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Abstract (French) 
 

La réplication de l'ADN est essentielle pour les cellules, car elle permet de créer les quelque 

30 000 milliards de cellules qui composent le corps humain à partir d'un seul zygote lors de 

l'embryogenèse. De plus, tout au long de la vie humaine, la réplication continue de l'ADN et la 

division cellulaire sont nécessaires pour remplacer les cellules âgées, mortes ou endommagées. 

Par conséquent, il est crucial que le programme de réplication de l'ADN fonctionne correcte-

ment à chaque division cellulaire. Cependant, de nombreux facteurs de stress, à la fois exogènes 

et endogènes, remettent régulièrement en question l'intégrité de l'ADN, ce qui entraîne une 

instabilité du génome. Cette instabilité est une cause majeure de cancers et d'autres maladies 

humaines. 

Malgré l'importance du stress de réplication et de l'instabilité génomique dans les cancers, nous 

ne comprenons pas complètement les mécanismes sous-jacents ni leurs impacts sur le génome. 

Au cours de la dernière décennie, d'énormes progrès ont été réalisés dans l'analyse des cellules 

individuelles. L'étude des variants structuraux (VS) au niveau cellulaire est devenue cruciale 

pour comprendre l'instabilité génomique, en particulier dans des populations cellulaires hété-

rogènes telles que les échantillons de tumeurs, qui ne peuvent pas être facilement obtenus par 

des analyses de masse. Des études récentes ont révélé une corrélation importante entre le timing 

de réplication et l'apparition de VS dans les cancers, montrant que de nombreux VS résultent 

de mécanismes liés à la réplication. Cependant, il existe un manque d'études détaillées sur les 

mécanismes précis, en particulier sur les liens entre réplication, transcription et VS au niveau 

de la cellule unique. Comprendre ces mécanismes est crucial pour lutter contre les principales 

maladies humaines. 

Pour répondre à cette question, ce projet développe et utilise de nouvelles méthodes informa-

tiques basées sur l'intelligence artificielle. Il vise à (i) étudier directement le timing de réplica-

tion dans les cancers en analysant le nombre de copies au niveau de la cellule unique et (ii) 

examiner les interactions entre la réplication et les VS au niveau de la cellule unique. Les si-

gnatures des VS découvertes dans ce projet pourraient contribuer à améliorer le diagnostic et à 

définir de meilleures stratégies thérapeutiques. Dans l'ensemble, ce projet permet de mieux 

comprendre les mécanismes de la cancérogenèse et contribue à améliorer le diagnostic, le pro-

nostic, le traitement et le suivi personnalisé des patients. 

 

Mots clés : 

Timing de réplication, Génomique, Cellule unique, Cancer, Intelligence artificielle, Variants 

structuraux.  
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Abstract (English) 
 

DNA replication is a vital process of cells. Besides creating the ~30 trillion cells that comprise 

the human body from a single zygote during embryogenesis, continuous DNA replication and 

cell division is necessary during the entire human lifespan to replace the old, dead or damaged 

cells. It is therefore essential that the DNA replication program is correctly executed at each 

cell division. However, large numbers of exogenous and endogenous replication stresses rou-

tinely challenge DNA integrity and lead to genome instability, which is an important cause of 

cancers and many other human diseases. 

Although replication stress and genomic instability are two important hallmarks of cancer, we 

lack full comprehension of the mechanisms that lead to these deregulations and the impacts 

they have on the genome. During the last decade, great progress has been made in analyses of 

individual cells. Determination of structure variations (SVs) in single cells has become an im-

portant approach to study genomic instability in heterogeneous cell populations, such as tumour 

samples, that cannot easily be obtained from bulk analyses. Recent studies have revealed that 

replication timing shows a strong association with the occurrence of SVs in cancers, and large 

amounts of SVs generated during tumorigenesis result from replication-associated mecha-

nisms. However, studies addressing the direct mechanisms and, in particular, the links between 

replication, transcription and SVs at the single-cell level are missing. Investigating such mech-

anisms is critically important to address major human diseases. 

To address this question, this project develops and uses novel computational methods, based 

on artificial intelligence, to: (i) directly investigate single cell replication timing (scRT) in can-

cers by single-cell copy number analysis, and (ii) examine the interactions of replication and 

SVs at the single cell level. The SV signatures in cancers revealed in this project might help to 

improve the diagnosis and better define therapeutic strategies. Altogether, this project provides 

further understanding of the mechanisms of carcinogenesis and contributes to improving the 

diagnosis, prognosis, treatment and/or personalised monitoring of patients. 

 

Keywords: 

Replication timing, Genomics, Single-cell, Cancer, Artificial intelligence, Structural variants. 
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1. Introduction 

1.1. Timeline of genomics 

1.1.1. Pre-genomics era 

1.1.1.1. Foundations from antiquity to modern history 

Throughout history, the concept of genetics has evolved and although it was not known to 

ancient civilisations, they laid the basis for our understanding of life. For instance, the ancient 

Greeks had made a fundamental contribution to the field of biology. This was done by founding 

the scientific method and employing systematic observation, experimentation, and hypothesis 

testing to explore nature. This approach is still used to guide modern-day research. In fact, a 

notable insight from antiquity came from the Greek philosopher Democritus. He proposed a 

theory where all matter consists of small particles called atoms. This concept was then revived 

in the 17th century through the work of the English chemist John Dalton who further suggested 

that atoms of different elements could combine to form molecules 1, a theory that changed our 

understanding of matter. 

As we journey through the history of genetics, we stumble upon a significant milestone in 1869 

when the Swiss chemist Friedrich Miescher identified a mysterious substance within the nuclei 

of white blood cells, which he named nuclein2. This substance, which is now known as Deox-

yribonucleic acid (DNA), changed our understanding of heredity. The 20th century then saw a 

flurry of investigations in the relationship between DNA and heredity. In 1902, two biologists 

from different corners of the world, Walter Sutton from the United States and Theodor Boveri 

from Germany, independently introduced the chromosome theory of inheritance. This theory 

shaped the idea that chromosomes carry genes, the hereditary units of life, which allow to pass 

traits from parents to offspring3. Therefore, this discovery can be considered as a pivotal mo-

ment in our understanding of how traits are passed down through generations of living organ-

isms. 

1.1.1.2. The double helix 

In 1953, another very important discovery was made. James Watson and Francis Crick pub-

lished their ground-breaking paper describing the structure of DNA as a double helix4. This 

monumental finding earned them a Nobel prize in 1962 along with Maurice Wilkins5. How-

ever, it is important to note that a major contribution to this finding is also owed to Rosalind 

Franklin, a physical chemist who was working at King’s College London. Despite being often 

overlooked both historically and in research papers, Franklin’s efforts were significant in this 

work5,6. Nonetheless, this finding laid the foundation for a new field that we now know as 

genomics, the study of the entire genetic material in an organism, and thus, marked the birth of 

a novel branch in biology. 

The DNA molecule is a marvel of nature, consisting of two intertwined strands of nucleotides, 

organic molecules that serve as monomeric units of DNA, which are complementary to each 

other. This means that the bases on one strand pair up with the corresponding bases on the other 

strand. Specifically, adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine 

(C). This complementary base pairing is a critical feature of DNA and it allows for the precise 

replication of the DNA molecule during cell division. When a cell divides, the double helix 

unwinds, and each strand operates as a template for the synthesis of a new complementary 
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strand. As a result, the two new DNA molecules produced are identical to the original template, 

ensuring the faithful transmission of genetic information throughout the future cell generations. 

1.1.2. 1950s - 1970s: Sequencing 

The origins of DNA sequencing which consists of decoding the molecular sequence of nucle-

otides, also called bases, of a DNA molecule date to the late 1950s and early 1960s. These first 

methods, which started to decrypt the genetic code, although slow and experimentally demand-

ing, laid the foundation for the development of faster and more efficient sequencing technolo-

gies in the following years. 

One of the pioneering DNA sequencing methods was developed by Frederick Sanger in 19977. 

Sanger's technique involved using radioactive nucleotides to label fragments of DNA which 

were then separated by size using electrophoresis. The order of the nucleotides in the fragments 

could then be determined by reading the resulting autoradiograph. While Sanger's method 

marked a significant development in DNA sequencing, it was still relatively slow and expen-

sive. 

1.1.3. 1980s - 2000s: Genome projects and new technologies 

1.1.3.1. Genome Sequencing Projects 

In the following years, the launch of large-scale genome sequencing projects took advantage 

of new technologies. The most ambitious genome sequencing project launched during this pe-

riod was the Human Genome Project (HGP), a partnership initiated in 1990 which had the goal 

of sequencing the entire human genome 8. The HGP generated a draft sequence of the human 

genome in 2001 and two papers, one in Science9 and one in Nature10, were published describing 

the first complete sequence of a human genome, a major milestone in the history of genomics. 

The HGP sequence revealed that the human genome is comprised of approximately 3 billion 

base pairs of DNA and approximately 20,000 genes. As a result, this endeavour not only deep-

ened our understanding of human genetics but also led the way for further discoveries, such as 

in medicine8. The HGP was not just a scientific endeavour; it was a journey into understanding 

what makes us human. 

In parallel to the HGP, the French human genome project was another significant partnership 

launched in 1993 and which played a noteworthy role in the HGP by making data publicly 

accessible. The French project contributed to the publication of the draft sequence of the human 

genome, all while training a large cohort of scientists in the booming field of genomics11. 

Beyond the HGP, a plethora of other genome sequencing projects were completed between the 

1980s and 2000s. These projects sequenced whole genomes of a wide range of organisms in-

cluding plants12–14, animals15–19, fungi20–22 and bacteria23–26. As a result of these collective ef-

forts, the emergence of this flourishing field of genomics offered great opportunities for re-

searchers. However, with these advancements, a multitude of questions on the genomes’ or-

ganisations, functions and interactions were raised. These questions underlined the complexity 

of life from the molecular level to phenotypes and sparked a new wave of research aimed at 

unravelling these mysteries. It seemed that the field of genomics was just getting started. 
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1.1.3.2. Microarrays 

Microarrays, a technology which grew in the 1980s, have been implemental in studying gene 

expression and various other molecular processes across a wide range of organisms and dis-

eases27. This technology works by hybridising labelled samples, which can include DNA, 

RNA, or proteins, to a microchip containing specific probes. These probes are tailored to the 

target molecules. The degree of hybridisation to each probe is then quantified, which can be 

translated as the concentrations of the corresponding molecules by proportionality. 

Microarrays have played an important role in making discoveries related to gene expression, 

molecular interactions, and various biological processes, particularly in the context of human 

diseases27. However, it would be important to note that microarrays have some major limita-

tions28. Firstly, the number of molecules that could be studied simultaneously was often limited 

to a predefined set represented on the microarray chip. Secondly, the results obtained from 

microarray experiments could be influenced by environmental factors, such as humidity and 

temperature. Thirdly, the cost of microarrays is relatively high for a single experiment. Lastly, 

the typical microarray workflow involved a number of manual steps, which could add varia-

bility and complexity into the analysis process. Due to these limitations, microarray technology 

slowly phased out of fashion and is now considered outdated. While it was once a useful tool 

in the field of genomics, it has now been replaced with more advanced technologies that offer 

other advantages (explained below). 

1.1.3.3. Next generation sequencing genomic technologies 

In the late 1990s and early 2000s, a ground-breaking revolution occurred in genomics with the 

development of Next-Generation Sequencing (NGS) technologies. NGS involves the process 

of dividing DNA into small pieces and then sequencing these fragments in parallel. These new 

DNA sequencing methods represented a significant leap forward from previous laborious tech-

niques. With commercial DNA sequencers offering high-throughput sequencing in the early 

2000s, remarkable advantages were noticed as they proved to be faster and more cost-effec-

tive29. Effectively, the expense of sequencing decreased rapidly, with the cost per megabase 

(Mb) of DNA beating Moore’s law29,30. Consequently, this high-throughput approach enables 

NGS technologies to sequence entire genomes at a much faster pace compared to previous 

methods and at a fraction of the price. 

The impact of NGS technologies on genomics has been profound31 and have facilitated numer-

ous important discoveries, including the identification of new genes and genetic variants asso-

ciated with human diseases29 and the development of new medical diagnostic tools29,31. Fur-

thermore, NGS has contributed to the study of evolutionary processes in organisms32–34 and the 

creation of new crops with desirable traits34–36 among many other applications29,31. While short-

read sequencing (e.g. Illumina NovaSeq, HiSeq, NextSeq; BGI MGISEQ, BGISEQ; Thermo 

Fisher Ion Torrent sequencers) provides reads of up to 600 bp, this may not be sufficient for 

some applications37. Long-read sequencing offers several advantages with reads that can ex-

ceed 10 kb and can therefore improve de novo assembly, mapping certainty, transcript isoform 

identification, and detection of structural variants37. In essence, NGS technologies have trans-

formed the way we study genomics while also opening new research interests. 

1.1.3.4. Functional Genomics 

In 2003, the initiative known as the ENCODE project was launched with the primary goal of 

studying the function of the elements in the human genome38. Functional genomics is the 
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branch of genomics that explores how genes and their other associated genomic elements func-

tion to express specific phenotypes and can encompass techniques ranging from differential 

gene expression analysis to proteomics and other omics data. For instance, it can be used to 

discover the role of genes in specific diseases, the interaction between genes and the environ-

ment or how genes control development. Importantly, one of the most notable outcomes of the 

ENCODE project was the debunking of the ‘junk DNA’ assumption. Prior to this project, many 

supported the assumption that the 98.5% of human DNA that does not contain genes does not 

have a regulatory function of the genome39. However, ENCODE revealed that many of these 

regions actually play an important role in regulating cellular processes. Overall, this marked 

another major moment in the history of genomics and shifted the understanding of human and, 

by extension, eukaryotic genomes. 

1.1.4. 2010s: Genomics becomes bigger and cheaper 

1.1.4.1. Synthetic biology 

Synthetic biology – the field that involves engineering organisms to give new abilities – is 

being used to develop new diagnostic tools, vaccines and new treatments for cancer and other 

diseases40,41. The advent of CRISPR, a cutting-edge gene editing technology allowing to insert, 

delete, or replace the DNA at a desired site 42, has made gene modifications much easier for 

researchers. Consequently, synthetic biology became a rapidly growing field with potential to 

revolutionise many industries, most notably medicine and agriculture41,43. In 2015, it was esti-

mated that genetically modified crops covered 70.9 million hectares of land in the United 

States44, exemplifying a non-negligible impact of synthetic biology. Yet, one must bear in mind 

the various ethical concerns associated with genome editing, such as the potential for misuse 

or mismanagement of synthetic organisms45. As we continue to push the boundaries of the 

applications of synthetic biology, discussions and observations on the ethical implications of 

our advancements should also be considered. 

1.1.4.2. Consumer genomics 

In recent years, as the cost of DNA sequencing has declined, several companies have recog-

nised an unprecedented opportunity to offer easily accessible and personalised solutions to in-

dividuals. Through the delivery of direct-to-consumer home kits, these companies collect, se-

quence, and analyse customers’ DNA to provide what they claim to be information on the 

individuals’ ancestry, health risks and physical traits. 

While these DNA tests may seem appealing to the general public, they also raise important 

concerns46–48. One notable concern revolves around the accuracy of the information provided. 

The interpretation of genetic data can be complex, and errors or misunderstandings may occur. 

Additionally, the reliability of some health-related findings from these tests may not be well-

established or validated through rigorous scientific research. Furthermore, it is widely acknowl-

edged that this industry often monetises the genomic data it collects, either through research 

collaborations or marketing endeavours 49. These data are also a target for malicious individuals 

who are able to steal genomic data. Recently, leaked credentials from 23andMe were used by 

hackers to steal genomic data of the platform’s users and were sold on the dark web for as little 

as $1,000 USD for 100 or $100,000 USD for 100,000 profiles ($1 per genome)50. These con-

cerns should be addressed and explained to platform users to mitigate ethical and scientific 

implications. 
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1.1.4.3. Single-cell sequencing 

Classical sequencing methods, often referred to as bulk sequencing, have traditionally provided 

an averaged perspective of the spatial, temporal, and genetic variability within a biological 

sample51. With the advent of single-cell sequencing, researchers are finally able to dive deeper 

into the relationships between individual cells51,52. This technique allows the genomes of indi-

vidual cells to be sequenced, enabling the identification of rare or abnormal cell types which is 

achieved by studying cell-to-cell variability, an important limitation of bulk sequencing.  

Ever since single-cell sequencing has since become a powerful tool for investigating the heter-

ogeneity of cell populations and tissues, it has played a crucial role in identifying distinct sub-

populations of cells in cancer and other diseases 53–56. This kind of information opens new doors 

for the development of more precise and effective treatments for cancer as it paves the way 

towards new therapeutic targets and pathways51. 

Despite its great potential, single-cell sequencing comes with its own challenges, most partic-

ularly in managing and exploring the large amount of data it generates. To address this, the 

single-cell community is constantly developing new tools and methods to unlock the full po-

tential of single-cell sequencing. Already, a large number of single-cell computational tools 

have been developed and made accessible to the research community57–77. The ongoing devel-

opment of new tools in this field testifies the power and promise of single-cell sequencing in 

the forceable future. 

1.1.4.4. Bioinformatics 

As the amount of biological data continues to expand, it becomes increasingly challenging to 

make use of this vast amount of information. Fortunately, bioinformatics, a field that is situated 

on the crossroads of biology and computer science, has taken a leading role in the process of 

managing and understanding the vast amount of biological data that is constantly generated. 

While the term 'bioinformatics' first appeared in 1970 by Paulien Hogeweg and Ben Hesper 78, 

its widespread adoption within biology-oriented research laboratories occurred in the aftermath 

of large-scale genomic projects. Nowadays, it is now common practice for new biologists to 

possess basic programming skills. 

Bioinformatics-led research has already yielded a plethora of important discoveries. These in-

clude the identification of genes associated with diseases 79–81, the development of new diag-

nostic tools 82–84, and transformative impacts on agronomy34,35. As a powerful tool, bioinfor-

matics holds the potential to address a multitude of pressing scientific questions spanning var-

ious omic levels of life and across all species. Consequently, this field represents an important 

bridge between big data and biology and will most likely continue to grow and contribute to 

the understanding of the vast and complex datasets appearing through modern biological, en-

vironmental and medical research. 

1.1.5. 2020s: Current and future uses 

1.1.5.1. Comprehensive genome projects 

As our knowledge expands and genomic data becomes more accessible, researchers are able to 

explore increasingly more complex biological issues. Ambitious international projects have 

emerged seeking to provide more comprehensive answers to fundamental questions. These 
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consortiums generate and explore large amounts of data which are often analysed with ad-

vanced bioinformatic tools. 

One such project is the draft human pangenome reference85, a comprehensive genome pro-

gramme that encompasses the genetic diversity found within the human population. By se-

quencing and assembling the genomes of numerous individuals originating from various pop-

ulations, a more representative version of the human genome was created. This new reference 

could be beneficial to researchers studying human genetics, diseases, and evolution. This is 

because a reference for the human pangenome has the advantage of making it easier to identify 

rare or population-specific genetic variations, thereby offering a window into the rich diversity 

of human genetics. 

Recently, the telomere-to-telomere consortium published a complete sequence of all the DNA 

in a human chromosome, from one telomere to the other 86. Telomeres are the caps at the ends 

of chromosomes that safeguard them from damage. Sequencing the telomeres and centromeres 

has been difficult in the past due to their repetitive sequences they enclose. However, with new 

technologies, scientists have now been able to sequence the complete human genome, includ-

ing the telomeres and other problematic regions, presenting new opportunities for genomics 87. 

As a result, chromosome-specific studies, such as that of the complete sequence of a human Y 

chromosome88 have also emerged. 

Beyond solely human-oriented projects, the vertebrate genome project is an international effort 

to sequence the genomes of all known vertebrate species89,90. By using the genomes issued 

from this project, evolutionary scientists will be able to compare the genomes of various ver-

tebrate species more accurately and gain new insights in the relationships of vertebrates. This 

project is expected to take many years to be completed, but it will undoubtedly help researchers 

better understand the evolutionary history of life. 

Finally, the pan-cancer analysis of whole genomes consortium published a series of studies in 

early 2020 on the genetic basis of cancer across all types of cancer91. These investigations were 

made possible because of recent advances in whole-genome sequencing and high-performance 

computing. The pan-cancer studies have provided new insights into the development and pro-

gression of cancer. For example, novel findings were made by comparing mutational signa-

tures92, clonal evolution93, and patterns of structural variants94 of thousands of cancers. Alt-

hough none of the published datasets from these studies contained single-cell data, possibly 

limiting the results in terms of intra-cancerous heterogeneity, these studies open new prospects 

for fundamental research in cancer. 

In conclusion, these ambitious and large-scale projects represent the cutting edge of genomics 

research, providing advances in tackling some of the most pressing questions in biology. As 

these investigations, along with other projects, continue to generate new data, our understand-

ing of the relationships, implications and functions of DNA will undoubtedly continue to 

change. 

1.1.5.2. Artificial intelligence 

Nowadays, datasets are larger than ever before, computational units are more powerful and 

complex questions continue to challenge biologists and medical practitioners. Therefore, it is 

only natural that bioinformaticians are turning to the latest wave of computational excellence 

– artificial intelligence (AI)95. AI, a branch of computer science, focuses on creating models 

capable of autonomous reasoning, learning, and action. AI research has achieved remarkable 
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success in developing effective techniques to solve a diverse array of problems, ranging from 

strategic game playing96 to medical diagnosis97 and autonomous vehicles. 

AI algorithms can be categorised into two main branches: supervised learning and unsuper-

vised learning. In supervised learning, models are trained on labelled data, such as providing 

images of animals with corresponding animal names. Unsupervised learning, on the other hand, 

comes into play when data lacks these labels, and elements are grouped based on their similar-

ities. Beyond these two categories, there are also other approaches, such as semi-supervised 

learning, where not all the data is labelled, and reinforcement learning, where models are 

trained through a reward system, such as a self-driving car learning how and encouraged to 

stop at a red light. Finally, deep learning is an umbrella term that encompasses artificial neural 

networks, inspired by the structure and function of the human brain, and can be trained to 

perform a wide range of tasks, from image recognition to language processing. 

Although machine learning, a branch of AI allowing software applications to become accurate 

in predicting outcomes, has existed since 1959 when IBM employee Arthur Samuel coined the 

term96, it has increasingly gained momentum in genomics in recent times (Figure 1). Thus, 

these methods are on the rise and for good reason. 

 

Figure 1: Annual number of publications listed on Pubmed containing the keywords 'genomics' 

and 'machine learning'. 

Multiple machine leaning algorithms have been used in genomics (Figure 2) and are starting 

to become common practice. In fact, some recent publications have exemplified the great 

power harvested from AI algorithms applied on genomic datasets. These can range from simple 

visualisations such as dimension reduction on genomic datasets62,68,98, to more insightful and 

predictive tools95,97,99–101. One example is DeepVariant, is a deep learning model that can iden-

tify genetic variants from NGS data102. This tool is more accurate than traditional methods for 

identifying genetic variants and identified specific variants in cancer and Alzheimer's disease. 

Another famous AI tool is AlphaFold, a deep learning-based protein structure prediction sys-

tem developed by DeepMind, a subsidiary of Google. Its latest version was published in Nature 

in 2021103 and has since become a powerful tool for genomics research. AlphaFold, also based 

on deep learning, can predict the 3D structure of proteins from their amino acid sequence with 

high accuracy, which is a task that has been challenging the field for decades. This knowledge 

can be used to develop new drugs and treatments for diseases, as well as to design new materials 
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and enzymes. Hence, it is safe to say that the power harnessed by AI, and especially deep 

learning, as demonstrated by these two singular examples alone, is transforming genomics as 

we know it.  

 

Figure 2: A non-exhaustive and simplified catalogue of the leading AI algorithms employed in ge-

nomics. Machine learning approaches in genomics can be categorized according to the type of data 
used for model training. Labelled data can be used for supervised learning, unlabelled data can be used 

for unsupervised learning and partially-labelled data can be used for semi-supervised learning. Super-

vised learning can be useful for classification or regression while unsupervised learning can be useful 

for clustering or dimension reduction. Deep learning is based on neural networks and can be based on 

supervised, semi-supervised or unsupervised learning. 

1.1.5.3. Precision medicine 

Precision medicine, also known as personalised medicine, is an emerging approach in 

healthcare that considers individual variability in genes, environment, and/or lifestyle to pro-

vide tailored prevention and treatment strategies. This approach represents a shift away from 

the traditional one-size-fits-all model of healthcare, where most people receive the same treat-

ment regardless of their individual characteristics. For instance, two people with the same type 
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of cancer may respond differently to the same treatment104. This is because the cancer cells in 

each person may have different genetic mutations, or other characteristics which influence how 

they respond the therapeutic solutions. 

Genomics and personalised medicine hold the potential to revolutionise the treatment of dis-

eases, prospectively leading to a transformative change in healthcare management. Although 

significant progress has yet to be made, new opportunities appear to be on the horizon. It is 

projected that advancements in patient-tailored therapies will emerge and have the potential to 

change how we approach and manage health challenges. As our understanding of the genetic 

and environmental factors continue to grow, so will our ability to develop new targeted thera-

pies that could improve patient outcomes.  

1.2. The cell cycle 

The cell cycle is an essential process in life that can be described as the sequence of events a 

cell goes through as it duplicates and divides. It is a highly regulated process which is crucial 

for the growth, development, and maintenance of all known organisms. The cell cycle is di-

vided into two distinct phases – interphase and the mitotic phase – controlled by checkpoints 

to ensure accurate cell division. 

1.2.1. Interphase 

Interphase is divided into three subphases – gap 1 (G1), synthesis (S), and gap 2 (G2). The G1 

and G2 phases represent the gaps between DNA duplication during S phase and mitosis. Gap 

0 (G0) is a phase that cells can enter to leave the cell cycle, which is the general case of neurons. 

1.2.1.1. G1 phase 

The G1 phase of the cell cycle is the first and longest part of the interphase, accounting for 

approximately 60-80% of the total cell cycle duration105. During G1, the cell physically grows, 

synthesises proteins and other molecules in preparation for DNA replication, and repairs DNA 

damage. G1 is also a time when the cell makes the decision of whether to enter the S phase and 

divide, a decision influenced by a variety of factors, including growth factors, nutrient availa-

bility, cell density, and DNA damage. 

The G1 phase is regulated by a complex network of signalling pathways and transcription fac-

tors which are explained in section 1.3.4. Once this network has completed its task, if the cell 

has the necessary resources and is not under any stress, it will then be able to progress into S 

phase. However, if the cell is lacking in resources or is under stress, then it may arrest in G1 

phase or even enter a state of senescence, generally an irreversible cell cycle arrest. Disruptions 

to the G1 phase can lead to a variety of diseases. For example, mutations in some genes can 

lead to uncontrolled cell proliferation and cancer 105. 

1.2.1.2. S phase 

The S phase of the cell cycle is a crucial stage during which DNA replication takes place. The 

mechanisms responsible for DNA replication vary across the three domains of life with bacte-

ria, archaea and eukaryotes exhibiting somewhat different molecular paths. Here we will focus 

on the eukaryotic cellular replicating machinery, also known as the replisome. DNA replication 

is the complex process of duplicating the cell's DNA to ensure that each daughter cell inherits 

a complete and identical copy of the genome. However, the DNA replication process is not 
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initiated at completely random points across the genome. Specific origins are regulated by pro-

teins and cell cycle kinases, followed by the coordination of different proteins and enzymes106. 

Indeed, in eukaryotic cells, the progression of the S phase is strictly regulated by a complex 

network of signalling pathways and transcription factors107. At the heart of this process lies the 

origin recognition complex (ORC), a protein complex that selectively binds to specific DNA 

sequences known as origins of replication108. ORC serves as a critical initiation factor of DNA 

replication and organises the assembly of the replication machinery.  

Another key player at this stage is the minichromosome maintenance (MCM) complex, which 

is loaded onto the DNA molecule with the recruitment of Cdc6 and Cdt1108,109. CDKs play an 

important role in the process as they phosphorylate specific proteins involved in origin firing, 

thereby promoting the activation of the helicase, an enzyme that breaks the hydrogen bonds 

between the complementary base pairs, which will initiate DNA synthesis. Thus, the firing of 

the origins is tightly regulated to ensure that individual origins are only activated once per cell 

cycle to prevent any re-replication of DNA segments. 

As the replication origins are fired with the helicase unwinding the DNA strands, the elongation 

phase where DNA polymerases add complementary nucleotides to the exposed DNA templates 

can begin106,108. The dynamic structure of open DNA is called the replication fork and enzymes 

called primases will synthesize short RNA primers on the single-stranded DNA to provide a 

starting point for DNA polymerases. The two templates of the fork are replicated in opposite 

directions. This allows the distinction of leading and lagging strands. Leading strands are syn-

thesised continuously in the 5’to 3’direction, in continuity with the replication fork, while lag-

ging strands are synthesised in the opposite direction and discontinuously in shorter fragments, 

called Okazaki fragments. The latter are finally joined by a DNA ligase to form a continuous 

strand. 

Meanwhile, various enzymes and proteins insure the processivity and accuracy of the process. 

The sliding clamp loaders will load and unload the sliding clamps which are responsible for 

fastening DNA polymerases to the DNA templates. Single-strand binding proteins will stabilise 

the single-stranded DNA strands to prevent them from reannealing (reforming a double-

stranded DNA structure) or forming secondary structures. Topoisomerases enzymes prevent 

DNA from getting tangled, avoid supercoiling DNA while also relieving topological stress in 

the DNA molecule to allow it to unwind. Eventually, replication forks from neighbouring ori-

gins will meet leading to the collision of the DNA polymerases which will then be released. 

DNA repair mechanisms can correct any errors or mismatches in the new molecules to ensure 

the integrity of the genetic information (see Section 1.3.5). DNA replication ends with the 

completion of DNA synthesis, the disassembly of the replication machinery and verification of 

accuracy. If needed, DNA synthesis could be reinitiated, or additional replication origins could 

be activated (see Section 1.4.1). This intricate orchestration of molecular events during the S 

phase ensures the accurate and efficient replication of the genetic material, a fundamental pro-

cess in cell division and inheritance. The completion of DNA replication marks the end of the 

S phase, and the duplicated molecules can then be separated into the daughter cells during 

mitosis (see Section 1.2.2). 

1.2.1.3. G2 Phase 

The G2 phase, the final stage of interphase in the cell cycle, is an important period where the 

cell continues its growth and prepares for mitosis. During this phase, the cell synthesises the 



23 

essential proteins and molecules. The decision to advance into mitosis depends on the cell's 

growth status and the integrity of its DNA. If conditions are favourable, the cell progresses to 

mitosis107. However, if resources are lacking or the cell experiences stress, it may arrest in the 

G2 phase. 

During this phase DNA repair may continue, ensuring that the genetic material remains intact 

and functional105. Chromosomes undergo condensation, forming compact structures that facil-

itate their orderly separation during mitosis110. Simultaneously, the spindle apparatus, respon-

sible for chromosome segregation in mitosis, initiates its formation110. Protein synthesis is also 

a key activity during this phase as the cell produces tubulin, a component of the spindle appa-

ratus, and cyclins110. Thus, G2 phase plays a pivotal role in ensuring the cells are prepared to 

accurately distribute genetic material to the daughter cells. 

1.2.2. Mitosis 

Mitosis is the next phase in the cell cycle, following interphase. This step is characterised by 

the careful distribution of replicated genetic material, along with the centrosomes, the orga-

nelles involved in cell polarity, equally among the sister cells110. The final step of mitosis is the 

completion of chromosome cohesion, which is achieved when the condensed chromosomes are 

aligned on a metaphase plate, and the faithful inheritance of a complete and accurate set of 

chromosomes for future generations of cells is attained110. 

Mitosis is composed of several distinct stages (i.e. prophase, metaphase, anaphase and telo-

phase), which terminate at the step of cytokinesis. This final process involves pinching the cell 

membrane for the formation of the two daughter cells, splitting the cytoplasm evenly. However, 

it is important to be aware that mitosis is a highly regulated and precise process meaning that 

any errors of chromosome segregation during this phase can lead to disorders and diseases such 

as cancer110. 

1.2.3. Checkpoints 

Cell cycle checkpoints are essential for ensuring the integrity of cell cycle progress and essen-

tially safeguard genomic integrity. They are strategically placed throughout the cell cycle to 

ensure that essential conditions are met prior to cells enter the following phase. Accordingly, 

the G1, S phase and G2/M checkpoints act as molecular arbiters of the cell cycle, responsible 

for verifying that the preceding steps were correctly executed111. 

Under normal conditions, when irregularities or anomalies are identified, these checkpoints 

initiate a temporary interruption of the cell cycle. For example, when the G1 checkpoint detects 

DNA damage, it requires a period of time for the DNA lesions to be diligently repaired110. 

These checkpoints are regulated by a complex combination of signalling pathways, transcrip-

tion factors, and key regulators, such checkpoint kinases and tumour suppressor proteins110. In 

cancer, however, these checkpoints can be inactivated. Therefore, they play a crucial role in 

keeping the fidelity of the whole cell cycle process intact to prevent diseases. 

1.3. Cancer genomics 

1.3.1. Cancer biology 

Cancer is not a simple concept; it is a group of diseases involving abnormal cell proliferations 

and the result of a complex combination of genetic and environmental factors. Genetic 
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alterations can be inherited or even acquired throughout life93. Hereditary variations are passed 

down from one generation to the next and have the capacity to evolve through family genera-

tions, for better or worse. 

The set of functional capabilities acquired by cells that move towards tumoral neoplastic 

growth (i.e. abnormal and excessive tissue growth) are dubbed hallmarks of cancer. Although 

not mutually exclusive, many cancers exhibit multiple hallmarks. The original six hallmarks of 

cancer were presented in 2000112 with further additions suggested later on (Figure 3)113–116. 

These hallmarks can be used not only for cancer research but also as targets for the develop-

ment of novel and more effective targeted cancer therapies. 

 

Figure 3: A selection of the suggested hallmarks of cancer112–116. 

Intuitively, with the help of the previously mentioned advancements in the field of genomics, 

researchers have been able to uncover a vast collection of genetic changes associated with can-

cer. These alterations can range from single nucleotide polymorphisms (SNPs) – changes in a 

single letter of our genetic code – to insertions and deletions – changes in the number of copies 

of DNA in a genomic region. They can also include changes in the whole number of chromo-

some copies or rearrangements like jigsaw puzzles being rearranged. These genetic tweaks are 

grouped under the term structural variants (SVs)94,117. It is believed that they can initiate cancer 

by activating genes that drive uncontrolled cell growth, called oncogenes, silencing genes that 

normally keep cell growth in check, called tumour suppressor genes, or even obstructing the 

repair of damaged DNA116. 

Genome sequencing has demonstrated to be a powerful tool for understanding cancer, but also 

for diagnosing and treating it. By sequencing cancers, one can gain a better understanding of 

the genetic anomalies that are driving each cancer type. This allows selecting targeted therapies 

that are tailored to address the genetic abnormalities of the cancer cells118. Additionally, ge-

nomic sequencing opens the door to novel immunotherapy. By discovering the unique surface 

proteins that cancer cells present, treatments that mobilise the immune system to combat the 

disease can be created104. Hence, as the field of genomics continues to evolve, it is expected 
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that these new discoveries will have the potential to improve cancer treatments and thus, patient 

outcomes. 

1.3.2. Structural variants in DNA 

It was previously believed that the main source of genetic and phenotypic human variation was 

due to SNPs. However, the generation and analysis of data issued from new technologies, such 

as NGS, have uncovered a surprisingly large number of SVs, a term introduced in Section 

1.3.1. In fact, it has been estimated that each individual has around 100 copy-number variations 

(CNVs) that are greater than 50 kilobases (kb) in size117. Thus, SVs is an umbrella term for 

types of genetic alteration which include: 

i. Copy-number alterations/variations (CNAs/CNVs): These occur when a fragment of 

DNA that is present in an abnormal number of copies in comparison to the reference 

genome. Depending on the amount of these segments, they can be classified as inser-

tions (addition of nucleotides), deletions (removal of nucleotides), or duplications (rep-

licas of segments of DNA). Indels refer to both insertions and deletions. 

ii. Inversions: This type of SV involves a fragment of DNA that is reversed in orientation. 

They can be pericentric (include the centromere) or paracentric (not including the cen-

tromere). 

iii. Translocations: This occurs when a chromosomal fragment changes position within a 

genome without changing the total DNA content. These can be intra-chromosomal 

(within the same chromosome) or inter-chromosomal (onto another chromosome). 

Other alterations that can also be considered as SVs include heteromorphisms (microscopically 

visible regions of a chromosome that vary in size or morphology), fragile sites (small breaks 

of chromosomes), marker chromosomes (additional chromosomes to the normal chromosome 

number), isochromosomes (a chromosome with two identical arms) and double minutes (small 

fragments of extrachromosomal DNA usually containing a particular locus; amplified genes as 

a result of chromothripsis)117. 

Additionally, aneuploidy is a term that refers to the presence of an irregular number of chro-

mosomes in a cell. Although this has been reported to be a common feature of tumour ge-

nomes94,119, its role in tumour development has been a matter of speculation. A recent report 

demonstrated that certain types of aneuploidies that are commonly found in cancer genomes 

play a crucial role in cancer progression119. Specifically, they found that 25% of cancers exhibit 

gains on the q arm of chromosome 1, and eliminating this abnormality increased the expression 

of TP53, an important tumour suppressor gene. Eventually, more drugs that demonstrate selec-

tive toxicity toward aneuploid cells could be used as anticancer agents. 

1.3.2.1. Technologies for detecting structural variants 

Initial evidence of human genetic variation was observed through microscopes117, with karyo-

types representing an individual's complete set of chromosomes. These consisted of condensed 

chromosomes that were mostly indistinguishable from one another, but aneuploidies, gross re-

arrangements and the Y chromosome were nonetheless identified117. As technology advanced, 

chromosome banding techniques and methods based on fluorescence in situ hybridisation 

(FISH) allowed for the detection of more subtle abnormalities such as large deletions, inser-

tions, duplications, translocations, and inversions. 
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With the development of both experimental and computational methods, human SVs can now 

be analysed at a much higher resolution (Table 1). These methods can either be genome-wide 

or targeted, and include PCR, array, and computational approaches. Furthermore, recent ad-

vances in optical mapping enabled the identification of SVs across the genome by sequencing 

long stained DNA molecules117. 

Table 1: Selected methods for detecting SVs in the genome, adapted and updated from Feuk et al. 

2006117. Detection restrictions are in parentheses where applicable. NGS CNV methods are the only 

way to identify all SV types. 

Method 
Trans-

location 
Inversion 

CNV (>50 

kb) 
CNV indel (1–50 kb) 

Small sequence 

variants (<1 kb) 

G
en

o
m

e
-w

id
e 

Karyotyping 
Yes (>3 

Mb) 

Yes (>3 

Mb) 
Yes (>3 Mb) No No 

Oligonucleotide-

based array-CGH 
No No Yes (>35 kb) Yes (>35 kb) No 

SNP array No No Yes Yes Yes (SNPs) 

Clone paired-end se-

quencing (fosmid) 
Yes 

Yes 

(break-

points) 

Yes (>8 kb of 

deletions) 

Yes (>8 kb of deletions; 

<40 kb of insertions) 
No 

NGS computational 

CNV detection94 
Yes Yes Yes Yes Yes 

Optical mapping120  
Yes 

(>50kb) 

Yes 

(>30kb) 
Yes Yes Yes (limited?) 

T
a
rg

et
e
d

 

Microsatellite 

genotyping 
No No 

Yes (dele-

tions) 
Yes (deletions) Yes 

MAPH No No Yes Yes Yes 

Real-time qPCR No No Yes Yes Yes 

FISH Yes Yes Yes Yes No 

Southern blotting Yes Yes Yes Yes Yes 

 

1.3.3. Tumour suppressor genes and oncogenes 

The detection and analysis of genetic variation has come a long way since its initial observa-

tion. Despite significant differences between cancer types and individual cancers, they almost 

always share one point in common – they are genetically driven. Cancer-related genes can be 

classified in two distinct categories: oncogenes, which induce tumoral growth and development 

and tumour suppressor genes, which naturally inhibit cancerous development 116. The human 

genome is believed to contain approximately 20,000 protein-coding genes, but some genes 

have gained attention in the cancer research community due to their mutation prevalence in 

cancer populations. 

Oncogenes include PIK3CA, having single-nucleotide mutations in 17.8% of all cancers, 

KRAS, which can decrease the replication fork speed, and EGFR which stimulates cell prolif-

eration116. Strikingly, TP53, a tumour suppressor gene that activates DNA repair proteins when 

DNA has sustained damage, is one of the most reoccurring genes in relative studies. It was 

estimated that this tumour suppressor gene has a single-nucleotide modification in over 40% 

of cancers, making it the most frequently mutated gene in human cancer121. While it is still not 

completely understood how this gene is so often targeted, its important role could create an 

ideal environment for strong evolutionary pressure leading to its inactivation and thus, allowing 

tumours to survive and proliferate. A previous study has shown that unlike other DNA repair 

genes, when mutated, TP53 does not induce specific types of SVs, making it a more general 

genome instability perpetrator94. 
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1.3.3.1. BRCA1, BRCA2 and RAD51 genes 

Prominently, two other tumour suppressor and protein-coding genes are also of great im-

portance in cancer research: breast cancer genes 1 and 2 (BRCA1 and BRCA2), localised on 

chromosomes 17q21 and 13q12, respectively. These genes are implicated in many breast and 

ovarian cancers122 as well as in DNA damage response pathways by interreacting with other 

genes, particularly RAD51. In the presence of a modification that makes either of these genes 

partially or completely defective, DNA damage may not always be correctly repaired, poten-

tially leading to the rise and accumulation of serious SVs over time. When this kind of damage 

occurs in an important region of the genome, such as in gene bodies or regulatory elements, it 

can lead to the emergence or evolution of a cancerous cell. 

It is well known that individuals carrying BRCA mutations on either allele have a significantly 

increased risk of developing breast and/or ovarian cancer in comparison with wild-type (WT) 

BRCA individuals123. The DNA repair mechanism in which BRCA genes are involved, called 

homologous recombination, detailed in Section 1.3.5, is essential for cell survival as it allows 

for the repair of any DNA damage caused by chemotherapy, radiation, and DNA replication 

stress, among other factors. The loss of function in either or both BRCA genes can lead to 

defects in the repair of DNA double-strand breaks124. BRCA1 and BRCA2 play a major role 

in the fidelity of DNA repair, and when defective, cells use backup strategies to attempt to 

repair these lesions by alternative but more error-prone mechanisms. 

Nevertheless, the study of BRCA mechanisms has been fruitful as it is now known that tumours 

in which DNA repair pathways have been inefficient are most likely to respond to emerging 

targeted therapies, such as inhibitors of poly-ADP ribose polymerase (PARP), cancer drugs 

that target tumours with BRCA mutations125,126. RAD51 pathogenic mutations have also been 

identified in breast and ovarian cancers, showing similarities with BRCA1/2 mutations124,127. 

Furthermore, genetic testing for BRCA1 and BRCA2 pathogenic mutations has been valuable 

for defining eligibility for cancer screening and prevention programmes and methods for de-

tecting these mutations are now widely accessible128. 

One of the reasons RAD51 has been linked to BRCA-less phenotypes is because RAD51 is 

also a key player in the homologous recombination pathway and interacts with BRCA2. This 

protein forms nucleoprotein filaments on single-stranded DNA which then search for and in-

vade a homologous double-stranded DNA molecule129. Once this occurs, it forms a loop struc-

ture allowing the exchange of genetic information between the two DNA molecules. Besides 

its role in DNA repair, RAD51 has also been reported to be involved in replication fork pro-

cesses. For instance, RAD51 allows DNA replication to restart when a replication fork encoun-

ters DNA damage130. 

1.3.4. Cyclin-Dependent Kinases (CDKs) 

Some of the key genes that play a central role in regulating the eukaryotic cell cycle are cyclin-

dependent kinases (CDKs)131. CDKs are a family of protein kinases that are activated by bind-

ing to regulatory proteins called cyclins (Table 2), proteins that accumulate and degrade during 

the cell cycle132. Besides regulating the cell cycle, CDKs also play a role in transcription and 

the differentiation of nerve cells133. 

The cell cycle can be deregulated in cancer cells due to genetic or epigenetic changes in CDKs. 

Recent studies have shown that while CDK1 is essential for embryonic cell division, CDK2, 

CDK4 and CDK6 are not essential for the mammalian cell cycle but remain important for the 
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proliferation of certain cell types110. CDK activity can be increased by DNA damage and 

changes in the cell cycle checkpoints, a combination that drives tumour cell cycles. Evidence 

suggests that inhibiting certain CDKs could offer a therapeutic prospect for certain cancers110.  

CDK12 has recently gained spotlight for its role regulating the cell cycle and impacting cancer. 

This kinase is associated with the elongation of RNA polymerase II and when depleted, it re-

duces the expression of homologous recombination (HR) DNA repair genes, among others, 

and therefore promotes genomic instability131,134. In fact, one study illustrated that CDK12 is 

indirectly required for G1/S progression because it is essential for the transcription of DNA 

repair genes (see Section 1.5.1)131. Furthermore, the absence of CDK12 results in premature 

cleavage and the loss of expression of genes larger than 45 kb135 while inducing large tandem 

duplications across the genome136. Additionally, genomic alterations of this gene have been 

detected in a large number of cancer types with reports suggesting that up to 15% of cancers 

can be concerned by such mutations137. It can therefore be an important clinical biomarker for 

these cases and thus, a potential therapeutic target137. Indeed, CDK12 is a determinant of PARP 

inhibitor sensitivity126. Moreover, it has been shown that CDK12 is essential for the correct 

phosphorylation of RNA polymerase II, which enables the expression of the BRCA genes, and 

is often mutated In BRCA1- or BRCA2-defiecient cancers126. 

Table 2: A family portrait of the human CDK genes. 

CDK Cyclin(-like) partners132–

134 

Functions132,133 Chromosome133 

CDK1 A, B M 10 

CDK2 A, B, D, E G1/S, S, G2 12 

CDK3 A, E, C, Cables1 G1 17 

CDK4 C, D G1 12 

CDK5 p53, p59, Cables1   7 

CDK6 D G1 7 

CDK7 H transcription 5 

CDK8 C transcription 13 

CDK9 K, T transcription 9 

CDK10   G2/M, transcription 16 

CDK11A D, L transcription 1 

CDK11B D, L transcription 1 

CDK12 K, (L?) transcription 17 

CDK13 (L?) transcription 7 

CDK14 D, Y   7 

CDK15     2 

CDK16 p53, Cables1   X 

CDK17 Cables1   12 

CDK18 K   1 

CDK19 C transcription 6 

CDK20     9 
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1.3.5. DNA damage response processes and genome stability 

DNA damage is a constant occurrence in cells with an estimated minimum of 100,000 DNA 

polymerase errors occurring per cell cycle and around 20,000 potentially mutagenic lesions 

arising per diploid mammalian cell per day138. Considering that the average adult has between 

28 and 36 trillion cells139, many of which are cycling, this amounts to a colossal quantity of 

DNA damage incidents per day, highlighting the necessity to repair them to maintain cell func-

tions and reduce cancer susceptibility. Therefore, the DNA damage response is required to be 

an efficient process to safeguard genome stability round the clock and evade the formation of 

SVs. Indeed, on average, only a mere ~10−10 mutations per bp per cell division escape the DNA 

repair radar138, demonstrating the extraordinary fidelity of these pathways. 

DNA breaks can occur on a single or on both strands, each requiring different ways to be re-

paired (Figure 4). Single-strand breaks (SSB) being the most common lesions occurring at a 

rate three times higher than double-strand breaks (DSB), and usually due to oxidative stress or 

abortive activity of DNA topoisomerase I140. These breaks are usually detected by PARP1 

which acts as a first responder by initiating a decisive process that selects which DNA repair 

pathway can be used140. Base excision repair (BER) is the most common repair mechanism for 

SSB in mammalian cells, initiated with the recognition and removal of the erroneous base by 

a glycosylase enzyme, followed by a completion with a DNA polymerase140. Other SSB repair 

pathways include nucleotide excision repair (NER) and mismatch repair pathways (MMR). 

 

Figure 4: A classification of the main DNA repair pathways. 

DSB can have a larger impact on the development of SVs because both strands need to be 

repaired. They can be mended by two main pathways: end-joining (EJ) and HR141. HR is con-

sidered to be a high-fidelity repair system that, with the help of BRCA1 and BRCA2, uses the 

undamaged sister chromatid as a template to restore the damaged DNA strand. During this 

process, RAD51, a key protein in HR that links to BRCA2, assists in the search and reparation 
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of damaged DNA. In various cancers, RAD51 can be linked to poorer patient survival142, over-

expressed143, or under-expressed144, leading to more DNA damage and potential mutations that 

could cause cancer. On the other hand, EJ pathways are only active during interphase and can 

be subdivided in non-homologous EJ (NHEJ) and alternative EJ (a-EL) pathways which are 

more error prone and therefore less preferred. NHEJ does not require a template and proceeds 

with direct ligation, making it prone to errors but probably accurate in most cases141. Microho-

mology-mediated EJ (MMEJ) uses sequences of microhomology as a template to repair the 

broken DNA while single-strand annealing (SSA) is able to mend homologous repeats between 

each other145. 

1.4. DNA replication timing 

1.4.1. Introduction to DNA replication timing 

As previously mentioned, DNA replication is a fundamental biological process in which, under 

normal circumstances, a cell creates an identical copy of its genome to ensure accurate trans-

mission of genetic information to the daughter cells. However, one may wonder how and why 

the replication programme is regulated. A key metric in studying replication is replication tim-

ing (RT), which refers to the order in which different segments of the genome are copied during 

S phase. As previously mentioned, DNA replication is initiated at specific sites across the ge-

nome called replication origins146, which each lead to the formation of a replication fork. The 

replication forks eventually merge when they meet to ensure that the whole genome is copied 

(Figure 5). Since this process is not simultaneously launched at all the possible replication 

origins at once, there is a selection and order which is specific to each cell type in which these 

origins are activated. The rate of replication fork elongation, which is a whole different param-

eter, is relatively stable and so the number of activated replication origins is the factor that will 

determine actual duration146. 

One critical question in this field is whether RT results from a stochastic or deterministic firing 

of replication origins. Early genome-wide RT studies found that budding yeast origin firing 

was better explained by stochastic firing whereas mammalian cells were firing origins in a 

deterministic manner52. Although stochastic origin firing has also been reported in mammalian 

cells52, these observations could suggest that RT regulation was acquired over evolution. More-

over, it was suggested that this phenomenon is due to variability in mammalian cells seeming 

small due to longer S phases and the absence of gene-poor regions in yeast (gene significance 

discussed later). There has now been enough evidence supporting that the eukaryotic replica-

tion programme is globally deterministic (i.e. the firing probability of a given genomic region 

of a given cell type is pre-defined) but with individual replication initiation events displaying 

stochasticity62,147–149. 

Another interesting question is why replication patterns even change across cell types. In other 

words, why some regions replicate early in S phase for one cell type and late for others. It has 

been demonstrated that perturbating RT does not significantly change cell functions, possibly 

suggesting, at least at a first glance, that RT evolved to have specific patterns, without any 

major significance146. However, other studies have shown that RT is modified in cancer and 

other diseases, implying that it might play a larger role62,146,150,151. Replication stress can cause 

genomic instability, and promote tumorigenesis, making it a hallmark of cancer116,152. It there-

fore seems that RT is essential to maintain normal cell functions even though its biological 

significance has still not been fully elucidated. 
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Figure 5: The chronological order of S phase events. S phase is initiated with the activation of specific 
replication origins. This leads to the formation of a replication fork for each origin that elongates ne-

osynthesised DNA in both directions. Later, more origins are fired across the genome and the resulting 

replication forks are eventually merged until there is an identical copy of the genome is generated and 
the cell can exit S phase. Replication origins can be activated at various moments of S phase which 

result in the classification of early, mid, and late replicating regions.  

1.4.2. RT, part of a multi-omic landscape 

In order to further understand the role of replication patterns during S phase, a lot of research 

has been done in the past years. Resulting studies show that RT correlates with other cellular 

processes, including gene expression153, DNA methylation154, chromatin structure155 and the 

3D organisation of chromosomes156 (Figure 6). Yet, many questions still remain unanswered 

around the exact relationship between these features and DNA replication.  

The relationship between RT and transcription has long been a topic of interest52. Correlation 

between transcription and DNA replication was confirmed molecularly in the 1980s by analys-

ing cell-type specific genes and then genome-wide with the emergence of microarrays on bud-

ding yeast and flies153. These findings demonstrated that budding yeast did not appear to show 

any significant RNA/RT correlation, in contrast to Drosophila which had transcribed regions 

generally replicate early. Since there appears to be some kind of link between transcription and 
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RT, it would be expected that changes in RT would impact transcription too, and vice versa. 

However, this is not always the case157. Consequently, the underlying reasons responsible for 

the correlation between transcription and RT remain a gap in our understanding. 

 

Figure 6: The multi-omic landscape related to RT. Active A compartments, transcriptionally active 
regions, euchromatin and methylated gene bodies all correlate with early-replicating regions while B 

compartments, transcriptionally inactive regions, heterochromatin and unmethylated gene bodies cor-

relate with late replicating regions. 

It is possible that these two features are linked by an intermediate factor and chromatin struc-

ture, DNA that is wrapped in histone proteins, could be this middle player. In eukaryotes, re-

gions of DNA that are in an open chromatin state (euchromatin), and thus more accessible to 

the molecules surrounding them, are typically replicated earlier than those in a highly con-

densed state (heterochromatin)155,158. Chromatin, in hand, is linked to the 3D organisation of 

the genome with early and late regions, respectively, corresponding to A and B compartments 

in Hi-C data, an NGS chromatin conformation technology52,154. Finally, DNA hypomethylation 

leads to heterogeneity in RT154. 

1.4.3. DNA Replication: Methods of study 

DNA combing experiments were among the first to study replication and they involved visu-

alizing stretched Mb-sized DNA fibres on a microscope slide using fluorescently labelled nu-

cleotides to visualise neosynthesised DNA. Thus, they could detect the density and origin of 

the replication. However, this technique did not allow to distinguish RT but was rather a 

method to study various DNA replication events (i.e. replication fork speed, replication initia-

tion and termination, etc.). Nowadays, we have access to newer and efficient genome-wide 

methods to extract RT from cell populations (Figure 7). 

Firstly, Repli-seq is a technique that reveals replication domains by immunoprecipitation of 

bromodeoxyuridine (BrdU)-labeled DNA. This classical method involves incubating cells with 

BrdU, a thymidine analogue that is incorporated into replicating DNA, for a certain amount of 

time ranging between 30 min to 2 h. This is followed by flow-sorting replicating cells into 
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different fractions of S phase, immunoprecipitation of BrdU-labeled DNA, and genomic anal-

ysis of the DNA by microarrays142 (Repli-chip) and later with NGS159. Microarrays were used 

to quantify DNA in different regions but were phased out for the reasons previously mentioned 

(Section 1.1.3.2). To enable genome-wide RT, this approach requires cells to be sorted in S 

phase. Consequently, some studies compare late S phase cells to early S phase cells160 while 

others have used between four and sixteen fractions of S phase161–163. The latter comes with a 

higher resolution because the use of multiple fractions of S phase can improve the spatial res-

olution and indicate loci that replicate asynchronously164. Repli-seq had established what was 

known as the “replication domain” concept, referring to regions with consistent RT appearing 

as plateaus on replication profiles, it is no longer an employed term. Moreover, the use of BrdU 

and cell sorting can come with technical restrictions in terms of the size of labelled DNA units 

and the precision of cell sorting respectively. Whether these limitations are largely reflected in 

RT measurements was unknown until we were able to obtain RT with higher resolutions. 

Secondly, RT obtained via CNV, a technique based on DNA quantification, has been devel-

oped and provides a more detailed RT landscape. Counting the number of copies of DNA, 

based on the number of reads in each genomic region of both G1 and S phase cells, provides a 

more complete representation of the replicated domains. The number of copies of DNA of each 

S phase cell divided by the number of copies in the same region of the G1 cells acts as a ge-

nome-wide normalised method to correct any deviation from a diploid count (e.g. repetitive 

regions, polymorphism, etc…). Replicated regions are expected to have twice the amount of 

DNA in comparison to non-replicated regions 98,156,165. While this technique provides a higher 

resolution across the genome compared with Repli-seq, the reliance on cell sorting (S/G1) 

meant that very early or very later regions would be lost since some cells lie on the G1 and G2 

borderlines. More recently, the need for cell sorting has been eliminated thanks to the ability 

to detect copy-number changes by whole-genome sequencing. Thus, as little as 5-10% of S 

phase cells are sufficient to generate high-resolution RT profiles166. 

With single-cell whole-genome sequencing upgrading RT studies, more detailed investigations 

in mammalian replication dynamics at the genome-wide level have emerged52,98,154,156,167. The 

principle of single-cell RT (scRT) is the detection of copy numbers of DNA of every available 

genomic region in each cell, a method was first reported in 2018 by a genome-wide study of 

scRT achieved with the use of mouse embryonic stem cells (mESCs)149. This study found that 

the borders between replicated and non-replicated regions were highly conserved between in-

dividual cells originating from the same sample. This finding was further confirmed by another 

publication that followed, conducted by Ichiro Hiratani’s lab, which suggested that besides the 

small degree of visually detectable cell-to-cell heterogeneity, replication organisation is con-

served among mammalian cells98. Both these studies focused on mid-S phase cells and har-

vested various computational methods to unravel RT profiles. Moreover, when scRT profiles 

were averaged for each sample (pseudo-bulk RT), they showed remarkable similarity to the 

profiles obtain from whole cell populations (bulk RT) indicating that RT of the cell population 

is globally followed within each individual cell. 

Another important approach to study DNA replication is with optical replication mapping 

(ORM). This technique is not a single-cell approach, but a single-molecule method. Fluores-

cently tagged nucleotides can be mapped to the genome by treating stretched DNA molecules 

with a nicking endonuclease. The molecules are then photographed and analysed computation-

ally to be mapped on the genome and analysed147. Single-molecule data has allowed an ex-

traordinarily large coverage of the genome, in comparison with single-cell data which is cur-

rently unable to achieve such a high coverage. With fibres measuring 300 kb on average, ORM 
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has been able to confidently identify individual replication initiation sites and has thus demon-

strated that, although probability of firing is pre-defined, stochastic origin activation might be 

a feature of eukaryotic DNA replication. 

 

Figure 7: Methods for DNA replication study adapted from Hulke et al. (2020)166. Repli-seq can be 

carried out in 2 (A) or multiple fractions (B) while copy-number based methods can be carried out with 

sorted (C) or unsorted (D) cell populations. All methods will result in a similar replication timing pro-

file (E). 

1.5. Interplay between replication timing, structural variants, and cancer 

1.5.1. Current understanding 

While genomic features such as RT, chromatin states and transcription seem to be linked be-

tween each other by some manner, they can all influence SVs, in particular copy-number 

changes across the genome168. Remarkably, one of the pan-cancer analysis of whole genomes 

consortium publications (mentioned in section 1.1.5.1) showed that out 38 different genomic 

features, RT had the strongest link with the appearance of SVs94. Precisely, tandem duplica-

tions along with translocations were mainly found to occur in early-replicating regions while 

deletions were enriched in late-replicating regions. When comparing individual tumours, they 

discovered that SVs, when not distributed heterogeneously, were clustered in either early- or 

late-replicating regions, adding evidence to this particularly strong relationship between SVs 

and RT. Furthermore, the authors described how different defective DNA repair genes induce 

different types of SVs (Table 3). Complementary findings from previous studies showed that 

mutation rates are higher in late-replicating regions, which could have evolutionary implica-

tions (e.g. deciding on which genes will evolve at a faster rate)169,170. 
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Table 3: Association of different pathogenically mutated DNA repair genes with SVs in cancer; 

adapted from Li et al. (2020)94. Coloured cells indicate an association between the SV type and muted 

gene. TD: Tandem Duplications; small: <50-kb; mid: 50-500kb; large: >500kb. 

BRCA1                         

BRCA2                         

CDK12                         

FANC                         

PALB2                         

TP53                         

 Sm
al

l d
el

et
io

n
 

M
id

 d
el

et
io

n
 

La
rg

e 
d

el
et

io
n

 

Ea
rl

y 
sm

al
l T

D
 

La
te

 s
m

al
l T

D
 

Ea
rl

y 
m

id
 T

D
 

La
te

 m
id

 T
D

 

La
rg

e 
TD

 

Fr
ag

ile
 s

it
e 

Fo
ld

-b
ac

k 

U
n

b
al

an
ce

d
 

tr
an

sl
o

ca
ti

o
n

 

R
ec

ip
ro

ca
l 

tr
an

sl
o

ca
ti

o
n

 

 

Aneuploidy can be found in most cancers119,171 making it apparent that it is highly linked to 

cancer. Whether aneuploidy is the result from errors in the mitotic checkpoint or DNA repair 

errors can be verified by examining if the copy-number changes impact only segments of or an 

entire chromosome (arm). Indeed, it would not be expected that DSB alone could cause whole-

chromosome duplications. In any case, it is clear that aneuploidy promotes tumorigenesis and 

that DNA repair genes play an important role in maintaining genome stability. Different muta-

tions on these genes can have different outcomes and cancer is the result of a long process of 

replication stress and genomic instability as demonstrated by publications from the pan-cancer 

consortium91–93. Altogether, the arguments and known pathways in the previous sections are 

summarised in an over-simplified representation of the key mechanisms that link together RT 

and SVs in cancers (Figure 8). The interplay of these features is only a small, but important, 

part of the molecular orchestration of the cell cycle in cancers. 

DNA replication stress can be induced (to kill cancerous cells) and regulated with chemother-

apeutic drugs. One of them, oxyplatin, a DNA crosslinker, will arrest the cell cycle in G1 by 

repressing the expression of proteins involved in DNA replication. Moreover, in view of the 

strong link between SVs and RT, modifying the order in which the segments of DNA replicate 

in cancer cells to create catastrophic damage could induce apoptosis, and thus provide a new 

therapeutic method. However, more research is required to be able to find appropriate pathways 

for this. Regardless, RT could eventually be used a predictive metric to understand where SVs 

could arise across the genome, for each cancer type, or even each patient, providing insights in 

the possible genomic impacts. This might be an important tool that could predict cancer based 

on individualised mutational landscapes, years before it manifests. Thus, it is important to fur-

ther conduct research in this field to build the knowledge surrounding genome instability and 

replication stress. 
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Figure 8: An extremely simplified yet complicated representation of factors of the cell cycle and its 

relationship to SVs in cancer. The cell cycle is regulated by CDKs which concentrate at moments of 

the cell cycle. Oncogenes can lead to infinite proliferation of the cells. CDK12 phosphorylates RNA 
polymerase II which helps transcribe the tumour-suppressor genes which can indirectly regulate the 

entry of the cell in S phase if the DNA repair mechanism they regulate is not in place. Under normal 

conditions, if there is DNA damage, TP53 will block the activity of CDK2 through other intermediate 
mechanisms, blocking the termination of S phase and thus allowing the cell to enter apoptosis. ATR 

phosphorylates BRCA1 while FOXM1 upregulates BRCA2172. BRCA1 and BRCA2 create a complex 
with RAD51 enabling homologous recombination. If the DNA repair pathway is not executed correctly, 

or at all, SVs can arise. Duplications along with translocations are more likely to develop in early S 

phase and deletions in late S phase. Genes are in red boxes, DNA repair pathways in purple boxes and 

SVs in yellow boxes. Red lines indicate direct impact, pointed lines indicate an indirect impact of one 

factor on the other while green pointed lines indicate a positive correlation. HR: Homologous recom-

bination; NHEJ: Non-Homologous End Joining; MMEJ: Microhomology-Mediated End Joining. 
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1.5.2. Research gaps 

Until recently, due to technical reasons, scRT investigations were limited by the number of 

cells (i.e. ~100) that could be studied in each sample. Some recent studies that have overcome 

these hurdles62,154,165 have confirmed that there is some heterogeneity in RT between individual 

cells within a population. Yet, there has been an absence of unified frameworks for scRT anal-

ysis that unite all the individual computational methods starting from the alignment of reads to 

scRT extraction and further analyses.  

We have previously shown that it is possible to distinguish subpopulations from CNAs and 

extract distinctive replication patterns issued from a single cell line sample (Section 6)62. How-

ever, this process was not automated and as a consequence, RT is still not routinely studied in 

tumours. The main reason behind this is because there is a lack of methods adapted to study 

DNA replication specifically in cancerous cell populations and the scarcity of available WGS 

data from patient tumours containing enough cells in S phase for scRT extraction. Although it 

was reported that replication patterns are largely conserved in cancer162, heterogenous patient-

derived replication profiles have still not been studied. Whether cell lines accurately portray 

the DNA replication timeline remains undetermined. Indeed, more realistic conditions, such as 

the tumour microenvironment, could play a role on regulating origin firing. Although, due to 

the lack of previous studies on this question, this remains a mere speculation. Since RT heter-

ogeneity in cancer samples is not studied, new automated methods are required to create such 

genome-wide investigations. 

Here, I attempted to address these issues. Firstly, with the aim of developing a computational 

tool for automatic scRT extraction and analysis directly from single-cell whole genome se-

quencing (scWGS) data obtained from asynchronous cells. Secondly, with the aim of develop-

ing new methods allowing the investigation of scRT in heterogenous patient-derived tumour 

samples. The automation of the discovery and extraction of copy-number heterogeneity from 

scWGS data was used in an attempt to answer the following questions: How can one efficiently 

discover and extract subpopulations from a single heterogenous sample? How heterogenous 

are different subpopulations between each other? What is the precise relationship between SVs 

and RT at the single-cell level? 
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2. Materials and methods 

2.1. WGS data collection and preparation 

2.1.1. 10X single-cell data 

The BAM files of GM12878165 that were aligned to hg19 were not available as fastq files (re-

quiring realignment to hg38) and were obtained directly from the SRA website, sorted by read 

name with samtools173 sort (v1.16.1; option -n) and converted to fastq files with samtools fastq 

(options -T CB --barcode-tag CB) to have barcodes transcribed in the fastq headers from the 

BAM headers. These files were demultiplexed with demultiplex174 demux (v1.2.2; options -m 

0 --format x). The other samples obtained by the 10X scCNV solution53,154,165 (see Data Avail-

ability Section 6.1) were acquired as fastq files with the NCBI SRA toolkit (v3.0.6) under the 

fasterq-dump command and demultiplexed using demultiplex demux (options -r -e 16) with 

barcodes extracted directly from the first 16 bp of forward reads. All extracted barcodes were 

filtered based on the 10X barcode whitelist. 

2.1.1.1. Identification of valid barcodes with the EM algorithm 

Single cells were considered for further use if they originated from valid barcodes which were 

identified as follows. Data was prepared by counting the number of lines of each demultiplexed 

fastq file and then divided by 4 to reflect the number of total reads per single-cell. The resulting 

list containing the number of reads per barcode was then used to make a distinction between 

corrupted or low-read (invalid) barcodes from qualitative (valid) ones through a custom R175 

(v4.0.4) script. Barcodes containing less than 30,000 reads were considered to not be qualita-

tive due to the very low number of reads and were systematically removed to eradicate any 

noise in the initial peak with the goal of only keeping a mixture of two distinguishable distri-

butions (valid and invalid barcodes). The em command from the cutoff R library (v0.1.0) was 

used to identify the cut-off point of 2 log-normal distributions of the read counts from the 

Expectation-Maximisation (EM) algorithm for each demultiplexed file. 

EM was comprised of two stages, the expectation (E-step) and maximisation (M-step) steps, 

which occurred after initialisation of the μ and σ parameters (see below) for the 2 log-normal 

distributions (D1 and D2). The probability density function (PDF) used during the E-step, 

which represented the probability of observing a particular read count per barcode (continuous 

random variable) given the following parameters, of the log-normal distribution can be de-

scribed as: 

𝑓(𝑥 ∣ 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒 −(ln 𝑥− 𝜇)2/(2𝜎2) 

where: 

• 𝑥 represents the read count of the barcode. 

• μ represents the mean (also called location parameter). 

• σ represents the standard deviation (also called the scale parameter). 

Using this, 𝛾𝑖  which represents the probability that barcode read count 𝑖 belongs to the valid 

distribution is calculated as: 
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𝛾𝑖 =
𝑓(𝑥𝑖 ∣ 𝜇𝐷2, 𝜎𝐷2)

𝑓( 𝑥𝑖 ∣∣ 𝜇𝐷2, 𝜎𝐷2 ) + 𝑓( 𝑥𝑖 ∣∣ 𝜇𝐷1 , 𝜎𝐷1 )
 

where: 

• 𝑓(𝑥𝑖 ∣ 𝜇𝐷2, 𝜎𝐷2) is the PDF of the log-normal distribution with parameters 𝜇𝐷2 , 𝜎𝐷2 

evaluated at the read count 𝑥𝑖 for the valid distribution (D2). 

• 𝑓(𝑥𝑖 ∣ 𝜇𝐷1, 𝜎𝐷1) is PDF of the log-normal distribution with parameters 𝜇𝐷1, 𝜎𝐷1 evalu-

ated at the read count 𝑥𝑖 for the invalid distribution (D1). 

This E-step computed the expected value of any missing data points and calculated the proba-

bilities of the missing or overlapping data given the estimates of μ and σ. The following M-

step then updated the parameters of the log-normal distributions using the estimated probabil-

ities as follows: 

𝜇𝑛𝑒𝑤 =
∑ 𝛾𝑖 ln 𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑖
𝑁
𝑖=1

 

𝜎𝑛𝑒𝑤 = √
∑ 𝛾𝑖(ln 𝑥𝑖 − 𝜇𝑛𝑒𝑤)2𝑁

𝑖=1

∑ 𝛾𝑖
𝑁
𝑖=1

 

The E- and M-steps were repeated iteratively until the estimated probabilities 𝛾𝑖  converged 

(when the parameters and probabilities stopped changing between iterations). The exact cut-

off value between D1 and D2 was obtained with the cutoff command from the same package, 

having D1, the lower read count distribution, belonging to the Type-I error. Only the barcodes 

having a number of reads superior or equal to the EM cut-off value were considered to be valid 

and those with a lower number of reads were discarded. Histograms containing representations 

of the read counts and the cut-off values were systematically generated for visual inspection 

and validation. The valid barcodes were retained with their respective reads used to keep fastq 

files which corresponded to single-cells for further analysis. 

2.1.2. Read alignments 

MCF-762, JEFF62, HeLa S362, hTERT-RPE198 and all mouse cells98 were aligned as previously 

reported62 using the Kronos FastqToBam module to the UCSC hg38 and mm10 reference ge-

nomes. Other single-cell fastq files had their reads trimmed and filtered by quality score with 

trim_galore176 (v0.6.4; options –fastqc, –gzip, --paired when paired-end data were used or 

omitted otherwise, and --clip_R1 16 except for GM12878 data from BAM files) based on Cu-

tadapt177 (v3.7) and FastQC178,179 (v0.11.9) and mapped onto the UCSC hg38 reference genome 

with BWA mem180 (v0.7.17-r1188; option -M). Mate coordinates were corrected using 

samtools fixmate (option -O bam) whenever the data were issued from paired-end sequencing 

or skipped otherwise. All BAM files were then sorted by coordinates with samtools sort (-O 

bam) before read duplicates were removed with Picard181 MarkDuplicates (v2.26.11; options 

ASSUME_SORT_ORDER=coordinate, METRICS_FILE) via java (v19; options -Xmx16g -

jar). MultiQC182 (v1.10.1) was used to visually inspect single-cell quality. 

2.2. RT/Multi-omic comparisons 

2.2.1. Functional analysis of theoretical transcriptomic activity 
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Pseudo-bulk mESC and day-7 RT profiles were obtained in 200 kb non-overlapping bins and 

evaluated with a two-sided Wilcoxon rank sum test with continuity correction via the wil-

cox.test R command. Regions with RT switching from early to late, late to early or remaining 

stable during differentiation were distinguished under the following conditions: 

𝐸𝑎𝑟𝑙𝑦 𝑡𝑜 𝐿𝑎𝑡𝑒 =  𝑅𝑇𝑚𝐸𝑆𝐶 > 0.5 ∪  𝑅𝑇𝑑𝑎𝑦−7 < 0.5 

𝐿𝑎𝑡𝑒 𝑡𝑜 𝐸𝑎𝑟𝑙𝑦 =  𝑅𝑇𝑚𝐸𝑆𝐶 < 0.5 ∪  𝑅𝑇𝑑𝑎𝑦−7 > 0.5 

𝐸𝑎𝑟𝑙𝑦 =  𝑅𝑇𝑚𝐸𝑆𝐶 > 0.5 ∪  𝑅𝑇𝑑𝑎𝑦−7 > 0.5 

𝐿𝑎𝑡𝑒 =  𝑅𝑇𝑚𝐸𝑆𝐶 < 0.5 ∪  𝑅𝑇𝑑𝑎𝑦−7 < 0.5 

The list of known mouse genes from the UCSC mm10 database was loaded under the 

TxDb.Mmusculus.UCSC.mm10.knownGene R package (v3.10.0). The annotateBedFromDb 

command from the CompGO package (v1.26.0) was used to annotate the regions to provide a 

list of embodied genes by id. Gene duplicates were removed and gene ontologies were ex-

tracted from gene ids with lookUp from the annotate package (v1.68.0). For each gene, the 

biological processes were isolated from the ontologies and counted. Only the 25 most frequent 

processes were retained and the ones in common between the two cell types were tested for 

independence with Pearson's Chi-squared test on R (chisq.test command). 

2.2.2. Chromatin accessibility 

Pre-analysed GM12878, HeLa and MCF-7 scATAC fragments were obtained from GEO (see 

data availability Section 6.2) and converted to hg38 from hg19 with a custom R code based on 

the liftOver package (v1.14.0). Peaks were called in 500 bp tiles using another custom R code 

based on the ArchR70 (v1.0.2) package with the random seed set to 20201125 for reproducibil-

ity (see code for detailed parameters). Clustering was achieved with LSI dimensionality reduc-

tion and Seurat’s graph clustering183 from ArchR. Significant marker genes were determined 

by multiple-hypothesis testing (binomial, Wilcoxon, two-sided t-testing) when the false dis-

covery rate was lower or equal to 0.01 and the log2 fold-change was higher or equal to 1.25, 

organised in regions located 100 kb upstream and downstream of transcription start sites. Bulk 

ATAC of the same cell lines were obtained with the SRA toolkit (v3.0.6) under the prefetch 

and fastq-dump commands. Fastq files were merged per sample and passed through fastqc 

(v0.11.9). Alignment to the hg38 reference genome was made with Kronos fastqtoBAM and 

reads with a mapping score under 30 were removed. Peak calling was performed with the 

macs2184 (v2.2.7.1) filterdup, predict and callpeak commands. 

2.3. Copy-number matrix organisation 

Copy-numbers from the resulting single-cell BAM files were estimated with the Kronos scRT 

Binning and CNV commands in either 20 or 25 kb windows (see code for parameters). Sys-

tematically problematic genomic regions were masked with the hg38 blacklist. The resulting 

BED files were regrouped by sample and used as an input for MnM. Marie Curie’s date of birth 

in a YYYYMMDD format was used as a random seed when running MnM. 

Genomic regions from all MnM input files were rearranged in 100 kb non-overlapping genomic 

windows (as a median of the copy-numbers from the input file each 100kb window included) 

delimited by the chromosome sizes of the hg38 reference genome provided by bedtools185,186, 

and then in 25 kb and 500 kb for the replication state classifier models. Median copy-numbers 
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per bin were calculated when at least 50% of the bin was covered. MnM then automatically 

processed the data by temporarily removing windows containing no data and any remaining 

sporadic missing values were filled in with the integrated sklearn k-Nearest Neighbors (KNN) 

imputation algorithm187 (options n_neighbors=5, weights=’distance’). The nearest neighbours 

were defined as the 5 closest cells based on the Euclidean distance of the genome-wide copy-

numbers (distances calculated in pairs for genomic regions that neither of the 2 cells were 

missing). A weighted average of copy-numbers from the region of the closest neighbours was 

used as the imputation value. The imputation method can be described as: 

𝑋̂𝑖𝑗 =
∑ 𝑤𝑖𝑘 ∙ 𝑋𝑘𝑗

𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑘=1

∑ 𝑤𝑖𝑘
𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑘=1

 

where: 

• 𝑋̂𝑖𝑗 represents the imputed value for the copy-number of the region 𝑗 in cell 𝑖. 

• 𝑋𝑘𝑗 denotes the value of region 𝑗 in the 𝑘-th neighbour. 

• 𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 is the number of nearest neighbours considered for imputation. Here 𝑛 =5. 

• 𝑤𝑖𝑘 represents the weight assigned to the 𝑘-th neighbour for cell 𝑖 based on their Eu-

clidean distance. 

This imputation method was also used for the imputation of 5-55% in intervals of 5% of sin-

gle-cell copy-number values that were randomly selected and removed after the elimination of 

any windows containing missing values of an S-phase enriched population of MCF-7 cells. A 

random imputation method where each missing copy-number value was substituted by a ran-

domly selected non-missing value from the matrix, along with a median imputation method 

where the median of each genomic region was imputed, were implemented for comparison to 

the KNN imputation method under the same random seed (see code for details). Accuracy was 

calculated as the percentage of identity of the imputed values compared to the original values. 

Similarity was calculated as the percentage of values that differed less than 1 copy number 

for KNN imputation compared to the original value. Invariance was calculated matrix-wide as 

the percentage of unchanged copy-numbers after imputation. 

2.4. Replication state detection 

To organise the data for the replication state classifier, cells phases were either extracted with 

Kronos (HeLa, MCF-7, JEFF)62, solely from the FACS metadata (hTERT-RPE1)98 or from the 

intersection of common replicating states from the FACS metadata and Kronos (HCT-116, 

GM12878)165. The resulting single-cell copy-number matrices were concatenated. Any par-

tially or completely missing regions (i.e. any genomic region containing at least one missing 

copy-number value) were removed while only autosomal data were retained. 80% of the cells 

were used as training data and the remaining 20% were used as testing data. To prepare the 

replication state classifier to be able to distinguish noisy copy-number non-replicating profiles 

(e.g. from low-quality cells or technical noise) from replicating cells data, augmentation was 

performed. Half of the training cells were randomly selected and copied. For each of these 

copied cells, noise was induced by altering the copy-numbers by ±1 between 5-75% of the 

genomic regions which were selected from a uniform distribution. 

The replication state classifier was built on a Sequential architecture which is a feed-forward 

neural network. The model was designed with the Keras188 python library (v2.13.1) to facilitate 

the construction of a linear stack of neural network layers, each connected to the subsequent 
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one. As an input, the single-cell copy-number matrix of the training dataset containing the 6 

cell types and the augmentation data was used. The sequence of layers aimed at hierarchical 

feature extraction and predictive modelling consisting of three hidden layers with 64, 32 and 

16 units, respectively. These layers facilitated the extraction of increasingly complex and ab-

stract representations of the input copy-number profiles. The model terminated in an output 

node having a single unit with a sigmoid activation. This configuration was suited for binary 

classification tasks, enabling the model to produce a probability estimation in a [0,1] range. 

Upon construction, the model was compiled with a binary cross-entropy loss function to opti-

mise the network’s performance concerning binary classification. An ‘adam’ optimiser, known 

to be efficient and adaptive on learning rates, was used to optimise the parameters throughout 

training. In order to avoid overfitting, an early stopping mechanism was implemented on an 

epoch-based patience of 15 iterations. 

With the completion of training, the resulting neural network model along with the list of ge-

nomic windows comprised in the matrix were saved for further use. The model was then inte-

grated and automatically loaded with MnM to predict the single-cell binary replication states 

(Replicating/S-Phase, Non-Replicating) of the scWGS data obtained from tumours or cell 

lines. In the case where any regions required by the model were not present, MnM compensated 

for these missing values by using linear interpolation from both directions. Compensating for 

these missing values ensured the continuity and integrity of replication state predictions. 

2.5. Subpopulation discovery 

Commencing with non-replicating cells, the number of variables were reduced from the num-

ber of autosomal regions to 2 dimensions with Uniform Manifold Approximation and Projec-

tion (UMAP)189. The Density-based spatial clustering of applications with noise (DBSCAN) 

algorithm190,191 was then used to detect the number of groups on this reduced dataset (option 

min_samples= 10%). The epsilon parameter (ε) was calculated as: 

𝜖 =
max(𝑈𝑀𝐴𝑃1) − min(𝑈𝑀𝐴𝑃1)

max(𝑈𝑀𝐴𝑃2) − min(𝑈𝑀𝐴𝑃1)
 × 1.25 

where UMAP1 and UMAP2 correspond to UMAP’s first and second output parameters respec-

tively. Epsilon was always restricted between 1.25 and 2 while min_samples had a minimal 

requirement of at least 10 cells. UMAP was repeated with 6 randomly generated seeds and the 

most frequent number of subpopulations, as determined with DBSCAN, was retained. Subpop-

ulations discovered with DBSCAN were redefined and merged iteratively in a descending sim-

ilarity order if the median copy numbers per region were 98.5% identical. Copy-numbers of 

both S-phase and non-replicating were reduced to 10 UMAP dimensions (second round of 

UMAP) and then matched each S-phase cell to the closest non-replicating group with the 

sklearn nearest neighbour command (options n_neighbors=50% of cells, metric=’euclidean’). 

The number of nearest neighbours was required to have a minimal value of 5. Both rounds of 

UMAP were performed on the single-cell copy-number matrices with the addition of 5 artificial 

cells stretching from complete haploid to pentaploid profiles for subpopulation calibration. 

2.6. DNA replication timing 

Kronos scRT was modified to work with R v4.0.5, ignore copy-number confidence during 

quality-control filtering and produce an extra metadata file containing cell diagnostic details. 

We used the diagnostic module at a first stage for quality control based on the number of reads 

per Mb under the customised developer mode (option -d) created for this purpose. The data 
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were filtered and then passed through MnM for replication state classification and subpopula-

tion detection. The Kronos scRT WhoIsWho module was used to assign the cell phases from 

the replication state classifier or FACS data accordingly (see code for details) followed by the 

diagnostic module, which was used a second time to correct the early and late S-phase copy-

numbers (option -C). For each subpopulation and biological replicate, the copy-number data 

were split into a different file with a custom python (v3.9.11) code. Kronos scRT was then used 

to calculate the replication timing profiles through the RT module in 200 kb windows. The 

resulting scRT binary values were used to produce scRT trajectories with the DRed module 

using the random seed ‘18671107’ for reproducibility. Permutation tests on the trajectories 

were made using a custom python code under 1,000 permutations. The observed test statistic 

was calculated as the absolute mean of sum of differences in means between subpopulations 

for both UMAP coordinates: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = ∑ |𝑥̅𝑔𝑟𝑜𝑢𝑝 − 𝑦̅𝑔𝑟𝑜𝑢𝑝|

𝑔𝑟𝑜𝑢𝑝𝑠

 

Where 𝑥𝑔𝑟𝑜𝑢𝑝 and 𝑦̅𝑔𝑟𝑜𝑢𝑝 are the means of the UMAP1 and UMAP2 coordinates for each sub-

population respectively. The permutation test was executed by randomly shuffling the group 

labels while keeping the same UMAP coordinates. The test statistic was computed on the shuf-

fled data in the same way as the observed statistic. This allowed to calculate a p-value as fol-

lows: 

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑠𝑡 𝑝 − 𝑣𝑎𝑙𝑢𝑒

=  
∑ (𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ≥ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐) + 1𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 + 1
 

Pseudo-bulk and bulk RT correlations were calculated with the Spearman method and scRT 

correlation clustering for the scRT atlas was ordered with the Ward.D2 hierarchical clustering 

method. Bulk RT profiles were lifted over from hg19 to hg38 with the liftover command192 

after being converted to bed files with bigwigtobedgraph193. When applicable, the Kronos scRT 

compare TW module was used to compare the Twidth values of mouse scRT under 1,000 iter-

ations.  
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3. Results 

3.1. Single-cell replication timing in mammalian cells 

3.1.1. Kronos scRT: a computational tool for scRT studies 

Kronos scRT is a computational tool designed to extract and analyse single-cell replication 

timing (scRT) from single-cell whole-genome sequencing data (Figure 9). Developed in R175, 

it acts as a unified framework to offer a comprehensive approach to analyse scRT from the 

post-sequencing to downstream analysis steps. Kronos scRT aligns the sequenced reads to the 

selected reference genome (human hg38 and mouse mm10 used here) with the FastqToBam 

module. The number of reads of each single-cell are then counted in non-overlapping bins 

which are 20 kb wide by default (modifiable parameter based on the coverage of the dataset) 

obtained from the Binning module. A human or mouse blacklist were systematically used in 

the analyses here to remove any problematic genomic regions194. Read counts were then cor-

rected for GC content and mappability bias and were translated to raw copy-numbers. Late S 

phase cells systematically appeared to have a median raw copy-number inferior to that of G1 

cells (see ref. 62). The copy-numbers were corrected, and the cell-phases were distinguished 

based on bin-to-bin copy-number variability and median ploidy (median copy-number) with 

the diagnostic module. This method of in silico cell phase sorting could not distinguish G2 cells 

from G1 cells because, in principle, both have similar genome-wide copy-number profiles 

(copy-numbers are estimated in possible ploidy slots e.g. 1, 2, 3, etc..). We therefore refer to 

these cells as “G1” or “non-replicating” cells interchangeably hereafter. Finally, scRT was cal-

culated with the RT module by dividing the copy-numbers of the bins of the S phase cells by 

the median copy-numbers of the respective G1 cells. 

 

Figure 9: Kronos scRT, a unified pipeline for scRT analysis. The obtained reads are aligned to the 
reference genome of choice which are then counted in fixed-sized genomic windows and translated to 

DNA copy-numbers. The copy-numbers are then used for an attempt to detect cell phases or alterna-
tively imported from cell-sorting metadata. RT is then calculated from each individual cell by dividing 

the copy number of each genomic window of S phase cells by the median copy-number of the G1 cells 

for the corresponding window. Further analyses can include dimensionality reduction and Twidth com-
parison. Figure obtained from the Kronos scRT publication62. CNV: Copy-Number Variation; RT: Rep-

lication Timing; Dred: dimensionality reduction; TW: Twidth. 

We applied Kronos scRT to human droplet-based single-cell WGS data generated for this 

study62 as well as published mouse data98. Specifically, the human data used were estrogen 

receptor-positive breast cancer MCF-7, cervical cancer HeLa (S3), and B-lymphoblastoid JEFF 

cell-lines. The mouse data used were mid-S phase mouse embryonic stem cells (mESCs) and 
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mouse neurectoderm cells at day 7 of differentiation (day-7). MCF-7 cells were sequenced 

under two repeats, the first being unsorted cells and the second being FACS-sorted cells to 

enrich the S-phase population. The cells were sorted because under normal circumstances, one 

would expect to only find ~20% of a population of cycling cells in S-phase. Kronos scRT was 

able to distinguish S-phase cells from non-replicating cells automatically in the unsorted pop-

ulation, and manually from the sorted population. This was because the non-replicating popu-

lation was used as a target to be able to then detect the replicating cells. If the G1 cell population 

was not predominant, Kronos was not always able to detect the replicating states of the cells. 

We obtained scRT profiles for each of the cell-types analysed and proceeded with analysis as 

described in the pipeline. A striking discovery was the in the analysis of MCF-7 cells, copy-

number heterogeneity between cells was discovered. Upon further investigation, the discovery 

of two different aneuploid karyotypes was noticed. Although, MCF-7 cells are known to almost 

be tetraploid (ploidy ~3.8 here), we discovered that different genomic regions exhibited differ-

ent copy-numbers which were both chromosome-wide and on the sub-chromosomal scale. No-

tably, chromosome 3 was present in either 4 or 5 copies depending on the subpopulation. In 

order to verify these in silico findings, a FISH experiment was carried out and indeed confirmed 

the presence of 4 or 5 copies of chromosome 3. Thus, the MCF-7 cells were split by subpopu-

lation and analysed separately. When comparing the pseudo-bulk RT profiles of the two sub-

populations, a 94.6% Spearman correlation was observed, highlighting that despite large SVs, 

the replication machinery is robust enough to reduce the effect on the replication patters. None-

theless, differences were visible enough on the scRT trajectories to notice that the scRT patterns 

were divergent between the two subpopulations but, in comparison to the other human cell-

types, not enough to characterise them as two separate cell-lines. 

Additionally, we confirmed that variability in RT was higher in mid S phase compared to early 

and late S phase in all the cell types analysed. This observation was based on the T-width 

measurement, which will be explained later in Section 3.1.2, a measurement only made acces-

sible with the arrival of single-cell technologies in RT studies. This remark suggested that the 

replication process is more asynchronous during this stage of S phase because different ge-

nomic regions do not replicate at the same time during mid S phase leading to this higher degree 

of variability. To further address cell-to-cell variability, regions were classified into late S 

(<30% genome replicated), mid S and late S (>70% of the genome replicated) based on the 

pseudo-bulk data. In all examined cell-lines, between 1-5% of the cells had late replicating 

regions already replicated in early S phase, which supported a certain degree of stochasticity 

in the RT programme. 

Overall, this study showed that Kronos scRT is a scalable and comprehensive tool allowing the 

study of RT at the single-cell resolution in homogenous or heterogeneity-resolved populations. 

The detailed methods and results can be found in the publication (Section 6), Kronos scRT is 

available at https://github.com/CL-CHEN-Lab/Kronos_scRT and it is protected by the French 

Agency for the Protection of Programs (APP) under registration number 

IDDN.FR.001.370044.000.S.C.2022.000.20700. Personal input for the development of Kronos 

scRT and published scRT analyses62 included: 

i. Extension of scRT to non-human reference genomes (e.g. mm10). 

ii. Inclusion of a blacklist, a list of problematic genomic regions that will be excluded from 

the analysis. 

iii. Optional use of FACS metadata to define cell phases (WhoIsWho module). 

iv. Subpopulation detection of MCF-7 cells. 

https://github.com/CL-CHEN-Lab/Kronos_scRT
https://secure2.iddn.org/app.server/certificate/?sn=2022370044000&key=8ad097749b53afa9708fa7f9fa40178015e99e2ddd34a64dbdabf59d5ac4e97e&lang=en
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v. Calculation of binary cell-to-cell RT distances with the simple matching coefficient 

(adapted distance metric for binary data). 

vi. Dimensionality reduction and scRT trajectory generation (DRed module). 

vii. Day-7 and mESC scRT extraction and bioinformatic analyses. 

viii. Step-by-step case study tutorial on GitHub. 

Although Kronos scRT enabled automatic scRT extraction and analysis from raw sequenced 

reads, it failed to address cell-to-cell copy-number heterogeneity to detect copy-number signa-

tures resulting from CNAs. Furthermore, on smaller datasets (e.g. ref.98,167), Kronos scRT 

failed to detect replication states of the single-cells, or required manual cut-offs with larger 

ones that contained a disproportionate number of cells in S phase (e.g. ref.165). The following 

approaches (Sections 3.3, 3.4) were used to address this issue by creating new methods that 

would allow investigations in single-cell genomic heterogeneity. 

3.1.2. Mammalian replication patterns differ between cell type 

To compare RT of mouse samples, we had previously used previously published data98 from 

mid-S phase mESCs as well as day-7 (n=46)62 cells. Here, the data were enlarged by incorpo-

rating early and late S-phase mESCs (n=146) from the same source along with mouse embry-

onal carcinoma cells (Figure 10 a; n=25). The scRT profiles were extracted from the data, 

reconstructing the replication landscapes for each cell type (Figure 10c). Although the number 

of cells per sample was limited, there was a relatively high Spearman correlation with bulk RT 

profiles when compared in 200 kb genomic windows, amounting to 89%, 87.9% and 81.7% 

for mESCs, day-7 and carcinoma cells, respectively. These results indicate that even when 

there are a limited number of cells, the replication patterns can still be extracted successfully. 

As expected, the overall replication timing profiles of mouse cells differed between the 3 cell 

types. Specifically, there was a weaker relationship concerning the carcinoma cells when com-

pared to mESCs and day-7 cells, correlating at 79.5% and 79.4%, respectively (Figure 10 b). 

On the other hand, mESCs and day-7 cells correlated higher between each other at 84.1%. 

To quantify the variability of each part of S-phase, Twidth – the number of hours required for 

a genomic region to be replicated in 75% of the cells of the population, starting from 25% of 

the cells having that region replicated – was calculated (Figure 10 d) to reflect variability of 

the different parts of S phase. In accordance with previous studies62,156,195, the most variable 

timing point was mid-S phase for both mESCs and day-7 cells. Contrariwise, the carcinoma 

cells were most variable in late-S phase, implying that there is a temporal deregulation of the 

replication timing programme in these cancerous cells. We found that there was a significant 

difference between the Twidths of the 3 samples which displayed bootstrap p-values of less 

than 1e-03 (Figure 10 d, Supplementary Section 8.3.1), indicating that the RT profiles can be 

ordered by variability in the following order: mESC, day-7, carcinoma cell-types. 

3.1. Exploring the multi-omic landscape 

3.1.1. Functional genomics from RT 

Bearing in mind the multi-omic landscape RT is a part of, one would expect early-replicating 

regions of the genome to be transcriptionally active and late replicating regions inactive. Based 

on this hypothesis, a functional analysis was performed to discover gene functions located in 

regions that switch from early to late, or late to early during embryonic differentiation. The RT 

profiles between mESC and day-7 cells were proven to be significantly different by a Wilcoxon 

test which yielded a p-value less than 2.2e-16. 1,535 200 kb regions switched from early to 
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late, 548 from late to early, 5,438 remained early and 4,444 remained late during differentia-

tion.  

 

Figure 10: RT differs between mouse cell types. A. G1 and S-phase ploidies and bin-to-bin variability 

of mESC, day-7 and embryonal carcinoma cells. B. Genome-wide Spearman correlations between 
mouse cell samples. C. Replication landscapes of the mouse cell types with single-cells sorted from 

early to late S-phase. D. Twidth values for early, mid and late S-phase indicating replication stress in 

mouse carcinoma cells, leading to higher cell-to-cell variability in late S-phase regions. 

The biological processes of genes present in the UCSC mm10 database that were located in 

regions that switched from late to early (activated during differentiation) were extracted and 

counted. A total of 15,805 biological processes were uncovered from these genes, of which 

4,459 were unique occurrences. The highest 25 occurrences were extracted and corresponded 

to both general processes along with development- and differentiation-specific ones (Figure 11 

a). Likewise, for early to late regions (deactivated during differentiation), 6,528 processes, of 

which 2,475 unique, were uncovered. Contrary to the late-to-early regions, development- and 

differentiation-related gene functions were less present (Figure 11 b). After grouping the 17 

highest processes in common between the 2 temporal changes, a Chi-squared test was per-

formed to evaluate whether they are independent. The p-value obtained was found to be less 
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than 2.2e-16 indicating that the distribution of functional ontology term counts was not the 

same between mESCs and day-7 cells. 

 

Figure 11: Theoretical transcriptomic activity based on RT changes. A-B. The 25 highest occurring 
biological functions of genes embodied in regions switching from late to early, theoretically activated, 

(A) and from early to late, theoretically deactivated, (B) during differentiation. 

3.1.2. Chromatin accessibility and RT 

While studies have shown that RT correlates well with transcription, they have also shown that 

there is an association with chromatin. In order to examine the extent of this association, bulk 

and single-cell ATAC (scATAC) data was obtained for HeLa (cervical cancer; n=2,610), MCF-

7 (breast cancer; n=875) and GM12878 (lymphoblastoid; n=2,663) cell lines. The scATAC 

peaks were called with a revealed 3 individual clusters (Figure 12 A-B) corresponding to the 3 

human cell types previously used for RT62. Bulk and single-cell ATAC peak counts and RT in 

200 kb regions from these cell types were compared, with GM12878 acting as a similar lym-

phocyte cell line for JEFF cell RT comparisons used here. 
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Figure 12: ATAC data reveals moderate links with RT. A-B. scATAC peaks per replicate (A) and 

clustered to reflect the 3 cell-lines (B). C-E. Single-cell and bulk RT and ATAC comparisons only show 

moderate Spearman correlations between the two omic features for Hela (C), JEFF/GM12878 (D) and 

MCF-7 (E) samples. F. The 10 highest gene markers per cell-type based on multiple-hypothesis testing. 

scATAC peak counts only showed a moderate correlation with both bulk and pseudo-bulk RT 

(Figure 12 C-E). The 10 most significant marker genes per cell type were displayed (Figure 12 

F) revealing a distinct gene signature in GM12878 cells, associated with the CDKN2A Inter-

acting Protein (CDKN2AIP) gene which is central the cell cycle control, senescence, and DNA 

damage response through various signalling pathways, including the p53-HDM2-p21 (WAF1) 

pathway, consistent with inefficient mitotic progression and thus, the development of SVs 196. 
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This open-chromatin region suggests that this gene is transcribed and thus, in agreement with 

a functional DNA repair mechanism preventing the generation of CNAs as observed on both 

GM12878 and JEFF copy-number profiles (Supplementary Section 8.3.3, Figure 16). 

3.2. Automatic single-cell data preparation for copy-number analysis 

3.2.1. Single-cell barcode disentanglement 

In single-cell technologies, distinguishing the reads by the individual cells they originated from 

is essential in order to be able to reconstruct cellular genomes and compare cells between each 

other. The use of unique molecular sequences that are attributed to each cell in order to do so 

are called barcodes. During the preparative pre-sequencing steps, each single cell has an indi-

vidual barcode attributed to all its reads. Nonetheless, due to sequencing errors, some barcodes 

are not sequenced perfectly, or some cells do not have enough sequenced reads and should be 

removed as part of quality control. Although some methods do exist to identify valid barcodes, 

they are either owned by private companies (e.g. Cell Ranger from 10X Genomics), are applied 

to certain technologies, could be discontinued in the future, performed after unnecessary map-

ping which could lead to longer processing times197 (e.g. Cell Ranger from 10X Genomics), 

manually curated by deciding on cut-offs (e.g. ref.154) or are made for other omic data and are 

not adapted to WGS data (e.g. ref.198). Furthermore, with carbon footprints becoming an aspect 

to consider in bioinformatics, it would be preferred to avoid unnecessary mapping of reads that 

will not be used in downstream analyses. 

To overcome these issues, a machine learning method was implemented on GM12878 cells 

(detailed cell counts in Supplementary Table 3, Section 8.2.3, see Methods Section 2.1.1.1 for 

details). After removing the 13,404 barcodes that had a low read count (i.e. contained less than 

30,000 reads), the remaining 7,163 barcodes were then clustered into valid and invalid groups. 

This removal allowed a clearer visual identification of the two distributions (i.e. valid and in-

valid) and avoided any noise in the identification of the cut-off value between valid and invalid 

barcodes. The Expectation Maximisation (EM) algorithm199 was used to find the cut-off value 

between two log-normal distributions. The first distribution with a lower read count was con-

sidered to contain the invalid barcodes and the second one the valid ones (Figure 13). In total, 

92.02% (n=6,591) GM12878 barcodes were retained (Section 8.3.4). Thus, a new method to 

extract single-cells out of a large number of invalid barcodes, that does not require mapping 

reads beforehand was developed and applied on all data originating from the 10X scCNV so-

lution (see code in Section 6 for details). 
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Figure 13: Separation of valid and invalid barcodes through read distributions. Cut-off values appear 

as dashed lines on the number of reads per cell; splitting valid (right) and invalid (left) barcodes for 

GM12878 sorted (early S, G1, G2, late S, S) and unsorted cells. 

3.2.2. Highly accurate data completeness in single-cell analyses 

Due to technical limitations, single-cell whole-genome sequencing data frequently has a lower 

read coverage across the genome (e.g. <1X) in comparison to bulk experiments, leading to 

sporadic missing copy-number values. To address this issue, we turned to the KNN imputation 

technique – a data completion method that takes into consideration the closest cells in terms of 

genome-wide copy-number profiles. To take into account rare copy-number aberrations, or 

replication events, we used a weighted genome-wide copy-number distance between single 

cells for the KNN imputation which generated an imputed value proportional to the closeness 

of the copy-number profiles between the cells based on their Euclidean distances. For each 

missing value, the existing copy-number for that same region from the closest 5 single cell 

profiles were used to fill in the missing data (See Methods Section 2.3 for details). 

We proceeded to empirically validate this method by introducing random voids within the 100 

kb bin single-cell matrix of MCF-7 cells (n=2,321; 1,288 genomic regions), a cell-line with a 

large number of CNAs 62, after removing any regions that already contained missing values. 

We removed between 5% to 55% random values in increments of 5%. We observed that KNN 

imputation predicted and integrated these missing values with an average accuracy of 83.959%, 

thereby reconstructing the single-cell copy-number landscape. Remarkably, our findings 

showed an invariance rate, defined as the total percentage of intact values of the whole matrix, 
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ranging between 99.209% and 90.911% for 5% to 55% of missing values respectively (Figure 

14A), underscoring the robustness of the KNN approach in this context. Furthermore, the im-

puted values with an absolute difference no larger than 1, in comparison with the original val-

ues, ranged between 99.917% and 99.015%, illustrating that the vast majority of the errors 

introduced through this process were not radically inaccurate, even when more than half of the 

dataset contained missing values. 

 

Figure 14: KNN imputation is an efficient method compensating for single-cell copy-number scar-

city. Missing values were simulated by using MCF-7 copy-numbers in 100 kb windows which underwent 
random value removal ranging from 5 to 55% of the total number of values in the single-cell copy-

number matrix (regions/cells). KNN, median and random imputations were performed while KNN im-

puted values that varied by ±1 copy-number were calculated. These values were compared to the orig-

inal values for copy-number matrix-wide invariance (A) and accuracy of imputed values (B). 

A

B
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As a comparison, we used median and random imputation methods (see methods for details) 

on the same missing values as those used for the KNN imputation. These techniques provided 

accuracy rates that were lower and significantly different to the KNN method (paired t-test p-

values of 5.786e-23 and 1.965e-25) which averaged at 48.758% and 22.269% respectively 

(Figure 14B). The invariance rates of the matrices were also lower for these methods compared 

to the KNN imputation as they ranged between 97.433% and 71.776% for median imputation 

and 96.11% and 57.27% for random imputation. To extract the most information possible from 

our data, we applied the KNN imputation method to all datasets in this study (Supplementary 

Section 8.2.3). Imputed values accounted for merely 0.84%, 0.68% and 1.11% missing values 

for HeLa, JEFF and MCF-7 cells, respectively, suggesting that the imputed value fidelity for 

these samples was high (>99%) based on the simulations (Supplementary Section 8.2.1). 

We observed that KNN imputation accurately predicted and integrated these missing values, 

thereby reconstructing the single-cell copy-number landscape. Remarkably, our findings 

showed an accuracy rate range of 99.185 to 90.285% for 5% and 55% of missing values, re-

spectively (Figure 14) underscoring the robustness of the KNN approach in this context. Fur-

thermore, the imputed values with an absolute difference no larger than 1, in comparison with 

the original values, ranged from 99.915 to 99.034%, illustrating that the vast majority of the 

few errors introduced through this process were not drastically inaccurate, even when more 

than half of the dataset contained missing values. To extract the most information possible from 

out data, we applied this imputation method to all datasets in this study (Supplementary Table 

1). Imputed values accounted for merely 0.84%, 0.68% and 1.11% missing values for HeLa, 

JEFF and MCF-7 cells, respectively, implying that the imputed value fidelity for these samples 

was high. 

3.3. Unravelling cell-to-cell copy-number heterogeneity in silico 

3.3.1. Deep learning single-cell replicating state classifier is superior to FACS 

sorting 

In order to extract scRT profiles, it is essential to know which cells are replicating. One popular 

method to distinguish the replication state of cells is fluorescence-activated cell sorting 

(FACS).  Considering that not all single-cell data undergo FACS sorting and that sorting cells, 

by replication state for example, can induce errors200, it would therefore be interesting to further 

validate replication states by other means. Current computational tools that do so62,201 require 

manually established thresholds or complementary information such as GC content and intra-

cellular variability measurements, which are not always directly accessible. To create a method 

that can bypass any need for metadata, we amalgamated single-cell copy-numbers issued from 

datasets with replication states inferred from either FACS98 (hTERT-RPE1: retinal pigment 

epithelial), Kronos scRT62 (MCF-7, JEFF, HeLa), or the inter-section of both154,165 (HCT-116: 

colon cancer; GM12878: lymphoblastoid) depending on appropriate extraction methods and 

harvested the labelled replicating states to create a deep learning model based solely on single-

cell DNA copy-numbers (See Methods Section 2.4 for details). A total of 5,250 replicating and 

2,273 non-replating cells spanning amongst these 6 cell-lines resulted from the amalgamation 

(Supplementary Table 2). We hypothesised that the diverse ploidy landscapes of the selected 

cell lines (Supplementary Section 8.3.3) would make this prediction tool universal and adapted 

to any ploidy state. 

We split our dataset in an 80:20 proportion to create training and test datasets. The training 

dataset was augmented by replicating half of the cells it contained and artificially altering them 

to induce random noise of +/-1 copy sporadically. We trained the model for copy-numbers in 
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25, 100 and 500 kb bins which resulted in 97.94, 98.54 and 98.14% replicating state classifi-

cation accuracy rates on the test datasets respectively. To quantify how well our 100 kb model 

performs in comparison with FACS sorting, we calculated the discordance percentage between 

our in-silico predictions and the FACS metadata of HCT-116 and GM12878 cells. We observed 

that FACS misclassifications accounted for 17.67% of wild-type (WT) HCT-116, 27.69% of 

double-knockout (DKO1) HCT-116, and 25.72% of GM12878 cells (Figure 15). These results 

demonstrate that even when taking into consideration the 1.56% error rate of our model, it 

generated results with accuracy superior to FACS for cell-phase sorting. 

 

Figure 15: Discordance among FACS and the supervised deep learning method developed here on 

replication states of single-cells. The upper row corresponds to FACS sorting of G1 phase cells and 

the lower row to S phase cells of HCT-116 wild-type (WT; left), double knock-out (DKO1; centre) and 

GM12878 (right) cells.  

3.3.2. Unsupervised machine learning automates subpopulation discovery of 

cancerous cells 

Our next goal was to detect aneuploidy differences between cells, a crucial aspect of cancer 

emergence and evolution. To do so, we created a 3-step framework to detect genomic sub-

populations – groups of cells that have distinct CNA signatures in comparison to other cells 

originating from the same sample. The autosomal copy-numbers of non-replicating cells, de-

termined from our deep learning model, underwent dimensionality reduction to be represented 

in a two-dimensional pane. The 2D cell coordinates in these new representations would then 

be used to detect subpopulations with Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN), an unsupervised spatial clustering algorithm. Although UMAP is relatively 

stable, due to it being a stochastic algorithm189 that could generate non-representative distances 
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of high-dimensional data, the UMAP/DBSCAN steps were repeated another 6 times under ran-

dom seeds ranging between 3 and 230. The number of subpopulations was counted with each 

seed. If the predominate number of clusters was not found in the original iteration, the seed 

would change to the first encountered of the 6 random seeds that would. Subpopulations were 

merged while they presented >98.5% median copy-number identity in a prioritised order. Fi-

nally, replicating cells would also be included and a second dimensionality reduction step in 

10 dimensions allowed the KNN algorithm to match replicating cells to their corresponding 

non-replicating subpopulations. 

To validate this method on genome-wide distinct CNA landscapes, we first mixed JEFF and 

HeLa copy-number data to be analysed as if they were a single sample, with the expectation 

that the two cell lines would be correctly distinguished. We first observed that the replicating 

cells in both cell lines were visually distinguishable in the 2D landscape (Figure 16 A-C). After 

running our 3-step subpopulation detector, we confirmed that, without providing any in-for-

mation on the cell origins, they were matched back into 2 populations corresponding to JEFF 

and HeLa for both non-replicating (Figure 16 D) and replicating (Figure 16 E-F) cells. Further-

more, we exposed the existence of only one copy of chromosome X of JEFF (Figure 16 D) 

cells, instead of two which is typical for females, a phenomenon compatible with acquired 

monosomy X. 

 

Figure 16: scCNV distinctions with unsupervised learning. A-C. UMAP pane of JEFF and HeLa sam-

ples coloured by replication state (A), subpopulation (B) and replicate (C). D. 50 randomly selected 

cells and their genome-wide single-cell copy-numbers. 

We previously reported the revelation of 2 subpopulations of MCF-7 cells62, a breast cancer 

cell-line known for unstable aneuploidy. We used our process to automatically detect subpop-

ulations from the single, but heterogenous, MCF-7 sample. The 2 subpopulations could be dis-

tinguished by sub-chromosome (Figure 17 A) and whole-chromosome (Figure 17 B) copy-

number differences and were divergent on UMAP’s reduced dimension pane Figure 17 E). We 

then applied this same method to HCT-116 wild-type (WT) cells and discovered the existence 
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of 2 sub-populations (Figure 17 F), which was previously unreported154. Contrary to the MCF-

7 cells, the observed local CNA changes (Figure 17 C-D), were likely due to DNA repair path-

ways rather than global genomic instability. This agrees with the fact that the HCT-116 cell 

line is known to be defective for the MMR pathway, containing a homozygous mutation of the 

MMR gene hMLH1 on chromosome 3, while also exhibiting microsatellite instability202,203, 

which could be an explicable cause for this state. 

To further validate our subpopulation discovery technique, published copy-number data from 

42,759 single-cells issued from ref.56 which were obtained from ref.201. These single-cell copy-

numbers were based on the hg19 human genome and generated with HMMCopy (computa-

tional copy-number estimator based on a Hidden Markov Model), a reference genome and 

copy-number estimator that were different to the other data analysed in the study. Upon visual 

inspection of single-cell genome-wide copy-number heatmaps (Supplementary Figures from 

Section 8.3.3), we determined that there copy-number signatures specific to each subpopula-

tion. Thus, we concluded that our subpopulation discovery approach is efficient on different 

reference genomes and with copy-numbers obtained from wither Kronos scRT or HMMCopy.  

 

Figure 17: Genomic heterogeneity detected in individual samples of cancer cell-lines. A-D: genome-
wide copy-numbers (A,D) summarised by their median (B-C) of MCF-7 (A-B) and HCT-116 (C-D). E-

F: reduced dimension planes by UMAP of MCF-7 (E) and HCT-116 (F). 
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3.3.3. MnM: a fast and accurate tool integrating machine learning for replication 

states and subpopulation discoveries 

The machine learning approaches from Sections 3.2.2, 3.3.1 and 3.3.2 were integrated to pro-

vide a single ready-to-use tool, MnM: Mix ‘n’ Match, that unifies these techniques under one 

program (Figure 18). Copy-number imputation, replicating state classification and subpopula-

tion detection enabled scRT extraction from heterogenous cell populations and related down-

stream analyses, in vivo and in vitro. In addition to the reported accuracies, MnM is a fast tool, 

with a runtime of 7m:22s for 713 HCT-116 WT cells in 100kb bins running on a macOS 

v13.5.2 computer system with 6 intel i5 cores. MnM’s source code is available on GitHub 

(https://github.com/CL-CHEN-Lab/MnM) and is protected by the French Agency for the Pro-

tection of Programs (APP) under the registration number 

IDDN.FR.001.340005.000.S.P.2023.000.31230. The simplified pseudocode can be found in 

the Supplementary Section 8.1. 

 

Figure 18: Machine learning techniques used throughout MnM. A-B. Copy-number imputation with 

KNN. Single cell data is used as an input in either a matrix or BED file format with missing copy-

number values (A) which are filled in with KNN imputation (B). C. Deep learning for a single-cell 
replication state classifier. The trained deep learning model consisting of 3 hidden and 1 output layer 

is then loaded and used to distinguish replication states of the single-cells. D-F. Subpopulation discov-
ery in 3 steps. Dimensionality reduction is performed with UMAP on non-replicating cells under 2 

dimensions to provide representative lower dimensions of the copy-number data (D). DBSCAN clusters 

the data based on the UMAP coordinates (E) which allows replicating cells to be matched to non-

replicating subpopulations with KNN under 10-dimension UMAP coordinates (F). 
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matrix or BED file

A

B

C

D E F

DBSCAN KNNUMAP

Imputation

Input layer (copy-numbers of 

genomic regions)

Hidden layers

Output layer (replication 

state prediction)

https://github.com/CL-CHEN-Lab/MnM
https://secure2.iddn.org/app.server/certificate/?sn=2023340005000&key=d736bf8ec3dca417dcb81086a73b02e288c9157a99f6e9691844f98940f70f02&lang=en
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3.4. Unravelling scRT in heterogenous samples 

3.4.1. DNA RT retains high fidelity in cell-lines despite CNAs 

With a new tool, MnM, allowing to detect subpopulations from both replicating and non-rep-

licating single-cells, it was therefore possible to extend the techniques developed to hetero-

genous cell populations issued from a single sample (single experiment).  Copy number data 

by subpopulation could now be split and the detected cell phases could be provided to Kronos 

scRT to obtain the RT profiles. MCF-7 and HCT-116 cells were analysed with MnM to dis-

cover heterogeneity and extract scRT profiles. Because the copy-numbers calculated with Kro-

nos scRT were relative, the first and second parts of S-phase copy-numbers were corrected for 

MCF-7 (Figure 19A-B) and HCT-116 (Figure 19 C-D) cells in 200 kb bins. This let to mid-S 

phase regions sometimes being miscategorised as illustrated on the region-to-region density 

plots (Figure 19 G-H) but did not disrupt global RT profiles, as seen when compared to bulk 

data (92.8-94.4% Spearman correlation; (Figure 19  G-H). We observed that the S/G1-phase 

borderline was non-linear on the variability scale (Figure 19 A-D), signifying that separation 

of the replicating states with previous computational methods using linear techniques with a 

unique cut-off value, as in previous studies62,165, would have introduced a larger error rate. For 

each subpopulation, scRT profiles were inferred and visualised (Figure 19  E-F). Despite ge-

nome-wide CNAs, the pseudo-bulk RT profiles of the 2 MCF-7 subpopulations had a Spear-

man correlation of 93.6% (Figure 19 G). As expected, due to the smaller copy-number signa-

tures, the HCT-116 profiles were also highly correlated at 97.5% (Figure 19 H). 

Although these reported correlations between the subpopulations may seem strong, it is uncer-

tain whether we can say with certainty if the replication timing profiles are significantly differ-

ent. A previous attempt here, used the Wilcoxon test to compare RT profiles. However, this 

may not always be a suitable for the nature of RT (pseudo-)bulk data  due to the large number 

of genomic regions and measurements with the same of very similar values204. We previously 

introduced the concept of scRT trajectories62 which position the replicating single-cells in a 

representative manner, illustrating the progression of S phase (from early to late). This repre-

sentation was also efficient for visual distinction of the scRT paths between subpopulations. In 

an attempt to assess whether there was a significant difference in the trajectories between the 

subpopulations, the scRT trajectory coordinates were collected, grouped by subpopulation and 

used for a permutation test (under 1,000 permutations), a non-parametric method that does not 

assume specific data distributions and allows for the randomisation of group labels, thus com-

patible with UMAP coordinates which can produce results that vary between datasets. In agree-

ment with visual inspection (Supplementary Section 8.3.5), the trajectories of the two MCF-7 

subpopulations were significantly different (9.99e-4 p-value) while those of the HCT-116 cells 

were not (0.26 p-value). 
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Figure 19: scRT of heterogenous cancer cell lines uncovered. A-D: Early (green) and late (purple) S-

phase cells are corrected (B,D) from raw scCNV data (A,C) displaying non-replicating (blue) and rep-

licating (green) cells. E-F: scRT landscapes of chromosome 16 from MCF-7 (E) and HCT-116 (F) 
display minor differences between subpopulation with pseudo-bulk (scRT) and bulk RT are displayed 

in the upper window. G-H: correlations between pseudo-bulk subpopulation scRT and bulk RT for 

MCF-7 (G) and HCT-116 (H) cells. 
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3.4.2. Replication timing changes in patient-derived breast cancer  

Since replication timing in heterogenous tumours has not been studied, we used the methods 

we developed in the same manner as done with the cell-lines to discover cell phases and sub-

populations from published data obtained from a triple-negative breast cancer (TNBC) tumour 

sample (SA1135). As in the original study201, we discovered 1 diploid and 3 aneuploid subpop-

ulations (Figure 20 A-B). Out of the 345 cells that passed quality control, 193 were not and 

152 were replicating, showing a larger than expected proportion of replicating cells than those 

obtained from the cell lines models, which is concordant with persistent proliferation of cancer 

cells. We then calculated the scRT profiles for each subpopulation. We considered that sub-

populations 1 (n=13 S phase cells) and 3 (n=29) did not have a representative S phase landscape 

and disregarded them in the analysis (Figure 20 D). Remarkably, we discovered that subpopu-

lations 2 (n=36) and 4 (n=74) showed distinct RT programmes, indicating a deregulated repli-

cation programme in vivo. The two replication profiles from the same tumour correlated at 

73.3%, and the permutation test on their trajectories yielded a 9.99e-4 p-value. Thus, these 

results demonstrate that RT can be modified in subpopulations of the same TNBC tumour in 

vivo (Figure 20 C). 

 

Figure 20: scRT extraction of the subpopulations from the human triple negative breast cancer sam-

ple SA1135. A: median DNA copy-numbers per chromosome for the 4 subpopulations displaying major 

differences. B: Reduced dimension UMAP plane of the copy-numbers of the single-cells of the tumour. 

C: Spearman correlation between the subpopulation 3 and 4. D: scRT landscapes of chromosome 21 

from the 4 subpopulations with the pseudo-bulk RT from the scRT profiles in the upper windows. FNA: 

Fine-Needle Aspiration (cell collection technique). 

3.4.3. RT cancer comparisons reveal cell-type relationships 

We extended the use of our methods to more datasets. In total we analysed the copy-numbers 

of 119,991 quality-controlled cells originating from 92 different samples spanning across 21 

different somatic/cancer cell-lines, 35 patient tumours and 19 patient-derived xenografts 

(PDX) samples. These cells originating from 60 individual samples (Supplementary Table 3). 

We calculated RT when we had enough cells to reconstruct a representative S phase land-scape. 
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This was determined either by software failure or visual inspection of the replication patterns 

and manual elimination. A total of 41 (sub)populations were used and the Spearman correlation 

for each pair was calculated (Figure 21). 

In contrast to two subpopulations from the same sample, we noticed that MCF-7 samples from 

different laboratories62,165 only presented an 84.5% correlation, on average. Knowing that this 

cell line is known to have variable karyotypes, we speculated that the RT differences could be 

caused by wide-spread copy-number differences. Indeed, we discovered that this cell line only 

shared between 11 and 13 common median chromosome copies be-tween the two sample ori-

gins (Figure 17 B, Supplementary Section 8.3.3). JEFF and GM- lymphoblastoid cell lines on 

the other hand, had extremely high RT correlations all ranging >91%, regardless of the sample 

origin, showing consistent RT in the same-cell type. Despite the fact that both H7 hESCs and 

GM12892 present a perfectly diploid karyotype (Supplementary Section 8.3.3), their replica-

tion tracks present a 79% correlation, illustrating that RT can be used as a cell-type specific 

biomarker. 
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Figure 21: The scRT atlas represented as Spearman correlations between the 41 scRT pseudo-bulk 

profiles extracted from the human (sub)populations in a multi-sample approach reveal cell-type spe-

cific relationships of DNA replication. Subpopulations were ordered by hierarchical clustering using 
the second version of Ward's minimum variance method (Ward.D2). Subpopulation enumeration is 

given at the end of the sample name, preceded by S (i.e. S1, S2, etc…) Cell origins are given in brackets 

after the sample name. PDXs are encoded as [sample number]X[mouse passage]. RPE: retinal pigment 
epithelial cells; hESC: human embryonic stem cell; TNBC: triple-negative breast cancer; ERpos: es-

trogen-receptor positive; PDX: patient-derived xenograft; HGSOC: high-grade serous ovarian carci-
noma; hTERT: human telomerase reverse transcriptase; FNA: fine-needle aspiration (cell collection 

technique). 
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4. Discussion 

In this PhD project two innovative computational tools were developed to advance our under-

standing of single-cell replication timing (scRT) and its association with genomic subpopula-

tions: Kronos scRT, a unified pipeline for scRT analysis, and MnM, a fast and efficient tool to 

establish single-cell replicating states and reveal genomic subpopulations from a single heter-

ogenous sample. MnM, a tool designed to detect single-cell replicating states and genomic 

heterogeneity, utilises single-cell copy-number data to eventually discover replication patterns 

with Kronos scRT or any other scRT method. Through a rigorous validation process of its 

methods, MnM demonstrated remarkable accuracy and speed in missing-value imputation and 

cell replicating state classification. By performing subpopulation clustering, MnM can discern 

different cell types and subpopulations within a heterogenous sample. These subpopulations 

are then used to extract scRT profiles using Kronos scRT, marking it the first automated 

method for conducting RT studies in heterogeneous cancers and patient-derived samples. MnM 

requires a minimum of 10 single-cells for subpopulation detection and the replication state 

classifier can work on a single cell. 

By leveraging the genomic information from the single-cells analysed in this project, MnM 

adeptly disentangled heterogeneity, aligning replicating and non-replicating cells for each sub-

population. The single-cell RT atlas, a major outcome of this study, revealed an additional layer 

of heterogeneity in cancer progression, the existence of different RT profiles within single tu-

mours. This finding highlights the dynamic nature of cancer biology and further underlines the 

importance of considering intra-tumoral heterogeneity when studying cancer samples or treat-

ing patients. By uncovering these different RT profiles within samples, these tools and data 

open new opportunities for a better understanding of the spatiotemporal dynamics throughout 

tumorigenesis and cancer progression. In the future, if RT signatures can be linked to thera-

peutic outcomes, this more comprehensive understanding of genomic heterogeneity could be 

added to the equation when designing combination therapies, which would improve how treat-

ment resistance and recurrence are addressed. 

Despite these advancements in better understanding heterogeneity, the precise relationships 

between RT and other genomic features remain incompletely understood. Exploring regions 

that transition between RT categories, such as late to early replication, has yielded limited in-

sights into the connection between transcription and RT. Many of the biological functions were 

generic and did not give a complete explanation of the presumed activated genes during differ-

entiation. Likewise, the ATAC peak counts only provided moderate correlations with RT data. 

In order to further study the relationship between transcription, chromatin organisation and RT, 

new multi-omic data needs to be made available. Techniques such as multi-omic single-cell 

sequencing205–207 could be an ideal method to employ in order to study this. With the transcrip-

tome and genome of individual cells obtained in a high-throughput fashion, a comprehensive 

investigation of this relationship would be achieved. Nonetheless, it remains unknown why RT 

is usually intact besides tweaks on other features. One reason could be that the exact replication 

patterns are not important, but rather ensure that the genome does not replicate too fast. The 

cells have a limited number of resources meaning that too many active replication forks at once, 

would inevitably lead to genome instability. Furthermore, too many simultaneous double 

strand breaks could lead to improper ends being reconnected and thus, translocations. 

Besides the two main computer programs highlighted in this project, smaller scripts were also 

created and are provided to the scientific community in an open-source manner. Notably the 

valid barcode detector based on the EM algorithm could be useful for single-cell analyses. 
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Although not demonstrated here, there is reason to believe that this method could also be ex-

tended to other omic data such as scATAC and scRNA barcodes, especially those from the 

10X Chromium single cell multiome ATAC and Gene Expression solution. Thus, the code 

used here could also be applied to other projects containing other single-cell omic data types. 

An important finding was that FACS sorting is prone to a high error rate of up to 27.69% for 

cell phase sorting. This is a similar figure to a previously reported FACS sorting error rate for 

sorting single-cell phases obtained by using hidden Markov models165. Although in some cases 

there is a legitimate interest to sort single-cells before sequencing, the work performed here 

shows that it is important that cell-sorted metadata is verified computationally to avoid any 

erroneous conclusions from noise that might be induced from high rates of missorted cells. 

While the replicating state classifier of MnM was only trained on the hg38 reference genome, 

this method can easily be extended to other genomes and used routinely. Furthermore, in some 

cases, the FACS metadata may not exist (e.g. unsorted samples). This could be the case of 

precious samples such as embryonic stem cells and tumours which contain a limited number 

of cells one would not want to lose from a limited yield after sorting. It is known that technical 

and human errors during sorting can lead to cells being miscategorised200. Indeed, many factors 

can play a role in the efficacy of cell sorting such as the cell type, the condition of the cells 

(e.g. drug treatments), the pressure at which the cells are sorted as well as the type of buffer 

used (e.g. carbonate/phosphate) and will only provide a 75-90% yield of the initial cell popu-

lation208. Seeing the results in this project, in silico predictions could be valuable for these cases 

and should be routinely performed. 

Furthermore, we introduced the concept of scRT trajectories, which we compared with a per-

mutation test to be able to determine whether the RT programmes differ or not between samples 

or subpopulations. Other studies have failed to determine with certainty whether the RT pro-

files are indeed different between different conditions98,154. Although we obtained scRT of 

PDXs, we did not infer the SVs to compare to single-cell lineage tracing to further understand 

the relationship between CNAs and RT. A related project undertaken in our team209 has shown 

that various single-cell lineage tracing algorithms do not yield the same results, and thus, there 

is no such algorithm that has prevailed for such tasks. It is therefore necessary that such algo-

rithms, possibly inspired by mitochondrial DNA from single-cells which provide an excellent 

coverage compared to the rest of the single-cell genome66,210, are developed and made available 

in order to further comprehend this relationship. Moreover, this project focused on CNAs and 

therefore, any translocations or inversions were overlooked, limiting the results of the RT and 

SV relationship. 

Another discovery made here was that JEFF cells had lost a copy of chromosome X, a phe-

nomenon correlated with aggressive tumour growth or occurring from ageing211. Unlike the 

other cells lines present in this project which have well-documented histories, the JEFF cell 

line is less documented. Despite the scarcity of documentation, the absence of the Y chromo-

some, along with personal communications from colleagues, have allowed us to confirm that 

this cell-line was derived from a female patient. Important chromosomal aberrations found in 

the analysed samples, in cell-lines and patient tumours, further underline the importance of 

DNA copy-number screening. Aneuploidy is an omnipresent trait in the genomes of tu-

mours119. Though the presence of genomic instability in cancer has been recognized for a long 

time171, the exact role it plays in tumour development remains unclear. The belief that chromo-

some gains might amplify the expression of genes promoting tumours, called oncogenes, cush-

ioned within the altered regions, has been proposed212. Yet, the generalisation of this theory 

remains disputable. Alternatively, it has been suggested that aneuploidy could stem from the 
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disruption of checkpoint control – a common occurrence in advanced malignancies110,141. What 

adds an intriguing layer to this discourse is the observation that individuals with Down syn-

drome, arising from the triplication of chromosome 21, exhibit a significantly diminished sus-

ceptibility to most solid tumours213. As discussed by others119, this intriguing correlation sug-

gests that aneuploidy might surprisingly exert tumour-suppressive effects in specific cases. 

The robustness of the DNA replication machinery is a cornerstone of cellular integrity. Without 

it, genomic instability, a hallmark of cancer, can be triggered. In this study, we observed a 

noteworthy contrast between cell-line models and patient-derived samples in terms of DNA 

replication timing disruptions. Remarkably, cell-line models exhibited relatively modest dis-

tortions in DNA replication dynamics. These models, cultured under controlled conditions, 

often reflect simplified representations of cellular systems. However, a compelling finding 

emerged in our analysis of patient samples, where we identified substantial and impactful dis-

ruptions in DNA replication patterns. The mouse embryonal carcinoma analysed also exhibited 

temporal changes, but the number of cells was limited, and therefore the interpretation of the 

resulting temporal changes cannot be confident. Nonetheless, these observations resonate with 

the idea of the relevance of the tumour microenvironment and its intricate interplay with ge-

nomic stability. The disparities between cell-line and patient sample dynamics highlight the 

necessity of integrating complex, patient-specific factors into our understanding of DNA rep-

lication mechanisms in the context of cancer progression. 

Furthermore, it is essential to acknowledge the persistent challenge in whole-genome single-

cell studies which are still failing to overcome the low coverage of reads across the genome. 

As new methods are emerging with promising advancements, notably a recent report of long-

read single-cell sequencing214, future investigations will be able to dig further into the precise 

relationship between the mutational landscape, aneuploidy and the replication programme. If 

used with muti-omic sequencing, we will be able to have a much better image of the molecular 

processes in the cells during DNA replication. Eventually, with the imminent generation of 

higher resolution data, studies will be able to address the replication differences of different 

homologues with scRT. Thus, we underline the necessity for detailed analyses examining the 

replication synchronicity of alleles, an even more complex task for aneuploid cancers. 

While the focus of this research primarily revolved around the development of computational 

tools for scRT analysis, it is essential to recognise the growing significance of single-cell spa-

tial multi-omics in the broader context of genomics and cancer biology. Although not explored 

in this project, the integration of spatial multi-omics data with scRT could hold immense po-

tential. Spatial multi-omics techniques, such as spatial transcriptomics and spatial proteomics, 

enable the concurrent analysis of multiple molecular layers within individual cells while pre-

serving their spatial context. By combining scRT with spatial multi-omics, we could gain 

deeper insights into how replication timing impacts the spatial organisation of genomic features 

within individual cells. This integrated approach could uncover critical connections between 

replication timing and spatial genomic architecture, shedding light on how these factors con-

tribute to the development and progression of heterogeneous cancers. As we move forward, 

exploring this uncharted territory in single-cell spatial multi-omics could pave the way for a 

more comprehensive understanding of the intricate interplay between replication dynamics and 

the spatial organisation of the genome, ultimately advancing our knowledge of cancer biology. 

Furthermore, in the era of personalised medicine, genomic profiling has emerged as a powerful 

tool for tailoring treatment strategies to each individual patient. MnM, could play a role in 

genomic profiling by being included in comprehensive analyses of a patient's genetic makeup 

to identify specific copy-number DNA alterations that may drive their cancer. By 
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understanding the genetic underpinnings of a patient's tumour, oncologists could make more 

informed decisions about treatment options, based on availability, including targeted therapies 

and immunotherapies. The systematic integration of genomics into clinical practice would 

mark a significant step towards personalised medicine. Although for MnM to be included in 

such practices, it would need to be further tested, and tweaked to suit diagnosis indicators. 

As the field of genomics is continuously evolving, artificial intelligence is now becoming an 

important tool for the analysis of such complex data. Machine learning has already provided 

tools that allow to address questions that were previously hard or impossible to answer with 

the speed and accuracy these models provide102,103. MnM adds on to this list of tools which 

harness the power of both these fields. While such tools could hold potential in enabling new 

means of medical diagnosis, inherent risks must be considered. One concern is algorithmic 

bias, where models may amplify disparities in the data. Indeed, overfitting, which occurs when 

the model provides accurate predictions for training data but not for new data, is a well-known 

risk215,216. As a result, machine learning solutions for medical diagnosis should still be inter-

preted with caution. Moreover, the interpretability of these algorithms could be difficult, which 

may further raise questions of trust in decision-making configurations. As the advantages of 

machine learning for research and health are being harnessed, these technological advance-

ments might outpace legal and ethical frameworks. Thus, it is important to address these chal-

lenges proactively to ensure a responsible use of these new tools. 

In conclusion, throughout this project two computational tools have been created, MnM and 

Kronos scRT. MnM, an AI based tool, was designed to democratise single-cell subpopulation 

detection from DNA copy-numbers. The outcomes of this tool can help contribute to our un-

derstanding of cancer emergence and progression. When used with Kronos scRT to compute 

replication profiles, it allows the study of scRT in heterogenous cancer samples. This project 

provides a large amount of single-cell copy-number and scRT data for the community, which 

could be an important resource for further research and discoveries. The data showed that large 

CNAs can modify the RT programme whereas smaller sub-chromosomal CNAs do not modify 

RT. This project regrouped various machine learning techniques from unsupervised learning, 

such as dimensionality reduction (UMAP, t-SNE) and clustering (expectation-maximisation, 

DBSCAN, hierarchical), as well as supervised leaning (deep learning sequential model). Thus, 

this work further demonstrates the importance of machine learning in genomics. Finally, our 

results underline the necessity to consider tumour samples in order to fully understand the 

mechanisms governing DNA replication in cancer as well as the generation of single-cell multi-

omic data to completely understand the relationship between RT and other factors. Although 

cell lines constitute an easier research model to study, they lack some critical environmental 

factors that interact with cancer. Therefore, this project paves the way for further detailed in-

vestigations in the RT programme with the new methods developed. 
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6. Data and code availability 

6.1. Single-cell WGS/CNV data 

Dataset Accession code Cell-type 

Takahashi201998 GSE108556  

mESCs 

Day-7 

Embryonal carcinoma 

hTERT-RPE1 (retinal) 

Laks2019201 EGAS00001003190  

GM18507 (lymphocyte) 

T-47D (breast cancer) 

184-hTERT (breast epithelial) 

TOV2295 (HGSOC) 

OV2295 (HGSOC) 

HeLa (cervical cancer) 

PDX Breast Cancer 

FNA Breast Cancer (patient samples) 

Follicular lymphomas 

Funnell202256 ZENODO.6998936 CNV data on hg19 (partially from Laks2019) 

Gnan202262 GSE186173  

MCF-7 (breast cancer) 

Hela-S3 (cervical cancer) 

JEFF (lymphocytes) 

Massey2022165 PRJNA770772 

GM12878 (lymphocyte) 

GM12891 (lymphocyte) 

GM12892 (lymphocyte) 

H1 (hESC) 

H7 (hESC) 

H9 (hESC) 

HCT-116 (colon cancer) 

RKO (colon cancer) 

MCF-7 (breast cancer) 

Connolly2022167 E-MTAB-10234 hTERT-RPE1 (retinal) 

Du2021154 GSE158009  

HCT-116 (WT colorectal cancer) 

HCT-116 (DKO1 colorectal cancer) 

Minussi202153 PRJNA629885 

TN[1-8] (8 TNBC patient samples) 

MDA-MB-231 (breast cancer) 

MDA-MB-453 (breast cancer) 

MDA-MB-157 (breast cancer) 

BT-20 (breast cancer) 

 

6.2. ATAC data 

Dataset Accession code Cell-type 

Granja202170 GSE162690 
Bulk ATAC 

scATAC 

 

 

https://doi.org/10.1038/s41588-019-0347-5
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108556
https://doi.org/10.1016/j.cell.2019.10.026
https://ega-archive.org/studies/EGAS00001003190
https://www.nature.com/articles/s41586-022-05249-0
https://zenodo.org/records/6998936
https://doi.org/10.1101/2021.09.01.458599
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE186173
https://doi.org/10.1038/s41467-022-30212-y
https://www.ebi.ac.uk/ena/browser/view/PRJNA770772?show=reads
https://doi-org.insb.bib.cnrs.fr/10.1242/jcs.258991
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10234/
https://doi.org/10.1016/j.celrep.2021.109722
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158009
https://doi.org/10.1038/s41586-021-03357-x
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA629885
https://doi.org/10.1038/s41588-021-00790-6
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162690
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6.3. Other files and code 

File(s) Link 

10X barcode whitelist 
https://github.com/TheKorenLab/Single-cell-replication-tim-

ing/blob/main/align/10x_barcode_whitelist.txt 

Custom scripts and 

code 

https://github.com/josephides/PhD-scripts  

https://github.com/CL-CHEN-Lab/MnM/tree/main/scripts_pub-

lication  

hg38 and mm10 refer-

ence genomes 

https://support.illumina.com/sequencing/sequencing_soft-

ware/igenome.html 

Modified version of 

Kronos scRT 
https://github.com/josephides/Kronos_scRT  

Blacklists https://github.com/Boyle-Lab/Blacklist 

Bulk MCF-7 RT GSE34399 

Bulk HCT-116 RT GSE158011 

Liftover chains https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver 

 

 

  

https://github.com/TheKorenLab/Single-cell-replication-timing/blob/main/align/10x_barcode_whitelist.txt
https://github.com/TheKorenLab/Single-cell-replication-timing/blob/main/align/10x_barcode_whitelist.txt
https://github.com/josephides/PhD-scripts
https://github.com/CL-CHEN-Lab/MnM/tree/main/scripts_publication
https://github.com/CL-CHEN-Lab/MnM/tree/main/scripts_publication
https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://support.illumina.com/sequencing/sequencing_software/igenome.html
https://github.com/josephides/Kronos_scRT
https://github.com/Boyle-Lab/Blacklist
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34399
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158011
https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver
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7. Manuscripts 

 

https://doi.org/10.1038/s41467-022-30043-x


83 

 
  

 1 

MnM: a machine learning approach to detect replication states and genomic 

subpopulations for single-cell DNA replication timing disentanglement 

Joseph M. Josephides1, Chun-Long Chen1, * 

1 Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, 

Sorbonne Université, 75005 Paris, France. 

* Email: chunlong.chen@curie.fr  

 

GRAPHICAL ABSTRACT 

 
 

  

__ __ __ __ 

| \ / |  | \ / |
|  \ /  | _ __ |  \ /  |
|  | \ / |  |  ' _ \ |  | \ / |  |
|  | |  |  |  |  |  | |  |
| _| | _| _|  | _| _| | _|

Replicating State

Classification

(Deep Learning)

Subpopulation discovery on non-replicating cells

(UMAP + DBSCAN)

Matching replicating cells to subpopulations

(KNN)

scRT of 

subpopulation 1

scRT of 

subpopulation 3
scRT of 

subpopulation 2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 28, 2023. ; https://doi.org/10.1101/2023.12.26.573369doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.26.573369


84 

8. Supplementary data 

8.1. Algorithm/Pseudocode of the main steps of MnM. 

1. Read the reference genome chromosome sizes. 

2. Divide the reference genome into bins. 

3. Read the CNV file. 

4. Divide the CNV data into bins in a BED format. 

5. Convert CNV data to a 2D matrix (regions, single-cells). 

6. Perform K-nearest neighbors (KNN) imputation on the binned CNV data to fill in missing 

values. 

7. If user requests replication states and the reference genome is hg38: 

a. Load the deep learning model (25, 100 or 500kb accordingly). 

b. Create a copy of the matrix to be used until step 7e. 

c. Extract regions considered by the model. 

d. Use linear interpolation to fill in any missing regions from the data. 

e. Provide replication states from the model. 

8. If user requests subpopulations detection: 

a. If replication states detected, retain only non-replicating cells for steps 7a-e. 

b. Ignore allosomes until step 7g. 

c. Perform UMAP with 2 dimensions. 

d. Apply DBSCAN to detect subpopulations. 

e. Repeat the UMAP/DBSCAN step 6 times with different random seeds. 

f. If the predominant number of subpopulations is not issued with the first iteration 

(7d), use the first random seed that does. 

g. If replication states detected: 

i. Perform UMAP of all regions of all cells with 10 dimensions. 

ii. Match S phase cells individually to their subpopulation with KNN. 
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8.2. Supplementary Tables 

8.2.1. Supplementary Table 1: Percentage of missing values per scCNV matrix 

Dataset Cell-type Missing Values Percentage of missing values 

Du2021 HCT-116 DKO1 82572 0.42% 

Du2021 HCT-116 WT 77757 0.37% 

Gnan2022 HeLa 139581 0.84% 

Gnan2022 JEFF 232765 0.68% 

Gnan2022 MCF-7 734532 1.11% 

Laks2019 FNA-sample_SA1135 88581 0.91% 

Massey2022 GM12878 106746 0.07% 

 

8.2.2. Supplementary Table 2: scWGS data used for deep learning replication state 

classifier 

Dataset CellType Phase CellCount 

Massey2022  GM12878  
G1 1193 

S 1655 

Du2021  

HCT-116 WT  
G1 49 

S 434 

HCT-116 DKO1 
G1 40 

S 338 

Gnan2022  

HeLa 
G1 224 

S 299 

JEFF 
G1 132 

S 998 

MCF-7  
G1 632 

S 1512 

Takahashi2019 hTERT-RPE1  
G1 3 

S 14 
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8.2.3. Supplementary Table 3: scWGS samples used in this project 

Source Sample Pre-QC 

Cell Count 

CellCount % 

Cells 

QC 

Loss 

Cell Type Cell Type 

Description 

Sample Median Cov-

erage 

(reads/Mb) 

Du2021 HCT116 DKO1 669 668 0.15% HCT-116 Colon can-

cer 

Cell-line 1 882.02 

Du2021 HCT116 WT 713 713 0.00% HCT-116 Colon can-

cer 

Cell-line 1 176.35 

Gnan2022 HeLa 752 752 0.00% HeLa Cervical car-

cinoma 

Cell-line 788.81 

Gnan2022 JEFF 1 461 1 455 0.41% JEFF Lymphocyte Cell-line 425.48 

Gnan2022 MCF-7 2 768 2 768 0.00% MCF-7 Breast can-

cer 

Cell-line 720.07 

Laks2019 184-

hTERT_SA039 

5 290 5 285 0.09% 184-hTERT Mammary 

epithelial 

Cell-line 344.11 

Laks2019 184-

hTERT_SA1101 

3 358 2 788 16.97

% 

184-hTERT Mammary 

epithelial 

Cell-line 272.89 

Laks2019 184-

hTERT_SA906 

12 707 10 695 15.83

% 

184-hTERT Mammary 

epithelial 

Cell-line 475.97 

Laks2019 ERpos-

PDX_SA532X2

XB00147 

755 441 41.59

% 

PDX Breast can-

cer 

PDX 688.52 

Laks2019 ERpos-

PDX_SA532X4

XB00273 

635 498 21.57

% 

PDX Breast can-

cer 

PDX 404.47 

Laks2019 ERpos-

PDX_SA532X8

XB01398 

589 371 37.01

% 

PDX Breast can-

cer 

PDX 716.82 

Laks2019 ERpos-

PDX_SA611X3

XB00821 

531 436 17.89

% 

PDX Breast can-

cer 

PDX 417.50 

Laks2019 ERpos-

PDX_SA995X5

XB01910 

465 152 67.31

% 

PDX Breast can-

cer 

PDX 571.08 

Laks2019 FNA-sam-

ple_SA1135 

800 473 40.88

% 

Tumour Breast can-

cer 

Patient 

tumour 

982.93 

Laks2019 FNA-sam-

ple_SA1137 

88 37 57.95

% 

Tumour Breast can-

cer 

Patient 

tumour 

105.54 

Laks2019 GM18507_SA9

28 

8 218 7 461 9.21% GM18507 Lymphocyte Cell-line 678.99 

Laks2019 HeLa_SA1087 656 601 8.38% HeLa Cervical car-

cinoma 

Cell-line 416.94 

Laks2019 HGSOC-

OV2295_SA10

90 

741 696 6.07% OV2295 HGSC Cell-line 596.04 

Laks2019 HGSOC-

OV2295_SA92

2 

1 085 368 66.08

% 

OV2295 HGSC Cell-line 849.26 

Laks2019 HGSOC-

TOV2295_SA9

21 

1 118 371 66.82

% 

TOV2295 HGSC Cell-line 868.14 

Laks2019 Lym-

phoma_SA108

8 

648 530 18.21

% 

Lym-

phoma 

Follicular 

lymphoma 

Patient 

tumour 

459.55 

Laks2019 Lym-

phoma_SA108

9 

375 346 7.73% Lym-

phoma 

Follicular 

lymphoma 

Patient 

tumour 

620.18 

Laks2019 T-47D_SA1044 1 436 1 332 7.24% T-47 Breast can-

cer 

Cell-line 1 021.92 



87 

Laks2019 TNBC-

PDX_SA501X1

1XB00529 

1 063 954 10.25

% 

PDX Breast can-

cer 

PDX 233.80 

Laks2019 TNBC-

PDX_SA501X2

XB00096 

488 451 7.58% PDX Breast can-

cer 

PDX 1 335.05 

Laks2019 TNBC-

PDX_SA501X2

XB00097 

492 37 92.48

% 

PDX Breast can-

cer 

PDX 733.97 

Laks2019 TNBC-

PDX_SA501X5

XB00877 

615 270 56.10

% 

PDX Breast can-

cer 

PDX 364.75 

Laks2019 TNBC-

PDX_SA501X6

XB00969 

636 355 44.18

% 

PDX Breast can-

cer 

PDX 194.31 

Laks2019 TNBC-

PDX_SA535X5

XB00517 

928 444 52.16

% 

PDX Breast can-

cer 

PDX 447.63 

Laks2019 TNBC-

PDX_SA535X8

XB01043 

1 072 341 68.19

% 

PDX Breast can-

cer 

PDX 506.48 

Laks2019 TNBC-

PDX_SA604X6

XB01979 

968 476 50.83

% 

PDX Breast can-

cer 

PDX 487.41 

Laks2019 TNBC-

PDX_SA609X3

XB01584 

480 212 55.83

% 

PDX Breast can-

cer 

PDX 335.83 

Laks2019 TNBC-

PDX_SA609X4

XB01721 

606 392 35.31

% 

PDX Breast can-

cer 

PDX 388.63 

Laks2019 TNBC-

PDX_SA609X5

XB01844 

561 396 29.41

% 

PDX Breast can-

cer 

PDX 226.28 

Laks2019 TNBC-

PDX_SA609X6

XB01898 

626 410 34.50

% 

PDX Breast can-

cer 

PDX 188.30 

Laks2019 TNBC-

PDX_SA609X6

XB01899 

635 499 21.42

% 

PDX Breast can-

cer 

PDX 286.65 

Laks2019 TNBC-

PDX_SA609X7

XB02184 

844 634 24.88

% 

PDX Breast can-

cer 

PDX 772.79 

Massey2022 GM12878 8 947 7 942 11.23

% 

GM12878 Lymphocyte Cell-line 288.45 

Massey2022 GM12891 2 742 2 621 4.41% GM12891 Lymphocyte Cell-line 170.15 

Massey2022 GM12892 2 596 2 450 5.62% GM12892 Lymphocyte Cell-line 165.07 

Massey2022 H1 2 370 1 216 48.69

% 

H1 hESC ESC 68.59 

Massey2022 H7 1 923 1 780 7.44% H7 hESC ESC 234.20 

Massey2022 H9 915 888 2.95% H9 hESC ESC 101.70 

Massey2022 HCT-116 1 555 1 264 18.71

% 

HCT-116 Colon can-

cer 

Cell-line 73.84 

Massey2022 MCF-7 1 337 982 26.55

% 

MCF-7 Breast can-

cer 

Cell-line 175.78 

Massey2022 RKO 2 315 2 149 7.17% RKO Colon can-

cer 

Cell-line 124.94 

Minussi2021 BT20 1 229 1 228 0.08% BT20 Breast can-

cer 

Cell-line 215.55 

Minussi2021 MDA-MB-157 1 210 1 210 0.00% MDA-MB-

157 

Breast can-

cer 

Cell-line 243.43 

Minussi2021 MDA-MB-231 2 710 2 710 0.00% MDA-MB-

231 

Breast can-

cer 

Cell-line 252.10 

Minussi2021 MDA-MB-453 1 260 1 260 0.00% MDA-MB-

453 

Breast can-

cer 

Cell-line 235.28 
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Minussi2021 TN1 1 978 1 977 0.05% Tumour Breast can-

cer 

Patient 

tumour 

362.75 

Minussi2021 TN2 1 024 1 023 0.10% Tumour Breast can-

cer 

Patient 

tumour 

542.82 

Minussi2021 TN3 2 192 2 190 0.09% Tumour Breast can-

cer 

Patient 

tumour 

260.54 

Minussi2021 TN4 1 301 1 301 0.00% Tumour Breast can-

cer 

Patient 

tumour 

225.59 

Minussi2021 TN5 1 238 1 238 0.00% Tumour Breast can-

cer 

Patient 

tumour 

229.75 

Minussi2021 TN6 1 205 1 205 0.00% Tumour Breast can-

cer 

Patient 

tumour 

218.43 

Minussi2021 TN7 907 907 0.00% Tumour Breast can-

cer 

Patient 

tumour 

214.02 

Minussi2021 TN8 1 224 1 224 0.00% Tumour Breast can-

cer 

Patient 

tumour 

222.53 

Connolly2022 hTERT-RPE1 63 63 0.00% hTERT-

RPE1 

Retinal pig-

ment epi-

thelial 

Cell-line 824.76 

Takahashi2019 hTERT-RPE1 17 17 0.00% hTERT-

RPE1 

Retinal pig-

ment epi-

thelial 

Cell-line 683.32 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA039 

878 878 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1054 

382 382 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1055 

391 391 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1056 

496 496 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1188 

2 003 2 003 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1292 

404 404 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA906a 

3 711 3 711 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA906b 

5 716 5 716 0.00% 184-hTert Mammary 

epithelial 

Cell-line 
 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_DG1134 

133 133 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_DG1197 

115 115 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1049 

1 283 1 283 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1091 

506 506 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1096 

802 802 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1162 

254 254 0.00% HGSC HGSC Patient 

tumour 
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Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1180 

774 774 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1182 

214 214 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1050 

990 990 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1051 

892 892 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1052 

556 556 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1053 

825 825 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1181 

296 296 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1184 

621 621 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1047 

347 347 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA1093 

346 346 0.00% HGSC HGSC Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA530 

324 324 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA604 

2 139 2 139 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA609 

6 033 6 033 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA610 

268 268 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA501 

2 473 2 473 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA535 

1 801 1 801 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

Funnell2022* Pre-pro-

cessed_CNV_h

g19_SA605 

65 65 0.00% TNBC Breast can-

cer 

Patient 

tumour 

 

TOTAL 
 

134 168 119 991 
     

*Duplicates from Laks2019 are not included in the cell count. 

8.3. Supplementary Figures 

8.3.1. Mouse Twidths 
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8.3.2. CDKN2AIP chromatin state from scATAC data 
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8.3.3. Genome-wide single-cell copy-numbers of non-replicating human samples 

Genome-wide scCNV profiles of a maximum of 50 randomly selected cells for Connolly2022 

(A), Du2021 (B), Gnan2022 (C), Laks2019 (D), Massey2022 (E), Minussi2021 (F), 

Takahashi2019 (G) and Funnell2022 (H) split by cell-phase (A,G) or subpopulation (B-F,H). 

A 

 

B 
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8.3.4. Single-cell cut-off reads with the EM algorithm 
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8.3.5. Single Cell RT trajectories 
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La réplication de l'ADN est essentielle pour les cellules, car elle permet de créer les quelque 30 000 

milliards de cellules qui composent le corps humain à partir d'un seul zygote lors de l'embryogenèse. 

De plus, tout au long de la vie humaine, la réplication continue de l'ADN et la division cellulaire sont 

nécessaires pour remplacer les cellules âgées, mortes ou endommagées. Par conséquent, il est crucial 

que le programme de réplication de l'ADN fonctionne correctement à chaque division cellulaire. 

Cependant, de nombreux facteurs de stress, à la fois exogènes et endogènes, remettent 

régulièrement en question l'intégrité de l'ADN, ce qui entraîne une instabilité du génome. Cette 

instabilité est une cause majeure de cancers et d'autres maladies humaines. 

Malgré l'importance du stress de réplication et de l'instabilité génomique dans les cancers, nous ne 

comprenons pas complètement les mécanismes sous-jacents ni leurs impacts sur le génome. Au 

cours de la dernière décennie, d'énormes progrès ont été réalisés dans l'analyse des cellules 

individuelles. L'étude des variants structuraux (VS) au niveau cellulaire est devenue cruciale pour 

comprendre l'instabilité génomique, en particulier dans des populations cellulaires hétérogènes 

telles que les échantillons de tumeurs, qui ne peuvent pas être facilement obtenus par des analyses 

de masse. Des études récentes ont révélé une corrélation importante entre le timing de réplication 

et l'apparition de VS dans les cancers, montrant que de nombreux VS résultent de mécanismes liés à 

la réplication. Cependant, il existe un manque d'études détaillées sur les mécanismes précis, en 

particulier sur les liens entre réplication, transcription et VS au niveau de la cellule unique. 

Comprendre ces mécanismes est crucial pour lutter contre les principales maladies humaines. 

Pour répondre à cette question, ce projet développe et utilise de nouvelles méthodes informatiques 

basées sur l'intelligence artificielle. Il vise à (i) étudier directement le timing de réplication dans les 

cancers en analysant le nombre de copies au niveau de la cellule unique et (ii) examiner les 

interactions entre la réplication et les VS au niveau de la cellule unique. Les signatures des VS 

découvertes dans ce projet pourraient contribuer à améliorer le diagnostic et à définir de meilleures 

stratégies thérapeutiques. Dans l'ensemble, ce projet permet de mieux comprendre les mécanismes 

de la cancérogenèse et contribue à améliorer le diagnostic, le pronostic, le traitement et le suivi 

personnalisé des patients. 

 

 

 

Timing de réplication, Génomique, Cellule unique, Cancer, Intelligence artificielle, Variants 

structuraux.  
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DNA replication is a vital process of cells. Besides creating the ~30 trillion cells that comprise the 

human body from a single zygote during embryogenesis, continuous DNA replication and cell division 

is necessary during the entire human lifespan to replace the old, dead or damaged cells. It is therefore 

essential that the DNA replication program is correctly executed at each cell division. However, large 

numbers of exogenous and endogenous replication stresses routinely challenge DNA integrity and 

lead to genome instability, which is an important cause of cancers and many other human diseases. 

Although replication stress and genomic instability are two important hallmarks of cancer, we lack 

full comprehension of the mechanisms that lead to these deregulations and the impacts they have 

on the genome. During the last decade, great progress has been made in analyses of individual cells. 

Determination of structure variations (SVs) in single cells has become an important approach to study 

genomic instability in heterogeneous cell populations, such as tumour samples, that cannot easily be 

obtained from bulk analyses. Recent studies have revealed that replication timing shows a strong 

association with the occurrence of SVs in cancers, and large amounts of SVs generated during 

tumorigenesis result from replication-associated mechanisms. However, studies addressing the 

direct mechanisms and, in particular, the links between replication, transcription and SVs at the 

single-cell level are missing. Investigating such mechanisms is critically important to address major 

human diseases. 

To address this question, this project develops and uses novel computational methods, based on 

artificial intelligence, to: (i) directly investigate single cell replication timing (scRT) in cancers by 

single-cell copy number analysis, and (ii) examine the interactions of replication and SVs at the single 

cell level. The SV signatures in cancers revealed in this project might help to improve the diagnosis 

and better define therapeutic strategies. Altogether, this project provides further understanding of 

the mechanisms of carcinogenesis and contributes to improving the diagnosis, prognosis, treatment 

and/or personalised monitoring of patients. 
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