ,fR)
both the first phase and the second phase can exist. They can be simply obtained as

fR = k (x∗ − ℓ) , (5.2)
fF = αk (x∗ −χℓ) , (5.3)

where x∗ represents the point of intersection of the two parabolas (where the top of the energy
barrier is reached, see Fig.5.2).

We also introduce in the discrete lattice of non-convex elements (see Fig.5.1) a non-local
interaction described through an Ising scheme. This feature is crucial in order to take into
consideration a form of cooperativity in the biological context or, equivalently, a sort of interface
energy between folded and unfolded domains in the materials science context. The Ising interaction
energy J can be considered positive (cooperative case) when adjacent units prefer to be in the
same state, and negative (anti-cooperative case) when they prefer to be in two different states.
To focus mainly on the interesting temperature-dependent force plateau behavior, in this study
we will discuss only the ferromagnetic-like interactions, with J > 0. The important theoretical
novelty with respect to classical spin models in physics is the fundamental role of elasticity and,
in particular, the effect generated by the different elastic behavior of the two phases. Furthermore,
for these systems, we can determine the analytic expression of the partition function in both
Gibbs and Helmholtz ensembles (isotensional and isometric conditions, as shown in Fig.5.1). This
can be done by means of an ad hoc implementation of the transfer matrix technique for the
Gibbs case [302], and by using the Laplace transform relation between the partition functions of
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Figure 5.2: Elastic behavior of the chain units. Top panels: bistable potential energy U = U(x)
versus x for each unit, where x = xi − xi−1. The folded well corresponds to Si = −1 and it is
characterized by L(−1) = ℓ, Q(−1) = 0, K(−1) = k. The unfolded well, identified by Si = +1,
is defined by L(+1) = χℓ, Q(+1) = ∆E, K(+1) = αk. Bottom panels: we show the quantity
dU/dx versus x (the force applied by the bistable unit, with a negative sign), exhibiting the
characteristic force jump. Both the cases with α < 1 and α > 1 are shown on the left and on the
right, respectively. In all plots, the solid green lines represent the transition paths (at T = 0),
discussed in the main text.

conjugated ensembles for the Helmholtz case [98].
The first analysis, within the Gibbs ensemble, provides evidence that the force plateau is

temperature-dependent and gives us the tools to obtain its expression in the limit of large values
of N and large (positive) values of the ratio J/KBT (KB being the Boltzmann constant), which
represents the strongly ferromagnetic case in the thermodynamic limit. Defining β = 1/KBT , we
can introduce the quantity β̃ = Jβ that represents the competition between the Ising interaction
energy and the entropic contributions. Moreover, for isometric loading, in the Helmholtz ensemble,
we find a peak force at the beginning of the plateau, representing the nucleation of a new domain
with unfolded units. This is an important feature, typically observed in experimental measurements
[303–308], and in molecular dynamics simulations of the microstructure evolution in nano-systems
[230–234, 309–317]. In this Ising model, the microstructure evolution of folded and unfolded
domains comes naturally and is regulated by the competition between interface energies and
entropic contributions and, as we will show, the stress peak is an effect induced by the introduction
of interface energy terms. The number of interfaces may vary in the whole range between 0 and
N − 1 and typically it increases with the temperature [165]. The knowledge of the partition
function allows a full analysis of the configurational properties of the system leading to the
quantitative evaluation of the average number of unfolded units and the average number of
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interfaces. In particular, this allows us to observe that the microstructure evolution, under
increasing extension, is characterized by a single moving domain wall between folded and unfolded
regions only when β̃ ≫ 1, i.e. when the system is strongly ferromagnetic, whereas for β̃ ≪ 1, i.e.
when temperature increases, entropic energy terms favor solutions with an increasing number of
interfaces.

An interesting point concerning these systems is the equivalence of the ensembles in the
thermodynamic limit (i.e., for N → ∞) [56, 108, 109, 111, 112]. Two conjugated ensembles are
said to be equivalent when the macroscopic behavior described by the force-extension relation
is the same for N → ∞. In general, it is difficult to prove for a given system if two statistical
ensembles are equivalent. Although there are some particular rules, there are no general criteria or
theorems for determining whether a system satisfies such an equivalence [111]. Several examples
of non-equivalence are well known in the literature [113–118]. In our case, the analysis of the
equivalence is rather difficult, mainly due to the overly complicated mathematical form of the
Helmholtz partition function. But, since the systems with positive and sufficiently intense Ising
interaction (β̃ ≫ 1) are the most interesting for practical applications, we can limit our analysis
to the case of a system where the number of interfaces can take only the values 0 and 1. This
observation is at the origin of the second approach proposed here, called the zipper model,
previously adopted in other statistical mechanics investigations [104–107]. The main assumption
is the analysis of solutions with none or one interface, which correspond to the previous Ising
scheme only when β̃ ≫ 1. This simplification makes the thermodynamic limit analysis more
transparent and, in this zipper case, we can explicitly prove the equivalence of the isotensional and
isometric ensembles for N → ∞. In addition, the result obtained under the zipper assumption,
within the Helmholtz ensemble, can be further simplified by means of the stationary phase
method (large values of N), leading to the third approach here discussed to describe non-convex
discrete systems with non-local interactions. This final approximation is particularly useful since
yields a compact mathematical expression for the force-extension curve and it allows the explicit
calculation of the force peak in the Helmholtz ensemble, which is a crucial quantity in several
experiments and numerical simulations, as discussed above. On one side, it leads to inferring
some comparisons between our theoretical results and data from the literature; on the other side,
it suggests both the possibility of designing new materials with required transition properties and
the possibility of controlling them through external thermal fields.

The structure of this Chapter is the follows. In Section 5.2 we introduce the Ising scheme and
we discuss in detail the proposed solutions for the Gibbs and Helmholtz ensembles. In Section 5.3
we explain how to obtain the thermodynamic limit within the Gibbs ensemble and we discuss
the important effect of temperature-dependent force plateaux. In Section 5.4 we introduce the
zipper model: we discuss the Gibbs and Helmholtz ensembles and we draw a comparison with
the previous Ising scheme. In Section 5.5 we study the approximation based on the stationary
phase and we perform a detailed analysis of the first peak force within the Helmholtz ensemble.
Finally, in Section 5.6, to support the obtained analytical results, we discuss some explicit,
quantitative comparisons with data from the literature concerning the behavior of nanowires with
microstructural evolution.

5.2 Two-state chain with Ising non-local interactions
Consider a discrete chain of N two-state elements, each described by a bistable potential

energy (see Figs.5.1 and 5.2), that interact also non-locally. We distinguish the two phases using
the spin variable Si assuming values in {−1,+1}. In particular, Si = −1 corresponds to the first
well (folded element), whereas Si = +1 corresponds to the second well (unfolded element). The
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main hypothesis of this new model is that the two phases are characterized by two different
elastic constants K(Si), associated with two natural lengths L(Si) and two basal energies Q(Si).
Specifically, we assume, without loss of generality, that L(−1) = ℓ, L(+1) = χℓ, Q(−1) = 0,
Q(+1) = ∆E, K(−1) = k, K(+1) = αk, where α > 0, χ > 1 and ∆E is the energy jump between
the states. In these hypotheses, and introducing Ising non-local interaction terms, the overall
Hamiltonian assumes the compact form

H =
N∑

i=1

{
Q(Si) + K(Si)

2 [(λi −λ0(Si))ℓ]2
}

− J

N−1∑
i=1

SiSi+1. (5.4)

Here, the non dimensional parameter λi = (xi − xi−1)/ℓ is the ratio between the i-th spring
length and the folded rest length L(−1) = ℓ, i.e. the spring stretch and λ0(Si) = L(Si)/ℓ, i.e. the
natural (zero-force) spring stretch. The parameter J measures the non-local interaction strength.
We remark that J > 0 corresponds to the ferromagnetic case, favoring states coalescence. It is
useful to take into account the adimensional Hamiltonian H̃, obtained dividing H by the interface
energy J

H̃ =
N∑

i=1

{
Q̃(Si) + K̃(Si)

2 (λi −λ0(Si))2
}

−ϖ

N−1∑
i=1

SiSi+1, (5.5)

where Q̃(Si) =Q(Si)/J , K̃(Si) =K(Si)ℓ2/J and ϖ = 1 is a constant that we inserted in order to
be able, later on, to calculate the average number of interfaces. We also introduce k̃ = kℓ2/J so
that K̃(−1) = k̃ and K̃(+1) = αk̃. We remark that the spin variables approach can be adopted
only when we work not far from the thermodynamic equilibrium [91, 163]. Indeed when rate
effects are considered, the relaxation times of the system strongly depend on the energy barriers
between the potential wells, which are neglected within our approach (see Ref.[99] and recent
generalizations in Refs.[100, 101]). On the other hand, in the rate-independent regime considered
here, this approach allows us to describe non-convexity through the discrete parameters Si, in
the sense that a for fixed phases configuration (Si, i=1,...,N), the energy is convex with respect
to other (stretch) variables. This energy structure also ensures that the equilibrium solutions
represent local elastic energy minima (metastable equilibrium states). It is also important to
remark that the application of the spin variable approach is correct only when the energy barrier
between the two states is sufficiently larger than the thermal energy KBT .

For completeness, in Appendix 5.8.1, we prove that the Hamiltonian function given in Eq.(5.4),
based on Ising interactions among spins, can be obtained through an approximation of the
Hamiltonian function defined by non-local next-nearest-neighbor (NNN) elastic interactions.
Observe that this is coherent with the results in Refs.[24, 290], where it is shown that for small
values of J the non-local interaction energy is, as in the case of the Ising model, proportional to the
number of interfaces plus possible higher order boundary energy terms (that are neglected here).
This is an important point since some previous investigations on thermal effects for multi-stable
lattices considered NNN interactions [165]. The resulting analysis was complex enough to prevent
a fully analytical solution, whereas the scheme with Ising interactions proposed here represents
an important step forward because the results are obtained in closed form.

Here we analyze separately the two cases of assigned force (Gibbs ensemble) and assigned
displacement (Helmholtz ensemble). We remark that detailed computations are reported in
Appendix 5.8.2 and 5.8.3.
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5.2.1 Ising model within the Gibbs ensemble
The statistical mechanics in the case of assigned force f , within the Gibbs ensemble (see

Fig.5.1, top panel), can be introduced by calculating the canonical partition function

ZG(f) =
∑
{Si}

∫
R

N
e−β(H−fxN )dx1 . . .dxN . (5.6)

Due to the fact that it is more useful to consider dimensionless parameters, in Eq.(5.6), we
substitute xi with the stretch λi and introduce the dimensionless force f̃ = fℓ/J and energy
H̃ = H/J together with the main non-dimensional parameter β̃ = βJ . We end up with the
following partition function expression

ZG(f̃) = ℓN
∑
{Si}

∫
R

N
e

−β̃
(

H̃−f̃
∑N

i=1 λi

)
dλ1 . . .dλN . (5.7)

The sums over {Si} are to be considered extended to the values +1 and −1 for each spin variable
(i= 1, . . . ,N). Moreover, we have that

∑N
i=1λiℓ= xN (where, without loss of generality, to avoid

rigid motions, we have assumed x0 = 0). Following the calculations in Appendix 5.8.2, we obtain

ZG(f̃) = ℓN

2cosh β̃

[
λ̂N

1 + λ̂N
2 + e−2β̃

(
λ̂N

1 − λ̂N
2

) λ̂1 + λ̂2

λ̂1 − λ̂2

]
, (5.8)

where λ̂1,2 (λ̂1 > λ̂2) are the eigenvalues of the transfer matrix defined in Eq.(5.80) (see Appendix
5.8.2). This result is similar to the one obtained in Ref.[102], where however the elastic constants
were considered equal (α= 1), and where a three-dimensional structure was studied to deal with
polymeric cooperative systems.

The knowledge of the Gibbs partition function allows us to calculate the expected value ⟨xN ⟩
of the chain length (i.e., the average value of the last position xN , that from now on we rename
x for simplicity of notation), the average number of unfolded units ⟨nu⟩, and the average number
of interfaces ⟨ι⟩ between folded and unfolded units. Since

N−1∑
i=1

SiSi+1 =N − 1 − 2ι, (5.9)

using the dimensionless parameters introduced before, we get

⟨x̃⟩ = 1
β̃

∂ logZG(f̃)
∂f̃

, (5.10)

⟨nu⟩ = − 1
β̃

∂ logZG(f̃)
∂∆Ẽ

, (5.11)

⟨ι⟩ = N − 1
2 − 1

2β̃
∂ logZG(f̃)

∂ϖ
, (5.12)

where x̃= x/ℓ and ∆Ẽ = ∆E/J . In Fig.5.3, the behavior of the mechanical quantities defined in
Eqs.(5.10), (5.11), and (5.12) is shown by varying the values of β̃ (different colors) and α (different
rows). More precisely, each row of Fig.5.3 corresponds to different values of α (namely, 1/3, 1,
and 3 in the first, second, and third row, respectively), while β̃ = J/KBT varies in every single
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Figure 5.3: Behavior within the Gibbs ensemble with variable Ising coefficient β̃ and parameter α.
The quantities ⟨x̃⟩, ⟨nu⟩ and ⟨ι⟩ are represented versus the dimensionless force f̃ , with a variable
Ising coefficient β̃ = {1/2,1,3/2}. In the first row, we used α= 1/3, in the second one α= 1, and
in the third one α= 3. We adopted the parameters N = 10, k̃ = 6, Q(−1) = 0, Q(+1) = ∆Ẽ = 4,
χ= 5. The arrows indicate the direction in which β̃ increases.

plot (assuming the values 1/2, 1 and 3/2 for the blue, yellow and red curves, respectively). The
first column shows the average chain length ⟨x̃⟩, the second one the average number of unfolded
units ⟨nu⟩, and the third one the average number of interfaces ⟨ι⟩.

To begin, considering the force-extension figure in the case with identical wells α = 1, we
can notice that at the higher dimensionless Ising parameter β̃ = 3/2 (red curve) there is a
force plateau that corresponds to a cooperative unfolding of the chain units, a typical behavior
characterizing the Gibbs ensemble [24]. At the lower value β̃ = 1/2 (blue curve), when interaction
terms decrease, this plateau is less sharp due to the fact that thermal fluctuations induce the
system to explore a larger part of the wiggly energy landscape, eventually smoothing the force
plateau. Again for α= 1, the cooperative behavior is further confirmed by the expectation value
of the number of unfolded units ⟨nu⟩ that shows a transition from 0 to N at the same threshold of
the force-extension curve. In the plot of the average number of interfaces ⟨ι⟩ (always with α= 1),
we can notice that increasing the parameter β̃ decreases the number of interfaces due to the fact
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that, in a ferromagnetic scenario, all the units tend to be in the same configuration (either folded
or unfolded). Furthermore, in this plot, we can easily notice that the force thresholds that are
responsible for the synchronized unfolding of the chain units are the same for different values of
β̃. This is due to the fact that, in the second row, we have considered chain units that present
the same elastic constant for both wells (α= 1). Consider now the first row (α= 1/3), when the
second well is more compliant (softening regime). In this case, the fully unfolded configuration
force-extension curve has a lower slope than the homogeneous folded one. The most interesting
aspect here is that the force plateau occurs at different thresholds depending on the value of β̃
and, then, on the temperature T . This behavior is further confirmed by the shift of the peak in
the average number of interfaces ⟨ι⟩, corresponding to a force threshold depending on the value
of β̃. In this plot, in fact, we can observe that the force threshold increases with β̃, meaning that
the force plateau decreases with the temperature. All these considerations hold even in the third
row (α = 3), when the second state is stiffer (hardening regime), with the only difference that
now the force plateau increases with the temperature.

While these results, representing the main physical effects of the proposed model, can already
be qualitatively discussed, as described above, in the limiting cases of N → ∞ and β̃ ≫ 1 this
dependence can be quantitatively described, so that a more detailed analysis is postponed later.

5.2.2 Ising model within the Helmholtz ensemble

Consider now the isometric loading condition, described by the Helmholtz ensemble (see
Fig.5.1, bottom panel). In this case, the total elongation of the chain is fixed by assigning xN . As
shown in Ref.[165], one may use an inverse Laplace transform to obtain the canonical partition
function in the Helmholtz ensemble, starting from the Gibbs one given in Eq.(5.6). Using the
change of variable f → −iω/β, we can write

ZH(xN ) = 1
2π

∫ +∞

−∞
ZG

(
− iω

β

)
eiωxNdω, (5.13)

and we obtain (see Appendix 5.8.3 for the detailed calculation)

ZH(x̃N ) = ℓN−1eNβ̃

2cosh β̃

(
π

2β̃

)N−1
2


[ N

2 ]∑
k=0

(
N

2k

)
Wk + e−2β̃

[ N−1
2 ]∑

k=0

(
N

2k+ 1

)
Wk

 , (5.14)

where

Wk =
k∑

j=0

N−2j∑
s=0

(
k

j

)(
N − 2j
s

)
e−(s+j)β̃∆Ẽ

√
1

k̃N−s−j(αk̃)s+j

× (−1)j4j
(

1 − e−4β̃
)j
√√√√ 1(

N−s−j

k̃
+ s+j

(αk̃)

)
× exp

− β̃

2
[x̃N − (N − s− j+χs+χj)]2(

N−s−j

k̃
+ s+j

(αk̃)

)
 .

(5.15)

This partition function allows us to evaluate the expectation values ⟨f⟩ of the force conjugated
to the assigned displacement, the average value of the number of unfolded units ⟨nu⟩, and the
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Figure 5.4: Behavior of the non-convex non-local chain within the Helmholtz ensemble with
variable Ising coefficient β̃ and parameter α. The quantities ⟨f̃⟩, ⟨nu⟩ and ⟨ι⟩ are represented
versus the dimensionless extension x̃, with variable β̃ = {1/2,1,3/2}. In the first row, we used
α = 1/3, in the second one α = 1, and in the third one α = 3. Here N = 10, k̃ = 6, Q(−1) = 0,
Q(+1) = ∆Ẽ = 4, χ= 5. The arrows indicate the direction in which β̃ increases.

expectation value of the number of interfaces ⟨ι⟩. We have

⟨f̃⟩ = − 1
β̃

∂ logZH(x̃N )
∂x̃N

, (5.16)

⟨nu⟩ = − 1
β̃

∂ logZH(x̃N )
∂∆Ẽ

, (5.17)

⟨ι⟩ = N − 1
2 − 1

2β̃
∂ logZH(x̃N )

∂ϖ
. (5.18)

In Fig.5.4, we show the behavior of the system within the Helmholtz ensemble. As before, we
have different values for α in different rows (namely, α= 1/3,1,3 in the first, second, and third
row, respectively) and, in every single plot, β̃ is variable (namely, β̃ = 1/2,1,3/2 for the blue,
yellow and red curves, respectively). The average values ⟨f̃⟩, ⟨nu⟩ and ⟨ι⟩ are represented versus
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x̃ in the first, second and third column of Fig.5.4. We can observe that the expectation values
of the normalized force versus the applied extension always exhibit the typical saw-tooth path
associated with a non-synchronized phase transition of the units. In the Helmholtz ensemble, in
fact, due to the prescribed total elongation of the chain, we observe a sequential unfolding rather
than a synchronized unfolding of the units, as seen previously within the Gibbs ensemble. In
the plots of the average number of interfaces (third column), we can notice that at the highest β̃
value, there is only one single domain wall throughout the whole unfolding process. This means
that with high values of the Ising parameter (or, similarly, for lower values of the temperature)
it is strongly disadvantaged to create more than one interface in the course of the sequential
unfolding process. The important result to underline, as already shown in Ref.[165], is that when
a large ferromagnetic Ising coefficient is considered (β̃ ≫ 1), the system favors the generation of a
single propagating interface, with a nucleation stress peak corresponding to the sudden transition
of a chain fraction in the unfolded conformation. The asymmetry of the curves representing the
number of interfaces and the dependence of the force plateau on the temperature (through β̃) are
related once again to the presence of different elastic constants for the folded and unfolded wells
(for the cases with α , 1).

We remark that from a theoretical point of view, the unfolding of the last unit is characterized
by a downward force peak that represents the coalescence of the folded phase to the unfolded
one. Actually, in real experiments, this down peak is typically not attained for early specimen
failure or for the presence of grips (or clamps) forbidding full propagation of the new phase in
the terminal region. This point can be further discussed as follows. The energy of an interface
corresponds to the Ising energy of two different adjacent states. Thus, the generation of the first
interface costs more energy than its propagation. In fact, during propagation, the number of
interfaces remains constant and equal to one (if β̃ ≫ 1) and no additional energy has to be spent
for interface creation. This explains the first upward nucleation peak: the higher force is required
to store enough energy to create an interface in the original homogeneous chain. During the
traction, the interface approaches the right end of the chain until it reaches the last unit. When
the last unit also unfolds, the interface disappears and the system energy decreases. This last
phase is then energetically favored and requires less mechanical effort than propagation. This
explains the last downward coalescence peak. Even if this latter phenomenon is not easy to be
observed experimentally, it has already been underlined by some previous theoretical models [292,
293].

Moreover, when β̃ is low (meaning that the thermal fluctuations are high compared to the
Ising parameter J), we can observe a reduction of the force peaks resulting in a smoothing of the
force-extension curve, as shown in the first column of the figure. The behavior of the first peak
is largely analyzed in the following Sections. The steps observed in the curves representing the
number of unfolded units ⟨nu⟩ versus the rising normalized extension are also smoothed with a
decreasing β̃. Similarly, the number of interfaces ⟨ι⟩ increases with lower values of β̃.

5.3 Thermodynamic limit with strongly ferromagnetic behavior
in the Gibbs ensemble

As anticipated, the plateau force observed in the force-extension curves, corresponding to
the so-called Maxwell stress in the purely mechanical case [289], sensibly depends on β̃ and,
therefore, on the temperature in both the cases with applied force (Gibbs) and with total fixed
elongation (Helmholtz). Here, to obtain an analytical measure of such an important effect, we
consider strongly Ising interactions, i.e. with β̃ = J

kBT sufficiently large, and we study the system
in the thermodynamic limit (N → ∞). An analogous limit was considered in Ref.[290] for a
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Figure 5.5: Force-extension curves within the Gibbs ensemble in the thermodynamic limit. In
the left panel, β̃ = {2,3, . . . ,10} is varied while α= 1/3 is constant. On the right panel, instead,
β̃ = 10 is constant while α= {0.2,0.6,1,1.4,1.8} is variable. The curves are blue for α < 1 and
red for α > 1 (the grey curve corresponds to α= 1). The other parameters are k̃ = 6, Q̃(−1) = 0,
Q̃(+1) = ∆Ẽ = 4, χ= 5, N = 10. The arrows indicate the direction in which β̃ and α increase.

purely mechanical system. We remark that this limit, due to the complexity of the system, is
performed here only for the Gibbs ensemble. In the following Sections, we will introduce particular
hypotheses to get more analytical results also in the Helmholtz ensemble.

Let us consider first the thermodynamic limit for the Gibbs ensemble. Thus, from Eq.(5.8)
we have

logZG ≃
N→∞

N log λ̂1, (5.19)

where we exploited the property λ̂1 > λ̂2 (see Eq.(5.80) for details). From Eq.(5.10) we find

⟨x̃⟩ ≃ N

β̃

∂ log λ̂1

∂f̃
. (5.20)

A direct evaluation of the derivative in Eq.(5.20) gives

⟨x̃⟩
N

≃ 1
2

[(
1 + c− − c+√

∆

)(
1 + f̃

k̃

)
+
(

1 − c− − c+√
∆

)(
χ+ f̃

αk̃

)]
, (5.21)

where c− and c+ also depend on f̃ and are defined in Eq.(5.78) and ∆ in Eq.(5.81) (see Appendix
5.8.2). In Fig.5.5, we show an example of an application of Eq.(5.21), where some force-extension
curves are plotted with different values of β̃ (left panel) and α (right panel). Specifically, on
the left panel of Fig.5.5, we can observe that increasing β̃ has both the effect of reducing the
slope of the force plateau and of increasing the Maxwell force, confirming once again that the
force plateau depends on the value of β̃ and then on the temperature T . Observe that here we
are considering a fixed value of α= 1/3 with the second phase softer than the first one. On the
right panel of Fig.5.5, instead, we can see that keeping β̃ constant and increasing α we induce an
increase in the force plateau, proving that the Maxwell force strictly depends on the asymmetry
of the elastic constants of the two energy wells, as already observed in the purely mechanical case
when constant force plateaux depending on α are observed.

Interestingly, it is possible to link the expectation value of the number of unfolded units to
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Figure 5.6: Dependence of the Maxwell force by β̃. Panel a): piecewise linear force-extension
response in the thermodynamic limit under strong ferromagnetic assumption β̃ ≫ 1. We used
α= 1/3 (solid blue line) and α= 3 (solid red line). Moreover, we adopted β̃ = 5 for both curves.
Panel b): dimensionless Maxwell force versus β with α= 1/3 and α= 3 (solid blue and solid red
curves, respectively). Also, the curves for α= 1/6 and α= 6 are shown for completeness (solid
grey curves). The theoretical maximum (roof) and minimum (floor) values of the Maxwell forces
f̃M (β̃∗) = f̃R and f̃M (β̃∗) = f̃F are represented by dashed blue (α < 1) and red (α > 1) curves.
Panels c) and d): evolution of the force plateau in the force-extension curve as β̃ changes for
the two cases of α < 1 (panel c) and α > 1 (panel d). Green plateaux correspond to T = 0 (see
Fig.5.2). Adopted parameters: k̃ = 6, Q̃(−1) = 0, Q̃(+1) = ∆Ẽ = 6, χ= 3.

the assigned force in the thermodynamic limit. Indeed, by using Eq.(5.11) for N → ∞, we get

⟨nu⟩
N

≃ − 1
β̃

∂ log λ̂1
∂∆Ẽ

= 1
2

(
1 − c− − c+√

∆

)
, (5.22)

⟨nf ⟩
N

= 1 − ⟨nu⟩
N

= 1
2

(
1 + c− − c+√

∆

)
. (5.23)

where again c− and c+ depend on f̃ and are defined in Eq.(5.78). Thus we may write Eq.(5.21)
in the form

⟨x̃⟩
N

≃
⟨nf ⟩
N

(
1 + f̃

k̃

)
+ ⟨nu⟩

N

(
χ+ f̃

αk̃

)
. (5.24)

We notice that Eq.(5.24), derived from Eqs.(5.21), (5.22), and (5.23), gives a direct physical
interpretation of the transition process with the expected value of the elongation obtained as a
convex combination of the stretch-force relations in the purely folded and purely unfolded phases,
depending on their percentage. In particular, when ⟨nu⟩ = 0, all units are in the folded phase and
the system follows the first branch as obtained without temperature and non-local interaction
effects. On the other hand, in the opposite extreme case with ⟨nu⟩ = N , all the bistable units
are unfolded and the elongation is now given by ⟨x̃⟩ = χN + (N/αk̃)f̃ . These two homogeneous
regimes, where the energy is convex and temperature has no effects, are connected by a force
plateau whose height and slope depend on both temperature and Ising coefficient J through β̃.

Now we introduce the hypothesis of strong ferromagnetic interactions with respect to temper-
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ature, β̃ ≫ 1. More precisely, from the definition of ∆ in Eq.(5.81), it is possible to consider the
approximation

∆ ≃ (c− − c+)2 , (5.25)

valid if
4c+c−e−4β̃

(c− − c+)2 ≪ 1. (5.26)

Taking into account the form of c± (see Eqs.(5.73) and (5.78) in Appendix B), this condition
corresponds to

β̃ ≫ 1
4 log

[
2

cosh(δ) − 1

]
, (5.27)

where
δ = 1

2 log
(

1
α

)
− β̃

[
∆Ẽ− (χ− 1)f̃ −

(
1
α

− 1
)
f̃2

2k̃

]
. (5.28)

In particular, one verifies that in the limit β̃ → +∞ (with δ , 0) the ratio in Eq. (5.26) goes to
zero. Using this approximation, Eq.(5.21) shows the two following different regimes, corresponding
to the two homogeneous folded and unfolded fractions, depending on the force f̃ through the
parameters c− = c−(f̃) and c+ = c+(f̃)

⟨x̃⟩
N

≃


1 + f̃

k̃
if c− > c+,

χ+ f̃

αk̃
if c− < c+.

(5.29)

Thus under the assumption of large β̃, we get a horizontal force plateau, as shown in Fig.5.6
(panel a), obtained by imposing c− = c+, or, by using Eq.(5.73), given by the condition

δ = 0, (5.30)

where δ has been defined in Eq.(5.28). In this way we obtain the main result of this part, i.e. that
for large enough interface energy J and for a large value of N , the system is characterized by a
temperature-dependent transition force. This is controlled by a new temperature-dependent term
in Eq.(5.30), not present in Eq.(5.1). Moreover, we can obtain an explicit analytic expression of
the dimensionless Maxwell force f̃M as follows

f̃M (β̃) =
(√

D − 1
)( α

1 −α

)
k̃ (χ− 1) , (5.31)

where
D = 1 − 2

β̃(χ− 1)2k̃

(
1 −α

α

)(
1
2 log 1

α
− β̃∆Ẽ

)
. (5.32)

Due to the different elastic constants (α , 1), the Maxwell force obtained from Eq.(5.31) depends
on the temperature T (through β̃). A simpler dependence can be obtained by expanding Eq.(5.31)
up to the first order in the difference (1 −α)/α, measuring the difference from the case when the
two wells are identical α= 1. We obtain

f̃M (β̃) ≃ ∆Ẽ

χ− 1 −
[

∆Ẽ2

2k̃(χ− 1)3 + 1
2β̃(χ− 1)

](
1 −α

α

)
, (5.33)



122 CHAPTER 5. Phase transformations in materials science

which is valid for |(1 −α)/α| ≪ 1. When α= 1 we retrieve the expression f̃ = ∆Ẽ/(χ− 1), well
known in literature [59, 60, 91, 92], and discussed in the Introduction. On the other hand, if T
approaches zero, Eq.(5.30) simplifies to Eq.(5.1).

The dependence of the Maxwell force on β̃ is shown in Fig.5.6 (panel b). We can observe the
opposite behaviors exhibited in the hardening case with α > 1 (solid blue curve with α = 1/3)
and in the softening case with α < 1 (solid red curve with α= 3). We can also notice that when
β̃ → ∞ the Maxwell force reads

f̃M ≃ k̃(χ− 1) α

1 −α

[√
1 + 2∆Ẽ

(χ− 1)2k̃

(
1 −α

α

)
− 1
]
> 0, (5.34)

with a first order correction O
(
1/β̃

)
. In particular, when α < 1, if β̃ decreases (as the temperature

increases), the Maxwell force decreases as well. The corresponding variation in the stress-strain
diagram is shown in Fig.5.6 (panel c). In particular, from Eqs.(5.31) and (5.32), we deduce that
when the value of β̃ satisfies the equality log(1/α)/2∆Ẽ = β̃, the Maxwell force characterizing
the plateau is f̃M = 0 (see the point B in Fig.5.6, panel b). Thus, at this value, β̃ = β̃0, the
Maxwell plateau at zero applied force connects the two natural configurations with ⟨x̃⟩/N ≃ 1 and
⟨x̃⟩/N ≃ χ corresponding to the completely folded and completely unfolded states, respectively.
In other words, the system undergoes a transition to the second state at zero applied force.
It is important to observe that solutions with zero or even negative Maxwell forces have been
considered in the case of phase transitions in shape memory alloys [318]. In this case, a consistent
definition of the reference configuration assumed to be stable, should be temperature dependent,
so that for positive (negative) Maxwell stress the reference configuration is the homogeneous
folded (unfolded) phase configuration.

It is important to observe that, for this case with α < 1, the Maxwell stress can decrease until
the limit value f̃F , as defined in Eq.(5.3), because after this value the energy of the unfolded
state is not defined (see the point A in Fig.5.6, panel b, and the floor plateau in Fig.5.6, panel c).
We denote β̃∗ the value of β̃, for which we attain the plateau at f̃F . Interestingly, for α < 1, the
equation f̃M (β̃∗) = f̃F is solved by

β̃∗ =
1
2 log 1

α

∆Ẽ(1 −α) + 1
2αk̃(1 −χ)2 . (5.35)

In the case with α > 1, represented in Fig.5.6, panel b (red solid curve), we observe that
the Maxwell stress always increases with the temperature (decreasing β̃). In this situation, the
Maxwell force is always positive. However, the plateau stops existing at β̃∗ corresponding to the
value of force f̃R, defined in Eq.(5.2), when the energy of the first well ceases to be defined (see
the point C in Fig.5.6, panel b, and the roof plateau in Fig.5.6, panel d). Interestingly, for α > 1,
the equation f̃M (β̃∗) = f̃R is solved by

β̃∗ =
1
2α logα

∆Ẽ(1 −α) + 1
2αk̃(1 −χ)2 . (5.36)

It is important to point out that, due to the use of the spin variables method, the temperature
is always limited by the fact that the barrier between the two energy wells must always be
sufficiently larger than KBT .

In this Section, we obtained an analytical expression (δ = 0) linking the Maxwell force
to the temperature in the thermodynamic limit (N → ∞) and with the assumption of strong
ferromagnetic interaction (under the isotensional condition). This result is related to the difference
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of stiffness between the two energy wells (α , 1) and explains the mechanical response observed
in several nanosystems [230–234, 309–317]. Interestingly enough, if for α > 1 (α < 1) we increase
(decrease) the stress starting from the homogeneous folded (unfolded) state, the system keeps this
configuration even for values of the stress for which this configuration is characterized by a higher
elastic energy than the other homogeneous state, due to entropic effects. This counter-intuitive
behavior, tending to stabilize the softer phase, is observable only in the case of different wells and
was named entropic stabilization [318].

5.4 The zipper model

In this Section, we further extend the study of the non-local non-convex chain of bistable
units under the assumption of strong ferromagnetic behavior (β̃ ≫ 1). As previously discussed,
this hypothesis leads to the existence of a single domain wall [165, 290], i.e a single interface
between the folded and unfolded regions that propagates through the chain (see Fig.5.7). We
underline that this single interface wall propagates continuously throughout the entirety of the
system without showing any pinning phenomena that could obstacle the motion since we fully
neglect any possible defect (dislocations, vacancy or interstitial defects) in our structure (such
pinning behavior has been thoroughly investigated in [319–321]). In this framework, we derive
simplified analytical expressions for both the Gibbs and Helmholtz ensembles and we prove their
equivalence in the thermodynamic limit. Accordingly, we consider a chain composed of N − ξ
units in the folded state and the remaining ξ units in the unfolded one, being ξ a discrete variable
assuming values in the set {0,1,2, . . . ,N}, representing the position, in terms of chain units, of
the moving domain wall between folded and unfolded regions. This discrete variable can vary
depending on both mechanical and thermal effects and this simplified scheme is typically called
zipper model [104–107].

To begin with, let us consider the Hamiltonian in Eq.(5.5), where the last sum over the N − 1
spins can be divided into two parts by means of the zipper assumptions. By introducing ι, the
number of changes (interfaces) in the spins sequence S1, . . . ,SN , we have ι addends with value −1
and N − 1 − ι addends with value +1, see Eq.(5.9). Thus

H̃Z =
N∑

i=1

{
Q̃(Si) + K̃(Si)

2 (λi −λ0(Si))2
}

− [N − 1 − 2ι(ξ)]. (5.37)

In particular, we assume the possibility to have ι(ξ) = 0 if ξ ∈ {0, N} (no interface) and ι(ξ) = 1
if 1 ≤ ξ ≤ N − 1 (only one interface). Accordingly: (i) if i ≤ N − ξ (folded units), then we
have Q̃(i) = 0, K̃(i) = k̃, λ0(i) = 1, and (ii) if i ≥ N − ξ+ 1 (unfolded units), then Q̃(i) = ∆Ẽ,
K̃(i) = αk̃, λ0(i) = χ.

By separating the folded and unfolded contributions we may rearrange the Hamiltonian as

H̃Z(ξ) =
N−ξ∑
i=1

{
k̃

2 (λi − 1)2
}

+
N∑

i=N−ξ+1

{
∆Ẽ+ αk̃

2 (λi −χ)2
}

− [N − 1 − 2ι(ξ)] .

(5.38)

From now on, the discrete variable ξ belongs to the phase space of the system together with the
continuous displacements λi.
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x0

a) Gibbs ensemble: f fixed

f

b) Helmholtz ensemble: xN fixed

x1 x2 xN−1 xN

single interface

xN−ξ

Figure 5.7: Scheme of the zipper model of the non-local non-convex chain. Top panel: isotensional
configuration (Gibbs ensemble). Bottom panel: isometric configuration (Helmholtz ensemble). In
both cases, we always have only one interface between folded and unfolded regions.

5.4.1 Zipper model within the Gibbs ensemble

Let us evaluate the canonical partition function in the Gibbs ensemble by using the Hamiltonian
in Eq.(5.38). By definition we have

ZG(f̃) = ℓN
N∑

ξ=0

∫
R

N
e

−β̃
(

H̃Z−f̃(
∑N

i=1 λi)
)
dλ1 . . .dλN , (5.39)

that can be evaluated by a Gaussian integration giving

ZG(f̃) =
N∑

ξ=0

1

α
ξ
2
e

−β̃

{
2ι(ξ)+∆Ẽξ−f̃ [N+(χ−1)ξ]− f̃2

2k̃

[
N−ξ+ ξ

α

]}

× ℓN
(

2π
β̃k̃

)N
2
eβ̃(N−1).

(5.40)

Following the same reasoning as in Section 5.2, one may evaluate the expectation values of the
mechanical macroscopic observables of the system, namely ⟨x̃⟩, ⟨nu⟩ and ⟨ι⟩ (see Eqs.(5.10), (5.11)
and (5.12)), where we use again x̃ to indicate x̃N . In Fig.5.8, the behavior of the mechanical
quantities ⟨x̃⟩, ⟨nu⟩ and ⟨ι⟩ is shown by varying the values of β̃ (different colors) and α (different
rows). Each row of Fig.5.8 corresponds to a different constant α (namely, 1/3, 1 and 3 in the first,
second and third row, respectively) while β̃ = J/KBT varies within every single plot (β̃ = 1,2,3
for the blue, yellow and red curves, respectively). The first column shows the average chain length
⟨x̃⟩, the second one the average number of unfolded units ⟨nu⟩ and the third the average number
of interfaces ⟨ι⟩. By looking at the force-extension curve and at the average number of unfolded
units, one observes again the typical synchronized behavior of the Gibbs ensemble, where all the
units unfold cooperatively. A difference with respect to the exact Ising model is that the number
of interfaces is smaller, limited by the presence of the zipper assumption.
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Figure 5.8: Behavior of the zipper model within the Gibbs ensemble with variable Ising coefficient
β̃ and parameter α. The quantities ⟨x̃⟩, ⟨nu⟩ and ⟨ι⟩ are represented versus the dimensionless
force f̃ , with a variable Ising coefficient β̃ = {1,2,3}. In the first row, we used α = 1/3, in
the second one α = 1, and in the third one α = 3. We adopted the parameters N = 10, k̃ = 6,
Q(−1) = 0, Q(+1) = ∆Ẽ = 4, χ= 5. The arrows indicate the direction in which β̃ increases.

In particular, we may study ⟨x⟩, evaluated through Eq.(5.10) and the partition function in
Eq.(5.40). After some straightforward calculations, one obtains

⟨x̃⟩
N

=

[
1 + f̃

k̃
+
(
χ+ f̃

αk̃

)
eNδ

](
1 − e−2β̃

)
+ e−2β̃

N∑
ξ=0

eδξAξ

[
1 + eNδ

](
1 − e−2β̃

)
+ e−2β̃

N∑
ξ=0

eδξ

, (5.41)

where δ is defined in Eq.(5.28) and

Aξ = ξ

N

(
χ+ f̃

αk̃

)
+
(

1 − ξ

N

)(
1 + f̃

k̃

)
. (5.42)
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We can now use the following sums

N∑
ξ=0

yξ = 1 − yN+1

1 − y
, (5.43)

N∑
ξ=0

ξyξ = y
(1 − y)2 [1 − (N + 1)yN +NyN+1], (5.44)

which allows us to obtain the explicit expressions

Σ1 =
N∑

ξ=0
eδξAξ =

(
1 + f̃

k̃

)
1 − eδ(N+1)

1 − eδ
+
[(
χ+ f̃

αk̃

)
−
(

1 + f̃

k̃

)]

× 1
N

eδ

(1 − eδ)2

[
1 − (N + 1)eNδ +Neδ(N+1)

]
,

(5.45)

Σ2 =
N∑

ξ=0
eδξ = 1 − eδ(N+1)

1 − eδ
. (5.46)

Thus, Eq.(5.41) reads

⟨x̃⟩
N

=

[
1 + f̃

k̃
+
(
χ+ f̃

αk̃

)
eNδ

](
1 − e−2β̃

)
+ e−2β̃Σ1[

1 + eNδ
](

1 − e−2β̃
)

+ e−2β̃Σ2
, (5.47)

which provides the Gibbs force-extension relation in the approximations of a single interface and
large ferromagnetic interaction (zipper model). Observe that, thanks to this hypothesis, we are
able to obtain for the zipper model exact explicit relations for the material response of the system
also in the discrete case with finite arbitrary N .

On the other hand, in the thermodynamic limit (N → ∞), we can confirm the results obtained
in Section 5.3 for the complete Ising scheme. In particular, when N → ∞, the value of ⟨x̃⟩/N
depends on the sign of δ. If δ < 0 we have

lim
N→∞

Σ1 =
(

1 + f̃

k̃

)
1

1 − eδ
, lim

N→∞
Σ2 = 1

1 − eδ
, (5.48)

and we get (in the limit N → ∞)
⟨x̃⟩
N

≃ 1 + f̃

k̃
, (5.49)

that represents the elastic branch of the response observed when all units are folded. Conversely,
if δ > 0, we can show that

lim
N→∞

Σ1e
−Nδ = −

(
χ+ f̃

αk̃

)
eδ

1 − eδ
, lim

N→∞
Σ2e

−Nδ = − eδ

1 − eδ
. (5.50)

Hence, a manipulation of Eq.(5.47) gives (in the limit N → ∞)

⟨x̃⟩
N

≃ χ+ f̃

αk̃
, (5.51)
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representing the unfolded elastic branch. Thus, the two elastic branches for δ < 0 and δ > 0
are linked by a force plateau (see Fig.5.6, panel a), corresponding to Eq. δ = 0. This is exactly
the same condition found in Eq.(5.30), proving that the results obtained within the zipper
approximation in the thermodynamic limit coincide with the ones obtained in Section 5.3 under
the strong ferromagnetic assumption.

5.4.2 Zipper model within the Helmholtz ensemble
Let us then consider the Helmholtz ensemble under the zipper assumption. In this case, the

partition function can be obtained as in Eq.(5.13), by the application of a Fourier transform.
Indeed, using Eq.(5.40), we get

ZH(x̃N ) =
(

2πℓ2e2β̃

β̃

)N−1
2 N∑

ξ=0

√√√√ 1(
N−ξ

k̃
+ ξ

αk̃

)
k̃N−ξ(αk̃)ξ

× e
−β̃

(
[x̃N −(N+(χ−1)ξ)]2

2

(
N−ξ

k̃
+ ξ

αk̃

)−1
+2ι(ξ)+∆Ẽξ

)
.

(5.52)

The average macroscopic property of the zipper model within the Helmholtz ensemble can be
found through Eqs.(5.16), (5.17) and (5.18). In Fig.5.9 we show ⟨f̃⟩, ⟨nu⟩ and ⟨ι⟩ as function of the
prescribed extension x̃N for different values of the Ising coefficient β̃ and different elastic constants
ratio α. We recover the same macroscopic behavior of the exact Ising model characterized
by the sequential unfolding of the units and represented by the typical saw-tooth path of the
force-extension curve. In particular, it is important to observe that the value of the number of
interfaces remains constantly at 1, due to the zipper assumption, and it is 0 only when ξ = 0 or
ξ =N , coherently with the model introduced. It is interesting to notice that in the force-extension
curve, we can see the first upward force peak, corresponding to the nucleation of a new phase with
unfolded units, and the last downward peak, representing the coalescence of the folded region to
the unfolded one. Observing the sequential unfolding of the units in the force-extension plots of
Fig.5.9, we can notice that there are three different behaviors depending on the elastic constants
ratio: in the case with α = 1/3, the force needed to unfold a single unit decreases while the
number of unfolded units increases; in the case with α= 1, except for the nucleation (first peak)
and the coalescence (last peak) forces, all the other forces needed to unfold the units are equal;
finally, in the case with α= 3, we have the opposite behavior to the case with α= 1/3, i.e. the
unfolding forces increase with the number of unfolded units. This result is perfectly coherent with
the previously introduced concept of entropic stabilization of the softer configuration. Moreover,
we remark that by considering a higher number of elements (not reported for compactness), it is
possible to observe an initial nucleation of a segment with more than one single element passing
to the new unfolded state. This aspect is discussed in detail in the next section where we consider
the system behavior for large values of N . In this case, we can analyze the amplitude of the first
peak and of the first nucleated segment analytically leading to a useful result for comparing the
model with experiments and numerical simulations.

5.5 Stationary phase analysis of the zipper model within the
Helmholtz ensemble

Here, we want to study the thermodynamic limit of the Helmholtz zipper model. The aim
of this development is to obtain three important results: (i) a simplified expression of the force-
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Figure 5.9: Behavior of the zipper model within the Helmholtz ensemble with variable Ising
coefficient β̃ and parameter α. The quantities ⟨f̃⟩, ⟨nu⟩ and ⟨ι⟩ are represented versus the strain
x̃, with a variable Ising coefficient β̃ = {1,2,3}. In the first row, we used α= 1/3, in the second
one α = 1, and in the third one α = 3. We adopted the parameters N = 10, k̃ = 6, Q(−1) = 0,
Q(+1) = ∆Ẽ = 4, χ= 5. The arrows indicate the direction in which β̃ increases.

extension relation under isometric conditions valid for large values of N and for β̃ ≫ 1, (ii) an
explicit expression for the amplitude of the first force peak, representing the nucleation of the
unfolded phase, and (iii) a rigorous demonstration of the equivalence of the Gibbs and Helmholtz
ensembles for the zipper model.

By using Eqs.(5.16) and (5.52), we can obtain the force-extension relation under isometric
conditions for the zipper model. A refined analysis of this relation for large values of N , developed
by means of the stationary phase method, is discussed in Appendix 5.8.4, where one can find
the rigorous demonstration of the equivalence of the Gibbs and Helmholtz ensembles and the
following simplified expression written in terms of the average chain stretch λ̄= xN

ℓN

⟨f̃⟩ =
CN

[
e∆g0N (λ̄− 1)k̃

1
2 + e∆g1N (λ̄−χ)(αk̃)

3
2
]

+ f̃M

CN

[√
k̃ e∆g0N +

√
αk̃ e∆g1N

]
+ 1

, (5.53)
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Figure 5.10: Top panel: Comparison between the isometric force-extension response of the exact
zipper model, obtained by the partition function in Eq.(5.52) (solid lines), and the result of the
stationary phase method, stated in Eq.(5.53) (dashed lines). We considered different values of the
Ising dimensionless parameter β̃ = {1,1.5,3}. Adopted parameters: N = 10, k̃ = 6, h̃= 2, α= 1/3,
Q̃(−1) = 0, Q̃(+1) = ∆Ẽ = 6, χ= 3. Bottom panel: Evolution of the isometric force-extension
curve, stated in Eq.(5.53) as obtained by the stationary phase method, with an increasing number
N of units. Adopted parameters: k̃ = 6, h̃ = 2, α = 1/3, Q̃(−1) = 0, Q̃(+1) = ∆Ẽ = 6, χ = 3,
β̃ = 2, N = {8,10,12,14,16}.

where

∆g0 = − β̃k̃

2

[
λ̄−

(
1 + f̃M

k̃

)]2
, (5.54)

∆g1 = − β̃αk̃

2

[
λ̄−

(
χ+ f̃M

αk̃

)]2
, (5.55)

CN = 2e2β̃ − 1
2

√
β̃

2πN

[
χ+ f̃M

αk̃
−
(

1 + f̃M

k̃

)]
. (5.56)

This important analytical expression for the force-extension relation contains all the physical
features describing the Helmholtz ensemble, as the first nucleation peak and the coalescence one.
In particular, it can be used to evaluate these peaks as a function of N and the temperature T .

In the top panel of Fig.5.10, we compare the force-extension curves obtained through the
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exact zipper model with the ones delivered by the stationary phase method. Observe that while
this approximation, stated in Eqs.(5.53), is finer as N grows, our results show the possibility
of a good approximation of just the nucleation peak already for small values of N (we used
N = 10 in Fig.5.10, top panel). Also, the approximation correctly reproduces the last downward
peak, corresponding to the coalescence of the remaining folded regions to the fully unfolded
phase. The most important result, quite evident in this framework, is the dependence of the
Maxwell (propagation) force on the temperature, through the parameter β̃. We observe that for
the represented case with α < 1 (softening) as β̃ decreases (e.g. temperature increases), the value
of the propagation force fM decreases, also affecting the height and the width of the nucleation
and coalescence peaks with an entropic stabilization of the unfolded phase.

In the bottom panel of Fig.5.10, we observe that, when the number of units N increases and
the thermodynamic limit is approached, the mechanical response of the system in the Helmholtz
ensemble (see Eq.(5.53)) approaches the Gibbs behavior, where there is a force plateau without
nucleation and coalescence force peaks. In particular, we notice that by means of the stationary
phase method (when N → ∞), the typical saw-tooth path of the isometric condition disappears
whereas only the first and the last peaks remain, as expected from a macroscopic point of view.
We remark that, in experiments and simulations of phase transformations in nanowires or other
nanostructures, it is possible to observe only the first nucleation peak, while the last one is rarely
attained because of the breaking of the specimen or because of the boundary effects induced by
the grips of the traction device.

Given the importance of the first nucleation force peak, we now look for an explicit expression
of its magnitude. Consider Eq.(5.53) and observe that in the region of the first peak only the
term e∆g0N is relevant, being e∆g1N negligible. Then, we can write a reduced form of Eq.(5.53),
as follows

⟨f̃⟩ = k̃

√
k̃CN e− β̃k̃

2 Ny2
(
y+ f̃M

k̃

)
+ f̃M

√
k̃CN e− β̃k̃

2 Ny2 + 1
, (5.57)

where we introduced the change of variable y = λ̄− 1 − f̃M

k̃
. Now, let us consider as reference for

the force its Maxwell value, so as to obtain

⟨f̃⟩ − f̃M = k̃y

√
k̃CN e− β̃k̃

2 Ny2

√
k̃CNe

− β̃k̃
2 Ny2 + 1

. (5.58)

We search for the stationary point of Eq.(5.58) by derivation, easily obtaining

(
β̃k̃

2 Ny2 − 1
2

)
e

β̃k̃
2 Ny2− 1

2 = CN

2

√
k̃

e
, (5.59)

which is a Lambert equation of the form wew = s, solved by w = W0(s), where W0 is the Lambert
function (more precisely, W0 is the principal branch of the Lambert function) [322, 323]. Thus,
we may write

β̃k̃

2 Ny2 − 1
2 = W0

CN

2

√
k̃

e

 . (5.60)
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Figure 5.11: Behavior of the nucleation force peak as a function of the number N of units of
the chain and of β̃. First row: f̃P versus log10(N), parametrized by β̃ = {2,3,6}, and f̃P versus
β̃, parametrized by N = {10,15,25}. The green dashed lines correspond to f̃M , and β̃∗ is the
critical value corresponding to f̃F (floor force with α < 1). Second row: f̃P − f̃M versus log10(N),
parametrized by β̃ = {2,3,6}, and f̃P − f̃M versus β̃, parametrized by N = {10,15,25}. Here,
the green dashed lines correspond to zero. We adopted the parameters k̃ = 6, h̃= 2, Q̃(−1) = 0,
Q̃(+1) = ∆Ẽ = 6, and χ= 3. The arrows indicate the direction in which β̃ and N increase.
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Eventually, by using Eq.(5.60) in Eq.(5.58) we get

f̃P − f̃M = k̃√
β̃k̃
2 N

W0

(
CN
2

√
k̃
e

)
√

1
2 +W0

(
CN
2

√
k̃
e

) , (5.61)

where f̃P is the value of the nucleation force peak. It is worth remarking that Eq.(5.61) gives the
explicit dependence of the force peak on both β̃ and the number of units of the chain N .

In the first row of Fig.5.11, we study the nucleation peak with respect to N (parametrized by
β̃) and with respect to β̃ (parametrized by N). Similarly, in the second row, we show the plots of
f̃P − f̃M . The trend can be summarized by stating that f̃P − f̃M increases for increasing values of
β̃ and decreases for increasing values of N . Moreover, f̃P converges to f̃M in the thermodynamic
limit.

Figure 5.12: Comparison of the force-extension relation observed within the Helmholtz ensemble
and obtained with (i) the Ising scheme, (ii) the zipper model, and (iii) the stationary phase
approximation. Also, the amplitude of the first nucleation peak calculated by Eq.(5.61) is shown.
Adopted parameters: N = 10, k̃ = 6, h̃= 2, Q̃(−1) = 0, Q̃(+1) = ∆Ẽ = 30, χ= 3, β̃ = {2,8}.

The consistency of the approaches presented in this work can be appreciated by observing
Fig.5.12. Here, we compare the force-extension relation evaluated within the Helmholtz ensemble
and obtained with (i) the complete Ising scheme discussed in Section 5.2.2, (ii) the simplified
zipper model introduced in Section 5.4.2, and (iii) the stationary phase approximation given
in Eq.(5.53). Moreover, we also show the amplitude of the first peak calculated by Eq.(5.61).
This plot proves that, for a sufficiently large value of N and with the hypothesis of strong
ferromagnetic interactions (large values of β̃), the three frameworks give the same results and
hence the hypothesis introduced are consistent with the problem under investigation.

5.6 Applications to the tensile behavior of nanowires
While, as pointed out earlier, our model can be applied to different multistable systems with

softening or hardening effects (i.e. with different stiffness of the different phases) and non-local
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interactions, we here focus our attention on the specific application to phase transition in metallic
nanowires. We can show the ability of the model to predict the main physical phenomena
observed during the phase transition at variable temperatures. Single-crystalline metal nanowires
with nanometric cross-section can exhibit a pseudo-elastic behavior characterized by very large
elongations which can be up to 50% of the original length [230–233]. This behavior, which is
exceptional compared to all other shape memory alloys, is due to a reversible lattice reorientation
process with twin boundary propagation between two differently oriented face-centered cubic
(FCC) crystalline structures. This behavior is typical of Copper (Cu) and Nickel (Ni), where we
can identify the two following configurations: the original one named < 110> /{111} with axis
< 110> and surfaces {111}, and the deformed one named < 001> /{100} with axis < 001> and
surfaces {100}, as shown e.g. in Figs.2 and 3 of Ref.[230].

To compare the behavior with our one-dimensional system, let s be the area on the cross-
section pertaining to a single longitudinal chain of atoms in the nanowire crystal structure. Let
then M be the average number of atoms in the cross-section so that the total area is given by
S =Ms. Similarly, we use ℓ to indicate roughly the lattice constant of the crystal structure, and
hence L = Nℓ is the total nanowire length, being N the number of atoms in the longitudinal
direction. Accordingly, SL is the total volume of the system, MN is the total number of atoms,
sℓ is the average volume pertaining to one atom, and one can observe also that s≃ ℓ2 and sℓ≃ ℓ3.

It is important to remark that both the Maxwell force in Eqs.(5.30) and the force-extension
relation in Eq.(5.53), have been obtained for a single chain of units (here atoms) and therefore
the continuous parameters must be introduced as follows. We define

Ef = k0ℓ

s
[GPa], Eu = h0χℓ

s
[GPa], (5.62)

the Young moduli of the folded (f) and unfolded (u) phases, respectively. Accordingly, k0 and h0
are the elastic constants of the two crystals in the harmonic limit. Moreover, the jump energy
between the two configurations can be written as ∆E = sℓ∆e where ∆e [J/m3] is the energy
density difference between the two crystal states. In addition, the Ising energy can be rewritten
as J = Λs, where Λ [J/m2] is the surface energy density of the twin boundary separating original
and deformed crystals. We remark that the parameters ∆e and Λ may depend on the total area
S when elastic surface effects are relevant, as in the case of metallic nanowires. Further, the
longitudinal (normal) stress is defined by σ = ⟨f⟩/s, with ⟨f⟩ given in Eq.(5.53) if we consider
the stationary phase approximation. The strain is defined as ε̄= x−Nℓ

Nℓ , and therefore we have
ε̄= λ̄− 1.

We use the introduced continuous quantities to rewrite previous expressions, for the purpose
of mimicking the tensile behavior of one-dimensional structures. Indeed, Eqs.(5.30) and (5.28)
can be rewritten as

1
2 log

(
Ef

Eu
χ

)
+βsℓ

[
σM (χ− 1) + 1

2σ
2
M

(
χ

Eu
− 1
Ef

)
−∆e

]
= 0, (5.63)

that is used to obtain the temperature-dependent Maxwell stress σM . We observe that, due to
the hypothesis of homogeneity in the cross-section, the specific response of the wire coincides
with that of a longitudinal chain of atoms. Correspondingly, the nucleation stress can be defined,
using Eq.(5.61) as follows

σP −σM =

√
2Ef

βsℓN

W0 (C)√
1
2 +W0 (C)

, (5.64)
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Figure 5.13: Comparison of the stress-strain curves obtained with molecular dynamic simulations
(solid lines) and through our theoretical approach (dashed lines) for Cu nanowires (1.96 nm ×
1.96 nm) in the left panel and Ge nanowires (radius of 1.8 Å) in the right panel. In the left panel,
we used the temperatures T=100 K (blue lines), T=200 K (yellow lines), and T=300 K (red
lines). In the right panel, we used the temperatures T=100 K (blue lines), T=200 K (green lines),
T=300 K (yellow lines), and T=400 K (red lines).

where C = CN
2

√
k̃
e is, by using (5.56), given by

C = 2e2βΛs − 1
2

[
χ− 1 +σM

(
χ

Eu
− 1
Ef

)]√
βsℓEf

2eN . (5.65)

Moreover, by recalling the definition of β = 1/(KBT ), we introduce also the the parameterizations

∆e= γ
KBT0
sℓ

, Λ = β̃o
KBT0
s

(5.66)

to obtain the two values of the characteristic energies. Here, we use the reference temperature
T0 = 300 K.

In Ref.[230] a series of molecular dynamics simulations have been performed to obtain the
stress-strain behavior of Cu nanowires at different temperatures and under quasi-static tensile
deformation, which is compatible with our equilibrium statistical mechanics approach. The
simulations are based on the embedded-atom-method interatomic potential for Cu [230], and
the uniaxial displacement-controlled loading strategy is applied coherently with our Helmholtz
ensemble. The stress-strain behaviors of this Cu nanowire (1.96 nm × 1.96 nm section) at
temperatures of 100,200, and 300 K is compared with our model in Fig.5.13, left panel. The
theoretical results are based on the stationary phase approximation stated in Eq.(5.53). As one
can see, the model is able to reproduce the magnitude of both the nucleation stress and the
Maxwell stress plateau. In Table 5.1, one can find the temperature-dependent Young moduli we
adopted to reproduce the simulations of Ref.[230]. Moreover, we adopt the following parameters:
N = 206, ℓ= 0.14 nm, s= ℓ2 and χ= 4.4. By introducing the parameterizations in Eq.(5.66), we
obtained the adimensional values γ = 7.7 and β̃0 = 6.8. We remark that since β̃0, representing
our adimensional parameter β̃ for the higher value of the temperatures, is sufficiently larger than
1, the use of the zipper model, simplified by the stationary phase method, is justified. Moreover,
the propagation of a single twin boundary is confirmed by the simulations in Ref.[230].
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Young modulus Value
Ef (T = 100K) 122 GPa
Ef (T = 200K) 114 GPa
Ef (T = 300K) 105 GPa
Eu(T = 100K) 10 GPa
Eu(T = 200K) 11 GPa
Eu(T = 300K) 12 GPa

Table 5.1: Mechanical parameters used to reproduce the molecular dynamics simulations on a Cu
nanowire of Ref.[230].

Young modulus Value
Ef (T = 100K) 588 GPa
Ef (T = 200K) 561 GPa
Ef (T = 300K) 552 GPa
Ef (T = 400K) 540 GPa
Eu(T = 100K) 23 GPa
Eu(T = 200K) 43 GPa
Eu(T = 300K) 63 GPa
Eu(T = 400K) 83 GPa

Table 5.2: Mechanical parameters used to reproduce the molecular dynamics simulations on a Ge
ultra-thin nanowire of Ref.[234].

We also propose a second example for the application of our model to ultrathin semiconductor
Germanium (Ge) nanowires that have been recently studied due to their peculiar properties.
Here, we compare our results with molecular dynamics simulations of the helix Ge nanowire
with a radius of 1.8 Å(see Fig.1 in Ref.[234]). The stress-strain curves have been obtained for
temperatures of 100,200,300, and 400 K [234]. The simulations for germanium were based on
the Stillinger-Weber potential, coupled with the Nosé-Hoover thermostat to impose the system
temperature. In Fig. 5.13, right panel, we show the comparison of the simulations with our
model, and we observe that the nucleation and Maxwell stresses are in fairly good agreement.
Unfortunately, the numerical stress plateaus are rather noisy because they correspond to a
single simulation (without averaging) and the amorphous phase is strongly fluctuating. Anyway,
the temperature-dependent behavior of such plateaus is clearly visible. The helical structure
is perfectly ordered initially (see Fig.1 in Ref.[234]), and shows a transition to an amorphous
structure (see Fig.5 in Ref.[234]) following a transition process that begins with a stress peak,
namely the nucleation stress. After this nucleation, the unfolded region evolves ‘smoothly’ into
the one-atom chain structure. In our theoretical formulation, we used the parameters listed
in Table 5.2 corresponding to the data in Ref. [234]. Moreover, we adopted the parameters:
N = 5562, ℓ= 0.208 nm, s= ℓ2 and χ= 3.36. In particular, by introducing the parameterizations
in Eq.(5.66), we obtained the adimensional values γ = 2.3 and β̃0 = 25.3 (or β̃ = 19 in the case of
highest temperature T = 400K) so that the assumption of the zipper model is widely justified.

To summarize our results, we considered systems where two possible configurations exist
here. In the first application, they correspond to two different crystal structures whereas in the
second example to a regular helical structure and an irregular amorphous structure. It is worth
noticing that the model based on statistical mechanics here developed is able to reproduce the
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complex behavior of these systems. It is important to highlight that in our model there is no
crystallographic or morphological information on the three-dimensional structures, instead, the
particular microstructures are embedded in the elastic and energetic properties of the system.
Thus the model captures the main physical behavior in terms of nucleation and propagation
stress and their dependence on temperature, without exploiting the microstructural details.
Nevertheless, the generality of the model allows its application to different systems ranging from
material science to cooperative biological structures. Of course, if it is necessary to take into
account crystallographic details, structural anisotropies, twin-boundary geometries, and other
morphological features, then it is necessary to turn to another class of models that are specifically
adapted to the problem at hand, e.g. the model in Ref.[230] for the pseudo-elasticity of metallic
nanowires. On the other hand, the possibility of deducing explicit equations of the temperature
dependence of the nucleation and propagation stress, depending on parameters with a clear
physical interpretation, represents in our opinion the main advantage of the proposed model
both in the perspectives of interpreting the transition behavior of biological materials and phase
transition alloys and in the field of new material design.

5.7 Conclusions

In this work, we elaborated some models, with different levels of complexity, to describe
the temperature-dependent behavior of one-dimensional non-local non-convex systems. The
paradigmatic system under investigation is composed of a sequence of units, exhibiting a bistable
behavior described by a two-state potential energy, in interaction with each other. On the
one hand, this scheme is able to represent the specific feature of several macromolecules of
biological origin (mainly proteins). In this case, the non-convexity (bistability) describes the
possible switching of each domain of the macromolecule between its folded and unfolded states.
In addition, the non-locality, introduced by means of the Ising scheme, depicts the cooperativity
observed in most of the biological structures. On the other hand, the proposed model is equally
able to represent the phase transformations in materials. The two states of the bistable behavior
represent in this case two microstructures of the solid material, corresponding e.g. to two crystal
structures or to austenitic and martensitic phases. This enables the study of pseudo-elasticity and
shape memory effects in solid systems such as whiskers, nanowires, or nanocomposites. For these
systems, the Ising interaction scheme reproduces the energy cost of creating an interface between
the two different states of matter due to the absence of kinematic compatibility. Our model
then describes in a prototypical way the origin of the nucleation, propagation, and, possibly,
coalescence phenomena and their possible dependence on temperature when small dimensions
are considered as in the case of nanowires so that entropic contributions can compete with bulk
elastic energy terms.

Indeed, in the proposed approach, the thermal effects are carefully considered by introducing
the statistical mechanics’ analysis of the problem, based on the method of the spin variables. This
allows us to develop a complete thermodynamic framework of the transformation processes in
systems with non-locality and non-convexity. The first proposed approach is the most refined and
implements the complexity of the system in its entire generality, without simplifying assumptions.
The system is constituted by a chain of bistable elements interacting through an Ising scheme. We
can study both the Gibbs (isotensional) and the Helmholtz (isometric) ensembles of the statistical
mechanics by evaluating the pertinent partition functions in closed form. These results are valid
for both the ferromagnetic (positive Ising interaction) and antiferromagnetic cases (negative
Ising interaction). However, in this work, we mainly focus on ferromagnetic behavior. In this
model, each unit can freely assume one of the two admitted states, depending on the system
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temperature and on the mechanical actions applied to the system. The number of interfaces
between folded and unfolded regions is therefore free to vary and represents a measure of the
entropic effects on the system. Hence, we can observe an increase in the number of interfaces
with increasing temperature for a ferromagnetic system. The important point is that for strongly
ferromagnetic systems (with a high energetic cost of interface generation), which are the most
common in practical applications, only one interface is observed between the two different states
and it propagates along the chain when the traction or elongation are applied to the system.
In addition to the interface propagation phenomenon, in the isometric Helmholtz case, we can
also observe an initial upward peak of force, representing the nucleation of the new unfolded
phase, and a final downward peak of force, representing the coalescence of the folded phase into
the unfolded one. An important feature of this system is that the force plateau, describing the
interface propagation within the chain is in general temperature dependent for both isotensional
and isometric boundary conditions. The origin of this dependence lies in the difference between
the elastic constants of the unfolded and folded phases. In fact, when these elastic constants
are equal, the force plateau becomes independent of temperature and known results from the
literature are retrieved.

Since the thermodynamic limit analysis is extremely complex for the exact Ising model (in
particular, for the isometric case), and since the important case for applications is the strongly
ferromagnetic one, we have introduced the zipper model where we consider only one interface
propagating along the system. This assumption makes the calculation of the partition function
much simpler in both the Gibbs and the Helmholtz ensembles. The thermodynamic limit for the
Gibbs ensemble can be analyzed straightforwardly and the results are perfectly coherent with the
exact Ising model studied previously. In particular, the temperature-dependent behavior of the
force plateau is confirmed also by means of this zipper approach.

The investigation of the thermodynamic limit concerning the zipper model under isometric
condition, i.e. within the Helmholtz ensemble, represents the third approach of this work. This
analysis is based on the stationary phase method and it is useful to obtain three important
results: (i) a simplified expression of the force-extension relation under isometric conditions
valid for very long and strongly ferromagnetic chains (which perfectly describes the nucleation,
propagation, and coalescence phenomena), (ii) an explicit expression for the amplitude of the
first force peak (based on the Lambert function), representing the nucleation of unfolded units,
and (iii) a rigorous demonstration of the equivalence of the Gibbs and Helmholtz ensembles for
the zipper model (nucleation and coalescence peaks disappear as length increases). These results,
based on the stationary phase approximation, properly describe the transformation processes in
one-dimensional objects (macromolecules or solid nanowires) in terms of thermal fluctuations and
mechanical actions applied to the system. Some examples of quantitative comparisons are shown
for the microstructural evolution in metallic and semiconductor nanowires.

Although this work could be generalized and expanded in many ways, we mention here
only two future perspectives of some interest. The first neglected aspect represents the real
microstructure of the considered metastable states. This point can be improved by introducing the
main properties of the real molecular structures of the two phases of the system. The second aspect
concerns the fact that we have carried out the entire discussion at thermodynamic equilibrium
and therefore under static or quasi-static conditions. The dynamics could be introduced by taking
into account the non-equilibrium statistical mechanics and, in particular, the Langevin and/or
Fokker-Planck methodologies. Both issues will be addressed in future developments.
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Figure 5.14: Potential energy U of a linear spring representing an arbitrary NNN element. The
two cases correspond to the antiferromagnetic (R> 0) and ferromagnetic (R< 0) behaviors of
the chain with the NNN linear elastic elements.

5.8 Appendix

5.8.1 Non-local behavior: relation between the next to nearest neighbor (NNN)
interaction strategy and the Ising scheme

The non-local interactions in discrete elastic chains are typically introduced through next to
nearest neighbor (NNN) elastic elements [24, 165]. Under specific hypotheses, we prove here that
the scheme with the NNN elements can be reconducted to a typical Ising model, widely adopted
in previous studies on similar topics [102, 295]. To begin with, we consider a chain of bistable
units with additional NNN linear springs to model non-local effects [165]. The Hamiltonian reads

H =
N∑

i=1

{
Q(Si) + K(Si)ℓ2

2 [λi −λ0(Si)]2
}

+
N−1∑
i=1

Rℓ2

2 [λi+1 +λi −λ0(−1) −λ0(+1)]2,

(5.67)

where R is the elastic constant of the NNN springs, and the other quantities are defined in Section
5.2. In particular, we name here H0 the energy corresponding to the bistable nearest neighbor
(NN) elements and HI the energy of the NNN linear springs, such that H =H0 +HI . We assume
that the equilibrium length of the NNN elements is fixed at L(−1) +L(+1) = (1 +χ)ℓ, and we
introduce two different behaviors: an antiferromagnetic one when R> 0, and a ferromagnetic one
when R< 0. In the former case (R> 0), two adjacent units entail a lower energy if they are in
two different states (folded and unfolded) while, in the latter one (R < 0), two adjacent units
result in a lower energy if they are in the same state (either both folded or both unfolded), as
shown in Fig.5.14.

Supposing that the elastic constants k and αk are sufficiently large, the Hamiltonian HI can
be simplified by assuming that the lengths of the units can be approximated with the equilibrium
lengths of the explored wells. Then, by using the relations λi+1 ≃ λ0(Si+1) and λi ≃ λ0(Si), we
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get
λi+1 +λi ≃ λ0(Si+1) +λ0(Si) = −Si+1

2 (1 −χ) − Si

2 (1 −χ) + (1 +χ). (5.68)

Thus, the interaction Hamiltonian becomes

HI ≃
N−1∑
i=1

Rℓ2

2

[
− (1 −χ)

2 (Si+1 +Si)
]2

= R

4 ℓ
2(1 −χ)2(N − 1) − J

N−1∑
i=1

Si+1Si, (5.69)

where
J = −R

4 ℓ
2(1 −χ)2. (5.70)

This proves that we can approximate the behavior of the chain with the NNN elements by means
of a classical Ising chain. We observe that when J > 0 (R < 0) we are in a ferromagnetic case,
and when J < 0 (R> 0) in the antiferromagnetic one. For this reason, in this work, we adopted
the overall Hamiltonian given by Eq.(5.4), where we neglected the irrelevant constant in HI .

5.8.2 Partition function for the Gibbs ensemble

For the Gibbs ensemble, using Eq.(5.5), the partition function can be evaluated as

ZG(f̃) = ℓN
∑
{Si}

∫
R

N
e−β̃(H̃−f̃

∑N

i=1 λi)dλ1 . . .dλN

= ℓN
∑
{Si}

e
−β̃
(∑N

i=1 Q̃(Si)−
∑N−1

i=1 SiSi+1
)

×
∫
R

N
e

β̃
∑N

i=1

[
K̃(Si)

2 (λi−λ0(Si))2−f̃λi

]
dλ1 . . .dλN ,

(5.71)

where f̃ is the dimensionless force applied to the last unit of the chain. Each sum on Si

(i= 1, . . . ,N) must be interpreted as a sum over the values +1 and −1. By a Gaussian integration,
we obtain

ZG(f̃) = ℓN
∑
{Si}

eβ̃
∑N−1

i=1 SiSi+1
N∏

i=1

√
2π

β̃K̃(Si)
e

β̃

(
f̃2

2K̃(Si) +λ0(Si)f̃−Q̃(Si)
)
. (5.72)

We can define

c(Si) =
√

2π
β̃K̃(Si)

e
β̃

(
f̃2

2K̃(Si) +λ0(Si)f̃−Q̃(Si)
)
, (5.73)

so that we obtain

ZG(f̃) = ℓN
∑
{Si}

√
c(S1)

[
N−1∏
i=1

eβ̃SiSi+1
√
c(Si)c(Si+1)

]√
c(SN ). (5.74)
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In order to explicitly evaluate the summation we can use the transfer matrix method [302]. We
obtain

ZG(f̃) = w⊺T N−1w, (5.75)

where we have defined the transfer matrix T and the vector w (taking care of the boundary
conditions) as follows

T =
(

eβ̃c− e−β̃√
c+c−

e−β̃√
c+c− eβ̃c+

)
, (5.76)

w =
(√

c−√
c+

)
, (5.77)

with, see Eq.(5.73),
c+ ≜ c(+1), c− ≜ c(−1). (5.78)

By using the standard matrix functions theory [324, 325], we have

T N−1 =
λ̂N−1

1 − λ̂N−1
2

λ̂1 − λ̂2
T +

λ̂1λ̂
N−1
2 − λ̂N−1

1 λ̂2

λ̂1 − λ̂2
I, (5.79)

where I is the 2 × 2 identity matrix and λ̂1,2 are the eigenvalues of T , namely

λ̂1,2 = eβ̃

2

[
c+ + c− ±

√
(c+ − c−)2 + 4c+c−e−4β̃

]
= eβ̃

2

(
c+ + c− ±

√
∆

)
. (5.80)

In Eq.(5.80), λ̂1 (λ̂2) corresponds to the + (−) sign and we have also defined

∆ = (c+ − c−)2 + 4c+c−e
−4β̃ . (5.81)

By substituting λ̂1,2 into Eq.(5.75) and Eq.(5.79), we get the partition function given in Eq. (5.8).

5.8.3 Partition function for the Helmholtz ensemble

We consider here the case with fixed xN (isometric condition), described by the Helmholtz
ensemble, and evaluate the canonical partition function ZH(xN ). The partition functions in the
Gibbs and Helmholtz ensembles are linked by a Laplace transform [98]

ZG(f) =
∫ +∞

−∞
ZH(xN )eβfxNdxN . (5.82)

Thus, one can write ZH(xN ), using the change of variable f → −iω/β, as an inverse Fourier
transform in the complex plane

ZH(xN ) = 1
2π

∫ +∞

−∞
ZG

(
− iω

β

)
eiωxNdω. (5.83)
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To simplify the notation and perform the calculation we define

δ1,2 = e−β̃ λ̂1,2 = 1
2

(
c+ + c− ±

√
∆

)
. (5.84)

Thus, the Gibbs partition function can be written as

ZG(f̃) = (ℓeβ̃)N

2cosh β̃

[
δN

1

(
1 + e−2β̃ δ1 + δ2

δ1 − δ2

)
+ δN

2

(
1 − e−2β̃ δ1 + δ2

δ1 − δ2

)]
. (5.85)

By using the Newton binomial rule to expand the powers δN
1 and δN

2 , we find

ZG(f̃) =
(
ℓeβ̃

2

)N
1

2cosh β̃

{
N∑

k=0

(
N

k

)
(c+ + c−)N−k∆

k
2
[
1 + (−1)k

]

+
N∑

k=0

(
N

k

)
(c+ + c−)N−k+1e−2β̃∆

k−1
2
[
1 − (−1)k

]}
.

(5.86)

Here, we can separate the even and odds terms as follows

N∑
k=0

ak =
[ N

2 ]∑
k=0

a2k +
[ N−1

2 ]∑
k=0

a2k+1, (5.87)

where the square brackets in the sums stand for the floor function defined as [x] = max{n ∈ Z|n≤ x}.
Then, we get

ZG(f̃) = (ℓeβ̃)N

2N cosh β̃


[ N

2 ]∑
k=0

(
N

2k

)
(c+ + c−)N−2k∆k

+ e−2β̃

[ N−1
2 ]∑

k=0

(
N

2k+ 1

)
(c+ + c−)N−2k∆k

 .
(5.88)

We can further develop the powers ∆k and (c+ + c−)N−2j through the Newton binomial rule,
obtaining

ZG(f̃) = (ℓeβ̃)N

2N cosh β̃

{[ N
2 ]∑

k=0

k∑
j=0

N−2j∑
s=0

(
N

2k

)(
k

j

)(
N − 2j
s

)
× cN−j−s

− cj+s
+ (−1)j4j

(
1 − e−4β̃

)j

+ e−2β̃

[ N−1
2 ]∑

k=0

k∑
j=0

N−2j∑
s=0

(
N

2k+ 1

)(
k

j

)(
N − 2j
s

)

× cN−j−s
− cj+s

+ (−1)j4j
(

1 − e−4β̃
)j
}
.

(5.89)

Finally, Eq. (5.83) can be evaluated, yielding the canonical partition function within the Helmholtz
ensemble given in Eqs.(5.14) and (5.15).
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5.8.4 Asymptotic force-extension relation for the zipper model under isometric
condition

Let us then introduce the average chain stretch λ̄= xN
ℓN , prescribed to the chain under isometric

conditions. By using Eqs.(5.16) and (5.52), we obtain the force-extension relation in the form

⟨f̃⟩ =
(F0G0 +FNGN )

(
1 − e−2β̃

)
+ e−2β̃

∑N
ξ=0F (ξ)G(ξ)

(F0 +FN )
(

1 − e−2β̃
)

+ e−2β̃
∑N

ξ=0F (ξ)
, (5.90)

where we introduced the following functions

G(ξ) = k̂

(
ξ

N

)
(N − ξ)(λ̄− 1) + ξ(λ̄−χ)

N
, (5.91)

F (ξ) =
exp

{
−β̃
[
k̂
(

ξ
N

)
[(N−ξ)(λ̄−1)+ξ(λ̄−χ)]2

2N +∆Ẽξ
]}

√
Nαξ/k̂

(
ξ
N

) , (5.92)

we defined the rescaled global stiffness of the system (with 0 ≤ t≤ 1)

k̂(t) =
(

1 − t

k̃
+ t

αk̃

)−1
, (5.93)

and we used the compact notations F0 = F (0),G0 =G(0),FN = F (N),GN =G(N). Let us now
consider the behavior in the thermodynamical limit N → ∞. By following the approach suggested
in Refs.[1, 93] to obtain explicit analytical results, not only for the stress plateau but also for the
stress peak, we may consider the Euler-MacLaurin (EM) approximation for a given function ϕ

N∑
ξ=0

ϕ(ξ) ≃
∫ N

0
ϕ(ξ)dξ+ ϕ(0) +ϕ(N)

2 , (5.94)

where higher-order terms of the EM approximation would lead to more detailed, but analytically
cumbersome results. Thus, from Eq.(5.90) we get

⟨f̃⟩ =
(F0G0 +FNGN )

(
1 − e−2β̃

2

)
+ e−2β̃

∫ N
0 F (ξ)G(ξ)dξ

(F0 +FN )
(

1 − e−2β̃

2

)
+ e−2β̃

∫ N
0 F (ξ)dξ

. (5.95)

To simplify the calculation, we may rewrite the integrals as∫ N

0
F (ξ)dξ =

√
N

∫ 1

0
eNg(η)

√
k̂(η)dη, (5.96)∫ N

0
F (ξ)G(ξ)dξ =

√
N

∫ 1

0
eNg(η)

√
k̂(η)f(η)dη, (5.97)
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where we introduced the phase fraction η = ξ/N and the auxiliary functions

g(η) = η

2 log 1
α

− β̃

(
η∆Ẽ+ k̂(η) [(1 − η)(λ̄− 1) + η(λ̄−χ)]2

2

)
, (5.98)

f(η) = k̂(η)
[
(1 − η)(λ̄− 1) + η(λ̄−χ)

]
. (5.99)

Now, we use the following general results [326, 327].

Let
I(x) =

∫ b

a
exG(t)F(t)dt, (5.100)

then, we have

1. Suppose F is bounded and continuous on (a, b), and F(a)F(b) , 0. Suppose also that G
is strictly monotone and differentiable and that F(a)

G′(a) and F(b)
G′(b) both exist as finite reals,

defined as limits if either endpoint is infinite. Assume also that the integral in Eq.(5.100)
exists for all x > 0. Then, we have that

I(x) ≃
x→∞

1
x

F(b)
G′(b)e

xG(b) − 1
x

F(a)
G′(a)e

xG(a). (5.101)

2. Suppose F is bounded and continuous on (a, b), that G has unique maximum at some c in
the open interval (a, b), G is differentiable in some neighborhood of c, G′′(c) exists and is
G′′(c)< 0, and that F(c) , 0. Then, we have that

I(x) ≃
x→∞

√
2πF(c)exG(c)√

−xG′′(c)
. (5.102)

We use the results in Eqs.(5.101) and (5.102) to analyze the behavior of the integrals defined in
Eqs.(5.96) and (5.97). First, by using Eq.(5.98), we obtain

∂g

∂η
= β̃k̂(η)

[
(1 − η)(λ̄− 1) + η(λ̄−χ)

]
(χ− 1) − β̃∆Ẽ+ 1

2 log 1
α

+ β̃[k̂(η)]2

2 [(1 − η)(λ̄− 1) + η(λ̄−χ)]2
(

1
αk̃

− 1
k̃

)
.

(5.103)

Solving ∂g
∂η = 0, we obtain the solution η0 that represents the stationary point to be computed.

Thus, following the definition in Eq.(5.99), we also introduce the value

f̃0 = f̃(η0) = k̂(η0)
[
(1 − η0)(λ̄− 1) + η0(λ̄−χ)

]
. (5.104)

We observe that the equation ∂g
∂η = 0 can be written in terms of f̃0 as

1
2 log

(
1
α

)
− β̃

[
∆Ẽ− (χ− 1)f̃0 −

(
1
α

− 1
)
f̃2

0
2k̃

]
= 0, (5.105)

that coincides with Eq.(5.30) (i.e. with δ = 0). Thus, we identify f̃0 with the Maxwell force f̃M .
Now, we can use Eq.(5.102) (stationary phase theorem) to simplify Eqs.(5.96) and (5.97) only if
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0 < η0 < 1 (the stationary point must be within the integration interval). For η0 = 0, we have
f̃0 = (λ̄− 1)k̃, and for η0 = 1, we have f̃0 = (λ̄−χ)αk̃, as given by Eq.(5.104). Hence, the interval
0 < η0 < 1 is equivalent to 1 + f̃0

k̃
< λ̄ < χ+ f̃0

αk̃
, which corresponds to the force plateau region

between the two elastic branches. Therefore, only in the plateau interval, we do have a stationary
point and we can approximate Eqs.(5.96) and (5.97) with Eq.(5.102). The application of the
stationary phase method is further justified by the relation g′′(η0)< 0, simply proved by a direct
evaluation

g′′(η0) = −β̃k̂(η0)
[(
χ+ f̃0

αk̃

)
−
(

1 + f̃0

k̃

)]2
< 0. (5.106)

Note that from now on, we use the notation f̃M for the quantity f̃0, to be consistent with previous
Sections. We obtain from Eq.(5.95) the expression

⟨f̃⟩ =
CN

[
e∆g0N (λ̄− 1)k̃

1
2 + e∆g1N (λ̄−χ)(αk̃)

3
2
]

+ f̃M

CN

[√
k̃ e∆g0N +

√
αk̃ e∆g1N

]
+ 1

, (5.107)

where

∆g0 = g(0) − g(η0) = − β̃k̃

2

[
λ̄−

(
1 + f̃M

k̃

)]2
, (5.108)

∆g1 = g(1) − g(η0) = − β̃αk̃

2

[
λ̄−

(
χ+ f̃M

αk̃

)]2
, (5.109)

CN = 2e2β̃ − 1
2

√
β̃

2πN

[
χ+ f̃M

αk̃
−
(

1 + f̃M

k̃

)]
. (5.110)

This is the main result given in Eqs.(5.53)-(5.56) of the main text. Considering that ∆g(0)< 0
and ∆g(1)< 0 (since g(η0) is the maximum value of g(η) in the interval 0< η < 1), we may prove
that in the thermodynamic limit

lim
N→∞

⟨f̃⟩ = f̃M , (5.111)

which is valid for 1 + f̃M

k̃
< λ̄ < χ+ f̃M

αk̃
, and meaning that the Maxwell force is the same for both

the Helmholtz and Gibbs ensembles, proving their equivalence for the zipper model.

In order to conclude the analysis, we have to simplify Eq.(5.95) also for the external regions,
i.e. for λ̄ < 1 + f̃M

k̃
and λ̄ > χ+ f̃M

αk̃
. Hence, we suppose that the critical point η0 is external to

the interval (0,1). We can have either η0 < 0 or η0 > 1. In these cases, the asymptotic behavior
of the integrals in Eqs.(5.96) and (5.97) is described by Eq.(5.101). Then, Eq.(5.95) assumes the
form

⟨f̃⟩ =
eNg(0)k̃

3
2 (λ̄− 1) + eNg(1)(αk̃)

3
2 (λ̄−χ) + 2

2e2β̃−1
A

eNg(0)
√
k̃+ eNg(1)

√
αk̃+ 2

2e2β̃−1
B

, (5.112)
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where

A = (αk̃)
3
2

g′(1) e
Ng(1)(λ̄−χ) − k̃

3
2

g′(0)e
Ng(0)(λ̄− 1), (5.113)

B =
√
αk̃

g′(1)e
Ng(1) −

√
k̃

g′(0)e
Ng(0). (5.114)

Now, by using Eq.(5.105), we determine the quantity g(1) − g(0) that eventually reads

g(1) − g(0) = β̃k̃

2

[(
λ̄− 1 − f̃M

k̃

)2
−α

(
λ̄−χ− f̃M

αk̃

)2]
. (5.115)

Accordingly, in the limit of N → ∞, we obtain

g(1) − g(0)


> 0 if λ̄ > χ+ f̃M

αk̃
⇒ ⟨f̃⟩ = αk̃(λ̄−χ),

< 0 if λ̄ < 1 + f̃M

k̃
⇒ ⟨f̃⟩ = k̃(λ̄− 1),

(5.116)

a result representing the elastic branches in the external regions, corresponding to the fully
folded (left) and fully unfolded (right) phases. This completes the proof of the equivalence of the
ensembles in the thermodynamic limit for the zipper model.
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Chapter6
Thermal effect on brittle fracture and
brittle-to-ductile transition

6.1 Introduction
The mechanical degradation of materials typically results from the insurgence of cracks, from

their geometric arrangement and interactions, and, finally, from temperature. The classical
Griffith energetic approach in fracture mechanics deduces that under the same homogeneous stress
σ, a single slit crack with half-length L grows if σ >

√
2γsE′/(πL), while if σ <

√
2γsE′/(πL), it

remains stable [119, 328]. Here, E′ is the equivalent elastic modulus, equal to the Young modulus
E in plane stress condition, and equal to E/(1 − ν2) in plane strain condition, where ν is the
Poisson ratio of the material. Moreover, γs is the surface energy density, that is, the energy
expended to debond a unit-length crack. This stability criterion measures an energy competition
between the free surface energy created by the fracture and the elastic energy stored in the
deformable solid. The latter has been evaluated within the linear elasticity theory by Inglis [329]
and Kolosoff [330] and used by Griffith to develop his criterion. The ingenious approach proposed
by Griffith in his celebrated criterion has been largely and successfully tested in glass and other
brittle materials containing cracks of controlled length [331, 332], and also validated by atomistic
simulations in ideal mono-crystalline systems [333, 334]. Its main limiting hypothesis is that the
overall fracture energy coincides with the surface energy, i.e. with the energy needed to break
the bonds between the two crack faces. Since Griffith’s theory fails to apply to ductile materials
(where fracture energy is much higher than the only surface energy [335, 336]) it was generalized by
Irwin to include plastic dissipation [120, 121]. More advanced models for ductile fracture, taking
into account an explicit description of the ‘cohesive zone’ where the plastic processes localize, have
then been proposed by Dugdale and Barenblatt [134, 135]. The theoretical relationship between
Griffith’s theory, its Irwin modification, and the Dugdale-Barenblatt models was initially studied
by Willis [337] and further investigated by Rice through the concept of J-integral [338]. In addition
to the single fracture study, an important topic in linear elastic fracture mechanics is represented
by the collective degradation mechanism induced by populations of cracks that interact depending
on their geometric arrangement [199, 200, 339–347]. Due to the wide scientific and technological
interest, the theoretical and experimental studies of fracture phenomena have been extremely
extensive. Therefore, its history is long and complicated and, here, we refer the reader to the
relevant literature [348–352]. We simply mention that current advanced researches concern the
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traction-separation relation in cohesive models [353, 354], the instability in dynamic fracture
[148, 355], and the variational approach to fracture [356, 357]. Computational techniques for
cracks propagation include the phase field method and the dual-horizon peridynamics formulation
[358–361]. Other efficient numerical techniques to study fracture propagation in dynamic regime
with viscosity and/or thermal coupling are based on the finite elements method [362–364].

Previously described investigations are predominantly based on deterministic assumptions and
theories. Of course, also statistical approaches have been widely applied to rupture phenomena
[365–370], and among others those based on the so-called fiber bundle model are particularly
significant [371–374]. Importantly, the statistical analysis plays a crucial role in understanding the
effect of disorder in failure processes and other micromechanical problems [136–147]. Despite the
wide diffusion of statistical techniques, the approaches that allow studying the effects of thermal
fluctuations on the fracture are rather limited [149, 375–382]. In particular, the temperature
dependence of crack stability criteria has not been studied explicitly. For this reason, we propose
here two paradigmatic models able to evaluate the effects of thermal fluctuations on the quasi-
static brittle fracture and on the brittle-to-ductile transition. These approaches make it possible to
study how fracture stability is influenced by temperature changes and to determine the transition
temperature between brittle and ductile behaviors. The proposed fracture models are based
on equilibrium statistical mechanics and they are implemented by means of the spin variable
approach, useful to deal with arbitrarily non-convex potential energies [91]. This method has
been largely applied to several situations including the physics of muscles [74, 75], the folding
of macromolecules [92, 94, 95, 102, 164], the adhesion or peeling processes [1, 93], the phase
transformations in solids [2, 165], and the stick-slip on rigid substrate [166]. This technique
complements the more classical methods used to study the behavior of physical systems with
multiple stable and metastable states [27, 53–55]. In the context of fracture, the prototypical
models here proposed are discrete and based on quasi-one-dimensional lattices composed of
breakable and unbreakable bonds. While the unbreakable springs serve to distribute the forces in
the system, thus describing material elastic energy, the breakable springs are useful in mimicking
the fracture propagation. It is important to note in this context that the role of discreteness in
fracture models has already been highlighted in different studies [383–386].

In the first model proposed here (elasto-fragile model), developed to describe temperature
effects in brittle fracture, each breakable spring can be in one of two states, intact or broken,
depending on its extension. Conversely, in the second proposed model (softening-fracture model),
useful to describe temperature effects in brittle-to-ductile transitions, each breakable spring can
be in one of three states, intact, softened, or broken, depending again on the spring extension. In
our model, the softened state represents an intermediate configuration where the elastic constant
of the spring is smaller than that of the intact spring, but it is still not zero as instead assumed for
the broken configuration. This intermediate state represents here the counterpart of the material
behavior of the cohesive zone introduced in the Dugdale-Barenblatt model, having also the role
of introducing an internal length scale. Both proposed models are approached by calculating
the exact partition function, by an approximation obtained for large values of the number N of
breakable springs, and, finally by the analysis of the thermodynamic limit. This multifaceted
treatment allows us to state that both models exhibit a critical behavior with an associated phase
transition, whose mechanical implications are thoroughly discussed. In our opinion, the results are
particularly useful for the interpretation of failure processes in micro- and nano-systems, where
the effect of temperature is typically studied experimentally and through molecular dynamics
simulations [122–133]. We want to emphasize that our models, being discrete and addressed to
the study of thermal fluctuations, neglect important aspects related to the distribution of elastic
fields around the fracture. This is consistent with the fact that they are not developed to replace
classical models of continuum mechanics but rather to provide new elements to improve and
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complement them.
This Chapter is structured as follows. In Section 6.2, we introduce the first model for the

brittle fracture and we apply the tools of statistical mechanics to eventually obtain exact results.
Then, in Section 6.3, we obtain an approximate analytic solution for systems with a large number
N of breakable springs, and in Section 6.4, we study the thermodynamic limit with N → ∞. This
allows for a generalization of Griffith’s criterion that takes temperature into account by means of
critical behavior. Concerning the model with the softening mechanism, we introduce its structure
and we elaborate its formalism in Section 6.5. Further, we obtain its asymptotic behavior for
large values of N in Section 6.6, and we study the thermodynamic limit with N → ∞ in Section
6.7. Here we obtain the closed-form expression for the brittle-to-ductile transition temperature
and describe the corresponding complex critical scenario.

6.2 Elasto-fragile model
We introduce here a discrete model that helps us to better understand the effect of thermal

fluctuations on the brittle fracture processes in solid materials. As shown in Fig.6.1, the model
consists of a network of springs with different elastic constants arranged in a quasi-one-dimensional
lattice, aimed at reproducing a mode I fracture geometry [346]. Based on symmetry assumptions,
we reduce the scheme in Fig.6.1(a) to the one in Fig.6.1(b). The structure in Fig.6.1(b) connects
a fixed substrate, at y = 0, with a rigid top layer that can be placed at different heights y = Y
(isometric conditions within the Helmholtz ensemble). More in detail, see Fig.6.1(b), this structure
is composed of a series of N+1 springs, with elastic constant k, linked together to form a horizontal
chain (colored in purple). The left end-side of the chain, at i= 0, is attached to the bottom fixed
substrate at y = 0 while the other end, located at i=N + 1, is attached to the top layer at y = Y .
The inner points of the chain, identified by i= 1, . . . ,N , are individually linked to the top layer
through N springs with elastic constant l (colored in yellow), mimicking the elasticity of the
upper half plane. Moreover, the first ones (i= 1, . . . ,η), are linked to the bottom layer through η
breakable springs (intact in blue, broken in red). We assume that it exists an elongation threshold
YM after which the potential energy for a breakable spring is constant and the resulting elastic
force is zero (broken state), see Fig.6.2. The behavior of a single breakable spring corresponds to
an elastic constant h when its elongation yi does not exceed the threshold YM (blue continuous
curve in Fig.6.2). When |yi|> YM the potential energy is constant and then the resulting force is
zero (red continuous lines in Fig.6.2).

We remark that we adopted here simple piecewise linear constitutive equations for the springs
of the system. We wish to mention that several important results have been obtained for the
crack propagation in nonlinear materials described by power-law stress-strain behavior [387–389].
However, from one side it is difficult to combine the thermal analysis with nonlinear materials,
and from the other side, the nonlinear phenomena are rather limited in nanoscopic systems [124,
125]. It is also worth mentioning that due to the discrete quasi-one-dimensional structure of
our model, it is not possible to find here the results concerning the stress singularities at the
crack tip and the calculation of the corresponding stress intensity factor (this is true for both the
elasto-fragile model and the softening-fracture model) [343, 346].

We analyze the fracture behavior of the proposed model in the framework of equilibrium
statistical mechanics, introducing a temperature T of an embedding thermal bath. As previously
anticipated, we investigate its behavior by adopting isometric conditions corresponding to the
Helmholtz ensemble [98, 109, 390]. We make the assumption that, during the system extension
(i.e., increasing Y ), the system is composed of a segment with ξ intact elements on the left
side of the system, and of a segment with η− ξ broken elements on the right. As a result, the
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Figure 6.1: Panel (a): scheme of a crack propagating within an arbitrary crystal lattice. Panel
(b): reduced scheme of the elasto-fragile model, based on symmetry assumption. The central
chain (colored in purple) is composed of N + 1 linear elastic springs of elastic constant k. The
nodes of this chain are connected to the top layer of the system (at y = Y ) with N linear elastic
springs of elastic constant l (colored in yellow). Moreover, the first η nodes (i= 1, . . . ,η) are also
linked to the bottom layer (at y = 0) through η breakable springs of elastic constant h (intact in
blue, broken in red). We underline that the first node (i= 0) and the last one (i=N + 1) are
anchored to the bottom and the top layer, respectively. Hence, the first and the last shear springs
fix the direction of the crack propagation from the right to the left of the system.

system evolution is characterized by the propagation of a single interface between intact and
broken springs, regulated by the assigned traction conditions and by the temperature. This
hypothesis (known as the single domain wall assumption) simplifies the calculations and makes
it possible to analytically derive the partition function and, thus, the important macroscopic
physical quantities. The same hypothesis is considered in the classical continuum fracture models
recalled in the introduction. The configurations previously described can be summarized by the
relation 1 ≤ ξ ≤ η ≤N , where ξ represents the domain wall or interface position. We remark that
the last N−η sites of the chain are always considered disconnected from the bottom layer in order
to simulate a possible existing initial fractured domain. This is coherent with the assumption of
an initial crack extension in the classical Griffith criterion, which is the milestone of the linear
elastic fracture mechanics [119, 328].
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Figure 6.2: Potential energy of a single breakable spring with elastic constant h (continuous red
and blue curve on the left) and corresponding force (continuous red and blue curve on the right).
The quantity YM is the elongation after which the spring breaks, resulting in a force equal to
zero. The dashed curves correspond to the spin approximations energy profile.

Based on previous key premises, the total energy of the system is

ΦH(y1, ...,yN , ξ) =
N∑

i=0

k

2 (yi+1 − yi)2 +
N∑

i=1

l

2(Y − yi)2

+
ξ∑

i=1

h

2 y
2
i +

η∑
i=ξ+1

h

2Y
2

M ,

(6.1)

with the boundary conditions y0 = 0 and yN+1 = Y . Here, the variables yi represent the vertical
coordinates of the lattice points while ξ assigns the discrete interface position. Observe that the
first addend of Eq.(6.1), proportional to the elastic constant k, is the energetic contribution of
the shear unbreakable springs. We remark that the use of the shear springs with elastic constant
k is an approximation valid under the small deformation assumption (in our models the central
nodes can only move vertically). The second addend, proportional to the elastic constant l, is the
contribution of the vertical unbreakable springs that connect the upper layer to the inner lattice
points. Finally, the energetic contribution proportional to the elastic constant h, regarding the
breakable springs, is split into two addends: the first one corresponds to the unbroken springs
(going from i = 1 to i = ξ) and the second one corresponds to the broken ones (from i = ξ+ 1
to i = η). Again, the assumption of linear elastic springs, as typical in linear elastic fracture
mechanics, allows for a proper description of fracture effects under the hypothesis of small strains.
Such a simplification is crucial for the following analytical treatment. The energy contribution
associated with broken bonds corresponds to the surface energy of the two exposed sides of the
fracture, originally introduced by Griffith in the overall energy balance and eventually yielding
his classical stability criterion [119].
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The energy in Eq.(6.1) can be rewritten as

ΦH = k

2

 N∑
i=1

(
2 + l

k

)
y2

i +
ξ∑

i=1

h

k
y2

i −
N−1∑
i=1

yi+1yi −
N−1∑
i=1

yiyi+1


+ kY

[
−

N∑
i=1

l

k
yi − yN

]
+ 1

2kY
2 + 1

2 lNY
2 + 1

2hY
2

M (η− ξ).

(6.2)

We can introduce the following N -component vectors

yT =
(
y1 y2 . . . yN

)
∈ R

N , (6.3)
vT =

(
β . . . β 1 +β

)
∈ R

N , (6.4)

and the tridiagonal matrix

A =



a1 −1 0 0

−1

0 0

−1
0 0 −1 aN


, (6.5)

where the diagonal components ai are defined as follows

ai =
{

2 +α if 1 ≤ i≤ ξ,

2 +β if ξ+ 1 ≤ i≤N,
(6.6)

with
α= l+h

k
, β = l

k
, (6.7)

measuring extension versus shear springs stiffness of the lattice. Adopting the matrix A and the
vectors y and v, we can write Eq.(6.2) as

ΦH = 1
2kyTAy − kY vTy + 1

2kY
2 + 1

2 lNY
2 + 1

2hY
2

M (η− ξ). (6.8)

This new compact expression is more suitable to evaluate the partition function of the system,
defined by

ZH(Y ) =
η∑

ξ=0

∫
R

N
e

− ΦH
KBT dy1 . . .dyN . (6.9)

Here, we have integrated the continuous coordinates yi and we have summed over the discrete or
spin variable ξ identifying the interface position. We have

ZH(Y ) =
η∑

ξ=0
exp
{

− kY 2

2KBT
− lNY 2

2KBT
−
hY 2

M (η− ξ)
2KBT

}
Iξ, (6.10)

where
Iξ =

∫
R

N
exp
{

− k

2KBT
yTAy + kY

KBT
vTy

}
dy1 . . .dyN . (6.11)
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By using the classical Gaussian integral,∫
R

N
e−yTMy+wTydy1 . . .dyN =

√
πN

detM
e

1
4 wTM−1w, (6.12)

which is valid for a positive definite symmetric matrix M (as can be shown for the tridiagonal
matrix A) and for any vector w, we get

Iξ =
√

(2πKBT )N

kN detA
exp
{

kY 2

2KBT
vTA−1v

}
. (6.13)

Thus, the partition function can be written as

ZH(Y ) =
η∑

ξ=0
exp
{

− kY 2

2KBT
− lNY 2

2KBT
−
hY 2

M (η− ξ)
2KBT

}

×
√

(2πKBT )N

kN detA
exp
{

kY 2

2KBT
vTA−1v

}
.

(6.14)

Since A depends on ξ, see Eqs.(6.5) and (6.6), both A−1 and detA depend on ξ in the sum of
Eq.(6.14). In Appendix 6.9.1, we discuss an efficient method to determine A−1 and detA for a
tridiagonal matrix. This method will be used to obtain asymptotic expressions, useful to study
the system behavior for large values of N (and for the thermodynamic limit). Introducing the
quantity

q = 1 +βN − vTA−1v, (6.15)

we can write the partition function in the form

ZH(Y ) =
η∑

ξ=0

√
(2πKBT )N

kN detA
exp
{[

−hY 2
M (η− ξ) − kY 2q

2KBT

]}
. (6.16)

We can now evaluate the expected values of macroscopic quantities. For example, the
expectation value of the force applied to the system is [98, 109, 390]

⟨f⟩ = −KBT
1
ZH

∂ZH

∂Y
, (6.17)

resulting in

⟨f⟩ =

∑η
ξ=0(detA)− 1

2 exp
{

−hY 2
M

(η−ξ)−kY 2q

2KBT

}
q

∑η
ξ=0(detA)− 1

2 exp
{

−hY 2
M

(η−ξ)−kY 2q

2KBT

} kY. (6.18)

This expression gives a physical interpretation to the expectation value ⟨q⟩ of the variable q.
Since ⟨f⟩ = k⟨q⟩Y , the quantity k⟨q⟩ represents the effective stiffness ⟨f⟩/Y of the system. Using
a similar analysis, it is possible to obtain the average value of the number of unbroken bonds,
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Figure 6.3: Behavior of the brittle-fracture model with a variable number of units (N =
{50,125,200} from faded to vivid curves) and a variable thermal to elastic energy ratio
KBT/(hY 2

M ) = {0.5,2} (blue and red curves, respectively). The dimensionless quantities
⟨f⟩/(NhYM ) and ⟨ξ⟩/N are represented versus the dimensionless parameter Y/YM , where,
in both cases, l/h= k/h= 1. We also fixed η =N , which means there are no missing or broken
elements in the initial configuration.

which is given by

⟨ξ⟩ =

∑η
ξ=0(detA)− 1

2 exp
{

−hY 2
M

(η−ξ)−kY 2q

2KBT

}
ξ

∑η
ξ=0(detA)− 1

2 exp
{

−hY 2
M

(η−ξ)−kY 2q

2KBT

} . (6.19)

In Fig.6.3, we show the main effects on the fracture behavior of both temperature T and
discreteness parameter N . The main effect that can be observed is related to temperature,
which is able to shift the value of the extension corresponding to the fracture of the system. In
particular, we may observe that, as typically experimentally observed, the higher the temperature,
the lower the force and the extension required to induce fracture. The model then predicts a
thermally activated fracture phenomenon. As described in the following, in the thermodynamic
limit (i.e., for N → ∞), this behavior can be theoretically interpreted as a phase transition.
We can observe now (see Fig.6.3) that, as the discreteness parameter N increases, the force-
displacement curves become sharper, increasing the brittleness of the system. In summary, the
model exhibits a temperature-dependent brittle behavior, which can be thoroughly described by
analytic expressions for large values of N , obtained in the following Section.

6.3 Asymptotic behavior of the elasto-fragile model

Eqs.(6.18) and (6.19) determine the expected value of ⟨f⟩, the force applied to the system, and
the average value ⟨ξ⟩ of the number of intact bonds as functions of both the assigned displacement
Y and of the temperature T . Here, to give a clearer physical interpretation of such results, we
obtain analytical approximated relations, effective in the case of large values of N . In particular,
for large values of N , we have (see Appendix 6.9.2)

q ≃ lh

l+h

ξ

k
+ ϵ, (6.20)
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Figure 6.4: Comparison between the approximated quantities given by Eqs.(6.28) and (6.31)
(dashed lines) and the corresponding exact results in Eqs.(6.18) and (6.19) (continuous lines) for
⟨f⟩/(NhYM ) and ⟨ξ⟩/N versus the dimensionless extension Y/YM . The thermal to elastic energy
ratio KBT/(hY 2

M ) is set to 0.5 (blue curves) and 2 (red curves). The total number of units is set
to N = 50 (faded curves) and to N = 200 (vivid curves). The dimensionless quantities are set to
l/h= 1 and k/h= 1. We also considered η =N .

where

ϵ=
√
β2 + 4β−β

2 > 0 (6.21)

and
detA ≃ τ ξ

ατ
N−ξ
β , (6.22)

with
τs = 2 + s+

√
s2 + 4s

2 , s= α,β. (6.23)

By using Eq.(6.18), we obtain the following asymptotic expression of the force-extension relation

⟨f⟩ ≃

∑η
ξ=0 exp

{
− ξ

2 logδ+ hY 2
M

ξ

2KBT − Y 2
2KBT

lh
l+hξ

}
q

∑η
ξ=0 exp

{
− ξ

2 logδ+ hY 2
M

ξ

2KBT − Y 2
2KBT

lh
l+hξ

} kY, (6.24)

where we introduced δ = τα/τβ . After defining

z = exp
{

−1
2 logδ+

hY 2
M

2KBT
− Y 2

2KBT

lh

l+h

}
, (6.25)

and adopting similar considerations for the quantity ⟨ξ⟩, we may easily deduce

⟨f⟩ ≃

(
kϵ+ lh

l+h

∑η
ξ=0 ξz

ξ∑η
ξ=0 z

ξ

)
Y, (6.26)

⟨ξ⟩ ≃
∑η

ξ=0 ξz
ξ∑η

ξ=0 z
ξ
, (6.27)
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for large values of N . Combining Eqs.(6.26) and (6.27), we find

⟨f⟩ ≃
(
kϵ+ lh

l+h
⟨ξ⟩
)
Y. (6.28)

So, if we calculate the expectation value of intact elements ⟨ξ⟩, we also deduce the force-extension
relation ⟨f⟩-Y . To do this in explicit form, we have to evaluate the sums that appear in the
expression of ⟨ξ⟩, i.e.

η∑
ξ=0

ξzξ =
z
[
1 − (η+ 1)zη + ηzη+1]

(1 − z)2 , (6.29)

η∑
ξ=0

zξ = 1 − zη+1

1 − z
, (6.30)

where we adopted the variable z defined in Eq.(6.25). To conclude, we write

⟨ξ⟩ ≃ 1 − (η+ 1)zη + ηzη+1

1 − zη+1
z

1 − z
, (6.31)

These results represent the approximated expressions for the response of the system under
isometric conditions for large values of N . As shown in Fig.6.4 (for η = N), we can observe
that the approximations given in Eqs.(6.28) and (6.31) (dashed lines in the figure) are in perfect
agreement with the exact results (continuous lines), previously obtained in Eqs.(6.18) and (6.19).
We remark that the agreement is very good for different temperatures and for different (large)
values of N . These approximated results are particularly useful to study the thermodynamic
limit or, equivalently, to study the limiting case for N → ∞, as discussed below.

6.4 Thermodynamic limit of the elasto-fragile model

We perform now the limit for N → ∞. Since previous asymptotic results in Eqs.(6.28) and
(6.31) depend on powers of z, we study the inequality z > 1. To verify this condition we need
to set the argument of the exponential in Eq.(6.25) larger than zero, obtaining the following
condition on Y

|Y | ≤
√
l+h

lh

[
hY 2

M −KBT logδ
]
≜ Ys, (6.32)

where we introduced the critical extension Ys, the physical interpretation of which will be
given below. We also define a critical temperature Tc for the system through the condition
hY 2

M −KBTc lnδ = 0 (see Eq.(6.32)) that, once solved for Tc, gives

Tc =
hY 2

M

KB log

2 + l+h
k +

√(
l+h

k

)2
+ 4 l+h

k

2 + l
k +

√(
l
k

)2
+ 4 l

k


, (6.33)

where we used δ = τα/τβ . This is a specific value of the temperature, depending on the main
material parameters of the system, which corresponds to a phase transition, as discussed below.
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Figure 6.5: Comparison between the thermodynamic limit obtained for N → ∞ (red and blue
curves) and the approximations obtained with large values of N (soft colors). We plotted
⟨f⟩/(NhYM ) and ⟨ξ⟩/N versus the dimensionless extension Y/YM . The thermal to elastic energy
ratio is set to KBT/(hY 2

M ) = 0.5 (in blue) and to KBT/(hY 2
M ) = 2 (in red) while the total number

of units for the large N approximation is set to N = 500. The dimensionless quantities are set to
l/h= 1 and k/h= 1. Moreover, we adopted η =N corresponding to ϕ= 0.

For the moment, we can write

z > 1 ⇐⇒ |Y | ≤

√
l+h

l
Y 2

M

(
1 − T

Tc

)
≜ Ys (6.34)

so that Ys = 0 when T = Tc.
We first analyze the limit for N → ∞ of the average fraction of intact elements

⟨ξ⟩
N

= 1 − (η+ 1)zη + ηzη+1

1 − zη+1
z

1 − z

1
N

= 1 − zη+1 + (η+ 1)(zη+1 − zη)
1 − zη+1

z

1 − z

1
N

=
(

1
N

+ η+ 1
N

1 − z

z− z−η

)
z

1 − z
. (6.35)

Now, we consider η =N −M , where M = ϕN is the number of initially absent breakable springs
(initial fractured domain). Here, ϕ is the percentage of initially absent breakable springs over the
total number N of elements. The fraction of intact elements is determined as follows

lim
N→∞

⟨ξ⟩
N

=
{

1 −ϕ if z > 1 or |Y |< Ys,

0 if z < 1 or |Y |> Ys.
(6.36)

This means that all elements are broken simultaneously (brittle fracture) when Y = Ys.
For the stress ⟨f⟩/N (density of force over the number of bonds), we get

lim
N→∞

⟨f⟩
N

=
{

lh
l+h (1 −ϕ)Y if z > 1 or |Y |< Ys,

0 if z < 1 or |Y |> Ys.
(6.37)

Thus (see Fig.6.5), after an initial linear behavior, the stress collapses to zero at the extension
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Figure 6.6: Fracture extension Ys/YM (in blue) and fracture strength σs/(hYM ) (in red) versus
the reduced temperature T/Tc. All quantities are written in dimensionless form. We can observe
that both quantities present a critical behavior corresponding to a phase transition for T = Tc.
We adopted l/h= 1, k/h= 1, and ϕ= 0.

threshold Ys. Together with the extension threshold Ys, we can therefore introduce the stress
threshold σs as follows

Ys = YM

√
l+h

l

(
1 − T

Tc

)
, (6.38)

σs = hYM (1 −ϕ)

√
l

l+h

(
1 − T

Tc

)
. (6.39)

In other words, σs is the value of ⟨f⟩/N in correspondence of Y = Ys. We can say that Ys is the
fracture extension while σs is the fracture strength inducing the breaking process.

The behavior of the system is shown in Fig.6.5, where the dimensionless quantities ⟨f⟩/(NhYM )
and ⟨ξ⟩/N are represented versus the dimensionless extension Y/YM . We compared here the
response for a large value of N and the thermodynamic limit. In this limit, the breaking is fully
brittle with temperature-dependent fracture extension and stress. Thus, as typical in collective
phenomena of complex systems, although each breakable spring has a temperature-independent
breakage threshold, the overall system exhibits a temperature-dependent fracture point due to
the interactions between the springs and the thermal bath. In particular, the system undergoes a
phase transition for T = Tc, with both fracture extension and stress decreasing to zero at T = Tc

when the system breaks without any external mechanical actions. This is described in Fig.6.6,
where we plot the dimensionless fracture extension Ys/YM and the dimensionless fracture strength
σs/(hYM ) versus the temperature ratio T/Tc. This critical behavior corresponds to a classical
second-order phase transition. We also remark that Eq.(6.39) represents an extension of the
Griffith criterion of the linear elastic fracture mechanics, accounting for the additional effects
of temperature. From Fig.6.2, we see that the energy necessary to break an element is given by
hY 2

M/2 and then the Griffith surface energy density γs is proportional to hY 2
M/2. Equivalently,

YM is proportional to √
γs and therefore it is easily seen that the fracture strength given in
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Figure 6.7: Tensile strength of [110]-oriented silicon nanowires as a function of temperature for
wires with different diameters: comparison between molecular dynamics simulations results [125]
(symbols) and our theory given by Eq.(6.39) (continuous lines). The parameters used are reported
in the main text.

Eq.(6.39) is proportional to √
γs, exactly as in Griffith’s criterion [119]. Moreover, at a constant

temperature, it is well seen that the breaking strength decreases if ϕ increases, which is exactly
what Griffith’s criterion states [119]. This means that, if the initial system is degraded, a smaller
force is required to continue its mechanical degradation. Of course, our version is quantitatively
different from the original one because of the simplified geometry we used. In particular, we do
not consider the exact elastic energy distributed over the deformed continuum due to fracture.
Our model, however, introduces thermal effects in brittle fracture and, in particular, shows the
phase transition at the critical temperature Tc given in Eq.(6.33).

To show the effectiveness of the obtained results, we analyze the temperature-dependent
fracture behavior of [110]-oriented silicon nanowires [125]. In Fig.6.7, we compare the theoretical
fracture force given by Eq.(6.39) with the molecular dynamics results discussed in Ref.[125].
We observe that the theory well predicts the brittle fracture behavior of the nanowires both
temperature- and diameter-wise (see Fig.4(b) of Ref.[125]). In the figure the theoretical force
in Eq.(6.39) has been divided by the area S pertaining to each breakable spring in order to
obtain the stress σ = ⟨f⟩/(NS) = σs/S. The strain has been determined as ε = Y/ℓ, where ℓ
is the characteristic length scale induced by the crystal structure. For all curves we adopted
the parameters YM = 1.78 × 10−11m, S = 2.27 × 10−21m2, ℓ = 1.82 × 10−10m, k = 88.4N/m,
and KB = 1.38 × 10−23J/K. Moreover, for the blue curve (D = 5nm) we used l = 9.07N/m and
h = 2.00N/m; for the yellow curve (D = 6nm) we used l = 9.54N/m and h = 2.05N/m; for the
red curve (D = 7nm) we used l = 9.94N/m and h = 2.08N/m. While most of the geometrical
parameters were available in the original paper dealing with molecular dynamics simulations, the
other physical parameters (in particular the elastic constants), were fitted to correctly reproduce
the results. The elastic constants take effective values pertinent to the springs of our lattices and
therefore cannot be directly obtained from the data available in the above papers. Interestingly,
all the obtained (fitted) values are reasonable and consistent with the underlying physics of the
system. In particular, the fact that h and l increase with the diameter is consistent with the results
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Figure 6.8: Scheme of the fracture model with the softening mechanism. The central chain
(colored in purple) is composed of N + 1 linear springs with elastic constant k. The nodes of this
chain are connected to the top layer (at y = Y ) by N springs with elastic constant l (colored
in yellow). The first η nodes (i = 1, . . . ,η) are also linked to the bottom layer (at y = 0) by η
softenable and breakable springs with elastic constant h when intact (colored in blue), or p when
softened (colored in green). The broken elements are represented in red. We remark that the
first node (i = 0) and the last one (i = N + 1) are anchored to the bottom and the top layers,
respectively.

of Ref.[125], providing evidence that the nanowires Young modulus E increases with the diameter
(scale effect). This coherence is also quantitative since in our case we have E = ℓ/[(1/l+ 1/h)S],
which assumes the values 130GPa, 135GPa, and 138GPa, for the three diameters 5nm, 6nm, and
7nm, in agreement with Fig.4(a) of Ref.[125]. The good agreement between theory and simulations
makes us confident in the applicability of our theory to micro- and nanoscopic systems.

6.5 Softening-Fracture model

The previous model, useful to describe brittle fracture, is further generalized here to introduce
a material ductile behavior of the elements possibly resulting in a brittle-to-ductile transition.
Specifically, in the same spirit of the Dugdale-Barenblatt model [134, 135], we introduce a cohesive
zone between the elastic and fractured domains of the breakable springs, characterized by two
different states before the broken configuration, depending on their extension yi (see Fig.6.8).
More precisely, each breakable spring presents an elastic constant h when its extension is less than
the softening point Yp, and a lower elastic constant p < h for larger extensions until the breaking
point corresponding to the extension Yb is attained and the link is broken (see Fig.6.9). As we can
see, each breakable element behaves as a spring of elastic constant h when −Yp ≤ yi ≤ Yp. Then,
the spring is softened with an elastic constant p < h when Yp ≤ |yi| ≤ Yb. After the breaking
point Yb, the potential energy is constant and therefore the resulting force is zero. Thus, the
potential energy of a breakable spring is

U(yi) =


1
2hy

2
i if |yi| ≤ Yp,

1
2py

2
i +∆E if Yp ≤ |yi| ≤ Yb,

1
2pY

2
b +∆E if |yi| ≥ Yb.

(6.40)
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Figure 6.9: Potential energy of a single softenable and breakable spring of elastic constants h and
p (continuous curve on the left) and corresponding force (continuous curve on the right). We see
that Yp is the elongation after which the spring is weakened, and Yb is the elongation after which
the spring is broken. The dashed curves correspond to the spin approximation energy landscape.

Given the two elastic moduli h and p (with p < h) and the energy gap ∆E > 0 , we obtain the
softening point

Yp =

√
2∆E
h− p

, (6.41)

which must always satisfy the condition Yp < Yb. Thus ∆E+pY 2
p /2 = hY 2

p /2 is the energy necessary
to weaken one breakable element of the system, and ∆E+ pY 2

b /2 = hY 2
p /2 + p(Y 2

b −Y 2
p )/2 is the

energy necessary to break the element. This reproduces in the discrete context considered here
the Irwin generalization of Griffith’s criterion [120, 121].

The total energy ΦH(y1, . . . ,yN , ξ,χ) of the system is

ΦH =
N∑

i=0

k

2 (yi+1 − yi)2 +
N∑

i=1

l

2(Y − yi)2 +
ξ∑

i=1

h

2 y
2
i

+
χ∑

i=ξ+1

(p
2y

2
i +∆E

)
+

η∑
i=χ+1

(p
2Y

2
b +∆E

)
.

(6.42)

Here we introduced the position ξ of the interface between intact and softened elements, the
position χ of the interface between softened and fully broken elements, and, finally, the position η
of the interface between fully broken and initially absent elements. The value of η corresponds to
the initial state of the system and is therefore fixed. The two interfaces at ξ and χ can move as a
function of temperature and mechanical actions in the system. The aim of this section is to study
the (quasi-static) evolution of these interfaces determining the fracture propagation phenomenon.
The region between ξ and χ, characterized by softened elements, identifies the cohesive zone of the
rupture phenomenon. When the cohesive zone is absent or negligible, the fracture is brittle; on
the other hand, when the cohesive zone is not negligible, the fracture becomes ductile. Therefore,
as we show in the following, this model allows describing the brittle-to-ductile transitions. As in
Section 6.2, we remark that the use of the shear springs with elastic constant k is an approximation
valid under the small deformation assumption (in our models the central nodes can only move
vertically).
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We can rewrite Eq.(6.42) as

ΦH = k

2

 N∑
i=1

(
2 + l

k

)
y2

i +
ξ∑

i=1

h

k
y2

i +
χ∑

i=ξ+1

p

k
y2

i − 2
N−1∑
i=1

yi+1yi


+ kY

[
−

N∑
i=1

l

k
yi − yN

]
+ 1

2kY
2 + 1

2 lNY
2

+
(p

2Y
2

b +∆E
)

(η−χ) + (χ− ξ)∆E.

(6.43)

As before, to simplify the mathematical structure of the energy function, we introduce the vectors
in Eqs.(6.3) and (6.4), and the tridiagonal matrix in Eq.(6.5), where the diagonal elements ai are
now defined as follows

ai =


2 +α if 1 ≤ i≤ ξ,

2 + γ if ξ+ 1 ≤ i≤ χ,

2 +β if χ+ 1 ≤ i≤N,

(6.44)

with the parameters
α= l+h

k
, β = l

k
, γ = l+ p

k
, (6.45)

satisfying the condition β < γ < α. By introducing the matrix A and the vectors y and v, we are
able to write the total energy as

ΦH = k

2 yTAy − kY vTy + k

2Y
2 + l

2NY
2 + p

2Y
2

b (η−χ) + (η− ξ)∆E. (6.46)

We suppose to embed the system in a thermal bath at temperature T and, assuming to be not
far from the thermodynamic equilibrium, we can evaluate the partition function

ZH(Y ) =
η∑

χ=0

χ∑
ξ=0

∫
R

N
e

− ΦH
KBT dy1 . . .dyN . (6.47)

By using Eq.(6.46), it can be evaluated as

ZH(Y ) =
η∑

χ=0

χ∑
ξ=0

Iξ,χe
λξ,χ , (6.48)

where
λξ,χ = − kY 2

2KBT
− lNY 2

2KBT
− ∆E

KBT
(η− ξ) −

pY 2
b

2KBT
(η−χ), (6.49)

and
Iξ,χ =

∫
R

N
exp
{

− k

2KBT
yTAy + kY

KBT
vTy

}
dy1 . . .dyN . (6.50)

Using Eq.(6.12) we get

Iξ,χ =
√

(2πKBT )N

kN detA
exp
{

kY 2

2KBT
vTA−1v

}
. (6.51)



6.5. Softening-Fracture model 163

Summing up, we obtain the partition function as

ZH(Y ) =
η∑

χ=0

χ∑
ξ=0

√
(2πKBT )N

kN detA
e

− kY 2
2KBT (1+βN−vTA−1v)

× exp
{

− ∆E

KBT
(η− ξ) −

pY 2
b

2KBT
(η−χ)

}
.

(6.52)

In this case, by using Eq.(6.17), we get that the expected value of the applied force is

⟨f⟩ =

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

}
q

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

} kY, (6.53)

where we used the definition of q in Eq.(6.15). This is the expression for the average value of
the force necessary to impose the extension Y to the system. Similarly, we obtain the interfaces
positions

⟨ξ⟩ =

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

}
ξ

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

} , (6.54)

⟨χ⟩ =

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

}
χ

η∑
χ=0

χ∑
ξ=0

(detA)− 1
2 exp

{
2∆Eξ+ pY 2

b χ− kY 2q

2KBT

} . (6.55)

These results allow us to fully describe the fracture behavior for a ductile material. In particular,
based on Eqs.(6.54) and (6.55), we are able to determine when the fracture is brittle, without the
region of softened elements, or when the fracture is ductile, i.e., with a non-negligible fraction of
softened elements, representing the cohesive region.

We mentioned the Dugdale and Barenblatt models since historically they are the most
important approaches to introduce a process zone in fracture phenomena. It is useful to remember
that the original Dugdale model has been developed for plane strain conditions. Other approaches
have been developed successively to consider plane stress conditions [391, 392]. However, our
model is composed of a quasi-one-dimensional lattice of springs that does not allow access to
realistic elastic fields in the structure. Hence, it is difficult to quantitatively compare our results
with elastic models in both plane stress and plane strain. Moreover, the Dugdale model does
not account for hardening phenomena, such as our approach, which is completely linear. In
spite of these limitations, the Dugdale model has been generalized for strain-hardening materials
[393, 394]. It is also important to remember that the process zone in real situations extends
beyond the fracture growth plane, a point neglected in both Dugdale’s original model and ours.
In real fractures, the actual deformation is represented by a complicated three-dimensional field,
completely disregarded in our one-dimensional analysis. To conclude, the purpose of our models
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is not to improve aspects related to continuous elastic fields but rather to introduce the effects
of temperature into a simplified model. With this in mind, our approaches are not created to
replace classical ones but only to inform them of how temperature acts in fracture phenomena.

It is also important to discuss the physical meaning of the softened state of breakable springs.
The ductility in metallic materials is related to a population of dislocations originated by the
moving crack, generating a damaged zone near the crack tip with degraded elastic properties
[395–398]. Since we do not have the possibility to consider realistic dislocations in our model,
we introduced the weakened state for the breakable springs, corresponding to the degraded
elastic properties of the damaged zone. In the realistic case, the brittle-to-ductile transition is
controlled by the competition between continuing the fracture (as in the brittle case) or using
an amount of energy to generate dislocations that degrade the material. In our model, we have
similar competition between the intact/broken switching (brittle regime) and the intact/softened
switching (ductile regime). This competition is strongly influenced by temperature and our model
explains this effect in detail. Besides metals, a similar damaged zone, describing the physical
state of the material between the intact and the fully broken conditions, has been also observed
in different systems including concrete [399], soft materials [400, 401], polymeric networks [86,
402], bones [403].

6.6 Asymptotic behavior of the softening-fracture model

Once again to obtain clearer analytic results, we consider the behavior of systems with large
values of N . We have (see Appendix 6.9.2)

q ≃ β2
(
ξ

γ
− ξ

α
− χ

γ
+ χ

β

)
+ ϵ, (6.56)

where ϵ is given in Eq.(6.21), and

logdetA
N

≃ logτβ + ξ

N
log τα

τγ
+ χ

N
log τγ

τβ
, (6.57)

where τα, τβ and τγ are given in Eq.(6.23), for s= α,β,γ. Thus, we can write the expressions for
the average force and the average interface positions as follows

⟨f⟩ ≃

∑η
χ=0

∑χ
ξ=0

[
β2
(

ξ
γ − ξ

α − χ
γ + χ

β

)
+ ϵ
]
eqξξ+qχχ∑η

χ=0
∑χ

ξ=0 e
qξξ+qχχ

kY, (6.58)

⟨ξ⟩ ≃
∑η

χ=0
∑χ

ξ=0 ξe
qξξ+qχχ∑η

χ=0
∑χ

ξ=0 e
qξξ+qχχ

, (6.59)

⟨χ⟩ ≃
∑η

χ=0
∑χ

ξ=0χe
qξξ+qχχ∑η

χ=0
∑χ

ξ=0 e
qξξ+qχχ

, (6.60)
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where we introduced the quantities

qξ = − 1
2 log τα

τγ
− kY 2β2

2KBT

(
1
γ

− 1
α

)
+ ∆E

KBT
, (6.61)

qχ = − 1
2 log τγ

τβ
− kY 2β2

2KBT

(
1
β

− 1
γ

)
+

pY 2
b

2KBT
. (6.62)

Using the expressions for ⟨ξ⟩ and ⟨χ⟩, we can rewrite ⟨f⟩ in the simpler form

⟨f⟩ ≃
[
ϵ+β2

(
1
γ

− 1
α

)
⟨ξ⟩ +β2

(
1
β

− 1
γ

)
⟨χ⟩
]
kY. (6.63)

Hence, once we know the expected values ⟨ξ⟩ and ⟨χ⟩ of the interfaces positions, we also know
the force required to impose the extension Y . To simplify the notation, we introduce

w = eqξ , z = eqχ . (6.64)

By Eqs.(6.59) and (6.60), using Eqs.(6.29) and (6.30),after long but straightforward calculations,
we obtain

⟨ξ⟩ =
Nξ

D
, ⟨χ⟩ = Nχ

D
, (6.65)

where, for the sake of readability, we introduced

Nξ = w

1 −w

{
1 − zη+1

1 − z
− 1 − (wz)η+1

1 −wz

− (1 −w)wz
(1 −wz)2

[
1 − (wz)η(1 + η) + η(wz)η+1]}, (6.66)

Nχ = z

(1 − z)2
[
1 − zη(1 + η) + ηzη+1]

− w2z

(1 −wz)2
[
1 − (wz)η(1 + η) + η(wz)η+1] , (6.67)

D = 1 − zη+1

1 − z
−w

1 − (wz)η+1

1 −wz
. (6.68)

These results approximate the behavior of the fracture process in the presence of the softening
phenomenon for large values of N . In particular, we can determine the limit for N → ∞ of the
main observables, in order to provide a precise physical interpretation of the brittle-to-ductile
transition. The obtained expressions depend on wη, zη, and (wz)η and, since in our model
η = N(1 − ϕ) where ϕ is the fraction of initially absent breakable springs, they present an
exponent going to infinity when N → ∞. We know that when N → ∞, a generic power xN tends
to infinity if x > 1 and tends to zero if |x|< 1, hence we study the three inequalities w > 1, z > 1
and wz > 1, which will be useful to better understand the system behavior. These inequalities
are equivalent to studying the positive character of their exponents qξ, qχ, and qξ + qχ.

We start by setting the exponent of w larger than zero

qξ = −1
2 log τα

τγ
− kY 2β2

2KBT

(
1
γ

− 1
α

)
+ ∆E

KBT
> 0. (6.69)
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Figure 6.10: Behavior of the three dimensionless extension thresholds Yξ/Yb, Yχ/Yb and Yξχ/Yb

versus the dimensionless temperature KBT/(hY 2
b ) of the system. From the physical point of

view, Yξχ describes the brittle fracture below the transition temperature T ∗ (light blue shaded
area on the left), and the couple (Yξ,Yχ) describes the ductile fracture above the temperature T ∗

(pink shaded area on the right). The three curves Yξ/Yb, Yχ/Yb and Yξχ/Yb versus KBT/(hY 2
b )

intersect at the bifurcation point (yellow), characterized by T ∗. We adopted the parameters
α= 7/5, β = 2/5, γ = 9/10, and ∆E/(hY 2

b ) = 1/10.

Figure 6.11: Brittle response of the fracture phenomenon (0< T < T ∗). Left panel: dimensionless
force versus dimensionless extension for different values of N . Right panel: fraction of intact,
softened and broken elements for different values of N . Inset: same plot as Fig.6.10, where
the temperature used here is indicated (light blue point). Here, the yellow point represents
the bifurcation shown in Fig.6.10. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10,
∆E/(hY 2

b ) = 1/10, ϕ= 0 (i.e., η =N), and KBT/(hY 2
b ) = 3/10.
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In terms of Y , this inequality gives

|Y |<

√√√√ 1
kβ2

(
1
γ − 1

α

) [(h− p)Y 2
p −KBT log τα

τγ

]
≜ Yξ, (6.70)

where we introduced a first extension threshold Yξ. We observe that kβ2
(

1
γ − 1

α

)
is always

positive because p < h by definition and, then, the argument of the square root is positive when
the temperature T is smaller than the critical temperature Tξ defined as

Tξ =
(h− p)Y 2

p

KB log τα
τγ

. (6.71)

The meaning of Yξ and Tξ will be clarified later. By setting the exponent of z greater than zero,
we define the inequality

qχ = −1
2 log τγ

τβ
− kY 2β2

2KBT

(
1
β

− 1
γ

)
+

pY 2
b

2KBT
> 0. (6.72)

It can be solved with respect to Y , eventually giving the result

|Y |<

√√√√ 1
kβ2

(
1
β − 1

γ

) [pY 2
b −KBT log τγ

τβ

]
≜ Yχ, (6.73)

where we introduced a second extension threshold Yχ. As before, the quantity kβ2
(

1
β − 1

γ

)
is always positive, and therefore the whole square root argument is positive for values of the
temperature below the critical temperature Tχ defined as

Tχ =
pY 2

b

KB log τγ

τβ

. (6.74)

As before, Yχ and Tχ will be physically interpreted in the following. Finally, we set the exponent
of wz greater than zero, which corresponds to qξ + qχ > 0. We obtain the inequality

|Y |<

√√√√ 1
kβ2

(
1
β − 1

α

) [pY 2
b + (h− p)Y 2

p −KBT log τα

τβ

]
≜ Yξχ, (6.75)

where we introduced a third extension threshold Yξχ. Being kβ2
(

1
β − 1

α

)
always positive, the

square root has a positive argument when T < Tξχ, where

Tξχ =
pY 2

b + (h− p)Y 2
p

KB log τα
τβ

. (6.76)

Again, we will discuss soon the physical meaning of Yξχ and Tξχ. Summarizing these results, we
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can write {
w > 1
qξ > 0

⇐⇒ |Y |<

√
(l+ p)(l+h)Y 2

p

l2

(
1 − T

Tξ

)
, (6.77){

z > 1
qχ > 0

⇐⇒ |Y |<

√
(l+ p)Y 2

b

l

(
1 − T

Tχ

)
, (6.78)

{
wz > 1
qξ + qχ > 0

⇐⇒ |Y |<

√√√√pY 2
b + (h− p)Y 2

p

lh
l+h

(
1 − T

Tξχ

)
, (6.79)

where we used the definition for the critical temperatures Tξ, Tχ and Tξχ previously introduced.
The three dimensionless extension thresholds Yξ/Yb, Yχ/Yb and Yξχ/Yb are plotted versus the

dimensionless temperature KBT/(hY 2
b ) in Fig.6.10. We can already anticipate that brittle or

ductile behavior depends on the sign of Yχ −Yξ. Indeed, we have a brittle fracture if Yχ < Yξ (light
blue shaded area in Fig.6.10), and a ductile fracture if Yχ > Yξ (pink shaded area in Fig.6.10). In
the first brittle case, the rupture occurs for Y = Yξχ. In the second ductile case, the softening
occurs for Y = Yξ and rupture for Y = Yχ. We observe therefore that exists a brittle-to-ductile
transition temperature T ∗ that separates the brittle behavior from the ductile one (see the yellow
point in Fig.6.10). This temperature is defined by equating Yξ and Yχ, as follows√√√√ (h− p)Y 2

p

kβ2
(

1
γ − 1

α

) (1 − T ∗

Tξ

)
=

√√√√ pY 2
b

kβ2
(

1
β − 1

γ

) (1 − T ∗

Tχ

)
. (6.80)

When solved, this equation gives the value of T ∗ as

KBT
∗

hY 2
b

=

(
1

α−β

)[
α
(

Yp

Yb

)2
−β

]
(

α
α−γ

)
log τα

τγ
−
(

β
γ−β

)
log τγ

τβ

. (6.81)

Interestingly, this quantity can be also explicitly written in terms of the elastic constants of the
system

T ∗ =
(l+h)Y 2

p − lY 2
b

KB

(
l+h
h−p log τα

τγ
− l

p log τγ

τβ

) . (6.82)

To justify the introduction of all these quantities and notations, we use now Eqs.(6.63) and
(6.65) to observe the behavior of the system with different values of N and temperature T .
In particular, we consider Fig.6.10 and we show the system behavior for three values of the
temperature belonging to the regions 0< T < T ∗ (brittle response, Fig.6.11), T ∗ < T < Tξ (ductile
response, Fig.6.12), and Tξ < T < Tχ (over-ductile response, Fig.6.13). We do not consider values
of the temperature larger than Tχ since, in this case, all elements are broken due to only thermal
effects, without the application of mechanical actions.

In Fig.6.11, we can find the dimensionless force given by Eq.(6.63) in the first panel, and
the three quantities ⟨ξ⟩/N , ⟨χ− ξ⟩/N and ⟨N(1 −ϕ) −χ⟩/N representing the fraction of intact,
softened and broken elements, calculated through Eqs.(6.65), respectively, in the second panel.
For simplicity, we always considered ϕ= 0. Note that the dimensionless force is divided by N so
as to be consistent with the definition of mechanical stress. We can see that, with a temperature
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Figure 6.12: Ductile response of the fracture phenomenon (T ∗ < T < Tξ). Left panel: dimension-
less force versus dimensionless extension for different values of N . Right panel: fraction of intact,
softened, and broken elements for different values of N . Inset: same plot as Fig.6.10, where
the temperature used here is indicated (blue and red points). Here, the yellow point represents
the bifurcation shown in Fig.6.10. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10,
∆E/(hY 2

b ) = 1/10, ϕ= 0 (i.e., η =N), and KBT/(hY 2
b ) = 4/5.

in the range 0 < T < T ∗, the force drops to zero in correspondence to the extension threshold
Yξχ, describing the simultaneous rupture of all elements. Indeed, it can be seen in the second
panel that the elements change almost completely from intact to broken state, with a fraction
of softened elements that is negligible. The response becomes increasingly sharp as the value of
N increases. In particular, the fraction of softened elements decreases to zero for N growing.
A direct transition from intact to broken elements without an intermediate phase is therefore
observed. This confirms that the response is brittle for T < T ∗ and the rupture of the system
occur in this case at the applied extension Yξχ.

In Fig.6.12, we represent the same functions for a temperature in the range T ∗ < T < Tξ.
In this case, we observe an almost simultaneous transition of all breakable elements from the
intact to the softened state at the extension Yξ and a subsequent transition from the softened
to the broken state at the threshold Yχ. This behavior reproduces a ductile fracture, and the
intermediate phase, characterized by the softened elements, mimics the cohesive phase of the
fracture phenomenon. Also, in the force-extension diagram, we see a first peak in correspondence
to the softening of the elements, and a second peak describing the actual rupture. This curve is
sharper for high values of N and smoother for low values. The comparison of Figs.6.11 and 6.12
shows the transition from a brittle to a ductile fracture as temperature increases, T ∗ being the
threshold temperature between the two regimes. This transition is described by the bifurcation at
T ∗ exhibited in Fig.6.10 (see the yellow point), which gives rise to the intermediate region with
softened elements.

To complete the picture of the system behavior, we also show in Fig.6.13 the extreme situation
when the temperature is in the range Tξ < T < Tχ (over-ductile response). Since the temperature
is larger than Tξ, at the beginning of the traction almost all elements are already in the softened
state even without an applied mechanical action. As a result, we can observe only one transition
between the softened state and the broken state at the extension threshold Yχ. Consequently, in
this temperature range, we observe a brittle transition between thermally-softened and broken
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Figure 6.13: Over-ductile response of the fracture phenomenon (Tξ < T < Tχ). Left panel:
dimensionless force versus dimensionless extension for different values of N . Right panel: fraction
of intact, softened, and broken elements for different values of N . Inset: same plot as Fig.6.10,
where the temperature used here is indicated (the red point). Here, the yellow point represents
the bifurcation shown in Fig.6.10. We adopted the parameters α = 7/5, β = 2/5, γ = 9/10,
∆E/(hY 2

b ) = 1/10, ϕ= 0 (i.e., η =N), and KBT/(hY 2
b ) = 6/5.

elements. Since this response is observed only after the classical ductile behavior, we called it an
over-ductile response.

To better visualize the transitions between the different fracture regimes, we show in Fig.6.14
some force-extension curves corresponding to different temperatures, spanning over brittle, ductile,
and over-ductile regimes. It is interesting to remark that, within the ductile fracture, the shape
of the force-extension curve is smoother in correspondence to the system softening/breaking since
the cohesive phase is able to absorb an amount of energy before the final rupture. We also note
that, within the ductile regime, the softening stress is higher than the failure stress for lower
temperatures and conversely the softening stress becomes lower than the failure stress for higher
temperatures. This point will be further discussed below. It is important to underline that all
curves seen in Figs.6.11, 6.12, 6.13, and 6.14 have been obtained through Eqs.(6.63) and (6.65)
with a large, but finite value of N . In the following, we also describe the thermodynamic limit
N → ∞.

What has been described so far represents the modeling of brittle-to-ductile transition induced
by thermal fluctuations. Our model also allows us to describe a parametric brittle-to-ductile
transition, i.e., intrinsic to the structure of the system. This means that there can be systems
that exhibit only brittle or ductile behavior, regardless of temperature. On the one hand, an
example of an always brittle system is shown in Fig.6.15, left panel, where we represent the
three dimensionless extension thresholds Yξ/Yb, Yχ/Yb and Yξχ/Yb versus the dimensionless
temperature KBT/(hY 2

b ). We can see that Yχ < Yξχ < Yξ for any value of the temperature. This
means that there is no temperature high enough to induce a ductile fracture (T ∗ > Tξ). On the
other hand, an example of an always ductile system is shown in Fig.6.15, right panel. In this
case, Yχ > Yξχ > Yξ for any value of the temperature so that there is no temperature low enough
to induce a brittle fracture (T ∗ < 0). These two situations describe materials that are always
brittle or always ductile, regardless of the considered temperature.

To conclude, we obtained two types of brittle-to-ductile transitions: a thermal transition,
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Figure 6.14: Dimensionless force versus dimensionless extension for different values of the thermal
to elastic energy ratio KBT/(hY 2

b ) = {0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} (from purple to red curves).
We observe that the behavior of the model changes from brittle, at low values of temperature,
ductile for intermediate temperatures, to over ductile at high temperatures. We adopted the
parameters N = 1000, α= 7/5, β = 2/5, γ = 9/10, ϕ= 0, and ∆E/(hY 2

b ) = 1/10.

Figure 6.15: Behavior of the dimensionless extension thresholds Yξ/Yb, Yχ/Yb and Yξχ/Yb

versus the dimensionless temperature KBT/(hY 2
b ) for a system always brittle (left panel), and

for a system always ductile (right panel). In the left panel we have Yχ < Yξχ < Yξ and we
adopted the parameters α = 13/10, β = 3/10, γ = 4/5, and ∆E/(hY 2

b ) = 1/5. In the right
panel we have Yχ > Yξχ > Yξ and we adopted the parameters α= 9/5, β = 4/5, γ = 13/10, and
∆E/(hY 2

b ) = 1/10.
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induced by the effects of thermal fluctuations, and a parametric transition, induced by the values
of the elastic parameters. It is worth pointing out that this rather rich fracture behavior has been
obtained based on a minimal system depending on the competition between elastic, entropic, and
fracture energy terms, regulated by the temperature and material parameters.

6.7 Thermodynamic limit of the softening-fracture model

To give an even clearer physical description, we deduce here analytic results in the thermody-
namical limit, N → ∞. We start the analysis by examining the average value of the number of
intact, softened, and broken elements of the system. If we consider the brittle behavior, with
0< T < T ∗, the thermodynamic limit gives

lim
N→∞

⟨ξ⟩
N

=
{

1 −ϕ if Y < Yξχ,

0 if Y > Yξχ,
(6.83)

lim
N→∞

⟨χ− ξ⟩
N

= 0 ∀ Y, (6.84)

lim
N→∞

⟨N(1 −ϕ) −χ⟩
N

=
{

0 if Y < Yξχ,

1 −ϕ if Y > Yξχ.
(6.85)

In this case, we observe a direct transition between intact and broken elements without going
through the softened state. However, if we take into account the ductile behavior with T ∗ < T < Tξ,
we obtain for N → ∞

lim
N→∞

⟨ξ⟩
N

=
{

1 −ϕ if Y < Yξ,

0 if Y > Yξ,
(6.86)

lim
N→∞

⟨χ− ξ⟩
N

=


0 if Y < Yξ,

1 −ϕ if Yξ < Y < Yχ,

0 if Y > Yχ,

(6.87)

lim
N→∞

⟨N(1 −ϕ) −χ⟩
N

=
{

0 if Y < Yχ,

1 −ϕ if Y > Yχ.
(6.88)

In this case, we observe the emergence of a region with softened elements, corresponding to the
cohesive zone. Finally, the over-ductile regime, characterized by Tξ < T < Tχ, for N → ∞ leads to

lim
N→∞

⟨ξ⟩
N

= 0 ∀ Y, (6.89)

lim
N→∞

⟨χ− ξ⟩
N

=
{

1 −ϕ if Y < Yχ,

0 if Y > Yχ,
(6.90)

lim
N→∞

⟨N(1 −ϕ) −χ⟩
N

=
{

0 if Y < Yχ,

1 −ϕ if Y > Yχ.
(6.91)

In this regime, all elements are initially softened and therefore the single transition corresponds
to their complete breaking.
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Concerning the expected value of the force, from Eq.(6.63), we can write

lim
N→∞

⟨f⟩
N

=
[
β2
(

1
γ

− 1
α

)
⟨ξ⟩
N

+β2
(

1
β

− 1
γ

)
⟨χ⟩
N

]
kY, (6.92)

where we can substitute the values of ⟨ξ⟩/N and ⟨χ⟩/N pertinent to each fracture regime. We
remark that in Eq.(6.92), we have canceled out the first term shown in Eq.(6.63) since N → ∞.
For the brittle behavior (0< T < T ∗), we have

lim
N→∞

⟨f⟩
N

=
{
β2(1 −ϕ)

(
1
β − 1

α

)
kY if Y < Yξχ,

0 if Y > Yξχ.
(6.93)

For the ductile behavior (T ∗ < T < Tξ), we have

lim
N→∞

⟨f⟩
N

=


β2(1 −ϕ)

(
1
β − 1

α

)
kY if Y < Yξ,

β2(1 −ϕ)
(

1
β − 1

γ

)
kY if Yξ < Y < Yχ,

0 if Y > Yχ.

(6.94)

Finally, for the over-ductile behavior (Tξ < T < Tχ), we get

lim
N→∞

⟨f⟩
N

=
{
β2(1 −ϕ)

(
1
β − 1

γ

)
kY if Y < Yχ,

0 if Y > Yχ.
(6.95)

The thermodynamic limit behavior (N → ∞) of the intact, softened, and broken elements together
with the value of the stress ⟨f⟩/N is exhibited in Fig.6.16, where all the three fracture regimes
brittle, ductile and over-ductile are considered. We remark that the resulting overall picture is
coherent with the plots in Figs.6.11, 6.12, 6.13, where the same quantities were represented for
large, but finite values of N .

These results allow us to identify the values of stress corresponding to behavioral transitions.
In the brittle regime (0< T < T ∗) we identify the fracture or breaking stress corresponding to
σB = limN→∞ ⟨f⟩/N , for Y = Yξχ, which assumes the value

σB = (1 −ϕ)

√
kβ2

(
1
β

− 1
α

)[
pY 2

b + (h− p)Y 2
p

](
1 − T

Tξχ

)

= (1 −ϕ)

√
lh

l+h

[
pY 2

b + (h− p)Y 2
p

](
1 − T

Tξχ

)
, (6.96)

depending on the critical temperature Tξχ (see fourth row, first panel, of Fig.6.16). In the ductile
regime (T ∗ < T < Tξ), we have a first transition coinciding with the softening of all elements.
It represents the beginning of the plastic regime. Two different values of stress describe this
transition: the upper yield strength σ+

S = limN→∞ ⟨f⟩/N (for Y = Y −
ξ , i.e. on the left of Yξ),
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Figure 6.16: Response of the system in the thermodynamic limit within the three temperature
regimes 0< T < T ∗ (brittle, first column), T ∗ < T < Tξ (ductile, second column), and Tξ < T < Tχ

(over-ductile, third column). We plotted the average number of intact, softened, and broken
elements, and the stress ⟨f⟩/N , for N → ∞. To compact the notation, we defined ϕ̄= 1 −ϕ, and
we introduced the characteristic stresses σB , σ+

S , σ−
S , and σF , as defined in Eqs.(6.96), (6.97),

(6.98) and (6.100).
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Figure 6.17: Behavior of the characteristic stresses σB , σ+
S , σ−

S , and σF versus the temperature T ,
as defined in Eqs.(6.96), (6.97), (6.98) and (6.100) with ϕ= 0. Moreover, some stress-extension
curves are plotted in correspondence with the following values of the temperature: A) 0< T < T ∗;
B) T = (T ∗)− (on the left of T ∗); C) T = (T ∗)+ (on the right of T ∗); D) T = T ∗∗; E) T ∗∗ < T < Tξ;
F) Tξ < T < Tχ. While the temperature T ∗ indicates the switching between brittle and ductile
behavior, see Eq.(6.82), the temperature T ∗∗ corresponds to σ+

S = σF , see Eq.(6.101). In panels
A), B), C), D), E), and F) we also show the stress-extension response for N = 1000 (soft colors).
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and the lower yield strength σ−
S = limN→∞ ⟨f⟩/N (for Y = Y +

ξ , i.e. on the right of Yξ), given by

σ+
S = (1 −ϕ)

√√√√√kβ2

(
1
β − 1

α

)2

1
γ − 1

α

(h− p)Y 2
p

(
1 − T

Tξ

)

= (1 −ϕ)

√
h2 l+ p

l+h
Y 2

p

(
1 − T

Tξ

)
, (6.97)

σ−
S = (1 −ϕ)

√√√√√kβ2

(
1
β − 1

γ

)2

1
γ − 1

α

(h− p)Y 2
p

(
1 − T

Tξ

)

= (1 −ϕ)

√
p2 l+h

l+ p
Y 2

p

(
1 − T

Tξ

)
, (6.98)

which depend on the critical temperature Tξ (see fourth row, second panel, of Fig.6.16). These
two values are useful to calculate the stress jump corresponding to the softening mechanism
(yielding) within the ductile regime

σ+
S −σ−

S = (1 −ϕ)Yp
l(h− p)√

(l+h)(l+ p)

√
1 − T

Tξ
, (6.99)

which is always positive since h > p. Still in the ductile regime (T ∗ < T < Tξ), we observe
the second transition describing the complete failure of all the elements for a stress σF =
limN→∞ ⟨f⟩/N , for Y = Yχ, assuming the value

σF = (1 −ϕ)

√
k

(
1
β

− 1
γ

)
p

(
1 − T

Tχ

)
βYb

= (1 −ϕ)

√
l

l+ p

(
1 − T

Tχ

)
pY 2

b , (6.100)

depending on the critical temperature Tχ (see fourth row, second panel, of Fig.6.16). In the
over-ductile regime (Tξ < T < Tχ), the complete breaking of the system occurs at the same stress
σF given in Eq.(6.100) and shown in the fourth row, third panel, of Fig.6.16.

The behavior of these transition stresses is summarized in Fig.6.17, where they are plotted
versus the temperature T . In addition, different stress-extension curves are shown at different
temperatures of interest. In the first two cases, A) and B), we observe a brittle behavior
characterized by the breaking of the system when the stress reaches the value σB and the
extension the value Yξχ. While case B) corresponds to a temperature slightly smaller than T ∗

(brittle), case C) represents a temperature slightly larger than T ∗, being therefore in the ductile
region. We see here both the softening transition at Yξ and the failure transition at Yχ. In this
case C), the stresses satisfy the relationship σ−

S < σF < σ+
S , and then the softening peak (upper

yield strength) is larger than the failure peak. We can now continue to increase the temperature
until σ−

S < σF = σ+
S , that is, until the softening peak is equal to the failure peak. This condition
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is fulfilled in the panel D) of Fig.6.17, and it corresponds to the temperature T ∗∗, defined as

T ∗∗ =
h2

l+hY
2

p − p2l
(p+l)2Y

2
b

KB

[
h2

(l+h)(h−p) log τα
τγ

− pl
(p+l)2 log τγ

τβ

] . (6.101)

In the stress-temperature plot, this temperature value T ∗∗ represents the intersection of the two
curves σF and σ+

S versus T . Increasing the temperature further, we enter the region T ∗∗ < T < Tξ

(once again ductile), represented in the panel E), where the failure peak is larger than the softening
peak (upper yield strength), σ−

S < σ+
S < σF . Finally, for values of temperature in the range

Tξ < T < Tχ, we are in the over-ductile regime and the softening peak disappears, remaining only
the failure peak σF for the overall system, as shown in panel F) of Fig.6.17. In panels A), B),
C), D), E), and F) of Fig.6.17 we also represent the stress-extension response for a finite (large)
value of N in order to show the good agreement between the approximated expressions and the
thermodynamic limit.

As a conclusion to this discussion, we would like to point out that the strength (rupture stress)
of the system as a function of temperature is finally represented by a discontinuous curve formed
by the branch σB for 0 < T < T ∗ (brittle) and by the branch σF for T ∗ < T < Tχ (ductile),
as one can see in the panel σ − T of Fig.6.17. This discontinuity can be easily explained by
observing that the brittle-to-ductile transition involves the phenomenon of softening and thus the
synchronized lowering of the elastic constant of all breakable elements. Since we are applying a
stretching to the system controlled by the extension, the reduction of the overall elastic constant
produces a consequent reduction in stress (which is therefore discontinuous). We further remark
that the strength (σB or σF , depending on the temperature) is proportional to the factor 1 −ϕ,
which represents the fraction of initially present elements (ϕ is in fact the fraction of initially
absent elements). This is reminiscent of the Griffith criterion, stating that the stress at fracture
is lower if the initial crack opening is larger [119]. In our case, the initial crack opening is
proportional to ϕ and, therefore, the Griffith criterion is respected. However, we add here the
temperature-dependent nature of this criterion, which is described by the classical term

√
1 − T

Tξχ

in σB , or
√

1 − T
Tχ

in σF , which represents the critical behavior eventually resulting in a genuine
phase transition.

The brittle-to-ductile transition has been observed in GaN nanowires through molecular
dynamics simulations [124], and Fig.6.18 shows the comparison with our theoretical results. We
considered a GaN nanowire oriented in the direction [0001], with a diameter of 1.92 nm and
a length of 6.12 nm, as reported in Fig.2(d) of Ref.[124]. The lateral facets of this system are
oriented along the

{
112̄0

}
side planes, as shown in Fig.1(b) of Ref.[124]. In Fig.6.18, the blue

curves represent the brittle behavior whereas the red ones describe the ductile behavior. We
remark that Eqs.(6.93) and (6.94) define a relation ⟨f⟩/N = F(Y ) where F is a given function.
We have to introduce the real stress σ = ⟨f⟩/(NS), where S is the area pertaining to each
breakable spring, and the real strain ε= Y/ℓ, where ℓ is the characteristic lengthscale induced
by the crystal structure. The stress-strain relation can be therefore written as σ = F(εℓ)/S,
where F is the relationship defined by Eqs.(6.93) and (6.94). In Fig.6.18, we adopted the
parameters h = 3.77N/m, p = 0.234N/m, l = 0.725N/m, k = 2.00N/m, ∆E = 11.0 × 10−21J,
Yb = 17.8 × 10−11m, S = 22.7 × 10−22m2, ℓ = 12.1 × 10−12m, and KB = 1.38 × 10−23J/K. As
before, most of the geometrical parameters were available in the original paper dealing with
molecular dynamics simulations, and the others were fitted to correctly reproduce the results. We
then plotted the stress-strain curves for the two temperatures T = 300K (brittle behavior) and
T = 1800K (ductile behavior). It is interesting to note that the structural parameters used in our
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Figure 6.18: Tensile stress-strain curves for a GaN nanowire oriented in the direction [0001]
(diameter of 1.92 nm, length of 6.12 nm). The lateral facets are oriented along the

{
112̄0

}
side

planes. Comparison between molecular dynamics simulations results [124] (dashed lines) and our
theory given by Eqs.(6.93) and (6.94) (continuous lines). The parameters used are reported in
the main text.

model are able to predict the correct brittle-to-ductile transition as obtained through molecular
dynamics simulations. Moreover, also the upper and lower yield stresses of the ductile behavior
are in quite good agreement with simulations. We remark that in our model there is a single
softening process and therefore we can see only one failure peak after the softening peak in the
stress-strain relation. As discussed in the conclusions, the model could be generalized with more
softening steps to describe real damage such as that of the nanowires studied here.

6.8 Conclusions
We proposed and studied two prototypical models able to describe temperature effects in

fracture processes. The first is aimed at explaining the temperature-dependent behavior of brittle
systems, and the second is aimed at showing the complex damage processes occurring in the
presence of ductile breakable links with a possibility of a brittle-to-ductile transition regulated by
thermal effects. Both models are based on a simple lattice structure built through unbreakable
and breakable springs. The system is confined between two layers, one fixed and one movable, and
is designed in such a way that lifting the top layer results in a force experienced by the system,
being able to generate fracture propagation. This structure is supposed to be embedded into a
thermal bath at a fixed temperature. Hence, the models are developed within the equilibrium
statistical mechanics formalism. The difference between the two models lies in the behavior
at the rupture of the breakable springs. In the first model for brittle fracture, each breakable
spring can be in two states, namely elastic or broken, depending on the extension applied to the
element itself. The state transition occurs through the absorption of an amount of energy that
corresponds to the typical surface energy of the Griffith criterion [119]. In the second model, each
breakable spring can be in three different states representing the elastic, softened, and broken
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regimes. The intermediate softened state is introduced to reproduce the possible ductile regime
of the fracture process. In this case, we have a ‘yielding’ point between the elastic and the ductile
regimes, followed by a final failure point corresponding to fracture. The transition between intact
and softened states occurs after the yielding energy is absorbed, and the transition between
softened and broken occurs through the absorption of another amount of energy corresponding
to fracture. Thus, in both models the energy balance is similar to what is typically assumed in
linear elastic fracture mechanics since Griffith’s and Irwin’s pioneering works [119–121], with
the fracture phenomenon regulated by elastic, damage and fracture (surface) energy. However,
including thermal fluctuations sensibly modifies the results and adds important features to the
system description.

As for the model for brittle fracture, we obtain a temperature-dependent fracture stress and a
corresponding fracture strain, representing a ‘genuine’ phase transition. Thus, we obtain a critical
temperature at which both fracture stress and fracture strain are zero and therefore the material is
always broken for supercritical temperatures. Interestingly, the obtained temperature-dependent
strength is in good agreement with several experiments and molecular dynamics simulations
as demonstrated previously. It is interesting to note that although breakable springs have a
temperature-independent breaking behavior, the overall system exhibits a breaking point that
is highly dependent on temperature. This is a typical case of a complex system with collective
behavior, giving rise to a critical phenomenon. We argue that this effect is relevant in the case of
weak links, such as hydrogen bonds in biological materials, or in rubber, where the elasticity has
an entropic character, or in small-size metallic or semiconductor systems, such as the considered
nanowires [122–133].

The model with ductile breakable elements exhibits an even richer behavior. In this case, it is
the full response of the system that is temperature dependent. Indeed, we have demonstrated the
existence of a brittle-to-ductile transition temperature T ∗ (whose expression is obtained in closed
form) that regulates the behavior of the fracture process. On the one hand, for temperatures
lower than T ∗, we observe a brittle behavior characterized by a direct transition of the springs
from the elastic to the broken state, without passing through the intermediate softened state.
On the other hand, for temperatures higher than T ∗, we see that, as the extension applied to
the system increases, first the springs soften (yielding point), and then they switch from the
softened to the broken state (failure point). The intermediate softened region reproduces in
this discrete context the cohesive zone of the classical Dugdale-Barenblatt model of the ductile
fracture [134, 135]. Of course, both yielding and failure points depend on temperature and are
again characterized by phase transitions. In fact, importantly, we are not only able to calculate
the brittle-to-ductile transition temperature, but also to predict the critical behavior of the upper
and lower yield strengths, and the thermal properties of the fracture strength. Our model is also
able to predict the existence of a special fracture regime, here called over-ductile, in which the
temperature is high enough to damage all elements without mechanical action. In this situation,
as the extension of the system increases, we observe the only transition from the softened to the
broken regime.

From the methodological point of view, to elaborate the closed form expression of the partition
function in both proposed models, we adopted specific techniques particularly suitable for
calculating the determinant and inverse of tridiagonal matrices [96, 97]. These approaches allow
the derivation of exact solutions as shown in Appendix 6.9.1, but also asymptotic approximations
as discussed in Appendix 6.9.2. Although these mathematical developments are relegated to the
appendices, they are of crucial importance for obtaining the physical results of fracture processes.

We point out that even if the models here presented clarify fundamental aspects of thermally
activated rupture phenomena, they should be generalized to take into account the complex
reality of these processes. We want to mention here at least four points that partially limit the
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applicability of these models to real situations. The first issue concerns the spatial homogeneity of
the adopted models. We have always considered all springs of discrete systems to have the same
mechanical behavior (in terms of elastic constants, failure thresholds, etc.). In reality, this is true
only for perfect monocrystalline structures that are quite rare. It would be interesting to study
these phenomena in disordered systems that, on the one hand, are more similar to several real
structures, and on the other hand, may generate even more interesting critical behaviors typical
of complex systems with quenched disorder [136, 138–147]. The second point to be explored is
the kinetic of rupture processes. Here we have considered only quasi-static phenomena studied
by means of equilibrium statistical mechanics. In real experiments, traction can be applied at
different tensile velocities, and the response obviously depends on these traction rates [148, 149].
To model these phenomena one would have to adopt out-of-equilibrium statistical mechanics
and then base the analysis on Langevin or Fokker-Planck methodologies [100, 101, 150, 151]. To
conclude, the third point that could be improved concerns the fact that the softening process is
restricted to a single step of reduction of the elastic constant of the breakable springs. In order
to be more adherent to the physical reality of the yielding process one would have to imagine a
series of steps where several reductions of the elastic constant take place progressively. In this
sense, the yielding point would be implemented through a multi-softening process, more similar
to what happens in real nonlinear materials. The fourth and final point concerns the too-simple
geometry of our model, which should be improved (with 2D or 3D lattices) in order to be able to
represent real elastic fields to be compared with models from continuum mechanics.

6.9 Appendix

6.9.1 Exact results for tridiagonal matrices

Since the matrix A defined in Eq.(6.5) is tridiagonal, we can analytically evaluate the inverse
A−1 and the determinant detA [96, 97]. We consider a generic tridiagonal matrix M, and we
define its elements as Mi,i = bi (main diagonal), Mi,i−1 = ai (lower diagonal), and Mi,i+1 = ci

(upper diagonal). All other elements are zero. We can introduce the quantities θi by means of
the following recurrence relation{

θi = biθi−1 − aici−1θi−2,

θ−1 = 0, θ0 = 1, i= 1,2, . . . ,N,
(6.102)

where, in particular, θN = detM. Furthermore, it is possible to define the quantities ϕi through
the recurrence formula {

ϕi = biϕi+1 − ciai+1ϕi+2,

ϕN+2 = 0, ϕN+1 = 1, i=N,N − 1, . . . ,1,
(6.103)
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where ϕ1 = θN = detM. These definitions can be used to determine the elements of the inverse
matrix M−1 [96, 97], as follows

(M−1)i,j =



(−1)i+jcici+1 . . . cj−1θi−1ϕj+1
θN

, if i < j,

θi−1ϕi+1
θN

, if i= j,

(−1)i+jaj+1aj+2 . . .aiθj−1ϕi+1
θN

, if i > j.

(6.104)

By considering our particular case, the elements in the main diagonal of A are defined as ai = 2+α
for 1 ≤ i≤ ξ, and ai = 2 +β for ξ+ 1 ≤ i≤N . Moreover, we have that Ai,i+1 = Ai+1,i = −1 for
the upper and lower diagonals. For this special situation, θi and ϕi are defined by the rules{

θi = aiθi−1 − θi−2,

θ−1 = 0, θ0 = 1, i= 1,2, . . . ,N,
(6.105)

and {
ϕi = aiϕi+1 −ϕi+2,

ϕN+2 = 0, ϕN+1 = 1, i=N,N − 1, . . . ,1.
(6.106)

Consequently, the elements of the inverse matrix A−1 are given by

(A−1)i,j =



θi−1ϕj+1
θN

, if i < j,

θi−1ϕi+1
θN

, if i= j,

θj−1ϕi+1
θN

, if i > j.

(6.107)

Hence, we need to find θi and ϕi in order to obtain the inverse matrix elements. We start by
evaluating θi for i≤ ξ. In this case, ai = 2 +α, and Eq.(6.105) becomes

θi = (2 +α)θi−1 − θi−2. (6.108)

To find a solution, we substitute θi = λi in the last equation, and we obtain a second-degree
algebraic equation with solutions

λ1,2 = 2 +α±
√
α2 − 4α

2 . (6.109)

Then, a generic solution for θi, with i≤ ξ, is given by the following linear combination

θi =A

(
2 +α+

√
∆α

2

)i

+B

(
2 +α−

√
∆α

2

)i

, (6.110)
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where we introduced ∆α = α2 + 4α. We can obtain the two coefficients A and B by the initial
conditions in Eq.(6.105). We obtain

A= 2 +α+
√
∆α

2
√
∆α

, B = −2 +α−
√
∆α

2
√
∆α

. (6.111)

Therefore, the final solution for θi, when i≤ ξ, is

θi = G(α,i+ 1), (6.112)

where we introduced the function

G(γ,z) = 1√
∆γ

[(
2 + γ+

√
∆γ

2

)z

−

(
2 + γ−

√
∆γ

2

)z]
, (6.113)

with ∆γ = γ2 + 4γ. If we introduce the parameters τγ and ργ as follows

τγ =
2 + γ+

√
∆γ

2 , ργ =
2 + γ−

√
∆γ

2 , (6.114)

the function G(γ,z) can be written as

G(γ,z) = 1√
∆γ

(
τ z

γ − ρz
γ

)
. (6.115)

We note that
τγ − ργ =

√
∆γ , ργτγ = 1. (6.116)

Now, we evaluate θi when i≥ ξ+ 1. In this case, ai = 2 +β and Eq.(6.105) becomes

θi = (2 +β)θi−1 − θi−2. (6.117)

As before, we find that the general solution is given by the linear combination

θi = C

(
2 +β+

√
∆β

2

)i

+D

(
2 +β−

√
∆β

2

)i

, (6.118)

where ∆β = β2 + 4β. To find the coefficients C and D, we exploit the initial conditions θξ =
G(α,ξ + 1) and θξ−1 = G(α,ξ). Straightforward calculations lead to the solution for θi, when
i≥ ξ+ 1, in the form

θi = G(β,i− ξ+ 1)G(α,ξ+ 1) − G(β,i− ξ)G(α,ξ), (6.119)

where we used the function defined in Eq.(6.113). We consider Eq.(6.106) and we proceed with
the evaluation of ϕi. We start with the case where i ≥ ξ+ 1. In this condition, the recurrent
equation becomes

ϕi = (2 +β)ϕi+1 −ϕi+2, (6.120)

which must be combined with the initial conditions in Eq.(6.106). Eventually, we obtain ϕi for
i≥ ξ+ 1 in the form

ϕi = −G(β,i−N − 2). (6.121)
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We can find ϕi when i≤ ξ by using the two conditions ϕξ+1 = −G(β,ξ−N − 1) = G(β,N + 1 − ξ)
and ϕξ+2 = −G(β,ξ−N) = G(β,N − ξ). After straightforward calculations, we get for i≤ ξ

ϕi = G(β,N + 1 − ξ)G(α,ξ+ 2 − i)
− G(β,N − ξ)G(α,ξ+ 1 − i).

(6.122)

The obtained values of θi and ϕi allow the calculation of A−1 and detA, useful to implement the
determination of the partition function in Eq.(6.16) and the quantities in Eqs.(6.18) and (6.19).
Moreover, these results are useful to develop some asymptotic expressions in Appendix 6.9.2.

6.9.2 Asymptotic analysis
Considering the brittle model with a large number N of units, it is possible to derive approxi-

mations to simplify the partition function and the main average quantities. More specifically, we
can find approximations for vTA−1v and for detA. We start our analysis by expanding the first
quadratic form as follows

vTA−1v =
N∑

i=1

N∑
j=1

vi(A−1)i,jvj

=
N∑

i=1

N∑
j=1

(β+ δi,N )(A−1)i,j(β+ δj,N )

= β2
N∑

i=1

N∑
j=1

(A−1)i,j + 2β
N∑

i=1
(A−1)i,N + (A−1)N,N

= β2S2(ξ) + 2βS1(ξ) +S0(ξ), (6.123)

where we introduced S2(ξ) as the sum over all the elements of the inverse matrix, S1(ξ) as the
sum over all the elements of the N -th column of the inverse matrix, and S0(ξ) as the element
(N,N) of the inverse matrix. We observe that these three quantities are in general function of ξ.

Exploiting the symmetry of the inverse matrix A−1, we write S2(ξ) as

S2(ξ) =
N∑

i=1
(A−1)i,i + 2

N−1∑
i=1

N∑
j=i+1

(A−1)i,j . (6.124)

The evaluation of S2(ξ) for a matrix A that shows heterogeneous diagonal elements ai (ξ , {0,N})
can be done but is not straightforward. Fortunately, it is possible to observe that, in the
limit of large N , the form of S2(ξ) is a linear combination of the two values S2(0) and S2(N),
each corresponding to a matrix with homogeneous diagonal. In fact, when ξ = 0, the diagonal
components of A are all equal to 2 +β, and when ξ =N , the diagonal components of A are all
equal to 2 +α.

With the help of the left panel of Fig.6.19, we can observe that, as N increases, the form of
S2(ξ) numerically obtained through Eq.(6.107) (blue curves), approach the straight line joining
S2(0) and S2(N) (red dashed line). To improve the approximation, we observe that in the linear
solution for S2(ξ) we could also add a zeroth order term (with respect to N), represented by an
additional small quantity C(ξ), possibly dependent on ξ, but independent of N .

Now, we analytically evaluate S2(0). By means of this value, it is also easy to obtain S2(N)
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Figure 6.19: The quantities S2(ξ)/N , S1(ξ) and S0(ξ) are obtained using Usmani relations (blue
curves) for different values of N = {10, . . . ,300} (with a step of 10). We observe that, as N
increases, the quantities approach their relative approximations obtained for large N (red dashed
lines).

simply by substituting β with α. When ξ = 0, we have from Appendix 6.9.1

θi = G(β,i+ 1), (6.125)
ϕi = G(β,N + 2 − i), (6.126)

where i= 1, . . . ,N . In addition, Eq.(6.107) gives

(A−1)i,j =



G(β,i)G(β,N + 1 − j)
G(β,N + 1) , if i < j,

G(β,i)G(β,N + 1 − i)
G(β,N + 1) , if i= j,

G(β,j)G(β,N + 1 − i)
G(β,N + 1) , if i > j.

(6.127)

We can therefore write S2(0) as

S2(0) =
N∑

i=1

G(β,i)G(β,N + 1 − i)
G(β,N + 1)

+ 2
N−1∑
i=1

N∑
j=i+1

G(β,i)G(β,N + 1 − j)
G(β,N + 1) .

(6.128)

Using the definition of G(γ,z) in Eq.(6.113), and the properties of τγ and ργ introduced in
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Eq.(6.116), we get

S2(0) =
{

2(N − 1)
(
τN+1

β

τβ − 1 −
τ−N

β

τβ − 1

)
+

2τ2−N
β − 2τN

β

τ2
β − 1

+N(τN+1
β + τ−N−1

β ) +
2τβ

(τ2
β − 1)

(τ−N
β − τN

β )

+
2 + 2τβ

(τβ − 1)2 (1 + τβ − τN
β − τ1−N

β )
}

(τN+1
β − τ−N−1

β )−1√
∆β

,

(6.129)

where we used several times the geometric sum. The expression for S2(0) given in Eq.(6.129) is
not transparent but, in the limit of large N , it can be approximated by

S2(0) ≃ N

β
−
√
β2 + 4β−β

β2 = N

β
+C(0), (6.130)

where

C(0) = −
√
β2 + 4β−β

β2 . (6.131)

This term represents the zeroth order correction (with respect to N), previously discussed. When
ξ =N , we can obtain the result by simply substituting β with α, eventually obtaining

S2(N) ≃ N

α
−

√
α2 + 4α−α

α2 = N

α
+C(N), (6.132)

where
C(N) = −

√
α2 + 4α−α

α2 . (6.133)

Finally, we can write the general approximation for S2(ξ) in the limit of large N as

S2(ξ) ∼ N

β
+
(
N

α
− N

β

)
ξ

N
+C(ξ), if α,β , 0, (6.134)

where C(0) is given in Eq.(6.131), C(N) is given in Eq.(6.133), and C(ξ) assumes a constant
value for ξ ∈ {1, . . . ,N − 1} (for large N), which is always in the range between C(0) and C(N).
We do not determine here this value since is not relevant to our analysis. Indeed, although the
zeroth order term of S2(ξ) is represented by three different values of the constant depending on
ξ, in the application to the fracture problem we adopt the value C(0) in all calculations. It is
not difficult to realize that this is the only value playing a role in our model since it describes
the behavior of the system when ξ = 0, i.e. when all the breakable springs are fractured. In this
condition, only one spring links together the two layers of the system and the constant C(0) is
able to describe the exact stiffness of the resulting spring network. The other values C(ξ), for
ξ , 0, are negligible when N → ∞.

The approach used to find the approximation of S2(ξ) for large N , can be also applied for
S1(ξ) and S0(ξ). Concerning S1(ξ), as shown in the center panel of Fig.6.19, its value numerically
obtained with Eq.(6.107) approaches the constant value S1(0) as N increases. This value is
therefore the approximation of S1(ξ) for large N . Through previous definitions, we can write
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S1(0) as

S1(0) =
N∑

i=1
(A−1)i,N =

N∑
i=1

θi−1
θN

=
N∑

i=1

G(β,i)
G(β,N + 1) , (6.135)

which, in the limit of large N , leads to

S1(ξ) ≃ S1(0) ≃ 2
β+

√
∆β

. (6.136)

We can observe that the exact values of S0(ξ) approach the constant value S0(0) for large N , as
one can see in the right panel of Fig.6.19. We have the exact expression

S0(0) = (A−1)N,N = θN−1
θN

, (6.137)

which, in the limit of large N , gives

S0(ξ) ≃ S0(0) ≃ 1
τβ

= 2
2 +β+

√
β2 + 4β

, (6.138)

as shown in the right panel of Fig.6.19. Now we determine the value of the quadratic form in
Eq.(6.123), for large N , as

vTA−1v ≃ β2
[
N

β
+
(

1
α

− 1
β

)
ξ+C(0)

]
+ 2β

(
2

β+
√
β2 + 4β

)
+
(

2
2 +β+

√
β2 + 4β

)
.

(6.139)

To conclude, we recall the definition of q, stated in Eq.(6.15), and we get

q = 1 +βN − vTA−1v ∼ lh

l+h

ξ

k
+ ϵ, (6.140)

where we introduced

ϵ=
√
β2 + 4β−β

2 . (6.141)

Finally, Eqs.(6.140) and (6.141) prove Eqs.(6.20) and (6.21) of the main text.

To complete this part, we study the approximation of detA for large values of N . Thanks to
Usmani theory [96, 97], we have

detA = θN . (6.142)

Adopting the results of Appendix 6.9.1, it is possible to evaluate the determinant of A for different
ξ = 0, . . . ,N . The results can be found in Fig.6.20, from which we realize that the value of
log(detA)/N is approximated by a straight line that links together the values of logdetA/N
when ξ = 0, and when ξ = N , in the limit of large N . It is simple to prove that for ξ = 0 we
have logθN/N ≃ logτβ when N → ∞, and similarly for ξ =N we have logθN/N ≃ logτα when
N → ∞. The equation that gives the value of logdetA/N , in the limit of large N , is therefore
obtained as

logdetA
N

= logθN

N
≃ logτβ + ξ

N
log τα

τβ
. (6.143)
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Figure 6.20: The quantity logdetA/N is obtained using Usmani relations (blue curves) for different
values of N = {10, . . . ,300} (with steps of 10). We observe that, as N increases, logdetA/N
approaches its approximation for large N (red dashed line).

Equivalently, we can write
detA ≃ τ ξ

ατ
N−ξ
β , (6.144)

which proves Eq.(6.22) of the main text.

We discuss now the same results for the model with the softening mechanism. In this case,
the quadratic form vTA−1v, can be written as in Eq.(6.123)

vTA−1v = β2S2(ξ,χ) + 2βS1(ξ,χ) +S0(ξ,χ), (6.145)

where S2, S1 and S0 depends now on both interface positions ξ and χ. We start by analyzing
the behavior of S2. Since S2(0,0) ≃N/β, S2(0,N) ≃N/γ and S2(N,N) ≃N/α, we get for large
values of N the following expression

S2(ξ,χ) ≃ N

β
+
(
N

α
− N

γ

)
ξ

N
+
(
N

γ
− N

β

)
χ

N
+C, (6.146)

where considerations similar to the previous ones confirm that the zeroth order term C assumes
the same value in Eq.(6.131). Similarly, we can prove that, for large values of N , the quantities
S1 and S0 assume the same values obtained for the purely brittle fracture model, i.e.

S1(ξ,χ) ≃ 2
β+

√
β2 + 4β

, (6.147)

S0(ξ,χ) ≃ 2
2 +β+

√
β2 + 4β

, (6.148)

which are independent of ξ andχ. Adopting these approximations in the expression for q, we
obtain for N → ∞

q ≃ β2
(
ξ

γ
− ξ

α
− χ

γ
+ χ

β

)
+ ϵ, (6.149)
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where ϵ is given by

ϵ=
√
β2 + 4β−β

2 . (6.150)

This result corresponds to Eq.(6.56) of the main text. Finally, we can also find an approximated
expression for detA(ξ,χ) that now depends on both ξ and χ. Since previous approximation
for logdetA(ξ) was a linear function of ξ linking the values obtained for the two homogeneous
matrices at ξ = 0 and ξ =N , we can now assume that the approximation for logdetA(ξ,χ) is a
linear function in ξ and χ passing through the three points identified by (ξ,χ) = (0,0),(N,0) and
(N,N). Hence, we assume that

logdetA
N

≃ a+ bξ+ cχ, (6.151)

where a, b and c are coefficients, which can be found with the assumptions a= logτβ , a+ cN =
logτγ , and a+ cN + bN = logτα, with

τα = 2 +α+
√
α2 + 4α

2 , (6.152)

τβ = 2 +β+
√
β2 + 4β

2 , (6.153)

τγ = 2 + γ+
√
γ2 + 4γ

2 . (6.154)

These values satisfy the relation τβ < τγ < τα. To conclude, we obtain the relation

logdetA
N

≃ logτβ + ξ

N
log τα

τγ
+ χ

N
log τγ

τβ
, (6.155)

which corresponds to Eq.(6.57) of the main text.



Chapter7
Conclusion and perspectives

The work presented in this manuscript provides the study of different microinstability scenarios
using statistical mechanics and micromechanics principles by the use of the spin variable approach
within the Gibbs and Helmholtz ensembles. At the beginning of the manuscript, we present
the current state of the art and the motivation for our research (Chapter 1). The spin variable
approach and its use within the different statistical ensembles is briefly introduced in Chapter 2.

In the third Chapter, we discuss a previously developed model to describe the cohesion/decohesion
process related to a film deposited on a substrate, paying particular attention to the thermal
effects. We analyzed this process both under the Gibbs (prescribed force) and Helmholtz (pre-
scribed extension) ensembles. To tackle the problem, we combined the method based on the spin
variables with a refined analysis of the properties of some tridiagonal matrices, characterizing
the system under investigation. Eventually, for both statistical ensembles, we obtained explicit
results giving the force-extension relation, the average number of broken units, and the average
extension of all the elements of the chain as functions of the temperature and of the external
mechanical action (a force for the Gibbs ensemble and an extension for the Helmholtz one).
These results were obtained in a first moment for an arbitrary number N of elements of the
chain and then in the thermodynamic limit, where N → ∞. The thermodynamic limit allowed
proving that, in the case of an infinite number of units for a chain, the peeling of the film from
the substrate takes place at a given critical force, which is temperature-dependent. Furthermore,
the origin of the temperature-dependent peeling force is explained through the observation of a
phase transition taking place at a given critical temperature able to fully detach the film from the
substrate. The relation for the temperature-dependant force has been tested against experimental
data concerning the unzipping process for RNA and DNA hairpins, eventually obtaining a good
agreement with the data.

While the presented model is interesting since leads to a fully analytic approach able to
explain the emergence of the phase transition and the nonequivalence of the ensembles, it could
be generalized to take into consideration more complex situations. For instance, the spin variable
methodology, here employed to calculate the partition functions, is limited to the study of
equilibrium thermodynamics. It could be interesting to generalize it to the dynamic regime,
where the rate constants between the intact and broken states of the units of the system play an
important role.

In the following Chapter, we expanded the previous cohesion/decohesion model taking into
account the possible softening of the bonds involved in the decohesion phenomena. The new
softening mechanism for each unit of the chain was modeled by means of three different operating
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regions: a first linear region corresponding to an intact element (small deformation), a second
region corresponding to the softened element with a reduced stiffness (intermediate deformation),
and a last region corresponding to a broken element (large deformation). In both the Gibbs
and the Helmholtz ensembles, we obtained a temperature-dependent decohesion force, which
physically represents the strength of the system, for a chain composed of a number N of elements.
Also, the number of broken and softened elements has been determined as a function of the
temperature and of the external mechanical action for both statistical ensembles. To better
understand the meaning of these results, we analyzed the system behavior under the hypothesis
of thermodynamic limit N → ∞. The analysis of the thermodynamic limit case delivers a clear
explanation of the temperature-dependent strength in terms of phase transitions able to give a
rigorous explanation of the relationship between strength and temperature in systems where a
complex transition in the breaking mechanism occurs (here represented by the bonds softening).

Possible generalizations of the theory may include the dynamic behavior of cohesion/decohesion
processes, or the multi-state softening i.e. composed of several steps with different stiffness
(described by several domain walls in the chain).

After introducing these two models to describe the adhesion and decohesion phenomena
present in micro and nanoscale structures, we changed subject and applied the same theoretical
techniques to two different types of physical phenomena, firstly to the phase transformation
and then to the crack propagation. In Chapter 5, we elaborated some models to describe the
temperature-dependent behavior of one-dimensional non-local non-convex systems obtaining the
tools to represent the specific feature of several macromolecules of biological origin (e.g. proteins)
and nanowire with pseudo elasticity. In this case, the bistability of the units of the system under
investigation described the possible switching of each domain between its ’folded’ and ’unfolded’
states. In addition to this, through the Ising scheme, we introduced the non-locality behavior
that depicts the cooperativity observed in most of the biological structures and in materials
science. As done for previous modelization, the thermal effects were carefully considered by
introducing the statistical mechanics’ analysis, and a complete thermodynamic framework of
the transformation processes in systems with non-locality and non-convexity was obtained. For
system with strong Ising interaction (i.e., strongly ferromagnetic systems), which are the most
common in practical applications, only one interface was observed between the two different
states and it propagates along the chain when a force or an elongation were applied to the
system. In the isometric Helmholtz case, we could also observe an initial upward peak of force,
representing the nucleation of the new unfolded phase, and a final downward peak of force,
representing the coalescence of the folded phase into the unfolded one. An important feature of
this system is that the force plateau, describing the interface propagation within the chain is in
general temperature dependent for both isotensional and isometric boundary conditions. We have
then introduced the zipper model where we consider only one interface propagating along the
system that made the calculation of the partition function much simpler in both the Gibbs and
the Helmholtz ensembles. The investigation of the thermodynamic limit concerning the zipper
model under isometric condition, i.e. within the Helmholtz ensemble, closed the Chapter. With
this last hypothesis, we obtained results that properly describe the transformation processes in
one-dimensional objects (macromolecules or solid nanowires) in terms of thermal fluctuations and
mechanical actions applied to the system.

The first neglected aspect of this part represents the real molecular architecture of the
considered metastable states. This point can be improved by introducing the main properties of
the real molecular structures of the two phases of the system, for example in molecular dynamics
simulations. The second aspect concerns the fact that we have carried out the entire discussion at
thermodynamic equilibrium and therefore under static or quasi-static conditions. The dynamics
could be introduced by taking into account the non-equilibrium statistical mechanics and, in
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particular, by the Langevin and/or Fokker-Planck methodologies.
In Chapter 6th, we proposed and studied two prototypical models able to describe temperature

effects in fracture processes. The first was aimed at explaining the temperature-dependent behavior
of brittle systems, and the second was aimed at showing the complex damage processes occurring
in the presence of ductile breakable links with a possibility of a brittle-to-ductile transition
regulated by thermal effects. In the first brittle model, each breakable spring could be in two
states, namely elastic or broken, depending on the extension applied to the element itself, and in
the second model, each breakable spring could be in three different states representing the elastic,
softened, and broken regimes. In both models, the energy balance is similar to what is typically
assumed in linear elastic fracture mechanics since Griffith’s and Irwin’s pioneering works, with
the fracture phenomenon regulated by elastic, damage, and fracture (surface) energy. However,
including thermal fluctuations sensibly modified the results and added important features to the
system description.

We point out that even if the models here presented clarify fundamental aspects of thermally
activated rupture phenomena, they should be generalized to take into account the complex reality
of these processes. Recalling some of the points that partially limit the applicability of these
models to real situations, we mention the spatial homogeneity of the adopted models since we
have always considered all springs of discrete systems to have the same mechanical behavior
(in terms of elastic constants, failure thresholds, etc.). In reality, this is true only for perfect
monocrystalline structures that are quite rare. It would be interesting to study these phenomena
in disordered systems that, on the one hand, are more similar to several real structures, and on
the other hand, may generate even more interesting critical behaviors typical of complex systems
with quenched disorder. The second point to be explored is the kinetic of rupture processes.
Here we have considered only quasi-static phenomena studied by means of equilibrium statistical
mechanics. In real experiments, traction can be applied at different tensile velocities, and the
response obviously depends on these traction rates. To model these phenomena one would have
to adopt out-of-equilibrium statistical mechanics and then base the analysis on Langevin or
Fokker-Planck methodologies. To conclude, the third point that could be improved concerns the
fact that the softening process is restricted to a single step of reduction of the elastic constant
of the breakable springs. In order to be more adherent to the physical reality of the yielding
process one would have to imagine a series of steps where several reductions of the elastic constant
take place progressively. In this sense, the yielding point would be implemented through a
multi-softening process, more similar to what happens in real nonlinear materials. The fourth
and final point concerns the too-simple geometry of our model, which should be improved (with
2D or 3D lattices) in order to be able to represent real elastic fields to be compared with models
from continuum mechanics.
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Statistical mechanics and thermodynamics of adhesion, phase transformations, and fracture in micro- and
nano-systems

Abstract
Micro-instability and multi-stability phenomena play a key role in various mechanical and physical
systems, both artificial and biological. As such, their understanding is addressed in a wide field of
studies, with many practical and theoretical applications. The modeling of the temperature effect on
micro-instabilities, appearing in different artificial and biological phenomena, allows the validation of the
statistical mechanics for small systems, through the comparison with experimental data obtained using
force spectroscopy and micromecanical testing, thus providing useful insights on the responses induced by
applied forces or elongations. These analyses are particularly important in the study of all the systems
that present two (or more) metastable states such as the adhesion/deadhesion processes, the phase
transformations (e.g. the folding/unfolding and pseudo-elastic phenomena) and the cracks and fractures
propagation in nano- and micro-scale systems. As examples, the temperature strongly influences the phase
transoformation features of pseudo-elastic nanowires used as actuators and sensors in nanotechnology, or
modifies the adhesion properties of metastatic cells in cancer invasion processes. The force-extension or
stress-strain response is one of the main useful features to understand the effects of micro-instabilities and,
in order to be analytically obtained, one needs to evaluate the system partition function, which is the
essential tool of the statistical mechanics. Hence, the complex potential energy landscape of the problem
under investigation is approximated using the spin variables technique, intoducing a discrete quantity
able to identify the different potential energy wells. The first part of this thesis addresses the state of the
art, the open problems, the motivations and the description of the adopted methodologies. The following
part shows how commonly different physical phenomena can be studied by the same modelling approach.

Keywords: microinstabilities, phase transformations, statistical mechanics, material science, fracture,
crack propagation, attachment, detachment, biophysics, ising model

Mécanique statistique et thermodynamique de l’adhésion, des transformations de phase et de la rupture
dans les micro et nanosystèmes

Résumé
Les phénomènes de micro-instabilité et de multi-stabilité jouent un rôle clé dans divers systèmes mécaniques
et physiques, tant artificiels que biologiques. Leur compréhension fait donc l’objet d’un vaste champ
d’études, avec de nombreuses applications pratiques et théoriques. La modélisation de l’effet de la
température sur les micro-instabilités, apparaissant dans différents phénomènes artificiels et biologiques,
permet la validation de la mécanique statistique pour les petits systèmes, par la comparaison avec
les données expérimentales obtenues à l’aide de la spectroscopie de force et d’essais micromécaniques,
fournissant ainsi des informations utiles sur les réponses induites par les forces ou les allongements
appliqués. Ces analyses sont particulièrement importantes pour l’étude de tous les systèmes qui présentent
deux (ou plus) états métastables, tels que les processus d’adhésion/déadhésion, les transformations de
phase (pliage/dépliage et phénomènes pseudo-élastiques) et la propagation des fissures et des fractures
dans les systèmes à l’échelle nano- et micro-métriqe. À titre d’exemple, la température influence fortement
les caractéristiques de transformation de phase des nanofils pseudo-élastiques utilisés comme actionneurs
et capteurs en nanotechnologie, ou modifie les propriétés d’adhésion des cellules métastatiques dans
les processus d’invasion du cancer. La réponse force-extension ou contrainte-déformation est l’une des
principales caractéristiques utiles pour comprendre les effets des micro-instabilités et, pour l’obtenir
analytiquement, il faut évaluer la fonction de partition du système, qui est l’outil essentiel de la mécanique
statistique. Par conséquent, la forme complexe de l’énergie potentielle du problème étudié est approximée
en utilisant la technique des variables de spin, ce qui permet d’obtenir une quantité discrète capable
d’identifier les différents puits d’énergie potentielle. La première partie de cette thèse traite de l’état de
l’art, des problèmes ouverts, des motivations et de la description des méthodologies adoptées. La partie
suivante montre comment différents phénomènes physiques peuvent être étudiés par la même approche
de modélisation.

Mots clés : micro-instabilités, transformations de phase, mécanique statistique, science des matériaux,
fracture, propagation des fissures, attachement, détachement, biophysique, modèle d’ising
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