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Résumé : La ligne de lumière
NANOSCOPIUM au synchrotron SOLEIL
est dédiée à l’imagerie X-dur (5-20 keV)
multi-modale et multi-échelle par balayage
rapide et à haute résolution spatiale. Depuis
son ouverture en septembre 2018, la ligne
a accueilli un grand nombre d’utilisateurs
dans des domaines variés tels que la
médecine, la biologie, la science de la terre
et de l’environnement, ainsi que la science
des matériaux.

L’imagerie non invasive en 2D est
régulièrement proposée aux utilisateurs,
offrant une grande sensibilité analytique et
la possibilité de sonder en profondeur les
échantillons. L’imagerie multi-technique
par balayage rapide permet d’obtenir des
informations simultanées de fluorescence X,
de contraste d’absorption, de phase et de
diffusé à une résolution spatiale allant de
50 nm à 1 μm. La micro-tomographie X plein
champ rapide a également été intégrée pour
fournir des informations morphologiques en
3D avec une résolution d’environ 1 μm3.

Pour aller plus loin dans l’imagerie
3D quantitative de systèmes complexes,
un aspect majeur de cette thèse est de
développer une nouvelle modalité basée
sur la tomographie par fluorescence
X par balayage. Cette technique
permettra d’obtenir de manière non-
invasive des informations quantitatives sur
la distribution élémentaire 3D dans des
objets de quelques centaines de micromètres
d’épaisseur avec une haute résolution
spatiale.

Ces développements méthodologiques
sont appliqués à l’étude de l’urolithiase

dans le cadre de la collaboration entre
NANOSCOPIUM, l’APHP (Assistance
publique-Hôpitaux de Paris) et l’ICP
(Institut de Chimie Physique). L’urolithiase
est une pathologie croissante affectant
près de 10 % de la population. Une
grande proportion de ces calculs se
développe sur une calcification spécifique
composée de phosphate de calcium qui se
forme dans les papilles rénales, appelées
Randall’s plaque (RP). On sait peu de
choses sur les mécanismes impliqués
dans la formation des RP, mais des
observations récentes suggèrent que
plusieurs mécanismes pourraient être
impliqués dans la pathogenèse de ces
plaques. Des études récentes à l’échelle
mésoscopique ont montré le possible lien
entre des éléments traces tels que le zinc
et la formation de ce minéral, suggérant
que les dépôts calcifiés sont un processus
pathologique impliquant une réaction
tissulaire.

Afin de clarifier le rôle du zinc et
d’approfondir notre compréhension de
ce mécanisme, une étude en 3D avec
une résolution de quelques centaines
de nanomètres sur la variation de la
concentration en zinc est cruciale pour
comprendre les variations de la composition
chimique dès les premiers stades de
la calcification des RP. La tomographie
XRF quantitative rapide développée
est une technique non invasive unique
qui permettra, pour la première fois,
d’investiguer un nombre statistiquement
significatif d’échantillons et d’approfondir
notre compréhension des relations entre
les processus physico-chimiques et la
pathologie.



Title : Methodological development and implementation of fast quantitative hard X-ray
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Abstract : The NANOSCOPIUM beamline
at the SOLEIL synchrotron is dedicated to
high-energy X-ray (5-20 keV) multi-modal
and multi-scale nano-imaging using fast and
high spatial resolution scanning techniques.
Since its opening in September 2018, the
beamline has welcomed a large number
of users from various fields, including
medicine, biology, earth and environmental
science, and materials science.

One of the key features of this beamline
is its capability for non-invasive 2D imaging,
which provides high analytical sensitivity
and enables the depth probing of samples.
Moreover, the beamline offers fast multi-
technique scanning imaging, allowing for
the simultaneous acquisition of X-ray
fluorescence, absorption-, phase-, and dark-
field contrast images. These images can be
obtained with spatial resolutions ranging
from 50 nm to 1 μm.

Recently, the beamline has integrated
rapid full-field micro-tomography, offering
3D morphological information with
resolutions of about 1 μm3. To further
extend its 3D quantitative imaging
capabilities for complex systems, a major
aspect of this thesis is to develop a new
technique for scanning X-ray fluorescence
tomography. This non-invasive method
will enable quantitative information on 3D
elemental distribution in samples of a few
hundred microns in thickness with high
spatial resolution down to a few hundred
nanometers. As an application of the

developed method, we focus on the study
of urolithiasis in the framework of the
collaboration between NANOSCOPIUM,
APHP (Assistance publique-Hôpitaux de
Paris), and the ICP (Institut de Chimie
Physique). The urolithiasis is an increasing
pathology affecting almost 10 % of the
population. A great proportion of these
stones develop on a specific calcification
made of calcium phosphate which grows
in renal papillae, named Randall’s plaques
(RP). Little is known about the mechanisms
involved in RP formation but recent
observations support the idea that several
mechanisms may be involved in the
pathogenesis of these plaques. Recent
studies in the mesoscale have shown
the possible relationship between trace
elements such the Zinc and the formation
of this mineral suggesting that calcified
deposits are a pathological process involving
a tissue reaction. In order to clarify
the role of Zn and go further in the
understanding of this mechanism, a few-
hundred-nanometer resolution 3D study of
the Zn concentration variation is crucial
in the function of chemical composition
variation from the early stage of the
calcification of the RP. The developed fast
quantitative XRF tomography is a unique
non-invasive technique, which, for the first
time, will permit the investigation of a
statistically significant number of samples
and provide a deeper understanding of
the physico-chemical processes-pathology
relationships.
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RÉSUMÉ DÉTAILLÉ

Les progrès dans les techniques analytiques constituent depuis longtemps un

objectif majeur au sein de la communauté scientifique. À mesure que les défis

scientifiques deviennent plus complexes, il est de plus en plus crucial de disposer

de méthodes d’imagerie 3D par balayage rapides, efficaces et quantitatives à haute

résolution. Parmi ces méthodes, la technique de tomographie par fluorescence X

offre des perspectives sur la distribution tridimensionnelle des éléments dans les

échantillons. Sa grande profondeur de pénétration et sa sensibilité analytique

élevée la rendent particulièrement adaptée à l’étude de systèmes complexes et

hétérogènes.

La ligne de lumière NANOSCOPIUM du synchrotron SOLEIL (Somogyi et al.,

2015) est dédiée à l’imagerie X-dur (5-20 keV) multi-modale et multi-échelle par

balayage rapide et à haute résolution spatiale. La ligne propose des techniques

d’imagerie 2D/3D par nano-sonde à rayons X à la pointe de l’innovation. Depuis

son ouverture à la communauté scientifique, en septembre 2018, la ligne a

accueilli un très grand nombre d’utilisateurs qui ont pu réaliser des expériences

dans des domaines extrêmement variés couvrant la médecine, la biologie, la

science de la terre et de l’environnement et plus récemment la science des

matériaux.

La demande croissante pour une exploration quantitative et multi-échelle de la

composition chimique et de la morphologie de systèmes complexes est observée dans

ces divers domaines de recherche. L’imagerie non invasive en 2D est régulièrement

proposée à la communauté des utilisateurs de NANOSCOPIUM, offrant une grande

sensibilité analytique et la possibilité de sonder en profondeur un échantillon. Grâce

à une fonctionnalité unique de zoom, elle permet également d’imager des régions

d’intérêt de taille millimétrique avec une résolution micrométrique, pour ensuite

les analyser à l’échelle déca-nanométrique.

Le développement de l’imagerie multi-technique par balayage rapide sur la

ligne (Medjoubi et al., 2013) permet l’obtention simultanée de techniques

d’analyses complémentaires telles que la fluorescence X, le contraste d’absorption,

de phase et de diffusion, couvrant une plage de résolution spatiale de 50 nm à 1 μm.
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D’autre part, l’imagerie par diffraction cohérente et par balayage

(Ptychographie) (Medjoubi et al., 2018), également accessible aux utilisateurs,

fournit des informations morphologiques avec une plus grande finesse, i.e. avec

une résolution spatiale de 30 nm. A cet éventail de modalité d’imagerie 2D, la

micro-tomographie X plein champ rapide (1 minute 30 par tomographie) a été

récemment intégrée et permet d’ajouter des informations morphologiques en 3D

avec une résolution de l’ordre de 1 μm3.

Pour faciliter la manipulation complète des expériences sur NANOSCOPIUM,

des outils de séquencement et de traitement simples et rapides ont été développés

et déployés sur la ligne (Bergamaschi, 2017). En combinant l’ensemble de ces

informations, il est possible d’obtenir une distribution élémentaire 2D

semi-quantitative au sein de systèmes très hétérogènes.

Cependant, les méthodes d’imagerie 2D détaillées ci-dessus fournissent des

informations sur les compositions chimiques/morphologiques intégrées le long de

la trajectoire du faisceau de rayons X à travers une épaisseur d’échantillon de

l’ordre de quelques dizaines ou centaines de micromètres. Pour des échantillons

dont la structure et la composition interne sont complexe et hétérogène, cela

représente une limitation réelle pour réaliser une interprétation et une

quantification dépourvue de toute ambiguïté. Afin de résoudre cette

problématique, il est nécessaire d’aller méthodologiquement et techniquement

plus loin en exploitant pleinement le fort potentiel des nano-sondes à rayons X

durs. Dans le cadre de cette thèse, notre objectif est donc d’étendre les méthodes

d’imagerie 2D déjà établies vers une nouvelle génération d’imagerie 3D basée sur

la technique de tomographie par fuorescence X par balayage. L’objectif est

d’obtenir de manière non-invasive des informations quantitatives sur la

distribution élémentaire 3D au sein d’objets de quelques centaines de micromètres

d’épaisseur avec une sensibilité analytique élevée.

Cependant, la mise en application de cette modalité de tomographie par

fluorescence X, bien que puissante et très fortement demandée par une vaste

communauté d’utilisateurs du synchrotron, est limitée par les longues durées

d’acquisition (généralement plus de 10 heures par tomographie) notamment

imposées par le flux de photons accessibles, par la complexité du séquencement

des acquisitions et par la disponibilité de ressources informatiques permettant la

réalisation de calculs intensifs sur des grands volumes de données. Cela explique
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pourquoi seules quelques lignes de lumière à travers le monde offrent aux

utilisateurs la possibilité de réaliser, de manière occasionnelle, des mesures de

tomographie par fluorescence X.

Des expériences récentes de preuve de principe, menées par l’équipe de

NANOSCOPIUM, ont démontré la faisabilité de la micro-tomographie

semi-quantitative par fluorescence X sur la ligne.

La prochaine étape consiste à réaliser les développements méthodologiques et

instrumentaux nécessaires. D’une part, la résolution spatiale 3D est étendue vers

la gamme de quelques centaines de nanomètres. D’autre part, l’acquisition et la

reconstruction tomographique sont accélérées. Enfin, et surtout, des analyses

quantitatives de l’abondance élémentaire en 3D sont fournies.

Dans le cadre d’une collaboration entre NANOSCOPIUM et une équipe

médicale, ces méthodes innovantes est appliquées pour l’étude du rôle des métaux

dans les calcifications pathologiques. A la suite de ce travail de thèse, cette

nouvelle modalité d’imagerie quantitative pourra être appliquée à un large

éventail d’applications scientifiques réalisées sur la ligne. L’ensemble des études

qui pourra être mené contribuera à renforcer notre compréhension de l’interaction

entre différents processus et phénomènes intervenant dans des systèmes

complexes depuis l’échelle méso vers l’échelle nano et cela pour beaucoup de

domaines de la science. Les retombées de ce travail de thèse sont donc

extrêmement riches et importantes.

Les travaux couvrent la théorie de l’interaction rayons X–matière, la

conception d’expériences sur ligne synchrotron, l’acquisition et l’analyse de

données liées à la tomographie par fluorescence X quantitative et par balayage

rapide. Des algorithms adaptés pour la reconstruction tomographique clairsemée

(sparse tomography), c’est-à-dire basée sur un très faible nombre de projections,

sont implementés et évalués. Ce sont des méthodes prometteuses, non encore

implémentées pour la tomographie par fluorescence X, qui participent également à

accélérer les séquences d’acquisition. Plusieurs techniques de reconstruction

numérique sont donc étudiées, telles que des algorithmes itératifs (statistiques et

algébriques) dans l’espace réel ou dans l’espace de Fourier. Une méthode est

développée afin d’évaluer chaque technique et de sélectionner la mieux adaptée à

la tomographie clairsemée par fluorescence X et à son application en sciences

médicales.
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Le développement méthodologique permettant de fournir des concentrations

élémentaires précises en 3D avec une résolution spatiale de quelques centaines de

nanomètres constitue l’une des parties majeures de cette thèse. Les méthodes

développées sont appliquées, lors d’expériences sur la ligne, à l’étude de

l’urolithiase dans le cadre de la collaboration menée entre NANOSCOPIUM,

APHP (Assistance publique-Hôpitaux de Paris) et ICP (Institut de Chimie

Physique).

L’urolithiase, maladie qui se caractérise par la formation de calculs dans les

voies urinaires, est une pathologie croissante qui affecte près de 10 % de la

population. Une grande proportion de ces calculs se développe sur une calcification

spécifique à base de phosphate de calcium qui pousse dans les papilles rénales,

dénommées plaques de Randall (RP). On en sait peu sur les mécanismes impliqués

dans la formation de ces RP, mais des observations récentes soutiennent l’idée que

plusieurs mécanismes peuvent être impliqués dans la pathogenèse de ces plaques.

Des études récentes à l’échelle méso ont montrées la relation possible entre

des éléments de trace de type métallique tels que le zinc et la formation de ce

minéral, suggérant que les dépôts calcifiés sont un processus pathologique

impliquant une réaction tissulaire (Carpentier et al., 2011). Afin de clarifier le rôle

du Zn et d’aller plus loin dans la compréhension de ce mécanisme, une étude

permettant de suivre en 3D l’évolution de la concentration du Zn dans un

environnement structural et chimique connu, et cela depuis le début de la

calcification des RP, est donc cruciale. La tomographie quantitative par

fluorescence X développée est une technique unique et non invasive qui permet

d’étudier un nombre, statistiquement significatif, d’échantillons et fournira une

compréhension plus profonde des relations entre les processus physico-chimiques

et la pathologie.

Ce manuscrit se structure en 6 chapitres:

∗ Le Chapitre 1 introduit le contexte de la recherche doctorale, offrant un bref

aperçu des calcifications pathologiques et des méthodes analytiques

actuelles pour explorer les problématiques liées aux calculs rénaux. De

plus, les techniques d’imagerie par rayons X y seront présentées.
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∗ Le Chapitre 2 propose une description approfondie des interactions de la

matière avec les rayons X. Ce chapitre inclut également l’instrumentation

et la méthodologie des techniques analytiques à la ligne de lumière

NANOSCOPIUM du synchrotron SOLEIL, où les expériences ont été

menées.

∗ Le Chapitre 3 se concentre sur la reconstruction d’images en tomographie,

abordant les algorithmes de reconstruction et les artefacts présents dans le

tomogramme.

∗ Le Chapitre 4 traite des développements méthodologiques et de la mise en

œuvre du flux de travail. Les graines d’Arabidopsis thaliana ont été utilisées

pour illustrer la performance du flux de travail.

∗ Le Chapitre 5 explore l’application du flux de travail développé dans les

calcifications pathologiques. Ce chapitre présente une étude de cas sur la

papille rénale à l’aide du flux de travail d’imagerie/tomographie

parfluorescence X développé et déployé à la ligne de lumière

NANOSCOPIUM.

∗ Le Chapitre 6 conclut le manuscrit. Il résume le travail de doctorat et

esquisse les perspectives de recherche future.
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INTRODUCTION

Advancements in analytical techniques have been a long-standing objective
within the scientific community. As scientific problems become more challenging,
there is a growing need for fast, efficient, and quantitative high-resolution 3D
scanning imaging methods. Among these, the scanning hard X-ray fluorescence
tomography technique provides unique insights into the 3D elemental distribution
of samples. Its large penetration depth and high analytical sensitivity make it
especially suitable for investigating heterogeneous complex systems. However, the
lengthy acquisition time it requires hinders its comprehensive utilization.

The NANOSCOPIUM beamline at SOLEIL synchrotron, dedicated to 2D/3D
multimodal and multi-length scale hard X-ray imaging, aims to align with the
evolving scientific needs and extend its imaging capabilities to scanning X-ray
fluorescence tomography. However, deploying this imaging modality presents
certain challenges. Apart from the mentioned long acquisition time, the
resource-intensive computations for data reconstruction complicate its
implementation.

This thesis focuses on methodological improvements adapted for X-ray
fluorescence tomography. The objective is to tackle these challenges and ensure its
successful implementation at the beamline. A pivotal part of this strategy is
optimizing the methodology to utilize a reduced projection dataset for
reconstruction, while preserving the quality of the reconstructed tomograms.

Furthermore, the application of the XRF tomography technique is directed
toward the pathogenesis of kidney stones, with a special focus on investigating the
Randall’s plaque located at the tip of the renal papilla. Through the implemented
XRF tomography technique, this work aims to provide a detailed 3D quantitative
elemental distribution within samples with high resolution, enhancing our
knowledge of the roles trace elements have in the development of pathological
calcifications.

The thesis is organized into 6 chapters:

∗ In Chapter 1, I will introduce the context of the PhD research, including a
brief overview of pathological calcifications and current analytical methods
for studying the questions associated with kidney stones. In addition, X-ray
imaging techniques will be introduced.

∗ Chapter 2 gives a detailed description of X-ray matter interactions. This
chapter also includes the instrumentation and methodology of analytical
techniques at the NANOSCOPIUM beamline of the SOLEIL synchrotron,
where I carried out the experiments.

∗ Chapter 3 focuses on tomography image reconstruction, including
reconstruction algorithms and artifacts present in the tomogram.
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∗ Chapter 4 discusses the methodological developments and implementation
of the workflow. Arabidopsis thaliana seeds were used to demonstrate the
performance of the workflow.

∗ Chapter 5 explores the application of the developed workflow in
pathological calcifications. This chapter presents a case study on renal
papilla with the developed and implemented XRF imaging/tomography
workflow at the NANOSCOPIUM beamline.

∗ Chapter 6 concludes the thesis. It summarizes the PhD work and presents
an outlook for future research.
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CHAPTER 1

CONTEXT

1.1. Brief overview of pathological calcifications

In healthy individuals, mineral formation is limited to primarily skeletal
components. These compounds, known as physiological calcification, are strictly
controlled during growth and development. The formation of minerals is
encouraged in desirable locations, while it is inhibited in soft tissues and other
unwanted areas (Bazin et al., 2016; Tsolaki and Bertazzo, 2019; Vidavsky et al.,
2021). While physiological calcifications’ mechanisms have been extensively
studied, the biochemical processes underlying pathological calcifications remain
less understood (Bazin et al., 2012; Bazin and Daudon, 2012; Mulay and Anders,
2016).

Pathological calcifications refer to abnormal mineral deposits found in tissues
or organs in medical terms (Bazin et al., 2012; Bazin and Daudon, 2012; Bazin
et al., 2022a). There are three predominant types of pathological calcifications (see
Figure 1.1). The first type involves hard, solid masses that are present inside a
cavity or duct and can be found in organs such as the kidneys, pancreas, biliary,
and salivary. The second comprises ectopic calcifications in soft tissues, which can
be indicative of diseases like breast, thyroid, testicular, or prostate cancer. Lastly,
the third type includes physiological calcifications that may transform into
pathological forms due to illness or changes in physiological systems, as seen in
conditions like osteoporosis impacting bone tissue (Bazin et al., 2012, 2014).

Physiological 
calcification

Pathological calcification

Bones

Teeth PancreasKidney

1st type: Inside a cavity or duct

Osteoporosis 

3rd type: Transform from 
physiological calcification

ProstateBlood vessel

2nd type: In tissues

Breast

Figure 1.1: Physiological and pathological calcifications in the human body.
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Consequently, a range of diseases, including infections, cancers, genetic and
environmental disorders, are associated with pathological calcifications. The
rising prevalence of conditions like obesity and diabetes, combined with lifestyle
changes such as dietary habits, further complicates the understanding of
pathological calcifications. As a result, traditional characterization methods like
staining often prove insufficient (Bazin et al., 2022a,b,c).

The following sections outline the physicochemical properties of kidney stones
and various analytical methods employed in the studies. In Chapter 5, we will focus
on the 2D and 3D scanning X-ray fluorescence imaging and tomography of ectopic
calcifications present in the kidney, specifically those which are related to Randall’s
plaque (Randall, 1936; Perre et al., 2022).

1.2. Kidney stones introduction

Nephrolithiasis, commonly known as kidney stones (KS), is a notable example
of pathological calcification, commonly found in the renal calyces and pelvis either
freely or attached to the renal papillae (Khan et al., 2016). It has risen as a
significant global health concern, affecting more than 10 % of the world’s
population nowadays and this percentage appears to be increasing (Sorokin et al.,
2017). The public healthcare costs associated with kidney stones have also risen,
with the United States alone spending more than $ 2 billion (in 2000) to
$ 10 billion (in 2006) annually to address this condition (Litwin and Saigal, 2007).

Initially asymptomatic, kidney stones can progress into a painful and critical
medical condition. They are formed by the accumulation of tiny mineral crystals
within the kidneys.

1.2.1. Kidney stone types and causes
The approach of analyzing the composition of urinary calculi dates back to the

late 18th century. Following the pioneering work of M. Daudon (Daudon et al., 1993,
2016), it is widely recognized that kidney stones can be categorized based on their
morphology and their chemical composition, associating them with specific diseases.
Around 80 % of stones are composed of calcium oxalate (CaOx) or calcium phosphate
(CaP). The remaining stone types include struvite (10 %), uric acid (9 %), and cystine
(1 %) stones.

The stone types are named based on their predominant compositions. Among
these stone types, calcium oxalates are the most prevalent. They usually come in
two chemical forms: calcium oxalate monohydrate (known as whewellite, with
chemical formula CaC2O4·H2O, see Figure 1.2 for a representative view of
subtypes of calcium oxalate monohydrate stones) and calcium oxalate dihydrate
(referred to as weddellite, with chemical formula CaC2O4·2H2O). It is important to
note that whewellite stones are related to hyperoxaluria while weddellite stones
are related to hypercalciuria (Daudon et al., 1993; Bazin et al., 2022c). Calcium
phosphates are primarily present as apatite, brushite, and whitlockite (Daudon
et al., 2010).
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Figure 1.2: Varieties of calcium oxalate monohydrate (considered as Type I) stones.
(A) Type Ia stone featuring a papillary umbilication, with a gray veil on the surface
indicating recent crystalline deposits and thus stone activity. (B) Cross-section
of a Type Ia stone, revealing its concentric and radial internal organization. (C)
Type Ia stone showing a remnant of Randall’s plaque (visible as a whitish deposit
in the umbilication). (D) Type Id stones characterized by a smoothed appearance,
resulting from stasis and chronic contact with other stones. (E) Type Ic stone
exhibiting a whitish and budding structure, commonly found in cases of primary
hyperoxaluria. (F) Type Ie stone, often associated with enteric hyperoxaluria.
Adapted from (Letavernier et al., 2022).

Struvite stones are also called infection stones (Gettman and Segura, 1999;
Daudon et al., 2022). They are composed of magnesium ammonium phosphate and
are typically formed due to the increased production of ammonia secondary to
infection with urease-producing organisms, such as Proteus or Klebsiella. The
subsequent elevated urinary pH leads to the formation of struvite stones. Struvite
crystals, along with associated carbonate apatite crystals, have the potential to
rapidly grow into large stones known as staghorn calculi, a name reflecting their
horn-like projections (Figure 1.3).

Figure 1.3: Complex stone sample consists of carbonated apatite mixed with other
calcium phosphates or struvite. Struvite stones in general have a heterogeneous,
and rough textured surface, and they can vary in color from clear to dark brown
(Letavernier et al., 2022).
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Uric acid stone formation is closely linked to decreased urinary uric acid levels,
low urine pH, and limited urine volume (Daudon et al., 2005). Metabolic disorders
such as diabetes and obesity contribute to the formation of uric acid stones. Diets
rich in animal proteins also elevate the uric acid load and precipitation. Moreover,
uric acid stone formation is associated with gout and chronic diarrhea (Ma et al.,
2018).

Uric acid stones often have a compact yellow-orange appearance similar to
pebbles (see Figure 1.4-A). When examined internally, they reveal the presence of
orange concentric rings (see Figure 1.4-B). Occasionally, these stones may also
feature a compact outer layer that encloses a porous and friable interior
(Figure 1.4-C & D) (Khan et al., 2016; Letavernier et al., 2022).

Figure 1.4: Stones that are made of uric acid or urates. The stone in A has a pebble-
like appearance with an orange surface. B: In most cases, the uric acid stone’s
internal structure shows concentric rings. Some stones have a friable (C) and porous
(D) interior structure (Letavernier et al., 2022).

Cystine stones are usually found in children and adolescents (Thakore and
Liang, 2023). They occur due to congenital diseases that cause mutations in two
genes, SLC3A1 and SLC7A9. These mutations lead to defects in the transport of
certain amino acids, including cystine. Cystine stones have a compact,
amber-colored appearance with a mild opacity (see Figure 1.5).
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B

A

Figure 1.5: A cystine stone sample with a yellowish color, rough surface texture
(A) featuring hexagonal crystallites, and a disorganized internal structure (B)
(Letavernier et al., 2022).

1.2.2. Kidney stones formation
Kidney stone formation is a complex physicochemical process that remains

incompletely understood despite centuries of research efforts. It involves a balance
between factors that either promote or inhibit crystallization and aggregation
within the urinary environment. While the specific details of these processes may
vary among different types of kidney stones, the fundamental principles of
nucleation and crystal growth remain the same.

According to the widely accepted theory (Aggarwal et al., 2013), the formation
of kidney stones begins with the precipitation of calcium salts from a supersaturated
urine solution, a step known as nucleation, resulting in the formation of crystals.
These crystals then grow and aggregate, eventually forming a crystal nidus. When
this aggregate of crystals attaches to the tubular epithelium and becomes exposed
to urine due to epithelial sloughing, it undergoes further epitaxial growth. This
process leads to the formation of a detectable renal stone.

Nucleation is the initial stage in crystallization where free ions in solution
associate to form microscopic particles and start the process of stone development.
Primary nucleation can be differentiated based on its origin. Homogeneous
nucleation happens within the solution when the urine becomes supersaturated
with respect to the tiny crystals that compose the stones, while heterogeneous
nucleation is initiated by the influence of external particles, when seed crystals or
certain macromolecules provide the foundation for nucleation, supporting crystal
growth and facilitating the formation of kidney stones (Bazin et al., 2012; Khan
et al., 2016; Rouzière et al., 2016).

In addition, considering that calcium phosphate is a frequently occurring
crystal in human urine and is a commonly found crystal in stones (Khan et al.,
2016), especially mixed calcium oxalate/calcium phosphate stones, it is suggested
that calcium phosphate can induce the nucleation of calcium oxalate crystals
(Daudon et al., 2015). This will be discussed in detail in Section 1.2.4.
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1.2.3. Trace elements in kidney stones
Over the past decades, significant research efforts have been dedicated to the

identification of calculi constituents that could be measured and possibly altered
to mitigate stone formation. These include matrix proteins, organic acids, and
polysaccharides (Fleisch, 1978; Grover et al., 1992; Bazin et al., 2007;
Vasinova Galiova et al., 2015; Letavernier et al., 2022). The chemical diversity
present in stones underscores the complex mechanisms that contribute to the
formation of stones.

A comprehensive explanation for the origins of urolithiasis and a plan of
effective preventive strategies are still elusive. In fact, a profound investigation of
kidney stone elemental composition has great significance due to the potential
relationships between the elements present within stones and the roles they play
in stone formation. Nonetheless, only a few amounts of research have been
documented to study the contents of elements (Ramaswamy et al., 2015), and their
impact on the formation of kidney stones remains uncertain and under debate.

Studies show that trace elements can combine with phosphate and oxalate
ions to create poorly soluble salts, indicating that they may play a distinct role in
the formation of kidney stones (Singh and Rai, 2014). Among the possible
hypotheses, one suggestion is that specific trace elements function as catalysts.
Several research highlights the potential influence of elements such as Mg (Oka
et al., 1987), Al (Sutor, 1969), Mo (Deosthale and Gopalan, 1974) or Fe citrate
complexes (Muñoz and Valiente, 2005) acting as either promotors or inhibitors of
the crystallization.
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Figure 1.6: Comparison of element content in calcium-based stones from various
published studies (unit: mg/g stone) (Ramaswamy et al., 2015).
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Several published studies have explored the elemental composition of common
calcium-based kidney stones. Concentrations of both major and trace elements are
illustrated in Figure 1.6 (Ramaswamy et al., 2015). As depicted in the figure, there is
a large variation in element content in calcium-based stones from various published
studies, especially for elements like Fe, Pb, Cu, Mn, Co, and Cd, which span varying
ranges. This variability could arise from differences in sample biological variations,
or variations in the analytical techniques used.

Considering a previous study dedicated to kidney stones analysis by
synchrotron-based X-ray fluorescence technique (Bazin et al., 2007) and the
experimental conditions (i.e. only photons with energy higher than 3 keV were
detectable), the authors have classified the different elements found in the kidney
stone specimen as follows: first, the major element involved in the crystalline
mineral phases, i.e. Ca, then trace elements such as Sr (Sr is in the same column
of the periodic table as Ca), a group of transition elements including Fe, Cu, and
also Zn. And lastly certain pathological elements such as Pb. Most of the Fe
present in KS probably results from residual blood at the surface or within layers
of the stones.

1.2.4. Some pathogenesis mechanisms
There are two pathways for stone formation. As shown in Figure 1.7, one

involves calcium phosphate deposits creating renal interstitial plaques exposed to
urine, leading to the erosion of the overlying urothelium. The other pathway,
which is less common, results in the deposition of plugs in the collecting ducts.
The formation of CaOx stones requires a complex interaction involving nucleation
processes for both CaP and CaOx, followed by subsequent aggregation and growth
(see Figure 1.8).

In both scenarios, calcium phosphate plays a crucial role in initiating a
heterogeneous nucleation process for calcium oxalate crystals, leading to kidney
stone formation (see Figure 1.7). Over the past two decades, observations of these
deposits have provided validation for these two models (Evan et al., 2003; Matlaga
et al., 2006; Linnes et al., 2013). While they can cover most of the hypothetical
stone formation scenarios, no single model can fully explain the observed evidence
across all stone formers, likely due to multiple contributing factors involved in the
process (Khan et al., 2016).

Randall’s plaque formation is a multistep physiochemical process. As the first
step urine becomes supersaturated with respect to CaP within the renal tubules
located at the end of the loop of Henle. This triggers the deposition of CaP in the
basement membrane of the thin descending loop of Henle, representing the
initiation of plaque formation.

Subsequently, collagen fibers and membranous vesicles get calcified as well. As
the mineralization front progresses, it reaches the renal papillary surface, where a
subepithelial plaque takes shape. Meanwhile, the epithelium covering the papillary
surface is disrupted, exposing the CaP crystals to the pelvic urine, which typically
maintains a metastable condition in relation to CaOx. Urinary macromolecules are
deposited onto the exposed CaP crystals. This facilitates the subsequent deposition
of CaOx crystals onto the CaP base.
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Figure 1.7: Schematic diagram of two pathways for renal stone formation. In the
first pathway (a), the process initiates with the deposition of CaP, primarily in the
form of apatite, within the renal interstitium. The overgrowth of CaP reaches the
renal papillary surface, where they are exposed to pelvic urine. These CaP deposits
termed Randall’s plaques act as nucleus forms, facilitating the development of CaOx
stones anchored to the plaque base. In the second lesion (b), CaP crystals originate
within the renal tubules. These crystals migrate with the urine flow, aggregating
and ultimately occluding the terminal collecting ducts. These plugs are also exposed
to pelvic urine. In both cases, the formation of the CaP nucleus is the critical step
leading to the genesis of CaOx kidney stones. Adapted from (Khan et al., 2016).
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Figure 1.8: CaOx stone formation on Randall’s plaque.

Over the past 20 years, there has been an increasing interest in studying
Randall’s plaque. This can be attributed to two factors: the increased capabilities
of urologic endoscopy, which enables direct visualization of Randall’s plaque at the
tip of renal papillae. Additionally, the growing incidence of kidney stones
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associated with Randall’s plaque leads to a resurgence in interest in Randall’s
plaque study (Letavernier et al., 2016; Van de Perre et al., 2021). Understanding
the mechanisms involved in the formation of Randall’s Plaque is therefore crucial
for implementing effective preventive and management strategies for kidney
stones and developing new drugs. However, the analysis of Randall’s Plaque poses
significant challenges, primarily due to the small size of the early-stage
calcifications (characterized by tiny crystallites less than half a micron (Prien,
1975)) and the complex mechanisms underlying plaque formation. Additionally, in
clinical practice, the frequent use of fragmentation techniques leads to the loss of
plaque fragments originally attached to the stone, thereby hindering the
identification of the origin of fragmented stones. (Letavernier et al., 2016)

1.3. Analytical techniques for kidney stones

Numerous approaches have been used to analyze renal stones. These
investigations are focused on understanding the morphology, composition,
microstructure, and potential mechanisms involved in the formation of these
stones.

1.3.1. Polarized light microscopy
Polarized light microscopy is a conventional imaging technique for kidney

stone analysis. The stones are fractured to expose their internal structure and
then examined and identified under a polarizing microscope (Figure 1.9). While
the fast examinations offer valuable insights into the internal characteristics
structure and composition of kidney stones, it is challenging to identify small
amounts of crystalline material within complex mixtures, and its effectiveness
often relies heavily on the expertise of the operator.

Figure 1.9: Polarized light microscopy analysis of various kidney stone samples.
The left column displays the morphology of the samples. The middle column shows
polarized light microscopy images of thin sections in the samples. The right column
presents enlarged images of the selected white box area in the thin sections (Tanaka
et al., 2021).
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1.3.2. Electron microscopy
Electron microscopy, which uses accelerated electrons, has been widely used in

kidney stone analysis. Electron microscopy can achieve higher spatial resolution
than light microscopy, making it possible to observe structures at the nanometer
scale.

Scanning electron microscopy (SEM), energy dispersive X-ray
spectroscopy (EDX)

Scanning electron microscopy (SEM) is a powerful imaging technique that
utilizes an electron beam to generate a high-resolution surface image of a sample.
This method enables the analysis of stone characteristics with spatial resolution
down to some nms. In combination with SEM, energy dispersive X-ray
spectroscopy (EDX) complements the analysis by providing elemental information
about the sample. When the sample is hit by electrons, it emits characteristic
X-ray photons. Through EDX analysis of the collected spectrum, elements present
in the stone samples, such as Ca, Mg, and P, can be then identified (see
Figure 1.10), providing detailed information about the major composition of the
stones.

Figure 1.10: Scanning electron microscopy (SEM) combined with energy dispersive
X-ray spectroscopy (EDX) spectrum. The image displays the trigonal morphology
of the stone sample containing whitlockite as captured by SEM (a), alongside the
corresponding EDX spectrum (b) providing elemental information (Bazin et al.,
2022d).
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1.3.3. Infrared spectroscopy
Infrared (IR) spectroscopy, initially applied to stone analysis by Beischer in

1955 (Beischer, 1955), has become a popular method for in vitro quantitative stone
analysis (Singh and Rai, 2014). In this technique, an IR source irradiates the
sample, inducing atomic vibrations, and the resulting absorption spectra (see
Figure 1.11) are recorded and analyzed to determine the stone’s composition
(Nguyen and Daudon, 1997; Singh and Rai, 2014). This method can identify
non-crystalline substances, such as amorphous fatty materials, and can be helpful
in identifying the organic components of stones (Kasidas et al., 2004).

Fourier transform infrared spectroscopy (FTIR) is a common form of IR
spectroscopy, widely used for identifying organic and inorganic components (Singh
et al., 2020). In kidney stone analysis, FTIR is frequently used to identify the
kidney stone constituents by the percent mass present in the stone samples.

Attenuated total internal reflectance infrared spectroscopy (ATR-FTIR) is a
more recent technique of IR spectroscopy. The measured spectra are independent
of sample thickness because the IR light only interacts with the sample surface
within the evanescent field. This surface-sensitive method does not require
grinding, pressing, or mixing the sample with an IR inactive material before
analysis, making it more convenient in sample preparation than traditional
methods (Singh and Rai, 2014; Gulley-Stahl et al., 2009).
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Figure 1.11: Pure infrared spectra of reference samples calcium oxalate
monohydrate (a), hydroxylapatite (b) and CaCO3 (c) collected with a Harrick Split-
pea ATR microscope interfaced to a Perkin Elmer 2000 Fourier transform infrared
spectrometer (Gulley-Stahl et al., 2009).

1.3.4. Laser ablation inductively coupled plasma-mass spectrometry (LA-
ICP-MS)

Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is
a destructive analytical method for the determination of element abundances and
elemental and isotopic compositions (Durrant, 1999). This technique uses a
focused laser beam directed onto the sample surface, causing it to be ablated into
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fine particles, which are then transported to the ICP torch. The sample particles
are instantly ionized and carried in a steam of argon and/or helium gas to an
ICP-MS detector. LA-ICP-MS allows for the accurate and simultaneous
determination of a wide range of elements in the kidney stone sample as shown in
Figure 1.12.

Figure 1.12: Distribution of different elements on the surface of a kidney stone
sample using the LA-ICP-MS method (Vašinová Galiová et al., 2014).

1.3.5. Raman spectroscopy
Raman spectroscopy provides information about the chemical composition and

structure characterization of the sample. In a Raman spectroscopy experiment,
molecules in the sample are excited using a high-intensity laser beam. The
resulting scattered light is passed through a spectrometer for the measurement of
the Raman spectrum. As shown in Figure 1.13, in a urinary deposit study, the
laser used for Raman spectra has a near-infrared wavelength of 1064 nm. This
helps with Raman scattering excitation in biological samples and suppressing
fluorescence background contamination (Tamosaityte et al., 2022).

(Nguyen and Daudon, 1997) used IR and Raman spectroscopy in their
analysis of kidney stones, determining that this combination of spectroscopic
techniques provided an effective approach for kidney stone identification.
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Figure 1.13: Raman spectrum of brushite crystal present in the urinary deposit,
measured with a Fourier transform Raman spectrometer (Tamosaityte et al., 2022).

1.3.6. X-ray diffraction
The X-ray diffraction (XRD) method uses a monochromatic X-ray beam to

identify the crystalline components of the sample. When an X-ray beam is
diffracted by the crystalline sample, unique XRD patterns are produced. In
practice, the angular position, and intensities of the diffraction peaks permit the
identification of the various crystalline phases (Figure 1.14). This technique can
measure and differentiate all various major crystalline phases present in a stone
sample (Kasidas et al., 2004).

Figure 1.14: X-ray diffraction pattern of calcium oxalate monohydrate (COM)
powder and the section of kidney stone. Adapted with permission from (Al-Atar
et al., 2010). Copyright 2023 American Chemical Society.

1.3.7. X-ray tomography
X-ray tomography serves as a pivotal imaging modality in my thesis, enabling

the acquisition of non-invasive, cross-sectional representations of kidney stones.
By using high-energy X-ray beams to penetrate samples, this technique facilitates
the detailed visualization of intricate sample morphology, microscale features, and
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internal structures. Within the scope of this work, synchrotron-based X-ray
computed tomography (SR CT) offers many advantages over conventional
micro-CT. The synchrotron source used provides a high-flux and high-intensity
X-ray beam. This results in the measurement of quantitative high-resolution 3D
tomograms with a high signal-to-noise ratio. SR CT plays a crucial role in kidney
stone research, aiding in the detailed identification of stone sample morphology
and microstructure. It guides the selection of relevant cross-sections in samples,
facilitating subsequent multi-modal analyses (Kaiser et al., 2011). As shown in
Figure 1.15, a full-field micro-CT experiment was conducted on a calcium oxalate
monohydrate stone sample, achieving an effective voxel size of 2.25 μm.

Figure 1.15: Micro-CT slice of a pure calcium oxalate monohydrate (COM) stone.
The reconstructed μCT slice shows concentric layers of organization in a. The denser
region of the reconstructed slice indicated by an arrow in b is an apatite nucleus in
the central. Another SR-μCT slice (c) shows multiple layers of organization, with
visible internal cracks marked by an arrow (Kaiser et al., 2011).

1.3.8. X-ray fluorescence
X-ray fluorescence (XRF) is a well-established non-destructive analytical

technique for elemental analysis in various scientific fields. When a sample is
exposed to an X-ray beam, the ionization and transitions of inner-shell electrons
within the atoms result in the emission of characteristic X-ray fluorescence
photons, with energies specific to the excited elements present in the sample. By
analyzing the emitted XRF signal, we can quantify the intensity of the different
elements present in the stone sample, such as Ca, P, S, K, Zn, Cu, Fe, and Sr
(Bazin et al., 2007). This method enables the determination of trace elements in
kidney stones (Srivastava et al., 2014). Figure 1.16 shows the in-lab XRF
experimental set-up and a typical XRF spectrum measured for a kidney stone.

29



Figure 1.16: In-lab XRF experimental set-up and XRF spectrum clearly shows the
contributions of elements such as Ca, Fe and Zn in the stone sample. The focused
monochromatic beam is generated using an in-lab X-ray source (Rouzière et al.,
2016).

1.4. Analytical techniques for Randall’s plaque

The analysis of incipient Randall’s plaque still poses several challenges due
to the localization of the plaques, and the sub-micron-sized characteristics of these
calcifications.

In the investigation of incipient Randall’s plaques, achieving high spatial
resolution is essential for effectively visualizing the morphology and
micro-features of these tiny mineral deposits. Non-destructive methods are
preferred to ensure the preservation of sample integrity. Additionally, analytical
techniques with high sensitivity to investigate the roles of trace elements are also
necessary in the study. All these requirements demand multi-modal imaging
techniques for comprehensive characterization.

Undoubtedly, multiple analytical techniques discussed in Section 1.3 can be
effectively employed to study Randall’s Plaque. For example, in a recently
published paper, researchers used a multimodal method including the
combination of laboratory X-ray micro–CT and Fourier transform infrared
spectroscopy (Figure 1.17), in order to gain a comprehensive understanding of the
mineral and organic components of Randall’s plaque (Winfree et al., 2021).
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Figure 1.17: A kidney stone polished to expose Randall’s plaque and the stone
overgrowth region. A. Micro-CT slice displaying the polished stone. B. Photographic
montage captured on an infrared microscope. C. Reflectance-mode FT-IR microscopy
results. D. Attenuated total reflection (ATR) mode FT-IR microscopy results
(Winfree et al., 2021).

Several studies have revealed the diversity and complexity of chemical
components in Randall’s plaque (Khan et al., 2012; Williams et al., 2015;
Carpentier et al., 2010; Bouderlique et al., 2019).

In a prior research conducted by (Carpentier et al., 2011), trace elements,
including zinc, were detected in the plaque by X-ray fluorescence technique.
Notably, the concentration of zinc was found to be higher in Randall’s plaque
compared to the reference kidney stone. Given the established association of zinc
with inflammation in various studies (Bao et al., 2008; Haase et al., 2008), it is
indicated that these calcified deposits are a pathological process involving a tissue
reaction.
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To better understand the pathology and early-stage kidney stone formation, a
high-resolution 3D study of Zn concentration variations is needed, as it will shed
light on the roles of Zn and other trace elements, offering insights into the spatial
distribution of Zn within Randall’s plaque and its potential role in stone formation.

Addressing this challenge requires the development of a rapid quantitative
XRF tomography method. The development of fast sparse quantitative X-ray
fluorescence imaging and tomography offers a non-invasive way to explore the
spatial elemental distribution in RP. Understanding the roles of trace elements in
the pathological process paves the way toward efficient prevention and medical
treatment of kidney stone disease.

1.5. X-ray imaging

1.5.1. X-ray imaging history
X-ray imaging began in 1895 with Wilhelm Conrad Roentgen’s discovery of

X-rays. Working with a cathode ray tube called a Crooke’s tube, he uncovered a
new form of invisible rays that could penetrate materials: X-rays (Figure 1.18).
Röntgen’s groundbreaking discovery earned him the first Nobel Prize in Physics in
1901, and its application quickly expanded to the field of medicine for the
non-invasive identification and diagnosis of internal diseases.

Figure 1.18: Röntgen used X-ray to take pictures of the left hand of his wife, showing
the skeletal structure of the hand (Haase et al., 1997).

Since Roentgen’s discovery, X-ray imaging has evolved significantly during
the first half of the 20th century, and progress in specialized instrument
development paved the way for various high-resolution X-ray microscopy
techniques. In 1913, P. Goby introduced the microradiography method (Goby,
1913) to study the structural details of objects by enlargement of X-ray
radiographs with micron-level resolution. Further enhancements in X-ray
microscopy have been made since the late 1940s. A. Engstrom developed the
quantitative elemental imaging technique (Engström, 1946). P. Kirkpatrick
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improved the resolution of X-ray microscopy by using focusing X-ray mirrors
(Kirkpatrick and Baez, 1948). Subsequently, Fresnel zone plates were employed
for X-ray focusing (Baez, 1952). In parallel, Cosslett and Nixon first carried out
work in the development of the projection X-ray microscope, involving producing a
small X-ray source using an electron beam focused on a thin target (Cosslett,
1959). During this period, the early X-ray microscopy work reached a peak.

Prior to the 1970s, the size and intensity of available X-ray sources were
limited. However, the emergence of synchrotron radiation, once considered a
byproduct in high-energy physics accelerators, brought significant improvements
in X-ray capabilities in microscopy. Horowitz and Howell (in 1972) designed the
first transmission and fluorescence X-ray microscope at the Massachusetts
Institute of Technology accelerator, which marked a crucial milestone in the field.

Following this development, scanning X-ray imaging advanced further, driven
by the utilization of intense sources like 3rd generation synchrotrons, improved
X-ray optics, fast scanning strategies, and precise sample positioning. These
technological improvements have made X-ray imaging more appealing, allowing
for higher spatial resolutions, faster image acquisition, and the realization of
multimodal imaging techniques.

SOLEIL Synchrotron is one of the existing 3rd generation synchrotron sources.
It provides high-brilliance synchrotron radiation across a broad spectral range, from
far infrared to hard X-rays. NANOSCOPIUM beamline is the scanning hard X-
ray nano-probe beamline at SOLEIL. It is dedicated to 2D/3D multimodal scanning
X-ray imaging techniques in the energy range of 5 to 20 keV energy range, which
is ideal for imaging a wide range of samples from biological samples to advanced
materials.

1.5.2. X-ray microscopy techniques
X-ray microscopy (XRM) covers multiple experimental techniques aimed at

imaging samples using X-rays as a non-invasive probing tool. Due to the inherent
penetrating nature of X-rays, XRM is well-suited for investigating the internal
properties of samples. It offers higher resolution when compared to optical
microscopy and offers larger information depth compared to electron microscopy.
Depending on the specific research needs of the imaging modalities for a study,
measurements can be carried out using either full-field or scanning methods.
Full-field microscopy at a synchrotron radiation source employs projection imaging
with a parallel beam (Figure 1.19-A). With the help of X-ray focusing optics,
scanning X-ray microscopy uses a small and intense beam to scan the sample. The
resolution of the scanning method is determined by the beam size at the focal
plane.

Essentially, in most cases of scanning XRM, the sample is mounted and
supported on a translation and/or rotation stage and raster-scanned with a
stationary focused X-ray beam. The transmitted beam and/or secondary emission
are recorded at each scanning position of the sample. (Figure 1.19-B).
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Figure 1.19: Schematic view of the full-field transmission X-ray tomography (A) and
scanning X-ray fluorescence tomography (B).

Scanning X-ray microscopy can include several modalities, including X-ray
absorption, X-ray fluorescence, X-ray diffraction, and coherent diffractive imaging.
These spatially resolved techniques in scanning XRM provide a broad range of
capabilities when compared to full-field XRM (Brueckner, 2021). However,
scanning XRM measurements typically require more time than full-field XRM
measurements. This is due to the necessity of raster scanning during the data
acquisition process. For 3D tomography datasets, the time will be further
extended due to the additional dimension. Therefore, the development of rapid and
effective data acquisition and processing strategies, such as sparse-angle scanning
tomography experiments combined with appropriate reconstruction algorithms, is
important to optimize the efficiency of scanning XRM methodologies.

1.5.2.1. X-ray absorption microscopy
The transmission of an X-ray beam through the sample is measured by a

detector placed directly behind the sample. Scanning X-ray tomography can be
performed in the absorption mode and the contrast is obtained owing to the
difference in X-ray absorption of elements in the sample (Baruchel, 2000). The
transmitted intensity can be normalized to the incident beam intensity measured
by a detector placed before the sample.

1.5.2.2. X-ray fluorescence microscopy
Scanning X-ray fluorescence imaging involves the scanning of a sample to

analyze its elemental composition. The emitted X-ray fluorescence signals from
the sample are captured by dedicated XRF detector(s) (Figure 1.19-B) and the
resulting XRF spectra are subsequently fitted to identify elements present within
the scanned area. This fitting process also enables the determination of the
intensity of the XRF photons emitted by these elements. This method generates
spatially resolved elemental maps of the sample. The concentration of each
element can be further quantified by using a reference standard.
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1.5.2.3. Scanning X-ray diffraction
Unlike conventional X-ray diffraction, which provides bulk information,

Scanning X-ray diffraction offers the advantage of spatial-resolved structural
variations on the microscale. By scanning the sample and recording diffraction
patterns at each point, this method enables researchers to construct a detailed
map of crystalline structures and their orientations in a sample. Particularly
useful for heterogeneous samples. It can be combined with X-ray fluorescence
imaging to identify the crystallographic phases and element distribution in the
sample simultaneously (Figure 1.20).
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Figure 1.20: Schematic view of the scanning X-ray diffraction combined with X-ray
fluorescence technique.

1.5.2.4. X-ray phase contrast imaging
Phase-contrast X-ray imaging techniques have received much attention in

recent years. They can offer contrast based on the phase shifts introduced by the
sample. It can provide enhanced morphological information in cases when the
sample is weakly absorbing compared to conventional absorbing techniques
(Figure 1.21). In fact, phase contrast imaging demonstrates sensitivities to light
elements that are 10 to 100 times larger than those achieved by absorption
contrast methods.
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Figure 1.21: A schematic comparison of absorption and phase contrast projections.
Phase contrast projection emphasizes the internal sample boundaries. Adapted
from (Bertrand et al., 2012).
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1.5.3. Scanning XRF tomography
Recent developments in fast continuous scanning, data acquisition (Deng

et al., 2018; Kopittke et al., 2018; Medjoubi et al., 2013; Wang et al., 2001), and the
high flux obtained at modern synchrotron-based hard X-ray nanoprobes have
opened routine access to scanning 2D multimodal imaging. Scanning hard X-ray
imaging and tomography techniques are ideally suited to provide complementary
information on the elemental distribution, morphology, crystalline structure, and
chemical speciation that can be obtained simultaneously. Moreover, these
non-invasive scanning techniques provide straightforward access to
multiple-length scale experiments.

Amongst the scanning techniques, the high analytical sensitivity of X-ray
Fluorescence (XRF) imaging provides unique possibilities in several scientific
fields to study the role and fate of trace elements (Chaurand et al., 2018; Dean
et al., 2018; Figon et al., 2021; Kosior et al., 2012; Serpell et al., 2016; Sforna et al.,
2014; Wolf et al., 2017; Xie et al., 2020; Yan et al., 2016). However, the
unambiguous interpretation of 2D elemental distribution maps is not always
straightforward or feasible and is especially problematic in the case of thick,
complex samples. As such, the scientific community is highly demanding the
extension of XRF imaging and other complementary scanning techniques to 3D
tomography. Scanning XRF and multimodal tomography, where measuring
projection images at different projection angles permits the reconstruction of the
internal features by adapted reconstruction methods, provides unambiguous
internal information about the sample (Deng et al., 2018; Gao et al., 2021; Gürsoy
et al., 2015; Helliwell et al., 2013; Hong et al., 2015; Parsons et al., 2017; Punshon
et al., 2012; Somogyi et al., 2015a; Suuronen and Sayab, 2018).

Up to now, the lengthy acquisition time necessary for these experiments
(Deng et al., 2018) at 3rd generation synchrotrons has been one of the practical
difficulties to its comprehensive utilization. Indeed, even if emerging sparse
tomography techniques permit boosting the measurement throughput (Bourassa
et al., 2016; Gao et al., 2021; Villarraga-Gómez and Smith, 2020) by compromising
spatial resolution, overcoming the time constraint remains a challenge at 3rd

generation synchrotrons.

Meanwhile, at the dawn of 4th generation synchrotron sources, routine 3D
scanning X-ray tomography is becoming within reach. Indeed, the two orders of
magnitude larger flux available at 4th generation hard X-ray nanoprobes boosts
the speed of scanning tomography measurements proportionally, paving the way
towards high-throughput scanning X-ray tomography of mesoscale samples (Li
et al., 2022). Hence, the implementation of a robust, user-friendly scanning
tomography workflow is crucial for the routine application of these techniques,
similarly as has been published recently for high-throughput electron tomography
(Schwartz et al., 2022).

Such workflow imposes flexible and fast on-site data processing and
tomographic reconstruction adapted to the different number of projections (sparse
and high-resolution tomography), diverse data quality (e.g., high and low-level
elemental abundances, missing wedge), different imaging modalities (e.g., XRF,
X-ray absorption, X-ray diffraction), and the possibility of adapting the field of
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view and spatial resolution to the examined phenomenon by using multi-scale or
local tomography.

Some recent developments tackle part of these requirements by sample-type
specific processing of multimodal tomography data sets (Gao et al., 2021;
Suuronen and Sayab, 2018), also in a semi-automatic way in the case of similar
processing requirements (Atwood et al., 2015; Parsons et al., 2017). A sparse
sampling approach followed by sophisticated data treatment has also been
reported (Gao et al., 2021; Liu et al., 2020). However, according to our knowledge,
a robust, holistic approach addressing all requirements of flexible multi-scale and
multimodal scanning 2D/3D X-ray tomography does not exist yet.

Chapter 4 of the thesis introduces sparse tomography and a robust workflow
for scanning multi-length scale XRF-tomography and complementary modalities.
It has been developed and implemented at the NANOSCOPIUM beamline
(Somogyi et al., 2015a) of SOLEIL Synchrotron and includes semi-automatic data
reconstruction. The proposed reconstruction algorithm yields good reconstruction
data quality for diverse scientific fields with no need for parameter readjustment
depending on the sample type. As the first step of this approach, sparse
tomography provides a 3D overview of the entire meso- or microscale sample. The
reconstructed sparse tomograms, containing relevant information to the
investigated scientific problem, are used to choose pertinent regions for high
spatial resolution single slice tomography, projection imaging, and local
tomography. This approach permits optimizing the scanning tomography
experiments and obtaining relevant information from pertinent sample regions in
2D or 3D during a user project. Thanks to recent developments (Bourassa et al.,
2016; Chu et al., 2020; Kopittke et al., 2018; Somogyi et al., 2015b), this method
paves the way towards statistically significant 3D studies, similar to those already
available in full-field X-ray tomography (Odstrcil et al., 2019), and electron
tomography (Schwartz et al., 2022).
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CHAPTER 2

FOUNDATIONS AND INSTRUMENTATION

This chapter provides an overview of the fundamentals and instrumental
setups used to carry out the PhD work. In the first section of this chapter, the
basic interactions of X-rays with matter are presented. Subsequent sections
outline the characteristics of synchrotron radiation techniques and the analytical
tools in place at the NANOSCOPIUM beamline.

2.1. X-ray matter interactions

X-rays, classified as high-energy electromagnetic radiation, have a strong
penetrating capability. X-rays typically have wavelengths in the range of 0.1 to
100 angstroms, allowing them to efficiently penetrate a wide range of materials.
The relationship between X-ray photon energy (E) and its wavelength (λ) can be
described by the equation:

E =
hc

λ
(2.1)

where h is Planck’s constant and c is the speed of light. In practice, the equation
is usually expressed for photon energy in keV and wavelength in Å for approximate
estimation of the photon energy:

E(keV ) ≈ 12.398

λ(Å)
(2.2)

When directing X-ray photons toward a sample, several processes can occur
simultaneously. The X-ray could pass through the sample without any interaction.
Alternatively, the sample may absorb the X-ray, causing atoms to enter excited
states. Furthermore, X-ray photons might scatter. In some cases, they maintain
their original energy, known as elastic scattering. In other cases, they lose energy
within the sample, referred to as inelastic scattering. The possibility for these
interactions to occur depends on the energy of the X-ray photons and the
characteristics of the sample materials.

Interactions between X-rays and matter form the foundation for various
analytical techniques. An example is the X-ray fluorescence method used in my
PhD study.

2.1.1. X-ray attenuation
X-rays are attenuated as they pass through materials due to photon

absorption and scattering by atoms. The degree of attenuation depends on the
energy of the incident X-ray, the material’s density, and its thickness. The
Beer-Lambert law is fundamental in determining the attenuation of X-rays. In the
case of a homogeneous material with a thickness of ∆x, exposed to an X-ray beam
with energy E and intensity I0, the attenuated beam intensity I follows the
Beer-Lambert law:

I = I0e
−µ(E)·∆x (2.3)
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In this context, the linear attenuation coefficient µ(E) characterizes the
sample’s ability to attenuate X-rays and is a function of the beam energy. The
attenuation µ encompasses contributions from both scattering and absorption.
Therefore µ can be expressed as the sum of the linear absorption coefficient µa and
scattering coefficient µs:

µ = µa + µs (2.4)

The mass attenuation coefficient µ/ρ is useful when comparing the attenuation
properties of materials with different densities ρ.

Figure 2.1 illustrates the mass attenuation coefficients for calcium, iron and
zinc. Typically, these coefficients exhibit a decreasing trend as the X-ray energy
increases, except for distinct absorption edges where there is an abrupt increase in
attenuation. These edges correspond to the binding energies of electrons within the
atoms.

Figure 2.1: A log10-log10 plot of the mass attenuation coefficient for Ca, Fe, and Zn
in the energy range between 1 keV and 20 keV.

2.1.2. X-ray absorption
When X-rays are absorbed by an atom through the photoelectric effect, a

core-level electron, known as a photoelectron, is ejected. This ejection results in
the creation of a “core hole” in the atom. To stabilize itself, the atom undergoes
reorganization, leading to the emission of X-ray fluorescence photons or Auger
electrons. These emitted particles provide valuable information for identifying the
specific absorbing atom within the material.

Following X-ray absorption and the ejection of a photoelectron, as illustrated
in Figure 2.2, two primary processes can occur: X-ray fluorescence and Auger
electron emission. During the X-ray fluorescence process, an atom emits
characteristic X-ray fluorescence uniformly in all directions (isotropically). The
energy of these emitted photons is equivalent to the difference between the initial
and final electron states, specifically the energy gap between the inner and outer
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shells from which the electron originates to fill the core hole. This emitted
characteristic X-ray fluorescence serves as an essential indicator for identifying
the element present in the material.

Incident X-ray

Nucleus

K shell
L shell

M shell

Electrons

Photo electron

𝐾𝐾𝛼𝛼

𝐾𝐾𝛽𝛽

Fluorescence X-ray

x Auger electron

Figure 2.2: Diagram of the mechanisms of X-ray photon/matter interactions:
Photoelectron emission, Auger electron, and X-ray fluorescence. Here the atom
model is simplified, where the electrons are in orbits labeled K, L, and M around
the nucleus.

The identification of transitions relies on understanding which primary and
outer electron shells the X-ray-emitting electrons originate. For instance, as shown
in Figure 2.3, when an electron from the L shell fills a vacancy in the K shell, this
process is denoted as Kα. More detailed subscripts are used to represent the fine
structures of these transitions.
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Figure 2.3: Common transitions in XRF fluorescence. hv is the incident photon
energy. The absorption edge, denoted as EK , represents the energy required to free
a bound electron. The discontinuity observed in Figure 2.1 occurs when the energy
reaches the binding energy of each individual electron subshell.
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Alternatively, in contrast to the radiative X-ray fluorescence process, there is
a competing nonradiative process that leads to the emission of an electron from an
outer shell. This is known as Auger emission and the emitted electron is termed an
Auger electron.

The probability of either the Auger electron emission or X-ray fluorescence
depends on the atomic number of the element. Auger electron emission is more
probable for elements with lower atomic numbers. Conversely, for elements with
higher atomic numbers, X-ray fluorescence becomes more dominant. This
relationship is illustrated in Figure 2.4. It is also important to note that K
emission lines are typically stronger than L emission lines for any given atom,
making them the preferred choice for XRF analysis.

Figure 2.4: Yields of Auger electrons and fluorescence, as a function of atomic
number for the K- and L3-subshell. The yield is normalized for both Auger and
XRF processes, calculated as the ratio of the number of ejected Auger electrons or
XRF photons to the total number of created core holes (Attwood and Sakdinawat,
2017).

2.1.3. X-ray scattering
X-ray scattering is a phenomenon where an X-ray photon changes its direction

after interacting with an electron. This interaction can either involve an exchange
of energy, known as inelastic scattering, or proceed without any energy exchange,
termed elastic scattering.

2.1.3.1. Rayleigh scattering
Scattering is elastic in which incident photons are scattered by bound electrons

(see Figure 2.5) without any energy loss.

Taking I0 as incoming photons per unit area per second, the scattered photons
per second IS within the solid angle ∆Ω can be expressed as follows:

IS = I0
dσ

dΩ
∆Ω (2.5)
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with the differential scattering cross section dσ/dΩ which indicates the probability
of this process to occur:

dσ

dΩ
= r2eP (θ)

∣∣∣∣F (
4π sin θ

λ
)

∣∣∣∣2 (2.6)

where P (θ) is the polarization factor, F is the atomic scattering factor and
re =

e2

4πϵ0mec2
= 2.82 × 10−15m is the electron classical radius. The atomic

scattering factor F represents the scattering amplitude as a function of sin θ
λ .

Incident X-ray

Nucleus
K shell L shell M shell

Electrons

Scattered X-ray

2𝜃𝜃

Figure 2.5: Illustration of the Rayleigh scattering. The incident photon is redirected
without energy exchange with the atomic electrons.

2.1.3.2. Compton scattering
Compton scattering is an inelastic scattering process in which a photon is

scattered by a free or weakly bound electron within an atom. During this
interaction, the photon’s kinetic energy is not conserved. Instead, a portion of its
energy is transferred to the electron, as illustrated in Figure 2.6.

𝐸𝐸0

Recoil electron

𝜃𝜃

𝐸𝐸 < 𝐸𝐸0

Figure 2.6: Illustration of Compton scattering. The incident photon is scattered
along the angle θ with lower energy and transfers part of its energy to a recoil
electron.
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We assume here that the electron is free primarily due to its low binding energy
compared to the incident photon energy. The conservation of both total energy and
momentum leads to the following formula, which relates the angle θ with the energy
of the incident photon E0 and the energy of the scattered photon E:

E

E0
=

1

1 + α(1− cos θ)
(2.7)

Here α is given by:

α =
E0

mec2
(2.8)

where me is the electron mass and c denotes the speed of light.

2.2. Synchrotron radiation

2.2.1. X-ray production
According to electromagnetic radiation theory, when a charged particle

undergoes a change in its velocity, either in magnitude or direction (which can be
due to influences like a nucleus’s Coulomb field), it emits electromagnetic
radiation. This means that an accelerated or decelerated particle will dissipate
energy through the emission of electromagnetic radiation (Podgorsak, 2013). This
fundamental physical phenomenon serves as the foundation for various X-ray
sources, including laboratory sources and synchrotrons.

2.2.1.1. Principal characteristics of an X-ray source
An X-ray source is characterized by several key parameters:

Energy spectrum:
The energy spectrum describes the energy distribution of photons constituting

the X-ray beam, and its nature depends on how the beam is generated. For many
experiments, like absorption spectroscopy, a high monochromatic X-ray beam is
required. The degree of monochromaticity is represented by the ratio ∆E

E

signifying the deviation from the beam’s nominal energy.

Flux and brilliance:
Flux denotes the number of photons per unit area and time, typically expressed

in photons/s/mm2. Brilliance serves as a critical metric for comparing different X-
ray sources. It corresponds to the number of photons emitted per second, per source
unit area, per unit solid angle, and within an energy bandwidth (BW) of 0.1 %. It
quantifies the intensity of a source, taking into account its spectral purity and its
angular aperture (Garolfi et al., 2017).

Coherence:
Coherence is another important characteristic. It enables focusing the beam

down to the diffraction limit and also reveals interference effects due to the phase
shift that occurs when the beam passes across a material.

The coherence is defined along two axes: longitudinal and transverse
coherence.

55



Longitudinal Coherence LL: Also known as temporal coherence, this
metric reflects the length over which the incident X-ray wave can be considered
monochromatic. It is determined by the wavelength (λ) of the beam and the
deviation in wavelength (∆λ):

LL =
λ2

2∆λ
(2.9)

For monochromatic X-ray beams, longitudinal coherence usually is not of
primary concern.

Transverse Coherence LT : Transverse coherence is often more critical. It
indicates the distance over which the X-ray waves can be considered in phase. This
length is determined by the wavelength (λ), the distance (D) from the source to the
observation point and the source’s size (S):

LT =
λD

S
(2.10)

Achieving larger transverse coherence requires reducing the source size and
increasing the observation distance. At the NANOSCOPIUM beamline, these
criteria are met, enabling the generation of X-ray beams with significant
transverse coherence lengths, which is advantageous for various experiments.

2.2.1.2. Laboratory sources
The X-ray tubes are the most commonly used laboratory X-ray sources. They

operate on the principle of bremsstrahlung, a phenomenon in which X-rays are
emitted as a result of the deceleration of an electron beam when it collides with a
heavy material. The X-ray tube typically consists of two main components: an
anode and a cathode, both encapsulated within a vacuum-sealed glass enclosure.

Made typically from a tungsten filament, the cathode is the site of electron
generation. As an electric current traverses this filament, electrons are emitted
via the thermionic emission process. The emitted electrons are accelerated by
applying a potential difference between the cathode and the anode. The anode is
typically made of dense materials such as tungsten, copper, or molybdenum. It
acts as the target for the cathode’s accelerated electrons. When these electrons
collide with the anode, they are rapidly decelerated. This deceleration is the basis
of bremsstrahlung, resulting in the emission of X-rays.

The X-ray spectrum generated by an X-ray tube has two main components: a
continuous part and a line spectrum. The continuous spectrum arises from the
deceleration of electrons. It has a range of energies, with the upper limit
determined by the maximum kinetic energy of the electrons (denoted by eU , where
e is the electron’s charge, and U is the accelerating voltage between the anode and
cathode).

The line spectrum is produced through X-ray fluorescence. When electrons
from the cathode collide with the anode, they can ionize the constituent atoms of
the anode material. This ionization process leads to the emission of characteristic
X-ray lines. These lines have well-defined energies and are specific to the elements
present in the anode material.

56



However, this emitted X-ray radiation is non-tunable because the energy values
are determined by the properties of the anode material. Moreover, only a small
portion of the total emitted X-rays can be effectively used for experimental purposes,
as the radiation is emitted in all directions.
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Figure 2.7: A: X-ray tube with a fixed anode. B: X-ray tube with a rotating anode.

The tubes generally used are tubes with a fixed anode. As shown in
Figure 2.7-A, these tubes feature a target embedded within a copper block, serving
as a thermal diffuser. Nonetheless, this design has restrictions in terms of heat
transfer efficiency at the interface between the target and copper. As a result,
their power output ranges are typically confined between 0.5 to 3 kW.

To overcome these limitations and access higher power levels, rotating anode
tubes, as illustrated in Figure 2.7-B, employ a continuous rotation of the anode. This
design facilitates varying the electron beam’s impact surfaces on the anode while
ensuring a consistent electron beam section. This rotational movement effectively
spreads out the heat exchange over a larger surface area, enabling more efficient
dissipation of absorbed heat (Van Grieken and Markowicz, 2001).

The brilliance of laboratory sources using this type of tube can reach
108-1010 ph/s/mm2/mrad2/0.1%BW. More advanced technologies based on the use of
liquid metal as an anode have improved the brilliance of laboratory sources
(~3-4 × 10 11 ph/s/mm2/mrad2/0.1%BW) by overcoming the limitation associated
with target heating induced by the electron beam (Hemberg et al., 2003).
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In ongoing developments, larger laboratory facilities are aiming to further
boost the brilliance by utilizing the inverse Compton effect to generate X-ray
radiation from low-energy photons (Jacquet, 2014). This approach has more
substantial brilliance improvements, with current advancements achieving
brilliance levels ranging from 1011-1013 ph/s/mm2/mrad2/0.1%BW.

2.2.1.3. Synchrotron sources
Synchrotron radiation is a form of electromagnetic radiation emitted when

charged particles are accelerated and deviate from their trajectory due to the
presence of a magnetic field. Synchrotron sources are known for their powerful
brilliance (Couprie and Filhol, 2008), capable of providing up to
1021 ph/s/mm2/mrad2/0.1%BW. These facilities, such as the synchrotron SOLEIL,
are the choice for a wide range of scientific investigations across the
electromagnetic spectrum, spanning from the far infrared to several hundred keV.

Typically, synchrotron sources comprise three types of accelerators operating
in a high vacuum environment. The process begins with a linear accelerator,
which accelerates electrons to an energy level on the order of a hundred MeV (e.g.,
100 MeV at the SOLEIL Synchrotron) and subsequently injects them into a
booster. The booster is essentially a synchrotron that further accelerates the
electrons to their target energy. Once the electrons reach a specified energy level,
usually in the range of a few GeV (e.g., 2.75 GeV at SOLEIL), they are introduced
into a circular accelerator known as a storage ring. This ring is where the
synchrotron radiation used for experiments is produced.

To compensate for energy losses experienced by the electrons due to synchrotron
radiation emission or potential collisions with residual air molecules, the storage
ring incorporates accelerating cavities. These cavities serve to restore the electrons
to their nominal energy (Willmott, 2019).

In current synchrotrons, known as 3rd generation (with the 1st generation
representing the byproduct usage of particle accelerators for high-energy physics
and the 2nd generation corresponding to the first circular machines dedicated to
synchrotron radiation emitted by bending magnets), particular focus is placed on
employing undulators and wigglers inserted into the straight sections of the
storage ring. Unlike bending magnets, these inserts feature multiple magnetic
poles, causing the electrons to follow an undulating path (Winick et al., 1981).
With each acceleration or deceleration event in the electron packets, synchrotron
radiation is emitted in the form of electromagnetic radiation. These elements
significantly enhance photon flux production and enable the generation of a highly
collimated beam.

2.2.1.4. Dosimetry
Dosimetry serves the vital function of quantitatively measuring the absorbed

dose of ionizing radiation in a specific medium. It stands at the intersection of
physics, biology, and medicine, making it a diverse and multi-faceted field. Within
dosimetry, multiple quantities are of interest, broadly categorized into two groups:
those associated with incident radiation and those linked to the radiation’s effects
on an object (Russo, 2017).
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The absorbed dose, denoted byD, is measured in gray (Gy). It relates the energy
dE (in joules) deposited by ionizing radiation in a volume element dV with a mass
dm (in kg) as (Attix, 1986):

D =
dE

dm
(2.11)

In this thesis, we simplify the dose calculation by assuming electronic
equilibrium, where ionization due to photon-electron interactions from the
incident beam has a significantly shorter range compared to the transverse size of
the incident beam (Nicolas et al., 2019). The absorbed dose in a medium exposed to
a monochromatic and parallel X-ray beam can be represented as:

D =
µen

ρ
Eϕt (2.12)

where µen is the mass energy-absorption coefficient of the medium, E stands for the
beam energy, ϕ is the incident flux (number of photons per second per unit area),
and t is the exposure duration. In this thesis, the absorbed dose in air will be used
to quantify the incident dose.

2.2.2. Multimodal X-ray nano-imaging on the NANOSCOPIUM beamline of
the SOLEIL synchrotron

2.2.2.1. The SOLEIL synchrotron
SOLEIL is a synchrotron radiation facility situated on the Plateau de Saclay

in France. It operates as a non-profit civil company funded jointly by the CNRS
and the CEA. Employing a staff of approximately 350 people, SOLEIL serves as an
international hub for multidisciplinary scientific research.

Synchrotron radiation, with its powerful brilliance and spectral range
spanning from infrared to hard X-rays, is a tool for exploring the properties of
matter across an array of domains. These domains encompass biology, chemistry,
materials science, environmental studies, physics, earth sciences, heritage
preservation, and archaeology. The production of synchrotron radiation lies in the
high-energy electrons circulating within a circular accelerator. Subsequently, this
synchrotron radiation is used in beamlines, where targets (i.e. the samples under
investigation) are mounted at the end of the beamline.

At SOLEIL, the circular accelerator has a circumference of 354 m, serving as
the source of synchrotron radiation. SOLEIL has 29 beamlines, including
NANOSCOPIUM, a unique beamline at SOLEIL dedicated to multimodal and
multiscale scanning X-ray imaging (Somogyi et al., 2015).

2.2.2.2. The NANOSCOPIUM beamline
NANOSCOPIUM is a beamline dedicated to X-ray imaging techniques within

the 5-20 keV energy range, offering fast multi-technique and multi-length scale
scanning capabilities, with spatial resolutions reaching down to 30 nm. It provides
a diverse range of complementary imaging methods, including X-ray fluorescence,
spectro-microscopy (XANES), differential phase contrast, and X-ray diffraction.

X-ray fluorescence gives access to chemical composition maps with an
analytical sensitivity down to the ppm or even sub-ppm level. X-ray Absorption
Near Edge Structure (XANES) spectroscopy provides information on the chemical
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speciation distribution of compounds, such as their degree of oxidation
(Penner-Hahn, 2003). The phase contrast technique delivers morphological details
with sensitivities to light elements that are notably higher (10 to 100 times) than
absorption contrast. Additionally, diffraction is employed to investigate
crystallographic structures, providing information on the spatial distribution of
crystal phases.

NANOSCOPIUM offers an advanced scanning Coherent Diffraction Imaging
(CDI) technique called Ptychography (Rodenburg et al., 2007), which excels in
morphological imaging and provides extremely high spatial resolution (achieving
30 nm on the beamline). This technique relies on an X-ray beam with a high
degree of transverse and longitudinal coherence. The resulting image is obtained
indirectly through phase and amplitude retrieval algorithms, involving the
analysis of multiple diffraction patterns while the object is moved, maintaining an
overlap to reconstruct the final image.

To facilitate these diverse scanning X-ray nano-imaging methods,
NANOSCOPIUM is based on a complex optical scheme compared to a standard
beamline. The 155-meter-long beamline features a secondary source, which allows
its size to be modulated, to guarantee the stability of the beam on the sample and
to extend the transverse coherence length up to several hundred microns in the
energy range of 5 to 20 keV.

Primary 
source Pre-focusing 

mirrors
Secondary source aperture (FSPS) Nano-focusing 

optics Focused 
beam

650 µm (H) × 20 µm (V)
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Figure 2.8: Synoptic of the NANOSCOPIUM beamline.

The source of NANOSCOPIUM is a 2-meter-long U18 undulator, offering an
optimal energy range spanning from 5 keV to 20 keV. The primary source exhibits
a beam size of 650 μm (horizontal) by 20 μm (vertical) and a divergence of 53 μrad
(horizontal) by 29 μrad (vertical), as illustrated in Figure 2.8. To focus the
polychromatic beam generated by the undulator onto a set of slits named FSPS
(Fentes Second Point Source in French), located 58 m away, mirrors M1 and M2
are positioned at 26 m and 27.8 m from the primary source, respectively. This
arrangement effectively creates the secondary source of the beamline.

The primary source image is magnified by a factor of approximately 2.6 in the
vertical direction and 2.3 in the horizontal direction. For experimental flexibility,
a defined slit opening allows for varying the second source point size, ranging from
20 μm × 20 μm to 150 μm × 150 μm. Before the secondary source, a double crystal
Si (111) monochromator with fixed output is utilized for producing a
monochromatic beam, which guarantees monochromaticity at ΔE/E ≈ 10-4.
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The beam then proceeds towards three multi-scanning nano-imaging
experimental stations, namely CX1, CX2, and CX3, situated at distances of 60 m,
70 m, and 75 m from the secondary source, respectively. These experimental
stations are housed within two hutches, EH1 and EH2. With an FSPS aperture of
20 μm, NANOSCOPIUM achieves transverse coherence lengths of several hundred
microns, for instance (e.g., 465 μm at 10 keV). This coherence allows for coherent
illumination of the focusing optics and enables focusing at the diffraction limit,
thereby producing a highly precise nanobeam. Moreover, it facilitates the
realization of a wide range of coherence-dependent experiments.

2.2.2.3. Multi-technique scanning X-ray nano-imaging station
The operational principle of the scanning multi-technique imaging system

developed at the NANOSCOPIUM beamline is described in Figure 2.9. The
incident monochromatic X-ray beam is focused onto the sample using an X-ray
optic. This sample is mounted on a two-axis translation table, allowing 2D
mapping.

For each scanning position on the sample, the system records chemical
composition data by detecting the X-ray fluorescence signal that arises from
photon absorption. Simultaneously, it captures the transmitted, scattered, or
diffracted beam using a two-dimensional detector. The resulting images provide
comprehensive morphological and/or crystallographic insights for every point
across the sample.

Monochromatic X-ray beam
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Figure 2.9: Schema of multi-technique scanning X-ray imaging.

Figure 2.10-A gives an overview of the experimental hutch EH2. The
experimental station CX2 is situated on the left and the experimental station CX3
is on the right. Although both stations offer almost similar imaging techniques,
their focusing optics are different. Currently in its commissioning phase, the CX2
station aims to achieve a spatial resolution of 40 to 50 nm, by using Fresnel Zone
Plate focusing optics, and will be mainly dedicated to biological applications.
Additionally, fast full-field micro-tomography experiments can be conducted at
CX2, enabling rapid 3D morphology analysis of samples (1-2 minutes per
tomography).

On the other hand, the CX3 station is fully operational and fully open to the
user community. The beam can be focused down to 70 nm by using a “Kirkpatrick-
Baez” (KB) mirror. Almost all the experiments done during this PhD work were
done with this experimental station.
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Furthermore, the CX1 station is currently under construction and, like the
other stations, is based on scanning imaging but with the additional ability to offer
wide-angle X-ray scanning diffraction. When operational, its primary focus will be
on experiments related to material science.

A

CB

Figure 2.10: A: Overview of the experimental hutch EH2. B and C: Zoom in on
the circled region in A. Sample environment of the CX3 experimental station with
respectively: translation stage (B) and rotation stage (C).

The following section provides a description of the optical elements, sample
environment, and detectors that are currently integrated and operational at the
NANOSCOPIUM beamline.

a). Optical elements
As described above, two types of nano-focusing optics: Kirkpatrick-Baez

mirrors and Fresnel Zone Plate (FZP), are used on the NANOSCOPIUM
experimental stations.

FZP are diffractive optic which can be described as circular grating with
decreasing periodicity towards its outer edge. Such a structure ensures that the
incident beam’s constructive interferences converge at a single focal point. They
are chromatic optics, implying their focal length is dependent on the energy of the
beam. In the hard X-ray regime, an FZP is typically composed of concentric gold
rings with a thickness of a few microns deposited on a substrate like a silicon
nitride membrane. The size of the focused beam is typically on the order of the
FZP’s smallest grating period. This can be down a few tens of nanometers, though
there is a trade-off with efficiency, constrained by the feasible aspect ratio
(Mohacsi et al., 2017). To ensure only the first diffraction order is selected, an FZP
is combined with a central stop (CS) and an order-sorting aperture (OSA).
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In order to gain familiarity with 2D XRF imaging techniques, I have been
involved in several experiments at the CX2 experimental station, specifically with
the alignment and characterization of the FZPs available at the NANOSCOPIUM
beamline. The details of this work are not presented in this manuscript.

The CX3 station employs a Kirkpatrick-Baez (KB) system, which is an
achromatic optic. This means that its focal length remains constant with varying
energy. This characteristic proves advantageous for spectroscopy experiments like
XANES that necessitate energy scans. The KB system consists of two orthogonal
mirrors. These mirrors serve the purpose of focusing the X-ray beam horizontally
and vertically. Manufactured by JTEC Corporation (JTEC CORPORATION, 2019),
these mirrors have an elliptical shape and maintain a slope error that is
consistently below 60 nrad. They are made of silicon and coated with platinum to
increase the reflectivity of the X-ray beam.

The KB system on the CX3 station offers a nanobeam with a minimum size of
70 nm (FWHM) and a flux of approximately 108-109 ph/s under routine operation
conditions. The efficiency of the KB system, measured as the beam’s intensity at
the focal plane relative to the intensity at the KB’s entrance, is 87 %.

b). Sample Environment
The sample environment includes the translation stages to move the sample

and the support on which it is mounted. The support is designed for minimal
interference and contamination during the quantification process. It consists of a
plastic rod that fits into a cylindrical support made of Aluminium Alloy 2017, as
shown in Figure 2.10-B. This support features a magnetic base, facilitating the
sample mounting process.

In the CX3 station, two sets of translations are used to scan the sample (as
seen in Figure 2.11 (left)) across the beam. The first set utilizes stepper motors
provided by AXMO PRECISION (Axmo, 2023)]. These motors (Tx_stepper and
Tz_stepper in Figure 2.11) can map the sample in both the x and z axes over a
large displacement range of approximately 10 mm. They offer a position resolution
of around 400 nm. However, to maximize the precision of measurements and fully
benefit from the nanobeam’s performance, a second set of translations is mounted
on top of the first one (Tx_piezo and Tz_piezo in Figure 2.11). These
nano-positioners are based on piezoelectric motors supplied by NPOINT (Motion
Solutions, accessed 06 Sept. 2023). While the x and z range of the nano-positioners
are limited to 80 μm, they provide an improved resolution of 150 nm routinely used
at the beamline.

For 3D scanning tomography during my PhD research, a second set-up has
been used. As illustrated in Figure 2.11 (right), the rotation stage replaces the
nano-positioner. The rotation stage is a high-precision compact air-bearing model
(LAB Motion Systems, Leuven, Belgium (LAB Motion Systems, accessed 07 Sept.
2023)). The same model is employed at the CX2 station, enabling fast full-field
micro-tomography. In this setup, the stepper motors are responsible for carrying out
the 2D and 1D scans for every orientation of the sample. On the top of the rotation
stage, a 2-axis translation stage (Tx_rotation and Ts_rotation in Figure 2.11) allows
for the centering of the sample on the rotation axis.
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Figure 2.11: Schematic diagram illustrating two different setups for scanning 2D
imaging (left) and 3D tomography (right).

Most of the scans at NANOSCOPIUM use a continuous scanning mode named
Flyscan (Medjoubi et al., 2013). Unlike the step-by-step mode where the scan at a
given position starts only after the completion of the previous acquisition, Flyscan
allows data acquisition during the sample displacement. To minimize the dead
time during mapping, scans are conducted in a bidirectional manner using raster
scanning mode (refer to Figure 2.12). The motorization requirements are more
demanding in continuous mode compared to step mode. In addition to the
positioning resolution, the motors need to maintain a consistent speed, with
variations restricted to less than 5 % of the maximum amplitude, covering speeds
ranging from 1 μm/s to 1 mm/s.

Sample under scan

Focused beam position

Displacement of 
the sample

Figure 2.12: Schematic of the acquisition method. The sample is presented in
yellow. The blue dots are the positions of the focused X-ray nanobeam and the black
arrows represent the trajectories of the sample displacements during a mapping
acquisition.
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c). Detectors
In the context of multi-technique scanning imaging experiments, the choice

and configuration of detectors are paramount. These detectors capture, process,
and translate the interactions between the X-ray beam and the samples into data,
which can then be interpreted for analysis. Here is a brief introduction to some
commonly used detectors at the experimental stations:

Visible microscope The visible microscope plays a crucial role in sample
positioning on the focal plane of the X-ray nano-focusing optics and in selecting areas
of interest for analysis. At the CX3 station, it consists of a visible camera coupled
with a variable magnification microscope objective (ranging from ×10 to ×4) mounted
on a 45 ° mirror. This arrangement allows the entire system to be perpendicular to
the beam axis, reducing its spatial dimensions and facilitating integration into a
constrained environment. While the depth of field of such a microscope, meaning
the longitudinal distance over which the image remains sharp, is only a few microns
(much less than that of X-ray optics, which is ~hundred microns), even if the image
is slightly blurred, the sample will still be at the focal point of the focused X-ray
beam.

X-ray fluorescence detectors The X-ray fluorescence detectors used in
multi-technique scanning imaging experiments are silicon drift detectors (SDDs
(Gatti and Rehak, 1984)). When an X-ray photon is absorbed by the silicon in the
SDD, it induces charges proportional to the photon’s energy. These charges then
move towards the electrodes due to an applied electric field. The resulting current,
produced by the drift of the electrons and holes, is integrated and converted into a
voltage, which is amplified by a pre-amplifier. The amplitude of this resultant
pulse is directly proportional to the energy of the absorbed X-ray photon.

A

B

Figure 2.13: A. Schematic of a charge drift diode where the structure can be seen on
the front side concentric ring of the electrodes. B. Photograph of a KETEK GmbH
SDD model VITUS H50.

65



The SDD detectors used at the beamline are the VITUS H50 models from
KETEK GmbH (KETEK GmbH, accessed 08 Sept. 2023), with a central, small
anode contact, which is surrounded by a number of concentric drift electrodes
(Figure 2.13-A). This design reduces the detector’s capacitance and enhances its
energy resolution. To analyze the X-ray fluorescence spectrum, a multichannel
analyzer, the xMAP card from XIA LLC (XIA, accessed 09 Sept. 2023), is used.

At the end of the detection chain, the energy resolution is about 200 eV (FWHM)
at 6 keV. The detector can handle photon rates of up to 200,000 per second with a
minimal dead time of less than 10 %.

2D indirect detector In the full-field tomography experiment set-up at the
CX2 station, to convert X-ray photons into visible light, an indirect imaging device
is used. This 2D indirect detector is composed of a thin scintillator screen coupled
with an objective microscope that magnifies the image onto a large CMOS camera
(ORCA-Flash, Hamamatsu (Hamamatsu Photonics K.K., accessed 23 Sept. 2023))
as illustrated in Figure 2.14.

CMOS
camera

X-ray 
beam

Scintillator 
screen

Sample

Objectif

Visible 
light

Figure 2.14: Schematic of the 2D indirect detector system based on a CMOS camera.

The scintillator is a YAG crystal and allows the absorption of X-ray photons
and emission of visible light which will be collected by the camera. To prevent signal
contamination from the visible light emitted by other sources inside the hutch, such
as LED or exit signs, a carbon filter is placed in front of the scintillator. In order
to prevent the X-ray beam radiation damage on the objective (Montaux-Lambert,
2017) and on the camera, a 45 ° tilted mirror is inserted between the screen and the
objective.

Intensity monitor At CX3, the intensity of the incident X-ray beam is
measured using a thin silicon photodiode supplied by Micron Semiconductor Ltd.
The 8 μm thickness of the photodiode allows to limit the attenuation of the direct
beam. The absorption is less than 10 % at 8 keV and only 0.8 % at 20 keV. The
photo-current generated by the photodiode is directly proportional to the number
of X-ray photons per second, denoted as N , and can be calculated using a specific
formula:

N(ph/s) =
Ie

qE(1− e−µd)
(2.13)
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with I the photo-current (unit: A) produced by the photodiode, E the energy of
photons in eV , q the charge of an electron, e the energy of creation of an
electron-hole pair (3.65 eV for silicon), µ the linear absorption coefficient in cm−1 of
silicon and d the thickness of the photodiode in cm.

2.2.2.4. FLYSCAN acquisition architecture in operation
FLYSCAN (Medjoubi et al., 2013) has been developed to enable

multi-technique imaging experiments through continuous scanning. Initially
designed for NANOSCOPIUM, it was later adapted as a generic acquisition model
for other SOLEIL beamlines. FLYSCAN is based on a distributed control system
called TANGO (Tango Controls, accessed 10 Sept. 2023), which allows individual
control of detectors and motors through the beamline network. A common trigger
signal integrated into the architecture achieves synchronization of detector
acquisition—encompassing X-ray fluorescence detectors, 2D detectors, and
intensity monitors—and translation stage positions during continuous scanning.
FLYSCAN also manages the data streaming and storage by accumulating
individual data files produced by each detector into a single NEXUS file, organized
according to a convention in HDF5 format.

To handle a high data flow of several Gb/s which can be generated for example
by a 2D detector during, for example, a fast full-field tomography experiment, the
architecture relies on 10 Gb/s links and a local storage area of several tens of
terabytes.

The parallelization of the acquisition of all detectors as well as the continuous
movement of the sample allows to significantly reduce total duration of an
experiment by up to a factor of 100 compared to the “step-by-step” mode. This
enables imaging experiments on many samples or some repeat mappings under
different experimental conditions.

2.2.3. Data processing
The NANOSCOPIUM beamline provides a range of software tools for

processing raw data, consisting of three main steps: raw data reduction, correction
and/or reconstruction, and analysis. The first two steps are executed using a
MATLAB toolbox that has been developed by the beamline (called the
NANOSCOPIUM toolbox). They are routinely used by the user community
whatever the imaging technique used.

The corrected and reduced data are typically in HDF5 format, ensuring
compatibility with various analysis tools. Some examples of these tools include
PyMca and ImageJ, both of which were used during this thesis, along with
MATLAB algorithms specifically created for certain data reconstruction and
analysis which will be detailed in Chapter 4.

2.2.3.1. Data organization
Depending on the imaging techniques and the type of scan conducted, the

dimensions of data stored in a single NEXUS file can range from one to four
dimensions. For instance, in a 2D scan using an X-ray fluorescence detector, the
final data has 3 dimensions: two dimensions for the position and one for the
spectrum.
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The initial data processing step, data reduction, involves converting raw data
into an easily interpretable physical quantity. This process is technique-dependent
and is explained in detail for the X-ray fluorescence technique used during the PhD
work.

2.2.3.2. Data reduction
Reduction of X-ray fluorescence data

The reduction of X-ray fluorescence data aims to create elemental distribution
images based on the spectra associated with each position in the mapping. This
involves several key steps:

Identification: The process begins with an identification step to correlate
the element with its X-ray fluorescence lines in the spectrum.

Calibration: Next, the spectrum is calibrated to represent it as a function
of energy. This is achieved using PyMca software (Solé et al., 2007), which
enhances precision. During calibration, the elemental composition is adjusted
until the simulated spectrum closely aligns with the measured spectrum.

Extraction: After identifying the elements present, images of elemental
distribution are created by extracting the intensity per pixel from the measured
spectrum at each position. The reduction step involves simply integrating one of
the characteristic peaks of the element over a defined interval while ensuring that
the chosen line does not overlap with a line of another element.

Figure 2.15 shows a measured spectrum from a renal papilla sample studied in
this thesis, along with its corresponding calibrated spectrum.

P Kα

Ca Kα

Ca Kβ Fe Kα Zn Kα

Compton 
Scattering

Elastic
Scattering

Ar Kα

K Kα

Si Kα

Figure 2.15: An X-ray fluorescence spectrum measured and calibrated with the
PyMca software.

2.2.3.3. Position correction
Designed to align data by their acquisition time base, the NEXUS file

organizes data irrespective of their dimension (1D, 2D, 3D, or 4D). However,
practical factors like acceleration and deceleration phases, variable translation
speeds, and alternating scan directions can introduce inaccuracies into this time
base. Consequently, a realignment process is necessary to accurately position the
data within an orthonormal reference frame.
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In this thesis context, which addresses 2D, 3D, and 4D realigned data, such as
elemental distribution images/projections and incident intensity, the MATLAB
NANOSCOPIUM toolbox implements the realignment function. It relies on
encoder values from the translation stages recorded during acquisition. Bicubic
interpolation is employed to create a smooth, regular two-dimensional grid from
the measured intensity values. This choice of interpolation method is preferred
over linear, bilinear, and cubic interpolation because it results in a smoother
surface. However, when analyses require to preserve the Poisson statistic in the
statistics of the image, nearest neighbor interpolation is used instead.

For 3D/4D data, the interpolation operation is performed on each energy
channel in X-ray fluorescence (XRF). This process yields data cubes that enable
the extraction of the XRF spectrum for a region or volume of interest (ROI/VOI),
which can take various shapes. The realignment and interpolation steps are
essential for data processing and offer powerful capabilities for conducting
analyses on these regions/volumes.

2.3. Conclusion

This chapter outlines the interactions of X-rays with matter, which are crucial
to understanding the data and results generated during the work. Furthermore, it
introduces the specificities of synchrotron radiation techniques and the suite of
analytical tools available at the NANOSCOPIUM beamline. These instrumental
setups and theoretical frameworks are not only the basis but also the enabling
factors for the workflows and methodologies presented in this PhD work.
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CHAPTER 3

TOMOGRAPHY IMAGE RECONSTRUCTION

This chapter provides a brief introduction to tomography image
reconstruction, presenting an overview of the fundamental principles of computed
tomography within the context of the parallel beam configuration at the
NANOSCOPIUM beamline. It also introduces the algorithms that have been
explored during the PhD research, as well as the artifacts that may appear in the
reconstructed tomograms.

The tomographic reconstruction process starts with a collection of raw
projections of the object, taken from varying angles. Following the data
acquisition, the processing and reconstruction procedures enable the depiction of
the object’s internal structure non-destructively. This involves assembling the
acquired data and using adaptive algorithms to create cross-sectional images of
the sample, both in 2D and 3D.

The principles, advantages, and potential limitations of the algorithms are
analyzed in this chapter. Such an analysis enables us to select the most
appropriate reconstruction approach, considering raw data attributes like the
signal-to-noise ratio and specific constraints such as the missing wedge condition
or limited numbers of projection in X-ray tomography experiments. Furthermore,
understanding the underlying principles of these algorithms allows for their
optimization, especially when addressing challenges inherent to specific
applications, such as sparse tomography. The adaptive reconstruction algorithms
to solve the intricacies of sparse tomography are pivotal to the theme of my PhD
thesis.

3.1. Background of tomography reconstruction

This section is essential for comprehending the fundamental principles of X-
ray tomography. The term “tomography” originates from the Greek word “tomos”,
signifying “slice” or “section”. Tomography is the process of imaging a sample in
cross-section, i.e., as axial slices (Goldman, 2007).

As a nondestructive and multi-modal imaging technique, X-ray tomography
involves acquiring multiple projections of a sample’s physical properties from
various angles. These projections subsequently serve as the input for the
reconstruction of either a 2D slice or 3D volume illustrating the inner structure of
the object. Conceptually, the reconstruction of an object can be regarded as an
“inverse problem”, representing the inverse of the initial acquisition process.

3.1.1. Radon transform
In tomography measurement, the projection operator is mathematically

represented by the Radon transform, which sums the object function along a radial
line oriented at a specified angle.
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The formulation of the Radon transform differs depending on the beam modes
employed, such as parallel beam, fan beam, or cone beam, during data acquisition.
For scanning imaging, like that performed at the NANOSCOPIUM beamline, the
acquisition geometry is parallel. Thus, our discussion here is limited to this case.

Assume an object is described by a 2D density function f(x, y), indicating the
distribution of its physical property (e.g., the linear attenuation coefficients or the
X-ray fluorescence density emitted by the sample). The Radon transform, i.e., the
projection function at angle ϕ, denoted as pϕ(r), is:

pϕ(r) =

∫ ∞

−∞
f(x, y)ds (3.1)

Here s is the line at a distance r from the origin, oriented at an angle ϕ from the
axis (see Figure 3.1). To facilitate the transformation, we link the x−y coordinate
system with the r−s coordinate system through a rotation matrix:[

x
y

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

] [
r
s

]
(3.2)

x

y

𝝓𝝓

𝑝𝑝𝜙𝜙 𝑟𝑟

Figure 3.1: Schematic diagram of the original coordinate system and the rotated
new coordinate system.

By replacing ϕ with −ϕ, the inverse transformation is:[
r
s

]
=

[
cosϕ sinϕ
− sinϕ cosϕ

] [
x
y

]
(3.3)

Consequently, the projection becomes:

pϕ(r) =

∫ ∞

−∞
f(r cosϕ− s sinϕ, r sinϕ+ s cosϕ)ds (3.4)

This equation describes the Radon transform at angle ϕ. Often, the image
function values are discrete rather than continuous, like pixel positions in an
image. As a result, the Radon transform’s integral becomes a sum:

pϕ(r) =
∑
s

f(r cosϕ− s sinϕ, r sinϕ+ s cosϕ) (3.5)
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To accurately reconstruct the internal density function f(x, y) of the sample,
projections must be collected from various angles ϕ. The complete collection of these
line integrals over the full angle range constitutes a 2D dataset typically known as
the sinogram, named for the sinusoidal trajectory a point on the object traces during
rotation (refer to Figure 3.2-C). In this sinogram, the vertical axis signifies the value
measured at each pixel along the r axis, while the horizontal axis corresponds to the
different projection angles.

Figure 3.2 illustrates the projection process using a phantom example. Here
the forward projection dataset results from data collection ranging from 0 ° to
180 °, incremented by 1 °. Of note, due to symmetry, the line integral at angle θ is
identical to the line integral at angle θ + π. This symmetry simplifies data
acquisition in absorption tomography. However, it is inapplicable to X-ray
fluorescence tomography, which will be discussed in Chapter 4. In X-ray
fluorescence tomography experiments, the self-absorption depth of the measured
element differs for two angles separated by π. Thus, data acquisition extends to
2π. This makes the data acquisition and reconstruction more time-consuming and
challenging due to the absence of this symmetry property.

x

y

A

Projected 
intensity profile 

at 𝝓𝝓 = 𝟎𝟎𝟎

B

r

𝝓𝝓

C

Figure 3.2: Shepp-Logan phantom example for illustration of the projection process.
Considering a phantom slice represented by a density function f(x, y) as shown in A.
The projections of this phantom slice are collected from various angles ranging from
0 ° to 180 ° with a step size of 1 °. In B, an intensity profile at 0 ° is presented.
C displays the corresponding sinogram, which represents the dataset obtained from
the 180 forward projections. The two axes represent the measured intensity and the
different projection angles.

3.1.2. Inverse Radon transform
The inverse Radon transform is the back projection operation that can be

considered the inverse operation of forward projection. In back projection, each
point in the object domain receives the value of the corresponding point where it
projects to. This process will be formulated in detail in Section 3.3.2.
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3.1.3. Central slice theorem
The central slice theorem, also known as the Fourier slice theorem or

projection slice theorem, is a fundamental concept in many reconstruction
methods. This theorem establishes a direct connection between the object and its
projection in the spatial frequency domain. It states that the 1D Fourier transform
of an object’s parallel projection function at a specific angle corresponds to a
“sample” (a cross-section) of the 2D Fourier transform of the object evaluated at
the same angle (Kak and Slaney, 2001; Russo, 2017).

Using the notation introduced in Section 3.1.1, the 1D Fourier transform of the
projection function pϕ(r) at frequency ω, denoted as Pϕ(ω), can be expressed as:

pϕ(ω) =

∫
pϕ(r)e

−i2πωrdr =

∫∫ ∞

−∞
f(x, y)e−i2πωrdrds (3.6)

Next we perform the substitution of drds to dxdy:

drds = det

[
∂r
∂x

∂r
∂y

∂s
∂x

∂s
∂y

]
dxdy = det

[
cosϕ sinϕ
− sinϕ cosϕ

]
dxdy = dxdy (3.7)

In addition, we replace r = x cosϕ+ y sinϕ obtained from the rotation matrix:

pϕ(ω) =

∫∫ ∞

−∞
f(x, y)e−i2πωrdxdy

=

∫∫ ∞

−∞
f(x, y)e−i2πω(x cosϕ+y sinϕ)dxdy

=

∫∫ ∞

−∞
f(x, y)e−i2π(xω cosϕ+yω sinϕ)dxdy

(3.8)

Comparing this with the 2D Fourier transform of the complete density function
f(x, y):

F (u, v) =

∫∫
f(x, y)e−i2π(ux+vy)dxdy (3.9)

We observe that these two expressions are equivalent when u = ω cosϕ and
v = ω sinϕ. This means that the values obtained by the 1D Fourier transform of
the object’s projection, when rotated to an angle ϕ, correspond to the values along a
line forming an angle ϕ with the u-axis and passing through the origin of the 2D
Fourier transform of the object (Figure 3.3).

In principle, if the data in Fourier space is sufficiently sampled, we can
gradually improve our understanding of the object and the reconstruction can be
done using an inverse Fourier transform of the Fourier space F (u, v):

f(u, v) =

∫∫
F (x, y)ei2π(ux+vy)dudv (3.10)
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Figure 3.3: Illustration of the central slice theorem.

In practice, it is impossible to acquire an infinite number of projections for
reconstruction. This situation results in gaps between two successive projections,
as shown in Figure 3.4. Sampling in Fourier space is crucial for the reconstruction
of images. Undersampling can be a source of reconstruction error, which can lead
to the appearance of aliasing artifacts in the reconstructed image. A unique and
information-preserving reconstruction is achievable when the sampling frequency
of an object exceeds twice the highest frequency of its details, this critical frequency
is called Nyquist frequency (fN ).

u

v

𝟏𝟏/(𝟐𝟐𝟐𝟐𝑹𝑹)

Fourier 
domain

𝟐𝟐𝒗𝒗

𝟐𝟐𝝓𝝓

Figure 3.4: Angular sampling considerations. Adapted from (Fessler, accessed 23
Sept. 2023).

To achieve the required sampling in Fourier space, we consider an object with a
length of NR ·∆R spaced by ∆R, where NR is the number of pixels in reciprocal space.
fN is related to the pixel spacing ∆R as fN = 1/(2∆R). The spatial frequencies in
Fourier space are then spaced by:

∆v =
1

NR ·∆R
(3.11)

Consequently, the angular sampling step ∆ϕ (see Figure 3.4) must not exceed
the spatial frequency ∆v. Thus, the maximum angular interval ∆ϕ is given by:

∆ϕ =
∆v

fN
=

∆v

1/(2∆R)
=

2

NR
(3.12)
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As a result, the number of equally spaced projections is:

Nproj =
π

∆ϕ
=

π

2
NR (3.13)

over an angular range of π rad.

In scanning X-ray tomography, fewer projections are used to avoid the
substantial multiplied increase in acquisition time, and this is often referred to as
“sparse tomography”. However, inadequate projection numbers can lead to
significant artifacts in the results using analytical algorithms, as discussed in
subsequent sections, typically in the form of visible streaks, compromising the
quality of the reconstructed image. Therefore, the selection of the proper
reconstruction algorithm is crucial for sparse tomography.

3.2. Introduction to the reconstruction algorithms

In Section 2.2.2.3, we introduced how X-ray continuous scanning provides
projections of the imaged object. The subsequent step is the reconstruction of the
imaged object in 3D, which requires the tomography reconstruction algorithm that
utilizes the acquired projections as its input.

Reconstruction algorithms for tomography imaging can be classified into two
main categories: analytical and iterative methods. Analytical methods, like
filtered back projection (FBP), use mathematical transformations and inversion
techniques to efficiently reconstruct images without iteration. On the other hand,
iterative methods improve the quality by iteratively refining the image estimate.
This classification is illustrated in Figure 3.5.

Reconstruction algorithms

Direct Fourier 
reconstruction,

FBP…

Analytical Iterative

StatisticalAlgebraic

MLEM, 
SG… 

ART, 
SART…

Figure 3.5: Classification of the reconstruction algorithms. The analytical
algorithms, including direct Fourier reconstruction and filtered back-projection
(FBP), use mathematical equations to directly compute the reconstructed image
from the raw projection data. Iterative methods iteratively refine an initial estimate
of the image until it converges to the best-fit reconstruction.

While analytical methods like filtered back projection are computationally fast
and efficient, they may produce reconstructions with lower image quality compared
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to iterative methods. On the other hand, iterative methods can produce higher-
quality reconstructions by iteratively refining the image estimate, but they require
more computational resources and longer processing time. The number of iterations
can also significantly impact the reconstruction quality.

3.3. Analytical methods

3.3.1. Direct Fourier reconstruction
As explained in Section 3.1.3, the central slice theorem states that the 1D

Fourier transform of a projection acquired at a certain angle is mathematically
equivalent to a “central slice” in the 2D Fourier transform F (u, v) of the original
image function evaluated at the same angle (Kak and Slaney, 2001).

Intuitively, by conducting as many independent projections as possible, the
reconstruction results can be obtained by applying the inverse Fourier transform.
However, during tomographic acquisition, the inherent sampling characteristics in
the Fourier domain of the object introduce a bias towards low frequencies. As
shown in Figure 3.6, high frequencies are under-sampled, and low frequencies are
over-sampled. Consequently, this results in a blurred reconstructed image. The
high-frequency details like sharp edges are lost.

u

Fourier 
domain

v

Figure 3.6: Illustration of the sampling in the Fourier domain. The available
samples in Fourier space are organized in a radial grid, resulting in the low-
frequency components being sampled more densely than the high-frequency ones.

Moreover, the Fourier transform of f(x, y) is sampled along radial lines. To
apply the discrete inverse 2D Fourier transform, it is necessary for F (u, v) to be
sampled on a rectangular grid. This leads to an interpolation process, often
referred to as “gridding”, Consequently, interpolation is used to transition from
polar coordinates to a Cartesian grid, as illustrated in Figure 3.7.

Common interpolation methods include linear or nearest-neighbor
interpolation, as well as higher-order techniques like cubic interpolation.
Interpolation in the Fourier space may result in image artifacts when the inverse
Fourier transform is applied to convert data back into real space (Russo, 2017).
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Figure 3.7: Interpolation from the polar coordinates to a Cartesian grid.

3.3.2. Filtered back projection
To overcome the blurring problem in the reconstructed image, filtering

techniques are employed in the filtered back projection (FBP) algorithm. In
particular, a high-pass filter is applied to the projection to attenuate the
low-frequency components, thereby improving the visualization of finer details
and edges in the reconstructed image.

We recall the notation used in Section 3.1.3. In tomographic imaging, a 2D
density function f(x, y) can be reconstructed from its Fourier transform F (u, v) by:

f(x, y) =

∫∫
F (u, v)ei2π(ux+vy)dudv

=

∫∫
F (ω cosϕ, ω sinϕ)|ω|ei2πω(x cosϕ+y sinϕ)dωdϕ

(3.14)

where dudv = |ω|dωdϕ for the variable change from Cartesian to polar coordinates.

Replacing F (ω cosϕ, ω sinϕ) with P (ϕ, ω) according to the central slice theorem:

f(x, y) =

∫∫
P (ϕ, ω)|ω|ei2πω(x cosϕ+y sinϕ)dωdϕ (3.15)

=

∫
p̂(ϕ, x cosϕ+ y sinϕ)dϕ (3.16)

p̂(ϕ, r) = F−1(P (ϕ, ω)|ω|) =
∫

P (ϕ, ω)|ω|ei2πωrdω (3.17)

In Equation (3.15), we observe that in the Fourier domain, the product
P (ϕ, ω)|ω| represents a filtering process, with |ω| acting as a ramp filter in the
frequency domain, commonly known as the Ram-Lak filter. This filtering
operation can lead to the negative components in the filtered projection (Baruchel,
2000). Then Equation (3.16) represents the back projection operation of the
filtered projection into the image domain. This leads us to the formula of the
filtered back projection algorithm for tomographic reconstruction.
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The FBP algorithm involves the following steps:

(1). Collection of complete projections p(ϕ, r) and obtain the 2D sinogram.
(2). Filtering process:

(a). Calculation of the Fourier transform P (ϕ, ω) of the projections p(ϕ, r).
(b). Fourier space filtering: P (ϕ, ω)|ω|. The filter can be a combination of

a ramp filter and other filters, such as using a sinc-function
(Shepp-Logan filter), a cosine- or a Hamming filter (Russo, 2017).
Some specific forms for these filters can be found in Figure 3.9.

(3). Compute the inverse Fourier transform of P (ϕ, ω)|ω| to get the filtered
projection p̂(ϕ, r).

(4). Back project the filtered projection p̂(ϕ, r) to get the 2D density function
f(x, y).

Object

Projection

Sinogram

Without filtering

FBP with 
Ram-Lak filter

Back 
projection

Apply 
filter

Figure 3.8: Reconstruction by FBP algorithm. Reconstruction of a Shepp-Logan
phantom respectively by unfiltered back projection and FBP with Ram-Lak filter
with 180 projections over 180°.

In Figure 3.8, we compare the results of the reconstructed images using the FBP
algorithm with a Ram-Lak filter and back projection without filtering. As discussed
in Section 3.3.1, the absence of filtering causes oversampling in the low-frequency
domain. This results in a blurred reconstruction where the image values deviate
from the original data.

Nonetheless, the FBP algorithm not only effectively captured the
low-frequency features of the image function but also reconstructed sharp edges
and preserved high-frequency details within the reconstructed phantom, such as
the light gray circle features. To achieve the best compromise between spatial
resolution and image noise in practical implementations, the ramp filter |ω| is
frequently combined with different apodization window functions W (ω) that are
tailored to match the noise characteristics:

f(x, y) =

∫∫ ωmax

−ωmax

P (ϕ, ω)W (ω)|ω|ei2πω(x cosϕ+y sinϕ)dωdϕ (3.18)
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The ramp filter |ω| serves as the baseline in Equation (3.18). And the window
functions shown in Figure 3.9 are defined as (Velo et al., 2015):

Ramp : W (ω) = 1 (3.19)

Shepp− Logan : W (ω) = sinc (ω/2) (3.20)

Cosine : W (ω) = cos (ω/2) (3.21)

Hamming : W (ω) = 0.54 + 0.46 cos (ω) (3.22)

Hann : W (ω) = 0.5 + 0.5 cos (ω) (3.23)

a
p
n
m
d
E
e
x
0_＿
正

Ram-Lak filter 
— Shepp-Logan filter 

Cosine filter 
— Hamming filter 

Hann filter 

。

Spatial frequency 

Figure 3.9: Different filters for the FBP algorithm. Ram-Lak filter serves as the
standard ramp filter derived from coordinate transformation. The other filters
have an increasing roll-off as they approach higher frequencies, designed for noise
suppression. Adapted from (Srinivasan et al., 2014).

When using FBP for image reconstruction, one of the very few parameters we
can adjust is the window type W (ω). Essentially, these windows allow us to
customize the ramp filter by varying the attenuation of high frequencies to achieve
noise reduction in the final image.

FBP is widely adopted in various software packages due to its rapid
reconstruction process. Nonetheless, it requires a large number of projections to
mitigate streak artifacts, as illustrated in Figure 3.10. Additionally, it is less
proficient at handling random noise introduced into the data, as illustrated in
Figure 3.11 for the example of Poisson statistical noise. Consequently, iterative
methods are frequently used to tackle these challenges.
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10 projections

50 projections

20 projections

100 projections

Figure 3.10: Streak artifacts caused by insufficient projections in the reconstructed
phantom by FBP.

100 projections
𝜟𝜟𝝓𝝓 = 𝟏𝟏.𝟖𝟖°Original Phantom

Poisson 
noise 
added

Noisy Sinogram

FBP

Figure 3.11: Reconstruction result using FBP when the sinogram is corrupted by
Poisson noise.

3.4. Iterative methods

Iterative algorithms have gained much attention in X-ray tomography
reconstruction. Unlike the analytical methods, which rely on an analytical
expression for inverting the Radon transform, iterative reconstruction offers an
alternative by addressing the problem through discretization, simplifying the
reconstruction task into solving a set of unknown values from a set of equations
(Bailey, 2014). In particular, the objective function is often constructed using the
likelihood function, enabling the modeling of noise in the projection data, even in
the low signal-to-noise ratio cases.
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Iterative methods follow a sequential process to improve the quality of the
reconstructed image as illustrated in Figure 3.12. Firstly, an initial image
approximation is generated, typically consisting of pixels with uniform values.
This approximation is then projected to obtain an estimated projection, which may
deviate from the actual measurement. A quantifiable error is determined by
comparing the projection calculated based on the estimated distribution, to the
measured one. This error is then back-projected into the image space which leads
to an updated estimation of the image. The updated image is then projected and
compared with the measured projection in an iterative manner. As the iterations
progress, the reconstructed image gradually converges toward a representation
that best fits the sample.

Initial projection

Projection estimation

Comparison with 
measured projection Error Back projection

Projection Update the 
estimate of image

Figure 3.12: Flow chart of iterative reconstruction algorithms.

3.4.1. Algebraic reconstruction technique
The algebraic reconstruction technique (ART), also known as the Kaczmarz

method, is named after the mathematician Stefan Kaczmarz (Kaczmarz, 1937). In
this approach, the unknown object function f(x, y) is discretized into pixels as
f(x, y) ≈

∑N
j=1 fjϕj(x, y), with the pixel basis function ϕ defined as:

ϕj(x, y) =

{
1, if (x, y) ∈ pixel j
0, otherwise

(3.24)

Using the discretized object function, the projection process can be
mathematically expressed as:

pi =

N∑
j=1

wijfj (3.25)

where wij represents the probability or contribution of detecting events from the
pixel fj at the ith detection unit pi (see fig. 3.13).

Also, it can be represented in matrix notation as follows:

p = Wf (3.26)

where N is the number of pixels in the grid. M is the total number of measured data
values. W = wij ∈ RM×N denotes the projection matrix. f = (fj) = [f1, f2, · · · fN ]T

and p = (pi) = [p1, p2, · · · pM ]T are one-dimensional vector representing respectively
the pixel value in the grid and the projection value measured on each detection unit.
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Figure 3.13: Illustration of the discretization of the projection process. The
contribution wij of pixel j to the projection value pi is illustrated as the length of
intersection indicated in yellow.

Solving the Equation (3.26) directly for an accurate solution f is impractical
because the presence of noise and discretization effects makes the system
inconsistent and also the matrix would be too large to be numerally inversed
(Bloch, 2010). Consequently, algebraic methods are typically employed to
minimize the norm ∥ Wf − p ∥.

The ART algorithm is a row-action algorithm, updating the image in a “ray-
by-ray” manner. Its objective is to iteratively refine the estimated image to satisfy
one “ray” equation (corresponding to one row of the equation p = Wf ) during each
update.

The search for the solution proceeds through an iterative process where the
solution is iteratively projected onto one of the constraints. This approach ensures
that at least one of the system’s equations is satisfied at each step. Through the
iterative process, the algorithm tries to converge progressively toward the
intersection point, providing a final solution for the reconstruction.

In the example illustrated in Figure 3.14, the object only has 2 pixels
f = [f1, f2]

T and each line represents an equation:

L1 : p1 = w11f1 + w12f2

L2 : p2 = w21f1 + w22f2
(3.27)

The solution is their intersection point. f (0) is the initial guess of the solution.
The first step is to project this point onto line L1, and we obtain f (1). Next, we
project f (1) onto line L2 to obtain f (0) · · · and so on: Project each point onto a line
(which is one equation) once at a time. This iterative process continues until the
algorithm converges to the solution of the system of equations. If the equations are
not consistent, the algorithm will diverge.
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Figure 3.14: The ART algorithm procedure with 2 projection measurements. The
intersection of two lines is the solution. In this example, the object only has 2 pixels
f = [f1, f2]

T .

The formula for updating the pixel values is:

f
(k+1)
j = f

(k)
j + wij

pi −
∑N

h=1wihf
(k)
h∑N

h=1w
2
ih

(3.28)

where f (k+1) is the updated pixel value of the image, f (k) is the current pixel value,
pi is defined in Equation (3.25) as pi =

∑N
j=1wijfj .

For sparse angle tomography, the ART method can produce noisy results. To
improve its performance, the variation method: Simultaneous Algebraic
Reconstruction Technique (SART) has been introduced. In SART, all projection
values within a single projection are collectively processed in a single iteration.
(Andersen and Kak, 1984). The update formula for SART is then expressed as
follows:

f
(k+1)
j = f

(k)
j +

1∑
i∈Iθ wij

∑
i∈Iθ

wij(pi −
∑N

h=1wihf
(k)
h )∑N

h=1w
2
ih

(3.29)

where Iθ represents the set including all indices corresponding to projection values
within a single projection at angle θ (Russo, 2017).

SART can offer good performance with limited projection data. Figure 3.15
shows the evolution of the reconstruction result as a function of the number of
iterations using the SART algorithm. The dataset used 20 projections spanning
180 °. In the beginning stages of iteration, the reconstruction might appear with
streak artifacts (characteristic of sparse tomography). As the number of iterations
increases, one can notice improvements in image clarity, resolution, and the
gradual suppression of artifacts. In the final stages, while the image might appear
clearer and more accurate, there is a risk of over-enhancement, which could
introduce artifacts or amplify noise (not presented in this case). This emphasizes
the importance of selecting an optimal iteration number to achieve a balance
between image quality and noise/artifact suppression.
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Figure 3.15: Reconstruction results obtained using the SART algorithm with
different iterations. Results were obtained from a dataset consisting of 20
projections over 180 °.

3.4.2. Maximum-likelihood expectation-maximization
When considering statistical modeling for image reconstruction, the

Maximum Likelihood-Expectation Maximization (MLEM) algorithm emerges as a
prominent and widely recognized method. It serves as the foundation for several
image reconstruction algorithms that are more practical for real-world
applications. For instance, the Ordered Subset Expectation Maximization (OSEM)
method and other derived approaches have been developed to enhance the
convergence speed and reconstruction quality.

The primary objective of the MLEM algorithm is to establish a statistical
model for image reconstruction. The objective function in this algorithm can be
defined as a likelihood function, representing the joint probability density function
of Poisson random variables. The goal is to find a solution, i.e., the reconstructed
image, that maximizes this likelihood function. Hence, the MLEM algorithm
operates as a Maximum Likelihood (ML) algorithm.

In mathematical terms, when seeking to determine the maximum or
minimum of a given function, such as the likelihood function in our case, it is
common practice to take partial derivatives with respect to all unknowns (i.e.,
pixel or voxel values) These derivatives are then equated to zero to obtain the
solutions for these unknowns. However, solving the Poisson likelihood function
directly can be challenging. Therefore, we adopt a strategy, where we convert the
problem of finding the extremum of a complex function into a series of
optimizations for “simpler functions”. This is achieved by taking the conditional
expectation value of the likelihood function, referred to as the “E-step”. This step
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significantly simplifies the problem at hand. We then proceed with finding the
maximum of the expected likelihood function to derive the corresponding image
estimates. This stage is known as the “M-step”, giving rise to the name “EM”,
representing the Expectation-Maximization algorithm.

By iteratively updating the reconstruction based on the
expectation-maximization principle, the MLEM algorithm aims to converge toward
an accurate estimation of the inverse Radon transform.

3.4.2.1. Mathematical derivation
The derivation of the MLEM algorithm for X-ray tomography is based on

(Bruyant, 2002; Zaidi, 2005). Let f̄j represent the mean number of events
occurring in pixel j, and aij be the probabilities that denote bin i detecting an
event from pixel j. The mean number of events ḡi detected by bin i can be seen as
the sum of the mean numbers of detected events from each pixel j:

ḡi =
m∑
j=1

aij f̄j (3.30)

The MLEM algorithm assumes that the number of events detected by bin i is a
Poisson variable. The probability (P ) of detecting gi events is:

P (gi) =
e−ḡi ḡgii
gi!

(3.31)

Given that i is independent, the probability of measuring a vector g given an
event map f̄ is the product of probabilities for individual pixels. Hence, the
likelihood function L(f̄) is:

L(f̄) = P (g|f̄) =
n∏

i=1

P (gi) =
n∏

i=1

e−ḡi ḡgii
gi!

(3.32)

where P (gi) is the Poisson probability of detecting gi events in bin i, as given by
Equation (3.31). Maximizing L(f̄) will yield the most likely distribution of events
according to the measured projections. To simplify the problem, the logarithm of
the likelihood is taken:

l(f̄) = ln (L(f̄)) =

n∑
i=1

(−ḡi + gi ln (ḡi)− ln (gi)!) (3.33)

The maximization step identifies the image most likely to have the measured
data by finding the maximum of the equation:

∂l(f̄)

∂f̄j
= −

n∑
i=1

aij +

n∑
i=1

gi∑m
j=1 aij f̄j

aij = 0 (3.34)

From which we can derive:

fnext
j =

f current
j∑n
i=1 aij

n∑
i=1

aij
gi∑m

j=1 aijf
current
j

(3.35)
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In the Equation (3.35), the projection operation is represented as a
summation over j, while the back projection is indicated as a summation over i. In
the MLEM algorithm, the process begins by projecting the current estimated
image via

∑m
j=1 aijf

current
j . This is compared with the actual image projection data

by dividing each element of the vector gi by
∑m

j=1 aijf
current
j . This correction ratio is

then back-projected into the image space, which serves to update the current
image estimate.

Moreover, the first summation
∑n

i=1 aij in the expression serves as a
normalization factor. This corresponds to the back projection of a constant value of
1 into the image domain. By dividing the correction factor by this normalization
factor, the updated image is appropriately adjusted.

Essentially, the MLEM algorithm iteratively improves the image estimation
(see Figure 3.16) by iteratively projecting and comparing the estimated image with
the actual projection data, followed by back projecting the correction factor to update
the image, while maintaining proper normalization.

50 iterations

5 iterations 10 iterations

20 iterations

180 projections

Figure 3.16: As the number of iterations increases in the MLEM algorithm, the
quality of the reconstruction generally improves.

The MLEM algorithm presents several advantages over the FBP algorithm.
One of the key advantages is its enhanced signal-to-noise ratio, particularly in
empty regions outside of the reconstructed sample. This quality proves crucial
when faced with challenges like insufficient angular sampling, as highlighted by
its ability to reduce streak artifacts (see Figure 3.17).
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20 projections

FBP MLEM (20 iterations)

Figure 3.17: Reconstruction results obtained using the FBP algorithm and the
MLEM algorithm with 20 iterations. These results were obtained from a dataset
consisting of 20 projections over 180 °.

Furthermore, MLEM algorithm offers a distinct advantage in X-ray
tomography. This advantage stems from the algorithm’s explicit accounting for
noise affecting the data (see Figure 3.18), as well as its inherent assumption that
the data are positive. As a result of its multiplicative nature, MLEM consistently
ensures that the results of reconstruction are non-negative. On the other hand,
FBP does not explicitly exclude non-physical negative values, which can occur as
part of the noise or reconstruction artifacts.

Original Phantom

Poisson 
noise 
added

Noisy Sinogram

MLEM

100 projections

Figure 3.18: Reconstruction results using MLEM when the sinogram is corrupted
by Poisson noise.

When we compare MLEM with ART and SART, each exhibits unique merits and
drawbacks. While ART and SART are rooted in algebraic methods and can be more
straightforward and are often easier to implement, their proficiency in handling
noise, especially in sparse datasets or when the signal-to-noise ratio may not be as
effective as MLEM. Moreover, to achieve non-negative results comparable to those of
MLEM, ART and SART might sometimes demand modifications or the incorporation
of additional constraints (Sanz et al., 2013).

For the sparse tomography in our workflow, detailed in Chapter 4, we chose
MLEM for reconstruction. However, there are some challenges to consider when
implementing MLEM. Its iterative nature implies that the reconstruction time
scales with the number of iterations, making it computationally demanding
compared to one-step algorithms like FBP.
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Additionally, like many iterative tomographic reconstruction algorithms,
MLEM poses the risk of noise amplification with increasing iterations. This can
make it challenging to define appropriate termination criteria for the iterative
process. Nevertheless, applying strategies such as defining optimal stopping
points, utilizing filters, or integrating penalizing priors can effectively mitigate
this challenge.

Figure 3.19 illustrates these differences between the reconstructions obtained
using different iteration numbers in the MLEM algorithm. The MLEM
reconstructions show improved signal-to-noise levels, indicating better noise
suppression compared to the FBP reconstruction in Figure 3.19. The 20-iteration
MLEM reconstruction has a slightly worse resolution. This implies that the
MLEM algorithm, with a smaller number of iterations, may result in a loss of fine
details or blurring in the reconstructed image.

The 100-iteration MLEM reconstruction has higher resolution, but it also
comes with higher noise levels at the features in the phantom (edges, and internal
elliptical features).

Original Phantom

MLEM (100 iterations)

MLEM (20 iterations)
20 projections
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Figure 3.19: Reconstruction results obtained using the MLEM algorithm with 20
and 100 iterations. These results were obtained from a dataset consisting of 20
projections over 180 ° to simulate sparse tomography conditions. The line profiles
along the dotted line in the original phantom are shown for results with different
iteration numbers in MLEM.
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These observations emphasize the trade-offs and characteristics of the MLEM
algorithm in terms of noise suppression and resolution. The choice of the number
of iterations in the MLEM algorithm should be carefully considered, taking into
account the desired level of noise reduction, resolution, and the presence of artifacts
in the reconstructed image.

3.5. Reconstruction artifacts

Another crucial aspect to consider when interpreting tomographic images is the
presence of artifacts. These represent features that appear in the image but don’t
physically exist within the actual object. They can originate from various sources
and strongly compromise the quality and accuracy of reconstructed images.

Several types of artifacts can occur, with the primary ones observed in the case
study of this thesis being: ring artifacts (found in full-field tomography), errors from
the rotation stage, missing wedge artifacts, and artifacts due to a limited number
of projections.

3.5.1. Ring artifacts
Ring artifacts appear as concentric rings or circular patterns in the

reconstructed image, as shown in Figure 3.20. In this thesis, these artifacts are
specifically associated with the full-field tomography technique. They can emerge
due to imperfections in the X-ray detector or irregularities in the data acquisition
process. These artifacts can lead to distortions and inaccuracies in the
reconstructed image, complicating subsequent data segmentation.

Figure 3.20: Ring artifacts present and superimposed on the reconstructed
tomogram.
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One way to mitigate ring artifacts is through flat-field correction, particularly
relevant for full-field tomography. This method involves capturing images without
the sample, either before or after the main data acquisition. These “flat-field”
images capture irregularities such as the non-uniform sensitivity of the CCD
camera pixels, the non-uniform response of the scintillator screen, and variations
in the incident X-ray beam. However, even after applying this correction, some
artifacts might persist, especially when camera elements exhibit nonlinear,
intensity-dependent response functions or when the incident beam has
time-dependent irregularities (Boin and Haibel, 2006).

Another method involves utilizing image processing techniques to identify
and reduce the ring artifacts. Employing filtering and smoothing methods (Münch
et al., 2009), these techniques target either the sinogram or the reconstructed
image directly. With the application of these image processing techniques, the
visibility of the ring artifacts can be substantially reduced or eliminated.

3.5.2. Rotation stage errors
Errors in the rotation stage’s motion in tomography can impact the

measurements, thereby reducing the quality of the reconstruction. The main
sources of discrepancies between the actual and ideal positions over one revolution
include axial error, radial error, and tilt error. These motion errors are presented
in Figure 3.21.

Figure 3.21: Rotation stage errors refer to unintentional deviations in the sample
rotation stage’s position. From left to right: axial error, radial error motions, and
tilt error. Adapted from (Ferrucci et al., 2018).

The tilt error, also known as the “Wobble”, refers to the tilt of the rotation axis
compared to the ideal axis (see Figure 3.21 (right)). As the distance between the
tilted axis and the ideal one increases with altitude, the wobble can quickly become
the most significant source of error in submicronic tomography (tomography with a
voxel size smaller than one micrometer). Figure 3.22 displays the artifacts caused
by the wobble in a simulated image. Even with a shift of just ± 3 pixels from the
ideal sinogram, the tilt error causes shape distortion in the reconstructed image,
resulting in the inner structures blending and becoming unrecognizable.
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Figure 3.22: Illustration of the tilt error in the simulated phantom.
A: Reconstruction result of the object influenced by the tilt axis error. B:
Model of the tilt error represented by a cosine function relative to the rotation
angle. C: Overlay of the ideal sinogram and sinogram impacted by the tilt error.
Magenta and green areas highlight regions where the intensities differ.

3.5.3. Missing wedge artifacts
In X-ray tomography, “missing wedge” artifacts can occur in the reconstructed

image due to practical limitations during the acquisition process, which might lead
to certain regions or angles being inadequately sampled. Such as limitations on
hardware conditions of the experimental set-up or the supporting membrane on
which the sample is placed, making measurements at certain projections angles
impossible. Based on analytical reconstruction theories, this incomplete sampling
manifests as a “wedge-shaped” region in the Fourier space, where data is either
missing or underrepresented.

These missing wedge artifacts appear as distortions or inaccuracies in the
reconstructed image, particularly in areas corresponding to the unsampled data.
Such artifacts can take various forms, such as streaking, elongation, ghost tails, or
incomplete structural information (see Figure 3.23). As a result, there is risk of
misinterpretation the data or inaccuracies in the sample analysis.

While enhancing data acquisition conditions can mitigate some of these
issues, effectively addressing missing wedge artifacts necessitates advanced
reconstruction techniques or correction methods during data processing.
Approaches such as iterative reconstruction algorithms (MLEM, SART and also a
Fourier-based iterative algorithm from (Pryor et al., 2017)), or the incorporation of
prior knowledge using deep neural network (Pelt and Batenburg, 2013; Zhu et al.,
2018), can help reduce the impact of these artifacts.
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Figure 3.23: With the increase of the missing angle, the images reconstructed by
the FBP algorithm have obvious missing wedge artifacts. The increasing area of
missing wedge information introduces elongation and ghost-tail artifacts in the
reconstructed images. The original internal elliptical structure is also distorted.

3.5.4. Limited numbers of projection artifact
During the data acquisition process, if the angular sampling of the X-ray

projections is limited to a few projections or sparse in the whole sample rotation,
particularly in certain regions or orientations, streak artifacts can arise (see
Figure 3.24).

Original Phantom FBP reconstruction 
with 50 projections

Figure 3.24: Illustration of the streak artifacts caused by limited angle projections.
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This is because the missing projection data can result in incomplete
information during the reconstruction process. Although increasing angular
coverage is one of the most effective ways to reduce the artifacts, it is not always a
good option for scanning X-ray tomography in practice due to the lengthy
acquisition time per projection. There are still several strategies to reduce these
artifacts:

(1). Regularization techniques: Various regularization methods can be
employed to compensate for the limited angle data. These techniques
impose constraints on the reconstruction process to promote smoothness
and reduce artifacts. For example, Total Variation (TV) regularization
encourages sparsity and piecewise constant solutions (Behrooz et al.,
2012).

(2). Prior knowledge incorporation: Utilizing prior knowledge about the object
being imaged can help alleviate limited angle artifacts. This can involve
some structural information, such as known boundaries or interior domain
constraints, in the reconstruction process (Bridges et al., 2020).

(3). Advanced reconstruction algorithms: Iterative algorithms like MLEM are
commonly used in limited-angle cases. Their iterative nature allows for
gradual improvement in image quality and can help mitigate artifacts.
Recently, the development in some deep learning-based reconstructions
like Convolutional neural networks (CNNs) can also be trained to directly
learn the mapping between limited-angle projection data and the
corresponding artifact-free reconstructions. By training the network on a
large dataset of paired limited-angle projections and high-quality
reconstructions, the network can learn to generalize and produce
artifact-free images from limited-angle data (Buccino et al., 2023; Yang
et al., 2018).

(4). Post-processing techniques: Additional post-processing steps can be
applied to further reduce limited angle artifacts. These can include noise
filtering, deconvolution, etc.

3.6. Conclusion

In this chapter, we introduced the principles of tomography and different
tomography reconstruction algorithms. In addition, artifacts related to different
situations are also discussed.

Analytical methods offer the advantages of computational efficiency and easy
implementation. These methods rely on mathematical transformations and direct
inversion techniques. Their ability to reconstruct images quickly makes them
well-suited for applications that require real-time imaging or fast analysis. In
addition, their straightforward implementation simplifies their integration with
existing tomographic systems.

In more realistic biomedical imaging scenarios, where challenges like
incomplete data or the use of a limited number of projection angles are common,
iterative reconstruction methods demonstrate better performance when compared
to conventional approaches. By iteratively refining the reconstructed image, the
iterative methods can mitigate the effects of data imperfections and converge to a
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more accurate representation of the imaged object. It’s crucial to note that this
improved performance often requires additional computational resources and
longer processing times. Maximum Likelihood Expectation Maximization
(MLEM), as one of the iterative methods, is well suited for scanning XRF
tomography, especially when dealing with a limited number of projections (sparse
tomography) and a low signal-to-noise ratio. This is especially advantageous when
dealing with trace elements.

X-ray tomography reconstruction is susceptible to various artifacts, that arise
from factors such as limited angles, rotation stage’s motion, system imperfections,
etc. Techniques such as advanced reconstruction algorithms, regularization,
filtering, and hardware improvements can be employed to reduce or remove these
artifacts.

Understanding the trade-offs associated with reconstruction algorithms is
critical for us to make the decision depending on the specific requirements of the
application, such as reconstruction speed, accuracy, noise robustness, or
availability of a priori information.
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CHAPTER 4

METHODOLOGICAL DEVELOPMENTS AND
IMPLEMENTATION OF THE WORKFLOW

The chapter is based on the published paper: Guo, R., Somogyi, A., Bazin, D. et
al. Towards routine 3D characterization of intact mesoscale samples by multi-scale
and multimodal scanning X-ray tomography. Sci Rep 12, 16924 (2022).

This chapter outlines the workflow developed and implemented at the
NANOSCOPIUM beamline of the SOLEIL synchrotron. The workflow covers the
complete process, from data acquisition to data processing and analysis, detailing
each step involved in the experiment. Two types of Arabidopsis thaliana seeds
serve as demonstration samples to showcase the workflow’s performance. Notably,
the proposed workflow is both robust and efficient, enabling real-time data
analysis during the beamtime period.

4.1. Introduction

Scanning XRF and multimodal tomography techniques are highly effective for
studying mesoscale samples, offering a comprehensive understanding of their
internal features by reconstructing the projection images from various angles.
These methods provide clear insights into the spatial distribution of elemental
constituents, enabling analysis of sample morphology, crystalline structure,
chemical speciation, and more. At NANOSCOPIUM, all user projects apply for
XRF multi-scale imaging, often supplemented with additional modalities such as
absorption- or phase-contrast imaging/tomography, XANES, or XRD, to address
specific scientific challenges. In this methodology section, we have selected
scanning XRF imaging and the implemented scanning XRF tomography method
during this PhD work to demonstrate our workflow.

Scanning XRF tomography is a powerful technique used to investigate the
elemental composition and distribution within a sample. It involves acquiring
projections of X-ray fluorescence signals emitted by the sample from different
angles. Utilizing a focused X-ray beam to irradiate the sample, this technique
permits the analysis of spectra from individual pixels on each projection.

Processing the acquired projection data enables the creation of the
reconstruction of a three-dimensional representation of the sample. This further
facilitates the generation of elemental maps and concentration profiles, providing
valuable insights into the spatial distribution of elements and their relative
quantities within the material.
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Scanning XRF tomography has diverse applications in fields such as materials
science, geology, biology, archaeology, and environmental studies, offering a non-
destructive means of studying the composition and structure of various materials.
However, its implementation in synchrotron beamlines is limited, primarily due to
the extended acquisition time it demands. This remains a significant obstacle to its
comprehensive utilization.

While enhancements have been made in essential components like XRF
detectors–resulting in expanded active area ranges, higher count rates, and
consistent energy resolution regardless of input photon counts–these
improvements may not be a solution for reducing lengthy acquisition time. The
complexity of the samples being analyzed often necessitates additional
methodological approaches to get high-resolution images.

To illustrate the challenge, let us consider a practical example. We’ll assume
that we need to reconstruct the 3D tomogram of a sample with a scanning area
of approximately 300 μm × 300 μm, utilizing a pixel size of 2 μm. This implies that
we will need to scan a total of 22,500 points, and for each of these points, a dwell
time of 20 ms is estimated. Consequently, the completion time for each projection
would be around 7.5 minutes. To ensure compliance with the Nyquist sampling
condition (see Section 3.1.3), a fundamental requirement for traditional algorithms
like Filtered Back Projection (FBP), we need to have more than 470 projections over
a 360 ° rotation. This is crucial to prevent streak artifacts from appearing in the
reconstructed image. However, based on these parameters, it becomes apparent
that the acquisition time would exceed 60 hours.

In scanning XRF tomography, several challenges persist, one of which is the
timely delivery of results to users. The processing and analysis of large volumes of
multidimensional experimental data can often take up a large part of the available
beamtime. This delay can inhibit users from making informed decisions in a
timely manner, such as identifying the next areas for scanning based on the
ongoing results. Consequently, there is a pressing need for smart and efficient
data processing methods that can deliver results to users promptly, enabling them
to adapt their experimental strategies on-the-fly during the beamtime session.

Another crucial aspect of scanning XRF tomography is the need to make
decisions regarding experimental strategies while on-site at the beamline.
Different users have unique objectives for their studies, with varying priorities in
terms of spatial resolution, or elemental identification within the 3D volume. This
underscores the necessity for a flexible experimental approach that can address
the specific research questions posed by individual users.

All the aforementioned challenges highlight the need for a fast, robust, and
flexible workflow in scanning XRF tomography (see Figure 4.1). This workflow
optimizes the data processing and analysis stages, enabling users to obtain results
promptly. Moreover, it provides the necessary flexibility to adapt experimental
strategies in real-time during beamtime, allowing users to make informed
decisions and gain valuable insights from their samples in a more efficient
manner. Eventually, this enhanced workflow contributes to the broader
advancement and widespread application of scanning XRF tomography in various
scientific disciplines.
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Figure 4.1: Challenges in scanning XRF tomography and proposed solutions. By
integrating these proposed solutions into a coherent workflow, users can effectively
overcome the challenges, making the technique more accessible and efficient for
scientific applications.

4.2. Description of developed and implemented workflow on
NANOSCOPIUM

In this section, we introduce the developed and implemented workflow for
scanning multi-length scale XRF-tomography and complementary modalities at
the NANOSCOPIUM beamline. The implementation of quantitative XRF sparse
tomography in the workflow constitutes a significant component of the PhD work.
To demonstrate the performances of the workflow, Arabidopsis thaliana
seeds–provided by a collaborator of NANOSCOPIUM, Marie-Pierre ISAURE, from
IPREM, Pau–were used as demonstration samples.

The workflow, as illustrated in Figure 4.2, begins with sample mounting and
alignment to guarantee accurate positioning of the sample within the imaging setup.
This step is essential for achieving reliable and high-quality imaging data. The next
step involves the acquisition of sparse tomographic data of the entire sample. This
preliminary scan offers a comprehensive overview, facilitating the identification of
regions of interest for further investigation. The acquired data is then reconstructed
in medium-resolution tomograms, serving as a basis for subsequent high-resolution
measurements.

A strategy is developed for the high-resolution measurements, based on the
information obtained from the medium-resolution results. This strategy allows
users to focus their efforts on specific regions or features of interest, thereby
optimizing the efficiency of data collection. This high-resolution measurement can
be 2D projection imaging, 2D single slice tomography, local scanning 3D
tomography, or any combination of these. A careful balance needs to be struck
between acquisition time, spatial resolution, and the number of samples to be
investigated. Users must make a reasonable trade-off to optimize these factors.

103



Following a high-resolution experiment, an approximation of the achievable
spatial resolution for different projection numbers can be obtained using Fourier
ring correlation (FRC) calculations, as described in Section 4.2.5.2. This analysis
deepens our understanding of the expected spatial resolution in sparse
tomography by examining multiple datasets. It allows us to assess whether the
achieved resolution aligns with the specific requirements.

If the initial sparse tomography results do not meet the user’s expectations for
resolution, a second sparse tomography measurement can be performed. In this
case, the angular offset is adjusted to half the angular step employed in the first
sparse tomography experiment. The second sparse tomography, with the same
number of projections as the first, effectively doubles the total number of
projections and improves the spatial resolution accordingly. This approach
provides users with the flexibility to fine-tune spatial resolution in accordance
with their specific research goals.

As illustrated in Figure 4.2, all these imaging modalities can be reconstructed
semi-automatically on-site during the beamtime, using predefined and
pre-parameterized reconstruction algorithms. This enables users, including those
unfamiliar with X-ray imaging and tomography, to effectively guide their
experiments and refine scientific objectives based on real-time results obtained
on-site.

Moreover, the reconstructed tomograms are stored in the HDF5 data format,
which is fully interoperable with widely used cross-platform freeware and
open-source data analysis tools. Well-known tools such as PyMca for XRF data
processing (Solé et al., 2007), Fiji (Schindelin et al., 2012), and Chimera (Pettersen
et al., 2004) for imaging/tomography data visualization can be seamlessly used
with the reconstructed data. The use of the HDF5 simplifies data management
with the best-adapted software for further processing both on-site and
post-experiment, such as extracting mean XRF spectra, quantification, and
combining different imaging modalities. This approach also broadens the scope for
multivariate statistical analysis such as Principal Component Analysis (PCA) and
Cluster Analysis. These analyses can be performed straightforwardly on any
identified 2D features from the projection images or the reconstructed 3D
tomograms, facilitating comprehensive data exploration and interpretation.

Although scanning XRF tomography has been chosen as the primary focus to
illustrate the developed workflow during this PhD work, it is worth mentioning
that the workflow can be flexibly adapted and applied to various other imaging and
tomographic modalities. This multimodal approach enables a comprehensive
characterization of the sample, thereby facilitating a deeper understanding of its
composition, structure, and elemental distribution.
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4.2.1. Data acquisition
4.2.1.1. Experimental set-up

The experiments were conducted at the CX3 station at the NANOSCOPIUM
beamline of synchrotron SOLEIL, where KB mirrors are used for effective beam
focusing. Prior to scanning, a microscope is temporarily placed to visually assess
the sample and align it precisely on the focal plane of the KB mirrors, defining the
region of interest (see Figure 4.3). XRF signals are recorded by two
energy-dispersive detectors situated at a 120 ° angle to the beam, and incident and
transmitted beams are monitored using Si diodes.

M
icroscope

Focused 
X-ray 
beam

Sample

Figure 4.3: Experimental set-up for XRF tomography experiment.

To generate the angular projections required for tomographic analysis, we
employed an RT100-type rotation stage with controlled settings, operated through
a dedicated control panel. This setup is integrated into the Flyscan architecture
for efficient, continuous data collection. The rotation stage exhibits minimal
wobble, ensuring high-precision measurements and is complemented by two-axis
translation stages for additional sample alignment with the rotation axis, as
detailed in the following section.

4.2.1.2. Sample alignment
Alignment of the sample with rotation stage

Indeed, the rotation axis is pre-positioned at the focal plane of the KB mirror
by using a transversal translation stage positioned under the granite. For precise
alignment, it is crucial to align the sample axis with the rotation stage’s axis. This
involves both transversal and longitudinal adjustments using two perpendicular
translation stages (Tx_rotation and Ts_rotation) situated under the sample.
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The procedure begins with the alignment of the sample with the rotation axis of
the rotation stage. The sample is rotated to a position where Tx_rotation is aligned
with the transversal plane relative to the beam, and this position is marked. It is
then rotated 180 ° and marked again. The sample is then carefully repositioned by
using Tx_rotation at the midpoint between these two marked positions. A similar
procedure is followed with Ts_rotation after rotating the sample by 90 °. We are
in the process of developing an automated solution to expedite this sequence and
enhance its accuracy.

Alignment of sample with beam
Following the alignment with the rotation stage, the subsequent step is to

designate the suitable Region of Interest (ROI) for all the projections measured
during the sparse tomography acquisition.

Since the image collected by the microscope (also shown in Figure 4.3) is pre-
calibrated by the beamline team, the ROI coordinates can be directly input into
the FLYSCAN control panel (see Figure 4.4). Within this control panel, users can
specify the ROI coordinates, pixel size, angular steps, and integration time. A key
distinction between 3D tomography (Figure 4.4-A) and high-resolution single-slice
tomography (Figure 4.4-B) lies in the additional definition of the dimension along
the z-axis.

A

B

Figure 4.4: FLYSCAN control panel for scanning tomography experiments,
featuring settings for 3D tomography (A) and high-resolution single-slice
tomography (B).

4.2.1.3. Projection number of tomography
In the workflow, sparse tomography serves as the initial experiment. We have

chosen a configuration of 20 projections at 18 ° intervals covering a total 360 °
rotation by default. These scanning parameters are proposed as the default
settings for sparse tomography in our workflow because, based on our experience
with multiple samples and imaging modalities, they have been found to be the
best-balanced parameters for almost all experimental conditions. Most XRF
tomography processes will typically require no more than one shift (1 shift = 8
hours), allowing for ample time to conduct high-resolution measurements on
various samples during the remaining 14 shifts of beamtime.
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For high-resolution slice tomography, the selection of the projection number
for the analytical reconstruction methods follows the Nyquist sampling condition
to ensure the preservation of spatial resolution along the x-axis in the
reconstructed tomograms (see Figure 4.5). The projection number over 180 ° nproj

satisfying Nyquist sampling condition is defined as:

nproj =
πN

2
(4.1)

with N the pixel number along the scanning direction. For XRF tomography, the
number of projections needs to be doubled because the self-absorption depth of the
element being measured varies at two angles that differ by π. This consideration
is crucial for achieving accurate elemental mapping. As a point of reference, the
estimated spatial resolution for a configuration with 20 projections is around 10 μm.

4.2.2. Data processing
4.2.2.1. Data preprocessing

The elements present in the investigated samples are identified by analyzing
the sum XRF spectra obtained from all angular projections. PyMca software is
used for fitting the sum spectra, enabling the identification of elements within the
sample. Subsequently, elemental distribution maps and sinograms are extracted
from the raw dataset by integrating spectral regions of interest corresponding to
the detected elements. To obtain sample absorption maps and sinograms, the ratio
of transmitted and incident beam intensities was calculated at each pixel.

4.2.2.2. Data alignment
A crucial processing step is data alignment before the reconstruction. This

contains two different steps for the tomography dataset: the correction for positions,
which is the common one, and the correction for the measured sinogram, which is
specific to the tomography dataset due to its volume characteristic.

(1). Position correction: This follows the same procedure as explained in
Section 2.2.3.3.

(2). Sinogram correction: In order to ensure precise alignment of the center-
of-rotation, an essential step is the alignment of the sinogram along the
x-axis (see Figure 4.5-C). The objective of this step is to correct the shift
between the rotation axis and the horizontal symmetry axis (aligned with
the angle axis) of the sinogram image. Failure to address this shift can lead
to undesirable artifacts, which be observed as crescent or round-shaped
blurs and can obscure the sample’s microstructural details (see Figure 4.5
for the uncorrected result).
To accomplish this alignment, we employ a correction algorithm described
by (Azevedo et al., 1990). This algorithm is based on the relationship
between the center of mass of a sample and the center of mass of its
projections. Custom MATLAB code is utilized to execute the necessary
sinogram shifts, thereby ensuring accurate alignment of the center of
rotation.

To achieve precise sinogram correction of XRF datasets, we employ the signal
with the highest signal-to-noise ratio such as the sum-spectra signal as a reliable
reference. The correction factor identified using the sum-spectra signal is then
automatically applied to the remaining XRF datasets.
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Figure 4.5: Sample Sinogram Alignment. A: The sample is fixed on a loop mounted
in a pin (not shown here) for a 360 ° rotation data acquisition. B: In a mature
Arabidopsis seed sample, the embryo is enveloped by the endosperm, which is
further protected by the surrounding seed coat, and this entire structure is what
is being imaged. The sample is then rotated to collect the necessary projection data
for subsequent analysis and visualization. C: The alignment process focuses on
aligning the sinogram on the x-axis. D: The impact of misalignment of the sum-
spectra sinogram with the center line, comparing the results reconstructed by FBP
before and after correction. The reconstruction of the corrected sinogram presents
a clear inner structure of the seed.

The reconstructed volumetric data, exported as 16-bit z-stacks from MATLAB,
are further analyzed using ImageJ and visualized in Chimera for
three-dimensional volume rendering. The overall data processing is performed on
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a workstation equipped with an Intel® Xeon® Processor E5-2630 v3 operating at
2.40 GHz, featuring 32 CPUs and 125.8 GB of system RAM. This computational
setup provided the necessary resources for efficient data analysis and
visualization.

4.2.3. Tomographic reconstruction
In this section, we provide a brief recapitulation of the two reconstruction

algorithms employed in the workflow: Filtered Back Projection (FBP) and
Maximum Likelihood Expectation Maximization (MLEM).

The utilization of these two algorithms is motivated by the objectives of
simplifying the reconstruction process and enhancing user-friendliness.

As these algorithms are introduced in detail in Chapter 3, here we aim to
outline their functions within the workflow and highlight their respective
characteristics and limitations.

The FBP algorithm is under the category of analytical methods and is widely
employed for routine tomographic dataset reconstruction. It offers simplicity and
speed, making it the most commonly used method. FBP exploits fast Fourier
transforms and does not require extensive parameter tuning. However, its
robustness is compromised when dealing with sparse, low-contrast, or noisy
measurements (Kazantsev et al., 2017; Bergamaschi et al., 2016), which are
frequently encountered in XRF tomography. Consequently, it is implemented for
high-resolution imaging and single-slice tomography reconstruction in the
workflow when the Nyquist condition is satisfied.

MLEM, an iterative algorithm, plays an important role in the workflow due to
its ability to explicitly account for noise in the data and enforce pixel positivity in the
estimated image (Dempster et al., 1977). Initially developed for positron emission
tomography (PET) data analysis, MLEM assumes a Poisson distribution of acquired
photon statistics, making it more tolerant to noise compared to FBP (Bourassa et al.,
2016). It is categorized under majorization-minimization algorithms (Hunter and
Lange, 2004), characterized by a monotonic decrease in the negative log-likelihood
of the estimated image based on the given data. Moreover, MLEM employs simple
multiplicative updates, ensuring that the estimated image has positive pixel values
as long as the starting assumption image also contains positive pixels. Notably, the
MLEM algorithm exhibits good performance when dealing with sparse tomography
datasets in the workflow, and streak artifacts can be reduced when combined with
an appropriate early stopping strategy, as described subsequently.

4.2.3.1. Determination of the number of iterations: automatic early
stopping strategy for MLEM

In the previous section, we discussed the efficiency of the MLEM algorithm,
particularly in the context of limited projection number datasets. The MLEM
algorithm exhibits noise tolerance, making it a suitable choice for various data
conditions. However, it does suffer from a drawback: as the iteration increases
beyond a certain number, it introduces additional noise into the reconstructed
tomogram. This noise accumulation is unpredictable and varies with different
data conditions.
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While this problem is of less concern for datasets with a large number of
projections, it becomes more obvious in sparse tomography. In sparse tomography,
the signal-to-noise ratio in the reconstructed tomogram is already compromised
due to reduced acquisition time (or statistics) and lower resolution. Consequently,
this significantly impacts the accuracy of the final reconstruction results.

Therefore, it is imperative to develop a method that can strike a balance
between achieving satisfactory results and preventing unnecessary iterations that
introduce excessive noise (Pafilis et al., 2011). It is crucial to integrate an early
stopping strategy with a well-tuned criterion into the MLEM reconstruction. The
early stopping strategy enables the automatic termination of the MLEM iteration,
providing satisfactory results while avoiding premature termination that could
hinder the refinement of resolution.

In this Ph.D. work, I propose an appropriate early-stop criterion for the MLEM
reconstruction algorithm, specifically designed for sparse tomography datasets. The
criterion is based on a widely adopted figure of merit known as the normalized root-
mean-square error deviation (NRMSED). The NRMSED serves as an indicator of
the reconstruction quality, capturing the deviation between the reconstructed and
measured data. It is defined as:

NRMSED =

√∑N
i=1(x(i)− x̃(i))2∑N

i=1 x(i)
2

(4.2)

where x(i) is the measured sinogram, x̃(i) is the reconstructed estimation by MLEM
and N is the total pixel number in the sinogram.

To continuously track the differences throughout the reconstruction process,
it is essential to compare the change in NRMSED dynamically, i.e., considering its
connection with the previous reconstruction result. It becomes particularly
necessary as small differences between successive reconstructions indicate the
optimal time to stop the algorithm. To facilitate this dynamic evaluation, we
introduce the derivative of NRMSED, and the ratio, denoted as R, which quantifies
the change in NRMSED between two consecutive iterations:

R =
∆NRMSED

NRMSED
(4.3)

where ∆NRMSED = NRMSED(i) −NRMSED(i−1) is the derivative of NRMSED.

The similarity increases monotonically between successive iterations, as
indicated by R, guiding the termination decision. To establish a threshold, we have
set R ⩾ −0.15% based on extensive testing across multiple datasets and imaging
modalities, ensuring robust and efficient results. To limit the maximum
reconstruction time, a predetermined large number of iterations (e.g., 200) is
initially set. The MLEM algorithm reconstructs the tomograms slice by slice,
calculating the R ratio for each slice after each iteration. Once the threshold is
reached, the algorithm automatically terminates for that particular slice and
proceeds to reconstruct the next one. Optionally, the reconstruction could perform
a few additional iterations after reaching Rthreshold.

According to our experience, the algorithm generally reaches the R ⩾ Rthreshold

condition around 20 iterations, well before the preset 200 iteration steps.
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The stopping strategy for the iteration number i can be summarized as follows:

(1). For all the slices, set the threshold to −0.15 % and the initial number of
iterations to a relatively large value, around 200.

(2). Reconstruction process begins for the first slice using the MLEM
algorithm, and the ratio R is calculated for each iteration.

(3). The iteration is stopped when the condition R ⩾ Rthreshold is satisfied.
(4). Repeated for all the slices in the dataset.

This robust and automated reconstruction process can generate reliable
results even when working with a minimal number of angular projections, such as
five, as demonstrated in Section 4.3.3. Its effectiveness enables inexperienced
users in synchrotron-based imaging and tomography to confidently reconstruct
their tomographic datasets directly on-site.

4.2.3.2. 3D volume visualization
The reconstructed volumes are visualized using the freely available software,

Chimera (Pettersen et al., 2004). With the user-friendly interface, users of all skill
levels can easily navigate and utilize its features. Chimera facilitates users to
explore volumes by providing interactive tools for 3D visualization.

4.2.4. Data quantification
The technique of 2D scanning XRF imaging is frequently utilized as a

semi-quantitative approach in elemental analysis. The spectra obtained per
scanning pixel provide information on the number of characteristic X-ray
fluorescence photons recorded within a specific dwell time. However, to obtain
absolute element concentrations within the sample, it is necessary to compare
these spectra with the spectrum of a reference standard sample that possesses
known element concentrations. The integration of elemental concentration
quantification into the workflow is of utmost importance. It enables users to
determine precise amounts of elements present in the sample and facilitates the
observation of changes in elemental concentrations in different areas within the
sample. Moreover, quantitative analysis plays a crucial role in enabling
meaningful comparisons between diverse samples or datasets during the
experiments, thereby completing the on-site data analysis step in the workflow.

Elements Group
Areal mass
(ng/mm 2)

Reference areal mass
(ng/mm 2)

Ca K 147.6 152.5 ± 41.5

Fe K 36.38 37.9 ± 4.9

Cu K 21.75 21.8 ± 2.2

Table 4.1: Quantified areal mass of some of the elements covered in the reference
standard sample, compared to the known reference areal mass.
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In practice, the quantification of element concentrations in the sample under
investigation involves the use of a thin-film reference sample provided by AXO
DRESDEN GmbH. This reference sample is comprised of several elements with
known areal mass densities in the unit of ng/mm 2 (see Table 4.1).

The process of concentration quantification that I have implemented during the
PhD work is illustrated in Figure 4.6. To ensure accuracy, the reference sample is
scanned under identical experimental conditions. This includes factors such as the
beam energy, angle of incidence for the beam, exit angle of XRF signals, distance
between the sample and XRF detector, and the environmental conditions proximate
to the sample area. It is crucial to note that the data obtained from the reference
sample must be normalized using the same incident flux as employed during the
sample scan.
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Figure 4.6: Scheme of the concentration quantification process in the implemented
workflow.

The calibration process is performed using PyMca software (Solé et al., 2007).
Initially, the obtained standard spectrum is fitted to identify the peaks
corresponding to different elements in the standard. The software then requires
providing the input of the experimental conditions to fit the XRF signal
attenuation process occurring before and after reaching the XRF detector. This
includes considering attenuators such as the silicon membrane of the standard
sample, the air path between the sample and the XRF detector, the Beryllium
window and the silicon absorption depth of the silicon drift detector, etc.

PyMca can provide results in the form of mass fractions. For each element,
it converts the number of photon counts into the mass of the element, taking into
consideration the distinct fluorescence yields of various elements. The mass fraction
provided by PyMca can be considered as an equivalent representation of areal mass.
When using a standard sample with a known areal mass, we adjust the photon flux

113



value in the panel to achieve mass fraction values shown in the software that match
the known areal mass concentrations of the reference standard.

Of note, this flux value represents a normalization factor and not the actual
photon flux on the sample. This normalization factor acts as a link, connecting the
measured element intensities to their concentrations. Subsequently, this derived
normalization factor is applied to the sample scans for a quantitative comparison
between different elements.

In the workflow, the quantification procedure can be applied to various scan
modalities in 2D and 3D. If the sample scan is a high-resolution 2D XRF imaging,
the scan file can be directly quantified. The resulting concentration maps can be
saved as a series of .tif files, which can be further analyzed using ImageJ software.
Alternatively, if the sample scans consist of a set of tomographic projections, each
projection is quantified individually using the normalization factor mentioned
earlier. The quantified projections are then reconstructed using the MLEM
algorithm with an appropriate stopping criterion, as discussed in Section 4.2.3.1.

4.2.5. Spatial resolution evaluation
4.2.5.1. Nyquist angular sampling condition

During the experiment, it is crucial to strike a balance between acquisition
time and spatial resolution. When using analytical reconstruction methods, it is
necessary to ensure that the number of projections fulfills the Nyquist angular
sampling condition (Epstein, 2003). As explained in Section 4.2.1.3, the projection
number over 180 ° nproj satisfying Nyquist sampling condition is defined as:

nproj =
π

2
N (4.4)

where nproj is the number of projections over 180 °, and N is the number of pixels
along the scanning direction.

The corresponding maximum resolvable spatial frequency fres in the Fourier
domain can be written as:

fres =
1

π

nproj

PN
(4.5)

where P is the pixel size.

The resolution limit R in direct space is then:

R =
π

2

PN

nproj
(4.6)

This resolution limit decreases with an increasing number of projections.

4.2.5.2. Fourier ring correlation for spatial resolution estimation
To estimate the achievable spatial resolution in the context of iterative

reconstruction methods, the Fourier ring correlation (FRC) approach is commonly
employed (Koho et al., 2019; van Heel and Schatz, 2005; Banterle et al., 2013).
Unlike the knife-edge technique, which can be challenging for highly
heterogeneous samples, FRC offers a more general approach to resolution
estimation.
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The FRC method involves measuring the normalized cross-correlation of two
independent datasets of the sample. In the frequency domain, spatial frequency
elements at different radii are integrated circularly. The FRC formula, denoted
as FRC12(r), calculates the correlation between the Fourier transforms of the two
reconstructed tomograms, F1 and F2:

FRC12(r) =

∑
ri∈r F1(ri) · F2(ri)

∗√∑
ri∈r |F1(ri)|2 ·

∑
ri∈r |F2(ri)|2

(4.7)

Here, ri is the ith frequency element at radius r. The FRC curve is then analyzed
by setting a specified cut-off threshold. When the curve falls below the established
threshold, it signifies the resolution level at which sufficient information has been
gathered for meaningful interpretation, thus defining the spatial resolution (van
Heel and Schatz, 2005).

Ideally, the two datasets used for FRC calculation should be obtained from
independent measurements (de Jonge et al., 2017). However, in practice, this can
be impractical, particularly in high-resolution scanning experiments that involve
several hours of acquisition time at 3rd generation synchrotrons. To overcome this
limitation, two subsets are extracted from the high-resolution tomography
sinogram, and independent tomographic images of the same slice are
reconstructed from these subsets. This method is primarily applied to 2D
high-resolution datasets for estimating resolution.

4.3. Proof of principle test measurements

We present a demonstration example to show the performance of our workflow
using two types of Arabidopsis thaliana seeds. These seeds denoted as wild-type and
mutant, were chosen to evaluate the effectiveness of our workflow in characterizing
elemental distributions within intact mesoscale biological samples.

4.3.1. Arabidopsis thaliana seeds
Arabidopsis thaliana, commonly known as thale cress or mouse-ear cress, is

a weed that is native to Eurasia and Africa. This plant has a relatively short life
cycle (⩾ 6 weeks) and holds great significance as a model organism in plant biology
research. This is primarily due to its well-characterized genome resources and the
availability of a wide range of mutants.

The wild-type Arabidopsis thaliana strain, commonly known as Col-0, has
become a staple in plant biology laboratory experiments and even in space
experiments to study genetics, evolution, and flowering plant development. As a
model plant, Arabidopsis thaliana also serves as a powerful tool to investigate
metal homeostasis and nutrient distribution, relevant questions about the world’s
food production, and the agriculture industry.

In this context, the presence of essential trace elements like iron (Fe) and
manganese (Mn) assumes critical significance. Mn, in particular, is an
indispensable micronutrient for plants and is involved in many cellular processes
including photosynthesis (functioning of photosystem II within the chloroplast)
and respiration. It is also particularly crucial for seeds and germinating plants,
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but the processes of Mn loading in the seeds are still poorly documented. Mn
availability in soils is generally limited, necessitating plants to employ specific
adaptive mechanisms to cope with Mn deficiency. One such mechanism involves
the synthesis of a high-affinity Mn transporter derived from the Natural
Resistance Associated Macrophage Protein (NRAMP) family, which facilitates
efficient uptake of Mn at the root surface. The disruption of NRAMP3/4 does not
alter Mn distribution in the seed (Schnell Ramos et al., 2013) but the role of other
NRAMPs transporters has not been investigated, particularly the role of NRAMP2
that can transport Mn from intracellular compartments. For this reason, we would
like to understand in detail the role of NRAMP2 and explore the Mn allocation in
different seed compartments.

On the other hand, Fe is indispensable for various metabolic processes
including also both respiration and photosynthesis. However, these two elements,
Fe and Mn, possess unique physiological functions and follow different transporter
pathways, leading to expected differences in their distribution and concentration
within the seed (see Figure 4.7 for the distribution in detail). Element mapping
within the Arabidopsis thaliana wild-type seed reveals that Fe is primarily
associated with the provascular system throughout the embryo. On the other
hand, Mn is predominantly localized in the cortex of the root and in the abaxial
side of the cotyledons.

2D scanning XRF imaging has emerged as a powerful technique for precisely
locating trace elements in plants. However, accurately attributing the measured
metal distribution to specific grain ultrastructure can be challenging due to the
information depth (several hundreds of microns) of Mn and Fe. Moreover, studying
the internal elemental distribution through 2D scanning XRF imaging often
requires sample sectioning, which can be destructive for small and hard samples
such as Arabidopsis thaliana seeds. The process of sample sectioning itself can
induce tissue alterations and artifacts, further complicating the analysis.

XRF and multimodal tomography techniques are useful complementary
approaches for analyzing metal concentrations and distribution in intact seeds,
requiring minimal sample preparation (Eroglu et al., 2017; Kim et al., 2006;
Punshon et al., 2012). These methods enable non-destructive investigations,
preserving the integrity of the seed and providing insights into the spatial
distribution of metals.

In this section, we chose wild-type and NRAMP2 mutant Arabidopsis thaliana
seeds as demonstration examples to underscore the capabilities of the workflow we
have implemented. While we will not delve into the detailed biology of the mutant
seed in this chapter, it functions as a comparison for quantification evaluation
purposes alongside the wild-type. The investigative techniques employed on the
seeds included sparse XRF tomography, scanning X-ray absorption tomography,
high-resolution 2D tomography of specific virtual slices, and high-resolution 2D
projection imaging.
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Figure 4.7: Seed structure and elemental distribution of wild-type Arabidopsis
thaliana seed. A. Schematic representation of a seed structure (Gerhard Leubner
Lab, accessed 16 Sept. 2023). Previous findings from a research project conducted at
the NANOSCOPIUM beamline have revealed the distribution of zinc, manganese,
and iron in a virtual cross-section of a wild-type Arabidopsis thaliana seed, using
a combination of fast full-field tomography and 2D XRF scanning tomography.
B. A cross-sectional view of a wild-type Arabidopsis thaliana seed showing the
provascular system (shown in blue) and the cortex of the root (in magenta) along
with the abaxial side of the cotyledons (in red). C. Fe is predominantly present in
the cells surrounding the provascular bundles in the roots and cotyledons while Mn
is located in the cortex of the root and the abaxial side of the cotyledons.
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4.3.2. Data acquisition
4.3.2.1. 3D sparse XRF and X-ray absorption tomography

The medium-resolution 3D elemental distribution of the Arabidopsis seeds was
acquired through sparse XRF tomography using incident beam energy at 11 keV. A
total of 20 projections were collected at 18 ° angular intervals over 360 ° for two seed
samples respectively.

For wild-type seed, each projection angle involved scanning a total area of
581 × 445 μm2 with a pixel size of 2 μm and a dwell time of 20 ms in continuous
scanning mode. The complete collection of the sparse XRF tomography dataset
required a total time of 8 hours and 40 minutes.

The NRAMP2 mutant seed required scanning a total area of 622 × 335 μm2 for
each projection angle. The scanning was performed with a pixel size of 2 μm and
a dwell time of 20 ms in continuous scanning mode. The complete collection of the
sparse XRF tomography dataset for the NRAMP2 mutant seed took a total time of
7 hours.

Simultaneously scanning X-ray absorption tomography was performed during
the data acquisition process.

4.3.2.2. High-resolution 2D tomography
For high-resolution single-slice tomography, we performed measurements of

360 angular projections spanning 360 °. The lateral step size between each
measurement was set to 2 μm, and the dwell time per pixel was 20 ms. The entire
measurement typically took 30-50 minutes, depending on the specific sample being
investigated.

4.3.2.3. High-resolution 2D projection imaging
For the wild-type seed, the high-resolution 2D projection imaging involved

scanning a field of view measuring 375 × 434 μm2. The scanning process had a step
size of 500 nm and a dwell time of 40 ms per pixel. The total acquisition time was 7
hours and 30 minutes. The high-resolution 2D projection imaging of NRAMP2
mutant involved scanning a field of view measuring 320 × 278 μm2 with a step size
of 500 nm and a dwell time of 30 ms per pixel. The total duration for data
acquisition took 3 hours and 15 minutes.

4.3.3. Results and validation
4.3.3.1. Sparse scanning X�ray tomography

In order to capture a comprehensive overview of elemental distribution in
mesoscale seeds–specifically the wild-type seed with dimensions of 700 μm and the
mutant seed with dimensions of 400 μm–a sparse XRF and absorption scanning
tomography experiment was executed for both seed types following the developed
workflow. The primary objective was to identify the distribution of elements,
particularly Mn and Fe, within different seed compartments.

As explained in Section 4.2, the advantage of using a limited number of
projections in the tomography experiment is the ability to identify features of
interest within an acceptable measurement time. By reducing the number of
angular projections, the total measurement time and potential radiation damage
to the sample can be significantly minimized. However, it is crucial to choose the
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reduced number of projections in a way that does not compromise the quality of the
resulting 3D mesoscale tomograms.

The reconstructed sparse 3D tomograms of Ca, Mn, and Fe for the two types of
seeds, obtained using MLEM from 20 measured angular projections, are presented
in Figure 4.8. It is evident from the visual inspection that there are distinctive
differences in the Mn distribution patterns between the two seeds.

Wild-type (Col – 0) NRAMP2 mutant

Fe

Mn

Ca

Figure 4.8: Reconstruction of scanning XRF tomography of Arabidopsis thaliana
seeds, comparing the wild-type (left) and mutant (right).

The reconstructed tomograms reveal distinct elemental distribution patterns.
In the wild-type seed (Col-0), Fe is predominantly located in the provascular
systems, while Mn is primarily distributed in the abaxial area of both cotyledons
at the subepidermal level, as well as in the cortex area of the hypocotyl.

In the reconstructed tomograms of the NRAMP2 mutant seed, we observed a
different Mn distribution inside the seed. Our initial observations from the sparse
tomograms were qualitative and require further quantitative analysis to confirm.
However, they do offer preliminary evidence of the substantial influence of the
NRAMP2 mutation on the distribution of Mn within the seed. For a comprehensive
characterization of these seeds, further element concentration quantification is
requisite, using the standard sample as a reference (see Section 4.3.3.4).

To optimize the measurement conditions and reconstruction parameters of
sparse tomography, we conducted a comparative analysis between two
reconstruction algorithms: FBP and MLEM. The comparison aimed to assess the
performance of these algorithms with different numbers of measured angular
projections (5, 10, and 20). The evaluation was carried out using a virtual slice in
the reconstructed volumes of wild-type seed, indicated by a white dashed line in
Figure 4.8, and the results are presented in Figure 4.9. This virtual slice provides
visualization of the elemental distribution within the seed with medium
resolution, allowing for further analysis and interpretation.
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Figure 4.9: A virtual slice from the reconstructed sparse 3D tomograms of wild-
type seed, displaying the internal distributions of Fe and Mn. A: Comparison of
the reconstructed results obtained using FBP and MLEM, with varying numbers of
angular projections. Each column represents a specific algorithm, while the lines
correspond to 20, 10, and 5 angular projections. In B we present a comparison of
the intensity profiles obtained using FBP and MLEM. The Fe intensity profiles were
extracted along the white dashed line highlighted in A.

The FBP algorithm is commonly employed for 3D tomography reconstruction
due to its fast execution time and ease of implementation. However, it exhibits
limitations when dealing with noisy datasets and highly under-determined
measurement conditions, such as those involving a small number of projections (as
shown in Chapter 3). This is evident from the first column in Figure 4.9-A, where
all sparse tomograms obtained from 5, 10, and 20 projections exhibit a low
signal-to-noise ratio. Notably, the FBP reconstructions display strong streak
artifacts caused by the limited number of projections, thereby obscuring the
elemental distributions. With 20 angular projections, the Mn and Fe distributions
are barely discernible. These streak artifacts, as circled in Figure 4.9-B
representing the Fe intensity profiles, not only impair the visibility of Fe
variations within the sample but also lead to negative intensity values. As
expected, the FBP method is not well-suited for the reconstruction of sparse
tomography datasets. This is primarily due to its inability to effectively mitigate
streak artifacts when the number of projections is low, which aligns with our
expectations given the undersampling in this case.

MLEM algorithm (second column of Figure 4.9-A) is superior to FBP in
handling noisy datasets. Moreover, it includes the non-negativity constraint
assumption. In our workflow, we implemented a simple automatic stopping
criterion for the MLEM algorithm, using the smallest possible noise as a measure
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of quality (as described in Section 4.2.3.1). This criterion allows for terminating
the reconstruction process at a low number of iterations, resulting in a short
reconstruction time and minimal introduction of weak artifacts in the
reconstructed tomograms. The tomograms shown in Figure 4.9 highlight the
robustness of the MLEM algorithm in handling a limited number of projections.
Furthermore, as the number of projections increases, the reconstruction artifacts
in MLEM become less pronounced. This is exemplified by the purple Fe profiles in
Figure 4.9-B, where the strongest reconstruction artifacts, indicated by black
circles in the 5-projection tomogram (last line in Figure 4.9-B), diminish in the
20-projection tomogram (first line in Figure 4.9-B).

Simultaneous scanning X-ray absorption tomography was performed
alongside the XRF data acquisition process. Figure 4.10-A displays the
reconstruction result of the wild-type seed using the MLEM algorithm. The seed
coat is well-reconstructed, providing valuable information about the seed’s
morphology. It is important to note that absorption tomography is just one of the
complementary modalities.

Figure 4.10-B shows a cut-off view inside the seed, revealing that the inner
structure is not clearly visible or well-resolved. The information we can extract
from the X-ray absorption tomogram of the seed’s interior is limited because the
X-ray probe is lightly attenuated as it passes through the sample. Therefore, the
small structures within the seed are not well contrasted.

A B

Figure 4.10: Reconstruction of the scanning X-ray absorption tomography of the
wild-type Arabidopsis thaliana seeds. A: 3D volume rendering of X-ray absorption
reconstructed from the 20-projection dataset with the MLEM algorithm. B: Cut-off
view of the reconstructed tomogram.

4.3.3.2. High�resolution single slice tomography
In this section, we used the results from the scanning 3D sparse tomography

to optimize the selection of angular positions for high-resolution 2D projection
imaging and the determination of altitudes for high-resolution single-slice
tomography. These techniques allowed us to gain valuable insights into the
internal distribution of Mn and Fe within subcellular features of intact seeds.
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For high-resolution single-slice XRF tomography, we focused on the altitude
in the wild-type sample indicated by the dashed line in Figure 4.11-A, and the
reconstructed 2D Mn distribution using both FBP and MLEM algorithms can be
observed in Figure 4.11-B and Figure 4.11-C respectively. Additionally, we
included a sparse tomogram of Mn with medium resolution obtained by MLEM in
the same virtual slice for comparison (Figure 4.11-D).

MLEM

FBPB

C D

A

Sparse

Fe Mn

Figure 4.11: High-resolution 2D scanning XRF tomography of the wild-type
Arabidopsis seed. A: Reconstruction of Fe and Mn tomogram in sparse tomography,
the white dashed line indicated the altitude for the high-resolution 2D tomography.
B, C: Reconstructed high-resolution single slice of the Mn tomogram obtained by
the FBP algorithm (B) and by the MLEM algorithm (C). D: Mn sparse tomography
reconstruction at the same slice obtained by MLEM.

The results from both sparse and high-resolution tomography exhibit good
agreement in terms of the reconstructed features. As expected, high-resolution
tomography unveils finer details with improved spatial resolution that are not
easily detectable or distinguishable in sparse tomography. For high-resolution
tomography, the FBP algorithm (Figure 4.11-B) offers a straightforward and fast
reconstruction approach, with computation time proportional to the number of
projections. Nonetheless, even with 360 angular positions, noticeable streak
artifacts remain due to insufficient angular projections compared to the number of
scanned pixels in this mesoscale sample, as indicated by the Nyquist sampling
condition (see Section 4.2.1.3). The MLEM algorithm (Figure 4.11-C) yields better
contrast in the reconstructed result.

Moreover, the computation time of < 2 s/sinogram is significantly faster than
the measurement time of some hours (and will be comparable with the
measurement time of some minutes/sparse tomography at a 4th generation
synchrotron). As such, the MLEM algorithm proved to be the best compromise for
image reconstruction for both 3D sparse tomography and 2D high-resolution
single-slice tomography experiments.
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4.3.3.3. High�resolution 2D XRF imaging
The selection of a high-resolution 2D XRF imaging angle is determined based

on the results obtained from the sparse tomography reconstruction. Users have
the flexibility to choose the desired projection angle for conducting further high-
resolution imaging. This standard experimental procedure is routinely followed at
the NANOSCOPIUM beamline.

Figure 4.12 shows two examples of high-resolution 2D imaging, focusing on the
chosen angle, and presenting the Fe and Mn distributions in both the wild-type and
mutant seed samples.

Wild-type
Mn Fe

A

KCa

NRAMP2 Mutant
Mn Fe

Ca K

B

Figure 4.12: High-resolution 2D XRF imaging of wild-type (A) and NRAMP2
mutant (B) Arabidopsis seed. In the element maps, a noticeable difference in the
distribution of Mn between the wild-type and NRAMP2 mutant seeds was observed
visually.
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Visually, there is a noticeable difference in the distribution of Mn between the
wild-type and NRAMP2 mutant seeds in the element maps. In the wild-type seeds,
high Mn concentration is distributed on the abaxial side of the cotyledons and the
hypocotyl.

In contrast, the NRAMP2 mutant seeds exhibit a distinct pattern. Mn appears
to be more evenly distributed throughout the seed and looks more concentrated in
the seed coat. In any case, the most enriched parts are not the abaxial cells of the
subepidermis, in contrast to the wild type. This disparity suggests that the mutation
in NRAMP2 has a significant impact on Mn uptake and distribution within the
seeds, potentially affecting their overall nutritional content. Further analysis is
needed to elucidate the molecular mechanisms underlying this observed difference.

4.3.3.4. Element concentration quantification
In this section, the element concentration quantification in the reconstructed

tomograms of the wild-type and NRAMP2 mutant seeds obtained from the sparse
tomography experiment was performed using the freeware PyMca (Solé et al., 2007).
The purpose of this analysis is to accurately determine the elemental content in both
seeds and investigate the impact of the NRAMP2 mutation on the distribution of Mn
within the seeds.

Quantification of the element area concentrations (areal masses) (initially in
the unit of ng/mm2) was carried out using a fitting procedure applied to the recorded
fluorescence spectra of the reference standard sample provided by AXO Dresden, as
shown in Figure 4.13. The spectrum is further calibrated based on elements with
known concentrations in the reference standard spectra.

Figure 4.13: Fitted spectra of AXO standard by PyMca software scanned under the
same experimental condition as the sample scan.

The quantified concentrations of selected elements, measured under the same
experimental geometry as the sample, were compared to the tabulated reference
values and are presented in Table 4.1. This allows for interpolation and
extrapolation (West et al., 2017) of the relative XRF signal for elements not
covered by the reference standard. The quantification analysis was performed
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pixel by pixel in each collected projection, resulting in an elemental projection set
in units of areal mass. The concentration values were measured in units of
ng/mm2.

For high-resolution 2D imaging, the projection data is quantified using the
method described above. An example of the quantified result can be observed in
Figure 4.14, which displays the element mass distribution map of Fe and Mn in
both wild-type and NRAMP2 mutant seeds. Notably, we observe that the areal
mass of Fe and Mn in the wild-type seed is approximately double that of the
mutant seed.

MnFe

NRAMP2 Mutant

MnFe

Wild-type

Figure 4.14: Illustration of the element quantification (Fe, Mn) obtained from high-
resolution scanning XRF 2D imaging of Arabidopsis seeds, presented in ng/mm2.

Upon further processing and analysis of the data, we calculated the total mass
for the projections in Figure 4.14. For Mn, the mass recorded in the wild-type seed
is 0.113 ng, which exceeds the mutant’s mass of 0.083 ng, indicating a reduced Mn
accumulation in the mutant. Similarly, the mass of Fe in the wild-type seed is
registered at 1.002 ng, higher than the 0.744 ng noted in the mutant seed.
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This difference in elemental mass suggests potential disparities in nutrient
uptake or metabolism between the two seed types. Furthermore, the involvement
of NRAMP2 in the Mn nutritional pathway in Arabidopsis is supported by these
observations, in agreement with previous literature publications (Kim et al., 2006;
Eroglu et al., 2017).

In high-resolution single-slice tomography, the quantified dataset is
reconstructed using either the FBP algorithm or the optimized MLEM algorithm
with the developed early stopping strategy. Figure 4.15 shows the virtual slices
obtained from the sinograms at specific altitudes, as indicated by the red lines in
the figure. The quantified mass distributions of Fe and Mn in these virtual slices
are consistent with the findings from the 2D high-resolution imaging presented in
Figure 4.14. This agreement in mass ranges further reinforces the reliability and
accuracy of our quantification approach across different imaging modalities.

Wild-type NRAMP2
Mutant

Mn

Fe

Sample

Figure 4.15: Illustration of the element quantification (Fe, Mn) obtained from
high-resolution scanning XRF 2D single-slice tomography of Arabidopsis seeds,
presented in ng/mm2.Here for instance we see a clear location of Mn in the seed
coat that is not obvious in the reconstruction in Figure 4.8.
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The precise characterization and quantification of elemental mass
distribution provide valuable insights into the elemental composition of the seeds,
particularly regarding the distribution of Mn. By comparing the wild-type and
NRAMP2 mutant seeds, we can observe significant differences in Mn distribution,
indicating potential variations in physiological processes and genetic factors
related to plant development and nutrient homeostasis.

The quantification of elemental mass distribution, as demonstrated in this
case study, serves as a powerful tool for unraveling the complex interplay between
genetic factors, nutrient uptake, and plant growth, ultimately advancing our
knowledge of plant biology and aiding in the development of strategies for
improving crop productivity and nutrient management.

4.3.3.5. Mean XRF voxel-spectrum
Next to the elemental distribution maps, obtaining complete local XRF

spectral information is crucial for detailed chemical composition analysis of
specific sample locations. This is particularly important for identifying rare
characteristics that may only appear in certain voxels (“needle in the haystack
problem”). By collecting the full XRF spectrum in each pixel during data
acquisition, it is possible to reconstruct the full XRF spectrum for each voxel in the
tomogram, adding a spectral dimension to the dataset. This hyperspectral
tomography reconstruction was performed for each energy channel, resulting in
1000 sinograms per virtual slice. However, due to the increased computational
complexity, the reconstruction process becomes time-consuming, taking
approximately 1 hour for the high-resolution hyperspectral XRF tomogram of an
Arabidopsis seed using the MLEM iterative method and around 10 minutes for the
FBP method.

In Figure 4.16, a virtual slice of the Arabidopsis seed reconstructed from the
sum-XRF spectra of the dataset with 360 projections is presented. The mean XRF
spectra extracted from the area marked by a red circle in Figure 4.16-A using FBP
and MLEM are shown in Figure 4.16-B and C, respectively. Comparatively, the
mean XRF spectra obtained by FBP and MLEM exhibit no significant difference,
with the total intensities agreeing within 5 %. Hence, for high-resolution
tomography, FBP serves as a suitable compromise to obtain local spectral
information within a reasonable reconstruction time.

To investigate the influence of the projection number in sparse tomography,
we selected 20 equiangular projections out of the 360 to simulate sparse
tomography under identical experimental conditions. As already demonstrated,
due to the low number of projections, FBP cannot be employed for data
reconstruction in this case. Instead, we reconstructed the sparse tomogram for
each energy channel using the MLEM algorithm. The mean XRF spectrum of the
same region as before (red circle in Figure 4.16-A) was derived from this sparse
tomography dataset. Figure 4.16-C demonstrates good agreement between the two
mean XRF spectra, highlighting the reliable hyperspectral tomograms and mean
XRF spectra obtained even with a severely limited number of projections using the
MLEM algorithm.
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A

B360 projections

MLEM C

Figure 4.16: Extraction of the mean XRF spectra of a chosen area in a virtual slice
of the Arabidopsis seed. A: Reconstructed high-resolution virtual slice of the sum
XRF spectra of the Arabidopsis seed. B: Comparison of the mean XRF spectra
of the selected area, marked by a red dashed circle in A, obtained by FBP (red
curve) and MLEM (blue curve) algorithm. C: The mean XRF spectra of the selected
area obtained by MLEM from 360 projections (blue curve) and from 20 projections
(fuchsine curve).

4.3.3.6. Tomogram spatial resolution with MLEM
To assess the spatial resolution of the tomograms reconstructed using the

MLEM algorithm, we conducted an analysis using two subsets of the 2D
high-resolution dataset. These subsets were obtained by dividing the full
projection dataset, which had 360 projections, into two subsets with an equal
number of projections. Each subset was independently reconstructed using the
MLEM algorithm with automatically determined iteration numbers. The resulting
tomograms from the two subsets were then subjected to Fourier ring correlation
(FRC) analysis.
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In Figure 4.17, we present the FRC curves depicting the comparison between
the two tomograms reconstructed using different numbers of projections from the
same 2D high-resolution sinogram. The spatial resolution was determined by
identifying the intersection point of the FRC curve with a fixed 0.5 threshold (van
Heel and Schatz, 2005). Table 4.2 provides the spatial resolution values
determined using the 0.5 threshold criterion for different numbers of projections.
As anticipated, the spatial resolution improves with an increasing number of
projections. Notably, a resolution estimate of 8.4 μm was obtained for the
tomogram reconstructed from 20 projections. This signifies a significant
improvement in resolution achieved by the MLEM iterative method compared to
the spatial resolution determined by the Nyquist sampling condition.

resolution [𝛍𝛍𝛍𝛍]

Figure 4.17: Spatial resolution estimation by Fourier ring correlation (FRC)
method. Estimation of spatial resolution for tomograms reconstructed by MLEM
from different numbers of projections chosen from the measured 360 angular
projection Fe dataset. The fixed 0.5 threshold was used for FRC analysis. The
Nyquist frequency is 0.25 μm-1.

Number of
projections

FRC analysis:
resolution (μm)

Nyquist sampling condition:
resolution (μm)

5 20.5 184.7

10 12.9 92.4

20 8.4 46.2

40 5.6 23.1

Table 4.2: Estimation of the spatial resolution of sparse tomograms (reconstructed
by the MLEM algorithm) by FRC analysis in the function of the measured number
of projections. The spatial resolution defined by the Nyquist sampling condition is
included in the 3rd column for comparison.
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4.3.3.7. Dose evaluation
In this study, the estimation of radiation dose was a critical component of our

analysis. As discussed in Section 2.2.1.4. The incident photon flux was calculated in
photons per second and factored in the efficiency of the KB system (87.5 %). We used
the absorbed dose in air to quantify the incident dose. Subsequently, we calculated
the dose rates for different scans, including sparse tomography on wild-type (WT)
and mutant samples, as well as high-resolution (HR) 2D imaging and single-slice
tomography scans. It is worth noting that the integrated dose for a given scan type
is computed as the product of the dose rate, dwell time per pixel, and, in the case of
tomography, the number of projections. The specific dose rate and integrated dose
for each type of scan are detailed in the Table 4.3 below.

Of note, a future avenue of investigation should also focus on the
quantification of the integrated dose within the sample during the scanning
process. This is imperative for optimizing the number of projections utilized in
sparse tomography, thereby achieving a balance between data fidelity and
radiation exposure.

Scan type
Dose rate
(Gy/s)

Integrated
dose (Gy)

Figure 4.8
Sparse tomography (WT)

Sparse tomography (mutant)
3.4 × 105

3.1 × 105
1.4 × 105

1.2 × 105

Figure 4.11 HR single slice (WT) 3.2 × 105 2.3 × 106

Figure 4.14
HR 2D (WT)

HR 2D (mutant)
5.1 × 106

4.6 × 106
2.0 × 105

1.3 × 105

Figure 4.15
HR single slice (WT)

HR single slice (mutant)
3.3 × 105

3.2 × 105
2.3 × 106

2.3 × 106

Table 4.3: Dose estimation for different scans in this chapter.

4.4. Discussion

At the NANOSCOPIUM beamline, a holistic multi-scale and multimodal
scanning X-ray tomography workflow was implemented and has been successfully
tested on mesoscale samples, specifically Arabidopsis thaliana seeds. The best
compromise for semi-automatic on-site tomography reconstruction for sparse-, and
high-resolution scanning X-ray tomography is proved to be the MLEM algorithm if
it is benefited from the apt early stopping strategy. On the other hand, the FBP
algorithm was found to be generally unsuitable for reconstructing sparse
tomography due to the failure to meet the optimal Nyquist sampling criterion.
When dealing with high-resolution hyperspectral tomography and its associated
large datasets, a trade-off between data quality and reconstruction time becomes
necessary. In this context, FBP emerged as a viable option, enabling the
extraction of reliable mean XRF spectra from selected regions or volumes within a
reasonable reconstruction time frame.

By implementing the above-detailed conditions and using the two algorithms
in a semi-automatic manner, our workflow offers flexibility and enables
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high-quality on-site reconstruction for various samples under diverse
experimental conditions. This adaptability makes it particularly suitable for
progressively studying features of interest at different length scales during an
experiment. However, it is important to acknowledge that scanning XRF imaging
is susceptible to the self-absorption phenomenon. The XRF signals emitted by the
sample traverse a complex structure before reaching the detector, which can affect
the accuracy of quantification if not corrected (Ge et al., 2023).

In our current implementation, we presented the quantification of element
concentrations in 2D and 3D (in units of areal mass) without accounting for
self-absorption. In future work, a self-absorption correction method has to be
integrated into the semi-automatic and user-friendly data-processing pipeline.
This will be applied for all scanning XRF tomography experiments. The correction
process will involve simultaneous scanning X-ray absorption tomography, which
will correct for self-absorption in each voxel of the tomogram for every
reconstructed element. By incorporating this correction, we will significantly
improve the accuracy and analysis derived from the scanning XRF tomography
experiments.

The robust scanning tomography method implemented at the
NANOSCOPIUM beamline allows non-expert users to perform routine
non-destructive multi-length-scale characterization of complex samples within a
standard beam-time of 3-5 days. The reconstructed tomograms can be easily
handled using widely used software tools such as ImageJ and Chimera, facilitating
data analysis for users during and after their experiments. The workflow allows
the study of relevant 3D micro-features of several mesoscale samples during a
routine user experiment, even at 3rd generation synchrotrons. Additionally, this
approach can be straightforwardly applied to XANES tomography, which can be
considered a variant of hyperspectral tomography.

Such a robust, semi-automatic, and flexible scanning multimodal tomography
workflow will be a game-changer in scientific fields by enabling the simultaneous
exploration of multiple sample characteristics with high analytical sensitivity at
hierarchical length scales in 3D. It will provide valuable insights in a statistically
significant manner for meso- and micro-scale samples. Furthermore, it
complements existing state-of-the-art multi-scale and fast full-field X-ray
tomography techniques, acting as a unique and powerful addition. These
high-throughput scanning X-ray imaging techniques will also complement
emerging laboratory scanning charged-particle microscopy and tomography, as
well as other conventional laboratory microscopy techniques that provide 2D/3D
elemental and morphology information with nanometer resolution. For instance,
scanning electron microscopy has limited analytical sensitivity (around 0.1-1%) for
heavy elements, and its shallow depth of information restricts its non-invasive
application to surface studies of large samples or the 3D analysis of light, major,
and minor components of tiny, micrometer-sized samples. Due to sample radiation
damage caused by charged-particle microscopies, multiple measurements on the
very same sample region are often problematic. Scanning hard XRF imaging and
tomography has high analytical sensitivity (with trace, ⩽ ppm detection limit) for
transition metals and heavier elements. Moreover, their large information depth
of several tens/hundreds of microns permits the non-invasive multilength-scale 3D
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study of mesoscale samples. Multiple measurements and hence, multi-scale and
local tomography are readily available by scanning X-ray imaging techniques,
where radiation damage is smaller than by charged particle microscopies.

4.5. Conclusion

In this section, we showcased the capabilities of our implemented multi-scale
and multimodal scanning X-ray tomography workflow by selecting wild-type and
NRAMP2 mutant Arabidopsis thaliana seeds as demonstration examples. Our
experimental setup involved medium-resolution scanning of the seeds using XRF
sparse tomography, followed by the reconstruction of tomographic slices using the
MLEM algorithm with an optimized iteration number. The reconstructed sparse
tomograms provided coherent spatial information on the elemental distribution
within the seeds, enabling us to observe variations between the wild-type and
mutant seeds.

To gain further insights, we employed additional investigative strategies on the
seeds, including high-resolution 2D tomography of specific virtual slices and high-
resolution 2D projection imaging. The acquired XRF results in both 2D and 3D were
processed and quantified using a reference standard scan.

Subsequent analysis and comparison of the elemental concentrations were
conducted at specific altitudes within the seeds. These altitudes were chosen
based on morphological features and prior knowledge of element localization in the
samples. We quantified and compared the concentrations of elements such as
calcium (Ca), iron (Fe), and manganese (Mn) between the two types of seeds. The
results unveiled significant variations in elemental composition, suggesting
potential differences in nutrient uptake, metabolism, or genetic factors between
the wild-type and mutant seeds.

The ability of our workflow to accurately quantify element concentrations in
biological samples is crucial for understanding the physiological processes and
elemental homeostasis within organisms. These findings highlight the potential
applications of our workflow in plant biology research and provide a foundation for
further investigations into the elemental composition of various mesoscale
samples.

In addition, the successful application of our workflow to Arabidopsis thaliana
seeds serves as a compelling demonstration of its effectiveness in characterizing
mesoscale samples. By integrating synchrotron-based imaging, optimized MLEM
reconstruction, and rigorous quantification, we have comprehensively
characterized the samples, encompassing their morphology, element spatial
distribution, and concentrations. This holistic and robust multi-scale and
multimodal workflow helps users gain valuable insights into complex biological
systems. The capabilities of the workflow open up possibilities for routine
multimodal 3D characterization of intact samples, enabling the extraction of
crucial information from specific regions of interest. The potential impact of this
approach extends across a range of scientific fields, including biology, geology, and
materials sciences.
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CHAPTER 5

APPLICATIONS IN PATHOLOGICAL
CALCIFICATIONS: RANDALL’S PLAQUE
FORMATION

5.1. Characteristics of Randall’s plaque

In this section, we aim to investigate the initial stages of Randall’s plaque (RP)
formation at the nanometer scale using the established scanning X-ray fluorescence
imaging and tomography methods.

Our investigation centers on the potential role of trace elements in the context
of pathological calcification. By combining synchrotron-based quantitative XRF
with tomography techniques, we can gain insights into the high-resolution spatial
distribution of elements with high analytical sensitivity.

5.1.1. Some physicochemical characteristics
It is widely observed that a majority (~75%) of calcium oxalate stones appear

to develop on a subepithelial calcium phosphate plaque, referred to as Randall’s
plaque, located at the tip of the renal papilla (see Figure 5.1) (Daudon et al., 2007;
Daudon and Bazin, 2013; Chung, 2014).example, Randall's plaque may be laminated as in Figs. 2a and 2f, or bulky as in Fig. 

2e. 

FIGURE 2. Morphological aspects of some papillary stones and Randall's plaques 

When a bulky plaque remains anchored to the papilla, the umbilicated stone shows 
only the impression of the plaque (Fig. 2g). A cylindrical "plaque" is likely to 
correspond to a tubular cast rather than a papillary calcification (Fig. 3c). A wide 
plaque may show visible holes corresponding to calcified tubules (Fig. 3b); in 
contrast, the plaque may appear as a small point (Fig. 3 a). 

Not exceptionally, no plaque is visible on the surface of the umbilication and only 
the anchorage point may be seen (Fig.2c). In such a case, this point is shown by 
infrared spectroscopy to be composed of proteins and carbapatite, thus corresponding 
to a part of a wider plaque which apparently remained attached to the tissue. 

Two other situations may be observed. First, some papillary stones arise from a 
plaque made of needle-shaped crystals with a radiating organization. Second, some 
presumed papillary stones have no umbilication but present with a tunnel through the 

30 

Figure 5.1: Typical aspect of calcium oxalate papillary stones (Daudon et al., 2007).

At the micrometer scale, the plaque appears as a complex structure containing
calcified tubules and vessels (see Figure 5.2).
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Figure 5.2: Randall’s plaque at the micrometer scale by SEM. Calcified tubules and
vessels (white arrows) and tubules filled by carbapatite plugs (black arrows). (Bazin
and Daudon, 2012)

The presence of microcalcifications and individual nano-calcifications in the
formation of Randall’s plaque has been underlined by (Gay et al., 2020). Figure 5.3
shows some of these micro and nanocalcifications.

B

Figure 5.3: STEM-HAADF image of (A) micro-calcifications shows that RPs are
mainly formed by electron-dense objects with rounded shapes connected together
by a lower contrast fibrillary network (scale bar = 1 μm). B: STEM images for
nanocalcifications (scale bar = 500 nm) (Gay et al., 2020).
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5.1.2. Chemical composition of Randall’s plaque
Randall’s plaque is mainly composed of calcium phosphate apatite (Daudon

et al., 2007). In addition, other mineral phases, including amorphous carbonated
calcium phosphate (ACCP), and less commonly, whitlockite or brushite, are also
identified in Randall’s plaque. The presence of chemical species like sodium
hydrogen urate and uric acid has also been documented. This chemical diversity
indicates that RP can have various origins (Daudon et al., 2011). According to
research by (Carpentier et al., 2010), the amorphous carbonated calcium
phosphate is typically found at the center of the plaque, indicating that it forms
the first chemical phase. The stable apatite then forms on the surface of the
plaque. It is important to note that the mineral part and the organic matrix
overlay each other in Randall’s plaque. The organic matrix is composed of
macromolecules produced by epithelial cells in response to exposure to the tubular
deposition of crystals.

5.1.3. Trace elements in Randall’s plaque
The literature concerning the interaction between trace elements and the

formation of Randall’s plaque is quite limited. In a previous investigation,
(Carpentier et al., 2010) used X-ray fluorescence to explore the possible role of
trace elements in the pathogenesis of RP. Figure 5.4 displays the X-ray
fluorescence emission spectra of the different Randall’s plaques. The contributions
of Ca as well as trace elements like Zn, Pb and Sr are clearly identified by the
presence of two main peaks characteristic of each of these elements.

Figure 5.4: Typical X-ray fluorescence spectra collected for RP and calibration
compound NIST610. For RP, we can clearly see the contribution of Ca (EKα =
3691 eV, EKβ = 4012 eV), Zn (EKα = 8638 eV, EKβ = 9572 eV), Pb (ELα = 10,551 eV,
ELβ = 12,613 eV) and Sr (EKα = 14,165 eV, EKβ = 15,835 eV). ∗Peaks corresponding
to absorption by the germanium detector of the Compton and Mo Ka elastic peak.
Adapted from (Carpentier et al., 2011).
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As observed in Table 5.1, the content of heavy elements is about 30-1000 times
higher in RP than in urine or kidney tissue.

Zn (μg/g) Sr (μg/g) Pb (μg/g)

CAKSa 1059 ± 1056 349 ± 181 62 ± 39
RP 5665 ± 490∗ 22 ± 13∗ NA
Kidney tissueb 15 - 32 0.04 - 0.12 0.1 - 0.4
Urineb 0.002 - 0.1 0.2 0.012 - 0.030
Urinec 0.3 ± 0.2 0.14 ± 0.076 0.0013 ± 0.014

Table 5.1: Amount of Zn, Sr and Pb in kidney stones (CAKS), Randall’s plaque (RP),
kidney tissue, and urine (Carpentier et al., 2010).

However, the knowledge of trace element spatial distribution in Randall’s
plaque, specifically Zn and Ca, was limited to the micrometer scale (Bazin et al.,
2012). Yet there is a lack of data regarding the nanometer-scale spatial
distribution of trace elements. Figure 5.5-A shows a typical Particle-Induced X-ray
emission (PIXE) spectrum from Randall’s plaque, indicating the presence of
various elements. Figure 5.5-B, C, D, and E offer more detailed views of Ca and Zn
distributions at this micrometer scale.

Figure 5.5: Elemental analysis of Randall’s plaques in two biopsies.(A) Typical PIXE
spectrum collected for a Randall’s plaque. (B, C) Elemental distribution maps of RP
in biopsy 1: Ca (B) and Zn (C). Lighter regions indicate a higher concentration of the
element (scale bar: 50 μm). Total beam charge collected: 0.7 μC. (D and E) Elemental
distribution maps of RP in biopsy 2: Ca (D) and Zn (E)(scale bar: 50 μm). Adapted
from (Bazin et al., 2012).

139



5.2. Case studies: application of developed techniques

5.2.1. Sample preparation
The studied renal papillae were collected from an animal genetic model known

as Abcc6-/- mice. The ABCC6 gene plays a crucial role as a calcification inhibitor by
regulating the concentration of pyrophosphate (PPi) in the body. A deficiency in PPi
can lead to increased calcium phosphate (CaP) precipitation. In the case of ABCC6
deficiency, it can potentially enhance CaP crystallization, electively at the tips of
renal papillae (see Figure 5.6). This process can therefore promote the formation of
Randall plaques (Letavernier et al., 2018).

Figure 5.6: Calcifications were specifically observed at the papilla’s tip in
Abcc6-/- mice, as indicated by digital slide scanning (highlighted by arrows in A
and B). C: Papilla slices have round-shaped and circular structures surrounding
tubules (Magnification = 3200 and zoomed view in D). Adapted from (Letavernier
et al., 2018).

The Abcc6-/- mouse model is a useful tool for our application study because it
effectively mimics human diseases associated with calcification disorders. This
animal model allows us to effectively reduce or even eliminate the potential impact
of biological variability that may arise from factors like tumors or other diseases,
which could otherwise complicate investigations if using human kidney samples.
The presence of trace elements in the papilla is influenced by various factors,
including diet, metabolism, and environmental conditions. This animal model
provides a controlled and consistent experimental system, as all the mice used in
the study have the same genetic mutation, thus facilitating further study of the
formation of Randall’s plaque in the renal papillae.

As shown in Figure 5.7, the papillae were then preserved in a 4%
formaldehyde solution and embedded in paraffin. To facilitate scanning, sections
with a thickness ranging from 4 μm to 50 μm were performed with a microtome
(Microm HM340E, Thermo Scientific) and placed on silicon nitride membranes
(frame size: 7.5 mm × 7.5 mm, membrane size: 3 mm × 3 mm). To ensure proper
sample spreading, a drop of reverse osmosis water was applied to the membrane.
The prepared sections were heated at 37 °C for 10 to 20 minutes in an oven. Excess
water was removed using a pipette.
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All studies were performed in accordance with the European Union, NIH
guidelines (Comité d’Ethique en Experimentation Charles Darwin C2EA-05) and
all our methods are reported as recommended by ARRIVE guidelines. The project
was authorized by the Health Ministry and local Ethics Committee
(authorization 11420 2017092015335292) (Guo et al., 2022).

Renal papilla collected from 
Abcc6-/- mice

Sections with a microtome

Preserved in 4% formaldehyde 

Embedded in paraffin

Fixed on membrane

Figure 5.7: Renal sample preparation workflow.

5.2.2. Experimental: Data acquisition, processing, and data reconstruction
5.2.2.1. Data acquisition

The experiment was performed at the NANOSCOPIUM beamline of the Soleil
synchrotron.

Full-field tomography
A total of 3600 projection images were taken with an exposure time of 50 ms

per projection at the CX2 experimental station.

Sparse tomography
Sparse tomography was carried out at the CX3 experimental station with a

focused beam energy of 12 keV. A 586 × 272 μm2 region of the sample was mapped at
21 angular positions over 360 ° with a lateral step size of 2 μm and an exposure time
of 20 ms/pixel, with a total measurement time of 5 h (Guo et al., 2022).

High-resolution 2D tomography
High-resolution 2D tomography was performed at various altitudes of the

sample. The scans were carried out using an angular step of 1 °, a dwell time of
40 ms/pixel, and a pixel size of 2 μm.

High-resolution 2D imaging
We conducted high-resolution 2D imaging for various regions to meet

investigation requirements. The scans had pixel sizes of 0.4/0.5 μm with a
40 ms/pixel dwell time.

High-resolution local tomography
High-resolution local tomography was performed on a small volume of interest.

This local tomography comprised 65 angular positions spanning a full 360 ° rotation,
with a dwell time of 40 ms/pixel and a uniform lateral step size of 500 nm (Guo et al.,
2022). The area covered by this local tomography was 67 × 16 μm2, and the total
acquisition time took 3 hours.
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5.2.2.2. Data processing
1. Full-field tomography data processing

For full-field X-ray tomography at the NANOSCOPIUM beamline (Medjoubi
et al., 2018), the dataset was first flat-field corrected. The transmitted intensity Iobj
needs to be normalized by a dark image Idark and white field image Iref (image taken
without sample) using the following formula:

Icor =
Iobj − Idark
Iref − Idark

(5.1)

where Icor is the final corrected image, Iobj is the image of the sample with beam,
Idark is the image under the dark environment, and Iref is the image without sample
under beam illumination.

Following the flat-field correction, the Paganin filter was applied to the dataset
(Paganin et al., 2002). This filter can enhance the phase contrast in the projection
images. This filter is useful for weakly absorbing biological tissues.

The full-field tomography reconstruction was realized by a GPU-based filtered
back-projection (FBP) algorithm. This algorithm was selected for its fast and user-
friendly reconstruction capabilities suitable for full-field imaging.

2. XRF mapping and XRF tomography
For XRF mapping and XRF tomography, the raw summed spectra were fitted

first to identify the peak areas of the elements present in the sample under
investigation. The distribution maps and the sinograms of these elements were
then extracted from the raw dataset using an in-house MATLAB code. The
obtained XRF tomography datasets were reconstructed with the MLEM algorithm.
The overall reduction process is integrated automatically in a robust in-house
MATLAB code (Guo et al., 2022). The reconstructed volumetric data were exported
as 16-bit z-stacks and imported either to ImageJ for analysis or to Chimera for 3D
visualization. Moreover, the transmitted and incident beam intensity ratio at each
pixel gave access to the sample transmission maps.

3. Pearson correlation factor
To quantify the correlation in 2D/3D between elements, we used the Pearson

correlation coefficient, a common metric in X-ray microscopy dataset analysis. The
Pearson correlation coefficient is defined as:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(5.2)

where xi and yi are the individual data points, x̄ and ȳ are the means of xi and yi,
respectively.

4. Quantitative analysis
For quantitative analysis, the 2D XRF maps were calibrated by a reference

standard. This was achieved by first fitting the raw X-ray fluorescence spectra of
the sample, and then the elemental contents were calibrated against a
homogeneous multi-element AXO standard thin film RF7-200-S2372(AXO
DRESDEN GmbH, Dresden, SN, Germany). The standard was scanned with the
beam energy of 12 keV with a pixel size of 1 μm and a dwell time of 50 ms per pixel.
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All data were normalized to 1 second integration time per pixel, and the incident
photon intensity was recorded by the intensity monitor which is positioned before
the KB mirrors. After elemental quantification, threshold masks might be
performed for scans of interest in order to achieve the elemental concentrations in
different identified features.

5.2.3. Results and analysis
Our investigations started by using the phase-contrast full-field technique for

the renal papilla. The result of the full-field tomography is presented in
Figure 5.8, showing a detailed view of the papilla’s morphology with a spatial
resolution of 1.6 μm.

In the figure, high-contrast zones (depicted in white) indicate regions where
variations in refractive indices or densities within the renal papilla are pronounced.
Notably, this technique allows for the distinction of boundaries between calcification
sites and the surrounding tissues within the sample.

Figure 5.8: Full-field phase contrast X-ray tomography reconstruction of a
longitudinally sectioned mice renal papilla, showing the 3D morphology of the
sample.

Further experimental investigations were dedicated to the analysis of the
elemental distribution in 2D & 3D using scanning XRF techniques. As the etiology
of the stones frequently begins at the tip of the papilla, we performed further
scanning X-ray fluorescence imaging at the tip of the renal papilla.

The elemental distribution of calcium (Ca), zinc (Zn), and phosphorus (P) in
the indicated region (highlighted in white in Figure 5.9-A) was determined using
micro-XRF imaging with a pixel size of 1 μm. The elemental maps in
Figure 5.9-B-D show varying levels of co-localization between Ca, Zn, and P.
Different sizes of interstitial calcifications were observed. The quantitative Ca
map indicates an average calcium concentration of 300 pg/μm2 within this area.
Figure 5.9-E displays the 2D transmission image of this region. Given the sample’s
thickness is uniform (50 μm), the image contrast is influenced by chemical
composition or density variation within the sample. The areas rich in calcium also
exhibit the highest X-ray absorption.
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As shown in Figure 5.9-F, the distribution maps of Ca and Zn within the same
interstitial regions are overlapped. In this analysis, we found a Pearson
correlation coefficient of 0.73 for Ca and Zn, indicating a positive correlated
relationship between these two elements (Ratner, 2009).

A B

C

D

E F

P

Ca

Zn

Figure 5.9: Localization of nanometer scale calcifications at the tip of the papilla.
The scan area in B is indicated in a white rectangle in A. B-D: Elemental
concentration maps of calcium, zinc and phosphorus distribution at the tip of the
papilla (Unit: pg/μm2). E: 2D scanning transmission image of the same area.
F: Overlapped elemental distribution maps of Ca and Zn of the same region.

Our decision to further investigate Zn is driven by its abundance as a trace
element present in the papilla. This initiative also builds on a previous mesoscale
study that employed the 2D XRF technique to investigate Randall’s plaque, which
offered initial evidence of a possible correlation between trace elements, particularly
zinc, and the formation of Randall’s plaque (Carpentier et al., 2011).

Zinc is one of the essential trace elements in the human body, participating as
a vital co-factor in over 300 enzymatic processes (Zastrow and Pecoraro, 2014).
Notably, it plays a significant role in mammalian biomineralization, particularly
in the formation of apatite. Despite its importance, the precise functions of zinc in
various biomineralization processes, including those related to kidney stone
formation, remain poorly understood. The role of zinc in Randall’s plaque
formation process is a subject of ongoing debate, with ambiguous results.

Regarding pathological soft tissue calcification, especially kidney papillary
calcification like Randall’s plaque, as well as vascular calcification, studies suggest
that zinc supplementation can inhibit phosphate-induced osteo-/chondrogenic
transdifferentiation of vascular smooth muscle cells and vascular calcification
through an active cellular mechanism. Consequently, zinc supplementation has
been proposed as a potential intervention to reduce pathological calcification in
patients with chronic kidney disease (Voelkl et al., 2018). In other in vitro studies,
Zn is considered an inhibitor of calcium phosphate mineralization (Rao and
Choudhary, 2009; Atakan et al., 2007).
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In this case, zinc should predominantly appear in the outer part of incipient
calcifications. However, conventional 2D XRF images, which provide average
information across the entire measured sample thickness, do not offer conclusive
depth-resolved insight into the precise elemental colocalization and correlation
within heterogeneous micrometer-sized features.

Thus, as a next step, we conducted 3D scanning sparse XRF tomography at
the top of the sample, in the region shown in Figure 5.10-A. The reconstructed Ca
and Zn tomograms illustrate the calcification of varying sizes and morphologies.
Within these structures, we observed a high degree of spatial colocation between
calcium and zinc in different features, such as tubular plugs and interstitial
calcifications (Figure 5.11-A). The Pearson correlation factor calculated for calcium
and zinc across the entire volume of the measured papilla sample region is 0.67.

BA

Figure 5.10: Region selection for sparse scanning tomography (Guo et al., 2022). (A)
Optical microscope image of the mouse papilla sample, mimicking human kidney
calcifications. The scanned region is marked in red. (B) Transmission image of the
tip of the sample. The small red rectangle in the middle marks the sample region
chosen for local tomography. The zoom-in image of this region is inserted into the
upper-right corner.

In Figure 5.11-B, the reconstructed tomogram of calcium and zinc at the
altitude marked by the dashed line in Figure 5.11-A is presented. Zinc is
predominantly distributed around calcium, evident in both the tubular plug and
the calcified sphere positioned in the middle.

To gain deeper insights into the elemental distribution within micron-scale
calcium and zinc structures during the early stages of calcification, we conducted
3D local tomography focused on a small calcification sphere, as indicated by the
white circle in Figure 5.11-A.

Considering its small size, this sphere can be viewed as representative of the
early stages of Randall’s plaque formation. Throughout the volume of this sphere,
a Pearson correlation coefficient of 0.72 was calculated for calcium and zinc. The
reconstructed local tomograms reveal that Ca is primarily concentrated in the core
region of the calcification sphere. As the radius extends outward, Zn is enriched
within a few micrometers thick rim on the surface of the calcification
micro-sphere, as shown in the cut-off view of the 3D volume rendering in
Figure 5.11-C&D. Interestingly, similar structures were observed in other smaller
nano-calcifications (Figure 5.11-C), where zinc coats the surface of interstitial
calcification spheres.
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Furthermore, we noted that the surface morphology becomes less regular as
Zn accumulates. Supported by findings from studies such as (Fujii et al., 2006; Ren
et al., 2009), this suggests that Zn might play a role in altering the structure and
stability of calcifications as they grow.

C

D

Calcification sphere

Cut-off view

A

B

Ca
Zn

Figure 5.11: Sparse and local scanning X-ray tomography of a renal papilla sample
(Guo et al., 2022). (A) Sparse tomography reconstruction of Zn and Ca. The small
circle in the middle marks the sample region chosen for local tomography. (B)
Reconstructed single sinogram of Ca and Zn at the altitude of the calcification
sphere indicated in dashed line in A. (C) Reconstructed 3D local tomogram of Ca
and Zn of the calcification micro-sphere. (D) Cut-off view at the middle of the
calcification micro-sphere.

In the quantitative analysis, as depicted in Figure 5.12-A, we constructed a
series of 1-pixel-thick shells within the tomogram of the calcification sphere, each
shell representing a different depth from the surface, with color coding indicating
their specific positions. Figure 5.12-B demonstrates the variation in Ca and Zn
intensity within the sum spectra of the outer and inner shells. These spectra were
normalized by their respective voxel numbers. Notably, Zn intensity is high in the
surface shell and low in the core, while Ca intensity shows the opposite trend, being
reduced at the surface shell and enriched at the core. This observation is further
supported by the changes in Ca and Zn concentrations throughout the calcification
sphere, as shown in Figure 5.12-C. The increasing trend in the difference between Zn
and Ca concentration with the radius confirms that Zn is predominantly distributed
on the outer layer of the calcification sphere.

In some kidney stone studies, it has been proposed that the presence of trace
elements is often not indicative of an active catalyst role in stone formation. Instead,
it is more likely a consequence of passive processes involving the adsorption and/or
absorption of these elements onto and/or into stones (Bazin et al., 2009, 2007, 2008;
Carpentier et al., 2011). This is primarily attributed to the similarities in charge
and size between these elements and calcium, such as Zn (Joost and Tessadri, 1987).
If this passive process were the case, we would expect to observe a homogeneous
spatial distribution of these elements within Randall’s plaque.
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Nevertheless, our observations suggest a different scenario. We observed an
element gradient within the calcification sphere, which raises questions about the
idea that zinc is a direct factor inducing (hydroxy) apatite crystallization. If zinc
were indeed responsible for this process, we would expect to find it concentrated in
the core of calcifications.
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Figure 5.12: Elemental variation throughout the calcification sphere. A: Cut-off
view of the shells extracted from the calcification sphere. B: Sum-spectra of the
shell 1 pixel beneath the surface of the calcification sphere and of the shell 5
pixels beneath the surface. C: Ca and Zn mean concentration variation with the
calcification sphere radius (unit: pg/µm2).

CaZn

Figure 5.13: Ca-Zn correlation found in the transverse section of a different renal
papilla sample. The colored boxed regions in the left panels represent areas that
were scanned at a higher resolution (pixel size = 0.15 μm), as displayed in the right
column panels.
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To enhance the statistical significance and further observe the spatial
distribution relationship between Zn and Ca, we performed further 2D scanning
XRF imaging scans on 4 samples from the 2-year-old mouse model (see
Figure A.1). As one of the examples, Figure 5.13 presents consistent evidence of
the correlation between Ca and Zn in both tubular plugs and interstitial
calcifications. Mean values of elemental concentrations were obtained in 135
regions with different features. The results reported in Table 5.2 show that the
concentrations of Zn and Ca are significantly different in the tubular plugs and
interstitial calcifications. In addition to Zn, tubular plugs have higher
concentrations of trace elements such as S and Fe.

Interstitial calcifications Tubular plugs

Origin
At the papillary tip as a

mineral overgrowth
Kidney stones developed

under the tubular surface

Element concentrations (mean values, unit: pg/µm2)

Ca 92.37 672.99
P 71.49 348.18
S 3.03 13.11

Zn 0.22 0.89
Fe 0.03 0.12

Table 5.2: Comparison of two different types of calcifications.

It is crucial to compare the zinc proportions and spatial distribution with
respect to calcium in tubular plugs. The Pearson correlation ratio between Zn and
Ca was calculated for 135 regions of interest in interstitial calcifications and
tubular plugs. This ratio in the interstitial calcifications (with a mean value of
0.71) did not differ from that in the tubular plugs (with a mean value of 0.68). This
implies that the presence of Zn is likely not due to its existence in nanoparticles
from osteoblast-like cells (Voelkl et al., 2018), as these particles are identified in
the tissue and not in tubules. Additionally, it’s probably not due to a tissular
reaction to limit crystallization.

5.2.3.1. Comparison to previous studies and conclusion
Previous studies using a rotating anode X-ray generator observed a higher

concentration of zinc in Randall’s plaque compared to urine or kidney tissue. This
led to the hypothesis that zinc could serve as a marker for tissue inflammatory
reactions in pathological calcification (Carpentier et al., 2011). This idea drew
inspiration from earlier reports indicating the uniform distribution of trace
elements within kidney stones (Grases et al., 1989).

Furthermore, a study conducted by (Durak et al., 1992), utilizing atomic
absorption spectroscopy (AAS), revealed higher concentrations of zinc, as well as
iron and copper, in the interior rather than the crust of stones. This suggested a
potential role for zinc and other metals in the early stages of stone formation.
However, it’s important to note that AAS, as an elemental analysis technique,
requires sample dissolution or digestion, which can introduce inaccuracies due to
incomplete dissolution and significant dilutions.
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Additionally, some studies have explored the impact of zinc on calcium apatite
crystal growth (Kanzaki et al., 2000; Wu et al., 2009). At low concentrations, Zn2+

ions were found to impede calcium apatite crystal growth, while elevated
concentrations fostered the creation of amorphous calcium phosphate or
zinc-substituted calcium phosphate (LeGeros et al., 1999). Substituting calcium
with zinc was observed to reduce the propensity of apatites to crystallize, resulting
in smaller and more irregularly shaped calcium apatite crystals due to higher Zn2+

concentrations (Fujii et al., 2006; Ren et al., 2009).

In our investigation, we employed scanning 2D mapping and multi-scale 3D
tomography techniques using a synchrotron-based X-ray beam, to explore high
spatial distribution trace element distribution within Randall’s plaques. Our
study revealed a non-uniform spatial distribution of zinc, where its concentration
progressively rises as the calcification radius expands. This suggests that zinc
may not act as an inhibitor in the growth of Randall’s plaque. This study
represents an advancement beyond the findings reported at the micrometer scale
(Khan, 2022; Perre et al., 2022).

The rapid and robust workflow that has been implemented opens up the
possibility of conducting systematic investigations involving a larger number of
samples in future research. This approach promises to enhance our understanding
of the early-stage processes of crystal nucleation, growth, and aggregation, offering
new possibilities for both accurate diagnoses and preventive treatments in the
field of pathological calcifications.

5.2.3.2. Dose estimation
As discussed in Section 4.3.3.7, we calculated the absorbed dose in air for dose

estimation. Table 5.3 presents a comparison of dose rates and integrated doses
associated with different scans in our study. Standard 2D XRF scanning, sparse
and local tomography shows a dose rate of ~105 Gy/s, while high-resolution (HR)
2D XRF scanning exhibits substantially higher dose rates, ranging from 3.0 × 107

to 3.2 × 107 Gy/s and corresponding integrated doses of ~106 Gy. It is notable that
sparse tomography has an integrated dose of 3.2 × 104 Gy, which is 100 times lower
than the doses associated with local tomography or high-resolution 2D XRF
scanning. These values provide a quantitative measure of the radiation exposure
for each scan type, which is crucial for optimizing the balance between image
quality and sample preservation.

Scan type
Dose rate
(Gy/s)

Integrated
dose (Gy)

Figure 5.9 2D XRF scanning 2.9 × 105 1.1 × 104

Figure 5.11
Sparse tomography
Local tomography

8.0 × 105

8.5 × 105
3.2 × 104

2.2 × 106

Figure 5.13

2D XRF scanning
HR 2D XRF scanning (top)

HR 2D XRF scanning (middle)
HR 2D XRF scanning (bottom)

6.7 × 105

3.0 × 107

3.2 × 107

3.0 × 107

3.4 × 104

1.2 × 106

1.3 × 106

1.2 × 106

Table 5.3: Dose estimation for different scans in this chapter.
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5.2.3.3. Discussion of the limitations of the current study
The number of specimens investigated in our study was small (<10), which

limits the generalizability of our findings. Our study also raises the question for
future studies about the chemical form of Zn in kidney stone formation. Of note,
none of the clinical studies determined the form in which zinc was present in the
urine samples (Ramaswamy et al., 2015). For example, Zn2+ can bind directly to
oxalates and phosphates (Chou et al., 2007) or with higher binding affinity to small
thiols and peptides (Winterbourn et al., 2002) which might influence the effects of
zinc on stone formation. Hence, understanding the role of zinc in lithogenesis will
require further analysis including the chemical forms of zinc. While our study
provides insights into the spatial distribution of zinc in Randall’s plaque, it does
not elucidate the precise mechanisms by which zinc influences plaque formation.
Future research should aim to uncover the underlying mechanisms involved in the
genesis of Randall’s plaque and the specific role of zinc in this process.
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CHAPTER 6

CONCLUSION

In conclusion, this thesis has fulfilled two main objectives: the development of
a quantitative scanning sparse XRF tomography method at the NANOSCOPIUM
beamline and its application in the investigation of trace element spatial
distribution in Randall’s plaque.

Throughout this research, the implementation of adaptive algorithms is
essential for sparse tomography. Specifically, I optimized the MLEM
reconstruction algorithm to facilitate the integration of XRF tomography into the
multi-scale scanning XRF tomography workflow. This process involved the
exploration of various reconstruction algorithms, from traditional analytical
techniques like Filtered Back Projection (FBP) to iterative methods like MLEM.
Furthermore, I incorporated quantitative methods into the workflow, enabling
element concentration calculations in both 2D and 3D.

Despite these achievements, there remain avenues for further improvement.
Firstly, there’s potential for further improvement by implementing advanced
algorithms such as Ordered Subset Expectation Maximization (OSEM) to expedite
the reconstruction process. Regularized iterative methods can also be powerful
tools by introducing additional constraints or penalties into the problem.

Secondly, data acquisition procedures could be optimized further by adopting
an innovative spiral scanning configuration for XRF tomography, thereby mitigating
both data acquisition time and potential radiation exposure.

The third improvement entails the implementation of self-absorption
correction mechanisms in XRF imaging and tomography. Correcting the XRF
intensity received in each voxel of the tomogram for each reconstructed element is
crucial for accurate XRF analysis, since the XRF signals may be absorbed when
passing through a complex structure in the sample.

Last but not least, a promising avenue involves enhancing the automation of
our data processing pipeline. Currently, data processing consists of distinct blocks,
including data reduction, correction, and reconstruction, which are executed
sequentially. However, streamlining these processes could be achieved through
the development of a more integrated and automated system, thereby minimizing
the necessity for manual intervention and potentially accelerating the entire
workflow.

The second major focus of my work involved applying the developed
methodology to the characterization of Randall’s plaque. This application study
highlighted the utility of the developed workflow in biomedical research. Our
findings revealed a high correlation between zinc and calcium present in both
interstitial calcifications and tubular plugs in the renal papilla.
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As discussed in Chapter 5, future research directions include augmenting our
data statistics through increased sample numbers and investigating further the
chemical forms of zinc within Randall’s plaque. These efforts will provide deeper
insights into the roles that trace elements play in the processes of Randall’s plaque
formation.

While the primary focus has been on medical applications, the workflow
demonstrated its efficacy in the study of planktic foraminifera at the beamline. We
conducted high-resolution single-slice tomography and 2D high-resolution XRF
imaging experiments on foraminifera samples. These experiments revealed
variations in major, minor, and trace elements during their ontogenetic
development, underscoring the versatility of our approach for geological and
paleoceanographic applications.

Beyond these specific examples, this robust and flexible workflow hold
promise of broader applications across a multitude of scientific disciplines, capable
of exploring a multitude of sample characteristics at hierarchical length-scales in a
statistically significant manner.
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APPENDIX A

Colocalization between calcium (Ca) and zinc
(Zn) observed in other renal papilla samples

Pixel size = 𝟏𝟏 𝝁𝝁𝒎𝒎
CaZn
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Figure A.1: 2D XRF scanning images of overlapped Ca and Zn maps in other renal
papilla samples. Varied degrees of colocalization were observed. The merged image
highlights regions of Ca and Zn colocalization (appearing yellow), along with the
observation of Zn surrounding Ca features.
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Towards routine 3D 
characterization of intact 
mesoscale samples by multi‑scale 
and multimodal scanning X‑ray 
tomography
Ruiqiao Guo1,2, Andrea Somogyi1*, Dominique Bazin3, Elise Bouderlique4,5, 
Emmanuel Letavernier4,5,6, Catherine Curie7, Marie‑Pierre Isaure8 & Kadda Medjoubi1*

Non‑invasive multi‑scale and multimodal 3D characterization of heterogeneous or hierarchically 
structured intact mesoscale samples is of paramount importance in tackling challenging scientific 
problems. Scanning hard X‑ray tomography techniques providing simultaneous complementary 
3D information are ideally suited to such studies. However, the implementation of a robust on‑site 
workflow remains the bottleneck for the widespread application of these powerful multimodal 
tomography methods. In this paper, we describe the development and implementation of such a 
robust, holistic workflow, including semi‑automatic data reconstruction. Due to its flexibility, our 
approach is especially well suited for on‑the‑fly tuning of the experiments to study features of interest 
progressively at different length scales. To demonstrate the performance of the method, we studied, 
across multiple length scales, the elemental abundances and morphology of two complex biological 
systems, Arabidopsis plant seeds and mouse renal papilla samples. The proposed approach opens 
the way towards routine multimodal 3D characterization of intact samples by providing relevant 
information from pertinent sample regions in a wide range of scientific fields such as biology, geology, 
and material sciences.

Complex scientific problems in biology, earth-, environmental, and material sciences are inherently multi-scale. 
This requires the investigation of nanoscale features and functionalities within system-representative mesoscale 
samples to link those to emergent properties and functionalities at larger scales. This triggers an ever-increasing 
demand for new analytical tools capable of providing spatially resolved multi-scale information on intact, highly 
heterogeneous, or hierarchically structured samples in situ or in operando. Scanning hard X-ray imaging and 
tomography techniques are ideally suited to tackle this challenge due to their large penetration depth and inher-
ently multimodal nature, where complementary information on the elemental distribution, morphology, crystal-
line structure, and chemical speciation can be obtained simultaneously. Moreover, these non-invasive scanning 
techniques provide straightforward access to multiple-length scale experiments. Recent developments in fast 
continuous scanning, data  acquisition1–4, and the high flux obtained at modern synchrotron-based hard X-ray 
nanoprobes have opened routine access to scanning 2D multimodal imaging. Amongst the scanning techniques, 
the high analytical sensitivity of X-ray Fluorescence (XRF) imaging provides unique possibilities in several 
scientific fields to study the role and fate of trace  elements5–13. However, the unambiguous interpretation of 2D 
elemental distribution maps is not always straightforward or feasible and is especially problematic in the case of 
thick, complex samples. As such, the scientific community is highly demanding the extension of XRF imaging 
and other complementary scanning techniques to 3D tomography. Scanning XRF and multimodal tomography, 
where measuring projection images at different projection angles permits the reconstruction of the internal 
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features by adapted reconstruction methods, provides unambiguous information about the internal elemental 
distributions in the context of sample morphology, crystalline structure, chemical speciation, etc.2,14–21. Up to 
now, the lengthy acquisition time necessary for these  experiments2 at 3rd generation synchrotrons has been one of 
the practical difficulties to its comprehensive utilization. Indeed, even if emerging sparse tomography techniques 
permit boosting the measurement  throughput15,22,23 by compromising spatial resolution, overcoming the time 
constraint remains a challenge at 3rd generation synchrotrons.

Meanwhile, at the dawn of 4th generation synchrotron sources, routine 3D scanning X-ray tomography 
is becoming within reach. Indeed, the two orders of magnitude larger flux available at 4th generation hard 
X-ray nanoprobes boosts the speed of scanning tomography measurements proportionally, paving the way 
towards high-throughput scanning X-ray tomography of mesoscale  samples24. Hence, the implementation of 
robust, user-friendly scanning tomography workflow is crucial for the routine application of these techniques, 
similarly as has been published recently for high-throughput electron  tomography25. Such workflow imposes 
flexible and fast on-site data processing and tomographic reconstruction adapted to the different number of 
projections (sparse and high-resolution tomography), diverse data quality (e.g., high and low-level elemen-
tal abundances, missing wedge), different imaging modalities (e.g., XRF, X-ray absorption, X-ray diffraction), 
and the possibility of adapting the field of view and spatial resolution to the examined phenomenon by using 
multi-scale or local tomography. Some recent developments tackle part of these requirements by sample-type 
specific processing of multimodal tomography data  sets15,18, also in a semi-automatic way in the case of similar 
processing  requirements17,26. A sparse sampling approach followed by sophisticated data processing has also been 
 reported15,27. However, according to our knowledge, a robust, holistic approach addressing all requirements of 
flexible multi-scale and multimodal scanning 2D/3D X-ray tomography does not exist yet.

In the present paper, we introduce such a robust workflow for scanning multi-length scale XRF-tomography 
and complementary modalities. The presented workflow has been developed and implemented at the Nanosco-
pium  beamline21 of SOLEIL Synchrotron and includes semi-automatic data reconstruction. The proposed recon-
struction algorithm yields good reconstruction data quality for diverse scientific fields with no need for parameter 
readjustment depending on the sample type. As the first step of this approach, sparse tomography provides a 3D 
overview of the entire meso- or microscale sample. The reconstructed sparse tomograms, containing relevant 
information to the investigated scientific problem, are used to choose pertinent regions for high spatial resolution 
single slice tomography, projection imaging, and local tomography. This approach permits optimizing the scan-
ning tomography experiments and obtaining relevant information from pertinent sample regions in 2D or 3D 
during a user project. Thanks to recent  developments3,22,28,29, this method paves the way towards statistically sig-
nificant 3D studies, similar to those already available in full-field X-ray  tomography30, and electron  tomography25.

The performance of the workflow is demonstrated through the study of two highly heterogeneous mesoscale 
samples. A 700 μm thick wild-type Arabidopsis thaliana seed, widely used as a model organism for plant biology 
studies, has been measured by sparse XRF tomography followed by high-resolution 2D tomography of some 
virtual slices and 2D projection imaging. The multi-length scale study of mesoscale renal papilla samples is 
crucial to investigating pathological  calcification31. This study highly profited from high-resolution local XRF 
tomography of a micron-sized calcification sphere chosen from the reconstructed sparse tomograms.

Results
Multi‑length scale scanning X‑ray imaging/tomography workflow. The workflow implemented 
at Nanoscopium for multi-length scale and multimodal scanning X-ray imaging and tomography experiments 
is presented in Fig. 1: the sample mounting and alignment are followed by sparse tomography of the whole 
sample, and then the visualization of the volume rendering of the reconstructed tomograms. The strategy of 
high-resolution (HR) measurements is based on these medium-resolution results. This workflow permits even 
users who are new to X-ray imaging and tomography, to accomplish all measurement and data reconstruction 
steps during their experiment. At Nanoscopium all user projects apply for XRF multi-scale imaging or tomog-
raphy, which is often complemented by other modalities (absorption- or phase-contrast imaging/tomography, 
XANES, or XRD) to best tackle the actual scientific question. As such, in this paper, we have chosen scanning 
XRF tomography to demonstrate our approach.

As a first step, a sparse XRF/multimodal tomography measurement with 20 projection angles (see details in 
“Data acquisition” section) is followed by semi-automatic on-site tomography reconstruction. Direct visualization 
of a specimen’s reconstructed medium-resolution 3D elemental distribution and morphology enables immedi-
ate identification of information pertinent to the research project. This permits users to choose the strategy for 
succeeding in high-resolution (HR) measurements for studying the smallest sample features crucial to tackling 
the scientific  problem32. This HR measurement can be 2D projection imaging, 2D single slice tomography, local 
scanning 3D tomography, or any combination of these. Notably, a reasonable trade-off must be made during a 
tomography experiment regarding acquisition time, spatial resolution, and the number of samples wished to be 
investigated. After the high-resolution experiment, an estimate of the spatial resolution achievable by different 
projection numbers can be obtained by the Fourier ring correlation (FRC) calculation (detailed in the “Methods” 
section). If the resolution of the first sparse tomography results does not meet the user’s requirements, then a 
second sparse tomography measurement can be performed. This will start with an angular offset equal to the 
half angular step of the first sparse tomography experiment. The second optional sparse tomography, having the 
same projection numbers as the first, results in doubling the total number of projections and hence improving 
the spatial resolution. As demonstrated in Fig. 1, all these modalities can be reconstructed semi-automatically 
on-site during the experiment using predefined and pre-parameterized reconstruction algorithms with no need 
for interaction from the users. Hence, users can guide their experiments and redefine the scientific objectives 
on-the-fly depending on the results obtained on-site.
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Moreover, the HDF5 data format of the reconstructed tomograms is fully compatible with widely used cross-
platform freewares and open-source data analysis tools, such as PyMCA (XRF data processing), ImageJ, Chimera 
(imaging/tomography data processing), etc. As such, further on-site or post-experiment processing, such as 
extraction of mean XRF spectra, quantification, combined treatment of different imaging modalities, and mul-
tivariate statistical analysis (Principal Component Analysis, Cluster Analysis, etc.)33, can be obtained straight-
forwardly in any 2D/3D feature identified from the projection images or the reconstructed 2D/3D tomograms.

Proof of principle test measurements: Wild‑type Arabidopsis thaliana seeds. Arabidopsis thali-
ana is a weed native to Eurasia and Africa with a short life cycle (≥ 6 weeks). This annual plant is a popular model 
organism in plant biology due to the knowledge of its genome and the availability of numerous mutants. The 
wild type (Col-0) is commonly used in plant biological laboratory experiments and even in Space experiments 
to study genetics, evolution, and development of flowering plants. As a model plant, Arabidopsis thaliana is also 
a powerful tool to investigate metal homeostasis and nutrient distribution, relevant questions about the world’s 
food production and the agriculture industry. In this context, essential elements Fe and Mn in the plant seed 
are crucial for plant germination. Mn, involved in the photosystem II in chloroplasts, is needed for the vigour 
of germinating plants, and Fe is involved in various metabolic processes (respiration, photosynthesis…). These 
two elements have different physiological functions and different transporter pathways. Thus, differences are 
expected in their distribution and concentration within the seed. 2D XRF imaging is a powerful tool for locating 
trace elements in plants. However, assigning the measured metal distribution unambiguously to the grain’s ultra-
structure can be challenging due to the several hundreds of microns information depth of Mn and Fe. Moreover, 
sample sectioning, required to study the internal elemental distribution by 2D scanning XRF imaging, can be 
intricate for small and hard samples such as A. thaliana seeds and can induce tissue alteration and artifacts.

XRF and multimodal tomography are useful complementary tools for determining metal concentrations and 
distribution in intact seeds with minimal sample  preparation16,34,35.

Sparse scanning X‑ray tomography of a whole seed. We tested the performance of our tomography 
approach on wild-type Arabidopsis thaliana seeds. One advantage of using seeds, in general, is their low water 
content, resulting in lower amounts of radiation damage than more hydrated tissues. In order to obtain an over-
view of the elemental distribution of a whole mesoscale seed of 700 µm dimensions, we performed simultaneous 
sparse XRF (see Fig. 2) and absorption (Fig. S1) micro-tomography. The figure of merit of measuring a limited 
number of projections is to identify, within acceptable measurement times, the features of interest, in our case 
the distribution of Mn and Fe within different seed compartments. Since the total measurement time of a tomog-
raphy experiment scales proportionally with the number of projections, it can be drastically reduced by measur-
ing only a few angular projections. This also reduces the eventual radiation damage of the sample, which might 
be important in the case of scanning imaging of larger samples. However, the reduced number of projections 
should be chosen without significantly compromising the quality of the obtained 3D mesoscale tomograms. 
The reconstructed sparse 3D tomograms of Mn and Fe can be seen in Fig. 2A, B. It comprises 223 virtual slices 

Figure 1.  Semi-automatic multi-scale XRF and multimodal scanning imaging and tomography workflow 
implemented at Nanoscopium. After sample mounting and alignment, sparse scanning tomography is 
performed on the whole sample. Some minutes after the experiment, medium resolution volume rendering 
is available for data interpretation by the proposed semi-automatic on-site data reconstruction. This permits 
optimizing the strategy of successive high-resolution (HR) measurements. The on-site reconstruction algorithm 
provides HR tomograms for data interpretation and further data processing some minutes after the HR 
experiments. The measurement and data reconstruction steps are included in orange and grey rectangles, 
respectively.
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and is calculated from 20 measured angular projections by the maximum-likelihood expectation–maximiza-
tion (MLEM) algorithm (described in “Methods” section). It is clear from the reconstructed sparse tomograms 
that Fe is preferentially located in the provascular systems of the seed, and that Mn is mainly distributed in the 
abaxial area of both cotyledons, at the subepidermal level, as well as in the cortex area of the hypocotyl. These 
observations are in agreement with the results published in the  literature34,35.

To optimize the measurement conditions and the corresponding reconstruction parameters of sparse tomog-
raphy, we compared two different reconstruction algorithms, Filtered back- projection (FBP) and MLEM, in 
the function of the number of measured angular projections (5, 10, and 20). The comparison is demonstrated in 
Fig. 2C, D using the virtual slice marked by a white dashed line in Fig. 2A.

FBP algorithm is the standard solution for 3D tomography reconstruction due to its fast reconstruction time 
and easy implementation. However, because of the intrinsic nature of the algorithm, FBP has severe limitations 

Figure 2.  Reconstructed sparse 3D Fe and Mn tomograms and a virtual slice showing the internal Fe and Mn 
distributions. (A,B) volume rendering of the Fe and Mn tomograms reconstructed by MLEM from 20 (A) and 
5 angular projections (B). The white dashed line indicates the altitude of the virtual slice shown in (C). The 
red line marks the altitude of the high-resolution single slice tomography shown in Fig. 3. (C) Comparison of 
the reconstructed results obtained by the FBP and MLEM algorithms in the function of the measured number 
of angular projections. The columns correspond to two different algorithms: filtered back-projection (FBP) 
and maximum likelihood expectation maximization (MLEM). The lines correspond to 20, 10, and 5 angular 
projections, respectively. (D) Comparison of the intensity profiles of Fe obtained by FBP and MLEM. The Fe 
intensity profiles were extracted along the white straight line indicated in (C).
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in the case of noisy datasets and highly under-determined measurement conditions with a small number of 
 projections36. This can be clearly seen in the first column in Fig. 2C, where the signal-to-noise ratio of all sparse 
tomograms obtained from 5, 10, and 20 projections is very low. Indeed, the strong streak artifacts of FBP, caused 
by the small number of projections, shadow the elemental distributions: the Mn and Fe distributions are hardly 
visible even in the case of 20 angular projections. In effect, as shown by the Fe intensity profiles (shown in Fig. 2D 
by the blue curves), these strong artifacts, resulting also in negative intensity values, are hiding the information on 
the Fe variation within the sample. As such, since FBP cannot significantly reduce streak artifacts at low number 
of projections, it is not adapted to sparse tomography reconstruction.

MLEM algorithm (second column of Fig. 2C) is superior to FBP in handling noisy datasets. Moreover, it 
includes the non-negativity constraint assumption. In our workflow, we included a simple automatic stopping 
criterion for the MLEM algorithm with the smallest possible noise as a figure of merit (as detailed in “Meth-
ods” section). This choice results in terminating the reconstruction process at small number of iterations (thus 
with short reconstruction time) introducing only a few, weak artifacts in the reconstructed tomograms. The 
reconstructed tomograms in Fig. 2C illustrate the robustness of this algorithm in treating limited number of 
projections. Moreover, with increasing number of projections the reconstruction artifacts of MLEM are becom-
ing weaker. This is illustrated by the purple Fe profiles in Fig. 2D, where the strongest reconstruction artifacts 
marked by the black circles in the 5-projection tomogram (last line in D) diminished in the 20-projection 
tomogram (first line of D).

High‑resolution single slice tomography. The above-described 3D sparse tomography permits choos-
ing the best angular position for high-resolution 2D projection imaging, as shown in Fig. 3A for Mn distribution. 
It also allows choosing the altitude(s) for high-resolution single slice tomography (Fig. 3B, C). This provides 
insight into the internal Mn and Fe distributions of subcellular features within intact seeds. We performed HR 
single slice XRF tomography at the altitude shown by the red line in Fig. 2A. The FBP and MLEM reconstruc-
tions of the internal 2D Mn distribution can be seen in Fig.  3B, C. We included for comparison the sparse 
tomogram of Mn obtained by MLEM in the very same virtual slice (Fig. 3D). The reconstructed features are in 

Figure 3.  High-resolution 2D scanning XRF imaging and tomography of the Arabidopsis seed. (A) High-
resolution 2D projection image of the Mn distribution at an appropriate angle chosen from the 3D sparse 
tomograms. (B,C) Reconstructed HR single slice of the Mn tomogram obtained by the FBP algorithm (B) 
and by the MLEM algorithm (C) measured at the altitude marked by the red line in Fig. 2A. (D) Mn sparse 
tomography reconstruction at the same slice obtained by MLEM.
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good agreement between the sparse (Fig. 3D) and high-resolution tomography (Fig. 3B, C) results. However, 
as expected, high-resolution tomography reveals fine details with improved spatial resolution, which are non-
detectable or hardly identifiable by sparse tomography. For such HR tomography, the use of FBP (Fig. 3B) is 
straightforward and is the fastest reconstruction algorithm, where the computation time is proportional to the 
registered number of projections. However, even with 360 angular positions, there are non-negligible streak arti-
facts due to insufficient angular projections compared to the number of scanned pixels in this mesoscale sample 
(see Nyquist sampling condition in Eq. 3). The reconstruction result of the MLEM algorithm (Fig. 3C) provides 
better contrast. Moreover, the computation time of < 2 s/sinogram is significantly faster than the measurement 
time of some hours (and will be comparable with the measurement time of some minutes/sparse tomography 
at a 4th generation synchrotron). As such, the MLEM algorithm proved to be the best compromise for semi-
automatic image reconstruction for both 3D sparse tomography and 2D high-resolution single slice tomography 
experiments.

Spatial resolution of the tomograms reconstructed by MLEM. To estimate the spatial resolution of 
the tomograms reconstructed by the MLEM algorithm, we extracted two subsets with uniform angular sampling 
from the 2D high-resolution dataset. Taking the 2D high-resolution sinogram of 360 projections as an example, 
the full projection dataset was divided into two subsets, both having the same projection numbers. These two 
subsets were reconstructed independently by MLEM with the automatically determined iteration numbers. The 
two independent tomograms were then used for FRC analysis.

Figure 4 shows the FRC curves between the two tomograms reconstructed using a different number of projec-
tions from the same 2D high-resolution sinogram. The spatial resolution was determined at the intersection of 
the FRC curve and the fixed 0.5  threshold37. Table 1 shows the spatial resolution determined by the 0.5 threshold 
criterion in the function of the number of projections. The spatial resolution improves with the number of pro-
jections as expected (see Figs. S1, C and E). A resolution estimate of 8.4 μm was obtained for the 20-projection 
tomogram. The MLEM iterative method has resulted in a significant resolution improvement compared to the 
spatial resolution given by the Nyquist sampling condition.

Figure 4.  Spatial resolution estimation by Fourier ring correlation (FRC) method. Estimation of spatial 
resolution for tomograms reconstructed by MLEM from different numbers of projections chosen from the 
measured 360 angular projection dataset. The fixed 0.5 threshold was used for FRC analysis. The Nyquist 
frequency is 0.25 μm−1.

Table 1.  Estimation of the spatial resolution of sparse tomograms (reconstructed by the MLEM algorithm) 
by FRC analysis in the function of the measured number of projections. The spatial resolution defined by the 
Nyquist sampling condition is included in the 3rd column for comparison.

Number of projections FRC analysis: Resolution (μm) Nyquist sampling condition: resolution (μm)

5 20.5 184.7

10 12.9 92.4

20 8.4 46.2

40 5.6 23.1
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Renal papilla sample. In order to test the performance of our workflow in missing wedge measurement 
conditions and for HR 3D local tomography, we investigated mouse renal papilla samples. Nowadays, the for-
mation of renal stones affects 10% of the global  population38. Most of the stones develop on Randall’s Plaque, a 
mineral deposit at the tip of renal  papillae39. The major components of Randall’s Plaque are calcium phosphate 
apatite and amorphous carbonated calcium  phosphate40. Therefore, the distribution of Ca indicates the position 
of calcification in the renal papilla sample. Studying the correlation and colocalization between Ca and other 
major and trace components permits to reveal those trace elements, that are involved in early-stage calcification 
processes. Understanding their role in the pathological process opens the way toward efficient prevention and 
treatment of the renal stone formation. The sample we used in the present study is a mouse papilla affected by 
calcium phosphate deposits similar to the human Randall’s plaque  (see41 for more details on the sample prepara-
tion).

Sparse and high‑resolution XRF tomography of renal papilla. The semi-automatic workflow has 
been used to study the elemental abundancies within 50 µm thick slices of renal papilla samples (Fig. 5A, B). In 
this case, the fixation of the thin biological sample of ~ 500 µm lateral dimensions on a  Si3N4 membrane caused 
a missing wedge of 2 × 28° in the tomography measurement. This poses a specific challenge to tomographic 
 reconstruction42. This was successfully tackled by the MLEM algorithm, which proved to be the best compro-
mise also for missing wedge tomography. 3D sparse tomography performed on the top of the sample showed 
substantial colocalizations between Zn and Ca (Fig. 5C) within dense sample regions revealed by simultaneous 
transmission imaging (Fig. 5B). However, the ~ 8.5 µm medium spatial resolution of sparse tomography does not 
permit to reveal the details of micrometer-sized Ca- and Zn-rich features, that are related to early-stage calcifica-
tion process. Gaining insight, with high spatial resolution, into the elemental distribution of these micrometer-
sized Ca and Zn containing spherical structures is crucial. We performed 3D local tomography around a chosen 
micro-sphere (red rectangles in Fig. 5B, C). The angular projection images were measured with 500 nm pixel 
size. Figure 5D, E show the volume rendering of Zn and Ca within the measured micrometer-scale calcifica-
tion sphere. In the cut-off view of the 3D volume rendering in Fig. 5E the internal distribution of Zn and Ca is 
shown within the ~ 10 µm dimension calcification sphere. These results reveal that Zn is enriched within a few 
micrometers thick rim on the surface of the calcification micro-sphere. Since Zn is considered to be a marker of 
 inflammation43, this result also indicates that the calcium phosphate deposition in the medullary interstitial is a 
pathological process.

Mean XRF voxel‑spectrum. Next to the elemental distribution maps, complete local XRF spectral infor-
mation is necessary to obtain detailed information on the chemical composition of local features. This might 
reveal rare characteristics appearing only in particular sample locations/voxels ("needle in the haystack prob-

Figure 5.  Sparse and local scanning X-ray tomography of a renal papilla sample. (A) Optical microscope image 
of the mouse papilla sample, mimicking human kidney calcifications. The scanned region is marked in red. (B) 
Transmission image of the tip of the sample. The small red rectangle in the middle marks the sample region 
chosen for local tomography. The zoom-in image of this region is inserted into the upper-right corner. (C) 
Sparse tomography reconstruction of Zn and Ca. The small red rectangle in the middle marks the sample region 
chosen for local tomography. The zoom-in image of this region is inserted into the upper-right corner. (D) 
Reconstructed 3D local tomogram of Ca and Zn of the calcification micro-sphere marked by the red rectangles 
in (B,C). (E) Cut-off view at the middle of the calcification micro-sphere presented in (D).
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lem”). Since we collect the full XRF spectrum in each measured pixel during data collection, next to the tomo-
grams of the predefined elements, it is also possible to reconstruct the full XRF spectrum in each voxel of the 
tomogram. In other words, we can include a spectral dimension to the reconstructed dataset, which can be used 
to extract the mean XRF spectrum of any chosen sample area or volume. Such complete hyperspectral tomog-
raphy reconstruction was realized for each energy channel of the measured XRF spectra. At 10 keV excitation 
energy, this results in 1000 sinograms for each virtual slice, and the reconstruction process, even with the MLEM 
iterative method and multi-core, is becoming quite time-consuming. For example, the reconstruction of the 
high-resolution 3D hyperspectral XRF tomogram (with the energy as the 3rd dimension) took ~ 1 h by MLEM 
for the Arabidopsis seed.

Figure 6A shows the virtual slice of the Arabidopsis seed reconstructed from the sum-XRF spectra of the 
dataset containing 360 projections. The mean XRF spectra extracted from the area marked by a red circle in 
Fig. 6A by FBP and MLEM can be seen in Fig. 6B, C. The mean XRF spectra of the chosen region obtained by 
FBP and MLEM do not show a significant difference; the total intensities of the XRF spectra agree within 5%. As 
such, in the case of high-resolution tomography, FBP is a good compromise to obtain local spectral information 
within a limited reconstruction time.

As the next step, we selected equiangularly 20 projections out of the 360 ones to simulate a sparse tomogra-
phy in identical experimental conditions. This allows comparing the mean XRF spectra obtained by sparse and 
high-resolution tomographies. In the case of sparse tomography, FBP cannot be used for data reconstruction 
due to the low number of projections. As such, we reconstructed the sparse tomogram for each energy channel 
by MLEM. The mean XRF spectrum of the same region as before (red circle in Fig. 6A) was calculated from 
this sparse tomography dataset. Figure 6C shows that the two mean XRF spectra agree well, which illustrates 
that the MLEM algorithm provides reliable hyperspectral tomograms and mean XRF spectra even for a severely 
limited number of projections.

The mean XRF spectrum within a selected volume of interest of the calcification sphere (shown in Fig. 5D) 
of the renal papilla is demonstrated in Fig. 7. The reconstruction process for the 4D hyperspectral tomography 
dataset (with the energy as the 4th dimension) took around 1 h by the MLEM algorithm. To obtain the mean 
XRF spectra within a volume of interest, we selected the 3D volumes of interest by ImageJ, a freeware frequently 
used by our users. We applied this mask to each energy channel in the reconstructed 4D dataset. The extracted 
mean XRF spectra shown in Fig. 7B reveal that Ca is the dominant element in the core of the calcification micro-
sphere (red XRF spectrum), which also contains Zn. Within the surface rim (indicated by green in Fig. 7A and 
green XRF spectrum in Fig. 7B), the increased Zn to Ca ratio, due to the threefold larger Zn and ~ 20% smaller 
Ca content, provides evidence of the association of Zn to the pathological process.

Figure 6.  Extraction of the mean XRF spectra of a chosen area in a virtual slice of the Arabidopsis seed. (A) 
Reconstructed high-resolution virtual slice of the sum XRF spectra of the Arabidopsis seed. (B) Comparison of 
the mean XRF spectra of the selected area, marked by a red dashed circle in (A), obtained by FBP (red curve) 
and MLEM (blue curve) algorithm. (C) The mean XRF spectra of the selected area obtained by MLEM from 360 
projections (blue curve) and from 20 projections (fuchsine curve).
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Discussion
The proposed holistic multi-scale and multimodal scanning X-ray tomography workflow, implemented at 
Nanoscopium, was tested on mesoscale samples. To tackle the scientific problems presented in the recent paper, 
multi-scale XRF- and scanning absorption contrast tomography were the best-adapted imaging modalities.

The best compromise for semi-automatic on-site tomography reconstruction for sparse-, local- and high-
resolution scanning X-ray tomography is proved to be the MLEM algorithm if it is benefited from the apt 
early stopping strategy. This algorithm also efficiently handles the missing wedge sampling conditions. The FBP 
algorithm is, in general, not adapted for the reconstruction of sparse and missing wedge tomographies since 
the measured dataset does not fulfill the optimal Nyquist sampling criterion. In the case of high-resolution 
hyperspectral tomography, which results in large 3D/4D datasets, the figure of merit is a compromise between 
the reconstructed data quality and the reconstruction time. Here, FBP is the best compromise to obtain, within 
a limited reconstruction time, reliable mean XRF-spectra from regions/volumes chosen from the reconstructed 
XRF hyper-spectral tomograms. The semi-automatic use of these two algorithms according to the above-detailed 
conditions permits obtaining a flexible semi-automatic workflow providing good quality on-site reconstruction 
for various samples in diverse experimental conditions. Due to its flexibility, our approach is especially well 
suited for on-the-fly tuning of the experiments to study features of interest progressively at different length scales.

We must note that scanning XRF imaging is generally a semi-quantitative approach. However, in the present 
paper, we presented the 2D and 3D elemental intensity distributions (number of characteristic X-ray Fluores-
cence photons per given dwell time). As the next step, we intend to fully integrate the quantification method in 
the semi-automatic user-friendly data-processing pipeline and to provide it for all scanning XRF tomography 
experiments as an option. For this, the measurement conditions will be calibrated by an adequate reference 
sample, and simultaneous scanning X-ray absorption tomography will be used for self-absorption correction in 
each voxel of the tomogram for each reconstructed element.

The robust scanning tomography method implemented at the Nanoscopium beamline opens the way for 
non-expert users towards routine non-destructive multi-length-scale characterization of complex samples dur-
ing a standard beam-time of 3–5 days. The reconstructed tomograms can be treated by widely used freewares 
such as ImageJ, Chimera, etc. This allows straightforward data handling for users during and after their experi-
ments. The workflow provides the possibility to study relevant 3D micro-features of several mesoscale samples 
during a routine user experiment, even at 3rd generation synchrotrons. Next to XRF and scanning absorption 
tomography, we have also extensively tested the workflow for scanning phase contrast- and X-ray diffraction 
tomography studying perovskite samples and bio-mineralization. These results will be presented in a separate 
paper. Moreover, the application of our approach for XANES tomography, which can be considered as a variant 
of hyperspectral  tomography44, is straightforward.

Such a robust semi-automatic flexible scanning multimodal tomography workflow will be a scientific game-
changer at emerging 4th generation synchrotron sources, where data throughput of scanning hard X-ray tech-
niques is boosted by ~ two orders of magnitude. The new possibility to explore a multitude of sample characteris-
tics simultaneously, with high analytical sensitivity, at hierarchical length-scales in 3D, in a statistically significant 
manner in meso- and micro-scale samples, will revolutionize a wide range of scientific fields in ways that we can 
currently only dream of and will provide a unique complement to already existing state-of-the-art multi-scale 
and fast full-field X-ray tomography  techniques45–47. These high through-put scanning X-ray imaging techniques 
will also complement emerging state-of-the-art laboratory scanning charged-particle microscopy and tomog-
raphy and other conventional laboratory microscopy techniques providing 2D/3D elemental and morphology 
information with nanometer resolution. For example, scanning electron  microscopy48 has limited analytical 
sensitivity (~ 0.1–1%) for the analysis of heavy elements, and its small depth of information (a few microns) limits 
its non-invasive (without sample sectioning) application to surface studies of large samples or the 3D study of 

Figure 7.  Extraction of the mean XRF spectra within the volume of interest of the reconstructed calcification 
micro-sphere shown in Fig. 5D,E. (A) Reconstructed result by MLEM algorithm from the total intensity of 
the XRF spectra, grey volume: reconstructed total sphere volume, red and green volumes: core and surface 
rim regions, respectively. (B) Comparison of the mean XRF spectra of the core (red) and surface rim (green) 
volumes.
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light, major, and minor components of tiny, micrometer-sized samples. Due to sample radiation damage caused 
by charged-particle microscopies, multiple measurement on the very same sample region is often problematic. 
Scanning hard XRF imaging and tomography has high analytical sensitivity (with trace, ≤ ppm detection limit) 
for transition metals and heavier elements. Moreover, their large information depth of several tens/hundreds 
of microns permits the non-invasive multilength-scale 3D study of mesoscale samples. Multiple measurements 
and hence, multi-scale and local tomography is readily available by scanning X-ray imaging techniques, where 
radiation damage is smaller than by charged particle microscopies.

Methods
Data acquisition. The experiments were performed at the KB-based nanoprobe station of the Nanosco-
pium beamline of Synchrotron  Soleil21. Two energy-dispersive silicon drift detectors, placed at 120° to the inci-
dent beam path, collected the X-ray fluorescence (XRF) spectra. The intensity of the incident and the transmitted 
beam has been collected in each pixel by two Si diodes placed before and behind the sample, respectively. An 
RT100 air-bearing rotation stage has been used for tomography measurements. The experiments have been 
performed by the Flyscan  architecture1.

In the case of scanning X-ray single slice tomography, the number of angular projections has been chosen 
according to the Nyquist sampling condition (see Eq. 3) in order to preserve the spatial resolution along the 
horizontal direction in the reconstructed tomograms.

The medium resolution 3D elemental distribution of the Arabidopsis seed has been obtained by sparse XRF 
tomography at 11 keV excitation X-ray energy. We collected 20 projections at 18 degrees angular intervals over 
360°. These scanning parameters are proposed by default for sparse tomography by our workflow since, accord-
ing to our experience with multiple samples and imaging modalities, they are proved to be the best-balanced 
parameters for almost all experimental conditions. At each projection angle, a total area of 581 × 445 μm2 has 
been scanned with 2 μm pixel size and 20 ms dwell time in continuous scanning mode. The collection of the 
full XRF sparse tomography dataset of this mesoscale sample took 8 h 40 min. For high-resolution single slice 
tomography, we measured 360 angular projections over 360° with a lateral step size of 2 μm and a dwell time 
of 20 ms/pixel, with a total measurement time of 35 min. For high-resolution 2D projection imaging, a field of 
view of 375 × 434 μm2 was scanned with a step of 500 nm and a dwell time of 40 ms per pixel. The total acquisi-
tion time was 7 h 30 min.

In the case of the mouse renal papilla sample, the sparse tomography was performed at 12 keV. A 586 × 272 μm2 
region of the sample was mapped at 22 angular positions over 360° with a lateral step size of 2 μm and an exposure 
time of 20 ms/pixel, with a total measurement time of 5 h. This is followed by a high-resolution local tomography 
of a local sample volume with 65 angular positions over 360° with a dwell time of 40 ms/pixel and a uniform 
lateral step size of 500 nm, covering a total area of 67 × 16 μm2. The total acquisition time was 3 h.

Data processing. The elements present in the investigated samples were identified from the sum-spectra of 
all angular projections. The sum XRF spectra were fitted by the PyMCA  software49 for the identification of the 
elements present in the sample. The elemental distribution maps and sinograms were then extracted from the 
raw dataset by integrating pre-selected spectral regions of interest corresponding to the detected elements. The 
transmitted and incident beam intensity ratio at each pixel gives access to the sample absorption maps and sino-
grams. The sinograms were then reconstructed either by the MLEM or FBP algorithms. The overall reduction 
process is performed automatically with a robust in-house MATLAB code. The reconstructed volumetric data 
were exported from MATLAB as 16-bit z-stacks and imported either to  ImageJ50 for analysis or to  Chimera51 
for 3D visualization.

The overall data processing is performed on a workstation with an Intel® Xeon® Processor E5-2630 v3 @ 
2.40 GHz × 32 CPU with 125.8 GB of system RAM.

Reconstruction algorithms. Two different tomography reconstruction algorithms have been integrated 
into the workflow: the  FBP42,52,53 and  MLEM54 methods. The first, which is an analytical filtering inversion 
technique, is the most commonly used method in routine tomography reconstruction. It is the fastest method, 
exploiting fast Fourier transforms. However, FBP suffers from a lack of robustness when the measurements are 
sparse, of low contrast, or  noisy55,56, which is often the case in XRF tomography. MLEM is an iterative algorithm 
that explicitly accounts for the noise affecting the data and imposes positivity on the estimated pixels. MLEM 
was initially developed for the analysis of positron emission tomography (PET) data. It assumes a Poisson dis-
tribution of the acquired photon statistics and thus might be more noise-tolerant than  FBP22. MLEM belongs to 
the class of majorization-minimization  algorithms57. By construction, it decreases the negative log-likelihood of 
the estimated image of the given data monotonically. Moreover, it involves only simple multiplicative updates in 
such a way that the estimated image has positive pixel values, if all the pixels of the starting assumption image are 
positive. The MLEM algorithm provides good performance with sparse datasets, and the streak artifacts can be 
reduced as long as it is combined with an appropriate early stopping strategy, as is described hereafter.

Determination of the number of iterations: automatic early stopping strategy for 
MLEM. Although the loss of the MLEM algorithm decreases along with iterations, there is also an increase in 
the noise amplitude, which significantly impacts the final reconstruction results. This is typical for non-regular-
ized reconstruction methods. Therefore a so-called early stopping strategy with a well-tuned criterion is crucial 
and must be integrated into the  workflow58. We implemented the figure of merit about the Normalized Root 
Mean Square Error Deviation (NRMSED) as an indicator:
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where x(i) is the sinogram of the measured data, x̃(i) is the estimated sinogram by MLEM and N is the pixel 
number in the sinogram. NRMSED indicates the accordance between the reconstructed and measured data. In 
addition to this, information about the derivative of NRMSED between two successive iterations should also be 
considered, and the ratio R is therefore defined as:

where �NRMSED = NRMSED(i) − NRMSED(i−1) is the derivative of NRMSED. This similarity increases mono-
tonically with the number of iterations. A threshold is set to terminate the algorithm when the evolution curve of 
R is close to zero: R ≥ threshold . We have chosen − 0.15% as threshold, since this value, obtained as average over 
numerous test data sets, gave robust and rapid results for all tested data sets and imaging modalities.

In the implementation of our workflow, a relatively large number (~ e.g., 200) of iterations is preset to limit the 
maximum reconstruction time. The reconstruction of the tomograms using the MLEM algorithm is performed 
slice by slice, and the ratio R is calculated for each slice after each iteration. The algorithm terminates automati-
cally for a given virtual slice after reaching the threshold and proceeds to reconstruct the next slice. Optionally, 
the reconstruction could perform a few additional iterations after reaching the R threshold. According to our 
experience, the algorithm generally reaches the R ≥ threshold condition around 20 iterations, well before 200 
iteration steps.

The process of the optimization of the iteration number can be summarized as follows:

(1) For all the slices, set the threshold to − 0.15% and the initial number of iterations to a relatively large value 
(~ 200);

(2) Start the reconstruction for the first slice using the MLEM algorithm while calculating the ratio R for each 
iteration;

(3) Stop the iteration when the condition R ≥ threshold is reached;
(4) Repeat (2)–(3) for all slices.

This robust automatic reconstruction process provides exploitable results even for 5 angular projections, 
and it assures that even inexperienced users in synchrotron-based imaging/tomography can reconstruct their 
tomographic dataset on-site.

Spatial resolution evaluation. Nyquist angular sampling condition. During the experiment, a reason-
able trade-off must be reached between the acquisition time and spatial resolution. For the analytical reconstruc-
tion methods, the number of projections has to satisfy the Nyquist angular sampling  condition59 in order to 
preserve the spatial resolution along the horizontal direction in the reconstructed tomogram:

where nproj is the number of projections over 180°, and N is the number of pixels along the scanning direction.
The corresponding maximum resolvable spatial frequency fres in the Fourier domain can be written as:

where P is the pixel size.
The resolution limit R in direct space is then:

This resolution limit decreases with increasing number of projections.

Fourier ring correlation for spatial resolution estimation. The most common method to estimate spatial resolu-
tion is the knife-edge technique. However, in the case of sparse tomography of highly heterogeneous samples, it 
can be challenging to find a sharp edge for the knife-edge method. To overcome this difficulty, the Fourier ring 
correlation (FRC)60–62 method can be used as a general approach.

For the iterative reconstruction methods, the estimation of the achievable spatial resolution in the function 
of the number of projections can be described by the Fourier ring correlation approach. FRC estimates this by 
measuring the normalized cross-correlation of two independent datasets of the sample. The spatial frequency 
elements at different radii can be integrated circularly in the frequency domain:

where ri is the ith frequency element at radius r , F1 and F2 denote the Fourier transform of the two reconstructed 
tomograms.

At a specified cut-off threshold, the FRC curve drops below the threshold, indicating an indistinguishable 
signal-to-noise ratio. This defines the spatial resolution.

(1)NRMSED =

√

∑N
i=1

(x(i)−x̃(i))2
∑N

i=1
x(i)2

(2)R = �NRMSED
NRMSED

(3)nproj =
π
2
N

(4)fres =
1

π

nproj
PN

(5)R = π
2

PN
nproj

(6)FRC12(r) =

∑
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ri∈r
|F1(ri)|2·

∑

ri∈r
|F2(ri)|2



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16924  | https://doi.org/10.1038/s41598-022-21368-0

www.nature.com/scientificreports/

Theoretically, the two data sets used in FRC calculation should be formed by independent  measurement63, 
but this can be impractical, especially in the high-resolution scanning experiments, where the acquisition time 
is generally several hours at 3rd generation synchrotrons. To overcome this problem, the two subsets used 
for FRC calculation were extracted from the high-resolution tomography sinogram, from which independent 
tomographic images of the same slice were reconstructed. This resolution estimation method is mostly applied 
to 2D high-resolution datasets.

Ethics approval
Arabidopsis thaliana seeds: The research on the wild-type Col0 seed Arabidopsis Thaliana seed complies with rel-
evant institutional, national, and international guidelines and legislation. The wild-type Arabidopsis thaliana seeds 
had been provided by C. Curie, and is the same as described by Carrió-Seguí, À., Romero, P., Curie, C. et al. “Cop-
per transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilization.” In Sci 
Rep 9, 4648 (2019) https:// rdcu. be/ cROAu. Renal papilla samples: All studies were performed in accordance with 
the European Union, NIH guidelines (Comité d’Ethique en Experimentation Charles Darwin C2EA-05) and 
all of our methods are reported as recommended by ARRIVE guidelines as previously described. The project 
was authorized by the Health Ministry and local Ethics Committee (authorization 11420 2017092015335292).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Additional data related to this paper will be available from the authors upon reasonable request and in 
accordance with the Journal policy described in the Instructions for Authors (Availability of materials and data).

Received: 5 July 2022; Accepted: 26 September 2022

References
 1. Medjoubi, K. et al. Development of fast, simultaneous and multi-technique scanning hard X-ray microscopy at Synchrotron Soleil. 

J. Synchrotron. Rad. 20, 293–299 (2013).
 2. Deng, J. et al. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. Sci. Adv. 4, 

eaau4548 (2018).
 3. Kopittke, P. M. et al. Synchrotron-based X-ray fluorescence microscopy as a technique for imaging of elements in plants. Plant 

Physiol. 178, 507–523 (2018).
 4. Wang, Y. et al. A high-throughput x-ray microtomography system at the Advanced Photon Source. Rev. Sci. Instrum. 72, 2062–2068 

(2001).
 5. Figon, F. et al. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. 

Proc. Natl. Acad. Sci. USA 118, e2103020118 (2021).
 6. Wolf, M., May, B. M. & Cabana, J. Visualization of electrochemical reactions in battery materials with X-ray microscopy and map-

ping. Chem. Mater. 29, 3347–3362 (2017).
 7. Dean, C., Le Cabec, A., Spiers, K., Zhang, Y. & Garrevoet, J. Incremental distribution of strontium and zinc in great ape and fossil 

hominin cementum using synchrotron X-ray fluorescence mapping. J. R. Soc. Interface 15, 20170626 (2018).
 8. Xie, R. et al. Seasonal zinc storage and a strategy for its use in buds of fruit trees. Plant Physiol. 183, 1200–1212 (2020).
 9. Yan, H. et al. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution. Sci. Rep. 6, 20112 (2016).
 10. Kosior, E. et al. Combined use of hard X-ray phase contrast imaging and X-ray fluorescence microscopy for sub-cellular metal 

quantification. J. Struct. Biol. 177, 239–247 (2012).
 11. Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geosci. 7, 811–815 

(2014).
 12. Chaurand, P. et al. Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of 

in vivo exposed mice. Sci. Rep. 8, 4408 (2018).
 13. Serpell, C. J. et al. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence 

imaging. Nat. Commun. 7, 13118 (2016).
 14. Helliwell, J. R. et al. Applications of X-ray computed tomography for examining biophysical interactions and structural develop-

ment in soil systems: A review: X-ray computed tomography for soil physical properties. Eur. J. Soil Sci. 64, 279–297 (2013).
 15. Gao, X., Yang, Y., Yang, S., Ma, Y. & Chen, M. Microstructure evolution of chalcopyrite agglomerates during leaching—A synchro-

tron-based X-ray CT approach combined with a data-constrained modelling (DCM). Hydrometallurgy 201, 105586 (2021).
 16. Punshon, T. et al. The Role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol. 158, 

352–362 (2012).
 17. Parsons, A. D. et al. Automatic processing of multimodal tomography datasets. J. Synchrotron. Rad. 24, 248–256 (2017).
 18. Suuronen, J.-P. & Sayab, M. 3D nanopetrography and chemical imaging of datable zircons by synchrotron multimodal X-ray 

tomography. Sci. Rep. 8, 4747 (2018).
 19. Hong, Y. P., Chen, S. & Jacobsen, C. A new workflow for X-ray fluorescence tomography: MAPStoTomoPy. In: (ed. Lai, B.) 95920W 

(2015). https:// doi. org/ 10. 1117/ 12. 21941 62
 20. Gürsoy, D., Biçer, T., Lanzirotti, A., Newville, M. G. & De Carlo, F. Hyperspectral image reconstruction for X-ray fluorescence 

tomography. Opt. Express 23, 9014 (2015).
 21. Somogyi, A. et al. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline 

of synchrotron soleil. J. Synchrotron. Radiat. 22, 1118–1129 (2015).
 22. Bourassa, D., Gleber, S.-C., Vogt, S., Shin, C. H. & Fahrni, C. J. MicroXRF tomographic visualization of zinc and iron in the zebrafish 

embryo at the onset of the hatching period. Metallomics 8, 1122–1130 (2016).
 23. Villarraga-Gómez, H. & Smith, S. T. Effect of the number of projections on dimensional measurements with X-ray computed 

tomography. Precis. Eng. 66, 445–456 (2020).
 24. Li, P. et al. 4th generation synchrotron source boosts crystalline imaging at the nanoscale. Light Sci. Appl. 11, 73 (2022).
 25. Schwartz, J. et al. Real-time 3D analysis during electron tomography using tomviz. Nat. Commun. 13, 4458 (2022).
 26. Atwood, R. C., Bodey, A. J., Price, S. W. T., Basham, M. & Drakopoulos, M. A high-throughput system for high-quality tomographic 

reconstruction of large datasets at Diamond Light Source. Phil. Trans. R. Soc. A. 373, 20140398 (2015).
 27. Liu, Z. et al. TomoGAN: Low-dose synchrotron x-ray tomography with generative adversarial networks: Discussion. J. Opt. Soc. 

Am. A 37, 422 (2020).



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16924  | https://doi.org/10.1038/s41598-022-21368-0

www.nature.com/scientificreports/

 28. Somogyi, A. & Mocuta, C. Possibilities and challenges of scanning hard X-ray spectro-microscopy techniques in material sciences. 
AIMS Mater. Sci. 2, 122–162 (2015).

 29. Chu, Y. S. et al. Multimodal, multidimensional, and multiscale X-ray imaging at the national synchrotron light source II. Synchro-
tron Radiat. News 33, 29–36 (2020).

 30. Odstrcil, M. et al. Ab initio nonrigid X-ray nanotomography. Nat. Commun. 10, 2600 (2019).
 31. Bazin, D., Daudon, M., Combes, C. & Rey, C. Characterization and some physicochemical aspects of pathological microcalcifica-

tions. Chem. Rev. 112, 5092–5120 (2012).
 32. de Jonge, M. D. & Vogt, S. Hard X-ray fluorescence tomography—An emerging tool for structural visualization. Curr. Opin. Struct. 

Biol. 20, 606–614 (2010).
 33. Johnson, R. A. & Wichern, D. W. Applied Multivariate Statistical Analysis (Pearson Prentice Hall, 2007).
 34. Kim, S. A. et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314, 1295–1298 

(2006).
 35. Eroglu, S. et al. Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and 

germination. Plant Physiol. 174, 1633–1647 (2017).
 36. Schofield, R. et al. Image reconstruction: Part 1—Understanding filtered back projection, noise and image acquisition. J. Cardiovasc. 

Comput. Tomogr. 14, 219–225 (2020).
 37. Sorzano, C. O. S. et al. A review of resolution measures and related aspects in 3D electron microscopy. Prog. Biophys. Mol. Biol. 

124, 1–30 (2017).
 38. Trinchieri, A. Epidemiology of urolithiasis: An update. Clin. Cases Miner. Bone Metab. 5, 101–106 (2008).
 39. Randall, A. An hypothesis for the origin of renal calculus. N. Engl. J. Med. 214, 234–242 (1936).
 40. Van de Perre, E. et al. Randall’s plaque as the origin of idiopathic calcium oxalate stone formation: an update. C. R. Chim. 24, 1–19 

(2022).
 41. Letavernier, E. et al. ABCC6 deficiency promotes development of Randall plaque. JASN 29, 2337–2347 (2018).
 42. Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001).
 43. Carpentier, X. et al. High Zn content of Randall’s plaque: A μ-X-ray fluorescence investigation. J. Trace Elem. Med Biol. 25, 160–165 

(2011).
 44. Dong, X. et al. A review of hyperspectral imaging for nanoscale materials research. Appl. Spectrosc. Rev. 54, 285–305 (2019).
 45. Duncan, K. E., Czymmek, K. J., Jiang, N., Thies, A. C. & Topp, C. N. X-ray microscopy enables multiscale high-resolution 3D 

imaging of plant cells, tissues, and organs. Plant Physiol. 188, 831–845 (2022).
 46. Marone, F., Studer, A., Billich, H., Sala, L. & Stampanoni, M. Towards on-the-fly data post-processing for real-time tomographic 

imaging at TOMCAT. Adv. Struct. Chem. Imag. 3, 1 (2017).
 47. Walsh, C. L. et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast 

tomography. Nat. Methods 18, 1532–1541 (2021).
 48. Goldstein, J. Scanning Electron Microscopy and X-ray Microanalysis (Springer, 2017).
 49. Solé, V. A., Papillon, E., Cotte, M., Walter, Ph. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluo-

rescence spectra. Spectrochim. Acta Part B 62, 63–68 (2007).
 50. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
 51. Pettersen, E. F. et al. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 

(2004).
 52. Zeng, G. L. Medical Image Reconstruction: A Conceptual Tutorial (Springer, 2010).
 53. Hsieh, J. Computed Tomography 2nd edn. (SPIE, 2009). https:// doi. org/ 10. 1117/3. 817303.
 54. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. 

B (Methodol.) 39, 1–22 (1977).
 55. Kazantsev, D., Guo, E., Phillion, A. B., Withers, P. J. & Lee, P. D. Model-based iterative reconstruction using higher-order regulari-

zation of dynamic synchrotron data. Meas. Sci. Technol. 28, 094004 (2017).
 56. Bergamaschi, A., Medjoubi, K., Messaoudi, C., Marco, S. & Somogyi, A. MMX-I: Data-processing software for multimodal X-ray 

imaging and tomography. J. Synchrotron. Rad 23, 783–794 (2016).
 57. Hunter, D. R. & Lange, K. A tutorial on MM algorithms. Am. Stat. 58, 30–37 (2004).
 58. Pafilis, C. et al. A methodology for the estimation of the optimal iteration in MLEM-based image reconstruction in PET. In 2011 

10th International Workshop on Biomedical Engineering 1–4 (IEEE, 2011). https:// doi. org/ 10. 1109/ IWBE. 2011. 60790 46.
 59. Epstein, C. L. Introduction to the Mathematics of Medical Imaging (Pearson Education/Prentice Hall, 2003).
 60. Koho, S. et al. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 10, 3103 (2019).
 61. van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).
 62. Banterle, N., Bui, K. H., Lemke, E. A. & Beck, M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. 

J. Struct. Biol. 183, 363–367 (2013).
 63. de Jonge, M. D. et al. Spiral scanning X-ray fluorescence computed tomography. Opt. Express 25, 23424 (2017).

Acknowledgements
The authors wish to thank E. Chouzenoux (Centre de Vision Numerique, CentraleSupélec, 91190 Gif-sur-Yvette, 
France) for her help in the validation process of the reconstruction algorithm and G. Correc (Synchrotron 
Soleil) for his help during the X-ray experiments. The measurements have been performed at the Nanoscopium 
beamline of Synchrotron Soleil during consecutive in-house research projects and user experiments (20201481 
and 20191993).

Author contributions
Supervision of the project: K.M. Sample preparation: E.B., E.L., M.P.I. Synchrotron measurements, design, prepa-
ration, and participation: R.G., D.B., E.B., E.L., M.P.I., K.M., A.S. Development and integration of tomography 
reconstruction algorithms: R.G., K.M. Provision of the wild-type Arabidopsis thaliana seeds: C.C. Validation of 
the reconstruction algorithms: R.G., K.M. Writing—original draft: R.G., K.M., A.S. with discussion and com-
ments from the other authors.

Funding
Agence Nationale de la Recherche (Project ‘DEFIMAN’, ANR-19-CE20-0009-02). French Society of Nephrology 
(SFNDT) financial support for the research dedicated to kidney calcifications.

Competing interests 
The authors declare no competing interests.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16924  | https://doi.org/10.1038/s41598-022-21368-0

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 21368-0.

Correspondence and requests for materials should be addressed to A.S. or K.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022


	ACKNOWLEDGMENTS
	RÉSUMÉ DÉTAILLÉ
	INTRODUCTION
	CONTEXT
	Brief overview of pathological calcifications
	Kidney stones introduction
	Kidney stone types and causes
	Kidney stones formation
	Trace elements in kidney stones
	Some pathogenesis mechanisms

	Analytical techniques for kidney stones
	Polarized light microscopy
	Electron microscopy
	Infrared spectroscopy
	Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS)
	Raman spectroscopy
	X-ray diffraction
	X-ray tomography
	X-ray fluorescence

	Analytical techniques for Randall’s plaque
	X-ray imaging
	X-ray imaging history
	X-ray microscopy techniques
	X-ray absorption microscopy
	X-ray fluorescence microscopy
	Scanning X-ray diffraction
	X-ray phase contrast imaging

	Scanning XRF tomography


	FOUNDATIONS AND INSTRUMENTATION
	X-ray matter interactions
	X-ray attenuation
	X-ray absorption
	X-ray scattering
	Rayleigh scattering
	Compton scattering


	Synchrotron radiation
	X-ray production
	Principal characteristics of an X-ray source
	Laboratory sources
	Synchrotron sources
	Dosimetry

	Multimodal X-ray nano-imaging on the NANOSCOPIUM beamline of the SOLEIL synchrotron
	The SOLEIL synchrotron
	The NANOSCOPIUM beamline
	Multi-technique scanning X-ray nano-imaging station
	FLYSCAN acquisition architecture in operation

	Data processing
	Data organization
	Data reduction
	Position correction


	Conclusion

	TOMOGRAPHY IMAGE RECONSTRUCTION
	Background of tomography reconstruction
	Radon transform
	Inverse Radon transform
	Central slice theorem

	Introduction to the reconstruction algorithms
	Analytical methods
	Direct Fourier reconstruction
	Filtered back projection

	Iterative methods
	Algebraic reconstruction technique
	Maximum-likelihood expectation-maximization
	Mathematical derivation


	Reconstruction artifacts
	Ring artifacts
	Rotation stage errors
	Missing wedge artifacts
	Limited numbers of projection artifact

	Conclusion

	METHODOLOGICAL DEVELOPMENTS AND IMPLEMENTATION OF THE WORKFLOW
	Introduction
	Description of developed and implemented workflow on NANOSCOPIUM
	Data acquisition
	Experimental set-up
	Sample alignment
	Projection number of tomography

	Data processing
	Data preprocessing
	Data alignment

	Tomographic reconstruction 
	Determination of the number of iterations: automatic early stopping strategy for MLEM
	3D volume visualization

	Data quantification
	Spatial resolution evaluation
	Nyquist angular sampling condition
	Fourier ring correlation for spatial resolution estimation


	Proof of principle test measurements
	Arabidopsis thaliana seeds
	Data acquisition
	3D sparse XRF and X-ray absorption tomography
	High-resolution 2D tomography
	High-resolution 2D projection imaging

	Results and validation
	Sparse scanning X‐ray tomography
	High‐resolution single slice tomography
	High‐resolution 2D XRF imaging
	Element concentration quantification
	Mean XRF voxel-spectrum
	Tomogram spatial resolution with MLEM
	Dose evaluation


	Discussion
	Conclusion

	APPLICATIONS IN PATHOLOGICAL CALCIFICATIONS: RANDALL'S PLAQUE FORMATION
	Characteristics of Randall’s plaque
	Some physicochemical characteristics
	Chemical composition of Randall’s plaque
	Trace elements in Randall’s plaque

	Case studies: application of developed techniques
	Sample preparation
	Experimental: Data acquisition, processing, and data reconstruction
	Data acquisition
	Data processing

	Results and analysis
	Comparison to previous studies and conclusion
	Dose estimation
	Discussion of the limitations of the current study



	CONCLUSION
	Colocalization between calcium (Ca) and zinc (Zn) observed in other renal papilla samples
	List of publication

