
HAL Id: tel-04510051
https://theses.hal.science/tel-04510051

Submitted on 18 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global optimization of nonlinear semi-infinite
programming problems : Applications in power systems

and control.
Antoine Oustry

To cite this version:
Antoine Oustry. Global optimization of nonlinear semi-infinite programming problems : Applications
in power systems and control.. Operations Research [math.OC]. Institut Polytechnique de Paris, 2023.
English. �NNT : 2023IPPAX099�. �tel-04510051�

https://theses.hal.science/tel-04510051
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

X
09

9

Global optimization of nonlinear
semi-infinite programming problems:

Applications in power systems and
control.

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École Doctorale de l’Institut Polytechnique de
Paris (ED IP Paris)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 27 octobre 2023, par

ANTOINE OUSTRY

Composition du Jury :

Sourour Elloumi
Professeure, ENSTA Paris Présidente

Victor Magron
Chargé de recherches, CNRS - LAAS Rapporteur

Alexander Mitsos
Professeur, RWTH Aachen University Rapporteur

Daniel Bienstock
Professeur, Columbia University Examinateur

Bissan Ghaddar
Professeure associée, Ivey Business School Examinatrice

Leo Liberti
Directeur de recherche, CNRS - École polytechnique (LIX) Directeur de thèse

Claudia D’Ambrosio
Directrice de recherche, CNRS - École polytechnique (LIX) Co-directrice de thèse

François Pacaud
Professeur assistant, Mines Paris - PSL Invité

In re mathematica ars proponendi quaestionem
pluris facienda est quam solvendi.

Georg Cantor (1867)
De aequationibus secundi gradus indeterminatis

Doctoral thesis, Berlin

Acknowledgements

This goes without saying: I am solely “liable” for the content of my doctoral thesis. However, I
shall acknowledge that I have benefited from many scientific interactions with colleagues and
friends during these three years of my postgraduate studies. Some of the work presented in this
thesis is the fruit of collaborative projects with fellow researchers. For me, scientific research is
all the more exciting when it is based on collective brainstorming and teamwork.

First of all, I would like to say that I am indebted to Leo Liberti and Claudia D’Ambrosio
for their expert and kind supervision during these years. Thank you, Leo and Claudia, for
your trust, for your support, for letting me explore my research topics, and for the scientific
opportunities you offered me through your many connections in the research communities.

I would like to thank all the other members of the Optimix team for these great years
together. Thank you Sonia Vanier, Renan Spencer-Trindade, Liding Xu, Maxime Dupuy,
Hugues Wattez, Tom Porteleau, Cristina Molero. . . Special thanks to Martina Cerulli for our
collaboration and the papers we co-authored! I would also like to thank the other members
of the lab with whom I collaborated, Juan-Antonio Cordero Fuertes in particular, and the
administrative staff: Katia Emig, Jessica Gameiro, and Helena Kutniak.

This thesis would not have been possible without the financial support of the public company
Réseau de transport d’électricité (RTE), the French Transmission System Operator. Many
thanks to Patrick Panciatici, Manuel Ruiz, and Jean Maeght for their supervision, their expert
advice, and their interest in my work. Many thanks to Carmen Cardozo, my very first mentor
in this company! RTE’s R&D team plays a great scientific steering role for many topics at the
interface between optimization and power systems. I benefited from the scientific network they
built. In this context, it was a great pleasure to continue the collaboration with Matteo Tacchi,
which started in 2018 under the guidance of Carmen Cardozo and Didier Henrion. It was also
great to brainstorm with Adrien Le Franc about sparse polynomial optimization during and
after my visit at LAAS in Toulouse in April 2022. Thank you, Victor Magron and Jean-Bernard
Lasserre, for your warm welcome and for the knowledge you generously shared with me during
this time.

My sincere gratitude goes to Mihai Anitescu and François Pacaud for the very rich and
insightful research experience at the mythic Argonne National Laboratory (USA) during the
summer 2022. Thank you, François, for the collaboration we started there and continued in

iii

Paris, boulevard Saint-Michel. I learned a lot from you! Many thanks to the bright and pleasant
colleagues I met during this experience at Argonne: Adrian Maldonado, Sungho Shin, David
Cole, Thomas Bouvier, and Daniel Rosendo.

I would also like to thank Frédéric Meunier, Axel Parmentier and Vincent Leclère from the
optimization team at the CERMICS laboratory (Ecole des ponts), and Tony Lelièvre, director
of the lab, for their invitation to present my work, for their advice, and for the opportunity to
be a teaching assistant.

I am very grateful to the members of my thesis committee for agreeing to review my thesis.
Special thanks to Alexander Mitsos and Victor Magron, my reviewers, for their time and
valuable feedback.

After these professional acknowledgements, my thanks also go to all my friends. I won’t
make a list for fear of forgetting some, but they will recognize themselves! A special mention
goes to Pierre-Emmanuel Emeriau, whose thesis in quantum physics had a lot to do with
optimization! We discovered by chance that we had several mathematical interests in common,
and our exchanges were very enlightening for me.

Special thanks also to all my friends and relatives who took a day off and came from Aix,
Briançon, Gap, Grenoble, Lyon, Paris or Royan to support me at my defense. It was a beautiful
day together.

I’m infinitely grateful to my parents and grandparents for everything they’ve given me
over twenty-seven years, for the love of learning they’ve instilled in me, for the passion for
mathematics, and for the many hours I’ve spent working at their home over the last three
years! Thank you for your generosity! I would also like to thank my dear sisters for their love.

And finally, thank you, Mathilde, for everything!

iv

Abstract

This thesis deals with the computation of global optima of nonlinear semi-infinite pro-
gramming problems. These mathematical programming problems are particularly difficult
because of the infinite number of constraints and the potential nonconvexity of the ob-

jective and the constraints: computing an optimum and certifying its global optimality is a
scientific challenge. This thesis makes theoretical and practical contributions to address this
challenge, with a focus on applications to the optimization of electrical grids and the control of
dynamical systems.

The first part of the thesis is devoted to convex semi-infinite programming. First, we exhibit
a convergence rate for the cutting-plane algorithm, also called the adaptive discretization
algorithm, when the semi-infinite constraints are linear and the objective function is strongly
convex. This result holds even though one uses an oracle that approximately solves the separa-
tion problem, i.e., the problem of finding the most violated constraint, with a given relative
accuracy. Second, we tackle a limitation of the cutting-plane algorithm: feasibility is only
achieved asymptotically. Focusing on semi-infinite programs with a quadratically constrained
quadratic programming separation problem, we propose an iterative inner-outer approximation
algorithm that generates a feasible point at each iteration. This sequence of feasible points
converges to an optimum of the semi-infinite program, and the convergence also occurs even
when the separation problem is solved approximately. We give two sufficient conditions for
this algorithm to converge in one iteration to a global optimum. We benchmark this algorithm
with three competing approaches on two different applications. The third chapter of this part
consists of an original approach to minimal-time nonlinear control based on convex semi-infinite
programming. The applicability of our approach is illustrated by numerical experiments on
three different non-polynomial dynamical systems.

The second part is concerned with the global optimization of finite and semi-infinite non-
convex optimization problems related to the dispatch of electricity in a power system. First,
we tackle the standard AC optimal power flow problem, a quadratically constrained quadratic
programming problem with a finite number of constraints. We propose a global optimiza-
tion algorithm based on a strengthened semidefinite programming relaxation and piecewise
linear approximations. This results in an iterative algorithm where the master problems are
mixed-integer linear programs. Extensive numerical experiments on a reference benchmark of
instances show that this algorithm achieves state-of-the-art performance. Second, we address
the numerical issues raised by the semidefinite programming relaxation, the building block of
our global optimization algorithm, for instances at a larger scale. We use an unconstrained
dual formulation to obtain certified lower bounds. To improve the dual solution returned by an

v

interior-point method, we apply a structured bundle method as a post-processing step. Our
numerical experiments on large-scale instances show that this post-processing considerably
improves the tightness of the certified dual bounds. Finally, in the last chapter, we integrate
some uncertainties regarding loads and fluctuating generation sources in the AC power flow
model: we address the adjustable robust AC optimal power flow problem. We reformulate this
adjustable robust optimization problem as an equivalent semi-infinite program. We solve this
reformulation with an adaptive discretization algorithm based on a deterministic sampling and
a homotopy method. Local and global convergence guarantees are given, depending on whether
the master problems are solved locally or globally at each iteration. For any positive feasibility
tolerance, finite termination is guaranteed. We provide extensive numerical experiments on
small- to large-scale instances.

Keywords: global optimization, semi-infinite programming, semidefinite programming, AC
optimal power flow, adjustable robust optimization.

vi

Résumé

Cette thèse traite de la résolution exacte de problèmes de programmation non linéaire
semi-infinie. Ces problèmes sont particulièrement difficiles en raison du nombre infini de
contraintes et de la potentielle non convexité de la fonction objectif et des contraintes :

calculer un optimum et certifier son optimalité globale constituent un défi scientifique. Cette
thèse apporte des contributions théoriques et pratiques pour relever ce défi, et met l’accent sur
les applications de la programmation semi-infinie à l’optimisation des réseaux électriques et au
contrôle des systèmes dynamiques.

La première partie est consacrée à la programmation semi-infinie convexe. Nous démontrons
tout d’abord un taux de convergence pour l’algorithme des plans coupants lorsque la fonction
objectif est fortement convexe. Ce résultat est valable même si l’oracle utilisé ne résout le
problème de séparation, c’est-à-dire le problème de la recherche de la contrainte la plus
enfreinte, que de façon approchée avec une précision relative donnée. Dans un deuxième temps,
nous cherchons à résoudre un inconvénient majeur de l’algorithme des plans coupants : les
points générés par l’algorithme ne sont réalisables qu’asymptotiquement. En nous restreignant
aux programmes semi-infinis avec un problème de séparation quadratique sous contraintes
quadratiques, nous proposons un algorithme itératif d’approximation interne-externe qui génère
une séquence de points réalisables convergeant vers un optimum du problème semi-infini. Nous
donnons deux conditions suffisantes pour que l’algorithme converge en une seule itération.
Nous comparons cet algorithme à trois approches concurrentes, sur des exemples provenant de
deux applications différentes. Dans un chapitre dédié, nous appliquons l’optimisation convexe
semi-infinie à la résolution de problèmes de contrôle temps-optimal non linéaires.

La deuxième partie se concentre sur la résolution exacte de problèmes d’optimisation non
convexe finis et semi-infinis liés à la répartition des flux de puissance dans un réseau électrique.
Premièrement, nous abordons le problème d’optimisation des flux de puissance en courant
alternatif (problème ACOPF, pour AC Optimal Power Flow), un problème avec un nombre
fini de contraintes quadratiques non convexes. Nous proposons un algorithme d’optimisation
globale fondé sur la relaxation semi-définie et sur des approximations linéaires par morceaux
des contraintes non convexes. Il en résulte un algorithme itératif dont le problème maître
résolu à chaque itération est un programme linéaire en variables mixtes. Cet algorithme obtient
des résultats à l’état de l’art sur une librairie d’instances de référence du problème ACOPF.
Deuxièmement, nous traitons les difficultés numériques rencontrées par les algorithmes de
points intérieurs résolvant la relaxation semi-définie pour des instances de grande taille. Nous
proposons une formulation duale sans contrainte pour obtenir des bornes inférieures certifiées.
Pour améliorer la solution duale calculée par l’algorithme de points intérieurs, nous appliquons
une méthode de faisceau structurée en post-traitement. Nos expériences numériques montrent
que ce post-traitement améliore sensiblement la précision des bornes duales obtenues pour

vii

des problèmes de grande taille. Dans le dernier chapitre, nous intégrons au problème ACOPF
des incertitudes liées aux consommations et aux productions intermittentes. Le problème
d’optimisation robuste avec recours qui en découle est reformulé en un programme semi-infini.
Nous résolvons cette reformulation avec un algorithme de discrétisation adaptatif fondé sur
un échantillonnage des scénarios et une méthode d’homotopie. Des garanties de convergence
locales et globales sont données, selon que les problèmes maîtres sont résolus localement ou
globalement à chaque itération. Nous présentons des expériences numériques sur des instances
de grande taille.

Mots-clefs: optimisation globale, programmation semi-infinie, programmation semi-définie,
optimisation des flux de puissance AC, optimisation robuste avec recours.

viii

Notation

Sets

We denote by N (respectively Z, Q, and R) the set of natural numbers (resp. integers, rationals
and real numbers). Real intervals are written [a, b), where a bracket means that the bound is
included, and a parenthesis means that the bound is excluded. As an example, we define the set
of nonnegative numbers R+ = [0,+∞), and the set of positive numbers R++ = (0,+∞). We
also extend the real line by defining R̄ = R ∪ {±∞}. Integer intervals are written Ji, jK, where
both bounds are always included. The Cartesian product of the sets A and B is denoted by
A×B. By induction, we define Ak = A×Ak−1 for all k ≥ 2, given that A1 = A.

Real and complex numbers

Given a real number a ∈ R, we denote by |a| its absolute value, a+ = max{a, 0} its positive
part, and a− = max{−a, 0} its negative part. Given a complex number a ∈ C, we denote by
|a| its modulus, ∠a ∈] − π, π] its angle, Re(a) its real part, and Im(a) its imaginary part, so
that a = Re(a) + i Im(a). The complex conjugate number of a is a∗ = Re(a) − i Im(a). We
define the partial order ≤ for complex numbers as follows: a ≤ b if and only Re(a) ≤ Re(b) and
Im(a) ≤ Im(b).

Linear Algebra

For K ∈ {R,C}, a vector x ∈ Kp with components xi is written x = (x1, . . . , xp). We denote by
∥x∥2 its Euclidean norm, by ∥x∥1 its ℓ1 norm, by ∥x∥∞ its ℓ∞ norm. The notation ej stands
for the basis vector with a 1 at position j and zeros elsewhere.
A square matrix M ∈ Kd×d is defined by its coefficients (Mij)1≤i,j≤d. We denote by M⊤ its
transpose, by MH its transpose conjugate, and M−1 its inverse. Its trace is denoted by Tr(M),
and its determinant det(M). A matrix M ∈ Kd×d is Hermitian if and only if M = MH. In the
real case, this means M = M⊤, and we denote by Sp the set of real symmetric matrices. In the
complex case, we denote by Hp the set of Hermitian matrices. We notice that Sp ⊂ Hp. For
any M ∈ Hp, we denote by λ1(M), λ2(M), . . . λp(M) its eigenvalues, which are real, ordered
as follows: λmax(M) = λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) = λmin(M). For any M ∈ Hp, we
write M ⪰ 0 if and only if λmin(M) ≥ 0, i.e., M is Positive Semidefinite (PSD). We denote by

ix

Eij the element of the canonical basis of Kd×d. For A,B ∈ Kd×d, the Froebenius product is
⟨A,B⟩ = ∑

1≤i,j≤dAijB
∗
ij = Tr(ABH).

We write Ip for the identity matrix of size p× p. For x ∈ Kp, the notation diag(x) stands for
the diagonal matrix with coefficients x1, . . . , xp.

Analysis

The set ∆p = {x ∈ Rp+ : ∑p
j=1 xj = 1} is the unit simplex of dimension p, and B(x, r) the

Euclidean ball of center x ∈ Rp and radius r ∈ R+. If S ⊂ Rp is a set, we define its convex hull
as conv(S) = {∑r

k=1 xks
k : r ∈ N, (s1, . . . , sr) ∈ Sr, x ∈ ∆r}, and its conic hull as cone(S) =

{
∑r
k=1 xks

k : r ∈ N, (s1, . . . , sr) ∈ Sr, x ∈ Rr+}. For any nonempty set A, and any x ∈ Rp, we
denote d(x,A) = infa∈A∥x−a∥2 the distance between the set A and the point x. The Hausdorff
distance between two sets A and B is dH(A,B) = max{supb∈B d(b, A), supa∈A d(a,B)}.
For any nonempty set A, the contingent cone to A at x ∈ A, denoted TA(x), is the set of
directions d ∈ Rp, such that there exist a sequence (tk) ∈ RN

++, and a sequence (dk) ∈ (Rp)N,
satisfying tk → 0, dk → d, and x+ tkdk ∈ A, for all k ∈ N.
A property P holds “almost everywhere” (a.e.) on A, or equivalently “for almost all x ∈ A”, if
there exists a set N of Lebesgue measure zero such that the property P holds for all x ∈ A \N .
For any p ∈ N∗, and k ∈ N ∪ {∞}, we denote by Ck(Rp) = Ck(Rp,R) the vector space of
real-valued functions with k continuous derivatives over Rp. For any differentiable function
f : Rp → Rq, we denote by ∇f(x) ∈ Rp×q its Jacobian matrix (its gradient, if q = 1). We denote
by ∂if the partial derivative with respect to xi. If the function f is convex, the notation ∂f(x)
designates the subdifferential of f at x. For any locally Lipschitz function f , we denote by
∂cf its Clarke’s generalized derivative [52]. If the function is convex, this coincides with its
subdifferential [52].
For a given set A ⊂ Rp, for any function f ∈ Ck(Rp), we denote by f|A the restriction of f on
A; moreover, we define the vector space Ck(Rp|A) = {f|A : f ∈ Ck(Rp)} of restrictions on A of
Ck functions.
For any two functions f, g Lebesgue integrable over Rp, we define the convolution product
f ⋆ g as f ⋆ g(x) =

∫
Rp f(x)g(x− h)dh. We emphasize that this convolution product is also well

defined if f is supported on a compact set, and g is locally integrable.
We denote by R[x1, . . . xp] the vector space of real multivariate polynomials with variables
x1, . . . , xp, and Rd[x1, . . . xp] the vector space of real multivariate polynomials with degree at
most d.

x

Glossary

ACOPF Alternating Current Optimal Power Flow. 1, 5–12, 75–78, 83, 85, 86, 92, 93, 97, 99,
102–104, 108, 116, 119, 121, 124, 136, 144, 146–148, 172, 176

ADMM Alternating Direction Method of Multipliers. 103
ARO Adjustable Robust Optimization. 5, 12, 121–123
AR-OPF Adjustable Robust AC Optimal Power Flow. 10–12, 122–125, 136, 143, 144, 146–149

B&B Branch-and-Bound. 9, 77

CC-OPF Chance-Constrained AC Optimal Power Flow. 10
CPA Cutting-plane algorithm. 3, 11, 15–17, 20–22, 25, 27–29, 40–47, 49, 57, 114, 115

ESIP Existence-constrained Semi-Infinite Programming. 121–124

FBBT Feasibility-Based Bound Tightening. 76, 85, 86, 92, 93, 96
FCFW Fully Corrective Frank–Wolfe. 21, 22

GO Global Optimization. 6, 8–11

HJB Hamilton-Jacobi-Bellman. 47–52, 54, 55, 58, 64–66, 72, 73

IOA Inner-Outer Approximation algorithm. 11, 27, 29, 35, 36, 40–46
IPM Interior-Point Methods. 4, 5, 8, 9, 76, 103, 116

KKT Karush–Kuhn–Tucker. 4, 8, 9, 28, 41, 122

LMI Linear Matrix Inequalities. 107
LP Linear Programming. 9, 28, 48, 76, 86–89, 92, 93

MILP Mixed-Integer Linear Programming. 11, 77, 86, 89–100, 146, 148, 149
MINLP Mixed-Integer Nonlinear Programming. 2, 122
MIP Mixed-Integer Programming. 77
MIQCP Mixed-Integer Quadratically Constrained Programming. 77

NLP Nonlinear Programming. 2, 6, 76, 85, 91–93, 95
NSO Nonsmooth Optimization. 112, 114

xi

GLOSSARY

OBBT Optimization-Based Bound Tightening. 76, 85, 86, 92, 93, 96, 97
OCP Optimal Control Problems. 47, 48, 50
ODE Ordinary Differential Equation. 128–130

PBM Proximal Bundle Methods. 112, 114, 116, 118, 119
PDE Partial Differential Equation. 50, 51
PSD Positive Semidefinite. ix, 29, 30, 32, 33, 43, 45, 79, 105, 106, 116

QCQP Quadratically Constrained Quadratic Programming. 7, 9, 11, 27–30, 42, 46, 76, 77, 87,
97, 136, 146, 176

QP Quadratic Programming. 57, 115, 116

RLT Reformulation-Linearization Technique. 76, 97
RO Robust Optimization. 5

SC-OPF Security-Constrained AC Optimal Power Flow. 10, 123
SDP Semidefinite Programming. 5, 9, 11, 12, 29–32, 34, 46, 76–79, 82, 83, 87, 97, 99, 102, 103,

106, 107, 112, 116
SOCP Second-Order Cone Programming. 9, 76, 77, 87, 97
SoS Sum-of-Squares. 9, 28, 48, 68, 69, 76, 77
SQP Sequential Quadratic Programming. 4, 9

xii

Table of Contents

Page

Introduction 1
A. Introduction to semi-infinite programming . 1
B. Introduction to AC power flow optimization . 6
C. Thesis structure and summary of results . 11
D. Publications . 12

I Contributions to convex semi-infinite programming and applications 14

1 A convergence rate for the cutting-plane algorithm 15
1.1 The Lagrangian dual of the convex semi-infinite program 18
1.2 The cutting-plane algorithm and its dual interpretation 20
1.3 Convergence rate for the cutting-plane algorithm 23
1.4 Conclusion . 26

2 Inner-outer approximation algorithm for a class of convex semi-infinite
programs 27
2.1 Semidefinite relaxation of the lower-level problem 29
2.2 Finite restriction of the semi-infinite program 32
2.3 Inner-outer approximation algorithm . 34
2.4 Applications and numerical experiments . 39
2.5 Conclusion . 46

3 Minimal time nonlinear control via convex semi-infinite programming 47
3.1 Problem statement and LP formulations . 49
3.2 Convex semi-infinite programming to compute near-optimal HJB subsolutions . 55
3.3 Feedback control based on approximate value functions 58
3.4 Illustrative examples . 66
3.5 Conclusion . 72

xiii

TABLE OF CONTENTS

II Global optimization of finite and semi-infinite power flow problems 74

4 Conic programming and MILP scheme for global optimization of AC
power flows 75
4.1 Extended-variables formulation for the ACOPF problem 77
4.2 Strengthened conic programming relaxation . 79
4.3 A MILP-based scheme for global optimization 86
4.4 Numerical experiments . 96
4.5 Conclusion . 99

5 Certified and accurate spectral bounds for the ACOPF problem 102
5.1 ACOPF, semidefinite relaxation and dual problem 104
5.2 Unconstrained spectral formulation for the dual problem 108
5.3 Nonsmooth optimization algorithm . 112
5.4 Numerical experiments . 116
5.5 Conclusion . 119

6 Adjustable robust nonlinear optimization via semi-infinite programming
and homotopy continuation 121
6.1 Semi-infinite programming reformulation and computational challenges 125
6.2 Discretization algorithm based on homotopy continuation and sampling 127
6.3 Application to the adjustable robust ACOPF problem 136
6.4 Conclusion . 143

Conclusion and perspectives 145

Bibliography 150

Appendices 171
A. Convergence proof of the adaptive discretization algorithm 171
B. ACOPF: from the physics to the optimization problem 172
C. ACOPF: complements on the conic relaxation . 177
D. Other technical lemmatas . 180

xiv

Introduction

Semi-infinite programming is a branch of mathematical programming interested in opti-
mization problems with a finite number of variables, but an infinite number of constraints.
Computing a vector that is a solution to an infinite system of inequalities and, subsequently,

certifying that the inequalities are indeed satisfied, are challenging tasks. Despite this difficulty
and the potential nonconvexity of these semi-infinite problems, our goal is to produce algo-
rithms capable of computing globally optimal solutions. After an introduction to semi-infinite
programming, we present the Alternating Current Optimal Power Flow (ACOPF) problem, an
optimization problem arising from electrical engineering that is the main application we focus
on in this dissertation. After addressing the standard ACOPF formulation with a finite number
of constraints, we also study a variant with an infinite number of constraints.

A. Introduction to semi-infinite programming

First, we introduce the typical formulation in semi-infinite programming, and we define some
central concepts for this field of study. We present the adaptive discretization algorithm, one
of the standard semi-infinite programming algorithms, and we introduce the reader to several
applications. For a comprehensive introduction to semi-infinite programming, the reader is
referred to [68, 1, 104].

The semi-infinite formulation and the oracle framework

Problem definition. Given two integers m,n ∈ N∗, we consider two continuous functions
F : Rm → R and G : Rm×Rn → R. We also consider two nonempty and compact sets X ⊂ Rm,
and Y ⊂ Rn. We define the semi-infinite programming problem (SIP) as

min
x∈X

F (x)

s.t. ∀y ∈ Y, G(x, y) ≤ 0.

 (SIP)

In this formulation, we refer to x as the decision vector and to y as the parameter vector. Using
a terminology from bilevel optimization [58], we may also refer to x as the vector of upper-level
variables and to y as the vector of lower-level variables. We now detail the connection between
semi-infinite and bilevel programming.

1

INTRODUCTION

Lower-level problem and value function. For a given x ∈ X , the problem of finding the
parameter vector y ∈ Y that maximizes G(x, y) is called the lower-level problem, or equivalently,
the separation problem. We introduce ϕ : Rm → R the value function of the lower-level problem:

ϕ(x) = max
y∈Y

G(x, y). (1)

Proposition 0.1. The function ϕ : Rm → R is continuous.

Although this is a standard result, we present a proof here for completeness.

Proof. This is a direct application of the Maximum Theorem [8, Th. 2.1.6], in so far as (i) G
is continuous, therefore lower and upper semicontinuous, (ii) the set-valued map Ỹ(x) = Y is
compact valued and lower and upper semicontinuous (since it is constant). We deduce that
ϕ(x) is lower and upper semicontinuous, therefore continuous.

Having defined the function ϕ, the semi-infinite programming problem (SIP) also reads

min
x∈X

F (x)

s.t. ϕ(x) ≤ 0.

 (2)

However, it should be noted that in most cases there is no closed-form expression for the
function ϕ, this is why an optimization algorithm is necessary to evaluate it.

Separation oracle. We call separation oracle any optimization algorithm that solves the
lower-level problem (1). Given that this optimization problem can be computationally hard, it is
not necessarily realistic to assume that the oracle solve it exactly. Therefore, given a parameter
δ ∈ [0, 1), we consider a separation oracle that computes a feasible solution to the problem (1)
with a relative optimality gap of δ. More precisely, for any x ∈ X , this black-box algorithm
computes ŷ(x) ∈ Y, and an upper bound v̂(x) ≥ ϕ(x) such that

v̂(x)−G(x, ŷ(x)) ≤ δ |ϕ(x)|. (3)

Consequently, the following inequalities hold:

ϕ(x)− δ |ϕ(x)| ≤ G(x, ŷ(x)) ≤ ϕ(x) ≤ v̂(x) ≤ ϕ(x) + δ |ϕ(x)|. (4)

Throughout the thesis, we will use the term of “δ-oracle” to designate such a separation oracle
with limited relative accuracy. Alternatively, we will also say that the oracle has a parameter
δ ∈ [0, 1). We point out that δ = 0 corresponds to the case of a perfectly accurate oracle. In
practice, a δ-oracle can be implemented by different types of methods depending on the nature
of the problem: local or global optimization solvers for Nonlinear Programming (NLP) or Mixed-
Integer Nonlinear Programming (MINLP), positivity certificates for polynomials, combinatorial
optimization algorithms, interval arithmetics, constraint programming, or sampling for example,
as long as we obtain not only an approximate solution ŷ(x), but also the upper bound v̂(x). In
this dissertation, we consider the oracle as a black box, without making any assumptions about
ŷ(x) and v̂(x) other than those in Eqs. (3)-(4).

2

INTRODUCTION

A standard algorithm: the adaptive discretization

We present the adaptive discretization algorithm because it is a standard approach to semi-
infinite programming and because it recurs throughout this dissertation in different contexts and
with several variants. This algorithm was introduced in 1976 by Blankenship and Falk as the
generalized cutting-plane algorithm [32]. The term “generalized” is used insofar as this algorithm
can be seen as an extension of the Cutting-plane algorithm (CPA) for convex optimization
[118]; we will prefer here the term “adaptive discretization” to make a clear distinction. This
algorithm (see Algorithm 1) successfully solves relaxations obtained by imposing only finitely
many constraints. At iteration k of this algorithm, the infinite set of constraints Y is replaced
by a finite subset Yk ⊂ Y, that is progressively enlarged with the output of the separation
oracle. We recall that this oracle may have limited relative accuracy.

Algorithm 1 Adaptive discretization algorithm for (SIP) with limited-accuracy oracle
Input: Oracle with parameter δ ∈ [0, 1), tolerance ϵ ∈ R+, finite set Y0 ⊂ Y

0: Let k ← 0, ν0 ←∞.
1: while νk > ϵ do
2: Compute xk a globally optimal solution of the relaxation

min
x∈X

F (x)
s.t. ∀y ∈ Yk, G(x, y) ≤ 0.

}
(Rk)

3: Call the δ-oracle to compute yk = ŷ(xk) an approximate solution of

max
y∈Y

G(xk, y).

4: Yk+1 ← Yk ∪ {yk}, νk+1 ← G(xk, yk), k ← k + 1.
5: end while
6: Return xk.

We present some convergence results, the proof of which are presented in Appendix A. The
first lemma states the asymptotic feasibility of the iterates generated by the Algorithm 1.

Lemma 0.1. Consider a parameter δ ∈ [0, 1), infinite sequences (xk)k∈N ⊂ X and (yk)k∈N ⊂ Y,
where yk = ŷ(xk) is the output of the δ-oracle evaluated at point xk. If, for any k ∈ N, for any
ℓ ∈ J0, k − 1K, G(xk, yℓ) ≤ 0, then, the feasibility error ϕ(xk)+ vanishes: ϕ(xk)+ → 0.

The following theorem states the finite convergence of the algorithm, if the tolerance ϵ > 0,
and the asymptotic convergence towards a global minimum, if ϵ = 0.

Theorem 0.1. If ϵ ∈ R++, Algorithm 1 stops after a finite number of iterations. On the
contrary, if ϵ = 0 and Algorithm 1 generates an infinite sequence of iterates (xk)k∈N, then any
limit value x ∈ Rm of (xk)k∈N is an optimal solution in (SIP).

3

INTRODUCTION

This last theorem states the optimality and feasibility errors of the output of the algorithm,
depending on the tolerance ϵ and the accuracy parameter δ of the oracle. The notation val(SIP)
stands for the optimal value of this optimization problem.

Theorem 0.2. If Algorithm 1 terminates after K iterations, the iterate xK ∈ X , satisfies
G(xK , y) ≤ ϵ

1−δ , for all y ∈ Y, and has value F (xK) ≤ val(SIP).

Overview of the semi-infinite programming literature

After this description of the adaptive discretization algorithm, we propose an overview of other
algorithms for semi-infinite programming, leaving a more detailed presentation to the relevant
chapters. Note that these algorithms are not stand-alone numerical methods but rely on the
ability to solve some finite optimization problems.

Discretization methods. The above mentioned “adaptive” discretization exists by opposition
with “fixed” discretization approaches [103, 196, 208], where Y is approximated by a predefined
grid Ŷ, yielding relaxations of the original problem. The convergence of the solution of the
relaxation is proven as a function of the Haussdorff distance between Y and Ŷ [208]. Back to
the adaptive discretization, a limitation of Algorithm 1 is that the feasibility of the iterates is
obtained asymptotically only; some variant of the algorithm were introduced to compute feasible
points after a finite number of iterations [67, 162, 219]. In the setting of convex semi-infinite
programming, some central cutting-plane algorithms were proposed [25, 89, 104], to improve the
stability and the speed of convergence of the adaptive discretization. In this convex setting, the
exchange algorithms [33, 244], are a bounded-memory variants of the cutting-plane algorithm.

Overestimation methods. These methods replace the lower-level value function ϕ(x) by
an overestimation to obtain a finite restriction of the original semi-infinite program. The
overestimation may be obtained through a convex relaxation of the lower-level problem. The
relaxed lower-level problem is, then, equivalently replaced by its Karush–Kuhn–Tucker (KKT)
conditions, resulting in a restriction of the original problem that is nonconvex problem, with
the complementarity constraints (e.g. [75, 206]). The overestimation may also be obtained by
dualization of the lower-level problem [19, 65, 134, 143], or using interval arithmetics [26, 158].

Other methods. The KKT approach directly substitutes the lower-level problem by its KKT
conditions to obtain a finite formulation [3], which is equivalent only under specific conditions.
Again, a drawback of this approach is to result in a nonconvex formulation, even if the original
semi-infinite program is convex. Local reduction methods exploit the sensitivity of the value and
the solution of the lower-level problem (1) with respect to x, to apply nonlinear differentiable
optimization algorithms such as Sequential Quadratic Programming (SQP), Interior-Point
Methods (IPM) or the projected augmented Lagrangian algorithm [59, 104, 187, 215]. An

4

INTRODUCTION

obstacle to the scalability of the local reduction methods is the need to compute all the
(globally) optimal solutions of the lower-level problem (1), which can be highly costly if this
problem is nonconvex.

Applications of semi-infinite programming

The study of semi-infinite programming is motivated by its various applications. From a the-
oretical point of view, we first consider the connections with other classes of mathematical
optimization problems. The framework of semi-infinite programming includes min-max op-
timization problems, also known as zero-sum games in game theory [243]. In Chapter 2, we
present one such application. We can also think of Semidefinite Programming (SDP) as a
particular case of semi-infinite programming [222]. Certainly, specialized methods for SDP,
mainly IPM, are particularly efficient [2, 100, 169] and do not rely on semi-infinite program-
ming. However, Chapter 5 illustrates the interest of the semi-infinite programming view for
large-scale SDP problems. Robust Optimization (RO), which models optimization problems
under non-probabilistic uncertainty [17], is also covered by the semi-infinite programming
framework [68]. In Chapter 6, we apply semi-infinite programming to solve an Adjustable
Robust Optimization (ARO) problem [240], where the decision variables are separated into
“here-and-now” decisions (before the uncertainty realization) and “wait-and-see” decisions (after
the uncertainty realization). One of the advantages of semi-infinite programming is the ability
to combine the different paradigms mentioned above: this framework makes it possible, for
example, to model the robust solution of SDP problems [70].

From a more practical point of view, we can envision several applications of semi-infinite pro-
gramming in various fields arising from situations where an infinite number of constraints must
be satisfied. One of the first problems that motivated the study of semi-infinite optimization is
the Chebyshev approximation problem [154], where the best approximation of a given continuous
function is searched among a parameterized family of functions. In chemical engineering, model
reductions are approximation problems that can be formulated as semi-infinite programs [27].
Another standard application is the task of design centering [191, 205], where a parameterized
body should be inscribed into a container. Trajectory planning, in robotics [98] or in air traffic
control [45], is another area of application, as it involves a continuous description of time. More
generally, semi-infinite programming can be used in optimal control, as illustrated by Chapter 3
of this dissertation. We can mention further applications in chemical engineering [211] again, in
statistics [90], in economics [229], in finance [128], in industrial process optimization [236], and
in structural design [4], only to mention a few.

Due to the scientific, economic, and societal challenges associated with the energy transition,
electrical engineering is one of the most crucial areas of application for mathematical optimization
and, more specifically, for robust and semi-infinite optimization. We now present the ACOPF
problem in more detail, an optimization problem that we focused on during this thesis.

5

INTRODUCTION

B. Introduction to AC power flow optimization

The main application we consider in this dissertation is the Alternating-Current Optimal Power
Flow (ACOPF). This is a widely studied optimization problem related to dispatching electricity
in a power network. The authorship of this problem is commonly attributed to Carpentier, who
introduced it in 1962 in a seminal paper [43] as “Economic Dispatch”. Since then, this problem
has not only interested the electrical engineering community [38, 44], but also the community
of operations research and mathematical programming [28, 117, 166, 233]. Indeed, ACOPF is a
challenging application of NLP and Global Optimization (GO).

The standard ACOPF problem, presented in this section, is a deterministic NLP problem
with a finite number of constraints: as such, it does not fit directly into the category of
semi-infinite programming problems. Nonetheless, our developments show that semi-infinite
programming provides a fruitful approach to solving the ACOPF problem (see Chapter 4).
Moreover, we also employ the semi-infinite programming framework to define and solve a
variant of this problem with robust feasibility guarantees in the presence of uncertainties (see
Chapter 6).

Mathematical programming formulation of the ACOPF problem

Graph, sets and parameters. An electrical grid is a network of buses interconnected by
lines. It can be modeled as an oriented graph N = (B,L). A line ℓ ∈ L is described by a couple
(b, a) such that b ∈ B is the “from” bus (denoted by f), a ∈ B is the “to” bus (denoted by t).
The set L is such that L ∩ LR = ∅, where LR is the set of couples (b, a) such that (a, b) ∈ L.
Electricity generating units are located at several buses in the network. We denote by Gb the
set of generators located at bus b ∈ B. The set of all generators is G = ∪b∈B Gb. The parameters
of the ACOPF problem are described in Table 0.1. More details about their physical meaning
are given in Appendix B.

Parameters Index set Meaning
c0g, c1g ∈ R, c2g ∈ R+ g ∈ G Generator’s cost parameters
sg, sg ∈ C g ∈ G Generator’s domain bounds
vb, vb ∈ R+ b ∈ B Voltage magnitude bounds
Sd
b ∈ C b ∈ B Power demand
Y s
b ∈ C b ∈ B Shunt admittance
Y ff
ba, Y

ft
ba, Y

tf
ba , Y

tt
ba ∈ C (b, a) ∈ L Line impedance matrix

Table 0.1: Main parameters of the ACOPF problem

Regarding the parameter sg (resp. sg), we denote by P g and Q
g

(resp. P g and Qg) its real
and imaginary part. We denote by P d

b and Qd
b the real and imaginary part of Sd

b .

6

INTRODUCTION

Problem definition. Depending on the authors, the ACOPF problem is introduced with
different notations and formulations in polar or Cartesian coordinates. We privilege here the
quadratic formulation in complex numbers, yielding a compact presentation.

min
V ∈CB, S∈CG

∑
g∈G

(
c0g + c1g Re(Sg) + c2g Re(Sg)2

)
s.t. ∀b ∈ B, vb ≤ |Vb| ≤ vb
∀g ∈ G, sg ≤ Sg ≤ sg
∀b ∈ B,

∑
g∈Gb

Sg − Sd
b = (Y s

b)∗|Vb|2 + ∑
a:(b,a)∈L

(
(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV
∗
a

)
+ ∑
a:(b,a)∈LR

(
(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV
∗
a

)


(ACOPF)

In this Quadratically Constrained Quadratic Programming (QCQP) with complex variables,
the decision vector V ∈ CB corresponds to the voltages of the buses; the decision vector S ∈ CG

corresponds to the power injections of the generators. The constraints of the first type are the
voltage magnitude limits at each bus. The constraints of the second type are the generator
power limits: note that the order z1 ≤ z2 means Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2). Most
importantly, the third type of constraint, named “power flow equations”, corresponds to power
conservation. In this dissertation, we use the following matrix notation: for each bus b ∈ B, we
define

Mb = Y s
b Ebb +

∑
a:(b,a)∈L

(
Y ff
baEbb + Y ft

baEba
)

+
∑

a:(b,a)∈LR

(
Y tt
abEbb + Y tf

abEba
)
, (5)

recalling that the matrices Eba are the elements of the canonical basis of CB×B. Then, the
power conservation at b ∈ B reads∑

g∈Gb

Sg − Sd
b =

〈
Mb, V V

H
〉
. (6)

Appendix B details how we derive these mathematical equations from Ohm’s and Kirchhoff’s
laws. In particular, we also explain why these power flow equations involve complex numbers,
which is unusual for a mathematical optimization problem.

Additional constraints. In addition, some authors consider capacity constraints regarding
the electrical lines. We exhibit the corresponding parameters in Table 0.2.

Parameters Index set Meaning
Sba ∈ R+ (b, a) ∈ L ∪ LR Power magnitude limit
Ība ∈ R+ (b, a) ∈ L ∪ LR Current magnitude limit
θba, θba ∈ [−π

2 ,
π
2] (b, a) ∈ L ∪ LR Angle difference limits

Table 0.2: Additional parameters for the ACOPF problem

7

INTRODUCTION

• Line capacities, either in power magnitude, or in current magnitude:

– Limits in power magnitude:

∀(b, a) ∈ L, |(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV
∗
a | ≤ Sba (7)

∀(b, a) ∈ LR, |(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV
∗
a | ≤ Sba (8)

– Limits in current magnitude:

∀(b, a) ∈ L, |Y ff
baVb + Y ft

baVa| ≤ Ība, (7bis)

∀(b, a) ∈ LR, |Y tt
abVb + Y tf

abVa| ≤ Ība. (8bis)

• Angle difference limits:

∀(b, a) ∈ L ∪ LR, θba ≤ ∠Vb − ∠Va ≤ θba (9)

Complexity. The feasibility problem associated with ACOPF has been proven to be strongly
NP-Hard [31], which underlines the computational difficulty of ACOPF as a GO problem. That
said, it has also been shown that polynomial optimization problems with a constraints system of
bounded tree-width can be solved in polynomial time to any desired accuracy [30]. In practice,
ACOPF instances indeed have low tree-widths.

Overview of the ACOPF literature

We present succinctly the main categories of algorithms to solve the ACOPF problem, keeping
a more detailed presentation and comparison of these methods for the relevant chapters. Most
of the presented algorithms first proceed by a reformulation in real numbers of the ACOPF
problem.

Power flow algorithms. In the power flow equation (6), fixing at each bus the real and
imaginary parts of the power injection (PQ), or the real part of the power injection and
the voltage magnitude (PV), results in a quadratic system of nonlinear equations. In the
power system community, the problem of solving these power flow equations with known
injections is called the “load flow.” Several methods can solve it numerically, mainly based on
the Newton-Raphson algorithm [79, 160, 209].

Local optimization algorithms. Some algorithms are designed to efficiently compute
feasible points satisfying local optimality conditions for large-scale nonlinear optimization
problems. On the one hand, an IPM solves, by means of Newton’s algorithm, successively
finer approximations of the KKT system. These approximations are obtained by replacing
the inequalities by a logarithmic barrier with a penalty factor, called barrier parameter. This
parameter is progressively decreased to converge to a solution of the KKT system of the

8

INTRODUCTION

original problem: this is a homotopy approach. General differentiable optimization solvers
such as Ipopt [239] or Artelys Knitro [37], which are the state-of-the-art local solvers for the
ACOPF problem [116], implement such an IPM. On the other hand, SQP methods iteratively use
quadratic approximations of the objective function and constraints to obtain a subproblem, which
is then solved using a quadratic programming solver. Under mild assumptions, such an algorithm
also converges to a feasible point that satisfies the KKT conditions. SQP implementations
include Artelys Knitro [37], SNOPT [83], or NLOpt [114]. In practice, all these methods often
converge to a global optimum without guaranteeing that it is [85, 116].

Formulating and solving convex relaxations. To evaluate the quality of the feasible
solutions computed with local optimization algorithms, one needs lower bounds on the ACOPF
optimal value. This is possible through the formulation and the solution of convex relaxations of
the ACOPF problem [166]. The main families of relaxation are Second-Order Cone Programming
(SOCP) relaxations [110, 123], convex QCQP relaxations [56, 55, 85], and SDP relaxations,
which include the rank relaxation [136] (also known as Schor relaxation) and the Sum-of-Squares
(SoS) hierarchy [117, 133]. In the SoS hierarchy, the values of the relaxations converge towards
the value of the ACOPF problem at a computational price that drastically increases with the
number of variables and with the degree of the relaxation. Several strategies exist to exploit
the sparse structure of the optimization problem (correlative sparsity, term sparsity) and
obtain a more tractable relaxation [131, 235, 234]. Most of the convex relaxation approaches
leverage efficient and accurate conic optimization solvers, such as MOSEK [169] or SeDuMi [212],
although these solvers may encounter numerical troubles for large-scale problems, as illustrated
in Chapter 5. The reader is referred to this chapter for a more detailed overview of the
state-of-the-art to solve SDP relaxations for the ACOPF problem.

Global optimization algorithms. Apart from the SoS hierarchy [117], none of the above
relaxations is proven to be exact in general, i.e., to have the same value as the ACOPF problem.
Except in some specific cases [78, 152], these convex relaxations may not provide a feasible
solution to the ACOPF problem. Similarly, IPM or SQP may only provide a local stationary
point [36]. Therefore, computing a global minimum may require subdividing and exploring
the space of variables. Except for the Moment-SoS hierarchy, most of the algorithms with
global convergence guarantees implement a spatial Branch-and-Bound (B&B) algorithm built
upon a SOCP, convex QCQP, or SDP relaxation. General purpose solvers for nonconvex
GO like SCIP [226], or for nonconvex QCQP like Gurobi[94], which can handle the ACOPF
formulation presented above, are mainly based on Linear Programming (LP) relaxations. A
detailed description of the state-of-the-art global optimization algorithms for ACOPF is given
in Chapter 4.

9

INTRODUCTION

Variants of the optimal power flow problem

The formulation ACOPF presented in this introduction is a stylized description of a decision
problem faced by a power system operator. It is a rich scientific challenge in terms of GO, but
it needs to be refined to be more relevant from an operational point of view.

A critical refinement of the ACOPF problem is the consideration of uncertainties [198].
In power systems, optimization is used for real-time operation and long-term planning, but
decision-makers rely on uncertain input data to make optimal decisions. For example, these
uncertain parameters include load and renewable energy forecasts. Taking into account this
uncertainty on loads in the ACOPF problem leads to the Chance-Constrained AC Optimal Power
Flow (CC-OPF) problem [29, 63, 170, 224] if the existence of a solution is to be guaranteed
with a certain probability. This leads to the Adjustable Robust AC Optimal Power Flow
(AR-OPF) [129, 138, 150], if the feasibility has to be guaranteed, thanks to some recourse
variables arising in a second stage, for all the possible realizations of the uncertainty: this is a
two-stage optimization problem. In addition to the uncertain parameters, taking into account
some contingencies, such as the loss of a line or a generator, is crucial to avoid cascading failures
leading to blackouts. The Security-Constrained AC Optimal Power Flow (SC-OPF) problem,
still in a two-stage optimization approach, aims to find an optimal operating point that can
survive, with limited disturbances, to one or more contingencies thanks to recourse variables
[73, 238]. If the recourse variables correspond only to state variables of the network, we speak
of preventive SC-OPF. If they also correspond to corrective actions, we speak of corrective
SC-OPF [120]. The purpose of Chapter 6, is indeed to address the preventive AR-OPF and
SC-OPF problems using the semi-infinite programming framework.

Another axis of refinement of the ACOPF problem is the consideration of the underlying
dynamics of generators, which, coupled by the electrical network, form a large-scale dynamic
system. In the standard (static) ACOPF problem, we search for an equilibrium point that
minimizes a certain cost without considering the dynamics of the network. However, it would be
relevant to consider stability constraints, i.e., to look for an equilibrium point that is stable even
in the presence of disturbances. Moreover, it is also necessary to address the target equilibrium
point’s reachability given the network’s initial state. Although there is some preliminary work
to consider stability criteria in the ACOPF, their applicability is still limited to small instances
[62, 216, 231, 237]. Regarding the study of reachable sets of dynamical systems in power
networks, the state-of-the-art is also limited to the study of small systems [175, 182, 214], and
the inclusion of such constraints in the ACOPF problem is still to be done, to the best of our
knowledge.

10

INTRODUCTION

C. Thesis structure and summary of results

Part I of the thesis is devoted to convex semi-infinite programming and its applications.

Chapter 1. We study the application of Algorithm 1 to convex semi-infinite programs. In this
context, this algorithm is equivalent to the CPA, also known as Kelley’s algorithm. Assuming
the strong convexity of the objective, the linearity of the semi-infinite constraints and the
existence of a strictly feasible point, we establish that the CPA algorithm and some variants
converge at a rate of O(1

k) for the objective and for the feasibility error, where k is the number
of calls to the separation oracle.

Chapter 2. This chapter deals with a special type of convex semi-infinite programs, where
the lower-level problem (1) is a QCQP, which is potentially nonconvex. This chapter addresses
a limitation of the CPA algorithm, which is that feasibility occurs only asymptotically. We
design an algorithm called Inner-Outer Approximation algorithm (IOA), that generates a
sequence of feasible iterations that converge to the optimal value of the semi-infinite problem.
We demonstrate the interest of this algorithm by experimental comparison with three other
algorithmic approaches for several instances stemming from two different applications.

Chapter 3. As an application, we solve minimum-time nonlinear control problems with a
semi-infinite programming approach. We propose a hierarchy of convex semi-infinite program-
ming restrictions of the dual problem with convergence guarantees. Based on this hierarchy, we
derive an algorithmic approach to compute guaranteed lower and upper bounds for minimum
time control problems and test it on three non-polynomial control problems.

Part II deals with nonconvex optimization problems arising in power systems. This part is
dedicated to the global solution of the ACOPF and the AR-OPF problems. The latter problem
fits the setting of nonconvex semi-infinite programming.

Chapter 4. We propose a method for solving the AC Optimal Power Flow problem globally.
The approach involves adding valid inequalities to strengthen the SDP relaxation, resulting
in a conic programming relaxation. These inequalities dominate other inequalities from the
literature used for the same purpose. Additionally, a GO algorithm is proposed that employs a
sequence of Mixed-Integer Linear Programming (MILP) relaxations, with linear cuts stemming
from the conic constraints. The integration of these cuts, derived from the conic relaxation, may
be seen as a semi-infinite discretization scheme, as presented in the Introduction. The algorithm
presents global convergence guarantees. We apply it to the IEEE PES PGLib benchmark [10]
and compare it with other recent GO methods.

11

INTRODUCTION

Chapter 5. For large-scale ACOPF problems, the conic programming solvers, such as the
one used in the previous chapter, may encounter numerical difficulties in solving the SDP
relaxation. To address these numerical problems, this chapter introduces a novel approach to
computing SDP bounds of the ACOPF problem. This approach involves an unconstrained
formulation for the Lagrangian dual of the problem. Using this formulation, we show how to
derive a certified lower bound from any dual vector, feasible in the classical dual problem or
not. This unconstrained optimization problem is solved using a polyhedral bundle method that
exploits the structure of the problem. The experiments on the IEEE PES PGLib benchmark
[10] illustrate the advantages of this approach in terms of the accuracy of the computed certified
lower bounds.

Chapter 6. This chapter deals with nonlinear ARO problems, where the number of recourse
variables equals the number of nonlinear equality constraints in the second stage. This for-
mulation includes the AR-OPF problem. We reformulate the ARO problem as a semi-infinite
program. However, this semi-infinite program is difficult to solve with the adaptive discretization
algorithm (Algorithm 1) since the separation problem is a difficult max-min problem that we
cannot solve to a guaranteed optimality gap. We propose an alternative discretization algorithm
based on a deterministic sampling of the uncertainty set and a homotopy method to solve
the nonlinear system locally. Depending on whether the master problems are solved locally or
globally, the algorithm converges to a local or global minimum of the ARO problem. Interest-
ingly, global convergence occurs even though the homotopy method is only a local equation
solver. For a positive feasibility tolerance, finite convergence occurs. We apply the algorithm to
AR-OPF instances with up to 1354 buses built from the IEEE PES PGLib benchmark.

D. Publications

The journal and conference publications, and preprints on which this thesis is built are listed
below. We also list the corresponding chapters of the thesis.

Journal papers
[47] M. Cerulli, A. Oustry, C. D’Ambrosio, L. Liberti. Convergent algorithms for a class of
convex Semi-Infinite programs, SIAM Journal on Optimization, 2022. [Chapter 1 and Chapter 2]
[174] A. Oustry. AC Optimal Power Flow: a Conic Programming relaxation and an iterative
MILP scheme for Global Optimization, Open Journal of Mathematical Optimization, 3(6):1–19,
2022. [Chapter 4] This paper received the “Best student paper” award of the ROADEF in 2022.

International conference paper
[177] A. Oustry, C. D’Ambrosio, L. Liberti, M. Ruiz, Certified and accurate SDP bounds for the
ACOPF problem, Proceedings of the 22nd PSCC conference, Porto, Portugal, 2022. [Chapter 5]

12

CHAPTER 0. INTRODUCTION

Preprints
[176] A. Oustry, M. Cerulli. Semi-infinite programming solution algorithms with inexact separa-
tion oracles, Submitted, 2023. [Chapter 1 and Chapter 2]
[181] A. Oustry, M. Tacchi. Minimum time control via semi-infinite programming, arXiv:2307.00857,
Submitted, 2023. [Chapter 3]
[180] A. Oustry, F. Pacaud, M. Anitescu. Adjustable robust nonlinear optimization via semi-
infinite programming, Submitted. [Chapter 6]

In addition, publications on other topics have been achieved during the thesis.

Journal papers
[179] A. Oustry, M. Le Tilly, T. Clausen, C. D’Ambrosio, L. Liberti. Optimal deployment of
indoor wireless local area networks, Networks, 81:23-50, 2023.
[178] A. Oustry, B. Erkan, R. Svartzman, P.-F. Weber. Risques climatiques et politique de
collatéral des banques centrales : une expérience méthodologique, Revue économique, 73(2):173-
218, 2022.

National conference paper
[146] L. Liberti, B. Manca, A. Oustry, and P.-L. Poirion. Random projections for semidefinite
programming, Proceedings of the AIRO-ODS 2022 conference, Florence, Italy, 2022.

Encyclopedia articles
[46] M. Cerulli, D. Delle Donne, M. Escobar, L. Liberti, A. Oustry Optimal Power Flow, 3rd

edition of the Encyclopedia of Optimization, Springer, 2023.
[183] A. Oustry, L. Xu, S. Haddad-Vanier, J.-A. Cordero, T. Clausen. Optimization in Wireless
Networks, 3rd edition of the Encyclopedia of Optimization, Springer, 2023.

13

Part I

Contributions to convex semi-infinite
programming and applications

14

C
h

a
p

t
e

r 1
A convergence rate for the
cutting-plane algorithm

Kelley’s algorithm, also known as the cutting-plane algorithm (CPA) for convex pro-
gramming, is a classic optimization algorithm dating back to 1960 [118]. This chapter
introduces a convergence rate for this algorithm, and some variants, in the special case

of convex semi-infinite programming. As presented in the Introduction, given two continuous
functions F : Rm → R and G : Rm × Rn → R, given two nonempty and compact sets X ⊂ Rm,
and Y ⊂ Rn, we consider the semi-infinite programming formulation (SIP), defined as

min
x∈X

F (x)

s.t. ∀y ∈ Y, G(x, y) ≤ 0.

 (SIP)

In the present chapter, we study the formulation (SIP) under the assumption that it is convex
with respect to the decision vector x.

Assumptions 1.1. The set X is convex, the function F is convex and the function G(·, y) is
linear for any y ∈ Y.

We highlight that we make no convexity assumptions with respect to the parameter y:
neither the set Y is assumed to be convex, nor the function G(x, ·), for a fixed x ∈ X , is assumed
to be convex/concave. Without loss of generality, the setting of Assumption 1.1 also covers the
case where the function G(·, y) is affine for any y ∈ Y, since we can add a decision variable x0

and include the constraint x0 = 1 in the definition of the convex and compact set X .

15

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

As explained in the Introduction, one can write the semi-infinite programming problem
(SIP) as

min
x∈X

F (x)

s.t. ϕ(x) ≤ 0,

 (1.1)

where ϕ(x) = maxy∈Y G(x, y) is the value function of the lower-level problem. Under As-
sumption 1.1, this function is convex as maximum of linear functions, and therefore, prob-
lem (1.1) is a constrained convex optimization problem. A separation oracle that computes
ŷ(x) ∈ argmaxy∈YG(x, y), as defined in the Introduction, allows one to compute the value of
ϕ(x), and a subgradient s ∈ ∂ϕ(x). In this setting of convex semi-infinite programming, the
adaptive discretization algorithm [32] presented in the Introduction (Algorithm 1), is exactly
the Kelley’s cutting-plane algorithm (CPA). In this chapter, we prove an O(1

k) convergence rate
for this algorithm, where k is the number of calls to the oracle, in the case where the objective
function is strongly convex, and under the assumption that there exists a strictly feasible point.

Related works

On the one hand, we can think of the problem (SIP) as a generic convex optimization problem
(1.1). Therefore, we review the algorithms for constrained convex optimization and their
respective convergence rates. We focus on first-order algorithms because we are in the framework
of the separation oracle: instead of a closed-form expression for ϕ(x), we only have a black-box
algorithm that returns an (approximate) value of ϕ(x), and an (approximate) subgradient.
More powerful structured optimization techniques, based on self-concordant functions, for
example, are not appropriate here because they require more structure. The first algorithm for
convex programs was derived independently by Kelley [118] and Cheney and Goldstein [51] in
1959-1960: it is the cutting-plane algorithm (CPA), the convergence rate of which is studied in
this chapter. The ellipsoid algorithm was proposed by the Russian mathematician Shor in 1977
for convex optimization problems [202] before being used by Khachyan in 1979 to prove the
polynomial-time complexity of linear programming [119]. Although this algorithm has a linear
convergence rate [171], i.e., a convergence rate in O(exp(−αk)) with α ∈ R++, it is not used in
practice because it is known to be numerically unstable. In the unconstrained setting, where
the oracle is used to compute the objective function, the celebrated primal-dual subgradient
algorithm by Nesterov [172] has a sublinear rate of convergence in O(1√

k
), even when the oracle

is inexact [64]. This algorithm was also adapted to convex constrained optimization with the
same rate [161]. Bundle methods [121, 139, 141, 184], also popular in practice, do not have a
convergence rate in general. A convergence rate in O(1√

k
) is known for the level-bundle method

[140]. In the unconstrained case, with a strongly convex objective function, the standard bundle
method [69] has an iteration complexity in O(ϵ−1 log(ϵ−1)), i.e., a convergence rate close to
but strictly worse than O(1

k). As regards the analytic center cutting-plane method, we know

16

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

an iteration complexity in O(1
ϵ2), i.e., a convergence rate O(1√

k
) [241]. The Elzinga-Moore

algorithm is another central cutting plane method [72]. The authors prove the linear convergence
of the objective values of the feasible iterates generated by this algorithm. However, this is
not a real convergence rate with respect to k, the total number of calls to the oracle, since the
number of calls required to generate the j-th feasible iterate is not bounded.

On the other hand, one can also look at algorithms specifically designed for semi-infinite
programming [84, 192, 197]. Among the works devoted to linear semi-infinite programming, one
counts several variants of the central cutting-plane algorithm [25, 89, 104]. The same property
of the “pseudo” linear convergence rate is stated for these algorithms, as for the Elzinga-Moore
algorithm: neither the objective error nor the feasibility error is bounded by an explicit function
of k. For fixed discretization approaches [103, 196, 208], where Y is approximated by a fixed
grid Yd, there is a convergence rate of the approximation error of the solution as a function of
the Haussdorff distance between Y and Yd [208]. However, this does not provide a convergence
rate in terms of the number of calls to the separation oracle. The exchange algorithms [33, 244],
which are a refinement of the cutting-plane algorithm with constraints dropping, do not have a
proven convergence rate, to the best of our knowledge. For the global optimization algorithms
proposed by Mitsos et al. for general semi-infinite programming [67, 162], the convergence is
proven, but no rate is stated.

Contributions and organization of the chapter

In this context of convex semi-infinite programming (Assumption 1.1), under the assumptions
that the objective function is strongly convex, the semi-infinite constraints are linear, and that
a strictly feasible point exists, we prove an O(1

k) convergence rate for the algorithm CPA and
several variants. This convergence rate is proven for the objective value of the iterates and
their feasibility with respect to the semi-infinite constraint. This convergence rate is guaranteed
despite the limited relative accuracy of the separation oracle, in line with the framework of the δ-
oracle presented in the Introduction. Indeed, as the lower-level problem may be computationally
hard, we relax the assumption that the oracle computes a point in argmaxy∈YG(x, y), and we
just assume that there exists δ ∈ [0, 1) such that for all x ∈ X , the solution ŷ(x) ∈ Y and the
upper bound v̂(x) ∈ R on ϕ(x) computed by the oracle satisfy v̂(x) − G(x, ŷ(x)) ≤ δ |ϕ(x)|.
The case of the “perfect” oracle is covered by the value δ = 0. We introduce the Lagrangian
dual problem of the convex semi-infinite program in Section 1.1. We provide the pseudocode
of CPA, some variants with constraints dropping and aggregation, and the dual interpretation
of these algorithms in Section 1.2. Based on this dual interpretation, we introduce the O(1

k)
convergence rates for CPA in Section 1.3.

17

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

1.1 The Lagrangian dual of the convex semi-infinite program

1.1.1 Derivation of the dual problem

In line with Assumption 1.1, for any y ∈ F , we define a(y) ∈ Rm such that G(x, y) = x⊤a(y).
From the continuity of G, we deduce the continuity of a(·). We also define the set M =
{a(y) : y ∈ Y} and K = cone(M) the convex cone generated by M. With this notation, we
observe that the semi-infinite program (SIP) also reads

min
x∈X

F (x)

s.t. ∀z ∈M, x⊤z ≤ 0.

 (SIP′)

We introduce the Lagrangian function L(x, z) = F (x) + x⊤z, defined over X × K, and we
notice that val(SIP) = minx∈X supz∈K L(x, z). We underline that the Lagrangian is convex
with respect to x, and linear with respect to z. Since the set X is compact and convex
(Assumption 1.1) and the set K is convex, Sion’s minimax theorem [203] is applicable and the
following holds:

min
x∈X

sup
z∈K
L(x, z) = sup

z∈K
min
x∈X
L(x, z). (1.2)

We introduce the dual function

D(z) = min
x∈X
L(x, z), (1.3)

and the dual optimization problem

sup
z∈K

D(z). (DSIP)

With this definition, Eq. (1.2) means the absence of duality gap between the dual problems
(SIP) and (DSIP), i.e., val(SIP) = val(DSIP).

1.1.2 Properties of the dual problem

We make further assumptions to guarantee the regularity of the dual problem.

Assumptions 1.2. The function F is µ-strongly convex.

The following proposition states that under this assumption, the dual function is differen-
tiable, with a Lipschitz continuous gradient.

Proposition 1.1. Under Assumptions 1.1-1.2, the dual function D(z) is differentiable, with
gradient ∇D(z) = arg min

x∈X
L(x, z). The gradient ∇D(z) is 1

µ -Lipschitz continuous.

18

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

Proof. We apply [106, Cor. VI.4.4.5] to the function D(z) = −(supx∈X −L(x, z)). The set X is
compact. The function −L(·, z) is continuous for all z ∈ K. The function −L(x, ·) is convex and
differentiable for all x ∈ X . The function supx∈X −L(x, ·) is finite-valued over Rm. Finally, due
to Assumptions 1.1 and 1.2, the function −L(·, z) is strongly concave and the set X is compact
and convex, therefore the supremum supx∈X −L(x, z) is attained for a unique x(z). We deduce
from [106, Cor. VI.4.4.5] that D(z) is differentiable over Rm, with gradient ∇zL(x(z), z) = x(z).
We now take z, z′ ∈ Rm, and prove that ∥∇D(z)−∇D(z′)∥ ≤ 1

µ∥z−z
′∥. We define the functions

w(u) = L(u, z) + iX (u) and w′(u) = L(u, z′) + iX (u), where iX (·) is the characteristic function
of X . We introduce x (resp. x′) the unique minimum of w (resp. w′). From the first part of the
proof, we know that ∇D(z) = x and ∇D(z′) = x′. The first-order optimality condition for the
convex functions w and w′ reads

0 ∈ ∂w(x) (1.4)

0 ∈ ∂w′(x′). (1.5)

We notice that the function (F + iX)(u) is convex due to Assumption 1.1, and the function
ℓ(u) = z⊤u is linear, thus convex. The intersection of the relative interiors of the domains of
these convex functions is ri(X). With X a finite-dimensional convex set, ri(X) ̸= ∅, according to
[220, Proposition 1.9]. Hence, the subdifferential of the sum is the sum of the subdifferentials
[199, Theorem 2.1], i.e., ∂w(x) = ∂(F + iX)(x) + ∂ℓ(x) = ∂(F + iX)(x) + {z}. Similarly,
∂w′(x′) = ∂(F + iX)(x′)+{z′}. Therefore, Eqs. (1.4)-(1.5) may be reformulated as the existence
of s ∈ ∂(F + iX)(x) and s′ ∈ ∂(F + iX)(x′) such that

0 = s+ z (1.6)

0 = s′ + z′. (1.7)

Due to Assumptions 1.1-1.2, the function F + iX is µ-strongly convex. Applying [106, The-
orem VI.6.1.2], the µ-strong convexity of F + iX gives that (s − s′)⊤(x − x′) ≥ µ∥x − x′∥2,
since s ∈ ∂(F + iX)(x) and s′ ∈ ∂(F + iX)(x′). Using the Cauchy-Schwartz inequality and
Eqs. (1.6)-(1.7), we deduce that ∥z − z′∥ ∥x− x′∥ ≥ µ∥x− x′∥2. Noting that ∇D(z) = x and
∇D(z′) = x′, we deduce

∥z − z′∥ ∥∇D(z)−∇D(z′)∥ ≥ µ∥∇D(z)−∇D(z′)∥2. (1.8)

From Eq. (1.8), we deduce that 1
µ∥z − z

′∥ ≥ ∥∇D(z)−∇D(z′)∥, if ∥∇D(z)−∇D(z′)∥ > 0. If
∥∇D(z)−∇D(z′)∥ = 0, this inequality is also trivially true.

Proposition 1.2. Under Assumptions 1.1-1.2, for any y, z ∈ K, for any γ ≥ 0,

D(z + γy) ≥ D(z) + (∇D(z)⊤y)γ − ∥y∥
2

2µ γ2. (1.9)

19

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

Proof. For any y, z ∈ K and γ ≥ 0, we obtain by integration that

D(z + γy)−D(z) =
∫ γ

0
∇D(z + ty)⊤y dt = γ∇D(z)⊤y +

∫ γ

0
(∇D(z + ty)−∇D(z))⊤y dt. (1.10)

Using the Cauchy-Schwarz inequality and the 1
µ -smoothness of D, according to Proposition 1.1,

we know that

(∇D(z + ty)−∇D(z))⊤y ≥ −∥∇D(z + ty)−∇D(z)∥2 ∥y∥2 ≥ −
t

µ
∥y∥2

2. (1.11)

Combining this with Eq. (1.10), we deduce that D(z + ty)−D(z) ≥ γ(∇D(z))⊤y −
∫ γ

t=0
t
µ∥y∥

2
2dt,

which yields that D(z + γy)−D(z) ≥ γ(∇D(z))⊤y − ∥y∥2

2µ γ2.

We prove now that we can replace the sup operator with the max operator in the formulation
(DSIP), under the following additional assumption.

Assumptions 1.3. There exists x̃ ∈ X , such that x̃⊤a(y) < 0 for all y ∈ Y.

Proposition 1.3. Under Assumptions 1.1 and 1.3, problem (DSIP) admits an optimal solution.

Proof. According to Assumption 1.3, we use x̃ ∈ X such that x̃⊤a(y) < 0 for all y ∈ Y.
By continuity of G and compactness of Y, we know that there exists a constant c ∈ R++

such that x̃⊤a(y) ≤ −c for all y ∈ Y. For any z ∈ K, there exists r ∈ N, y1, . . . , yr ∈ Y,
and ρ1, . . . , ρr ∈ R++ such that z = ∑p

i=1 ρia(yi). By definition of D(z), D(z) ≤ L(x̃, z).
We deduce that D(z) ≤ F (x̃) − c

∑p
i=1 ρi, which also reads ∑p

i=1 ρi ≤ c−1(F (x̃) − D(z)).
From this equation, we deduce that for any solution of (DSIP) such that D(z) ≥ V − 1
where V = val(SIP) = val(DSIP), we have ∑p

i=1 ρi ≤ c−1(F (x̃) − V + 1), and this for
any decomposition z = ∑p

i=1 ρia(yi). This implies that the set of elements z ∈ K such that
D(z) ≥ V − 1, is included in the compact set qconv(M), where q = c−1(F (x̃)− V + 1). Over
this compact set, the continuous function D(z) reaches its maximum.

1.2 The cutting-plane algorithm and its dual interpretation

1.2.1 Description of the algorithm with constraints management

In the setting of convex semi-infinite programming defined by Assumption 1.1, we instantiate
Algorithm 1, which is, from a convex optimization perspective, the cutting-plane algorithm
(CPA). In fact, Algorithm 2 is not exactly Algorithm 1, but a variant that offers more flexibility
with respect to finite subset of constraints kept in the master problem (Rk), as detailed in step
6 of the pseudo-code. We insist on three particular cases regarding the set Sk:

• The set Sk may be equal toMk at every step, in which case the algorithm coincides with
Algorithm 1 with the correspondence Mk = a(Yk)

20

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

• The set Sk may be the set of atoms z ∈ Mk such that ρz > 0, in which case step 6
consists in dropping all the inactive constraints.

• The set Sk may be a subset of conv(Mk) of size at most M , and such that zk ∈ cone(Sk).
For instance for M = 1, we can take Sk = { 1∑

z
ρz

∑
z ρzz}, where the sums go for z ∈Mk.

In this case, known as “subgradient aggregation” in the bundle methods literature [95, 121],
we obtain a bounded-memory algorithm.

We can also think about intermediate approaches where we do not drop every inactive constraint,
but only the ones that have been staying inactive for a given number of iterations. Such strategies
are also included in the framework of Algorithm 2.

Algorithm 2 CPA algorithm for (SIP) with limited-accuracy oracle and constraints management
Input: Oracle with parameter δ ∈ [0, 1), tolerance ϵ ∈ R+, finite set M0 ⊂M

0: Let k ← 0.
1: ν0 ←∞.
2: while νk > ϵ do
3: Compute xk an optimal solution of the relaxation

min
x∈X

F (x)
s.t. ∀z ∈Mk, x⊤z ≤ 0,

}
(Rk)

and compute zk = ∑
z∈Mk ρzz, where ρz ∈ R+ is the dual variable of x⊤z ≤ 0.

4: Call the δ-oracle to compute yk = ŷ(xk) an approximate solution of max
y∈Y

a(y)⊤xk.

5: ξk ← a(yk).
6: Mk+1 ← Sk ∪ {ξk}, where Sk is any finite subset of conv(Mk) such that zk ∈ cone(Sk)
7: νk+1 ← (ξk)⊤xk

8: k ← k + 1
9: end while

10: Return xk.

1.2.2 Dual interpretation as a Frank-Wolfe algorithm

We show that Algorithm 2, can be interpreted, from a dual perspective, as a cone-constrained
Fully Corrective Frank–Wolfe (FCFW) algorithm [148] solving the dual problem (DSIP). We
prove that, during the execution of Algorithm 2, the dual vectors zk instantiate the iterates
of an FCFW algorithm. The generic iteration k is described in Table 1.1. We also give more
details for the two first steps:

• Step 1 : At iteration k, the dual problem of (Rk) is in fact a restriction of (DSIP) on

21

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

Primal perspective:
Algorithm 2 (CPA) Link Dual perspective:

FCFW

Step 1
Solve (Rk),

store the solution xk,
and the dual vector zk

Strong
duality

Solve the dual problem
max

z∈cone(Mk)
D(z),

compute the solution zk, and
the gradient ∇D(zk) = xk

Step 2

Call the δ-oracle to solve
max
y∈Y

a(y)⊤xk ,

store the solution yk,
and set ξk = a(yk)

ξk = a(yk)
xk = ∇D(zk)

Call the δ-oracle to solve
max
y∈M

ξ⊤∇D(zk),

and store the solution ξk

Step 3 Mk+1 ← Sk ∪ {ξk} Mk+1 ← Sk ∪ {ξk}

Stopping
criterion (ξk)⊤xk ≤ ϵ xk = ∇D(zk) (ξk)⊤∇D(zk) ≤ ϵ

Table 1.1: The k-th iteration of the algorithms CPA (Algorithm 2) and FCFW

cone(Mk), which is a polyhedral subcone of K. Indeed, the following holds:

max
z∈cone(Mk)

D(z) = max
z∈cone(Mk)

min
x∈X

F (x) + x⊤z

= min
x∈X

max
z∈cone(Mk)

F (x) + x⊤z

= min
x∈X
{F (x) : ∀z ∈Mk, x⊤z ≤ 0},

which we recognize being the master problem (Rk). The absence of duality gap is, also
in this case, a direct application of Sion’s Theorem [203]. The new dual solution zk

is obtained solving this restriction of (DSIP) on cone(Mk), and the primal solution
xk = arg min

x∈X
L(x, zk) gives the gradient of the dual function in zk, i.e., ∇D(zk) = xk (see

Proposition 1.1).
• Step 2 : we notice that max

y∈Y
a(y)⊤xk = max

ξ∈M
ξ⊤xk = max

ξ∈M
ξ⊤∇D(zk), since M = a(Y),

and ∇D(zk) = xk.

We notice that the dual iterates of the algorithm satisfies an orthogonality property.

Lemma 1.1. For any k ∈ N, ∇D(zk)⊤zk = 0.

Proof. This property follows from the first order optimality condition at 1 of the differentiable
function α(t) = D(tzk). Indeed, α′(1) = (∇D(zk))⊤zk = 0, because (i) 1 is optimal for w since
zk ∈ argmax

z∈cone(Mk)
D(z), (ii) 1 lies in the interior of the definition domain of α.

22

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

1.3 Convergence rate for the cutting-plane algorithm

1.3.1 Convergence rate for the objective

We define the constant R = supz∈M∥z∥ = supz∈conv(M)∥z∥. According to Proposition 1.3,
problem (DSIP) admits an optimal solution z∗ ∈ K. We define τ = inf{t ≥ 0: z∗ ∈ t conv(M)}.
This scalar plays a central role in the convergence rate analysis of Algorithm 2, conducted in
the following theorem.

Theorem 1.1. Under Assumptions 1.1-1.3, if Algorithm 2 executes iteration k ∈ N, then

F (x∗)− F (xk) ≤ 2R2τ2

µ (1− δ)2
1

k + 2 . (1.12)

In this convergence rate, some constants are, on the one hand, characteristics of the problem
(SIP): µ is the strong convexity parameter of the objective function, R is the radius of X , and
τ is a scaling factor of a dual optimal solution. On the other hand, δ ∈ [0, 1) is not a property
of the problem (SIP) but of the separation oracle used: this is its relative accuracy.

Proof. We define the optimality gap ∆k = F (x∗)− F (xk) = val(SIP)− F (xk). We emphasize,
that at each iteration k, D(zk) = F (xk), thus ∆k is also the optimality gap in the dual
problem (DSIP): ∆k = val(DSIP)− F (xk) = D(z∗)−D(zk). We prove the inequality (1.12)
by induction. We exclude the trivial case where τ = 0 (i.e. where 0 is a dual optimal solution),
in which case Eq. (1.12) holds, since F (xk) = F (x0) = val(SIP). Therefore, we assume that
τ ∈ R++.

Base case (k = 0). Since 0 ∈ cone(M0), and since D is concave, ∆0 = D(z∗) −D(z0) ≤
D(z∗) − D(0) ≤ ∇D(0)⊤(z∗ − 0) = ∇D(0)⊤z∗. We remark that ∇D(0)⊤z∗ = (∇D(0) −
∇D(z∗))⊤z∗ since ∇D(z∗)⊤z∗ = 0 by optimality of z∗. Hence,

∆0 ≤ (∇D(0)−∇D(z∗))⊤z∗ ≤ ∥∇D(0)−∇D(z∗)∥ ∥z∗∥,

where the last inequality is the Cauchy-Schwartz inequality. Using the 1
µ -Lipschitzness of

∇D (Proposition 1.1), we know that ∥∇D(0) − ∇D(z∗)∥ ≤ 1
µ∥z

∗∥. Since z∗ ∈ τconv(M),
∆0 ≤ 1

µ∥z
∗∥2 ≤ (Rτ)2

µ ≤ (Rτ)2

(1−δ)2µ as 1− δ ∈ (0, 1].

Induction. We suppose that the algorithm runs k + 1 iterations and does not meet the
stopping condition; we assume that the property (1.12) is true for k. Since zk ∈ cone(Sk),
and Mk+1 = Sk ∪ {ξk}, we deduce that zk + γξk ∈ cone(Mk+1), for any γ ≥ 0, implying

23

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

D(zk+1) ≥ D(zk + γξk). Moreover, Proposition 1.2 yields a lower bound on the progress made
during the iteration k + 1:

D(zk+1) ≥ D(zk + γξk) ≥ D(zk) + γ ∇D(zk)⊤ξk − ∥ξ
k∥2

2µ γ2, (1.13)

for any γ ≥ 0. Multiplying by −1, adding D(z∗) to both left and right hand sides of the above
inequality, and using ∥ξk∥ ≤ R, we have that

∆k+1 ≤ ∆k − γ ∇D(zk)⊤ξk + R2

2µγ
2, (1.14)

for any γ ≥ 0. In addition, by concavity of D, ∆k = D(z∗)−D(zk) ≤ ∇D(zk)⊤(z∗ − zk). By
Lemma 1.1, we have ∇D(zk)⊤zk = 0. Thus, ∆k ≤ ∇D(zk)⊤z∗. As z∗ ∈ τ conv(M),

∆k ≤ max
z∈τconv(M)

∇D(zk)⊤z = τ max
z∈M

∇D(zk)⊤z = τϕ(xk), (1.15)

where the last equality follows from ∇D(zk) = x, and from the definition of the value function
ϕ(x) = maxy∈Y x

⊤a(y). The stopping criterion a(yk)⊤xk = (ξk)⊤xk ≤ ϵ is not met at the
end of iteration k, as iteration k + 1 is executed. Therefore, ϕ(x) ≥ a(yk)⊤xk > ϵ ≥ 0.
The property of the δ-oracle described by Eq. (4) yields ϕ(xk) − G(xk, yk) ≤ δϕ(xk), i.e.,
(1 − δ)ϕ(xk) ≤ G(xk, yk) = (xk)⊤a(yk) = ∇D(zk)⊤ξk. Therefore, as we have τ ∈ R++ (see
beginning of the proof), we deduce from Eq. (1.15) that

1− δ
τ

∆k ≤ ∇D(zk)⊤ξk. (1.16)

Combining Eqs. (1.14) and (1.16), we obtain ∆k+1 ≤ ∆k − γ 1−δ
τ ∆k + R2

2µ γ
2, for every γ ≥ 0.

Factoring and setting γ̃ = γ 1−δ
τ (for any γ̃ ≥ 0) yields

∆k+1 ≤ (1− γ̃)∆k + R2τ2

2µ(1− δ)2 γ̃
2. (1.17)

Applying Eq. (1.17) with γ̃ = 2
k+2 , and defining C = 2R2τ2

µ(1−δ)2 we obtain

∆k+1 ≤ (1− 2
k + 2)∆k + C

(k + 2)2 ≤
k

k + 2
C

k + 2 + C

(k + 2)2 ,

with the second inequality coming from the application of (1.12), which holds for k by the
induction hypothesis. Finally, we deduce that

∆k+1 ≤
C

k + 2(k

k + 2 + 1
k + 2) ≤ C

k + 2
k + 1
k + 2 ≤

C

k + 2
k + 2
k + 3 = C

k + 3 ,

where the third inequality follows from the observation that k+1
k+2 ≤

k+2
k+3 . Hence, the property

(1.12) is true for k + 1 as well. This concludes the proof.

24

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

1.3.2 Convergence rate for the feasibility error

The following theorem states that the lowest feasibility error of the iterates generated by the
algorithm CPA (with a limited-accuracy oracle) also follows a O(1

k) convergence rate.

Theorem 1.2. Under Assumptions 1.1-1.3, if Algorithm 2 executes iteration k, for k ≥ 2, then

min
0≤ℓ≤k

ϕ(xℓ) ≤ 27R2τ

4µ(1− δ)2
1

k + 2 . (1.18)

The following proof is inspired by previous work on the Frank-Wolfe algorithm [111], with
some adaptations to our dual problem (DSIP), a convex optimization problem on a cone
instead of on a compact set for the standard Frank-Wolfe algorithm. We also adapt the proof
to our framework of limited-accuracy oracle.

Proof. We keep the definition of the constant C = 2R2τ2

µ (1−δ)2 , we define the constants α = 2
3 ,

β = 27
8τ , and H = k + 2. We suppose that

ϕ(xℓ) > βC

H
,∀ℓ ∈ J0, kK, (1.19)

and we will show a contradiction. If iteration k+1 is not executed because the algorithm stopped
at iteration k, we still define zk+1 ∈ argmax

z=zk+γζk,γ≥0
D(z), and ∆k+1 = D(z∗)−D(zk+1) ≥ 0. Hence,

regardless whether the iteration k + 1 is executed or not, ∆ℓ and ∆ℓ+1 are well defined for all
ℓ ∈ J0, kK, and we can apply Eq. (1.14) to deduce ∆ℓ+1 ≤ ∆ℓ−γ∇D(zℓ)⊤ξℓ+R2

2µ γ
2, for any γ ≥ 0.

Eq. (1.19) implies that ϕ(xℓ) > 0, and from Eq. (4), we deduce that ϕ(xℓ)−G(xℓ, yℓ) ≤ δϕ(xℓ),
i.e., (1− δ)ϕ(xℓ) ≤ G(xℓ, yℓ) = (xℓ)⊤a(yℓ) = ∇D(zℓ)⊤ξℓ. Combining this with Eq. (1.19), we
deduce that ∇D(zℓ)⊤ξℓ > (1−δ)βC

H , and therefore, for any γ ≥ 0, ∆ℓ+1 < ∆ℓ−γ (1−δ)βC
H + R2

2µ γ
2.

Applying this inequality for γ = τ
2(1−δ)(ℓ+2) ≥ 0, we obtain

∆ℓ+1 < ∆ℓ−
2τβC

(ℓ+ 2)H + 2R2τ2

µ(1− δ)2
1

(ℓ+ 2)2 (1.20)

= ∆ℓ −
2τβC

(ℓ+ 2)H + C

(ℓ+ 2)2 . (1.21)

We define kmin = ⌈αH⌉ − 2, and we notice that kmin ≥ 0, since H ≥ 4. Note also that for
any ℓ ∈ Jkmin, kK, αH ≤ ℓ + 2 ≤ H. Combining this with Eq. (1.21), we know that for any
ℓ ∈ Jkmin, kK,

∆ℓ+1 < ∆ℓ −
2τβC
H2 + C

α2H2 = ∆ℓ + C

H2

(1
α2 − 2τβ

)
. (1.22)

Summing these inequalities for ℓ ∈ Jkmin, kK, we obtain

∆k+1 < ∆kmin + C(k + 1− kmin)
H2

(1
α2 − 2τβ

)
, (1.23)

25

CHAPTER 1. A CONVERGENCE RATE FOR THE CP ALGORITHM

and using the bound on the objective gap at iteration kmin given by Theorem 1.1, we have

∆k+1 <
C

kmin + 2 + C(k + 1− kmin)
H2

(1
α2 − 2τβ

)
. (1.24)

We notice that kmin + 2 ≥ αH, and k + 1 − kmin ≥ (1 − α)H. By definition of α and β,
1
α2 − 2τβ = 9

4 −
27
4 ≤ 0, and we deduce that

∆k+1 <
C

αH
+ C(1− α)

H
(1
α2 − 2τβ) = C

αH

(
1 + 1− α

α
− 2α(1− α)τβ

)
. (1.25)

Using again that α = 2
3 , we deduce that ∆k+1 <

C
αH (3

2 −
4
9τβ). Since β = 27

8τ , (3
2 −

4
9τβ) = 0.

Hence, we obtain ∆k+1 < 0, which contradicts the definition of ∆k+1. Therefore, the assumption
at Eq. (1.19) cannot hold, and there exists ℓ ∈ J0, kK such that ϕ(xℓ) ≤ βC

H = 27R2τ
4µ(1−δ)2

1
k+2 .

1.4 Conclusion

The cutting-plane algorithm is very standard in convex optimization, but its performance may
be pretty poor in some cases. Nevertheless, this chapter highlights a particular case where its
performance is guaranteed since the objective error and the feasibility error decrease in O(1/k).
This particular case is the following: the semi-infinite problem is convex with respect to x

with linear semi-infinite constraints, the objective function is strongly convex, and a strictly
feasible point exists. We specify that there is no assumption of convexity or of a particular
structure beyond continuity concerning the semi-infinite constraint parameter y. Note also that
the convergence rate is guaranteed even if the separation oracle has limited relative accuracy.

It could be interesting to pursue this line of research by relaxing some of the assumptions
we make here. For example, one could relax the convexity assumption with respect to x by
assuming that some variables xi for i ∈ I ⊂ J1, nK are subject to integrity constraints: this
would give an extension to mixed-integer convex semi-infinite programming. We conjecture
that an O(1/k) asymptotic convergence rate could be obtained using similar reasoning for fixed
values of the integer variables. It is likely that the number of different possible (optimal) values
for (xi)i∈I , a number that is potentially exponential with the size of the problem, would appear
in one such convergence rate. Another extension would be to remain in continuous variables
but to relax the strong convexity assumption for the objective and look for lighter assumptions
that allow us to preserve the smoothness of the dual function, which plays a central role in our
analysis.

26

C
h

a
p

t
e

r 2
Inner-outer approximation algorithm for
a class of convex semi-infinite programs

Semi-infinite programming is challenging from a numerical optimization perspective since
feasibility requires the satisfaction of an infinite number of constraints. In Chapter 1,
we presented and analyzed the cutting-plane algorithm (CPA) for convex semi-infinite

programming. Although this algorithm presents interesting properties, such as a guaranteed
convergence rate if the objective function is strongly convex, it suffers a significant drawback:
until the algorithm converges, the generated iterates are not feasible, i.e., they do not satisfy all
the constraints. Feasibility in the semi-infinite program is obtained only asymptotically. This
may be problematic in the case of an early termination of the algorithm: if we stop after few
iterations, the infeasibility of the iterate may be large. To overcome this limitation and compute
fast feasible solutions, the present chapter introduces a finite reformulation and an IOA for
the problem (SIP). This chapter addresses the case where the lower-level problem is a QCQP
problem, potentially nonconvex, as described by the following assumption.

Assumptions 2.1. The parameterization of the semi-infinite constraints satisfies the following:

• There exist linear mappings x 7→ Q(x) ∈ Sn, x 7→ q(x) ∈ Rn and x 7→ b(x) ∈ R such that

G(x, y) = −1
2y

⊤Q(x)y + q(x)⊤y + b(x).

• There exist Q1, . . . , Qr ∈ Sn, q1, . . . , qr ∈ Rn and b1, . . . , br ∈ R such that

Y =
{
y ∈ Rn : ∀j ∈ J1, rK, 1

2y
⊤Qjy + (qj)⊤y + bj ≤ 0

}
.

We also assume to know ρ ≥ 0 such that Y ⊂ B(0, ρ).

27

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Note that the above assumption implies that Assumption 1.1 is satisfied, which guarantees
that the semi-infinite problem (SIP) is convex with respect to the decision vector x. Therefore,
this chapter addresses a certain class of convex semi-infinite programs with lower-level problems
that are (potentially nonconvex) QCQP.

Related works

We present here state-of-the-art methods for efficiently computing feasible solutions of semi-
infinite programs. We distinguish several families of methods for this purpose.

Some adaptive discretization methods are designed to find feasible points before the final
convergence of the algorithm, unlike the standard CPA [32, 118]. One can think of the algorithm
of Mitsos [162, 163], that discretizes the constraints and leverages the right-hand-side term
to obtain a feasible solution: instead of imposing G(x, y) ≤ 0 for all y ∈ Yk (where Yk is
a finite subset of Y), the constraints G(x, y) ≤ −ϵg are imposed for ϵg ∈ R++; the value of
ϵg is progressively decreased each time a feasible solution of the semi-infinite programs is
found. The algorithm by Tsoukalas and Rustem [219] is centered around the auxiliary problem
minx∈X {F (x) − F̂ ,maxy∈Yk G(x, y)}}, where F̂ is a target value for the objective function,
which is updated following a binary search. In [67], Djelassi and Mitsos propose hybridizing
both algorithms.

Another approach, applicable to bilevel programming in general, is called the KKT approach
and consists in replacing the lower-level problem by its KKT conditions to obtain a finite
formulation [3]. If the lower-level problem is convex and satisfies some constraint qualification
properties, the resulting finite formulation is an equivalent reformulation; if not, this is a
relaxation. The main drawback of this approach is to result in a nonconvex formulation, even if
the original semi-infinite program is convex.

Another family of methods called “overestimation methods”, replaces the lower-level value
function ϕ(x) = maxy∈Y G(x, y) by an overestimation, to obtain a finite restriction of the
original semi-infinite program, and, therefore, a feasible point. On the one hand, convexification
methods adaptively construct convex relaxations of the lower-level problem, replace the relaxed
lower-level problem equivalently by its KKT conditions, and solve the resulting problem with
complementarity constraints [75, 206], which is a restriction of the original problem. Once
again, the resulting problem to solve is nonconvex, therefore, numerically challenging. On
the other hand, in special cases, some approaches dualize the lower-level problem. In linear
robust optimization, the lower-level problem is dualized to obtain a finite LP formulation that
is equivalent to the robust LP [19]. In robust polynomial optimization and polynomial min-
max games [134], the polynomial programming lower-level problem is replaced by a moment
relaxation, which is, then, dualized into a SoS problem. This way, a finite formulation is
obtained that is a restriction of the original problem: convergence is proven in terms of value
and solution when the degree of the moment SoS relaxation increases, i.e., at the price of

28

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

increasing size. In [65], several strategies are used to reformulate generalized semi-infinite
programs into finite nonconvex minimization problems by exploiting Wolfe duality for the
convex lower-level problems. In [143], the authors tackle generalized semi-infinite problems
where the convex quadratic lower-level problem has a fixed Hessian matrix Q, which does not
depend on the variable x. Instead, in this chapter, we consider standard semi-infinite programs
with a linear function Q(x) for the lower-level Hessian (as stated in Assumption 2.1). Back to
[143], the authors use the Lagrangian dual of the lower level to obtain a nonconvex restriction
with a finite number of variables and constraints.

Contributions and organization of the chapter

First, we obtain a tractable restriction with a finite number of constraints by dualizing, using
Lagrangian and SDP duality, the lower-level problem maxy∈Y G(x, y). If G(x, y) is concave
in y, the obtained formulation is not a restriction but an exact reformulation of (SIP). The
dualization technique has been used in the semi-infinite programming literature [65, 143], but,
contrary to these approaches, the finite restriction we obtain with this approach is convex.
Second, we present a priori and a posteriori conditions for this restriction to have the same
value as the semi-infinite program (SIP). Even if these conditions are not met, we still have
convergence guarantees. Indeed, we introduce the algorithm IOA, which is a hybrid algorithm
mixing adaptative discretization and overestimation techniques. It progressively enlarges the
restriction set to generate a sequence of feasible points, the values of which converge to the value
of (SIP). This algorithm converges even with a separation oracle of limited relative accuracy δ.

We start by introducing the SDP relaxation of the lower-level problem (or a SDP refor-
mulation if the latter is convex), and its strong SDP dual in Section 2.1. In Section 2.2, we
present the finite formulation (SIPR), obtained by replacing the lower-level problem with its
dual. This formulation is a reformulation of (SIP) if Q1, . . . , Qr are PSD and Q(x) is PSD for
any x ∈ X . Otherwise, an a posteriori sufficient condition on a computed solution x̄ of (SIPR)
introduced in Section 2.2.2 can be verified. If x̄ satisfies such a condition, one can state that
it is an optimal solution of (SIP). If not, the Inner-Outer Approximation (IOA) algorithm
introduced in Section 2.3, generates a sequence of converging feasible solutions of (SIPR).
Section 2.4 introduces numerical experiments, including a comparison with CPA (Algorithm 2),
with Mitsos’ algorithm [162], and with the KKT-approach [3].

2.1 Semidefinite relaxation of the lower-level problem

In this section, we reason for any fixed value of the decision vector x ∈ X . The corresponding
lower-level problem maxy∈Y G(x, y) is the following QCQP problem

max
y∈Rn

−1
2y

⊤Q(x)y + q(x)⊤y + b(x)

s.t. ∀j ∈ J1, rK, 1
2y

⊤Qjy + (qj)⊤y + bj ≤ 0.

 (Px)

29

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Note that this problem is potentially nonconvex. We introduce now the SDP relaxation of
the QCQP problem (Px), and its Lagrangian dual problem.

2.1.1 Primal SDP relaxation of the lower-level problem

We define the linear matrix operator Q(x) = 1
2

(
−Q(x) q(x)
q(x)⊤ 2b(x)

)
∈ Sn+1, and the matrices

Qj = 1
2

(
Qj qj

(qj)⊤ 2bj

)
∈ Sn+1, for j ∈ J1, rK, the identity matrix In+1 ∈ Sn+1, as well as

E ∈ Sn+1 defined as the matrix of the canonical basis associated with the indices (n+ 1, n+ 1).
With this notation, we introduce the SDP problem

max
Y ∈Sn+1

⟨Q(x), Y ⟩

s.t. ∀j ∈ J1, rK, ⟨Qj , Y ⟩ ≤ 0
⟨In+1, Y ⟩ ≤ 1 + ρ2

⟨E, Y ⟩ = 1
Y ⪰ 0.


(SDPx)

As proven in Lemma 2.1, this problem is a relaxation of (Px). If the latter problem is convex,
Lemma 2.1 states that (SDPx) has the same optimal objective value.

Lemma 2.1. Under Assumption 2.1, val(SDPx) ≥ val(Px). If, moreover, Q(x), Q1, . . . , Qr

are PSD, then val(SDPx) = val(Px).

Proof. First, we underline that due to Assumption 2.1, the constraint ∥y∥2 + 1 ≤ 1 + ρ2 is
redundant in the problem (Px), therefore, adding it does not change the value of this problem.
Consequently, we recognize that (SDPx) is the standard SDP relaxation of the problem (Px)
augmented with this redundant constraint, this is why val(SDPx) ≥ val(Px).
Second, we assume now that Q(x), Q1, . . . , Qr are PSD. Given a matrix Y feasible for (SDPx),
we denote by u1, . . . , un+1 ∈ Rn+1 a basis of eigenvectors of Y (which is PSD) and their
respective eigenvalues v1, . . . , vn+1 ∈ R+. Let us introduce the two following index sets: I = {i ∈
J1, n+ 1K : (ui)n+1 ̸= 0} and J = {i ∈ J1, n+ 1K : (ui)n+1 = 0}, which gives I ∪ J = J1, n+ 1K.
Moreover,

• if i ∈ I : we define the nonnegative scalar µi = vi (ui)2
n+1 and yi ∈ Rn such that

ui = (ui)n+1

(
yi

1

)

• if i ∈ J : we define the nonnegative scalar νi = vi and zi ∈ Rn such that ui =
(
zi

0

)
.

With this notation, we have that Y =
n+1∑
i=1

viuiu
⊤
i = ∑

i∈I
µi

(
yiy

⊤
i yi

y⊤
i 1

)
+ ∑
i∈J

νi

(
ziz

⊤
i 0

0⊤ 0

)
, where

0 is the null n-dimensional vector. Let us define the vector ȳ = ∑
i∈I

µiyi. Its objective value in

30

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

(Px) is larger than the objective value of Y in (SDPx), since

⟨Q(x), Y ⟩ =
∑
i∈I

µiG(x, yi)−
1
2
∑
i∈J

νiz
⊤
i Q(x)zi (2.1)

≤
∑
i∈I

µiG(x, yi) (2.2)

≤ G(x,
∑
i∈I

µiyi) = G(x, ȳ). (2.3)

The first inequality is due to Q(x) ⪰ 0 and νi ≥ 0. The second inequality derives from∑
i∈I µi = Yn+1,n+1 = 1, and from the concavity of the function G(x, .) (Jensen inequality).

Similarly, knowing that Qj is PSD and that Y is feasible in (SDPx), we can show that
1
2 ȳ

⊤Qj ȳ + (qj)⊤ȳ + bj ≤ ⟨Qj , Y ⟩ ≤ 0, which means that ȳ is feasible in (Px). This implies
that ⟨Q(x), Y ⟩ ≤ G(x, ȳ) ≤ val(Px). This being true for any matrix Y feasible in (SDPx), we
conclude that val(SDPx) ≥ val(Px), hence, val(SDPx) = val(Px).

2.1.2 Dual SDP problem

The following SDP problem

min
λ,α,β

α(1 + ρ2) + β

s.t.
r∑
j=1

λjQj + αIn+1 + βE ⪰ Q(x)

λ ∈ Rr+, α ∈ R+, β ∈ R,

 (DSDPx)

is the dual of the problem (SDPx), as the following lemma states.

Lemma 2.2. Formulations (SDPx) and (DSDPx) are a primal-dual pair of SDP problems
and strong duality holds, thus val(SDPx) = val(DSDPx).

Proof. The Lagrangian of problem (SDPx) is defined over Y ∈ S+
n+1, λ ∈ Rr+, α ∈ R+, β ∈ R

and reads

Lx(Y, λ, α, β) = ⟨Q(x), Y ⟩ −
r∑
j=1

λj⟨Qj , Y ⟩+ α(1 + ρ2 − ⟨In+1, Y ⟩) + β(1− ⟨E, Y ⟩) (2.4)

= α(1 + ρ2) + β + ⟨Q(x)−
r∑
j=1

λjQj − αIn+1 − βE, Y ⟩. (2.5)

The Lagrangian dual problem of (SDPx) is inf
λ,α,β

sup
Y
Lx(Y, λ, α, β) and can be written as

inf
λ∈Rr

+
α∈R+
β∈R

(
α(1 + ρ2) + β + sup

Y ∈S+
n+1

⟨Q(x)−
r∑
j=1

λjQj − αIn+1 − βE, Y ⟩
)
. (2.6)

We recognize that the supremum equals to +∞, unless
r∑
j=1

λjQj +αIn+1 +βE ⪰ Q(x), in which

case it is zero. This proves that the dual problem of (SDPx) can be formulated as (DSDPx). To

31

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

prove that val(SDPx) = val(DSDPx), we prove that the Slater condition, which is a sufficient
condition for strong duality [223], holds for the dual problem (DSDPx). We denote by mx the
maximum eigenvalue of Q(x), and we notice that (λ, α, β) = (0, . . . , 0,max{1 +mx, 0}, 0) is a
strictly feasible point of (DSDPx). Hence, the Slater condition holds.

2.2 Finite restriction of the semi-infinite program

2.2.1 Finite restriction based on lower-level duality

Leveraging on Section 2.1, which focus on the lower-level problem (Px), its SDP relaxation
(SDPx) and the respective dual problem (DSDPx), we propose a finite restriction of problem
(SIP). It is a reformulation of (SIP) if Q1, . . . , Qr are PSD, and Q(x) is PSD for any x ∈ X .

Theorem 2.1. Under Assumption 2.1, the finite formulation

min
x,λ,α,β

F (x)

s.t. α(1 + ρ2) + β ≤ 0
r∑

j=1
λjQj + αIn+1 + βE −Q(x) ⪰ 0

x ∈ X , λ ∈ Rr
+, α ∈ R+, β ∈ R,


(SIPR)

is a restriction of problem (SIP). If Q1, . . . , Qr are PSD, and if Q(x) is PSD for any x ∈ X ,
then the finite formulation (SIPR) is an exact reformulation of (SIP).

Proof. Let Feas(SIP) and Feas(SIPR) be the feasible sets of (SIP) and (SIPR), respectively.
Since (SIP) and (SIPR) share the same objective function, proving for any x ∈ X the
implication(

∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(SIPR)
)

=⇒ x ∈ Feas(SIP), (2.7)

will prove the first part of the theorem. For any x ∈ X , we have:

val(SDPx) ≤ 0 =⇒ val(Px) ≤ 0 ⇐⇒ x ∈ Feas(SIP), (2.8)

where the implication stems from Lemma 2.1, which stipulates that val(Px) ≤ val(SDPx).
Applying the strong duality lemma, Lemma 2.2, we obtain that for any x ∈ X ,

val(SDPx) ≤ 0 ⇐⇒ val(SDPx) ≤ 0 (2.9)

⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R :


α(1 + ρ2) + β ≤ 0
r∑
j=1

λjQj + αIn+1 + βE −Q(x) ⪰ 0 (2.10)

⇐⇒ ∃ λ ∈ Rr+, α ∈ R+, β ∈ R, (x, λ, α, β) ∈ Feas(SIPR). (2.11)

The equivalence (2.11), together with implication (2.8), proves the implication (2.7).
If Q1, . . . , Qr are PSD, and, if Q(x) is PSD for any x ∈ X , we can replace the implication (2.8)

32

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

by the equivalence val(SDPx) ≤ 0 ⇐⇒ val(Px) ≤ 0 ⇐⇒ x ∈ Feas(SIP). This, together with
equivalence (2.11), proves that

∃ λ ∈ Rr+, α ∈ R+, β ∈ R : (x, λ, α, β) ∈ Feas(SIPR) ⇐⇒ x ∈ Feas(SIP),

meaning that (SIPR) is a reformulation of (SIP), having the same objective function.

Note that under Assumptions 1.1 and 2.1, the single-level and finite formulation (SIPR) is
convex.

2.2.2 Optimality of the restriction: an a posteriori sufficient condition

Theorem 2.1 states that the finite formulation (SIPR) is an exact reformulation of the problem
(SIP), if Q1, . . . Qr are PSD, and Q(x) is PSD for all x ∈ X . Even if this a priori condition is
not satisfied for all x ∈ X , an a posteriori condition on the computed optimal solution x̄ of
(SIPR) enables us to state if x̄ is an optimal solution of (SIP).

Theorem 2.2. We consider that Assumptions 1.1 and 2.1 hold, and that Q1, . . . , Qr are PSD.
Let x̄ be an optimal solution of the formulation (SIPR). If Q(x̄) ≻ 0, then x̄ is optimal in
(SIP).

Proof. Given a closed convex set S, according to Def. 5.1.1 in [106, Chapter III], the tangent
cone to S at x (denoted by TS(x)) is the set of directions u ∈ Rm such that there exist a
sequence (xk)k∈N in S, and a positive sequence (tk)k∈N such that tk → 0 and xk−x

tk
→ u.

Moreover, according to Def. 5.2.4 in [106, Chapter III], the normal cone NS(x) to S at x is the
polar cone of the tangent cone TS(x), i.e., NS(x) = TS(x)◦. We define the closed convex set C
(resp. Ĉ) as the feasible set of formulation (SIP) (resp. (SIPR)).

Since Q(x̄) ≻ 0, being the set of positive definite matrices open and Q(x) continuous,
there exists r ∈ R++ such that, for all x in the open ball of radius r with center x̄ (denoted
by B(x̄, r)), Q(x) ⪰ 0. According to Lemma 2.1, this means that, for all x in X ∩ B(x̄, r),
val(Px) = val(SDPx). Hence, we deduce that, for any x ∈ X ∩B(x̄, r), x is feasible in (SIP)
if and only if x is feasible in (SIPR). In other words, C ∩ B(x̄, r) = Ĉ ∩ B(x̄, r). According
to the aforementioned definition of the tangent and normal cones, we further deduce that
TC(x̄) = TĈ(x̄), and NC(x̄) = TC(x̄)◦ = TĈ(x̄)◦ = NĈ(x̄).

We know that x̄ is optimal in (SIPR), i.e., x̄ ∈ arg minx∈Ĉ F (x). Since F is a finite-valued
convex function, and Ĉ is a closed and convex set, the assumptions of Theorem 1.1.1 in
[106, Chapter VII] hold, and we can deduce that 0 ∈ ∂F (x̄) + NĈ(x̄). Using the equality
NC(x̄) = NĈ(x̄), we have that 0 ∈ ∂F (x̄) +NC(x̄) too. Applying the same theorem with the
closed and convex set C, we know that 0 ∈ ∂F (x̄) + NC(x̄) implies that x̄ ∈ arg min

x∈C
F (x),

meaning that x̄ is optimal in (SIP).

33

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

2.3 Inner-outer approximation algorithm

If neither the lower-level problem is convex, nor the sufficient optimality condition in Theorem 2.2
is satisfied, we do not directly obtain an optimal solution of problem (SIP) by solving the finite
formulation (SIPR). To address this issue, we design an algorithm based on the lower-level
dualization approach and on a separation oracle, that allows us to construct a minimizing
sequence of feasible solutions of problem (SIP).

2.3.1 Using the separation oracle to improve the lower-level dualization

The existence of a duality gap for the lower-level problem at x̄, a solution of the finite
reformulation (SIPR), is an obstacle to prove the optimality of x̄ in the original problem (SIP).
Using the output of the separation oracle at some points can nevertheless help providing a
tighter relaxation and, therefore dualization of the lower-level problem. For k ∈ N∗, we consider
two finite sequences x1, . . . , xk−1 ∈ X , and v1, . . . , vk−1 ∈ R such that vℓ is an upper bound on
val(Pxℓ), given by a δ-oracle. Since, for all ℓ ∈ J1, k − 1K, the inequality

−1
2y

⊤Q(xℓ)y + q(xℓ)⊤y + b(xℓ) ≤ vℓ, (2.12)

i.e., ⟨Q(xℓ), Y ⟩ ≤ vℓ holds for any y ∈ Y, the following SDP problem is still a relaxation of
(Px), for any x ∈ X :

max
Y ∈Sn+1

⟨Q(x), Y ⟩

s.t. ∀j ∈ J1, rK, ⟨Qj , Y ⟩ ≤ 0
∀ℓ ∈ J1, k − 1K, ⟨Q(xℓ), Y ⟩ ≤ vℓ
⟨In+1, Y ⟩ ≤ 1 + ρ2

⟨E, Y ⟩ = 1
Y ⪰ 0.


(SDPk

x)

We recall that the value of (Px) is ϕ(x) = maxy∈Y G(x, y). We also denote by ϕSDP(x) the
value of (SDPx), and by ϕkSDP(x) the value of (SDPk

x). Note that this latter function implicitly
depends on the sequences (xℓ)1≤ℓ≤k and (vℓ)1≤ℓ≤k. Being ζℓ the Lagrangian multiplier associated
to the constraint ⟨Q(xℓ), Y ⟩ ≤ vℓ, the strong SDP dual of problem (SDPk

x) is

min
λ,α,β,ζ

α(1 + ρ2) + β +∑k−1
ℓ=1 ζℓvℓ

s.t.
r∑
j=1

λjQj +∑k−1
ℓ=1 ζℓQ(xℓ) + αIn+1 + βE ⪰ Q(x)

λ ∈ Rr+, α ∈ R+, β ∈ R, ζ ∈ Rk−1
+ .

 (DSDPk
x)

34

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Hence, for any x̂ ∈ X , ϕkSDP(x̂) ≤ 0 holds if and only if x̂ ∈ Rk, where Rk is defined as

Rk =
{
x̂ ∈ Rm : ∃(λ, α, ζ) ∈ Rr+k+ , ∃β ∈ R,

(
α(1 + ρ2) + β +

k−1∑
ℓ=1

ζℓvℓ ≤ 0
)

∧

 r∑
j=1

λjQj +
k−1∑
ℓ=1

ζℓQ(xℓ) + αIn+1 + βE ⪰ Q(x̂)

 .
Proposition 2.1. Under Assumption 2.1, for any two finite sequences x1, . . . , xk−1 ∈ X , and
v1, . . . , vk−1 ∈ R such that vℓ ≥ ϕ(xℓ), the resulting set X ∩Rk is included in the feasible set of
(SIP).

Proof. We can apply Theorem 2.1 to the lower-level problem modified with the additional
valid cuts defined by Eq. (2.12), which do not change ϕ(x) the value of the nonconvex lower-
level problem, and, therefore, do not change the feasible set of the problem (SIP). The term
α(1 + ρ2) + β ≤ 0 becomes α(1 + ρ2) + β + ∑k−1

ℓ=1 ζℓvℓ ≤ 0 due to the apparition of a the
right-hand side constants vℓ in the quadratic inequalities. We deduce that X ∩Rk is a restriction
of the feasible set of the problem (SIP).

2.3.2 Description of the algorithm

We now present the algorithm IOA (see Algorithm 3). It starts by solving the restriction
(SIPR) and checks whether the condition presented in Theorem 2.2 is satisfied or not. If so, the
algorithm stops returning the solution which is optimal for both (SIPR) and (SIP). Otherwise,
it performs a sequence of iterations, until the stopping criteria are satisfied, i.e., G(xk, yk) ≤ ϵ1
and ∥xk − x̂k∥ ≤ ϵ2. At each iteration the convex optimization problem (2.13) is solved. This
problem is a coupling between the minimization of F (x) on a relaxed set and the minimization
of F (x̂) on a restricted set. Indeed, x belongs to an outer-approximation (relaxation), whereas
x̂ belongs to an inner-approximation (restriction) of (SIP) feasible set (see Figure 2.1). The
minimization of F over these two sets is coupled by a proximal term that penalizes the distance
between x and x̂. After solving the master problem (2.13), the lower-level problem (Px) is
solved for x = xk. The solution of this problem is used to restrict the outer-approximation, and
to enlarge the inner-approximation.

35

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Feasible set of (SIP)
Outer-approximation
(G(x, y) ≤ 0 for y ∈ Yk)

Inner-approximation Rk

Figure 2.1: Inner- and outer-approximations of the feasible set, in x-space

Algorithm 3 Inner-outer approximation algorithm (IOA) for (SIP)
Input: Oracle with parameter δ ∈ [0, 1), tolerances (ϵ1, ϵ2) ∈ R2

+, bounds µ, µ ∈ R++

0: Solve the restriction (SIPR), to obtain a solution x̂0.
1: if Q(x̂0) ≻ 0 and Q1, . . . , Qr ⪰ 0 then
2: Return x̂0.
3: end if
4: k ← 0, Y0 ← ∅, (ν0

1 , ν
0
2)← (∞,∞).

5: while νk1 > ϵ1 or νk2 > ϵ2 do
6: Choose µk ∈ [µ, µ], and compute (xk, x̂k) an optimal solution of the problem

min
x,x̂∈X

F (x) + F (x̂) + µk
2 ∥x− x̂∥

2

s.t. ∀y ∈ Yk, G(x, y) ≤ 0
x̂ ∈ Rk.

 (2.13)

7: Call the δ-oracle to compute an approximate solution yk ∈ Y = ŷ(xk), and an upper
bound vk = v̂(xk) on ϕ(xk) = maxy∈Y G(xk, y).

8: Based on xk and vk, update the set Rk in Rk+1.
9: Yk+1 ← Yk ∪ {yk}

10: (νk+1
1 , νk+1

2)← (G(xk, yk), ∥xk − x̂k∥)
11: k ← k + 1
12: end while
13: Return (xk, x̂k).

2.3.3 Convergence of the algorithm

Before proving the termination and the convergence of Algorithm 3, we introduce a technical
lemma.

Lemma 2.3. Under Assumptions 1.1 and 2.1, let us denote by x∗ an optimal solution of
(SIP). If Algorithm 3 runs iteration k, F (xk) ≤ F (x∗) + µk(xk − x̂k)⊤(x∗ − xk).

36

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Proof. We analyze the variation of the objective function with respect to the decision vector
x. Since x∗ ∈ X is a feasible value for x in the problem (2.13), the direction (h, 0) for
h = x∗ − xk is admissible at (xk, x̂k) in the convex problem (2.13). As F (x) is convex over Rn,
the directional derivative F ′(xk, h) = lim

t→0+

F (xk+th)−F (xk)
t is well-defined. By optimality of xk,

the directional derivative of the function F (x)+ µk
2 ∥x−x̂

k∥2 in the direction h is nonnegative, i.e.,
F ′(xk, h)+µk(xk−x̂k)⊤h ≥ 0. By convexity of F (x), we also have that F (x∗)−F (xk) ≥ F ′(xk, h).
Combining this with the previous inequality yields F (xk) ≤ F (x∗) +µk(xk− x̂k)⊤(x∗−xk).

Before proving Theorem 2.4, we assume in the following that F is Lipschitz continuous, and
that the Slater condition holds for the restriction (SIPR). Yet, we do not require to compute
the corresponding Slater point to run Algorithm 3.

Assumptions 2.2. The function F is CF -Lipschitz, and there exists xS ∈ X such that
ΦSDP(xS) < 0.

Theorem 2.3 studies the termination of the algorithm. It states the asymptotic convergence
in the case where the algorithm does not terminate finitely. On the contrary, Theorem 2.4
studies the suboptimality of the returned solution in the case of a finite termination.

Theorem 2.3. We consider the setting of Assumptions 1.1, 2.1, and 2.2. If ϵ1, ϵ2 ∈ R++,
then Algorithm 3 stops after a finite number of iterations. On the contrary, if Algorithm 3
generates an infinite number of iterations, then (x̂k) is a sequence of feasible solutions such that
F (x̂k)→ val(SIP).

Proof. We reason by contrapositive: we suppose that Algorithm 3 does not stop, i.e., generates
infinite sequences (xk)k∈N∗ and (x̂k)k∈N∗ , and we show that ϵ1 = 0 or ϵ2 = 0. Thanks to
Lemma 0.1, we claim that

ϕ(xk)+ → 0. (2.14)

We prove, then, that ϕkSDP(xk)+ → 0. Since ϕkSDP(xk)+ is bounded, there exists at least one
accumulation value ℓ for this sequence. We show that, necessarily, ℓ = 0. We take ψ : N→ N,
such that ϕψ(k)

SDP(xψ(k))+ → ℓ. Up to the extraction of a subsequence, we can assume, by
compactness of X , that xψ(k) → x ∈ X . For k ∈ N, we define j = ψ(k) and ℓ = ψ(k − 1).

ϕjSDP(xj) =ϕjSDP(xℓ) + ϕjSDP(xj)− ϕjSDP(xℓ) (2.15)

≤ vℓ + ϕjSDP(xj)− ϕjSDP(xℓ), (2.16)

as the constraint ⟨Q(xℓ), Y ⟩ ≤ vℓ is enforced in the problem (SDPjx), since ℓ ≤ j − 1. We also
introduce Ỹ , the solution of (SDPjx) at x = xℓ so that, ⟨Q(xℓ), Ỹ ⟩ = ϕjSDP(xℓ); we also have
that ⟨Q(xj), Ỹ ⟩ ≤ ϕjSDP(xj), since Ỹ is feasible in (SDPjx) at x = xj . Therefore, by linearity
of Q, and due to the Cauchy-Schwartz inequality, ϕjSDP(xj) − ϕjSDP(xℓ) ≤ ⟨Q(xj − xℓ), Ỹ ⟩ ≤

37

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

∥Q(xj − xℓ)∥F B where B = maxY ∈Feas(SDPx)∥Y ∥F , which is independent from j, ℓ. Indeed, Ỹ
is feasible in (SDPx). We also define ∥Q∥op, the operator norm of x 7→ Q(x), and we obtain
that ϕjSDP(xj)−ϕjSDP(xℓ) ≤ ∥xj −xℓ∥ ∥Q∥opB. We combine this with Eq. (2.16), using the fact
that the positive part is nondecreasing, to obtain

ϕjSDP(xj)+ ≤ v+
ℓ + ∥xj − xℓ∥ ∥Q∥op B (2.17)

≤ ϕ(xℓ)+(1 + δ) + ∥xj − xℓ∥ ∥Q∥op B, (2.18)

the second inequality coming from the property of the δ-oracle given by Eq. (4). Using the
definition of ℓ and j, we obtain

0 ≤ ϕψ(k)
SDP (xψ(k))+ ≤ ϕ(xψ(k−1))+(1 + δ) + ∥xψ(k) − xψ(k−1)∥ ∥Q∥op B. (2.19)

Using the fact that ϕ(xk)+ → 0 (see Eq. (2.14)), and that xψ(k) is converging, we deduce by
taking the limit that ℓ = 0. We conclude that ϕkSDP(xk)+ → 0.

Using Assumption 2.2, we introduce a Slater point xS ∈ X such that ϕSDP(xS) = −c, for
c ∈ R++. We also introduce ωk = ϕkSDP(xk)+/(c+ ϕkSDP(xk)+). We notice that ωk → 0, since
ϕkSDP(xk)+ → 0. We define the convex combination x̄k = (1 − ωk)xk + ωkx

S . We emphasize
that (x̄k, x̄k) is feasible in problem (2.13) at iteration k since X is convex, and

• x̄k satisfies the constraints on x, because both xk and xS satisfy the convex constraints
G(x, y) ≤ 0 for y ∈ Yk: by convex combination, so does x̄k. We remind that the convexity
of the constraint G(x, y) ≤ 0 for each y follows from Assumption 1.1.

• x̄k satisfies the constraints on x̂; indeed ϕkSDP(xk) ≤ 0, and ϕkSDP(xS) ≤ ϕSDP(xS) ≤ 0; by
convexity of ϕkSDP(xk) (as a max. of linear functions), ϕkSDP(x̄k) ≤ 0, i.e., x̄k ∈ Rk.

Since the objective value of (x̄k, x̄k) in the problem (2.13) is 2F (x̄k), by optimality of (xk, x̂k):
F (xk) + F (x̂k) + µk

2 ∥x
k − x̂k∥2 ≤ 2F ((1− ωk)xk + ωkx

S), which means by convexity of F

F (xk) + F (x̂k) + µk
2 ∥x

k − x̂k∥2 ≤ 2(1− ωk)F (xk) + 2ωkF (xS). (2.20)

We also notice that (x̂k, x̂k) is feasible in the problem (2.13) at iteration k, thus F (xk)+F (x̂k)+
µk
2 ∥x

k − x̂k∥2 ≤ 2F (x̂k), which means

F (xk) + µk
2 ∥x

k − x̂k∥2 ≤ F (x̂k). (2.21)

Summing Eq. (2.20) with Eq. (2.21), we obtain that 2F (xk) +µk∥xk− x̂k∥2 ≤ 2(1−ωk)F (xk) +
2ωkF (xS), and thus µk∥xk − x̂k∥2 ≤ 2ωk

(
F (xS)− F (xk)

)
. Using that 0 < µ ≤ µk,

∥xk − x̂k∥ ≤
√
µ−1(2ωk (F (xS)− F (xk))) (2.22)

holds. Since ωk → 0, and F (xS)− F (xk) is bounded, we deduce from Eq. (2.22) that

∥xk − x̂k∥ → 0. (2.23)

38

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

As the stopping criterion is not met, this means that for all k ∈ N, G(xk, yk) > ϵ1 (and
therefore G(xk, yk)+ > ϵ1), or ∥xk − x̂k∥ > ϵ2. As G(xk, yk)+ ≤ ϕ(xk)+ → 0 (see Eq. (2.14))
and ∥xk − x̂k∥ → 0, this means that at least one number among ϵ1 and ϵ2 is zero.

As x̂k ∈ Rk, it is feasible in (SIP), as stated in Prop 2.1. Therefore, and as F is CF -
Lipschitz, we have F (x∗) ≤ F (x̂k) ≤ F (xk) + J∥xk − x̂k∥. According to Lemma 2.3, we know
that F (xk) ≤ F (x∗) +µk(xk − x̂k)⊤(x∗− xk), which implies, according to the Cauchy-Schwartz
inequality, that F (x∗) ≤ F (x̂k) ≤ F (x∗)+µk∥xk−x̂k∥∥x∗−xk∥+CF ∥xk−x̂k∥. Since ∥x∗−xk∥ is
bounded, we deduce from Eq. (2.23) that F (x∗)+µk∥xk− x̂k∥∥x∗−xk∥+CF ∥xk− x̂k∥ → F (x∗),
and thus, F (x̂k)→ F (x∗) = val(SIP).

Theorem 2.4. Under Assumptions 1.1, 2.1, and 2.2, if Algorithm 3 terminates after iteration
K, it returns an iterate x̂K ∈ X feasible in (SIP), and such that F (x̂K) ≤ val(SIP) +
ϵ2(µKdiam(X) + CF).

Proof. Due to Proposition 2.1, we know that x̂K is feasible in (SIP). From Lemma 2.3, and
from Cauchy-Schwartz inequality, we know that F (xK) ≤ F (x∗) + µk(xK − x̂K)⊤(x∗ − xK) ≤
F (x∗) + µk∥xK − x̂K∥ ∥x∗ − xK∥. Using also that F is CF -Lipschitz, we obtain F (x̂K) ≤
F (x∗) +µK∥xK − x̂K∥ ∥x∗−xK∥+CF ∥xK − x̂K∥. Finally, we notice that ∥xK − x̂K∥ ≤ ϵ2 and
∥x∗ − xK∥ ≤ diam(X) to conclude.

2.4 Applications and numerical experiments

In this section, we present two problems that fit in the setting of formulation (SIP), and the
corresponding numerical experiments.

2.4.1 Constrained quadratic regression

We consider a quadratic statistical model with Gaussian noise linking a vector w ∈ Rn of
explanatory variables, i.e., the features vector, and an output z ∈ R as follows:

z = 1
2w

⊤Q̄w + q̄⊤w + b̄+ ϵ, where Q̄ ∈ Sn, q̄ ∈ Rn, b̄ ∈ R and ϵ ∼ N (0, σ2).

Let us suppose that the parameters of this model are unknown, except an a priori bound
ρ′ ∈ R+ on their magnitude. Given a dataset (wi, zi)1≤i≤P ∈ (Rn ×R)P , the problem of finding
the maximum likelihood estimator for Q̄ ∈ Rn×n, q̄ ∈ Rn, b̄ ∈ R consists in computing the triplet
(Q, q, b) ∈ Rn×n×Rn×R that minimizes the least-squares error

P∑
i=1

(zi− 1
2w

⊤
i Qwi− q⊤wi− b)2.

We consider that

1. the features vector belongs to a polytope Y = {y ∈ Rn : Ty ≤ u}, for a given matrix
T ∈ Rr×n and vector u ∈ Rr, and we know ρ ≥ 0 such that Y ⊂ B(0, ρ),

2. the noiseless value 1
2y

⊤Q̄y + q̄⊤y + b̄ is nonnegative for any y ∈ Y.

39

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Hence, this inverse problem is a “constrained quadratic regression problem” that reads

min
Q,q,b

P∑
i=1

(zi − 1
2w

⊤
i Qwi − q⊤wi − b)2

s.t. ∀y ∈ Y, 1
2y

⊤Qy + q⊤y + b ≥ 0
Q = Q⊤

∥Q∥∞ ≤ ρ′, ∥q∥∞ ≤ ρ′, |b| ≤ ρ′

Q ∈ Rn×n, q ∈ Rn, b ∈ R.


(2.24)

Formulation (2.24) is a semi-infinite program, that fits in the general setting of the formulation
(SIP), with the decision variable is the triplet x = (Q, q, b) ∈ Rn×n × Rn × R, and satisfies
Assumptions 1.1, 2.1, and 2.2. In the numerical experiments, we compare the CPA and IOA
approaches with the global optimization algorithm proposed in [162]. We also compare these
algorithms with the solution of the relaxation/reformulation (depending on the convexity of the
lower-level problem) obtained by replacing the lower-level problem by its KKT conditions [3]:

min
Q,q,b,y,γ

P∑
i=1

(zi − 1
2w

⊤
i Qwi − q⊤wi − b)2

s.t. 1
2y

⊤Qy + q⊤y + b ≥ 0
Q = Q⊤

Ty ≤ u
Qy + q + T⊤γ = 0
γ⊤(Ty − u) = 0
∥Q∥∞ ≤ ρ′, ∥q∥∞ ≤ ρ′, |b| ≤ ρ′

Q ∈ Rn×n, q ∈ Rn, b ∈ R, y ∈ Rn, γ ∈ Rr
+,



(2.25)

where γ is the KKT multiplier vector associated to the lower-level constraints Ty ≤ u. Prob-
lem (2.25) is a nonconvex polynomial problem involving polynomials of degree up to three.

2.4.2 Zero-sum game with cubic payoff

In this section, we are interested in solving a two-player zero-sum game that is related to an
undirected graph G = (V,E). We let n denote the cardinality of V . Each player positions a
resource on each node i ∈ V . After normalization, we can consider that the action set of both
players is ∆n = {x ∈ Rn+ :

n∑
i=1

xi = 1}. A two-player zero-sum game is a two-player game such
that, for every strategy x ∈ ∆n of player 1, and for every strategy y ∈ ∆n of player 2, the
payoffs of the two players sum to zero. If we define Pi(x, y) as the payoff of player i related
to the strategy pair (x, y), we, thus, have that P1(x, y) = −P2(x, y). Since the payoffs sum to
zero, we can write the zero-sum game by specifying only one game payoff. Player 1 wishes to
minimize it, and player 2 wishes to maximize it. The game payoff P (x, y) related to the pair of
strategies (x, y) ∈ ∆n ×∆n is the sum of:

• the opposite of a term describing the “proximity” between x and y in the graph, x⊤My,
where M ∈ Rn×n is a matrix having Mij = 1 if i = j or {i, j} ∈ E, and Mij = 0 otherwise,

40

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

• the quadratic costs that player 1 has to pay to deploy his resources on the graph:
c1(x) = 1

2x
⊤Hx+ h⊤

1 x, with H ∈ S+
n and h1 ∈ Rn,

• the opposite of the quadratic costs that player 2 has to pay to deploy her resources on
the graph, and that is influenced by player 1 strategy: c2(x, y) = 1

2y
⊤Q(x)y + h⊤

2 y, where
Q(x) ∈ Rn×n is a linear mapping and h2 ∈ Rn is a vector.

Hence, this zero-sum game can be written as min
x∈∆n

max
y∈∆n

− x⊤My + c1(x)− c2(x, y). Loosely
speaking, player 1 trades off his costs for placing his resource where player 2’s one is (i.e.,
maximizing the proximity) and for augmenting player 2’s costs. In the meantime, player 2 tries
to avoid player 1, while minimizing her own costs. From player 1’s perspective, this problem
can be cast as the following semi-infinite programming formulation:

min
x,z

1
2x

⊤Hx+ h⊤
1 x+ z

s.t. ∀y ∈ ∆n,
1
2y

⊤Q(x)y + (h2 +M⊤x)⊤y + z ≥ 0

x ∈ ∆n, z ∈ R.

 (2.26)

This formulation clearly fits in the general setting of formulation (SIP), and satisfies Assump-
tions 1.1, 2.1, and 2.2. As for the first application, we benchmark the CPA and IOA approaches
with the algorithm proposed by Mitsos in [162], and the KKT relaxation approach [3]. Given
the KKT multipliers γ1 and γ2 associated respectively to the lower-level constraints

n∑
i=1

yi = 1

and y ≥ 0, the finite formulation obtained by replacing the lower level of (2.26) by its KKT
conditions, is

min
x,z,y,γ1,γ2

z + 1
2x

⊤Hx+ h⊤
1 x

s.t. 1
2y

⊤Q(x)y + (h2 +M⊤x)⊤y + z ≥ 0
Q(x)y + q(x) +M⊤x+ γ11− Inγ2 = 0
−γ⊤

2 (Iny) = 0

x ∈ ∆n, y ∈ ∆n, z ∈ R, γ1 ∈ R, γ2 ∈ Rn+.


(2.27)

The KKT multiplier γ1 is associated to an equality constraint, hence it can be either nonnegative
or negative, and we have no complementarity constraint involving it in formulation (2.27). This
relaxation/reformulation of problem (2.26) is a nonconvex polynomial optimization problem
involving multivariate polynomials of degree up to three.

2.4.3 Experimental protocol

Implementation of the algorithms The global solutions of the semi-infinite programs (2.24)
and (2.26) are computed using the algorithms CPA and IOA (Algorithm 3), and the algorithm
proposed in [162], that we call “Mitsos Algorithm”. We also benchmark these algorithms with
the KKT relaxation/reformulation approach [3].

41

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

• The algorithm CPA is implemented using the programming language python 3. Both
the master problem (Rk) and the lower-level problem (Px) are solved using the global
QP solver Gurobi 9.1 [94]. The tolerance for the feasibility error ϵ is set to 10−6.

• The algorithm IOA is also implemented in Python 3. We use the conic programming
solver MOSEK 9.3 [169] to solve (SIPR) at step 1, as well as the master problem (2.13) at
step . The nonconvex QCQP solver in Gurobi 9.1 [94] is used to implement the oracle,
i.e., to solve the problem (Px) with relative optimality gap δ = 10−4. The tolerances ϵ1
and ϵ2, used in the stopping criteria, are set to 10−6. As previously seen, an a priori
knowledge on the convex nature of the lower-level problem would give the guarantee that
the formulation (SIPR) has the same value as the formulation (SIP): in one such case,
solving (SIPR) yields an optimal solution of (SIP). Yet, this prior knowledge is not
common to all the possible instances considered here, and we decide to treat all in the
same way. For this reason, we run the sequence of instructions described in Algorithm 3,
without any a priori information about the convexity of the lower-level problem.

• Mitsos algorithm [162] is implemented using python 3. This general algorithm, proposed
for the global solution of semi-infinite programs without convexity assumptions, generates
a lower and an upper bound of the optimal value of (SIP) at each iteration. It stops when
the gap is closed, or if the relaxation (solved to get the lower bound) yields a feasible
solution. This relaxation is obtained by approximating the infinite set Y by a progressively
finer finite subset, as in the CPA algorithm. The formulation solved to get an upper
bound is obtained by restricting the infinite constraints right hand side by ϵg ∈ R++ and
considering a successively finer discretization of Y. For arbitrary combinations of the
discretized parameter set and ϵg, this formulation is neither a restriction, nor a relaxation
of the semi-infinite program. However, the existence of a strictly feasible point ensures that
the algorithm finitely generates feasible iterates, the objective value of which converges
to the optimal value. At each iteration, both the relaxation, and the restriction of the
semi-infinite program, as well as the lower-level problem are solved using Gurobi 9.1.

• We implement the KKT relaxation/reformulation approach [3], presented at Eq. (2.25)
and Eq. (2.27), with the AMPL modeling language [76], and solve them using Gurobi 9.1.
These formulations are particularly hard to solve, mainly because of the complementarity
constraints. Indeed, for most of the tested instances, Gurobi 9.1 does not terminate
within the time limit. For these instances, we just display, in italic font, the lower bound
given by the optimal value of the best relaxation of the KKT formulation found by Gurobi

within the time limit.

For all the approaches, we run Gurobi 9.1 with its default settings. The tests were performed
on a computer with a 2.70GHz Intel(R) Core(TM) i7 quad-core and with 16 GB of RAM. For
all the approaches we set a time limit (t.l.) of 18,000 seconds (5 hours).

42

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Data generation For the constrained quadratic regression (Section 2.4.1), we solve twenty
randomly generated instances. Each of these instances is generated by choosing the statistical
parameters Q̄, q̄, c̄ at random, drawing P = 4, 000 random features vectors wi ∈ Rn, and then
computing the associated outputs zi ∈ R with a centered Gaussian noise. The data (wi, zi)1≤i≤P

are produced with a PSD matrix Q̄ for ten instances, named PSD_inst# in Table 2.1, and are
produced with an indefinite Q̄ for ten instances, named notPSD_inst# in Table 2.1. For the
zero-sum game with cubic payoff application (Section 2.4.2), we test twenty-two instances where
the matrix M is taken from the DIMACS graph coloring challenge1. We randomly generate
H in a way such that it is PSD, as well as the coefficients of the linear function Q(x) such
that Q(x) is PSD for all feasible x in the instances named #_PSD in Table 2.2. Regarding
the instances named #_notPSD in Table 2.2, no particular precaution is taken to enforce that
Q(x) is PSD. Hence, the sign of the eigenvalues of Q(x) depends on x. The data, the data
generation code, the implementation of the algorithms, and the numerical results are available
online at the public repository https://github.com/aoustry/SIP-with-QP-LL.

2.4.4 Numerical results

The results for both applications are reported in Tables 2.1 and 2.2, respectively. The headings
are the following:

• “m” is the number of decision variables;“n” is the number of semi-infinite constraint
parameters, i.e., lower-level variables; “time(s)” is the computing time in seconds; “it” is
the number of iterations; for the IOA algorithm, this number is 0 when the condition of
Theorem 2.2, checked at step 1, is satisfied and the algorithm does not enter the loop;

• for CPA and Mitsos algorithms, “obj/LB-UB” is, respectively, either the value of the
solution obtained at termination, or a pair of values corresponding to: the best lower
bound (LB) and the best feasible solution, i.e., upper bound (UB), found within the time
limit;

• for IOA, “obj/UB” is, respectively, either the value of the solution obtained at termination,
or the best value F (x̂k) found by the algorithm within the time limit;

• for CPA and IOA algorithms “% oracle” is the share of the total computing time dedicated
to the oracle, i.e., used to solve the lower-level problem (Px);

• for the KKT approach, “obj/LB” is, respectively, either the optimal value of the KKT
relaxations (Eq. (2.25) for the first application and Eq. (2.27) for the second), or the best
lower bound of such value found by the solver Gurobi 9.1 within the time limit, which
also is a lower bound for val(SIP).

In Tables 2.1 and 2.2, the minimum computing times are reported in bold for each instance.
1https://mat.tepper.cmu.edu/COLOR/instances.html

43

https://github.com/aoustry/SIP-with-QP-LL
https://mat.tepper.cmu.edu/COLOR/instances.html

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

Instances Algorithm 2 (CPA) Algorithm 3 (IOA) Mitsos algorithm KKT
Name m/n obj/LB–UB time(s) it % oracle obj/UB time(s) it % oracle obj/LB–UB time(s) it obj/LB
PSD_inst1 31/5 358.64 0.70 6 3.4 358.64 0.27 0 - 358.64 1.26 6 355.78
PSD_inst2 31/5 365.60 0.32 3 3.6 365.60 0.23 0 - 365.60 0.56 3 363.85
PSD_inst3 31/5 363.43 0.91 8 3.4 363.43 0.22 0 - 363.43 1.78 8 359.16
PSD_inst4 31/5 353.90 0.54 5 3.6 353.90 0.22 0 - 353.90 0.97 5 353.19
PSD_inst5 111/10 391.21 4.81 17 1.1 391.21 0.60 0 - 391.21 10.14 17 359.48
PSD_inst6 111/10 397.59 4.92 17 1.0 397.59 0.63 0 - 397.59 10.45 17 353.55
PSD_inst7 183/13 440.84 8.70 19 0.7 440.84 1.01 0 - 440.84 25.1 19 358.19
PSD_inst8 183/13 382.17 2581 17 99.7 382.17 2734 15 98.6 382.17 6193 17 345.52
PSD_inst9 241/15 564.84 – 622.88 t.l. 5 100 572.77 1.62 0 - 564.84 – inf t.l. 5 351.95
PSD_inst10 241/15 526.22 – 545.34 t.l. 8 100 528.93 1.44 0 - 526.22 – inf t.l. 8 346.43
notPSD_inst1 31/5 358.47 0.22 2 4.4 358.47 2.03 4 0.8 358.47 0.28 2 345.12
notPSD_inst2 31/5 378.28 0.22 2 4.95 378.28 2.04 4 0.5 378.28 0.28 2 370.89
notPSD_inst3 31/5 345.81 0.12 1 3.5 345.81 0.66 1 0.3 345.81 0.18 1 345.81
notPSD_inst4 31/5 353.25 0.11 1 4.3 353.25 1.10 2 0.3 353.25 0.14 1 353.25
notPSD_inst5 111/10 503.88 5.17 18 8.4 503.88 32.2 18 1.3 503.88 11.3 18 360.42
notPSD_inst6 111/10 482.96 31.6 36 68.0 482.96 84.2 35 32.4 482.96 65.4 36 357.48
notPSD_inst7 183/13 647.08 119 61 77.2 647.08 211 54 37.8 647.08 263 61 351.31
notPSD_inst8 183/13 588.19 566 77 92.8 588.19 700 74 73.6 588.19 977 77 358.28
notPSD_inst9 241/15 1126.44 687 97 89.9 1126.44 922 92 63.4 1126.44 1356 97 345.44
notPSD_inst10 241/15 580.60 595 64 92.0 580.60 711 60 70.9 580.60 1047 64 350.60

Table 2.1: Numerical results of the 1st application (constrained quadratic regression),
t.l. = 5 hours

Instances Algorithm 2 (CPA) Algorithm 3 (IOA) Mitsos algorithm KKT
Name m = n obj/LB–UB time(s) it % oracle obj/UB time(s) it % oracle obj/LB–UB time(s) it obj/LB
jean_PSD 80 -0.0760 49.5 183 23.5 -0.0760 19.9 0 - -0.0760 128 171 -1.0121
myciel4_PSD 23 -0.3643 4.81 390 31.0 -0.3643 0.09 0 - -0.3643 139 371 -1.0154
myciel5_PSD 47 -0.3164 21.6 684 13.1 -0.3164 1.51 0 - -0.3164 580 633 -1.0171
myciel6_PSD 95 -0.2841 399 2203 2.8 -0.2841 42.0 0 - -0.2841 6738 2008 -1.0207
myciel7_PSD 191 -0.2608 7498 5586 0.5 -0.2608 3452 0 - -0.2608 – -0.2608 t.l. 3268 -1.9246
queen5_5_PSD 25 -0.5536 1.73 165 39.4 -0.5536 0.12 0 - -0.5536 19.7 151 -1.0163
queen6_6_PSD 36 -0.4619 8.98 511 22.3 -0.4619 0.37 0 - -0.4619 168 458 -1.0185
queen7_7_PSD 49 -0.4054 31.0 937 12.1 -0.4054 1.60 0 - -0.4054 602 863 -1.0204
queen8_8_PSD 64 -0.3614 97.0 1578 7.0 -0.3614 4.43 0 - -0.3614 1662 1416 -1.0215
queen8_12_PSD 96 -0.3000 1194 4138 1.9 -0.3000 36.4 0 - -0.3000 14153 3570 -1.0217
queen9_9_PSD 81 -0.3247 351 2637 3.4 -0.3247 14.9 0 - -0.3247 5027 2357 -1.0216
jean_notPSD 80 2.3979 6.82 7 99.5 2.3979 195 8 4.0 2.3979 16.4 7 1.4095
myciel4_notPSD 23 0.5198 43.5 40 99.8 0.5198 52.8 41 82.9 0.5198 102.6 40 -0.2441
myciel5_notPSD 47 1.2779 42.4 37 99.7 1.2779 86.3 33 35.3 1.2779 103 37 0.3167
myciel6_notPSD 95 2.9378 236 35 99.9 2.9378 2223 38 11.8 2.9378 615 35 1.7319
myciel7_notPSD 191 6.2486 773 23 99.9 6.2932 t.l. 4 0.06 6.2486 1320 23 -9.2171
queen5_5_notPSD 25 0.3800 21.2 51 99.4 0.3800 29.5 44 57.2 0.3800 42.4 51 -0.3318
queen6_6_notPSD 36 0.8511 293 73 99.9 0.8511 350 68 81.5 0.8511 751 73 -0.0377
queen7_7_notPSD 49 1.3510 69.8 44 99.7 1.3510 161 40 40.7 1.3510 174 44 0.3615
queen8_8_notPSD 64 1.8122 543 33 100 1.8122 1001 42 70.1 1.8122 1113 33 0.7866
queen8_12_notPSD 96 2.8102 1049 34 100 2.8102 2525 32 32.4 2.8102 1935 34 1.6273
queen9_9_notPSD 81 2.2979 2424 46 100 2.2979 2613 39 69.9 2.2979 4545 46 1.2042

Table 2.2: Numerical results of the 2nd application (zero-sum game), t.l. = 5 hours

A first satisfactory observation is that CPA, IOA, and the Mitsos algorithm, when they
converge before the time limit, effectively return the same value for the problem (SIP). As for
the KKT approach, we observe that it does provide a lower bound, which is tight for only two
instances. For most cases, Gurobi 9.1 does not manage to solve the KKT reformulation, which
is particularly numerically challenging mainly because of the complementarity constraints. This
results in poor lower bounds.

In terms of computational time, IOA is more efficient than the other approaches for all

44

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

the instances where the restriction is proven to be optimal during the preliminary step of this
algorithm: for 14 (resp. 17) instances, IOA is at least 5 times faster than CPA (resp. Mitsos
algorithm), and up to 12,500 times faster (PSD_inst10). When solving the other instances, CPA
shows the best performance, although the number of iterations needed by the three methods is
always comparable. Indeed, IOA iterations are, in average, more time consuming than the other
algorithms and hence, for these instances, the computational time for IOA is larger even if the
number of iterations of IOA is often less with respect to CPA and Mitsos algorithm. As regards
Mitsos algorithm, it turns out to be slower than CPA. Comparing Mitsos algorithm and IOA on
these instances with nonconvex lower-level problem, Table 2.3 shows that the performance of
both algorithms are balanced. We recall that, as the algorithm IOA, Mitsos algorithm computes
a sequence of feasible solutions, the value of which converges to the optimal value, whereas the
iterates of CPA are only asymptotically feasible.

Instances Algorithm 3 (IOA) Mitsos algorithm

First application PSD_inst# 100% 0%
notPSD_inst# 40% 60%

Second application #_PSD 100% 0%
#_notPSD 60% 40%

Table 2.3: Percentage of instances for which IOA or Mitsos algorithm is faster

The instance “PSD_inst8” is of particular interest, since the restriction (SIPR) is obviously
optimal (its value is also 382.17), but IOA is not able to detect it at step 1, since the matrix
Q(x̂0) is not positive definite, but only positive semidefinite. Therefore, the algorithm needs to
enter the loop and runs 15 iterations before stopping.

To understand the computational time required by CPA and IOA, we can look at “% oracle”
columns of Table 2.1 and 2.2. As regards CPA, for the first application, the time required to
solve the lower-level problem (Px) is longer than the time required to solve the master problem
only for the biggest instances. Indeed, when n grows, more time is needed to solve a possibly
nonconvex quadratic programming problem of size n, rather than a convex master problem of
size m = n2 + n+ 1. When n is small, this is different: even if the inner problem is quadratic
nonconvex, it has a small size so it is not harder to solve than the convex master problem. For
the second application, the time required to solve the lower-level problem is longer than the
time required to solve the master problem only for the instances having a nonconvex lower-level
problem, i.e., the second half of Table 2.2. Indeed, when Q(xk) is not PSD, problem (Px) is
possibly nonconvex and it becomes harder to solve than the master problem. As regards IOA,
we see that the percentage of time required to solve problem (Px) depends on the instance.
Actually, the computational difficulty of the lower-level problem may also vary, for a same
instance, between iterates, depending, e.g., on the number of the negative eigenvalues of Q(xk).
In general, the value in the column “% oracle” for the IOA is always less than the corresponding
value in the column of CPA. As expected, this comes from the fact that the master problem

45

CHAPTER 2. INNER-OUTER APPROXIMATION ALGORITHM FOR CONVEX
SEMI-INFINITE PROGRAMS

solved at each iteration is larger for IOA than for CPA.

2.5 Conclusion

This chapter addresses a special case of semi-infinite problems where the lower-level problem
is a QCQP, potentially nonconvex. We propose a new algorithm that exploits this structure
to generate a (globally) minimizing sequence of feasible iterates. A particular feature of this
algorithm is that it uses the output of the separation oracle to tighten the outer approximation
and extend the inner approximation. Another feature of this algorithm is the ability to detect a
posteriori the convexity of the lower-level problem (Px), at x = x̂0 being the first iterate. This
condition is sufficient for an early stop of the algorithm: in this case, it has found the optimal
solution of the semi-infinite problem — even if the lower-level problem is nonconvex for other
values of x. If this condition is met, this yields a clear advantage in terms of computation time,
compared to the cutting-plane algorithm [32, 118] and Mitsos’ algorithm [162].

An avenue of research consistent with this chapter and with Chapter 1 is to study the
convergence speed of this algorithm. The same assumptions as in Chapter 1, or less stringent
ones, could be used. We can wonder whether the algorithm IOA may have a convergence rate in
O(1/k) without assuming the strong convexity of the objective function as we did in Chapter 1
for the algorithm CPA.

From a practical point of view, we could study the possibility of warm-starting the solution
of the master problem, which is an SDP problem, at each iteration. Indeed, the computational
cost of the master problem has been identified as a limitation of the IOA algorithm for large
instances, and a warm start could reduce this cost.

46

C
h

a
p

t
e

r 3
Minimal time nonlinear control via
convex semi-infinite programming

This chapter deals with the control of a deterministic dynamical system. We consider the
general case of a time-dependent nonlinear system under nonlinear state constraints:

ẋ(t) = f(t, x(t), u(t)), (x(t), u(t)) ∈ X × U, a. e. on [0, T]. (3.1)

The vector u denotes the control, i.e. the degrees of freedom of the system, and x denote
the state vector of the system, whose dynamic depends on the control through this nonlinear
ordinary differential equation. The objective of this problem is to choose the control sequence
(u(t))t∈[0,T] such that the state x(t) reaches a target set K ⊂ X in a minimum time. Several
applications in various fields, such as robotics [113], aerospace [217], maritime routing [157] or
medicine [242], can be formulated as minimal time control problems. The approach proposed
here is based on convex semi-infinite programming and, more particularly, on the developments
of Chapter 1 about the algorithm CPA (Algorithm 2). In addition to introducing a hierarchy of
semi-infinite programs for solving the dual problem and computing approximate value functions,
this chapter studies the existence and the performance of closed-loop trajectories following a
feedback controller based on an approximate value function.

Related works

Minimal time control, also known as time optimal control, can be seen as a special case of
the general framework of Optimal Control Problems (OCP). Solving an OCP for such generic
dynamics and constraints is a difficult challenge, although deep theoretical tools are available
such as the Pontryagin Maximum Principle [35, 53, 194] and the Hamilton-Jacobi-Bellman

47

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

(HJB) equation [61, 77]. Those theoretical tools, initially developed in the unconstrained setting,
have been extended to the case of state constraints [42, 204]. From a numerical point of
view, the indirect methods, such as single-shooting, are based on the Pontryagin Maximum
Principle and reduce to the solution of a two-point boundary value problem [217]. The direct
methods reduce to the solution of a nonlinear programming problem after discretizing the
time space, or parameterizing the control u(t) in a finite-dimensional subspace [217, 228]. The
celebrated Model Predictive Control approach builds upon the category of direct methods [39].
The multiple-shooting technique is a hybrid approach between direct and indirect methods
[130, 188, 228]. Another approach is to compute the value function of the problem as a maximal
subsolution of the HJB equation [227]. This approach is related to the weak formulation of the
OCP, an infinite-dimensional LP involving occupation measures. The dual problem of this LP
is exactly the problem of finding a maximal subsolution of the HJB equation [102, 135]. In
[135], the Moment SoS hierarchy is used to approximate the solution of the resulting infinite
dimensional LPs, in the case where the dynamics and the constraints of the OCP are defined by
polynomials. The convergence rate of this numerical scheme is studied in [127] for infinite-time
discounted polynomial control problems. Still in the context of polynomial control problems, a
work [115] based on the dual LP and the SoS hierarchy also studies the design of a closed-loop
controller based on the approximate value function that is computed. In [20], an extension
of the SoS hierarchy based on Kernel methods is employed to extend this computation to a
general nonlinear system. Regarding the methods specifically dedicated to time optimal control,
we find the same categories: direct methods such as Model Predictive Control [225], indirect
methods based on the Pontryagin Maximum Principle and the bang-bang property [147, 173]
or methods based on convex optimization [142].

Contributions and organization of the chapter

In this chapter, we focus on the problem of computing a control to reach a target set in a
minimal time. We follow the line of works that use convex optimization to solve the dual problem
of the nonlinear control problem over the subsolutions of the HJB equation [102, 127, 135, 227].
In contrast to several works using the Moment SoS hierarchy [115, 127, 135, 182, 200], the
dynamical system and the state constraints considered here are generic and, in particular, are
not assumed to be defined by polynomials. Instead of using polynomial optimization theory and
the associated positivity certificates, our approach relies on the existence of a separation oracle
capable of returning, for a given differentiable function V, a point (t, x) where the function V

does not satisfy the HJB inequality. Such an oracle can be provided by a global optimization
solver or by a sampling scheme in a black-box optimization approach. In particular, our approach
is compatible with the sampled-data control paradigm [20, 35, 126]. Our contribution is manifold

• We introduce a hierarchy of linear semi-infinite programs, the values of which converge
to the value of the control problem. After regularization, we solve these semi-infinite

48

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

programs using the algorithm CPA with a convergence rate in O(1
k), where k is the number

of calls to the oracle. This yields subsolutions of the HJB equation that lower-approximate
the value function and provides a certified lower bound on the minimum time.

• It is known that one can leverage any function V (t, x) approximating the value function,
to design a closed-loop, i.e., feedback controller [101, 115]. In this chapter, we study the
existence of trajectories generated by such a controller.

• We study the performance of such a closed-loop controller, depending on how well V (t, x)
approximates the value function in a way distinct from the analysis in [115]. In particular,
this novel analysis enables us to give a sufficient condition for the controller to effectively
generate a trajectory reaching the target set within the considered time horizon.

• We perform numerical experiments on three non-polynomial controlled systems and
compute lower and upper bounds on the minimum time.

In Section 3.1, we state the minimal time control problem and its dual infinite-dimensional
linear programming formulation(s). Section 3.2 introduces the hierarchy of convex semi-infinite
programming problems and the solution algorithm to obtain near-optimal HJB subsolutions.
Based on these approximate value functions, we obtain a feedback controller and study its
trajectories’ existence and performance in Section 3.3. We provide numerical experiments on
three different non-polynomial systems in Section 3.4.

3.1 Problem statement and LP formulations

3.1.1 Definition of the minimal time control problem

Let n and m be nonzero integers. We consider on Rn the control system

ẋ(t) = f(t, x(t), u(t)), (3.2)

where f : R × Rn × Rm → Rn is Lipschitz continuous, and where the controls are bounded
measurable functions, defined on intervals [t0, t1] ⊂ [0, T], and taking their values in a compact
set U of Rm. Let X and K ⊂ X be compact sets of Rn and x0 ∈ Rn. For t0, t1 ≥ 0, a control u
is said admissible on [t0, t1] whenever the solution x(.) of (3.2), such that x(t0) = x0, is well
defined on [t0, t1] and satisfies the constraints

(x(t), u(t)) ∈ X × U, a. e. on [t0, t1], (3.3)

and satisfies the terminal state constraint

x(t1) ∈ K. (3.4)

49

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

We denote by U(t0, t1, x0) the set of admissible controls on [t0, t1]. We consider the question of
the minimal time problem from x0 to K,

V ∗(t0, x0) = inf
t1∈[t0,T]

u(·)∈U(t0,t1,x0)

t1 − t0. (3.5)

This is a particular case of the OCP with free final time [135], associated with the cost∫ t1
t0
ℓ(t, x(t), u(t))dt for ℓ(t, x(t), u(t)) = 1. The function V ∗ is called the value function of this

minimal time control problem: this describes the smallest time to reach the target set K,
starting from x0 at time t0.

Assumptions 3.1. For any (t, x) ∈ [0, T]×X, the set f(t, x, U) is convex.

We underline that we do not have any convexity assumption on sets X and K.

Remark 3.1. Even if the dynamical system of interest does not satisfy Assumption 3.1, we
can apply the present analysis to the convexified inclusion ẋ(t) ∈ conv f(t, x(t), U). According
to the Filippov-Ważewski relaxation Theorem [9, Th. 10.4.4], the trajectories of the original
control problem are dense in the set of trajectories of the convexified inclusion. The trajectories
of the convexified inclusion may be seen as the limit of chattering trajectories, i.e., when the
control oscillates infinitely fast and where the constraint set is infinitesimally dilated.

Theorem 3.1. Under Assumption 3.1, the minimal time control problem (3.2)-(3.5) associated
with a starting point (t0, x0) ∈ [0, T]×X is either infeasible or admits an optimal trajectory.

Proof. We consider the case where a feasible trajectory exists. This is a direct application of
[227, Th. 2.1], which, among others, characterizes the existence of an optimal trajectory for a
control problem over a differential inclusion. To emphasize the correspondence with the notation
of [227], we highlight that we apply the theorem with: the running cost function ℓ(t, x, p) = 1,
the terminal cost function g(t, x) = 0, the set-valued map F (t, x) = f(t, x, U), the constraint set
A = [0, T]×X and the target set C = [0, T]×K. We underline that the assumptions (H1)-(H5)
in [227] are satisfied here; more precisely, we highlight that our Assumption 3.1 enforces (H2)
and the hypothesis that a feasible trajectory exists enforces (H4).

3.1.2 Hamilton-Jacobi-Bellman equation and subsolutions

In optimal control theory, a well-known sufficient condition for a function V to be the value
function V ∗ is to satisfy the HJB Partial Differential Equation (PDE). This PDE can be seen
as a continuous time generalization of Bellman’s dynamic programming optimality principle in
discrete time [12]. In our minimal time control setting, the HJB equation reads

∀(t, x) ∈ [0, T]×X, ∂tV (t, x) + min
u∈U
{1 +∇xV (t, x)⊤f(t, x, u)} = 0 (3.6)

∀(t, x) ∈ [0, T]×K, V (t, x) = 0. (3.7)

50

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

In general, differentiable solutions of this PDE may not exist, so the concept of viscosity
solutions is typically used [61]. Another approach to get around the lack of a differentiable
solution to the HJB equation consists in leveraging the concept of subsolutions [227], i.e.,
functions V ∈ C1(Rn+1) satisfying the following inequalities:

∀(t, x) ∈ [0, T]×X, ∂tV (t, x) + min
u∈U
{1 +∇xV (t, x)⊤f(t, x, u)} ≥ 0 (3.8)

∀(t, x) ∈ [0, T]×K, V (t, x) ≤ 0. (3.9)

The following lemma states a standard result: any subsolution of the HJB PDE is an under-
approximation of the value function.

Lemma 3.1. For any V ∈ C1(Rn+1) satisfying Eqs. (3.8)-(3.9), the following holds:

∀(t, x) ∈ [0, T]×X, V (t, x) ≤ V ∗(t, x).

Proof. We take any (t, x) ∈ [0, T] × X and we consider that V ∗(t, x) < ∞, since the case
V ∗(t, x) = ∞ is trivial. Hence, according to Theorem 3.1, there exists an admissible control
ū(·) ∈ U(t, t1, x) for t1 ∈ [t, T] such that V ∗(t, x) = t1 − t, and an associate trajectory
x̄(t) such that x̄(t) = x and x̄(t1) ∈ K. We observe that d

dt [V (t, x̄(t))] = ∂tV (t, x̄(t)) +
∇xV (t, x̄(t))⊤f(t, x̄(t), ū(t)) ≥ −1 a.e. on [t, t1], the inequality holding since V satisfies Eq. (3.8).
By integration, we observe that V (t1, x̄(t1))− V (t, x) ≥ t− t1 = −V ∗(t, x), i.e., V (t1, x̄(t1)) +
V ∗(t, x) ≥ V (t, x). As V satisfies Eq. (3.9) and as x̄(t1) ∈ K, we observe that 0 ≥ V (t1, x̄(t1)),
and therefore V ∗(t, x) ≥ V (t, x).

3.1.3 Infinite dimensional LP formulations

In the rest of the chapter, we consider a given point x0 ∈ X, and we raise the issue of computing
the minimal time from x0 to K, and the associated control. We make the following assumption:

Assumptions 3.2. There exists an admissible control u ∈ U(0, t1, x0) associated with t1 ∈ [0, T].
In other words, V ∗(0, x0) ≤ t1 <∞.

We consider the optimization problem of finding the subsolution of the HJB PDE that
maximizes the evaluation in (0, x0). This problem may be cast as an infinite dimensional linear
program:

sup
V ∈F

V (0, x0)

s.t.
∀(t, x, u) ∈ [0, T]×X × U, ∂tV (t, x) + 1 +∇xV (t, x)⊤f(t, x, u) ≥ 0

∀(t, x) ∈ [0, T]×K, V (t, x) ≤ 0,

(DF)

51

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

with F ∈ {C1(Rn+1), C∞(Rn+1),R[t, x1, . . . , xn]}. For a given V ∈ F , the feasibility in (DF)
is clearly equivalent to the satisfaction of Eqs. (3.8)-(3.9). We also note that this infinite
dimensional LP formulation corresponds to the dual LP formulation in [135]; in fact, this is
the dual problem of an infinite dimensional LP formulation of the control problem based on
occupation measures. According to the next theorem, the problem (DF) on C1 functions has
the same value as the minimal time control problem.

Theorem 3.2. Under Assumption 3.1 and Assumption 3.2, and for F = C1(Rn+1), the value
of the LP formulation (DF) equals V ∗(0, x0).

Proof. As for the proof of Theorem 3.1, this is a direct application of [227, Th. 2.1], which
also states the absence of duality gap between a control problem over a differential inclusion
and a maximization problem over subsolutions of the HJB equation. We underline that the
assumptions (H1)-(H5) in [227] are satisfied here; more precisely, our Assumption 3.1 enforces
(H2) and our Assumption 3.2 enforces (H4).

Theorem 3.3 extends this result by stating that we can require the subsolutions of the HJB
equation to be in C∞(Rn+1), while preserving the value of (DF). Before stating this theorem,
we introduce an auxiliary lemma.

Lemma 3.2. For any V ∈ C1(Rn+1) satisfying Eqs. (3.8)-(3.9) with feasibility error less or
equal than η ≥ 0, V (t, x) + η(t− 1− T) satisfies Eqs. (3.8)-(3.9).

Proof. We introduce Ṽ (t, x) = V (t, x) + η(t − 1 − T). By assumption on V (t, x), we have
∂tV (t, x) + 1 +∇xV (t, x)⊤f(t, x, u) ≥ −η, for all (t, x, u) ∈ [0, T]×X × U . By linearity, and
since ∂t(t − 1 − T) = 1 and ∇x(t − 1 − T) = 0, ∂tṼ (t, x) + 1 + ∇xṼ (t, x)⊤f(t, x, u) ≥ 0.
By assumption on V (t, x), we have V (t, x) ≤ η, for all (t, x) ∈ [0, T] ×K. Hence, Ṽ (t, x) ≤
η + η(t− 1− T) ≤ η + η(T − 1− T) = 0 for all (t, x) ∈ [0, T]×K.

Theorem 3.3. Under Assumption 3.1 and Assumption 3.2, and for F = C∞(Rn+1), the value
of the LP formulation (DF) equals V ∗(0, x0).

Proof. We consider F = C∞(Rn+1) and we use the notation Σ = [0, T]×X. We fix ϵ ∈ R++,
and we will prove that there exists V ∈ C∞(Rn+1) that is feasible in (DF) and such that
V (0, x0) ≥ V ∗(0, x0) − ϵ. According to Theorem 3.2, there exists V1 ∈ C1(Rn+1) that is
feasible in (DF) and such that V1(0, x0) ≥ V ∗(0, x0)− ϵ

2 . For any σ ∈ (0, 1], we introduce the
mollified function V1σ = V1 ∗ ϕσ ∈ C∞(Rn+1), where ωσ is the standard mollifier defined as

ωσ(z) = 1
σn+1ω(z/σ), where ω(z) =

 ξe
− 1

1−∥z∥2 if ∥z∥ < 1
0 if ∥z∥ ≥ 1

for a given constant ξ ∈ R++

such that
∫
Rn+1 ω(z)dz = 1. Hence, a simple change of variable shows that

∫
Rn+1 ωσ(z)dz = 1. We

also underline that ωσ is nonnegative and supported on the ball B(0, σ). For any z = (t, x) ∈ Σ
and any σ ∈ (0, 1], we have that |V1(z) − V1σ(z)| = |V1(z) −

∫
B(0,σ) V1(z − h)ωσ(h)dh| =

52

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

|
∫
B(0,σ)(V1(z)− V1(z − h))ωσ(h)dh| as

∫
B(0,σ) ωσ(h)dh = 1. We denote by LV an upper bound

for the continuous function ∥∇V1(z)∥2 over the compact set Σ1 = {z ∈ Rn+1 : d(z,Σ) ≤ 1},
which is a Lipschitz constant for the function V1. We deduce, by triangular inequality and
non-negativity of ωσ that for any z ∈ Σ,

|V1(z)− V1σ(z)| ≤
∫
B(0,σ)

|V1(z)− V1(z − h)|ωσ(h)dh (3.10)

≤
∫
B(0,σ)

LV ∥h∥ωσ(h)dh (3.11)

≤ LV σ
∫
B(0,σ)

∥h/σ∥ω(h/σ) 1
σn+1dh (3.12)

≤ LV σ
∫
B(0,1)

∥h̃∥ω(h̃)dh̃.︸ ︷︷ ︸
constant, denoted I.

(3.13)

By property of the mollifiers [107], we have ∂iV1σ(z) = ∂i(V1 ∗ ωσ) = (∂iV1 ∗ ωσ) for any i ∈
{t, x1, . . . , xn}. Therefore, ∂tV1σ(z) =

∫
B(0,σ) ∂tV1(z−h)ωσ(h)dh and∇xV1σ(z) =

∫
B(0,σ)∇xV1(z−

h)ωσ(h)dh. Using the equality
∫
B(0,σ) ωσ(h)dh = 1, we deduce that for any z ∈ Σ,

∂tV1σ(z) + 1 + (∇xV1σ(z))⊤f(z, u) =
∫

B(0,σ)
(∂tV1(z − h) + 1 + (∇xV1(z − h))⊤f(z, u))ωσ(h)dh (3.14)

=
∫

B(0,σ)
(∂tV1(z − h) + 1 + (∇xV1(z − h))⊤f(z − h, u))ωσ(h)dh

(3.15)

+
∫

B(0,σ)
∇xV1(z − h)⊤(f(z, u)− f(z − h, u))ωσ(h)dh. (3.16)

We compute lower bounds for the two terms of the sum. We start with the second term: using
Cauchy-Schwartz inequality, we notice that

∫
B(0,σ)∇xV1(z−h)⊤(f(z, u)−f(z−h, u))ωσ(h)dh ≥

−
∫
B(0,σ)∥V1(z − h)∥∥f(z, u)− f(z − h, u)∥ωσ(h)dh. Noticing that ∥∇xV1(z − h)∥ ≤ LV , since

z − h ∈ Σ1 for any h ∈ B(0, σ) ⊂ B(0, 1), and introducing the Lipschitz constant Lf for f , we
have∫

B(0,σ)
∇xV1(z − h)⊤(f(z, u)− f(z − h, u))ωσ(h)dh ≥ −LV Lf

∫
B(0,σ)

∥h∥ωσ(h)dh = −LV LfσI.

(3.17)

We define η = ϵ
2(T+2) . We introduce the compact set S = [0, T] × X × U and the family

of compact sets Sδ = {s ∈ R1+n+m : d(s, S) ≤ δ} for δ ∈ (0, 1]. For any s = (z, u) ∈ S1,
we introduce ψ(s) = ∂tV1(z) + 1 + (∇xV1(z))⊤f(z, u). The function ψ(s) is continuous and
according to Lemma 0.7, there exists σ1 ∈ R++ such that mins∈Sσ ψ(s) ≥ mins∈S ψ(s)− η

2 for
any σ ∈ (0, σ1]. By feasibility of V1 in (DF), we know that mins∈S ψ(s) ≥ 0, which yields that
ψ(s) ≥ −η

2 for any s ∈ Sσ1 . We deduce that for any σ ∈ (0, σ1],∫
B(0,σ)

(∂tV1(z − h) + 1 + (∇xV1(z − h))⊤f(z − h, u))ωσ(h)dh ≥ −
∫
B(0,σ)

η

2ωσ(h)dh = −η2 ,

(3.18)

53

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

since (z − h, u) ∈ Sσ for any h ∈ B(0, σ). Combining the decomposition of Eqs. (3.14)-(3.16),
with the lower bounds of Eq. (3.17) and (3.18), we deduce that

∂tV1σ(z) + 1 + (∇xV1σ(z))⊤f(z, u) ≥ −(LV LfσI + η

2), (3.19)

for any (z, u) = (t, x, u) ∈ S and σ ∈ (0, σ1]. We define σ̃ = min{σ1,
η

2LV Lf I ,
η

LV I }. From
Eq. (3.13) and Eq. (3.19), we deduce that

V1σ̃(0, x0) ≥ V1(0, x0)− η ≥ V ∗(0, x0)− ϵ

2 − η (3.20)

∀(t, x) ∈ [0, T]×K V1σ̃(t, x) ≤ V1(t, x) + η ≤ η (3.21)

∀(t, x, u) ∈ S ∂tV1σ̃(t, x) + 1 +∇xV1σ̃(t, x)⊤f(t, x, u) ≥ −η. (3.22)

From Lemma 3.2, we deduce that V (t, x) = V1σ̃(t, x) + η(t − 1 − T) ∈ C∞(Rn+1) is feasible
in (DF). From Eq. (3.20), we deduce that V (0, x0) ≥ V ∗(0, x0) − ϵ

2 − η − (1 + T)η, and by
definition of η, V (0, x0) ≥ V ∗(0, x0)− ϵ.

The next theorem underlies the convergence proof of the hierarchy of semi-infinite problems
in Section 3.2: if we restrict to polynomials HJB subsolutions, the value of the problem (DF)
remains unchanged.

Theorem 3.4. Under Assumption 3.1 and Assumption 3.2, and for F = R[t, x1, . . . , xn], the
value of the LP formulation (DF) equals V ∗(0, x0).

Proof. We consider F = R[t, x1, . . . , xn]. For a given ϵ ∈ R++, and we will prove that there exists
V ∈ R[t, x1, . . . , xn] that is feasible in (DF) and such that V (0, x0) ≥ V ∗(0, x0)−ϵ. According to
Theorem 3.3, there exists a function Q ∈ C∞(Rn+1) which is a subsolution of the HJB equation
and such that Q(0, x0) ≥ V ∗(0, x0) − ϵ

2 . We notice that Q has a locally Lipschitz gradient.
Therefore, we can apply Lemma 0.8. This yields, in particular, that for any ν ∈ R++, there exists
a polynomial w ∈ R[t, x1, . . . , xn] such that for all (t, x) ∈ [0, T] ×X, |w(z) − w(z)| ≤ ν and
|∂iw(t, x)−∂iV (t, x)| ≤ ν, i ∈ {t, x1, . . . , xN}. We deduce that |∂tQ(t, x)+∇xQ(t, x)⊤f(t, x, u)−
∂tw(t, x) +∇xw(t, x)⊤f(t, x, u)| ≤ |∂tQ(t, x)− ∂tw(t, x)|+∑n

i=1 |∂xiQ(t, x)− ∂xiw(t, x)|Mi ≤
ν(1 +∑n

i=1Mi), where Mi = max(t,x,u)∈S |fi(t, x, u)|. Therefore, for all (t, x, u) ∈ S,

∂tw(t, x) + 1 +∇xw(t, x)⊤f(t, x, u) ≥ ∂tQ(t, x) + 1 +∇xQ(t, x)⊤f(t, x, u)− ν(1 +
n∑
i=1

Mi)

(3.23)

≥ −ν(1 +
n∑
i=1

Mi), (3.24)

as Q is a subsolution of the HJB equation. In summary, for ν = η(1 +∑n
i=1Mi)−1 ≤ η,

w(0, x0) ≥ Q(0, x0)− η ≥ V ∗(0, x0)− ϵ

2 − η (3.25)

∀(t, x) ∈ [0, T]×K w(t, x) ≤ Q(t, x) + η ≤ η (3.26)

∀(t, x, u) ∈ S ∂tw(t, x) + 1 +∇xw(t, x)⊤f(t, x, u) ≥ −η, (3.27)

54

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

the last inequality following from Eq. (3.24). Based on Eqs. (3.26)-(3.27) and Lemma 3.2, we
notice that the polynomial V (t, x) = w(t, x) + η(t − T − 1) ∈ R[t, x1, . . . , xn] is feasible in
the problem (DF). Having defined η = ϵ

2(T+2) , we see, based on Eq. (3.25), that it satisfies
V (0, x0) ≥ V ∗(0, x0)− ϵ

2 − η − η(T + 1) = V ∗(0, x0)− ϵ.

3.2 Convex semi-infinite programming to compute
near-optimal HJB subsolutions

For F being either C1(Rn+1), C∞(Rn+1), or R[t, x1, . . . , xn]}, the linear program (DF) is
infinite dimensional, and thus, not tractable as it stands. We next present a hierarchy of convex
SIP problems that are solvable with a dedicated algorithm, to compute subsolutions to the
HJB equation that are near-optimal in the problem (DF).

3.2.1 A hierarchy of linear semi-infinite programs

Instead of having an optimization space F that is infinite dimensional, we suggest to restrict to
the finite dimensional subspaces Rd[t, x1, . . . , xn] of polynomials of degree bounded by d. This
restricted dual problem is:

sup
V ∈Rd[t,x1,...,xn]

V (0, x0)

s.t.
∀(t, x, u) ∈ [0, T]×X × U, ∂tV (t, x) + 1 +∇xV (t, x)⊤f(t, x, u) ≥ 0

∀(t, x) ∈ [0, T]×K, V (t, x) ≤ 0.

(Rd)

In the rest of the chapter, we will denote by N the dimension of the vector space Rd[t, x1, . . . , xn]
and Φ(t, x) ∈ RN a basis of this space. For both objects, there is indeed a dependence of d, that
is implicit here for readability reasons. For any V ∈ Rd[t, x1, . . . , xn], we introduce the vector θ
of the coordinates of V in the basis Φ. Hence, we have the relation

V (t, x) = θ⊤Φ(t, x) ∈ Rd[t, x1, . . . , xn]. (3.28)

Expressing problem (Rd) as an optimization problem over the vector of coefficients, it appears
clearly that this is a linear semi-infinite program.

Proposition 3.1. For d ∈ N∗, problem (Rd) is a linear semi-infinite program, i.e, a linear
program with a finite number of variables and an infinite number of constraints. More precisely,
there exist a vector c ∈ RN , and a compact set Y ⊂ RN+1 such that (Rd) reads

sup
θ∈RN

c⊤θ

s.t. ∀(a, b) ∈ Y, a⊤θ + b ≤ 0.
(SIP)

55

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Proof. We define the vector c = Φ(0, x0), and the compact sets

Y1 = {(−∂tΦ(t, x)−∇xΦ(t, x)⊤f(t, x, u),−1), (t, x, u) ∈ [0, T]×X × U} (3.29)

Y2 = {(Φ(t, x), 0), (t, x) ∈ [0, T]×K} (3.30)

Y = Y1 ∪ Y2. (3.31)

We see that for any Vθ(t, x) = θ⊤Φ(t, x) ∈ Rd[t, x1, . . . , xn], Vθ(0, x0) = c⊤θ, and Vθ(t, x) is
feasible in (Rd) if and only if a⊤θ + b ≤ 0, for all (a, b) ∈ Y.

We will see in the next section how to efficiently solve those semi-infinite programs. Prior
to that, we state the convergence of this hierarchy of semi-infinite programs.

Theorem 3.5. The sequence val(Rd) converges to V ∗(0, x0) when d→∞.

Proof. On the one hand, we introduce the notation vd = val(Rd). This sequence is obviously an
increasing sequence, bounded above by V ∗(0, x0). Hence, it converges to a value ℓ ≤ V ∗(0, x0),
and any subsequence converges to ℓ. On the other hand, Theorem 3.4 guarantees that there exists
a sequence of polynomials wk ∈ R[t, x1, . . . , xn] feasible in (DF) and such that wk(0, x0) →k

V ∗(0, x0). By definition, we have vdk
≥ wk(0, x0), where dk = deg(wk). Up to the extraction of

a subsequence of (wk), we can assume that the sequence dk increasing, therefore (vdk
)k∈N is a

subsequence of (vd)d∈N. As vdk
→ ℓ and wk(0, x0)→k V

∗(0, x0), we deduce that ℓ ≥ V ∗(0, x0),
which yields the equality ℓ = V ∗(0, x0).

3.2.2 Regularization and solution of the semi-infinite programs

We introduce a quadratic regularization in the semi-infinite program (SIP), yielding the
following formulation depending on µ ∈ R++:

max
θ∈RN

c⊤θ − µ
2∥θ∥

2

s.t. ∀(a, b) ∈ Y, a⊤θ + b ≤ 0.
(SIPµ)

Proposition 3.2. For any µ ∈ R++, the semi-infinite program (SIPµ) has a unique optimal
solution with value val(SIPµ) ≤ V ∗(0, x0). Moreover, val(SIPµ) →

µ→0
val(SIP).

Proof. The feasible set of (SIPµ) being convex, and the objective function being strongly
concave, this optimization problem admits a unique maximum θ. By definition, val(SIPµ) =
c⊤θ − µ

2∥θ∥
2 ≤ c⊤θ ≤ val(SIP), since θ is also feasible in the maximization problem (SIP).

Additionally, val(SIP) ≤ V ∗(0, x0), since any function V feasible in (Rd) satisfies V (0, x0) ≤
V ∗(0, x0). We also notice that the function µ 7→ val(SIPµ) is decreasing, so it admits a limit ℓ at
0+, due to the aforementioned inequalities, ℓ ≤ val(SIP). For any µ, ϵ ∈ R++, if we take θϵ an
ϵ-optimal solution in the problem (SIP), we see that val(SIP)− ϵ− µ

2∥θϵ∥
2 ≤ c⊤θϵ − µ

2∥θϵ∥
2 ≤

val(SIPµ). For a fixed ϵ, and taking µ→ 0+, we obtain val(SIP)− ϵ ≤ ℓ. This being true for
any ϵ ∈ R++, we deduce that val(SIP) ≤ ℓ, which proves the equality.

56

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Setting the regularization parameter µ in practice implies a trade-off between the computa-
tional tractability of the semi-infinite program (SIPµ) and the accuracy of the approximation
of the original problem (SIP). To solve the formulation (SIPµ), we use the algorithm CPA
(Algorithm 2). To that extent, we need a separation oracle computing, for any θ ∈ RN ,

ϕ(θ) = max
(a,b)∈Y

a⊤θ + b, (3.32)

and an associate argmaximum. Solving the optimization problem in Eq. (3.32) may be compu-
tationally intensive, since the compact set Y may not be convex. Therefore, we only assume to
have a δ-oracle, as defined in the Introduction: an algorithm computing, for any θ, (a, b) ∈ Y,
such that ϕ(θ) − (a⊤θ + b) ≤ δ|ϕ(θ)|. We treat this oracle as a black box, regardless of its
implementation, via global optimization, gridding, interval arithmetics or sampling for instance.
The instantiation of Algorithm 2 for the problem (SIPµ) is Algorithm 4.

Algorithm 4 Cutting-plane algorithm for (SIPµ)
Input: An oracle with parameter δ ∈ [0, 1), a tolerance ϵ ∈ R+, a finite set Y0 ⊂ Y, k ← 0

1: ν0 ←∞
0: while νk > ϵ do
1: Compute θk the optimal solution of the convex Quadratic Programming (QP) problem

max
θ∈RN

c⊤θ − µ
2∥θ∥

2

s.t. ∀(a, b) ∈ Yk, a⊤θ + b ≤ 0.
(3.33)

2: Call the δ-oracle to compute (ak, bk) an approximate solution of (3.32).
3: νk ← (ak)⊤θk + bk.
4: Yk+1 ← Yk ∪ {(ak, bk)}.
5: k ← k + 1.
6: end while
7: Return θk.

Before stating the termination and the convergence of Algorithm 4, we introduce the
vector θ̂ ∈ RN of coordinates of the polynomial v̂(t, x) = t − 1 − T in the basis Φ(t, x).
Since ϕ(θ̂) = −1, this helps obtaining feasible solutions: due to Lemma 3.2, we observe that
if θ has a feasibility error less or equal than η ≥ 0 in (SIP) and (SIPµ) then, θ + ηθ̂ is
feasible in (SIP) and (SIPµ). For any µ ∈ R++, we define the convex and compact set
Xµ = {θ ∈ RN : c⊤θ − µ

2∥θ∥
2 ≥ c⊤θ̂ − µ

2∥θ̂∥
2}, and we define Rµ = supθ∈Xµ

∥θ∥. Finally, we
define the function rµ(e) = e(1 + T + µR2

µ(1 + e
2)). Note that rµ(e) →

e→0
0.

Theorem 3.6. If ϵ ∈ R++, Algorithm 4 stops after a finite number K of iterations, and
θK + ϵ

1−δ θ̂ is a feasible and rµ(ϵ
1−δ)-optimal in (SIPµ). If ϵ = 0, the alternative holds: (a)

Algorithm 4 either stops after a finite number of iterations, and the last iterate is the optimal
solution of (SIPµ), (b) Or it generates an infinite sequence, and the optimality gap and the
feasibility error converge towards zero with an asymptotic rate in O(1

k).

57

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Proof. First of all, we notice that during the execution of Algorithm 4, we necessarily have
θk ∈ Xµ, since θ̂ is a feasible solution in (3.33) with value c⊤θ̂ − µ

2∥θ̂∥
2, therefore by optimality

of θk in (3.33), c⊤θk− µ
2∥θ

k∥2 ≥ c⊤θ̂− µ
2∥θ̂∥

2. We recall that Algorithm 4 is in fact Algorithm 2
applied to the problem for (SIPµ). The finite convergence if ϵ ∈ R++, and the convergence
rate in the case ϵ = 0 (if no finite convergence) follows from Theorems 1.1-1.2 in Chapter 1: we
apply these theorems to the problem (SIPµ) with the additional constraint set X = Xµ. As
previously explained, this additional constraint does not change the execution of the algorithm,
but it enables us to match the setting of Theorems 1.1-1.2, with a compact constraint set X .
We also note that the semi-infinite constraint is indeed linear in θ, the objective function is
µ-strongly concave, and that θ̂ ∈ Xµ is a strictly feasible point with respect to the semi-infinite
constraints: Assumptions 1.1-1.3 are indeed satisfied.

We finish the proof by showing that if Algorithm 4 stops at iteration K, then θ̃ = θK + ϵ
1−δ θ̂

is feasible and rµ(ϵ
1−δ)-optimal in (SIPµ). If Algorithm 4 stops at iteration K, this means that

(aK)⊤θK + bK ≤ ϵ. If ϕ(θK) ≤ 0, then θK is feasible in (SIPµ), and so is θ̃ due to Lemma 3.2.
If ϕ(θK) > 0, then by property of the δ-oracle, (1 − δ)ϕ(θK) ≤ (aK)⊤θK + bK ≤ ϵ, and we
deduce that the feasibility error is ϕ(θK) ≤ ϵ

1−δ . With Lemma 3.2, we deduce that θ̃ is feasible
in (SIPµ). We also note that

c⊤θ̃ − µ

2 ∥θ̃∥
2 = c⊤θK + ϵ

1− δ c
⊤θ̂ − µ

2 ∥θ
K + ϵ

1− δ θ̂∥
2 (3.34)

≥ c⊤θK − ϵ

1− δ (1 + T)− µ

2

(
∥θK∥2 + 2ϵ

1− δ∥θ
K∥ ∥θ̂∥+ ϵ2

(1− δ)2 ∥θ̂∥
2
)
, (3.35)

since c⊤θ̂ = Vθ̂(0, x0) = −(1 + T), and due to the Cauchy-Schwartz inequality. By optimality of
θK in (3.33), which is a relaxation of (SIPµ), we know that val(SIPµ) ≤ c⊤θK − µ

2∥θ
K∥2. We

deduce from Eq. (3.35) that

c⊤θ̃ − µ

2 ∥θ̃∥
2 ≥ val(SIPµ)− ϵ

1− δ (1 + T)− µ

2

(
2ϵ

1− δ∥θ
K∥ ∥θ̂∥+ ϵ2

(1− δ)2 ∥θ̂∥
2
)

(3.36)

≥ val(SIPµ)− ϵ

1− δ (1 + T)− µR2
µ

(
ϵ

1− δ + ϵ2

2(1− δ)2

)
(3.37)

≥ val(SIPµ)− rµ(ϵ

1− δ), (3.38)

the second inequality following from the fact that ∥θ̂∥ ≤ Rµ and ∥θK∥ ≤ Rµ, as θ̂, θK ∈ Xµ.

3.3 Feedback control based on approximate value functions

In the previous section, we have seen how to compute subsolutions of the HJB equation based
on convex semi-infinite programming, and how to deduce a lower bound on the minimal travel
time. In this section, we focus on how subsolutions of the HJB equation, which approximate the
value function V ∗, enable one to recover a near-optimal control for the minimal time control
problem (3.2)-(3.5).

58

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

3.3.1 Controller design and existence of trajectories

For a given continuously differentiable function V ∈ C1(Rn+1), we define the set-valued maps

UV (t, x) = argmin
u∈U

∇xV (t, x)⊤f(t, x, u) (3.39)

IV (t, x) = {u ∈ UV (t, x) : f(t, x, u) ∈ TX(x)}, (3.40)

where TX(x) is the contingent cone to X at point x (see Introduction). In line with previous
works designing feedback controllers based on approximate value functions [101, 115], we are
interested in the trajectories satisfying the following differential inclusion depending on the
function V ∈ C1(Rn+1):

ẋV (t) = f(t, xV (t), uV (t)) with uV (t) ∈ UV (t, xV (t)). (CLV)

Intuitively, such a feedback control pushes the system towards the descent direction of the
function V . The following proposition confirms that, should the function V ∈ C1(Rn+1) be
optimal in problem (DF), then any minimal time trajectory satisfies the differential inclusion
(CLV) with respect to V .

Proposition 3.3. Under Assumptions 3.1-3.2, we consider an optimal trajectory (x∗(·), u∗(·))
of the minimal time control problem (3.2)-(3.5) starting from (0, x0), with hitting time τ∗ =
V ∗(0, x0). If the linear program (DF), for F = C1(Rn+1), admits an optimal solution V , then,
for almost every t ∈ [0, τ∗],

u∗(t) ∈ IV (t, x∗(t)) ⊂ UV (t, x∗(t)). (3.41)

In particular, the trajectory (x∗(·), u∗(·)) satisfies the differential inclusion (CLV).

Proof. We define the function α(t) = V (t, x∗(t))+t, which is differentiable. We have that α′(t) =
∂tV (t, x∗(t)) + 1 +∇xV (t, x∗(t))⊤f(t, x∗(t), u∗(t)), for almost all t ∈ [0, τ∗]. Since V is feasible
in (DF), therefore satisfies Eq. (3.8), and since (x∗(t), u∗(t)) ∈ X × U a. e. on [0, τ∗], we know
that α′(t) ≥ 0 a. e. on [0, τ∗]. This proves that the differentiable function α(t) is non-decreasing
function over [0, τ∗]. By optimality of V in (DF), and due to Theorem 3.2 (Assumptions 3.1-3.2
are satisfied), α(0) = V (0, x0) = val(DF) = τ∗. Moreover, α(τ∗) = τ∗ + V (τ∗, x∗(τ∗)) = τ∗,
since V satisfies Eq. (3.9) and x∗(τ∗) ∈ K. From α(τ∗) ≤ α(0), we obtain that α(t) is constant.
Hence, ∂tV (t, x∗(t)) + 1 +∇xV (t, x∗(t))⊤f(t, x∗(t), u∗(t)) = 0, meaning

∇xV (t, x∗(t))⊤f(t, x∗(t), u∗(t)) = −(∂tV (t, x∗(t)) + 1), a.e. on [0, τ∗]. (3.42)

As V satisfies Eq. (3.8), we have that ∇xV (t, x∗(t))⊤f(t, x∗(t), u) ≥ −(∂tV (t, x∗(t)) + 1) for
all t ∈ [0, τ∗] and for all u ∈ U . Together with Eq. (3.42), we deduce that u∗(t) ∈ UV (t, x∗(t))
for almost all t ∈ [0, τ∗]. Based on this fact, Lemma 0.9 yields that for almost all t ∈ [0, τ∗],
f(t, x∗(t), u∗(t)) ∈ TX(x∗(t)). Therefore, for almost all t ∈ [0, τ∗], u∗(t) ∈ IV (t, x∗(t)).

59

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

We just saw that whenever V ∈ C1(Rn+1) is optimal in the linear program (DF), any
minimal time trajectory is a solution of the differential inclusion (CLV) associated with the
function V . However, we may not be able to compute exactly such an optimal function in
practice, especially because it may not exist. The next theorem states the existence of closed-loop
trajectories following (CLV), for any function V ∈ C1(Rn+1).

Theorem 3.7. Under Assumptions 3.1-3.2, if V ∈ C1(Rn+1) is such that for any (t, x) ∈
R+ ×X, IV (t, x) ̸= ∅, then there exists a trajectory (xV (·), uV (·)) starting at (0, x0), satisfying
the differential inclusion (CLV) over [0,∞) and such that xV (t) ∈ X for almost all t ∈ [0,∞).

Proof. We introduce an auxiliary control system to reduce to a time-invariant system with a
convex control set, so as to fit in the setting of [8, Th. 6.6.6]. In what follows, we use the notation
z = (t, x) again. We introduce two objects: the set-valued map Û(z) = {f(z, u), u ∈ U} and the

function f̂(z, v) =
(

1
v

)
for z ∈ Rn+1 and v ∈ Rn. According to the terminology introduced in [8,

Def. 6.1.3], (Û , f̂) is a Marchaud control system, as (i) {(z, v) ∈ R2n+1 : v ∈ Û(z)} is closed, (ii) f̂
is continuous, (iii) the velocity set {1}×f(z, U) is convex according to Assumption 3.1 and (iv) f̂
has a linear growth, and so has Û due to the fact that f is Lipschitz continuous and U is bounded.
We introduce C = R+×X and define the regulation map REG(z) = {v ∈ Û(z) : f̂(z, v) ∈ TC(z)}.
We also introduce the set-valued map SEL(z) = argmin

v∈Û(z)
∇xV (z)⊤v. We prove now that the

graph of SEL is closed. For any converging sequence (zk, vk) → (z̄, v̄) with vk ∈ SEL(zk),
we see that for all k ∈ N, vk = f(zk, uk) for a given uk ∈ U and ∇xV (zk)⊤f(zk, uk) = h(zk),
where h(zk) = minu∈U ∇xV (zk)⊤f(zk, u). Up to extracting a subsequence of uk, we can assume
that uk → ū, as U is compact. Note that h is continuous, by application of the Maximum
Theorem [8, Th. 2.1.6], in so far as (i) (z, u) 7→ ∇xV (z)⊤f(z, u) is continuous, therefore lower
and upper semicontinuous, (ii) the set-valued map M(z) = U is compact-valued, and lower and
upper semicontinuous since it is constant. By continuity of h, ∇V and f , we conclude that
∇xV (z̄)⊤v̄ = ∇xV (z̄)⊤f(z̄, ū) = h(z̄) = min

v∈Û(z̄)
∇xV (z̄)⊤v, meaning that v̄ = f(z̄, ū) ∈ SEL(z̄).

We notice that if u ∈ IV (z), then v = f(z, u) ∈ REG(z) ∩ SEL(z). As IV (z) ̸= ∅ for all
z ∈ C (by assumption), REG(z) ∩ SEL(z) ̸= ∅. Together with the closedness of the graph of
SEL, this means SEL is a selection procedure of REG, according to the terminology of [8,
Def. 6.5.2], and has convex values. We underline that REG(z) ̸= ∅, for all z ∈ C, i.e., C is
a viability domain for (Û , f̂). As (0, x0) ∈ C, [8, Th. 6.6.6] yields the existence of a solution
(z(·), v(·)) such that z(t) ∈ C, v(t) ∈ RC(z(t)) and

v(t) ∈ SEL(z(t)) ∩REG(z(t)), (3.43)

for almost all t ∈ [0,∞). We notice first that z1(0) = 0 and ż1(t) = 1 for almost all t ≥ 0, thus
z1(t) = t. Hence, we can indeed see z(t) as (t, x(t)), with x(0) = x0 and ẋ(t) = v(t). Moreover,
v(t) = f(t, x(t), u(t)) for a given u(t) ∈ U , since v(t) ∈ Û(z(t)) = f(t, x(t), U) a.e. on [0,∞).

60

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

We deduce from v(t) ∈ SEL(z(t)), which comes from (3.43), that u(t) ∈ UV (t, x(t)). Moreover,
we deduce from z(t) ∈ C that x(t) ∈ X a.e. on [0,∞).

Remark 3.2. The condition IV (t, x) ̸= ∅ in Theorem 3.7 may appear restrictive, because it is
not evident why a vector f(t, x, uV) minimizing ∇xV (t, x)⊤f(t, x, u) over u ∈ U would belong
to TX(x). However, we have seen that under the hypotheses of Proposition 3.3, Eq. (3.41) yields
IV (t, x) ̸= ∅. Moreover, should the condition IV (t, x) ̸= ∅ not be satisfied, we could enlarge
the definition of UV (t, x) in UV,ϵ(t, x) = argminϵ

u∈U
∇xV (t, x)⊤f(t, x, u), so that for ϵ ∈ R++ large

enough, IV,ϵ(t, x) = {u ∈ UV,ϵ(t, x) : f(t, x, u) ∈ TX(x)} ≠ ∅.

3.3.2 Performance of the feedback controller depending on the value
function approximation error

Previously, we studied closed-loop trajectories satisfying the differential inclusion (CLV) with
respect to a function V ∈ C1(Rn+1). We state now some performance guarantees on those
trajectories, depending on some approximation properties of V . In the following, we assume
that, up to an enlargement of the time horizon, the system can reach the target set starting
from any initial condition (t, x) ∈ [0, T]×X, and that the associated value function is Lipschitz.

Assumptions 3.3. There exists a time T ♯ ≥ T such that the minimal time control problem (3.2)-
(3.5) defined over [0, T ♯] has a value function V ♯ which takes finite values over Σ = [0, T]×X,
and is Lipschitz continuous.

We emphasize that, under Assumption 3.3, V ∗(t, x) <∞ implies V ∗(t, x) = V ♯(t, x) for any
(t, x) ∈ Σ. Since V ♯ is Lipschitz continuous over Σ ⊂ Rn+1, it admits a Lipschitz continuous
extension over Rn+1 [80, Chap. 3, Th. 1]. We assimilate the value function and its extension on
Rn+1, such that we can speak about the Clarke’s generalized derivative ∂cV ♯(z) of V ♯ at z ∈ Σ.
For any V ∈ C1(Rn+1), we introduce the notation

∥∇V −∇V ♯∥∞ = sup
z∈Σ

sup
g∈∂cV ♯(z)

∥∇V (z)− g∥2. (3.44)

We also define the constant Cf = sup(t,x,u)∈Σ×U∥f(t, x, u)∥ <∞.

Theorem 3.8. Let V ∈ C1(Rn+1) be a continuously differentiable function, and let (xV (·), uV (·))
be a closed-loop trajectory starting at (0, x0) satisfying the differential inclusion (CLV) and the
state constraints over [0, T]. We define tV = sup{t ∈ [0, T] : xV ([0, t]) ⊂ X \K}. Then, under
Assumptions 3.1-3.3,

V ♯(t, xV (t)) ≤ (τ∗ − t) + t 2(1 + Cf)∥∇V −∇V ♯∥∞ ∀t ∈ [0, tV], (3.45)

where τ∗ = V ∗(0, x0) = V ♯(0, x0) ≤ tV . In particular, we notice that

V ♯(τ∗, xV (τ∗)) ≤ 2τ∗(1 + Cf)∥∇V −∇V ♯∥∞. (3.46)

61

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

In Eq. (3.46), V ♯(τ∗, xV (τ∗)) measures how far the closed-loop trajectory (xV (·), uV (·)) is
from the target set K at the time when the optimal trajectory reaches K. As a corollary, we
give a condition for the closed-loop trajectory (xV (·), uV (·)) to effectively reach the target set
K, with a bounded delay compared to the time-optimal trajectory.

Corollary 3.1. Under the same hypotheses as Theorem 3.8, if ∥∇V −∇V ♯∥∞ ≤ 1−τ∗/T
2(1+Cf) , then

xV (tV) ∈ K with tV ∈ [τ∗,
1

1− 2(1 + Cf)∥∇V −∇V ♯∥∞
τ∗]. (3.47)

We underline that the hitting time tV ≥ τ∗ converges to the minimal time τ∗, when the
approximation error ∥∇V −∇V ♯∥∞ vanishes.

Proof of Th 3.8 and Cor. 3.1. For any Lipschitz continuous function F : Rn+1 → R, we recall
that ∂cF (z) denote the Clarke’s generalized derivative at z, and we define HF as

HF (z) = 1 + min
u∈U

g∈∂cF (z)

{g⊤
(

1
f(z, u)

)
}. (3.48)

The minimum is attained by continuity of the objective, and by compactness of U and ∂cF (z)
(see [52]). Note also that for any V ∈ C1(Rn+1), for any z = (t, x) ∈ Rn+1, HV (t, x) =
1 + ∂tV (t, x) + minu∈U ∇xV (t, x)⊤f(t, x, u), and the argmin is UV (t, x). By application of
the Maximum Theorem [8, Th. 2.1.6], we know that HF is lower semi-continuous, since (i)
∂cF (z) is a compact-valued and upper semi-continuous set-valued map [52], therefore so is

z 7→ U × ∂cF (z), and (ii) (z, u, g) 7→ g⊤
(

1
f(z, u)

)
is continuous.

First, we take any z1 = (t1, x1) ∈ [0, T] × X \ K, and we prove that HV ♯(t1, x1) ≤ 0.
According to Assumption 3.3, V ♯(t1, x1) < ∞, and according to Theorem 3.1 applied to the
control system (3.2)-(3.5) on the interval [0, T ♯], there exists an optimal trajectory (x(·), u(·))
over [t1, t2] (with t2 > t1 since x0 /∈ K) starting from (t1, x1). By definition, V ♯(t1, x1) = t2− t1.
We can also prove that for all t ∈ [t1, t2], V ♯(t, x(t)) = t2 − t: (i) the trajectory restricted
to [t, t2], yields an admissible trajectory starting from (t, x(t)), therefore V ♯(t, x(t)) ≤ t2 − t,
and (ii) for an optimal trajectory (x̃(·), ũ(·)) starting from (t, x(t)) over [t, t3], the trajectory
following (x(·), u(·)) over [t1, t] and (x̃(·), ũ(·)) over [t, t3] is admissible and starting from
(t1, x1), therefore, V ♯(t, x(t)) + (t − t1) ≥ V ♯(t1, x1) = t2 − t1, giving V ♯(t, x(t)) ≥ t2 − t. As
α(t) = V ♯(t, x(t)) = t2 − t for all t ∈ [t1, t2], we deduce that

α′(t) = −1 a. e. on [t1, t2]. (3.49)

Moreover, since V ♯ is Lipschitz continuous by assumption, and t 7→ (t, x(t)) is Lipschitz
continuous as x(t) is differentiable a.e. with a bounded derivative, Lemma 0.10 gives: α′(t) =

62

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

d(V ♯(t,x(t)))
dt ≥ ming∈∂cV ♯(t,x(t)) g

⊤
(

1
ẋ(t)

)
a.e. on [t1, t2]. Using that ẋ(t) = f(t, x(t), u(t)) a.e. on

[t1, t2], and the definition of HV ♯ :

α′(t) ≥ min
g∈∂cV ♯(t,x(t))

g⊤
(

1
f(t, x(t), u(t))

)
≥ HV ♯(t, x(t))− 1, (3.50)

a.e. on [t1, t2]. Combining this with Eq. (3.49), we deduce that for almost all t ∈ [t1, t2],
HV ♯(t, x(t)) ≤ 0. By lower semi-continuity of HV ♯ (see above), and by continuity of x(·)

HV ♯(t1, x1) ≤ 0. (3.51)

Second, still for any (t1, x1) ∈ [0, T] × X \ K, we observe that there exists (g, u1) ∈

∂cV ♯(t1, x1)× U such that HV ♯(t1, x1) = 1 + g⊤
(

1
f(t1, x1, u1)

)
; indeed, we already mentioned

that the minimum in (3.48) is attained. Therefore, for any V ∈ C1(Rn+1)

1 + ∂tV (t1, x1) +∇xV (t1, x1)⊤f(t1, x1, u1) = HV ♯(t1, x1) + (∇V (t1, x1)− g)⊤
(

1
f(t1, x1, u1)

)
(3.52)

≤ HV ♯(t1, x1) + ∥∇V −∇V ♯∥(1 + Cf), (3.53)

the inequality being due to Cauchy-Schwartz inequality, and the definition of ∥∇V −∇V ♯∥. We
know that HV (t1, x1) ≤ ∂tV (t1, x1) + 1 +∇xV (t1, x1)⊤f(t1, x1, u1) by definition of HV (t1, x1)
(as u1 ∈ U), therefore Eq. (3.53) gives HV (t1, x1) ≤ HV ♯(t1, x1) + (1 +Cf)∥∇V −∇V ♯∥. Using
this inequality and Eq. (3.51), we deduce that for all (t1, x1) ∈ [0, T]×X \K,

HV (t1, x1) ≤ (1 + Cf)∥∇V −∇V ♯∥. (3.54)

Third, according to the hypotheses of the theorem, we take any V ∈ C1(Rn+1), and any closed-
loop trajectory (xV (·), uV (·)) starting at (0, x0) satisfying the differential inclusion (CLV) and
the state constraints over [0, T]. We, then, study the evolution of V ♯ over this trajectory. As
xV (t) is Lipschitz continuous, Lemma 0.10 yields the existence of g(t) ∈ ∂cV ♯(t, xV (t)) for
almost all t ∈ [0, T], such that

d

dt

(
V ♯(t, xV (t))

)
≤ g(t)⊤

(
1

f(t, xV (t), uV (t))

)
a.e. on [0, T]. (3.55)

As uV (t) ∈ UV (t, xV (t)), we know that HV (t, xV (t)) = 1 +∇V (t, xV (t))⊤
(

1
f(t, xV (t), uV (t)),

)
,

and therefore,

d

dt

(
V ♯(t, xV (t))

)
≤ −1 +HV (t, xV (t)) + (g(t)−∇V (t, xV (t)))⊤

(
1

f(t, xV (t), uV (t)),

)
(3.56)

63

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

We deduce, using Cauchy-Schwartz inequality and the definition of ∥∇V −∇V ♯∥,

d

dt

(
V ♯(t, xV (t))

)
≤ −1 +HV (t, xV (t)) + (1 + Cf)∥∇V −∇V ♯∥, (3.57)

for almost all [0, T]. Moreover, for all t ∈ [0, tV), xV (t) /∈ K. Therefore, we can apply Eq. (3.54)
to deduce, in combination with Eq. (3.57), that for almost all [0, tV], ddt

(
V ♯(t, xV (t))

)
≤

−1+2(1+Cf)∥∇V −∇V ♯∥. By integration, we deduce that for all t ∈ [0, tV], V ♯(t, xV (t))−τ∗ ≤
−t+ 2t(1 + Cf)∥∇V −∇V ♯∥, as V ♯(0, xV (0)) = V ♯(0, x0) = τ∗. This proves Eq. (3.45).

Fourth and finally, we prove the corollary. Due to the definition of tV , the following (non-
exclusive) alternative holds: either xV (tV) ∈ K or tV = T . Moreover, if ∥∇V −∇V ♯∥∞ ≤ 1−τ∗/T

2(1+Cf) ,
then V ♯(t, xV (t))− τ∗ ≤ −t+ t(1− τ∗/T) and V ♯(t, xV (t)) ≤ τ∗(1− t/T) for all t ∈ [0, tV]. We
notice that if tV = T , then V ♯(tV , xV (tV)) ≤ 0, i.e., xV (tV) ∈ K. Coming to the aforementioned
alternative, we deduce that xV (tV) ∈ K. Moreover, this fact combined with Eq. (3.45) gives us
that 0 ≤ (τ∗ − tV) + tV 2(1 + Cf)∥∇V −∇V ♯∥∞, hence

tV
(
1− 2(1 + Cf)∥∇V −∇V ♯∥∞

)
≤ τ∗. (3.58)

By assumption, 1− 2(1 +Cf)∥∇V −∇V ♯∥∞ ≥ τ∗/T > 0, we can thus divide Eq. (3.58) by this
quantity to obtain the result of the corollary: tV ≤ τ∗/

(
1− 2(1 + Cf)∥∇V −∇V ♯∥∞

)
.

In the previous theorem and the corollary, we saw that the suboptimality, in terms of
hitting time, of a closed-loop trajectory (xV (·), uV (·)) satisfying the differential inclusion (CLV)
decreases as the approximation error ∥∇V −∇V ♯∥∞ decreases. Furthermore, we see that the
closed-loop trajectory is near-optimal when the approximation error vanishes. We now study a
sufficient condition under which the approximation ∥∇Vd −∇V ♯∥∞ can be made arbitrarily
small, using a polynomial Vd(t, x) of sufficiently large degree d ∈ N.

3.3.3 A sufficient regularity condition for the existence of near-optimal
controllers based on polynomials

In the case where the value function is twice differentiable, there exist polynomials Vd with
such a vanishing approximation error ∥∇Vd −∇V ♯∥∞, and that are near optimal solutions in
the hierarchy of semi-infinite programs (Rd).

Theorem 3.9. Under Assumptions 3.1-3.3, if the value function V ♯ belongs to C2(Rp|Σ), and
is a subsolution to the HJB equation, then there exists a sequence of polynomials (Vd(t, x))d∈N∗ ,
with Vd(t, x) ∈ Rd[t, x1, . . . , xn], and two constants c1, c2 ∈ R++, such that for all d ∈ N∗,

• The polynomial Vd(t, x) is feasible, and c1
d -optimal in the problems (DF) and (Rd),

• The following inequality holds: ∥∇Vd −∇V ♯∥∞ ≤ c2
d .

Under these hypotheses, the polynomials Vd(t, x) are subsolutions to the HJB equation,
and form a maximizing sequence of the problem (DF); we also notice that the hierarchy of

64

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

semi-infinite programs (Rd) converges in O(1
d) in terms of objective value. Moreover, according

to Cor. 3.1, for any sequence of closed-loop trajectories (xVd
(·), uVd

(·)), the associated hitting
times converge to the minimal time τ∗: this is a minimizing sequence of trajectories for the
optimal time control problem (3.2)-(3.5).

Proof. By definition of C2(Rn+1|Σ), there exists a function Q ∈ C2(Rn+1) such that V ♯(z) =
Q(z) and ∇V ♯(z) = ∇Q(z) for all z ∈ Σ. In application of Lemma 0.8, as Q has a locally
Lipschitz gradient since it is twice differentiable, there exists a constant A ∈ R++, and a
sequence of polynomials (wd(t, x))d∈N∗ with wd(t, x) ∈ Rd[t, x1, . . . , xn] and such that for all
(t, x) ∈ Σ, |wd(t, x)−Q(t, x)| ≤ A

d and ∥∇wd(t, x)−∇Q(t, x)∥2 ≤ A
d . With αd = A(1+Cf)

d , and
βd = A

d (1+T +TCf), we define the polynomial Vd(t, x) = wd(t, x)+αdt−βd ∈ Rd[t, x1, . . . , xn].
First, we notice that ∥∇Vd − ∇V ♯∥∞ ≤ ∥∇wd − ∇V ♯∥∞ + αd ≤

A(2+Cf)
d for all d ≥ 1. This

proves the second point of the theorem, having defined the constant c2 = A(2 + Cf), which is
independent from d. We prove now the first point. For all d ≥ 1, and (t, x, u) ∈ [0, T]×X × U ,
∂tVd(t, x)+1+∇xVd(t, x)⊤f(t, x, u) = αd+∂tV

♯(t, x)+1+∇xV ♯(t, x)⊤f(t, x, u)+(∇wd(t, x)−

∇V ♯(t, x))⊤
(

1
f(t, x, u)

)
≥ αd + (∇wd(t, x)−∇V ♯(t, x))⊤

(
1

f(t, x, u)

)
, as V ♯ is a subsolution

to the HJB equation, hence satisfies Eq. (3.8). Using the Cauchy-Schwartz inequality, we obtain
∂tVd(t, x)+1+∇xVd(t, x)⊤f(t, x, u) ≥ αd−∥∇wd(z)−∇V ♯(z)∥2(1+Cf) ≥ αd− A

d (1+Cf) = 0.
This proves that Vd satisfies Eq. (3.8). It also satisfies Eq. (3.9), because for any (t, x) ∈ [0, T]×K,

Vd(t, x) = wd(t, x) + αdt− βd (3.59)

≤ V ♯(t, x) + A

d
+ αdt− βd (3.60)

≤ V ♯(t, x) + A

d
+ αdT − βd (3.61)

≤ V ♯(t, x) = 0. (3.62)

since A
d + αdT − βd = 0 by definition of βd, and since x ∈ K. We deduce that Vd is feasible in

(Rd). Its objective value is Vd(0, x0) ≥ wd(0, x0) − βd ≥ V ♯(0, x0) − A
d − βd = V ♯(0, x0) − c1

d ,
where c1 = A(2 + T + TCf). As V ♯(0, x0) = V ∗(0, x0) due to Assumption 3.2, Vd(0, x0) ≥
V ∗(0, x0)− c1

d ≥ val(DF)− c1
d ≥ val(Rd)− c1

d , and we therefore conclude that Vd is c1
d -optimal

in (DF) and (Rd).

Remark 3.3. Admittedly, the hypothesis in Theorem 3.9 that the value function V ♯ belongs
to C2(Rp|Σ) is stringent. It is worth noting, however, that there exist systems that satisfy this
hypothesis. Here is an example: ẋ(t) = u(t), x(t) ∈ X = [0, 1]2, ∥u(t)∥ ≤ 1 and K = {0}× [0, 1].
The value function associated with the horizon T =∞ is V ♯(t, x) = x1.

65

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

3.4 Illustrative examples

We implemented and tested the proposed methodology on three small-scale Minimal Time
Control Problems: a generalization of the Zermelo problem, a regatta problem and a general-
ization of the Brockett integrator. The numerical examples in this section were implemented
with our Julia package MinTimeControl.jl1, and run on a 64-bit Ubuntu computer with 32
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and 64 GB RAM. In our implementation of
Algorithm 4, the master problem (3.33) is solved with the simplex algorithm of the commercial
solver Gurobi 10.0 [94]. The separation oracle (3.32) is implemented with a random sampling
scheme (with 500,000 samples at each iteration to detect a violated constraint), and with the
global optimization solver SCIP 8 [24], for the certification at the last iterate. This solver is used
with a relative tolerance δ = 10−4, and with a time limit of 10, 000s. At each iteration, we add
a maximum of 100 points to the set Yk. We also precise that we compute a heuristic trajectory
based on the particularities of each problem; this heuristic is not optimal, but provides an upper
bound T on the minimum time, and therefore, a relevant time horizon [0, T]. The trajectory
resulting from the heuristic is used to initialize the set Y0, in the sense that we enforce the HJB
inequalities for some points of this trajectory. During the iterations of the algorithm, we obtain
functions Vθk(t, x) and we simulate the associate feedback trajectory defined by the differential
inclusion (CLV); if the obtained trajectory reaches the target set, it gives us an upper bound.
Those trajectories are also used to enrich the set Yk. For all the experiments, the regularization
parameter is µ = 10−5, and the tolerance ϵ = 10−3.

Tables 3.1, 3.3 and 3.4 present the numerical results for three different applications. The
different columns of these tables are the following:

• “d ∈ N” is the degree of the polynomial basis used.
• “Estimated value of (Rd)” stands for the value Vθ(0, x0), where θ is the output of

Algorithm 4, using the sampling oracle. This estimated value of (Rd) is not an exact
lower bound, since this sampling oracle does not provide the guarantee that θ is indeed
feasible in (SIP).

• “Certified lower bound for (Rd)” stands for Vθ(0, x0)− ϕ̂(θ)(1 + T), where θ is as defined
above and ϕ̂(θ) is a guaranteed upper bound on ϕ(θ), the feasibility error of θ in (SIP),
computed by the global optimization solver SCIP 8, playing the role of δ-oracle. As
Vθ(t, x) + ϕ̂(θ)(t− 1− T) is therefore feasible in (Rd), the value Vθ(0, x0)− ϕ̂(θ)(1 + T)
is a guaranteed lower bound on val(Rd), and, therefore, on V ∗(0, x0).

• “Value feedback control (CLV)” is the hitting time of the best feasible control generated
along the iterations: either with the heuristic control at the first iteration, or the closed-
loop controlled trajectory defined by (CLV) associated with V = Vθk at iteration k of
Algorithm 4.

1This package is available at github.com/aoustry/MinTimeControl.jl

66

github.com/aoustry/MinTimeControl.jl

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

• “Solution time (in s)” is the total computational time of the heuristic control, of the
iterations of Algorithm 4 including the sampling oracle, and of the closed-loop trajectory
simulation. Therefore, this is the computational time needed to obtain the estimated
value of (Rd) (second column), and the best feasible control (fourth column).

• “Iterations number” is the total number of iterations of Algorithm 4.
• “Certification time (in s)” is the computational time of the global optimization solver

SCIP 8, playing the role of δ-oracle, to compute the aforementioned bound ϕ̂(θ), and
deduce the certified lower bound (third column).

3.4.1 A time-dependent Zermelo problem

We consider a time-dependent nonlinear system with n = 2 and m = 2, defined by

ẋ1(t) = u1(t) + 1
2(1 + t) sin(πx2(t)) (3.63)

ẋ2(t) = u2(t), (3.64)

with the state constraint set X = [−1, 1] × [−1, 0], the control set U = B(0, 1). This is the
celebrated Zermelo problem, but with a river flow gaining in intensity over time. Figure 3.1
gives a representation of this flow. The initial condition is x(0) = (0,−1), and the target set
is K = B(0, r), for r = 0.05. The travel time associated with the heuristic control, consisting
in following a straight trajectory, is 1.261 (see Figure 3.2). Table 3.1 presents the numerical
results for different values of d. We see that the value of the linear semi-infinite program (Rd)
quickly converges as d increases: starting from d = 6, the 4 first digits of the estimated value
(second column) reach a plateau which corresponds to the value (1.100) of the best feasible
trajectory we generate with our feedback control. As regards the certified lower bound, the
best value (1.092) is obtained for d = 5. For greater d, we see that increasing d deteriorates
the tightness of the best certified bound. This is due to the fact that the separation problem
becomes more difficult, with two consequences: (i) the sampling fails to detect unsatisfied
constraints, so Algorithm 4 stops with a solution that has a real infeasibility ϕ(θ) larger than ϵ
(targeted tolerance), and (ii) the global optimization solver called afterwards does not manage
to solve the separation problem to global optimality within the time limit (case d ∈ {7, 8}),
given only a large upper bound ϕ̂(θ) on the true infeasibility ϕ(θ). We notice that as soon as
d ≥ 3, the feedback control defined by (CLV) (see Section 3.3) yields a trajectory that is 13%
faster than the heuristic trajectory. In summary, we obtain a certified optimization gap of 0.7%
for this minimal time control problem.

In the special case of this non-polynomial controlled system, a polynomial reformulation

67

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Figure 3.1: Representation of the water flow in the Zermelo problem

d ∈ N
Estimated

val. of (Rd)
Certified

LB for (Rd)
Val. feedback
control (CLV)

Solution
time (in s)

Iter.
nbr.

Certification
time (in s)

2 0.952 0.945 1.261 2 4 1
3 1.064 1.044 1.101 12 14 12
4 1.096 1.084 1.100 22 17 1530
5 1.099 1.092 1.100 54 22 4000
6 1.100 1.059 1.100 60 18 2330
7 1.100 1.051 1.100 105 24 TL
8 1.100 0.690 1.100 215 31 TL

Table 3.1: Time-dependent Zermelo problem: lower and upper bounds, and compu-
tational times for various degrees of the semi-infinite hierarchy (Rd)

exists, at the price of increasing the dimension of the system to n = 4:

ẋ1(t) = u1(t) + 1
2(1 + t) sin(πx2(t)) (3.65)

ẋ2(t) = u2(t) (3.66)

ẋ3(t) = −πx4(t)u2(t) (3.67)

ẋ4(t) = πx3(t)u2(t), (3.68)

with the state constraint set X̂ = [−1, 1]× [−1, 0]× [−1, 1]× [−1, 0], the control set Û = B(0, 1),
the terminal set K̂ = B(0, r)× [−1, 1]× [−1, 0], and the initial condition x0 = (0,−1,−1, 0). The
dynamics maintain the equalities x3(t) = cos(πx2(t)) and x4(t) = sin(πx2(t)). We are therefore
able to compare our approach with the SoS hierarchy, which consists of replacing semi-infinite
inequalities in (Rd) with SoS positivity certificates. For each order k of the hierarchy, i.e.,
for a maximal degree d = 2k of the polynomial basis, this yields a semidefinite programming
problem that we solve with the solver MOSEK, used with the package SumOfSquares.jl. We

68

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Figure 3.2: Time-dependent Zermelo problem: heuristic control and feedback control
(d = 6)

obtain a polynomial V (t, x1, x2, x3, x4) that is solution of the corresponding relaxation. Based
on this polynomial, we also simulate a feedback controlled trajectory solution of the differential
inclusion (CLV). Table 3.2 compares the performance of the semi-infinite programming and

SIP hierarchy SOS hierarchy

d ∈ N
Est./Cert.

LB
Val. feedback
control (CLV)

Sol./Cert.
time (in s)

Cert.
LB

Val. feedback
control (CLV)

Sol.
time (in s)

2 0.952/0.945 1.261 2/1 0.533 1.261 ≤ 1
4 1.096/1.084 1.101 22/1530 1.064 1.105 1
6 1.100/1.059 1.100 60/2330 1.099 1.100 12
8 1.100/0.690 1.100 215/TL 1.100 1.100 190

Table 3.2: Time-dependent Zermelo problem: comparing the SIP and the SOS
approaches

the SoS approaches. We see that for low-degree polynomials (d ≤ 4), the semi-infinite hierarchy
gives better lower bounds than the SoS hierarchy, although at a higher computational time in
the case d = 4. For d ∈ {6, 8}, the lower bound of the SoS hierarchy is tight, while only the
estimated lower-bound of the semi-infinite hierarchy is tight: to obtain a certified lower bound,
the SoS hierarchy performs better. For these values of the degree d, this optional certification
step (calling to the global optimization solver) is costly in the proposed semi-infinite approach.
For this first example, where the SoS hierarchy is applicable since a polynomial reformulation
of the dynamical system exists, the semi-infinite approach is slower than the SoS hierarchy.

69

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

3.4.2 A regatta toy-model

We consider a time-dependent nonlinear (and non-polynomial) system with n = 2 and m = 1,
defined by

ẋ1(t) = windspeed(t) polar [u(t)] cos(u(t) + windangle(t)) (3.69)

ẋ2(t) = windspeed(t) polar [u(t)] sin(u(t) + windangle(t)), (3.70)

where windspeed(t) = 2 + t, windangle(t) = π
2 (1− 0.4t) and polar[u] = | sin(2u

3)|. In this model,
the control u(t) represents the relative angle between the heading of the boat and the (origin)
direction of the wind. The evolution of the wind direction over time is depicted in Figure 3.3.
The polar curve of this toy model of a sailing boat is represented in Figure 3.4; this figure
clearly shows that this model does not satisfy Assumption 3.1. Although the absence of duality
gap between the control problem and the LP problem (DF) is, therefore, not guaranteed, we
see in Table 3.3 that if this gap exists in this case, it is low (below 1.6%). The state constraint
set is X = [−1, 1]2, and the control set U = [−π, π]. The initial condition is x(0) = (0,−1),
and the target set is K = B(0, r), for r = 0.05. The travel time associated with the heuristic
control, consisting in following a straight trajectory, is 1.278 (see Figure 3.5).

(a) t = 0 (b) t = 0.4 (c) t = 0.8

Figure 3.3: Regatta problem: wind at different times

d ∈ N
Estimated

val. of (Rd)
Certified

LB for (Rd)
Val. feedback
control (CLV)

Solution
time (in s)

Iter.
nbr.

Certification
time (in s)

2 0.834 0.829 1.278 6 6.0 2
3 0.896 0.880 0.912 16 10.0 56
4 0.904 0.896 0.915 31 13.0 498
5 0.907 0.774 0.912 52 16.0 1020
6 0.907 0.799 0.912 100 22.0 1930
7 0.908 0.691 0.912 190 29.0 7600
8 0.908 0.000 0.911 312 33.0 TL

Table 3.3: Regatta problem: lower and upper bounds, and computational times for
various degrees of the semi-infinite hierarchy (Rd)

70

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

Figure 3.4: Regatta problem: the polar curve of the sailing boat

Figure 3.5: Regatta problem: heuristic control and feedback control (d = 6)

We see that the highest estimated value of (Rd), for d = 7 and d = 8, is 0.5% lower than
the value (0.913) of the best feasible trajectory obtained with the feedback controller for d = 6.
This feedback controller yields a trajectory which is 29% faster than the heuristic trajectory. As
regards the certified lower bound, d = 4 yields the best result (0.896), at a price of a running
time of 498s for the exact oracle (SCIP 8). For the same reasons as in the previous application,
a larger d does not necessarily mean a better certified lower bound obtained within the time
limit. In summary, we obtain a certified optimization gap of 1.6% for this minimal time control
problem.

71

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

3.4.3 A generalized Brockett integrator

For n ∈ N∗ and m = n − 1 and given a continuous mapping q : Rn → Rm, we consider the
following generalization of the Brockett integrator [149],

ẋi(t) = ui(t) ∀i ∈ {1, . . . , n− 1} (3.71)

ẋn(t) = q(x(t))⊤u(t). (3.72)

In particular, we study this system for n = 6, and

q(x) =
(
2/(2 + x4),−x1,− cos(x1x3), exp(x2), x1x2x6

)
. (3.73)

The state constraint set is X = [−1, 1]5, and the control set is U = B(0, 1). The initial condition
is (x0) = 1

21, and the target set is K = B(0, r), for r = 0.05. The travel time associated with
the heuristic control is 1.377.

d ∈ N
Estimated

val. of (Rd)
Certified

LB for (Rd)
Val. feedback
control (CLV)

Solution
time (in s)

Iter.
nbr.

Certification
time (in s)

2 1.071 0.763 1.071 220 28 73
3 1.072 0.000 1.071 5630 133 TL
4 1.072 0.000 1.070 147400 319 TL

Table 3.4: Generalized Brockett integrator: lower and upper bounds, and computa-
tional times for various degrees of the semi-infinite hierarchy (Rd)

Since this system has a larger dimension than the other two examples, we see that the
computation times are longer for the same degree d. Already for d = 2, we obtain an estimated
value of (Rd) that is within 0.1% of the value of the feedback control (1.070). This feedback
control yields an improvement of 22% over the heuristic trajectory. Note that the estimated
values of (Rd) computed by Algorithm 4 with the (inexact) sampling oracle are slightly larger
than the value of the best trajectory we computed: thus, these estimates are not valid lower
bounds, but only estimates of the value of the minimum time control problem. Regarding the
certification of lower bounds, the global optimization solver SCIP 8 fails to produce tight upper
and lower bounds on ϕ(θ), the infeasibility of the solution θ returned by Algorithm 4. Therefore,
the resulting certified lower bounds are not tight either. In summary, we obtain a certified
optimization gap of 29% for this minimal time control problem.

3.5 Conclusion

We apply the dual approach in minimal time control, which consists in searching for maximal
subsolutions of the HJB partial differential equation to generic nonlinear, even non-polynomial,
controlled systems. The basis functions used to generate these subsolutions are polynomials that
are subject to semi-infinite constraints. We prove the theoretical convergence of the resulting

72

CHAPTER 3. MINIMAL TIME NONLINEAR CONTROL VIA CONVEX SEMI-INFINITE
PROGRAMMING

hierarchy of semi-infinite linear programs, and our numerical tests on three different systems
show good convergence properties in practice. These results show that using a random sampling
oracle allows a good approximation of the value of the control problem. It is possible for small
systems to obtain tight and certified lower bounds based on a global optimization solver. Finally,
the numerical experiments also show that the computed subsolutions of the HJB equation
help to recover near-optimal controls in a closed-loop form. As illustrated in these numerical
experiments, the advantage of our approach based on semi-infinite programming, compared to
the sum-of-squares approach, is the ability to handle non-polynomial systems. In the numerical
example where a polynomial reformulation of the system was possible, the sum-of-squares
approach was, however, faster.

A promising avenue for continuing this work is to investigate using another basis of functions
to search for an approximate value function, resulting in other semi-infinite programming hier-
archies with convergence guarantees. In particular, it would be relevant to use nondifferentiable
functions in the basis to improve approximation capabilities for nondifferentiable value functions.
We could investigate whether using nondifferentiable functions for the basis could help extend
the approximation result (Theorem 3.9) to the case of nondifferentiable value functions. Another
avenue of research is to extend the algorithmic approach and the theoretical results to a generic
optimal control problem.

73

Part II

Global optimization of finite and
semi-infinite power flow problems

74

C
h

a
p

t
e

r 4
Conic programming and MILP scheme for
global optimization of AC power flows

The Alternating Current Optimal Power Flow (ACOPF) problem is a foundational op-
timization problem related to the dispatching of electricity in a power network. This
nonconvex optimization problem has been of interest to the electrical engineering and

mathematical optimization communities for several decades. The ACOPF problem with power
magnitude limits on lines reads as follows

min
V ∈CB, S∈CG

∑
g∈G

(
c0g + c1g Re(Sg) + c2g Re(Sg)2

)
s.t. ∀b ∈ B vb ≤ |Vb| ≤ vb
∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg − Sd
b = ⟨Mb, V V

H⟩

∀(b, a) ∈ L |(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV
∗
a | ≤ Sba

∀(a, b) ∈ L |(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV
∗
a | ≤ Sab

∀(b, a) ∈ L ∪ LR θba ≤ ∠Vb − ∠Va ≤ θba.



(ACOPF)

As defined in the Introduction, the oriented graph N = (B,L) represents the electrical network.
The need for an orientation of the edges (the electrical lines) results from the definition of the
orientation of the electricity flows. The set Gb is the set of generators installed at the bus b, and
the total set of generators is G = ∪b∈BGb. The different parameters of this problem, presented
in the Introduction, are recalled in Table 4.1. The matrix Mb, for b ∈ B, is defined as

Mb = Y s
b Ebb +

∑
a:(b,a)∈L

(
Y ff
baEbb + Y ft

baEba
)

+
∑

a:(b,a)∈LR

(
Y tt
abEbb + Y tf

abEba
)
.

75

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Parameters Index set Meaning
c0g, c1g ∈ R, c2g ∈ R+ g ∈ G Generator’s cost parameters
sg, sg ∈ C g ∈ G Generator’s domain bounds
vb, vb ∈ R+ b ∈ B Voltage magnitude bounds
Sd
b ∈ C b ∈ B Power demand
Y s
b ∈ C b ∈ B Shunt admittance
Y ff
ba, Y

ft
ba, Y

tf
ba , Y

tt
ba ∈ C (b, a) ∈ L Line impedance matrix

Sba ∈ R+ (b, a) ∈ L ∪ LR Power magnitude limit
θba, θba ∈ [−π

2 ,
π
2] (b, a) ∈ L ∪ LR Angle difference limits

Table 4.1: Main parameters of the ACOPF problem

Related works

Thanks to interior-point methods (IPM) for nonlinear programming (NLP) [37, 239], developed
since the 1990s, the computation of ACOPF feasible solutions and local minimizers is possible,
even for instances of several thousand nodes [10, 116]. However, since the ACOPF problem is
nonconvex, there is no guarantee that a local minimizer found by an NLP algorithm is a global
minimizer. To bound the optimality gap of such local minimizers, several convex relaxations
have been introduced in the last decade, such as LP, SOCP, convex QCQP, or SDP relaxations.
A review of the numerous relaxation techniques for the ACOPF problem is available in [166].
Leveraging NLP algorithms and convex relaxations techniques, several approaches emerged to
solve the ACOPF problem to global optimality. We gather these works for globally solving the
ACOPF problem in four different categories.

Relaxation strengthening and bound tightening. Strengthening the classical convex
relaxations [166], such as the rank relaxation, helps improve the corresponding lower bounds. This
strengthening is possible through additional valid inequalities coming from the polar formulation
of the ACOPF problem [57, 123, 124] or derived from the Reformulation-Linearization Technique
(RLT) [201]. Feasibility-Based Bound Tightening (FBBT) and Optimization-Based Bound
Tightening (OBBT) techniques [14], the latter being based on the value of a known feasible
solution, are also known to be particularly efficient for the ACOPF problem [57, 213]. Even if
these methods do not have a guarantee of convergence toward a global solution in the general
case, these papers report that they significantly reduce the optimality gap and even close the
gap in some instances.

Moment-Sum-of-Squares hierarchy. The moment sum-of-squares (SoS) hierarchy of
relaxations for polynomial optimization problems [132] has been applied to the ACOPF
problem in several works [88, 87, 165, 168]. The convergence of the relaxation values towards
the optimal value of the ACOPF problem is proven, at the price of the rapidly increasing
size and computational cost of the resulting convex relaxations. In practice, only the first and

76

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

second-order relaxations are solvable for medium-scale ACOPF instances, using the sparse
variant of the moment SoS hierarchy [131].

Spatial branch-and-bound. Other global optimization approaches for the ACOPF problem
follow spatial B&B schemes [15]. To obtain a lower bound at each node of the exploration tree,
these algorithms may use an SOCP relaxation [122], a convex QCQP relaxation [85, 86] or an
SDP relaxation [49].

Piecewise convex relaxations. Rather than implementing a spatial B&B algorithm from
scratch, an alternative is to encode branching decisions via binary variables and use an off-the-
shelf Mixed-Integer Programming (MIP) solver. This leads to piecewise convex relaxations,
which can be iteratively refined. This is the approach followed in [153], leading to convex
Mixed-Integer Quadratically Constrained Programming (MIQCP) problems.

Contributions and organization of the chapter

In this quest towards global optimization, the contributions of this chapter are manifold. First,
we add standard and novel valid inequalities to strengthen the SDP relaxation, which yields a
conic programming relaxation. This set of valid inequalities dominate the lifted nonlinear cuts
introduced in [57] for the same purpose. Second, leveraging the conic programming constraints,
we propose a global optimization algorithm that solves a sequence of dynamically generated
piecewise linear relaxations, i.e., MILP problems. Contrary to [153], a previous paper using
piecewise relaxations for the ACOPF problem, we do not use MIQCP but MILP models, which
integrate cuts from the conic relaxation. The integration of linear cuts derived from the conic
relaxation may be seen as a semi-infinite discretization scheme, as presented in this dissertation’s
Introduction. Third, we apply this algorithm to the IEEE PES PGLib [10] benchmark and
compare the optimality gaps with three recent global optimization approaches [87, 94, 213]. In
Section 4.1, we present the ACOPF problem and an equivalent reformulation of it. Section 4.2
introduces our valid inequalities, the resulting conic programming relaxation, and our bound
tightening procedure. The iterative MILP scheme is presented in Section 4.3 and the numerical
experiments in Section 4.4.

4.1 Extended-variables formulation for the ACOPF problem

The global optimization algorithm proposed in this chapter is based on an equivalent formulation
of the ACOPF problem. This formulation includes extended variables Wba representing VbV ∗

a .
Classically, we do not add a variable Wba for all pairs (b, a) ∈ B × B, but only for certain pairs
built from a tree decomposition of the graph N .

77

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Definition 4.1. A tree decomposition T of the graph N = (B,L) is a tree where each node
k ∈ T is associated with a set Bk ⊂ B, and satisfying the following properties

• The union of the subsets Bk equals the set B: ⋃k∈T Bk = B,
• For every (b, a) ∈ L, there exists k ∈ T s.t {b, a} ⊂ Bk,
• If b ∈ Bk ∩ Bℓ for any k, ℓ ∈ T , then b ∈ Bj for all nodes j of the tree T in the unique

path between k and ℓ.

We consider a given tree decomposition T of the graph N , and we introduce the symmetric
set E ⊂ B × B of arcs defined as E = ∪k∈T Bk × Bk. As a matter of fact, the sets Bk are cliques
of the undirected graph induced by (B, E). In this respect, the sets Bk are called cliques. We
define H(E) = {W ∈ CE : ∀(b, a) ∈ E ,Wba = W ∗

ab}, the set of Hermitian matrices with sparsity
pattern E . For any k ∈ T , we denote by WBk,Bk

the matrix (Wba)(b,a)∈B2
k
. With this notation,

we reformulate (ACOPF) as

min
S∈CG , W∈H(E)

∑
g∈G

(
c0g + c1g Re(Sg) + c2g Re(Sg)2

)
s.t. ∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B v2

b ≤Wbb ≤ v2
b

∀b ∈ B
∑
g∈Gb

Sg − Sd
b = ⟨Mb,W ⟩

∀(b, a) ∈ L |(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba| ≤ Sba
∀(b, a) ∈ LR |(Y tt

ab)∗Wbb + (Y tf
ab)∗Wba| ≤ Sba

∀(b, a) ∈ L ∪ LR tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba)
∀(b, a) ∈ E |Wba|2 = WbbWaa (⋆)
∀k ∈ T WBk,Bk

⪰ 0.


(ACOPFW)

While the clique-based SDP relaxation is well known, this clique-based reformulation of the
ACOPF problem itself is not stated in the literature, as far as we know. Yet, we acknowledge
that the proof of Theorem 4.1 is closely related to the developments presented in [49].

Theorem 4.1. A pair (S,W) is feasible (resp. optimal) in (ACOPFW) if and only if there
exists V ∈ CB such that (S, V) is feasible (resp. optimal) in (ACOPF) and Wba = VbV

∗
a for

all (b, a) ∈ E.

Proof. We prove the equivalence for the feasibility, which also proves the equivalence for the
optimality since both problems share the same objective value. We take (S, V) a feasible solution
in (ACOPF) and we define W ∈ H(E) as Wba = VbV

∗
a for any (b, a) ∈ E . For any b ∈ B, we

make the following observations:

• Since vb ≤ |Vb| ≤ vb, the inequalities v2
b ≤ |Vb|2 ≤ v2

b and v2
b ≤Wbb ≤ v2

b hold.

78

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

• Since ∑
g∈Gb

Sg − Sd
b =

〈
Mb, V V

H
〉

and since Mb ∈ Hn(E), we deduce by substitution that∑
g∈Gb

Sg − Sd
b = ⟨Mb,W ⟩.

Similarly by direct substitution, we deduce that |(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba| ≤ Sba for all (b, a) ∈ L
and |(Y tt

ab)∗Wbb + (Y tf
ab)∗Wba| ≤ Sba for all (b, a) ∈ LR. For any (b, a) ∈ L ∪ LR, since ∠Wba =

∠VbV ∗
a = ∠Vb − ∠Va, we have θba ≤ ∠Wba ≤ θba. Using that θba, θba ∈ [−π

2 ,
π
2], we deduce

that tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba). To conclude about the feasibility of
(S,W) in (ACOPFW), we state that WBk,Bk

= (VbV ∗
a)(b,a)∈B2

k
⪰ 0 for all k ∈ T , and that

|Wba|2 = |Vb|2|Va|2 = WbbWaa for all (b, a) ∈ E .
Conversely, we consider any (S,W) feasible in (ACOPFW). Since WBk,Bk

⪰ 0 and |Wba|2 =
WbbWaa for all (b, a) ∈ B2

k, we can apply [49, Proposition 6] to state that rank WBk,Bk
= 1

for all k ∈ T . By induction on the tree decomposition T , we prove that there exists V ∈ CB

such that Wba = Vb(Va)∗ for all (b, a) ∈ E . The case |T | = 1 is trivial, since any rank-one
PSD matrix W can be written as W = V V H. We now assume that the induction hypothesis
is true for any graph with a tree decomposition of size less or equal than p ∈ N∗, and we
consider a graph N with a tree decomposition T of size p+ 1. We consider a leaf k of T , Bk the
corresponding clique, B̃ = ∪ℓ̸=kBℓ the union of the other cliques, and Ck = Bk \ B̃. By property
of a tree decomposition, since k is a leaf of T , T \ {k} is a tree decomposition of the graph
(B̃, Ẽ), where Ẽ denotes the edges in E that are not adjacent to Ck. Applying the induction
hypothesis, since T \{k} has size p, there exists a complex vector V ∈ CB̃ such that Wba = VbV

∗
a

for all (b, a) ∈ Ẽ . Additionally, since WBk,Bk
is a rank-one PSD matrix, there exists U ∈ CBk

such that Wba = UbU
∗
a for all (b, a) ∈ Bk × Bk. For all b ∈ Bk \ Ck, |Vb|2 = Wbb = |Ub|2, since

b ∈ B̃∩Bk. Hence, |Vb| = |Ub| by nonnegativity of the module. Moreover, for all (b, a) ∈ (Bk\Ck)2,
∠Vb−∠Va = ∠Wba = ∠Ub−∠Ua, and hence, ∠Vb−∠Ub = ∠Va−∠Ua. Defining µ = ∠Vb−∠Ub
for any b ∈ Bk \ Ck, we define U ′ = eiµU , which satisfies U ′

b = Vb for all b ∈ Bk \ Ck. Hence,
the vector V ′ ∈ CB defined as V ′

b = U ′
b if b ∈ Bk and V ′

b = Vb if b ∈ B̃, is well-defined and
satisfies Wba = V ′

b (V ′
a)∗ for all (b, a) ∈ E . By induction, this proves that there exists a vector

V ∈ CB such that Wba = VbV
∗
a for all (b, a) ∈ E . The feasibility of (S, V) in (ACOPF) follows

by substituting Wba by VbV ∗
a in the constraints of (ACOPFW).

4.2 Strengthened conic programming relaxation

In the formulation (ACOPFW), the constraints (⋆) are the only nonconvex constraints. Re-
moving them leads to the clique-based SDP relaxation [166, 177] (see Chapter 5). Instead of
merely deleting constraints (⋆), we investigate different ways of approximating these constraints,
exploiting the potentially tight voltage magnitude and phase angle difference bounds, so as to
strengthen the SDP relaxation.

79

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

4.2.1 Outer-approximation of the nonconvex constraints

For all b ∈ B, we introduce a variable Lb ∈ [vb, vb] representing the voltage magnitude |Vb|. For
all (b, a) ∈ E , we introduce a variable Rba ∈ [vbva, vbva] standing for |Vb||Va| and is subject to

Rba ≥ vbLa + vaLb − vbva Rba ≥ vbLa + vaLb − vbva (4.1)

Rba ≤ vbLa + vaLb − vavb Rba ≤ vaLb + vbLa − vavb. (4.2)

For all b ∈ B, we also define the following constraints

L2
b ≤ Rbb Rbb = Wbb (4.3)

Rbb + vbvb ≤ (vb + vb)Lb. (4.4)

Whereas constraints (4.1)-(4.4) approximate the equality R2
ba = WbbWaa, we also need to

approximate |Wba| = Rba. For this purpose, we impose for all (b, a) ∈ E ,

|Wba| ≤ Rba. (4.5)

This constraint semantically corresponds to the constraint (9) in [110]. For all (b, a) ∈ E\(L∪LR),
we define θba = −2π and θba = 2π. In fact, we present in Section 4.2.3 how these phase angle
difference bounds may be tightened based on a shortest path algorithm. Then, we can define
the angles ωba = θba+θba

2 and δba = θba−θba
2 for any (b, a) ∈ E . With this notation, we propose

the following novel constraints, which are valid for any (b, a) ∈ E such that δba ≤ π
2 :

cos(ωba)Re(Wba) + sin(ωba)Im(Wba) ≥ Rba cos(δba). (4.6)

Constraints (4.5)-(4.6) are illustrated in Figure 4.1. Finally, for every k ∈ T , we require that

RBkBk
= (RBkBk

)H
(

1 LH
Bk

LBk
RBkBk

)
⪰ 0, (4.7)

where RBkBk
denotes the matrix (Rba)(b,a)∈B2

k
and LBk

denotes the vector (Lb)b∈Bk
. Adding the

decision vectors L ∈ RB and R ∈ RE to the problem (ACOPFW) and replacing constraints (⋆)
by constraints (4.1)-(4.7), we obtain a conic programming problem, that we denote (ACOPFC).

80

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Im(Wba)

Re(Wba)

|Wba| = Rba

θba
θba

Figure 4.1: Convex approximation (in blue) of the equality |Wba| = Rba within the
considered range of angles, performed by the constraints (4.5) and (4.6)

min
S∈CG , W∈H(E)
L∈RB,R∈RE

∑
g∈G

(
c0g + c1g Re(Sg) + c2g Re(Sg)2

)
s.t. ∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B v2

b ≤Wbb ≤ v2
b

∀b ∈ B
∑
g∈Gb

Sg − Sd
b = ⟨Mb,W ⟩

∀(b, a) ∈ L |(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba| ≤ Sba
∀(b, a) ∈ LR |(Y tt

ab)∗Wbb + (Y tf
ab)∗Wba| ≤ Sba

∀(b, a) ∈ L ∪ LR tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba)
∀k ∈ T WBk,Bk

⪰ 0
∀(b, a) ∈ E (4.1)− (4.2)
∀b ∈ B (4.3)− (4.4)

∀(b, a) ∈ E : δba ≤ π
2 (4.6)

∀k ∈ T (4.7).



(ACOPFC)

Proposition 4.1. The conic programming problem (ACOPFC) is a relaxation of (ACOPFW).

Proof. We prove the validity of the constraints (4.1)-(4.7). More specifically, we prove that for
any couple (S,W) ∈ CG ×H(E) feasible in (ACOPFW), the quadruplet (S,W,L,R) is feasible
in (ACOPFC), where L and R are defined as Lb =

√
Wbb and Rba = |Wba| for all (b, a) ∈ E .

Since the objective function is the same in (ACOPFC) and (ACOPFW), this will prove that
(ACOPFC) is a relaxation of (ACOPFW). Since Rba = LbLa and (Lb, La) ∈ [vb, vb]× [va, va],
the triplet (Rba, Lb, La) satisfies the McCormick inequalities [159] with respect to these bounds,
i.e., constraints (4.1)-(4.2). Constraint (4.3) is satisfied since Wbb ∈ R, as (S,W) is feasible

81

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

in (ACOPFW), yielding Rbb = |Wbb| = Wbb = L2
b . Constraint (4.4) also being a McCormick

constraint (for b = a), it is satisfied by (Rbb, Lb), as Rbb = L2
b . Constraint (4.5) just follows

from the definition of Rba = |Wba|. For any (b, a) ∈ E , we define θba = ∠Wba; considering the
definition of ωba and δba, we notice that |θba − ωba| ≤ δba. For this reason, if δba ≤ π

2 , we obtain
cos(|θba−ωba|) ≥ cos(δba), as cos is decreasing over [0, π2]. Using the parity of cos, and multiplying
by Rba ≥ 0, we obtain Rba cos(θba − ωba) ≥ Rba cos(δba) Moreover, Rba cos(θba − ωba) =
|Wba|(cos(ωba) cos(θba)+sin(ωba) sin(θba)) = cos(ωba)Re(Wba)+sin(ωba)Im(Wba), explaining that
(Rba,Wba) satisfies constraint (4.6), whenever δba ≤ π

2 . Finally, constraint (4.7) just follows from

the equalities Rba = |Wba| = |Wab| = Rab and
(

1 LH
Bk

LBk
RBkBk

)
=
(

1
LBk

)(
1 LH

Bk

)
⪰ 0.

By construction, the relaxation (ACOPFC) is tighter than the clique-based SDP relaxation,
the value of which equals the value of the standard SDP relaxation [91], also known as rank
relaxation. The following theorem shows how constraints (4.1)-(4.6) help having |Wba|2 ≈
WbbWaa when the voltage magnitude and phase angle difference intervals are small. We recall
the notation ∆b = vb − vb and that we assume ∆b ≤ 1 throughout the paper.

Theorem 4.2. For any (b, a) ∈ E, the following statements hold

• Under constraints (4.1)-(4.2), we have |R2
ba − L2

aL
2
b | ≤ 9∆b∆a.

• Under constraints (4.3)-(4.4), we have |WbbWaa − L2
bL

2
a| ≤ (∆b + ∆a)2.

• Under constraints (4.5)-(4.6), if δba ≤ π
2 , we have | |Wba|2 −R2

ba| ≤ 16δ2
ba.

Therefore, if constraints (4.1)-(4.6) are satisfied and δba ≤ π
2 , then | |Wba|2 − WbbWaa| ≤

9∆b∆a + (∆b + ∆a)2 + 16δ2
ba.

Proof. First, we take any (b, a) ∈ E and we define a triplet (W,L,R) satisfying constraints (4.1)-
(4.2). We define a1 = vbLa + vaLb − vbva and we notice that LbLa − a1 = (Lb − vb)(La − va) ∈
[0,∆b∆a], since Lb − vb ∈ [0,∆b] and La − va ∈ [0,∆a]. Hence, a1 ∈ [LbLa − ∆b∆a, LbLa].
Similarly, defining a2 = vbLa+vaLb−vbva, a3 = vbLa+vaLb−vavb and a4 = vaLb+vbLa−vavb,
we can prove that a2 ∈ [LbLa−∆b∆a, LbLa], a3 ∈ [LbLa, LbLa + ∆b∆a] and a4 ∈ [LbLa, LbLa +
∆b∆a]. According to constraints (4.1)-(4.2), Rba ∈ [max(a1, a2),min(a3, a4)], which proves that
Rba ∈ [LbLa −∆b∆a, LbLa + ∆b∆a]. We square the inequalities 0 ≤ Rba ≤ LbLa + ∆b∆a to
obtain

R2
ba ≤ L2

bL
2
a + ∆b∆a(2LbLa + ∆b∆a) ≤ L2

bL
2
a + 9∆b∆a, (4.8)

the last inequality following from Lb ≤ vb ≤ 2, La ≤ va ≤ 2 and 0 ≤ ∆b∆a ≤ 1. Squaring the
inequalities 0 ≤ LbLa ≤ Rba + ∆b∆a, we deduce that L2

bL
2
a ≤ R2

ba + ∆b∆a(2Rba + ∆b∆a) ≤
R2
ba + 9∆b∆a since Rba ≤ vbva ≤ 4. Consequently,

|R2
ba − L2

aL
2
b | ≤ 9∆b∆a. (4.9)

82

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Second, we take any triplet (W,L,R) satisfying constraints (4.3)-(4.4) for b and a. We notice
that the maximum of the quadratic form (vb + vb)X −X2 − vbvb is attained for X = vb+vb

2

with value (vb+vb)2

4 − vbvb = ∆2
b

4 . Hence, (vb + vb)Lb − L2
b − vbvb ≤

∆2
b

4 . Constraint (4.4)
yielding Rbb + vbvb ≤ (vb + vb)Lb, we deduce that Rbb − L2

b ≤ ∆2
b/4. As Rbb ≥ 0, we have

0 ≤ Rbb ≤ L2
b + ∆2

b/4. Applying the same reasoning for a, we have 0 ≤ Raa ≤ L2
a + ∆2

a/4.
Multiplying both sets of inequalities together, we obtain

0 ≤ RbbRaa ≤ L2
bL

2
a + L2

b

∆2
a

4 + L2
a

∆2
b

4 + ∆2
b

4
∆2
a

4 ≤ L
2
bL

2
a + ∆2

a + ∆2
b + 2∆b∆a (4.10)

≤ L2
bL

2
a + (∆b + ∆a)2, (4.11)

using that Lb, La ∈ [0, 2] and ∆b,∆a ∈ [0, 1]. As constraint (4.3) yields L2
b ≤ Rbb and L2

a ≤ Raa,
we deduce that L2

bL
2
a ≤ RbbRaa and finally, since Rbb = Wbb and Raa = Waa,

|WbbWaa − L2
bL

2
a| ≤ (∆b + ∆a)2. (4.12)

Third, we take any triplet (W,L,R) satisfying constraints (4.5)-(4.6). We consider (b, a) ∈ E
such that δba ≤ π

2 . We write Wba as |Wba|eiθ and constraint (4.6), which is applicable since
δba ≤ π

2 , yields |Wba|(cos(ωba) cos(θ) + sin(ωba) sin(θ)) ≥ Rba cos(δba). This may be written as
|Wba| cos(ωba − θ) ≥ Rba cos(δba). This implies that |Wba| ≥ Rba cos(δba), and thus |Wba|2 ≥
R2
ba cos(δba)2. As |Wba|2 ≤ R2

ba, according to constraint (4.5), we have

0 ≤ R2
ba − |Wba|2 ≤ R2

ba(1− cos(δba)2) = R2
ba sin(δba)2.

Using that Rba ≤ 4 and that sin(δba)2 ≤ δ2
ba, we obtain

| |Wba|2 −R2
ba| ≤ 16δ2

ba. (4.13)

As a conclusion, for any triplet (W,L,R) satisfying constraints (4.1)-(4.6), we deduce from
Eqs. (4.9), (4.12) and (4.13) that

| |Wba|2 −WbbWaa| ≤ | |Wba|2 −R2
ba|+ |R2

ba − L2
bL

2
a|+ |L2

bL
2
a −WbbWaa| (4.14)

≤ 9∆b∆a + (∆b + ∆a)2 + 16δ2
ba. (4.15)

4.2.2 Connections to previous works

Previous works proposed valid inequalities to strengthen the SDP relaxation of the ACOPF
problem [57, 123, 124]. In [57], the authors show that these valid inequalities are all dominated
by the inequalities [57, (36a) and (36b)]. Using the parameter vσb = vb + vb, the inequalities [57,
(36a) and (36b)] read, with our notation,

vσ
b v

σ
a (cos(ωba)Re(Wba) + sin(ωba)Im(Wba))− va cos(δba)vσ

aWbb − vb cos(δba)vσ
b Waa

≥ vbva cos(δba)(vbva − vbva)
(†)

vσ
b v

σ
a (cos(ωba)Re(Wba) + sin(ωba)Im(Wba))− va cos(δba)vσ

aWbb − vb cos(δba)vσ
b Waa

≥ −vbva cos(δba)(vbva − vbva).
(‡)

83

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

The following proposition states that constraints (4.1)-(4.6), used here to strengthen the SDP
relaxation, dominate Eqs. (†)-(‡).

Proposition 4.2. For any (b, a) ∈ L ∪ LR, for any quadruplet (Re(Wba), Im(Wba),Wbb,Waa)
such that there exist Lb, La, Rba ∈ R+ that satisfy (4.1)-(4.6), then the quadruplet (Re(Wba),
Im(Wba), Wbb, Waa) satisfies (†)-(‡).

Proof. We take any (b, a) ∈ L ∪ LR and any quadruplet (Re(Wba), Im(Wba),Wbb,Waa) such
that there exists Lb, La, Rba ∈ R+ such that constraints (4.1)-(4.6) are satisfied. Constraints
(4.3)-(4.4) applied for b and a yields

vσb Lb ≥Wbb + vbvb (4.16)

vσaLa ≥Waa + vava. (4.17)

First, we combine Eqs. (4.16)-(4.17) with Rba ≥ vaLb + vbLa − vbva from constraint (4.1),
that we multiply by vσb v

σ
a ≥ 0, to deduce that vσb vσaRba ≥ vav

σ
aWbb + vbv

σ
bWaa + vav

σ
avbvb +

vbv
σ
b vava − vσb vσavbva and, thus,

vσb v
σ
aRba − vavσaWbb − vbvσbWaa ≥ vavσavbvb + vbv

σ
b vava − vσb vσavbva = vbva(vbva − vbva),

(4.18)

as vavσavbvb+vbvσb vava−vσb vσavbva = vbva(vbva+vbva+vbva+vbva−vbva−vbva−vbva−vbva) =
vbva(vbva − vbva). Multiplying Eq. (4.18) by cos(δba) ≥ 0, we have

vσb v
σ
a cos(δba)Rba − va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ vbva cos(δba)(vbva − vbva). (4.19)

Multiplying constraint (4.6) by vσb v
σ
a ≥ 0 yields vσb vσa (cos(ωba)Re(Wba) + sin(ωba)Im(Wba)) ≥

vσb v
σ
a cos(δba)Rba; combining this with (4.19), we deduce Eq. (†). We underline that con-

straint (4.6) is indeed applicable since δba ≤ π
2 , as (b, a) ∈ L ∩ LR (see Table 4.1).

Second, we combine the Eqs. (4.16)-(4.17) with Rba ≥ vaLb + vbLa− vbva from constraint (4.1)
that we multiply by vσb vσa ≥ 0, to obtain vσb vσaRba ≥ vavσaWbb+vbvσbWaa+vavσavbvb+vbvσb vava−
vσb v

σ
avbva. As vavσavbvb + vbv

σ
b vava− vσb vσavbva = vbva(vbva + vbva + vbva + vbva− vbva− vbva−

vbva − vbva) = −vbva(vbva − vbva), we deduce that

vσb v
σ
aRba − vavσaWbb − vbvσbWaa ≥ −vbva(vbva − vbva). (4.20)

Multiplying Eq. (4.20) by cos(δba) ≥ 0, we obtain

vσb v
σ
a cos(δba)Rba − va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ −vbva cos(δba)(vbva − vbva). (4.21)

Multiplying constraint (4.6) by vσb v
σ
a ≥ 0 yields vσb vσa (cos(ωba)Re(Wba) + sin(ωba)Im(Wba)) ≥

vσb v
σ
a cos(δba)Rba; combining this with (4.21), we deduce Eq. (‡).

84

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

The advantage of constraints (4.1)-(4.6), compared to Eqs. (†)-(‡), is to enforce a coupling
between the convex envelopes of the quadruplets (Re(Wba), Im(Wba),Wbb,Waa) involving a
same index b. This coupling is realized by the additional decision vectors L and R. In Ap-
pendix C, we present an illustrative example of two quadruplets (Re(Wba), Im(Wba),Wbb,Waa)
and (Re(Wbc), Im(Wbc),Wbb,Wcc) satisfying Eqs. (†)-(‡) introduced in [57], but for which there
is no vector L and R such that constraints (4.1)-(4.6) are satisfied. In this respect, we can state
that constraints (4.1)-(4.6) strictly dominate Eqs. (†)-(‡).

4.2.3 Bound tightening procedures

We use three bound tightening procedures to reduce the interval lengths ∆b and δba and, thus,
reduce the error bound in Theorem 4.2.

Feasibility-based bound tightening (FBBT) The power flow limit for the line (b, a) ∈ L
implicitly restricts the phase ∠VbV ∗

a and, consequently, can help reduce the length of the interval
[θba, θba]. Dividing the inequality |(Y ft

ba)∗VbV
∗
a + (Y ff

ba)∗|Vb|2| ≤ Sba by |Y ft
baVbVa|, we deduce that

| VbV
∗

a
|Va||Vb| − z

|Vb|
|Va| | ≤ R, where z = (Y ff

ba)∗

(Y ft
ba

)∗ and ρ = Sba

|Y ft
ba
VbVa| . We notice that u = VbV

∗
a

|Va||Vb| is a unit
complex number and has a nonnegative real part since ∠Vb − ∠Va ∈ [−π

2 ,
π
2]. Representing the

ratio |Vb|
|Va| by a variable λ, we can formulate the following convex optimization problem

maxu,λ Im(u)
s.t. |u− zλ| ≤ ρ

Re(u) ≥ 0
|u| ≤ 1
u ∈ C, λ ∈ [vb

va
, vb
va

].

(4.22)

Denoting by h its value, we deduce that arcsin(h) is an upper-bound on ∠Vb − ∠Va. Hence, we
can set θba ← min(θba, arcsin(h)) without changing the value of (ACOPF). If we minimize
Im(u) under the same constraints to get a value h, we can set θba ← max(θba, arcsin(h)).

Similarly for any (b, a) ∈ LR, leveraging the inequality |(Y tf
ab)∗VbV

∗
a + (Y tt

ab)∗|Vb|2| ≤ Sba, we
use the same procedure with z = (Y tt

ab)∗

(Y tf
ab

)∗ and ρ = Sba

|Y tf
ab
VbVa| to tighten θba and θba. This type of

bound tightening is cheap, since one only solves a 2-variable convex optimization problem for
each bound.

Optimization-based bound tightening (OBBT) We also apply an OBBT procedure to the
relaxation (ACOPFC). We use any NLP algorithm to find an ACOPF feasible solution. With
the corresponding upper-bound denoted obj, we add the constraint ∑

g∈G
c1gRe(Sg)+c2gRe(Sg)2 ≤

obj to the problem (ACOPFC). We denote by F the resulting convex feasible set. Then, we
update the following bounds:

85

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

• For the voltage magnitude at bus b ∈ B, we set

vb ← max
(S,W,L,R)∈F

Lb (4.23)

vb ← min
(S,W,L,R)∈F

Lb. (4.24)

• For the angle difference on line (b, a) ∈ L, we compute hba = max(S,W,L,R)∈F Im(Wba)
and hba = min(S,W,L,R)∈F Im(Wba) and set

θba ← min(θba, arcsin(max(hba
vbva

,
hba
vbva

))) (4.25)

θba ← max(θba, arcsin(min(hba
vbva

,
hba
vbva

))). (4.26)

Shortest path algorithm to tighten phase angle difference bounds Through FBBT
and OBBT, we may individually improve the bounds θba and θba for any (b, a) ∈ E . To
propagate the reduction of the phase angle difference domains, we apply a shortest path
algorithm. Indeed we notice that, for any (b0, bt) ∈ B × B, for any path b0, b1, . . . , bt in
the graph (B, E), for any feasible solution (S, V) in (ACOPF), we have ∠Vbt − ∠Vb0 =∑t−1
s=0 ∠Vbs+1−∠Vbs ≤

∑t−1
s=0 θbs+1bs . The shortest path between b0 and bt in the directed weighted

graph (B, E , θ) helps finding the lowest sum ∑t−1
s=0 θbs+1bs to update θbtb0 . Symmetrically, we

have that ∠Vbt − ∠Vb0 ≥
∑t−1
s=0 θbs+1bs

. The shortest path between b0 and bt in the directed
weighted graph (B, E ,−θ) helps improving the lower bound on ∠Vbt − ∠Vb0 to update θbtb0 . To
compute shortest paths, we apply the Floyd-Warshall algorithm [60], which fits the context
of a weighted directed graph, with weights of unspecified sign. Should the Floyd-Warshall
algorithm find a cycle with negative weight in the directed weighted graph (B, E , θ), it would
certify the infeasibility of (ACOPF), since it would give a path b0, b1, . . . , bt with bt = b0

and 0 = ∠Vbt − ∠Vb0 = ∑t−1
s=0 ∠Vbs+1 − ∠Vbs ≤

∑t−1
s=0 θbs+1bs < 0. Similarly, finding a cycle of

negative weight in (B, E ,−θ) certifies the infeasibility of (ACOPF).

4.3 A MILP-based scheme for global optimization

In this section, leveraging the conic relaxation (ACOPFC), we generate a sequence of MILP
problems, the values of which converge to the ACOPF value. We achieve this using binary
variables to encode piecewise linear relaxations of the feasible sets. The resulting Mixed-integer
conic programming problems are then relaxed as MILP. From a semi-infinite programming
perspective, this approximation is an adaptive discretization approach, as presented in the
Introduction. We start by showing that we can “discretize” the conic constraints (in the sense
of semi-infinite programming) to obtain a LP relaxation as tight as (ACOPFC).

86

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

4.3.1 Linear programming outer-approximations

The disadvantage of solving the conic problem (ACOPFC) is its computational cost, that is
higher, due to SDP constraints, than that of solving a LP, SOCP, or a convex QCQP relaxation.
Hence, it may not be computationally efficient to solve such a relaxation at every node of an
exploration tree. The idea of our approach is to solve the relaxation (ACOPFC) at the root
node only, and use it to generate a LP relaxation with same value. We denote by x ∈ RΞ the
decision vector (Re(S), Im(S),Re(W), Im(W), L,R). The problem (ACOPFC) may be seen as

min
x∈P

ϕ0(x)

∀j ∈ J1, rK ϕj(x) ≤ 0,

 (ACOPFC ’)

with P ⊂ RΞ being a polytope and ϕ0(x), ϕ1(x), . . . , ϕr(x) continuous and convex functions.
In Appendix C, we detail this polytope, the functions ϕj(x), and show that they share a
common structure: for any j ∈ J0, rK, there exists an affine application πj : RΞ 7→ Rpj and a
compact and convex set Yj ⊂ Rpj such that for all x ∈ P, ϕj(x) = maxy∈Yj y

⊤πj(x). Hence
the constraint ϕj(x) ≤ 0 can be cast as the following semi-infinite programming constraint:
∀y ∈ Yj , y⊤πj(x) ≤ 0. In a semi-infinite discretization approach, for any family of finite subsets
Y̌j ⊂ Yj , we obtain a LP relaxation of (ACOPFC)

min
(x,λ)∈P×R

λ

∀y ∈ Y̌0 y⊤π0(x) ≤ λ
∀j ∈ J1, rK, ∀y ∈ Y̌j y⊤πj(x) ≤ 0.

 (ACOPFL)

We show that based on a primal-dual solution of (ACOPFC), we can compute finite sets
Y̌0, . . . , Y̌r such that val(ACOPFC) = val(ACOPFL). For j ∈ J1, rK we define Kj as the
convex cone generated by Yj . We define K0 as the convex cone generated by {1} × Y0. We
also define λ and λ as a priori lower and upper bounds on the value of (ACOPFC), that
may be very rough estimates. We introduce a Lagrangian function L for the conic program
(ACOPFC), defined for any (x, λ) ∈ P × [λ, λ], z = (z0, z1, . . . , zr) ∈ K0 × K1 × · · · × Kr as

L(x, λ, z) = λ+ z⊤
0

(
−λ
π0(x)

)
+∑r

j=1 z
⊤
j πj(x). With this definition, we see that the formulation

(ACOPFC) is the min-max problem infx∈P,λ∈[λ,λ] supz∈K0×K1×···×Kr
L(x, λ, z). We define

the concave function D(z) = infx∈P,λ∈[λ,λ] L(x, λ, z) ∈ R ∪ {−∞}, and the dual optimization
problem

sup
z∈K0×K1×···×Kr

D(z). (4.27)

Proposition 4.3. There is no duality gap between Problem (ACOPFC) and Problem (4.27),
i.e., they share the same value. Moreover, if Problem (4.27) has an optimal solution z∗ ∈
K0 ×K1 × · · · × Kr, written as z∗ = (η0v

∗
0, η1y

∗
1, . . . ηry

∗
r) with

87

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

• ηj ∈ R+ for all j ∈ J0, rK,
• v∗

0 = (1, y∗
0) with y∗

0 ∈ Y0, and y∗
j ∈ Yj for all j ∈ J0, rK,

then the definition of the finite sets Y̌j = {y∗
j } yields a LP relaxation (ACOPFL) that satisfies

val(ACOPFL) = val(ACOPFC).

Proof. We use a similar approach as in Section 1.1 for duality in convex semi-infinite program-
ming. The absence of duality gap follows from the Sion min-max theorem [125], since

• The primal optimization set P × [λ, λ] is convex and compact,
• The dual optimization set K0 ×K1 × · · · × Kr is convex,
• L is continuous and convex with respect to (x, λ) for any z ∈ K0 ×K1 × · · · × Kr, and,
• L is continuous and concave with respect to z for any (x, λ) ∈ P × [λ, λ].

Then, we assume that Problem (4.27) has an optimal solution z∗ ∈ K0 × K1 × · · · × Kr.
Due to the absence of duality gap, we know that D(z∗) = val(ACOPFC). Writing z∗ =
(η0(1, y∗

0), η1y
∗
1, . . . ηry

∗
r) as indicated above, we define Y̌j = {y∗

j } ⊂ Yj and Ǩj = cone(Y̌j), for
all j ∈ J0, rK. With this definition, (ACOPFL) reads

inf
x∈P,λ∈[λ,λ]

sup
z∈Ǩ0×Ǩ1×···×Ǩr

L(x, λ, z),

and its dual problem is supz∈Ǩ0×Ǩ1×···×Ǩr
D(u). As z∗ ∈ Ǩ0 × Ǩ1 × · · · × Ǩr, we can write by

weak duality that val(ACOPFL) ≥ D(z∗) = val(ACOPFC). As (ACOPFL) is a relaxation
of (ACOPFC), we conclude that val(ACOPFL) = val(ACOPFC).

At the price of finding an optimal primal-dual solution (x∗, λ∗, z∗) of (ACOPFC)-(4.27), we
can build a LP relaxation with the same value as the conic programming relaxation (ACOPFC).
In practice, we obtain such a primal-dual solution for every tested instance.

4.3.2 Binary variables to encode piecewise linear constraints

To tighten the relaxations (ACOPFC) and (ACOPFL), we introduce binary variables to
encode piecewise linear outer-approximation of the nonconvex feasible set of (ACOPFW).

Partitioning voltage magnitude intervals For any b ∈ B, we may want to split the
interval [vb, vb] in sub-intervals. We introduce a tree Jb and pairs (vbj , vbj) such that vbj ≤ vbj
for all j ∈ Jb. For r being the root node of Jb, we have (vbr, vbr) = (vb, vb). Denoting
J +
b (i) the set of the child nodes of i, the partition [vbi, vbi] = ⋃

j∈J +
b

(i)[vbj , vbj] holds for any
i ∈ Jb. For any j ∈ Jb, we introduce a variable αbj ∈ {0, 1}. To encode the equivalence
(αbj = 1) ⇐⇒ (Lb ∈ [vbj , vbj]) for any j ∈ Jb, we impose αbr = 1, and for any j ∈ Jb

vbjαbj + (1− αbj)vb ≤ Lb ≤ vbjαbj + (1− αbj)vb, (4.28)

88

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

and for any i ∈ Jb such that J +
b (i) ̸= ∅,∑

j∈J +
b

(i)

αbj = αbi. (4.29)

Moreover we add the following constraint for every j ∈ Jb,

Rbb + vbjvbj ≤ (vbj + vbj)Lb + (v2
b + vbjvbj)(1− αbj). (4.30)

For every j ∈ Jb and for all a ∈ B such that (b, a) ∈ E , we add the inequalities

Rba ≥ vbjLa + vaLb − vbjva + vbva(αbj − 1) Rba ≥ vbjLa + vaLb − vbjva + vbva(αbj − 1)
(4.31)

Rba ≤ vbjLa + vaLb − vavbj + vbva(1− αbj) Rba ≤ vaLb + vbjLa − vavbj + vbva(1− αbj).
(4.32)

Partitioning phase angle difference intervals For any (b, a) ∈ E , we may want to split
the interval [θba, θba] in subintervals. We introduce a tree Jba and pairs (θbaj , θbaj) such that
θbaj ≤ θbaj for all j ∈ Jba. For r being the root node of Jba, we have (θbar, θbar) = (θba, θba).
Denoting J +

ba(i) the set of child nodes of i, the partition [θbai, θbai] = ⋃
j∈J +

ba
(i)[θbaj , θbaj] holds

for any i ∈ Jba. For j ∈ Jba, we introduce a variable βbaj ∈ {0, 1}. To encode the equivalence
(βbaj = 1) ⇐⇒ (∠Wba ∈ [θbaj , θbaj]), we impose βbar = 1 and for any j ∈ Jba

tan (θba)Re(Wba) + (βbaj − 1)vbva ≤ Im(Wba) ≤ tan (θba)Re(Wba) + (1− βbaj)vbva, (4.33)

and for any i ∈ Jba such that J +
ba(i) ̸= ∅∑

j∈J +
ba

(i)

βbaj = βbai. (4.34)

Moreover, for all j ∈ Jba, we define the angles ωbaj = θbaj+θbaj

2 and δbaj = θbaj−θbaj

2 , and if
δbaj ≤ π

2 , we impose

cos(ωbaj)Re(Wba) + sin(ωbaj)Im(Wba) ≥ Rba cos(δbaj) + (βbaj − 1)vbva. (4.35)

For fixed sets Jb,Jba of binary variables αbj , βbaj , the relaxation obtained by adding
these binary variables and the corresponding constraints (4.28)-(4.35) to the conic problem
(ACOPFC) (resp. the LP problem (ACOPFL)) is a Mixed-integer conic programming problem
(resp. a MILP problem).

4.3.3 Updating the partitions of the intervals

During the algorithm presented in section 4.3.4, the partitions of the intervals [vb, vb] and
[θba, θba] are dynamically updated. The partition trees are all initialized as single-node graphs,

89

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Im(Wba)

Re(Wba)

|Wba| = Rba

θba
θba

Figure 4.2: Piecewise convex approximation (in blue) of the equality |Wba| = Rba,
performed by the constraints (4.33)-(4.35) (case |Jba| = 2)

and are then updated over the course of the algorithm. We discuss now how these trees are
updated, at any iteration t of the algorithm, where the current iterate is (St,W t, Lt, Rt).

For a given bus b ∈ B, we update the partition tree Jb by selecting the active leaf j, i.e.
the only leaf j of Jb such that Ltb ∈ [vbj , vbj]. We create three new leaves j1, j2, j3 in the tree,
which are attached to node j, and we partition the interval [vbj , vbj] as follows:

• We define vbj1 = vbj and vbj3 = vbj ;
• If Ltb ≤

vbj+vbj

2 , we define vbj1 = vbj2 = Ltb and vbj2 = vbj3 = Lt
b+vbj

2 ;
• Else, we define vbj1 = vbj2 = vbj+Lt

b

2 and vbj2 = vbj3 = Ltb.

For a given pair (b, a) ∈ E , we update the partition tree Jba by selecting the active leaf j,
i.e. the only leaf j of Jba such that ∠W t

ba ∈ [θbaj , θbaj]. We create three new leaves j1, j2, j3 in
the tree, which are attached to node j, and we partition the interval [θbaj , θbaj] as follows:

• We define θbaj1 = θbaj and θbaj3 = θbaj ;

• If ∠W t
ba ≤

θbaj+θbaj

2 , we define θbaj1 = θbaj2 = ∠W t
ba and θbaj2 = θbaj3 = ∠W t

ba+θbaj

2 ;
• Else, we define θbaj1 = θbaj2 = θbaj+∠W t

ba

2 and θbaj2 = θbaj3 = ∠W t
ba.

The construction procedure of the trees Jb and Jba guarantees that (i) vbj − vbj , the length
of the interval associated with a node j ∈ Jb of depth Λ(j), is less than ∆b

2Λ(j) , (ii) the coefficient
δbaj associated with a node j ∈ Jba is less than δba

2Λ(j) .

Proposition 4.4. We assume that the convex constraints (4.1)-(4.6) and the MILP constraints
(4.28)-(4.35) are satisfied, but with a tolerance ϵ ∈ [0, 1] for the nonlinear constraints (4.3)

90

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

and (4.5). Then, for any nodes jb ∈ Jb, ja ∈ Ja and jba ∈ Jba that are active, i.e., such that
αbjb = αaja = βbajba

= 1, we have

| (Rba)2 −WbbWaa| ≤
9∆b∆a

2max{Λ(jb),Λ(ja)} + max{9ϵ, (∆b

2Λ(jb) + ∆a

2Λ(ja))2}, (4.36)(
Λ(jba) ≥ log2(2δba

π
)
)

=⇒
(
| |Wba|2 − (Rba)2| ≤ max{9ϵ, 16δ2

ba

4Λ(jba) }
)
. (4.37)

We underline that the implication is still valid if δba = 0 and log2(2δba
π) = −∞.

Proof. Since αbjb = 1, constraints (4.31)-(4.32) yield constraints (4.1)-(4.2), but with vb, vb
and ∆b replaced by vbjb , vbjb and ∆̃b = vbjb − vbjb ≤

∆b

2Λ(jb) . Applying the first point of
Theorem 4.2 with these parameters, we deduce that |(Rba)2 − L2

aL
2
b | ≤ 9∆̃b∆a ≤ 9 ∆b

2Λ(jb) ∆a.
Similarly, since αbja = 1 and since Rba = Rab, we also deduce from constraint (4.31)-(4.32) that
|(Rba)2 − L2

aL
2
b | ≤ 9 ∆a

2Λ(ja) ∆b. Hence, we obtain

|(Rba)2 − L2
aL

2
b | ≤

9∆b∆a

2max{Λ(jb),Λ(ja)} . (4.38)

Since αbjb = 1 (resp. αaja = 1), constraint (4.30) yields constraint (4.4) for b (resp. a) with
vb, vb and ∆b (resp. va, va and ∆a) replaced by vbjb , vbjb and ∆̃b (resp. vaja , vbja and ∆̃a).
Applying Eq. (4.11) in the proof of Theorem 4.2, that follows only from constraint (4.4), we
deduce that RbbRaa −L2

bL
2
a ≤ (∆̃b + ∆̃a)2 ≤ (∆b

2Λ(jb) + ∆a

2Λ(ja))2. Since constraint (4.3) is satisfied
with tolerance ϵ ∈ [0, 1], we have that L2

b ≤ Rbb + ϵ and L2
a ≤ Raa + ϵ. Multiplying both

inequalities, we deduce that L2
bL

2
a ≤ RbbRaa+ ϵ(Rbb+Raa) + ϵ2 ≤ RbbRaa+ 9ϵ, since Rbb, Raa ∈

[0, 4] and ϵ2 ≤ ϵ. Hence, |WbbWaa − L2
bL

2
a| = |RbbRaa − L2

bL
2
a| ≤ max{9ϵ, (∆b

2Λ(jb) + ∆a

2Λ(ja))2}.
Combining this with Eq. (4.38), we deduce Eq. (4.36) due to the triangle inequality. We
assume now that Λ(jba) ≥ log2(2δba

π), implying that δbajba
≤ δba

2Λ(jba) ≤ π
2 . Since βbajba

= 1,
constraint (4.35) yields constraint (4.6) with ωba, δba replaced by ωbajba

, δbajba
. Writing Wba

as |Wba|eiθ we thus have |Wba|(cos(ωbajba
) cos(θ) + sin(ωbajba

) sin(θ)) ≥ Rba cos(δbajba
). This

also reads |Wba| cos(ωbajba
− θ) ≥ Rba cos(δbajba

). This implies that |Wba| ≥ Rba cos(δbajba
), and

thus |Wba|2 ≥ R2
ba cos(δbajba

)2. Noticing that constraint (4.5) is satisfied with tolerance ϵ, we
have that |Wba| ≤ Rba + ϵ and |Wba|2 ≤ R2

ba + 2Rbaϵ + ϵ2 ≤ R2
ba + 9ϵ. In summary, we have

−9ϵ ≤ R2
ba − |Wba|2 ≤ R2

ba(1− cos(δbajba
)2) ≤ R2

ba sin(δbajba
)2 ≤ 16(δbajba

)2 ≤ 16(δba

2Λ(jba))2.

4.3.4 The MILP-based iterative scheme

The following global optimization algorithm is executed based on (i) a local NLP solver (ii)
a conic programming solver and (iii) a MILP solver. In this pseudocode, we use the function
err(W) = max(b,a)∈E | |Wba|2 −WbbWaa|, which denotes the feasibility error in constraint (⋆).

0. Input: A target optimality gap targetOptGap ≥ 0, a tolerance feasTol ≥ 0, integers
N1, N2 ∈ N∗ and a sequence (ϵt)t∈N with ϵt > 0.

91

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

1. Initialization: Compute an ACOPF feasible solution with a NLP solver and denote
by obj its value (if the NLP solver fails, obj ← +∞). Solve the conic programming
relaxation (ACOPFC). If the gap is greater than targetGap, apply FBBT and OBBT
to (ACOPFC). Based on the optimal solution of Problem (ACOPFC), generate the
LP relaxation (RL) with same value as (ACOPFC) (see section 4.3.1). Set t← 0 and
LBt ← val(ACOPFC).

2. Outer-iterations: While (i) obj− LBt > targetGap and (ii) err(W) > feasTol, do:

2.1 For N1 couples (b, a) ∈ E with largest violation | R2
ba −WbbWaa|, update the par-

tition trees Jb and Ja according to section 4.3.3, and add the corresponding con-
straint (4.28)-(4.32) to the MILP relaxation.

2.2 For N2 couples (b, a) ∈ E with largest violation | |Wba|2 −R2
ba|, update the partition

tree Jba according to section 4.3.3 and add the corresponding constraint (4.33)-(4.35)
to the MILP relaxation.

2.3 Solve the resulting MILP relaxation to global optimality to get

x = (Re(S), Im(S),Re(W), Im(W), L,R).

If the resulting lower bound has a gap with obj lower than targetGap, return; else
enter the inner loop (step 3.). After the end of the inner loop, set LBt+1 as the value
of the MILP relaxation and set t← t+ 1.

3. Inner-iterations: While x does not satisfy the convex constraints in (ACOPFC ’) within
tolerance ϵt, i.e., while maxj∈J1,rK ϕj(x) > ϵt and ϕ0(x)−maxy∈Y̌0

y⊤π0(x) > ϵt,

3.1 Add the corresponding cuts: Y̌j ← Y̌j ∪ {y}, for all j ∈ J0, rK and for y ∈ Yj such
that ϕj(x) = y⊤πj(x).

3.2 Solve the resulting MILP relaxation to global optimality to compute

x = (Re(S), Im(S),Re(W), Im(W), L,R).

If the resulting lower bound has a gap with obj lower than targetGap, return.

Figure 4.3 is a block diagram representing this pseudocode. During the inner-iterations (step
3.), for fixed sets Jb,Jba of binary variables αbj , βbaj , the Mixed-integer conic programming
problem obtained by adding these binary variables and the corresponding constraints (4.28)-
(4.35) to the conic problem (ACOPFC), is approximated by MILP problems. From a semi-
infinite programming perspective, this is an adaptive discretization algorithm, as presented in
the Introduction, to solve this Mixed-integer conic programming relaxation of (ACOPFW).
The next proposition, which relies on the Lemma 0.1, states the finite termination of these
inner-loops.

Proposition 4.5. For any outer-iteration index t ∈ N∗, for any tolerance ϵt ∈ R++, the
inner-loop has a finite number of iterations.

92

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Find a feasible solution with a NLP solver,
solve the conic relaxation (ACOPFC)

Perform FBBT-OBBT with (ACOPFC)

Compute a primal-dual solution
of (ACOPFC), deduce LP relax-

ation (ACOPFL) with same value

Return as
soon as Gap ≤

targetGap

Add binary variables, update
the partition trees Jb and Jba

Solve the resulting MILP relaxation

Gap ≤
targetGap? Return

Conic constr.
violation

≤ ϵt?

err(W) ≤
feasTol

yes

Return
yes

yes

no

Add LP cuts computed from the
conic constraints, update the sets Y̌j

no

no

t← t+ 1

Figure 4.3: MILP-based global optimization algorithm for ACOPF

93

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Proof. During outer-iteration t ∈ N∗ and the previous iterations, several auxiliary binary
variables and associated linear constraints have been added to the relaxation (ACOPFC).
From the perspective of the decision vector x = (Re(S), Im(S),Re(W), Im(W), L,R), these
constraints together with the constraint of being in the polytope P yield a feasible set X t ⊂ RΞ

that is nonconvex but compact. We also inherit finite sets (Y̌j0)j∈J0,rK, the subscript 0 denoting
the inner-iteration of index s = 0. The inner-iteration s ∈ N consists in solving

min
x∈X t,λ∈R

λ

∀y ∈ Y̌0s y⊤π0(x) ≤ λ
∀j ∈ J1, rK,∀y ∈ Y̌js y⊤πj(x) ≤ 0,

(4.39)

to obtain a solution (xs, λs), and in defining Yj(s+1) = {yjs}∪Yjs with yjs ∈ argmaxy∈Yj
y⊤πj(xs)

for all j ∈ J0, rK. By optimality in (4.39), we have that λs = maxy∈Y̌0s
y⊤π0(x).

We reason by contrapositive and assume now that the inner-loop is not terminating in finite time,
meaning that the generated MILP relaxation is feasible at each inner-iteration and the stopping
condition of the inner-loop is never met. For any j ∈ J1, rK, we notice that the sequences (xs)s∈N

and (yjs)s∈N satisfies ϕj(xs) = y⊤
jsπj(xs) (meaning that yjs is the output of a perfect separation

oracle), and for all ℓ ∈ J0, s− 1K, y⊤
jℓπj(xs) ≤ 0. Moreover, the sets X t and Yj are compact, and

the mapping (x, y) 7→ y⊤πj(x) is continuous. In summary, the hypotheses of the Lemma 0.1,
about adaptive discretization for nonconvex semi-infinite programming, are met. This proves
that (ϕj(xs))+ →s 0. Applying the same result for x̃s = (xs, λs) and (x̃, y) 7→ y⊤π0(x)− λ, we
see that (ϕ0(xs)−λs)+ →s 0. As the stopping criterion is not met (we reason by contrapositive),
we know that for all s ∈ N, max{(ϕ0(xs) − λs)+,maxj∈J1,rK(ϕj(xs))+} > ϵt ≥ 0. As we just
proved that the left term vanishes, this proves that ϵt = 0. This is not true since we assumed
ϵt ∈ R++ in the hypotheses of the proposition. Therefore, the inner-loop terminates in finite
time.

The next theorem states the convergence of the whole algorithm presented in this section.

Theorem 4.3. If targetOptGap = feasTol = 0 and ϵt →t 0, then

• Either the algorithm stops due to the stopping criterion, and yields a global minimizer of
(ACOPFW),

• Or the algorithm stops due to the infeasibility of a relaxation, certifying the infeasibility
of (ACOPFW),

• Or the algorithm generates an infinite sequence of iterates (St,W t, Lt, Rt), and

– The sequence LBt monotonously converges to val(ACOPFW) = val(ACOPF),
– The limit points of the sequence (St,W t)t∈N are global minimizers of (ACOPFW).

Proof. We consider the first case where the algorithm meets the stopping criterion at the
beginning of the outer-iteration t, meaning that either (a) obj = LBt, proving that the solution

94

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

(S, V) found by the NLP solver at step 1. is globally optimal in (ACOPF) and yields (S, V V H)
globally optimal in (ACOPFW), or (b) the solution (St,W t, Lt, Rt) of the current MILP
relaxation of (ACOPFW) satisfies err(W t) = 0, i.e., (St,W t) is in fact feasible in (ACOPFW)
and thus optimal in (ACOPFW) since it is the optimal solution of a relaxation.

The second case is trivial: if the relaxation (ACOPFC) or any MILP relaxation during the
iterations is infeasible, this implies that (ACOPFW) is also infeasible.

We consider now the third case, where the algorithm does not terminate. We invoke
Proposition 4.5 to claim that for any outer-iteration t ∈ N, the inner-loop terminates in
finite time. Hence, there is an infinite number of outer-iterations and we define the infinite
sequence xt = (St,W t, Lt, Rt)t∈N, where xt is the solution of the MILP relaxation at the
beginning of the outer-iteration t. For any (b, a) ∈ E , we define χtba = | (Rtba)2 −W t

bbW
t
aa| and

ξtba = | |W t
ba|2 − (Rtba)2|. We let J tb (resp. J tba) denote the state of the tree Jb (resp. Jba) at the

beginning of iteration t, and J b (resp. J ba) the (potentially infinite) limit tree ⋃t J tb (resp.⋃
t J tba). We first show that χtba →t 0 for any (b, a) ∈ E . For t ∈ N, we define (bt, at) ∈ E such

that χtbtat
= maxba χtba, and we define jb(t) ∈ J tbt

and ja(t) ∈ J tat
the active leaves to which

three child nodes are attached during step 2.1 since (bt, at) presents the largest violation. For
any j ∈ ⋃b J b, we recall that Λ(j) is the depth of j in the (unique) tree J b it belongs to. As xt
is the output of the outer-iteration t− 1, it satisfies constraint (4.3) and (4.5) with tolerance
ϵt−1, and we can apply Proposition 4.4 with ϵ = ϵt−1. This yields

χtbtat
= | (Rtbtat

)2 −W t
btbt

W t
atat
| ≤ 9∆bt∆at

2max{Λ(jb(t)),Λ(ja(t))} + max{9ϵt−1, (
∆bt

2Λ(jb(t)) + ∆at

2Λ(ja(t)))2}.

(4.40)

We notice that the sequence (jb(t))t∈N is injective, since each jb(t) is a leaf in J tbt
, but not in the

trees J sbt
for s ≥ t+ 1. We deduce that Λ(jb(t))→t ∞, otherwise by contrapositive, there would

exist H ∈ N such that an infinite number of nodes of depth less or equal than H are created in
the union of ternary trees ⋃b J b; This is false since the number of nodes with depth less or equal
than H is bounded by |B|∑H

ℓ=0 3ℓ. By the same argument, we have Λ(ja(t))→t ∞. Combined
with (4.40), we deduce that χtbtat

→t 0 since ϵt →t 0 and because ∆bt ,∆at are bounded. For
any t ∈ N and (b, a) ∈ E , we have 0 ≤ χtba ≤ χtbtat

by definition of (bt, at), implying χtba →t 0.
We apply the same approach to prove that ξtba →t 0 for any (b, a) ∈ E . For t ∈ N, we define

(b̃t, ãt) ∈ E such that ξt
b̃tãt

= maxba ξtba, and we define j̃(t) ∈ J t
b̃tãt

the active leaf to which
three child nodes are attached during step 2.2. We also define Λ(j̃(t)) as the depth of j̃(t) in
J t
b̃tãt

, which satisfies Λ(j̃(t))→t ∞ by injectivity of (j̃(t))n∈N and since the number of nodes
in ⋃

(b,a)∈E
J ba with depth less or equal than M is bounded by |E|∑r

ℓ=0 3ℓ. As Λ(j̃(t)) →t ∞,

we know that it exists t0 ∈ N such that Λ(j̃(t)) ≥ 2 for all t ≥ t0. Hence, for all t ≥ 0,
Λ(j̃(t)) ≥ log2(4π

π) ≥ log2(2δb̃tãt
π), since δbtat ∈ [0, 2π]. Applying Proposition 4.4, we know that

95

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

for any t ≥ t0,

ξt
b̃tãt

= | |W t
b̃tãt
|2 − (Rt

b̃tãt
)2| ≤ max{9ϵt−1,

16(δb̃tãt
)2

4Λ(j̃(t))
} ≤ max{9ϵt−1,

64π2

4Λ(j̃(t))
}, (4.41)

Combined with ϵt →t 0 and Λ(j̃(t)) →t ∞, we deduce that ξt
b̃tãt
→t 0. Additionally, since

ξt
b̃tãt

= maxba ξtba, we have 0 ≤ ξtba ≤ ξtb̃tãt
and, thus, ξtba →t 0 for any (b, a) ∈ E .

We deduce that err(W t)→t 0, since err(W t) = max(b,a)∈E ||W t
ba|2−W t

bbW
t
aa| ≤

∑
(b,a)∈E ||W t

ba|2−
W t
bbW

t
aa| ≤

∑
(b,a)∈E χ

t
ba + ξtba, due to the triangle inequality. Hence, for any limit point (S̄, W̄)

of (St,W t), we thus have err(W̄) = 0. As ϵt →t 0, this also proves that (S̄, W̄) satisfies the non-
linear convex constraints in (ACOPFC). Hence, (S̄, W̄) is feasible in (ACOPFW). We denote
by ϕ̌t0(x) = maxy∈Y̌0

y⊤π0(x) the cutting-plane model of the objective function at the beginning
of iteration t (the set Y̌0 depending implicitly on t). As this function only depends on the
variable S and not on the other decision variables, we write ϕ̌t0(S). As the successive MILP relax-
ations over the iterations have nonincreasing feasible sets with respect to variables (S,W,L,R)
and have nondecreasing sequence ϕ̌t0(S) as objective functions, the sequence ϕ̌t0(St) = LBt is
nondecreasing. It is also bounded above by val(ACOPFW) and, thus, converges to a value
v∗ ≤ val(ACOPFW). Since ϵt →t 0, ϕ̌t0(St)→t ϕ0(S̄) = ∑

g∈G
c1gRe(S̄g)+c2gRe(S̄g)2, for any limit

point (S̄, W̄). By uniqueness of the limit of ϕ̌t0(St), and since (S̄, W̄) is feasible in (ACOPFW),
we deduce that v∗ = ∑

g∈G

(
c0g + c1g Re(S̄g) + c2g Re(S̄g)2

)
≥ val(ACOPFW). We conclude that

v∗ = val(ACOPFW) = val(ACOPF) and that (S̄, W̄) is optimal in (ACOPF).

4.4 Numerical experiments

4.4.1 Experimental setting

For all experiments, we use a 64-bit Ubuntu computer with 32 Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz and 64 GB RAM. Along our algorithm, we use the commercial solvers MOSEK [169]
and CPLEX [108] called through their python APIs, as well as the open-source solver Ipopt [239]
called through the Pyomo interface [97]. We compute the tree decomposition with the approximate
minimum degree ordering routine of the chompack package. We consider a relative optimality
gap of 0.01% for global optimality (GO) and use the parameters (N1, N2, ϵ̄) = (4, 4, 10−6). The
FBBT and OBBT procedures are applied for all variables a maximum of 4 times, and with
a time limit of 10 hours. After each pass of FBBT and OBBT, we apply the Floyd-Warshall
algorithm and we check whether the gap of the tightened conic relaxation reaches the target
optimality gap. If the maximum number of bound tightening iterations or time limit is reached,
we enter the MILP iterative scheme with a time limit of 5 hours. Hence, our global time limit
is 15 hours. Our code is available at github.com/aoustry/SDP-MILP4OPF.

This study focuses on the network instances from the IEEE PES PGLib AC-OPF v21.07
library [10] with less than 500 buses. As shown in Table 4.2, the instances of this benchmark are

96

github.com/aoustry/SDP-MILP4OPF

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

split in three categories depending on their characteristics: Typical Operating Condition (TYP)
instances correspond to a reference scenario, Congested Operating Condition (API) correspond
to situations with greater Power Demands, and Small Angle Condition (SAD) correspond to
tighter constraints for the phase angle difference.

We compare our approach with the standard SOCP and SDP relaxations [166], and with
three other global optimization approaches [87, 94, 213]. We performed these comparative
experiments on the same PGLib v21.07 instances, with the same hardware, the same global
time limit (15 hours), and the same relative optimality gap tolerance (0.01%). The concurrent
approach from [213] is an OBBT algorithm based on a strengthened convex QCQP relaxation.
We ran the Julia implementation of this algorithm provided in the PowerModels.jl package
[54]. The convex quadratic relaxations are solved with Ipopt. The concurrent approach from
[87] consists of an OBBT algorithm, based on a Determinant SDP relaxation strengthened
with RLT constraints. We ran a C++ implementation of this algorithm, that is based on the
Mathematical Modeling Language Gravity [105], and is available at the link indicated in [87].
The corresponding relaxations are also solved with Ipopt. Finally, we also tested the global
optimization algorithm for generic QCQP problems that is built into the solver Gurobi 10.0

[94]. We highlight that this algorithm is not specific to the ACOPF problem. This solver is
called through the PowerModels.jl interface.

4.4.2 Numerical results

Table 4.2 presents the optimality gap (in %) and the computational times obtained by the
several approaches for the considered list of instances. For lack of space, we do not detail the
computation time of the SOCP and SDP relaxations. To give an idea, the computation time of
the SOCP relaxation is below 2s for all instances; for the SDP relaxation, the computation
time goes from 0.2s for the smallest cases to about 40s for the largest cases. As regards the
column “This work”, in the optimality gap section of the table: the entry (GO) means that
the bound tightening procedure based on the conic programming relaxation closed the gap;
else, the entry a/b represents the gap after the bound tightening procedure (a) and the gap
after the iterative MILP scheme (b). Figure 4.4 shows the histograms of the optimality gap
for the four global optimization methods compared. Regarding Figure 4.5, it compares these
algorithms by showing for how many instances it reaches global optimality (in minimum time),
and the best gap among the four algorithms.

In Fig 4.4, we see that for the four considered optimality gap thresholds, this work obtains
the largest number of instances with a gap below the threshold. Our algorithm reaches global
optimality for 35 instances over 51. The optimality gap is below 1% for 47 instances over 51.
For 4 instances only, the optimality gap at the end of the algorithm is above 2%. As regards the
instances with less than 57 buses, they are all solved to global optimality in less than 212 seconds.
For all these instances with less than 57 buses, except case5_pjm and case30_as_api, the

97

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

Figure 4.4: Optimization gap histograms

Figure 4.5: Number of instances for which each algorithm performs best, for multiple
criteria

bound tightening procedure based on the conic programming relaxation (ACOPFC) manages
to close the gap. For the instances case5_pjm and case30_as_api, the gap is closed by the
iterative MILP scheme. For all the instances with more than 57 nodes where the MILP scheme
is executed, the gap is admittedly not closed within the time limit, but it is reduced, except

98

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

for case500_goc_api. Figure 4.5 shows that for 42 over these 51 instances, our algorithm has
the lowest gap; for 11 instances over 51, it has a strictly lower gap than the others approaches.
For 5 instances (among those 11 instances), our approach is the only one to reach global
optimality. Regarding the 9 instances where our approach has not the best gap: for 5 instances,
the QC relaxation-based bound tightening algorithm [213] yields the lowest gap ; for the 4
other instances, the Determinant-SDP relaxation-based bound tightening algorithm [87] yields
the lowest gap. Still in Figure 4.5, we see that our approach is the fastest to certify global
optimality for 22 instances; this is the case for only 6 instances for Gurobi 10.0, and for only
9 instances for [87]. In summary, for all the criterion presented in Figure 4.4 and Figure 4.5,
our algorithm presents the best performance.

4.5 Conclusion

We introduce a conic programming relaxation for the ACOPF problem. This relaxation is a
strengthening of the classical SDP relaxation with additional variables and valid inequalities.
These inequalities dominate previously introduced nonlinear cuts used to strengthen convex
relaxations. Our numerical experiments on a reference benchmark illustrate that this conic
programming relaxation is particularly suitable for a bound tightening procedure: it closes
the gap in many cases where a bound tightening based on a quadratic convex relaxation does
not. We also introduce an iterative scheme based on MILP, that asymptotically converges to
global minimizers of the ACOPF problem. For cases where the bound tightening procedure
does not close the gap, this iterative scheme significantly reduces the gap in most cases. Our
numerical experiments on a standard benchmark for the ACOPF problem show that our
algorithm outperforms three other global optimization approaches in terms of the number of
instances solved to global optimality or below a certain optimization gap and in terms of the
computational time to global optimality. For a timeout of 15h, our algorithm obtains the lowest
gap among the compared methods in 82% of the cases.

A first line of research concerns the scalability of conic programming relaxations with
semidefinite constraints, such as the one proposed in this chapter. So far, the scalability of
semidefinite programming is not as good as that of linear programming or second-order conic
programming. This challenge is the main topic of Chapter 5. This chapter addresses the
numerical issues that arise when solving semidefinite relaxations of large ACOPF instances.

A future line of research will be to improve the scalability of the optimization-based bound
tightening: parallelizing this procedure or targeting the bounds to tighten based on the graph
structure. Another avenue to explore is the possibility of speeding up the solution of the MILP
problem at a given iteration by reusing the branch-and-bound trees of the problems solved
during the previous iterations. From an applicative point of view, our method could be extended
to the Optimal Transmission Switching problem, where the network topology can be modified

99

CHAPTER 4. CONIC PROGRAMMING AND MILP SCHEME FOR GLOBAL
OPTIMIZATION OF AC POWER FLOWS

by switching electrical lines. We can also foresee an extension to Unit Commitment problems
with AC power flow equations, where generators can be switched on or off. Indeed, the proposed
MILP scheme could easily accommodate additional binary variables to describe these switches.

100

Optimality gap (%) Time (s)
Benchmark This work Benchmark This

Case SOCP SDP [94] [213] [87] BT/MILP [94] [213] [87] work
Typical Operating Condition (TYP)

3lmbd 1.32 0.39 GO GO GO GO <1 1 <1 1
5pjm 14.6 5.21 GO 5.76 GO 5.01/GO 2 44 21 205
14ieee 0.11 GO GO GO GO GO 1,380 12 <1 3
24ieeerts 0.02 GO 0.48 GO GO GO TL 41 8 7
30as 0.06 GO 34.0 GO GO GO TL 107 2 10
30ieee 18.8 GO 1.14 GO GO GO TL 226 2 8
39epri 0.56 GO 0.34 GO GO GO TL 272 2 9
57ieee 0.16 GO 3.66 GO GO GO TL 437 178 13
73ieeerts 0.04 GO 3.43 GO GO GO TL 399 22 21
89pegase 0.75 0.37 4.15 0.22 0.08 0.27/0.18 TL TL TL TL
118ieee 0.91 0.07 4.66 GO GO GO TL 8,440 TL 783
162ieeedtc 5.95 1.78 10.8 0.02 1.57 0.59/0.53 TL TL TL TL
179goc 0.16 0.07 0.43 0.03 0.03 0.04/0.03 TL TL TL TL
200activ 0.01 GO 5.46 GO GO GO TL 2,250 1,570 54
240pserc 2.78 1.43 4.44 2.71 1.20 1.02/0.93 TL TL TL TL
300ieee 2.63 1.03 12.5 2.55 0.05 GO TL TL TL 5,480
500goc 0.25 GO 112 0.13 GO GO TL TL 10,100 139

Congested Operating Condition (API)
3lmbd_api 9.27 7.10 GO GO GO GO <1 2 3 2
5pjm_api 4.09 0.26 GO GO GO GO 1 10 51 3
14ieee_api 5.13 GO GO GO GO GO 612 55 1 4
24ieeerts_api 17.9 2.07 0.10 GO GO GO TL 1,310 1,950 97
30as_api 44.6 10.9 30.1 36.1 0.63 0.13/GO TL 3,330 3,330 216
30ieee_api 5.46 GO 25.3 GO 0.02 GO TL 860 1,670 8
39epri_api 1.72 0.20 2.54 GO GO GO TL 652 2,080 96
57ieee_api 0.08 GO 1.88 GO GO GO TL 487 10 13
73ieeerts_api 12.9 2.90 21.7 0.28 0.23 0.28/0.08 TL TL TL TL
89pegase_api 23.1 22.0 33.5 17.2 17.6 21.7/19.3 TL TL TL TL
118ieee_api 30.0 11.7 50.2 3.16 1.44 1.26/0.90 TL 21,350 TL TL
162ieeedtc_api 4.36 1.44 10.3 0.18 1.31 0.29/0.25 TL TL TL TL
179goc_api 9.88 0.59 4.25 0.54 0.38 0.54/0.53 TL TL TL TL
200activ_api 0.03 1.49 77.8 GO GO GO TL 3,410 1,240 55
240pserc_api 0.67 0.28 1.96 0.62 err. 0.12/0.11 TL TL err. TL
300ieee_api 0.85 0.09 4.98 0.81 0.07 GO TL TL TL 7,840
500goc_api 3.44 2.36 581 3.00 2.12 2.19/2.19 TL TL TL TL

Small Angle Difference (SAD)
3lmbd_sad 3.75 1.86 GO GO GO GO <1 1 3 1
5pjm_sad 3.62 GO GO GO GO GO <1 4 <1 1
14ieee_sad 21.5 0.09 GO GO 0.11 GO 110 135 500 17
24ieeerts_sad 9.55 4.35 GO GO GO GO 5,420 140 1,450 98
30as_sad 7.88 0.24 18.1 GO 0.09 GO TL 168 2,600 71
30ieee_sad 9.70 GO 1.39 GO GO GO TL 197 5 9
39epri_sad 0.67 0.02 GO GO GO GO 41,600 193 1,500 90
57ieee_sad 0.71 0.05 34.9 GO GO GO TL 674 6,500 212
73ieeerts_sad 6.73 2.74 7.17 GO 0.05 GO TL 7,650 TL 1,470
89pegase_sad 0.73 0.37 3.55 0.34 0.07 0.28/0.19 TL TL TL TL
118ieee_sad 8.17 3.25 12.1 0.02 0.19 GO TL TL TL 1,690
162ieeedtc_sad 6.48 2.07 11.0 0.02 1.35 0.51/0.48 TL TL TL TL
179goc_sad 1.12 0.95 1.46 0.03 0.71 0.66/0.42 TL TL TL TL
200activ_sad 0.03 GO 5.46 GO GO GO TL 2,230 460 53
240pserc_sad 4.93 3.42 6.73 4.34 3.16 2.63/2.61 TL TL TL TL
300ieee_sad 2.61 0.67 12.8 2.33 0.05 GO TL TL TL 5,650
500goc_sad 6.67 5.68 127 5.29 5.59 5.21/5,18 TL TL TL TL

Table 4.2: Detailed results for the instances from IEEE PES PGLib AC-OPF v21.07
with less than 500 buses

C
h

a
p

t
e

r 5
Certified and accurate spectral bounds
for the ACOPF problem

Convex relaxations are fundamental tools for designing global optimization algorithms for
nonlinear problems such as the AC Optimal Power Flow (ACOPF) problem since they
provide lower bounds on the problem value [164]. Among them, the SDP relaxation is of

strong interest for both theoretical and practical reasons: indeed, this is the ACOPF’s bidual
(the dual of the dual) [136], and this relaxation is known to provide tight lower bounds [116]. In
Chapter 4, we use the SDP relaxation as a starting point for our global optimization algorithm.
As noted in this chapter, compared to other convex relaxations, the computational cost of the
SDP relaxation is a drawback that limits its applicability to large-scale instances. Another
drawback is the numerical difficulties encountered by SDP solvers for large-scale instances.
[116, 232]. This chapter addresses these limitations to improve the scalability of the SDP
relaxation and, in fine, of any global optimization algorithm based on this relaxation.

State-of-the-art algorithms for the SDP relaxation

The main drawback of the standard SDP relaxation (also known as Schor relaxation, or rank
relaxation) is that it involves a dense n×n matrix as a decision variable, where n is the number
of buses. This becomes intractable when n exceeds magnitudes of around 103. To overcome
this computational burden, state-of-the-art approaches to solve the SDP relaxation [71, 167]
exploit the sparse structure of the power grid by using a tree decomposition technique, as
presented in Chapter 4. Thanks to a semidefinite completion theorem [91] for matrices with
chordal sparsity pattern, it is possible to find an equivalent formulation for the semidefinite
relaxation, with many small semidefinite blocks instead of a single and large n×n matrix. Each

102

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

of these blocks corresponds to a clique of the tree decomposition. This clique-based semidefinite
relaxation can be solved with a symmetric IPM solver [169, 212], with a non-symmetric IPM
solver [5], or with a first-order method like the Alternating Direction Method of Multipliers
(ADMM) [155, 185, 245]. Eltved et al. [71] report the solution of the clique-based ACOPF’s
semidefinite relaxation for test cases with up to 82, 000 buses in a few hours. Despite these
advances, the clique-based semidefinite relaxation remains difficult to solve for large-scale
instances: numerical instabilities may arise when solving this convex optimization problem. In
[116] and [232], the authors report numerical instabilities with the commercial solver MOSEK

[169], which raises a warning for many tested instances. In [71], the authors report that the
academic IPM solver SeDuMi fails to solve the clique-based relaxation in 50% of the test cases;
and that the ADMM-based solver CDCS [245] often terminates with sizable dual residuals.

Two categories of troubles may arise due to numerical difficulties in solving the semidefinite
relaxation. First, they may limit the accuracy of the calculation of the relaxation value. Second,
obtaining a solution with nonzero primal and/or dual feasibility errors implies that the calculated
relaxation value is not certified [230]. In this case, one obtains an approximated value of the
relaxation without knowing if it is an exact lower bound on the ACOPF’s value.

Contributions and organization of the chapter

This chapter tackles both aforementioned numerical issues with an original approach. For
this purpose, we propose a novel formulation for the Lagrangian dual of the ACOPF, the
value of which equals the value of the semidefinite relaxation. Our formulation is a concave
maximization problem with the following interesting properties: (a) it is unconstrained (b) the
objective function is partially separable. This formulation is qualified as spectral because it
involves the minimum eigenvalue λmin of a matrix operator. Based on this formulation, we
present how to obtain a certified lower bound from any dual vector, whether feasible or not,
in the classical dual semidefinite relaxation. We solve this unconstrained dual problem with a
structure-exploiting polyhedral bundle method. We use this algorithm as a post-processing step,
after solving the clique-based semidefinite relaxation with the commercial IPM solver MOSEK

[169], which is the state-of-the-art solver for ACOPF’s semidefinite relaxation according to
[71, 164]. Our numerical experiments on instances from IEEE PES PGLib AC-OPF v21.07 [10]
show that this post-processing considerably improves the tightness of the dual bounds.

This work is not the first to take the path of spectral reformulations and nonsmooth
optimization to solve a SDP problem [99, 184]. We mention, however, two original contributions
of the present chapter with respect to [99, 184]: (i) we combine this spectral approach with the
clique decomposition technique for semidefinite programming, leading to a structure-exploiting
nonsmooth optimization algorithm, and (ii) we solve a spectral problem involving Hermitian
complex matrix operators, whereas the mentioned works for spectral bundle methods addressed
real symmetric matrix operators only. Compared to [190], a previous work applying Lagrangian

103

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

duality for the ACOPF and solving a nonsmooth dual, our structure-exploiting algorithm based
on clique decomposition enables us to address ACOPF instances of a much larger scale.

The chapter is organized as follows. Section 5.1 reviews the formulations of the ACOPF
problem, the semidefinite relaxation, and its dual. Section 5.2 introduces the unconstrained
dual formulation and illustrates its advantage in computing certified lower bounds. The bundle
method to solve this unconstrained problem is presented in Section 5.3, and the numerical
experiments in Section 5.4.

5.1 ACOPF, semidefinite relaxation and dual problem

This section reviews the ACOPF formulation solved here, with line limits in terms of current
(see Eqs. (7bis)-(8bis)), the semidefinite relaxation based on the tree decomposition, and the
standard dual problem.

5.1.1 Problem formulation

As explained in the Introduction, the ACOPF problem involves a direct graph G = (B,L)
describing the power grid. The set of generators connected to the bus b ∈ B is denoted by
Gb, and the set of all the generators is G = ⋃

b Gb. The parameters involved in the ACOPF
formulation were given in the Introduction and in the Chapter 4 of this manuscript (see Table 4.1
for instance). Additionally, we introduce here some matrices related to the line limits. For any
line (b, a) ∈ L, we define the Hermitian matrix

Nba = |Y ff
ba|2Ebb + Y ff

ba(Y ft
ba)∗Eab + (Y ff

ba)∗Y ft
baEba + |Y ft

ℓ |2Eaa, (5.1)

and for any (b, a) ∈ LR, we define the Hermitian matrix

Nba = |Y tt
ab |2Ebb + Y tt

ab(Y tf
ab)∗Eab + (Y tt

ab)∗Y tf
abEba + |Y tf

ab |2Eaa, (5.2)

recalling that the matrices Eba are the elements of the canonical basis of CB×B. Hence, constraints
(7bis) and (8bis) read

〈
Nba, V V

H
〉
≤ (Ība)2 for all (b, a) ∈ L ∪ LR. In summary, the ACOPF

formulation with current line limits is

min
V ∈CB, S∈CG

∑
g∈G

(
c0g + c1g Re(Sg) + c2g Re(Sg)2

)
s.t. ∀b ∈ B, vb ≤ |Vb| ≤ vb
∀g ∈ G, sg ≤ Sg ≤ sg
∀b ∈ B,

∑
g∈Gb

Sg − Sd
b = ⟨Mb, V V

H⟩

∀ℓ ∈ L ∪ LR
〈
Nℓ, V V

H
〉
≤ (Īℓ)2.


(ACOPF)

For the sake of readability, we work here with current line limits, but the approach of this
chapter could also be applied to power magnitude limits (7)-(8), since they can be formulated

104

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

as convex constraints with respect to W (see for example (ACOPFW)). In the following, we
do not show the offsets c0g for the sake of readability, but we do take them into account in the
numerical results for the values displayed.

5.1.2 The (clique-based) semidefinite relaxation

The standard semidefinite relaxation, also known as rank relaxation, is classically derived
by replacing the rank-one matrix V V H in (ACOPF) by a Hermitian and PSD matrix W of
unspecified rank. Hence, this is the following convex optimization problem

min
W⪰0, S∈CG

∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2

)
∀b ∈ B v2

b ≤Wbb ≤ v2
b

∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg − Sd
b = ⟨Mb,W ⟩

∀ℓ ∈ L ∪ LR ⟨Nℓ,W ⟩ ≤ (Īℓ)2


(SDR)

This formulation becomes intractable for large-scale instances [164]. A standard approach
[221] to avoid this computational burden consists in the following. We consider a given tree
decomposition T of the graph N (see Definition 4.1), and the associated set Bk ⊂ B for any
index k ∈ T , the size of which is denoted nk. We introduce the symmetric set E ⊂ B × B of
arcs defined as E = ⋃

k∈T Bk ×Bk. As a matter of fact, the sets Bk are cliques of the undirected
graph (B, E). The sets Bk are therefore simply called cliques. For any symmetric set Ẽ ⊂ E , we
define H(Ẽ) = {W ∈ CẼ : ∀(b, a) ∈ Ẽ ,Wba = W ∗

ab}, the set of Hermitian matrices with sparsity
pattern Ẽ . For any k ∈ T , we denote by WBk,Bk

the matrix (Wba)(b,a)∈B2
k
. The clique-based

semidefinite relaxation, also known as chordal relaxation, reads

min
W∈H(E), S∈CG

∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2

)
∀b ∈ B v2

b ≤Wbb ≤ v2
b

∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg − Sd
b = ⟨Mb,W ⟩

∀ℓ ∈ L ∪ LR ⟨Nℓ,W ⟩ ≤ (Īℓ)2

∀k ∈ T WBk,Bk
⪰ 0.


(cSDR)

The advantage of formulation (cSDR) is that the total number of coefficients in the matrix
W is ∑k∈T n2

k, whereas the matrix variable W in (SDR) involves |B|2 non-zero coefficients. If
the cliques are of limited size (nk ≪ |B|), then this decomposition is particularly relevant. This
is often the case, since power grids are known to have a low tree-width [164]. Since |T | ≤ |B|
by property of chordal graphs, we deduce that for graphs with bounded tree-width, ∑k∈T n2

k

scales in O(|B|) rather than O(|B|2). The following proposition is a standard result for sparse

105

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

semidefinite programming [221], that follows from a PSD completion theorem for Hermitian
matrices with chordal sparsity pattern [91].

Proposition 5.1. The SDP problems (SDR) and (cSDR) share the same value.

The formulation (SDR) is a conic programming problem on the cone K = {W ∈ H(E) : ∀k ∈
T ,WBk,Bk

⪰ 0}, which is not a symmetric cone [221]. For this reason, this is not a formulation
that the state-of-the-art conic programming solver can handle [169]: in practice, one have to
introduce a square Hermitian matrix Wk ∈ H(Bk × Bk) for each k ∈ T to describe WBkBk

, and
impose so-called overlap constraints (▲) to make sure that these matrices coincides for the pair
of indices belonging to the cliques’ intersections, so that the family (Wk)k∈T indeed describes
a matrix W ∈ H(E). This block reformulation with overlap constraints is also interesting to
obtain a sparse dual problem, therefore we discuss it here.

We use additional notation regarding the tree decomposition (Bk)k∈T of the graph N =
(B,L). We consider a given rooting of the tree T , and for any node k, we denote by C(k) ⊂ T
the set of children of k in this tree. For any j ∈ T , we define the overlap Jj = Bk ∩Bj , between
k and its parent node k in the tree T . By definition of a tree decomposition, for all ℓ ∈ L, we
can find at least one k ∈ T such that ℓ ∈ Bk × Bk: therefore, we can partition L as a disjoint
union ⋃k∈T Lk such that Lk ⊂ Bk × Bk; We also define LRk as the reverse arcs of Lk. Since
Mb ∈ CE , i.e. (Mb)ij = 0 if (i, j) /∈ E , there exists a family of matrices (Mbk)k∈T such that
Mbk ∈ CBk×Bk , and

Mb =
∑
k∈T

Mbk, (5.3)

where Mbk is seen as a matrix indexed by B × B, with zero coefficients for the indices outside
Bk × Bk. With this notation, an equivalent reformulation of (cSDR) is

min
Wk∈H(Bk×Bk), S∈CG

∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2

)
∀k ∈ T ∀b ∈ Bk v2

b ≤ ⟨Ebb,Wk⟩ ≤ v2
b

∀g ∈ G sg ≤ Sg ≤ sg
∀b ∈ B

∑
g∈Gb

Sg − Sd
b = ∑

k∈T ⟨Mbk,Wk⟩

∀k ∈ T ∀ℓ ∈ Lk ∪ LRk ⟨Nℓ,Wk⟩ ≤ (Īℓ)2

∀k ∈ T ∀j ∈ C(k) (Wk)JjJj = (Wj)JjJj (▲)
∀k ∈ T Wk ⪰ 0.



(c̃SDR)

The overlap constraint (▲) means that the submatrices of Wk and Wj with respect to the
indices (b, a) ∈ Jj × Jj should be equal.

5.1.3 The conic programming dual of the semidefinite relaxation

In this section, we present the dual problem of the relaxation (˜cSDR), obtained by standard
SDP dualization, as opposed to the dual formulation that we propose in Section 5.2. We define

106

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

the following integers

K1 =
∑
k∈T

nk K2 =
∑
k∈T
|Jj | Ξ = K1 + 2(|B|+ |L|+K2). (5.4)

The standard SDP dual formulation contains Linear Matrix Inequalities (LMI) involving a
family of R-linear matrix operators Ak : RΞ → H(Bk × Bk) for k ∈ T . The operator Ak is
defined such that for all θ = (α, β, γ, η, ν, µ) ∈ RΞ,

Ak(θ) =
∑
b∈Bk

αbkEbb + βbH(Mbk) + iγbZ(Mbk) +
∑

ℓ∈Lk∪LR
k

ηℓNℓ (5.5)

+
∑

(b,a)∈(Jk)2

νbakH(Eba) + iµbakZ(Eba)−

 ∑
j∈C(k)

∑
(b,a)∈(Jj)2

νbajH(Eba) + iµbajZ(Eba)

 ,
(5.6)

with H(M) = M+MH

2 (Hermitian part) and Z(M) = M−MH

2 (skew-Hermitian part). We define
the sets G1 = {g ∈ G : c2g = 0} and G2 = G \ G1. For any g ∈ G, b(g) ∈ B is the bus where the
generator g is located. We can now introduce the formulation

max ∑
k∈T , b∈Bk

v2
bαbk − vb2αbk + ∑

b∈B
P db βb +Qdbγb −

∑
ℓ∈L∪LR

Ī2
ℓ ηℓ

+∑
g∈G

P gyg − P gyg +Q
g
zg −Qgzg −

∑
g∈G2

(yg−y
g
−βb(g)+c1g)2

4c2g

s.t.
∀g ∈ G1 yg − yg = βb(g) − c1g

∀g ∈ G zg − zg = γb(g)

∀k ∈ T Ak(α− α, β, γ, η, ν, µ) ⪰ 0
(y, y, z, z) ∈ R4|G|

+
(α, α) ∈ R2K1

+
(β, γ, η, ν, µ) ∈ R2(|B|+|L|+K2).



(dualcSDR)

We recall that P g and Q
g

(resp. P g and Qg) were introduced as the real and imaginary parts
of sg (resp. sg), and P d

b and Qd
b as the real and imaginary parts of Sd

b .

Proposition 5.2. The constrained maximization problem (dualcSDR) is the dual conic
programming problem of the relaxation (˜cSDR).

Proof. We start by writing the formulation (˜cSDR) only with real equalities and inequalities,
so has to introduce the corresponding dual variables. To do so, we notice that for A,M ∈ CB×B

such that M = MH, the following holds [82]

Re(⟨A,M⟩) = ⟨H(A),M⟩ (5.7)

Im(⟨A,M⟩) = ⟨iZ(A),M⟩ . (5.8)

107

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

We underline that the matrices H(A) and iZ(A) are indeed Hermitian, so the scalar products
⟨H(A),M⟩ and ⟨iZ(A),M⟩ are indeed real. Based on this observation, we observe that the
following problem is a reformulation of (˜cSDR)

min
Wk∈H(Bk×Bk), P,Q∈RG

∑
g∈G

(
c1g Pg + c2g P

2
g

)
∀g ∈ G P g ≤ Pg ≤ P g (y

g
, yg)

∀g ∈ G Q
g
≤ Qg ≤ Qg (zg, zg)

∀k ∈ T ∀b ∈ Bk v2
b ≤ ⟨Ebb,Wk⟩ ≤ v2

b (αbk, αbk)
∀b ∈ B

∑
g∈Gb

Pg − P d
b =

∑
k∈T ⟨H(Mbk),Wk⟩ (βb)

∀b ∈ B
∑

g∈Gb

Qg −Qd
b =

∑
k∈T ⟨iZ(Mbk),Wk⟩ (γb)

∀k ∈ T ∀ℓ ∈ Lk ∪ LR
k ⟨Nℓ,Wk⟩ ≤ (Īℓ)2 (ηℓ)

∀k ∈ T ∀j ∈ C(k) ∀(b, a) ∈ (Jj)2 ⟨H(Eba),Wk⟩ = ⟨H(Eba),Wj⟩ (νbaj)
∀k ∈ T ∀j ∈ C(k) ∀(b, a) ∈ (Jj)2 ⟨iZ(Eba),Wk⟩ = ⟨iZ(Eba),Wj⟩ (µbaj)

∀k ∈ T Wk ⪰ 0.



(5.9)

In Eq. (5.9), we display the dual variable of each constraint. The formulation (dualcSDR)
is then obtained by standard conic programming dualization. In (dualcSDR) the constraint
yg − yg = βb(g) − c1g corresponds to the primal variable Pg, the constraint zg − zg = γb(g) to
the primal variable Qg, and Ak(α− α, β, γ, η, ν, µ) ⪰ 0 to the primal variable Wk.

5.2 Unconstrained spectral formulation for the dual problem

This section introduces the central element of our approach, i.e. an unconstrained formulation
for the dual problem of the ACOPF.

5.2.1 Some concave functions of interest

To reformulate (dualcSDR) as an unconstrained problem, we introduce some basic functions
that are terms in the objective function of (dualcSDR) or penalizations of the constraints:
For each generator g ∈ G, we introduce the concave functions pg, qg such that for all x ∈ R,

pg(x) = min
P∈[P g ,P g]

(c1g − x)P + c2g P
2 (5.10)

qg(x) = min
Q∈[Q

g
,Qg]
−xQ = Q

g
x− −Qg x+. (5.11)

To obtain an explicit formula for the function pg(x), we have to distinguish two cases:

• If g ∈ G1, then pg(x) = P g(x− c1g)− − P g(x− c1g)+,

• If g ∈ G2, then pg(x) =


(c1g − x)P g + c2g P

2
g if x− c1g ≤ 2c2gP g,

− (x−c1g)2

4c2g
if x− c1g ∈ [2c2gP g, 2c2gP g],

(c1g − x)P g + c2g P
2
g if x− c1g ≥2c2gP g.

108

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

For each bus b ∈ B, we define the concave functions vb, pb, qb such that for all x ∈ R,

vb(x) = min
v∈[v2

b
,v2

b]
−xv = v2

b x
− − vb2 x+, (5.12)

pb(x) = P d
b x+

∑
g∈Gb

pg(x), (5.13)

qb(x) = Qd
b x+

∑
g∈Gb

qg(x). (5.14)

For each ℓ ∈ L ∪ LR, we define the function hℓ such that for all x ∈ R,

hℓ(x) = min
I∈[0,Ī2

ℓ
]
−Ix = −Ī2

ℓ x
+. (5.15)

Finally, we introduce for each k ∈ T the concave multivariate function fk, such that for all
θ = (α, β, γ, η, ν, µ) ∈ RΞ,

fk(θ) = min
Z∈H(Bk×Bk)
Z⪰0,Tr(Z)≤ρk

⟨Ak(θ), Z⟩ = min {ρk λmin(Ak(θ)) , 0} , (5.16)

where ρk = ∑
b∈Bk

vb
2. The linear operator Ak, defined in Eqs. (5.5)-(5.6), only depends on

variables related to the clique index k. Therefore, so does function fk, as shown Table 5.2.

5.2.2 Our dual formulation

We define the function F : RΞ → R, such that for all θ = (α, β, γ, η, ν, µ) ∈ RΞ

F (θ) =
∑
k∈T

fk(θ) +
∑
k∈T

∑
b∈Bk

vb(αbk) +
∑
b∈B

pb(βb) +
∑
b∈B

qb(γb) +
∑

ℓ∈L∪LR

hℓ(ηℓ), (5.17)

and we propose the following formulation:

max F (θ)
s.t. θ ∈ RΞ.

(dualOPF)

Since the objective function F is a sum of functions, each of them involving just one or a limited
number of variables, problem (dualOPF) is said partially separable.

Theorem 5.1. The unconstrained maximization problem (dualOPF) has the same value as
the constrained problems (SDR), (cSDR),(˜cSDR) and (dualcSDR).

Proof. We define X = {(Wk)k∈T | ∀k ∈ T , (Wk ∈ H(Bk × Bk)) ∧ (Wk ⪰ 0) ∧ (Tr(Wk) ≤ ρk)}.
We underline that the constraint Tr(Wk) ≤ ρk is redundant in (˜cSDR) since it follows from the
constraints ∀b ∈ Bk, ⟨Ebb,Wk⟩ ≤ vb2, but it plays a role in the derivation of the dual formulation.
The dualization of (˜cSDR) introduced here differs from the standard conic programming
dualization presented in Proposition 5.2 as: (i) we keep explictly the constraint W ∈ X (ii)
we do not introduce dual variables for the bound constraints on Sg, but we also keep the

109

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

constraint explicitly (iii) as regards the inequality constraints v2
b ≤ ⟨Ebb,Wk⟩ ≤ v2

b , we encode
it as ⟨Ebb,Wk⟩ = ubk, with ubk constrained in [v2

b , v
2
b], and we introduce a dual variable αbk for

the equality constraint but not for the bound constraints, that are kept explicit. We proceed
similarly for the line constraints, introducing the variable uℓ ∈ [0, Ī2

ℓ]. Therefore, we define the
Lagrangian L such that for any primal vectors S ∈ CG , W ∈ X, u ∈ RK1+2|L| and for any dual
vector θ = (α, β, γ, η, ν, µ) ∈ RΞ,

L(S,W, u, θ) =
∑
g∈G

c1g Re(Sg) + c2g Re(Sg)2

+
∑
k∈T

∑
b∈Bk

αbk

(
⟨Ebb,Wk⟩ − ubk

)
+
∑
b∈B

βb

(
P d

b +
∑
k∈T

⟨H(Mbk),Wk⟩ −
∑
g∈Gb

Re(Sg)
)

+
∑
b∈B

γb

(
Qd

b +
∑
k∈T

⟨iZ(Mbk),Wk⟩ −
∑
g∈Gb

Im(Sg)
)

+
∑
k∈T

∑
ℓ∈Lk∪LR

k

ηℓ

(
⟨Nℓ,Wk⟩ − uℓ

)
+
∑
k∈T

∑
j∈C(k)

∑
(b,a)∈(Jj)2

νbaj

(
⟨H(Eba),Wj⟩ − ⟨H(Eba),Wk⟩

)
+
∑
k∈T

∑
j∈C(k)

∑
(b,a)∈(Jj)2

µbaj

(
⟨iZ(Eba),Wj⟩ − ⟨iZ(Eba),Wk⟩

)
.

Then, the problem (˜cSDR) reads as follows:

min
S,W,u

max
θ

L(S,W, u, θ),

where the minimization is over the constraints S ∈ ∏g

[
sg, sg

]
C, W ∈ X, u ∈ ∏bk[v2

b , vb
2] ×∏

ℓ[0, Ī2
ℓ], and the maximization over θ ∈ RΞ. Then, we reorder the terms of the Lagrangian L:

L(S,W, u, θ) = −
∑
k∈T

∑
b∈Bk

αbkubk +
∑
b∈B

βbP
d
b +

∑
b∈B

γbQ
d
b

+
∑
b∈B

∑
g∈Gb

(c1g − βb)Re(Sg) + c2g Re(Sg)2

−
∑
b∈B

∑
g∈Gb

γbIm(Sg)

−
∑
k∈T

∑
ℓ∈Lk∪LR

k

ηℓuℓ

+
∑
k∈T

⟨Ak(θ),Wk⟩ .

Hence, for fixed θ ∈ RΞ, the minimum over S ∈ ∏g

[
sg, sg

]
C, W ∈ X, u ∈ ∏bk[v2

b , vb
2]×∏ℓ[0, Ī2

ℓ]

110

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

is

min
S,W,u

L(S,W, u, θ) =
∑
k∈T

∑
b∈Bk

min
v∈[v2

b
,vb

2]
−αbkv +

∑
b∈B

βbP
d
b +

∑
b∈B

γbQ
d
b

+
∑
b∈B

∑
g∈Gb

min
p∈[P g,P g]

(c1g − βb)p+ c2g p
2 + min

q∈[Q
g

,Qg]
−γbq

+
∑
k∈T

∑
ℓ∈Lk∪LR

k

min
I∈[0,Ī2

ℓ
]
−ηℓI +

∑
k∈T

min
Z∈H(Bk×Bk)

Z⪰0,Tr(Z)≤ρk

⟨Ak(θ), Z⟩

=
∑
k∈T

∑
b∈Bk

vb(αbk) +
∑
b∈B

βbP
d
b +

∑
b∈B

γbQ
d
b

+
∑
b∈B

∑
g∈Gb

pg(βb) + qg(γb)

+
∑
k∈T

∑
ℓ∈Lk∪LR

k

hℓ(ηl) +
∑
k∈T

fk(θ)

= F (θ).

We deduce that the max-min problem max
θ

min
S,W,u

L(S,W, u, θ) is exactly the formulation
(dualOPF). Since (i) the Lagrangian L is convex with respect to primal variables and linear
with respect to dual variables (ii) both minimization and maximization sets are convex (iii) the
minimization set is compact; we can apply Sion min-max theorem [203] and deduce that the
two values are equals, hence

val(˜cSDR) = val(dualOPF). (5.18)

As (˜cSDR) is a reformulation of (cSDR), which has the same value as (SDR) (see Proposi-
tion 5.1), we know that (dualOPF) has the same value as these primal relaxations. It remains
to prove that (dualcSDR) also share this value. By duality, we know that

val(˜cSDR) ≥ val(dualcSDR). (5.19)

Moreover, we notice that from any solution θ = (α, β, γ, η, ν, µ) with value F (θ) in (dualOPF),
we build a solution Z = (y, y, z, z, θ) of (dualcSDR) with the same value, by defining

• for all g ∈ G, zg = (γb(g))−, zg = (γb(g))+,
• for all g ∈ G1, y

g
= (βb(g) − c1g)−, yg = (βb(g) − c1g)+,

• for all g ∈ G2, y
g

= max{0, c1g − β + 2c2gP g} and yg = max{0, β − c1g − 2c2gP g}.

Therefore, val(dualcSDR) ≥ val(dualOPF). Together with Eqs. (5.18)-(5.19), we deduce that
(dualcSDR) = val(dualOPF).

5.2.3 Lower bound certification

In many applications, computing a lower bound on an optimization problem is the first
motivation of solving a relaxation of this problem. We will now present how our dual formulation

111

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

(dualOPF) enables us to compute certified lower bounds on the value of (ACOPF). We consider
a realistic computational framework in rational numbers. The parameters of problem (ACOPF)
are thus supposed to have rational real and imaginary parts. We consider the question of
computing a certified lower bound, that is, computing a value v ∈ Q such that val(ACOPF) ≥ v.
A disadvantage of solving the primal-dual pair (cSDR), (dualcSDR) of SDP problems is that
obtaining a certified dual bound requires the exact feasibility of the dual solution. In practice,
one may obtain a slightly infeasible solution of (dualcSDR) which invalidates the certification.

The unconstrained formulation (dualOPF) helps addressing this issue. We take any vector
θ ∈ QN , produced by any algorithm maximizing F (θ). The inequality val(ACOPF) ≥ F (θ)
holds. Nevertheless, we have to acknowledge that, because of the eigenvalue functions in fk(θ)
terms, the value of F (θ) can only be approximated. Despite this, we need to compute an exact
lower bound on fk(θ), so as to compute an exact lower bound on F (θ). For any M ∈ Hn

with rational coefficients, we define λLB(M) = min1≤i≤nMii −
∑
j ̸=i |Mij |, which is a lower

bound on λmin(M) due to Gershgorin’s circle theorem. We point out that computing the
magnitude |Mij | =

√
Re(Mij)2 + Im(Mij)2 involves computing a square root, which is not

necessarily rational. Yet, we can always round up the output of the square root algorithm to
an arbitrary precision, to obtain s ∈ Q, and check that s2 ≥ Re(Mij)2 + Im(Mij)2. Such an
upper bound on the square root will guarantee that the computed value λLB(M) ∈ Q is lower
than λLB(M) and thus than λmin(M). By eigendecomposition, we compute a matrix U and a
diagonal matrix D, both with rational coefficients and such that Ak(θ) ≈ UDUH. We define
then fk(θ|U,D) = ρk min{mini(Dii) + λLB(Ak(θ)− UDUH), 0}, which is computable through
basic arithmetic operations in rational numbers and

fk(θ) ≥ fk(θ|U,D). (5.20)

Replacing fk(θ) by fk(θ|U,D) in the expression of F (θ), we can compute an exact lower bound
on val(ACOPF). Indeed, the functions pb, qb, vb, hℓ are computable in rational numbers since
they involve elementary arithmetic operations.

5.3 Nonsmooth optimization algorithm

The objective function of (dualOPF) being nonsmooth, we solve this new formulation for
the dual ACOPF with a tailored Nonsmooth Optimization (NSO) algorithm belonging to the
family of Proximal Bundle Methods (PBM) [13].

5.3.1 Abstract formulation

The dual objective function F (θ), introduced in Eq. (5.17), is a sum of functions:

F (θ) =
r∑
j=1

Fj(θ), (5.21)

112

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

where Fj(θ) = min
(a,b)∈Yj

a+ b⊤θ for a given compact set Yj ⊂ R1+Ξ. In Table (5.1), we detail what

are these sets for the different terms appearing in the sum Eq. (5.17). For the understanding
of this table, we remind that the variables αbk, βb, γb, etc., must be understood as specific
coordinates of θ; we denote eαbk ∈ RΞ (resp. eβb, eγb, etc.) the element of the canonical basis
such that θ⊤eαbk = αbk (resp. θ⊤eβb = βb, θ⊤eγb = γb, etc.). The notation A†

k designates the
adjoint operator to Ak, and is made explicit in Table 5.2.

Function Fj(θ) Set Yj
vb(αbk) {(0,−veαbk) : v ∈ [v2

b , v
2
b]}

pg(βb) {(c1gp+ c2gp
2,−peβb) : p ∈ [P g, P g]}

qg(γb) {(0,−qeγb) : q ∈ [Q
g
, Qg]}

pb(βb) {(0, P d
b eβb)}

qb(γb) {(0, Qd
beγb)}

hℓ(ηℓ) {(0,−Ieηℓ) : I ∈ [0, Ī2
ℓ]}

fk(θ) {(0,A†
k(W)) : U ⪰ 0,Tr(W) ≤ ρk}

Table 5.1: Description of the functions as Fj(θ) = min
(a,b)∈Yj

a+ b⊤θ

Note that for all function types except fk(θ), the set Yj is of dimension 0, 1, or 2. The
computation of min

(a,b)∈Yj

a+ b⊤θ can be done in closed form: the separation oracle is simple and

exact. For the functions of the type fk(θ), an exact separation oracle is also affordable, since
the minimum is computed as follows: first, we compute the minimum eigenvalue λ of Ak(θ)
and an associated eigenvector U ; if λ > 0, fk(θ) = 0 and the null vector is a solution to this
minimization problem; otherwise fk(θ) = ρkλ and (0,A†

k(W)) is solution, where W = ρkUU
H.

We emphasize that the computational cost of this operation is limited since

• computing (λ,U) amounts to compute a minimum eigenpair of a nk × nk matrix, since
Ak(θ) ∈ H(Bk × Bk),

• as shown in Table 5.2, computing the real vector A†
k(W) amounts to compute Froebenius

products involving matrices with very few non-zero coefficients, all related to clique Bk.

Variable Corresponding coordinate of A†
k(W)

αbk, for b ∈ Bk ⟨Ebb,W ⟩
βb, γb, for b ∈ Bk ⟨H(Mbk),W ⟩, ⟨iZ(Mbk),W ⟩
ηℓ, for ℓ ∈ Lk ∪ LRk ⟨Nℓ,W ⟩
νbak, µbak for (b, a) ∈ (Jk)2 ⟨H(Eba),W ⟩,⟨iZ(Eba),W ⟩
νbad, µbad for d ∈ C(k) −⟨H(Eba),W ⟩,−⟨iZ(Eba), W ⟩

and for (b, a) ∈ (Jd)2

Table 5.2: Description of the nonzero coordinates of A†
k(W)

113

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

Remark 5.1. The formulation (dualOPF) has an equivalent semi-infinite reformulation:

max
θ∈RΞ,s∈Rr

∑r
j=1 sj

s.t. ∀j ∈ J1, rK, ∀(a, b) ∈ Yj , sj ≤ a+ b⊤θ.

 (5.22)

5.3.2 A structured cutting-plane model

When designing a PBM, a key choice is the cutting-plane models used to approximate the
objective function. In the present case, the objective function F (θ) of (dualOPF) has a partially
separable structure. We exploit this property to produce a rich and structured cutting-plane
model, sometimes referred as disaggregated cutting-plane model in the NSO literature. Instead
of using a cutting-plane model for the whole function F (θ), we use one model for each single
function Fj(θ). For a given finite subset Y̌j ⊂ Yj , we define the polyhedral function

F̌j(θ) = min
(a,b)∈Y̌j

a+ b⊤θ. (5.23)

During an iterative algorithm, the set Y̌j might evolve: therefore, we denote by Y̌tj at the
iteration t, and by F̌j(θ) the resulting function. Then, we define the disaggregated polyhedral
model

F̌ t(θ) =
r∑
j=1

F̌ tj (θ). (5.24)

The algorithm CPA, studied in Chapter 1, and also known as Kelley’s algorithm [118],
could be a possible approach here to solve the formulation (dualOPF) based on the model
(5.24): in other words, this would correspond to applying CPA to the semi-infinite programming
formulation (5.22). However, the assumptions of Chapter 1, in the setting of which we proved
that the algorithm CPA performs well, are not satisfied here: (i) we do not have an a priori
set X that is compact to bound θ, therefore maxθ F̌ t(θ) may not be finite (ii) the objective
function F (θ) is not strongly concave. Therefore, the performance of CPA may be poor. Hence,
we prefer to use a proximal bundle method.

5.3.3 The proximal bundle method

A proximal bundle method (PBM) may be seen as a stabilized version of the algorithm CPA:
based on stability centers θ̄t, a quadratic regularization is added to the objective function to
make it strongly concave. Algorithm 5 presents the PBM framework used to solve (dualOPF).

114

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

Algorithm 5 Proximal bundle method.
Input: θ̄0 ∈ Rd; finite sets F̌ 0

j ⊂ Fj ; m ∈ [0, 1]; tol, κ0 ∈ R++.
0: t← 0, δ0 ←∞
1: while δt > tol do
2: Let θt be a solution of

max
θ∈RN

F̌ t(θ)− 1
2κt∥θ − θ̄

t∥2. (QPt)

3: For all j ∈ J1, rK, compute Fj(θt) and (aj , bj) ∈ Yj such that Fj(θt) = aj + (bj)⊤θt.
4: F (θt)←∑r

j=1 Fj(θt)
5: δt ← F (θ̄t)− F̌ t(θt) + 1

2κt∥θ
t − θ̄t∥2.

6: if F (θt) ≤ F (θ̄t)−mδt then ▷ Serious step
7: θ̄t+1 ← θt.
8: else ▷ Null step
9: θ̄t+1 ← θ̄t.

10: end if
11: For all j ∈ J1, rK, Y̌t+1

j ← Y̌tj ∪ {(aj , bj)}. Create the model F̌ t+1 accordingly.
12: Update κt to build κt+1.
13: t← t+ 1.
14: end while

The function F̌ t being polyhedral; the subproblem solved at each iteration is a convex QP
problem. An explicit formulation of this QP problem is

max
θ∈RΞ,s∈Rr

∑r
j=1 sj − 1

2κt∥θ − θ̄
t∥2

s.t. ∀j ∈ J1, rK, ∀(a, b) ∈ Y̌tj , sj ≤ a+ b⊤θ,

 (QPt)

with the sets Y̌tj being finite. The framework presented in Algorithm 5 must be specified in
different ways. First, we stop the algorithm after a maximal number of iterations Kmax or a
maximal number of consecutive null steps Knull

max, or whenever F (θt) is greater than a known
upper bound on val(ACOPF) (primal infeasibility). Second, we update the proximal parameter
κ ∈ [κmin, κmax], only when: (a) 2 serious steps are consecutive or separated by at most 1 null
step, then κt+1 ← max{rdownκt, κmin} with rdown ∈]0, 1[; (b) every batch of 10 consecutive
null steps, κt+1 ← min{rupκt, κmax} with rup > 1. Third, we keep bounded-size cutting-plane
models, as explained in Section 1.2, by (i) deleting inactive cutting-plane every 5 serious steps
(ii) aggregating each individual cutting-plane model F̌ tj (θ) based on the QP dual solution every
10 serious steps.

Remark 5.2. We notice that during a sequence of consecutive null steps, the stability center
θ̄t is constant. We denote it θ̄. If we were to choose a constant parameter κt = κ, we notice
that these consecutive null steps are performing the Algorithm 1 (CPA) to solve the proximal
point problem maxθ∈RΞ F (θ)− κ

2∥θ − θ̄∥
2. However, it is known that it is often more effective

in practice to adapt the proximal parameter κ dynamically [141].

115

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

5.4 Numerical experiments

In this section we illustrate that the proposed formulation and the PBM can be used to
obtain accurate and certified dual bounds on val(ACOPF). We do not use this algorithm as
a standalone solver but as a post-processing step after calling the IP solver MOSEK [169];
Tables 5.3 and 5.4 show that this post-processing enables substantial accuracy improvements
for several instances from the library IEEE PES PGLib AC-OPF v21.07 [10].

5.4.1 Experimental setting

For all experiments, we used a 64-bit Ubuntu computer with 32 Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz and 32 GB RAM. Algorithm 1 was implemented in Python 3.6. We compute the
clique decomposition thanks to the chompack package. To manipulate sparse matrices and solve
eigenproblems, we use the scientific packages Scipy and numpy. At each iteration, we solve the
QP problem in its dual form, using the open-source solver OSQP [207]. We execute Algorithm 5
with an Armijo parameter m = 0.01 and a relative tolerance parameter of tol = 10−6. We also
set Kmax = 500 and Knull

max = 50. Based on the isometry between n× n complex PSD matrices
and 2n× 2n real PSD matrices [82], we formulate problem (˜cSDR)-(5.9) as a SDP problem
in real numbers, and solve it with the IPM solver MOSEK. We initialize the PBM with a dual
solution given by MOSEK; this is why we do not evaluate here the PBM as a standalone solver, but
as a post-processing for MOSEK. We point out that (i) MOSEK is considered as the state-of-the-art
solver for the ACOPF’s semidefinite relaxation [71, 164] (ii) we call MOSEK with primal and dual
feasibility tolerances (10−10) smaller than tolerance by default (10−8). Therefore, the examples
of MOSEK’s inaccuracy presented here cannot be attributed to an early stop of MOSEK due to high-
tolerance configuration. The considered ACOPF instances are taken from the reference library
PGLib-OPF v21.07 [10], with typical operating conditions (TYP) and less than 7,000 buses.
The code is available in the following repository: github.com/aoustry/dualACOPFsolver. The
full results tables and logs are also available at this link.

5.4.2 Numerical results

For cases up to 1,000 buses, MOSEK is very accurate and hence, no significant accuracy improve-
ment is made by the post-processing. We focus now on the instances with more than 1,000
buses. For case4019_goc, case4020_goc and case4661_sdet, we obtained an out-of-memory
error during MOSEK execution. The results for other instances are presented in Table 5.3. The
estimated lower bound (ELBM) is the value of the (potentially slightly infeasible) dual solution
ZM = (y, y, z, z, α, α, β, γ, η, ν, µ) computed by MOSEK. The certified lower bound given by MOSEK

(CLBM) is the value FθM) with θM = (α− α, β, γ, η, ν, µ). We point out that if ZM is feasible
and optimal in (dualcSDR), then both values ELBM and CLBM are equal; case2853_sdet
is an example of such a situation. On the contrary, the spread between ELBM and CLBM,

116

github.com/aoustry/dualACOPFsolver

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

observed for most of the instances in Table 5.3, is due to the slight infeasibility of ZM in
(dualcSDR). The certified lower bound given by the post-processing (CLBP) is the best value
obtained by running Algorithm 5 initialized with θ̂0 = θM. For brevity, these absolute values
are expressed in scientific notation without mentioning the scale (e+5 or e+6). The progress
of the estimated (resp. certified) lower bound is CLBP−ELBM

ELBM
(resp. CLBP−CLBM

CLBM
), expressed in

%. These figures should be compared with the targeted optimality gap in global optimization,
that is typically 0.01%. Table 5.3 shows that, whether we talk about the progress with respect

Instance MOSEK Estim. LB Certif. LB Certif. LB Progress Progress
(case_###) status MOSEK MOSEK post-proc. estim. LB certif. LB
3012wp_k unknown 2.56486 2.54175 2.57994 0.59% 1.5%
6495_rte unknown 2.65137 2.61727 2.64956 -0.07% 1.2%
3120sp_k unknown 2.13237 2.09093 2.11465 -0.83% 1.1%
2736sp_k unknown 1.30380 1.29815 1.30739 0.28% 0.71%
2737sop_k unknown 7.75459 7.72214 7.77551 0.27% 0.69%
1354_pegase unknown 1.23135 1.23066 1.23738 0.49% 0.55%
6515_rte unknown 2.66299 2.65224 2.66667 0.14% 0.54%
2746wp_k unknown 1.62822 1.62361 1.63139 0.19% 0.48%
6468_rte unknown 2.05831 2.05267 2.06084 0.12% 0.40%
2746wop_k unknown 1.20676 1.20469 1.20806 0.11% 0.28%
6470_rte unknown 2.21458 2.21198 2.21576 0.053% 0.17%
1951_rte unknown 2.08388 2.08152 2.08489 0.049% 0.16%
1888_rte unknown 1.37253 1.37087 1.37296 0.03% 0.15%
2383wp_k unknown 1.86230 1.86129 1.8629 0.03% 0.09%
4917_goc unknown 1.37226 1.37153 1.37239 0.01% 0.06%
2869_pegase unknown 2.44727 2.44645 2.44793 0.03% 0.06%
3022_goc unknown 5.95436 5.95183 5.95505 0.01% 0.05%
2848_rte unknown 1.28496 1.28476 1.28507 0.01% 0.02%
2312_goc unknown 4.35665 4.35582 4.35683 0.00% 0.02%
4601_goc optimal 8.26171 8.26110 8.26216 0.01% 0.01%
2868_rte unknown 2.00945 2.00933 2.00952 0.00% 0.01%
2000_goc optimal 9.72929 9.72904 9.72956 0.00% 0.01%
2742_goc optimal 2.75607 2.75598 2.75607 0.00% 0.00%
4837_goc optimal 8.71895 8.71883 8.71891 0.00% 0.00%
2853_sdet optimal 2.03604 2.03604 2.03604 0.00% 0.00%
3970_goc unknown 9.60853 9.60741 9.60741 -0.01% 0.00%
3375wp_k unknown 7.40602 7.39211 7.39211 -0.19% 0.00%

Table 5.3: Estimated and certified lower bounds computed by MOSEK and by our
post-processing algorithm (PBM)

to ELBM or CLBM, the post-processing step yields an improvement in most cases: the best
certified lower bound gets higher than both values by more than 0.01% for all 27 cases (in
Table 5.3) but 5. We see that the progress with respect to MOSEK’s output value is more than
0.1% in 8 cases; it is more than 0.5% in one case. If we ask for certification, then the progress

117

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

made by the post-processing step are even better: it is more than 0.1% for 13 cases and more
than 0.5% in 7 cases. Figure 5.1 shows MOSEK’s lower bound certification penalty (the ratio
(ELBM − CLBM)/CLBM in x-axis) versus the progress made by the PBM in terms of certified
lower bound (the ratio (CLBP − CLBM)/CLBM, in y-axis). A point is above the x = y line if
the lower bound certified by the PBM is better than MOSEK’s estimated value; if it is below,
this means that the post-processing could not confirm that MOSEK’s estimated value is indeed a
valid lower bound.

Figure 5.1: Certification penalty for MOSEK versus progress of the PBM

Unsurprisingly, the accuracy gains offered by the post-processing have a computational cost:
running the PBM after calling MOSEK induces a time overhead. Table 5.4 presents this time
overhead, expressed as a percentage of MOSEK’s computational time. We observe that this relative
overhead is very variable depending on the instance, ranging from 2% to 3300%. To confirm
that this computational overhead is worth it, we measured how the increase of the lower bound
reduces the optimality gap. Thanks to the solver Ipopt [239], we compute an upper-bound (UB)
on val(ACOPF) (see Table 5.4). Note that for all the instances present in Table 5.3 but not
in Table 5.4, Ipopt failed to converge, hence we could not compute an optimality gap. Table
5.4 displays MOSEK’s estimated gap (UB−ELBM

UB), MOSEK’s certified gap (UB−CLBM
UB) and the best

certified gap after the post-processing (UB−CLBP
UB). Table 5.4 also displays the relative reduction

of the estimated gap (UB−ELBM)−(UB−CLBP)
UB−ELBM

= CLBP−ELBM
UB−ELBM

and of the certified gap CLBP−CLBM
UB−CLBM

.
Table 5.4 shows that the accuracy gains allowed by the post-processing are significant, since
they are of the order of magnitude of the optimality gap: the post-processing reduces the

118

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

Instance UB MOSEK’s Post-proc Estim./certif. Time
(case_###) (IPOPT) estim./cert. gap cert. gap gap reduction overhead
2737sop_k 7.77719 0.291%/0.708% 0.022% 93%/ 97% 549%
2746wp_k 1.63171 0.214%/0.496% 0.020% 91%/ 96% 272%
2746wop_k 1.20826 0.124%/0.295% 0.017% 87%/ 94% 61%
2736sp_k 1.30800 0.321%/0.753% 0.047% 85%/ 94% 465%
4601_goc 8.26223 0.006%/0.014% 0.001% 87%/ 93% 4%
3012wp_k 2.59001 0.971%/1.863% 0.389% 60%/ 79% 444%
2383wp_k 1.86360 0.070%/0.124% 0.038% 46%/ 70% 814%
2868_rte 2.00961 0.008%/0.014% 0.004% 43%/ 66% 86%
1354_pegase 1.24250 0.897%/0.953% 0.412% 54% / 57% 2200%
2742_goc 2.75616 0.003%/0.007% 0.003% 0.0% / 50% 5%
3120sp_k 2.14655 0.661%/2.591% 1.486% -125% / 43% 346%
2869_pegase 2.45053 0.133%/0.166% 0.106% 20% / 36% 444%
2000_goc 9.73324 0.041%/0.043% 0.038% 6.8% / 12% 978%
3022_goc 5.98838 0.568%/0.610% 0.557% 2.0% / 8.8% 805%
4917_goc 1.38152 0.670%/0.723% 0.661% 1.4% / 8.6% 529%
1888_rte 1.40530 2.331%/2.450% 2.301% 1.3% / 6.1% 3300%
4837_goc 8.72020 0.014%/0.016% 0.015% -3.2% / 5.8% 24%
2312_goc 4.38452 0.636%/0.655% 0.632% 0.6% / 3.5% 240%
2853_sdet 2.04037 0.212%/0.212% 0.212% 0.0% / 0.0% 36%
3375wp_k 7.42469 0.251%/0.439% 0.439% -75% / 0.0% 65%
3970_goc 9.60985 0.014%/0.025% 0.025% -85% / 0.0% 2%

Table 5.4: Optimality gap reduction thanks to the post-processing step (PBM)

certified optimality gap by more than 50% for 10 instances. For 5 instances of them, the certified
optimality gap is reduced by more than 90%. For these instances, the geometric average of the
time overhead is 111%. Regarding the instances with a negative estimated gap reduction, they
corresponds to the instances below the x = y line in Figure 5.1: the best certified lower bound
after the post-processing is lower than MOSEK’s estimated value.

5.5 Conclusion

This work shows that for many ACOPF instances from a reference benchmark, the dual bound
computed by the state-of-the-art semidefinite programming interior-point solver MOSEK can
be improved by a nonsmooth optimization algorithm used as a post-processing step, to the
extent that the ACOPF’s optimality gap is significantly reduced. This somehow illustrates a
complementarity between these two algorithms: a first-order method may provide dual progress
in a situation where the employed interior-point solver stalls. This work also shows the difficulty
of achieving a given precision of the objective function value and, thus, the importance of
manipulating certified lower bounds, which the proposed approach allows. In the context of a
global optimization algorithm, the bounds exactness is critical to the correctness of the master

119

CHAPTER 5. CERTIFIED AND ACCURATE SPECTRAL BOUNDS FOR THE ACOPF
PROBLEM

(e.g. branch-and-bound) algorithm.
Further research could focus on speeding up this algorithm by parallelizing the spectral

oracles and using a GPU implementation of the OSQP solver. Further works on the stopping
criterion of the bundle method would help to identify cases where the improvement in the
lower bound is small and where it is not worth spending additional computational time on
post-processing. Finally, further steps could concern the integration of this approach into a
global optimization algorithm such as the one we proposed in Chapter 4, or such as the spectral
Moment-SOS hierarchy [156].

120

C
h

a
p

t
e

r 6
Adjustable robust nonlinear optimization
via semi-infinite programming and
homotopy continuation

The power systems of the XXIst century are subject to uncertainties, mainly related
to loads and wind and solar generation units, that depend on random factors. This
last chapter addresses an electricity dispatch optimization problem under uncertainty

[198]. We chose to refer to a generic framework to present our methodological contributions,
but the numerical experiments focus on the Adjustable-Robust ACOPF problem. Adjustable
Robust Optimization (ARO) models such situations where one has to make some decisions
in the presence of uncertain parameters yi. The decision variables are divided into “here-and-
now” decisions x, before the uncertainty is realized, and “wait-and-see” decisions z, after the
uncertainty is realized. Given four integers nx, ny, nz, nh ∈ N \ {0}, two nonempty compact
sets X ⊂ Rnx and Y ⊂ Rny , and three locally Lipschitz continuous functions f : Rnx → R,
g : Rnx+ny+nz → Rnz and h : Rnx+ny+nz → Rnh , we are interested in solving

min
x∈X

f(x)

s.t. ∀y ∈ Y, ∃z ∈ Rnz , g(x, y, z) = 0
h(x, y, z) ≤ 0.

 (ARO/ESIP)

As a matter of fact, this problem belongs to the class of Adjustable Robust Optimization [240].
In contrast to two-stage stochastic programs, ARO problems consider the worst case with
respect to uncertainty rather than a statistical measure based on probability distributions.
Since uncertainty and recourse only appear in the constraints of the present formulation, this
problem can also be seen as an Existence-constrained Semi-Infinite Programming (ESIP), a

121

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

term recently coined by Djelassi and Mitsos [66]. We acknowledge that this work deals with the
special case where the number of equality constraints equates the dimension of the vector z: for
a fixed (x, y) ∈ X × Y, the nonlinear system of equations g(x, y, z) = 0 with unknown z is a
square system. This is indeed the case in the AR-OPF formulation presented in Section 6.3.

Related works

Flexibility index of complex systems. The study of the flexibility index of complex
systems predates the definition of the ESIP framework but can be seen as one particular case
of the formulation (ARO/ESIP). Grossmann, Halemane, and Swaley [92, 93, 96] consider the
problem of designing flexible chemical plants based on a formulation that is an ESIP. The
solution techniques for the flexibility index problem mainly involve the reformulation as a
bilevel optimization problem, and the convexification of the lower-level problem (then replaced
by its KKT conditions) [74, 195]. The resulting nonconvex MINLP formulation, a relaxation of
the original flexibility index problem, is solved with a global optimization method such as the
mixed-integer nonlinear α-BB algorithm [6].

Min-max-min programs. A related class of problems that has received attention in the
literature is the min-max-min programs. The connection with the formulation (ARO/ESIP)
is the following: looking for a feasible point in (ARO/ESIP) amounts to solve the problem
minx∈X maxy∈Y minz : g(x,y,z)=0H(x, y, z), where H(x, y, z) = maxi hi(x, y, z). Polak and Royset
[193] study min-max-min programs without assuming convexity, where the inner min operator
operates over a finite set. To address these problems, they use a smoothing technique to
replace the inner min operator with a smoothed approximation, effectively transforming the
min-max-min program into a min-max approximation. This approximation is iteratively used
and improved to solve min-max-min programs with finite or infinite max to local optimality.
Tsoukalas et al. [218] extend this approach by applying the smoothing technique to the max
operator in finite min-max-min programs as well. ESIP problems, however, may involve infinite
sets. It remains unclear whether the smoothing technique can be extended to handle sets with
infinite cardinality.

Adjustable Robust Optimization. Regarding ARO, a standard approach consists in
restricting the recourse z to be a function of the uncertainty y. To obtain a finite-dimensional
problem, the functional decision rule is optimized among a parametric family of functions
z(y, θ), parameterized by a vector θ incorporated in the “here-and-now” decisions. In several
works [16, 21, 22], this parametrization is chosen to be affine in y for tractability issue. This
leads to a restriction of the original problem. In contrast, in the present work, we do not
restrict z to be an explicit function of y and solve the formulation (ARO/ESIP) exactly. In
some specific cases, the structure of the optimal decision rule may be deduced. Typically, in

122

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

linear ARO problems where uncertainties lie solely on the right-hand side, it has been observed
in [18] that there exist optimal piecewise linear decision rules. Expanding on this observation,
Bertsimas and Goyal [22] proved that, when considering a linear ARO problem with right-hand
side uncertainties and a simplex uncertainty set, affine decision rules are optimal. Also in [23],
the authors proved that affine decision rules are optimal for ARO problems with a specific
objective function (convex in the uncertain parameters and adjustable variables), with box
constraints for the variables, and with a box uncertainty set. In the present case, we do not
make such convexity assumptions.

Existence Constrained Semi-Infinite Programming. We emphasize that our formulation
(ARO/ESIP) encompasses both equality and inequality constraints. In the aforementioned
work by Djelassi and Mitsos [66], where the notion of ESIP is coined, the authors consider
only inequality constraints in the lower-level problem and assume the existence of a point
that strictly satisfies these inequalities: thus, unlike the present approach, [66] does not cover
the case of equality constraints. Previous works by Stuber and Barton consider semi-infinite
programming formulations with implicit functions [210, 211]: this corresponds to the case of
the formulation (ARO/ESIP) where there exists a unique zy such that g(x, y, zy) = 0 for all
(x, y) ∈ X × Y . We make no such assumption here. Moreover, this work by Stuber and Barton
[210, 211] requires the use of exact computational methods based on interval arithmetics,
untractable on large-scale problems. In contrast, we propose an algorithm based on scalable
nonlinear programming methods.

Power systems applications. The Security-Constrained AC Optimal Power Flow (SC-OPF)
and Adjustable-Robust AC Optimal Power Flow (AR-OPF) problems are ESIP that have
attracted much attention in the operations research and power system communities [198]. In the
SC-OPF, the uncertainty set Y representing possible line trippings on a subset of the electrical
lines is finite [7, 41, 40]. In this case, the problem can be formulated as a finite nonlinear
programming problem with a block structure suitable for decomposition techniques to handle
large-scale problems with many contingencies [7, 81, 120, 186, 189]. In contrast, the AR-OPF
involves continuous uncertainties regarding the power consumption (or the fluctuating power
generation by wind or solar power plants) [129, 138, 151, 150]. The latter is more in line with the
literature on ARO. In [109], Jabr applies the affinely adjustable robust optimization framework
to the optimal power flow problem with the linear model of DC power flow. In [151], Louca
and Bittar apply the affinely adjustable robust optimization framework to the nonconvex AC
power flow equations. Another work by Louca and Bittar [150] applies the affinely adjustable
robust optimization framework to the semidefinite programming relaxation of the AC power
flow equations, and uses standard robust convex optimization techniques to obtain an inner
approximation of the ARO feasible set. A limitation of this work is that it requires a flexible
power injection at each bus, which is not a realistic assumption. Some other works, like our

123

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

approach, tackle the nonconvex AC power flow model without restricting to affine recourse
policies. Chamanbaz et al. [48] propose to work with a semidefinite relaxation of the AC power
flow equations and proceed with a fixed sampling of the uncertainty set. The recent work by
Lee et al. [138] uses a method to generate convex inner approximations of the AC power flow
feasible set [137] based on Brouwer’s fixed point theorem and inner convexification techniques.
However, this approach may not be optimal due to the conservativeness of the robust convex
constraint. Since the robust convex constraint is an inner approximation, it may only cover a
subset of the robustly feasible points. Finally, in [129], the authors compute feasible solutions
of a formulation similar to (ARO/ESIP) by designing a piecewise affine recourse policy. Thus,
they come up with a robust polynomial programming problem (or semi-infinite polynomial
programming problem) that is a restriction of the original problem. Based on sum-of-squares
positivity certificates, they design a tractable reformulation of this restriction, the solution of
which provides a feasible solution of the original adjustable robust optimization problem. An
iterative scheme is proposed to improve the piecewise affine policy, but no convergence to a
global optimum of the original problem is stated.

Contributions and organization of the chapter

This work looks at achieving computational tractability in the solution of generic (ARO/ESIP)
formulation — without assuming convexity. To this end, we use a parsimonious adaptive
discretization algorithm based on a deterministic sampling of the uncertainty set. The dis-
cretization algorithm is parsimonious in the sense that it does not require solving a difficult
separation problem up to global optimality (or even to δ-optimality) at each iteration, contrary
to standard adaptive discretization algorithms and their refinements [32, 162] (see Introduction).
Instead, we employ the homotopy continuation method, a scalable algorithm for solving locally
the system of nonlinear equations. Under a standard constraint qualification condition, we prove
the convergence of this algorithm to either a global optimum or a local optimum depending,
on whether the master problems are solved globally or locally. This flexibility pledges for
scalability: even if only local optimality is achievable when solving the master problems, we
keep a convergence guarantee to a local optimum of the ESIP problem. The proposed algorithm
may also benefit from a parallel infrastructure of computation.

We apply the proposed algorithm to the AR-OPF problem. We provide extensive numerical
results on small, middle, and large scale ACOPF instances from the IEEE PES PGLib benchmark.
Whereas previous works on AR-OPF deals with instances with up to 118 buses [129, 138], we
deal with instances of over 1000 buses.

The chapter is organized as follows: In Section 6.1, definitions and assumptions are collected,
and an equivalent semi-infinite formulation is presented. In Section 6.2, the proposed adaptive
discretization based on homotopy continuation and deterministic sampling is introduced; its
convergence is proven under the Linear Independence Constraint Qualification (LICQ) condition.

124

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Finite termination is proven for any positive feasibility tolerance. In Section 6.3, the numerical
results for the AR-OPF problem are presented. Finally, Section 6.4 briefly concludes and gives
an outlook for future work.

6.1 Semi-infinite programming reformulation and
computational challenges

In this section, we aim to reformulate the existence-constrained semi-infinite program (ARO/ESIP)
as a standard semi-infinite program. We also discuss the difficulties of solving this reformulation
with the standard methods for semi-infinite programming.

6.1.1 Semi-infinite programming formulation

We start with an assumption guaranteeing the compactness of the set of feasible recourses.

Assumptions 6.1. There exists a positive scalar ρz and an index j0 ∈ J1, rK, such that
hj0(x, y, z) = hj0(z) = ∥z∥ − ρz.

Remark 6.1. In presence of bounds constraints zi ≤ zi ≤ zi among the inequalities h(x, y, z) ≤
0, we can always add a redundant constraint ∥z∥ ≤ ρz associated with ρz =

√∑
i max(z2

i , z
2
i) ,

so that Assumption 6.1 is satisfied. This is the case in the application considered in Section 6.3.

We start by defining a function to quantify the infeasibility of the inequality constraints.

Definition 6.1. We define the function H : Rnx+ny+nz → R as

H(x, y, z) = max
j∈J1,nhK

hj(x, y, z). (6.1)

Lemma 6.1. The function (x, y, z) 7→ H(x, y, z) is locally Lipschitz continuous. Under As-
sumption 6.1, for any (x, y) ∈ X × Y, the function z 7→ H(x, y, z) is coercive.

Proof. The function (x, y, z) 7→ H(x, y, z) is locally Lipschitz continuous as the composition of
locally Lipschitz continuous functions (max operator and h). For fixed (x, y) ∈ X×Y , we consider
a sequence (zk)k∈N such that ∥zk∥ → +∞. Due to Assumption 6.1, H(x, y, zk) ≥ ∥zk∥ − ρz,
therefore H(x, y, zk)→ +∞. This proves that z 7→ H(x, y, z) is coercive.

Definition 6.2. We define the set-valued mapping Z(x, y) = {z ∈ Rnz : g(x, y, z) = 0}, and
the extended real-valued function G : X × Y 7→ R as

G(x, y) = inf
z∈Rnz

{H(x, y, z) s.t. g(x, y, z) = 0} = inf
z∈Z(x,y)

H(x, y, z). (6.2)

Lemma 6.2. Under Assumption 6.1, for any (x, y) ∈ X × Y, G(x, y) ∈ R ∪ {+∞}. Moreover,
if G(x, y) ∈ R, then there exists z ∈ Z(x, y) such that G(x, y) = H(x, y, z).

125

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Proof. For (x, y) ∈ X × Y, we assume that G(x, y) < +∞, i.e. Z(x, y) is not empty. By
continuity of g, the nonempty set Z(x, y) is closed. The function z 7→ H(x, y, z) is continuous,
and coercive (Lemma 6.1, due to Assumption 6.1). Thus, problem (6.2) admits a minimizer
z.

Lemma 6.3. Under Assumption 6.1, for any (x, y) ∈ X × Y, the following equivalence holds

∃z ∈ Z(x, y), h(x, y, z) ≤ 0 ⇐⇒ G(x, y) ≤ 0. (6.3)

Proof. If there exists z ∈ Z(x, y) such that, for all j ∈ J1, rK, hj(x, y, z) ≤ 0, then H(x, y, z) ≤ 0.
As z ∈ Z(x, y), this implies that G(x, y) ≤ H(x, y, z) ≤ 0. Conversely, if G(x, y) ≤ 0, Lemma 6.2
yields the existence of z ∈ Z(x, y) such that H(x, y, z) = G(x, y) ≤ 0, i.e., for all j ∈ J1, rK,
hj(x, y, z) ≤ 0.

We introduce the following semi-infinite programming problem:

minx∈X f(x)
s.t. ∀y ∈ Y G(x, y) ≤ 0.

}
(SIP)

Proposition 6.1. Under Assumption 6.1, the problems (SIP) and (ARO/ESIP) are equivalent.

Proof. The objective function f(x) and the constraint x ∈ X are identical in both formulations.
The constraint ∀y ∈ Y,∃z ∈ Rnz , g(x, y, z) = 0 ∧ h(x, y, z) ≤ 0 in formulation (ARO/ESIP)
may be written as ∀y ∈ Y, ∃z ∈ Z(x, y), h(x, y, z) ≤ 0. Lemma 6.3, under Assumption 6.1,
yields the equivalence with the constraint ∀y ∈ Y, G(x, y) ≤ 0, which appears in formulation
(SIP). This proves that both formulations are equivalent.

6.1.2 The challenges of solving the semi-infinite reformulation

Under Assumption 6.1, we reformulate the problem (ARO/ESIP) as an equivalent semi-infinite
program (SIP). The formulation (SIP) seems more approachable for optimization methods:
it seems natural to address this formulation with an adaptive discretization method, such as
Blankenship and Falk’s algorithm [32] or one of its refinements. Nevertheless, various difficulties
arise in the application of this algorithm in the present case:

• First, evaluating the function G(x, y) involves computing a global minimizer of the
nonconvex NLP problem (6.2), which can be out of reach at large scale,

• Second, the separation problem supy∈Y G(x, y) is a difficult sup-inf nonlinear problem,

sup
y∈Y

inf
z∈Z(x,y)

H(x, y, z), (6.4)

• Third, the function G(x, y) can be discontinuous and infinite-valued, whereas the conver-
gence guarantee of the semi-infinite programming algorithms requires the continuity of
the function [32, 47, 162].

126

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Regarding the first limitation, we remind that problem (6.2) involves a square system of
nonlinear equations g(x, y, z) = 0 with a set of solutions Z(x, y) that is potentially difficult to
exhaustively enumerate. Often, we have at our disposal only a (potentially empty) subset of
the solution. We name local equation solver any algorithm returning a subset of Z(x, y).

Definition 6.3. We define a local equation solver as an algorithm R computing, for any
(x, y) ∈ X × Y, a finite subset ZR(x, y) ⊂ Z(x, y) in finite time. We define

GR(x, y) = inf
z∈ZR(x,y)

H(x, y, z). (6.5)

Remark 6.2. Note that the following holds: (i) G(x, y) ≤ GR(x, y) for any (x, y) ∈ X × Y,
(ii) the trivial algorithm returning the empty set is a local equation solver.

In Section 6.2.1, we show that a homotopy continuation method provides a local equation
solver with Lipschitzness properties. To overcome the second aforementioned limitation, i.e., the
intractable sup-inf problem, we introduce in Section 6.2.2 a sampling-based separation oracle
replacing the optimization-based oracle. We show in Section 6.2.3, that we can build on these
objects to obtain an adaptive discretization scheme with convergence properties.

6.2 Discretization algorithm based on homotopy continuation
and sampling

6.2.1 Homotopy continuation method for the nonlinear system of equation

Newton’s method and its refinements, such as the homotopy continuation method [50], are
standard algorithms to solve square systems of nonlinear equations. These algorithms rely on
the assumption that the Jacobian matrix of the system of equations is locally invertible.

Assumptions 6.2. (LICQ condition) The function g is twice continuously differentiable and,
for all (x, y, z) ∈ X × Y ×B(0, ρz), g(x, y, z) = 0 =⇒ det(∇zg(x, y, z)) ̸= 0.

Under this assumption, we can derive a lower bound for the minimum singular value of the
Jacobian, as specified in the following lemma. For the purpose of this lemma, we introduce the
notation σmin (resp. σmax) for the minimum (resp; maximum) singular value. We also introduce
the set Y∆ = {y ∈ Rny : d(y,Y) ≤ ∆}, where d(y,Y) is the distance between y and the closed
set Y.

Lemma 6.4. Under Assumption 6.2, there exist ∆, σ,M ∈ R++ satisfying the following
property: for all (x, y, z) ∈ X × Y∆ ×B(0, ρz + ∆) such that g(x, y, z) = 0,

σmin(∇zg(x, y, z)) ≥ σ (6.6)

σmax(∇zg(x, y, z)) ≤M. (6.7)

127

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

In the rest of the chapter, we will refer to the scalars ∆, σ,M as introduced in this lemma,
and to the scalar ρy = min{ σ∆

2M ,∆}. In addition, we introduce LH, a Lipschitz constant for H
over the compact set (x, y, z) ∈ X ×Y∆×B(0, ρz + ∆) (as detailed in Lemma 6.1, this function
is indeed locally Lipschitz continuous).

Proof. We introduce the function ψ(x, y, z) = σmin(∇zg(x, y, z)), and the set-valued mapping
Aϵ = {(x, y, z) ∈ X × Yϵ × B(0, ρz + ϵ) : g(x, y, z) = 0}. We notice that the function Ψ: ϵ 7→
inf{ψ(x, y, z) : (x, y, z) ∈ Aϵ} is well-defined and takes its values in R ∪ {+∞}, since ψ is
continuous and Aϵ is compact. As Aϵ1 ⊂ Aϵ2 for any ϵ1 ≤ ϵ2, the function Ψ is nonincreasing,
which proves that the following limit exists:

lim
ϵ→0+

Ψ(ϵ) = Ψ(0+) ≤ Ψ(0). (6.8)

We take a positive sequence {ϵk} ∈ RN
++ such that ϵk → 0. Hence, Ψ(ϵk)→ Ψ(0+) by definition

of the right-limit. We consider a first case where there exists k ∈ N such that Aϵk = ∅: then,
defining ∆ = ϵk, and σ and M being any positive number, the statement of the lemma is true
(empty set property). We consider the second case, where for all k ∈ N, Aϵk ≠ ∅: by compactness
of Aϵk , we can define (xk, yk, zk) ∈ Aϵk such that ψ(xk, yk, zk) = Ψ(ϵk). The sequence {ϵk} being
bounded, we can introduce an upper bound ϵ̄. Hence, any element of the sequence (xk, yk, zk)
belongs to the compact set Aϵ̄, and up to the extraction of a subsequence, converges to a point
(x, y, z) being such that ψ(x, y, z) = Ψ(0+) by continuity of ψ and uniqueness of the limit. By
continuity of the distance, we know that (x, y, z) ∈ A0, and Ψ(0+) = ψ(z) ≥ Ψ(0). Together
with Eq. (6.8) , this yields Ψ(0+) = Ψ(0) > 0, the positivity being due to Assumption 6.2.
We define σ = Ψ(0)/2 > 0, and we can therefore deduce that there exists ∆ > 0 such that
Ψ(∆) ≥ σ: therefore, for all (x, y, z) ∈ A∆, we have ψ(x, y, z) ≥ σ. Since the set A∆ is compact
and (x, y, z)→ σmax(∇yg(x, y, z)) is continuous, this function admits a maximum M on this
set.

In our algorithm, the homotopy continuation is used to compute, starting from a triplet
(x̄, ȳ, z̄) such that g(x̄, ȳ, z̄) = 0, a recourse z associated with another value ŷ ∈ Y of the
uncertainty vector. Denoting q̄ = ŷ − ȳ, we define the homotopy

Λ(t, z) = g(x̄, ȳ + tq̄, z). (6.9)

From the solution z̄ such that Λ(0, z̄) = 0, one can deduce by continuation a solution to the
system Λ(t, z) = 0 for all t ∈ [0, 1]. To properly introduce the resulting solution z = π(t),
we define an Ordinary Differential Equation (ODE) related to this homotopy. For any triplet
(x̄, ȳ, q̄), we define the vector field

Fx̄,ȳ,q̄(t, z) = −(∇zg(x̄, ȳ + tq̄, z))−1∇yg(x̄, ȳ + tq̄, z)q̄. (6.10)

128

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Then, any quadruplet (x̄, ȳ, z̄, q̄) defines an ODE{
π̇(t) = Fx̄,ȳ,q̄(t, π(t))
π(0) = z̄.

(6.11)

Proposition 6.2. We consider (x̄, ȳ, z̄) ∈ X × Y ×B(0, ρz + ∆
2) such that g(x̄, ȳ, z̄) = 0. We

take any y ∈ B(ȳ, ρy) and define q̄ = y − ȳ. Under Assumption 6.2, the ODE (6.11) associated
with (x̄, ȳ, z̄, q̄) admits a solution π(t) defined over [0, 1], and z = π(1) satisfies

g(x̄, y, z) = 0 (6.12)

∥z − z̄∥ ≤ M

σ
∥y − ȳ∥. (6.13)

Proof. We define the open set U = {(t, z) ∈ Rnz+1 : det(∇zg(x̄, ȳ + tq̄, z)) ̸= 0}. The vector
field (t, z) 7→ Fx̄,ȳ,q̄(t, z) is well-defined and locally Lipschitz over U (we recall that ∇zg is
continuously differentiable). Hence, the Cauchy-Lipschitz theorem states that the corresponding
differential equation admits an unique maximal solution π(t) defined over an open interval
I = [0, T) (T ∈ R ∪ {∞}). We make a first observation:

∀t ∈ I d

dt
[∇g(x̄, ȳ + tq̄, π(t)] = 0. (6.14)

Therefore, as g(x̄, ȳ, π(0)) = 0, we deduce by integration

∀t ∈ I g(x̄, ȳ + tq̄, π(t)) = 0. (6.15)

We define ts = sup{t ≥ 0: π([0, t]) ⊂ B(z̄, ∆
2)}. By continuity of π(t), we notice that ts > 0.

Note that, for all t ∈ [0, ts), g(x̄, ȳ+ tq̄, π(t)) = 0 and (x̄, ȳ+ tq̄, π(t)) ∈ X ×Y∆ ×B(0, ρz + ∆),
therefore σmin(∇zg(x̄, ȳ + tq̄, z)) ≥ σ, and σmax(∇yg(x̄, ȳ + tq̄, z)) ≤M (see Lemma 6.4), and

∥π̇(t)∥ ≤ ∥−(∇zg(x̄, ȳ + tq̄, π(t)))−1∇yg(x̄, ȳ + tq̄, π(t))q̄∥ ≤ M∥q̄∥
σ

. (6.16)

As ∥q̄∥ ≤ ρy, ∥π̇(t)∥ ≤ Mρy

σ = ρz. We deduce by integration, and triangle inequality that
∥π(t) − z̄∥ ≤ tρz for all t ∈ [0, ts). We assume that ts < 1, and we show a contradiction. In
this case, we know that π(ts) is well-defined by continuity of π and compactness of B(z̄, ∆

2),
and therefore ∥π(ts) − z̄∥ ≤ ts

∆
2 . Since (x̄, ȳ + tsq̄, π(ts)) ∈ X × Y∆ × B(0, ρz + ∆), we

deduce from Lemma 6.4 (under Assumption 6.2) that ∇zg(x̄, ȳ + tsq̄, π(ts)) is invertible,
hence, (x̄, ȳ + tsq̄, π(ts)) ∈ U and therefore ts < T , by maximality of the interval [0, T]. As
∥π(ts) − z̄∥ ≤ ts

∆
2 < ∆

2 , we see that, by continuity of π, there exists ϵ ∈ R++ such that
π([0, ts + ϵ]) ⊂ B(z̄, ∆

2), which contradicts the definition of ts. As a consequence ts ≥ 1, yielding
that π(t) is well-defined over [0, 1], and π([0, 1]) ⊂ B(z̄, ∆

2). Due to Eq. (6.16), we deduce by
integration, and triangle inequality that ∥π(1)− z̄∥ ≤ M∥q∥

σ , i.e., ∥z − z̄∥ ≤ M∥y−ȳ∥
σ .

A Newton homotopy solver computes a trajectory π(t) defined over [0, 1], and the resulting
solution z = π(1) satisfying Eqs. (6.12)-(6.13) by simulating the ODE (6.11). This simulation
can be done by time discretization, using a predictor-corrector scheme, starting from π(0) = z̄:

129

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

• Euler predictor: π̂(ti+1) = π(ti) + (ti+1 − ti)Fx̄,ȳ,q̄(ti, π(ti)).
• Newton corrector: applying a Newton method, initialized with z = π̂(ti+1), to compute
π(ti+1) the solution of the homotopy equation Λ(ti+1, z) = 0.

Lemma 6.5. Under Assumption 6.2, if the Newton homotopy continuation solver R receives
(x̄, ȳ, z̄) ∈ X × Y ×B(0, ρz + ∆

2) such that g(x̄, ȳ, z̄) = 0 in input, then, the following holds:

∀y ∈ B(ȳ, ρy) GR(x̄, y) ≤ H(x̄, ȳ, z̄) + LH(1 + M

σ
)∥y − ȳ∥. (6.17)

Proof. We take any y ∈ B(ȳ, ρy), and we define q̄ = y − ȳ. We provide the point (x̄, ȳ, z̄) ∈
X ×Y ×B(0, ρz + ∆

2) such that g(x̄, ȳ, z̄) = 0 to the homotopy continuation solver R simulating
the ODE (6.11). Then, simulating the ODE (6.11) with parameters (x̄, ȳ, z̄, q̄), the solver can
compute, according to the Proposition 6.2, the trajectory π(t) and its final point z = π(1)
that is such that g(x̄, y, z) = 0 and ∥z − z̄∥ ≤ M

σ ∥y − ȳ∥. Therefore z ∈ ZR(x̄, y), and
GR(x̄, y) ≤ H(x̄, y, z). As H is LH-Lipschitz continuous over X × Y∆ ×B(0, ρz + ∆),

GR(x̄, y) ≤ H(x̄, y, z) ≤ H(x̄, ȳ, z̄) + LH∥(x̄, ȳ, z̄)− (x̄, y, z)∥

≤ H(x̄, ȳ, z̄) + LH(∥ȳ − y∥+ ∥z̄ − z∥)

≤ H(x̄, ȳ, z̄) + LH(1 + M

σ
)∥y − ȳ∥.

6.2.2 Sampling-based oracle

As mentioned in Section 6.1.2, the separation problem in the semi-infinite formulation (SIP)
may be computationally intractable to solve to global optimality. We propose to overcome this
hurdle by using an oracle that is not based on optimization but on a deterministic sampling
scheme. In the following definition, we use the notation dH(A,B) for the Haussdorff distance
between two sets. We underline that if A ⊂ B, dH(A,B) = supb∈B d(b, A).

Definition 6.4. We say that a family (Wk)k∈N of finite sets is a deterministic sampling of Y
if dH(Wk,Y)→ 0.

In practice, such a sampling can be obtained, for example, by a succession of increasingly
finer meshes, or by the use of a pseudo-random sequence (wt)t∈N, defining Wk = (wt)t∈J1,kK.
Leveraging this sampling and a local equation solver R, we present the sampling-based sorting
oracle.

Definition 6.5. The sorting oracle associated with a finite set W ⊂ Y, a local equation solver
R, and an integer D ∈ J1, |W|K computes the D elements w1, w2, . . . , wD of W with greatest
value GR(x,w).

130

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

6.2.3 Adaptive discretization algorithm

In this section, we present a method to solve the semi-infinite program (SIP) through an adaptive
discretization algorithm, using the sampling-based oracle presented in Section 6.2.2. Given the
equivalence between the formulations, computing an optimal (resp. locally optimal, feasible)
solution of (SIP) yields an optimal (resp. locally optimal, feasible) solution of (ARO/ESIP). A
standard way to relax a semi-infinite programming problem is to consider a finite number of
constraints among the infinite set, giving a discretization of the semi-infinite problem. For a
given finite set Yk ⊂ Y, we consider the following finite nonlinear programming formulation{

minx∈X f(x)
s.t. ∀y ∈ Yk, G(x, y) ≤ 0.

(P k)

Proposition 6.3. The finite problem (P k) is a relaxation of the semi-infinite problem (SIP).
An equivalent writing of (P k) is

minx,z f(x)
s.t. ∀y ∈ Yk, g(x, y, zy) = 0.

∀y ∈ Yk, h(x, y, zy) ≤ 0.
x ∈ X , z ∈ (Rnz)Yk

,

(Qk)

where zy ∈ Rnz represents the recourse vector in the uncertainty scenario y. We highlight
that the number of variables in the formulation (Qk) is nx + nz × |Yk|: its grows linearly with
the cardinality of the finite set Yk.

Proof. For any x ∈ X feasible in (SIP), we have that G(x, y) ≤ 0 for all y ∈ Y , and, in particular,
for all y ∈ Yk. Hence, any x ∈ X feasible in (SIP) is also feasible in (P k). The objective function
between formulation being the same, we see that (P k) is a relaxation of (SIP). Regarding the
equivalence between (P k) and (Qk), this is a consequence from the following equivalence, due
to Lemma 6.3: for any x ∈ X

∀y ∈ Yk G(x, y) ≤ 0 ⇐⇒ ∀y ∈ Yk ∃zy ∈ Z(x, y) h(x, y, zy) ≤ 0,

⇐⇒ ∀y ∈ Yk ∃zy ∈ Rnz (g(x, y, zy) = 0) ∧ (h(x, y, zy) ≤ 0).

With all the building blocks being introduced, we can present the discretization algorithm
with a sampling-based sorting oracle. Note the interest of the sorting oracle: rather than adding
the constraint G(x,w) ≤ 0 for all w ∈ Wk at iteration k, we add only the D constraints returned
by the oracle, to prevent the size of the master problem from increasing too fast.

131

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Algorithm 6 Discretization algorithm with a sampling-based sorting oracle
Input: A deterministic sampling (Wk)k∈N of Y, integer D ∈ N∗, integer K ∈ N ∪ {∞},

finite set Y1 ⊂ Y
1: for k = 1,. . . , K do
2: Compute (xk, zk) ∈ X × (Rnz)Yk , a solution to the relaxation (Qk). If this step fails,

stop.
3: Let Rk be the Newton homotopy continuation solver based on the pairs (y, zky) for
y ∈ Yk.

4: Let w1, w2, . . . , wD be the elements of Wk with greatest values GRk(xk, w) (sampling-
based sorting oracle).

5: Yk+1 ← Yk ∪ {w1, w2, . . . , wD}.
6: end for
7: Return xK .

Theorem 6.1. Under Assumptions 6.1-6.2, if K =∞, then Algorithm 6 either stops after a
finite number of iterations due to the failure of step 2, or generates an infinite sequence (xk)k∈N.
In this case, the infeasibility error vanishes along the iterations:(

sup
y∈Y

G(xk, y)
)+

→
k→∞

0 (6.18)

This result implies that, for any tolerance ϵ ∈ R++, the iterate xk gets feasible within
tolerance ϵ after a finite number of iterations, if no failure occurred at step 2 of Algorithm 6.

Proof. We assume that the algorithm does not terminate, i.e. that step 2 never fails and that a
solution xk ∈ X , zk ∈ (Rnz)Yk feasible in (Qk) is computed at every iteration k. We define the
following sequences

αk = sup
w∈Wk

G(xk, w) αRk = sup
w∈Wk

GRk(xk, w) (6.19)

βk = sup
y∈Y

G(xk, y) βRk = sup
y∈Y

GRk(xk, y). (6.20)

In the definition of αRk , the homotopy solver Rk only uses the information provided at step 3
regarding pairs (y, zky) for y ∈ Yk, such that g(xk, y, zky) = 0. In the definition of βRk , we consider
the state of the homotopy solver Rk after being evaluated at all points w ∈ Wk during step 4:
hence, for the computation of βRk , the homotopy solver uses the pairs (y, zky) for y ∈ Yk as
initialization points, but also the pairs (w, zw) such that g(xk, w, zw) = 0 for the sampled
parameters w ∈ Wk for which the solver found a recourse zw.

We start by proving that lim sup
k→∞

αRk ≤ 0. We define (αRk(ℓ))ℓ∈N a subsequence converging to

lim sup
k→∞

αRk . In the definition of αRk(ℓ) in Eq. (6.19), this supremum is over a finite set, therefore

there exists wk(ℓ) ∈ Wk(ℓ) such that αRk(ℓ) = GRk(ℓ)(xk(ℓ), wk(ℓ)) ∈ R ∪ {∞}, and such that

132

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

wk(ℓ) is returned by the sampling-based sorting oracle at the iteration k(ℓ). As (wk(ℓ))ℓ∈N is
a bounded sequence, up to the extraction of a subsequence, we can assume here that it is
converging. Therefore, there exists ℓ0 ∈ N such that, for all ℓ ≥ ℓ0, ∥wk(ℓ+1) − wk(ℓ)∥ ≤ ρy. For
any ℓ ≥ ℓ0, we define x̄ = xk(ℓ+1), ȳ = wk(ℓ). As k(ℓ+ 1) ≥ k(ℓ) + 1, ȳ ∈ Yk(ℓ+1) by definition
of the algorithm, since ȳ is returned by the oracle at iteration k(ℓ): therefore, we can also
define z̄ = z

k(ℓ+1)
ȳ . By feasibility of xk(ℓ+1), zk(ℓ+1) in the master problem at iteration k(ℓ+ 1),

H(x̄, ȳ, z̄) = H(xk(ℓ+1) ,̄ y, z
k(ℓ+1)
y) ≤ 0, therefore Assumption 6.1 yields z̄ ∈ B(0, ρz). Based on

Assumption 6.2, Lemma 6.5 applied for (x̄, ȳ, z̄) ∈ X × Y ×B(0, ρz) (such that g(x̄, ȳ, z̄) = 0),
and, for wk(ℓ+1) ∈ B(ȳ, ρy), gives

αRk(ℓ+1) = GRk(ℓ+1)(xk(ℓ+1), wk(ℓ+1)) (6.21)

≤ LH(1 + M

σ
)∥wk(ℓ+1) − wk(ℓ)∥+H(xk(ℓ+1), ȳ, z

k(ℓ+1)
ȳ), (6.22)

as the input (x̄, ȳ, z̄) was given to the local equation solver at step 3. By feasibility of
xk(ℓ+1), zk(ℓ+1) in the master problem at iteration k(ℓ + 1), H(xk(ℓ+1) ,̄ y, z

k(ℓ+1)
y) ≤ 0 and,

hence,

αRk(ℓ+1) ≤ LH(1 + M

σ
)∥wk(ℓ+1) − wk(ℓ)∥. (6.23)

Using that (wk(ℓ))ℓ∈N is convergent, and that lim
ℓ→∞

αRk(ℓ) = lim sup
k→∞

αRk , Eq. (6.23) gives

lim sup
k→∞

αRk ≤ 0. As αk ≤ αRk , we know that lim sup
k→∞

αRk ≤ 0. We continue by proving that

lim sup
k→∞

βRk ≤ 0. As dH(Wk,Y) →
k→∞

0, and αRk →
k→∞

0 there exists k0 ∈ N such that for

all k ≥ k0, αRk ≤ ∆
2 , and dH(Wk,Y) ≤ ρy. For k ≥ k0, we define x̄ = xk. We take any

y ∈ Y, and we define ȳ ∈ Wk such that ∥ȳ − y∥ = d(y,Wk) ≤ dH(Wk,Y) ≤ ρy. As ȳ ∈ Wk,
GRk(x̄, ȳ) ≤ αRk ≤

∆
2 , there exists z̄ ∈ ZRk(x̄, ȳ) such that H(x̄, ȳ, z̄) ≤ ∆

2 , and that is suc-
cessfully computed by the homotopy solver Rk, by definition of GRk(x̄, ȳ). In particular, this
proves, due to Assumption 6.1, that z̄ ∈ B(0, ρz + ∆

2). The triplet (x̄, ȳ, z̄) satisfies g(x̄, ȳ, z̄) = 0,
y ∈ B(ȳ, ρy), and since the homotopy solver Rk has the knowledge of this triplet at the end of
step 4, Lemma 6.5 yields

GRk(xk, y) ≤ LH(1 + M

σ
)∥y − ȳ∥+H(xk, ȳ, z̄) (6.24)

≤ LH(1 + M

σ
)dH(Wk,Y) + αRk . (6.25)

This being true for any y ∈ Y, we obtain by taking the supremum over Y that

βRk ≤ LH(1 + M

σ
)dH(Wk,Y) + αRk . (6.26)

As dH(Wk,Y) →
k→∞

0 and αRk →
k→∞

0, we have lim sup
k→∞

βRk ≤ 0, and we also have lim sup
k→∞

βk ≤ 0

since βk ≤ βRk for all k. We deduce that lim sup
k→∞

β+
k = 0.

133

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Definition 6.6. A point x̄ ∈ X is said r-locally optimal in a formulation (P) if (i) it is feasible
in (P), and (ii) for all x ∈ B(x̄, r), “x feasible in (P)” implies f(x̄) ≤ f(x).

Theorem 6.2. Under Assumptions 6.1-6.2, if K =∞, and if Algorithm 6 generates an infinite
sequence (xk)k∈N, then it admits a limit point x̄ ∈ X . For any such a limit point, if xk is optimal
(resp. r-locally optimal, feasible) in problem (P k) for all the iterations k starting from a certain
rank, then x̄ is optimal (resp. r′-locally optimal for any r′ ∈ [0, r), feasible) in problem (SIP).

Proof. We consider such a case where K =∞, and Algorithm 6 generates an infinite sequence
(xk)k∈N ∈ XN. As X is compact, this sequence admits a limit point x̄ ∈ X. We denote by xk(ℓ)

a subsequence converging to x̄. We take any y ∈ Y, and we observe that G(xk(ℓ), y) ≤ βk (see
the definition in Eq. (6.20)). In the proof of Theorem 6.1, we showed that lim supk βk ≤ 0,
therefore there exists ℓ0 ∈ N, such that for all ℓ ≥ ℓ0, there exists zk(ℓ) ∈ Z(xk(ℓ), y) such
that H(xk(ℓ), y, zk(ℓ)) ≤ βk(ℓ) ≤ 1. Due to Assumption 6.1, we see that zk(ℓ) ∈ B(0, ρz + 1). By
compactness of B(0, ρz + 1), and by continuity of g and H, this means that there exists z ∈
B(0, ρz + 1) a limit point of (zk(ℓ))ℓ∈N such that g(x̄, y, z) = 0, and H(x̄, y, z) ≤ lim supk βk ≤ 0,
yielding G(x̄, y) ≤ 0. We conclude that x̄ is feasible in (SIP).
We consider now the case where xk is r-locally optimal in the formulation (P k) at each iteration
k, starting from a certain rank. We take any radius r′ ∈ [0, r). Since xk(ℓ) →

ℓ→∞
x̄, there exists

ℓ0 such that for all ℓ ≥ ℓ0, ∥x̄− xk(ℓ)∥ ≤ r − r′. Therefore, by triangle inequality, for all ℓ ≥ ℓ0
and x ∈ B(x̄, r′), ∥x− xk(ℓ)∥ ≤ r. By r-local optimality of xk(ℓ) in (P k), we have for all ℓ ≥ ℓ0

∀x ∈ B(x̄, r′) ∩ Feas(P k), f(xk(ℓ)) ≤ f(x). (6.27)

Since the problem (P k) is a relaxation of (SIP), we have Feas(SIP) ⊂ Feas(P k), and we deduce
that ∀x ∈ B(x̄, r′)∩Feas(SIP), f(xk(ℓ)) ≤ f(x), for all ℓ ≥ ℓ0. Taking the limit, since xk(ℓ) →

ℓ→∞
x̄,

we have by continuity of f(x) that

∀x ∈ B(x̄, r′) ∩ Feas(SIP), f(x̄) ≤ f(x). (6.28)

Recalling that x̄ was proven to be feasible in (SIP), this proves that it is r′-optimal in (SIP).
Note that the case where xk is globally optimal in (P k) at each iteration can be covered by

the r-local optimality case, for r = 2 maxx,x′∈X ∥x− x′∥. Indeed, xk is then r-locally optimal in
(P k) at each iteration. Applying the previous result for r′ = maxx,x′∈X ∥x− x′∥ < r, we deduce
that x̄ is r′-locally optimal in (SIP), therefore globally optimal in (SIP) since any point in X
has a distance to x less or equal than r′.

Remark 6.3. If the problems (P k) are solved to global optimality, then there is convergence
to a global optimum of (SIP), even if the algorithm does not use a separation oracle based on
global optimization. The fact that only a local solver (the homotopy continuation method) is
used to solve the NLP subproblem (6.2) is not an issue, since the challenge of finding a globally
optimal recourse for a given uncertainty y ∈ Y is addressed when solving (P k).

134

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Corollary 6.1. Under Assumptions 6.1-6.2, if the problem (SIP) is infeasible, then Algorithm 6
parameterized with K = ∞ terminates in a finite number of iterations due to the failure of
step 2. Conversely, if Algorithm 6 terminates in a finite number of iterations due to the failure
of step 2 with certified infeasibility, then problem (SIP) is infeasible.

Proof. In Theorem 6.2, we proved that under Assumptions 6.1-6.2, if the algorithm generates an
infinite sequence of iterates (xk)k∈N, this implies the existence of a feasible point x̄ ∈ Feas(SIP):
by contrapositive, if there is not such x̄ ∈ Feas(SIP) (infeasibility of (SIP)), this means that
the algorithm terminates in finite time. Moreover, if K =∞, this means that the algorithm
terminates due to the failure of step 2. Regarding the second assertion: as (P k) is a relaxation of
(SIP), certifying the infeasibility of problem (P k) proves that the problem (SIP) is infeasible.

6.2.4 Stopping criterion in probability

The disadvantage of the robust optimization formulation, compared with the stochastic opti-
mization one, is that it may be excessively conservative and therefore have a strong impact in
terms of cost. We can imagine that a certain probability constraint may be sufficient in practice,
i.e. we want to guarantee the existence of a feasible recourse with a sufficiently high probability.

Assumptions 6.3. We consider a probability measure Py over Y, for which we can obtain
independent and identically distributed samples. For any set A ⊂ Y such that the membership
y ∈ A can be efficiently tested, we can compute Py(A).

For a given local equation solver R, a tolerance ϵ ∈ R++, and a point x ∈ X, we can
efficiently compute whether GR(x, y) > ϵ or not. Therefore, in the setting of Assumption 6.3,
we are able to efficiently evaluate the probability Py({GR(x, y) > ϵ}). The following theorem
states that this probability falls below any threshold p ∈ [0, 1] after a finite number of iterations.

Proposition 6.4. For ϵ ∈ R++, and p ∈ [0, 1], we consider Algorithm 6, but with an additional
stopping criterion

Py({GRk(x, y) > ϵ}) ≤ p. (6.29)

Under Assumptions 6.1-6.3, the modified algorithm terminates in finite time.

Proof. If K <∞, the finite termination is trivial. We consider, therefore, the case K =∞. We
assume that the modified algorithm does not stop in finite time, and we show a contradiction.
If the modified algorithm does not stop in finite time, this means that it generates an infinite
sequence (xk)k∈N as generated by Algorithm 6: indeed, the only difference between both
algorithms is the stopping criterion Eq. (6.29), that is not met. In the proof of Theorem 6.1, we
showed that lim supk(supy∈Y GRk(xk, y)) ≤ 0, therefore, there exists k0 ∈ N such that for all
k ≥ k0, supy∈Y GRk(xk, y) ≤ ϵ, and, therefore Py({GRk(x, y) > ϵ}) = 0 ≤ p. This shows that
the stopping criterion is met in finite time. This is in contradiction with the hypothesis that
the modified algorithm does not stop.

135

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

6.3 Application to the adjustable robust ACOPF problem

We apply our methodology to the AR-OPF problem, a standard formulation of the ACOPF
problem under load uncertainty. The model adopted here represents the dispatch of electricity
in a power system, in the steady state regime and with automatic generation control (AGC)
(see [112]), that proportionally adjusts the power injections of the generator to match the
loads. This model is used in many robust and stochastic ACOPF formulations, such as those of
[129, 138, 224]. Note that the formulation used here is not the QCQP formulation in complex
numbers used in the previous chapters, but the polar formulation (see Appendix B), favored to
find a local optimum only. In this formulation, the complex variable Vb ∈ C is represented by
vbe

iθb , with vb, θb ∈ R.

6.3.1 Formulation

We first show how this model fits into the framework of the formulation (ARO/ESIP). We
consider an oriented graph N = (B,L) representing the power grid, as in the Introduction and
Chapters 4 and 5. We also consider a set G of power generators, located at some buses G ⊂ B
(PV and REF buses); we assume here that there is at most one generator per bus, therefore we
can see G as a subset of B.

Decision variables. The set of buses without generator (PQ buses) is C = B\G. The decision
vector x represents the dispatch variables, i.e., the voltage and the active power production
setpoint at each bus in G:

x = (vg, P setg)g∈G , (6.30)

with the associated constraint set X = ∏
g∈G [vg, vg]× [P g, P g].

Uncertainties. We model the active pd and reactive power loads qd as random uncertainties,
parameterized by a random vector y ∈ R|B| such that at each bus i ∈ N ,

pd
i (y) = (1 + yi)P d

i , qd
i (y) = (1 + yi)Qd

i , (6.31)

where P d
i and Qd

i are the active and reactive power in the reference scenario. To represent some
correlations between the loads, the compact uncertainty set Y ⊂ R|B| is built upon a matrix
A ∈ R|B|×r such that A⊤A = Ir, and a scaling factor λ ∈ R:

Y = {λAu : u ∈ Rr, ∥u∥ ≤
√

2r}. (6.32)

When speaking about probability distribution, the vector u is a standard normal random vector,
truncated on B(0,

√
2r) (conditional probability law). This results in a certain distribution law

for the vector y over Y. The scaling variable λ is adapted to match a certain level of standard
deviation for the parameters yi (see Section 6.3.2).

136

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Recourse variables. The recourse vector z corresponds to the variables describing the
internal state of the power network:

z = {(vi)i∈C , (θi)i∈B, ζ}, (6.33)

where vi and θi are the voltage magnitude and angle at the bus i, and ζ is a slack variable
representing the automatic adjustment of the generators. We underline that nz = 2|B| − |G|+ 1.
After the uncertainty occurs, the power generation at each generator g ∈ G follows the response

Rg(P setg , ζ) = min{max{P setg + αgζ, P
g}, P g}. (6.34)

The αi are proportional response parameters (fixed to αi = 1
|G| in our numerical experiments).

Note that the function inherits the nonsmoothness of the min and max operators. In practice,
we replace these operators by a smooth approximation: for a given smoothing parameter η,
the expression max(t1, t2) is replaced by η ln(exp(t1η) + exp(t2η)), and min(t1, t2) is replaced by
−η ln(exp(− t1

η) + exp(− t2
η)), in concordance with [81]. Then, we can introduce the function

g(x, y, z) that describes different kind of expressions. In the following, the coefficients bi, gi, bij

and gij are physical parameters describing the shunts and the lines. In Appendix B, we explain
how they relate to the previously introduced admittances Y s

i , Y
ff
ij , Y

ft
ij , Y

tf
ij , Y

tt
ij ∈ C.

• Angle at the reference bus: g0(x, y, z) = θr, where r ∈ B is the reference (REF) bus.
• Active power conservation at bus i ∈ G:

gp:i(x, y, z) = Ri(P seti , ζ)− pd
i (y)− giv

2
i −

∑
j:(i,j)∈L∪LR

vivj
(
gij cos(θi − θj) + bij sin(θi − θj)

)
.

• Active power conservation at bus i ∈ C:

gp:i(x, y, z) = −pd
i (y)− giv

2
i −

∑
j:(i,j)∈L∪LR

vivj
(
gij cos(θi − θj) + bij sin(θi − θj)

)
.

• Reactive power conservation at bus i ∈ C:

gq:i(x, y, z) = −qd
i (y) + biv

2
i −

∑
j:(i,j)∈L∪LR

vivj
(
gij sin(θi − θj)− bij cos(θi − θj)

)
.

We underline that the dimension of g(x, y, z) is indeed 2|B| − |G|+ 1 = nz. Finally, the function
h(x, y, z) is also defined with different kind of expressions:

• Voltage magnitude limit at the bus i ∈ C:

hv1:i(x, y, z) = vi − vi
hv2:i(x, y, z) = vi − vi.

• Reactive power limit at the bus i ∈ G:

hq1:i(x, y, z) = qd
i (y)− biv

2
i +

∑
j:(i,j)∈L∪LR

vivj
(
gij sin(θi − θj)− bij cos(θi − θj)

)
−Qi

hq2:i(x, y, z) = Q
i
− qd

i (y) + biv
2
i −

∑
j:(i,j)∈L∪LR

vivj
(
gij sin(θi − θj)− bij cos(θi − θj)

)
.

137

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

6.3.2 Experimental protocol

We implemented Algorithm 6 in the Julia programming language, using the package ExaPF.jl.
The relaxation (P k) are solved to local optimality, with the nonlinear programming solver Ipopt

[239]. The solver is warm-started at each iteration with the solution of the previous iteration.
The minimum value for the barrier parameter is set to 10−4 (Ipopt parameter: mu_target),
and the smoothing parameter for the approximate active power response function is η = 10−3.
For the homotopy continuation method, we use the Newton solver implemented in the ExaPF

framework. At iteration k, the set Wk is split into 12 batches, corresponding to 12 threads
executed in parallel: each thread applies the homotopy continuation method for each of the
4000 uncertainty values in its batch. The number D of scenarios returned by the sorting oracle
is D = 5. We set the maximal number of iterations to K = 25, and a timeout of 18,000s.

As explained in Section 6.3.1, we consider a probability distribution for y = λAu, with u

being a truncated multivariate Gaussian vector of dimension r = min{8, |B|} (see Eq. (6.32))
and A a randomly generated matrix satisfying A⊤A = Ir. We calibrate λ so that the standard
deviation of yi matches a certain level s̄ with s̄ ∈ {0.5%, 1%, 2%} in average over i ∈ J1, |B|K.
Based on the resulting probability distribution Py for y, we apply the stopping criterion

Py(G(x, y) > ϵ) ≤ p, (6.35)

with ϵ = 10−4 and p = 10−4. This statistical test to evaluate this probability is performed with
a 99% confidence level. We emphasize that the point x returned is not necessarily feasible in the
robust sense of the formulation (SIP), but in the sense of the probabilistic constraint Eq. (6.29):
the probability Py(G(x, y) ≤ ϵ) is estimated to be greater than 99.99%. The algorithm is applied
to the instances of the IEEE PES PGLib benchmark with a size between 3 and 1354 buses,
under standard and congested conditions (API), and is run on a 64-bit Ubuntu computer with
32 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and 64 GB RAM. The code is available at
the following repository: github.com/aoustry/robustOPF.

6.3.3 Numerical results

Table 6.1 gathers the numerical results of Algorithm 6, under the stopping criterion Eq. (6.35) .
The different columns are the following:

• “Instance” is the considered instance from the IEEE PES PGLib benchmark. The number
in the name corresponds to the number of buses |B|.

• “Std. dev. (%)” corresponds to s̄, the aforementioned standard deviation level of the
coordinates yi (in percentage). This value implicitly determines the magnitude parameter
λ (see Eq. (6.32)).

• “Termin. status” describes the reason of termination of the algorithm: “success” means
that the stopping criterion Py({GRk(x, y) > ϵ}) ≤ p was met, “MaxIt” that the maximal

138

github.com/aoustry/robustOPF

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

number of iterations was met, “TimeOut” that the time limit was reached, “Infeasible”
that the solution of the master problem (i.e. the relaxation (P k)) failed at some point.
“Sing.” means singularity: the Newton solver failed due to the singularity of the nonlinear
system, i.e., a point where Assumption 6.2 is not satisfied was found.

• “Uncertainty cost (%)” is the increase (in percentage) of the objective value, from the
value of the deterministic ACOPF problem (reference scenario) to the value of the solution
ouput by the algorithm.

• “It. nb.” is the number of iterations.
• “|Yk|” is the cardinality of Yk at the last iteration k.
• “Master time (s)” is the total time spent in solving the relaxations (P k).
• “Oracle time (s)” is the total time spent in the sampling-based sorting oracle..
• “Total time (s)” is the total computation time.

Table 6.1: Performance of the proposed adaptive discretization algorithm

Instance Std. Termin. Uncertainty It. |Yk| Master Oracle Total
dev. (%) status cost (%) nb. time (s) time (s) time (s)

3_lmbd 0.5 success 0.00 1 1 ≤ 1 1 1
3_lmbd 1 success 0.00 1 1 ≤ 1 2 2
3_lmbd 2 success 0.00 1 1 1 1 2

3_lmbd_api 0.5 success 0.00 1 1 ≤ 1 1 1
3_lmbd_api 1 success 0.00 1 1 ≤ 1 1 1
3_lmbd_api 2 success 0.00 1 1 ≤ 1 1 1

5_pjm 0.5 success 0.00 1 1 7 4 11
5_pjm 1 success 0.01 2 6 6 7 13
5_pjm 2 success 0.01 2 6 6 7 14

5_pjm_api 0.5 success 0.00 1 1 ≤ 1 1 1
5_pjm_api 1 success 0.00 1 1 ≤ 1 1 2
5_pjm_api 2 success 0.00 1 1 ≤ 1 1 1

14_ieee 0.5 success 0.00 1 1 4 12 16
14_ieee 1 success 0.01 2 5 4 21 25
14_ieee 2 success 0.01 2 6 5 20 25

14_ieee_api 0.5 success 0.01 2 6 ≤ 1 18 18
14_ieee_api 1 success 0.01 2 6 ≤ 1 17 17
14_ieee_api 2 success 0.03 2 6 ≤ 1 16 16
24_ieee_rts 0.5 success 0.01 3 11 7 41 48
24_ieee_rts 1 success 0.01 3 11 6 39 46
24_ieee_rts 2 success 0.02 3 11 7 39 45

24_ieee_rts_api 0.5 success 0.02 4 14 1 50 51
24_ieee_rts_api 1 success 0.18 5 15 1 59 59
24_ieee_rts_api 2 success 1.83 5 16 3 51 54

139

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Instance Std. Termin. Uncertainty It. |Yk| Master Oracle Total
dev. (%) status cost (%) nb. time (s) time (s) time (s)

30_as 0.5 success 0.00 1 1 4 18 22
30_as 1 success 0.00 1 1 5 19 23
30_as 2 success 0.00 1 1 4 19 24

30_as_api 0.5 success 0.00 2 6 2 42 44
30_as_api 1 success 0.01 3 11 3 60 63
30_as_api 2 success 0.22 3 11 3 58 61

30_ieee 0.5 success 0.01 2 6 1 40 41
30_ieee 1 success 0.01 2 6 1 39 40
30_ieee 2 success 0.03 3 11 1 58 59

30_ieee_api 0.5 success 0.02 2 6 1 40 41
30_ieee_api 1 success 0.03 2 6 1 38 39
30_ieee_api 2 success 0.07 2 6 1 38 39

39_epri 0.5 success 0.00 1 1 1 37 38
39_epri 1 success 12.37 2 6 2 63 64
39_epri 2 success 13.96 2 6 2 61 62

39_epri_api 0.5 success 1.50 7 31 21 96 117
39_epri_api 1 success 1.54 7 31 16 76 92
39_epri_api 2 success 4.06 4 16 6 19 26

57_ieee 0.5 success 0.02 2 6 4 47 51
57_ieee 1 success 0.02 2 6 1 46 47
57_ieee 2 success 0.20 3 11 3 68 71

57_ieee_api 0.5 MaxIt * 25 126 692 453 1145
57_ieee_api 1 Infeas * 5 26 15 150 165
57_ieee_api 2 Infeas * 4 21 3 163 167
73_ieee_rts 0.5 success 0.01 3 11 18 115 133
73_ieee_rts 1 success 0.02 3 11 45 117 162
73_ieee_rts 2 success 0.03 4 16 66 154 220

73_ieee_rts_api 0.5 success 0.08 3 11 3 118 121
73_ieee_rts_api 1 success 0.30 3 11 6 114 120
73_ieee_rts_api 2 success 1.72 5 21 47 178 226

89_pegase 0.5 success 0.00 1 1 2 57 59
89_pegase 1 success 0.10 2 4 2 114 116
89_pegase 2 MaxIt * 25 126 856 461 1317

89_pegase_api 0.5 success 0.00 1 1 2 52 54
89_pegase_api 1 success 0.05 2 6 6 130 136
89_pegase_api 2 success 0.06 2 6 4 108 112

118_ieee 0.5 success 0.00 1 1 2 29 31
118_ieee 1 success 0.08 2 6 2 64 66
118_ieee 2 success 0.1 3 8 3 91 94

140

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Instance Std. Termin. Uncertainty It. |Yk| Master Oracle Total
dev. (%) status cost (%) nb. time (s) time (s) time (s)

118_ieee_api 0.5 success 0.05 2 6 4 63 67
118_ieee_api 1 success 0.05 2 6 4 64 69
118_ieee_api 2 success 0.98 5 18 33 144 177

179_goc 0.5 success 0.02 3 11 8 410 418
179_goc 1 success 0.02 3 11 8 276 284
179_goc 2 success 0.03 4 13 10 292 302

179_goc_api 0.5 success 2.58 8 36 341 625 967
179_goc_api 1 sing. * 1 1 5 ≤ 1 5
179_goc_api 2 sing. * 1 1 5 ≤ 1 5

200_activ 0.5 success 0.00 1 1 6 155 161
200_activ 1 success 0.00 1 1 6 142 148
200_activ 2 success 0.02 2 6 10 284 294

200_activ_api 0.5 success 0.00 1 1 2 136 138
200_activ_api 1 success 0.01 2 6 4 277 281
200_activ_api 2 success 0.01 2 6 4 271 275

240_pserc 0.5 success 0.03 4 16 216 448 664
240_pserc 1 success 0.04 7 23 743 910 1653
240_pserc 2 success 0.06 9 33 1295 1032 2327

240_pserc_api 0.5 success 0.04 4 16 239 680 919
240_pserc_api 1 success 0.24 6 25 661 1004 1664
240_pserc_api 2 success 0.12 7 23 752 1033 1785

300_ieee 0.5 success 2.42 6 26 363 992 1355
300_ieee 1 success 3.92 9 41 896 1438 2334
300_ieee 2 MaxIt * 25 126 7634 1749 9382

300_ieee_api 0.5 success 1.68 2 6 26 400 426
300_ieee_api 1 success 1.63 4 13 166 878 1043
300_ieee_api 2 success 17.35 9 38 689 1603 2291

588_sdet 0.5 success 0.00 1 1 6 133 139
588_sdet 1 success 0.00 1 1 6 170 176
588_sdet 2 success 1.12 2 6 44 393 437

588_sdet_api 0.5 success 0.00 1 1 4 172 176
588_sdet_api 1 success 0.00 1 1 4 172 176
588_sdet_api 2 success 0.00 1 1 4 173 177
1354_pegase 0.5 success 0.28 4 13 743 3435 4178
1354_pegase 1 TimeOut * 12 61 11436 6735 18171
1354_pegase 2 TimeOut * 15 76 18251 113 18363

1354_pegase_api 0.5 success 0.00 1 1 23 1194 1217
1354_pegase_api 1 success 0.14 2 6 177 2374 2551
1354_pegase_api 2 success 0.14 2 6 146 961 1107

Over the 102 instances, the algorithm terminates with the satisfaction of the stopping

141

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Figure 6.1: Number of instances for which the sampling-based discretization algo-
rithm succeeds after k iterations

criterion in 93 cases. For 2 cases, it stops because Ipopt returns a "locally infeasible” status. In
5 cases, the maximum number of iterations or the time limit is reached: in these cases, there is
a suspicion of infeasibility, in the sense that Ipopt does not manage to find a local optimum of
the master problem at each iteration — but do not state local infeasibility. Finally, for 2 cases
(related to the same network 179_goc_api), the Newton solver failed due to the singularity of
the nonlinear system, i.e., a point where Assumption 6.2 is not satisfied was found: in most of
the cases, no counterexample (x, y, z) violating Assumption 6.2 was found.

The histogram in Figure 6.1 represents the number of instances (in y-axis) of the benchmark
for which our algorithm succeeds after k iterations (in x-axis). We see that a limited number
of iterations of the algorithm are necessary to obtain a point feasible in the sense of the
probabilistic constraint (6.29). We see different explanations for this: (i) the uncertainty set
is low-dimensional, compared to the decision set (ii) the selection oracle looks for the most
adverse uncertainties, which somehow, dominate the others. We have to acknowledge that in
some cases (3_lmbd,3_lmbd_api, 5_pjm, 5_pjm_api, 30_as or 588_sdet_api), even for the
largest uncertainty level, the point x1 obtained at the first iteration with Y1 = {0} is already
feasible in the sense of the probabilistic constraint (6.29). The probability Py(G(x1, y) > 10−4)
is already below 0.01%: the load variations seem to have little effect on the constraints that are
tight in the reference scenario.

Figure 6.2 represents, for the three different values of the standard deviation s̄ of the
uncertainty, the distribution of the cost of uncertainty (4th column in Table 6.1) over all
test cases for which the algorithm succeeded. We observe in Table 6.1 and in Figure 6.2 that
the objective value of the computed point x consistently increases with the magnitude of

142

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

Figure 6.2: Distributions of the cost of uncertainty, depending on the uncertainty
level

the uncertainties for most of the instances: logically, the cost of uncertainty is higher for
higher uncertainty levels. However, one should acknowledge that 2 cases make exceptions:
240_pserc_api, where the situation s̄ = 1 is costlier than the situation s̄ = 2, and 300_ieee_api,
where the situation s̄ = 0.5 is costlier than the situation s̄ = 1. This anomaly seems to occur
because Ipopt sometimes fails to compute a locally optimal point and just returns a feasible
point. This indeed occurs for cases where the number of scenarios added to the master problem
is above 10: those problems are more difficult to solve for Ipopt.

6.4 Conclusion

In this chapter, we focus on nonlinear Adjustable Robust Optimization problems, specifically
those with the same number of recourse variables as the number of nonlinear equality constraints
in the second stage. This encompasses problems like the AR-OPF problem. To address these
Adjustable Robust Optimization problems, we propose a reformulation as a semi-infinite
programming problem. Since solving this semi-infinite programming reformulation using the
adaptive discretization algorithm (Algorithm 1) is not scalable due to a very difficult separation
problem, we propose an alternative discretization algorithm that relies on a deterministic
sampling of the uncertainty set and uses a homotopy method to solve the nonlinear system of
equations locally. The proposed algorithm exhibits convergence to either a local or a global
minimum of the Adjustable Robust Optimization problem, depending on whether one chooses
to solve the master problems locally or globally. In particular, although the homotopy method
serves as a local equation solver during the screening of new uncertainty scenarios to incorporate,

143

CHAPTER 6. ADJUSTABLE ROBUST NONLINEAR OPTIMIZATION VIA
SEMI-INFINITE PROGRAMMING AND HOMOTOPY CONTINUATION

the algorithm achieves global convergence as long as the master problems are solved globally.
In addition, finite convergence occurs for any positive feasibility tolerance.

To demonstrate the algorithm’s effectiveness, we apply it to AR-OPF instances with up to
1354 buses to compute local solutions. This problem size is larger than similar work on the
subject [129, 138] and is closer to the actual size of national-scale grids with thousands of buses.
Note, however, that the master problems here were solved only locally with an interior-point
method; one avenue to explore would be to combine this work with global optimization methods
for ACOPF, such as the one proposed in Chapter 4, to compute global optimizers of the
AR-OPF problem. This would likely come at a high computational cost. To perform such a
global optimization, it could be interesting to opt for a single-tree method: the spatial branch-
and-bound tree used to solve the master problem (P k) could be continued for solving the master
problem (P k+1) at the next iteration. This would result in a sort of branch-and-bound-and-cut
for solving the problem (SIP).

Our algorithm is based on a qualification condition for equality constraints (Assumption 6.2),
which seems to be satisfied in practice on the vast majority of the instances we have used.
However, we did find one network structure where this condition was not satisfied. A possible
solution to address this singularity issue could be to incorporate an additional inequality
constraint to the problem formulation to force the singular value of the Jacobian matrix to be
strictly positive. The resulting research avenue would be to be able to handle such a singular
value constraint into the optimization problem, possibly based on smooth spectral optimization
techniques [144, 145].

A relevant research direction is to employ our approach in practical use cases incorporating
uncertainty sets derived from real statistical data obtained from measurements. One possible
application for a Transmission System Operator like Réseau de Transport d’Électricité could
be the optimization of the primary and secondary reserves for frequency control.

144

Conclusion and perspectives

Conclusion

This thesis proposed several theoretical and practical contributions to the development of reliable
algorithms for nonlinear semi-infinite optimization, especially for some problems arising in
power systems optimization and optimal control. Various properties contribute to the reliability
of an optimization algorithm, and we have sought to address these aspects in the thesis: the
convergence to a global optimum, or at least the ability to certify an optimality gap; the ability
to compute feasible points with respect to the infinite set of constraints; and the computational
efficiency of the algorithm.

Contributions of Part I

Chapter 1 makes a theoretical contribution to analyzing the cutting-plane algorithm for convex
semi-infinite optimization. We show that, if the objective function is strongly convex, the
objective and feasibility error converges in O(1/k) over the iterations of this algorithm, where
k is the number of calls to the separation oracle. As it is known that this algorithm may have
poor convergence properties in some (other) cases, the interest of our contribution is to give a
sufficient condition (the strong convexity of the objective) for this algorithm to be efficient. Note
that this convergence rate is valid even if the separation problem is nonconvex, even if the oracle
solves the separation problem not to global optimality, but up to an optimality gap δ ∈ [0, 1),
and even if the constraints in the master problems are aggregated to keep the master problems
of constant size over the iterations of the algorithm. Chapter 3 may be seen as an application
of convex semi-infinite programming: we introduce and solve a converging hierarchy of convex
semi-infinite programs to compute approximate value functions of a minimum time control
problem. We apply the cutting-plane algorithm to solve these semi-infinite programs after
regularizing the objective function to have strong convexity. Based on the resulting approximate
value function, we obtain certified lower bounds on the control problem and generate closed-
loop controlled trajectories, yielding upper bounds. The originality of this approach, based
on semi-infinite programming, is its ability to handle non-polynomial controlled dynamical
systems.

Chapter 2 focuses on convex semi-infinite programs, where the separation problem is a

145

CHAPTER 6. CONCLUSION AND PERSPECTIVES

QCQP, that is potentially nonconvex. More specifically, we address the problem of computing
a feasible point of this semi-infinite problem, i.e., a solution that satisfies an infinite number of
inequalities. This issue is indeed a weak point of the cutting-plane algorithm, where feasibility is
achieved only asymptotically. We propose a new algorithm, named Inner-Outer Approximation
algorithm, that exploits the primal-dual structure of the separation problem to generate an
inner approximation of the feasible set of the semi-infinite problem. We obtain a (globally)
minimizing sequence of feasible iterates, as our algorithm uses the separation oracle output to
tighten the outer approximation and extend the inner approximation of the feasible set of the
semi-infinite problem. Another feature of this algorithm is the ability to detect a posteriori the
convexity of the separation problem, at x = x̂0, the first iterate. This condition is sufficient for
an early stop of the algorithm: in this case, it has found the optimal solution of the semi-infinite
problem (even if the separation problem is nonconvex for other values of x). If this condition is
met, this yields a clear advantage in computation time compared to three competing algorithms.

Contributions of Part II

Part II deals with nonconvex optimization problems arising in power systems operations. This
part is dedicated to the global solution of the ACOPF, and, then, the solution of the AR-OPF
problem, which fits the setting of nonconvex semi-infinite programming.

In Chapter 4, we address the standard ACOPF problem, a QCQP with a finite number
of constraints. We propose a global optimization algorithm based on sparse semidefinite
programming, standard and novel nonlinear cuts, bound tightening, and adaptive piecewise
linear relaxations: this leads to Mixed-Integer Conic Programming relaxations of the ACOPF
problem that are progressively refined. In a semi-infinite discretization approach, these Mixed-
Integer Conic Programming problems are approximated by MILP problems. The solutions of
these MILP problems converge to a global optimum of the ACOPF. Our numerical experiments
on a standard benchmark for the ACOPF, for small- to middle-scale instances, show that our
algorithm outperforms three other global optimization approaches in terms of the number of
instances solved to global optimality or below a certain optimization gap, and in terms of the
computational time to global optimality.

Note that our global optimization algorithm for ACOPF relies on the ability to solve
semidefinite programming relaxations many times during the bound tightening procedure. In
Chapter 5, we address some numerical issues that arise when solving such semidefinite relaxations
for large-scale ACOPF problems. Indeed, it is known that state-of-the-art interior-point methods
often fail to converge when solving large-scale semidefinite relaxations. This causes two issues:
the accuracy of the computed relaxation value and, therefore, the validity of this lower bound.
We propose an unconstrained dual formulation that enables us to compute a certified lower
bound from any dual vector, feasible or not, in the classical dual semidefinite problem. Using
a structure-exploiting bundle method, we solve this unconstrained dual formulation starting

146

CHAPTER 6. CONCLUSION AND PERSPECTIVES

from the dual vector given by the state-of-the-art interior-point solver MOSEK. Our extensive
numerical experiments show that this post-processing significantly improves the computed lower
bounds’ quality, demonstrating a certain complementarity between this interior-point solver
and the implemented bundle method.

In the last chapter of the dissertation, we study an Adjustable-Robust variant of the ACOPF
problem to account for uncertainties. We address the AR-OPF problem by reformulating it as a
nonlinear semi-infinite programming problem. Due to the challenging separation problem, solving
this semi-infinite program with the standard adaptive discretization algorithm (Algorithm 1) is
not scalable. As an alternative, we propose a discretization algorithm that employs deterministic
sampling of the uncertainty set and utilizes a homotopy method to solve the nonlinear system
of equations locally. The proposed algorithm converges to either a local or a global minimum
for the adjustable robust optimization problem, depending on whether the master problems are
solved locally or globally during the algorithm. Furthermore, finite convergence is guaranteed
for any positive feasibility tolerance. To demonstrate the algorithm’s scalability, we apply our
algorithm to compute local solutions of AR-OPF instances with a maximum of 1354 buses.
This problem size surpasses previous work in this area.

Perspectives

Perspectives for Part I

Regarding the first part of the thesis on convex semi-infinite programming, we identify several
limitations that may lead to further work.

As regards the O(1/k) convergence rate of the cutting-plane algorithm proved in Chapter 1,
a limitation is the strong convexity assumption for the objective function. It could be interesting
to study if one can relax it and derive weaker assumptions, also guaranteeing O(1/k) convergence
rate for the cutting-plane algorithm or for a variant. An extension of the current work could
also be to prove this convergence rate for the cutting-plane algorithms applied to mixed-integer
convex semi-infinite programming problems with a strongly convex objective function.

Another line of research concerns the rate of convergence of the Inner-Outer Approximation
algorithm proposed in Chapter 2. From a theoretical point of view, a limitation of this chapter
is indeed the absence of results regarding the speed of convergence. Could we prove that the
objective value of the feasible iterates generated by the Inner-Outer Approximation algorithm
converges to the optimal value of the semi-infinite program at a guaranteed rate? From a practical
point of view, a limitation of the Inner-Outer Approximation algorithm is the computational
cost of the master problem solved at each iteration, which is higher than the computational cost
of the master problem of the standard cutting-plane algorithm due to the additional semidefinite
constraint. To reduce the computational cost at each iteration of the algorithm, one can exploit
the sparsity of the separation problem to obtain several small semidefinite constraints instead

147

CHAPTER 6. CONCLUSION AND PERSPECTIVES

of one large one. One could also explore the possibility of doing a warm-start when solving the
master problem at each iteration.

The semi-infinite programming approach for minimum time control could be improved
by using other bases of functions to approximate the value function. This could improve the
quality of approximation and, therefore, the quality of the lower bound and of the generated
closed-loop trajectory. In particular, we could investigate using nonsmooth basis functions to
approximate a potentially nonsmooth value function better.

Perspectives for Part II

We terminate with different limitations and perspectives regarding our work for the global
optimization of the ACOPF problem and its Adjustable-Robust variant.

A first limitation of the state-of-the-art global optimization algorithm for the ACOPF
problem that we propose in Chapter 4 is the scalability of the conic programming relaxation
used in the bound tightening. This relaxation involves semidefinite constraints. For this algorithm
to scale to problems with thousands of buses, we would rely on the progress of semidefinite
solvers. For the bound tightening, it would also be relevant to study to what extent this task
could be parallelized in practice, or one could target the bounds to tighten based on the graph
structure. Concerning the sequence of MILP relaxations that are solved, the main limitation is
that the branch-and-bound tree generated by the MILP solver to solve the k-th relaxations not
re-used to solve the k + 1-th relaxation, whereas this is a tightening of the previous relaxation.
One could study the possibility of exploiting the information of the branch-and-bound tree
at iteration k, to avoid some computations at iteration k + 1. From an applicative point of
view, our method could be extended to the Optimal Transmission Switching problem, where
the network topology can be modified by switching electrical lines. We can also foresee an
extension to Unit Commitment problems with AC power flow equations, where generators can
be switched on or off. Indeed, the proposed MILP scheme could easily accommodate additional
binary variables to describe these switches.

Regarding Chapter 5, the future lines of research are mainly practical. One could speed
up the algorithm by parallelizing the evaluation of the spectral functions or by using a GPU
implementation of the Quadratic Programming solver called at each iteration. The long-term
objective is to obtain a large-scale, warm-startable, and reliable semidefinite programming
solver, which could be used, for example, in the bound tightening procedure performed during
our global optimization algorithm (Chapter 4). While we demonstrated that this bundle method
can be warm-started and improves MOSEK’s accuracy in post-processing, it remains to be proven
that such a first-order method could help save computational time.

Finally, the work on AR-OPF problem conducted in Chapter 6 could be improved by
implementing a global optimization approach, such as this of Chapter 4, to solve the master
problem at each iteration. This would enable one to compute global optimizers of the AR-

148

CHAPTER 6. CONCLUSION AND PERSPECTIVES

OPF problem instead of local minimizers as we did in Chapter 6. As aforementioned, for the
MILP approximation scheme, it would probably be relevant to store the branch-and-bound
tree generated when solving the master problem (P k) to exploit this information (mainly the
lower bound at each node) for the solution of the master problem (P k+1) at the following
iteration. This would result in a sort of branch-and-bound-and-cut for solving the semi-infinite
programming problem. The proposed discretization algorithm based on deterministic sampling
and homotopy continuation converges under a qualification condition for equality constraints
(Assumption 6.2), which seems to be satisfied in practice on most of the instances we have
used. However, we did find one example of a network where this condition was not satisfied. A
possible solution to overcome this limitation of depending on this assumption, and to address
such numerically difficult cases is to add the explicit constraint that the singular value of the
Jacobian matrix must be strictly positive. The resulting research avenue would be to handle such
a singular value constraint in the optimization problem based on smooth spectral optimization
techniques. A last and necessary avenue of research is to apply this adaptive discretization
algorithm for the AR-OPF problem on real test cases, such as reserve management for frequency
control, with loads and renewables uncertainty datasets obtained from measurements.

149

Bibliography

[1] Semi-infinite programming.
(page 1)

[2] Farid Alizadeh.
Interior point methods in semidefinite programming with applications to combinatorial optimization.
5(1):13–51.
Publisher: Society for Industrial and Applied Mathematics.
(page 5)

[3] Gemayqzel Bouza Allende and Georg Still.
Solving bilevel programs with the KKT-approach.
138(1):309–332.
(pages 4, 28, 29, 40, 41, and 42)

[4] Zahia Amrouchi, Frederic Messine, Clement Nadal, and Mohand Ouanes.
A deterministic semi-infinite global optimization method to design slotless permanent magnet machines.
40(2):84–94.
Publisher: Emerald Publishing Limited.
(page 5)

[5] Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe.
Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones.
2(3):167–201.
(page 103)

[6] Ioannis Androulakis, Costas Maranas, and Christodoulos Floudas.
BB: A global optimization method for general constrained nonconvex problems.
7(4):337–363.
(page 122)

[7] Ignacio Aravena, Daniel K. Molzahn, Shixuan Zhang, Cosmin G. Petra, Frank E. Curtis, Shenyinying Tu, Andreas
Wächter, Ermin Wei, Elizabeth Wong, Amin Gholami, Kaizhao Sun, Xu Andy Sun, Stephen T. Elbert, Jesse T.
Holzer, and Arun Veeramany.

Recent developments in security-constrained AC optimal power flow: Overview of challenge 1 in the ARPA-e grid
optimization competition.

(page 123)

[8] Jean-Pierre Aubin.
Viability Theory.
Systems & control: foundations & applications. Springer Science+Business Media.
(pages 2, 60, 62, and 181)

[9] Jean-Pierre Aubin and Hélène Frankowska.
Set-Valued Analysis.
Birkhäuser.
(page 50)

[10] Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D. Christie, Carleton Coffrin, Christopher DeMarco,
Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang, Cedric Josz, Roman Korab,

150

BIBLIOGRAPHY

Bernard Lesieutre, Jean Maeght, Terrence W. K. Mak, Daniel K. Molzahn, Thomas J. Overbye, Patrick Panciatici,
Byungkwon Park, Jonathan Snodgrass, Ahmad Tbaileh, Pascal Van Hentenryck, and Ray Zimmerman.

The power grid library for benchmarking AC optimal power flow algorithms.
(pages 11, 12, 76, 77, 96, 103, and 116)

[11] Thomas Bagby, Len Bos, and Norman Levenberg.
Multivariate simultaneous approximation.
18(4):569–577.
(page 180)

[12] Richard Bellman.
Dynamic programming.
153(3731):34–37.
Publisher: American Association for the Advancement of Science.
(page 50)

[13] Alexandre Belloni.
Lecture notes for IAP 2005 : Course introduction to bundle methods.
(page 112)

[14] Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti.
Feasibility-based bounds tightening via fixed points.
In Weili Wu and Ovidiu Daescu, editors, Combinatorial Optimization and Applications, pages 65–76. Springer Berlin

Heidelberg.
(page 76)

[15] Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter.
Branching and bounds tighteningtechniques for non-convex MINLP.
24(4):597–634.
Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10556780903087124.
(page 77)

[16] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski.
Adjustable robust solutions of uncertain linear programs.
99(2):351–376.
(page 122)

[17] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovskĭı.
Robust optimization.
Princeton series in applied mathematics. Princeton University Press.
OCLC: ocn318672208.
(page 5)

[18] Aharon Ben-Tal, Omar El Housni, and Vineet Goyal.
A tractable approach for designing piecewise affine policies in two-stage adjustable robust optimization.
182(1):57–102.
(page 123)

[19] Aharon Ben-Tal and Aharon Nemirovski.
Robust solutions of uncertain linear programs.
25(1):1–13.
(pages 4 and 28)

[20] Eloïse Berthier, Justin Carpentier, Alessandro Rudi, and Francis Bach.
Infinite-dimensional sums-of-squares for optimal control.
In 2022 IEEE 61st Conference on Decision and Control (CDC), pages 577–582. IEEE.
(page 48)

[21] Dimitris Bertsimas and Hoda Bidkhori.
On the performance of affine policies for two-stage adaptive optimization: a geometric perspective.
153(2):577–594.
(page 122)

151

BIBLIOGRAPHY

[22] Dimitris Bertsimas and Vineet Goyal.
On the power and limitations of affine policies in two-stage adaptive optimization.
134(2):491–531.
(pages 122 and 123)

[23] Dimitris Bertsimas, Dan A. Iancu, and Pablo A. Parrilo.
Optimality of affine policies in multistage robust optimization.
35(2):363–394.
Publisher: INFORMS.
(page 123)

[24] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van Doornmalen,
Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig,
Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke, Stephen J. Maher,
Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider,
Philipp Wellner, Dieter Weninger, and Jakob Witzig.

The SCIP optimization suite 8.0.
(page 66)

[25] Bruno Betro.
An accelerated central cutting plane algorithm for linear semi-infinite programming.
101(3):479–495.
(pages 4 and 17)

[26] B. Bhattacharjee, P. Lemonidis, W.H. Green Jr., and P.I. Barton.
Global solution of semi-infinite programs.
103(2):283–307.
(page 4)

[27] Binita Bhattacharjee.
Kinetic model reduction using integer and semi-infinite programming.
(page 5)

[28] Dan Bienstock, Mauro Escobar, Claudio Gentile, and Leo Liberti.
Mathematical programming formulations for the alternating current optimal power flow problem.
18(3):249–292.
(pages 6 and 175)

[29] Daniel Bienstock, Michael Chertkov, and Sean Harnett.
Chance-constrained optimal power flow: Risk-aware network control under uncertainty.
56(3):461–495.
(page 10)

[30] Daniel Bienstock and Gonzalo Munoz.
LP formulations for polynomial optimization problems.
28(2):1121–1150.
Publisher: Society for Industrial and Applied Mathematics.
(page 8)

[31] Daniel Bienstock and Abhinav Verma.
Strong NP-hardness of AC power flows feasibility.
47(6):494–501.
(page 8)

[32] Jerry Blankenship and James Falk.
Infinitely constrained optimization problems.
19(2):261–281.
(pages 3, 16, 28, 46, 124, and 126)

[33] Hans-Peter Blatt, Ulrich Kaiser, and B. Ruffer-Beedgen.
A multiple exchange algorithm in convex programming.

152

BIBLIOGRAPHY

In Optimization. CRC Press.
Num Pages: 18.
(pages 4 and 17)

[34] Jérôme Bolte and Edouard Pauwels.
Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning.
188(1):19–51.
(page 182)

[35] Loïc Bourdin and Emmanuel Trélat.
Pontryagin maximum principle for optimal sampled-data control problems.
48(25):80–84.
(pages 47 and 48)

[36] Waqquas A. Bukhsh, Andreas Grothey, Ken I. M. McKinnon, and Paul A. Trodden.
Local solutions of the optimal power flow problem.
28(4):4780–4788.
Conference Name: IEEE Transactions on Power Systems.
(page 9)

[37] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz.
Knitro: An integrated package for nonlinear optimization.
In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, Nonconvex Optimization and Its

Applications, pages 35–59. Springer US.
(pages 9 and 76)

[38] Mary B Cain, Richard P O’neill, Anya Castillo, and others.
History of optimal power flow and formulations.
1:1–36.
Publisher: Citeseer.
(page 6)

[39] Eduardo F. Camacho and Carlos Bordons Alba.
Model predictive control.
Springer science & business media.
(page 48)

[40] Florin Capitanescu.
Critical review of recent advances and further developments needed in AC optimal power flow.
136:57–68.
(page 123)

[41] Florin Capitanescu, Jose Luis Martinez Ramos, Patrick Panciatici, Daniel Kirschen, Alejandro Marano Marcolini,
Ludovic Platbrood, and Louis Wehenkel.

State-of-the-art, challenges, and future trends in security constrained optimal power flow.
81(8):1731–1741.
(page 123)

[42] Italo Capuzzo-Dolcetta.
Hamilton-jacobi equations with state constraints.
318(2):643–683.
(page 48)

[43] Jacques Carpentier.
Contribution a l’étude du dispatching économique.
3(1):431–447.
(page 6)

[44] Jacques Carpentier.
Optimal power flows.
1(1):3–15.
Publisher: Elsevier.

153

BIBLIOGRAPHY

(page 6)

[45] Martina Cerulli.
Bilevel optimization and applications.
Issue: 2021IPPAX108.
(page 5)

[46] Martina Cerulli, Diego Delle Donne, Mauro Escobar, Antoine Oustry, and Leo Liberti.
Optimal power flow.
(page 13)

[47] Martina Cerulli, Antoine Oustry, Claudia D’Ambrosio, and Leo Liberti.
Convergent algorithms for a class of convex semi-infinite programs.
32(4):2493–2526.
Publisher: Society for Industrial and Applied Mathematics.
(pages 12 and 126)

[48] Mohammadreza Chamanbaz, Fabrizio Dabbene, and Constantino M. Lagoa.
Probabilistically robust AC optimal power flow.
6(3):1135–1147.
Conference Name: IEEE Transactions on Control of Network Systems.
(page 124)

[49] Chen Chen, Alper Atamtürk, and Shmuel S. Oren.
A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables.
165(2):549–577.
(pages 77, 78, and 79)

[50] Tianran Chen and Tien-Yien Li.
Homotopy continuation method for solving systems of nonlinear and polynomial equations.
15(2):119–307.
Publisher: International Press of Boston.
(page 127)

[51] Elliott W. Cheney and Allen A. Goldstein.
Newton’s method for convex programming and tchebycheff approximation.
1(1):253–268.
(page 16)

[52] Frank H. Clarke.
Generalized gradients and applications.
205:247–262.
(pages x, 62, and 182)

[53] Frank H. Clarke and Richard B. Vinter.
The relationship between the maximum principle and dynamic programming.
25(5):1291–1311.
Publisher: Society for Industrial and Applied Mathematics.
(page 47)

[54] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin.
PowerModels. JL: An open-source framework for exploring power flow formulations.
In 2018 Power Systems Computation Conference (PSCC), pages 1–8.
(page 97)

[55] Carleton Coffrin, Hassan L. Hijazi, and Pascal Van Hentenryck.
The QC relaxation: A theoretical and computational study on optimal power flow.
31(4):3008–3018.
(page 9)

[56] Carleton Coffrin, Hassan L. Hijazi, and Pascal Van Hentenryck.
Strengthening convex relaxations with bound tightening for power network optimization.

154

BIBLIOGRAPHY

In Gilles Pesant, editor, Principles and Practice of Constraint Programming, Lecture Notes in Computer Science,
pages 39–57. Springer International Publishing.

(page 9)

[57] Carleton Coffrin, Hassan L. Hijazi, and Pascal Van Hentenryck.
Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities.
32(5):3549–3558.
Conference Name: IEEE Transactions on Power Systems.
(pages 76, 77, 83, 85, and 177)

[58] Benoît Colson, Patrice Marcotte, and Gilles Savard.
An overview of bilevel optimization.
153:235–256.
Publisher: Springer.
(page 1)

[59] Ian D. Coope and Georges A. Watson.
A projected lagrangian algorithm for semi-infinite programming.
32(3):337–356.
(page 4)

[60] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms.
MIT Press, third edition edition.
(page 86)

[61] Michael G. Crandall and Pierre-Louis Lions.
Viscosity solutions of hamilton-jacobi equations.
277(1):1–42.
Publisher: American Mathematical Society.
(pages 48 and 51)

[62] Bai Cui and Xu Andy Sun.
A new voltage stability-constrained optimal power flow model: Sufficient condition, SOCP representation, and

relaxation.
33(5):5092–5102.
(page 10)

[63] Emiliano Dall’Anese, Kyri Baker, and Tyler Summers.
Chance-constrained AC optimal power flow for distribution systems with renewables.
32(5):3427–3438.
Conference Name: IEEE Transactions on Power Systems.
(page 10)

[64] Olivier Devolder, François Glineur, and Yurii Nesterov.
First-order methods of smooth convex optimization with inexact oracle.
146(1):37–75.
(page 16)

[65] Moritz Diehl, Boris Houska, Oliver Stein, and Paul Steuermann.
A lifting method for generalized semi-infinite programs based on lower level wolfe duality.
54(1):189–210.
(pages 4 and 29)

[66] Hatim Djelassi and Alexander Mitsos.
Global solution of semi-infinite programs with existence constraints.
188(3):863–881.
(pages 122 and 123)

[67] Hatim Djelassi and Alexander Mitsos.
A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs.
68(2):227–253.

155

BIBLIOGRAPHY

(pages 4, 17, and 28)

[68] Hatim Djelassi, Alexander Mitsos, and Oliver Stein.
Recent advances in nonconvex semi-infinite programming: Applications and algorithms.
9:100006.
(pages 1 and 5)

[69] Yu Du and Andrzej Ruszczyński.
Rate of convergence of the bundle method.
173:908–922.
Publisher: Springer.
(page 16)

[70] Laurent El Ghaoui, Francois Oustry, and Hervé Lebret.
Robust solutions to uncertain semidefinite programs.
9(1):33–52.
(page 5)

[71] Anders Eltved, Joachim Dahl, and Martin S. Andersen.
On the robustness and scalability of semidefinite relaxation for optimal power flow problems.
21(2):375–392.
(pages 102, 103, and 116)

[72] Jack Elzinga and Thomas G. Moore.
A central cutting plane algorithm for the convex programming problem.
8(1):134–145.
(page 17)

[73] Stéphane Fliscounakis, Patrick Panciatici, Florin Capitanescu, and Louis Wehenkel.
Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive,

and corrective actions.
28(4):4909–4917.
Conference Name: IEEE Transactions on Power Systems.
(page 10)

[74] Christodoulos A. Floudas, Zeynep H. Gümüş, and Marianthi G. Ierapetritou.
Global optimization in design under uncertainty: Feasibility test and flexibility index problems.
40(20):4267–4282.
(page 122)

[75] Christodoulos A. Floudas and Oliver Stein.
The adaptive convexification algorithm: A feasible point method for semi-infinite programming.
18(4):1187–1208.
Publisher: Society for Industrial and Applied Mathematics.
(pages 4 and 28)

[76] Robert Fourer, David M Gay, and Brian W Kernighan.
AMPL: A mathematical programming language.
AT & T Bell Laboratories Murray Hill, NJ.
(page 42)

[77] Halina Frankowska.
Optimal trajectories associated with a solution of the contingent hamilton-jacobi equation.
19(1):291–311.
(page 48)

[78] Lingwen Gan, Na Li, Ufuk Topcu, and Steven H. Low.
Exact convex relaxation of optimal power flow in radial networks.
60(1):72–87.
(page 9)

[79] Carlos B. Garcia and Willard J. Zangwill.

156

BIBLIOGRAPHY

Pathways to solutions, fixed points, and equilibria.
26(3):445–446.
Publisher: Society for Industrial and Applied Mathematics.
(page 8)

[80] Lawrence Craig Evans Gariepy, Ronald F.
Measure Theory and Fine Properties of Functions, Revised Edition.
Chapman and Hall/CRC.
(pages 61 and 182)

[81] Amin Gholami, Kaizhao Sun, Shixuan Zhang, and Xu Andy Sun.
An ADMM-based distributed optimization method for solving security-constrained AC optimal power flow.
(pages 123 and 137)

[82] Jean Charles Gilbert and Cédric Josz.
Plea for a semidefinite optimization solver in complex numbers.
page 36.
(pages 107 and 116)

[83] Philip E. Gill, Walter Murray, and Michael A. Saunders.
SNOPT: An SQP algorithm for large-scale constrained optimization.
47(1):99–131.
Publisher: Society for Industrial and Applied Mathematics.
(page 9)

[84] Miguel A. Goberna and Marco A. López.
Recent contributions to linear semi-infinite optimization: an update.
271(1):237–278.
(page 17)

[85] Hadrien Godard.
Résolution exacte du problème de l’optimisation des flux de puissance.
(pages 9 and 77)

[86] Hadrien Godard, Sourour Elloumi, Amélie Lambert, Jean Maeght, and Manuel Ruiz.
Novel approach towards global optimality of optimal power flow using quadratic convex optimization.
In Proceedings of the 6th International Conference on Control, Decision and Information Technologies (CoDIT).
(page 77)

[87] Smitha Gopinath and Hassan L. Hijazi.
Benchmarking large-scale ACOPF solutions and optimality bounds.
In 2022 IEEE Power & Energy Society General Meeting (PESGM), pages 1–5.
ISSN: 1944-9933.
(pages 76, 77, 97, 99, and 101)

[88] Smitha Gopinath, Hassan L. Hijazi, Tillmann Weisser, Harsha Nagarajan, Mertcan Yetkin, Kaarthik Sundar, and
Russel W. Bent.

Proving global optimality of ACOPF solutions.
189:106688.
(page 76)

[89] Paul R. Gribik.
A central-cutting-plane algorithm for semi-infinite programming problems.
In Rainer Hettich, editor, Semi-Infinite Programming, volume 15, pages 66–82. Springer-Verlag.
Series Title: Lecture Notes in Control and Information Sciences.
(pages 4 and 17)

[90] Paul R. Gribik and Kenneth O. Kortanek.
Equivalence theorems and cutting plane algorithms for a class of experimental design problems.
32(1):232–259.
_eprint: https://doi.org/10.1137/0132021.
(page 5)

157

BIBLIOGRAPHY

[91] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz.
Positive definite completions of partial hermitian matrices.
58:109–124.
(pages 82, 102, and 106)

[92] Ignacio E. Grossmann and Keshava P. Halemane.
Decomposition strategy for designing flexible chemical plants.
28(4):686–694.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690280422.
(page 122)

[93] Ignacio E. Grossmann, Keshava P. Halemane, and Ross E. Swaney.
Optimization strategies for flexible chemical processes.
7(4):439–462.
(page 122)

[94] LLC Gurobi Optimization.
Gurobi optimizer reference manual.
(pages 9, 42, 66, 77, 97, and 101)

[95] Napsu Haarala, Kaisa Miettinen, and Marko M. Mäkelä.
New limited memory bundle method for large-scale nonsmooth optimization.
19(6):673–692.
Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10556780410001689225.
(page 21)

[96] Keshava P. Halemane and Ignacio E. Grossmann.
Optimal process design under uncertainty.
29(3):425–433.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690290312.
(page 122)

[97] William E. Hart, Jean-Paul Watson, and David L. Woodruff.
Pyomo: modeling and solving mathematical programs in python.
3(3):219.
(page 96)

[98] Kris Hauser.
Semi-infinite programming for trajectory optimization with non-convex obstacles.
40(10):1106–1122.
Publisher: SAGE Publications Ltd STM.
(page 5)

[99] Christoph Helmberg and Franz Rendl.
A spectral bundle method for semidefinite programming.
10(3):673–696.
(page 103)

[100] Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry Wolkowicz.
An interior-point method for semidefinite programming.
6(2):342–361.
Publisher: Society for Industrial and Applied Mathematics.
(page 5)

[101] Didier Henrion, Jean-Bernard Lasserre, and Carlo Savorgnan.
Nonlinear optimal control synthesis via occupation measures.
In 2008 47th IEEE Conference on Decision and Control, pages 4749–4754.
ISSN: 0191-2216.
(pages 49 and 59)

[102] Daniel Hernández-Hernández, Onésimo Hernández-Lerma, and Michael Taksar.
The linear programming approach to deterministic optimal control problems.

158

BIBLIOGRAPHY

24(1):17–33.
(page 48)

[103] Rainer Hettich.
An implementation of a discretization method for semi-infinite programming.
34(3):354–361.
(pages 4 and 17)

[104] Rainer Hettich and Kenneth O. Kortanek.
Semi-infinite programming: Theory, methods, and applications.
35(3):380–429.
(pages 1, 4, and 17)

[105] Hassan Hijazi, Guanglei Wang, and Carleton Coffrin.
Gravity: A mathematical modeling language for optimization and machine learning.
In Proceedings of NIPS 2018 Workshop MLOSS.
(page 97)

[106] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal.
Convex Analysis and Minimization Algorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg.
(pages 19 and 33)

[107] Lars Hörmander.
The Analysis of Linear Partial Differential Operators I.
Classics in Mathematics. Springer.
(page 53)

[108] IBM.
IBM ILOG CPLEX 12.7 user’s manual.
(page 96)

[109] Rabih A. Jabr.
Adjustable robust OPF with renewable energy sources.
28(4):4742–4751.
Conference Name: IEEE Transactions on Power Systems.
(page 123)

[110] Rabih A. Jabr.
Radial distribution load flow using conic programming.
21(3):1458–1459.
Conference Name: IEEE Transactions on Power Systems.
(pages 9 and 80)

[111] Martin Jaggi.
Revisiting frank-wolfe: Projection-free sparse convex optimization.
In International Conference on Machine Learning, pages 427–435. PMLR.
ISSN: 1938-7228.
(page 25)

[112] Nasser Jaleeli, Louis S. VanSlyck, Donald N. Ewart, Lester H. Fink, and A. G. Hoffmann.
Understanding automatic generation control.
7(3):1106–1122.
Conference Name: IEEE Transactions on Power Systems.
(page 136)

[113] Reza Jazar.
Theory of Applied Robotics: Kinematics, Dynamics, and Control (2nd Edition).
Springer.
(page 47)

[114] Steven G. Johnson and Julien Schueller.

159

BIBLIOGRAPHY

NLopt: Nonlinear optimization library.
ADS Bibcode: 2021ascl.soft11004J.
(page 9)

[115] Morgan Jones and Matthew M. Peet.
Polynomial approximation of value functions and nonlinear controller design with performance bounds.
(pages 48, 49, and 59)

[116] Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panciatici.
AC power flow data in MATPOWER and QCQP format: iTesla, RTE snapshots, and PEGASE.
(pages 9, 76, 102, and 103)

[117] Cédric Josz and Daniel K. Molzahn.
Lasserre hierarchy for large scale polynomial optimization in real and complex variables.
28(2):1017–1048.
_eprint: https://doi.org/10.1137/15M1034386.
(pages 6 and 9)

[118] James E. Kelley.
The cutting-plane method for solving convex programs.
8(4):703–712.
Publisher: Society for Industrial and Applied Mathematics.
(pages 3, 15, 16, 28, 46, and 114)

[119] Leonid Genrikhovich Khachiyan.
A polynomial algorithm in linear programming.
In Doklady Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences.
Issue: 5.
(page 16)

[120] Kibaek Kim, Youngdae Kim, Daniel A. Maldonado, Michel Schanen, Victor M. Zavala, and Nai-Yuan Chiang.
A scalable mixed-integer decomposition method for security-constrained optimal power flow with complementarity

constraints.
(pages 10 and 123)

[121] Krzysztof Czesław Kiwiel.
An aggregate subgradient method for nonsmooth convex minimization.
27(3):320–341.
(pages 16 and 21)

[122] Burak Kocuk, Santanu S. Dey, and X. Andy Sun.
Matrix minor reformulation and SOCP-based spatial branch-and-cut method for the AC optimal power flow problem.
10(4):557–596.
(page 77)

[123] Burak Kocuk, Santanu S. Dey, and X. Andy Sun.
Strong SOCP relaxations for the optimal power flow problem.
64(6):1177–1196.
(pages 9, 76, and 83)

[124] Burak Kocuk, Santanu S. Dey, and Xu Andy Sun.
Inexactness of SDP relaxation and valid inequalities for optimal power flow.
31(1):642–651.
Conference Name: IEEE Transactions on Power Systems.
(pages 76 and 83)

[125] Hidetoshi Komiya.
Elementary proof for sion’s minimax theorem.
11(1).
(page 88)

[126] Milan Korda.

160

BIBLIOGRAPHY

Computing controlled invariant sets from data using convex optimization.
58(5):2871–2899.
(page 48)

[127] Milan Korda, Didier Henrion, and Colin N. Jones.
Convergence rates of moment-sum-of-squares hierarchies for optimal control problems.
100:1–5.
(page 48)

[128] Kenneth O. Kortanek and Vladimir G. Medvedev.
Semi-infinite programming and applications in finance.
In Christodoulos A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages 3396–3404.

Springer US.
(page 5)

[129] Olga Kuryatnikova, Bissan Ghaddar, and Daniel K. Molzahn.
Two-stage robust quadratic optimization with equalities and its application to optimal power flow.
(pages 10, 123, 124, 136, and 144)

[130] L. T. Biegler.
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes.
MPS-SIAM Series on Optimization. SIAM-Society for Industrial and Applied Mathematics.
(page 48)

[131] Jean-Bernard Lasserre.
Convergent SDP-relaxations in polynomial optimization with sparsity.
17(3):822–843.
(pages 9 and 77)

[132] Jean-Bernard Lasserre.
Global optimization with polynomials and the problem of moments.
11(3):796–817.
(page 76)

[133] Jean-Bernard Lasserre.
An introduction to polynomial and semi-algebraic optimization, volume 52.
Cambridge University Press.
(page 9)

[134] Jean-Bernard Lasserre.
Min-max and robust polynomial optimization.
51(1):1–10.
(pages 4 and 28)

[135] Jean-Bernard Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat.
Nonlinear optimal control via occupation measures and LMI-relaxations.
47(4):1643–1666.
(pages 48, 50, and 52)

[136] Javad Lavaei and Steven H. Low.
Zero duality gap in optimal power flow problem.
27(1):92–107.
(pages 9 and 102)

[137] Dongchan Lee, Hung D. Nguyen, Krishnamurthy Dvijotham, and Konstantin Turitsyn.
Convex restriction of power flow feasibility sets.
6(3):1235–1245.
Conference Name: IEEE Transactions on Control of Network Systems.
(page 124)

[138] Dongchan Lee, Konstantin Turitsyn, Daniel Kenneth Molzahn, and Line Roald.
Robust AC optimal power flow with robust convex restriction.

161

BIBLIOGRAPHY

pages 1–1.
(pages 10, 123, 124, 136, and 144)

[139] Claude Lemaréchal.
Nonsmooth optimization and descent methods.
Num Pages: 25 Place: IIASA, Laxenburg, Austria Publisher: RR-78-004.
(page 16)

[140] Claude Lemaréchal, Arkadii Nemirovskii, and Yurii Nesterov.
New variants of bundle methods.
69(1):111–147.
(page 16)

[141] Claude Lemaréchal and Claudia Sagastizábal.
Variable metric bundle methods: From conceptual to implementable forms.
76(3):393–410.
(pages 16 and 115)

[142] Mirko Leomanni, Gabriele Costante, and Francesco Ferrante.
Time-optimal control of a multidimensional integrator chain with applications.
6:2371–2376.
Conference Name: IEEE Control Systems Letters.
(page 48)

[143] Evgeni Levitin and Rainer Tichatschke.
A branch-and-bound approach for solving a class of generalized semi-infinite programming problems.
13(3):299–315.
(pages 4 and 29)

[144] Adrian S. Lewis.
The mathematics of eigenvalue optimization.
97(1):155–176.
(page 144)

[145] Adrian S. Lewis and Hristo S. Sendov.
Twice differentiable spectral functions.
23(2):368–386.
Publisher: Society for Industrial and Applied Mathematics.
(page 144)

[146] Leo Liberti, Benedetto Manca, Antoine Oustry, and Pierre-Louis Poirion.
Random projections for semidefinite programming *.
In AIRO-ODS 2022.
(page 13)

[147] Daniel Liberzon.
Calculus of Variations and Optimal Control Theor – A Concise Introduction.
Princeton University Press.
(page 48)

[148] Francesco Locatello, Michael Tschannen, Gunnar Rätsch, and Martin Jaggi.
Greedy algorithms for cone constrained optimization with convergence guarantees.
In Advances in Neural Information Processing Systems, volume 30.
(page 21)

[149] Jérôme Lohéac and Jean-François Scheid.
Time-optimal control for a perturbed brockett integrator.
In Variatonal methods, pages 454–472. De Gruyter.
(page 72)

[150] Raphael Louca and Eilyan Bitar.
Robust AC optimal power flow.

162

BIBLIOGRAPHY

34(3):1669–1681.
Conference Name: IEEE Transactions on Power Systems.
(pages 10 and 123)

[151] Raphael Louca and Eilyan Bitar.
Stochastic AC optimal power flow with affine recourse.
In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 2431–2436. IEEE.
(page 123)

[152] Steven H. Low.
Convex relaxation of optimal power flow—part II: Exactness.
1(2):177–189.
Conference Name: IEEE Transactions on Control of Network Systems.
(page 9)

[153] Mowen Lu, Harsha Nagarajan, Russell Bent, Sandra D. Eksioglu, and Scott J. Mason.
Tight piecewise convex relaxations for global optimization of optimal power flow.
In 2018 Power Systems Computation Conference (PSCC), pages 1–7. IEEE.
(page 77)

[154] Marco López and Georg Still.
Semi-infinite programming.
180(2):491–518.
(page 5)

[155] Ramtin Madani, Abdulrahman Kalbat, and Javad Lavaei.
ADMM for sparse semidefinite programming with applications to optimal power flow problem.
In 2015 54th IEEE Conference on Decision and Control (CDC), pages 5932–5939. IEEE.
(page 103)

[156] Ngoc Hoang Anh Mai, Jean-Bernard Lasserre, and Victor Magron.
A hierarchy of spectral relaxations for polynomial optimization.
(page 120)

[157] Gianandrea Mannarini, Deepak N. Subramani, Pierre F. J. Lermusiaux, and Nadia Pinardi.
Graph-search and differential equations for time-optimal vessel route planning in dynamic ocean waves.
21(8):3581–3593.
(page 47)

[158] Antoine Marendet, Alexandre Goldsztejn, Gilles Chabert, and Christophe Jermann.
A standard branch-and-bound approach for nonlinear semi-infinite problems.
282(2):438–452.
(page 4)

[159] Garth P. McCormick.
Computability of global solutions to factorable nonconvex programs: Part i — convex underestimating problems.
10(1):147–175.
(page 81)

[160] Dhagash Mehta, Daniel K. Molzahn, and Konstantin Turitsyn.
Recent advances in computational methods for the power flow equations.
In 2016 American Control Conference (ACC), pages 1753–1765. IEEE.
(page 8)

[161] Michael R. Metel and Akiko Takeda.
Primal-dual subgradient method for constrained convex optimization problems.
15(4):1491–1504.
(page 16)

[162] Alexander Mitsos.
Global optimization of semi-infinite programs via restriction of the right-hand side.
60(10):1291–1308.
(pages 4, 17, 28, 29, 40, 41, 42, 46, 124, and 126)

163

BIBLIOGRAPHY

[163] Alexander Mitsos and Angelos Tsoukalas.
Global optimization of generalized semi-infinite programs via restriction of the right hand side.
61(1):1–17.
(page 28)

[164] Daniel K. Molzahn and Ian A. Hiskens.
Convex relaxations of optimal power flow problems: An illustrative example.
63(5):650–660.
(pages 102, 103, 105, and 116)

[165] Daniel K. Molzahn and Ian A. Hiskens.
Sparsity-exploiting moment-based relaxations of the optimal power flow problem.
30(6):3168–3180.
Conference Name: IEEE Transactions on Power Systems.
(page 76)

[166] Daniel K. Molzahn and Ian A. Hiskens.
A survey of relaxations and approximations of the power flow equations.
4(1):1–221.
(pages 6, 9, 76, 79, and 97)

[167] Daniel K. Molzahn, Jesse T. Holzer, Bernard C. Lesieutre, and Christopher L. DeMarco.
Implementation of a large-scale optimal power flow solver based on semidefinite programming.
28(4):3987–3998.
(page 102)

[168] Daniel K. Molzahn, Cedric Josz, and Ian A. Hiskens.
Moment relaxations of optimal power flow problems: Beyond the convex hull.
In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 856–860.
(page 76)

[169] Mosek.
The mosek optimization software.
(pages 5, 9, 42, 96, 103, 106, and 116)

[170] T. Mühlpfordt, L. Roald, V. Hagenmeyer, T. Faulwasser, and S. Misra.
Chance-constrained AC optimal power flow – a polynomial chaos approach.
(page 10)

[171] Yurii Nesterov.
Introductory Lectures on Convex Optimization: A Basic Course.
Springer Science & Business Media.
(page 16)

[172] Yurii Nesterov.
Primal-dual subgradient methods for convex problems.
120(1):221–259.
(page 16)

[173] Geert J. Olsder.
Time-optimal control of multivariable systems near the origin.
16:497–517.
Publisher: Springer.
(page 48)

[174] Antoine Oustry.
AC optimal power flow: a conic programming relaxation and an iterative MILP scheme for global optimization.
3:1–19.
(page 12)

[175] Antoine Oustry, Carmen Cardozo, Patrick Pantiatici, and Didier Henrion.
Maximal positively invariant set determination for transient stability assessment in power systems.

164

BIBLIOGRAPHY

In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 6572–6577.
ISSN: 2576-2370.
(page 10)

[176] Antoine Oustry and Martina Cerulli.
Semi-infinite programming solution algorithms with inexact separation oracles.
(page 13)

[177] Antoine Oustry, Claudia D’Ambrosio, Leo Liberti, and Manuel Ruiz.
Certified and accurate SDP bounds for the ACOPF problem.
212:108278.
(pages 12 and 79)

[178] Antoine Oustry, Bünyamin Erkan, Romain Svartzman, and Pierre-François Weber.
Climate-related risks and central banks’ collateral policy: a methodological experiment.
73(2):173–218.
Bibliographie_available: 1 Cairndomain: www.cairn-int.info Cite Par_available: 0 Publisher: Presses de Sciences Po.
(page 13)

[179] Antoine Oustry, Marion Le Tilly, Thomas Clausen, Claudia D’Ambrosio, and Leo Liberti.
Optimal deployment of indoor wireless local area networks.
81(1):23–50.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.22116.
(page 13)

[180] Antoine Oustry, François Pacaud, and Mihai Anitescu.
Adjustable robust nonlinear optimization via semi-infinite programming.
(page 13)

[181] Antoine Oustry and Matteo Tacchi.
Minimal-time nonlinear control via semi-infinite programming.
(page 13)

[182] Antoine Oustry, Matteo Tacchi, and Didier Henrion.
Inner approximations of the maximal positively invariant set for polynomial dynamical systems.
3(3):733–738.
Conference Name: IEEE Control Systems Letters.
(pages 10 and 48)

[183] Antoine Oustry, Liding Xu, Sonia Haddad-Vanier, Juan-Antonio Cordero, and Thomas Clausen.
Optimization in wireless networks.
(page 13)

[184] François Oustry.
A second-order bundle method to minimize the maximum eigenvalue function.
89(1):1–33.
(pages 16 and 103)

[185] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd.
Conic optimization via operator splitting and homogeneous self-dual embedding.
169(3):1042–1068.
(page 103)

[186] François Pacaud, Michel Schanen, Sungho Shin, Daniel Adrian Maldonado, and Mihai Anitescu.
Parallel interior-point solver for block-structured nonlinear programs on SIMD/GPU architectures.
(page 123)

[187] Ana I. Pereira, M. Fernanda P. Costa, and Edite M.G.P. Fernandes.
Interior point filter method for semi-infinite programming problems.
60(10):1309–1338.
(page 4)

165

BIBLIOGRAPHY

[188] Hans Josef Pesch.
A practical guide to the solution of real-life optimal control problems.
23.
(page 48)

[189] Cosmin G. Petra and Ignacio Aravena.
Solving realistic security-constrained optimal power flow problems.
(page 123)

[190] Dzung T. Phan.
Lagrangian duality and branch-and-bound algorithms for optimal power flow.
60(2):275–285.
(page 103)

[191] Elijah Polak.
An implementable algorithm for the optimal design centering, tolerancing, and tuning problem.
37(1):45–67.
(page 5)

[192] Elijah Polak.
Optimization: algorithms and consistent approximations, volume 124.
Springer Science & Business Media.
(page 17)

[193] Elijah Polak and Johannes O. Royset.
Algorithms for finite and semi-infinite min–max–min problems using adaptive smoothing techniques.
119(3):421–457.
(page 122)

[194] Lev S. Pontryagin.
Mathematical Theory of Optimal Processes.
CRC Press.
Google-Books-ID: kwzq0F4cBVAC.
(page 47)

[195] Joshua L. Pulsipher, Daniel Rios, and Victor M. Zavala.
A computational framework for quantifying and analyzing system flexibility.
126:342–355.
(page 122)

[196] Rembert Reemtsen.
Discretization methods for the solution of semi-infinite programming problems.
71(1):85–103.
(pages 4 and 17)

[197] Rembert Reemtsen and Stephan Görner.
Numerical methods for semi-infinite programming: A survey.
In Rembert Reemtsen and Jan-J. Rückmann, editors, Semi-Infinite Programming, Nonconvex Optimization and Its

Applications, pages 195–275. Springer US.
(page 17)

[198] Line A. Roald, David Pozo, Anthony Papavasiliou, Daniel K. Molzahn, Jalal Kazempour, and Antonio Conejo.
Power systems optimization under uncertainty: A review of methods and applications.
214:108725.
(pages 10, 121, and 123)

[199] Gianpaolo Romano.
New results in subdifferential calculus with applications to convex optimization.
32(3):213–234.
(page 19)

[200] Sebastian Sager, Mathieu Claeys, and Frédéric Messine.

166

BIBLIOGRAPHY

Efficient upper and lower bounds for global mixed-integer optimal control.
61(4):721–743.
(page 48)

[201] Hanif D. Sherali and Amine Alameddine.
A new reformulation-linearization technique for bilinear programming problems.
2(4):379–410.
(page 76)

[202] Naum Z. Shor.
Cut-off method with space extension in convex programming problems.
13(1):94–96.
(page 16)

[203] Maurice Sion.
On general minimax theorems.
8(1):171–176.
Publisher: Mathematical Sciences Publishers.
(pages 18, 22, and 111)

[204] Halil Mete Soner.
Optimal control with state-space constraint i.
24(3):552–561.
Publisher: Society for Industrial and Applied Mathematics.
(page 48)

[205] Oliver Stein.
A semi-infinite approach to design centering.
pages 209–228.
Publisher: Springer.
(page 5)

[206] Oliver Stein and Paul Steuermann.
The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets.
136(1):183–207.
(pages 4 and 28)

[207] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd.
OSQP: an operator splitting solver for quadratic programs.
12(4):637–672.
(page 116)

[208] Georg Still.
Discretization in semi-infinite programming: the rate of convergence.
91(1):53–69.
(pages 4 and 17)

[209] Brian Stott.
Review of load-flow calculation methods.
62(7):916–929.
Conference Name: Proceedings of the IEEE.
(page 8)

[210] Matthew D Stuber and Paul I Barton.
Robust simulation and design using semi-infinite programs with implicit functions.
5(3):378–397.
Publisher: Inderscience Publishers.
(page 123)

[211] Matthew D Stuber and Paul I Barton.
Semi-infinite optimization with implicit functions.
54(1):307–317.

167

BIBLIOGRAPHY

Publisher: ACS Publications.
(pages 5 and 123)

[212] Jos F. Sturm.
Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones.
11(1):625–653.
(pages 9 and 103)

[213] Kaarthik Sundar, Harsha Nagarajan, Sidhant Misra, Mowen Lu, Carleton Coffrin, and Russell Bent.
Optimization-based bound tightening using a strengthened QC-relaxation of the optimal power flow problem.
(pages 76, 77, 97, 99, and 101)

[214] Matteo Tacchi, Bogdan Marinescu, Marian Anghel, Soumya Kundu, Sifeddine Benahmed, and Carmen Cardozo.
Power system transient stability analysis using sum of squares programming.
In 2018 Power Systems Computation Conference (PSCC), pages 1–7.
(page 10)

[215] Yoshihiro Tanaka, Masao Fukushima, and Toshihide Ibaraki.
A globally convergent SQP method for semi-infinite nonlinear optimization.
23(2):141–153.
(page 4)

[216] Xiaojiao Tong, Liqun Qi, Soon-Yi Wu, and Felix F. Wu.
A smoothing SQP method for nonlinear programs with stability constraints arising from power systems.
51(1):175–197.
(page 10)

[217] Emmanuel Trélat.
Optimal control and applications to aerospace: Some results and challenges.
154(3):713–758.
(pages 47 and 48)

[218] Angelos Tsoukalas, Panos Parpas, and Berç Rustem.
A smoothing algorithm for finite min–max–min problems.
3(1):49–62.
(page 122)

[219] Angelos Tsoukalas and Berç Rustem.
A feasible point adaptation of the blankenship and falk algorithm for semi-infinite programming.
5(4):705–716.
(pages 4 and 28)

[220] Hoang Tuy.
Convex Analysis and Global Optimization, volume 110 of Springer Optimization and Its Applications.
Springer International Publishing.
(page 19)

[221] Lieven Vandenberghe and Martin S Andersen.
Chordal Graphs and Semidefinite Optimization, volume 1 of Foundations and Trends in Optimization.
now Publishers Inc., now publishers inc. edition.
(pages 105 and 106)

[222] Lieven Vandenberghe and Stephen Boyd.
Connections between semi-infinite and semidefinite programming.
In Rembert Reemtsen and Jan-J. Rückmann, editors, Semi-Infinite Programming, Nonconvex Optimization and Its

Applications, pages 277–294. Springer US.
(page 5)

[223] Lieven Vandenberghe and Stephen Boyd.
Semidefinite programming.
38(1):49–95.
Publisher: SIAM.
(page 32)

168

BIBLIOGRAPHY

[224] Andreas Venzke, Lejla Halilbasic, Uros Markovic, Gabriela Hug, and Spyros Chatzivasileiadis.
Convex relaxations of chance constrained AC optimal power flow.
33(3):2829–2841.
(pages 10 and 136)

[225] Robin Verschueren, Hans Joachim Ferreau, Alessandro Zanarini, Mehmet Mercangöz, and Moritz Diehl.
A stabilizing nonlinear model predictive control scheme for time-optimal point-to-point motions.
In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 2525–2530.
(page 48)

[226] Stefan Vigerske and Ambros Gleixner.
SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework.
33(3):563–593.
(page 9)

[227] Richard Vinter.
Convex duality and nonlinear optimal control.
31(2):518–538.
Publisher: Society for Industrial and Applied Mathematics.
(pages 48, 50, 51, and 52)

[228] Oskar von Stryk and Roland Bulirsch.
Direct and indirect methods for trajectory optimization.
37(1):357–373.
(page 48)

[229] Francisco Guerra Vázquez and Jan-J. Rückmann.
Semi-infinite programming: Properties and applications to economics.
In Jacek Leskow, Lionello F. Punzo, and Martín Puchet Anyul, editors, New Tools of Economic Dynamics, Lecture

Notes in Economics and Mathematical Systems, pages 373–393. Springer.
(page 5)

[230] Hayato Waki, Maho Nakata, and Masakazu Muramatsu.
Strange behaviors of interior-point methods for solving semidefinite programming problems in polynomial optimiza-

tion.
53(3):823–844.
(page 103)

[231] Chong Wang, Bai Cui, Zhaoyu Wang, and Chenghong Gu.
SDP-based optimal power flow with steady-state voltage stability constraints.
10(4):4637–4647.
(page 10)

[232] Jie Wang, Victor Magron, Jean B. Lasserre, and Ngoc Hoang Anh Mai.
CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization.
(pages 102 and 103)

[233] Jie Wang, Victor Magron, and Jean-Bernard Lasserre.
Certifying global optimality of AC-OPF solutions via sparse polynomial optimization.
213:108683.
(page 6)

[234] Jie Wang, Victor Magron, and Jean-Bernard Lasserre.
Chordal-TSSOS: A moment-SOS hierarchy that exploits term sparsity with chordal extension.
31(1):114–141.
Publisher: Society for Industrial and Applied Mathematics.
(page 9)

[235] Jie Wang, Victor Magron, Jean-Bernard Lasserre, and Ngoc Hoang Anh Mai.
CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization.
48(4):42:1–42:26.
(page 9)

169

BIBLIOGRAPHY

[236] Anton Winterfeld.
Application of general semi-infinite programming to lapidary cutting problems.
191(3):838–854.
(page 5)

[237] Felix Wu and Sadatoschi Kumagai.
Steady-state security regions of power systems.
29(11):703–711.
Conference Name: IEEE Transactions on Circuits and Systems.
(page 10)

[238] Xuan Wu, Antonio J. Conejo, and Nima Amjady.
Robust security constrained ACOPF via conic programming: Identifying the worst contingencies.
33(6):5884–5891.
Conference Name: IEEE Transactions on Power Systems.
(page 10)

[239] Andreas Wächter and Lorenz T. Biegler.
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming.
106(1):25–57.
(pages 9, 76, 96, 118, and 138)

[240] İhsan Yanıkoğlu, Bram L. Gorissen, and Dick den Hertog.
A survey of adjustable robust optimization.
277(3):799–813.
(pages 5 and 121)

[241] Yinyu Ye.
Complexity analysis of the analytic center cutting plane method that uses multiple cuts.
78(1):85–104.
(page 17)

[242] Saïd Zabi, Isabelle Queinnec, Germain Garcia, and Michel Mazerolles.
Time-optimal control for the induction phase of anesthesia.
In Proceedings of the 20th IFAC World Congress, page 12708.
(page 47)

[243] Stanislav Zakovic and Berç Rustem.
Semi-infinite programming and applications to minimax problems.
124:81–110.
(page 5)

[244] Liping Zhang, Soon-Yi Wu, and Marco A. López.
A new exchange method for convex semi-infinite programming.
20(6):2959–2977.
(pages 4 and 17)

[245] Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn.
Chordal decomposition in operator-splitting methods for sparse semidefinite programs.
180(1):489–532.
(page 103)

[246] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas.
MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education.
26(1):12–19.
Publisher: IEEE.
(page 175)

170

Appendices

A. Convergence proof of the adaptive discretization algorithm

We present the proofs of some convergence results for the adaptive discretization algorithm
(Algorithm 1) presented in the Introduction, a standard algorithm for semi-infinite programming.

Lemma 0.6. Consider a parameter δ ∈ [0, 1), infinite sequences (xk)k∈N ⊂ X and (yk)k∈N ⊂ Y,
where yk = ŷ(xk) is the output of the δ-oracle evaluated at point xk. If, for any k ∈ N, for any
ℓ ∈ J0, k − 1K, G(xk, yℓ) ≤ 0, then, the feasibility error ϕ(xk)+ vanishes: ϕ(xk)+ → 0.

Proof. We notice that the sequence ϕ(xk)+ is bounded, so it admits at least one accumulation
value ℓ. We are going to prove that, necessarily, ℓ = 0. We define ψ : N→ N being an increasing
function, such that ϕ(xψ(k))+ → ℓ. By compactness of X (resp. Y), up to the extraction of a
subsequence of xψ(k) (resp. yψ(k)), we can assume that xψ(k) → x ∈ X (resp. yψ(k) → y ∈ Y).
By assumption, G(xψ(k), yj) ≤ 0 for all j ≤ ψ(k) − 1, in particular, G(xψ(k), yψ(k−1)) ≤ 0.
We deduce that G(xψ(k), yψ(k)) ≤ G(xψ(k), yψ(k))−G(xψ(k), yψ(k−1)), and therefore, since the
positive part t+ = max{t, 0} is nondecreasing,(

G(xψ(k), yψ(k))
)+
≤
(
G(xψ(k), yψ(k))−G(xψ(k), yψ(k−1))

)+
. (36)

By definition of the δ-oracle, Eq. (4) yields ϕ(xψ(k))−G(xψ(k), yψ(k)) ≤ δ|ϕ(xψ(k))|. If ϕ(xψ(k)) ≥
0, this means that ϕ(xψ(k)) − G(xψ(k), yψ(k)) ≤ δ ϕ(xψ(k)), i.e., ϕ(xψ(k)) ≤ 1

1−δG(xψ(k), yψ(k)).
To also cover the case ϕ(xψ(k)) < 0, we write ϕ(xψ(k))+ ≤ 1

1−δG(xψ(k), yψ(k))+. As 1
1−δ ≥

0, we obtain from Eq. (36) that ϕ(xψ(k))+ ≤ 1
1−δ

(
G(xψ(k), yψ(k)) − G(xψ(k), yψ(k−1))

)+
. By

continuity of the functions G, ϕ (Proposition 0.1), and (·)+, we deduce that ℓ = ϕ(x)+ ≤
1

1−δ (G(x, y)−G(x, y))+ = 0, since (xψ(k), yψ(k)) and (xψ(k), yψ(k−1)) both converges to (x, y).
Hence, ϕ(xk)+ → 0.

Theorem 0.3. If ϵ ∈ R++, Algorithm 1 stops after a finite number of iterations. On the
contrary, if ϵ = 0 and Algorithm 1 generates an infinite sequence of iterates (xk)k∈N, then any
limit value x ∈ Rm of (xk)k∈N is an optimal solution in (SIP).

Proof. We consider fixed parameters (δ, ϵ) ∈ [0, 1) × R+, and we reason by contrapositive:
we assume that Algorithm 1 generates infinite sequence (xk)k∈N and we show that ϵ = 0.

171

APPENDICES

The generated sequences (xk)k∈N ⊂ X and (yk)k∈N ⊂ Y, satisfy yk = ŷ(xk), and for any
ℓ ∈ J0, k−1K, G(xk, yℓ) ≤ 0. Hence, Lemma 0.1 yields that ϕ(xk)+ → 0. We take any limit value
x ∈ Rm of (xk)k∈N, and we define (xψ(k))k∈N a subsequence converging to x. Since ϕ(xψ(k))+

is a subsequence of the vanishing sequence ϕ(xk)+, and since ϕ is continuous (see Proposi-
tion 0.1), we deduce that ϕ(x)+ = 0. Since X is closed, x ∈ X : in summary, x is feasible in (SIP).
Since the stopping criterion is not met,G(xψ(k), yψ(k))+ > ϵ for all k ∈ N. As 0 ≤ G(xψ(k), yψ(k))+,
≤ ϕ(xψ(k))+, we deduce by continuity of ϕ that G(xψ(k), yψ(k))+ → 0, and, therefore, ϵ = 0.
We conclude the proof by proving that F (x) = val(SIP). As x is feasible in (SIP), we have
F (x) ≥ val(SIP). However, as xψ(k) is the optimal solution of a relaxation of (SIP), we know
that F (xψ(k)) ≤ val(SIP), and by continuity of F , F (x) ≤ val(SIP).

Theorem 0.4. If Algorithm 1 terminates after K iterations, the iterate xK ∈ X , satisfies
G(xK , y) ≤ ϵ

1−δ , for all y ∈ Y, and has value F (xK) ≤ val(SIP).

Proof. First, note that for any iterate xk of the algorithm, F (xk) ≤ val(SIP) since xk is an
optimal solution of a relaxation of the problem (SIP). If Algorithm 1 terminates after K
iterations, this means that νK+1 ≤ ϵ, i.e., G(xK , yK) ≤ ϵ. If we are in the case ϕ(xK) ≥ 0,
then by property of the δ-oracle, we deduce that ϕ(xK)−G(xK , yK) ≤ δ ϕ(xK), i.e., ϕ(xK) ≤

1
1−δG(xK , yK) ≤ ϵ

1−δ . If we are in the case ϕ(xK) ≤ 0, the inequality ϕ(xK) ≤ ϵ
1−δ also

holds.

B. ACOPF: from the physics to the optimization problem

In this Appendix, we provide the minimal knowledge in electrical engineering to understand
the constraints involved in the ACOPF problem.

Algebraic representation of the physical values in an AC circuit

We start with a brief introduction to the use of complex numbers to represent the physical
quantities in an Alternating Current (AC) electrical circuit at steady-state. In an AC circuit,
the physical values such as current, voltage and power values are sine signals that oscillate with
the same pulse ω = 2πf ∈ R. In the European electrical grid, f = 50Hz.

v(t)

i(t)

Figure 1: Dipole in an AC electrical circuit.

172

APPENDICES

For a certain dipole in the circuit (see Figure 1), voltage (in V), current (in A) and power
(in W) are functions of time:

v(t) = V max cos(ωt+ θv) (37)

i(t) = Imax cos(ωt+ θi) (38)

s(t) = v(t)i(t) = 1
2V

maxImax(cos(θv − θi) + cos(2ωt+ θv + θi)), (39)

where V max, Imax are amplitude, and θv, θi are phases. The equality for the power expression
follows from basic trigonometric relations. Note that the average of the power s(t) over a period
2π/ω = 1/f is ∫ 2π/ω

0
s(t)dt = 1

2V
maxImax cos(θv − θi). (40)

The representation of the signals v(t), i(t) by an amplitude and a phase, and the integral
analysis of the power (see Eq. (40)) motivate the use of complex numbers to model these
physical values.

V = V max
√

2
eiθv (41)

I = Imax
√

2
eiθi (42)

S = V I∗. (43)

With this definition, we can reformulate Eq. (40) as∫ 2π/ω

0
s(t)dt = Re(S). (44)

In the power system literature, the real part of S is known as the active power (in W). This
quantity is subject to some power balance equation (see Eq. 51). The imaginary part of S is
an abstract quantity that is also subject to this power balance equation, and that also plays a
crucial role in the representation of the system:

Im(S) = 1
2V

maxImax sin(θv − θi). (45)

In the power grid literature, the imaginary part of S is known as the reactive power (in
VAR). We can understand it as a power that is consumed by the dipole, and then returned to
the circuit over one period 2π/ω: in average the power consumption/production is null, but this
oscillating behavior of the dipole (between power consumption and injection) is has a major
impact on the circuit.

173

APPENDICES

Description of the physical components of a power network

The grid A high voltage power network is made of buses interconnected by lines. It can be
modeled as an oriented graph N = (B,L). A line ℓ ∈ L is described by a couple (b, a) such that
b ∈ B is the “from” bus (denoted by f), a ∈ B is the “to” bus (denoted by t). The set L is such
that L ∩ LR = ∅, where LR is the set of couples (b, a) such that (a, b) ∈ L.

Bus model A node b ∈ B of the graph N represents an electrical bus, i.e., a point of the
network where are connected:

1. A subnetwork containing power generators and loads. This subnetwork is not detailed in
the graph N : it is represented as an exogenous flow Ib (see Figure 2) of current incoming
at bus b. This exogenous flow results from

• Some generators connected to this bus. We denote by Gb the set of generators located
at bus b ∈ B. It may be empty.

• A load representing the power consumption in this subnetwork. This load may be,
for instance, an industrial electricity consumer, or a local distribution network for
residential consumers.

The resulting flow Ib is the current injection at the bus b.
2. A shunt, of impedance Zsb = 1/Y s

b , and with a current Isb flowing in it: this represents a
loss of current to the ground at this bus.

3. Some lines ℓ = (b, a) ∈ L∪LR connecting the bus b to other buses, with current flows Iba.

1. Production and load 3. Lines

2. Shunt

Ib Iba1

Iba2

Is
b

Figure 2: A bus b ∈ B, with incident lines (b, a1) and (b, a2) (the impedances are
not drawn).

The voltage of this electrical node b ∈ B with respect to the ground is Vb (see Figure 3).

Line model An electrical line ℓ = (b, a) ∈ L is modeled as a quadripole, represented by the
schema in Figure 3. The parameter yba = rba + ixba is the line series impedance, and sba is the
line charging susceptance. The pair of vertical parallel coils on the left represents a transformer
installed at b: the parameter Nba ∈ C, the “ratio” of the AC transformation, is not necessarily
an integer; in general, it is a complex number. It is usually expressed in its polar representation

174

APPENDICES

Nba = τbae
iνba . From these parameters, that are provided in the MATPOWER data [246] format

for OPF instances, we derive the expression of the 2× 2 admittance matrix for the line:

Yba =
(
Y ff
ba Y ft

ba

Y tf
ba Y tt

ba

)
=

(1
rba+ixba

+ isba2)/τ2
ba −

1
(rba+ixba)τbae

−iνba

− 1
(rba+ixba)τbae

iνba

1
rba+ixba

+ isba2

 . (46)

Nba

ground

Vb
Vb
Nba

Sba, Iba

i
sba
2

rba ixba Sab, Iab

Vai
sba
2

Figure 3: The π-model of a line ℓ = (b, a) ∈ L (from [28], courtesy of L. Liberti)

Derivation of the power flow equations from Kirchoff’s and Ohm’s laws

We now state the two main principles that enable us to derive the power flow equation.

Kirchoff’s Law This physical principle designates the conservation of current at each node
b ∈ B. Using the notation introduced in Figure 2, the Kirchoff’s law is

Ib = Isb +
∑

a : (b,a)∈L∪LR

Iba. (47)

Ohm’s Law This physical principle links the current flowing through an electrical device,
its voltage, and its admittance. For a given line ℓ = (b, a) ∈ L, the Ohm’s law applied to this
quadripole, represented by the matrix Yba, reads as follows(

Iba

Iab

)
= Yba

(
Vb

Va

)
=
(
Y ff
baVb + Y ft

baVa

Y tf
baVb + Y tt

baVa

)
. (48)

Applying Ohm’s law for the shunt at bus b ∈ B gives

Isb = Y s
b Vb. (49)

Power balance On the one hand, the net power injection at node b through the current flow
Ib is

Sb = VbI
∗
b = Vb(Isb +

∑
a : (b,a)∈L∪LR

Iba)∗, (50)

175

APPENDICES

the second inequality following from Kirchhoff’s law (Eq. 47). On the other hand, the net
power injection is also simply the difference between power generation ∑g∈Gb

Sg and the power
consumption Sd

b . In summary, using Ohm’s law we deduce the power flow equation:∑
g∈Gb

Sg − Sd
b = Vb(Isb +

∑
a : (b,a)∈L∪LR

Iba)∗

= (Y s
b)∗|Vb|2 +

∑
a : (b,a)∈L

(
(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗Vb
)

+
∑

a : (b,a)∈LR

(
(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV
∗
a

)
.

Operational limits The components of the electrical grid are designed to work within
operational limits, that results in some inequality constraints in the ACOPF formulation:

• The operational limits of the generators are usually defined by a rectangle in the space C

P g ≤ Re(Sg) ≤ P g (51)

Q
g
≤ Im(Sg) ≤ Qg, (52)

that can be summarized as sg ≤ Sg ≤ sg, with sg = P g + iQ
g
, and sg = P g + iQg.

• The buses are designed for a certain range of voltage magnitude:

vb ≤ |Vb| ≤ vb. (53)

• The electrical lines also have operational limits. Depending on the authors, these limits are
either expressed in current magnitude (|Iba| ≤ Ība) or in apparent power (|VbIba| ≤ S̄ba).

Polar formulation

In Chapter 6, we use the polar formulation of the ACOPF problem, instead of the QCQP
formulation: the complex variable Vb ∈ C (resp. Sg ∈ C) is represented by vbeiθb (resp. Pg+ iQg),
with vb, θb, Pg, Qg ∈ R being real variables. We define the following parameters, for any b ∈ B:

gb = Re(Y s
b) +

∑
a : (b,a)∈L

Re(Y ff
ba) +

∑
a : (b,a)∈LR

Re(Y tt
ab) (54)

bb = Im(Y s
b) +

∑
a : (b,a)∈L

Im(Y ff
ba) +

∑
a : (b,a)∈LR

Im(Y tt
ab). (55)

For any (b, a) ∈ L, we also define gba = Re(Y ft
ba) and bba = Im(Y ft

ba). For any (b, a) ∈ LR, we also
define gba = Re(Y tf

ab) and bba = Im(Y tf
ab). With these parameters, the power flow equations in

polar form reads, for all b ∈ B,∑
g∈Gb

Pg − P d
b = gbv

2
b +

∑
a:(b,a)∈L∪LR

vbva
(
gba cos(θb − θa) + bba sin(θb − θa)

)
(56)

∑
g∈Gb

Qg −Qd
b = −bbv2

b +
∑

a:(b,a)∈L∪LR

vbva
(
gba sin(θb − θa)− bba cos(θb − θa)

)
. (57)

176

APPENDICES

C. ACOPF: complements on the introduced conic relaxation

Strict dominance of Constraints (4.1)-(4.6) with respect to Constraints (†)-(‡)

In Section 4.2.2, Proposition 4.2 states that Constraints (4.1)-(4.6) dominate Constraints (†)-(‡).
The advantage of Constraints (4.1)-(4.6) is to enforce a coupling between the convex envelopes
of the quadruplets (Re(Wba), Im(Wba),Wbb,Waa) involving the same index b but different indices
a. In this Appendix, we present an illustrative example of two quadruplets (Re(Wba), Im(Wba),
Wbb,Waa) and (Re(Wbc), Im(Wbc),Wbb,Wcc) satisfying Constraints (†)-(‡) introduced in [57],
but for which there are no vectors L and R such that Constraints (4.1)-(4.6) are simultaneously
satisfied for (b, a) and (b, c). This illustrates the interest of using the trigonometric cuts (4.6)
with a variable radius Rba, whereas previous works, to our knowledge, only use cuts associated
to extreme values of Rba.
We consider any (b, a, c) ∈ B3 with the following realistic data:

• Voltage Magnitude Bounds: vb = va = vc = 0.9 and vb = va = vc = 1.1,
• Phase Angle Difference Bounds: θba = θbc = −θba = −θbc = arccos(0.99) ≃ 8.11◦.

As a consequence, we have vσb = vσa = vσc = 2 and ωba = ωbc = 0 and δba = δbc = arccos(0.99).
We consider the quadruplets

(Re(Wba), Im(Wba),Wbb,Waa) = (1.1, 0, 1, 1.21) (58)

(Re(Wbc), Im(Wbc),Wbb,Wcc) = (1.085, 0, 1, 1.21), (59)

noticing that Wbb has indeed the same value in both quadruplets. These quadruplets both
satisfy Equations (†)-(‡).

• First quadruplet: It satisfies (†), since

vσb v
σ
a (cos(ωba)Re(Wba) + sin(ωba)Im(Wba))− va cos(δba)vσaWbb − vb cos(δba)vσbWaa

= 2× 2× 1× 1.1 + 0− 1.1× 0.99× 2× 1− 1.1× 0.99× 2× 1.21 = −0.41338,

which is greater than

vbva cos(δba)(vbva − vbva) = 1.1× 1.1× 0.99× (0.9× 0.9− 1.1× 1.1) = −0.47916.

It satisfies (‡), since

vσb v
σ
a (cos(ωba)Re(Wba) + sin(ωba)Im(Wba))− va cos(δba)vσaWbb − vb cos(δba)vσbWaa

= 2× 2× 1× 1.1 + 0− 0.9× 0.99× 2× 1− 0.9× 0.99× 2× 1.21 = 0.46178,

is greater than

−vbva cos(δba)(vbva − vbva) = −0.9× 0.9× 0.99× (0.9× 0.9− 1.1× 1.1) = 0.32076.

177

APPENDICES

• Second quadruplet: It satisfies (†), since

vσb v
σ
c (cos(ωbc)Re(Wbc) + sin(ωbc)Im(Wbc))− vc cos(δbc)vσcWbb − vb cos(δbc)vσbWcc

= 2× 2× 1× 1.085 + 0− 1.1× 0.99× 2× 1− 1.1× 0.99× 2× 1.21 = −0.47338,

which is greater than

vbvc cos(δbc)(vbvc − vbvc) = 1.1× 1.1× 0.99× (0.9× 0.9− 1.1× 1.1) = −0.47916.

It satisfies (‡), since

vσb v
σ
c (cos(ωbc)Re(Wbc) + sin(ωbc)Im(Wbc))− vc cos(δbc)vσcWbb − vb cos(δbc)vσbWcc

= 2× 2× 1× 1.085 + 0− 0.9× 0.99× 2× 1− 0.9× 0.99× 2× 1.21 = 0.40178

is greater than

−vbvc cos(δbc)(vbvc − vbvc) = −0.9× 0.9× 0.99 : ×(0.9× 0.9− 1.1× 1.1) = 0.32076.

We assume now that there exists Lb ∈ [vb, vb], La ∈ [va, va], Lc ∈ [vc, vc], Rba ∈ [vbva, vbva],
Rbc ∈ [vbvc, vbvc] such that Constraints (4.1)-(4.6) are satisfied. Since Waa = v2

a, we deduce from
Constraint (4.4) that v2

a+vava = Raa+vava ≤ (va+va)La, i.e., that (va+va)va ≤ (va+va)La,
and, thus, va ≤ La since (va + va) > 0. As va ≥ La by definition of La, we observe that
La = va. We use then Rba ≤ vaLb + vbLa − vavb from Constraint (4.2) to deduce that
Rba ≤ vaLb. Constraint (4.5) gives |Wba| ≤ Rba, meaning that Lb ≥ |Wba|

va
= 1. As L2

b ≤Wbb = 1
according to Constraint (4.3), Lb = 1. As we did for a, we deduce from Waa = v2

a and
Constraint (4.4) that Lc = vc. We use Rbc ≤ vcLb + vbLc − vcvb from Constraint (4.2) to
state that Rbc ≤ vcLb, and we use Rbc ≥ vbLc + vcLb − vbvc to state that Rbc ≥ vcLb. Hence,
Rbc = vcLb = 1.1. As Constraint (4.6) imposes cos(ωbc)Re(Wbc)+sin(ωbc)Im(Wbc) ≥ Rbc cos(δbc),
we deduce that (ωbc)Re(Wbc) + sin(ωbc)Im(Wbc) ≥ 1.089. This is contradictory with the fact
that (ωbc)Re(Wbc) + sin(ωbc)Im(Wbc) = Re(Wbc) = 1.085. As a conclusion, there does not
exist Lb ∈ [vb, vb], La ∈ [va, va], Lc ∈ [vc, vc], Rba ∈ [vbva, vbva], Rbc ∈ [vbvc, vbvc] such that
Constraints (4.1)-(4.6) are satisfied for the pairs (b, a) and (b, c).

Nonlinear but convex objective and constraints in the relaxation (ACOPFC)

The decision vector in (ACOPFC) is x = (Re(S), Im(S),Re(W), Im(W), L,R) ∈ RΞ. First, we
denote by P ⊂ RΞ the polytope defined by the following box constraints:

• For all g ∈ G, Re(Sg) ∈ [Re(sg),Re(sg)] and Im(Sg) ∈ [Im(sg), Im(sg)],
• For all (b, a) ∈ E , Re(Wba) ∈ [0, vbva], Im(Wba) ∈ [−vbva, vbva] and Rba ∈ [vbva, vbva],
• For all b ∈ B, Lb ∈ [vb, vb].

178

APPENDICES

Now, we review the nonlinear terms in the objective and in the constraints of relaxation
(ACOPFC), as functions of x. We show that all these functions have the form ϕ(x) =
maxy∈Y y

⊤π(x) for all x ∈ P, with a given affine application π : RΞ 7→ Rp and a compact and
convex set Y ⊂ Rp.

• The objective function is ∑
g∈G

(
c0g + c1g Re(Sg) + ∑

g∈G2

c2g Re(Sg)2
)

, where G2 is the

set of generators g ∈ G such that c2g > 0. This function reads maxy∈Y y
⊤π(x) for all

x ∈ P with

– The compact and convex set Y = {1}×∏g∈G2{(z1,−z2) : z2
1 ≤ z2, z1 ∈ [Re(sg),Re(sg)]},

– The affine application π(x) =
(∑
g∈G

(c0g + c1gRe(Sg)), (2c2gRe(Sg), c2g)g∈G2

)
.

• Thermal limits for lines yield constraints with the form |y∗
1Wbb + y∗

2Wba| − Sba ≤ 0,
with (y1, y2) = (Y ff

ba, Y
ft
ba) if (b, a) ∈ L or (y1, y2) = (Y tt

ab , Y
tf
ab) if (b, a) ∈ LR. Introducing

(r1, h1, r2, h2) = (Re(y1), Im(y1),Re(y2), Im(y2)), this constraint is√
(r1Re(Wbb) + r2Re(Wba) + h2Im(Wba))2 + (−h1Re(Wbb) + r2Im(Wba) − h2Re(Wba))2 − Sba ≤ 0.

This is maxy∈Y y
⊤π(x) ≤ 0 with

– The compact and convex set Y = {(−1, z1, z2) ∈ R3 : z2
1 + z2

2 ≤ 1},
– The affine application π(x) = (Sba, r1Re(Wbb)+r2Re(Wba)+h2Im(Wba),−h1Re(Wbb)+
r2Im(Wba)− h2Re(Wba)).

• Constraint (4.3), i.e., L2
b − Rbb ≤ 0 for any b ∈ B, has the form maxy∈Y y

⊤π(x) ≤ 0,
with

– The compact and convex set Y = {(−1, z1,−z2) ∈ R2 : z2
1 ≤ z2 ∈ [vb, vb]},

– The affine application π(x) = (Rbb, 2Lb, 1).

• Constraint (4.5), i.e., |Wba|−Rba ≤ 0 for any (b, a) ∈ E , has the form maxy∈Y y
⊤π(x) ≤ 0

with

– The compact and convex set Y = {(−1, z1, z2) ∈ R3 : z2
1 + z2

2 ≤ 1},
– The affine application π(x) = (Rba,Re(Wba), Im(Wba)).

• The relaxation (ACOPFC) includes several SDP constraints A(x) ⪰ 0, where A is a
linear matrix operator. Such a constraint amounts to maxy∈Y y

⊤π(x) ≤ 0 with

– The compact and convex set Y = {M ∈ Hp : (Tr(M) = 1) ∧ (M ⪰ 0)},
– The linear application π(x) = −A(x),

and seeing p× p Hermitian matrices as real vectors of length 2p2.

179

APPENDICES

D. Other technical lemmatas

Lemma 0.7. We consider a compact set S ⊂ Rp, and the family of compact sets Sδ = {z ∈
Rp : d(z, S) ≤ δ} for any δ ≥ 0 and a continuous function ψ ∈ C(Rp). Then, the function
Ψ(δ) = minz∈Sδ

ψ(z) is continuous at 0.

Proof. First of all, we notice that the function δ 7→ minz∈Sδ
ψ(z) is well-defined, since ψ is

continuous and Sδ is compact. As Sδ1 ⊂ Sδ2 for any δ1 ≤ δ2, the function Ψ is non-increasing,
which proves that the following limit exists:

lim
δ→0+

Ψ(δ) = Ψ(0+) ≤ Ψ(0). (60)

We take a positive sequence (δk) ∈ RN
++ such that δk → 0. Hence, Ψ(δk)→ Ψ(0+) by definition

of the right-limit. For any k ∈ N, we define zk ∈ Sδk
such that ψ(zk) = Ψ(δk). The sequence

(δk) being bounded, we can introduce an upper bound δ̄. Hence, any element of the sequence
(zn) belongs to the compact set Sδ̄, and up to the extraction of a subsequence, converges
to a point z being such that ψ(z) = Ψ(0+) by continuity of ψ and uniqueness of the limit.
As d(zk, S), the distance between zk and the compact set S, is bounded above by δk and is
nonnegative, it converges to 0. By continuity of the distance, we know that d(z, S) = 0 and,
thus, Ψ(0+) = ψ(z) ≥ Ψ(0). Together with Eq. (60), this yields Ψ(0+) = Ψ(0).

Lemma 0.8. Let Q ∈ C1(Rp) be a continuously differentiable function, with a locally Lipschitz
gradient. Let Z ⊂ Rp be a compact set. Then, there exists a constant A ∈ R++, and a sequence
of polynomials (wd(x))d∈N∗ such that for all d ∈ N∗, wd ∈ Rd[x1, . . . , xp] and

sup
x∈Z
|wd(x)−Q(x)| ≤ A

d
(61)

sup
x∈Z
∥∇wd(x)−∇Q(x)∥≤ A

d
. (62)

We underline that the constant A implicitly depends on p, Q and Z, but not on the
polynomial wd(x), nor on its degree d.

Proof. We introduce a constant R ∈ R++ such that Z ⊂ B(0, R), and the function ω̃ =
ω ∗ 1B(0,R+1), where ω is the mollifier introduced in the proof of Theorem 3.3. We notice that
ω̃ ∈ C∞(Rp) is supported on Z̃ = B(0, R+ 2) and constant equal to 1 over B(0, R). We define
Q̃(x) = Q(x)ω̃(x), and we notice that (i) Q̃ is supported on the compact set Z̃, which contains
Z, (ii) for all x ∈ Z, Q̃(x) = Q(x) and ∇Q̃(x) = ∇Q(x). Applying [11, Th. 1] to the compactly
supported function Q̃, we know that there exists a constant C such that for any d ≥ 1, there

180

APPENDICES

exists a polynomial wd(x) of degree at most d such that

sup
x∈Z
|wd(x)− Q̃(x)| ≤ C

d
κ(1
d

) ≤ Cκ(1
d

), (63)

sup
x∈Z
|∂i(wd − Q̃)(x)| ≤ Cκ(1

d
) (64)

where κ(δ) = sup
1≤i≤p

sup
(x,x′)∈Rp×Rp

|x−x′|≤δ

|∂iQ̃(x)− ∂iQ̃(x′)|. We define Z̃ = {x ∈ Rp : d(x, Z) ≤ 1}. Since

∂Q̃ is uniformly null outside Z̃, and assuming that δ ≤ 1, we notice that

κ(δ) = sup
1≤i≤p

sup
x,x′∈Z̃×Rp

|x−x′|≤δ

|∂iQ̃(x)− ∂iQ̃(x′)| = sup
1≤i≤p

sup
x,x′∈Z̃×Z̃
|x−x′|≤δ

|∂iQ̃(x)− ∂iQ̃(x′)|.

We note that ∂iQ̃(x) = ω̃(x)∂iQ(x)+Q(x)∂iω̃(x), and therefore, |∂iQ̃(x)−∂iQ̃(x′)| = |ω̃(x)(∂iQ(x)−
∂iQ(x′)) + ∂iQ(x′)(ω̃(x)− ω̃(x′)) +Q(x)(∂iω̃(x)− ∂iω̃(x′)) + ∂iω̃(x′)(Q(x)−Q(x′))|. We use,
then, the triangle inequality and the facts that (i) ω̃ is C∞, therefore bounded, Lipschitz
continuous, and with a Lipschitz-continuous gradient over Z̃ and (ii) Q is continuously differen-
tiable, therefore bounded, and Lipschitz continuous over Z̃; by assumption it has a Lipschitz
continuous gradient over the compact set Z̃. We deduce that ∂iQ̃ is Lipschitz continuous over Z̃:
there exists Li > 0 such that sup

x,x′∈Z̃×Z̃
|x−x′|≤δ

|∂iQ̃(x) − ∂iQ̃(x′)| ≤ Liδ, for all δ ∈ [0, 1]. Defining

L = maxi Li, we deduce κ(δ) ≤ Lδ. Then Eq. (63) reads supx∈Z |wd(x) − Q̃(x)| ≤ CL
d ,

and Eq. (64) reads supx∈Z |∂i(wd − Q̃)(x)| ≤ CL
d for all i ∈ {1, . . . , p}. We also deduce

that supx∈Z∥∇wd(x) − ∇Q̃(x)∥≤ CLp
d . Defining A = CLp, and noticing that for all x ∈ Z,

Q̃(x) = Q(x) and ∇Q̃(x) = ∇Q(x), one obtains the claimed statement.

Lemma 0.9. Under Assumption 3.1 and Assumption 3.2, we consider an admissible trajectory
(x(·), u(·)) over [0, t1] of the minimal time control problem (3.2)-(3.5) starting from (0, x0).
Then, for almost all t ∈ [0, t1], f(t, x(t), u(t)) ∈ TX(x(t)).

Proof. We reduce to a time-invariant controlled system: we define, for any z = (t, x) ∈ Rn+1

and u ∈ Rm, f̃(z, u) =
(

1
f(z, u)

)
, and the constant set-valued map Ũ(z) = U . The control

system (f̃ , Ũ) is a Marchaud control system [8, Def. 6.1.3], since: (i) the graph of Ũ is closed (ii)
f̃ is continuous (iii) the velocity subsets {f̃(z, u) : u ∈ Ũ(z)} are convex due to Assumption 3.1,
and (iv) the function f has a linear growth since it is Lipschitz continuous, and the set-valued
map are bounded, thus also has a linear growth. We define the set C = R+ ×X and notice that

the control u(·) regulates a trajectory z(t) =
(

t

x(t)

)
that remains in C, therefore according

to [8, Th. 6.1.4], for all most all t ∈ [0, t1], u(t) ∈ {u ∈ Ũ(z(t)) : f̃(z(t), u(t)) ∈ TC(z(t))}. We
notice that TC(z(t)) ⊂ R× TX(x(t)), implying that f(z(t), u(t)) ∈ TX(x(t)).

181

APPENDICES

Lemma 0.10. For any locally Lipschitz continuous function F : Rp → R, and for any Lipschitz
continuous curve z : [0, T] → Rp, the function t 7→ F (z(t)) is differentiable a.e. and satisfies,
for almost all t ∈ [0, T],

min
g∈∂cF (z(t))

g⊤ż(t) ≤ d

dt
(F (z(t))) ≤ max

g∈∂cF (z(t))
g⊤ż(t). (65)

The particular functions F for which these three quantities are equal are called path-
differentiable in [34].

Proof. First, we notice that the functions t 7→ z(t) and t 7→ F (z(t)) are Lipschitz continuous,
therefore differentiable a.e. on [0, T] due to the Rademacher theorem [80]. Hence, for almost all
t ∈ [0, T], both t 7→ z(t) and t 7→ F (z(t)) are differentiable at t. We consider such a t, and we
show that (65) holds for this particular t, which will prove the Lemma. Since z is differentiable
at t, r(h) = z(t+ h)− z(t)− hż(t) is in oh→0(h). Since s 7→ F (z(s)) is differentiable at t, the
following holds

d

dt
(F (z(t))) = lim

h→0,h>0

F (z(t+ h))− F (z(t))
h

(66)

= lim
h→0,h>0

F (z(t) + hż(t) + r(h))− F (z(t))
h

(67)

Since r(h) = oh→0(h) and F is locally Lipschitz, we know that lim
h→0,h>0

F (z(t))−F (z(t)+r(h))
h = 0.

Summing this with Eq. (67), we deduce that

d

dt
(F (z(t))) = lim

h→0,h>0

F (z(t) + r(h) + hż(t))− F (z(t) + r(h))
h

(68)

≤ lim sup
z′→z(t)
h→0,h>0

F (z′ + hż(t))− F (z′)
h

= F ◦(z(t), ż(t)), (69)

where F ◦(z; v) = lim sup
z′→z

h→0,h>0

F (z′+hv)−F (z′)
h is the F ◦(z;h) Clarke’s directional derivative at z ∈ Rp

in the direction v ∈ Rp. The inequality follows from the fact that z(t)+r(h)→ z(t). By property
of the Clarke subdifferential [52], we also know that F ◦(z; v) = maxg∈∂cF (z) g

⊤v. Hence, in
particular,

d

dt
(F (z(t))) ≤ max

g∈∂cF (z(t))
g⊤ż(t). (70)

The reasoning that proved Eq. (70) is also applicable to −F , that is also locally Lipschitz, and
such that s 7→ (−F)(s) is differentiable at t. Therefore,

d

dt
(−F (z(t))) ≤ max

g∈∂c(−F)(z(t))
g⊤ż(t). (71)

182

APPENDICES

As ∂c(−F)(z(t)) = −∂cF (z(t)) by property of the Clarke subdifferential, we deduce that

− d

dt
(F (z(t))) ≤ max

g∈∂cF (z(t))
−g⊤ż(t) = − min

g∈∂cF (z(t))
g⊤ż(t), (72)

and therefore d
dt(F (z(t))) ≥ ming∈∂cF (z(t)) g

⊤ż(t).

183

Titre : Optimisation globale de programmes non linéaires semi-infinis : Applications aux réseaux électriques
et au contrôle de systèmes dynamiques

Mots clés : optimisation globale, programmation semi-infinie, programmation semi-définie, optimisation des
flux de puissance en courant alternatif.

Résumé : Cette thèse traite de la résolution exacte
de problèmes de programmation non linéaire semi-infinie.
Ces problèmes sont particulièrement difficiles en raison
du nombre infini de contraintes et de la potentielle non
convexité de la fonction objectif et des contraintes : calcu-
ler un optimum et certifier son optimalité globale constituent
un défi scientifique. Cette thèse apporte des contributions
théoriques et pratiques pour relever ce défi, et met l’accent
sur les applications à l’optimisation des réseaux électriques
et au contrôle des systèmes dynamiques.
La première partie est consacrée à la programmation
semi-infinie convexe. Tout d’abord, nous démontrons un
taux de convergence pour l’algorithme des plans coupants
lorsque la fonction objectif est fortement convexe et les
contraintes semi-infinies sont linéaires. Nous cherchons en-
suite à résoudre un inconvénient majeur de l’algorithme des
plans coupants : les points générés par l’algorithme ne sont
réalisables qu’asymptotiquement. En nous restreignant aux
programmes semi-infinis avec problème de séparation qua-
dratique, nous proposons un algorithme itératif d’approxi-
mation interne-externe générant une séquence de points
réalisables convergeant vers un optimum. Enfin, dans le
troisième chapitre de cette partie, nous appliquons l’optimi-
sation convexe semi-infinie à la résolution de problèmes de
contrôle temps-optimal.

La deuxième partie est dédiée à la résolution exacte de
problèmes d’optimisation non convexe finie et semi-infinie
liés à la répartition des flux de puissance dans un réseau
électrique. Premièrement, nous abordons le problème d’op-
timisation des flux de puissance en courant alternatif
(problème ACOPF), un problème avec un nombre fini de
contraintes quadratiques non convexes. Nous proposons
un algorithme d’optimisation globale fondé sur l’optimisa-
tion semi-définie positive et la programmation linéaire en va-
riables mixtes, qui obtient des performances à l’état de l’art
sur des instances ACOPF de référence. Deuxièmement,
nous traitons les difficultés numériques rencontrées par
les algorithmes de points intérieurs résolvant la relaxa-
tion semi-définie positive pour des cas de grande taille :
notre formulation duale sans contrainte permet d’obtenir
des bornes certifiées. Nous améliorons sensiblement la so-
lution duale calculée par l’algorithme de points intérieurs
en exécutant une méthode de faisceau structurée en post-
traitement. Dans le dernier chapitre, nous intégrons au
problème ACOPF des incertitudes liées aux consomma-
tions et aux productions intermittentes. Ce problème, for-
mulé en un programme semi-infini, est résolu avec garan-
ties de convergence par un algorithme de discrétisation
adaptatif fondé sur un échantillonnage des scénarios et une
méthode d’homotopie.

Title : Global optimization of nonlinear semi-infinite programming problems: Applications in power systems
and control.

Keywords : global optimization, semi-infinite programming, semidefinite programming, AC optimal power flow.

Abstract : This thesis deals with the computation of glo-
bal optima of nonlinear semi-infinite programming problems.
These problems are difficult because of the infinite number
of constraints and the potential nonconvexity of the objective
and the constraints: computing an optimum and certifying its
global optimality is a scientific challenge. This thesis makes
theoretical and practical contributions to address this chal-
lenge, focusing on applications to the optimization of elec-
trical grids and the control of dynamical systems.
The first part is devoted to convex semi-infinite program-
ming. First, we exhibit a convergence rate for the cutting-
plane algorithm, also called the adaptive discretization al-
gorithm, when the semi-infinite constraints are linear and
the objective function is strongly convex. Second, we ad-
dress a limitation of the cutting-plane algorithm: feasibility
is achieved only asymptotically. Focusing on semi-infinite
programs with a quadratic separation problem, we propose
an iterative inner-outer approximation algorithm that gene-
rates a globally convergent sequence of feasible points. The
third chapter consists of an original approach to minimal-
time control based on convex semi-infinite programming.
The second part deals with the global optimization of finite

and semi-infinite nonconvex optimization problems related
to the dispatch of electricity in a power system. First, we
tackle the standard AC optimal power flow problem, a qua-
dratically constrained quadratic programming problem with
a finite number of constraints. Our global optimization algo-
rithm, based on a strengthened semidefinite programming
relaxation and piecewise linear approximations, achieves
state-of-the-art performance on a reference benchmark. Se-
cond, we address the numerical issues raised by this se-
midefinite programming relaxation for instances at a larger
scale, using a novel dual formulation to obtain certified lo-
wer bounds. To improve the dual solution returned by an
interior-point method, we apply a structured bundle method
as a post-processing step. Our numerical experiments on
large-scale instances show that this significantly improves
the tightness of the dual bounds. In the last chapter, we
integrate some uncertainties regarding loads and fluctua-
ting generation sources into the AC power flow model. We
solve the resulting semi-infinite programming problem with
an adaptive discretization algorithm based on a determi-
nistic sampling and a homotopy method, with convergence
guarantees.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	A. Introduction to semi-infinite programming
	B. Introduction to AC power flow optimization
	C. Thesis structure and summary of results
	D. Publications

	Contributions to convex semi-infinite programming and applications
	A convergence rate for the cutting-plane algorithm
	The Lagrangian dual of the convex semi-infinite program
	The cutting-plane algorithm and its dual interpretation
	Convergence rate for the cutting-plane algorithm
	Conclusion

	Inner-outer approximation algorithm for a class of convex semi-infinite programs
	Semidefinite relaxation of the lower-level problem
	Finite restriction of the semi-infinite program
	Inner-outer approximation algorithm
	Applications and numerical experiments
	Conclusion

	Minimal time nonlinear control via convex semi-infinite programming
	Problem statement and LP formulations
	Convex semi-infinite programming to compute near-optimal HJB subsolutions
	Feedback control based on approximate value functions
	Illustrative examples
	Conclusion

	Global optimization of finite and semi-infinite power flow problems
	Conic programming and MILP scheme for global optimization of AC power flows
	Extended-variables formulation for the ACOPF problem
	Strengthened conic programming relaxation
	A MILP-based scheme for global optimization
	Numerical experiments
	Conclusion

	Certified and accurate spectral bounds for the ACOPF problem
	ACOPF, semidefinite relaxation and dual problem
	Unconstrained spectral formulation for the dual problem
	Nonsmooth optimization algorithm
	Numerical experiments
	Conclusion

	Adjustable robust nonlinear optimization via semi-infinite programming and homotopy continuation
	Semi-infinite programming reformulation and computational challenges
	Discretization algorithm based on homotopy continuation and sampling
	Application to the adjustable robust ACOPF problem
	Conclusion

	Conclusion and perspectives
	Bibliography
	Appendices
	A. Convergence proof of the adaptive discretization algorithm
	B. ACOPF: from the physics to the optimization problem
	C. ACOPF: complements on the conic relaxation
	D. Other technical lemmatas

