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Abstract

Modern image generators, such as stable diffusion or Midjourney, have become large scale, complex and

general systems. As the wide spread application and use of these systems grow, so do their potential prob-

lem areas. In this thesis we investigate how generative models can leak information about their training

data and the problems that poses to both the systems and the users. Systems such as Midjourney are

trained with data gathered from the web and protected content can appear during generation without

attribution. As generative models also have widespread application in the medical domain, it’s imperative

for the utility of the generative model to not generate data with strict privacy protections. We present the

automatic evaluation of generative models, with a focus on these issues. We first present several statistical

measures that can measure the image quality of deep generators, the diversity of generated images and

finally measure their ability to overfit training samples. For the rest of the thesis, we study the problem

of membership inference. We investigate a diverse set of factors that lead to vulnerability to membership

attacks. On the other hand, we also observe many training setups which lead to robustness and empirical

privacy. We present several new membership attacks that made improvements over the state of the art.

Finally, we present a state of the art data extraction attack, capable of reconstructing training images from

the most widely used generation systems.
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Résumé

Les générateurs d’images modernes, tels que Stable Diffusion ou Midjourney, sont devenus des systèmes

à grande échelle, complexes et généraux. À mesure que l’application et l’utilisation de ces systèmes se

généralisent, leurs éventuels problèmes se multiplient. Dans cette thèse, nous étudions comment les mo-

dèles génératifs peuvent fuiter des informations sur leurs données d’entraînement et les problèmes que

cela pose à la fois aux systèmes et aux utilisateurs. Des systèmes comme Midjourney sont entrainés avec

des données collectées sur le web et des contenus protégés peuvent apparaître pendant la génération sans

notification d’attribution. Comme les modèles génératifs ont également une application répandue dans

le domaine médical, il est impératif pour l’utilité du modèle génératif de ne pas générer de données sous

protection stricte de la vie privée. Nous présentons l’évaluation automatique des modèles génératifs, avec

un accent sur ces problèmes. Nous présentons d’abord plusieurs mesures statistiques qui peuvent mesu-

rer la qualité des images produites par de tels générateurs profonds, leur diversité et enfin mesurer leur

capacité à surapprendre les échantillons d’entraînement. Pour le reste de la thèse, nous étudions le pro-

blème de l’inférence d’appartenance. Nous étudions un ensemble divers de facteurs qui conduisent à la

vulnérabilité aux attaques d’appartenance. D’un autre côté, nous observons également de nombreuses

configurations d’entraînement qui assurent empiriquement la robustesse et la confidentialité. Nous pré-

sentons plusieurs nouvelles attaques d’appartenance permettant des améliorations par rapport à l’état de

l’art. Enfin, nous présentons une attaque de pointe pour l’extraction de données, capable de reconstruire

des images d’entraînement à partir des systèmes de génération les plus largement utilisés.
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Chapter 1

Introduction

I found myself first captivated by research after coming across an algorithm which could recreate new

images given an example [137]. This method, dating to the early 2000’s, can only handle simple textural

patterns but I already saw huge potential to aid the creative process. Generating data from examples

is known more generally as generative modeling and over the course of my thesis I witnessed this field

grow from an academic subject to a ubiquitous and indispensable tool. Systems such as ChatGPT can

generate code or write essays and can aid immensely when learning new things. The system Midjourney

helps democratize the artistic process by generating realistic imagery from natural language. The millions

of active users of said systems are a testament to their usefulness and generality.

The seminal work in Portilla and Simoncelli [137] works by capturing how humans perceive images.

This work can be dated back to the work of Bela Julesz at Bell labs in the 1970s. Julesz used computers to

automatically recreate images using statistics so human observers could not tell the difference between

images and their synthesized versions. This manuscript entails this process of automatic synthesis of

images, or image generation, which we define as follows:

Image Generation

Image generation is the automatic creation of realistic yet novel digital images by computer

algorithms.

By automatic, we mean a user with little technical knowledge, in terms of computer science or artistry,

can easily generate the image they want. By realistic, we mean a human observer thinks the image appears

to be naturally created; i.e. it is a real photograph or painting created by an artist. Novelty is a harder and

more subtle term to define and the automated discovery of images which lack novelty is a primary theme

in this thesis. In general terms, it means an exact copy of the image does not exist within the set of images

the learning algorithm used to generate the image. This work deals primarily with deep neural networks;
these algorithms are presented data and by design try to emulate the patterns present as closely as possible.

Perhaps more than any other field in the realm of computer science, image generation has seen the

most impressive advances and more recently, widespread application within society. Indeed, with the

advent of widely used image generation systems like MidJourney [116], even a non savvy user can generate

high resolution photographs or artwork, just by providing a text description. As with any transformative

technology, as the use cases grow so do the problem areas. Namely, if a generative model generates an

exact copy of a real image from its training set, it may infringe upon the privacy or artistic rights of the

owner of the image. In the final chapter of this thesis, and as our most recent contribution, we show that

said system actually does this in practice, albeit extremely rarely. Thus, to provide context and motivation
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2 CHAPTER 1. INTRODUCTION

to this exposition, we begin with a non-technical introduction to generative models and their place in

society in the following section. In particular, we focus on the currently unsolved issue of copyright and

privacy in generative models as the primary motivating example for this manuscript.

1.1 Generative Models in Society

Within the field of computer science, image generation is a relatively new subject, with the first successful

methods dating to the late 90s. Starting from models that learned from just a single image and generat-

ing simple images like texture, generative models have rapidly evolved into very large scale and general

systems. We give a brief summary of their evolution.

The 90s: Texture Synthesis Starting from the seminal work in [58], this method computed primi-

tive statistics of image features that are not learned from the image, but mathematical representations.

The model in [137] extended this approach to more complex and large scale textures, such as tree bark

or flowers. In the 00’s, the so called copy paste methods were predominant [42, 88]. These methods do

not learn, but rather permute small regions from the input image to create a "novel" output. All of these

methods saw limited application in industry, mainly for the generation of texture in computer graph-

ics applications, as they were rather limited in the domain of images they could synthesize realistically.

Furthermore, they require significant user skill in terms of manipulating the algorithm for the desired

outcome.

The 2010’s: Realistic Generation with Deep Networks A major breakthrough in image generation

was with the use of deep neural networks and in particular Generative Adversarial Networks (GANs)

[52]. In contrast to the above methods, these methods learn representations of their images, which at

first were datasets of thousands of images. These methods are notable as they could generate images of

complex objects, such as human faces or scenes, albeit at low resolution and blurry. In the latter half

of the decade, these models massively improved, to the point where human observers could no longer

tell the difference between real images and those generated by these systems. Notably, this also marks

some of the first serious and potentially negative ramifications image generation can have on society.

For instance, with realistic generation comes the possibility of proliferating fake depictions of events,

i.e. deepfakes, which are a still largely unsolved problem [27]. This decade marks more serious general

discussion of AI’s potential negative impact on society, and how to mitigate it, known as "AI Safety" or

"AI Alignment" [5]. This is a vast and complex topic out of the scope of this manuscript, but we refer

the reader to AnthropicAI’s guide on AI Safety for a modern presentation [7].

2020s: Text to Image Generation with Diffusion Models In just the last few years, systems which

are in line with our definition of image generation have become a reality. As a testament to that, publicly

available image generation systems like MidJourney [116] or Stable Diffusion [163], have garnished mil-

lions of active users, most of which have no technical knowledge and create images just via a description.

These models use a technique known as diffusion models (DDPMs), which are easier to train than GANs

and scale to larger datasets [37]. Also notable, is that they can handle multimodal input; that is they can

be trained with images and text simultaneously, and thus have some understanding of language. This is

imperative to their widespread use, as users do not need technical knowledge, and can express their intent

for generation in natural language. These models are typically much larger and trained on billions-scale

data, which is typically automatically scraped from the internet. Despite their massive training sets, they

are also capable of copying their data, which is a topic we’ll delve into momentarily. We first point the

reader to Table. 1.1, which provides an overview of the evolution of generative models and their capabili-

ties. We also note Fig. 1.2, which demonstrates visually the stunning progress of image generation in the

last few years.



1.1. GENERATIVE MODELS IN SOCIETY 3

Method Year Quality Ease of Use Generality Data Copyright Energy Cost

Texture Synthesis [137] 2000 Medium Low Low One Image None Negligible

Copy-Paste [88] 2005 Medium Low Low One Image Medium Negligible

GAN [52] 2014 Low Low Medium Thousands Low ≈$10
ProgGAN [78] 2017 Medium Medium Medium ≈ 100K Low ≈ $1K

StyleGAN [83] 2019 High Low Medium ≈ 100K Low ≈$1K

DDPM [37] 2021 High Low High ≈ 1M Low ≈$10K

Latent Diffusion [144] 2021 High High High ≈ 400M High ≈$1M

Stable Diffusion v2 [163] 2022 High High High ≈ 5B High ≈$6M

Deep Image Floyd [157] 2023 Very High Very High Very High ≈ 5B High >$6M

Table 1.1: Evolution of image generation over the last two decades. Image generation systems have evolved

into large scale and general systems. As they’ve become easier to use and more widely applicable, more

problem areas have arised. The last three columns refer to the number of data points needed, the copy-

right risk the model poses, and the energy consumption required for training. Now, these systems can

have a negative impact on society. As these models have become extremely large scale, they require large

distributed cloud computing. For the last several models, we estimated the cost based on current cost of

cloud computing, and the training time published by the model. For the copyright risk, we give a general

assessment, inspired by the discussion in Sec. 1.1.1, the experiments in this manuscript and related work.

For the data points required, we give the amount used at publication (in general though, earlier models

do not scale up).

1.1.1 Copyright in Generative Models: A Case Study

In just the last year, generative models have seen an explosion in both user interest and billions of dol-

lars of investment money [179]. Companies such as OpenAI, StabilityAI and Midjourney have received

substantial investments and spent millions of dollars training their image generation systems. OpenAI

and Midjourney offer paid monthly subscriptions or offer a per image quote on their generations [116]

and thus make real money from generation as part of their business model. Artists use these generation

systems and generate revenue of their own, as A.I. art has become a staple of the contemporary art scene

[6]. In the 2020’s, sales on A.I. generated art on the NFT platform [127] grew exponentially, as image

generation tools became more accessible to artists. It’s no surprise that A.I. art is automating away some

of the digital art creation process and even stealing the thunder of real artists. For instance, an image

generated from Midjourney won a major art competition at a state fair last year [145]. Unsurprisingly,

some artists are outraged and rightly so; like most diffusion models, Midjourney likely trained its model

from the likes of automatically web scraped images (we are almost certain of this, see the final Chapter 7),

but does not give attribution to its sources. It is no surprise then that there have been a number of class

action lawsuits versus various generation systems, for instance, Getty Images has filed a class action law-

suit against StabilityAI (the company behind Stable Diffusion), under suspicion a large amount of their

images were used [125]. To determine whether this case holds water, we give a brief overview of copyright

law in the U.S.

Copyright in the U.S. Copyright law in the U.S. hinges on the idea of fair use, which is a set of four

rather vaguely defined guidelines determining if a copyright protected work has been used fairly for cre-

ative expression [53]. It underlines four major guidelines which constitute fair use, entailing how the work

was used, whether the use generates revenue, how much of the work was used and so on. Importantly,

it states that if the use is transformative, then it is likely considered fair; uses which alter the meaning or

express something different from what was present in the original work are likely considered fair. Within

the art world, even keeping the work largely intact, so long as it conveys a new meaning, is a common

practice known as appropriation [166]. In practice, copyright cases are determined on a case by case basis,
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and the deliberate vagueness of fair use can often be a strong point in protecting creative expression [46].

Aug. 2021:

DALLE-Mini

[43]

Dec. 2021: La-

tent Diffusion

[144]

Dec. 2022: Sta-

ble Diffusion

v2.0 [163]

Deep Image

Floyd: April

2023 [157]

Midjourney

(latest): April

2023 [116]

Table 1.2: Fast progress of text to image models in the 2020’s. In just a few years, text to image methods

have evolved into large scale, general purpose, high quality and widely used image generation systems.

These images are all synthesized by text prompts: for the top row "Photograph of a golden retriever with

a party hat on," and bottom, "The queen of the sun, oil on canvas." Whilst there are many applications,

there are societal problems as well, see Sec. 1.1.1 and Table 1.1.

Copyright in Generative Models Within the context of machine learning, enforcing copyright law

has been largely unsuccessful [46]. This is because most machine learning applications like retrieval or

classification only express high level or meta trends within the data. This is considered a non-expressive

representation, which is an important distinction commonly used to determine fair use today [123]. Gen-

erative models on the other hand can potentially be considered to use their training data expressively [46].

When is Text-to-Image Fair Use? As was mentioned, text-to-image generative models require bil-

lions scale datasets, such as LAION-2B [151], which were created by automatically scraping the internet.

Incidentally, a large portion of these datasets are copyrighted and contain large subsets of art and creative

work. Typically, this is in the form of a Creative Commons license, most of which require attribution,

which the most popular text-to-mage systems do not provide with their generations.

Users do have some amount of creative expression when interacting with such systems. Typically,

this is an iterative process; a user has a desired prompt and if the image is not satisfactory, they then

modify it and try again, a process known as “prompt engineering”. When it comes to stylizing images,

users often provide the name of the artist whose style they wish to emulate. Figure 1.1(b) shows such

an example of a commonly used style from several artists, and a Midjourney generation with their name

included in the prompt.

Enforcement Even if one had strong suspicion their works were used, there is the issue of how to ac-

tually enforce your copyright case. Take for instance, the case of Getty Images versus StabilityAI [125]. In

this case, it is fairly easy to show that many of Getty Images copyrighted works appear in the dataset used

to train Stable Diffusion, as the dataset is public (for instance by using a semantic retrieval, presented in

chapter 7). However, in terms of fair use in the U.S., it would also be necessary to prove the “substantial-

ity” on the work used and whether generations are transformative. In the Getty Images case, they claim

their logo appears in generations, which is likely not substantial enough. For systems like Midjourney,

even the training set is unknown and proving your work was used is known as membership inference.
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(a) Appropriation: Original on the left and modi-

fied version on the right.

(b) Midjourney can emulate an artists works (Van

Gogh on left and Edvward Munch on right).

(c) An extraction attack versus a Diffusion Model.

Exact copies like this pose copyright issues.

(d) Part of the image has varied in the generation,

but it is not transformative.

Figure 1.1: Copying phenomena in generative models. In the top left, the "American Gothic" picture has

been largely re-used: this is fair use as it is transforms the meaning the image conveys. In the top right,

we demonstrate Midjourney can replicate an artists style (left vincent van gogh and right The Scream by

Edvard Munch). Most of the time, users input a living artists name and get generations similar to their

content. It’s unclear whether this is fair use, as the artist’s content was scraped without permission and

the generation may not be transformative. In the bottom left, we show a malfunction of a Diffusion

Model, which exactly copies inputs. In the last chapter we explore efficient and reproducible ways to

study this phenomena. On the bottom right, we show another malfunction where the image is modified,

but not substantially.

(a) Membership inference versus medical images

[55]. Left two columns are generated, classified to

be in the training set. Right column is real images.

(b) Membership inference versus identities, ex-

plored in Chapter 6. Left column is generated, right

two columns real.

Figure 1.2: Membership inference versus GAN generators. Here, we highlight two applications where

privacy may be important. On the left are medical images generated by a GAN generator, which have

been inferred to be in the training set. Such attacks hinder the utility of generative models use in practice,

for instance in the medical domain where it’s imperative data stay private.

Membership Inference Membership inference is the process of determining which samples were used

for training a model [155, 24].
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There are several settings: the white-box setting assumes the party performing inference (referred to as

the attacker), has the model and some of its training set, but does not know exactly which samples were

used. This setting is akin to the one in the GettyImages case [125]. The black-box setting assumes the

attacker does not have the model and some of its training data, and may only query the model’s outputs.

This would be the case for users of Midjourney. Membership attacks typically exploit systematic bias in

a model’s output. They can demonstrate that an output is highly biased for a suspected training sample,

in a way that is not merely up to chance.

We study membership attacks starting from Chapter 4 and for the remainder of the thesis. However,

since publication, many works have improved both attack efficacy and defenses. Several approaches have

made breakthroughs in Differential Privacy (DP) [41, 169, 186], which can provide mathematical guaran-

tees that no information leaks from training. For instance, the very recent work in [51] is amongst the first

method to generate useful sample with DP using diffusion models, for use on downstream vision tasks.

We study a similar problem in Chapter 4, but with empirical verification rather than DP. Still, these

methods have much lower quality than non-DP training and still provide "trivial" privacy bounds; in

other words as DP only provides an upper bound on the information that leaks. In practice these upper

bounds are too weak and many acceptable DP parameters are still empirically vulnerable to membership

inference [71]. Unlike membership attacks, extraction attacks verse generative models like DDPMs are a

more cutting edge area of research.

Extraction Attacks Extraction are a stronger form of membership inference wherein training samples

are reconstructed from model outputs [26, 24]. For instance, for text-to-image models, only the prompt

is provided and the generation process begins with random noise. For the vast majority of prompts, the

outputs will all be slightly different and unlike any image in the training set (i.e. fulfilling the novelty

requirement of our definition of image generation). In recent work [24, 178], and the final chapter of

this work, it is shown that certain prompts can generate pixel-for-pixel copied images in the training set.

This does not happen by chance, and is proof this image was used for training. See Fig. 1.1, bottom row

for a visual reference.

Privacy Perspective The problems discussed thus far with copyright largely also apply to privacy in

machine learning. That is, generated models vulnerable to membership inference pose can often pose

copyright and privacy concerns simultaneously. Generative models are often trained on medical data

[172, 185]. In this setting, due the tight legal restrictions on the use of medical data, it is required that any

machine learning model doesn’t leak information on its training set. Nonetheless, generative models have

been widely applied to medical images in particular, because they are able to learn useful representations

without supervision (i.e. human annotation of images). Generated images may even provide privacy, and

thus allow for the release and aggregation of medical data. We explore in Chapter 4 and Chapter 5 that

GAN images appear to have some empirical privacy properties in the proper training scenarios. Fig. 1.2

shows several examples of generated images and inferred membership for several domains where privacy

may be important.

1.1.2 Technical Advances

In this section, we’ll hone in on a more detailed view of advances that lead to high quality generation

systems. Whilst some problems have essentially been solved (for instance, realistic generation), there are

still some unsolved technical problems and shortcomings for today’s models that we’ll highlight, before

exposing the outline of the thesis.

Advances in Training GANs are trained adversarially, that is there are two networks with opposing

objectives: the discriminator network tries to discern generated images from training data and the other
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tries to fool this network by generating realistic datum. Without any constraints, this problem is inher-

ently unstable and early GANs were notoriously hard to train. The first successful methods, such as deep

convolutional GAN (DCGAN) [139], would often diverge on complex datasets. Thus, the first major

advances in image generation in GANs were modifications of the training objective, rather than the ar-

chitecture. Methods such as Wassertein GAN (WGAN) [8] or Mescheder et al.(MESCH) [112], offer

theoretical insight which suggest to constrain the discriminator network during training. Indeed, when

unconstrained, the discriminator often "wins," early in training and hinders the ability of the generator

to learn. In (MESCH), the discriminator is directly penalized and stabilizes training enough to handle

complex datasets such as ImageNet.

Architectural Advances In contrast to training, architectural advancements pertain to the design

of the network itself. Several prominent advances led to an improvement in quality. Models such as

StlyeGAN, ProGAN and Mescheder implemented residual layers, which allowed them to scale to larger

size. Early models used convolutions, which only use local information in each layer. Later models,

such as StyleGAN or BigGAN, incorporated global information in each layer beyond just convolutions.

Likewise, DDPM models use attention layers, which also incorporate global information. Both of these

techniques typically lead to better control during generation.

Evaluation Metrics Whilst visual inspection can easily tell a low quality model from a high qual-

ity one, assessing overall performance on high quality and large generators requires automated analysis.

Progress in generative models has been partially advanced by such metrics, which help objectively com-

pare quality between models. Early metrics (studied in Chapter 2) could measure quality in line with

human perception. Later, metrics were developed to assess diversity of generated samples as well as their

quality. Several metrics today are used to measure quality on generation tasks not seen during training.

For text-to-image systems, quality is measured through generating from text prompts not seen during

training. Finally, membership inference attacks can also be seen as a type of automated assessment.

Training with Low Data Another challenge addressed later in the 2010s was generation with few

samples. This setting is important as users often want to generate specific datum not in standard bench-

marks. Several approaches were proposed around 2019, which augment training data specifically for

GAN training, such as DiffAugment or StyleGAN-ADA [195, 80]. These methods also employ trans-

fer learning, which is re-using a model, or slightly modifying it to train on new data. These techniques

are studied in Chapter 5, but with constraints on the number of parameters learned. More in this vein,

for DDPMs, methods such as Textual Inversion [49] are capable of training on just a few samples, whilst

only making a small modification to a pre-trained DDPM model. Also successful are the LoRA methods

[61], which is the most popular way to train specific stable diffusion checkpoints [32]. These methods

synthesize with the help of a small "low rank" network. In other words, the original model is unchanged,

which is quite similar to our goal in Chapter 5. For GANs, hyper networks serve a similar purpose, in

only modifying a small part of the network for synthesis with few samples [4].

1.1.3 Outstanding Challenges

In light of the progress and challenges we’ve underlined thus far, we summarize with three outstanding

challenges, which are both relevant to this thesis and could be expanded for future work:

(C1) Efficient and general membership attacks against large scale generative models.

(C2) Image generation systems trained to be robust against membership attacks, rather than just for

quality alone.

(C3) Learning generative models with few parameters and few samples.
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For (C1), we emphasize the challenge is with large scale systems and with efficiency. Indeed, several at-

tacks presented in the beginning of the thesis are not well adapted for the billions scale datasets presented

in the last chapter. When considering a large volume of training samples, membership attacks need to be

both general and extremely efficient. We note that whilst this seems like a negative goal, it’s necessary for

verifying the safety of deployed systems. It can go hand in hand with the second objective, for instance

by providing empirical verification for systems trained with privacy guarantees. Challenge (C3) would

significantly aid current generation systems for creative content. This is also linked to (C2) and would be

beneficial to both companies and users. For content creators, systems like Midjourney could redistribute

revenue to the correct creators whilst mitigating copyright risks.

1.1.4 Outline

The chapters in this thesis, which are based on accepted or submitted papers reproduced largely as is.

Thus, they are made to be self contained and contain related work therein. At the outset of each chap-

ter, we give its context and relations within the manuscript and also with respect to work that has been

published since. There are connections and themes throughout, which we highlight now. In Chapter 2,

we introduce evaluation of generative model quality. In Chapter 3 we diagnose overfitting in GANs

using latent recovery and measure a model’s bias towards generating training samples. This can be used

to create a membership attack, which we then explore in Chapter 4. In this chapter, we make progress

towards (C1) by investigating what circumstances lead to vulnerabilities to membership inference. In

Chapter 5, we explore the applications of parameter efficient learning, transfer learning and generation

with low data, making progress on (C3). Furthermore, we show that learning with few parameters also

makes progress on (C2) by providing a trade-off between quality and privacy. In Chapter 6 we revisit

membership attacks and investigate how identities can be inferred from generated images by designing

a new attack paradigm. Finally, in Chapter 7, we design a large scale extraction attack against real world

diffusion models and make contributions to (C1).
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Chapter 2

Evaluating Quality with Precision
Recall Curves

This chapter fits chronologically first within the work conducted during this manuscript. We also felt it

the most appropriate to expose first, as the majority of this thesis deals with evaluating generative models,

we introduce concepts used throughout, for instance the idea of viewing globally the entire set of gener-

ated images as a distribution, and evaluating closeness of two distributions as a proxy for model quality.

At the time of writing, few tools were available for assessing failure modes of generated distributions.

The predominant tool at the time, which has continued to be widely used today for its simplicity, is the

Fréchet Inception Distance [59], which we define at the outset of the chapter. The FID summarizes the

closeness of two distributions of images. Normally, these distributions are a real distribution of images

and a generated one. A low enough FID often corresponds to the inability of human observers to tell the

difference between real and fake; the generated distribution is thus called realistic, or plausible. Rather

than providing a scalar for generative quality like the FID, PR curves distinguish so called mode-collapse

(poor recall) and bad quality (poor precision). We first generalize their formulation to arbitrary mea-

sures, hence removing any restriction to finite support. We also expose a bridge between PR curves and

type I and type II error rates of likelihood ratio classifiers on the task of discriminating between samples

of the two distributions. Building upon this new perspective, we propose a novel algorithm to approxi-

mate precision-recall curves, that shares some interesting methodological properties with the hypothesis

testing technique from [101]. We demonstrate the interest of the proposed formulation over the original

approach on controlled multi-modal datasets.

As we’ll study more in Chapter 5, generative models trained with constraints (in this case, with few

parameters and data points), have specific trade-offs between their constraints and realism. For instance,

we’ll see that GANs often favor realism; images will appear realistic, but many images appearing in the real

distribution will never be generated. In Sec. 5.4, we see this happen in practice. FID will not differentiate

this failure mode, and thus provides a less clear global picture of model quality. In the next chapter, we’ll

delve into other shortcomings of the FID, specifically that is not well adapted to models that memorize

training data.

Continued Work Many works have since built upon PR curves in generative models since this work

was published. For instance, in [89], PR curves are constructed with a nearest neighbor classifier, rather

than a classifier trained with a neural network. In many cases, these leads to a more accurate and flexible

way to compute PR curves. For large scale datasets like LAION-2B, efficient libraries for nearest neigh-

bor computation exist [74], and thus PR curves can be in theory calculated for large scale generative

models. We explore using approximate nearest (ANNs) neighbors in Chapter 7 and methods which use

nearest neighbors for PR curves can likely be scaled to larger datasets [89]. Whilst out of the scope of

this manuscript, we have found many close links between the PR curves presented here and a variety of

statistical measures in the literature [159]. For instance, it can be shown that the PR curves in this chapter,

11
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Figure 2.1: Illustration of precision-recall curves for multi-modal continuous distributions P and Q.

Left: mode invention (precision is only partial but full recall). Middle: mode dropping (partial recall)

but do not produce outliers (full precision but partial recall). Right: mode dropping / invention plus

mode reweighting.

can be converted to the Lorenz curves found in [173].

2.1 Introduction

This chapter addresses the question of the evaluation of generative models, such as Generative Adversar-

ial Networks (GAN) [52] or Variational Auto-Encoders [87], that have attracted a lot of attention in the

last years. These approaches aim at training a model to generate new samples from an unknown target

distribution P , for which one has only access to a (sufficiently large) sample set Xi ∼ P . While this class

of methods have given state-of-the-art results in many applications (see e.g. [21] for image generation, [65]

for inpainting, etc), there is still a need for evaluation techniques that can automatically assess and com-

pare the quality of generated samples Yi ∼ Q from different models with the target distribution P , for

which the likelihood P (Yi) is unknown. Most of the time, such a comparison is just reduced to a simple

visual inspection of the samples Yi, but very recently several techniques have been proposed to address

this problem that boils down to the comparison of two empirical distributions in high dimension. While

generative models have seen successful applications far beyond just image data (such as speech enhance-

ment [134], text to image synthesis [142] or text translation [90]), we will focus on image generation, as

is popular in the recent literature.

Related work When it comes to evaluating generative models of images, visual inspection, that is,

observing how “realistic” the images appear, remains the most important decider of the model’s success.

Indeed, state-of-the-art methods, such a Progressive GANs [79] on face images or BigGAN [21] trained

conditionally on ImageNet classes, include large grids of generated samples wherein the success of the

method over previous approaches is visually obvious. Nonetheless, automatic evaluation of such models

is extremely important, for example when conducting large scale empirical comparisons [102], in cases
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where model failure is more subtle than simply poor image quality (e.g. mode collapse) such as in [148],

or presumably in domains in which humans are less attuned to discern quality of samples.

Attempts to provide automatic assessment of image quality can be traced back to the first GAN

methods [140], where the authors assessed quality of generated samples with a nearest neighbor classifier.

In [149], the so-called Inception Score was introduced, which analyzes the entropy of image classes at the

output of the Inception Network [164], which reflects if samples cover all classes and each clearly belongs

to a particular class. In [114] and in the subsequent chapter, test set samples (i.e. those unseen during

training), are recovered via optimization. Successful generators are better at recovering all images from

the training distribution, which in a controlled setting can be viewed as a notion of recall [102, 148].

Fréchet Inception Distance As we mentioned at the outset of the chapter, the Fréchet Inception

Distance (FID) is a widely used metric that provides a scalar value assessing model quality. The FID

models the real and generated distributions as multivariate gaussians in Inception V3 feature space [164].

Letting µP , ΣP and µQ, ΣQ denote the mean and covariances of the real and generated distributions,

the FID is the 2-Wassertein distance between these two distributions. For multivariate distributions, this

can be written in closed form as

FID(P, Q) = ||µP − µQ||2 + Tr(ΣP + ΣQ − 2(ΣP ΣQ)
1
2 ) (2.1)

The FID has been widely adopted because of its consistency with human inspection and sensitivity

to small changes in the real distribution (e.g. slight blurring or small artifacts in generated images). A few

recent approaches involve training a binary classifier to separate fake (i.e. generated) samples Yi from real

data samples Xi. In [101], a score is defined from a two-sample statistical test of the hypothesis P = Q.

Finally, in [69], classifiers trained with various divergences (normally used as objectives for discriminators

during GAN training) are used to define a metric between Q and P . Surprisingly, successful models such

as WGAN [9] have the smallest distance even on those metrics which were not used for training (e.g. a

WGAN trained with the Wasserstein-1 distance evaluated with a least squares discriminator).

Unfortunately as pointed out by [148], the popular FID only provides a scalar value that cannot

distinguish a model Q failing to cover all of P (referred to henceforth as low recall) from a model Q
which has poor sample quality (referred to as low precision). For example, when modeling a distribution

of face images, a Q containing only male faces with high quality versus a Q containing both genders with

blurry faces may have equal FID. Following the lead of [148], we will consider another category where

one wants not only to assess if the samples are of good quality (high precision) but also to measure if the

generated distribution Q captures the variability of the target one (high recall). The reader may refer to

Figure 2.1 to gain a crude understanding of the intended purpose of precision and recall. [148] proposed

an elegant definition of precision and recall for discrete distributions. They challenge their definition on

image generation by discretizing the probability distributions P and Q over Inception features via K-

means clustering. Note that a similar notion was proposed by the authors of PACGAN [95] under the

name of mode collapse region (denoted as MCR(P, Q)). Their motivation was to develop a theoretical

tool to analyze how using multi-element samples in the discriminator can mitigate mode dropping.

Contributions and outline The chapter is organized as follows. First, Section 2.2 recalls usual nota-

tions and some definitions from measure theory. Then, we expose the main contributions of this chapter:

• A first limit of [148] is the restriction to discrete probability distributions (i.e. considering that

samples live in a finite state space Ω). In Section 2.3, this assumption is dispensed by defining

Precision-Recall curves from arbitrary probability distributions for which some properties are

then given;

• In the original work of [148] the Precision-Recall curves approach was opposed to the hypothesis

testing techniques from [101]; we demonstrate in Section 2.4 that precision and recall are actually
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linear combinations of type I (the false positive rate) and type II (the false negative rate) errors of

optimal likelihood ratio classifiers, and give as well some upper-bound guarantee for the estima-

tion of Precision-Recall curves with non-optimal classifiers; Besides, our formulation also exhibits

a relationship with the MCR notion proposed by [95] which turns out to be the ROC curves

(1−type I versus type II errors) for optimal classifiers;

• Section 2.5 details the proposed algorithm to estimate Precision-Recall curves more accurately; the

clustering optimization step used in the original method is now simply replaced by the training of

a classifier which learns to separate samples from the two datasets;

• The experimental Section 2.6 demonstrates the advantage of the proposed formulation in a con-

trolled setting using labelled datasets (CIFAR10 and ImageNet categories), and then shows its

practical interest for evaluating state-of-the art generative image models.

2.2 Notions from standard measure theory

We start these notes by recalling some standard notations, definitions, and results of measure theory.

For the remainder, (Ω,A) represents a common measurable space, and we will denoteM(Ω) the set of

signed measures,M+(Ω) the set of positive measures andMp(Ω) the set of probability distributions

over that measurable space.

Definition 1. Let µ, ν two signed measures. We denote by

• supp(µ), the support of µ (technically, such a notion is defined up to null sets);

•
dµ
dν , the Radon-Nykodim derivative of µ w.r.t. ν;

• |µ|, the total variation measure of µ;

• µ ∧ ν = min(µ, ν) := 1
2(µ + ν − |µ− ν|) (a.k.a the measure of largest common mass between

µ and ν [135]).

The extended half real-line is denoted by R+ = R+ ∪ {∞}.

Theorem 1 (Hahn decomposition). Let µ ∈ M(Ω). Then there exists an essentially unique partition
Ω = Ω+

µ ⊔ Ω−
µ ( i.e. where Ω+

µ ∩ Ω−
µ = ∅) such that ∀A ∈ A:

A ⊂ Ω+
µ ⇒ µ(A) ≥ 0

A ⊂ Ω−
µ ⇒ µ(A) ≤ 0

.

Corollary 1. Let µ, ν ∈M+(Ω). Then, ∀A ∈ A, we have:

(µ ∧ ν)(A) = µ(A ∩ Ω−
µ−ν) + ν(A ∩ Ω+

µ−ν).

2.3 Precision-Recall set and curve

We follow [148] for the definition of the Precision-Recall (PR) set that we extent to any arbitrary pair

of probability distributions P and Q, up to two additional minor changes. First, we have tried to adapt

their definition in a shorter form. Second, we include the left and lower boundaries in the PR set.

Definition 2. Let P, Q two distributions fromMp(Ω). We refer to the Precision-Recall set PRD(P, Q)
as the set of Precision-Recall pairs (α, β) ∈ R+ × R+ such that

∃µ ∈Mp(Ω), P ≥ βµ, Q ≥ αµ . (2.2)
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The precision value α is related to the proportion of the generated distribution Q that match the true

data P , while conversely the recall value β is the amount of the distribution P that can be reconstructed

from Q. Therefore, in the context of generative models, one would like to have admissible precision-recall

pairs that are as close to (1, 1) as possible. One can then easily show the following properties:

Theorem 2. Let P, Q two distributions fromMp(Ω). Then,

1. (0, 0) ∈ PRD(P, Q) ⊂ [0, 1]× [0, 1];

2. P = Q⇔ (1, 1) ∈ PRD(P, Q);

3. (α, β) ∈ PRD(P, Q) and α′ ≤ α, β′ ≤ β implies that (α′, β′) ∈ PRD(P, Q).

Because of the lack of natural order on [0, 1]× [0, 1], no point of PRD(P, Q) is strictly better than

all the others. Yet, the singular importance of (1, 1) should draw our attention to the Pareto front of

PRD(P, Q) defined as follows.

Definition 3. The precision recall-curve ∂PRD(P, Q) is the set of (α, β) ∈ PRD(P, Q) such that

∀(α′, β′) ∈ PRD(P, Q), α ≥ α′ or β ≥ β′.

In fact, this frontier is a curve for which [148] have exposed a parameterization. We generalize their

result here (dropping any restriction to discrete probabilities).

Theorem 3. Let P, Q two distributions fromMp(Ω) and (α, β) positive. Then, denoting

∀λ ∈ R+,

αλ := ((λP ) ∧Q) (Ω)

βλ :=
(
P ∧ 1

λQ
)

(Ω)
(2.3)

1. (α, β) ∈ PRD(P, Q) iff α ≤ αλ and β ≤ βλ where λ := α
β ∈ R+.

2. As a result, the PR curve can be parameterized as:

∂PRD(P, Q) = {(αλ, βλ)/λ ∈ R+} . (2.4)

Proof. The second point derives easily from the first which we demonstrate now. Let (α, β) positive and

λ := α
β . By definition (α, β) ∈ PRD(P, Q) iff ∃ µ ∈Mp(Ω)

P ≥ βµ = α

λ
µ and Q ≥ αµ

iff

µ ≤ 1
α

(λP ∧Q) = 1
β

(P ∧ Q

λ
)

which yields the expected criteria given that µ(Ω) = 1.

2.4 Link with binary classification

Let us consider samples (Xi, Yi) ∼ P × Q and as many Bernoulli variables Ui ∼ B 1
2

. And let Zi =
UiXi+(1−Ui)Yi. Then Zi ∼ PZ follows a mixture of P and Q, namelyPZ = 1

2(P +Q). Then, let us

consider the binary classification task where from Zi, one should decide whether Ui = 1 (often referred

to as the null hypothesis). We show that the precision-recall curve can be reinterpreted as mixed error

rates of binary classifiers obtained as likelihood ratio tests (hence the most powerful classifiers according

to the celebrated Neyman-Pearson lemma).
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Theorem 4. Let λ ≥ 0. Let Z = UX + (1 − U)Y where (X, Y, U) ∼ P × Q × B 1
2

. Defining the
likelihood ratio classifier Ũ as the following indicator function

Ũ(Z) := 1
λ dP

dPZ
(Z)≥ dQ

dPZ
(Z) , (2.5)

then, αλ = λP(Ũ = 0|U = 1) + P(Ũ = 1|U = 0) .

Proof. Note that we can reformulate Ũ as Ũ(Z) = 1Ω+
λP −Q

(Z). Then,

P(Ũ = 1|U = 0) =
∫

Ω
1Ω+

λP −Q
(z)dPZ(z|U = 0)

=
∫

Ω
1Ω+

λP −Q
(z)dQ(z) = Q(Ω+

λP −Q)
.

Now, using 1Ũ=0 = 1Ω−
λP −Q

, we have similarly P(Ũ = 0|U = 1) = P (Ω−
λP −Q). Combining the

two errors, we get

λP(Ũ = 0|U = 1) + P(Ũ = 1|U = 0) = (λP ∧Q)(Ω) = αλ

where we have used Corollary 1.

The previous protocol demonstrates that points on the PR curve are actually a linear combination

of type I error rate (probability of rejection of the true null hypothesis P(Ũ = 0|U = 1)) with type

II error rate (P(Ũ = 1|U = 0)). It also shows that if one is able to compute the likelihood ratio

classifier, then one could virtually obtain the precision-recall curve ∂PRD(P, Q). Unfortunately, in

practice the likelihoods are unknown. To alleviate this set-back, one can argue like [111] that optimizing

standard classification losses is in fine equivalent to minimize a Bregman divergence to the likelihood

ratio. Besides, we are going to show that using Eq. (2.4) with any other classifier always yields an over-

estimation of αλ and βλ. To do so, we will need the following lemma, which is merely a quantitative

version of the Neyman-Pearson Lemma.

Lemma 1. Let Ũ(Z) be the likelihood ratio classifier defined in Eq. (2.5), associated with the ratio λ. Then,
any classifier U ′(Z) with a lower type II error, that is such that

P(U ′ = 1|U = 0) ≤ P (Ũ = 1|U = 0) ,

undergoes an increase of the type I error such that{
α′

λ := λP (U ′ = 0|U = 1) + P (U ′ = 1|U = 0) ≥ αλ

β′
λ := P (U ′ = 0|U = 1) + 1

λP (U ′ = 1|U = 0) ≥ βλ

Proof. The proof is similar to the classical proof of the Neyman-Pearson lemma (see Appendix ??).

Theorem 5. Let Ũ the likelihood ratio classifier from Eq. (2.5) associated with the ratio λ, and let U ′ be
any other classifier. Using precision-recall pair (α′

λ, β′
λ) defined in Lemma 1, we have that

α′
λ ≥ αλ and β′

λ ≥ βλ

Proof. The proof uses Lemma 1 and its symmetric version (obtained by swapping the role of type-I and

type-II errors). Three cases may arise:

1. If P(U ′ = 0|U = 1) ≥ P(Ũ = 0|U = 1) and P(U ′ = 1|U = 0) ≥ P(Ũ = 1|U − 0) then

the conclusion of the theorem is trivially true;

2. If P(U ′ = 1|U = 0) ≤ P(Ũ = 1|U = 0), then the conclusion is ensured by Lemma 1;

3. If P(U ′ = 0|U = 1) ≤ P(Ũ = 0|U = 1), then one should use the symmetric version of

Lemma 1.
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2.5 Algorithm

Based on the above analysis, we propose the Algorithm 1 to estimate (via the function estimatePRCurve)

the Precision-Recall curve of two probability distributions known through their respective sample sets.

Inputs: Dataset of target/source sample pairs:

D = {(Xi, Yi) ∼ P ×Q i.i.d/i ∈ {1, . . . , N}},
Parameterization of the PR curve: Λ = {λ1, . . . , λL}

Output: ∂PRDΛ ≃ {(αλ, βλ)/λ ∈ Λ}
Algorithm estimatePRCurve(D, Λ)

1 Dtrain,Dtest =createTrainTest(D)
2 f =learnClassifier(Dtrain)
3 ∂PRDΛ =estimatePRD(f ,Dtest, Λ)
4 return ∂PRDΛ

Procedure createTrainTest(D)
1 Dtrain = ∅,Dtest = ∅
2 for i ∈ {1, . . . , N} do

3 Ui ∼ B 1
2

4 Ztrain
i = UiXi + (1− Ui)Yi

5 Ztest
i = (1− Ui)Xi + UiYi

6 Dtrain ← Dtrain ∪ {(Ztrain
i , Ui)}

7 Dtest ← Dtest ∪ {(Ztest
i , 1− Ui)}

end

8 returnDtrain,Dtest

Procedure estimatePRD(f ,Dtest, Λ)
1 fV als = {f(z)/(z, u) ∈ Dtest}
2 errRates = ∅
3 Nj =

∣∣{(z, u) ∈ Dtest/u = j}
∣∣
, for j ∈ {0, 1}

4 for t ∈ fV als do

5 fpr = 1
N1
|{(z, u) ∈ Dtest/f(z) < t, u = 1}|

6 fnr = 1
N0
|{(z, u) ∈ Dtest/f(z) ≥ t, u = 0}|

7 errRates← errRates ∪ {(fpr, fnr)}
end

8 ∂PRDΛ = ∅
9 for λ ∈ Λ do

10 αλ = min({λfpr + fnr/(fpr, fnr) ∈ errRates})
11 ∂PRDΛ ← ∂PRDΛ ∪ {(αλ, αλ

λ )}
end

12 return ∂PRDΛ

Algorithm 1: Classification-based estimation of the Precision-Recall curve.

Binary Classification We know from Theorem 4 that the Precision-Recall curve can be exactly in-

ferred from the likelihood ratio classifier denoted as Ũ . However, as explained earlier, since both the

generated and target distributions (Q and P respectively) are unknown, one could not compute in prac-

tice this optimal classifier. Instead, we propose to train a binary classifier U ′
. Recall that from Theorem 5
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the estimated PR curve, being computed with a sub-optimal classifier, lies therefore above the optimal

one. We only assume in the following that the classifier –denoted to as f in the algorithm description–

which is returned by the function learnClassifier after the training, ranges in a continuous interval

(e.g. [0, 1]), so that the binary classifier U ′
is actually obtained by thresholding: U ′(Z) = 1f(Z)≥t.

As a result, since the classifier needs some training data, the N sample pairs D = {(Xi, Yi), 1 ≤
i ≤ N, Xi ∼ P, Yi ∼ Q} in the input dataset are first split into two sets Dtrain

and Dtest
(function

createTrainTest). For each image pair (Xi, Yi), a Bernoulli random variable Ui with probability
1
2

is drawn to decide whether a true sample Xi (when Ui = 1) or a fake one Yi (when Ui = 0) is used for

the training setDtrain
. The other sample is then collected in the test setDtest

to compute the PR curve.

Precision and Recall estimation Recall from Theorem 3 that the PR curve ∂PRD = {(αλ, βλ), λ ∈
R+} is parametrized by the ratio λ = α

β between precision α and recall β. We denote by ∂PRDΛ the

approximated PR curve when this parameter takes values in the set Λ.

Given a test datasetDtest
, the function estimatePRD computes the PR values (αλ, βλ) from the

false positive rate fpr and the false negative rate fnr of the trained classifier f :

• fpr corresponds to the empirical type I error rate, that is here (arbitrarily) the proportion of real

samples z = Xi (for which u = 1) that are misclassified as generated samples (i.e. when f(z) <
t);

• conversely, fnr is the empirical type II error rate, that is the proportion of generated samples z =
Yi (for which u = 0) that are misclassified as real samples (i.e. f(z) ≥ t);

Now, this raises the question of setting the threshold t that defines the binary classifier U ′(z) = 1f(z)>t.

Since Theorem 5 states that the computed precision and recall values (αλ, βλ) are actually upper-bound

estimates, we use the minimum of these estimates when spanning the threshold value in the range of f .

Note that it is sufficient to consider the finite set fV als of classification scores overDtest
.

Comparison with ROC curves Using a ROC curve (for Receiver Operating Characteristic) to eval-

uate a binary classifier is very common in machine learning. Let us recall that it is the curve of the true

positive rate (1− fnr) against the false positive rate (fpr) obtained for different classification thresholds.

Considering again the likelihood ratio test classifiers for all possible ratios would then provide the Pareto

optimal ROC curve and could be used to assess if P and Q are similar or not. It turns out that the the

frontier of the Mode Collapse Region proposed by [95] provides exactly this optimal ROC curve. For

the recall, this notion is originally defined as follows:

MCR(P, Q) = {(ϵ, δ)/0 ≤ ϵ < δ ≤ 1,

∃A ∈ A, P (A) ≥ δ, Q(A) ≤ ϵ}

From this definition, one can see that the MCR exhibits mode dropping by analyzing if part of the mass

of P is absent from Q. The notion differs from PRD at least in two ways. First MCR is not symmetric in

P and Q. Then it uses the mass of a subset A instead of an auxiliary measure µ to characterize the shared

/ unshared mass between P and Q. Despite those differences, the two notions serve a similar purpose.

Given their respective interpretation as optimal type I vs type II errors, they mostly differ in terms of

visual characterization of mode dropping.

2.6 Experiments

In this section we demonstrate that Algorithm 1 is consistent with the expected notion of precision and

recall on controlled datasets such as CIFAR-10 and Imagenet. The results even compare favorably to [148]
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Figure 2.2: Precision-recall curves for P made of the five first classes of CIFAR-10 versus Q made of

q ∈ {1, . . . , 9} first classes. Left estimate from [148] and right our implementation.

for such datasets. The situation is more complex when one distribution is made of generated samples,

because the expected gold-standard precision-recall curve cannot be predicted in a trivial way.

In all our experiments, we compute the precision-recall curve between the distribution of features of

the Inception Network [164] (or some other network when specified) instead of using raw images (this

choice will be discussed later on). In simple words, it means that we first extract inception features before

training / evaluating the classifier. The classifier itself is an ensemble of 10 linear classifiers. The consen-

sus between the linear classifiers is computed by evaluating the median of their predictions. Besides,

each linear classifier is trained independently with the ADAM algorithm. We progressively decrease the

learning rate starting from 10−3
for 50 epochs and use a fixed weight decay of 0.1. Any sophisticated

classification method could be used to achieve our goal (deeper neural network, non-linear SVM, etc),

but this simplistic ensemble network turned out to be sufficient in practice. Observe that this training

procedure is replacing the pre-processing (K-means clustering) in the original approach of [148], which

relies also on inception features so that both methods share a similar time complexity.

Figure 2.2 reproduces an experiment proposed by [148]. It presents the estimated precision-recall

curves on distributions made from CIFAR-10 samples. The reference distribution P is always the same

and it gathers samples from the first 5 classes. On the other hand, Q is composed of the first q classes.

When q ≤ 5 we should expect a rectangular curve with a maximum precision of 1 and maximum recall of

q/5 (as illustrated in middle of Fig. 2.1). Similarly, when q > 5 the expected curve is also rectangular one,

but this time the maximum precision is 5/q and the maximum recall is 1 (Fig. 2.1, left). These expected

theoretical curves are shown in dash. The original implementation from [148] is shown on the left and

ours on the right. It is clear that both methods capture the intended behaviour of precision and recall.

Besides, two subtle differences can be observed. First, as implied by Theorem 5 our implementation is

always overestimating the theoretical curve (up to the variance due to finite samples). On the contrary,

the clustering approach does not provide similar guarantee (as observed experimentally). Second, our

implementation is slightly more accurate around the horizontal and vertical transitions.

One particular difficulty with the clustering approach lies in choosing the number of clusters. While

the original choice of 20 is reasonable for simple distributions, it can fail to capture the complexity of

strongly multi-modal distributions. To highlight this phenomenon, we present in Figure 2.3 another

controlled experiment with Imagenet samples. In this case, P and Q are both composed of samples

from 80 classes, with a fixed ratio ρ of common classes. In this case, the expected curves can be predicted
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Figure 2.3: PR curves for P and Q made of 80 classes from ImageNet. The ratio of common classes varies

from 0 to 100%. Left: from [148]. Right: our implementation.

(see dash curves). They correspond to rectangular curves with both maximal precision and recall equal

to ρ. As can be seen on the experimental curves, the clustering approach is prone to mixing the two

datasets in the same clusters. It therefore produces histograms that share a much heavier mass than the

non discretized distributions, resulting in PR curves that depart strongly from the expected ones. Of

course, such a drawback could be partially fixed by adapting the number of clusters. However even then

the clustering approach may fail, as is demonstrated in Figure 2.4. In this experiment, the distribution

P is obtained approximately 60% female faces and 40% male faces from the CelebA dataset, while Q
is composed of female only. The theoretical curve is a sharp transition arising at recall 0.6. This is well

captured by our estimate (right curve) while varying the number of clusters always leads to an oversmooth

estimate, with either under estimated precision or over-estimated recall.

Experiments on Generated Images Figure 2.5 illustrates the proposed approach to three GANs

trained on the Celeba-HQ [79] dataset. We highlight the two recent approaches of progressive GANs

in [79] and the 0 centered gradient penalty ResNets found in [113] as they produce realistic images.

For comparison, we also include DCGAN [140]. For analysis with Algorithm 1, we choose the first

N = 1000 images of Celeba-HQ, and generate as many images with each GAN. For training the clas-

sifiers, we split each set (real and fake images) into 900 training images and 100 test images. In light of

the previous experiments, we choose to train our architecture on top of vision relevant features. Because

we are dealing with faces, we choose the convolutional part of the VGG-Face network [131]. One advan-

tage on using VGG-Face is that artifacts present in generated images, such as unrealistic backgrounds, are

mitigated by the VGG-face network, so that classification can focus on the realism of facial features. Of

course, small artifacts can be present in even high quality generators and a perfect classifier could "cheat"

by only using seeing such artifacts. Fig. 2.5, shows the computed PR curves for the three generators. In-

tuitively, networks with high precision should generate realistic images consistently. Progressive GANs

achieve a maximum precision of 1.0, and overall high precision, which is visually consistent. DCGAN is

producing unrealistic images which is reflected by it’s overall low precision. In some sense, recall reflects

the diversity of the generated images with respect to the dataset and it is interesting to note all networks

achieved higher recall than precision. Finally, for the sake of comparison with the FID [59], the networks

in Fig. 2.5 achieved FIDs of 25.23, 27.61 and 67.84 respectively from left to right (lower is better).
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Figure 2.4: PR curves when P is composed of faces from CelebA (60% females) and Q is composed of

females only.

Next, we analyze BigGAN [21] on ImageNet for our classification approach and the clustering ap-

proach presented in [148]. Both approaches use inception features as before. We take 80 images from

the first 40 classes of ImageNet, and then 20 images from the first 40 classes for test images. We use 20
clusters for the K-means approach and a single linear layer for the classification approach. Fig. 2.6 high-

lights a large difference between the approaches; the clustering approach overestimates the similarities

between the distributions and the classification approach easily separates the two distributions. As was

demonstrated in Fig. 2.3, there are more classes than clusters, which could explain why images from both

distributions may fall into the same clusters, in which [148] will fail to discern the two distributions.

It is interesting to note that the classifier easily separates the distributions despite the inception features

being sparse for image samples. One can observe a lack of intra-class diversity in the BigGAN samples,

which may be how the classifier discerns the samples. We leave further investigation of this discrepancy

for future work.

2.7 Discussion and future work

In this paper, we have revisited a recent definition of precision-recall curve for comparing two distribu-

tions. Besides extending precision and recall to arbitrary distributions, we have exhibited a dual perspec-

tive on such notions. In this new view, precision-recall curves are seen through the prism of binary clas-

sification. Our central result states that the Pareto optimal precision-recall pairs can be obtained as linear

combinations of type I and type II errors of likelihood ratio classifiers. Last, we have provided a novel

algorithm to evaluate the precision-recall curves from random samples drawn within the two involved

distributions.

Discussion One achievement of our formulation is that one can directly define the precision-recall

curves of distributions defined on continuous manifolds. In particular, our definition could be applied

directly in the image domain, instead of first embedding the distribution in a feature space. From the

strict computation perspective, there should not be any daunting obstacle in the way, as soon as we can

have access to enough data to train a good classifier. This is usually the case for generative models, since

the standard datasets are quite massive.

However, it is not obvious whether classifiers trained on raw-data provide useful notions of PR-
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Figure 2.5: Precision-recall curves and generated images for various popular GANs on CelebA-HQ

dataset [79]. From left to right: PGGAN [79], ResNet [113], and DCGAN [140].

curves. Indeed, given the current state of affairs of generative modeling, we think that the raw image

curves may be less useful. Indeed, until now, even the best generative models produce artifacts (blurriness,

structured noise, etc.). As such, the theoretical distributions (real and generated) are mutually singular.

So, their theoretical precision-recall curve should be always trivial (i.e. reduced to the origin). It is hence a

necessary evil to embed the distributions into a feature space as it allows a classifier to focus its attention

on statistical disparities that are meaningful for the task at hand. For instance, when evaluating a face

generator, it makes sense to use features that are representative of facial attributes. Nonetheless, future

work should investigate a wider variety of pre-trained features as well as classifiers trained on raw data to

determine which method is most suitable for computing PR curves.

Perspectives This work offers some interesting perspectives that we would like to investigate in the

future. First, as opposed to the usual GAN training procedure where a scalar divergence is used to assess

the similarity between generated and target distributions, one could use the proposed precision and recall

definitions to control the quality of the generator while preventing mode-collapse. For instance, the

discriminator could use the role of the classifier, as it has been done in [149].

Another interesting aspect is that like most existing divergences comparing probability distributions,

the proposed approach is based on likelihood ratios that only compare samples having the same values.

More flexible ways do exist to compare distributions, based for instance on optimal transport, such as the

Wasserstein distance (e.g 1-Wasserstein GAN [8]) and could be adapted to keep the notion of trade-off

between quality and diversity.
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Figure 2.6: Evaluating generated samples on ImageNet. First row: Samples from various categories of

ImageNet (on the left), and generated samples for the same categories from BigGAN [21] (on the right).

Second Row: PR curves computed with the clustering approach of [148] and ours.

2.8 Proof of Lemma 1

Let ε ≥ 0 such that P(U ′ = 1|U = 0) = P(Ũ = 1|U = 0)− ε. First, we decompose β′
λ into 4 terms

β′
λ =P(U ′ = 0|U = 1) + 1

λP(U ′ = 1|U = 0)
=P(U ′ = 0, Ũ = 0|U = 1) + P(U ′ = 0, Ũ = 1|U = 1)

+ 1
λP(U ′ = 1|U = 0)

=P(Ũ = 0|U = 1)− P(Ũ = 0, U ′ = 1|U = 1)
+ P(U ′ = 0, Ũ = 1|U = 1) + 1

λP(U ′ = 1|U = 0).
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Considering separately each of the previous terms, we have

A = P(Ũ = 0|U = 1) ,

−B =P(U ′ = 1, Ũ = 0|U = 1) =
∫
1U ′=11Ũ=0dP

≤
∫
1U ′=11Ũ=0

1
λdQ = 1

λP(U ′ = 1, Ũ = 0|U − 0)

= 1
λ(P(U ′ = 1|U = 0)− P(U ′ = 1, Ũ = 1|U = 0))

= 1
λ

(
P(Ũ = 1|U = 0)− ε

1
λ − (P(Ũ = 1|U = 0)− P(U ′ = 0, Ũ = 1|U = 0))

)
= 1

λ(P(U ′ = 0, Ũ = 1|U = 0)− ε).

Finally

B ≥− 1
λ(P(U ′ = 0, Ũ = 1|U = 0)− ε).

Similarly

C =P(U ′ = 0, Ũ = 1|U = 1) =
∫
1U ′=01Ũ=1dP

≥
∫
1U ′=01Ũ=1

1
λdQ = 1

λP(U ′ = 0, Ũ = 1|U = 0) .

Using both inequalities for B and C , one gets

B + C ≥ ε

λ
.

Last,

D = 1
λP(U ′ = 1|U = 0) = 1

λ(P(Ũ = 1|U = 0)− ε).

Putting everything together, namely β′
λ = A + B + C + D, yields

β′
λ ≥P(Ũ = 0|U = 1) + 1

λP(Ũ = 1|U = 0) = βλ.

Using (by a slight abuse of notation) αλ = λβλ and α′
λ = λβλ ≥ αλ concludes the proof.



Chapter 3

Overfitting in Generative Networks

In the previous chapter, we presented the evaluation of several generative models in terms of the close-

ness of real and generated distributions via their precision recall curves. However, the analysis lacked

an important aspect, whether or not these models memorize images they saw during training. Indeed,

the presented metrics will report good scores even for a model that outputs its training images. In this

chapter, we develop a tool to assess whether a model is biased to generate training samples, as compared

with test samples coming from the same distribution. When this work was published, it was common to

include visualizations of training set nearest neighbors, to suggest generated images are not simply mem-

orized. We take a different approach through directly reconstructing images by solving an optimization

problem and find generator inputs. Ultimately, we find that certain generators can overfit samples when

too few points are used. In the extreme case, the distribution of errors of test and train samples are dis-

joint; thus an observer can perfectly observe which training samples were used. Using this methodology,

we show that pure GAN models appear to generalize well, in contrast with those using hybrid adversar-

ial losses, which are amongst the most widely applied generative methods. We also show that standard

GAN evaluation metrics fail to capture memorization for some deep generators.

In the next chapter, we take a privacy perspective of our findings by constructing a membership

attack. During the time this work was conducted, it was not feasible to train GANs on few data points.

Indeed, this chapter only involves GANs trained with sufficiently many data, where we don’t detect

overfitting. In the next chapter, we use new tools to train GANs on a few data points. In this setting, it

is possible to perform membership inference versus GANs. Thus, we present a remedy for this issue in

the Chapter 5, by sharing weights between generators and limiting the amount of trainable parameters.

Yet another possible perspective is presented in Chapter 6. Here we show two possible strategies for

robustness versus membership attacks: one being removing dataset bias and two early stopping during

GAN training.

Continued Work Since publication, many methods have expanded upon this work. At the time of

publication, we found relatively simple methods were successful to recover generator inputs, however,

new generator architectures are more complex and harder to invert. For instance, Image2Stylegan [3, 2]

adds terms to the optimization objective to handle the multiple inputs of the StyleGAN network (see

Chapter 5 for architecture details), in contrast to optimizing only the output as is done in this chapter.

In [170, 35], inversion is performed layer-by-layer; doing so this way simplifies each optimization and

provides a warm start for the next layer. Finally, in Encoder4Editing [170], rather than just optimizing

for the input, they optimize a separate network to encode into input space. We explored this avenue in

parallel around this time, and we present a similar encoder based inversion in the context of membership

attacks in Chapter 4.

Finally, there are the works which try to diagnose overfitting in GAN generated images. For instance,

in [108], the authors design a non-parametric three sample test to investigate what they call "data copy-

ing". It works by trying to classify generated and real samples, similar to the two sample test we provided

25
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in Chapter 2. Finally, there are several methods which study GAN data copying in the low data setting

[45]. As we were unable to stabilize GAN training for few data points in this work, the authors in [45]

perform a more complete study of GAN overfitting in this case.
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Figure 3.1: Rather than inspecting the most similar images NND(y) in the training datasetD for sampled gener-

ated images G(z) (row 3), we consider finding the most similar image in the manifold NNG(y) of generated images

(column 2). As seen in the last two rows, NNG(y) is more meaningful under some transformations. Analysis of

the discrepancy between reconstructions of the train setD and reconstructions outsideDmakes it possible to de-

tect overfitting for some generators.

3.1 Introduction and Related Work

In just a few short years, image generation with deep networks has gone from niche to a center piece

of machine learning. This was largely initiated by Generative Adversarial Networks (GANs) [52] and

since then incredible progress has been made, from deep convolutional GAN (DCGAN) [139] produc-

ing artifacted faces, to progressive GANS (PGGAN) [78] producing faces which are virtually indistin-

guishable from real ones even to human observers and at high resolution (see Fig. 3.1). While a large

amount of research has proposed new generative models, less research has been devoted to the evalua-

tion of such models. Furthermore, evaluating overfitting of deep generators has been performed via in-

tuitive visual demonstrations, such as training set nearest neighbor search and latent space interpolation

[21, 78]. Fig. 3.1 (last column) illustrates the nearest neighbor (NN) test, where NND(y) is the training

dataset NN of a few images y. While NND(y) with the Euclidean distance is a common heuristic (last

column in Fig. 3.1), here we show it is not robust to an image transformation.
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In contrast, we suggest to rely on the opposite methodology by optimizing the latent code z ∼ Z to

find the nearest neighbors NNG(y) in the manifold of generated faces G = {G(z)}z∼Z of images from

the training (y ∈ D) and a validation set (y ̸∈ D). Not only is this approach more robust, it provides

us with reconstructions errors which can be analyzed for different sets of images. Using this framework

that we refer to as latent recovery, we propose the following contributions:

• A demonstration of successful latent recovery across a variety of generators. In Section 3.2 we

introduce our optimization procedure and show it is meaningful even if the target image is cor-

rupted.

• Section 3.3 introduces a novel method to numerically estimate overfitting in deep generators via

statistics of recovery errors on test and train sets. Overfitting is undetectable for GANs, which

is corroborated visually in Fig. 3.3 and statistically in Table 3.1. Overfitting is however detectable

in hybrid adversarial losses similar to CycleGAN [197], and easily detectable in non-adversarial

generators such as GLO [17]. Finally, we show that standard evaluation metrics do not detect

overfitting in some models.

3.1.1 Related Work

Adversarial losses have seen successful applications in a variety of settings beyond just image generation:

unpaired image to image translation in CycleGAN [197], face attribute modification in StarGAN [29]

and various image inpainting techniques [65, 184] to name a few. This progress has created a huge need

to evaluate generated image quality, which to some degree has not been fully answered [20].

GAN Evaluation Metrics The Fréchet Inception Distance (FID), introduced in the first chapter . 2.1,

is the most commonly used metric for GAN evaluation. In the large scale GAN study [103], FID was used

to compare a huge variety of GANs, wherein it was shown auxiliary factors such as hyperparameter tun-

ing can obfuscate true differences between GANs. In [147], notions of precision and recall are introduced

for generated images, to help characterize model failure rather than providing a scalar in image quality.

While these works have helped to compare GAN image quality, they do not address overfitting of the

training set.

Overfitting in Generative Networks For image classification, a model is said to overfit when it per-

forms significantly better on training examples compared to test examples, and said to generalize other-

wise. While the exact reasons why deep nets generalize even when over parametrized is an open question,

they are certainly not immune to overfitting. In the extreme case, Zhang et al. [188] demonstrated ran-

dom labels can be perfectly memorized even on the large scale ImageNet database.

Despite this, very little work has gone into defining overfitting for generative models. In [10], the

authors defined generalization for GANs in a largely theoretical setting. The formulation was used to

suggest a new GAN training protocol rather than provide an evaluation technique. In [11], the support

of a GAN generator, in terms of the number of face identities it could produce, was estimated using

the birthday paradox heuristic. While crude, it suggested the support of faces could be quite large with

respect to the size of the training set. The very recent work of [54] attempts to numerically estimate the

notion of overfitting with a Neural Net Distance (NND). That is, they train a neural net to differen-

tiate generated samples from real samples and similar to [68], use the resulting divergence as a measure

of quality. Importantly, they are able to show a slight overfitting for some GANs and show that this di-

vergence penalizes a generator trivially memorizing the train set. Unfortunately, this approach requires

a massive test set in order to train the NND, which is unrealistic considering successful GANs already

require massive train sets, not to mention the NND itself needs to be trained. Furthermore, the NND

may favor GANs if the divergence they use resembles or is identical to the GAN under evaluation.
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Finally, a new class of generative models has recently been proposed which involves invertible gener-

ators [38, 86]. These generators are attractive as they are mathematically well motivated and admit exact

log-likelihood estimations, via taking the determinant of each layer jacobian. [120] examined the log

likelihoods for such models and showed that while some GAN models generalized nicely to validation

samples, out of distribution samples, such as those taken from completely different datasets, yield higher

likelihoods. [168] also examined log-likelihood in the generative setting, and both works ultimately cau-

tioned against the use of log-likelihood for generative evaluation.

Memorization and Privacy Beyond these aspects of memorization and practical evaluation of gen-

erators lies the important and debated issue of privacy: How to ensure that the data used for training

cannot leak by some reverse engineering, such as reconstruction from features [104, 47] ? Because GANs

have seen such widespread application, it is imperative that we have better evaluation tools to assess how

much these networks have overfit the training data. For example, if a user is using a neural net to inpaint

faces as in [94] or to perform super-resolution enhancing [34], it seems necessary to ensure verbatim

copies of training images do not appear, due to privacy or even copyright concerns. Indeed, several at-

tacks against machine learning systems have been exposed in the literature [129]. For instance, authors in

[47] designed an inversion attack to coarsely recover faces used during the training of a white box facial

recognition neural network. More recently, [155] performed a successful membership attack, which is

the ability to discern training examples from a model, in a purely black box setting. Very recently [57]

explored the potential of membership attacks for GANs and exploited the tendency of the discriminator

to overfit the training set.

3.2 Reconstruction by Latent Code Recovery

This section proposes a methodology for reconstructing the most similar images to target images with an

existing generator. Inversion of deep representations has been already addressed in the literature. [104]

used a simple optimization procedure to maximize an output class of a VGG-like network. In the seminal

works of [124, 165], a similar inversion of deep nets unveiled adversarial examples. In [103], generative
networks are inverted to study recall, which is the ability of the network to reproduce all images in the

dataset and finally [115] used latent recovery of a GAN generator to evaluate its quality.

Other works tackle recovering latent codes directly by training an encoder network to send images

back from image space to latent space, such as the BEGAN model [15] or Adversarially Learned Inference

(AGI) [40]. In Generative Latent Optimization (GLO) [17], a generative model is trained along with a

fixed-size set of latent codes, so that they are known explicitly when training finishes.

In this chapter, we will proceed by recovering latent codes via optimization, following [115, 19, 96,

103]. In contrast with [115], we will ultimately be concerned comparing image recovery between train and

validation sets.

3.2.1 Latent Code Recovery with Euclidean Loss

We explore recovery with a euclidean loss and find it is effective at recovering latent codes for a variety of

GAN methods. Here, we consider the following latent recovery optimization problem

z⋆(y) ∈ arg min
z
∥ϕ(G(z))− ϕ(y)∥22 (NNG)

where G is a deep generative network, z is the input latent vector and y is the target image. Using

a solution z∗
of Problem (NNG), we denote by NNG(y) = G(z∗) the Nearest Neighbor recovery

of a given image y in the set of generated images, as opposed to the usual NN search in a dataset D:

NND(y) = arg minx∈D ∥x − y∥. In this work, we consider mostly ϕ as the identity, but other op-

erators are discussed in the next paragraph and for applications such as super resolution in Section 5.5.

Fig. 3.1 illustrates the difference between the two NN searches on a few examples.



3.3. USING LATENT RECOVERY TO ASSESS OVERFITTING 29

Experimental Validation In every experiment, we employ LBFGS and noted it converges roughly 10x

faster than SGD (successful recovery requiring approximately 50 iterations as opposed to 500 in [19, 96]).

Although Eq. (NNG) is highly non-convex, the proposed latent recovery optimization works well, as

shown in Fig. 3.1 and Fig. 3.3. In particular for generated images y = G(z), where NNG(y) = z, a global

minimum (verbatim copy) is consistently achieved (see third row of Fig. 3.1). Every network analyzed in

this document appeared to be able to verbatim recover generated images, an observation also noted by

[96] and exemplified by the tight distribution of errors near zero in Fig. 3.4. Note that we also considered

the widely used perceptual loss [73] by taking ϕ to be VGG-19 features, with either no improvement or

even degradation of visual results (see supplementary). Furthermore, we did not see any difference in the

statistical results of Section 3.3 for perceptual losses.

3.2.2 Latent Code Recovery Under Distortion

It should be noted that Eq. (NNG) by itself may not be meaningful for some generators. For example,

if the generator is invertible, errors will zero regardless of the target image. To verify that Eq. (NNG) is

meaningful, we want to make sure the error is lower for images inside the considered manifold and large

for those outside. To do this, we follow [59] (used there to motivate the FID) wherein we test Eq. (NNG)

response to various distortions. We choose ϕ to be one of the three distortions that are illustrated in

Fig. 3.2:

• Smooth Vector Field Warp (Fig. 3.2a) Following [59, 191] we warp training images by bilinear

interpolation with a smooth 2D vector field Vσd
= V ∗ g, which is obtained from the Gaussian

smoothing g of a Gaussian random vector field V (x, y) ∼ N (0, σ2
d);

• Corruption Noise Patches (Fig. 3.2b) As [94], we corrupt training images by replacing patches

of various sizes with fixed Gaussian noise with variance σ2
d ;

• Additive Noise (Fig. 3.2c) We add noise to each training image with Xn = X + Wd, where Wd

is sampled from a Gaussian distribution Wd ∼ N (0, σ2
d).

Experimental Validation Fig. 3.2 demonstrates a few facts about latent recovery. By inspection of

recovered images, it appears robust enough to recover faces semantically similar to the ground truth even

if the image has been heavily distorted. It also demonstrates the precision of the network, for example

the three networks highlighted will reject images only slightly outside the manifold. In Table 3.1, we can

see that not all networks share the same specificity. For example, the GLO networks can recover distorted

images with similar MRE’s to training images, which means the networks are less precise. This is coupled

with a lower FID of the network, for example see Fig. 3.5.

3.3 Using Latent Recovery to Assess Overfitting

In this section, we train a variety of generative models with a training and validation split. Then, we

analyze the difference between image recovery using Eq. (NNG), between training and validation images.

3.3.1 Training Protocols

We summarize the details of each generative model below, in terms of their training procedure and pur-

pose within this work. GAN Generative Adversarial Networks (GAN) involve a stochastic training

procedure which simultaneously trains a discriminator and a generator. The original GAN [52] opti-

mization problem writes

max
D

min
G

Ez∼N (0,1),x∼pdata
[Ladv(D, G, z, x)] (3.1)

where Ladv(D, G, z, x) = log(D(x)) + log(1−D(G(z))). We examine three prominent GANs in

the literature. First is DCGAN [139], as it is one of the most widely used GAN architectures and with
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(a) This is a deformation by smooth diffeomorphism (warping)

. Top row is real and bottom row are recovered.

(b) An ansupervised inpainting (face completion)

task.

(c) An additive white noise

.

Figure 3.2: Median recovery error (MRE, see Eq. (3.4)) for 1800 test images on various GAN generators

(PGGAN [78], MESCH [112] and DCGAN [139]) under various distortions ϕ in latent recovery opti-

mization (NNG) (see text for details).

still decent performance across a variety of datasets [103]. Then we study two state-of-the-art GANs

for high resolution generation; progressive growing of GANs [78], which we refer to as PGGAN and

the zero centered gradient penalty Resnet presented in [112], which we refer to as MESCH. We train

these three GANs on CelebA-HQ with a training split of the first 26k images and the first 70k images

of LSUN bedroom and tower. We chose these splits to preserve the quality of each method, as GAN

quality significantly degrades with small dataset sizes.

Generative Latent Optimization (GLO) The recently introduced Generative Latent Optimization
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y ∈ D (train) y ∈ T (validation)

Figure 3.3: Latent recovery of training images fromD (left, green frame) and test images from T (right,

red frame) for 128 × 128 images of Celeba-HQ [78]. From top row to bottom are first target images,

and then recovery from Progressive GANs [78] (PGGAN), 0-GP resnet GAN [112] (MESCH), a GLO

network [17], and finally a Cycle-GAN like network [197] (AEGAN). While GLO obviously shows some

memorization of training examples, it is hard to visually assess when overfitting happens for other meth-

ods, as discussed in Section 3.3 (with additional details on architectures and training).

(GLO) creates a mapping from a fixed set of latent vectors to training images. The GLO objective is as

follows

min
G

∑
(zi,xi)

Lrec(G(zi), xi) := ∥G(zi)− xi∥22 (3.2)

where xi ∈ D refers to training images, zi ∼ N (0, 1) samples a Gaussian distribution and the pairs

(zi, xi) are drawn once and for all before training begins. Because we know the latent distribution is

Gaussian, we can easily sample the network after it is trained.

AutoEncoder Finally, we train a vanilla autoencoder on CelebA-HQ with the objective:

min
G,E

∑
xi∈D

Lrec(G, E, xi) (3.3)

Hybrid Losses We consider a generative model combining both the adversarial loss Eq. (3.1) with eu-

clidean auto encoding loss (3.3) which we refer to as AEGAN.

Concerning models trained with a reconstruction loss (GLO, AEGAN and AE), we selected these

architectures for a theoretical perspective, as they offer interesting windows into how generators can

memorize. In particular, we will study the impact of the training set size N on the overfitting inclination.

For example, while we were unable to train a good quality GAN with a small set of images (say 256),

GLO converges extremely quickly in such a case. See the GLO-256 network in Fig. 3.3 (4
th

row) where

memorization is immediately apparent. As a result, we will refer respectively to GLO-N , AEGAN-N
and AE-N , to account for this size. Besides, for both the AE and AEGAN models, we forgo optimization
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in Eq. (NNG) and use the encoder E (3.3) to recover the latent vector, as is natural for autoencoder

models.

In the next paragraphs, we will proceed to show that it is possible for generative networks to memo-

rize in the sense that validation and training sets have significantly different recovery error distributions.

3.3.2 Comparison of recovery errors

Figure 3.4 shows the histograms of recovery errors on train (D in green) and validation (T in red) datasets

from CelebA-HQ, for various generators. For the sake of readability, the distribution of errors for gen-

erated images (yellow) fromG and distorted images (blue) are only displayed for PGGAN and MESCH.

Confirming visual inspection from Fig. 3.1, observe that the recovery errors for generated images (in yel-

low) are quite low. Increasing the number of iterations and using several random initializations improve

results, but have not been used to reduce computation costs.

Now we are going to consider the distribution of recovery errors for test and train. For GLO-N and

AEGAN-N generators with N ∈ {128, 1024, 8192}, the difference is clear, and is decreasing with the

number of training images N . For very small datasets of N = 128, the train and validation error distri-

butions are disjoint. On the other hand, pure GAN models can not be successfully trained with small

datasets. We therefore only trained PGGAN and MESH with full datasets and in both cases, the differ-

ence of recovery error distribution between the train (green) and validation (red) set is barely noticeable.

Further statistical analysis in the next paragraph shows indeed that such a small gap is very likely for two

samples drawn from the same law, demonstrating generalization.

3.3.3 Statistical Analysis

In light of the previous results, we propose two simple definitions to measure and detect overfitting with-

out relying on histograms or image inspection. First, to summarize the distribution of errors to a single

value, we consider the Median Recovery Error (MRE), defined for a generator G and a dataset Y as

MREG(Y) = median

{
min

z
∥yi −G(z)∥2

}
yi∈Y

(3.4)

Table 3.1 reports such values for other deep generators and other datasets.

Then to measure the distance between two distributions, that is to estimate to which extent the

generator overfits the training set, we simply compute the normalized MRE-gap between validation T
and trainD dataset, which writes

MRE-gapG = (MREG(T )−MREG(D)) /MREG(T ) (3.5)

These values are reported
1

in Table 3.1.

Instead of using an empirical threshold to automatically assess if the amount of overfitting is signif-

icant regarding the size of the training set, we rely on a statistical test. We compute the p-value of the

Kolmogorov-Smirnov test (KS) which measures the probability that two random samples drawn from

the same distribution have a larger discrepancy, defined as the maximum absolute difference between

cumulative empirical distributions, than the one observed.

Such p-values are displayed in Table 3.1, and a threshold of 1% is used to detect overfitting (values are

highlighted). To show the consistency between the two proposed metric, we also highlight the values of

MRE-gap that are above 10%.

Observe that the results are mostly confirming previous empirical evidence: memorization is strongly

correlated to the number of images seen during training. We also see that the same overfitting occurs on

different datasets (CelebA-HQ and LSUN), and for autoencoder (AE). At N = 26000 on CelebA-HQ

and N = 32768 on LSUN bedroom, overfitting is no longer detectable.

1

Notice that other metrics could have been used, such as the Wasserstein distance.
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(a) PGGAN (b) MESCH

(c) GLO-128 (d) AEGAN-128

(e) GLO-1024 (f) AEGAN-1024

(g) GLO-8192 (h) AEGAN-8192

Figure 3.4: Histograms of recovery errors on trainD and validation T datasets from CelebA-HQ show-

ing that overfitting is not happening for PGGAN and MESCH generators on the training dataset, but

is for GLO-N and AEGAN-N when training for a small dataset N ≤ 8192.

However, using the proposed statistics (p-value, normalized MRE-gap) is much more practical to

detect overfitting than only inspecting histograms and easier to threshold than MRE itself. It also illus-

trates that such statistical principle overrules empirical evaluation, as memorization is indeed sometimes
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Figure 3.5: Comparison of FID versus Median Recovery Error (MRE) for various models computed over

training images (in green) and validation images (in red). FID does not detect memorization in GLO

models.

quite hard to tell from simple visual inspection, such as for the AEGAN generator in Fig. 3.3.

3.3.4 FID Does Not Detect Memorization

The FID is the standard GAN evaluation metric for images [59], so it is natural to ask whether this

metric can be used to detect memorization. Figure 3.5 displays FID scores computed between generated

and training images (in green) and generated and test images (in red). While the median recovery error

(MRE) is able to detect memorization in GLO models, the FID is not sensitive to this (this fact was also

noted by [54]). We do not suggest replacing the FID, but rather using MRE to provide a more complete

picture of generator performance. Besides, other metrics such as the precision recall introduced in [147]

can be considered as well to tackle more subtle statistical biases such as mode dropping versus mode

invention.

3.4 Discussion and Future Work

3.4.1 Notes on Applications

Recently, GANs have seen wide application to various face generation tasks, such as face attribute modi-

fication [29], generative face completion [94] and face super-resolution [34]. In a similar vein, deep image

prior [171], recovers images by first fixing a random latent vector, then optimizing over the parameters of

a randomly initialized generator. We apply (NNG) to face inpainting and super resolution for two rea-

sons; first it shows off-the-shelf GAN generators are well suited for a variety of downstream tasks, which

is also noted in [184] and second it provides additional visual insight into the observations of the previous

section.

Figure 3.6 shows the progressive GAN generator [78] applied to face inpainting (ϕ is a mask) and

super-resolution (ϕ is a 64x pooling). While the face inpainting is artifacted, we note that the results are

decent without any post processing and similar to those presented in [94] (while being non-feedforward).

As for super-resolution, we obtain results at least on par with [34]. An intriguing property of the images

is that the recovery is semantically accurate, in terms of attributes such as gender, facial features and pose,

whilst recovering a face that appears to be a different identity. This happens despite the use of images that

the PGGAN generator [78] was trained on, which is in accordance with the observations of Sec. 3.3. Put

in another way, we believe the fact that PGGAN has generalized well to CelebA-HQ, also means that it
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KS p-value MRE-gap MRE

train vs val train val generated small distort
C

e
l
e
b

A
-
H

Q

dcgan 9.43e-01 1.79e-02 4.95e-02 5.04e-02 3.68e-03 5.69e-02

mesch 4.55e-01 6.96e-03 3.40e-02 3.43e-02 1.77e-02 4.63e-02

pggan 2.22e-01 2.22e-02 3.31e-02 3.39e-02 1.78e-02 4.65e-02

glo-128 0.00e+00 9.70e-01 9.94e-04 3.30e-02 5.10e-05 9.32e-03

glo-1024 0.00e+00 7.59e-01 1.95e-03 8.08e-03 1.29e-03 4.46e-03

glo-8192 2.25e-18 1.75e-01 3.00e-03 3.64e-03 1.04e-03 3.20e-03

glo-26000 2.12e-01 3.69e-02 4.27e-03 4.44e-03 4.08e-04 4.43e-03

aegan-128 0.00e+00 9.02e-01 1.54e-02 1.57e-01 N/A 2.82e-02

aegan-1024 0.00e+00 2.68e-01 8.52e-02 1.16e-01 N/A 8.69e-02

aegan-8192 3.17e-27 1.61e-01 7.42e-02 8.84e-02 N/A 7.55e-02

aegan-26000 1.25e-01 1.85e-02 9.96e-02 1.01e-01 N/A 1.00e-01

cyclegan-256 M2F 0.00e+00 4.75e-01 9.03e-03 1.72e-02 N/A -

cyclegan-4096 M2F 0.00e+00 2.62e-01 6.44e-03 8.73e-03 N/A -

L
S

U
N

dcgan (tower) 7.02e-02 1.36e-02 7.96e-02 8.07e-02 1.49e-02 7.31e-02

dcgan (bedroom) 3.65e-01 5.34e-03 7.06e-02 7.10e-02 7.03e-02 7.09e-02

glo-8192 (bedroom) 6.70e-06 1.70e-01 5.45e-03 6.56e-03 5.37e-04 5.01e-03

glo-32768 (bedroom) 2.62e-01 5.40e-02 6.58e-03 6.25e-03 8.40e-04 5.44e-03

Y
O

S

cyclegan-256 s2w 1.60e-16 3.68e-01 1.67e-02 2.64e-02 N/A -

cycelgan-512 s2w 6.10e-33 3.78e-01 1.39e-02 2.23e-02 N/A -

M
N

I
S

T

dcgan 2.41e-01 8.85e-02 3.00e-02 2.75e-02 6.89e-03 -

glo-1024 0.00e+00 6.78e-01 2.86e-04 8.88e-04 1.49e-03 -

glo-16384 3.48e-01 6.45e-03 8.72e-04 8.77e-04 1.41e-03 -

aegan-16384 7.43e-02 2.29e-02 4.56e-02 4.67e-02 N/A -

C
I
F

-
1
0

dcgan 5.40e-01 3.65e-03 2.29e-01 2.28e-01 1.30e-03 -

glo-1024 0.00e+00 5.84e-01 2.77e-03 6.67e-03 8.53e-04 -

glo-16384 3.48e-01 6.45e-03 8.72e-04 8.77e-04 1.41e-03 -

Table 3.1: Kolmogorov-Smirnov (KS) p-values, normalized median error difference (MRE-gap) Eq. (3.5),

and Median recovery errors (MRE) Eq. (3.4) for a variety of generators. Highlighted values indicate

generators for which overfitting of the training set has been detected: (in blue) with the KS test using 1%
threshold on p-value, (in green) using 10% threshold on MRE-gap.

will not be able to verbatim recover an identity found in the dataset. For some applications this could

be seen as inadequate, such as the domain translation network of StarGAN [29], wherein a user wants

to retain identity but change facial features. On the other hand, if a face dataset is considered private or

copyrighted, not verbatim copying any training image can be seen as a benefit of the algorithm. Quan-

tifying whether GAN generators really do generalize with respect to identity, using a face identification

network like VGG-Face [132], is an interesting issue that we leave for future work.

3.4.2 Future Work

Our work is a part of a growing body of research concerned with overfitting of deep generative models

[57, 54]. For example, [54] takes a perspective of GAN evaluation, arguing that evaluation with a neu-

ral net distance can penalize trivial memorization of the dataset whereas FID cannot. We have a similar

perspective, albeit with the goal of merely detecting overfitting and with a simpler approach. Unlike our

approach, the NND [68, 54] was able to detect slight overfitting of some GANs, however, the massive size

of the validation set and the fact that the NND must be retrained for every generator under evaluation

make the analysis computationally burdensome. Additionally, the architecture choice of the NND may

be biased to reflect the GAN loss function and not be universal across models, such as the reconstruc-

tion based GLO model considered in this work. On the other hand, we present a simple, computationally

tractable solution requiring modestly sized (here, just a few thousand) validation images. We found the
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ϕ(y) G(z∗(y)) y ϕ(y) G(z∗(y)) y

Figure 3.6: Image recovery by solving Eq. (NNG) with a 1024x1024 generator G by [78]. From left to

right: transformed image ϕ(y), recovered image G(z∗(y)) and ground truth image y. The first two

rows are image inpainting (ϕ is a mask) and next two are image super-resolution of images downsampled

by a factor of 64 (ϕ is an average pooling).

reconstruction based generator GLO to be interesting from a theoretical perspective. For example, opti-

mization unveiled strong overfitting; training images are nearly verbatim recovered and validation images

are blurry (e.g. Fig. 3.3, row 4), whereas FID on GLO samples was insensitive to this difference. Further-

more, a major advantage of our work is the visual interpretability of our results. For example, one can

see in Fig. 3.3, the visual reconstructions do in fact reveal visual quality of train versus validation samples.

Namely, both training and validation images are well reconstructed for the GAN methods. We believe

further work must be done to synthesize the results of [54, 57] and our work. One promising area would

be to explore other loss functions. We experimented briefly with perceptual losses (see supplementary)

but leave this possibility open. We also think recovery could be guided with a learned NND loss. An-

other interesting direction is analysis of local overfitting on image patches. Preliminary experiments can

be found the in supplementary material, which also show generalization of GAN generators. Finally,

Eq. (NNG) had mixed success for more complex datasets such as LSUN in terms of visual quality. We

think that some datasets lead to more complex latent space with many local minima and direct the reader

to the supplementary material for more details on optimization.

Conclusion In this work, we studied overfitting of deep generators through latent recovery. We saw

that a simple Euclidean loss was effective at recovering latent codes and recovers plausible images even

after image transformations. We used this fact to study whether a variety of deep generators memorize

training examples by asking if the network can generate validation samples. Our statistical analysis re-

vealed that overfitting was undetectable for GANs, but detectable for hybrid adversarial methods like

AEGAN and non-adversarial methods like GLO, even for training sets of moderate sizes. Due to the
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ever-growing concerns on privacy or copyright of training data and the already widespread application

of generative methods, we provide methodology that is a step in the right direction towards analysis of

generative overfitting.





Appendix

3.A Additional Results

3.A.1 Optimization Failures

We noted that most networks had the ability to exactly recover generated images. This is shown in

Fig. 3.A.1, with failure cases highlighted in red. Interestingly, some networks were not able to recover

their generated images at all, for example Fig. 3.A.1b was a PGGAN trained on LSUN Bedroom, which

did not verbatim recover any image. We think this may suggest a more complex latent space for some

networks trained on LSUN, with many local minima to Eq. (NNG). Because we assert that we are find-

ing the nearest neighbors in the space of generated images, we did not analyze networks which could

never recover generated images. It should be noted that some LSUN networks were able to recover their

generated images, for instance DCGAN [139].

(a) Recovery for MESCH on CelebA-HQ. (b) Recovery for PGGAN on LSUN-B

Figure 3.A.1: Recovery failure detection with thresholding. First row generated images and second row

is recoveries. The MESCH network in 3.A.1a is inconsistent at image recovery, which can be alleviated

by restarts. The PGGAN trained on LSUN bedroom in 3.A.1b did not verbatim recover any image.

3.A.2 Recovery Success Rate

Disregarding networks which could not recover generated images, some networks had higher failure rates

than others. To determine failure cases numerically, we chose a recovery error threshold of MSE < .1
to signify a plausible recovery for real images (for generated images a much smaller threshold of MSE <
.025 can be used, which corresponds to verbatim recovery, e.g. in 3.A.1). Table 3.A.1 summarizes re-

covery rates for a few networks. The MESCH resnets were notably less consistent than other architec-

tures. To study if these failures were due to bad initialization, we tried simply restarting optimization

10 times per image, and saw the success rate go from 68% to 98% (shown in Table 3.A.1 as MESCH-10-

RESTART). This shows that likely all training and generated images can be recovered decently well with

enough restarts.

39
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Table 3.A.1: Recovery success rate for real and generated images. Percentages indicate rate of recoveries

with a MSE < .1, which corresponds to a plausible synthesis. Failures are related to bad initialization,

as simply restarting greatly increases success rate.

train test generated

MESCH 68% 67% 67%

MESCH-10-RESTART 98% 99% 96%

DC-CONV 82% 82% 100%

PGGAN 97% 96% 95%

3.B Comparison with Other Loss Functions

We visually compare in Fig. 3.B.1 the simple Euclidean loss used in this paper for analyzing overfitting (i.e.
ϕ = Id in Eq. (NNG)) with other operators:

• ϕ = pooling by a factor of 32 (as used in applications for super-resolution);

• ϕ = various convolutional layers of the VGG-19 (i.e. the perceptual loss previously mentioned in

the paper).

While the perceptual loss has been shown to be effective for many synthesis tasks, it appears to hinder

optimization in the case when interacting with a high quality generator G. Observing the recovered

images in Fig. 3.B.1, the pooling operator seems to help with recovered textures as it relaxes the loss, while

still recovering a highly similar face to the naive loss ϕ = Id.

3.C Convergence results

In general, optimization was successful and converges nicely for most random initializations. We pro-

vide numerical and visual evidence in this section supporting fast and consistent convergence of LBFGS

compared to other optimization techniques like SGD or Adam.

3.C.1 Protocol

To demonstrate that the proposed optimization of the latent recovery is stable enough to detect over-

fitting, the same protocol is repeated in the following experiments. We used the same 20 random latent

codes z∗
i to generate images as target for recovery: yi = G(zi∗) . We also used 20 real images as targets

the same as in Section 2 for local recovery. We also initialized the various optimization algorithms with

the same 20 random latent codes zi. We plot the median recovery error (MRE) for 100 iterations. This

curve (in red) is the median of all MSE curves (whatever the objective function is) and is compared to the

25th and 75th percentile (in blue) of those 400 curves.

3.C.2 Comparison of optimization algorithm

We first show the average behavior in Fig. 3.C.2 the chosen optimization algorithm (LBFGS) to demon-

strate that it convergences much faster than SGD and Adam. A green dashed line shows the threshold

used to detect if the actual nearest neighbor is well enough recovered (MRE = 0.024). One can see that

only 50 iterations are required in half the case to recover the target image. Figure 3.C.1 compares recov-

ery images for PGGAN obtained with LBFGS and SGD optimization algorithms, demonstrating that

LBFGS gives most of the time better results.
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Figure 3.B.1: Using other loss functions for image recovery. The first row is target images from CelebA-

HQ, the next three rows are recovery from PGGAN network and the final three are from MESCH gen-

erator. Pooling seems to help slightly with textural details without hindering recovery of facial pose.

Surprisingly, a VGG-19 loss hinders recovery for the PGGAN generator.
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Target images (generated with PGGAN)
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Figure 3.C.1: Visual comparison of recovery with LBFGS (top) and SGD for the Euclidean loss (see

(NNG) optimization problem in the main paper.). First row: target (generated) images yi = G(z∗
i ).

First column: initialization (G(z(0)
i )). Second column: optimization after 100 iterations (G(z(100)

i )).

LBFGS gives much better results than SGD that is much slower to converge, but still needs sometimes

some restart (here shown without restarting).

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

LBFGS with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ia
n 

re
co

ve
ry

 e
rro

r (
M

RE
)

SGD with L2 objective

0 20 40 60 80 100
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
ed

ian
 re

co
ve

ry
 er

ro
r (

MR
E)

adam with L2 objective

LBFGS SGD Adam

Figure 3.C.2: First row: median recovery error (MRE) curve. Second row: 400 superimposed recovery

error curves for 20 images with 20 random initialization. LBFGS (first column) converges faster than

SGD or Adam (second and third column respectively).



Chapter 4

Generating Private Data Surrogates

In the previous chapter, we demonstrated how latent recovery could be used to diagnose when certain

deep generative models overfit their training data. In the extreme case, reconstruction errors for train-

ing points had a distribution which was disjoint from held out test samples. In this case, it’s possible to

infer the model’s training set, even without any a priori knowledge of which training points were used,

by merely choosing reconstruction errors that are sufficiently low. In this chapter, we’ll introduce the

concept of a membership attack, which is a binary classification problem that tries to do just this. We’ll

use the latent recovery technique we developed in the previous chapter (namely Eq. NNG) and even im-

prove this technique via the use of an autoencoder. We also use our observation that GANs trained with

sufficient data demonstrate robustness to membership attacks; thus, the goal of this chapter is to cre-

ate synthetic data that is both useful and yet does not reveal information about specific dataset samples.

Since publication, there have been many works on training GANs in low data settings [183, 80]. As the

primary contribution, we demonstrate how to construct surrogate datasets, using images from GAN

generators, labelled with a classifier trained on the private dataset. Next, we show this surrogate data can

further be used for a variety of downstream tasks (here classification and regression), while being resistant

to membership attacks. We study a variety of different GANs proposed in the literature, concluding that

higher quality GANs result in better surrogate data with respect to the task at hand.

Finally, in the next chapter, we’ll show that models trained with few data points are vulnerable to the

attacks presented in this chapter, and we’ll present a potential defense using the tools developed therein.

Additional insights based on a different membership attacks are presented in Chapter 6, wherein bias,

and not just dataset size, can effect privacy.

Continued Work At the time of publication, both membership attacks against generative models

and attack defenses were relatively new subjects. Since then, a variety of other membership attacks and

defenses have been proposed. Most membership attacks exploit the models loss function, or a proxy loss

function retrained from model outputs [156, 55]. In [98], the entirety of the loss during training is used to

infer training points and is more sensitive to output only attacks. Other works try to use less information

from model outputs, such as the work in [31] which uses hard labels only rather than continuous losses.

There are also an even stronger form of membership attacks, extraction attacks, which don’t require

training input images but rather just conditional labels or text. We explore such an attack in Chapter 7.

We also note attack defense guarantees using differential privacy have significantly improved. If

PATE-GAN [186] was unable to provide realistic synthesis for reasonable guarantees, new methods us-

ing diffusion models have made progress [51]. The DDPM approach in [51] has largely the same goal as in

this chapter, i.e., to release surrogate images that are still useful for other machine learning problems, or

for aggregation for more large scale training. Still, these methods have much lower quality than non-DP

training and still provide "trivial" privacy bounds; in other words as DP only provides an upper bound

on the information that leaks, in practice these upper bounds are too weak and many acceptable DP

parameters are still empirically vulnerable to membership inference [71].

43
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Figure 4.0.1: Overview of the proposed framework for creating private data surrogates and its

application to train a private task-driven network. In a nutshell, the data surrogate D′
is simply

obtained by combining image samples x′
i from a generator network G (e.g. using GAN, trained with an

adversarial network A with latent code zi sampled from a random distributionPZ ) and associating them

with plausible labels ℓ′
i obtained from a classifier C trained on the private train datasetDT composed of

pairs (xi, ℓi) of real images with labels. From this public dataset, it is possible to train a privacy preserving

classifier C ′
displaying similar performance and accuracy (in practice by comparing C ′(DV ) and C(DV )

on a separate validation set DV ). We further demonstrate empirically that the obtained public dataset

D′
(and by composition the network C ′

) is robust to membership attacks described in Algorithm 2 and

performed by a network A.

4.1 Context and Motivation

The fantastic recent advances in deep learning are strongly related to the existence of public datasets.

Such datasets not only allow researchers to learn from and experiments with the data but also to measure

progress and challenge themselves with other researchers in competitions. If Pascal VOC [44] was among

the first, many followed such as ImageNet [36] for object classification or recently CelebA-HQ [78] as
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a benchmark for generative models. The contemporary machine learning research landscape would un-

doubtedly be very different without such datasets.

However, several important application areas do not fully benefit from the progress of machine learn-

ing because of the lack of massive public datasets. Indeed, building such datasets is difficult due to privacy

issues that will inevitably arise. Even if only the model parameters are released, convolutional neural net-

works have been shown to memorize data and leak information about their training sets [154, 189].

This poses huge problems for the applicability of deep learning. For instance, while deep learning

has shown huge potential for diagnostic assistance in the medical domain, training data is often hard to

obtain due to strict privacy laws on medical data. Likewise, biometric or other user data in mobile appli-

cations often is privately held, and can not be shared for more public usage. For generative applications,

training data can even be visually apparent in models that overfit [176], which means copyright for data

needs to be obtained before training.

As a fundamental solution to these problems, we propose releasing a generated dataset which highly

resembles the original data, but exhibits privacy. This is different from the standard approach to privacy,

which involves adding privacy to a model e.g. during training [41]. In many ways, directly releasing

privatized data is more useful, as it can be used for a variety of tasks, whereas a private model is limited

to one.

4.1.1 Membership attacks

One common attack against machine learning models is the membership attack, which discerns data

points that were used for training. Neural networks performing classification on images are known to

be vulnerable to such attacks. For instance, in [156], a membership attack was successfully performed

against an MNIST model, even if the network parameters were not available to the attacker. In essence,

these attacks exploit neural networks tendency to overfit, and can use simple cues such as output logit

entropy.

In response to such membership attacks, a huge amount of recent works have proposed heuristic or

theoretical attack defenses [130, 100, 41]. There is the mathematical framework of differential privacy
[41], which is often used to provide privacy guarantees in machine learning frameworks. For example,

classifiers with privacy guarantees can be achieved with the teacher ensemble mechanism [130] (PATE), or

through knowledge transfer [128]. Empirical defenses have also been proposed for membership attacks in

particular. For example, [121] proposes adding an adversary during training which simulates an attacker

and therefore minimizes a utility privacy trade-off.

4.1.2 Privacy of Generative Models

While generative adversarial networks (GANs) [52] are a relatively new advent, they certainly have changed

the landscape of machine learning, for example, achieving state of the art in image synthesis [82, 118, 66]

and a plethora of other generative tasks.

Recent work has been devoted to defining and measuring overfitting in generative models, for ex-

ample, in [176, 68], and [54]. As an approach to evaluating GAN quality, [68] proposed training a third

network to discriminate validation and generated samples after GAN training had completed. Similarly,

in [54], the authors used a neural net distance to define a GAN evaluation metric which importantly

penalizes models memorizing training samples, unlike the Frechet Inception Distance (Eq. 2.1). In the

work of [56], membership attacks are directly performed against the discriminator of GANs (referred

to as Adversarial Network A in Fig. 4.0.1). Finally, [176] proposes directly recovering training and test

images with the generator and comparing recovery error, with the hypothesis that training images should

exhibit smaller error.

Last, some recent works approach the question of deep learning with privacy via direct sanitation

of data for release. Mirjalili et al. [117] used convolutional auto-encoders to remove other information
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(e.g.gender) than the one related to identity from training face images. Sokolic et al. [160] proposed a

data sanitization mechanism during which users’ data is modified to prevent specific attacks before these

data are actually used for training. The same goal is sought by Bertran et al. [16], Wu et al. [181] or Rezaei

et al. [143], by defining a collaborative sanitization function retaining valuable information for the tasks

while eliminating private information. Finally, PATE-GAN [186] proposes a framework to generate data

using a GAN like framework and adopting privacy via the PATE mechanism.

4.1.3 Contributions and outline

In this work, we also seek to directly release data immune to membership attacks by presenting two con-

tributions: First, a simple but efficient surrogate technique is proposed to generate a synthetic dataset

that can be released in public, which ideally achieves the same level of performance as the original dataset

while ensuring its protection to membership attack. The methodology for generating, labeling and eval-

uating this data is documented in Fig. 4.0.1.

Second, two recent membership attacks against generative models are executed against GAN gener-

ators and shown to be ineffective. Finally, while this study is preliminary, we evaluate two face datasets,

CelebA-HQ and UTK-Face, across a variety of state of the art GAN generators as well as various tasks

to demonstrate consistency of our observations.

The rest of the paper is organized as follows: Section 4.2 exposes the construction of the surrogate

dataset as well as its evaluation. Section 4.3 details the proposed membership attack protocol to assess

the efficiency of our surrogate dataset. Section 4.4 shows experimental results, followed by a discussion

in Section 4.6.

4.2 Surrogate Data Creation and Evaluation

Typically, methods offering privacy in machine learning have a privacy and utility trade-off, for instance

losing generation quality in return for privacy [122, 186, 130]. For example PATE-GAN [186] demon-

strates the utility of generated data through unsupervised tasks under various privacy guarantees.

We propose evaluating utility on supervised tasks by first labeling images generated from an uncon-

ditional GAN and then taking the standard validation accuracy on real images. Figure 4.0.1 details the

entire pipeline:

• train a classifier C and a generator G from the private training datasetDT ;

• build and release publicly a synthetic datasetD′
: any sample from this set is randomly generated

as x′ = G(z), where z ∼ PZ (the training latent distribution) and associated with the predicted

label ℓ = C(x′);

• train a classifier C ′
from the surrogate datasetD′

;

• evaluate and compare C ′
and C on a validation setDV , in terms of privacy and utility.

Experiments detailed in Section 4.4 demonstrate for various GANs that the surrogate classification

network C ′
can achieve performance similar to the one trained directly on private data.

Next section presents two membership attacks used to assess privacy of surrogate data.

4.3 Assessing privacy of Generative Models by Membership Attacks

In this work, we consider two membership attack models against generative networks. Both approaches

utilize overfitting of the generative network G, with respect to some attack function A. Following LO-

GAN [56], we discern samples that likely belong to the training set by selecting those with the lowest

values for the attack function A. For instance in LOGAN, A is taken to be the trained adversarial net-

work (as illustrated in Figure 4.0.1), in which case the training set is taken as those samples which the
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discriminator most confidently predicts to be real. Algorithm 2 details precisely how this attack is per-

formed.

Input: Training setDT = {y1, · · · , yN} and validation setDV = {yN+1, · · · , y2N}.

1: Set the attack score function A, either from the recovery loss function in Eq. (4.1) or the trained

adversarial network [56].

2: Let yi ∈ DT ∪ DV , such that {
yi ∈ DT if i ≤ N

yi ∈ DV if N + 1 ≤ i ≤ 2N

3: Sorted indices: I ← argsort{A(yi)}1≤i≤2N

Output:

4: Estimated set of training images: T ← {yI(i)}1≤i≤N

5: Membership attack accuracy:

Acc← |I ∩ {i : 1 ≤ i ≤ N}|/N
Algorithm 2: Membership attack

4.3.1 Recovery Attacks

In [176], training and validation images were recovered using optimization. Generative networks were

said to overfit if the statistics of training and validation recovery errors were different in some measure, for

example the difference of medians. In [97], recovery errors were used similarly to perform membership

attacks, where the optimization was performed over the parameters of an input layer to the generator,

rather than the latent codes themselves.

In [14], GAN inputs are recovered with a trained encoder, in order to visualize phenomena such as

mode dropping. As inversion of many layer generators can be difficult, they use layer-wise training with

a perceptual loss. Here, we found the perceptual loss to be sufficient for inversion. We define our attack

function (referred to as A in Algorithm 2 and illustrated in Figure 4.3.1) as the perceptual loss of this

inversion as

fE(yi) := ∥ϕ(G(E(yi)))− ϕ(yi)∥2 (4.1)

where an image yi ∈ DT ∪ DV is in either the training or validation sets, ϕ are image features (such as

convolution layers of VGG-19), G is the GAN generator trained onDT and E is the attack encoder. The

primary advantage of using an encoder is a fast feed-forward image recovery, rather than optimizing per

image. We train E solely on generated samples

min
E

Ez∼PZ
fE(G(z)) (4.2)

wherePZ is the random distribution of latent codes used to train the generative model G. As is common

with encoder design, we choose the architecture of E to resemble a transpose of G, with upsampling

replaced by downsampling.

We consider using perceptual features for ϕ from the VGG-19 network (see for instance [73]), but

also consider using other feature networks, such as VGG-Face [133] or even ϕ = Id for an image domain

loss. Furthermore, notice that we only train E on generated samples G(z) and keep real ones aside so

that E is not dependent on the potential overfitting pattern of G.

4.3.2 Discriminative Attacks

Following the work of [56], Discriminative membership attacks are performed against GANs by using

the adversarial network A to sift between test and train images. Compared to the recovery attack, this
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Training

Figure 4.3.1: Overview of the proposed membership recovery attack on a generative network.

This attack relies on an encoder which acts as the pseudo-inverse of a given generative network to detect

overfitting. The encoder E is trained to recover the latent codes from randomly generated samples yi =
G(zi) by minimizing the discrepancy between features ϕ (e.g.VGG-19 network) of yi and G(E(yi)).

During the attack, images yi ∈ DT ∪ DV are sampled from the private dataset, i.e.DT used to train

the generator G andDV unseen during training; the recovery score is then used to sift training images as

described in Algorithm 2.

methods requires the discriminator A to be publicly released, which is usually not the case as it does not

fulfill any purpose after training. Recall that A is trained along with the generator G on the training set

DT , as illustrated in Fig. 4.0.1. For convenience, we assume here that the discriminator A is trained to

score 0 on real images xi ∈ DT and 1 on generated images x′
i = G(zi).

4.4 Results

We train the following GANs and will use the abbreviations in parentheses: Progressive GANs presented

in [78] (PGGAN) using official code, the zero-centered gradient penalty Resnet in [112] with the official

code (MESCH) and finally deep convolutional GAN [139] (DCGAN) and least squares GAN [106]

(LSGAN) with our own implementation.

4.4.1 Encoder training for latent recovery

As described in Section 4.3.1 and Figure 4.4.1, we train for each GAN an encoder for pseudo-inversion

using various perceptual loss functions.

Figure 4.4.1 shows recovery using different recovery methods and different GAN generators. Note

that a simple image domain recovery (as in [176]) for LSGAN is not reliable, whereas the encoder ap-

proach is. Note as well that after training of encoder E is complete, it only takes one network evaluation

to retrieve a recovery score, compared with the hundreds of evaluations required for [176]. Furthermore,
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training of the encoder is quite fast; here we used 25 thousand generated images for training and witnessed

convergence of the recovery scores.

Last, Figure 4.4.1 illustrates the interest of latent recovery attack with the proposed perceptual en-

coder E (see Section 4.3.1) on PGGAN and CelebA-HQ. Not only does the encoder speed up the attack

it also improves the stability of recovery. Note also the histogram of recovery scores for test and train

images are roughly the same for the GAN models, which results in an unsuccessful membership attack.

Real images yi ∈ DT ∪ DV
Recovered images G(E(yi)) from PGGAN

with Encoder

Recovered images G(zi) from LSGAN with la-

tent recovery optimization [176]

Recovered images G(E(yi)) from LSGAN with

Encoder

Figure 4.4.1: Illustration of latent recovery attack for PGGAN and LSGAN. Real images yi from

the test and train dataset are analyzed with the encoder E then synthesized with the generator G (right).

The encoder E, trained on generated images, improves latent recovery in comparison with explicit opti-

mization [176]. The discrepancy between recovery errors (see Eq. (4.1)) is used to perform membership

inference attack, which is unsuccessful in this setting (52% as reported in Table 4.4.2).
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4.4.2 Attribute Recognition on CelebA-HQ

The CelebA-HQ dataset [78] is a typical GAN benchmark dataset, which includes 40 attributes ℓi. Be-

cause many of these attributes contain label noise or are redundant, we choose five prominent attributes:

gender, smiling, young, glasses, blond.

Table 4.4.1 and Table 4.4.3 shows that a classifier C ′
trained with a surrogate dataset D′

(generated

with the proposed approach described in Section 4.2) performs as well as a classifier C directly trained

on the private dataset D. As demonstrated by the FID (Eq. 2.1) scores that evaluate the quality of the

generator (lower is better), the drop in performance strongly correlates with the quality of the synthesized

images used for training.

Gender Smiling Average (5 attributes) Drop in Performance FID

C Real Data 94.50 85.20 90.64 - -

C ′

DCGAN 91.90 82.10 86.50 4.14 67.07

MESCH 92.60 81.45 88.90 1.74 26.31

LSGAN 92.10 80.80 88.35 2.29 42.01

PGGAN 93.10 83.05 89.35 1.29 19.17

Table 4.4.1: Performance of various surrogate datasets on the CelebA-HQ [78] binary attribute recogni-

tion task, for VGG Face features. Top row represents a classifier C trained on the original dataset DT ,

subsequent rows represent classifiers C ′
trained with GAN images that are labelled with C (see Sec-

tion 4.2 for details). Accuracy represents percent correct on a validation setDV with the random guess

baseline being 50%. The quality measure of generated images, assessed by the Frechet Inception Distance

(FID) [59], is strongly correlated with the performance of the surrogate classifiers C ′
.

L2 Recovery VGG-Face Recovery VGG-19 Recovery Discriminator D

DCGAN 54.1 54.5 51.6 57.1

MESCH 53.9 50.8 52.5 50.1

LSGAN (|DT | = 26k) 54.8 54.1 54.0 62.9

LSGAN (|DT | = 5k) 58.1 56.2 57.8 99.4

PGGAN 52.0 50.3 52.1 N/A

Table 4.4.2: Membership attack accuracies (in %) for various GAN methods trained on the CelebA-HQ

dataset and various attack methods (see Algorithm 2). When not specified otherwise, the size of the

training dataset is |DT | = 26k and for the validation set |DV | = 2k. GAN methods are reported in

the first column. The next three columns use latent recovery attack with loss function fG (see Eq. 4.1),

with ϕ taken to be the identity, VGG-Face or VGG-19 features respectively. The final column reports the

discriminative attack accuracy with the discriminator D from the GAN training (the discriminator of

PGGAN requires feeding a whole batch which prevented us to implement this attack). As a baseline, the

same discriminative attack is done on LSGAN with a smaller training dataset (5k) demonstrating that

in such setting the discriminator network is capable of memorizing almost perfectly the entire training

dataset.
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4.4.3 Safety to Membership Attacks

We assess safety of every GAN model trained versus the membership attacks described in Section 4.3.

Table 4.4.2 and Table 4.4.4 shows that membership attacks described in Algorithm 2 are largely un-

successful when the size of the training set |DT | is large enough. For evaluation of membership attack

accuracy, we have used N = 2000 images fromDT andDV .

The discriminator attack of LOGAN is overall most successful, for example achieving nearly 63%
accuracy on LSGAN even with 26k training images, although interestingly the regularized discriminator

in MESCH will yield unsuccessful discriminator attacks even for small datasets, while appearing to be

slightly vulnerable to recovery attacks. Note that this observation is not in contradiction to the results in

LOGAN [56], which showed successful discriminator attacks across the board, as that study primarily

studied small training sets and focused on the DCGAN training technique. To show our observation is

consistent with LOGAN, we also include LSGAN with a small training set of |DT | = 5k, which yields

a near perfect discriminator attack (the discriminator outputs can be perfectly separated, see Fig. 4.4.2,

top left).

Finally, we note that a discriminator attack is a fairly unrealistic scenario, as the discriminator pa-

rameters are typically never used from an application standpoint. Furthermore, an attacker has to have

moderate knowledge of the dataset if he wants to retrain a discriminator (as in [68]), which is somewhat

counter intuitive to the attack in the first place. On the other hand, optimization of encoder E using

Eq. (4.1) can be done merely by sampling G, as is done in this document, but requires the parameters of

G. Finally, we note that we did not in fact use the labels given to the surrogate data D′
to perform our

membership attacks. We do not believe this would significantly affect the membership attack accuracy,

as this information is implicitly available to the attacker, for example when using a semantic network like

VGG-Face for a recovery attack.

4.4.4 Additional experiments on UTK-face with age regression

Tables 4.4.3 and 4.4.4 report additional results on the UTK-face dataset [193] that are consistent with the

experiments on CelabA-HQ. Particularly, networks with higher quality samples (as measured by the FID

score) are performing better on the task. This dataset is composed of 20k images of faces ranging from

0 to 116 years old. The task networks are here trained on |DT | = 10k images to perform age regression

instead of binary attribute classification. The test set is again composed of |DV | = 2k images.

The only difference with the previous experiments on CelebA-HQ (in Table 4.4.1) is that the per-

formance of the task networks C and C ′
for age regression is measured using median absolute difference

between estimated labels C(xi) and the ground truth ℓ(xi), which writes:

MAD(C) = median{|C(xi)− ℓ(xi)|, xi ∈ DV }. (4.3)

Finally, note that in Table 4.4.4 the discriminative attack on LSGAN is slightly more successful,

likely due to the fact of the much smaller training set size of |DT | = 10k. The discriminative attack

seems far less consistent, as it performs no better than random guessing on the DCGAN network with

the same training set size. Future work should investigate discriminative attacks in more detail, across a

wider range of datasets, GAN techniques and dataset sizes.

4.5 Additional Visual Results

Here, we provide some visual results for the the attacks in Fig. 4.4.2.
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LSGAN, |DT | = 5, 000, Acc = 99.4% LSGAN |DT | = 26, 000, Acc = 62.9%

MESCH |DT | = 5, 000, Acc = 50% MESCH |DT | = 26, 000, Acc = 50.1%

Figure 4.4.2: Histogram of attack scores based on the Discriminator A for networks trained on

CelebA-HQ. LSGAN has high quality samples but is more susceptible to membership attacks. See

Fig. 4.5.1 in the appendix for corresponding visual results.

Age (MAD error, in years) Change in Performance (in years) FID

C Real Data 5.22 - -

C ′

DCGAN 12.03 6.81 89.68

LSGAN 5.56 0.34 31.05

PGGAN 5.12 -0.10 30.65

Table 4.4.3: Performance of various surrogate datasets on the age regression task of UTK-Face [193],

using VGGFace features. Top row represents a classifier trained on the original dataset, subsequent rows

represent classifiers trained with GAN images (see Section 4.2). MAD is the Median Absolute Difference

(see Eq. 4.3) on the predicted versus ground-truth age for the validation set DV (lower is better). FID

scores are reported in the last column (lower is better) to assess the quality of generated images.

4.6 Discussion and Conclusion

In this work, we presented a technique for the public release of data using GANs and verified empirically

the data appear retains its utility while gaining privacy. More precisely, we have demonstrated that GANs

surrogates are effective for age regression and face attribute classification. To verify privacy, two different

inference attack mechanisms have been investigated. The first one is based on image recovery and the

second one on the discriminator optimized during GAN training, which has been reported to overfit the
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L2 Recovery VGG-Face Recovery VGG-19 Recovery Discriminator

DCGAN 52.3 53.5 52.1 50.9

LSGAN 53.4 53.9 53.6 75.8

PGGAN 54.7 56.8 54.1 N/A

Table 4.4.4: Membership attack accuracies (in %) for various GAN methods trained on the UTK-Face

dataset and various attack methods (see Algorithm 2). When not specified otherwise, the size of the

training dataset is |DT | = 26k and for the validation set |DV | = 2k. GAN methods are reported in

the first column. The three next columns use latent recovery attack with loss function fG (see Eq. 4.1),

with ϕ taken to be the identity, VGG-Face or VGG-19 features respectively. The final column reports the

discriminative attack accuracy with the discriminator D from the GAN training.

LSGAN |DT | = 5, 000 LSGAN |DT | = 26, 000

MESCH |DT | = 5, 000 MESCH |DT | = 26, 000

Figure 4.5.1: Visual results corresponding to the histograms in Fig. 4.4.2, on CelebA-HQ. LSGAN has

decent quality but is susceptible to membership attacks. MESCH is trained with regularization, which

may explain it’s robustness verses attacks, but has poor quality in the low data setting.

training dataset. A major advantage to the presented method is that it can work off-the-shelf with any

GAN generator. On the other hand, complex training procedures such as PATE-GAN only exacerbate

already unstable GAN training and may result in low quality data samples. While we demonstrated
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data surrogates greatly reduce vulnerability to membership attacks, more insight should be shed into

the mechanism behind this. Hopefully, this would allow for mathematical guarantees instead of purely

empirical ones.

Future investigations will include the question of adapting this strategy to conditional GANs for sit-

uations where training an additional classifier could be avoided. Additionally, GANs need large datasets

for training which raises the question of the extension of the proposed framework for small private

datasets. The extension to multiple private datasets is also not straightforward, but would, however,

provide a useful tool for distributed learning.



Chapter 5

Efficient GAN Learning with
Parameter Sharing

Thus far, we have demonstrated several ways to evaluate GAN generated images, in terms of quality,

memorization and privacy. Namely, in the previous chapter, we saw how GANs appear to provide em-

pirical privacy guarantees when trained with sufficient data. However, this chapter will use tools to train

GANs in the very low data setting (for instance, just a few thousand samples). Here, we’ll see that GANs

are more vulnerable to membership inference attacks. We’ll introduce a parameter sharing technique,

wherein we’ll re-use knowledge learned from one dataset for training on another. We show that param-

eter sharing is an effective way to train with few parameters in terms of quality, and finally show that

training with few parameters can negate the ability of an attacker to perform membership inference.

Thus, we largely use the tools developed in Chapter 2 for quality assessment and Chapter 4 for privacy

assessment.

In this chapter, we propose a new parameter efficient sharing method for the training of GAN gen-

erators. While there has been recent progress in transfer learning for generative models with limited data,

they are either limited to domains close to the original one, or adapt a large part of the parameters. This

is somewhat redundant, as the goal of transfer learning should be to re-use old features. In this way, we

propose width wise parameter sharing, which can learn a new domain with ten times fewer trainable pa-

rameters without a significant drop in quality. Previous approaches are less flexible than our method and

also fail to preserve image quality for challenging transfers. Finally, as our goal is ultimately parameter

re-use, we show that our method performs well in the multi-domain setting, wherein several domains are

learned simultaneously. As the trend in GAN models is learning larger models with millions of parame-

ters, we believe our approach is a step towards more distributable and generic GAN models.

Continued Work Whilst we study StyleGAN-ADA[84] for the low data settings, several advance-

ments have been made since this publication. For instance, in Insgen [183], sample efficient learning is

achieved by augmenting the discriminator network via a contrastive loss. More in line with the topic of

this chapter are methods that learn small, domain specific sets of new parameters. For DDPMs, meth-

ods such as Textual Inversion [49] are trained on normally just a few samples, and leverage the general

synthesis capacity of stable diffusion. Also, LoRA methods [61] originally designed for language mod-

els, can be applied to Stable Diffusion [32]. These add a low rank set of weights alongside the original

network, whilst the original model is unchanged. For GANs, hyper networks serve a similar purpose, in

only modifying a small part of the network for synthesis with few samples [4].

5.1 Introduction

Recent years has seen substantial progress on improving image generation quality. Notably, the Style-

GAN2 network substantially improved the state of the art for image generation and can fool even human

55
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ffhq →MetFace ffhq → afhqc

λD = 100% λD = 10% λD = 100% λD = 10%
CA-HQ lsc lsca lsb

λD = 10% λD = 10% λD = 10% λD = 10%

Figure 5.0.1: Near state of the art generation quality can be obtained on transfer learning with ten time

less trainable parameters (top row). This is true even for very different datasets, such as ffhq (human

faces) transferred to cat faces afhqc (top row). Our proposed width-wise sharing strategy outperforms

other strategies, and spreads capacity of trainable parameters throughout the network. It can also be

applied to learning several distributions simultaneously (bottom row).

observers at high resolutions [84]. Even so, StyleGAN2 is a resource intensive network with millions of

parameters even if only for a single domain or with few images. As such, the research focus for image

generation has shifted to more specialized tasks aiming at increasing the efficiency or usability of these

generators. For instance several works have addressed transfer learning between datasets [175, 119, 80] or

learning with limited data [80, 195]. Indeed, the status quo for GANs is to re-train from scratch millions

of parameters for every new image dataset. Clearly this is a poor approach, as even disparate image classes

can contain commonalities, such as color and texture distributions. Several methods have employed ex-

plicitly freezing discriminator layers when training a new generator on similar data [80, 119], which helps

train on limited data by regularizing the learning problem and converging faster as less parameters need

to be learned. Similarly, MineGAN [175] appends layers to a generator and freezes the original generator

parameters.

In this work we address to what extent image features can transfer across datasets. Unlike previous

work, we consider capacity needed to perform transfer learning and multi domain learning in terms of

trainable parameters per domain. This is useful because after training, one only needs to store and dis-

tribute the domain specific parameters. For multi domain learning, one also has a shared representation

which contains features from many distributions. As an additional result, we demonstrate intra layer

redundancy of Stylegan2 parameters. In summary, we provide the following contributions:

• We demonstrate a parameter sharing method for GAN generators, which we call width-wise shar-

ing, summarized in Fig. 5.1.1 and detailed in Sec. 5.3. Naive sharing strategies used in previous

works reported in Sec. 5.2, such as sharing by layer, are unable to generate realistic samples with

small parameter budgets. In Sec. 5.4, we show our sharing procedure can generate new images

with ten times less trainable parameters without significant drop in image quality, as illustrated in

Fig. 5.0.1.

• In Sec. 5.4.1, we show results for transfer learning in the low data regime. Notably, our sharing
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method offers decent quality, whilst offering robustness to membership attacks, unlike full fine

tuning.

• We train a model on multiple image generation benchmarks simultaneously. Our method out-

performs the baseline multi domain image generation method of StarGAN-V2 in terms of FID

(Eq. 2.1).
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Figure 5.1.1: Sharing strategies illustrated on the StyleGAN network. Left: layerwise sharing, a fixed ratio

of the style / convolutional layers are domain specific (red) and the rest are shared between models (green).

Right: widthwise sharing, in each style and convolutional layer a fixed ratio of the parameters are specific

(red) and the remainder are shared (green).

5.2 Previous Work

We start by reviewing several recent works related to transfer learning with GANs and parameter sharing

in generative networks.

5.2.1 Generative Transfer Learning

Recently, transfer learning has been shown to be effective in the generative setting to address the problems

of limited data training and slow training time [175, 80, 195]. The quality of state of the art GANs, such

as StyleGAN2 or BigGAN [21], degrades significantly with "small" amounts of training data, which can

even be as large as 1k-5k samples. This significantly limits the applicability of such methods in real world

scenarios.

Various approaches have addressed this problem via transfer learning. In [119], several input layers of

the discriminator are frozen and the generator is learned from scratch. In MineGAN [175], knowledge is

transferred from a previously learned generator to a new domain by either freezing all layers of the gener-

ator and relearning a compact MLP layer appended to the input, or by finally allowing fine tuning after

an initial learning step. In this work, we consider only the setting where the source generator parameters

are frozen, as we consider parameter efficiency and finetuning corresponds to fully relearning the gener-

ator. MineGAN is attractive in that only a very compact set of parameters needs to be stored, alongside

the original generator to generate new data. However, we will demonstrate that MineGAN is unable to

tackle difficult transfer problems, when the new data distribution is far from the original distribution.

Finally, we note the work of [196], which only retrains layers near the input of the source generator, and

then only relearns filter statistics of subsequent frozen layers, which they dub "AdaFM," due to it’s sim-

ilarity to the AdaIN layers in Stylegan [84]. While this is in some ways similar to our layerwise strategy
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(see next section), we do not consider this method directly as they re-learn a substantial portion of the

generator parameters.

5.2.2 Learning GANs on Multiple Domains

Many problems seek to train GANs to generate data from many different domains. In conditional image

generation, one seeks to generate potentially thousands of classes, each containing a small amount of

samples [21, 190]. In BigGAN for example, class specific generation is controlled by an embedding layer

at the input, and all other parameters are shared amongst every class. In domain translation, one seeks to

translate samples from domain to another with a generative model, typically with a GAN training loss

[64, 30, 197]. For instance in StarGAN-V2 [30], each image domain shares a common representation

with one another, and each domain has specific style layers. Then samples from each domain can be

translated simply by replacing the style. These methods have a similar objective to this work in that they

promote models with parameter re-use across different domains. Finally, also related is the task of lifelong

learning, wherein data is learned in an online fashion and may be subject to domain shift [180, 33].

In this work, we consider two settings where models share parameters to generate data from different

domains. The first is transfer learning where most parameters are simply re-used as is (frozen) while the

remaining ones are adapted to generate a new domain. We also consider a use-case wherein multiple

domains are learned simultaneously with the majority of parameters shared. However, we believe our

parameter sharing procedure, introduced in the next section, can be applied to many of the multi-domain

settings introduced herein.

5.3 Sharing Strategies for Transfer Learning

We consider transferring knowledge from a GAN generator/discriminator pair (G1, D1) trained on

dataset S1 to a GAN (G2, D2) trained on dataset S2 (denoting henceforth the transfer as S1 → S2).

We initialize training of (G2, D2) with the parameters of (G1, D1). Then, a subset of parameters are

frozen to force the new generator to use knowledge from the old one. Shared (frozen) parameters are

referred to as θS and domain (trainable) parameters are referred to as θD. As ultimately we wish to

train G2 with as few parameters as possible, we measure the number of new parameters needed to train

G2 by simply measuring the ratio of trainable parameters, which we refer to as the learn ratio λD, i.e.

λD = |θD|/(|θD| + |θS |). Note that λD is also the ratio of memory needed to store G2; if one has al-

ready stored G1, G2 can be constructed by loading θS from G1. We detail several strategies for splitting

capacity of G2 amongst θD and θS given λD in the following paragraphs.

MineGAN In MineGAN [175], MLP layers are appended to the input of the generator and all other

parameters are frozen. Therefore the trainable parameters in this layer are θD. Furthermore, θS =θ is

simply all original parameters frozen at the start of training. While in [175], the generator may also be

fine tuned after the MLP layers are learned, we consider only the case where no finetuning takes place, as

we are investigating the parameter efficiency of different sharing procedures. Thus, MineGAN will only

refer to the learned MLP layers with every other layer frozen.

Layer wise sharing As a simple baseline, we explore simply choosing entire layers of StyleGAN2 to

be within θD or not. We consider two configurations for λD = 1% and λD=10%. For λD = 1%, we

choose only the first two "style" MLP layers in the mapping network and for λD = 10% we choose the

first four style layers and first convolutional block (see Fig. 5.1.1). We chose to favor early layers as they have

more of a global influence on generation, however the choice of layers to share is not trivial and is part

of the drawback of a layer wise approach. Note that several methods in the literature use the early layers

of Stylegan2 as the domain specific layers [30, 194]. Note that both StarGAN-V2 [30] and [194] are layer

wise procedures, which learn the MLP layers of Stylegan2 as the domain specific parameters and then



5.4. EXPERIMENTAL RESULTS 59

share the generator network. For our multi domain learning experiments, discussed in Sec. 4.5, we train

StarGAN-V2 using the official code, and then only use the networks for generating random samples.

Note as well that unconditional generation from each domain is one of the objectives for StarGAN-V2,

so it serves as a decent comparison for our setting.

Width wise sharing In an effort to give a more flexible sharing strategy w.r.t. the parameter bud-

get and also spread capacity through the various resolutions of the network, we propose splitting each
layer into trainable and shared parameters. Note that in the related domain of continual learning for

classification, existing models are augmented by appending new filters.

To do this, we split weight tensors in each layer according to λD, taking the first dimensions to be θD

and the second part to be θS . The style blocks in StyleGAN2 are based off adaptive instance normaliza-

tion [63] with an affine layer taking as input style codes and applying a gain to convolution channels. The

affine layer contains a I × I matrix, we take the first ⌊λDI⌋ columns to be θD. Similarly for convolution

layers we take the first ⌊λDI⌋ input filters to be θD. In practice, these weight tensors are kept separate

where θD and θS are concatenated on the forward pass. In this way, our method can be added in place

to any generator, without changing output. See the rightmost diagram of Fig. 5.1.1 for more details.

5.3.1 Sharing for multi-domain learning

In the previous section, we discussed sharing in a transfer learning setting where parameters θS are merely

frozen. In this work, we also explore a distributed setting where multiple domains S1,S2,S3,. . . are

learned simultaneously. In this case θS is learned along with θD, however θS is trained in a distributed

fashion wherein gradients are synchronized at each optimizer update. Thus, the downstream distribu-

tion and storage of the network still depends on λD, as it pertains the number of unique parameters

needed for each generator.

5.4 Experimental results

In this section, we view generation results for the various training strategies detailed in Sec. 5.3, namely

MineGAN, layerwise sharing and finally our width-wise sharing method for the transfer learning prob-

lem.

We indicate by S1 → S2 the transfer learning from a domain S1 to a new domain S2, where only a

fraction λD of the generative network parameters are retrained on the new domain. Various settings are

tested for ffhq →MetFace and ffhq → lsc for different methods: MineGAN (where λD is close

to 1%), the naive layer-wise approach and the proposed width-wise sharing for λD = 10%, and finally

full training the generator (λD = 100%). FID values for corresponding experiments are also reported

in Table 5.4.1.

One could expect the transfer of ffhq →MetFace to be easier than the transfer of ffhq → lsc,

because while the color and textures within MetFace are different from ffhq , the datasets still com-

prises registered faces, and contains similar attributes to ffhq . Still, the results show that MineGAN

is unable to produce plausible samples for MetFace, while layerwise and width-wise training are both

able to handle this transfer. On the other hand, ffhq → lsc requires the generator to learn completely

new large scale structures. In this case, while layerwise training can produce plausible backgrounds and

colors, the objects (churches) are blurry and unrecognizable. Surprisingly, even with ten times less learn-

able parameters, the width-wise sharing method is able to handle this difficult transfer, both in terms of

the visual quality of samples (see Fig. 5.0.1) and the FID values provided in Table 5.4.1.

Precision Recall Results Next, we compute the precision / recall values for Table 5.4.1 using the

method underlined in Chapter 2. Specifically, we compute the Inception-V3 [164] features for each tar-
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ffhq→MetFace ffhq→lsc

strategy λD (%) FID λD (%) FID

fully trainable 100 22.1 100 10.7
MineGAN

1 ≈1 59.5 ≈1 254

layer-wise

10 50 10 191

1 52.1 1 136

width-wise

10 27.8 10 22.5

1 39.2 1 31.1

Table 5.4.1: FID values for different sharing strategies under various parameter budgets λD. Both Mine-

Gan [175] and layer-wise strategies fail for the difficult transfer of faces to churches FFHQ→ LSC, as

indicated by the high FID’s over 100, contrary to the proposed width-wise approach. See the supple-

mentary material for visual comparison.

get dataset S∈ and 5k generated samples. We use the same classifier architecture as in Sec. 2.6 and train

with binary labels on specifying real and generated images.

Table 5.4.2 shows the PR calculations for the same training setup as Table 5.4.1. The results are consis-

tent with the FID calculation, however, it appears that training with fewer parameters has a larger effect

on recall than precision. We also observed this visually, as generators with low λD still appeared to gen-

erate realistic images, but with low diversity. For instance, the colors for the MetFace generators would

appear "washed out," and the more unique images (such as sculptures) appeared less often in generation.

However, the images still appeared realistic in this highly constrained setting.

ffhq→MetFace ffhq→lsc

strategy λD (%) Drop P (%) Drop in R (%) λD (%) Drop P (%) Drop in R (%)

fully trainable 100 0 0 100 0 0

MineGAN ≈1 148.1 214.5 ≈1 2470.0 4102.4

layer-wise

10 132.3 20.5 10 1307.8 1778.7

1 112.7 141.1 10 1114.7 1501.6

width-wise

10 22.5 41.5 10 117.5 155.9

1 45.7 82.2 1 214.9 291.7

Table 5.4.2: Drop in precision and recall values for different sharing strategies under various parame-

ter budgets λD. As with Table 5.4.1, width wise out performs MineGAN and layerwise training for all

settings. Interestingly, networks lose recall more than precision with less parameters. This usually corre-

sponds to realistic, but not diverse synthesis.

Additional Visual Results sectionAdditional Visual Results First, we compute additional visual re-

sults for the 256×256 generators in Fig. 5.4.1. Each generator was trained with λD = .1 trainable param-

eters and using width wise sharing. Note that all four examples can generate plausible samples, despite

transferring to a very different image class (registered faces versus outdoor scenes).

5.4.1 Limited Data Setting

In this section, we explore the challenging setting of learning with limited training samples. Learning

with limited data is a known challenge for GANs [175]. Progress has been made in the recent litera-

ture with Stylegan2-ADA, which adds differentiable data augmentation to learning [80]. We employ

Stylegan2-ADA training for the two transfers ffhq→afhqc and ffhq→MetFace and results are

shown in Table 5.4.3.
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(a) FFHQ→ LSC (b) LST→ LSC

(c) LSC→ FFHQ (d) LST→ FFHQ

Figure 5.4.1: Several cross domain transfers with λD = 0.1 and a resolution of 256×256. These samples

correspond to the generators in Table 2.

Privacy Gained from Parameter Sharing Recall that in Chapter 4, we didn’t train in the low data

setting as the GAN generators would be unstable or produce very low quality images. However, memo-

rization is especially important in low data settings, as intuitively it should be "easier" to memorize sam-

ples. In this section, we explore whether generators trained with StyleGAN2-ADA are susceptible to the

membership inference attacks presented in Chapter 4.

We study several settings similar to those in Table 5.4.3. For each dataset, we choose to train on

N samples randomly chosen from the target dataset S2 and then holdout another N samples for per-

forming the membership attacks. We look at two transfer settings on faces, (1) ffhq→MetFace and

afhqc→ffhq . For MetFace, the dataset has only 1k samples, thus we study N = 100, 500 and for

FFHQ, N = 100, 500, 1000. We train for 100k batches in all settings, wherein we saw the FID saturate

(i.e. it would not continue to improve), but where membership attack inference would potentially in-

crease. Table 5.4.4 shows results for several values of λD. For MetFace, training with λD = 1% offers

near perfect defense versus both membership attacks presented in Chapter 4. Furthermore, FID is still

decent for this setting, and images appear high quality. In general, as less images are used for training,
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ffhq→
afhqc (5k)

ffhq→
MetFace (1k)

λD = 100% 4.7 17.1
λD = 20% 5.2 17.9

λD = 10% 5.9 18.6

λD = 5% 7.1 20.2

λD = 1% 14.4 22.7

Table 5.4.3: FIDs for limited data transfers for several parameter budgets λD using ADA augmentation

[80].

the generator becomes more vulnerable to membership attacks and improving resistance to the attacks

as λD increases. For ffhq , we noticed sample quality dropped significantly once N < 1000 samples,

even in the fully trainable case. However, for N = 1000, we saw decent sample quality and resistance to

membership attacks in the λD = 1% setting.

S1 S2 N λD (%) LOGAN (%) Latent Recov. (%)

ffhq MetFace 100 100 98 85

ffhq MetFace 500 100 86 71

ffhq MetFace 100 10 87 72

ffhq MetFace 500 10 84 54

ffhq MetFace 100 1 55 51

ffhq MetFace 500 1 51 50

afhqc ffhq 100 100 99 64

afhqc ffhq 500 100 99 91

afhqc ffhq 1000 100 98 86

afhqc ffhq 100 1 64 55

afhqc ffhq 500 1 53 51

afhqc ffhq 1000 1 52 53

Table 5.4.4: Vulnerability to membership attacks for the low data training setting. Here N is the size of

the target dataset. The right two columns are accuracies for membership attacks performing LOGAN

[57] and a latent recovery based attack (see Chapter 4). Training with λD = 1% seems to offer defense

against both attacks, with 10% offering defense against recovery attacks.

5.4.2 Sharing strategies for Multi-domain distributed learning

In the previous section, we explored transfer learning from a single source domain to a target domain

and froze some source generator parameters to enforce parameter sharing. In this section, we’ll explore

learning multiple domains simultaneously. In some generative applications, parameter sharing is built

in to the learning procedure. For example, in domain translation, a shared representation is used to

translate samples from one domain to another [30, 63, 64]. Here, we’ll compare to the state of the art

in image translation network StarGAN-V2 [30] and only use the final network for unconditional image

generation. As was discussed in Sec 5.4, StarGAN-V2 takes θD to be the MLP mapping layers in the

Stylegan2 network, and θS to be all other parameters, which is equivalent to a layerwise strategy. Four

our sharing strategies, we’ll learn several domains S1,S2, ...Sn whilst learning both θS (shared amongst

every domain) along with θD. Note that in this setting, the overall memory needed to store all parameters

is n|θD| + |θS |, and thus λD is an important parameter effecting the bandwidth needed for parameter

updates (if training is done in a distributed parameter-server paradigm) and distribution of the network

after training.
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Table 5.4.5 compares FID scores for StarGAN-V2, layerwise and width-wise sharing strategies when

training on 4 datasets (CA-HQ , lsc, lsca, lsb). In the case of λD = 1%, width-wise sharing beats

layerwise by a large margin for every dataset. When λD = 10%, the two sharing methods are more

comparable. This is somewhat to be expected; a particular choice of layers for layerwise sharing might

perform better for a specific set of datasets, as style layers each control different image semantics and par-

ticular layers may represent commonalities better than others (see Sec. 5.3). On the other hand, when λD

is too small, the choice of layers is limited and we chose input layers as it reflects the sharing in BigGAN

or MineGAN. StarGAN-V2 performs comparably on 3 datasets and has generator collapse on CelebA-

HQ. This is likely because it is the most different of the three datasets, and the extra constrain of domain

translation has forced the shared representation to favor similar domains. Width-wise is clearly a better

approach in general as it spreads domain specific capacity throughout the network. We note that good

performance with low λD desirable because as with the previous setting it effects the downstream storage

and distribution of parameters.

Strategy Layer-Wise StarGAN-V2 Width-Wise

λD 1 10 10 1 10

CA-HQ 23.71 18.84 254.7 17.06 15.08

lsc 17.29 15.49 21.31 14.45 14.46

lsca 39.40 43.43 47.24 36.44 32.05

lsb 19.14 18.67 19.15 17.29 13.56

Table 5.4.5: FID values for different sharing strategies under various parameter budgets λD for multi-

domain distributed learning (here 4 datasets simultaneously). Note that width-wise has the highest qual-

ity samples for each domain, across both parameter budgets. See the supplementary material for visual

comparison.

5.5 Conclusion

In this chapter, we addressed the problems of transfer learning and multi domain learning with a GAN

generator. We proposed the simple yet effective weight sharing method of width wise sharing. This

method was more efficient at transfer learning than currently the currently proposed method of Mine-

GAN when constrained to a set parameter budget. We saw our method was effective at learning in the low

data transfer learning setting, whilst only learning a very small portion of parameters. In addition, gen-

erators trained without parameter sharing were highly vulnerable to membership attacks. Training with

weight sharing offered robustness to these attacks; in light of Chapter 4, it would be possible to generate

data surrogates that are empirically robust to several membership attacks. Finally, we used our width wise

sharing method to learn multiple domains simultaneously, and again showed that our method was more

effective than a state of the art method StarGAN-V2, when simultaneously learning several challenging

datasets.





Chapter 6

Identity Membership Attacks

Thus far, we have exposed several membership attacks designed to discern individual training samples

given model outputs. These attacks are, in general, more successful when less training data is used. In

this chapter, we will see how more global information about the training data can leak into generation.

Namely, we will explore how identities of face images can be detected in generated samples. Unlike in

the previous chapters, we will explore how dataset bias, rather than just dataset size, creates vulnerability

to membership inference attacks. At the time this work was conducted, generative adversarial networks

(GANs) were just beginning to achieve realism that fools even human observers. Indeed, the viral web-

site "this person does not exist" suggested that generated images were entirely novel creations. On the

other hand, GANs can leak information about their training data, as evidenced by membership attacks

demonstrated in this thesis. In this chapter, we explore how GANs can leak information about train-

ing data that lacks diversity, by demonstrating a new membership attack. Unlike previous works, our

attack can accurately discern identities of facial images, without having access to any of the dataset sam-

ples. Furthermore, our attack is stronger than previous attacks which requires the GAN discriminator,

as we only require generated images. We demonstrate the interest of our attack across several popular

face datasets and GAN training procedures. Notably, we show that even in the presence of significant

dataset diversity, an over-represented person can pose a privacy concern.

Continued Work Whilst the study of identity membership attacks was introduced in this work, sev-

eral works have since studied a similar problem. In [60] identity membership attacks is studied again in

the context of multi-modal image data, namely the CLIP network [138]. As CLIP can take text input,

the membership attack in this work can simply utilize any name, and then construct an attack based on

model outputs.

6.1 Introduction

StyleGAN has shown state of the art results for several face generation benchmarks. Together with the

benefits of GAN genreation (such as single pass generation), they are still widely used today in favor of

diffusion models. They also have a wide set of rich applications such as age modification, inpainting,

super-resolution, or other attribute modification [91, 187, 177, 29]. Less studied lines of research include

measuring the statistical consistency between the generated distribution and the real one [59, 147, 158],

or in theoretical analysis of the GAN learning problem [10].

GANs have made incredible progress in terms of visual quality, as measured by the popular Frechet

Inception Distance (FID) 2.1, or merely by sample inspection (for example, see StyleGAN samples in

Fig. 6.1.1). However, it remains unclear in what ways GANs generalize. Several works have noted that

the GAN discriminator tends to overfit the training set [8, 21], in the sense that it will label hold out test

images as fake. Such an observation was used to exploit the privacy of GANs in the LOGAN approach

65
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Samples from a GAN G trained with a datasetDG composed ofYG distinct identities

(a) |YG| = 220

G(z) x ∈ DG

(b) |YG| = 440

G(z) x ∈ DG

(c) |YG| = 2020

G(z) x ∈ DG

Figure 6.1.1: Extracting identities from GAN images. Each row displays a GAN generated image (left)

with three training images (right) having the same predicted identity. Images are generated with Style-

GAN [83] using N training images (respectively 40k, 80k and 46k) from VGGFace2 and identified with

a face identification network. We investigate two different scenarios in this paper: in (a) and (b) identi-

ties are evenly distributed over the datasets, where in (c) a small subset is more represented. While some

samples merely bear resemblance, other generated images strongly share idiosyncratic features of train-

ing identities. Such a nearest neighbor search helps factor out the ways in which GANs can generalize

(via pose, lighting and expression) and elucidate overfitting on identities. This is a threat to privacy as we

demonstrate in our blind identity membership attack.

[56]. Nonetheless, the LOGAN leak challenges mainly the discriminator, leaving the case of the gen-

erator in a somewhat gray area. In fact, several heuristics exist to show GANs do in fact produce novel

data, whether it be by sample interpolation and attribute modification as demonstrated in the first GAN

works [52, 139], or by the ability of GANs to generalize to novel pose and expression [153]. Furthermore,

a general belief is that the generated images are always entirely original (in terms of identity), as can be

testified by the popular website https://thispersondoesnotexist.com/.

On the other hand, to our knowledge no metric can properly answer this question and the purpose

of this work is to measure to what extent generated identities resemble those in the training set. Along-

side the generalization aspect, this question is fundamental to evaluate the potential privacy risk posed

by GANs, for instance concerning those appearing in the above mentioned website. There are several

reasons why this problem is important and inadequately solved by existing literature. First, recent at-

tempts to apply differential privacy mechanisms on GANs [182, 76] have not been so successful. Indeed,

to our knowledge, published works lead to an unsatisfactory tradeoff between the privacy guarantees and

the quality of the learnt distribution, in particular generating far from plausible images. Besides, follow-

ing the work of [177] showing some form of GAN generalization, some attempts were made to leverage

GANs to produce ersatz datasets aiming at more privacy. For instance in Chapter 4 a dataset which is

kept private is used to train a GAN. Then the GAN generated images are then made publicly available

for downstream tasks. Again, the rationale behind such a strategy is that a synthetic dataset produced

from the GAN can provides the means to achieve the downstream task allegedly without compromising

the privacy of the original dataset.

In addition, neural networks leak information in numerous ways about the data on which they are

trained [162, 25]. When no privacy mechanism is used, the most common way to expose potential privacy

leaks from a neural network consists in applying one of several off-the-shelf attacks. Amongst the most

well known attacks are the membership inference attacks [156]. In this type of attack, an attacker tries to

discern which samples were used during model training. In [156], training set samples could be nearly

perfectly determined from model outputs on the MNIST classification task. Such an attack typically

utilizes statistics of the model output. For example, a model that overfits will have low values of the loss

https://thispersondoesnotexist.com/
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function on the training samples, thus allowing for a simple thresholding attack. Similar attacks can be

seen in [109, 48, 110]. More recently, membership attacks have been devised against generative models,

such as LOGAN, leveraging the GAN discriminator [97, 56]. These attacks are slightly more intuitive,

in the sense that generated samples live in the same space as the data, and they may be visually similar

or identical to exact training samples. In [177], the non-adversarial procedure of GLO [18] reproduces

some training samples verbatim, while not being able to reproduce test samples coming from the same

distribution. Such direct leaks were not observed for typical GANs. However, we argue that generated

images can resemble training samples in even more subtle ways, as seen in Fig. 6.1.1: generated faces can

highly resemble exact identities, even if the images themselves are quite different.

Identity Membership Attacks The main contribution of this paper is to define a refined attack ob-

jective and implement such an attack. This new objective is meaningful in situation where a clear notion

of identity exists. This is the case for example for datasets of face images (the central case considered in

here). But such a notion make sense in many other contexts such as dataset of paintings (think of the

identity of the painter), bio-metric data, or medical images. In our scenario, the attacker would have ac-

cess to a collection of query samples, but instead of trying to discern samples that were truly part of the

training set of a GAN, the attacker should rather determine if samples with the same identity were used.

An attack of this sort shall be referred henceforth as an identity membership attack. In addition to this

fundamental difference with currently published attacks, we shall design an attack with the following

properties:

• contrary to LOGAN [56], the attacker can only exploit the generator and not the discriminator,

• the attacker should not be aware of the ratio of query identities that were part of the training set

(i.e, a blind attack).

We hold that if successful, such an attack would reveal as a serious hurdle for the safe exchange of

GANs in sensitive contexts. For instance, in the context of paintings or other art pieces, distributing a

non-private generator might well be ruled-out for obvious copyright issues. More importantly, consider

a biometric company A releasing a generator exposing its consumer identity. Another company B could

potentially detect which of their own consumers are also clients of company A. Similar situations can

pose serious issues for medical data, where revealing a GAN could breach personal information about a

patient disease.

VGGFace2 CASIA-WebFace CelebA

Figure 6.1.2: Histogram of number of instances per identity for different datasets (VGGFace2,

CASIA-WebFace & CelebA). Far from being uniform, face recognition datasets include bias in terms of
the number of examples per identitiy. VGGFace2 was designed to be balanced in this sense, compared here
to the CASIA-WebFace containing bias in some samples.

Face Generation In this work, we focus on GANs trained on facial image data. Face image datasets are

amongst the most popular for demonstrating GAN efficacy, partly because the human eye is particularly
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attuned to detect artifacts in these images and due to the wide availability of high quality face datasets

[85, 23, 99]. Face datasets include some form of bias in regard to the real distributions of faces. For

instance, datasets are frequently composed of a decent number of instances of the same person (see Fig.

6.1.2). Besides in some datasets [174], the number of instances per identity is highly versatile (e.g. in

MEGAFACE [85] it ranges from 3 to 2k). One should also note that datasets dedicated to generation

such as FFHQ [83] may well display similar biases due to the lack of any specific safeguard.

Outline The rest of the paper is organized as follows. In Section 6.2 we expose the proposed protocol

used to train the face detection network, to perform the attack and to evaluate its performance. This pro-

tocol is tested in Section 6.3 on various datasets (CASIA-WebFace and VGGFace2) with different GANs

(StyleGAN and LSGAN) across different attack scenarios. Performance curves and visual evidence are

provided to show membership attacks can be highly successful against GANs even in the blind scenario,

and when diverse training data is used. A discussion and perspectives on future work are given in Sec-

tion 6.4.

6.2 Identity Membership Attack

As argued earlier, because standard datasets gather several instances of some individuals, training genera-

tive models on such datasets exposes those individuals to privacy leaks. Figure 6.1.1 illustrates such a leak

for a GAN trained on a subset of VGGFace2. There is no doubt that in many cases, the displayed gener-

ative sample is but an instance of the training identity shown under various poses (last three columns).

As such the generated samples can be leveraged to extract information on the identities that were seen

during the training of the GAN.

...

Face Images per Identity

Separate Training of  and 

Id #1

Id #I

Id #j

Id #M

Identity Membership Attack

Generator 

Identities

...
Classifier 

Id #2

Id #M-1

Figure 6.2.1: Illustration of the protocol used for the attack. A generator G is trained from a datasetDG

gathering image instances of identities y ∈ YG (red samples). A face classifier F is trained by an attacker

to recognize identities y ∈ YF from a separate dataset DF (blue samples). Although the samples are

completely separate, the two datasets share some common identities YG ∩ YF ̸= ∅. Samples xk are

generated by G, are fed to F to infer identities used for training.
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6.2.1 Attack Assumptions

We consider the following attack scenario : the attacker wants to determine if instances of certain query

individuals were used in the training of the GAN. We reference this type of attack as an identity mem-
bership attack. More formally, our attack protocol is illustrated in Fig. 6.2.1 and delineated as follows:

• A GAN G is trained on a datasetDG := {(xG
i , yG

i )}where ∀i, yG
i ∈ YG;

• The attacker trains a face identification network, F on a datasetDF = {(xF
i , yF

i )}where∀i, yF
i ∈

YF to recognize instances from identities y ∈ YF ;

• It is assumed that YG ∩ YF ̸= ∅1
but DF ∩ DG = ∅ . The first assumption reflects the fact

that the attacker has some founded suspicion that some identities were used in the training of G.

Nonetheless the second assumption ensures that no instance of DG is explicitely known to the

attacker.

6.2.2 Attack Algorithm

The basic principle of the attack consists in randomly generating faces xk := G(zk) for k ∈ {1, . . . , N}.

Then using the network F , these random samples are identified to identities yk := id(xk) where

id(x) := arg maxy∈YF
Fy(x). Eventually, the attacker will suspect the identities of YF that are more

often predicted as the ones that were seen during the training of G. This mechanism is described in more

details in Alg. 3 and merely corresponds to thresholding the number of times the query identity y was

predicted by F on the generated samples xk = G(zk).

To be effective, such an algorithm requires to generate a large enough set of samples K . Typically this

parameter shall be set to many times the number of identities inDF i.e. K = λ×|YF |. In such case, it is

natural to fix the frequency threshold T to λ. We will denote this natural value of the threshold T0 = λ.

Yet, of course, one can trade recall for precision by increasing this threshold. In our experiments, we shall

consider also T1 = 10λ.

Inputs: the query identity y ∈ YF ,

the number of generated samples K ,

the frequency threshold T
Output: a boolean prediction of 1y∈YG

Algorithm identityAttack(y)
1 ky = 0
2 for k = 0 to K do

3 z = randomSample()
4 x = G(z)
5 if id(x) = y then

6 ky+ = 1
end

end

7 return 1ky≥T

Algorithm 3: Proposed identity membership attack

6.2.3 Classifier Training

To train the classifier F , we use pre-trained features from the VGGFace network [133]. Note that VG-

GFace and VGGFace2 share 53 identities. Therefore, to ensure thatDF ∩ DG = ∅, i.e. F is not trained

1

In practice, we shall consider a worse case situation where YG ⊊ YF .
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on any of the sample samples as G, we remove these 53 identities from the VGGFace2 dataset. Then, we

pool the relu5_3 layer of VGGFace to a 2× 2 spatial resolution. Finally, we train a single fully connected

layer with |YF | output classes. Note that |YF | = 8631 for VGGFace2 and |YF | = 1292 for CASIA-

Webface. Finally, models are trained in pytorch with SGD, a learning rate of .1, and a momentum .9. This

simple model for F achieves an average top-1 classification accuracy of 86.1% on VGGFace2 and 94.7% on

CASIA-Webface. Likely, using even better classifiers should improve the membership attack accuracy,

but we leave this direction for future work.

6.2.4 Attack Evaluation

The attack can be seen as a binary classification problem where the attacker must classify identities from

YF according to whether they also belong to YG or not. It is therefore natural to evaluate the perfor-

mance of Alg. 3 in terms of precision and recall. Taking the attacker point of view, we will tag as positive

all the identities in YG ∩ YF and the remaining ones as negative. Therefore, denoting C(y) := 1ky≥T

the decision made by the attacker, the precision and recall will be computed as follows:

α :=
∑

y∈YG∩YF
C(y)∑

y∈YF
C(y) and β :=

∑
y∈YG∩YF

C(y)
|YG ∩ YF |

(6.1)

As the goal of privacy is to protect all individuals equally, an attack with high precision (and positive

be it small recall) should be considered more troublesome than one with high recall. In other words, if

an attack can accurately discern training information even on a small subset of data, it still violates the

fundamental goal of privacy. In general, we’ll explore how precise membership attacks can be for fixed

values of recall. Then, we’ll choose a threshold that works well in practice using the computed PR curves.

6.2.5 Visual Evaluation

As a visual sanity check, we include a nearest neighbor search utilizing the recognition network F . An

image or feature space nearest neighbor search is a common procedure in the GAN literature, to dis-

pel suspicions of overfitting [52, 21, 83]. We visually compare generated samples falling inside the GAN

training set y ∈ YG, and those detected to lie outside y ̸∈ YG. More formally, we generate an im-

age x := G(z), find the identity using F as y := id(x) and finally perform the intra-identity nearest

neighbor search as

xNN = arg min
xyi

∥f(xyi)− f(x)∥22 (6.2)

where xNN is the retrieved nearest neighbor, f is the before softmax feature representation of F and

finally xyi represents the i-th image among the instances of identity y. Results are displayed for three

attack scenarios in Fig. 6.1.1. Indeed, in both the scenarios of low diversity and dataset bias, generated

images highly resemble those in the training set. Intuitively, these also correspond with attack scenarios

that are highly accurate at guessing training identities (see Table 6.3.1 and Table 6.3.3). Note that this

visual demonstration should be robust to any distortions or variations found in generated images, as F
is specifically designed to be robust to natural variations in the dataset like pose or expression.

6.3 Membership Attack Results

6.3.1 Experimental Protocol

We evaluate the efficacy of our identity membership attack on a variety of training settings, in order

to elucidate what factors in training data influence privacy. As is shown in Figure 6.1.2, face datasets

exhibit varying number of identities, and importantly bias in the number of samples they have per iden-

tity. VGGFace2 contains a relatively balanced number of samples per identity, while VGGFace2 has far



6.3. MEMBERSHIP ATTACK RESULTS 71

more average samples per identity than CelebA for example. On the other hand, in CASIA-WebFace the

number of samples per identity ranges from a few to many. In the following training settings, we denote

diversity as number of training identities and (imbalance) bias when some identities have many more

samples than others. Unless special dataset augmentation is done, GAN generators typically require

many samples from a distribution to train effectively [81]. Together with our disjointness assumption for

blind attacks (see Sec. 6.2.1), we also curate CASIA-WebFace to contain at least 80 samples per identity

so that the generators have sufficient training data. We then explore two real world training scenarios in

the following sections. Throughout experiments, the parameter λ discussed in Sec. 6.2.2 used to sample

the Generator during attack is fixed to λ = 2.

6.3.2 Setting 1: Low bias and varying diversity

In this setting, we simply vary the number of identities |YG| ranging from 30 to 880, taking a large set

of samples from the the first |YF | identities. The number of samples per identity NG
i used during the

training of the generator is fixed to simulate datasets that are evenly distributed. In addition, we consider

two successful GAN methods, the Least Squares GAN (LSGAN) [106] and the state of the art StyleGAN

[83] network.

Adaptation of LOGAN We adapt the method of LOGAN [56] to this setting. LOGAN was origi-

nally used for membership inference against individual training samples. LOGAN uses the discriminator

outputs to classify whether or not samples came from the training set. As in [156], this output can then

be sorted and a threshold can be selected depending on what percentage of the training set is suspected

to be present in the attacker’s training set. Of course, our method does not assume the discriminator de-

cision is available; this is a far more realistic scenario as the discriminator is normally discarded and only

the generator is used for the majority of downstream applications.

We take an unbiased sample from the attacker’s set of images x ∼ DF . Then we take the discrimina-

tor responses D(x), x ∈ DF to make our decision. The precision recall are then computed in the same

way, except that we use 1D(x)≥T as a positive inclusion in the training set (rather than the frequency of

detection as in our method).

Table 6.3.1 gives the precision and recall rate for each setting, on two different datasets (VGGFace2

and CASIA-WebFace ). The total number of samples used during training is indicated by N =
∑

i NG
i ,

and is increasing with the number of identities. Each column corresponds to a different generation train-

ing set, with a varying number of identities while the total number of identities is kept fixed (|YF | ≈ 8K).

Precisions are computed for several values of recall to compare how training set size effects vulnerability to

attack.The baseline corresponding to random face identification has a precision of
|YG|
|YF | at any recall. Fi-

nally, after demonstrating that attacks can indeed be successful, we choose a simple threshold that works

reasonably well in practice and observe it’s efficacy. Figure 6.3.1 displays Precision-Recall curves obtained

for some settings when spanning the frequency threshold.

6.3.3 Setting 2: Varying bias and high diversity

We also examine scenario when training data is highly diverse, yet due to natural bias in the data collection

procedure or data availability, certain identities contain many more images than others. For this setting,

we vary the number of biased identities but enrich each dataset with a large set of diverse unbiased faces.

More formally, we take YG := YG1 ∪ YG2 , withYG1 containing many more samples per identity than

YG2 . Furthermore, we consider when |YG2 | ≫ |YG1 |, i.e. the dataset has high class diversity. Such is

naturally the case in CASIA-WebFace , see Fig. 6.1.2. One may however suspect that the GAN be prone

to reproduce mainly identities fromYG1 (since they are more present in the dataset). We therefore only

compute the precision/recall in Eq. (6.1) for the biased setYG1 in lieu ofYG.
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Table 6.3.3 gives the precision and recall rates of the attack in such setting on VGGFace2 dataset.

Attack are performed on LSGAN and StyleGAN trained with an increasing number of identities for

subsetYG1 , while the second setYG2 is fixed to 40,000 samples evenly distributed across 2000 identities.

The bias is therefore decreasing, as measured by the ratio

|YG1 |
|YF | corresponding to the precision of random

identification, as reported in the Table. The total number of samples used during training is indicated by

N = N1 + N2, and is increasing with the number of identities. Figure 6.3.2 displays Precision-Recall

curves obtained for some settings and highlights several thresholds that work well in practice.

Method |YG| (N ) 30 (10k) 58 (20k) 111 (40k) 220 (80k) 440 (160k) 880 (320k)

Random 0.35 0.67 1.29 2.55 5.10 10.2

Ours

Recall = 10% 100.0 100.0 91.7 51.2 8.5 14.1

Recall = 50% 83.3 76.3 8.0 10.9 6.4 10.6

LOGAN

Recall = 10% 100.0 100.0 35.1 12.4 6.3 11.4

Recall = 50% 100.0 95.1 7.2 3.7 5.3 10.3

Table 6.3.1: Setting 6.3.2 on VGGFace2 with the StyleGAN network. Attacks are a random guess, ours

and LOGAN. Generators are vulnerable to both attacks when too few identities are present and appear

to be robust against attacks with 880 identities. Notice our method is comparable to LOGAN[56], de-

spite not needing the discriminator, and performs significantly better in the low recall regime.

Method |YG| (N ) 30 (4.5k) 58 (8.7k) 111 (16.65k) 220 (33k)

Random 0.35 0.67 1.29 2.55

Ours

Recall = 10% 100.0 71.4 52.4 30.7

Recall = 50% 14.6 23.4 26.0 25.3

LOGAN

Recall = 10% 100.0 98.3 49.4 25.0

Recall = 50% 100.0 90.3 24.4 19.3

Table 6.3.2: Setting 6.3.2 on CASIA-WebFace with the StyleGAN network. Both attacks are more suc-

cessful on this dataset, likely due to the fact there are less sampler per identity. Again, our method out

performs in the low recall regime.

6.3.4 Analysis

In the first setting, shown in Table 6.3.1 for VGGFAce2 and Table 6.3.2 for CASIA-WebFace , we display

the precision of our attack versus LOGAN and a random baseline. With too little diversity, StyleGAN is

susceptible to membership attacks versus both methods. With enough diversity (here, towards 880 iden-

tities), attacks are reduced to near guessing. We also note that despite our attack using less information

than LOGAN, it still outperforms in the low recall setting (for instance, for 111 identities used).

The first column contains only 10k images, compared to modern datasets containing hundreds of

thousands or millions of images. Thus the first setting only demonstrates vulnerability when the absolute

training set size is small. Thus, in the second setting we also enriched the datasets with a large and diverse

set of faces containing 2000 identities, with some identities being over represented in terms of samples

per identity. Table 6.3.3 show that diversity itself is not enough to protect the data in the presence of bias.
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Figure 6.3.1: Precision-recall curves for identity membership attacks for setting 1. Curves are ob-
tained using Eq.(6.1), the Style-GAN generator, two datasets and varying diversityYG. Models trained on
more diverse data appear to be more private. In addition, the threshold T1 = 10T0 can discern training
identities with a high precision.

Even after taking more than 2000 identities, several scenarios show attacks that still have relatively high

precision. Adding additional data does seem to provide some level of protection however. Consider the

220 and 160 identity training sets for setting 1 and 2 respectively, each having roughly 80k datapoints; the

attack was successful in setting 1 with a precision of 51% and only 6.5% in the latter.

Threshold selection

While Table 6.3.1 and Table 6.3.3 show attacks can be successful, a blind attacker needs to select a once

and for all threshold for making his decision. Using values of T0 = λ, T1 = 10λ (See Sec. 6.2.2) yields

successful attacks, as indicated in the PR curves in Fig. 6.3.2, Fig. 6.3.1. Choosing only identities which

are very frequent with T1 yields a highly precise attack, albeit only some individuals are effected; thus if

privacy is unilaterally important, such an attack would pose a risk.
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|YG1 | (N1) 20 (6k) 40 (12k) 80 (24k) 160 (48k)

|YG2 | (N2) 2000 (40k)

Random 0.23 0.46 0.93 1.85

StyleGAN

Recall = 10% 13.3 66.7 100 6.5

Recall = 50% 2.0 4.1 7.6 3.4

LSGAN

Recall = 10% 70.4 61.1 57.1 3.1

Recall = 50% 40.3 28.4 3.8 2.5

Table 6.3.3: Precision / Recall (in %) for the Membership Attack (Alg. 3) on GANs trained on the VG-

GFace2 dataset in the second setting. The datasetYG is now composed of two sets of distinct identities:

YG1 ∪YG2 . GANs are trained on a large number of identities |YG| = |YG1 |+ |YG2 | (exceeding 2000),

with different bias towards a small set of identities (as measured by the ratio |YG1 |/|YG|). N1 and N2
represents the number of samples forYG1 andYG2 . For the attack, |YF = 8631| identities are used (in-

cluding YG) and precision/recall are reported for identities from YG1 against YF ∩ YG1 . The baseline

is given by random guessing, which is the proportion of training identities

|YG1 |
|YF | .

|YG1 | = 40, |YG2 | = 2000, N = 52k |YG1 | = 160, |YG2 | = 2000, N = 88k

Figure 6.3.2: Precision-recall curves for membership attack on biased data described in Sec. 6.3.3. Attack

is performed against the StyleGAN network on the VGGFace2 dataset, with various values ofYG1 . Even

though both settings are trained with significant diversity (more than 2k identities and 50k images), the

biased data inYG1 is still detectable.

6.3.5 Early Stopping

Thus far, we have only explored dataset size and diversity as possible factors effecting attack efficacy. How-

ever, a common tool in image classification to prevent overfitting is early stopping. In order to asses GAN

sample quality, we refer to the commonly used Frechet Inception Distance (FID) [59]. Fig. 6.3.3 investi-

gates the interaction between FID and the number of GAN training iterations. Indeed, beyond a certain

iteration (here for StyleGAN, around 17000), continuing to train is detrimental to privacy, with no gain

in FID.
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Setting 1 (|YG| = 220) Setting 2 (|YG1 | = 20 & |YG2 | = 2000)

Figure 6.3.3: FID vs attack precision. The graphs above suggest that early stopping may be useful in GAN

training, w.r.t. privacy. While the FID converges, membership attacks continue to gain precision.

6.4 Discussion and Conclusion

In this chapter, we exposed several properties of GANs trained on facial data not previously discussed

in the literature. By controlling the identities seen during training and subsequently detecting those

identities with a face identification network, we demonstrated a successful blind membership attack.

We identified several factors influencing susceptibility to attack, most notably that datasets with more

identities have less detectable overfitting. Furthermore, dataset diversity alone will not protect against the

presence of dataset bias. Finally, more iterations seemed to exacerbate attack success while not necessarily

better image quality.

Contrary to most membership attack in the literature, this is a pure black-box attack in the sense that

it does not require any further training based upon the generator, nor additional information about

its architecture and parameters [146]. In addition, our attack is driven directly against the generator,

and it did not require the exact training samples to be successful, as in the LOGAN approach. Finally,

this work addresses a problem with training GANs on sensitive data (e.g. copyrighted or private face

images). Careful dataset curation or early stopping may mitigate these problems. On the other hand,

more sophisticated solutions may exist, such as those integrated into the GAN objective function, or

those which directly modify the generation such as a post filtering.





Appendix

6.A Additional Results for Setting 1

In this section, we provide additional results to for our attack against the LSGAN network. Table 6.A.1

and Table 6.A.2 show results for the VGGFace2 and CASIA datasets respectively.

Method |YG| (N ) 30 (10k) 58 (20k) 111 (40k) 220 (80k) 440 (160k) 880 (320k)

Random 0.35 0.67 1.29 2.55 5.10 10.2

Ours

Recall = 10% 100.0 100.0 3.5 3.9 8.6 13.4

Recall = 50% 100.0 100.0 3.0 2.9 6.1 11.7

Table 6.A.1: Setting 6.3.2 on VGGFace2 with the LSGAN network. Attacks are a random guess and ours.

Method |YG| (N ) 30 (4.5k) 58 (8.7k) 111 (16.65k) 220 (33k)

Random 0.35 0.67 1.29 2.55

Ours

Recall = 10% 100.0 98.3 58.4 25.0

Recall = 50% 99.3 90.3 24.4 19.3

Table 6.A.2: Same as table above, but on the CASIA-WebFace dataset.

With a high amount of data, at 80k images and 220 identities, attacks against the LSGAN network

are near random guessing, whereas the Stylegan network is quite vulnerable to attack. This may be due

to the fact Stylegan has more parameters than LSGAN (roughly 3x as many) and has higher capacity to

overfit its samples. It’s also interesting to note that Stylegan images are high quality (as measured by FID

to training set), so that when the generator has evaded the attack as is the case for 880 identities, it is not

merely because artefacts or distortion is throwing off the classifier.

6.B Results per-identity

Figure 6.B.1 shows the distribution of identities detected by the face identification network F based on

the number of samples recovered from StyleGAN trained on the VGGFace2 dataset, for different set-

tings. Identities fromYF \YG andYF are displayed in different colors to highlight the fact that the tail of

the distributions corresponds to frequent recovered identities that are indeed in the training setYG, and
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prone to membership attack. Observe that the distribution has a lighter tail when the number of iden-

tities |YG| and the number of samples N increase (first scenario), or when the bias ratio

|YG1 |
|YF | decreases

(second scenario). As discussed later in Section 6.2.5, samples from these identities can be extracted to

visually assess overfitting, as done in Fig. 6.1.1.
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|YG1 | = 40, |YG2 | = 2000, N = 52k |YG1 | = 160, |YG2 | = 2000, N = 88k

Figure 6.B.1: Per identity frequency histograms of generated samples. In the first row, StyleGAN gen-

erators are trained with unbiased data (setting 1), see Sec. 6.3.2. Without enough diversity, membership

attacks are highly precise, as the bars in green (representing private training identities), can be easily dis-

tinguished. The second row showcases the high diversity & high bias scenario in Sec. 6.3.3. Here, blue

represents a third, diverse auxiliary set, which cannot be distinguished, contrary to the biased samples (in

green).

6.C Additional Visual Results

In this section, we view some additional visual results for various training sets and GAN training meth-

ods. We take generated samples, infer their class and then do an intra class search as in Eq. 2. The datasets

with |YG| = 58 (first two rows) contain less examples and therefore result in less realistic generations.

However, the generated samples still highly resemble the training identities, albeit artifacted. With 220

identities, Stylegan is still overfitting despite a realistic synthesis.
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Figure 6.C.1: Additional nearest neighbor visual results. Each row displays a GAN generated image

(left) with three training images (right) having the same predicted identity. Notably, StyleGAN |YG| =
220 achieves realistic synthesis while still overfitting.





Chapter 7

An Extraction Attack Versus
Diffusion Models

The membership attacks presented in Chapter 3 and Chapter 4 assume adversaries have some training

images available to perform inference. However, in some settings, training samples may be unknown.

Extraction attacks are when an adversary is able to reconstruct training images from model outputs. In

this chapter, we’ll study extraction attacks against text-to-image diffusion models and show it is possible

to extract training images given only text captions.

Recent demonstrations show duplicates pose serious problems to large-scale text-to-image diffusion

models. In this chapter, we provide an efficient pipeline to de-duplicate the most widely used public date-

set LAION-2B and demonstrate that roughly a third of the dataset, around 700M images, are near dupli-

cates. We then provide an efficient extraction attack, on par with the recent attack in Carlini et al. , that

requires 3 orders of magnitude less network evaluations. In the process, we expose a new phenomenon,

which we dub template verbatims, wherein a diffusion model will regurgitate a training sample largely

intact. Template verbatims are more troublesome for newer systems, even those which de-duplicate their

training set, and we give insight into why they appear. As our final contribution, to our knowledge we

are the first to successfully extract images from Midjourney, a closed source model whose training set is

unknown.

7.1 Introduction

Over the past few years, advances in large scale image generation systems have been brought on by pub-

licly available billion-scale datasets [152, 151, 163, 144]. Due to their high quality, generality and ease of use,

image generation systems such as Midjourney [116] and Stable Diffusion [163] have garnished millions of

activate users, most of which have little technical knowledge. To train such models, largely automated

bots search for suitable text and image pairs from all over the web, as is the case with the training set

of Stable Diffusion (SD), LAION-2B (L2B) [151]. The widespread use of these generation systems is a

testament to their generalization capacity; users often want to generate an image which does not exist

or transform existing images to add new content. However, recent demonstrations show that popular

systems such as Stable Diffusion can regurgitate exact copies of training images [126, 24, 161]. In [126, 24],

where highly duplicated images appear to be a necessary but not sufficient precursor to model memo-

rization.

The images extracted from diffusion models have important implications; in the medical domain,

it’s important that training data is not generated and for artistic use cases the generated images may pose

a copyright risk to the model. In this work, we largely reproduce the extraction attack in [24], but much

more efficiently and with several additional insights.

We provide the following contributions
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• In Section 7.4, we present a feature compression method, build an image index on top of the com-

pressed features and use it to de-duplicate L2B. We show that our de-duplication is in line with stan-

dard de-duplication methods, such as raw features or perceptual hashes. Notably, we show an ex-

tremely high level of duplication on L2B, with roughly 700M near duplicates.

• In Sec. 7.6, we present our training data extraction attack built upon our de-duplication. Notably,

we show that only a single denoising step is required to unveil verbatim copied images and design an

efficient black-box attack against diffusion models. After designing an evaluation protocol (Sec. 7.7),

our attack is shown in Sec. 7.8 to be on par with the previous one with several order of magnitudes less

network evaluations. Finally, we show how templates can be extracted from Midjourney and several

other state-of-the-art models.

Code will be available online, as well as a version of L2B with near duplicates removed.

7.2 Related work

Billions Scale Datasets If the first "web scale" image dataset, LAION-400M, was released just a few

years ago [152], even larger datasets have been subsequently released [22, 151]. The most widely used is

the LAION-5B dataset, with roughly 5 billion text image pairs and the corresponding English language

subset LAION-2B-en [151]. These datasets are automatically collected and text image/text pairs are only

selected if they have a high enough CLIP score [138]. The CLIP network [138, 67], is trained to align

image and text features with a contrastive loss and can provide a score that corresponds to a caption’s

relevance to an image. Thus, during construction of LAION-5B, CLIP features are computed, and the

authors released CLIP features alongside the dataset.

Deduplication In [24, 126], it was noted that highly duplicated samples tend to be memorized by

diffusion models and in [126], they de-duplicated before training. Likewise, in Stable Diffusion 2.0 [163],

the author’s used a perceptual hash to deduplicate before training. As we’ll see in Sec. 7.8.3, this is effective

at mitigating the verbatims found in [24], but not all. In any case, to study verbatims in existing systems,

it is necessary to perform a billion scale de-duplication.

Many methods have been proposed for image de-duplication (e.g. [92, 93]), including those that use

perceptual hashes [70] or end-to-end representations [136]. Unfortunately, this requires computation

from the image domain and even storing billions of images on the cloud is expensive, not to mention

computing descriptors. However, LAION [151] has released CLIP features for the entire dataset. In

SemDeDup [1], these features were used to remove near duplicates on a subset of LAION, whilst keeping

or improving downstream CLIP training. LAION has also released an index built upon these features

using the popular tool Faiss [74]. In this work, we also build indices using Faiss, namely with product

quantization [72] for de-duplication and later search.

Membership Inference In general, the process of determining which training samples were used to

train a model is known as membership inference. For systems like DALLE2 or Midjourney, where the

model parameters and training set are hidden, the task is known as the challenging "black box" scenario.

Membership inference has been widely studied against GAN generated images, with varying success for

a wide variety of different settings, for instance in [55, 28]. Several very recent approaches have designed

black box attacks specifically against diffusion models [107, 39, 62], but conduct studies versus relatively

small datasets (<1M samples). Namely, in the recent work in [62] a loss based attack is presented which

bears resemblance to our white box attack (See Eq. 7.6), however they do so in the unconditional case.

Extraction Attacks A special case of membership inference, is the ability to actually reconstruct train-

ing samples from model outputs [26, 24]. Extraction is a much harder problem and typically is only pos-
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sible for very few samples. In [24], only roughly 100 images were reconstructed from stable diffusion, out

of 350K attempted prompts. Thus, this setting typically is only concerned with precision, and number

of samples extracted, rather than the typical precision recall in membership inference. Extracted samples,

however, clearly have higher implications to privacy or copyright.

7.3 Deduplicating LAION-2B

In this section, we describe an efficient method to de-duplicate LAION-2B. Whilst useful in its own

right, we use this dedplucation in Sec. 7.6 for our extraction attack. A normal approach would involve

computing a descriptor, such as in the state-of-the-art copy detection SSCD method [136], or the widely

used perceptual hash [150]. Unfortunately, the typical cloud setup needed to download and store L2B is

extremely expensive, not to mention doing a network pass on the entire dataset. We thus design a method

to de-duplicate using the CLIP features already computed and released by LAION [151]. Still, doing de-

duplication with raw CLIP features is still infeasible. Also, as we’ll use search extensively to construct

our ground truth (see Fig. 7.6.1 or Eq. 7.12), we choose to build an image index, capable of both semantic

search and deduplication. An image index is a structure which both compresses a database of features,

and can perform efficient search [74]. Ultimately, our image index closely matches the one in [74], with

a compression step that is better adapted for CLIP features.

7.4 CLIP Feature Compression

We begin with a generic auto-encoding baseline using mean squared error, which is a standard technique

for feature compression [167]. Denoting (xT , xI) as minibatches of CLIP text and image features we

have

LMSE(xI ; EI , DI) = ∥xI −DI(EI(xI))∥2. (7.1)

where, DI , EI
are the encoder/decoder networks for the image features. The compression rate is thus

controlled by the output dimension of EI
, or the latent space dimension, which will be used for index

creation and search later on.

The compression can be done on either image CLIP or text CLIP descriptors. However, the limita-

tion is that if the compression of the two modalities is done independently of each other, there is a risk of

losing the alignment between the modalities. Our experiments with hybrid encoders (fusing modalities

or mixing contrastive and reconstruction losses) showed worse results than this baseline or the methods

presented next.

Contrastive Compression We propose a second compression method designed to preserve text and

image feature alignment. To achieve this, we suggest using the original contrastive loss function pro-

posed in [138]. There are several approaches to compressing features this way, including the use of an

autoencoder or applying the clip loss directly in the original feature space. However, we found that us-

ing a "latent" clip loss as LCLIP(ET (xT ), EI(xI)), with EI , ET
as the image and text encoders, was

better overall and use this loss for all experiments.

Although using CLIP loss alone was effective in some tasks, such as zero-shot ImageNet classifica-

tion, we observed that to enable more accurate nearest neighbor search, it was better to also introduce a

term to maintain distance properties between neighboring elements in the dataset. Therefore, we pro-

pose a new approach that involves computing the nearest neighbors (w.r.t. image features) in a "chunk"

(here, we used sliding chunks k = 10M samples), defined as follows

LSNIP(xT
k , xI

k; ET , EI) = LCLIP
(
ET (xT

k ), EI(xI
k)

)
+ λLCLIP

(
EI(xI

k), EI(xI
1-NN(xI

k
))

)
(7.2)
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where 1-NN(xI
k) is the nearest neighbor of sample xI

k in the chunk k. The nearest neighbor search

within each chunk is done exhaustively by measuring the L2 distances between all the pairs of the chunk.

Approximate Search Even compressed, searching through CLIP descriptors at billions scale is still

too expensive. We therefore use techniques for approximate nearest neighbor search akin to those found

in Johnson et al.[74]. One of the simplest and oldest techniques for fast nearest neighbor search relies

on an inverted file system (IVF). First one computes the k-means centroids of the database vectors and

then groups vectors to their closest centroid to form the inverted files. During search, queries only look

through the τ closest inverted files by exhaustive search over the closest centroids, which is tractable

because the number of centroids is typically small. We explore building a two-level quantizer on top of

our compressed features, which compresses database vectors as follows:

y ≈ q1(y) + q2(y − q1(y)) (7.3)

where y is first approximated with q1, and then its residual quantized by q2. k-NN’s are retrieved as those

minimizing a quantity known as the asymmetric distance:

dADC(x, y) = ∥x− q(y)∥ (7.4)

where q(y) is a quantized database vector. In the case when q1 is an IVF, this quantity is only minimized

over database vectors mapping to the same centroid as the query or top τ centroids (referred to as the

nprobe parameter). Specifically, we explore Product Quantization (PQ) as our secondary quantizer [72].

PQ splits vectors into M sub-vectors, y = [q0(y0), ...qM (yM )] where M is an even divisor of y′s
dimension and the sub-quantizers are again k-means. Higher values of M result in higher compression

ratios.

7.5 Image Similarity Search

We generate a synthetic ground truth by computing a small set of k-nearest neighbors using brute force.

We then compared the index retrieval results with this ground truth as follows:

R ∩ k := 1
N

∑
q∈Q

|k-NN(qi) ∩ k-ANN(qi)|
k

(R ∩ k)

The approximate k-nearest neighbors (k-ANN) were computed for the index under review, while the

exhaustive search on raw features (k-NN) served as the ground truth. It’s worth noting that the approach

used to construct the ground truth for the (non-multimodal) Deep1B dataset [12] is similar to the one

described in [74].

We did ablations over the latent space dimensions and found that encoding to a relatively high di-

mension of 128 first (from 1024 for ViT-H-14) was more effective, than for example encoding to a low

dimension directly and giving more memory to the quantizer. We note that the approach in [74] also

used a similar dimension for the compressed space before quantization. Also like in [74], we used the

IVFPQ index for every index we built atop of our descriptors and finally did several comparisons to a

vanilla IVFPQ on raw features.

For the IVF, we chose 216
centroids, and for the PQ we constructed collections of indices with dif-

ferent values of M (the number of dimension chunks) with 28
centroids each. Finally, we highlight the

popular open source tool AutoFaiss, which will automatically construct and efficient PQ index given a

memory budget. All of our AutoFaiss indices use multiple PQ steps, with an initial optimized product

quantization (OPQ) step for dimensionality reduction (see [50]), as well as a hierarchical navigable world

search (HSNW) [105]. For instance, when providing the tool with “6G" total memory for the index, it

produced a faiss construction pipeline of “OPQ16_112,IVF65536_HNSW32,PQ16x8" (Please see the faiss
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Figure 7.4.1: Image feature only retrieval pareto fronts for ViT-H-14 indices on L400M on the CPU (top

left), GPU (top right) and on L2B on CPU (bottom left) and GPU (bottom right). MSE based losses

perform similarly on this task compared to the contrastive ones, and the SNIP loss performs better than

the a contrastive only CLIP loss.

library for more details[74]). We noted these indices were not more effective on the GPU and excluded

them from these benchmarks. To form Pareto fronts, we merely built a collection of indices as before,

but varying the memory parameter.

Multi-modal Search Results The original CLIP network demonstrated impressive performance on

the challenging zero-shot ImageNet classification task. With CLIP, this can be achieved by getting an

encoding for each category c with the caption “this is an image of [c]”, and then performing an exhaustive

search with CLIP encoded ImageNet samples via taking a maximum inner product (as is maximized for

positive pairs during contrastive training). We’d like to not only explore how well our descriptors preserve

multi-modal information, but the quantized representation in the index as well. For this, we reconstruct

database vectors using the sa_encode and sa_decode functions of the faiss library, and then do multi-

modal search on reconstructed vectors. We compare to AutoFaiss (see previous section), which is used

for multi-modal search hosted by LAION [151], but in a more extreme compression regime.

Figure 7.8.2 shows the performance of each index type versus the "compression ratio," which is sim-

ply the uncompressed size of all database features divided by the index size (plus a negligible size of the

encoding network). Again, we create a collection of indices with varying M parameters to form the

IVFPQ pareto fronts. The LMSE descriptor indices zero-shot performance are clearly less efficient than

theLSNIP ones. Autofaiss performs the worst at these compression ratios (in general we saw a sharp drop

in the AutoFaiss performance above a certain compression ratio for every task). For text-to-image search,

our snip model also performs better than AutoFaiss. We now move on to a wider variety of comparisons.
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Index Size (GB) Duplicates Found Image MSE pHash

ViT-H-14 SNIP (GPU,M16) 49G 602M 98 92

ViT-L-14 RECON (GPU,M16) 49G 692M 97 84

ViT-L-14 (CPU,M4) 25G - 65 47

MD5 file hash - 485M 100 100

Table 7.5.1: Consistency of the proposed indices for deduplication versus other standard measures. Note

that whilst the precision versus a perceptual hash is sometimes low, many of these images are still near

duplicates (see the supplementary). The score (in %) is calculated for 100K random pairs marked as du-

plicates.

Image to Image Search Results Figure 7.4.1 presents the retrieval benchmarks for the L400M and

L2B datasets. We assessed each method across a range of benchmarks and created Pareto fronts by vary-

ing the number of chunks for product quantization (i.e., M = 2, 4, 8) and the n probe parameter

(τ = 1, 2, 4). Notably, MSE and SNIP performed similarly on image similarity search, while CLIP-

only loss networks consistently performed worse. However, as mentioned, the CLIP networks (both

CLIP and SNIP) do perform better on multi-modal tasks. Thus, SNIP can be seen as a best of both

worlds descriptor for these types of indices. Figure 7.4.1 also indicates that indices similar to those in

[75], using a PCA as a first compression and IVFPQ as a quantizer, have some drop off in performance,

as with the CLIP only indices.

7.5.1 De-duplicating with the ADC

Normally, de-duplication with descriptors is done by threshing distances to nearest neighbors. Our in-

dices return the asymmetric distance (7.4), which can result in non-zero distances even for in-database

queries. Additionally, since the secondary quantizer operates globally over the IVF, different centroids

may contain significantly different ADC distributions. Consequently, we found that applying an abso-

lute threshold on ADC alone was insufficient for effective de-duplication performance.

We thus use an adaptive threshhold. This approach takes into account that duplicated images may

not necessarily have a low absolute ADC , but they will all have the same ADC . Specifically, duplicates

y ∈ k-NN(x) of a query image x are identified if

|ADC(x, x)−ADC(x, y)|
ADC(x, x) < TADC . (7.5)

7.5.2 High level of duplication on L2B

To de-duplicate, we compute (7.5) for every database vector, against its k = 32 nearest neighbors (given

via our index). We form a large sparse graph on disk, and propagate transitivity using a stochastic variant

the FastSV algorithm [192] (see the supplementary for details).

Our goal is to extract as many duplicates as possible, so long as marked duplicates are consistent with

standard de-duplication measures. To evaluate, we draw 100k random pairs of duplicates by our method,

fetch the images and compute a variety of other metrics (i.e. we measure precision using other methods as

a ground truth). Table 7.5.1 presents the results for several de-duplications we ran. We found it surprising

that roughly a third of L2B are near duplicates. Furthermore, LAION also provided MD5 file hashes and

surprisingly, 25% of the dataset are duplicates at the file level. We note that even samples marked as "false

positives" by a pHash, are still near duplicates by inspection (for instance, up to imperceptible artifacts

or a resizing).
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7.6 Attack Model

In this section, we present extraction attacks on conditional diffusion models. This attack seeks to find

any image generated via a text prompt, which is identical to a training set image (up to mild perturba-

tions). Such an attack was proposed in [26], where the prompts of highly duplicated training examples of

L2B are chosen as potential copies and then (un)validated based on the variability of generated samples

from each prompt. This attack requires a large number of generation per candidate prompt. Compared

with this attack, we make the following contributions: 1) we improve the efficiency of the highly du-

plicated candidate selection by relying on our ViT-H-14 SNIP approach (see Table 7.5.1); 2) we found

verbatim copies have the property that they can be synthesized in a single iteration. Indeed Fig. 7.6.1

shows clearly different behaviors for prompts that are copied versus those that are not. The intuition

is that for regurgitated samples, the denoiser will immediately map the noise image far from its start-

ing point. Incidentally, the output of the denoiser after a single step already resembled a natural image

(the one that would be generated if a full synthesis had been performed). We use this as an intuition to

construct both attacks presented next.

Gen[r](c, T = 1)
(One Step)

Gen[r′](c, T = 1)
(other seed)

Gen[r](c, T = 50)
(Full Step)

CLIP Retrieval

from (7.12)

data x
with prompt c

Exact

Verbatim

Template

Verbatim

Non

Verbatim

Figure 7.6.1: Training images can be extracted from Stable-Diffusion in one step. In the first row, a verba-

tim copy is synthesized from the caption c corresponding to the image x on the last column. In the sec-

ond row are template verbatims copies that are harder to detect because they are related to many prompts

variations. These images are detected using CLIP retrieval as detailed in (7.12). They exhibit variations

in fixed locations of the image; here the color of the carpet can change so they must be masked to be cor-

rectly detected. Non-verbatims have no match, even when retrieving over the entire dataset. See Sec. 7.7

for how we construct the ground truth here in this case.

7.6.1 White-box Attack

In this setting, we assume the attacker has both the captions and the model parameters. We propose

an easy to compute metric, which can capture the one-step synthesis property illustrated in Fig. 7.6.1,

although for stable diffusion it works in the first stage encoder latent space (see [144] for details). Recall

that conditional diffusion models train a denoising autoencoder D(zt, c), which will predict the real

image (or latent image) z0 given its noised version zt. Note that the synthesis process starts at step T
from a white Gaussian noise zT . Our metric relies on measuring how far apart stands the input noise zt
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from its denoised version D(zt, c):

DCS(c) := ∥zT −D(zT , c)∥22 (7.6)

We call this error the Denoising Confidence Score (DCS). We can turn this into a classifier marking

extracted samples by thresholding this value with τDCS as follows

FDCS(c; τ) = 1DCS(c)≥τDCS (7.7)

Whilst referred to as “whitebox”, we in fact do not need access to the parameters of the diffusion model,

just the input noise zT .

7.6.2 Black Box Setting

We consider the setting similar to [24], wherein an attacker has captions but can only invoke Gen(c) for

caption c (or Gen[r](c) if we need to specify the random seed r), and we also assume the ability to control

the timesteps T (as is the case for Midjourney). Henceforth, we use Gen(c, T = 1) when we respace to a

single time step and simply Gen(c) for full synthesis (i.e. T = 50). We noticed non verbatims normally

start as highly blurry images (Fig 7.6.1, last row). Blurry images will not have consistent edges (or no edges

at all) in contrast to the realistic images that emerge from certain prompts. We thus employ a simple image

processing technique by first computing the images edges, and then look for how consistently these same

edges appear for other seeds. Letting the operator Edge() outputting a binary image of contours (e.g.

with a sobel filter and thresholding), we define the Edge Consistency Score (ECS) as follows

LECS(c) =

∥∥∥∥∥∥
 1

J

∑
j≤J

Edge(Gen[rj ](c, T = 1))

 ≥ γ

∥∥∥∥∥∥
2

2

(7.8)

Where J represents generating over several random seeds and γ a threshhold. Whilst rather simplistic,

we find that this score works decently in practice.

(a) Midjourney v4 [116] (b) Deep Image Floyd [157]

(c) Stable diffusion v1 [144] (d) Stable diffusion v2 [163]

Figure 7.6.2: Template verbatims for various networks: Left is generated, middle is retrieved image and

right is the extracted mask. Template verbatims originate from images that have variation in fixed spatial

locations in L2B. For instance, in the top-left, varying the carpet color in an e-commerce image. These

images are generated in a many-to-many fashion (for instance, the same prompt will generate the topleft

and bottom right images, which come from the "Shaw floors" series of prompts).



7.7. CONSTRUCTING A GROUND TRUTH 89

7.7 Constructing a Ground Truth

As we’d like to evaluate the precision of the above attacks, we need to ascertain prompts that actually lead

to copies, by accessing all images on L2B For dataset pair (xD, c), we generate image xG = Gen[r](c)
and then mark them as copied entirely for the corresponding image (xD) or copied with respect to a mask

on any dataset image (retrieval verbatims).

Matching Verbatims (MV) In [24], the dataset image xD is by-design chosen among the one hav-

ing caption c, and the corresponding generated image xG is determined as the minimizer (over a fixed

number of seed trials) of:

LMV (xD, c; J) = min
j≤J
∥xD − Gen[rj ](c)∥22 (7.9)

One needs to take the minimum over J random seeds rj as sometimes verbatims appear after a few seeds.

Then, the ground truth labels are simply a threshold on this distance

IsVerb(c; J, δV ) = 1LMV (xD,c;J)≤δV
(7.10)

We chose δV = .12. This is slightly more relaxed than what was chosen in [24], and we simply prune

false positives by hand (such as images of textures or without objects that can be false positives), which

given the rarity of positively labeled images is feasible.

Retrieval Verbatims We noticed that some images would not correspond to their matching image,

despite having the curious property of one-step synthesis (see Fig. 7.6.1). Thus, we retrieved the training

images with an index our ViT-H-14 SNIP index (Sec. 7.5). More precisely we extract xG and xD as the

minimizer of

LRV (c) = min
j≤J

min
x∈NNK,j

∥x− Gen[rj ](c)∥22 (7.11)

where NNK,j denotes the set of K nearest neighbor in the training set of the generated image Gen[rj ](c)
(retrieved via our index constructed in Sec. 7.4). We call these retrieval verbatims (RV).

Furthermore, we found that many images which had very few duplicates had extremely many near

duplicates that differed in only one region of the image. These images would commonly be e-commerce

images that would vary an aspect of the sale item: e.g. an image of furniture with a large variety of carpet

colors. We thus update our retrieval verbatim condition to accommodate masking as follows

LT V (c) = min
j≤J

min
x∈NNK,j

∥m(x)⊙ (x− Gen[rj ](c))∥22 (7.12)

Here m(x) denotes a spatial mask corresponding to the training image x. In practice we manually select

samples that had near duplicates through Eq. 7.11 and appeared to be templates, and pruned images that

were adversarial to the MSE (such as those with all white backgrounds). We note this procedure could

potentially be automated, for instance with object detection on the unmasked regions.

Evaluation Of course, we will not be able to construct the ground truth for every image of L2B, as it

entails generating images. Besides, extraction attacks typically are concerned with precision and number

of samples found, rather than recall. We thus only generate and compute the ground truth for the top

images selected by our attacks Eq. 7.6 and Eq. 7.8 and measure precision versus number of verbatims

found.

7.8 Results

In this section, we evaluate our white box and black box extraction attacks against several popular diffu-

sion models. We evaluate each in the following way
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Figure 7.7.1: Precision recall curves for the whitebox attack and black box attacks (see Sec. 7.7. For both

black box settings, we first pre-filter for the top 30K images selected via the whitebox score, then sort with

the black box edge score. On the right, we sort via the black box score, synthesize 500 samples (setting

"+Carlini," [24]) and then perform their attack. This makes the attacks much more precise.

Whitebox We take the 2M most duplicated samples and compute the DCS Eq. 7.6 for every caption

for the Stable Diffusion v1 network [144]. This attack takes only a single unet evaluation per caption.

Blackbox This setting requires several unet evaluations per caption (the J parameter in Eq. 7.8), which

is too expensive for millions of captions. Thus in practice, we pre-filter using the whitebox DCS (only for

SDV1) for the top 30k samples and compute our black box LECS Eq. 7.8. For a black box attack versus

stable diffusion V1, this is technically not black box. Even so, extracting verbatims from 30k images still

is a strong indicator of the success of a true black box attack given their rarity (around 1% chance of

being randomly selected). For black box attacks against stable diffusion V2, this is a purely black box

procedure. We compute Eq. 7.8 for J = 4 samples and still only one timestep of the Heun sampler;

for a total of 4 unet evaluations per caption. In [24], they performed 500 full generations. Assuming

a conservative estimate of 16 iterations per generation (although they used 50 in the paper), makes our

attack 500 ∗ 16/4 = 2000x times more efficient than the attack in [24].

Post filtering with Carlini et. al Our attack is not incompatible with the one in [24]. For those

images we deem most likely to be verbatims (given our whitebox or black box method), we then synthesize

500 samples per caption and mark captions as verbatims when inter-sample synthesis is overly repetitive

(i.e. there is many duplicate synthesis images).

7.8.1 Analysis

Fig. 7.7.1 shows the precision of the attacks versus the number of verbatims found for Stable Diffusion

v1 and v2. Our whitebox attack has much higher precision than the black box variants. The black box

attacks start with low precision, as there were some samples that were "adversarial" to the method, such

as images of textures or that were mostly backgrounds. When combining our black box attack with [24],

our black box attack becomes much more precise.

7.8.2 What Makes Prompts Prone to Regurgitation?

It is still unclear why diffusion models will regurgitate some samples and not others. Duplication alone is

not a sufficient condition for the model to memorize the sample. The authors in [24] found that anomaly

detection was not successful at detecting them. As we de-duplicate with image features, we explore what

percentage of these samples are multi-modal duplicates. In Fig. 7.8.1 we show the percentage of features
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(a) Multi-modal duplication rates for

exact verbatims Eq. 7.9 versus non-

verbatims. Exact verbatims tend to

be multimodal duplicates (duplicates

in text and image) more often than

other sample highly duplicated in image

feature space only.

(b) Duplication rates for exact verbatims

versus template verbatims. Template ver-

batims may be highly duplicated w.r.t.

their mask, but without the masks they

have relatively low levels of duplication as

they variable parts of the image.

Figure 7.8.1: Histograms of duplication rates.

that share the same prompt within a duplicate group. The verbatim samples show a significantly higher

rate of multimodal duplication than non-verbatims (randomly chosen in the top 2M most duplicated).

Template Verbatims Template verbatims are more difficult to label as ground truth, not only because

they require retrieval and masking, but also because they’re not highly duplicated, as shown in Fig. 7.8.1.

Note that Stable Diffusion v2 did deduplicate L2B before training. Unsurprisingly, we did not find many

examples of exact verbatims being copied on Stable Diffusion v2, however, we still found many template

verbatims, see Tab 7.8.1. Thus, a more relaxed duplication detection, such as the semantic duplicates

found in SemDeDup [1], may be necessary to weed out these samples. We leave this for future work.

7.8.3 Extracting Verbatims in Other Models

Model Deduplicated Training? Retrieved Template Exact

Stable Diffusion V1 [144] No 37 45 71

Stable Diffusion V2 [163] Yes 0 21 4

Deep Image Floyd [157] Yes 0 15 2

Midjourney v4 [116] Unknown 5 8 2

OpenJourney (from [32]) No 14 29 73

RealisticVision (from [32]) No 15 32 90

Table 7.8.1: Number of ground truth verbatims extracted from several models. For deep floyd and Mid-

journey, we use the top 500 prompts sorted from Eq. 7.8 from SDV1 (i.e. we don’t perform the attack,

just extract images). De-duplicated models seem less susceptible to exact verbatims, but are still vulnera-

ble to template verbatim extractions. See Sec. 7.8.3

Having obtained our ground truth for Stable Diffusion V1 (SDV1) and V2, we test whether these

prompts are also verbatim copied by a variety of other models, such as state of the art diffusion model

DeepIF [157], and the closed source system MidJourney [116]. For Midjourney, this was done manually

through discord for around 100 prompts, and we swept over the number of time steps until a verbatim
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Figure 7.8.2: Several shortcomings of using an MSE for ground truth labeling. On the left is the real

image and on the right generated. These samples fall just below our MSE threshold.

was found. Tab. 7.8.1 shows the total number of ground truth verbatims extracted. With Midjourney

[116], the model is entirely black box, and likewise for the training set. Still, we find it still regurgitates

some of the same prompts as other models, which are known to be trained on L2B. Interestingly, it is

also less susceptible to the exact verbatim regurgitation like SDV2, so we hypothesize that Midjourney

de-duplicated their training set before training. Finally, we note the popular stable diffusion checkpoint

model openjourney, which was fine tuned from SDV1 using images and prompts from Midjourney, and

typically generates fantasy and surreal images better than the original model. In contrast, realistic vision,

which is also a checkpoint, focuses on more photographic realism. Both models regurgitate the almost

the same prompts, and for realistic vision, the problem is exacerbated.

7.8.4 Limitations

Fig 7.8.2 shows shortcomings for the ground truth construction. In many images, the retrieved image

is cropped and scaled slightly different (bottom left), and thus was not labeled as a template verbatim.

In general, for future work, it may be worthwhile to explore more flexible copy detection, such as those

which are invariant to some permutations of patches [13]. This would also cover the patch copying phe-

nomenon observed in [161], which our template verbatim Eq. 7.12

7.9 Conclusion

In this work, we presented an extraction attack successful versus several widely used diffusion models.

First, we designed an efficient de-duplication routine over compressed CLIP features and revealed that

roughly a third of L2B are near duplicates. Our attack was on par with previous methods, whilst requir-

ing significantly less network evaluations. Furthermore, we extended the previous work to accommodate

template verbatims, i.e. images that showed non meaningful variations in fixed locations in the image.

We shed insight into why these images still appear even in models which have deduplicated their training

data, such as Stable Diffusion 2.0 and deep image floyd; they are not highly duplicated in the standard

sense, but likely are highly duplicated with respect to a mask. We believe this work can not only help

build better datasets but more useful and safe generative models.



Appendix

In this section, we give additional details for our indices constructed in this chapter and their perfor-

mance.

Notes on Architecture and Training We use an MLP architecture for E in all experiments, contain-

ing a batch norm at the input, two MLP blocks consisting of a linear layer projecting to an intermediate

dimension of 512, gaussian error linear units (GELUs) and finally a linear layer projecting to the com-

pressed latent dimension. For the autoencoder networks, the decoder D is simply the transpose of E
(in the sense of the layer definition, the parameters are not shared). We did architectural ablations, in-

cluding choice of non-linearity and choosing architectures and found that they do not improve retrieval

performance (see next section). Finally, for L2B, we perform 2 epochs over 200M features and 50M for

L400M.

Additional retrieval results Tab. 7..1 and Tab. 7..2 summarizes the results for the ViT-B-32 and ViT-

H-14 networks. The imagenet zero-shot score is computed against the ImagenetV2 dataset [141], hence

the slightly lower than normal scores (even for raw features). Note that SNIP is performing overall the

best, with the best imagenet zero-shot score, as well as nearly the best retrieval accuracy (for M=16). As

was discussed before, the MSE nets perform poorly on the (multi-modal) Imagenet zero-shot task, but

quite well on retrieval. We also did some ablations on the encoding dimension d before quantizing with

IVFPQ. For instance, see d = 32 for the CLIP and SNIP networks. Note that the index size will be

the same (and in fact, just depends on the IVFPQ parameters), however, doing so in this way shifts the

compression to the neural compression step. However, this is met with a drop in performance, which

gets worse as the latent dimension becomes smaller.

For ViT-B-32, whilst observing the same behavior for compressed CLIP representation using en-

coders trained with MSE and SNIP losses, it is interesting to notice the expected drop in performance

in zero-shot retrieval when using ViT-B-32 instead of ViT-H-14, as already observed for uncompressed

features. We also note that ViT-B-32 nets have a larger relative drop in performance on the imagenet

zeroshot task, compared to ViT-H-14 networks.

93
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Dimension Reduction Index Info Memory (GB) R ∩ k IN Zero-shot Top-1

Raw ViT-B-32 - 239 100 56.1

LSNIP, d = 128 IVFPQ, M=4 2.2 25.4 31.4

LSNIP, d = 128 IVFPQ, M=16 4.2 35.5 34.5

LMSE, d = 128 IVFPQ, M=4 2.2 25.1 20.7

LMSE, d = 128 IVFPQ, M=16 4.2 35.4 30.4

OPQ, d = 56 AutoFaiss 2.9 .05 1.0

OPQ, d = 168 AutoFaiss 5.6 21.4 23.1

Table 7..1: Comparisons of the k-NN accuracy (with k=5) of different networks and losses on ViT-B-32

[138] for queries outside of the database vectors, against an exhaustive search. The compressed CLIP

features have a dimensionality of d, and the number of chunks for product quantization is denoted by

M .

Dimension Reduction Index Info Memory (GB) (R ∩ k) IN Zero-shot Top-1

Raw ViT-H-14 - 708 100 67.1

LSNIP, d = 128 IVFPQ, M=4 2.2 29.2 40.3

LSNIP, d = 128 IVFPQ, M=16 4.2 49.5 48.7

LSNIP, d = 32 IVFPQ, M=4 2.2 36.4 39.2

LMSE, d = 128 IVFPQ, M=4 2.2 43.1 30.6

LMSE, d = 128 IVFPQ, M=16 4.2 50.1 42.3

LCLIP, d = 128 IVFPQ, M=4 2.2 32.1 40.2

LCLIP, d = 32 IVFPQ, M=4 2.2 28.1 39.4

LCLIP, d = 32 IVFPQ, M=8 2.9 35.5 42.2

LCLIP, d = 8 IVFPQ, M=4 2.2 19.2 0.0

OPQ, d = 56 AutoFaiss 2.2 0.1 2.7

OPQ, d = 112 AutoFaiss 2.9 1.6 8.7

OPQ, d = 168 AutoFaiss 5.6 44.1 43.4

- IVFPQ, M=4 2.4 14.6 40.4

- IVFPQ, M=16 5.5 44.7 46.3

Table 7..2: Comparisons of the k-NN accuracy (with k=5) of different networks and losses on ViT-H-14

(OpenClip [67]) for queries outside of the database vectors, against an exhaustive search. The com-

pressed CLIP features have a dimensionality of d, and the number of chunks for product quantization

is denoted by M .
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Visualization of duplicates In this section, we provide some visual results for how CLIP duplicates

compare to MSE image space duplicates. Figure 7..1 shows some false positives and false negatives for

CLIP.

Non duplicates Duplicates

MSE MSECLIP CLIP

Near duplicates missed by MSE Near duplicates missed by CLIP

MSE MSECLIP CLIP

Figure 7..1: Classification as duplicates or non duplicates by thresholding MSE or CLIP distances.

For each image pairs a red/green bar on the left (resp. right) indicates an MSE (resp. CLIP) non-

duplicate/duplicate. Examples in the leftmost two columns of the figure are typical of cases where the

decisions based on both metrics coincide (the situation is also clear for a human as well). On the right-

most columns, the two decisions differ because the pair is rather a near duplicate and one metric is less

sensitive to the variations between the two images (CLIP is less sensitive to crops and zoom while MSE

is less sensitive to resolution / compression artifacts).

Visualization of retrieval We view some visual results for retrieval in Fig. 7..2. Even highly com-

pressed, these indices still retrieve relevant samples from L400M.
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(a) Real images retrieved with a SNIP, ViT-H-15 index on L400M.

(b) Images generated by stable diffusion retrieved with a SNIP, ViT-H-15 index on L400M.

Figure 7..2: Retrieval with SNIP indices on L400M. Left column is query and remaining are retrieved.



Chapter 8

Conclusion

This manuscript investigated the evaluation of image generation, with a focus on quality assessment,

overfitting, membership inference, and parameter efficient learning. We summarize here some of the

main contributions of this thesis and then review the remaining challenges.

Generative Evaluation We started by examining the evaluation of generated images via precision re-

call curves, identifying the limitations of the Fréchet Inception Distance in measuring model quality.

We also provided theoretical insight into precision recall curves introduced in [148], namely their rela-

tion to the error rates of binary classifiers. For several practical settings, our method better reflected the

real discrepancies found between real and generated datasets.

We gave an alternative perspective to GAN evaluation by examining memorization in Chapter 3,

demonstrating how latent recovery could identify instances of memorized training points. We presented

several applications using latent recovery, such as image inpainting and super resolution. Future work

could further explore applications, for instance by doing latent recovery on recent text-to-image GAN

systems [77], using one of the new latent recovery methods in the literature [4].

A promising future direction could be made by making a link between these two chapters. Namely,

the first chapter takes a statistical view of generated and real distributions. Our latent recovery procedure

only optimizes for reconstruction error. Indeed, with a perfect recovery procedure, images may be re-

covered but not with high likelihood. Thus, it we be natural to use a gradient of a likelihood classifier to

recover points that are both high density and with low recovery error. In addition, one could also guide

recovery by promoting points that are also high density in latent space.

Membership Inference Our study of memorization naturally led to the study of membership attacks.

We studied membership inference starting from Chapter 4 to Chapter 5. In Chapter 4, we investigated a

variety of training setups, and showed that many GAN generators are naturally robust versus member-

ship inference. We used this fact to generate surrogate data, which due to the high quality of generation

still retained utility as a drop in for training on several vision tasks. In Chapter 6, we introduced a new

type of membership attack, capable of inferring identities used during training under challenging condi-

tions not covered by previous state of the art.

Parameter Efficient Learning In Chapter 5, we explored transfer learning with few parameters and

few training samples. Our width wise sharing procedure was more efficient than several other methods in

the literature, in part due to its ability to spread capacity across the generator, rather than in specific layers.

Finally, we drew ties with Chapter 4, by showing that training with few parameters offers robustness to

membership attacks in the low data setting, whilst retaining decent quality.

State of the Art Extraction Attack As our final and perhaps strongest contribution, we presented a

state-of-the-art extraction attack versus several widely used diffusion models. As a side contribution, we
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are the first to demonstrate an extremely high level of duplication on LAION-2B. Specifically, we found

roughly 700M duplicated images. We used this de-duplication to perform our extraction attack, and we

demonstrated an attack on par with a recent one, whilst using thousands of times less compute.

Future Directions We recall the challenges we laid out at the beginning of the thesis, namely con-

struction of more efficient membership attacks (C1), models that are robust versus said attacks (C2)

and finally learning in a parameter and sample efficient way (C3). We reflect on several of our contribu-

tions, with these challenges in mind, to highlight promising future directions.

In terms of creating more general membership inference (C1), we made progress in Chapter 6 by con-

structing an attack that can infer properties of training data, rather than just data points. A promising

future direction here is to study other facets of training data which systems like stable diffusion gener-

ate. Similar to how [60] studies whether CLIP contains identity information, a similar study could be

performed with generative models. As we referenced in the introduction, generative models are largely

used to generate living artists styles. Thus, an attack which is able to discern artistic styles used during

training would be an interesting future direction; this would serve as a way to verify if your content was

used for training, when the exact training set is unknown.

For training with low data (C3), we see potential in building systems that provide attribution. If

efficient enough, a general purpose model which is trained on a large corpus of copyright free or non-

sensitive data could be fine tuned, using either the methods presented in Chapter 5, or some of the more

popular techniques like LoRA[61]. Then, when generation with a specific style, or with respect to a set

of copyright images is desired, the large and small models could be used in tandem to generate the desired

content. The attribution would then come from the training set of the domain specific weights.

Our extraction attack also makes progress towards (C1). Namely, the previous best attack required

thousands of times more network evaluations whilst performing similarly to ours. We also unveiled a

new type of vulnerability, namely template verbatims, which pose largely the same problems as exactly

copied samples. Still, the attack has major short comings which prevents study of a more complete pic-

ture of overfitting for diffusion models. Namely, we witnessed copied training patches via inspection,

similar to the observations in [161], and many samples which were slightly distorted or re-scaled and thus

could not be automatically labeled. A potentially promising future direction is to design a similar at-

tack, but labeling generations as copied if they contain patches, in any image location and with potential

scale changes or other non-semantic transformations. Of course, this would be a technical challenge, as

it would require object detection and segmentation to rule out trivial collisions like white backgrounds.

Finally, Chapter 7 makes progress towards building more robust models (C2), as we showed which char-

acteristics of the data lead to vulnerabilities to attack.

As generative models become larger, more general and more widely used, they have a large potential

to cause harm in society. We underlined privacy and copyright as two primary areas where generative

models can potentially have negative impacts. This manuscript made progress towards diagnosing and

remedying these issues for building safer and ultimately more useful generation systems.



Evaluating Deep Image Generation through the Lens of Utility and Privacy

Keywords: Image Generation, Artificial Intelligence, Generative Adversarial Networks, Diffusion Models,

Privacy in Machine Learning, Membership Inference Attacks.

Summary:

Modern image generators, such as stable diffusion or Midjourney, have become large scale, complex and general

systems. As the wide spread application and use of these systems grow, so do their potential problem areas. In

this thesis we investigate how generative models can leak information about their training data and the problems

that poses to both the systems and the users. Systems such as Midjourney are trained with data gathered from

the web and protected content can appear during generation without attribution. As generative models also have

widespread application in the medical domain, it’s imperative for the utility of the generative model to not generate

data with strict privacy protections. We present the automatic evaluation of generative models, with a focus on

these issues. We first present several statistical measures that can measure the image quality of deep generators, the

diversity of generated images and finally measure their ability to overfit training samples. For the rest of the thesis,

we study the problem of membership inference. We investigate a diverse set of factors that lead to vulnerability

to membership attacks. On the other hand, we also observe many training setups which lead to robustness and

empirical privacy. We present several new membership attacks that made improvements over the state of the art.

Finally, we present a state of the art data extraction attack, capable of reconstructing training images from the most

widely used generation systems.

Évaluation de la Génération Profonde d’Images à travers le Prisme de l’Utilité et de la Confidentialité

Mots clefs: Génération d’Images, Intelligence Artificielle, Réseaux Antagonistes Génératifs, Modèles de Dif-

fusion, Confidentialité en Apprentissage Automatique, Attaques d’Inférence d’Appartenance.

Résumé:

Les générateurs d’images modernes, tels que Stable Diffusion ou Midjourney, sont devenus des systèmes à grande

échelle, complexes et généraux. À mesure que l’application et l’utilisation de ces systèmes se généralisent, leurs éven-

tuels problèmes se multiplient. Dans cette thèse, nous étudions comment les modèles génératifs peuvent fuiter des

informations sur leurs données d’entraînement et les problèmes que cela pose à la fois aux systèmes et aux utili-

sateurs. Des systèmes comme Midjourney sont entrainés avec des données collectées sur le web et des contenus

protégés peuvent apparaître pendant la génération sans notification d’attribution. Comme les modèles généra-

tifs ont également une application répandue dans le domaine médical, il est impératif pour l’utilité du modèle

génératif de ne pas générer de données sous protection stricte de la vie privée. Nous présentons l’évaluation au-

tomatique des modèles génératifs, avec un accent sur ces problèmes. Nous présentons d’abord plusieurs mesures

statistiques qui peuvent mesurer la qualité des images produites par de tels générateurs profonds, leur diversité et

enfin mesurer leur capacité à surapprendre les échantillons d’entraînement. Pour le reste de la thèse, nous étudions

le problème de l’inférence d’appartenance. Nous étudions un ensemble divers de facteurs qui conduisent à la vul-

nérabilité aux attaques d’appartenance. D’un autre côté, nous observons également de nombreuses configurations

d’entraînement qui assurent empiriquement la robustesse et la confidentialité. Nous présentons plusieurs nou-

velles attaques d’appartenance permettant des améliorations par rapport à l’état de l’art. Enfin, nous présentons

une attaque de pointe pour l’extraction de données, capable de reconstruire des images d’entraînement à partir des

systèmes de génération les plus largement utilisés.
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