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Titre: Méthodologie de modélisation et de détection des défauts de court-circuit inter-spires d’un
Moteur Synchrone Réluctant Assisté par Aimant Permanent dans les véhicules électriques
Mots clés: Détection de défaut, Machine Synchro-Réluctant Assistée d’Aimants Permanents
(MSRAP), Suivi d’état de santé, Maintenance prédictive, Traitement de l’information.

Résumé: L’essor des véhicules électrifiés (VE)
dans le transport routier a accru les préoc-
cupations concernant la fiabilité et la sécu-
rité. Par conséquent, il existe une demande
impérieuse de stratégies de détection précoce
des défauts dans le groupe motopropulseur élec-
trique (GMPE), crucial pour l’exploitation des
véhicules électriques. Cette thèse propose une
méthodologie de modélisation des groupes mo-
topropulseurs électriques (GMPE) et de détec-
tion de défaut dans leurs machines électriques.
Notre étude de cas s’est portée sur la détection
des défauts de court-circuit inter-spires dans un
Moteur Synchro-Réluctant Assistée d’Aimants
Permanent (MSRAP). Les analyses proposées
pour la détection de défaut sont exclusivement
basées sur les signaux des courants statoriques
du moteur électrique, une approche considérée
économiquement et techniquement viable pour
un dispositif de diagnostic embarqué. Pour
obtenir la précision nécessaire à la modélisa-
tion des défauts du moteur et la vitesse de cal-
cul requise par les contrôleurs en boucle fermée,
un modèle hybride du MSRAP combinant son
modèle analytique et son modèle éléments fi-
nis a été proposé pour représenter le comporte-
ment du moteur. Un GMPE a été simulé avec
ce modèle du MSRAP dans diverses conditions
de fonctionnement et entraînements en boucle
fermée pour générer un ensemble de données
synthétiques destinées au diagnostic de défaut.

Dans la phase préliminaire de détection de dé-
faut, l’écart absolu médian, le skewness et le
kurtosis calculés sur des fenêtres glissantes ont
été sélectionnées pour extraire les caractéris-
tiques de notre ensemble de données. Pour dé-
tecter les défauts dans les différentes conditions
de fonctionnement, nous avons proposé une ex-
tension de l’Analyse de Composantes Princi-
pales (ACP) basée sur la projection d’attributs
de nuisance. Cette approche nous a permis
d’atténuer la non-stationnarité des données liée
à la variation de charge, permettant ainsi la
mise en œuvre d’une détection de défauts in-
sensible aux variations de charge. À la suite
d’une évaluation des performances de détection
des défauts, nous avons sélectionné le T 2 de
Hotelling comme mesure de surveillance fiable
pour la détection des défauts de court-circuit
inter-spires par l’ACP. Pour estimer la sévérité
du défaut, nous avons développé un modèle an-
alytique de la pente de la fonction de décision
CUSUM de T 2. À partir de ce modèle analy-
tique, nous avons pu estimer la sévérité du dé-
faut, des données sans bruit avec une précision
supérieure à 99%. La robustesse de notre méth-
ode d’estimation de sévérité de défaut a pu être
démontrée à des niveaux de bruit allant jusqu’au
rapport signal/bruit (SNR = 30dB). En con-
clusion, nous discutons des limites inhérentes à
notre approche et formulons des pistes pour des
recherches futures.
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Abstract:
The proliferation of Electrified Vehicles (EVs)
in road transportation has heightened concerns
regarding reliability and safety. Consequently,
there is a pressing demand for early fault detec-
tion strategies in the electric powertrain (EPT),
pivotal for the operation of electric vehicles.
This thesis proposes a methodology for mod-
eling electric powertrains (EPTs) and detect-
ing faults in their electric machines. Our case
study focused on detecting inter-turn short-
circuit faults in a Permanent Magnet Assisted
Synchronous Reluctance Motor (PMaSynRM).
The proposed fault detection analyses exclu-
sively rely on the stator current signals of the
electric motor, an approach considered econom-
ically and technically viable for onboard diag-
nostic devices. To achieve the precision required
for motor fault modeling and the computational
speed demanded by closed-loop controllers, a
hybrid model of the PMaSynRM, combining
its analytical and finite element models, was
proposed to represent the motor’s behavior.
An EPT was simulated with this PMaSynRM
modelled under various operating conditions
and closed-loop drives to generate a synthetic
dataset for fault diagnosis. In the preliminary

fault detection phase, the median absolute de-
viation, skewness, and kurtosis computed over
sliding windows were selected to extract fea-
tures from our dataset. To detect faults un-
der different operating conditions, we proposed
an extension of Principal Component Analysis
(PCA) based on the Nuisance Attribute Pro-
jection. This approach allowed us to mitigate
the non-stationarity of data associated with load
variation, enabling the implementation of a fault
detection mechanism insensitive to load fluctu-
ations. Following an assessment of fault detec-
tion performance, Hotelling’s T 2 was chosen as a
reliable surveillance measure for detecting inter-
turn short-circuit faults through PCA. To es-
timate the severity of the fault, we developed
an analytical model of the slope of the CUSUM
decision function of T 2. Using this analytical
model, we could estimate fault severity from
noise-free data with an accuracy exceeding 99%.
The robustness of our fault severity estimation
method was demonstrated under noise levels up
to a signal-to-noise ratio (SNR = 30dB). In
conclusion, we discuss the inherent limitations
of our approach and propose avenues for future
research.
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Chapter 1

General Introduction

1.1 The Societal context

Electrification currently occupies a position of preeminence within contemporary society.
While the beginning of the 20th century witnessed a major electrical revolution, mainly in
stationary applications, the beginning of the 21st century also saw electricity significantly
transforming all onboard applications. Electric power has proven to be an extremely conve-
nient way to transport and convert energy. The considerable progress in power electronics
has opened new perspectives for most energy conversion systems. For example, notable
advances have been made through the growing adoption of electrified vehicles. Electri-
fied vehicles include today Hybrid Electric Vehicles, Plug-In Hybrid Electric Vehicles, and
Electric Vehicles. They come as a solution to reduce environmental pollution due to road
transport and bypass the concern of the rising cost of crude oil. Hence, the Member States
of the European Union have significantly progressed in developing European climate pol-
icy. They have approved the new regulation under which, from 2035, all new au vehicles
registered in the European Union must display zero emissions. Similar regulations have
also been proposed in California to move closer to banning the sale of new vehicles running
exclusively on gasoline by the year 2035 [1]. However, these innovations remain limited by
energy storage and recharging capacities that are still significantly lower than those offered
by oil. The advantages of electrification are evident in ease of installation and modular-
ity. Indeed, the wide use of electrified vehicles has resulted in material cost issues, which
require the adoption of optimization in design to reduce cost, mass, and volume. In ad-
dition to weight reduction, compactness, efficiency, and reduction of manufacturing costs,
availability and reliability are other challenges of the electric automobile industry. To face
these critical safety issues, the automotive industries have defined the safety standard -
ISO 26262 to help prevent potential hazards [2].
Electric actuators are multiplying in the electrification of vehicles; while some make the
powertrain, others aim to improve comforts like adjusting electric seats, operating car
windows, or operating mirrors. In all these systems tending progressively towards elec-
tricity, the electro-mechanical components at the end of the chain are primarily electrical
machines. The latter can be actuators producing electricity while being powered by an
internal combustion engine or generating mechanical energy to accomplish a specific func-
tion. In vehicle electrification, the operational reliability of the motor drive system, which
is at the heart of the operation, is becoming a major industrial issue. The motor drive
system consisting of the electric motor, the power electronics, and the control systems is
mainly subjected to frequent and repeated transient cycles that induce mechanical and
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thermal stresses. Any malfunction could spread further, resulting in reduced efficiency and
additional costs for diagnosis and repairs. This can also affect the operation of the vehi-
cle and endanger the passengers. To ensure the safety and reliability of electric vehicles,
anticipation of system failures is a significant concern [3].

1.2 Electrified vehicles Health monitoring

As electrified vehicles gain increased notoriety within the transport industry, fleet operators
and car manufacturers face a crucial maintenance problem to ensure the continuity of
operations. The control unit of modern combustion vehicles monitoring and evaluating the
entire system is generally referred to as OBD (Onboard Diagnostics). On the other hand, in
electric vehicles, the absence of a standardized onboard diagnostic system poses significant
challenges, making the precise identification of malfunctions complex. This situation is
expected to change by the 2026 model year. California law will require automakers to phase
in a standard EV diagnostic system under the state’s Advanced Clean Cars II program.
Although this regulation is initially limited to California, it is likely to become the industry
standard. These systems will also be applicable to plug-in hybrid vehicles and hydrogen
fuel cell vehicles. The EVs on-board diagnostics must encompass every component of an
electric vehicle’s powertrain, including its battery, electric motors, power electronics and
charging system [4]. Nevertheless, the OBD system, initially designed for diagnosis and
emissions management of combustion vehicles, has been integrated into electric vehicles.
This integration aims to leverage standard error code standards and evolving technical
principles to improve the ease of malfunction diagnosis and maintenance of electric vehicles.
Through the fault diagnosis systems of the various components of the electric powertrain,
a fault warning system can be triggered for the attention of the driver. Additionally, the
Controller Area Network (CAN) bus can be used to transmit standard error codes and
status parameters from the electric powertrain to the vehicle controller, making Diagnosis
Trouble Codes (DTC) easier to read. Figure 1.1 shows an example of an Onboard diagnostic
system of an electric vehicle with the Electric Drive System (EDS), the DC/DC converter
and the Battery Management System (BMS) Electronic Control Units (ECUs). The ECUs
have the role to detect faults conditions internally and if any of theses condition is reached,
store the DTC [5].
Traditional maintenance methodologies, due to their potential for inefficiency and high
costs, can lead to unexpected incidents and extended periods of vehicle downtime. Fortu-
nately, predictive maintenance systems are emerging as a game-changer in the maintenance
of electric vehicles [6]. They have been proposed in various industrial fields to improve reli-
ability and reduce the costs associated with unplanned downtime. By leveraging advanced
analytical techniques, machine learning, and real-time data mining, these systems are prov-
ing to identify maintenance needs with exceptional accuracy. They are primarily based on
monitoring the evolution of faults, which makes it possible to give the state of degradation
of the components before their complete deterioration. In electrified vehicles, it consists
of continuous monitoring and analysis of condition parameters (electrical, vibration, tem-
perature, etc). The Electric Signature Analysis (ESA) has been increasingly applied in
electric motor drive applications, thanks to its non-intrusiveness, dependency solely on
electrical quantities, and technical and economic viability. The fundamental transforma-
tions induced by the predictive maintenance technology in the maintenance of the electric
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Figure 1.1: Onboard diagnostic of an electric vehicle

vehicle are as follows [7]:

• Reduce Downtime

Downtime is a significant concern for vehicle owners due to its impact on vehicle avail-
ability and revenue generation. Unplanned failures that require emergency maintenance
can cause significant disruptions to fleet operations. However, thanks to a predictive
maintenance system, potential vehicle faults are detected before they reach a critical
threshold. This capability helps to meet planned maintenance schedules and ensure
vehicles to remain in their best operating condition.

• Minimise Maintenance Costs

Traditional maintenance typically involves inspection and component replacement pro-
cedures on pre-established schedules, regardless of the vehicle’s actual condition, which
can result in unnecessary maintenance expenses. However, through a predictive main-
tenance system, the condition of electric vehicles can be accurately assessed based on
real-time data from various vehicle sensors, driving patterns, and other parameters. This
approach allows only to undertake maintenance when necessary, removing unnecessary
servicing costs.

• Improve vehicle performance

The maintenance of electric vehicles is of crucial importance to ensure optimal per-
formance and extend the vehicle’s lifetime. Predictive maintenance allows real-time
monitoring of electric vehicles, detecting any latent anomaly that could affect vehi-
cle operating conditions. By taking a proactive approach to these issues, the vehicle’s
optimal performance can be maintained, resulting in improved efficiency and overall
performance.

• Enhance safety

Predictive maintenance can help to early identify potential electric vehicle safety risks,
such as brake problems or powertrain failures, before they turn into potential threats of
accidents.
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1.3 Trends of Electric Motors for Electrified Vehicles

Following the success of electric vehicles, optimizing the appropriate powertrain is becoming
a growing concern. Basically, the electric powertrain consists of a unit comprising an
energy storage device, electric machine, inverter with a software suite, and mechanical
transmission. The electric motor is a central element of the powertrain, for which various
technologies and configurations have been examined. Currently, solutions based on rare
earth (RE) permanent magnets, such as permanent magnet synchronous motors (PMSM)
or permanent magnet assisted synchronous reluctance motors (PMaSynRM), are widely
adopted, followed by induction motors (IM) [8].
Permanent magnet-based motors provide optimum performance for traction applications
due to their high power density, specific torque, power factor, efficiency, and notable ability
to regulate the magnetic flux. All of these features are critical for automotive applications,
as they help minimize component mass, reduce the size of the power electronic control unit,
and minimize energy losses. However, solutions based on RE magnets face an unstable and
risky supply chain, leading to significant price volatility. A recent study by the JRC high-
lights that the European Union could become vulnerable regarding the supply of various
essential materials, including rare earths [9]. Magnet-free solutions are being explored to
reduce or eliminate the reliance on rare earth permanent magnets in the manufacturing
of electric motors. This is driving increased interest in induction motors and synchronous
reluctance as next-generation technologies for electric motors for traction applications.
Figure 1.2 summarizes the advantages and disadvantages of the three main motor types
(PMSM, PMaSynRM, IM) in terms of essential characteristics for electric vehicles.

Efficiency

Drag losses
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Peak power density

Raw material risk

Torque response time
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Figure 1.2: Characteristics comparison of IM, PMSM and PMaSynRM
for electrified vehicles’ applications [10, 11]
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Given differences in the performance of each technology in terms of the characteristics
mentioned in Figure 1.2, some requirements can significantly impact overall costs, per-
formance, and other benefits. An individual assessment is always necessary based on the
specific application while considering the desired operational strategy. In this work, our
interest focuses on PMaSynRM, which is currently one of the promising motor technologies
for electric vehicle applications.

1.4 Electric powertrain component faults

The complex and compact architecture and the different operating modes of modern elec-
tric vehicles, such as start-stop and energy recovery during braking, place significant con-
straints on the electric motors and their drive systems. In addition, the vibration and
thermal stresses to which these components are exposed increase the probability of failure
occurrence. These main failures can be classified into three categories: electrical (linked
to problems with the insulation of the windings), magnetic (linked to the loss of magneti-
zation), or mechanical (such as the eccentricity of the air gap or bearings). These failures
can damage either the stator or the rotor. Winding faults, bearing faults, eccentricity and
demagnetization are the most representative faults in electric motors [12, 13].
The short-circuit fault between winding tuns also known as inter-turn fault is the most
important of the stator winding faults as it often leads to other faults if not dealt with in
time. It is a significant concern for electric motor monitoring, as a high amplitude current
can flow in short-circuited windings. The study in [14] has shown that the current flowing
in a short circuit fault between windings creates a reverse magnetic field that can lead
to demagnetization [15]. Bearing faults are manifested by damage to the rolling element,
the cage, or the inner and outer rings. These alterations can cause vibration and acoustic
phenomena, as well as increased wear. The predominant causes of bearing failure in elec-
trical machines are attributable to improper operating conditions, including adverse road
conditions. Like the bearing faults, eccentricity faults have undesirable consequences on
the machine, including accelerated bearing wear, generation of undesirable and potentially
damaging vibrations, increased energy losses, reduced overall efficiency, and increased tem-
perature. If these faults are not treated early, they can lead to improper contact between
the rotor and the stator, subsequently leading to damage to the stator core and associated
windings [16]. To prevent or limit the effect of the aforementioned faults, solution based
on new materials, new architectures and fault-tolerant drive are being explored.

1.5 PhD thesis scope

The main objective of this PhD thesis work is to develop a structured methodology for the
deployment of predictive maintenance techniques for electrical synchronous machines used
in electric powertrain. The objectives are:

1. To investigate on the mechanical and electrical faults in the electrified vehicle powertrain
to find their relevance and the link between them to select the most relevant ones.

2. To build an electric powertrain model for fault diagnosis purposes with a focus on the
selected fault under study.
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3. For each fault under study, find the indicators that are the most sensitive to the fault
occurrence and evolutive, robust to the load variations and the disturbances.

4. With regard to these fault indicators find the best methodologies to detect the faults,
especially at their early stages.

5. And finally develop a diagnosis methodology for predictive maintenance.

Though the aforementioned solutions to mitigate motor faults, winding faults are still com-
mon and their detection remains an issue. The focus of this work will be on the inter-turn
faults for their relevance to avoid most of the electric motor drives’ faults. The modelling
of motor drive system fault analysis makes it possible to perform numerical simulations,
which are used to evaluate diagnostic methods without resorting to costly and potentially
destructive tests. It is essential that these models are accurate under both normal and
faulty operating conditions, while accounting for transients and steady states, to develop
fault-sensitive detection and diagnostic algorithms. Models of electrical machines can be
broardly classified into two categories: analytical models, which are relatively simple and
fast but less accurate, and numerical models through finite element method (FEM), which
are accurate but more expensive in terms of computation. The combination of these two
modeling techniques leads to hybrid models, which can benefit from both the precision of
numerical models and the calculation speed of analytical models.
As part of our study, we develop a hybrid model by combining an analytical model in the
three-phase reference frame with a model based on the finite element method. The ana-
lytical model is based on the concept of inductances. Therefore, to build our fault analysis
model, we will carry out the computation of inductances under normal and faulty operating
conditions using finite element analysis. The results of these computations are then saved
in multidimensional lookup tables (LUTs), which will subsequently be integrated into the
analytical model. A validation has been conducted by comparing the characteristics of the
model with the measured ones on the experimental bench. An in-depth analysis of existing
perspectives in the field of electric motor condition monitoring has led to the identification
of gaps in the research field related to electrified vehicle applications. These gaps include:

• the lack of fault diagnosis considering the varying operating conditions of electric motors
in electrified vehicles,

• the lack of motor fault diagnosis in closed-loop drives.

To fill this gap, we are proposing a methodology to detect stator inter-turn short-circuits
despite the closed-loop operation in which the action of the controllers could mask fault
signatures. The exploitation of signals already available in the control unit is chosen as a
relevant approach to build an onboard diagnosis tool for fault detection. The challenging
task is to detect, classify, and estimate the severity of the faults by processing the measured
phase current time-series. For the fault diagnosis, we adopt statistical analysis techniques
for their ability to extract information from raw data and derive succinct set of rules or
metrics.

1.6 Outline of the manuscript

The continuity of this research work is structured as follows:
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Chapter 2 provides a comprehensive review of the overall powertrain architecture of
electrified vehicles, in accordance with the established definition. It is also dedicated to
in-depth investigation, focused on identifying critical safety and reliability issues within the
electric powertrain. Additionally, this chapter sheds light on the various electrical machines
employed in electric vehicles. It also focuses on the analysis of the different types of faults
that can affect the electric motor of the powertrain. It presents a the end a state-of-the-art
methodologies for fault detection and diagnosis, which are reviewed for their relevance to
our analysis.
Chapter 3 examines the three different modeling methodologies used to represent electric
motor faults, namely models based on coupled circuits, models based on numerical meth-
ods, and hybrid models. We also outlined the adoption of the latter approach in modeling
PMaSynRM in the context of short-circuit fault analysis. To evaluate the quality of our
developed machine model, a precision measurement was carried out. As part of this study,
we also presented an analysis of PMaSynRM parameters under fault conditions, highlight-
ing that stator currents are potentially exceptional fault characteristics for this type of
failure.
Chapter 4 provides a comprehensive review of statistical methods, both univariate and
multivariate, used in fault detection and diagnosis. Additionally, it includes a presentation
of various performance evaluations of these methods. A specific case study on stator inter-
turn fault detection is also proposed. As part of this study, we created a dataset comprising
stator current measurements in healthy and faulty operating states, covering fault cases
ranging from incipient stage to the most severe. An analysis was carried out to identify
relevant tools allowing the extraction of essential characteristics of the data. Additionally,
we described the statistical methodology that we developed to meet the initial objectives
of the thesis. at the end of the chapter, we highlighted the limitations of this proposed
methodology, thus demonstrating its constraints and areas of applicability.
Final conclusions and considerations for future work are presented in Chapter 5.
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Chapter 2

Reliability of the electric vehicles’ powertrain

2.1 Introduction

As stated in the introduction chapter, the main goal of this thesis project is to develop fault
detection methodologies that will help to build a Predictive Maintenance System (PMS)
for the electric powertrain to enhance the safety and maintainability of electric vehicles.
In order to achieve this, a general electric vehicle (EV) powertrain architecture has been
defined. The components must be analyzed to investigate relevant safety and reliability
issues and hence some existing PMS methodologies will be analyzed as well.
At first, the different electric machines used in electric vehicles will be presented. Then,
the different types of faults of the electric vehicle powertrain will be reviewed. Finally, the
state-of-the-art faults detection and diagnosis methodologies will be presented.

2.2 Electric powertrain main components

Electrified vehicles can be classified into two categories according to the nature of motoriza-
tion: hybrid electric vehicles (HEV), which powertrain consists of electric motors combined
with internal combustion engines, and electric vehicles, in which we will find only electric
motors. For this last category, we speak about battery electric vehicles (BEV) when batter-
ies bring energy. It is this category that will be studied in this work. We will be interested
more precisely in the elements of the electric propulsion system [17].
The electric powertrain system is a set of components that generate power to move the
vehicle. It mainly consists of battery packs, power converters, electric motors, and elec-
tronic controllers. In motor mode, the electric machine converts electrical energy into
mechanical energy. It operates in generator mode during the braking phase to charge the
energy storage unit. This process is known as regenerative braking. It is a key process
for Electric vehicle appeal because it enhances vehicle efficiency between 20-25% [18]. The
power converters are the interfaces between the power sources and the electrical machines.
Electronic controllers provide control signals to the power converter and so they control
the electric motor behavior to achieve the requested torque and speed, according to the
driving conditions [19, 20]. Figure 2.1 shows the functional block diagram of the electric
vehicle powertrain. The choice of components mainly depends on three factors: the user
driver expectation, the vehicle constraints, and the energy source. The driver’s expec-
tation depends on the vehicle’s performance and driving cycle. Car manufacturers must
consider that customers will compare the performance of ICE vehicles to Electric Vehicles
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one. The vehicles’ constraints are linked to vehicle type, weight, and payload. The electric
powertrain structure may depend on the types of energy sources, such as batteries, ultra-
capacitors, flywheels, fuel cells, and various hybrid sources. The main requirements of the
electric powertrain for the successful adoption of electric vehicles are as follows:

• Long range to meet driving,

• Quick charging time for the battery packs,

• High power density of the powertrain components which increases the vehicle’s range,

• High torque at low speed for starting as well as low torque at high speed for cruising,

• Ruggedness and reliability for various operating conditions in any environmental condi-
tion,

• Maintenance needs and safety requirements,

• Affordable cost.

Electronic
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Mechanical
transmission

Electric  
motor

Wheel

Type
Lead-acid
Nickel-based
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Hardware
Microprocessor
Microcontroller
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Wheel

Controller & sensor connection
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Figure 2.1: Functional block diagram of EV powertrain [21]

2.2.1 Classification of electric motors for electric vehicles

The great variety of motor topologies and the different specifications of EVs result in a
segmented market with the DC motor, Induction Motor (IM), PM Synchronous Motor
(PMSM), Synchronous Reluctance Motor (SRM), and some hybrid topologies. For EV
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applications, the efficiency of electric motors depends on the operating points require-
ments related to driving cycles. The motor efficiency is characterized by power–speed or
torque–speed efficiency maps. The performance of the motor for a wide range of speeds and
powers is defined by the design, although each type of motor has a specific torque–speed
curve. The efficiency is also dependent on the voltage level. High-voltage rated powertrains
are more efficient. On the other hand, the efficiency drops when the powertrain is operated
below the rated voltage.
The selection of motors for an electric vehicle powertrain must fulfill the requirements on
rated power, voltage and current capacities, torque, and speed characteristics, controlla-
bility, and reliability as well. In addition, some important factors like cost and dependence
on rare earth materials have also to be considered. In the following, the major motor
topologies will be discussed in terms of rotor and stator topologies, merits, and demerits.

2.2.1.1 Rotor topologies

1. DC motors:

DC motors consist of a stator with a stationary field and a wound rotor with a brush
commutation system as shown in Figure 2.2. The field in the stator is usually induced
by coils, although small machines could use permanent magnet for the excitation. The
field winding can be connected in series or in shunt with the rotor coils depending on
the characteristics required. The commutator is made up of a set of copper segments,
inducing more friction than slip rings and therefore producing dust.

The powertrains based on DC motors have great advantages such as high overload
capacity, a broad range of speed regulation, linear regulating characteristics, structure
simplicity, and ease of control. Despite all these advantages, its usage in electric vehicle
applications is obstructed by the presence of mechanical brush-collector units, which
decreases the reliability and durability [22].

The development of rugged power semiconductors has made it increasingly practical to
introduce AC motors which are mature to replace the DC motor in traction applications.
These brushless motors are attractive because of their reliability and maintenance-free
operation. Nevertheless, when it comes to the cost of the inverter, variable frequency
drives are usually only used for higher power. For low powers, the DC motor remains
more than an alternative. This is the case of the French car manufacturer PSA Peugeot
Citroën, which presented the HEV version of their Berlingo model called Dynavolt, with
a DC motor as electric propulsion [23].

2. Induction motors:

Induction Motors (IM) consist of a stack of laminated steel with short-circuited alu-
minum bars in the shape of a squirrel cage as shown in Figure 2.3. The magnetic field
of the stator rotates at a slightly higher speed than the rotor. The slip between rotor
and stator frequencies induces rotor currents that produce the motor torque [23]. They
are widely accepted for EVs propulsion thanks to their low cost, high reliability, and
maintenance free. At present, it is one of the most mature technologies among various
brushless motor drives. The main advantages are their light weight, small volume, low
initial cost, high efficiency, and low maintenance [19].
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Figure 2.2: Schematic representation of a dc motor [17]

In general, induction motors faced several drawbacks that kept them out of the elec-
tric vehicle powertrain. These disadvantages are mainly high loss, low efficiency, low
power factor, and low inverter-usage factor, which is more serious for high-speed and
high-power motors. Some research proposes to take these problems into account in the
design stage. To improve the efficiency of induction motors, a new generation of con-
trol techniques has been proposed. For example, to extend the constant power region
without oversizing the motor, the use of a polyphase pole-changing IM drive has been
proposed. Another approach to enlarge the constant power region has been to use dual
inverters. It should be noted that some research work tends to introduce doubly fed IM
as electric propulsion, because of their excellent performance at low speeds. Induction
motors have been used by car makers like Renault in their Kangoo model and Chevrolet
in their Silverado model [24]. Tesla Motor has adopted them too, in their first flagship
vehicle Model S [25].

3. Permanent Magnet synchronous motors:

PM Synchronous Motors (PMSM) are characterized by their constant rotor magneti-
zation. PMs in the rotor induce high magnetic fields in the air gap, without excitation
currents, leading to high power density. They are very efficient and require less cooling
due to the lack of exciting currents. This comes at the cost of more complex control
as the excitation field may not be regulated. They also present several drawbacks like
their high initial cost, limited constant power range, magnet demagnetization, and small
speed range [19, 27].

The development of high-coercivity neodymium-iron-boron magnets in the 1980s opened
up new possibilities for PMSMs, and they are now used in automotive applications.
There is a wide variety of possible PM arrangements and geometries. Regarding the
flow path, the most common types of machines are radial or axial flow. There are many
different strategies for mounting the magnets to the rotor. Axial flux machines usually
have magnets mounted on the surface of the rotor, while radial flux machines can have
the magnets either surface or internally mounted [28] as shown in Figure 2.4.

They have been adopted by car makers like Nissan, Honda, and Toyota in their models
Tino, Insight, and Prius respectively [24]. They have been adopted by Tesla Model 3.
An example of the PMSM used in Toyota Prius 2014 is shown in Figure 2.5.
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Figure 2.3: Schematic representation of an Induction motor [26]

Figure 2.4: Radial-flux rotors with surface- and internal-mounted magnets [17]
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Figure 2.5: PMSM of Toyota Prius-2004 [26]

4. Reluctance motors:

Reluctance Motors (RM) have gained attention due to the concern of price increases or
shortage of magnetic material when electric vehicles enter mass production [29]. Their
main characteristic is the use of rotor salient poles. The torque is solely produced by
the difference between the direct axis and quadrature axis synchronous reactance as the
rotor lacks excitation.

They have the merits of simple structure, low initial cost, and adequate torque-speed
characteristics. The peak efficiency is equivalent to the IM, whereas the efficiency
remains high over a wide speed range. Efficiency values over 95% have been reported
[30]. The high rotor inductance ratio makes sensorless control easier to implement.

Despite these advantages, they have several weaknesses like their design and control
complexity and high ripple torque resulting in higher noise. These motors have been
used in EV applications by the Australian car maker Holden in their Ecommodore
Models [24].

5. Synchronous Brusheed Motors:

The Synchronous Brusheed Motor (SBM) has been chosen by Renault for its mid-size
models. This motor consists of a coil in the rotor connected to a fixed voltage source
through a slip ring. Electric current flows from a stationary carbon brush through a
rotating steel slip ring. The magnetic field in the rotor is induced by the field current
through the rotor coil. The rotor is robust and the temperature is limited only by
the insulation of the conductors [31]. A schematic representation of an SBM is shown
in Figure 2.6. The ability to regulate magnetic flux binding is the main advantage
of this technology. At part-load operation, iron and excitation losses can be reduced,
extending the high-efficiency operating range. The technology also offers high starting
torque. The control is simpler and robust cpmpared to the PMSM. The magnetizing
current undergoes Joule losses. Thus, the operating efficiency at full load is lower than
that of comparable machines with no current in the stator. The coal brushes of slip
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rings wear less than those of DC commutators and are virtually maintenance free [17].

Figure 2.6: Schematic representation of an SBM [17]

6. Permanent Magnet Hybrid motors:

There are different kinds of hybridization, namely the PM and reluctance hybrid, the
PM and hysteresis hybrid, and the PM and field-winding hybrid. Each type has the
merits of high efficiency, high power density, wide speed range, and quiet operation.
Their most important demerits are their low technological maturity and higher cost.

The recent improvement in motors designs and performance have made the Permanent
Magnet Synchronous Reluctance Motors (PMaSynRM) one of the most efficient motors
for EV applications. This high efficiency increases the range of the vehicle on a single
charge, which is an important feature for BEVs. This is why it has been adopted in the
latest Tesla Model 3 [32].

Similarly to the PMSM, the magnets used in PMaSynRM are usually made from alloys
that include rare earth materials such as Neodymium, terbium, dysprosium. They are
mainly extracted in China, the main supplier of rare earth materials in the world [33].
With this low resource variability, the rare earth prices and supply can be highly volatile
in the future which could disturb the efforts of making electric vehicles a sustainable
means of transportation. Hence, to bring more certainty to the future of electric vehi-
cles, many efforts are being made to reduce or eliminate the dependency on rare earth
permanent magnets in electric motors production. One of the alternatives is to replace
rare earth magnets with other types of magnets like ferrite magnets [34]. Among the
current mature motor technologies for electric vehicle applications, the PMaSynRM is
still gaining more interest because of its good performance and low dependence on rare
earth materials.

In Table 2.1, the results of comparative analysis of electric motors by a grading system
are depicted: each type of motor is evaluated through six major characteristics with rate
raking from 1 to 5 points. At the end of each column, there is the final rating. The
induction motor and PMSM motors have the highest ratings.

2.2.1.2 Stator topologies

1. Coreless Motors:
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Table 2.1: Evaluation of EV motors [35, 36]

DC Induction PMSM SR PM hybrid
motor motor motor motor motor

Power density 2.5 3.5 5 3.5 4
Efficiency 2.5 3.5 5 3.5 5
controllability 5 3 4 3 4
Reliability 3 5 4 5 4
Maturity 5 5 4 4 3
Cost 4 5 3 4 3
Total 22 25 25 23 23

Coreless machines (CM), consist of windings that are placed in a nonmagnetic material
stator. Thus, they have no iron losses. The absence of iron in the stator teeth increases
the reluctance of the magnetic circuit. The absence of iron weight and iron losses in
the stator compensates for the increased use of expensive active material in these motor
topologies. Coreless motors are present in high-performance applications, where weight
and efficiency prevail over economic considerations [37, 38].

2. Multiple-Phase Motors:

The standard three-phase power systems have many advantages: three is the minimum
number of phases that deliver constant power over each cycle. An increase in the number
of phases increases the complexity of the system. It is only recommended when special
performance is required. Intrinsic advantages of the three phases are a reduction in the
harmonic content, low acoustic noise, and an increase in efficiency and torque density.
However, fault tolerance and lower power rating per phase have been identified as the
main factors of multiple-phase motors’ adoption [39, 40]. Fault tolerance plays a key
role in fulfilling the safety requirements. Lower power ratings per phase allow the use of
robust and less-expensive power electronic devices. Sometimes, multiple-phase systems
consist of duplicate three-phase systems with an angle shift. In principle, any number
of phases above four is possible. Systems with more than three phases are uncommon in
road vehicles but are used in propulsion motors for ships and planes. The high torque
capability makes them suitable candidates for in-Wheel motors [41].

3. In-Wheel Motors:

In in-Wheel Motors (IWM), the outer diameter is limited to the space available inside
the wheel. They may be directly driven, although some designs include a planetary
gear and a brake disk [42]. In principle, all topologies are suitable, but PM motors
with outer rotors or axial-flux configurations have a better power density and volume
utilization. Additionally, there are in-wheel induction and RM configurations [43].

2.2.2 EV power converters

1. Converter topologies:

A power converter is an electrical device that connects the energy source to the motor. It
modulates the electrical energy voltage amplitude and frequency. The evolution of power
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converter topologies follows that of power devices. The evolution is basically toward
achieving higher power density, efficiency, controllability, and reliability. There are
several types of power converters, namely AC-DC, AC-AC at the same frequency, AC-
AC at different frequencies, DC-DC, and DC-AC. Electrical machines convert electrical
energy into mechanical energy using a rotating electromagnetic field that generates
torque. This rotating electromagnetic field is generated by a DC-AC Voltage Source
Inverter (VSI) powered by a DC link. Using vector control, the torque and speed
characteristics of the machine can be controlled from a user interface determined by
the drive cycle. Modern electric vehicle architectures are comprised of a DC battery, a
DC-DC boost converter required to step-up the battery voltage, a VSI, and an electric
machine for traction. Modern electric powertrains are also capable of regenerative
braking where the slowing down of the vehicle is initiated not by running the motor
as a generator. The AC power generated by the traction motor is then rectified by
the converter and used to recharge the battery thereby improving the energy efficiency
of the overall system. Figure 2.7 shows a typical example of such a powertrain from
Toyota.

Figure 2.7: Power control unit in the Toyota Prius [44]

The power electronic converter is critical to the efficiency and power density of the
electric powertrain system. The converter is voltage sourced since the DC side voltage
is constant and the DC side current determines the direction of power flow. It is also a
self-commutated converter since the phase-to-phase commutation of the current within
the converter is determined by the switching of the power electronic devices. The VSI
is a 2-level converter shown in Figure 2.8. It is composed of 6 power devices each with
an anti-parallel diode (S1 and S4, S3 and S6, and S5 and S2). The anti-parallel diodes
have the role to provide a path for the reverse current in each phase [27]. This converter
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has eight possible switching states two of them being redundant.

S1
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S3

S6

S5

S2

Cdc

ia ib ic

Figure 2.8: Two-level VSI [45, 46]

Generally, the Energy Storage System (ESS) delivers the required energy to the motor
through the DC-AC inverter. However, the power delivered by ESS has unstable charac-
teristics and considerable voltage drops [47]. The connection from the DC-DC converter
to the electric motor is established through a high-voltage DC bus followed by a DC-AC
inverter. Thus, DC-DC converters play a key role in converting the unregulated power
flow to a regulated one [48]. Some latest topologies of these converters for battery-fed
applications include resonant converters. They have either a parallel or series resonant
circuit, thus providing either zero-voltage-switching (ZVS) or zero-current switching
(ZCS) conditions. Outweighing the additional cost due to the resonant tank and in-
creased control complexity, they have the advantages of zero switching loss, low heat
sinking requirement, high power density, less severe EMI problem, very small acoustic
noise, and improved reliability. Because of these merits, resonant dc-link inverters have
promising applications for EV propulsion. A classification of the DC-DC converter has
been presented in [49] (Figure 2.9).

2. Power devices:

In the past few years, power device technology has made tremendous progress. These
power devices have grown in power rating and performance through an evolution-
ary process. The recently introduced power devices are the gate-turnoff thyristor
(GTO), power bipolar-junction transistor (BJT), power metal–oxide field-effect tran-
sistor (MOSFET), insulated-gate bipolar transistor (IGBT), static-induction transistor
(SIT), static–induction thyristor (SITH), and MOS-controlled thyristor (MCT) [50].

Active research is still being pursued on the development of high-performance power
devices. The selection of power devices for electric vehicle propulsion is generally based
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Figure 2.9: Classification of DC-DC converters [49]

on the requirements of the voltage rating, current rating, switching frequency, power
loss, and dynamic characteristics. The voltage rating depends on the battery’s nominal
voltage, maximum voltage during charging, and maximum voltage during regenerative
braking. The current rating depends on the motor’s peak power rating and the number
of devices connected in parallel. The switching frequency should be high enough to
reduce the acoustic noise, size of filters, and EMI problems. On the other hand, higher
switching frequencies increase the switching loss. Since an extra 1% efficiency in EV
propulsion can enable an additional distance in the EV driving range, the power loss
including both switching and conduction losses should be minimum. The dynamic
characteristic should be good enough to allow for high capability, high capability, simple
driving, and easy paralleling. The device protection, packaging, reliability, and cost
should also be considered [28]. Among the available power devices, the GTO, BJT,
MOSFET, IGBT, and MCT are particularly suitable for EV propulsion [51]. At present,
the IGBT is the most attractive because it possesses high input impedance and the high-
speed characteristics of a MOSFET with the conductivity characteristic of a BJT. A
typical IJBT-based inverter in Nissan Leaf drivetrain is shown in Figure 2.10.

Wide bandgap semiconductors such as SiC and GaN are two candidates being investi-
gated for future drive systems in electric vehicle applications. Toyota is involved in the
development of GaN devices [53]. The high-temperature operation, high switching fre-
quency, and high breakdown voltage properties of these wide bandgap semiconductors
make the SiC-based components for electric vehicle applications.

2.2.3 Electronic controllers
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Figure 2.10: IGBT-based inverter in Nissan Leaf [52]
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Conventional linear control such as PID can no longer satisfy the stringent requirements
placed on high-performance EV’s. In recent years, many modern control strategies such
as model-referencing adaptive control (MRAC), self-tuning control (STC), variable struc-
ture control (VSC), fuzzy control, and neural network control (NNC) have been proposed.
Both MRAC and STC have been successfully applied to EV propulsion [54]. Using sliding
mode, VSC has also been applied to motor drives [55]. By employing emerging technologies
of fuzzy logic and neural networks to realize the concept of intelligent controllers, fuzzy
control and NNC have promising applications for EV propulsion. In order to implement
the aforementioned modern control strategies, powerful microelectronic devices are nec-
essary. Modern microelectronic devices include microprocessors, microcontrollers, digital
signal processors (DSP), and transputers. Microprocessors are usually used to recognize
the milestone of the development of microelectronics such as the 8086, 80186, 80286, 80386,
80486, and Pentium. Unlike microprocessors, which are the CPU of microcomputer sys-
tems, microcontrollers include all resources to serve as standalone single-chip controllers.
Thus, microcontroller-based EV propulsion systems possess definite advantages of mini-
mum hardware [56]. The state-of-the-art microcontrollers are the 8096, 80196, and 80960.
DSPs such as the TMS32030, TMS32040, and i860 possess the capability of high-speed
floating-point computation which is very useful to implement sophisticated control algo-
rithms for high-performance EV propulsion systems. Transputers such as the T400, T800,
and T9000 are particularly designed for parallel processing applications. By employing
multiple chips of transputers, sophisticated control algorithms can be implemented.

2.3 Statistical study of electric motor faults

From the survey conducted by IEEE-IAS and EPRI cited in [57] on medium-sized induction
machines, and the one in [58] on medium to high-voltage large induction machines, it is
shown that the faults distribution in electrical machines is related to their sizes (Figure
2.11). For low-voltage electrical machines, bearing faults are the predominant faults. For
medium-voltage machines, the stator faults are of equivalent importance to the bearing
faults. However, for high-voltage machines, the stator faults are the predominant faults
and account for two-thirds of the total faults rate. The low bearing faults rate is mainly due
to the use of sleeve bearings, which are more fault-tolerant than rolling element bearings
used in low-voltage machines. Even though the stator winding of the medium voltage
motors is normally form-wound windings with advanced insulation, winding faults are still
common. This is due to the higher electrical and thermal stresses on medium-voltage
electrical machines. Similarly, as their rotors are also under high thermal, mechanical, and
electrical stresses, they are typically more vulnerable compared to those of small motors
[59, 16].
The investigation conducted in [62] on failure modes of an inverter feeding induction ma-
chines has identified the most important faults as input supply single phase to ground fault,
the dc link capacitor short-circuit, rectifier diode short-circuit, transistor base drive open
fault and transistor short-circuit. According to the survey in [63], power semiconductor
devices are ranked as the most fragile components, followed by capacitors and gate drives.
Figures 2.12 and 2.13 show the rates of most frequent faults encountered in an electric
powertrain’s power converter and energy conversion chain respectively.
A statistical study on the faults in electrified vehicles is not publicly available because
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Figure 2.11: Failure rates of electric machine main components:
a- Low voltage machines, b- Medium voltage
machine and c- High voltage machine [60, 61, 59]

Figure 2.12: Failure rates in power converter components
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Figure 2.13: Failure rates of components in the energy conversion chain [64]

of the low operating times of electrified vehicles and the manufacturers’ scarcity of data.
However, some statistics are available for similar devices used in other applications. In EV
applications electrical machines are reported to have at least 1 kV RMS voltage rating [65].
Traction battery pack voltages for hybrid and electric vehicles range from 120 V to 650 V
[66]. This analysis places the electric machines used in electric vehicle applications into the
family of high-voltage machines. Thus, the most common failure of electric machines in
EVs powertrain are related to stator winding followed by the bearing and the rotor faults
at equal rates (Figure 2.11). In the following, the different electric motor faults will be
analyzed with a focus on stator winding and rotor (airgap eccentricity) faults.

2.4 Electric motor faults in Electric vehicles

The complex and compact architecture and various operating modes of modern electric
vehicles (such as the traditional start–stop operation and regenerative braking) put much
stress on the electrical machines and drive systems used in the electric vehicle powertrain.
In addition, the vibratory and thermal constraints they are subjected to, increase the
probability of fault occur. The main faults in electrical machines can be electrical (winding
faults), magnetic (demagnetization faults), or mechanical (airgap eccentricity and bearing
faults) and they affect either the stator or the rotor.

2.4.1 Stator winding faults

As shown in the failure statistics graph in Figure 2.11 the stator winding fault is one of
the most in PMaSynRMs. Stator faults include various types of short-circuits as shown in
Figure 2.14: inter-turn short-circuits, short-circuits between the coils in one phase, phase-
to-phase short-circuits, phase-to-ground short-circuits and open-circuits [14]. However,
the most common situation is the inter-turn short-circuit. It is mainly caused by stator
winding insulation damage due to electrical stresses, mechanical stresses, and overload. An
imperceptible short circuit between adjacent turns can spread very quickly over the whole
winding, causing the main short-circuit. This results in a large circulating fault current
causing a significant temperature rise that degrades the windings’ insulation. Moreover,
stator winding faults can have a negative impact on rotor permanent magnets. Due to the
high temperature in the shorted part of the stator winding, a magnetic field higher than
magnet coercivity may occur leading to partial or complete irreversible demagnetization.
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Figure 2.14: Stator winding faults

2.4.2 Demagnetization faults

Any Permanent magnet (PM) material can be described by its magnetic hysteresis loop.
The most important part of this characteristic is its demagnetization part in the second
quadrant of the B-H plane. This section is used to analyse how the magnetic flux density
varies with the demagnetization field. The demagnetization curve of modern PM materials,
such as NdFeB and SmCo, is linear and it sharply drops when approaching the knee. The
operating point of a PM machine is at intersection of the load and magnetization curves
and this depends on the magnetic circuit configuration and current of the machine. The
operating point in the linear part of the demagnetization curve can move up and down
without leaving the curve and this behavior is called “reversible.” However, if due to any
reason, the operating point leaves the linear part and moves to under knee by demagne-
tization field, the PM will follow the other recoil line and residual flux density becomes
less than the main value. This is called “irreversible demagnetization” phenomenon. High
starting torque, symmetrical and asymmetrical short-circuit faults, and open-circuit faults
are the factors that increase the current of the machine and move the operating point under
the knee of the magnetization curve. As shown in Figure 2.15 (a), the operating point of
the PM machine is at point a′ under healthy condition, and it moves to point a” under
the previous faulty conditions. After removing the magnetic field, PM follows the dashed
line path and the residual flux density approaches B,

r with a value lower than Br [67].
The impact of heat on the demagnetization curve can facilitate the demagnetization oc-
currence due to demagnetization fields even in healthy operating conditions. Generally, by
temperature rise, the PM residual magnetic flux density Br decreases but the behavior of
the magnetic coercivity Hc changes depending on the different PMs. In ceramic PM, Hc

increases with the temperature rise while it is the opposite for SmCo and NdFeB PMs.
High-energy magnets such as NdFeB and SmCo lose coercivity as temperature rises [68].
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Figure 2.15 (b) shows an NdFeB PM performance under normal conditions when tempera-
ture rises from T1 to T2. As seen, even under normal conditions, temperature rise displaces
the operating point under the knee of magnetization curve. In this case, by changing the
PM operating point, it follows the recoil line c,, −B,,

r . If the temperature again decreases
to T1 , the operating point does not follow the previous demagnetization curve, and its
operating point is placed on the recoil line a,, −B,

r. In this case, PM has a lower residual
flux density and irreversible [69].

Figure 2.15: PM operating point (demagnetization curve and load line).
Irreversible demagnetization due to (a) external demagnetizing
MMF. (b) Operation at high temperature (SmCo- or
NdFeB-based magnets) [67]

Oxidation and corrosion change the metallurgical structure of modern PMs and lead to
irreversible demagnetization. Heat, humidity, and environments containing chlorides can
accelerate this process. In addition, graduate reduction of the PM strength, PM aging,
and PM damage (crack, chips, etc.) can also reduce the PM magnetic flux. Since the per-
meability of the PM is very similar to that in air, PM breakage does not cause unbalanced
inductances of the machine; so, its behavior is very similar to demagnetization [70].

2.4.3 Airgap eccentricity faults

Eccentricity faults are categorized into three groups: static, dynamic, and mixed. In the
case of static eccentricity fault, the axis of rotation OB coincides with the axis of rotor
OR but it is displaced from the stator axis OA. In the case of dynamic fault, the axis
of rotation OB coincides with the stator axis OA but not with the motor axis OR. In
mixed fault, the axis of rotation OB is different from both axis of the stator and rotor
(Figure 2.16). The main reasons for static eccentricity fault may be the oval shape of the
stator core, inaccurate positioning of the rotor or stator at the manufacturing stage, wrong
positioning of bearings, and bearings’ deterioration.
Dynamic eccentricity fault could result from an inclination of the rotor shaft, wearing of
bearings, mechanical resonance at critical speed, unbalanced magnetic pull due to static
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eccentricity fault, shaft misalignment, and unbalanced torque. In mixed eccentricity faults,
both static and dynamic eccentricity faults are present.
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Figure 2.16: Eccentricity fault types: a-Static, b-Dynamic, c-Mixed [71]

Eccentricity faults have undesirable impacts on the machine, including accelerated wearing
of bearings, unwanted and potentially harmful vibrations, increased losses, decreased effi-
ciency, and heating. If these faults are not handled in time, they would lead to rotor-stator
rub and subsequently destroy the stator core and windings [16].

2.4.4 Bearing faults

Rolling element bearings are key components in electric vehicle motors. They support
radial and axial loads by reducing rotational friction and hence carry heavy loads on the
machinery. They ensure critical optimal performance of the electrical machine [72]. The
most used bearings in electrical machines are ball ones. They consist of two rings, an inner
ring and an outer ring as shown in Figure 2.17. The inner race is normally mounted on
the motor shaft. The balls are located between the two rings.

Figure 2.17: Rolling element bearing [73]

The bearing faults consist of damage of rolling element, cage, inner, and outer race. These
faults may produce vibration and noise, flaking or spalling, and an increase in wearing.
The most common causes of bearing failure in electrical machines are poor road conditions,
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unbalanced tyres, overweight loads, and improper mounting. Other causes could be internal
stresses and inherent eccentricity; electrical stresses due to shaft current; environmental
stresses due to contamination and corrosion [74]. The most common bearing faults are
depicted in Figure 2.18 where the fault can be on the outer race (a), on the inner race (b),
and on the balls (c).

(a) (c)(b)

Figure 2.18: Bearing faults: a- outer race fault, b- inner race fault,
c- ball fault [75]

2.5 Power converter faults

Since the connection between different power components in an EV powertrain is estab-
lished by power electronic converters, the reliability of power electronic converters influ-
ences that of the whole powertrain. It is estimated that about 38% of the faults in variable
speed ac drives are due to failures of power devices [76]
Faults in power electronic converters can be divided into four levels: 1) switch-level; 2)
leg-level; 3) module-level; 4) system level [77]. As power electronic devices such as semi-
conductor switches are prone to fail, switch-level faults are commonly observed. Even such
a level of fault may result in strike of large-scale equipment, which significantly deterio-
rates the quality of power generation [78]. For instance, serious traffic accidents may occur
if the three-phase inverter fails owing to switch-level faults in an EV [79]. As shown in
Figure 2.12, the DC-link capacitor (F3 in Figure2.19) and semiconductor devices faults
are the most frequent faults in the power converters. They count for 61% and 30% of the
total converter faults respectively. The most usual switch faults are: open-circuit (F1 in
Figure2.19) and short-circuit (F2 in Figure2.19) [80].

2.5.1 Power switches Fault

2.5.1.1 Open-circuit faults

Converter open-circuit faults can occur because of external disconnection, and also bond
wires lift-off caused by excessive short-circuit current. After some time, it may cause ripples
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Figure 2.19: Potential inverter faults [81]

in the current and output voltage, output current distortion, and subsequent faults in other
components [82]. An open circuit fault can also be caused by a faulty gate drive signal.
The most prevalent causes are driver element breakage and a disconnection between the
driver circuit and the converters.

1. Bond wire lift-off

The bond wire lift-off faults can occur as a result of a short-circuit due to mechanical
issues in the converter circuit. The major causes are associated with a mismatch in
thermal expansion between Aluminium and Silicon, as well as significant temperature
gradients. The break begins at the bonding interface’s edge, and the bond wire eventu-
ally pulls off as the crack propagates to the weaker central bond region [83]. Normally,
the central emitter bond wires fail first, followed by the survivor bond wires. Bond wire
rupture is another failure mechanism that occurs after extended power cycle testing and
is slower than lift-off [84].

2. Gate driver faults

There are other reasons for faults in the gate driver circuit, including faulty power stage
transistors and unconnected cables between the gate drive circuit and the converters
[85]. The breakdown of the driver circuit may result in sporadic misfiring of converters,
reduced voltage, and overstressing of other transistors and capacitors. Abnormal work-
ing states in IGBT terminals can also cause driver failure. Continuous narrow voltage
spikes between emitter and collector may open the gate emitter resistance, whereas
IGBT collector fault current may cause gate-emitter resistance degradation [86]. Ther-
mal runaway or excessive power dissipation can occur as a result of gate open-circuit
failure [87], although an extensive study on the failure mechanism is still missing.

Furthermore, current IGBTs might have junction temperature as high as 150°C, imply-
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ing that the case temperature can reach 100°C, while most of the components in the
driver cannot function correctly at such high temperatures.

2.5.1.2 Short-circuit faults

A single short-circuit fault has the potential to destroy power converter as it causes an
uncontrolled high current. One of the major sources of short-circuit fault is thermal run-
away of the devices due to overload or unnatural operation. Moreover, short-circuit faults
can occur due to the following reasons.

1. High voltage breakdown faults

The high voltage spikes caused by a fast-dropping rate of stray inductance and collector
current can damage the converter circuit during the turn-off process [87]. This is because
the strong turn-off voltage spike and the electric field can exceed the critical field and
initiate faults in one or a few transistors, resulting in a significant increase of current and
temperature. After the voltage surge, the collector-emitter voltage decreases, collector
current of the transistor increases. Moreover, the gate driver circuit can fail because of
the significant rise in the gate driver circuit voltage [88].

2. Static or dynamic latch-up

Latch-up is a state in which the gate driver voltage no longer controls the collector
current, and it occurs whenever the transistor (NPN) is switched on and acts as a
transistor (PNP) [89]. There are two forms of IGBT latch-up: static latch-up and
dynamic latch-up. In general, for high collector currents, static latch-up occurs, which
turns on the NPN transistor by raising the voltage across the load resistance. Dynamic
latch-up occurs during transients by switching process, most commonly during switched
off, while the NPN transistor is driven by the displaced current via capacitance on
junction between the N-base and deep regions [90]. Dynamic latch-up can occur because
of two unique circumstances. One example is when the gate voltage decreases extremely
fast, causing an excess of displaced current to flow through gate and the resistance.

2.5.2 DC-link capacitor faults

Electrolyte capacitors may be the most vulnerable components in electric drives due to
their high degradation rate [91]. The failure of a DC capacitor results in DC supply voltage
ripples, and thus accelerates the failure of the rest of the components in the electric drive
system. The failure mechanisms of an aluminum electrolytic capacitor can be classified into
catastrophic faults (open circuit and short circuit) and degradation faults. The former type
of fault can be avoided through some aging tests, while the latter type of fault is inevitable
due to the physical limitations of the materials [92]. The degradation of DC capacitors
is often reflected in capacity decrease and ESR increase. High temperature, over-voltage,
and frequent charge and discharge are the root causes of capacitor degradation.
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2.6 Electric motor faults detection and diagnosis: State of the
art

A general fault detection and diagnosis flowchart is shown in Figure 2.20. It consists of five
steps. The first one is the modelling which is knowledge building. The model can be based
on analytical relations, language description, or historical data. The second step consists
of preprocessing the raw data in the most appropriate information domain to extract the
fault sensitivity features or signatures in the third step. The fourth and fifth steps are
dedicated to the analysis of features to make the final decision on the health states. In the
following, the different techniques applied in each step are reviewed.

Figure 2.20: General fault detection and diagnosis approach [93]

2.6.1 Modelling

The first step in the development of fault detection and diagnosis is to obtain prior knowl-
edge of the system that is the system representation. In addition, the system might be
subjected to different types of faults. For the development of a suitable diagnosis scheme,
it is important to obtain detailed knowledge about the nature and dynamics of such faults
[94].
System knowledge can be presented in explicit or implicit form. For example, the dy-
namics of a system might be explicitly accessible in the form of an empirical model or a
mathematical function [95]. In other cases, graphical approaches might be incorporated

29



Chapter 2. Reliability of the electric vehicles’ powertrain

to describe the system behavior [96]. Also, a knowledge-based, artificial neural network
and expert systems consisting of production rules and heuristics are examples of implicit
knowledge representation [97].
After system representation, the subsequent significant factor in the selection of the appro-
priate class of fault diagnosis is the type of faults. According to one of the classifications,
faults are categorized as hardware, software, and communication faults. Hardware faults
can further be classified according to the type of component failure: sensor faults, actu-
ator faults, and controller faults [98]. Another classification can be based on the nature
and dynamics of faults such as transient, permanent, intermittent, and incipient faults [99].
Transient faults are caused by sudden change; these faults disappear after a relatively short
time [100]. Permanent faults cause system damage which cannot be removed unless the
faulty component is replaced [101]. Intermittent faults have cyclic nature between active
and inactive states [102]. Incipient faults exhibit slow and gradual changes in the state of
faulty component variables [103].

2.6.2 Data collection

The purpose of the PMS for EV powertrain is to monitor its components and their health
status. Abnormal conditions (fault or failure) or degradation can be identified and diag-
nosed. A prognosis can also be done to predict the remaining useful life of the components.
The choice of the health monitoring technique mainly depends on the maintenance targets,
components under observation, motor drive, and cost as well. Health monitoring requires
measuring or estimating several pieces of information. For electrical machines, the most
used data are: phase currents, vibration, temperature, airgap torque, power, magnetic
flux, and acoustic emission [104]. Based on the investigations made in [105] and [106] a
summary is done in Table 2.2.

Table 2.2: Fault indicators for different motor faults [105, 106]

Fault Indicators

Motor faults C
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Winding
√ √ √ √ √ √

Demagnetization
√ √ √ √

Bearing
√ √ √ √ √

eccentricity
√ √

Rotor Shaft
√

Rotor core
√ √

Stator core
√ √
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The results in Table 2.2 show that phase currents and vibration signals are relevant mea-
surements to diagnose most of the faults in electrical machines. Stator current signature
monitoring can provide information on the machine’s health status without requiring addi-
tional sensors (which may be more expensive and less robust). Moreover, the stator current
is often already monitored for safety, as well as the control of power converters [105, 107].
The vibration, temperature, acoustic emission, and magnetic flux analysis techniques are
invasive and involve high costs for monitoring system development.
Different features can be extracted from the currents flowing in the stator windings. The
symmetrical components of the stator current for stator winding fault detection in a PMSM
[108]. The patterns of the stator current vector trajectory in the Concordia reference
frame are also used for the identification of stator turn faults and even fault severity
evaluation [109, 110]. The negative-sequence component has been also widely used as a
fault signature for stator winding failure. However, the negative sequence current can also
be caused by an unbalanced power supply or asymmetries. Therefore, it has been found
ineffective for fault diagnosis. The zero-sequence voltage [111], and negative-sequence
impedance [112] have been proposed as alternative solutions. For automotive applications,
more sophisticated signal processing techniques may be needed to deal with the wide
varying operating conditions. In the following various motor signal preprocessing and
feature extraction are reviewed.

2.6.3 Data preprocessing and feature extraction

The sensor data contain a number of features from the system, some of them hold the fault
signatures while some may not. Hence fault detection by analyzing the sensor raw data can
be very tedious because of the high number of features to analyze. Hence data preprocessing
is required to produce a set of features with the most important and compact facts from the
sensor data. The goal of the data preprocessing is to search for the distinguishing features
of the original sensor data that are invariant to irrelevant transformations of the input
[113]. This can be performed by selecting the appropriate information domain analysis
(time domain, frequency domain, or time-frequency domain), data dimension reduction,
etc.

2.6.3.1 Information domain analysis

1. Time domain analysis

Time-domain techniques are more effective when the component is analyzed under sta-
tionary conditions, but are also helpful for some non-stationary conditions. Statistical
features are usually calculated from this domain, and they provide basic information
about the signal acquired such as signal shape, tendencies, frequency ranges, etc [114].
For a variable X = (x1, . . . , xN ) of N samples, the most used statistical features are
shown in Table 2.3.

2. Frequency domain Analysis

A Frequency-domain analysis is based, first, on the transformation of the acquired
temporal array to the frequency-domain. The classical spectral analysis (by Fourier
transform) allows the analysis of a temporal signal in terms of individual frequency
components by analysing the parameters of each component. These techniques can
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Table 2.3: Statistical features [115]

Mean (µ) µ = 1
N

∑N
j=1 xj (2.1)

Root Mean Square (RMS) RMS =

√√√√ 1

N

N∑
j=1

(xj)2 (2.2)

Shape Factor (SF) SF =
RMS

1
N

∑N
j=1 |xj|

(2.3)

Crest Factor (F) F =
max(X)

RMS
(2.4)

Variance (σ2) σ2 =
1

N − 1

N∑
j=1

(xj − µ)2 (2.5)

Skewness (Skw) Skw =
1

N

N−1∑
j=1

(
xj − µ

σ

)3

(2.6)

Kurtosis (Kur) Kur =
1

N

N−1∑
j=1

(
xj − µ

σ

)4

(2.7)

extract spectral information but are not able to deal with non-stationary conditions.
The main techniques are non-parametric methods such as Discrete Fourier Transform,
parametric models, and high-resolution methods. Usually, the features extracted from
this domain consist of specific frequency bands that highlight a specific fault. One of
the most popular fault diagnosis techniques based on motor current analysis is Motor
Current Signature Analysis (MCSA) based on Fast Fourier Transform (FFT) [116].
However, the frequency domain analysis may fail to detect the fault from nonstationary
signals, that is the case in EV [117].

3. Time-Frequency domain Analysis

Time-Frequency domain analysis performs, simultaneously, time and frequency analysis,
mainly useful in case of transients of speed in the machine, where FFT causes averaging
mistakes as it has been shown before. The time and frequency resolutions are the main
reasons to select a specific time-frequency technique. The major drawback is that these
methods require a huge computational cost making them unavailable for dealing with big
datasets. Statistical features can also be calculated in this domain with proper segmen-
tation of the time-frequency maps to obtain enough resolution. The main techniques
are Short-Time Fourier Transform, Wavelet Transform, Discrete Wavelet Transform,
Hilbert Huang Transform, Empirical Mode Decomposition, and others [118, 119, 120].
Usually, the features extracted from this domain depend on the used technique. Statis-
tical features are also a popular choice in this domain.

2.6.3.2 Data dimension reduction

Working with high dimensional datasets complicates the fault diagnosis, not only because
of the possible presence of non-significant and redundant information in the data, but also
because a proper convergence of the algorithms could be compromised. For these reasons,
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there is a necessity to apply dimensionality reduction techniques in condition monitoring
applications [121]. Principal Component Analysis (PCA) is one of the most used techniques
for dimensionality reduction. It aims to find the linear projections that best capture the
variability of the data [122]. By working on the projections that maximize the variance
of the data, it is possible to highlight the anomalies that could appear during monitoring,
therefore, PCA is used often in fault detection.
Linear discriminant analysis (LDA) is another well-known technique for linear dimension-
ality reduction in multi-class problems. LDA attempts to maximize the linear separation
between data points belonging to different classes. In contrast to most other dimensionality
reduction techniques, LDA, as a feature extraction technique, finds a linear mapping that
maximizes the linear class separation in the low-dimensional representation of the data.
The criteria that are used to formulate linear class separation in LDA are the within-class
and the between-class scatter [123].

2.6.3.3 Other feature extraction techniques

The above signal-extracted statistical parameters and spectral properties are related to
data-driven approach of fault detection. Moreover, they can also be extracted in terms
of functional relationships among the process variables in quantitative model-based ap-
proaches, or qualitative rules in qualitative model-based approaches [124]. In the model-
based approaches, the features are generated from the dynamic analytical models. The
main model-based feature extraction techniques include parity space, observer, and pa-
rameter estimation [125].

2.6.4 Fault detection and identification methods

In the field of industrial machinery monitoring, many approaches regarding health monitor-
ing schemes have been proposed during the last decade. The information on the monitored
system’s healthy, and faulty conditions are analyzed to train a classifier capable of assess-
ing the condition of systems [126]. However, practical integration in the industry requires
dealing with challenging scenarios that classical fault diagnosis methodologies cannot ad-
dress. Unexpected events,like unpredicted fault scenarios, or deviations from the nominal
operation can occur during the lifetime of the machinery under monitoring. These new
operating conditions must be identified to avoid wrong diagnoses.
Detecting patterns different from those available during the training is called novelty de-
tection [127]. Fault diagnosis methodologies must be able to identify novel operating
conditions (novelty detection) while continuing the identification of the known fault sce-
narios. In this regard, the integration of novelty detection strategies into fault diagnosis
methodologies is the first step to developing a reliable condition monitoring system. This
can be done through probabilistic methods (Gaussian mixture models, Multivariate kernel
density estimators), and distance-based methods (Nearest neighbors). Some well-known
statistical and Artificial Intelligence approaches for fault detection and diagnosis are briefly
presented in the following.
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2.6.4.1 Statistical methods

The first statistical analyses introduced in fault diagnosis have been the univariate statis-
tical methods. They consist of examining statistical features of each system variable. This
makes the interpretation and diagnosis of a fault condition very difficult and convoluted
[128]. However, in a multivariate system like in electric vehicle applications, simultaneous
monitoring of individual variables separately will fail to recognize possible cross-correlations
that may exist and will increase the insensitivity of the control charts for detection of faults
conditions [129]. This can be quite misleading as not all the variables are independent and
only a few underlying events are driving the process at any one time. The extension of
these statistical methods is defined by the simultaneous monitoring and analysis of all the
variables. Some well known different multivariate statistical techniques are discriminant
analysis, cluster analysis, principal component analysis (PCA), and factor analysis (FA)
[130].

2.6.4.2 Artificial intelligence technique

The Artificial Intelligence (AI) methods detect faults through the finding of the changes
of patterns in the selected feature variables. They can be classified into supervised or
unsupervised learning-based, and regression-based methods. These algorithms are con-
stantly improved, and therefore, seem to be a promising research direction in the field of
fault diagnosis [131]. Machine Learning (ML) has become a very popular technique and
is an inherent part of the Artificial Intelligence (AI) field. Some usual ML algorithms are
Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN).
Other subcategories like Artificial Neural Networks (ANNs) and Deep Neural Networks
(DNN) are algorithms whose operation is inspired by the human brain operating principle
[132]. The usage of the above-mentioned methods can minimize human participation in
fault diagnosis and help in automating this process. The usage of ML-based classifiers,
and shallow and deep neural networks to detect various types of electric motor faults have
been demonstrated in [133, 134].

2.7 Conclusion

This chapter has shown general consideration and overview of the importance of fault
detection in electric vehicle’s powertrains. It is referred to as the first macro-objective
where the latest academic papers, reference books, and industrial publications were studied
for a more detailed understanding of the state of the art of fault detection and diagnosis
technologies in EV powertrains. The focus has been on:

• Description of the structure of a typical electric vehicle powertrain including the me-
chanical, electrical, and control components.

• Description of structure and operations of each system component with a focus on the
electric motor and power converter.

• Classification of the different methodologies of fault detection and diagnosis, their ad-
vantages and drawbacks.
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The ongoing of this thesis in the next chapter will be on a review of the different EV
powertrain modelling for fault diagnosis.
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Chapter 3

PMaSynRM modelling for fault diagnosis

3.1 Introduction

Modelling the conversion chain to include faults enables numerical simulation to be used to
evaluate diagnostic methods while avoiding costly and potentially destructive testing. The
models should be accurate under healthy and faulty conditions but also during transients
and steady-state to develop sensitive fault detection and diagnostic algorithms [135]. The
algorithms are expected to identify faults signatures even at their incipient stages despite
the nuisances [136].
Models of electrical machines can be broadly classified into analytical and Finite Element
Method (FEM) models. The analytical models are quite straightforward and fast but
less accurate due to the assumptions on materials properties and geometry. FEM models
help to address these assumptions but are computationally costly [137]. The combination
of these two modelling techniques leads to hybrid models, which can benefit from the
accuracy of numerical models and the computational speed of analytical models [138].
Figure 3.1 summarizes the different modelling techniques for Electrical Motors in terms of
computation time and accuracy.
In the following, first, the three modelling techniques will be presented. Second, the most
usual drive control techniques will be presented. Third, the model of the PMaSynRM motor
drive for fault analysis will be presented with the simulation and experimental validation.
Finally, the models of the different fault modes and their simulation results will be given.

3.2 PMaSynRM modelling

As stated in the previous chapter, the electrical machine of interest in the EV motor drive
system under study is a three-phase wounded stator PMaSynRM motor. It belongs to the
family of synchronous motors with an anisotropic rotor and permanent magnets as shown
in Figure 3.2. Similarly to the other machines in the same family, the torque produced by
the PMaSynRM is composed of the permanent magnet torque and the reluctance torque.
The permanent magnet torque is the torque due to the interaction between stator cur-
rents and the permanent magnets, while the reluctance torque is due to the asymmetry of
the magnetic circuit. The latter is generated to move the rotor to a position where the
reluctance is minimal [140].

3.2.1 Models Based on Coupled Circuits
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Figure 3.1: Electrical Motor modelling techniques [139]

Figure 3.2: Rotor structure of a PMaSynRM [141]
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One of the most widely used models (d− q model) is based on coupling circuits and vector
space decomposition. This model assumes symmetrical motors, linear iron permeability,
air-gap uniformity, or the absence of a tangential induction in the air-gap. All these
assumptions allow simplifying the resulting mathematical model that can be computed
quickly and is accurate enough for control purposes. However, under faulty conditions,
these assumptions may no longer be valid, and the model is no more relevant. In the
following, a review of the multiple coupled circuits model of the PMaSynRM and its d− q

reference frame decomposition will be presented.

3.2.1.1 Modelling in the natural frame

The multiple coupled circuits models are developed considering that the stator is composed
of multiple inductive circuits. Figure 3.3 shows the electrical equivalent circuit of a dynamic
model of the PMaSynRM. The Kirchhoff’s second law and Newton’s second law are applied
to the electrical and mechanical parts of the motor to obtain the analytical model.

• Electrical Part: From this sketch, the time domain stator voltage equation for a healthy
PMaSynRM in the 3-phase reference frame is written in matrix form as follows:

va

ebMca Lbb

ec
Lcc

ea
LaaRs

Rs

Rs

ia

ib

ic

vb

vc

Mab

Mbc

J

 Te

TL
Electrical Part Mechanical Part 

Figure 3.3: Equivalent circuit of a PMaSynRM [142]

vabc = Rs · iabc +
d

dt
ψabc (3.1)

Where vabc, Rs, iabc and ψabc are the vector of phase voltages, resistances matrix,
vector of phase currents and vector of flux-linkage, respectively [143].

vabc =
[
va vb vc

]T (3.2)

iabc =
[
ia ib ic

]T (3.3)

ψabc =
[
ψa ψb ψc

]T (3.4)
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It is assumed that the iron has an infinite permeability, and there is no magnetic sat-
uration. The flux-linkage composed of the flux linkages due to the stator current iabc
and rotor magnets ϕabc can be expressed as:

ψabc = Labc · iabc + ϕabc (3.5)

Where Labc is the matrix of self inductances Lii ∨ i ∈ [a, b, c] and mutual inductances
Mij ∨ ∈ i ̸= j matrix. Ra, Rb and Rc are stator phase a, b and c resistances.

Rs =

Ra 0 0
0 Rb 0
0 0 Rc

 (3.6)

Labc =

Laa Mab Mac

Mba Lbb Mbc

Mca Mcb Lcc

 (3.7)

ϕabc = ϕPM

 cos θe
cos(θe − 2π/3)
cos(θe + 2π/3)

 (3.8)

θe is rotor angular position (electrical) and ϕPM is the peak value of the permanent
magnet flux linkage. In the flux linkage equations, inductances depend on θe. Neglecting
higher order harmonics, each self and mutual inductance is composed of a DC value and
a second harmonic component as follows [144]:

Laa = Lls + L0s + L2s cos(2θe)

Lbb = Lls + L0s + L2s cos(2θe − 4π/3)

Lcc = Lls + L0s + L2s cos(2θe + 4π/3))

Mab = −1

2
L0s − L2s cos(2θe − 2π/3)

Mbc = −1

2
L0s − L2s cos(2θe)

Mca = −1

2
L0s − L2s cos(2θe + 2π/3)

where Lls is the phase leakage inductance. L0s and L2s represent the average induc-
tances due to space fundamental air-gap flux and the fluctuation due to the saliency,
respectively. They can be expressed as follows:

L0s = µrlN2
s

(π
8

)(
1

gmin
+

1

gmax

)
(3.9)

L2s = µrlN2
s

(π
8

)(
1

gmin
− 1

gmax

)
(3.10)

Where gmin and gmax represent the d−axis and q−axis equivalent air-gaps, respectively.
r, l and Ns denote the radius, core length, and number of turns in series per phase. The
motor flux-linkage equation becomes:
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ψa =
(
Lls +

3
2L0s +

1
2L2scos(2θe)

)
ia +

√
3
2 L2ssin(2θe)(ic − ib) + ϕPMcos(θe)

ψb =
(
Lls +

3
2L0s +

1
2L2scos(2θe − 4π/3)

)
ib +

√
3
2 L2ssin(2θe − 4π/3)(ia − ic)+

ϕPMcos(θe − 2π/3)

ψc =
(
Lls +

3
2L0s +

1
2L2scos(2θe + 4π/3)

)
ic +

√
3
2 L2ssin(2θe + 4π/3)(ib − ia)+

ϕPMcos(θe + 2π/3)
(3.11)

• Mechanical Part: From Figure 3.3 the mechanical model of the motor with its load is
expressed using Newton’s second law as follows:

d2θm
dt

=
1

J
(Te − TL −Bθ̇m) (3.12)

Where θm represents the mechanical angular displacement of the rotor θm = θe
np

, np
is the motor pole-pair number. θ̇m also represented by ωm is the mechanical angular
velocity of the rotor. J , B, and TL are the moment of inertia, friction coefficient, and
load torque, respectively. Te, the electromagnetic torque can be calculated from the
co-energy Wc, expressed by:

Wc =
1

2
Labc · I2abc + Iabc · ϕabc +WPM (3.13)

Where WPM is the energy stored in the permanent magnets. Thus,

Te = np
∂Wc

∂θe
(3.14)

3.2.1.2 Modelling in the synchronous rotating frame

To minimize the complexity in solving the differential equation 3.1, the model is projected
into the (d − q) reference frame attached to the rotating field. The three-phase stator
voltages, currents, and flux linkages are first transformed into their equivalent two-phase
coordinates in the stationary reference frame α−β. This transformation is known as Clarke
(or Concordia) transformation. To eliminate the time-varying parameters, a rotation is
introduced. The combination of the two transformations, known as Park transform is
illustrated in Figure 3.4.
As it is shown, α-axis and β-axis are orthogonal. In order for the transformation to
be invertible, a third variable, known as the zero-sequence component 0, is added. The
equation of the Clarke transform of a three-phase variable fabc into a stationary variable
fαβ0 using the transformation matrix Tαβ0 is given by:

fαβ0 = Tαβ0 · fabc (3.15)

Tαβ0 =

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

 (3.16)
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Figure 3.4: Coordinate transformations abc to α− β and α− β to d− q

The inverse transformation matrix Tαβ0
−1 is given by:

fabc = Tαβ0
−1 · fαβ0 (3.17)

Tαβ0
−1 =

 1 0 1

−1
2

√
3
2 1

−1
2 −

√
3
2 1

 (3.18)

Now that the three-phase variables are expressed in the α− β stationary reference frame,
they can be transformed into d− q rotating reference frame using Park transform matrix
Tdq0(θe). This leads to the voltages, currents, flux linkages and inductance equations
having time-invariant coefficients. The transformation of a variable fαβ0 into fdq0 is shown
as follows:

fdq0 = Tdq0(θe) · fabc (3.19)

Tdq0(θe) =

cos(θe) cos(θe − 2π/3) cos(θe + 2π/3)
sin(θe) sin(θe − 2π/3) sin(θe + 2π/3)

1
2

1
2

1
2

 (3.20)

θe is the angular position of the Park’s reference frame. The inverse transformation can
be written as follows:

fαβ0 = Tdq0
−1(θe) · fdq0 (3.21)

Tdq0
−1(θ) =

 cos(θe) sin(θe) 1
cos(θe − 2π/3) sin(θe − 2π/3) 1
cos(θe + 2π/3) sin(θe + 2π/3) 1

 (3.22)
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Equation 3.1, (vabc = Rs · iabc + d
dtψabc), can then be written as:

Tαβ0
−1 ·Tdq0

−1(θe) · vdq = Rs ·Tαβ0
−1 ·Tdq0

−1iabc+
d
dt

(
Tαβ0

−1 ·Tdq0
−1 · ψdq

) (3.23)

Let a transformation matrix K−1 defined as K−1 = Tαβ0
−1 ·Tdq0

−1(θe).

K−1 · vdq = Rs ·K−1 · idq + dK−1

dt · ψdq +K−1 · dψdq

dt
(3.24)

Multiplying each term of the equation by K, we get:

vdq = Rs · idq +KdK−1

dt · ψdq +
dψdq

dt
(3.25)

ψdq = Kψabc, from Equation 3.5, (ψabc = Labc · iabc + ϕabc), ψdq can be written as:

ψdq = K · Labc · iabc +K · ϕabc (3.26)

ψd =
(
Lls +

3
2L0s +

1
2L2s

)
id + ϕPM

ψq =
(
Lls +

3
2L0s − 1

2L2s

)
iq

(3.27)

Let Ld = Lls +
3
2L0s +

1
2L2s and Lq = Lls +

3
2L0s − 1

2L2s be the stator inductances in the
d− q reference frame. The stator voltage equations become as follows:

vd = Rsid + Ld
did
dt − ωeLqiq

vq = Rsiq + Lq
diq
dt + ωe(Ldid + ϕPM )

(3.28)

From these equations, the phasor of the PMaSynRM in the d− q reference frame is shown
in Figure 3.5.

q-axis

d-axis










iiq

v

id

jLqiq

Ldid

e d dj L i

PMj

e q qL i−
e PMj−

Figure 3.5: Phasor diagram of a PMaSynRM [145]

42



Chapter 3. PMaSynRM modelling for fault diagnosis

In the following, the derivation of the electromagnetic torque Te is detailed. The instanta-
neous input power P can be calculated as [146]:

P = vaia + vbib + vcic (3.29)

It can be expressed in the d− q reference frame, as:

P =
3

2
(vdid + vqiq) (3.30)

After replacing vd and vq from 3.28, the mechanical power can be obtained :

Pmec =
3

2
(ωeψdiq − ωeψqid) (3.31)

It can also be expressed as:

Pmec = Teωm (3.32)

Where ωm is the rotor mechanical speed (ωm = ωe
np

). Then, substituting 3.27, the electro-
magnetic torque is expressed as:

Te =
3

2
np ((Ld − Lq)idiq + ϕPM iq) (3.33)

3.2.1.3 Modelling of motor faults based on Coupled Circuits

The method of Multiple Coupled Circuits has been used to model different types of stator
and rotor faults as shown in Table 3.1.

Table 3.1: Coupled Circuits models of electric motor including faults

Multiple Coupled Circuit Models Models in d− q reference frame

Fault References Fault References

Stator short-circuit [147, 148, 149] Stator short-circuit [150, 151, 152]
Stator open-circuit [149] Stator open-circuit [153]
Static eccentricity [154, 155, 156] Static eccentricity [157, 158]
Dynamic eccentricity [154, 159, 156] Dynamic eccentricity [160, 157]
Mixed eccentricity [154, 161] Mixed eccentricity [162]
- - Bearing fault (race defect) [163]

The most critical issue when modelling faulty electrical machines is to provide the actual
values of the parameters under faulty conditions. Regarding stator resistances, they are
usually estimated through the examination of the dimensions of conducting paths. Another
challenge is to accurately evaluate the coupling effects in a faulty machine. The Winding
Function Approach (WFA) is one of the most popular methods to evaluate the stator
self and mutual inductances under faulty conditions [147]. It consists of integrating the
winding functions to obtain phase inductances. The integrals could be complex and time-
consuming. To reduce the computation time, a method based on a single discrete circular
convolution is proposed in [164]. With this solution, the mutual inductances of two phases
are calculated for each relative angular position with a single equation that is solved with
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Fast Fourier Transform. Although WFA includes the effect of space harmonics, it usually
assumes the symmetry of the main magnetic circuit, which makes it unsuitable for the
analysis of eccentricity faults, as shown in [165]. To overcome this drawback, the Modified
Winding Function Approach (MWFA) method, which considers air-gap eccentricity for the
inductance calculation is proposed. It can reproduce the effects of static, dynamic, or mixed
eccentricity [154]. The models based on Multiple Coupled Circuits and their variants,
such as WFA and MWFA, consider the geometry and winding layout of the machine
without any restriction regarding the symmetry of the stator windings. Moreover, the
effect of space harmonics is considered. Consequently, these models are suitable to analyze
electrical motors with arbitrarily connected windings, and under unbalanced operating
conditions[166].

3.2.2 Finite Element models

Finite Element Method (FEM) aims to model complex systems in which several physics
interact, where different kinds of physical effects act simultaneously. Its basic concept is
to model a problem domain by dividing it into small parts. The solutions for the entire
problem domain are then obtained by combining the elements with continuity between
elements ensured. The necessary boundary conditions are then imposed. For an electric
machine, this analysis helps to predict physical behaviors. Regarding electrical machines,
FEM can be used for:

• Electromagnetic finite element analysis,

• Thermal finite element analysis

• Mechanical Strength finite element analysis

In this PhD thesis, only the electromagnetic finite element analysis will be considered. From
the FEM model the magnetic and geometric characteristics of the machine will be used to
compute the magnetic field distribution that reflects the phenomenon in the stator, rotor,
and mechanical parts [167]. Moreover, the FEM allows calculating parameters such as
the magnetic flux density, inductances, and electromagnetic torque while including spatial
harmonic effects and split winding pattern [168].
It has been shown that the analytical model of the PMaSynRM is composed of partial
differential equations. These equations are tedious to solve analytically because of the
complexity of the domain under study, the nonlinearity of the material properties, and
dynamic time behaviour. These limitations of the analytical model can be overcome with
the FEM [169].
In the following, the theory of finite element analysis for electric motor modeling will be
presented. The mathematical model will be first derived, and then the FEM technique will
be applied to obtain the finite element model.

3.2.2.1 Mathematical model

The fundamental basis of applying numerical methods is the modelling of electric machines.
Electric machines receive power from external sources through electric circuits. This in
turn requires the modelling of electromagnetic fields inside the machine to be coupled with
electric circuit analysis. Moreover, electric machines are electro-mechanical conversion
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devices. It is also important to take into account the interactions of electromagnetic fields,
mechanical forces, and motions. Therefore comprehensive modelling of electromagnetic
fields, circuits, and mechanical motion of an electrical machine system should be considered
together. The mechanical motion equation has been derived in 3.12: d2θm

dt = 1
J (Te − TL −

Bθ̇m).

1. Modelling of Electromagnetic Fields

Maxwell’s equations are generally used to describe electromagnetic phenomena. The
fundamental equations contain only fields and are described as follows:

∇×E = −∂B
∂t

∇ ·B = 0
(3.34)

Where E is the electric field vector and B magnetic flux density vector. The relation-
ships between the fields and the sources are expressed as follows:

∇×H = ∂D
∂t + J

∇ ·D = ρ
(3.35)

Where H is the magnetic field vector, D electric flux density vector, ρ electric charge
density and J electric current density. For electrical machines, the quasi-static approxi-
mation is widely used. It states that displacement currents are negligible in comparison
to the imposed currents. Moreover, electric charges are also negligible.

∣∣∣∣∂D∂t
∣∣∣∣ ≪ J, |ρ| ≪ 1

Maxwell’s equation in the quasi-static assumption is summarized as follows:

∇×H = J

∇×E = −∂B
∂t

(3.36)

To solve this system of equations, materials constitutive laws are required. They are
expressed as follows [170]:

B = µ0µrH
J = σ (E+ υ +B)

(3.37)

Where µ0 is the magnetic permeability of free space, µr relative permeability, σ mate-
rial electric conductivity, and υ velocity of the material of interest in a given reference
frame. µr and σ depend on electromagnetic fields and other parameters such as time,
temperature, and mechanical strain. If a system involves a moving region as an electric
machine, the term with velocity in Equation 3.37 requires special attention. A coordi-
nate system in which all the variables are fixed to the material is adopted. Hence the
velocity is always zero in its own coordinate system [171].

Formulation Using the Magnetic Vector Potential

Since B is divergence-free (∇·B = 0), a magnetic vector potential A can be found such
that:
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B = ∇×A (3.38)

Thus, equations in 3.36 can be combined into one equation:

∇×E+
∂B

∂t
= ∇×

(
E+

∂A

∂t

)
= 0 (3.39)

With equation 3.39, the current density with respect to a fixed-to-material frame can
be written as:

J = σE = σ

(
−∂A
∂t

−∇Φ

)
(3.40)

Replacing equation 3.40 in ∇×H = J, we get:

∇×
(

1

µ0µr
∇×A

)
= σ

(
−∂A
∂t

−∇Φ

)
(3.41)

Given the assumptions of 2D analysis, the magnetic induction is defined only in the Oxy
plane. Therefore, the magnetic vector potential A = Ak and current density J = Jk

have only one component, where k is the unit vector in the z direction. Thus, equation
3.41 can be simplified as:

1

µ0µr
∇2A = σ

(
∂A

∂t
+∇Φ

)
(3.42)

In electric motor with PMs, the PMs are often characterized in the second quadrant of
their magnetization curve. The usual parameters for describing a PM are the remanant
flux density B0 and the coercive magnetic field Hc (whose value is negative). The
relative permeability of PM is usually taken as 1. In presence of PMs in an electric
machine, equation 3.42 becomes:

1

µ0µr
∇2 ×A = σ

(
−∂A
∂t

−∇Φ

)
− ∂

∂x

1

µ
Boy +

∂

∂y

1

µ
Box (3.43)

The last two terms characterize the PMs, where Box and Boy are B0 x and y compo-
nents, respectively.

2. Circuit Equations

The approach to analyzing electrical machines commonly involves two-dimensional nu-
merical methods with specified current sources for the conductors. The knowledge of
input currents is essential for the successful field analysis of electrical devices. However,
in practice, electric devices are mostly connected to voltage sources rather than current
sources. Therefore, analysis of field problems with a voltage source is preferred. Circuit
equations representing the relations between currents and voltages are needed. The
coupling of circuit equations to the field analysis is necessary. The general governing
equation for stator phase circuits in electrical machines is:
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Vs = Rsis + Le
dis
dt + 1

ms

(∫ ∫
Ω+

∂A
∂t dxdy −

∫ ∫
Ω−

∂A
∂t dxdy

)
= Rsis + Le

dis
dt + Vi

(3.44)

Where

Vs = applied stator phase voltage

is = stator phase current

Rs = total equivalent resistance per phase

Le = total equivalent inductance of end winding

l = the length of stator windings in Z-direction,

m = number of stator winding branches in parallel connection

s = equivalent cross section area of one turn of stator windings

Ω+,Ω− = total cross section area of ’go’ and ’return’ windings

per phase respectively

Vi = induced voltage per phase

Equation 3.44 describes the relationship between external voltage source Vs, current is
and vector potential A. Therefore we can calculate the field value A directly from the
external voltage source Vs. It is quite effective in the computation of two dimensional
electromagnetic fields with coupled external voltage sources[172].

3.2.2.2 Finite Element Analysis

Finite element method is a numerical tool used in solving partial differential equations in
a given domain including the boundary conditions. Variational principle or the method of
weighted residuals is used to derive the finite element equations [173]. The fundamental
concept of the method is to divide the problem domain into a number of small subregions or
elements. The unknown field values are approximated in those elements by simple shape
functions, mostly linear or quadratic. After the finite element formulation of governing
equation in each element and the assembly of all the elements, a large linear system of
equations is generated. The solution to this system of equations gives the field values of
the whole problem domain. Compared with other numerical methods, the main advantages
of finite element methods are its flexibility for modelling complex geometries, the capability
of handling nonlinearities and eddy currents, easy implementation and stable solutions.
In general, the following steps are involved in the finite element method:

• Define the problem of interest by partial differential equations;

• Subdivide the problem field region into many small subregions;

• Choose the interpolation function in terms of the nodal vales of the elements;

• Derive the finite element equations within each element in terms of energy related
functions or weighted residual expressions;

• Assembly of the element equations and the global system of equations is generated;

• Impose boundary conditions;
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• Solve the global system of equations with appropriate methods;

• Convert the field solutions to useful design quantities.

When the finite element field analysis is coupled with circuit analysis and mechanical
motion, the following steps should also be included:

• the discretization of equations in time domain;

• the combination of field equations with the circuit equations;

• the simulation of the rotor motion [172].

3.2.2.3 Finite element modelling of Motor Faults

Finite element methods are used to model different stator and rotor faults fault types
in electrical motors as shown in Table 3.2. As an example in [174] the effects of static
eccentricity on electromagnetic parameters such as voltage, speed, torque, flux density, and
flux distribution for a faulty motor are accurately represented through a Time Stepping
Finite Element Method (TSFEM).

Table 3.2: Finite element models of electric motor faults

Fault References

Stator short-circuit [175, 176, 177]
Static eccentricity [175, 174, 178]
Dynamic eccentricity [179]
Mixed eccentricity [180, 181]
Bearing fault (race defect) [182, 183]

Although these models often produce better results in terms of accuracy, they require a
significant computational capacity. Differences of 8h for a FEM analysis versus 1 min
for the same analysis using WFA have been reported in [184]. On the other hand, the
assumption of machine symmetry, which would reduce meshing and computing time, can no
longer be maintained under faulty conditions [175]. These drawbacks limit the application
of the Finite Element approach for the development of online fault diagnosis systems or
Artificial Intelligence-based fault diagnosis systems. Indeed, it will require a wide range of
scenarios including several fault severities and fault combinations. The evaluation of each
scenario requires the simulation of the FEM model. Running these models in hardware
simulators, which would allow for reducing simulation times, is still challenging [185].

3.2.3 Hybrid models

As mentioned above, the modelling based on FEM is very accurate but requires much
computing power and long running times, when compared with analytical models. How-
ever, analytical models assume some simplifications, which affect their accuracy and often
make them unsuitable for fault diagnosis. The combination of FEM and analytical models
leads to a hybrid model that can be run in real-time simulators with a high accuracy [185].
These models use FEM to preset accurately the analytical model parameters, allowing
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them to be run in real-time simulators, which is a need for fault diagnosis [186, 187]. For
example, in [175] a hybrid model in d− q frame, through Equations 3.28- 3.33, and finite
element analysis is developed for modelling short circuit faults in induction motor drives.
It proposes the integration of the model with real-time simulators. In [188], an analytical
model with the accuracy of FEM is proposed. This analytical model is implemented in a
real-time simulator for testing different static eccentricities. Thereby, simulation times and
memory resources are significantly reduced. Similarly, in [189], a complete geometry of an
induction motor is solved through FEM to compute the coupling parameters exported to
the analytical model. In this case, FEM analysis runs in parallel on multiple processors
to speed up the simulations. Despite the improvements, these approaches still require a
large number of simulations and memory resources to obtain the coupling parameters. In
an attempt to overcome these issues, in [138], sparse identification is proposed to obtain
a faulty motor model, reducing the required number of FEM simulations while keeping a
good accuracy.

3.3 Controller design for the PMaSynRM drive

The efficient operation of PMaSynRM as part of adjustable electric drives demands a
careful choice of control system. There are many ways of designing a PMaSynRM control
system. The concept of vector control, which allows controlling voltage and flux space
vectors (magnitude, angular frequency, and instantaneous position), is common in modern
high-performance AC motor drives.
The principle of vector control of an induction motor was proposed for the first time in
[190] in 1972. In 1989, P. Pillay and R. Krishnan demonstrated the possibility of using a
field-oriented control circuit for a PMSM [191]. Over the past decades, many variations
have been proposed. The most usual vector control techniques can be classified into Field
Oriented Control (FOC) and Direct Torque Control (DTC). The vector control techniques
can differ depending on the type of current or speed controller that may induce different
implementation structures and requirements: PI, Fuzzy Logic (FLC), and Model Predictive
Controller (MPC) are among the most popular speed controllers [192]. In the following,
the two main vector control techniques will be presented.

3.3.1 Field Oriented Control techniques

The FOC’s simplified block diagram for a PMaSynRM drive with a rotor position sensor
is shown in Figure 3.6.
In this circuit, the stator phase currents are measured and transformed to a two-phase
α − β system via Clarke Transformation. The value of the rotor angle, measured with a
position sensor or estimated, is used for the Park Transformation. In accordance with the
reference speed signals and the d-component of the stator current, taking into account the
feedback signals, a decoupled control of the torque and the excitation flux is carried out.
The FOC can be designed with (direct) or without a position sensor (indirect or sensorless).
In the first case, the control is faster and more accurate. However, in several applications,
a sensor is not suitable for reliability and cost issues [192]. A comparative analysis of the
characteristics of a Field Oriented Controlled electric drive with a rotor position sensor
using various speed regulators is provided in [192]. The following requirements are usually
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Figure 3.6: FOC for PMaSynRM

retained:

• Sart-up stator current overshoots,

• Transient process period at no-load start-up and at loading in a steady state,

• Maximum torque and speed overshoot.

According to the Simulink simulation results presented in [192], it can be concluded that
the application of PI controller leads to significant current peaks at start-up, relatively
long settling time, and speed overshoot, as well as torque ripples. MPC provides minimal
current peaks and almost no speed or torque overshoots. FLC leads to lower overshoot,
but the transient is longer. The peak in currents amplitude at start-up is slightly higher
than for MPC.

3.3.2 Direct Torque Control techniques

DTC has a more simple structure than FOC as shown in Figure 3.7. It does not require a
PWM inverter with PWM, a speed sensor, and reference frame transformations.
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All the calculations are performed in the stator reference frame and the exact rotor position
of the rotor is not required (except in the start-up case of the synchronous motor). The
requirements for the computational capabilities of the controllers are relatively low. DTC
has high dynamic characteristics with quick response to load changes and is less sensitive
to motor parameters variations, and disturbances. However, the steady-state operation is
characterized with high ripples in the stator current, flux linkage, and torque, especially
at low speeds, which greatly limit its application to high-precision drives [193].
The most common DTC is combined with Space Vector Modulation (SVM) that uses pulse
width modulation to generate the voltage. There are several variations that significantly
improve the efficiency of the control, compared to the original DTC. They provide reduction
in the ripples , the control is carried out more smoothly, and start-up and running of the
motor at low speeds is more stable. Meanwhile, with its high dynamics, this technique is
still capable of ensuring FOC control accuracy [194].

3.4 Hybrid model of the PMaSynRM motor drive

For our study, we develop a hybrid model based on the combination of an analytical model
in the three-phase reference frame and a finite element model. The analytical model is
based on the concept of inductances. Thus, to develop the model for fault analysis, we
will calculate the inductances in healthy and faulty modes by Finite Element Analysis,
and store them in N-dimensional lookup tables (LUT) that will be used in the analytical
model. The flowchart of the modelling approach is displayed in Figure 3.8.
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3.4.1 Analytical-finite element model of the PMaSynRM

3.4.1.1 Self and mutual inductances computation

The finite element model of the PMaSynRM is designed with FEMM software [195]. The
electromagnetic torque, flux, and flux density can be calculated for each excitation current
I and rotor position θm. When the coil is energized with a current source I, the flux can
be computed from the magnetic vector potential A in the coil region as follows:

ψ =
1

I

∫
ΩW

A · JdΩ (3.45)

Where J is the given current density in the winding region and ΩW is the volume of the
winding [196]. To determine a mutual inductance of a winding, it is interesting to compute
the flux linkage of coils with zero current, in this case, the above equation is not applicable
since I = 0. On the other hand, considering that the coil whose flux linkage is to be
computed surrounds another coil with non-zero current, a simply connected domain Ω′

W

that incorporates the winding region Ωw is defined. This does not include any portion of
any other coil (Figure 3.9). The flux linkage can be expressed with the help of the turn
density function t = J/I. The equation 3.45 can now be written as:

Figure 3.9: Selection of the connected domain Ω′
W [196]

ψ =

∫
ΩW

A · tdΩ (3.46)

The turn density can be expressed as:

t = curl Tu (3.47)

Where Tu is the current vector potential due to unit current. It has been proved in [196]
that the knowledge of the magnetic flux density from the finite element solution is sufficient
to compute the flux linkage of any coil, provided the vector potential corresponding to its
turn density function is available. Because of no excitation current in Ω′

W the turn density
is zero everywhere outside ΩW . By extension, the flux in Ω′

W can be estimated as:
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ψ =

∫
Ω′

W

Tu ·BdΩ+

∮
Γ′
W

ψuB · ndΓ (3.48)

Let ψu be a normalised total magnetic scalar potential on Γ′
W , so that Tu is its negative

gradient as follows:

Tu = −gradψu on Γ′
W (3.49)

In the PMaSynRM, the relationship between currents and fluxes is non-linear, and the
rotor angular position must be considered to include the effects of cross-magnetization.
Therefore, flux linkages ψ are multivariate functions, as shown in the following equation
where ia, ib, ic and θe are the 3-phase currents and the rotor angular position (electrical)
[197], respectively.

ψ = f (ia, ib, ic, θe) (3.50)

The computation of the self and mutual inductances Lii and Mij is as follows [198]:

Lii =
ψii
ii
,∨i ∈ [a, b, c],Mij =

ψij
ij

∨ ∈ i ̸= j (3.51)

Where ψii is the induced magnetic flux linkage in phase i windings produced by the current
flowing in phase i. It is computed using equation 3.45. ψij is the induced magnetic flux
linkage in phase i windings produced by the current flowing in phase j. It is computed
using equation 3.48. These calculated flux linkages give access to the self and mutual
inductances. However, in the PMaSynRM, there is a coupling between the fields from
the armature current and permanent magnets. Because the inductances are linked to the
contribution of the flux from the armature current, the frozen permeabilities technique is
used to accurately separate the contributions [199], which is most critical when the motor
runs under saturated conditions. To turn off the magnets, their magnetic coercivity Hc of
the magnets is set to zero.

3.4.1.2 End-winding inductance computation

The self inductances of the motor windings are composed of several components due to
(co)energy stored in the back iron, the air gap, the slots, and the end turns. The 2-D
model of the motor considers only the effects in the back iron, the airgap, and the slots,
but fails to including the windings end turns effect. The 3-D motor model that can handle
this issue is out of the scope of this PhD thesis. The end winding inductances are generally
neglected even if they can be a significant component of the inductances for motors with a
low length/diameter ratio. To improve the accuracy of the inductances computed with the
2-D finite element model, the analytical expression of the end winding leakage inductances
is included. Its expression is as follows [200]:

Lω =
4m

Q
qN2

s µ0lωλω (3.52)

Where the average length of the end winding lω and the product lωλω are defined as:

lω = 2leω +Weω

lωλω = 2leωλeω +WeωλW
(3.53)
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And m is the number of motor winding phases, Ns the number of turns of the winding coils,
Q the number of slots and q the number of slots per pole per phase and µ0 the vacuum
permeability. Finally, leω is the average conductor length of winding overhang, Weω the
coil span and λleω and λW the corresponding permeance factors. The permeance factor
table is provided in the appendix (Figure A.1). The end-winding inductance term is added
to the self inductances computed from the FEM. To the discrete data Labc(ia, ib, ia, θe) is
stored in 4-D lookup tables and will be used in the analytical model shown in Figure 3.8.

3.4.2 FOC for the hybrid model of the PMaSynRM

For EV applications, an efficient control algorithm is needed. It can be realized by em-
ploying a mixed feedforward and feedback algorithm to operate the electric motor at its
maximum capacity and efficiency. For the control of our hybrid analytical-FEM of the
PMaSynRM, we adopt the typical FOC with three PI controllers: two designed for cur-
rents id and iq control loops, and one for the speed control loop. In accordance with the
parametric formulations delineated by equation 3.28 for the PMaSynRM model, it is de-
duced that the system representation of the PMaSynRM is inherently characterized as a
Multiple-Input Multiple-Output configuration. This classification stems from the presence
of cross-couplings between the d− axis and q − axis, manifesting as interactions denoted
by variables −ωeLqiq and ωe(Ldid+ϕPM ). Consequently, a feed-forward control is required
to mitigate these coupled effects and facilitate independent control of the d and q current
components. This feed-forward requires the assessment of the motor inductances in the
d − q reference frame. The term ωeϕPM can be compensated by a feed-forward control
ass well [201]. The inductances Ld and Lq can be computed from the self and mutual
inductance obtained in 3.51 as follows:

Ldq = CtLabcC (3.54)

where

C =

√
2

3

 cos(θe) sin(θe)
cos(θe − 2π/3) sin(θe − 2π/3)
cos(θe + 2π/3) sin(θe + 2π/3)

 (3.55)

The diagram of the proposed FOC of the PMaSynRM is shown in Figure 3.10. Similary
to the motor modeling phase, the inductances Ld and Lq needed for the FOC are stored
in the LUTs with respect to the level of stator winding currents (ia, ib, ic) and the rotor
electrical position (θe).

3.4.2.1 Design of the PI Controllers

• PI design for current Controllers

From the dq model of the PMaSynRM with the cross-couplings with feed-forward control
the d-axis and q-axis equations can be written as:

Vd = V ∗
d − ωeLiq

Vq = V ∗
q + ωeLd + ωeϕPM

(3.56)
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Figure 3.10: FOC for the hybrid model of the PMaSynRM

Where V ∗
d and V ∗

q are the output PI controller of d-axis and q-axis respectively. By
neglecting the resistance of of the model Rs, the PMaSynRM model equations can be
written as follows:

Ld
d
dt id = V ∗

d

Lq
d
dt iq = V ∗

d

(3.57)

Hence, the "s-domain" transfer function of the d-axis and q-axis are as follows:

id
V ∗
d
= 1

sLd
iq
V ∗
q
= 1

sLq

(3.58)

The PI-current controllers can be written as:

Gid(s) = kpid
1+kiids
kiids

Giq(s) = kpiq
1+kiiqs
kiiqs

(3.59)

(kpid and kiid) and (kpiq and kiiq) are the d-axis and q-axis currents PI controllers
proportional and integral gains respectively. The frequency response method is chosen to
tune the PI controllers with desired phase margin of ϕm = 60◦ and a crossover frequency
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ωic =
2πfs
10 , where fs is the switching frequency of the inverter. For motor control loop,

the DC bus voltage and inverter model need to be considered. For simplicity, the DC bus
voltage assumed to be constant and the inverter modelled as a gain are include in the
proportional gain Kpi term. The open-loop transfer function is defined as the product
of the simplified motor transfer function( RL equivalent circuit) and the PI controller
transfer function as follows [202].

Goid(s) =
kpid
Ldkiid

(1+skiid)
s2

Goiq(s) =
kpiq
Ldkiiq

(1+skiiq)
s2

(3.60)

The conditions of the frequency response method are for the d-axis and the q-axis are
as follows:

{
arg (Goid(jωic)) = −180 + ϕm

|Goid(jωic)| = 1
(3.61)

{
arg (Goiq(jωic)) = −180 + ϕm

|Goiq(jωic)| = 1
(3.62)

From the the first conditions of the the d-axis and q-axis conditions, kiid and kiiq are
found as:

kiid = kiiq =
tan60◦

ωic
(3.63)

kpid and kpiq are found from the second conditions.

kpid =
Ldkiidω

2
ic√

1 + (kiidωic)
2

(3.64)

kpiq =
Lqkiiqω

2
ic√

1 + (kiiqωic)
2

(3.65)

Assuming that the gain of the feedback channel is 1, the closed-loop transfer function is
expressed as of the currents loops are as follows:

Gcid(s) =
Goid(s)

1 +Goid(s)
=

1 + skiid

1 + skiid + s2 kiidLd
kpid

(3.66)

Gciq(s) =
Goiq(s)

1 +Goiq(s)
=

1 + skiiq

1 + skiiq + s2
kiiqLd

kpiq

(3.67)

Figures 3.11 and 3.12 show the Bode plot of the current iq control closed-loop transfer
function and its step response, respectively at Ipeak = 50A.

• PI design for speed controller

The reference i∗d current is set equal to zero to maximize the torque that is controlled
through the torque current iq. The speed loop includes an inner current loop as shown
in the block diagram of the speed controller in Figure 3.13.
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Figure 3.11: Bode plot of the current iq closed-loop for Ipeak = 50A

Figure 3.12: Step response of iq closed-loop at Ipeak = 50A

We define kpω and kiω as the speed PI controller proportional and integral gains re-
spectively. We are considering an ideal situation where the inertia of the system is
concentrated and unitary, assuming a rigid connection between the motor and the load
and no viscous resistance. For simplicity purposes, the q-axis current loop transfer func-
tion can be assumed to be a first-order system. Its new transfer function can be written
as follows:

Gciq =
1

1 + s
ωg

(3.68)

ωg is the simplified system’s crossover frequency, and a new gain margin is defined as
ω1 = 10× (2πfs). The gain margin might be |Gciq(jω1)|
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Figure 3.13: The speed control loop

|Gciq(jω1)| =

∣∣∣∣∣∣ 1 + jω1kiiq

1 + jω1kiiq + (jω1)2
kiiqLq
kpiq

∣∣∣∣∣∣ (3.69)

The crossover frequency of the new closed-loop transfer function can be found as follows:

20 log10(Gciq(ω1)) = |Gciq(jω1)| (3.70)

The transfer function of the open speed loop can be expressed as:

Goω = kpω
1 + kiωs

kiωs
Gciq(s)

3nP
2
ϕPM

1

sJ
(3.71)

The Symmetric Optimum Method has employed for the computation of the speed PI
parameters, aiming to achieve maximum phase margin ϕm while maintaining balanced
phase and magnitude characteristics. In this method, both the PI current loops, acting
as a low-pass filter, and the PI speed controller reduce the magnitude by 20dB after the
crossover frequency. Consequently, the overall magnitude is decreased by 40dB beyond
the crossover frequency, denoted as ωg. As a result, the crossover frequency of the speed
loop, denoted as ωsc, is positioned equidistantly between ωg and ωsi =

1
Tsi

= 1/Tsi,
which represents the crossover frequency of the PI-speed controller. Consequently, the
variable β can be utilized to establish the relationship between these frequencies, as
detailed below:

ωsc =
1

β
ωg (3.72)

and

ωsi =
1

β2
ωg (3.73)

The PI parameters can then be found by applying the following phase and magnitude
conditions to the open-loop transfer function:

arg (Goω(jωsc)) = arg
(
Goω(

jωg

β )
)
= −180 + ϕm∣∣Goω(jωsc))∣∣ = ∣∣∣Goω( jωg

β )
∣∣∣ = 1

(3.74)

The solutions of the A.2 to find the speed PI parameters are detailed in Appendix
A.2. Figures 3.14 and 3.15 show the Bode plot of the speed control closed-loop transfer
function and its step response, respectively at Ipeak = 50A.
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Figure 3.14: Bode plot of the speed closed-loop for Ipeak = 50A

Figure 3.15: Step response of the speed closed-loop at Ipeak = 50A

3.4.3 Simulation results of the Hybrid model of the PMaSynRM

The FEM of the PMaSynRM is first simulated using FEMM for inductances extraction.
The data, stored in LUTs are used for the inductance-based analytical model of the elec-
trical motor that is fed by an inverter. The torque and speed are controlled with a Field
Oriented Control strategy. The drive is simulated with Matlab/Simulink.

3.4.3.1 Simulation results of the finite element model of the motor

Figure 3.16 shows the cross-section of the PMaSynRM under study. The electrical motor
is designed with 48 slots/8 poles, and 3 layers rotor containing 5 NdFeB magnets per pole
(Table 3.3).
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Table 3.3: PMaSynRM characteristics

Parameter Value Unit

Number of poles 8
Number of PMs per pole 5
Magnet type N38UH
Magnets thicknesses 3.6/3.2/3.2 mm
Magnets widths 16/10.5/10.5 mm
Magnetization Radial mm
Active length 175 mm
Stator outer diameter 200 mm
Stator inner diameter 135 mm
Rotor outer diameter 133 mm
Rotor inner diameter 50 mm
Air gap 0.6 mm
Rated power 208 kW
Rated torque 336 Nm
Rated speed 14000 rpm
Number of turns 8
Winding connection Star/ Wye
Stator phase winding resistance value at 20◦ 6.1 mΩ

In our case study, a parametric computation is conducted by varying the mechanical po-
sition of the rotor and the current requirement (three excitation currents (Ipeak) of 50A,
300A, and 700A). Figure 3.17 shows the electromagnetic torque vs speed for the three
different current requirements. It shows the current requirements at a specific speed to
produce torque. Figure 3.18 shows the power versus the speed for the three different current
requirements, respectively.
The combination of these graphs, at any given speed and torque, made it possible to
extract the values of the current, which will be subsequently used as inputs for the field-
oriented control. This helps to eliminate the difficulties associated with estimating the
current input. Figures 3.19, 3.20 and 3.21 show the self and mutual inductances obtained
from the FEM in the healthy mode for the three excitation currents, respectively. Both
the self and mutual inductances change with the excitation current. Under low excitation
current (50A), magnetic saturation is not severe. For higher excitation currents (300A,
700A) the magnetic saturation is more severe, and the accuracy of the inductance models
deteriorates. However, the inductances models in this thesis do not focus on the effects of
magnetic saturation.

3.4.3.2 The motor drive simulation in Simulink

The simulation of the PMaSynRM drive with Matlab/Simulink is based on the diagram
displayed in Figure 3.8. The motor is simulated in the 3-phase reference frame. A Space
Vector Modulation Field Oriented Controller is used to control the motor speed and torque.
The simulation parameters of the PMaSynRM are tabulated in Table 3.4.
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Figure 3.16: Design of the PMaSynRM
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Figure 3.17: Torque-Speed curves of the PMaSynRM drive
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Figure 3.18: Power-Speed curves of the PMaSynRM drive

Table 3.4: Simulation parameters

Parameter Value Unit

Permanent Magnet flux amplitude 6.24 ×10−2 Wb
Moment of inertia 0.0357 kg.m2

Friction constant 0.1 Nm/rad/s
Input DC voltage amplitude 412 V
Load torque [18, 134, 260] Nm
Speed reference 1500 rpm

The simulation scenarios in this thesis cover the following situations:

• Generation of pulses for inverter,

• a step change in the commanded speed to 1500rpm,

• step changes in load torque to 18Nm at 0.1s; 134Nm at 3s and 260Nm at 6s,

• observation of transient and steady state behavior of the speed, torque and stator cur-
rents.

With the help of the field-orientation control method, high dynamics are achieved and the
speed reaches its reference 0.3sec as shown in Figure 3.22. It also shows the actual torque.
Sudden changes in the load torque as described previously cause changes in the speed,
torque, and in the three-phase current. With the variation of the load, transient phenomena
occur and after few seconds, the steady state condition is reached. It is observed that the
sudden application of load torque causes a dip in the speed and an overshoot in the torque.
The waveform of the stator phase a current is displayed in Figure 3.23. The simulation
results showed that the controller effectively handled all the requests for torque delivery
under each operating condition.
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Figure 3.19: FEA Self and Mutual inductances of PMaSynRM for Ipeak = 50A

Figure 3.20: FEA Self and Mutual inductances of PMaSynRM for Ipeak = 300A

Figure 3.21: FEA Self and Mutual inductances of PMaSynRM for Ipeak = 700A
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3.4.3.3 Experimental validation of the Hybrid model of the PMaSynRM

The Motor Testbench features a PMSM coupled to PMaSynRM. It provides a platform
to validate models of electric motors, and innovative inverters’ topologies with control
techniques for high-performance variable speed drives. In our study, the PMaSynRM is
the device under test while the PMSM acts as a controllable load. Each of the electri-
cal machines is run with its own inverter. The testbench features position, speed, and
torque measurements as well as temperature monitoring of the machines. The testbench
is displayed in Figure 3.24.

Primary motor

Current sensor

Primary motor power inverter

Figure 3.24: Snapshot of the experimental PMaSynRM drive

Several experiments are conducted under the same conditions for the simulations. To
illustrate the comparison between the model and the actual drive, the currents in phase a
are plotted for the three different load cases in Figures 3.25, 3.26, 3.27, respectively.
Likewise in the model of the self and mutual inductances, the accuracy of the stator winding
current of the Hybrid model of the PMaSynRM deteriorates with the rise of the excitation.
The estimation of the accuracy of the hybrid model of the PMaSynRM has been evaluated
through the Root-Mean Square Error (RMSE) and Correlation Coefficient (CC). The
results are: RMSE = 0.0065, CC = 0.96 for load 1, RMSE = 0.11, CC = 0.73 for load
2, and RMSE = 0.24, CC = 0.70 for load 3. These differences are mainly attributed to
the accuracy of the inductances computation and the interpolation in the lookup tables
used in the analytic model. The switching frequency is also higher in the experimental
drive than in the simulations. Therefore, we have higher ripples in the simulated currents.
However, the accuracy of the hybrid model is acceptable. Therefore, it can be used as a
virtual testbench to emulate the faults and generate synthetic data that can be used to
evaluate the fault detection methodology. The stator phase currents, already available for
control purposes, will be used as input features for fault detection. This will contribute to
simplify and reduce the monitoring cost.
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Figure 3.25: PMaSynRM’s simulation and experimental phase a currents
comparison for load 1

Figure 3.26: PMaSynRM’s simulation and experimental phase a currents
comparison for load 2

Figure 3.27: PMaSynRM’s simulation and experimental phase a currents
comparison for load 3
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3.5 Simulation of the Hybrid model of the PmaSynRM with
Inter-turn Short-circuit fault

3.5.1 Stator winding inter-turn short-circuit fault modelling

We consider a motor with only one turn in a slot per phase and the fault is represented
by a fault resistance Rf [203]. Considering that the winding in each phase is made of
elementary coils per pole pair, the four pole pairs machine winding circuit is shown in
Figure 3.28 where Lbob and Mbob denote the elementary coils self and mutual inductances
of two consecutive elementary coils, respectively. The inductances can be represented by
a 12× 12 matrix of Lbob and Mbob that can be determined from finite element analysis or
experimental measures.

Lbob

Mbob

ia

ib

ic

Figure 3.28: Elementary coils circuit in the 3-phase motor

Lbob
Lbob1

Lbob2

Mbob12

P1 Ma1a2

La1 La2

Laa

Mbob

Figure 3.29: Interturn short-circuit fault in an elementary coil of one phase

The faulty phase under short-circuit is considered as two coils of inductances Lbob1 and
Lbob2 perfectly coupled with a mutual inductance Mbob12. Under the assumption of Ncc

short-circuited turns out of the total number of turns Ntot of the elementary coil, the faulty
circuit is displayed in Figure 3.29, and the parameters can be calculated as follows:

Lbob1 = (1− Pµ)2 Lbob (3.75)

Lbob2 = P 2µ2Lbob (3.76)
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Mbob12 = Pµ (1− Pµ)Lbob (3.77)

µ =
Ncc

Ns
(3.78)

Where µ is defined as the fault coefficient, and Ns the total number of turns in a phase
winding. The electrical circuit of the motor winding under inter-turn short-circuit is dis-
played in Figure 3.30 where La1 and La2 represent the healthy and defective parts of the
phase a winding, respectively.
In a healthy electrical machine, the stator resistances, self and mutual inductances are
considered as balanced. If the machine is wye-connected the following condition is also
satisfied:

ia + ib + ic = 0 (3.79)

When an inter-turn short-circuit occurs in phase a as it can be observed in Figure 3.30,
the current ia is split into two components is and if .

ia = is + if (3.80)

Where if is the fault current. The equation of the faulty motor in the 3-phase reference
frame is shown in equation 3.81 where Rf is the fault resistance.


va
vb
vc
0

 =


Ra 0 0 −Ra2
0 Rb 0 0
0 0 Rc 0

−Ra2 0 Rc −Ra2 +Rf

 ·


ia
ib
ic
if

+


ea
eb
ec

−ea2

+


Laa Mab Mac −La2 −Ma1a2

Mba Lbb Mbc Mba2

Mca Mcb Lcc Mca2

−La2 Ma2b Ma2c La2

 · d
dt


ia
ib
ic
if


(3.81)

Laa = Lbob2,Ma1a2 = Pµ(P − 1) + Pµ(P − 1)Mbob

Ma2b = µMab,Ma2c = µMac, Ra2 = µRa, ea2 = µea

Where Ra2 and La2 represent the resistance and inductance of the faulty sub-coil La2. The
settingsMa1a2, Ma2b andMa2b denote the mutual inductances between the sub-coil La2 and
the coils Lb, and Lc, respectively. This analytical model of the faulty motor is valid for ideal
values of the parameters Lbob and Mbob that satisfy the equation Laa = La1 +La2 +Ma1a2

or for the four pole pairs motor, Laa = 4Lbob + 12Mbob [203].
Under healthy conditions, Rf is infinite [204]. If the insulation of the motor winding starts
deteriorating, several turns start to be short-circuited leading to a decrease in the fault
resistance Rf . The lower its value is, the higher the fault severity and the magnitude of
the short-circuit current is are. This depends on Rf and the short-circuit coefficient µ.

3.5.2 Simulation results of the drive with inter-turn short-circuit fault

The inter-turn fault model is simulated for seven different fault scenarios corresponding to
seven severity levels, the fault resistance Rf = 10Rs, and for the three different load cases
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Figure 3.30: Motor windings with an inter-turn short-circuit fault in phase a

as stated previously. The fault severity levels rank from 2 to 8 and are related to the number
of short-circuited turns in phase a winding. For each fault scenario, the 1s time duration
fault is introduced in steady state at three different instants 1s, 4s, and 7s for 9s total
simulation time. Figure 3.31 shows the torque and speed response of the PMaSynRM under
the inter-turn short-circuit fault (Level 2), corresponding to 6.25% of the fault severity.
When the fault is introduced, transient phenomena with low amplitudes occur in the speed
response, and after a few seconds, the steady state condition is reached. This shows the
robustness of the controller under inter-turn short-circuit conditions. On the other hand,
the torque response of the motor suffers from oscillations during fault periods. Comparing
the oscillation differences in the three load conditions, more variations are observed during
low load conditions. This makes the torque signal a candidate among fault indicators that
could be helpful in developing a diagnostic tool for such a fault.
Figure 3.32 shows the stator phase a current under healthy and fault (at severity Level 2)
conditions in stator phase a winding for the three load levels. We can observe that even
at the occurrence of the fault with the lowest severity, despite the action of the speed and
current controllers, the amplitude of the current is significantly affected. Therefore, the
variance of the phase currents can be considered a potential candidate for fault features
extraction.

3.6 Simulation of the Hybrid model of the PMaSynRM with
Dynamic eccentricity fault

As mentioned in the previous chapter, dynamic eccentricity occurs when the center of the
rotor is not at the center of rotation and the minimum air-gap revolves with the rotor.
With respect to Figure 3.33 the axis of rotation OB coincides with the stator axis OA but
not with the motor axis OR. The non-uniformity of air-gap is a time-variant when dynamic
eccentricity occurs. The percentage of dynamic eccentricity is defined as follows:
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Figure 3.31: Speed and Torque response of the PMaSynRM under inter-turn
short-circuit Fault (level 2) for the three loads
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Figure 3.32: Time series of stator current in phase a of the PMaSynRM under inter-turn
short-circuit Fault (level 2) for the three loads
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ϵD =

(
OBOR
g

)
× 100(%) (3.82)

Where ϵD = represents the percentage of dynamic eccentricity between the stator and
rotor axes, g is the radial air-gap length. The vector OBOR is called the dynamic transfer
vector.

OA=OB OR

STATOR

ROTOR

Air-gap

Figure 3.33: Schematic representation of dynamic eccentricity

To simulate the FEM of the PMaSynRM, its geometrical structure is designed with the
required percentage of dynamic eccentricity between the stator and rotor axes as described
previously. When there is eccentricity present in the rotor, the magnetic field will become
distorted and asymmetrical. This results in a variation of the magnetic flux density as
the rotor rotates, which will be reflected in the inductances models. From the eccentricity
model of the PMaSynRM, the self, and mutual inductances have been modelled for the
three excitation currents.
Figure 3.34 shows the self and mutual inductances of the healthy PMaSynRm and the
PMaSynRM with 33% of dynamic eccentricity for the three excitation currents. Different
variances in the inductances are observed. These variations evaluated in terms Root-Mean
Square Error (RMSE) and Correlation Coefficient (CC) give the following results.

• (RMSE = 2.33 × 10e−6, CC = 0.9999) and (RMSE = 1.34 × 10e−7, CC = 1) for
the self and mutual inductance for 50A excitation current, respectively,

• (RMSE = 2.13 × 10e−6, CC = 0.9997) and (RMSE = 1.46 × 10e−7, CC = 1) for
the self and mutual inductance for 300A excitation current, respectively,

• (RMSE = 2.10 × 10e−6, CC = 0.9994) and (RMSE = 3.92 × 10e−8, CC = 1) for
the self and mutual inductance for 700A excitation current, respectively.

As it can be observed, the dynamic eccentric fault causes more variation in the self induc-
tance than in mutual inductances for all excitation currents.
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Figure 3.34: FEM inductances under healthy and faulty conditions
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Figure 3.35: Stator phase a current of the healthy PMaSynRM and the
PMaSynRM with dynamic eccentricity
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To simulate the dynamic eccentricity fault of the PMaSynRM with the proposed motor
drive system in 3.8, the inductances obtained with dynamic eccentricity with FEM are
included in the analytical model. The stator phase a current waveforms of the healthy and
faulty PMaSynRM are shown in Figure 3.35. The results are as follows:

• A variation of 0.01% in the self inductance for 50A excitation current causes variation
of 0.07% in the phase currents magnitude,

• A variation of 0.03% in the self inductance for 300A excitation current causes a variation
of 0.26% in the phase currents magnitude,

• A variation of 0.06% in the self inductance for 700A excitation current causes variation
of 0.44% in the phase currents magnitude.

These results show that the variations in the stator phase currents have the same ten-
dency as the variations in the PMaSynRM inductances due to the dynamic eccentricity.
This analysis shows that the PMaSynRM inductances and stator currents are potential
candidates as dynamic eccentricity fault features.

3.7 Conclusion

Accurate representation of faulty electric motors is crucial for research and development
in the area of condition monitoring to avoid or reduce the use of expensive testbeds, and
potentially destructive tests. There are three strategies for electric motor fault modelling
in the literature: models based on coupled circuits, models based on numerical methods,
and hybrid models. Nonlinearities and non-idealities of the electrical machine cannot be
properly modelled using circuit-based models. On the other hand, although models based
on numerical methods are more comprehensive, they require significant computational ca-
pacity and long simulation times. The accuracy of the model is crucial for the performance
of the fault diagnosis method. But, because the fault detection time should be as short
as possible, the model is expected to be computed in a short time. Therefore, it is recom-
mended to develop a model that offers a good balance between accuracy and computation
time. The hybrid model, based on the combination of circuit-based models and numerical
ones is a relevant candidate as it can benefit from both approaches.
We developed for our study a hybrid model of a PMaSynRM that combines a finite el-
ement model and an analytical model. The machine is at first designed and simulated
with FEMM software to calculate the inductances in healthy and faulty modes. The cal-
culated inductances are then stored in multidimensional lookup tables used in the three-
phase inductance-based analytical model. The hybrid model is validated with experimen-
tal data under healthy conditions with over 70% accuracy. We also developed a model
of the machine under inter-turn short-circuit and dynamic eccentricity. The analysis of
the PMaSynRM parameters under faulty conditions showed that the stator currents are
potential good candidates as fault features for both faults.
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Chapter 4

EV powertrain fault detection methodology
based on statistical approaches

4.1 Introduction

In recent inverter-fed motor applications, conventional motor monitoring tools have faced
challenges due to high noise levels, the dynamic changes affecting excitation frequencies,
and closed-loop action that could affect the fault signatures [205]. This has created the
need to develop universal fault diagnostic devices, valid for all applications, and suitable for
various operational contexts. Statistical analysis techniques are emerging as an alternative
to the conventional Motor Current Signal Analysis (MCSA) valid for utility-fed motors
[206]. One of the essential characteristics of statistical methods is their ability to model
data, capture the behaviour, and organize information into a concise set of rules or metrics.
They consist of monitoring data variables statistics as well as control limits.
The first statistical analyses introduced in fault diagnosis were the univariate statistical
methods. They consist of examining each system variable singularly and independently.
This makes interpreting and diagnosing a fault condition very difficult and convoluted [128].
These methods only consider the magnitude of deviation inherent in a single system variable
independently of all other system variables. However, in a multivariable system like in
electric vehicle applications, simultaneous monitoring of individual variables separately will
fail to recognize possible cross-correlations that may exist and will increase the insensitivity
of the control charts for detection of fault conditions [129]. This can be misleading as not all
the variables are independent, and only a few underlying events are driving the process at
any one time. The improvement of these statistical methods is defined by the simultaneous
monitoring of several variables.
In the following of this chapter, the main univariate and multivariate statistical methods
will be presented first with their advantages and limitations. Some existing methodologies
to overcome these limitations will also be presented with the evaluation of their performance
for inter-turn short-circuit fault detection. At the end, our proposed methodology for inter-
turn short-circuit fault detection robust against the uncertain and nonlinear dynamics of
the drive system will be presented.

4.2 Univariate statistical methods for fault detection

The typical univariate statistical methods for fault detection are Shewhart charts, Cu-
mulative Sum (CUSUM) plots, and Exponentially Weighted Moving Average (EWMA)
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[207]. These control charts address the analysis of individual variables and consider the
magnitude deviations. Consequently, any directional information resulting from variable
interactions is ignored.

4.2.1 Shewhart chart

The Shewhart control chart uses an upper control limit (UCL) and a lower control limit
(LCL). These limits are based on the variable mean (µ0) and standard deviation (σ0) under
healthy conditions. The control limits under the assumption that the data is normally
distributed (99.73% of the statistics values lie within the control limits) are expressed as
follows:

LCL = µ0 − 3σ0

UCL = µ0 + 3σ0
(4.1)

As an illustration, Figure 4.1 shows the UCL and LCL in relation to the normal distribu-
tion. The center line (dashed line) represents the in-control average value. The two lines
(golden lines) represent the Upper Control Limit and Lower Control Limit.

Observations

UCL

LCL

𝜇0

Figure 4.1: Shewhart control chart

The existence of outliers in the variable observations would cause wider control limits,
thereby reducing the detection capability of the charts. Hence, a previous step of detecting
potential outliers is required before estimating the control limits. An abnormal condition
is detected when the statistic sample mean of a new observation lays out of the bounds
defined by the control limits.
The attractiveness of the shewhart control chart is rooted in its simplicity and ability
to detect large process average shifts quickly. However, it is also known to be relatively
insensitive to small-sustained variable mean or variance shifts. Alternative control chart
methodologies such as the CUSUM and the EWMA have been suggested to solve this
problem [208].

4.2.2 EWMA chart
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In the EWMA control scheme, the moving average is calculated by multiplying the his-
torical observations with a weight coefficient that exponentially decays with time. The
EWMA control chart consists of plotting the test statistic zt versus time as follows:

zt = η × xt + (1− η)zt−1 (4.2)

where η is a weight parameter, with 0 < η ≤ 1, and xt is the mean value of the monitored
variable from time t. The starting value x0 is set equal to an estimate of the mean µ0
of the process in-control. Generally, smaller values of η increase the chart’s sensitivity to
smaller shifts in the process mean, while larger values of η increase its sensitivity to larger
shifts [209].
Assuming the observations of xt are independent random variables, let µx be the mean and
σ2

x/nt the variance of the variable in the time interval t. nt is the sample size used at each
time interval to calculate xt. The mean value and variance of zt are derived as follows:

µzt = µx

σ2
zt =

σ2
x
nt

(
η

2−η

) [
1− (1− η)2t

] (4.3)

The EWMA Control limits are typically derived based on −L or +L sigma limits, where
L, the control width is usually equal to 3, as in the design of Shewhart control chart limits.
The time-varying upper and lower EWMA control limits, UCL(t) and LCL(t) are given
by:

LCL(t) = µx − Lσx

√
η[1−(1−η)2t]

(2−η)n

UCL(t) = µx + Lσx

√
η[1−(1−η)2t]

(2−η)n
(4.4)

As t increases, LCL(t) and UCL(t) converge to the asymptotic control limits, LCL and
UCL, which are given by:

LCL = µx − Lσx
√

η
2−η

UCL = µx + Lσx
√

η
2−η

(4.5)

The rate of convergence to the asymptotic values depends critically on η, with the con-
vergence being much slower for small η [210]. The EWMA control scheme declares an
anomaly when the value of zt falls outside of the interval between the upper and lower
bounds of the control limits.

4.2.3 CUSUM chart

The basic idea of the CUSUM chart is to test the existence of a change point sequentially
by the recursive writing of the detection statistic as a function of the log-likelihood ratio
(LLR) [211]. Let X be the monitored variable with a series of observations [x1, . . . , xN ].
Suppose that in the healthy state, the observations xi are identically distributed according
to the density distribution f0(·). When a change-point occurs, this distribution changes
and satisfies a post-change distribution f1(·) ̸= f0(·). We suppose that there exists only one
change-point at time ν, such that [x1, . . . , xν−1] are identically distributed according to the
pre-change distribution f0(·), and [xν, . . . , xN ] according to the post-change distribution
f1(·). For n ≥ 1, the issue of change-point detection is to sequentially test the null
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hypothesis H0,N , when no change-point occurred before time N against the alternative
hypothesis H1,N when a change-point occurred at the instant ν ≤ N (Equation 4.6) [212].

H0,N : ν > N xt ∼ f0(·) ∀ t = 1, . . . , N.
H1,N : ∃ν ≤ N xt ∼ f0(·) ∀ t = 1, . . . , (ν− 1);

xt ∼ f1(·) ∀ t = ν, . . . , N.
(4.6)

When the two distributions f0 and f1 are known, the Log-Likelihood Ratio Lt can be used
to build the CUSUM statistic Wt as follows:

Lt = log
(
f1(xt)

f0(xt)

)
t ≥ 1 (4.7)

Wt = max {0, Wt−1 + Lt} , t ≥ 1 W0 = 0 (4.8)

However, in practice, f0 and f1 are not always known. Hence it has been proposed in [213]
to replace the LLR by a score function defined as:

St(δ, q) = δ · q2yt +
1− q2

2
y2
t −

δ2 · q2

2
+ log(q) (4.9)

where yt = (xt − µ0)/σ0 is the centered and standardized data at time t under pre-change
regime, δ = (µ1 − µ0)/σ0 and q = σ0/σ1.
The parameters δ and q are set according to the detection objective which concerns the
mean and/or the variance. In practice, the expected type and level of change-point need
to be known to set these parameters. The based-score CUSUM statistic is then defined
recursively at time t as follows:

Wt(δ, q) = max {0, Wt−1(δ, q) + St(δ, q)} , t ≥ 1 W0(δ, q) = 0 (4.10)

• For the change-point detection concerning the variance, µ1 = µ0 = µ, then
δ = 0. The score function is defined at time t as follows:

St = log
σ0

σ1
+

(
1

σ2
0

− 1

σ2
1

)
(xt − µ)2

2
(4.11)

• For the change-point detection concerning the mean, σ1 = σ0 = σ, then q = 1.
The score function is defined at the time t as follows:

St =
µ1 − µ0

σ2

(
xt −

µ0 + µ1

2

)
(4.12)

Under the post-change regime, knowing that the W-statistic tends to grow gradually, it is
essential to reject H0,t, when the statistic Wt exceeds a threshold. This threshold has to
be chosen according to an objective of false alarm rate denoted α. The stopping rule is to
trigger an alarm to signal that a change-point has occurred before time t when Wt(δ, q)

exceeds the detection threshold h(α) set in advance [214]. An alarm occurs at a time T
defined as follows:

Th(α) = min {t ≥ 1 : Wt(δ, q) ≥ h(α)} (4.13)

We note that the choice of a statistic and a stopping rule defines a detection procedure
that can be evaluated under the pre- and post-change regimes. Note that T is a stopping
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time according to the filtration generated by the (Wt)t≥0 and it is an estimator of the real
change point ν [212]. These different cases may arise:

• T ≥ ν, the change-point ν is detected with a delay (T − ν);

• T < ν, the change-point ν has not yet occurred at time T . It is said that the procedure
triggered a false alarm;

• ν < +∞, T = +∞, the change-point ν is not detected; this is a missed detection.

Three different thresholds have been identified from the literature: the constant threshold
based on the Wald inequality [215], an empirical constant threshold identical to Tsiamyrtzis
[216], and an empirical instantaneous threshold proposed by Margavio [217].
Figure 4.2 shows an example of a CUSUM chart where all black solid dots are values for
Wt when the process is in-control. During this time, data were sampled from a standard
normal distribution. The points become empty after a shift in the mean occurs at ν = 22.
The points for Wt are drawn in red after the change point is detected at T = 24.
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Figure 4.2: Example of CUSUM chart

4.3 Multivariate statistical methods for fault detection

Existing Multivariate Statistical Process Control methods, including Principal Component
Analysis (PCA) and Independent Component Analysis (ICA), have been widely used in
fault detection applications [218]. Although PCA and ICA can reduce dimensions and ex-
tract information from high-dimensional datasets, their original purpose was not to detect
anomalies. Moreover, PCA-based models assume multivariate normality of the monitoring
statistics, namely Hotelling’s T 2 and Squared Prediction Error (SPE), while ICA-based
models assume latent variables are non-Gaussian distributed [219]. Both methods make
strong assumptions about specific data distributions, thereby limiting their performance
in real-world applications [220]. The CUSUM and EWMA algorithm can also be extended
to Multivariate Statistical Process Controls. The extended forms are called: Multivariate-
CUSUM (MCUSUM) and Multivariate-EWMA (MEWMA), respectively. In the following,
the focus will be on the modelling of PCA for fault detection.
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4.3.1 Principal Component Analysis

4.3.1.1 Principles of Principal Component Analysis

PCA is one of the most used multivariate techniques that has found widespread application
in a variety of areas. It is concerned with explaining the variance-covariance structure of a
dataset through a reduced set of linear combinations of the original variables. The objective
of PCA is to represent a variable in terms of several underlying factors. PCA can perform
the following operations.

• Data Reduction: Although the original data set may contain n variables, it is often
the case that much of the variability can be accounted for by a smaller number (l < n)
of principal components.

• Data Interpretation: Relationships that were previously unsuspected can commonly
be identified through PCA.

Considering that the original data have N observations for n measured variables, that
are arranged in a data matrix X ∈ RN×n. In this matrix, each vector is written as
xt
i = [x1,i, . . . , xN,i] where xj,i is the jth observation of the ith variable. The most simple

theoretical model for describing a variable in terms of several other variables is a linear
one. Thus, PCA linearly transforms an original set of N variables xt

i = [x1,i, . . . , xN,i] into
a substantially smaller set of uncorrelated l variables x̂t

i = [x̂1,i, . . . , x̂l,i]. The new variable
x̂t
i represents most of the information contained in the original set of variables. PCA is

based on Singular Value Decomposition (SVD) matrix processing routines to encompass
data reduction, latent variable extraction, score and loading vectors, principal components
modelling, and regression. The mathematics of PCA are expanded in subsection 4.3.1.2.

4.3.1.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix processing procedure rather than a direct
statistical technique. SVD is an extension of the Eigenvalue Decomposition (ED) technique
for non-square matrices. It shows that any real matrix can be diagonalized using two
orthogonal matrices. If a matrix is square and symmetric, the two orthogonal matrices of
SVD become equal, thus SVD and ED become equivalent. Any real (n × n) symmetric
matrix A can be decomposed into:

A = U∧2Ut (4.14)

where U is orthonormal (UtU = I) and ∧2 is diagonal. This gives the normal eigenvalue
equation:

Aui = uiλ
2
i (4.15)

where ui is the ith column in U and λ2i = ∧2
i,i or principal diagonal value. The decompo-

sition of a rectangular (N × n) matrix is given by:

X = USVt (4.16)

where X is a (N × n) matrix, U is a (N × n) column-orthonormal matrix (orthogonal
and normalized) containing the eigenvectors of the symmetric matrix XXt (left singular
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vectors), S is a (N × n) diagonal symmetric matrix containing the singular values of
matrix X, and SVt is a (n × n) row-orthonormal matrix containing the eigenvectors of
the symmetric matrix XtX (right singular vectors).
PCA can identify combinations of variables that describe major trends in the data, and
as mentioned previously, PCA relies upon SVD of a data matrix. This methodology is
based on explaining the variance-covariance structure of the original data matrix in terms
of a minority of linear combinations of the original variables. The principal component
decomposition of an n-dimensional data set X = [x1, . . . ,xn] can be defined as:

X = TVt =
∑n

i=1 tipi
t (4.17)

T = [t1, t2, . . . , tn] is the matrix containing the principal component scores, P = [p1,p2, . . . ,pn]

is the matrix containing the principal component loadings. The score vectors, ti, contain
information on how the samples relate to each other, and the loading vectors, pi, contain
information on how the variables relate to each other. The successful implementation of
PCA depends upon the data structure (raw data, variance-covariance matrix, correlation
matrix) and the used scaling parameters. The variance-covariance matrix and the correla-
tion matrix are equal when the original data has been standardized but are not equal with
the raw data matrix. The majority of analyses is performed on variance-covariance and
correlation matrices of the original process variables rather than raw data matrices. Given
a data matrix X with N rows and n columns, the covariance matrix of X is defined as:

S = cov(X) = XtX
N−1 (4.18)

Where N − 1 in the denominator of Equation 4.18 is the degree of freedom and it is used
to give an unbiased estimate of the covariance matrix from a sample population. The true
covariance matrix is unknown, and therefore an estimate S is calculated.
As PCA is scale-dependent, the raw data must be scaled in a meaningful way. This can
be achieved by mean centering, variance scaling, logarithmic scaling or combinations of
these. A frequently used method is ‘autoscaling’ whereby the columns of the original data
matrix X are adjusted to zero mean and unit variance. This is commonly known as the
Z-score normalization routine, which creates a new data matrix (of the same dimension as
X) with zero mean and unit variance. The normalization of vector xi is done as follows:

µxi =
1
N

∑N
j=1 xji

σxi =
√

1
N−1

∑N
j=1 (xji − µxi)

2

x̄ji =
xji−µxi
σxi

(4.19)

where µxi and σxi are the mean and standard deviation of xi respectively, and x̄ji is the
re-scaled observation. In the rest of the report, the scaled data are considered without bar
notation for simplicity. The reasoning behind scaling is to alleviate different magnitudes
between variables and remove the effect of numerically large values. This difference has
a significant impact on the analysis. The PCA decomposition in Equation 4.17 can be
rewritten in terms of the score vectors ti:

T = XP (4.20)

where X is the normalized data matrix, P the matrix of loading coefficients which provide
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information on which variables influence the direction of individual principal components,
and T the matrix of principal component scores that act ad interim for the process data.

4.3.1.3 Method of Dimensionality Reduction

The loadings (P) are the eigenvectors of the variance-covariance matrix S and from the
normal eigenvalue relation, are related to the eigenvalues of the variance-covariance matrix
(Equation 4.21):

Spi = λipi (4.21)

where λi is the eigenvalue associated with the eigenvector pi. The eigenvalues of the
variance-covariance matrix are a measure of the variance explained by each individual
principal component and in this context, variance can be thought of as information. Max-
imising Equation 4.21 and rewriting it in standard matrix notation yields [221]:

[S− λI]pi = 0 (4.22)

where the inclusion of an identity matrix I is to allow matrix subtraction. The score
and loading pairs (ti,pi) are arranged in descending order according to the associated
eigenvalue (λi), therefore the λi are a measure of the amount of variance described by the
(ti, pi) pair. The greatest amount of variance is captured by the first (ti, pi) pair, the
second greatest amount of variation that is orthogonal is captured by the second (ti, pi)
pair and so on.
After the transformation, there are as many principal components as the original variables.
As they are computed in descending order, the lower order components embed fewer in-
formation and hence can be regarded as process noise (a stochastic component). The sum
of the eigenvalues is defined by the trace of S, Tr(S) [222]:

Tr(S) =
n∑
j=1

Sjj (4.23)

The fraction of the "total sample variance" accounted for the eigenvector pi is expressed
by:

λi
Tr(S)

(4.24)

In practice, only the principal components with the largest eigenvalues are kept, and the
rest are discarded, thereby reducing the dimension of the problem. The number of com-
ponents to keep is left to the data analyst’s discretion, but it is generally chosen greater
than 70% of the cumulative explained variance [223].

4.3.2 PCA for fault detection

Fault detection in multivariate subspaces can be achieved in many different ways, but
perhaps the two most commonly used and well-known methods are the Hotelling’s T 2

statistic and the squared prediction error (SPE) or Q statistic. The T 2 statistic is a
measure of variation within a PCA model and it is calculated as the sum of the normalized
squared scores. The Q statistic on the other hand indicates how well each sample conforms
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to the PCA model and is calculated by the projection of a sample vector on the residual
space [224].
The diagnosis of abnormal system behaviour can be greatly enhanced if similar system
conditions and performance can be located in historical databases, thus essentially reducing
this to a pattern recognition problem. Although not all of the faults will have occurred in
historical records, the most common ones may reside in a similar process subspace, which
in turn may assist in fault identification. Fault identification can be inferred from a PCA
model, with both the T 2 and SPE producing an ‘out-of-control’ signal when a fault occurs.
In a process, it is possible to distinguish between two classes of change. The first class
is a change in process operation, which may result in greater variation in some process
variables. The relationship between the variables remains the same. However, the result is
a shift in the mean value of one or more process variables. The metric used to detect this
change is Hotelling’s T 2. The second class is associated with a change in the correlation
structure of the process variables and the metric used to detect this change is the SPE
[225]. Neither of these, however, provide any information about the cause of the fault, they
are non-causal [226].

a) Hotelling’s T 2 Statistic

A traditional multivariate statistical approach to process monitoring is achieved through
the use of the T 2 statistic. In practice, it is usually necessary to estimate the mean and
variance-covariance from a the data X of N samples and n variables. This sample is
assumed to be extracted from the system operating under steady-state conditions and
follows a multivariate normal distribution. From the normalized data X, the mean x̄ and
variance Σ̆ of are calculated as follows:

x̄j =
1

N

N∑
j=1

xij (4.25)

Σ̆ =
1

N − 1

N∑
j=1

(xj − x̄)(xj − x̄)t (4.26)

Σ̆ is often expressed in variance-covariance matrix form. Once the number of components
l to retain is determined, the eigenvectors matrix P and the principal component matrix
T are partitioned into the form:

P =
(
P̂l P̃n−l

)
T =

(
T̂l T̃n−l

) (4.27)

X̂ is the principal part of the data explained by the l first eigenvectors and the residual
part X̃ is explained by the residual components [227]:

X̂ = P̂lP̂
t
l X

X̃ = P̃n−lP̃t
n−lX

(4.28)

They respectively lead to the principal and residual subspaces used for fault diagnosis. The
Hotelling’s test statistic is expressed as follows:
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T 2 = X̂tΣ̆−1X̂ (4.29)

T 2 is directly related to the F distribution, and depends upon the degrees of freedom in
Σ̆ [228]. An upper limit, T 2

α can be calculated from:

T 2
α =

N2 − 1

N(N − l)
Fα,l,N−l (4.30)

where N is the number of samples used to develop the PCA model and l is the number
of principal components (pc’s) retained, Fα,l,N−l is the upper 100(1 − α)% critical point
of the F distribution with (l, N − l) degrees of freedom. As this statistic is squared, the
lower limit is equal to zero.

b) Squared prediction error SPE

The SPE is a scalar measurement of the ‘goodness-of-fit’ of a sample X to a PCA model.
Once a model has been developed from nominal data (a healthy operating condition model)
using a reduced set of principal components, the squared prediction error (SPE) can
be calculated. The SPE provides the facility to identify the onset of a new event not
previously captured within the data. This is significant for identifying incipient drift, small
dynamic differences, and ill-fitting models. A special event will generate new principal
component and this has the effect of moving the new observation off the plane described
by the l principal components. Such special events can be detected by computing the SPE
of the residuals as follows [229].

SPE =∥ X̃ ∥2 (4.31)

A confidence limit for SPE can be established from the standard normal deviate, which
corresponds to the 100(1− α) percentile [230].

c = θ1

[(
SPE
θ1

)h
− θ2h−0(h0−1)

θ21
− 1

]
√

2θ2h20
(4.32)

Consequently, the critical value SPEα is:

SPEα = θ1

[
cα
√
2θ2h20
θ1

+
θ2h0(h0 − 1)

θ21
+ 1

] 1
h0

(4.33)

Where
θk =

∑N
j=l+1 λ

k
j for k = (1, 2, 3) (4.34)

and

h0 = 1− 2θ1θ3
3θ22

(4.35)

Where l is the number of principal components retained in the model and n is the total
number of principal components.
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c) PCA fault detection improvement with Univariate Control Charts

The process monitoring using the T 2 and the SPE is not always effective as they only use
current observation information at the point for decision-making. Hence, these detection
indices are relatively insensitive to minor changes in the process variables and thus may
result in missed detections. To overcome these limitations, an alternative approach has
been developed, in which the PCA is used as a modelling framework for fault detection
using an EWMA or CUSUM control schemes [231]. This methodology framework can be
described in two steps:

• First, a PCA model is developed and the fault detection indices are developed based on
conventional monitoring indices such as T 2 and SPE.

• In the second step, the CUSUM or EWMA control charts are applied to the monitoring
indices T 2 and SPE for fault detection. The summary of the methodology framework
is shown in Table 4.1. Both CUSUM and EWMA charts are used to detect incipient
irregularities in the process mean.

Table 4.1: Summary of PCA-based CUSUM and EWMA fault detection framework [232]

Step Description
N°

1. Given
• A healthy dataset representing normal operating conditions
and a faulty dataset representing different faulty conditions

2. Data normalization
• Normalize the data variables using Z-score normalization (Equation 4.19)

3. PCA model development
• Develop the PCA model as in section 4.3.1.2
• Compute the control limits for EWMA(T 2), EWMA(SPE), CUSUM(T 2)

and CUSUM(SPE) monitoring charts as in sections 4.2.2 and 4.2.3.
4. Testing the faulty data

• For faulty data, each variable is normalized using Z-score normalization
• Compute the EWMA(T 2), EWMA(SPE), CUSUM(T 2) and
CUSUM(SPE) monitoring statistics as in sections 4.2.2 and 4.2.3.

5. Faulty detection
• For faulty data, each variable is normalized using Z-score normalization
• Finally, declare the fault if any of the monitoring statistics exceeds
the control limit.

4.4 Performance analysis of the statistical control charts

4.4.1 Concepts and definitions

In sequential change-point detection problems, one seeks a detection scheme to raise an
alarm as soon as abnormal events happen at an unknown time ν so that appropriate action
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can be taken. The construction of the detection scheme is based on sequential observations
that are observed sequentially, and it is assumed that the distributions of the variables will
change if abnormal events occur. The decision whether to raise an alarm at time t will
only depend on the first t observations. The current decision only depends on our current
and past observations but not on future observations.
Let us consider fault detection as a binary classification case, in which the outcomes are
labeled either as positive or negative. Thus, there are four possible outcomes from the
binary classifier. If the outcome from a prediction is positive and the actual value is also
positive, then it is called a true positive case, and the count of this kind of case is called true
positive (TP ); however if the actual value is negative then it is said to be a false positive
case, while the count is called false positive (FP ). Conversely, a true negative (TN) is the
count of cases that occurred when both the prediction outcome and the actual value are
negative, and a false negative (FN) is the count of cases when the prediction outcome is
negative, while the actual value is positive. We can further define the true positive rate
(TPR) and the false positive rate (FPR). The FPR quantifies the probability of the
occurrence of an alarm when there is no fault. The TPR quantifies the probability of
occurrence of alarm in the case of actual failure. From a set threshold for fault detection,
the TPR and FPR are expressed as follows:

TPR = TP
TP+FN

FPR = FP
FP+TN

(4.36)

The sensitivity and specificity are statistical measures of the accuracy of a diagnostic
test. Sensitivity measures the proportion of actual positives that are correctly identified.
Specificity measures the proportion of negatives that are correctly identified. Based on
the previous definitions, we can obtain relationships such that sensitivity is TPR and
specificity is (1− FPR).
In the literature, the performance of a fault detection scheme is typically evaluated by a
measure of the FPR also known as the Probability of False Alarm (PFA) and the 1−TPR
also known as Probability of Missed Detection (PMD). For the false alarm criterion, it
is historically standard to use the “average run length” (ARL) for a false alarm, which
is the expected number of samples to be taken before a false alarm is signaled. Another
performance measurement is the plot of the Receiver Operating Characteristic (ROC)
curve. The plot contains the TPR (sensitivity) on the y−axis and FPR (1−specificity)
on the x− axis. The ideal scenario is a curve plot of an inverted L shape, which indicates
that the fault detection is performed with 100% TPR and 0% FPR.

86



Chapter 4. EV powertrain fault detection methodology based on statistical
approaches

4.4.2 Average run length (ARL)

The average run length (ARL) is the average number of observations plotted on a control
chart before an out-of-control condition is indicated. There are two types of ARL: the in-
control ARL that is measured when the process is actually in control and consequently the
detected fault corresponds to a false alarm and the out-control ARL that is measured when
the process is actually out of control and consequently the detected fault corresponds to a
real alarm. The ARL is useful to compare the performance of statistical process control
charts in terms of fault detection. The ARL computation is specific for every control chart
algorithm. The main methods for computing ARL in the literature are the Markov chain
approach, integral equation approach, and Monte Carlo simulation. The computation of
the ARLs for the CUSUM and EWMA charts are presented in [233].

4.4.3 Receiver operating characteristic (ROC) curve

The ROC curve offers a graphical illustration of the trade-off between sensitivity and
specificity for any diagnostic test that uses a continuous variable. An illustration example
of the ROC is shown in Figure 4.3.
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Figure 4.3: Reciever Operation Characteristic curve illustration

Ideally, the best limit value provides both the highest sensitivity and the highest specificity,
easily located on the ROC curve by finding the highest point on the vertical axis and the
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furthest to the left on the horizontal axis (upper left corner). However, it is rare that this
ideal can be achieved. For example, one may opt to choose a higher sensitivity at the cost
of lower specificity. The area under the ROC curve (AUC) is widely recognized as the
measure of a diagnostic test’s discriminatory power. The maximum value for the AUC is
1.0, thereby indicating a perfect test (100% sensitive and 100% specific) [234].

4.5 Stator inter-turn short-circuit detection

4.5.1 Modelling and data collection

In chapter 2), the developed hybrid model of the motor drive system has been retained as
a virtual testbench to emulate the faults and generate synthetic data for fault diagnosis.
From the system modeling in healthy and under the different fault conditions, the stator
phase currents have been designated as interturn faults indicators. The data are generated
from the simulation scenario described in Chapter 2. The hybrid model of the motor drive
system has been simulated in a series of healthy and faulty modes. Seven faulty modes
corresponding to seven severity levels ranking from 2 to 8 (corresponding to the number
of short-circuited turns on phase a windings) have been considered. Each scenario has
been simulated for 9s. The load change modes and faulty modes periods are described as
follows:

• step changes in load torque to 18Nm at 0.1s; 134Nm at 3s and 260Nm at 6s,

• 1s time duration faulty mode is introduced in steady state at three different instants
1s, 4s, and 7s for 9s total simulation time.

Figure 4.4 illustrates the composition of the dataset pattern. The different modes and load
variations are illustrated. The transients due to load changes and fault introductions are
not included in the dataset. For each scenario, the three variables collected (Ia, Ib and Ic)
are collected for K observations.

4.5.2 Data preprocessing

In the preprocessing step, the statistical features, such Median Absolute Deviation (MAD),
Variance (σ2), Skewness (Skw) and Kurtosis (Kur) are computed to get the first quantita-
tive insights. Their evaluation helps in the selection of the features with the best discrim-
inating capability. For feature extraction with less burden of large data, the computation
of the statistical features on consecutive non-overlapping windows of fixed size is chosen.
The statistical feature on sliding windows of size ω of a variable I(s) =

[
I
(s)
1 , . . . , I

(s)
K

]
of

size K gives a new variable of size N = K
ω . The first four statistical features on sliding

windows of size ω are described as follows [235]:

1. Median Absolute Deviation (MAD)
The Median Absolute Deviation indicates the average distance between observations
and their mean value. The MAD of I(s) is expressed as:

MADj = median
(∣∣∣I(s)Ωj

− Ĩ
(s)
Ωj

∣∣∣) ; j ∈ {1, . . . N} (4.37)
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Figure 4.4: Layout of the dataset

where Ĩ
(s)
Ωj

is the median of the samples of the window I
(s)
Ωj

= {I(s)(j−1)ω+1, . . . , I
(s)
j×ω}.

The median is the measure of central tendency of a variable. For a given variable of n
observations, the median when n is an odd number is expressed as follows:

median =

[
n+ 1

2

]th
observation (4.38)

When n is an even number, the median is expressed as follows:

median =

[
n
2

]th observation +
[
n
2 + 1

]th observation
2

(4.39)

2. Variance (σ2)
The variance explains how a set of values is spread around their mean. The variance of
I(s) is expressed as:

σ2j =
1

ω − 1

j=N∑
j=1

(
I
(s)
Ωj

− µ̀j

)2
(4.40)

where µ̀j is the mean of the samples of the window I
(s)
Ωj

= {I(s)(j−1)ω+1, . . . , I
(s)
j×ω}.

3. Skewness (Skw)

The skewness measures the asymmetry of the data distribution. The Skewness of the
variable I(s) is expressed as;
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Skwj =
1

ω − 1

j=N∑
j=1

(
I
(s)
Ωj

− µ̀j

)3
(4.41)

We can distinguish three types of distribution with respect to its skewness:

• symmetrical distribution: when both tails are symmetrical and the skewness is equal
to zero,

• positive skew: when the right tail (with larger values) is longer. This informs about
outliers that have values higher than the mean value and

• negative skew: the left tail (with small values) is longer. This informs about outliers
that have values lower than the mean value.

4. Kurtosis (Kur)
The kurtosis focuses on the tails of the distribution and explains whether the distribution
is flat or rather with a high peak. The kurtosis of the variable I(s) is expressed as:

Kurj =
1

ω − 1

j=N∑
j=1

(
I
(s)
Ωj

− µ̀j

)4
(4.42)

To guarantee the data features properties, and not violate the non-stationarity property of
the data, the window size should be chosen carefully. In this case study, the window size
equals to the number of observations in a period of the phase current. The four statistical
features are computed for the 3-phase currents in healthy I(h)i mode and in the seven
faulty modes I(ccj)i for the three load conditions (j = 2, .., 8; i = 1, 2, 3). To illustrate the
effect of the fault severity on the features’ values, the fitting normal distributions to the
four features are presented in Figures 4.5 (for MAD), 4.6 (for variance), 4.7 (for skewness),
and 4.8 for (kurtosis).
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The key findings by visual inspection of the fitting normal distributions are as follows:

1. For each fault severity and each load condition, the three-phase currents are affected
differently. The fault patterns are more easily detected, from the healthy operation, on
some phase currents than other for the MAD, variance and kurtosis.

2. For the skewness, for the three-phase currents, the difference between healthy and faulty
conditions is weak.

These results indicate that the MAD, variance, and kurtosis can be selected as features
with discriminant capability to detect interturn short-circuit faults, and also differentiate
the severities of the fault. In the following, the data variable will be composed of the MAD,
the variance, and the kurtosis of the three-phase currents. For each fault scenario, the data
has N observations for 9 feature variables, arranged in a data matrix X ∈ RN×9. In this
matrix, each vector is written as xt

i = [x1,i, . . . , xN,i] where xj,i is the jth observation of
the ith variable. The observations of the variables of these three features in the three loads’
operations are shown in Figure 4.9 for the healthy data and in Figure 4.10 for the data
with CC2 fault.
Each feature has three variables noted for a variable x: xj,a, xj,b and xj,c related to the
phase a, b and c respectively. The differences in the magnitude of the features and their
variation with the load change can be well observed. For the MAD and variance, the
magnitudes of the variables follow the evolution of load. This tendency is also observed
in both healthy and faulty conditions. The kurtosis on the other hand shows dispersed
evolution of its magnitudes with the evolution of the load in both healthy and faulty
conditions. In the following, the Principal Component Analysis (PCA) will be adopted for
the fault detection and diagnosis.
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4.6 PCA for inter-turn fault detection

The EV traction motor has different operating criteria than those used in industries. While
in industries, most loads are constant and classified, on the road, the EV may need to
change speed, increase torque on slopes, and abruptly apply brakes. Figure 4.11 shows a
typical load profile for an EV traction motor. Three load sections can be distinguished
throughout the speed cycle (constant torque, constant power, and reduced power regions).

Constant torque region Constant power region Reduced power region

Torque Power 

Speed

Urban driving region

Highway driving region

Base speed Maximum speed

Figure 4.11: Typical EV motor speed–torque characteristics [236]

In process control of multivariate systems, Principal Component Analysis (PCA) is widely
used because it requires no prior knowledge and is efficient to highlight the correlation
among variables [237]. However, its application lies on the assumption that the variables
are stationary (constant mean and variance over all the data time-series observations) and
follow Gaussian distribution. Nevertheless, in a dynamic environment such as electric ve-
hicles, the variables have non-stationary properties mostly related to the varying operation
conditions. To address this limitation, extensions based on the analysis of time-series seg-
mentation with fixed or moving windows have been proposed. For example, the Dynamic
Principal Component Analysis (DPCA) has been proposed in [238] to deal with autocorre-
lations. PCA is applied to a new expanded data matrix with time-shifted duplicate vectors
for all variables. However, it has been shown in [239] that the resultant score variables of
the DPCA can still be correlated. Consequently, the Probability of a False Alarm (PFA)
is higher when using Hotelling’s T 2 statistic as the fault index. Multi-scale methods known
as Multi-Scale PCA (MSPCA) have also been proposed for feature extraction for dynamic
systems: each variable is extended to different forms of the variable at different scales. For
example, in [240] wavelets are used to decompose the variables into various scale represen-
tations. Then PCA is used to obtain the coefficients for wavelet reconstitution. The PCA
algorithm is applied to the reconstructed data for fault detection.
In the following two analyses will be presented. In the first analysis, fault detection in the
different load conditions (stationary conditions) will be presented separately. In the second
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analysis, fault detection in non-stationary conditions (the three load change conditions)
will be presented.

4.6.1 Fault detection under stationary conditions

The flowchart displayed in Figure 4.12 summarizes the PCA methodology for fault detec-
tion described in section 4.3.2.

Healthy data collection
Healthy stator 3-phase currents

Normalisation of training data Normalisation of test data

PCA model Projection on the  PCA spaces

Compute 𝑇2 and 𝑆𝑃𝐸

Compute 𝑇α
2 and 𝑆𝑃𝐸α

Healthy features extraction
Moving windows MAD, Variance 

and Kurtosis of healthy data

Faulty data collection
Faulty stator 3-phase currents

Faulty data features extraction
Moving windows MAD, Variance 

and Kurtosis of  faulty data

Model development Fault detection

Determine fault if 
𝑇2 > 𝑇α

2 or 𝑆𝑃𝐸>𝑆𝑃𝐸α

Compute 𝑇2 and 𝑆𝑃𝐸

Figure 4.12: Flowchart of PCA for fault detection

As shown in the figure, the procedure is decomposed into two parts: one using the healthy
data for modelling the process and the other considering the faulty data for fault detection.
For the three load conditions, with the three different healthy data, the process is trained
to construct the three PCA models. In this study, the threshold of cumulative variance is
set to 90% to select the optimal number of features to form the principal subspace. Figure
4.13 describes the percentage explained variance with respect to a number of Principal
components for the three conditions. This results in retaining the first five components for
the principal subspace and the last four ones for the residual subspace. The percentage
explained variance captured by the principal and the residual subspaces are (96.82% and
3.18%) for Load1, (94.20% and 5.80%) for Load2 and (91.78% and 8.22%) for Load3.
The Hotelling T 2 and the squared prediction error SPE will be used as fault indicators.
The thresholds T 2

α and SPEα are set at 1 − 0.99 confidence level, and are computed for
χ2 and z distributions, respectively. The results for the fault level 2 are shown in Figures
4.14, 4.15 and 4.16 for Load1, Load2 and Load3, respectively. The horizontal dashed lines
represent the thresholds. The vertical dashed lines represent the separation between the
healthy and faulty periods. The blue solid dots are the observations of the monitoring
metric T 2 and SPE that are below the threshold, which symbolize healthy condition. The
red solid dots are the observations of the monitoring metrics above the threshold, which
symbolize faulty condition.
The detection results for monitoring T 2 and SPE are compared with each other to verify
the performance after injecting faulty data.
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Figure 4.13: Variance captured by each principal component

1. Based on the detection results in Load1 condition shown in Figure 4.14, the T 2 statistics
showed no observations above the threshold before the fault injection and after the
fault ended. All the red solid dots above the threshold are observed after the fault is
introduced. From this observation, it can be noted that that the monitoring of T 2 gives
a fault detection with no False alarms and no missed detections. For SPE, few false
alarms and no missed detection can be observed (see Figure 4.14).

2. The fault detection in Load2 condition shown in Figure 4.15 shows similar results to
those in Load1 condition (see Figure 4.15).

3. The fault detection in Load3 condition shown in Figure 4.16 shows no false alarms for
T 2 and SPE. The T 2 monitoring gives no missed detection but the SPE statistics
fluctuates many times below the threshold after the fault injection. This shows high
rate of missed detections (See Figure 4.16).

In the following, the reliability of the fault detection with PCA will be evaluated through
the Probability of False Alarm (PFA) and the Probability of Missed Detection (PMD)
achieved with the defined thresholds in each scenario. A summary of the performance of
the fault detection with PCA in terms of PFA and PMD is given in Table 4.2. Usu-
ally, for fault detection, the acceptable PMD and PFA are typically set to 0.02 and 0.05

respectively[241]. In Table 4.2 the cases for which these thresholds are violated are high-
lighted in red. From the Table 4.2, it can be seen that the fault detection performance
in terms of PMD is 100% when T 2 is monitored. The monitoring of the SPE also gives
excellent performance in terms of PMD in all scenarios except for CC2 and Load3 con-
ditions. This shows that the incipient inter-turn fault is difficult to detect in the residual
subspace for high load operation. In terms of PFA, the T 2 shows acceptable performance
with no violation of the threshold. The SPE monitoring on the other hand often violates
the threshold. This shows that the fault detection with SPE is less accurate than the
monitoring of T 2.
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Figure 4.14: Fault level 2 detection with PCA at Load1 condition

Figure 4.15: Fault level 2 detection with PCA at Load2 condition

Figure 4.16: Fault level 2 detection with PCA at Load3 condition
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Table 4.2: Performance evaluation of the fault detection with PCA
(values greater than the thresholds are in red)

Scenario PFA PMD

T 2 SPE T 2 SPE

Data with CC2

Load1 0 0.05 0 0
Load2 0.02 0.08 0 0
Load3 0 0 0 0.86

Data with CC3

Load1 0 0.1 0 0
Load2 0.05 0.06 0 0
Load3 0 0.01 0 0

Data with CC4

Load1 0 0.08 0 0
Load2 0 0.04 0 0
Load3 0 0 0 0

Data with CC5

Load1 0 0.04 0 0
Load2 0 0.1 0 0
Load3 0 0 0 0

Data with CC6

Load1 0 0.1 0 0
Load2 0 0.06 0 0
Load3 0 0.08 0 0

Data with CC7

Load1 0 0.1 0 0
Load2 0 0.06 0 0
Load3 0.04 0.04 0 0

Data with CC8

Load1 0 0.06 0 0
Load2 0.05 0.05 0 0
Load3 0 0 0 0

102



Chapter 4. EV powertrain fault detection methodology based on statistical
approaches

4.6.2 Fault detection under non-stationary condition

As stated in the subsection 4.6, the conventional PCA cannot be used under non-stationary
conditions. Extensions of the PCA like Dynamic PCA, the Multi-Scale PCA have been
proposed in the literature to cope with this limitation. However these extensions of the
PCA come with some weaknesses like long response time, computational complexity, and
their effectiveness is not always guaranteed.
In this work, we propose a simple method for detecting short-circuit faults between the
turns of a PMaSynRM windings under non-stationary conditions with different mechanical
load operations. The Nuisance Attribute Projection (NAP) is applied to the raw data in the
preprocessing step to get fault features that are only sensitive to the fault occurrence. After
the elimination of the load effects, the features are normalized before being transformed
with PCA to detect the fault. The flowchart displayed in Figure 4.17 summarizes the
proposal.

Healthy data collection
Healthy stator 3-phase currents

Normalisation of training data Normalisation of test data

PCA model Projection on the  PCA spaces

Compute 𝑇2 and 𝑆𝑃𝐸

Compute 𝑇α
2 and 𝑆𝑃𝐸α

Healthy features extraction
Moving windows MAD, Variance 

and Kurtosis of healthy data

NAP 
Find nuisance 

projection matrix ෘ𝑃

Faulty data collection
Faulty stator 3-phase currents

Faulty data features extraction
Moving windows MAD, Variance 

and Kurtosis of  faulty data

Faulty data features transformation
Nuisance attributes elimination

Healthy data features transformation
Nuisance attributes elimination

ෙ𝑷

Model development Fault detection

Determine fault if 
𝑇2 > 𝑇α

2 or 𝑆𝑃𝐸>𝑆𝑃𝐸α

Compute 𝑇2 and 𝑆𝑃𝐸

Figure 4.17: Flowchart of the NAP-based PCA for fault detection

a) Nuisance Attribute Projection

Originally applied to diminish the signal interference from different channels in speaker
recognition, it has been recently applied in the condition-based maintenance field for better
fault diagnostic results. Its principle is explained graphically in Figure 4.18. X represents
the feature vectors composed of the fault features and the other features related to the sys-
tem dynamic named nuisance attributes. The dimensions of these vectors corresponding to
the nuisance attributes are represented by the projection of X onto the subspace represent-
ing nuisance attributes. These dimensions are projected out from X to get X′ representing
only the attributes related to fault patterns for all severity levels. Considering that the N
observations for the n measured data matrix X contain some dynamic attributes related
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to the dynamics in the system operation, its transpose Xt = [x1,x2, . . . ,xN] is a matrix of
vectors x which are the vectors of variables of the ith observation. The NAP strategy tries
to remove attributes related to the dynamic in the system in the feature space as follows:

X′ = P̆X (4.43)

Where P̆ ∈ RN×n is the projection matrix.

P̆ = I−
d∑
i=1

∆i∆i
t (4.44)

Where I is an N ×N identity matrix, ∆i represents the ith NAP direction, d ≤ N is the
number of NAP directions to be removed from the feature space. The parameter d can
be determined by making a compromise between the computational complexity and the
projection effect since the larger d is, a better projection is obtained but the computation
time is higher. The main principle of the NAP is to minimize the judgment of Projection
Effect (PE) that is defined as the sum of the distance between each projection feature.
The PE using the projection matrix P̆ is expressed as follows:

PE =
∑
i,j

Wij

∣∣∣∣∣∣P̆ · xi − P̆ · xj

∣∣∣∣∣∣2 (4.45)

where Wij is a weight coefficient that quantifies the relation between two feature vectors.
If the nuisance variable is known (in our case the reference torque) and set in a label, Wij

is set positive when the observations xi and xj belong to the same operating conditions
and negative otherwise. Its expression is as follows [242]:

Wij =

{
1 if operating condition(xi) = operating condition(xj)
0 otherwise (4.46)

The solution of the minimization of PE in Equation 4.45 can be transformed into finding
the leading eigenvectors of the following eigenproblem (see Appendix A.3):

X(W − diag(WU))Xt∆ = λ∆ (4.47)

where U is a column vector of all ones, W the matrix of elements Wij , λ the eigenvalues,
and ∆ the eigenvectors.
The NAP projection is at first computed using the healthy data to get the model P̆, which
is independent of the dynamic load variations. To compute the projection matrix P̆, the
weight matrix W is generated to make the features independent. The minimization of
the projection Effect (PE) is then achieved by setting the columns of v to be the qth
most principal eigenvectors of the eigenvalue analysis in Equation 4.47. In our case, we
set q = min(dimX, d), dimX as the dimension of the features, and d as the number of the
NAP directions. The model projection matrix P̆ is used to remove from the healthy and
actual features the effects of dynamic load variations. The transformed features are then
used as inputs to the PCA for fault detection as described in Figure 4.17.
The non-stationary dataset is composed of the selected features MAD, the variance, and
the kurtosis of the three-phase currents for the three load conditions. In our case study
a series of data composed of N observations arranged in sections arranged in order: N/3
observations for each load condition. The same seven fault scenarios are considered. In
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Figure 4.18: Schematic diagram of the NAP principle

the series of the three loads data, a section of faulty data at the same severity level is
considered for diagnosis analysis. As shown in Figure 4.17, the procedure is composed
of two sections. The first one (modelling) uses the healthy data to obtain the projection
matrix P̆, which is then used to transform training data and test data in the second section
for fault detection. The number of NAP directions is set to d = 3. The observations of
the three variables of the original features and the NAP score projected ones are shown
in Figure 4.19, 4.20 and 4.21 for MAD, variance and Kurtosis, respectively. xj,a, xj,b and
xj,c denote the features variables related to phase a, b and c currents respectively. It
can be clearly seen that after projection with the NAP, the new features are insensitive
to load variations but sensitive to the faults. The three different faulty periods can be
distinguished in the series of observations. The difference order in the features variable
amplitudes due to NAP projection weights can also be observed.
The new healthy features scores are used to design the model for the PCA. The threshold
of the cumulative percentage variance is set to 90%. Figure 4.22 shows that the first four
principal components capture 98.56% of the information. Therefore, in the PCA model, the
principal subspace is spanned with the first four components while the residual subspace
is spanned with the five remaining ones.
Similarly to the analysis with stationary data, the Hotelling T 2 and the squared prediction
error SPE will be used as fault indicators. The thresholds T 2

α and SPEα are set at 1−0.99

confidence level, and are computed for χ2 and z distributions, respectively. The results for
the fault level 2 are shown in Figure 4.23.
As shown in Figure 4.23, the T 2 statistics showed no observations above the threshold
before the fault injection and after the fault removal. All the red solid dots above the
threshold are observed after the fault is introduced. From this observation, it can be noted
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Figure 4.19: Comparison of MAD features before and after NAP

that the monitoring of T 2 gives a fault detection with no False alarms and no missed
detections. For the monitoring of the SPE, false alarms and no missed detections can be
observed in each of the three load sections. Few false alarms can be observed under Load1
condition while more can be observed under Load2 and Load3 conditions.
A summary of the performance of the fault detection with the NAP-based PCA in terms
of PFA and PMD is given in Table 4.3. The cases for which the thresholds are violated
are highlighted in red. From the table, it can be seen that the fault detection performance
in terms of PMD is 100% when T 2 and SPE are monitored. In terms of PFA, the T 2

exhibits acceptable performance with no violation of the threshold set at 0.05. The SPE
monitoring on the other hand violates the threshold. It can be noticed that the PFA is
much higher compared to the stationary cases. This shows that the NAP performs the
requested task of removing dynamics related to the load variations but displaces the fault
signatures in the PCA susbspaces. This makes the fault detection monitoring the SPE
with the NAP-based PCA less accurate than the monitoring of T 2.
In most of works reported in the literature, the PCA-based fault detection algorithm uses
exclusively monitoring metrics related to the residual components of the PCA model.
Indeed, this is valid in ideal systems where the presence of faults affects mostly the com-
ponents in the residual subspace, but this is not always true. In some cases, the system
modelling errors could be projected onto the residual subspace making it less sensitive
to the fault and the principal subspace more sensitive. This is the case we came across
in our case study in both stationary and non-stationary data. The least fault signature
observed in the residual subspace when the NAP is applied can be due to the presence of
NAP projection errors in the residual subspace. Based on the latter results and the result
with the stationary data, in the following analysis, only the T 2 will be considered as fault
monitoring metric. For all the following analyses, only the non-stationary condition case
study presented previously will be considered.

4.6.3 Fault diagnosis for noisy data
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Figure 4.20: Comparison of variance features before and after NAP

Electrical machines drive systems working environments are susceptible to various kinds
of noise that may come from sensor devices, power converter or environment. In the elec-
tric motor fault detection with electrical signals, the noise effect may corrupt monitoring
metrics. Signal will low SNR (signal to noise ratio) may mask signal component, making
it hard to extract key features for accurate fault detection and classification. Therefore,
the effects of noise on the processed signals must be considered. For evaluating the perfor-
mance of the proposed fault detection with noisy signal, additive white Gaussian noise with
varying SNR is added to the collected signal. The choice of WGN is based on the fact that
real noise is the composition of multiple weak noises and the frequency spectrum is wide.
Besides, according to central-limit theorem, real noise is drawn from normal distribution.
Thus, WGN may be the best approximation for any random noise [243].
To intuitively observe the influence of noise, WGN with different SNR are added to the
original dataset. Adding noise to a signal is expressed as follows:

x̂ = x+wgn (4.48)

where x̂ is the noisy signal and wgn represents white Gaussian noise at specified SNR =

10×log10
σ2
x
σ2
v
. σ2x is the variance of the original signal, and σ2v is the variance of the Gaussian

distributed noise v ∼ N
(
0, σ2v

)
. Figure 4.24 shows the noise-free signal and signals after

adding WGN at SNR = 10dB, 15dB and 20dB. The overwhelmed effect of the noisy
signal on the noise-free signal as the SNR decreases can be observed. The increase of the
features variable magnitude with noise level can be observed too.
To investigate the noise effect on the PCA subspaces selection, the variation of the PCA
scores with the noise level is analysed. Figure 4.25 describes the percentage explained
variance with respect to a number of Principal components for the noise-free data and the
three noisy cases.
The threshold of cumulative variance is set to 90% to select the optimal number of features
to form the principal subspace. This results in retaining the first four components for
the principal subspace and the last five ones for the residual subspace. The percentage
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Figure 4.21: Comparison of kurtosis features before and after NAP

explained variance captured by the principal subspaces are 98.56%, 99.02%, 99.33% and
99.49% for the noise-free data, noisy data at SNR = 20, SNR = 15 and SNR = 10,
respectively. The selected number of principal components to form the PCA susbspaces is
not affected by the noise level. We can assume that noise down to SNR = 10dB has no
impact on the selected principal components in fault diagnosis with PCA.
As stated at the end the previous section, the Hotelling T 2 will be used as monitoring
metric. Likewise in the previous analysis, the thresholds T 2

α is set at 1 − 0.99 confidence
level. A summary of the performance of the fault detection with the NAP-based PCA in
terms of PFA and PMD for the noise-free and noisy data is given in Table 4.4. The cases
in which accepted thresholds are violated are still highlighted in red.
From Table 4.4, it can be seen that the fault detection performance in terms of PMD

is 100% for the noise-free data while missed detections are observed for the noisy data.
The PMD increases with the noise level for the incipient fault (CC2). This shows that a
lower SNR reduces the sensitivity of the detection test to small fault amplitude. In terms
of PFA, acceptable performance with no violation of the threshold is observed for the
noise-free data while few violations are observed for the noisy data. This shows that noise
in the data can introduce features with characteristics similar to the fault signature, which
may increase false alarms. This analysis shows the limited robustness of our proposed fault
detection methodology to incipient faults (CC2 and CC3) in a noisy environment.
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Figure 4.22: Variance captured by each principal component
for the the NAP score data

Figure 4.23: Fault level 2 detection with NAP-based PCA
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Table 4.3: Performance evaluation of the fault detection
with NAP-based PCA (values greater than the
thresholds are in red)

Scenario PFA PMD

T 2 SPE T 2 SPE

Data with CC2 0.003 0.25 0 0

Data with CC3 0.003 0.3 0 0

Data with CC4 0 0.32 0 0

Data with CC5 0 0.25 0 0

Data with CC6 0 0.21 0 0

Data with CC7 0.013 0.19 0 0

Data with CC8 0.003 0.24 0 0

Figure 4.24: Comparison of the noise-free and noisy data
and selected features
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Figure 4.25: Variance captured by each principal component for the noise-free
and noisy data
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4.7 Inter-turn fault severity estimation

Determining the severity levels of identified faults is one of the crucial operations of the
diagnosis. Indeed, it allows making the appropriate safety decision. The CUSUM decision
function has proven to be an effective tool for estimating the severity of faults in electrical
systems [244]. Once the defect is detected, the estimation of the severity level is obtained
by the inversion of the analytical model of the evolution of the slope of the CUSUM decision
function.
Let us consider µT 2

0
the mean value of the monitoring metric T 2 under healthy conditions.

As it can be noticed in Figure 4.23 it deviates when a fault is introduced. Let µT 2
1

be the
new mean value. Assuming that the variance σ2T 2 is constant, the instantaneous likelihood
ratio s(i) of the ith observation of the distribution of T 2 is given as follows [213]:

s(i) =
µT 2

1
− µT 2

0

σ2
T 2

(
T 2(i)−

µT 2
1
+ µT 2

0

2

)
(4.49)

The CUSUM function SN for the N observations of T 2 and the CUSUM decision law DSN

are given as follows [213]:

SN =
∑N

i=1 s(i)

DSN
=

(
SNi − min

1≤t≤i
(SNt)

)
(4.50)

A fault is detected when DSN
is greater than the threshold T 2

α. The top of the Figure
4.26 shows a clear change in the T 2, despite fluctuations, while the bottom of the figure
shows the evolution of the CUSUM decision function for the fault level 2. The latter
also represents a relevant fault indicator too. The time occurrence of the faults and the
actual time the fault is detected are shown. The fault is detected without any delay. The
CUSUM monitoring gives the same performance of fault detection as the one with the T 2

monitoring shown in Table 4.4.

Figure 4.26: CUSUM for fault monitoring
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The severity of the faults varies from 0.25 to 1, corresponding to the number of short-
circuited turns from 2 to 8. Figure 4.27 shows the evolution of the slope of the CUSUM
decision function as a function of fault severity for the three load conditions. It can be
observed that the slope of the decision function increases monotonically with the severity
of the defect regardless of the mechanical load. Therefore, it is a relevant characteristic
that can be used to estimate the fault severity.
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Figure 4.27: Slope of CUSUM decision function

The different evolutions of the CUSUM slope with the load level can also be observed in the
figure. This is due to the difference in the fault signature with the load level. This makes
the load level label an essential input information for the fault estimation with CUSUM
slope. For the three load sections, the evolution of the slope of the CUSUM decision dSN
as a function of fault severity f can be approximated by an exponential function as follows:

dSN = aeb×f (4.51)

where a and b are coefficients determined from the three load sections. Figure 4.28 shows
the evolution of the actual and analytical approximation of dSN for the three load sections.
An exponential fitting approach consisting of weighted sums of exponential functions with
slowly varying weight functions has been applied to get the approximated coefficients a and
b for the three loads. The approximated exponential functions yLoad1, yLoad2 and yLoad3
are shown in Equation 4.52.

yLoad1 = 59.844e9.238×x

yLoad2 = 70.583e8.942×x

yLoad3 = 6.311e10.644×x
(4.52)

The accuracies of the approximated exponential functions are evaluated through the char-
acterization of the difference between the actual and the estimated severities with the
normalized root mean square error (NRMSE). For a quantity measurement y and its esti-
mated ỹ the NRMSE is expressed as:

NRMSE =

√∑N
i=1(yi−ỹi)

2

N

ȳ
(4.53)
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Figure 4.28: Analytical approximation of dSN

where yi and ỹi are the ith observations of the actual and estimated quantity, respectively.
N is the number of observations and ȳ is the mean value of the actual quantity. The results
are: NRMSE = 0.0059, for Load1, NRMSE = 0.0031, for Load2, and NRMSE =

0.0036, for Load3. This results correspond to a very good performance of the exponential
approximation of dSN curves. For each fault case with the load level label known, once
the CUSUM slope is computed, the severity can be estimated by inverting the exponential
function. To evaluate the effect of the interference of noise on the fault estimation, the
fault severities have been first estimated for different fault levels for the noise-free and
noisy data. Figure 4.29 shows the estimated fault levels and the actual fault level of the
noise-free data and for noisy data with SNR = 40dB. Larger deviations of the estimations
from the actual fault levels for the noisy data can be observed.
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Figure 4.29: Fault severity estimation
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Figure 4.30 shows the evolution of the fault estimation performance in terms of NRMSE
with the noise level. The increase of the NRMSE with the noise level can be observed.
These results show that the performance of the fault estimation degrade with increasing
the noise level. The degradation of the performance becomes significant for SNR < 30dB

Figure 4.30: Fault estimation and noise interference

4.8 Conclusion

In this chapter, univariate and multivariate statistical methods for fault detection and
diagnosis have been reviewed. The different performance evaluation of these methods
have been presented too. A case study of inter-turn short-cicuit detection is proposed. A
dataset composed of healthy and faulty stator currents (from incipient to the severe fault
cases) at three different load levels has been built. At the data preprocessing stage, sliding
window Median Absolute Deviation (MAD), variance, skewness and kurtosis have been
proposed for feature extraction. Through the analysis of the fitting normal distributions
of the features, the MAD, variance and kurtosis have been selected for fault diagnosis as
they show more discriminant capacity for the fault detection. A NAP-based PCA has
been proposed to eliminate the effects of load variations in the non-stationary conditions
due to the load change operations. This helped to develop a fault detection regardless of
the load change in non-stationary conditions. The fault detection performance analyses
helped to set the Hotelling T 2 as the monitoring metric for the inter-turn fault detection
with PCA. The robustness of our proposed fault detection methodology noise interferences
showed some weakness for incipient faults. An analytical model of the slope of the CUSUM
decision function is derived, from which the fault severity is estimated. The faults with
noise-free data have been estimated with accuracy higher than 99%. The robustness of the
fault estimation has been tested too and showed robustness to noise for SNR greater than
30dB. A limitation of this fault estimation is its requirement of the load level label as the
fault signature varies with the load level. This limitation can be overcome with an efficient
classification tool that discriminates the load level and the fault severity. The robustness
of the fault estimation can be improved by filtering the noise before the fault detection.
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Chapter 5

General Conclusion

5.1 Conclusion

This thesis was devoted to examining approaches for the detection and diagnosis of faults
affecting electric motors within an electric powertrain. The main objective of this study
was to develop a fault detection methodology intended to be integrated into a predictive
maintenance system for the electric drive system of electrified vehicles. The targeted explo-
ration of existing opportunities in electric motor condition monitoring has made it possible
to identify previously unexplored areas in applications related to electrified vehicles. These
uninvestigated areas include:

• the ability to diagnose faults without additional sensors than those already present in
the device,

• the ability to perform the diagnosis regardless of the varying operating conditions,

• and the ability to perform diagnosis in closed-loop operation.

However, for automotive applications, more advanced signal processing techniques may
be required to cope with the large fluctuations in operating conditions. Therefore, the
majority of reports present in the literature opt for a combination of results from several
distinct sensors and different processing methods to meet this requirement. The distinctive
feature of our proposed approach lies in its exclusive focus on motor stator phase currents
to address this challenge.
Based on identified research gaps, we defined the scope of our project with the following
objectives:

1. Build a model of the motor that is accurate enough to model fault characteristics, yet
fast enough to be integrated with the other drive system components, including the
inverter and controllers.

2. Select the optimal statistical analysis methodology for processing stator phase current
data to extract fault signatures independent of the motor operational state.

3. Develop a fault detection methodology with the ability to detect a fault and estimate
its severity, regardless of the operational state of the motor and the noise interference
on the motor stator currents.

To achieve these objectives, a preliminary research phase was undertaken, consisting of an
exhaustive review of the most recent academic publications, reference works, and relevant
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industrial publications. This approach aimed to gain an in-depth understanding of the
current state of fault detection and diagnostic technologies, as well as motor drive system
modeling for fault detection. The general introductory section demonstrated in a methodi-
cal way how predictive maintenance systems bring important benefits to owners of electric
vehicles. These systems have been rigorously established to accurately anticipate mainte-
nance needs, allowing vehicle owners to proactively troubleshoot issues with their vehicles.
Benefits of this approach include reduced downtime, lower maintenance costs, improved
safety, increased vehicle performance, and a significant reduction in carbon footprint.
In Chapter 2, a review was carried out on the motor technologies used for electric power-
trains, the electric motor faults statistics, and the different fault detection methodologies.
Critical discussions of the review topics have been provided too. Because of the lack of
appropriate data on motor drive system failure in electrified vehicles throughout the liter-
ature, the need to build synthetic data arises. An adaptive motor drive system modeling
is one of the solutions to help collect data that will be used for the fault prediction ses-
sion. The most serious issue in this part of the research has been the lack of reliability
and maintenance information on electrified vehicle motor drive systems. The youth of the
technology and the reluctance of manufacturers to divulge and share sensitive data, have
been the main causes for the scarcity of this information. This issue could be resolved by
researching information from similar technologies, more mature than electrified vehicles,
but with comparable run conditions and operations.
To achieve the intended objective (1), a comparative study was undertaken in chapter
3 to evaluate three main methods of modeling electric motors, namely models based on
coupled circuits, models based on numerical methods, and hybrid models. Regarding the
accuracy, it appeared that models based on coupled circuits show relatively lower per-
formance compared to the best results obtained with numerical models. However, when
it comes to computational capabilities, circuit-based models outperform numerical ones.
To satisfy the accuracy and computational capability requirements of electric motors for
fault diagnosis purposes, the hybrid model was found to be the optimal choice. As part
of our study, we developed a hybrid model for a PMaSynRM by combining a finite ele-
ment model with an analytical model. The initial design of the PMaSynRM was carried
out and simulated using FEMM software, allowing the calculation of inductances under
healthy and faulty conditions. The values of the calculated inductances were then stored in
multidimensional lookup tables, which were integrated into the analytical model based on
the three-phase inductance. The validation of this hybrid model was carried out by com-
paring its results with experimental data obtained under healthy operating conditions and
reached an accuracy higher than 70%. Furthermore, as part of our study, we developed a
model of the machine taking into account inter-turn short-circuit and dynamic eccentricity
scenarios. An analysis of PMaSynRM parameters under faulty conditions identified stator
currents as relevant and effective indicators for fault diagnosis.
To meet objectives (2) and (3), an investigative study was undertaken to examine cur-
rent trends in the field of fault diagnosis. With respect to modern electric motor drives,
it has been found that conventional fault monitoring techniques are not always effective.
This is due to the high levels of noise, dynamics, and closed-loop operations, all of which
can mask fault signatures. To address the need for more robust diagnostic methods, we
chose statistical analysis techniques because of their ability to model data, capture behav-
iors, and organize the information into concise rules and metrics. We reviewed univariate
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and multivariate statistical methods for fault diagnosis to assess their suitability for our
purposes of inter-turn fault detection. Preliminary steps were to define a data set including
healthy and faulty stator currents, covering a range of faults from incipient to more severe.
Data preprocessing techniques like sliding windows median absolute deviation (MAD),
variance, and kurtosis were selected to extract relevant features from our dataset.
For fault analysis, we opted for principal component analysis (PCA), a method widely
adopted in fault diagnosis due to its data compression characteristics and its ability to high-
light correlations between data variables, without requiring prior knowledge. To achieve
our goals, we proposed an extension version of PCA based on Nuisance Attribute Projec-
tion (NAP), allowing us to filter out the non-stationarity in the data due to load variation.
This made it possible to develop fault detection independent of load variations. After ana-
lyzing the fault detection performance, we selected Hotelling’s T 2 as a reliable monitoring
metric for inter-turn fault detection with PCA. The robustness of our proposed fault de-
tection methodology to noise interference was assessed and has revealed some limitations
in detecting incipient faults.
We looked at analytical and artificial intelligence methods for our last goal, which is to esti-
mate the fault severity. We chose an analytical method due to the limited data availability
for our study. We developed an analytical model of the slope of the CUSUM decision
function of the monitoring metric T 2 to estimate the fault severity. From this analytical
model, we made fault estimation on noise-free data with an accuracy exceeding 99%. We
also tested the robustness of our defect estimation method against noise interference, which
showed resistance to noise when the signal-to-noise ratio (SNR) was less than 30 dB. A
limitation of this fault estimation method is the need for a load level label, as the fault
signature is sensitive to the load variation.

5.2 Contribution

This research project has made a substantial contribution to the field of fault detection and
diagnosis, particularly concerning the modeling of electric motor drive systems for fault
diagnosis, as well as the use of statistical methods for fault diagnosis. It has generated
new knowledge and in-depth understanding that stands out for its originality. The main
contributions to the advancement of knowledge are listed below:

1. International Conference paper

Title: Stator winding Inter-turn short-circuit and air gap eccentricity fault detection
of a Permanent Magnet-Assisted Synchronous Reluctance Motor in Electrified vehicle.

Authors: Pakedam Lare, Siyamak Sarabi, Claude Delpha, Andre Nasr and Demba
Diallo.

Conference: 2021 International Conference on Electrical Machines and Systems, Gyeongju,
Korea, from October 31 to November 3, 2021 [245].

2. National Conference paper

Title: Modelling of a PMa-SynRM for the detection of inter-turn short-circuit.

Authors: Pakedam Lare, Siyamak Sarabi, Claude Delpha and Demba Diallo.

Conference: Conférence des Jeunes Chercheurs en G enie Electrique,(JCGE 2022), Le
Croisis, France, from June 14 to 17 June, 2022 [246].
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3. International Conference paper

Title: A PMaSynRM stator winding fault detection approach using an optimized PCA-
based EWMA control scheme.

Authors: Pakedam Lare, Siyamak Sarabi, Claude Delpha and Demba Diallo.

Conference: 2023 IEEE 32nd International Symposium on Industrial Electronics
(ISIE), Helsinki, Finland, from June 19 to June 21, 2023 [247].

4. International Conference paper (Accepted for publication)

Title: Diagnosis of stator windings short-circuits with PCA and Nuisance Attribute
Projection.

Authors: Pakedam Lare, Siyamak Sarabi, Claude Delpha and Demba Diallo.

Conference: IECON 2023: the 49th Annual Conference of the IEEE Industrial Elec-
tronics Society (IES), Singapore, from October 16 to October 19, 2023.

5.3 Perspectives

Further research is underway to improve the performance of the fault estimation approach,
independent of the load level label. Investigations are underway to explore other analytical
methods and artificial intelligence approaches suitable for the limited size of our dataset.
At the same time, efforts are being made to expand our dataset by developing reliable
methods for generating synthetic data, thereby paving the way for the exploration of
artificial intelligence-based techniques.

5.3.1 Improvement of the electric powertain modelling for fault diagnosis

To refine the powertrain model used in fault diagnosis, improvements are needed in en-
gine modeling. Currently, we have used a 2D finite element model for simplicity, but it
is envisaged to complement this model by including the estimation of the end-windings
inductances using a 3D finite element model. Additionally, magnetic saturation effects
were neglected in the analysis for simplicity. An analysis taking these effects into account
could improve the model accuracy, especially under high load conditions, which has not
been explored in our study. For in-depth and effective monitoring of electric powertrain
faults, the development of more advanced techniques to detect various types of faults in
all powertrain components is essential. The fault diagnosis can also be challenging when
multiple faults cause overlapping features. Our results showed that stator phase currents
are potential indicators of motor mechanical and electrical faults. Further analysis of these
fault indicators, aimed at detecting other types of powertrain faults ((inverter, DC bus
capacitor, sensors, etc), would be highly beneficial.
In our previous study, we sought to contribute to the collection of data relating to the
diagnosis of electric motor faults in the context of electrified vehicles. However, due to
limitations in technical resources, we were restricted to generating experimental data for
the healthy mode of operation of the PMaSynRM. We have developed a specification of
the resources required for carrying out experimental tests on the motor in the presence
of inter-turn faults and dynamic eccentricity. To design a test bench aimed at analyzing
short-circuit and eccentricity faults, we considered two distinct approaches. For the short
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circuit fault, we examined the feasibility of using an electric motor whose configuration
allows access to the windings, to which connectors would be attached to delimit the winding
turns. These connectors would serve as connection points for a device aimed at setting short
circuit faults, with a contact resistance varying depending on the number of turns shorted-
circuited. To design the eccentricity fault, we considered the possibility of emulating the
fault by replacing the motor original bearing with another bearing in with noncoaxial inner
and outer rings. This eccentricity withing the bearing could be modulated to reproduce
the eccentricity defect with the desired severity level. Further studies are required to define
the test bench configuration to conduct other fault analyses on different motor technologies
used in electric powertrains.

5.3.2 Methodology improvement toward fault prognosis

The fault diagnosis and prognosis represent the essential foundations of a predictive main-
tenance strategy in applications, where critical importance is given to safety, reliability,
and availability. Regarding the objective of this PhD work, to provide a methodology to
accomplish both fault diagnosis and prognosis, it should be noted that the work has been
limited to the accomplishment of the first task.
Our contribution includes first in the choice of a data-driven approach over the system
model-based one, which requires an in-depth knowledge of the system. The adoption of
the system model-based approach would have required the identification and experimental
validation of fault variables. This task is often complex and difficult to generalize, given
that it typically involves long-term experiments under controlled conditions that do not
necessarily reflect real situations. Our data-driven approach only requires direct monitoring
of motor stator current signals. Second, our contribution extends to feature selection
and derivation of the T 2 statistic as an early fault detection metric, thus enabling early
identification of faulty components. These steps are of particular importance in the context
of fault prognosis. The next phase of the prognosis methodology involves the building of
a model aimed at predicting the occurrence of a fault and estimating the time before the
failure occurrence. Our attempt to accomplish this has been with an analytical model of
the slope of the CUSUM decision function of the monitoring metric T 2 to estimate the
fault severity. This attempt is attractive for its simplicity but needs further improvement
to address its weaknesses regarding its requirement of load level information and limited
robustness to noise interference.
Another approach at this stage is the use of machine learning models, which are available
across different learning domains. These models can be supervised, in the case where
sufficient quality historical data are available, or unsupervised, when little or no historical
data are available. In our context, the unsupervised version is more appropriate due to
the lack of data available in adequate quantities and the resulting economic considerations.
Among the approaches commonly used in unsupervised learning, clustering is one of the
most frequent. This method consists of grouping the response variables into clusters defined
either by the user, or models based on distance, model, density, or class.
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Le début du XXIe siècle a été marqué par une transformation significative de l’électricité
dans toutes les applications embarquées. Des progrès notables ont été réalisés grâce à
l’adoption croissante de véhicules électrifiés. Ces véhicules constituent une solution pour
atténuer la pollution environnementale résultant du transport routier et pour répondre
aux préoccupations concernant la hausse des coûts du pétrole brut. L’utilisation général-
isée des véhicules électrifiés a donné lieu à des problèmes de coûts de matériels, nécessitant
l’adoption d’une optimisation de la conception pour réduire les dépenses, la masse et le vol-
ume. Au-delà de la réduction du poids et de la compacité, d’autres défis majeurs auxquels
est confrontée l’industrie automobile électrique comprennent l’amélioration de l’efficacité,
la réduction des coûts de fabrication et la garantie de la disponibilité et de la fiabilité.
Dans le groupe motopropulseur électrique, les composants électromécaniques sont princi-
palement constitués de machines électriques. La machine et ses éléments d’entraînement
moteur sont fréquemment soumis à des cycles transitoires répétés, provoquant des con-
traintes mécaniques et thermiques. Un défaut au sein d’un composant peut se propager,
entraînant une efficacité opérationnelle réduite et engendrant des coûts supplémentaires
pour les procédures de diagnostic et les actions correctives. De plus, cela peut compro-
mettre le fonctionnement du véhicule et la sécurité des passagers [3]. Par conséquent, il
est primordial de remédier de manière préventive aux pannes du système pour garantir la
sécurité et la fiabilité des véhicules électriques.
Les méthodologies de maintenance traditionnelles, en raison de leur inefficacité et de leurs
coûts élevés, peuvent conduire à des incidents inattendues et des périodes prolongées
d’immobilisation des véhicules. Heureusement, les systèmes de maintenance prédictive
sont entrain de changer la donne. En tirant parti des techniques analytiques avancées
et l’exploration de données en temps réel, ces systèmes s’avèrent capables d’identifier les
besoins de maintenance avec une précision exceptionnelle. Dans les véhicules électrifiés, il
s’agit d’une surveillance et d’une analyse continue des paramètres (électriques, vibratoires,
de température, etc). L’analyse des signaux électriques est de plus en plus appliquée
aux moteurs électriques, à cause de son caractère non intrusif et sa viabilité technique et
économique.
L’objectif principal de ce travail de thèse est de développer une méthodologie structurée
pour le déploiement de techniques de maintenance prédictive pour les machines électriques
synchrones utilisées dans le groupe motopropulseur électrique [6]. L’accent a été mis sur
les défauts de court-circuit inter-spires pour leur pertinence pour éviter la plupart des
défauts des entraînements de moteurs électriques. Pour la modélisation du groupe moto-
propulseur, nous avons développé un modèle hybride de la moteur Synchro-réluctant assisté
par aimant permanent (MSRAP)) en combinant son modèle analytique et son modèle élé-
ments finis. Une validation a été réalisée en comparant les caractéristiques du modèle
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avec celles mesurées sur le banc expérimental. Une analyse approfondie des perspectives
existantes dans le domaine de la surveillance de l’état des moteurs électriques a conduit à
l’identification de lacunes dans le domaine de recherche lié aux applications des véhicules
électrifiés. Ces lacunes comprennent :

• l’absence de diagnostic des défauts tenant en compte les différentes conditions de fonc-
tionnement des moteurs électriques dans les véhicules électrifiés,

• l’absence de diagnostic des défauts du moteur dans les entraînements en boucle fermée.

Pour combler cette lacune, nous avons proposé une méthodologie permettant de détecter
les courts-circuits inter-spires du stator d’un moteur électrique avec charge variable et en
boucle fermée. L’exploitation des signaux des courants statoriques qui sont déjà disponibles
dans l’unité de contrôle est choisie comme approche pertinente pour construire un outil de
diagnostic embarqué pour la détection de défauts.

Le chapitre 2 a montré une considération générale et un aperçu de l’importance de détec-
tion de défauts dans les groupes motopropulseurs des véhicules électriques. Il représente
un point de vue global du sujet où les derniers articles académiques, ouvrages de référence
et les publications industrielles ont été étudiées. Ceci pour une compréhension plus détail-
lée de la l’état de l’art des technologies de détection et de diagnostic des défauts dans les
groupes motopropulseurs des véhicules électriques. L’accent a été mis sur :

• La description de la structure d’un groupe motopropulseur typique d’un véhicule élec-
trique, y compris les composants mécaniques, électriques et de contrôle.

• La description de la structure et des opérations de chaque composant du système avec
une focalisation sur le moteur électrique et le convertisseur de puissance.

• Une classification des différentes méthodologies de détection et de diagnostic des défauts,
leurs avantages et inconvénients.

Les investigations menées dans [57] et dans [58] ont montré que la répartition des défauts
dans les machines électriques est liée à leurs tailles (Figure 5.1). Elle a montré que, pour les
machines haute tension, les défauts statoriques sont les défauts prédominants et représen-
tent les deux tiers du taux total de défauts. Les véhicules électriques fonctionnant avec des
moteurs à haute tension, pour ça, ce travail s’est focalisé sur les défauts de court-circuit
inter-spires pour leur fréquence d’apparition et leur pertinence pour éviter la plupart des
défauts des moteurs électriques. Une revue des méthodologies de pointe pour la détection
et le diagnostic des défauts a permis d’identifier cinq étapes principales pour effectuer une
détection de défauts. Un organigramme de de la procédure généralisée de détection et de
diagnostic des défaut est présenté à la Figure 2.20. La première étape est la modélisation
qui consiste à construire des connaissances. Le modèle peut être basé sur des relations ana-
lytiques, une description du langage ou données historiques. La deuxième étape consiste à
prétraiter les données brutes dans le domaine d’information le plus approprié pour extraire
les caractéristiques de sensibilité aux défauts ou des signatures à la troisième étape. La
quatrième et la cinquième étapes sont dédiées à l’analyse des caractéristiques pour prendre
la décision finale sur les états de santé.
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a- Low voltage machines b- Medium voltage machines
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Figure 5.1: Statistiques des défauts des composants des machines électriques:
a- Machines basse tension, b- Machine moyenne tension et
c- Machine haute tension [60, 61, 59]

En raison du manque de données appropriées sur les défauts du système de motorisa-
tion des véhicules électrifiés dans la littérature, nous avons choisi de générer des données
synthétiques à partir de la simulation d’un modèle suffisamment précis du système de mo-
torisation. Dans le chapitre 3, une étude comparative a été entreprise pour évaluer trois
méthodes principales de modélisation des moteurs électriques, à savoir les modèles basés
sur des circuits couplés, les modèles basés sur des méthodes numériques et les modèles
hybrides. Concernant la précision, il est apparu que les modèles basés sur des circuits
couplés montrent des performances relativement inférieures par rapport aux meilleurs ré-
sultats obtenus avec les modèles numériques. Cependant, en termes de temps de calcul, les
modèles basés sur des circuits sont moins coûteux que les modèles numériques. Pour sat-
isfaire les exigences de précision et de capacité de calcul des moteurs électriques à des fins
de diagnostic des défaut, le modèle hybride s’est avéré être le choix optimal. Dans le cadre
de notre étude, nous avons développé un modèle hybride d’un MSRAP en combinant son
modèle éléments finis avec son modèle analytique. La conception initiale du MSRAP a été
réalisée et simulée à l’aide du logiciel FEMM, permettant le calcul des inductances en con-
ditions saines et en défaut. Les valeurs des inductances calculées ont ensuite été stockées
dans des tabulation Lookup Table (LUT), qui ont été intégrées au modèle analytique basé
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sur les fonctions des inductances dans le référentiel triphasé. La validation de ce modèle
hybride a été réalisée en comparant ses résultats avec des données expérimentales obtenues
dans des conditions saines de fonctionnement et a atteint une précision supérieure à 70%.
De plus, dans le cadre de notre étude, nous avons développé un modèle de la machine
considérant des scénarios de court-circuit inter-tours et d’excentricité dynamique. Une
analyse des paramètres du MSRAP dans des conditions de défauts ont permis d’identifié
les courants statoriques comme des indicateurs pertinents et efficaces pour le diagnostic de
ces défauts modélisés. L’organigramme de l’approche de modélisation proposé est présenté
à la Figure 5.2.
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Figure 5.2: Représentation schématique de la modélisation
du système de traction électrique

Dans le chapitre 4, une étude d’investigation a été entreprise pour examiner les tendances
actuelles dans le domaine du diagnostic des défauts pour les applications récentes de mo-
teurs alimentés par des onduleurs. En ce qui concerne les moteur électrique modernes
en industrie, il a été constaté que les techniques conventionnelles de surveillance d’état de
santé ne sont pas toujours efficaces. Cela a créé la nécessité de développer des dispositifs de
diagnostic de défaut universels, valables pour toutes les applications et adaptés à une var-
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iété de contextes opérationnels. Les techniques d’analyse statistique émergent comme une
alternative à l’analyse conventionnelle du signal de courant moteur connu sous l’acronyme
(MCSA: Motor Current signal Analysis) valable pour les moteurs alimentés par le secteur
[206]. L’une des caractéristiques les plus essentielles des méthodes d’analyse statistique
est leur capacité à modéliser les données pour capturer le comportement et à organiser ces
informations dans un ensemble concis de règles ou de mesures. Ils consistent à surveiller les
statistiques des variables de données ainsi que les limites de contrôle. Nous avons examiné
les méthodes suivantes statistiques suivantes pour le diagnostic des défauts afin d’évaluer
leur adéquation à nos objectifs de détection des défauts de court-circuit inter-spires.

• Méthodes satistiques univariées qui incluent les graphiques de Shewhart, les tracés
de somme cumulée connu sous l’acronyme (CUSUM) et la moyenne mobile à pondération
exponentielle connu sous l’acronyme (EWMA). Ces méthodes de surveillance d’état de
santé abordent l’analyse de variables individuelles. Par conséquent, toute information
résultant d’interactions variables est ignorée.

• Méthodes satistiques multivariées qui incluent l’Analyse des composantes princi-
pales (ACP) et Analyse des composantes indépendants (ACI), ont été largement utilisés
dans les applications de détection de défauts. L’objectif de l’ACP est de représenter un
variable en fonction de plusieurs facteurs sous-jacents. L’ACP peut effectuer la réduction
de dimension des données: bien que l’ensemble de données d’origine puisse contenir n
variables, il arrive souvent qu’une grande partie de la variabilité puisse être expliquée par
un plus petit nombre l de composantes principales. Ce qui permet de définir deux sous
espaces: le sous espace principal qui est composé des l premières composantes principales
et le sous espace résiduel qui est composé du reste des composantes principales. L’ACP
aide à l’interprétation des données : des relations auparavant insoupçonnées peuvent
généralement être identifiés via l’ACP.

La détection des défauts par les méthodes multivariés peut être réalisée par l’analyse de
deux mesures couramment utilisées et les plus connues qui sont la statistique T 2 et l’erreur
quadratique de prédiction SPE. La statistique T 2 est une mesure de variation au sein d’un
modèle l’ACP calculée par la somme des scores des variables de des données projetés dans
le sous espace principal. La statistique SPE d’autre part, est calculée par la projection
des variables de des données dans le sous espace résiduel. La modélisation de l’ACP est
basée sur l’hypothèse d’une normalité des données pour calculer les mesures statistiques
de surveillance, tandis que celle de l’ICA est basée l’hypothèse que les données ne sont pas
normalement distribuées. Les deux méthodes sont basées sur des hypothèses fortes sur la
distribution des données, ce qui limite leur performance dans leurs applications dans le
monde réel [220]. Le CUSUM et l’EWMA peuvent également être étendu au processus de
surveillance statistique multivariés. Les formes étendues sont appelées : CUSMU Multi-
varié (MCUSUM) et EWMA Multivarie (MEWMA) respectivement.

Le modèle hybride développé du système d’entraînement motorisé au chapitre 3 a servi
comme banc de test virtuel pour émuler les défauts et générer des données synthétiques
pour le diagnostic des défauts. De la modélisation du système en mode sain et dans les
différentes conditions de défaut, les courants de phase du stator ont été désignés comme in-
dicateurs de défauts inter-spires. Le modèle hybride du moteur Le système d’entraînement
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a été simulé dans une série de modes sains et de modes de défaut. Sept modes de dé-
faut correspondant à sept niveaux de sévérité classés de 2 à 8 (liés au nombre de spires
court-circuitées) ont été prises en compte. La Figure 5.3 illustre la composition du mod-
èle d’ensemble de données. Les différents modes et la variation de charge sont illustrés.
Les sessions de signaux correspondant aux états transitoires de changement de charge et
d’introduction de défauts ne sont pas incluses dans l’ensemble de données. Pour chaque
scénario, nous disposons des données de trois variables (Ia, Ib and Ic) de N̂ observations
chacun.

Data with cc2

Ia Ib Ic

Healthy

CC2

Healthy

Load1

Healthy

CC2

Healthy

Healthy

CC2

Healthy

Load2

Load3

Dataset

Data with CC2

Data with CC3

Data with CC6

Data with CC4

Data with CC5

Data with CC8

Data with CC7

Figure 5.3: Modèle d’ensemble de données

Les analyses préliminaires ont consisté à définir un ensemble de données comprenant les
courants statoriques sains et en mode de défauts, pour touts la gamme de défauts allant
des défauts naissant aux défauts avec la sévérité la plus élevée. Des techniques de pré-
traitement des données telles que l’écart absolu médian (MAD), le Skewness et le Kurtosis
calculés sur des fenêtres glissantes ont été sélectionnées pour extraire les caractéristiques
pertinentes de notre ensemble de données.

Pour l’analyse des défauts, nous avions opté pour l’ACP, et nous avons considéré deux
conditions des données. Dans la première analyse, nous analysons les défauts dans les
différentes conditions de charge (conditions stationnaires) des séries de données séparées.
Dans la deuxième analyse, nous analysons les défauts dans des conditions non stationnaires
où les données des trois conditions de changement de charge sont dans la même série
de donnée. Un résumé des performances de la détection de défauts avec l’ACP dans la
première analyse, en termes de probabilité de fausses alarmes (PFA) et de probabilité
de détection manquée PMD sont indiqués dans le Tableau 5.1. Habituellement, pour la
détection des défauts, les seuils de PMD et PFA sont généralement fixés respectivement à
0,02 et 0,05 [241].
Dans le Tableau 5.1, les cas dans lesquels ces seuils sont violés sont mis en évidence en
rouge. D’après le tableau, on peut voir que les performances de détection des défauts en
termes de PMD sont tous acceptables lorsque la mesure de surveillance T 2 est exploitée.
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Table 5.1: Évaluation des performances de la détection de défauts avec l’ACP
(les valeurs supérieures aux seuils sont en rouge)

Scenario PFA PMD

T 2 SPE T 2 SPE

Data with CC2

Load1 0 0.05 0 0
Load2 0.02 0.08 0 0
Load3 0 0 0 0.86

Data with CC3

Load1 0 0.1 0 0
Load2 0.05 0.06 0 0
Load3 0 0.01 0 0

Data with CC4

Load1 0 0.08 0 0
Load2 0 0.04 0 0
Load3 0 0 0 0

Data with CC5

Load1 0 0.04 0 0
Load2 0 0.1 0 0
Load3 0 0 0 0

Data with CC6

Load1 0 0.1 0 0
Load2 0 0.06 0 0
Load3 0 0.08 0 0

Data with CC7

Load1 0 0.1 0 0
Load2 0 0.06 0 0
Load3 0.04 0.04 0 0

Data with CC8

Load1 0 0.06 0 0
Load2 0.05 0.05 0 0
Load3 0 0 0 0

La mesure de surveillance SPE offre également d’excellentes performances en termes de
PMD dans tous les scénarios, sauf dans le cas de données avec conditions de défaut de
sévérité 2 (CC2) et sous la charge 3 (Load3). Cela montre que le défaut de court-circuit
inter-spire au stade naissant a une faible signature dans le sous-espace résiduel, dans le
fonctionnement du moteur à charges élevées. En termes de PFA, le T 2 a donné des per-
formances acceptables sans violation du seuil. La surveillance par SPE d’autre part a
donné de nombreuses violations du seuil. Cela montre que la surveillance de détection
par la mesure du SPE est moins précise que la surveillance de T 2. Dans notre deuxième
analyse avec les données non-stationnaires, l’ACP conventionnelle ne convient plus. Des
extensions de l’ACP comme l’ACP dynamique, l’ACP multi-échelle ont été proposées dans
la littérature pour faire face à ce problème. Cependant, ces extensions de l’ACP présentent
certains inconvénients comme de long temps de réponse, la complexité de calcul et leur
efficacité est pas toujours garanti.

Dans nos travaux, nous avons proposé une méthode simple pour détecter les courts-circuits
inter-spires du MSRAP dans un état non-stationnaire avec opérations sous une charge mé-
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canique variable. Nous avions introduit la projection des attributs de nuisance connu sous
l’acronyme NAP qui a été appliquée aux données brutes lors de l’étape de prétraitement.
Ceci a permis d’obtenir de nouvelles données avec les caractéristiques des défauts qui ne
sont sensibles qu’aux défauts. Après l’élimination du effets de de la variation de charge,
les variables sont normalisées avant d’être traitées par l’ACP pour la détection de défaut.
L’organigramme présenté à la Figure 5.4 résume notre proposition de méthodologie de
défaut indépendamment du niveau de charge du MSRAP.

Healthy data collection
Healthy stator 3-phase currents

Normalisation of training data Normalisation of test data

PCA model Projection on the  PCA spaces

Compute 𝑇2 and 𝑆𝑃𝐸

Compute 𝑇α
2 and 𝑆𝑃𝐸α

Healthy features extraction
Moving windows MAD, Variance 

and Kurtosis of healthy data

NAP 
Find nuisance 

projection matrix ෘ𝑃

Faulty data collection
Faulty stator 3-phase currents

Faulty data features extraction
Moving windows MAD, Variance 

and Kurtosis of  faulty data

Faulty data features transformation
Nuisance attributes elimination

Healthy data features transformation
Nuisance attributes elimination

ෙ𝑷

Model development Fault detection

Determine fault if 
𝑇2 > 𝑇α

2 or 𝑆𝑃𝐸>𝑆𝑃𝐸α

Compute 𝑇2 and 𝑆𝑃𝐸

Figure 5.4: Organigramme de l’ACP basée sur le NAP pour la détection
de défaut

Un résumé de la performance de la détection des défauts avec l’ACP basée sur le NAP, en
termes de PFA et de PMD est donnée dans le Tableau 5.2.
Les cas dans lesquels les seuils de performance du diagnostic de défaut sont violés sont mis
en évidence en rouge. D’après le tableau, on peut voir que les performances en termes de
PMD sont de tous satisfaisant lorsque T 2 et SPE sont surveillés. En termes de PFA, le
T 2 a donné des performances acceptables sans violation du seuil typique. La surveillance
SPE, en revanche, dépasse le seuil en termes de de PFA. Dans l’analyse avec les données
stationnaire présentée précédemment, moins de violations du seuil de PFA ont été ob-
servées. Cela montre que le NAP a effectué la suppression la dynamique dans les données
liée à la variation de charge mais déplace les signatures de défauts dans le Sous-espaces
principale de l’ACP. Cela fait que la détection du défauts en surveillant le SPE avec l’ACP
basée sur le NAP est moins précise que la surveillance du T 2. De ces performance de dé-
tection de défauts nous avions sélectionné le T 2 comme mesure de surveillance fiable pour
la détection des défauts inter-spires par l’ACP.
Nous avons examiné les méthodes analytiques et d’intelligence artificielle pour estimer la
sévérité du défaut une fois détecté. Nous avons choisi la méthode analytique en raison de la
quantité limitée des données pour notre étude. Nous avons développé un modèle analytique
basée sur la pente de la fonction de décision CUSUM de T 2 pour estimer la sévérité du
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Table 5.2: Évaluation des performances de la détection de
défauts avec l’ACP basée sur le NAP (les valeurs
supérieures aux seuils sont en rouge)

Scenario PFA PMD

T 2 SPE T 2 SPE

Data with CC2 0.003 0.25 0 0

Data with CC3 0.003 0.3 0 0

Data with CC4 0 0.32 0 0

Data with CC5 0 25 0 0

Data with CC6 0 0.21 0 0

Data with CC7 0.013 0.19 0 0

Data with CC8 0.003 0.24 0 0

défaut. A partir de ce modèle analytique, nous avons réalisé une estimation des défauts sur
des données sans bruit avec une précision supérieure à 99%. Nous avons également testé
la robustesse de notre méthode d’estimation des défauts face aux interférences sonores, qui
a montré une résistance au bruit lorsque le rapport signal sur bruit (SNR) était inférieur
à 30dB. Une autre limitation de cette méthode d’estimation des défauts est la nécessité
d’une étiquette de niveau de charge, car la signature du défaut est sensible à la variation
de charge.

Dans la Conclusion, un résumé des travaux développés avec les résultats obtenus a été
présenté. Nous avions ensuite présenté une discussion sur les limites inhérentes à notre
approche et formulé des suggestions de recherches futures pour les surmonter.
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Appendix

A.1 Permeance factors of the end windings

Figure A.1: Permeance factors of the end windings
in a synchronous machine

A.2 Solutions of the speed PI parameters

The speed PI parameters can be found from the following conditions described in section
3.4.2.1.

arg (Goω(jωsc)) = arg
(
Goω(

jωg

β )
)
= −180 + ϕm∣∣Goω(jωsc))∣∣ = ∣∣∣Goω( jωg

β )
∣∣∣ = 1

(A.1)

Finding β from the phase margin is expressed as follows:

tan−1
(
ωg

β Tsi

)
− tan−1

(
ωg

β Tg

)
− π = −π + π

3

tan−1
(
ωg

β
1
ωsc

)
− tan−1

(
ωg

β
1
ωg

)
= π

3

(A.2)

tan−1(β)− tan−1

(
1

β

)
=
π

3
(A.3)

This equation becomes [248]:
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β2 − 2tan
(π
3

)
β − 1 = 0 (A.4)

After finding beta, the magnitude condition
∣∣∣Goω( jωg

β )
∣∣∣ = 1 can be applied to find kpω.

Kpω =
1

3np

4Jωg
ϕPM

√
1+β2

1+
(

1
β

)2

(A.5)

Kiω =
β2

ωg
(A.6)

A.3 NAP Projection Effect minimization problem

The main principle of the NAP is to minimize the judgment of Projection Effect (PE) that
is defined as the sum of the distance between each projection feature. The PE using the
projection matrix P̆ is expressed as follows:

PE =
∑
i,j

Wij

∣∣∣∣∣∣P̆ · xi − P̆ · xj

∣∣∣∣∣∣2 (A.7)

where Wij is a weight coefficient that quantifies the relation between two feature vectors.
Wij is set positive when the observations xi and xj belong to the same operating conditions
and negative otherwise.

Wij =

{
1 if operating condition(xi) = operating condition(xj)
0 otherwise (A.8)

P̆ ∈ RN×n is the projection matrix.

P̆ = I−
d∑
i=1

∆i∆i
t (A.9)

where I is an N × N identity matrix, ∆i represents the ith NAP direction, d ≤ N is the
number of NAP directions to be removed from the feature space.

To find PE, let’s define the difference dij = (xi − xj). PE can then be expressed as:

PE =
∑

i,jWij

(
P̆dij

)t (
P̆dij

)
=

∑
i,jWijd

t
ij (I−∆i∆i

t)t (I−∆∆t)dij
=

∑
i,jWijd

t
ijdij −

∑
i,jWijd

t
ij∆∆tdij

(A.10)

with the constraint ∆∆t = I. Ignoring terms independent ∆, we have,

PE = −
∑

i,jWij (xi − xj)
t ∆∆t (xi − xj)

= −
∑

i,jWijx
t
i∆∆txi −

∑
i,jWijx

t
j∆∆txj

+2
∑

i,jWijx
t
i∆∆txj

= −2
∑

i,jWijx
t
i∆∆txi + 2

∑
i,jWijx

t
i∆∆txj

(A.11)

Using the identity AtBBtA = Tr {BtAAtB}, where Tr stands for matrix trace, Equation
A.10 can be written as:
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PE = −2Tr
{∑

i,jWij∆
txix

t
i∆

}
+ 2Tr

{∑
i,jWij∆

txix
t
j∆

}
= −2Tr {∆tXdiag (WU)Xt∆}+ 2Tr {∆tXWXt∆}
= 2Tr {∆tX [W − diag(WU)]Xt∆}

(A.12)

where diag(a) means converting a into a diagonal matrix, U is a column vector of all
ones, W the matrix of elements Wij . It can be shown that minimizing PE in Equation
A.12 with the constraint ∆t∆ is equivalent to finding the eigenvectors with the smallest
eigenvalues of [249]:

X [W − diag(WU)]Xt∆ = λ∆ (A.13)

where λ the eigenvalues, and ∆ the eigenvectors.
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