
HAL Id: tel-04511699
https://theses.hal.science/tel-04511699v1

Submitted on 19 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative Adversarial Networks for Synthesis and
Control of Drum Sounds

Antoine Lavault

To cite this version:
Antoine Lavault. Generative Adversarial Networks for Synthesis and Control of Drum Sounds. Sound
[cs.SD]. Sorbonne Université, 2023. English. �NNT : 2023SORUS614�. �tel-04511699�

https://theses.hal.science/tel-04511699v1
https://hal.archives-ouvertes.fr

Sorbonne Université

Ecole Doctorale Informatique, Télécommunications et Électronique

Laboratoire Sciences & Technologies de la Musique et du Son (UMR 9912)

Équipe Analyse/Synthèse

Generative Adversarial Networks for Synthesis and

Control of Drum Sounds

Par Antoine Lavault

Thèse de doctorat de Sciences et Technologies de l’Information et de la

Communication

Dirigée par Axel Roebel

Présentée et soutenue publiquement le 8 Décembre 2023

Devant un jury composé de :

Rapporteur, Pr. Philippe Depalle, McGill University (Canada)

Rapporteur, Pr. Vesa Välimäki, Aalto University (Finlande)

Examinateur, Pr. Slim Essid, LTCI - Télécom Paris - Institut Polytechnique de Paris

Examinateur, Dr. Sølvi Ystad, Laboratoire Prism, Université Aix-Marseille1

Examinateur, Dr. Stefan Lattner, Sony Computer Science Laboratories, Paris

Directeur de thèse, Dr. Axel Roebel, Ircam / UMR9912 / Sorbonne Université Paris

1Présidente du Jury

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Background . 3

1.3 Physics of drum sounds . 3

1.3.1 Basic Physics of Drum and Cymbals 3

1.3.2 Shells . 4

1.3.3 Cymbals . 9

1.4 Drum Synthesis . 13

1.4.1 Signal-based drum synthesis method 13

1.4.2 Physics-based models for drum synthesis 16

1.5 Deep Learning . 16

1.6 Sound Perception and subjective evaluation 18

1.6.1 Sound and Hearing . 18

1.6.2 Subjective evaluation of quality . 19

1.6.3 Evaluation of Stimuli Perception 21

1.7 Contributions . 22

2 State of the Art 24

2.1 Introduction . 24

2.2 Synthesis with deep neural networks . 24

2.2.1 WaveNet . 24

2.2.2 Auto-Encoders . 26

2.2.3 Adversarial models . 29

I

2.2.4 Differentiable Digital Signal Processing 33

2.2.5 Diffusion models . 34

2.2.6 Control strategies . 36

2.3 Evaluation Strategies for Generative Models 38

2.3.1 Quality Evaluation . 38

2.3.2 Timbre Control Evaluation . 42

2.4 Conclusion . 43

3 Databases 45

3.1 Introduction . 45

3.2 ENST Drums . 45

3.2.1 Subset of Interest . 45

3.2.2 Shortcomings . 46

3.3 Data augmentation . 46

3.4 Apeira Drums . 47

3.4.1 Structure of the dataset . 47

3.4.2 Recording Setup . 48

3.4.3 Dataset Contents . 48

3.4.4 Trigger and accelerometer data . 49

3.4.5 Recording Protocol . 51

3.4.6 Repeatability . 52

3.4.7 Discussion . 52

3.5 Dataset used in the document . 52

4 Drum Synthesis with Adversarial networks 54

4.1 Introduction . 54

4.2 StyleWaveGAN (Basic structure) . 54

4.2.1 Introduction . 54

4.2.2 Structure . 55

4.2.3 Training Setup . 60

II

4.2.4 Objective evaluation of sound quality 61

4.2.5 Subjective evaluation of sound quality 62

4.3 Timbral controls . 66

4.3.1 Introduction . 66

4.3.2 AudioCommons descriptors . 67

4.3.3 Differentiable AudioCommons descriptors 67

4.3.4 Objective evaluation . 69

4.3.5 Subjective evaluation . 77

4.4 StyleWaveGAN with trainable oscillator bank 82

4.4.1 Introduction . 82

4.4.2 StyleWaveGAN-OSC . 82

4.4.3 Objective evaluation . 90

4.5 Velocity control . 93

4.5.1 Introduction . 93

4.5.2 Neural Velocity Estimator . 94

4.5.3 Signal-based Velocity Descriptor . 100

4.5.4 Discussion . 105

5 Conclusion 107

5.1 General Conclusion . 107

5.2 Limitations and Future Works . 108

References 109

III

List of Figures

1.1 Modern Drum Kit - Mapex Black Panther Velvetone 4

1.2 Spectrograms and pitch estimation of sound recordings of toms. The hori-
zontal white dashed lines in the figure represent the first two partials uti-
lized in calculating the frequency ratio. 6

1.3 Details of the bottom of a snare drum and snare throw-off 7

1.4 Spectrogram and Waveforms for snare drum 8

1.5 Spectrogram of a recorded sound of a kick drum (Mapex Velvetone, 22"x18") 9

1.6 Modern drum kit with cymbals (Yamaha Stage Custom). From left to
right, the cymbals’ types are: hi-hat, crash, ride, crash, and ozone-like
(similar in sound to a china cymbal) . 10

1.7 Spectrogram of a recorded sound of different cymbal types 11

1.8 Spectrograms of a recorded crash cymbal sound, played with a drumstick . 12

1.9 Spectrogram of a recorded sound of Hi-hat with different opening levels . . 13

2.1 Visualization of a stack of dilated causal convolutional layers, reproduced
from [van den Oord et al., 2016], figure 3 25

2.2 WaveNet autoencoder. Note that the embeddings are distributed in time
and upsampled to the original resolution before biasing each decoder layer.
Reproduced from [Engel et al., 2017], figure 1b. 26

2.3 Visualization of the architecture and sampling from a VAE. The (µ, σ)
block represents the output of the encoder, that are the parameters of a
multidimensional Gaussian distribution. 28

2.4 Visualization of the GAN framework. The grey dashed line represents the
backpropagation for the discriminator training, and the purple dashed lines
represent the backpropagation for the generator training. 30

2.5 Visualization of the "Progressive Growing of GANs," reproduced from [Kar-
ras et al., 2018] . 32

IV

2.6 DDSP autoencoder architecture. Red blocks are part of the neural network
architecture, green blocks are the latent representation, and yellow blocks
are deterministically controlled synthesizers and effects provided by DDSP.
Reproduced from [Engel et al., 2020]. 34

2.7 Diffusion probabilistic models are parameterized Markov chains trained to
denoise data gradually. A neural network parametrizes the denoising model
pθ. Reproduced from the companion website of [Ho et al., 2020] 35

2.8 Visualization of GAN control-methods. 37

3.1 Redison Senstroke sensor mounted on a Vater 5A drumstick. 48

3.2 Photography of the recording setup (Yamaha Stage Custom) 49

3.3 Mean normalized envelopes on the dataset, shortened to 1.4s 50

3.4 Examples of trigger signal spectrograms on real drums (Apeira Drums) . . 51

4.1 Comparison between StyleGAN and StyleWaveGAN. Here, “A” stands for
a learned affine transform, and “B” applies learned per-channel scaling
factors to the noise input. Since StyleWaveGAN uses style-controlled noise
layers, it has no per-channel global scaling like StyleGAN. 56

4.2 Generated envelopes from the training dataset (ENST-Drums) 58

4.3 MOS on different datasets depending on the instrument label (1 is lowest,
5 is highest) . 65

4.4 Target brightness vs. generated brightness (single descriptor). Black dots
are for StyleWaveGAN, and blue crosses are for NeuroDrum 70

4.5 Results for depth and warmth descriptors in the single descriptor case. . . 71

4.6 Effect of loss function on generated descriptors 76

4.7 Target vs. Output for the combined descriptors 78

4.8 Psychometric results for differential threshold estimation 80

4.9 Comparison of pitch measurements between real tom sound and synthetic
sine with pitch glide using CREPE . 84

4.10 StyleWaveGAN generator with oscillator bank added. 86

4.11 Examples of the oscillator bank output for closed and open hi-hat. The
number of oscillators is 8, but the spectrograms show fewer partials, as some
frequencies are extremely close to each other and can’t be discriminated
(the difference is < 0.001Hz in this case). Note these spectrograms were
obtained with a version of SWG-OSC with the frequency ordering but
different decay times. This result holds for the single decay version as well. 88

V

4.12 Examples of waveforms and spectrograms of real and synthesized sounds
by StyleWaveGAN trained on ENST-AUG, with the constant-energy trans-
form applied . 89

4.13 Examples of waveforms and spectrograms of real and synthesized tom
sounds with StyleWaveGAN trained on ENST-AUG 91

4.14 Tom sample by StyleWaveGAN trained with a constant-energy discrimina-
tor, with constant energy compensation applied at the input 93

4.15 Histogram of target and estimated velocity values for generated snare drum
samples using the neural velocity descriptor 99

4.16 Comparison of Senstroke MIDI Velocity Estimation vs. Energy Estimation
for Cymbals from dataset AD-SS . 101

4.17 Histogram and Residuals for the log-energy to velocity estimator 102

4.18 Implementation of velocity to energy scaling in StyleWaveGAN 103

4.19 Velocity Control with StyleWaveGAN, using values from the dataset and
a continuum of values within the dataset, snare drum only. Note the axes
are in velocity units, with 127 corresponding to the maximum of log-energy
on the dataset . 104

VI

List of Tables

2.1 Comparison of state-of-the-art neural drum synthesizers before the start of
the thesis (before the end of 2019) . 43

2.2 Comparison of state-of-the-art neural drum synthesizers published during
the thesis (from 2020 onwards) . 43

3.1 Dataset population . 46

3.2 Augmentation operations and parameters 47

4.1 FAD comparison to NeuroDrum [Ramires et al., 2020] (lower is better) . . 61

4.2 FAD on networks without any conditioning (lower is better) 61

4.3 FAD on label-conditioned networks (lower is better) 62

4.4 Intra-class FAD for label-conditioned StyleWaveGAN 62

4.5 Listening devices and age groups for the subjective evaluation of sound
quality . 64

4.6 MOS on different datasets depending on the instrument label (1 is lowest,
5 is highest) . 65

4.7 Summary of AudioCommons models [Pearce et al., 2016]. The descriptors
we chose for controlling the synthesis of StyleWaveGAN are highlighted in
bold. 68

4.8 Ordering accuracy for the feature coherence tests for brightness on sam-
ples generated with the baseline NeuroDrum [Ramires et al., 2020] and
DrumGAN (from [Nistal et al., 2020]). D1 refers to the results obtained
in [Nistal et al., 2020] and reproduced here, and D2 refers to the results
obtained on our augmented dataset, ENST-AUG. (Higher scores are better) 71

4.9 Ordering accuracy for other features of interest using StyleWaveGAN (higher
is better) . 72

4.10 Ordering accuracy for multiple descriptors using Multi-dimensional De-
scriptor Controls with StyleWaveGAN (higher is better) 73

4.11 Mean absolute error for several configurations (lower is better) 74

VII

4.12 Absolute and relative Mean Absolute Error for the L2 loss compared to
the L1 loss (lower is better). For the L2 loss, values between brackets show
the relative difference between the MAE with L1 and L2 losses. 75

4.13 Determination coefficient for several configurations (higher is better) 77

4.14 Summary of absolute threshold experiments data set 79

4.15 Listening devices and age groups for the control quality perceptual test . . 79

4.16 Summary of differential experiments for every 3 measurement points with
the fitted sigmoid. Between parenthesis, the ratio between the MAE on the
dataset and the differential threshold in percentages. Values marked with
⋆ are below the MAE metric when considering values outside the dataset. . 81

4.17 FAD for tested variations of StyleWaveGAN on ENST-Drums (lower is
better) . 92

4.18 Root mean squared error of the neural velocity estimator (validation split,
close mics only, lower is better) . 96

4.19 Accuracy of the neural velocity estimator (validation split, close mics only,
higher is better) . 96

4.20 Root mean squared error of the neural velocity estimator on private test
dataset (lower is better) . 97

4.21 Accuracy of the neural velocity estimator on private test dataset (higher is
better) . 97

4.22 Mean and standard deviation of signal energy on trigger sensors for snare
drums on different datasets (assuming normal distribution) 98

4.23 Mean squared error computed using the estimated velocity of samples gen-
erated by StyleWaveGAN with velocity control (lower is better) 98

4.24 Control Errors and Determination Coefficient with the signal-based velocity
descriptor, given in velocity units . 104

VIII

Summary

Audio synthesizers are electronic systems capable of generating artificial sounds under
parameters depending on their architecture. Even though multiple evolutions have trans-
formed synthesizers from simple sonic curiosities in the 1960s and earlier to the main
instruments in modern musical productions, two major challenges remain; the develop-
ment of a system of sound synthesis with a parameter set coherent with its perception by
a human and the design of a universal synthesis method, able to model any source and
provide new original sounds.

This thesis studies using and enhancing Generative Adversarial Networks (GAN) to build
a system answering the previously-mentioned problems. The main objective is to propose
a neural synthesizer capable of generating realistic drum sounds controllable by predefined
timbre parameters and hit velocity.

The first step in the project was to propose an approach based on the latest technological
advances at the time of its conception to generate realistic drum sounds. We added
timbre control capabilities to this method by exploring a different way from existing
solutions, i.e., differentiable descriptors. To give experimental guarantees to our work, we
performed evaluation experiments via objective metrics based on statistics and subjective
and psychopĥysical evaluations on perceived quality and perception of control errors. In
subsequent experiments we added control to the timbral control.

Furthermore, with the idea of pursuing the realization of a versatile synthesizer with
universal control, we have created a dataset ex-nihilo composed of drum sounds to create
an exhaustive database of sounds accessible in the vast majority of conditions encountered
in the context of music production. From this dataset, we present experimental results
related to the control of dynamics, one of the critical aspects of musical performance but
left aside by the literature.

This work will present how we can leverage deep neural networks for drum synthesis and
how we can add timbral and dynamics control to the neural synthesizer.

IX

Résumé

Les synthétiseurs audio sont des systèmes électroniques capable de générer des sons artifi-
ciels sous un ensemble de paramètres dépendants de leur architecture. Quand bien même
de multiples évolutions ont transformé les synthétiseurs de simples curiosités sonores dans
les années 60 et précédentes à des instruments maîtres dans les productions musicales
modernes, deux grands défis restent à relever: le développement d’un système de synthèse
répondant à des paramètres cohérent avec leur perception par un humain et la conception
d’une méthode de synthèse universelle, capable de modéliser n’importe quelle source et
de la dépasser.

Cette thèse étudie l’utilisation et la valorisation des réseaux antagonistes génératifs (Gen-
erative Adversarial Networks, abrégé en GAN) pour construire un système répondant
aux deux problèmes exposés précédemment. L’objectif principal est ainsi de proposer un
synthétiseur neuronal capable de générer des sons de batteries réalistes et contrôlable par
un ensemble de paramètres de timbres prédéfinis, ainsi que de proposer un contrôle de la
vélocité de la synthèse.

La première étape dans le projet a été de proposer une approche basée sur les dernières
avancées techniques au moment de sa conception pour générer des sons de batteries réal-
istes. A cette méthode de synthèse neuronale, nous avons aussi ajouter des capacités de
contrôle du timbre en explorant une voie différente des solutions existantes: l’utilisation
de déscripteurs différentiables. Pour donner des garanties expérimentales à notre travail,
nous avons réalisé des expériences d’évaluation à la fois via des métriques objectives basées
sur les statistiques mais aussi des évaluations subjectives et psychoĥysiques sur la qualité
perçue et la perception des erreurs de contrôle. Pour proposer un synthétiseur utilisable
pour des performances musicales, nous avons aussi ajouter un contrôle de la vélocité.

Toujours dans l’idée de poursuivre la réalisation d’un synthétiseur universel et à contrôle
universel, nous avons créer ex-nihilo un jeu de données composé de sons de batteries dans
le but avoué de créer une base exhaustive des sons accessibles dans l’immense majorité des
conditions rencontrées dans le contexte de la production musicale. De ce jeu de données,
nous présentons des résultats expérimentaux liés au contrôle de la dynamique, un des
aspects phares de la performance musicale mais laissé de côté par la littérature.

X

Chapter 1

Introduction

Synthesizers in the musical domain are instruments capable of generating artificial sounds
under the constraint of a set of control parameters. Growing in popularity since the 1970s
[Chowning, 1977; Chamberlin, 1985] and now part of most modern music productions,
the audio synthesizer redefined how music is composed and performed, especially with
the rise of Digital Audio Workstations (DAW) and the real-time capabilities of modern
computers.

While the progress made by synthesizers is more than notable, there is still a fundamental
obstacle: the development of user-driven interfaces, allowing for a genuine expression while
not constraining the musician to a limited set of sounds. Terms like waveforms, filters,
ADSR1 envelopes, frequency modulation (FM), LFO2, or VCO3 are common knowledge
only for a few. Therefore, modern synthesizers’ vast and complex parameter space is
an unquestioned source of hurdles that slows down the creative process or limits the
usage of the synthesis possibilities to a few presets. In addition, the learning process
behind mastering the capabilities of a synthesizer may seem similar to any other musical
instrument, where one has to train hard to master the instrument’s sonic capabilities
fully. For instance, a drummer will practice the 40 rudiments, for both hand and feet,
before being able to master the whole range of sonic possibilities offered by a drum
kit. Similarly, a pianist will perform drills to increase his virtuosity and control over
his dynamics. However, the process to attain this is quite accessible: the direct (and
mechanical) interaction with the instrument produces the sound set available. On the
contrary, audio synthesizers require prior signal processing knowledge to let the user
control the system purposefully toward a specific sound. The main barrier to entry resides
in the large gap between signal processing notions and the musician’s creative process. In a
way, the synthesizer and its user do not speak the same language; one is implanted in a long
scientific history of hard truths and abstract concepts, and the other is in another abstract
space but made of emotions, perceptions, aesthetics, and overall experience. Using a
synthesizer is equivalent to mapping an abstract and unstructured creative process onto
a rigid, synthesizer-specific and fixed parameter set: the user bends itself metaphorically
to the synthesizer.

Moreover, most synthesizers focus on harmonic sounds rather than percussion. While it
1Attack-Decay-Sustain-Release
2Low-Frequency Oscillator
3Voltage-Controlled Oscillator

1

is possible to synthesize "good" drum sounds using traditional additive, subtractive, or
FM synthesis at the cost of spending a long time with non-descriptive controls or creating
far-from-realistic sounds, most of the renowned and commonly used drum synthesizers are
sample-based or use physical models. This creates a trade-off between sonic capabilities
and ease of use. To that end, drum synthesizers like the Roland TR-808 or TR-909 are
limited in sonic variety. Still, they are easily programmed when a Korg Wavedrum is
unlimited in sound and performance but virtually unusable by a musician.

From the context described above, we can identify a few challenges and limitations of
modern synthesizers:

1. the need for dedicated and highly specific software or hardware for musical purposes;

2. the necessary mastery of different synthesis techniques and workflows;

3. the need for sample libraries due to the unavailability of technology for modeling
specific sound sources or to accelerate the creative process;

4. the creative barrier modern synthesizers impose through their obscure terminology
and workflows for the average musician.

The question arises about designing a synthesis technique exposing intuitive and seman-
tically relevant parameters. Such a technique would make terms like ambiance, space,
pitch, and timbre the principal properties of the sound synthesis instead of reverb time,
diffusion, frequency, filter cutoff, and resonance.

1.1 Objectives

The objectives of this thesis are plural. First and foremost, we aim to engineer a drum
synthesizer capable of perceptively good quality while providing real-time capabilities.
While low-fidelity is a genre in and of itself, it is most common to expect good sound
quality from a modern synthesizer. Second, we expect basic control over the genera-
tion by choosing the type of drum or cymbal to synthesize, while allowing interpolation
possibilities for advanced users. Finally, we expect this drum synthesizer to provide high-
level and semantically relevant controls over the synthesis, first, with timbral properties
that would be relevant for the user, e.g., brightness, warmth, or depth. And then offer
performance-bound parameters, with the most important for a percussionist: dynamics.

In summary, we expect the following:

• Good synthesis quality (in terms of perceived quality)

• Sufficient computational performance to allow for real-time use.

• Basic control over the type of drum

• Advanced control over timbral properties

• Advanced control over performance dynamics

CHAPTER 1. INTRODUCTION 2

This study will be limited to real drum and cymbal sounds, as synthetic drum sounds can
already be synthesized with state-of-the-art methods, hence their name.

1.2 Background

While the main focus of this work is deep-learning-based generative models for drum
synthesis, several associated topics have to be covered to understand the project’s context
better. These topics are discussed in the following sections of the present chapter.

First, we will briefly describe the physics behind drum and cymbal sounds to understand
standard modeling methods and some characteristics of these percussion instruments.
By understanding the phenomena at work here, we can gain insights into constraints or
prior knowledge to add to the deep generative model. We will then consider traditional
methods to synthesize drum sounds and, more generally, how to use drum sounds in a
musical production context. We will then review the traditional methods to synthesize
drum sounds in a music production context, such as additive synthesis, FM synthesis,
or sample-based synthesis. We will also review their limitations in the context of music
production. By restraining ourselves to this thesis’s target application, we can learn
the limits of what is offered to music producers. From this base, we will dive into a
succinct description of deep learning, its properties, and its most common architectures.
Finally, we will describe how humans perceive sound and how we can use human listeners’
perceptions in the context of subjective quality evaluation and psychophysics.

Audio examples for this chapter can be accessed at https://alavault.github.io/stylewavegan_
phd/#introduction.

1.3 Physics of drum sounds

Under the umbrella of drum sounds, we limit ourselves to studying the components of a
modern drum kit. We must distinguish between the actual "drums," shell drums, and the
cymbals. This study will not deal with ethnic percussive instruments like the taiko drum
or classical instruments like the timpani or the marimba.

1.3.1 Basic Physics of Drum and Cymbals

The physics of drums and cymbals are quite complex but can be summarized into a few
main concepts.

For the two-headed drum, i.e., the most common configuration with modern shells, we
can model the interaction between the two heads with a two-mass vibrator. This simple
model shows the presence of two inharmonic modes, called membrane modes, which in
turn shows the coupling between the heads of the drum [Rossing et al., 1992; Rossing,
2000]. A pitch glide can be observed on real drums due to the increased tension locally
during the hit. This increases the mode frequency, returning to its expected value after
the strike [Fletcher and Bassett, 1978; Rossing, 2000].

CHAPTER 1. INTRODUCTION 3

https://alavault.github.io/stylewavegan_phd/#introduction
https://alavault.github.io/stylewavegan_phd/#introduction

Figure 1.1: Modern Drum Kit - Mapex Black Panther Velvetone

For cymbals, physics is mainly described by the study of plates. Similarly to drum shells,
the cymbals show vibrational modes with inharmonic relationships. What is more notable
with cymbals is their non-linear behavior at high excitation amplitude [Fletcher and
Rossing, 1998].

The following sections will focus on the different specifications from audio recordings of
these instruments while considering the underlying physical phenomena.

1.3.2 Shells

What we call "shells" can be more formally described as drums that do not convey a
definite pitch or, at the very least, a much weaker sense of pitch than classical percussion
instruments like the timpani or ethnic percussion instruments like the Indian tabla or
mridanga [Rossing, 2000].

As mentioned before, we will focus on the modern drum kit used in popular music pro-
duction, i.e., a set composed of one or several kick drums (also called bass drums), a snare
drum, and a set of toms (also known as tom-toms).

The drums described in the sections below have (in general) two heads, one called the
batter head, which the percussionist strikes, and the resonant head, used to tailor the
characteristics of the overall sound.

CHAPTER 1. INTRODUCTION 4

Toms

What was originally an African drum, the tom-tom, is now part of a modern drum kit,
primarily found in a set of side drums of different sizes and shapes with two heads in
general4. In the context of modern music and especially rock, it is more colloquially
called a tom. [Rossing, 2000]

These drums have varying sizes from 8 to 18 inches. In the modern drum set shown in
Fig. 1.1, the number of toms is 4, divided into two rack toms (10 and 12 inches wide) and
two floor toms (14 and 16 inches wide). Of course, smaller and bigger tom sets exist and
will be chosen by the percussionist depending on the musical context.

The toms are generally the most musical drums in a drum kit, as they can have a semblance
of the pitch even if the sinusoids (resonances) constituting the sound exhibit an inharmonic
relationship between themselves, as shown in Fig. 1.2a and 1.2b.

What is shown in these figures is the strong amplitude of the sinusoid bound to the
fundamental frequency, which gives the tom a semblance of an instrument with pitch.
Please note the extended decay time of the sinusoid associated with the fundamental
frequency.

Figure 1.2 clearly shows the frequency decreasing during a short period after the initial hit.
Indeed, when a drum head is hit, its tension increases, which causes the pitch of the sound
to change. This happens because, like a string, the frequency of vibration of the drum
head increases as the tension increases due to the initial hit. As the amplitude decays, the
frequency drops slightly non-linearly as a function of time, as shown in Fig. 1.2c [Rossing,
2000]. In the case of Fig. 1.2c, the fundamental frequency is almost a D3 in pitch, with
a pitch glide of a minor third (F3 to D3).

Snare Drum

While the snare drum has evolved over several centuries, its modern evolution is a two-
headed drum with a width of 14 inches and a depth between 5 and 8 inches [Rossing,
2000; Toulson, 2021]. Still, sizes may vary above and below these values. For instance,
the piccolo snare drum, with a width of 10 inches and a depth between 3 and 4.5 inches.

The snare drum has got its name due to the snare wires. Snare wires are an essential
component of a snare drum. They are thin, tightly wound metal wires stretched across the
snare drum’s bottom head, on the outside of the drum as shown in Fig. 1.3a. Generally,
the snare wires are attached to a snare bed, a small indentation or groove in the drum’s
bearing edge. The wires are held at each end of the drum shell with snare straps, which are
thin pieces of fabric, string, or plastic attached to the snare wires and the snare throw-off
mechanism, as seen in Fig. 1.3b. This mechanism allows the snare wires to be engaged or
disengaged from the drum’s bottom head, which changes the sound of the drum and can
also adjust the tension of the wires against the bottom head of the snare drum. When
the snare wires are engaged, they vibrate against the bottom head of the snare drum,
creating a characteristic snare sound that is a staple of many genres of music, particularly

4Tom-toms with one head exist and are nowadays used in orchestral percussion ensembles. These
one-headed toms could also be heard on rock records of the 1970s

CHAPTER 1. INTRODUCTION 5

(a) Spectrogram of a recorded sound of a tom
(Yamaha Stage Custom 10", rack)

(b) Spectrogram of a recorded sound of a tom
(Yamaha Stage Custom 16", floor)

(c) Pitch Glide of a 10-inch tom obtained with
CREPE [Kim et al., 2018] (Yamaha Stage
Custom)

Figure 1.2: Spectrograms and pitch estimation of sound recordings of toms. The horizontal
white dashed lines in the figure represent the first two partials utilized in calculating the
frequency ratio.

CHAPTER 1. INTRODUCTION 6

in rock, jazz, and marching band music.

(a) Bottom head of a snare drum and
snare wires

(b) Snare drum throw-off in its engaged position with
snare straps visible

Figure 1.3: Details of the bottom of a snare drum and snare throw-off

The snare wires’ vibration is due to the coupling between the two heads through the
enclosed air and the drum shell. Figures 1.4a and 1.4b show spectrogram of a snare drum
recorded by microphones on top and bottom of the drum, i.e., one on the batter side
and the other on the snare side. Regarding frequencies, the top side recording shown in
Fig. 1.4a presents a high harmonic content with a few resonances. On the other side, shown
in Fig. 1.4b, the resonances are more numerous, but more importantly, the beginning of
the sound is akin to noise. There are no long decaying fundamental and resonances
compared to a tom, like in Fig. 1.2b.

In the time domain, the activity of the snare wires against the snare head is shown in
Fig. 1.4c. This figure shows the recording of two microphones on top and at the bottom
of the snare drum. The top figure shows the snare drum’s top side (or batter side), while
the bottom figure shows the snare side. We can see that the action of the wires against
the resonant head (i.e., snare side head) creates a noisy signal. This is the signature of a
snare drum sound.

The snare drum behaves more like a tom when the snare wires are off the resonant head,
i.e., physically decoupled from the snare side head. This is shown in Fig. 1.4d, where the
snare side recording shows no high-frequency noise. Moreover, note the polarity inversion
between the two signals due to the microphones being opposite of each other. The coupling
between the two heads can explain this: when the batter side is hit, the batter head is
pushed down, and by coupling, so is the snare side head. But one will push inwards
(the batter side) and the other outwards (the snare side), hence differences in terms of
the sound pressure gradient (one positive, the other negative) and finally recorded by the
microphones as such.

Kick Drum

The kick drum (or bass drum) is generally the widest and deepest drum in the drum kit.
With a diameter ranging from 18 inches to 26 inches, the kick drum is generally excited

CHAPTER 1. INTRODUCTION 7

(a) Spectrogram of a recorded sound of a snare
drum with snare wires on, recorded from the
top side (Yamaha Stage Custom, 14"x5.5")

(b) Spectrogram of a recorded sound of a snare
drum with snare wires on, recorded from the
snare side (Yamaha Stage Custom, 14"x5.5")

(c) Sound recording of top and bottom
snare microphones showing the snare action
(Yamaha Stage Custom, 14"x5.5")

(d) Sound recording of top and bottom snare
microphones showing the snare action with
snares off (Yamaha Stage Custom, 14"x5.5")

Figure 1.4: Spectrogram and Waveforms for snare drum

through a beater linked to a pedal. In modern music production, most kick drums are
ported, i.e., have a hole cut into the resonant head to reduce the sustain and introduce a
microphone inside.

Due to the bigger size, it would be expected to have more sustain out of the kick drum.
However, this kind of sound is generally disregarded in modern production. Kick drums
are generally dampened using pillows or blankets to give a faster decay; hence a "punchier"
sound [Toulson, 2021]. This additional dampening helps make the kick drum sound
different from a tom. The effect of dampening on the sounds can be seen by comparing
either figure Fig. 1.2a and 1.2b to Fig. 1.5. It’s worth noting that the fundamental pitch
is significantly lower than the other drums, as expected due to its size.

In Fig. 1.5, we also observe two low-intensity excitations corresponding to small rebounds
of the beater on the drum pedal.

CHAPTER 1. INTRODUCTION 8

Figure 1.5: Spectrogram of a recorded sound of a kick drum (Mapex Velvetone, 22"x18")

1.3.3 Cymbals

In the context of the modern drum kit, what we can consider cymbals are, in fact, de-
scendants of the Turkish tradition of cymbal-making. These Turkish cymbals are saucer-
shaped with a small dome in the center, called colloquially bell. Another kind of cymbal
found in modern drum kits comes from the Chinese tradition, where the cymbals have a
turned-up edge. These are colloquially known as "china" cymbals in the context of the
modern drum kit. Still, its usage is generally limited to effects or accentuation. With
different constructions come different sounds. The terms used to describe the cymbal’s
sounds have been set up by jazz musicians with onomatopoeia, such as "Crash," "Ride,"
or "Splash." [Rossing, 2000]

Description of the most common types of cymbals

In a modern drum kit, like the one shown in Fig. 1.6, the cymbals are presented on stands,
which is quite different from the handheld cymbals found in classical percussion.

As stated before, the name of the cymbals in the modern drum kit descends from jazz
drummers’ descriptions using onomatopoeia. First, the crash cymbal whose behavior
we will study in Sect. 1.3.3 is a cymbal of size ranging from 13 to 21 inches (typically
between 14 and 18 inches) and is mostly used for accentuation, both in classical and
modern percussion works. In more extreme music genres, the crash cymbal can be used
as a timekeeping element to compete with the rest of the ensemble [Pieslak, 2007]. The
crash cymbal is described by a fast attack and a quick to moderate decay. The crash
cymbal is generally played on its edge by whipping it with the drumstick shaft to obtain
the characteristic "crash" sound. To illustrate this point, we can use Fig. 1.7a. Here we

CHAPTER 1. INTRODUCTION 9

Figure 1.6: Modern drum kit with cymbals (Yamaha Stage Custom). From left to right,
the cymbals’ types are: hi-hat, crash, ride, crash, and ozone-like (similar in sound to a
china cymbal)

can see the cymbal does not sustain for too long (around 4 seconds), and its attack phase
can be considered a filtered noise burst. This corresponds to the fast attack and quick
decay described above. Small crashes (ranging from 6 to 10 inches) are called "splash"
and produce a very short sound, which is reasonably usable only for accentuation.

Another part of the modern drum kit cymbal kit is the ride cymbal. Originating from
the jazz drum kit, the ride cymbal was its main timekeeping element [Brown, 1990],
when a crash would be relegated to accentuation. Generally, a ride cymbal is a cymbal of
diameter between 18 and 26 inches. However, the most commonly found models are in the
20 to 22-inch range. Ride cymbals are generally larger and heavier than crash cymbals.
Being heavier makes its attack slower and not as suitable for crash technique. Because of
this, the ride cymbal is generally played with the tip of the drumstick to obtain a sharp
"ping" followed by sustained overtones. This can be seen in Fig. 1.7b where the attack
phase is short, but the cymbal sustains for quite some time (around 10 seconds when, in
comparison, the crash cymbal in Fig. 1.7a sustains for about 4 seconds). When the ride
is played like a crash cymbal, as shown in Fig. 1.7c, the frequency content of the attack
changes slightly, but the sustained part remains almost the same.

The hi-hat is the other timekeeping element in the modern drum kit, with the ride cymbal.
The hi-hat will be extensively described in Sect. 1.3.3, but can be shortly described as
two cymbals on a rod, one fixed and the other moving through a clutch mechanism.

Cymbals of Chinese descent are kept for accentuation purposes or special effects. As
shown in Fig. 1.7d, the China cymbal can be considered a very sustained crash. Being a
cymbal with a turned-up edge, its sound will differ from a ride or a crash cymbal and will
be more akin to a gong.

CHAPTER 1. INTRODUCTION 10

(a) Spectrogram of a recorded sound of a crash
cymbal, played like a crash (Sabian 14" AAX
Studio Crash)

(b) Spectrogram of a recorded sound of a ride
cymbal, played like a ride (Zildjian K Jazz
Ride 20")

(c) Spectrogram of a recorded sound of a ride
cymbal, played like a crash (Zildjian K Jazz
Ride 20")

(d) Spectrogram of a recorded sound of a china
cymbal (Sabian Pro Series China 20")

Figure 1.7: Spectrogram of a recorded sound of different cymbal types

Non-linear behavior of cymbals

Cymbals exhibit a severe non-linear behavior when struck with enough force, as mentioned
in [Rossing, 2000]. For this section, we will focus on the behavior of a crash cymbal, which
can be extended to other Turkish cymbals.

The non-linear behavior can be described as pseudo-chaotic when subjected to a fixed-
frequency continuous non-contact excitation using magnetic drivers [Legge and Fletcher,
1989; Wilbur and Rossing, 1997; Chaigne et al., 2005]. These studies on cymbals and
gongs using this excitation method have shown that the progression towards highly non-
linear behavior occurs in a few steps, with nonlinearity effects that resemble chaotic
behavior observed as the excitation amplitude increases.

However, these studies use an excitation method that differs greatly from a drumstick.
The excitation of a cymbal with a drumstick can be seen as an excitation with an impulse,
meaning that all frequencies are excited from the beginning. Since the project aims to
work on drums played with classical tools, including drumsticks, we shouldn’t expect to

CHAPTER 1. INTRODUCTION 11

observe the results from [Legge and Fletcher, 1989; Wilbur and Rossing, 1997; Chaigne
et al., 2005] directly on any of the target sounds. As a result, attempting to show the
behavior described in [Legge and Fletcher, 1989; Wilbur and Rossing, 1997; Chaigne et al.,
2005] in the spectra of recorded cymbals may not be appropriate, as they always contain
a high amount of noise regardless of the hit strength, as shown in Fig. 1.8.

(a) Spectrogram of a recorded sound of a
Crash cymbal (Sabian 16" AAX AAXplosion
Crash, Low Velocity))

(b) Spectrogram of a recorded sound of a
Crash cymbal (Sabian 16" AAX AAXplosion
Crash, High velocity)

Figure 1.8: Spectrograms of a recorded crash cymbal sound, played with a drumstick

We can make several observations after examining the spectrogram of the crash cymbal
excited by a drumstick, as shown in Fig. 1.8. The frequency content of the low-velocity
hit in Fig. 1.8a is broadband but resolved, indicating that the drumstick hit is indeed
close to an impulse, hence excites all frequencies, but non-linear behaviors are not heavily
pronounced as the individual resonances are still quite clear. Conversely, the high-velocity
hit in Fig. 1.8b appears to have lost its resonances and become more similar to filtered
noise. It is also worth noting that the two sounds are perceived quite differently: the
low-velocity sample lacks the noisy and explosive qualities of the high-velocity hit. All in
all, when excited with a drum stick, cymbals show many resonances, and the non-linear
behavior can be interpreted as filtered noise for higher velocities.

Hi-hat

Hi-hats consist of a pair of cymbals, whose diameter is generally between 13 and 16 inches,
mounted on a stand with the two cymbals facing each other. The bottom cymbal is fixed,
and the top is mounted with a clutch piece on a rod that moves the top cymbal toward
the bottom one when an action pedal is pressed. When the pedal is fully pressed, the
hi-hat is said to be closed. When the pedal is not pressed, the hi-hats are qualified as
opened, i.e., the top and bottom cymbals are not physically in contact. Please note that
intermediary positions are possible through careful use of the action pedal.

Because of the proximity of the cymbals, they can interact by touching each other, cre-
ating a more aggressive sound, especially in a half-opened position. In terms of musical
application, the hi-hat offers excellent articulation and dynamics, enabling it to produce
rhythmic pulses or accents by merely using the pedal. This versatility allows drummers to

CHAPTER 1. INTRODUCTION 12

create a wide range of rhythmic patterns and textures, making it an essential component
in shaping a musical piece’s overall sound and feel.

(a) Spectrogram of a recorded sound of a
closed Hi-hat (Zildjian K-Custom Dark Hat
13")

(b) Spectrogram of a recorded sound of an
open Hi-hat (Zildjian K-Custom Dark Hat
13")

Figure 1.9: Spectrogram of a recorded sound of Hi-hat with different opening levels

To showcase the distinctions between the levels of openness in the hi-hat, we have included
Fig. 1.9a and 1.9b. When the hi-hat is in a closed position (as shown in Fig. 1.9a), it
produces a brief sound that decays quickly but with a lot of harmonic content similar
to noise. This modeling of the hi-hat as a short noise burst can be found usage in the
litterature for sensitory experiments [Liski et al., 2021]. On the other hand, when the
hi-hat is open (as shown in Fig. 1.9b), it generates a longer sound consisting of many
partials, similar to what is observed with the crash cymbal. This is because when the
hi-hat is open, the top and bottom cymbals collide with each other several times after the
initial strike, which results in a unique and sustained sound (0.2s for the closed hi-hat, 3s
for the open hi-hat) because the cymbals can move more freely. As the cymbals gradually
lose energy after the initial hit, the frequency content of the sound decreases, and direct
contact between the cymbals ceases. However, they continue to resonate, unlike in the
closed position, where the resonance is abruptly stopped, as the cymbals cannot resonate
freely in this position. Please note that strikes of lower intensity in the open position
might not be strong enough to excite the lower hi-hat. In this case, we obtain a sound
similar to a low-intensity stricken crash.

1.4 Drum Synthesis

1.4.1 Signal-based drum synthesis method

Additive Synthesis

Additive synthesis is a sound synthesis technique that creates timbre by superposing
sine waves and noise [Serra and Smith, 1990; Bonada et al., 2011; Rodet, 1997]. In this
standard model, a signal S can be decomposed into a sinusoidal part s and a stochastic
part r, which can be expressed as follows:

CHAPTER 1. INTRODUCTION 13

S(t) = s(t) + r(t) =
N∑

i=1
ci(t)︸ ︷︷ ︸

Sinusoidal Part

+ r(t)︸︷︷︸
Noise/Stochastic Part

(1.1)

The sinusoidal part s(t) is the sum of N sine waves ci(t). In this context, the ci are
called partials and have time-varying parameters (amplitude a and phase ϕ). Under the
assumption that ai(t) varies slowly, a partial can be defined as below, with ai(t) ≥ 0
the time-varying amplitude and ϕi(t) the phase of the sinusoidal partial, which has an
instantaneous frequency fi(t):

ci(t) = ai(t)cos(ϕi(t))
dϕi

dt
= fi(t)

(1.2)

In other words, each partial ci is a sine wave with frequency and amplitude that modulates
according to an envelope or a low-frequency oscillator and additional filters [Smith and
Serra, 1987]. As shown in eq. (1.2), the sine wave instantaneous frequency may also be
modulated so that the frequency varies over time. To ensure that the sinusoidal part s
will not start to represent noise, additional constraints on ci must be added, notably the
constraints that the amplitude and the instantaneous frequency, a(t) and f(t), may only
vary slowly over time.

A noise signal r is added to simulate the random component the pure sinusoidal model
can’t describe easily due to the abovementioned constraints on the oscillators. This addi-
tional noise is the residual between the pure sinusoidal model and the target sound. It is
considered a random signal [Rodet, 1997; Bonada et al., 2011], which is generally modeled
using a filtered white noise.

Additive synthesis is a powerful technique for generating various sounds, from musical
instruments to human voices. However, for high-quality resynthesis of natural sounds,
the number of oscillators can be quite high, posing the problem that meaningful control
of the parameters is difficult.

FM synthesis

FM synthesis, as initially proposed by Chowning [Chowning, 1977], has been used to
generate a wide range of sounds, including bell-like sounds. While it is possible to create
drum sounds using FM synthesis, this approach is not typically considered a standard
method for synthesizing drum sounds. Clarke [Clark, 2003] has explored this approach
in his work, but it should be considered more of a curiosity than a reliable method
for producing realistic drum sounds. While additive synthesis can generate inharmonic
sounds, FM synthesis stands out because it can produce complex inharmonic partials
through a more efficient and simpler algorithm regarding the number of parameters and
oscillators required.

The simplest expression of an FM-modulated oscillator is:

e(t) = A sin(2παt+ I sin(2πβt)) (1.3)

CHAPTER 1. INTRODUCTION 14

In this case, FM synthesis involves a carrier with a fixed frequency α and a modulator
with a fixed frequency β. When the amplitude of the modulator changes, it modulates the
carrier’s phase, leading to the generation of sidebands at different frequencies around α.
The modulator wave’s amplitude and frequency characteristics determine the sidebands’
specific pattern and distribution. The amount of frequency modulation determines the
extent of the spectral changes and the complexity of the resulting sound. Higher modula-
tion amounts lead to a richer and more complex timbre with more pronounced sidebands
in the modulated carrier.

In case α and β are not in a rational ratio, it is possible to generate inharmonic signals,
which might sound like an interesting property in the case of drums and cymbals synthesis.
However, the inharmonicity follows a pattern that does not match the drums or cymbals’
frequency structure, or it would require several FM blocks in parallel.

Sample-based synthesis

Sampling in audio synthesis refers to capturing a small portion of an audio recording and
reusing it in a new recording or inside a wavetable. The most common case where we find
sampling is in electronic music genres, where a producer takes a snippet of an existing
recording and uses it as the basis for a new track. Sampling can be used to create new
melodies, rhythms, and sound effects and is a critical element of many modern music
genres. In music production, the "Amen Break" has become one of the clichés of sampling
[Collins, 2007].

In the context of synthesis, sampling could refer to wavetable synthesis (e.g., Fairchild
CMI or XFer Serum) or a straight-up sound sampler (e.g., the AKAI S900 or Native In-
struments Kontakt). Wavetable synthesis is a type of audio synthesis that uses preexisting
audio samples, known as wavetables, to create sound [Andresen, 1979]. To create different
pitches, the wavetable is played back with different step sizes in such a synthesizer [Roads
and Strawn, 1996; Stilson and Smith, 1996]. It should be noted that the step size might
not be an integer and would require interpolation between samples.

The synthesizer can modify the sound beyond pitches by adding audio effects, such as
filters and envelopes. Wavetable synthesis is often used in electronic music, as it allows
for a wide range of sounds to be created quickly and easily, especially with synthesizers
cited before.

For the case of sample databases, also known as ROMpler (ROM Player), the sampler uses
a database of actual recordings like [Hawthorne et al., 2019], which are then played back
depending on several performance parameters such as pitch, velocity, or modulation. For
example, string ensemble libraries use the modulation parameter to perform a crescendo.
The idea of a ROMPler predates the era of digital samples with units like the Mellotron
[Holmes, 2020]. A Mellotron is a keyboard instrument containing a set of tape recordings
of real instruments, each covering a range of notes on the keyboard. A tape containing
the recording of the corresponding note is played back whenever a key is pressed, selecting
the appropriate tape at the appropriate speed to match the pitch.

Sample-based synthesis can generate highly realistic sounds (e.g., for drums, Toontrack
Superior Drummer, or GetGoodDrums sample libraries). Still, it is limited by the inherent
constraints of the recordings used as sources. Also, the libraries must be massive to

CHAPTER 1. INTRODUCTION 15

represent an exhaustive list of all the different ways a drummer can play the drum kit.
For example, hitting a hi-hat stand can be found in some recordings (e.g., the introduction
of The Offsprings - Come Out and Play) but is never considered in the recording of a
drum library. Similarly, wavetable synthesis may employ a single wave, restricting the
synthesis controls to pitch, filters, and envelopes.

1.4.2 Physics-based models for drum synthesis

Physical modeling is another approach to drum synthesis. Instead of letting an end-user
play with different oscillator mixtures, a preexisting physical model is used to describe the
acoustical behavior of the instruments. By solving their associated differential equations,
it is capable of producing realistic-sounding examples. Beyond realism, such physics-based
methods can provide some intuitive synthesis’ controls, such as parameters for drum heads
like tension or stiffness and excitation signal parameters such as strength or friction (e.g.,
brushes) [Roads et al., 2013].

However, the computational cost of these methods and their inherent limitations due to
the modeling of real instruments [Smith, 2010; Bilbao, 2012; Bilbao and Webb, 2013]
pose significant challenges. First, their focus solely on real instruments restricts their
applicability and scope. Even though it would be possible to create sounds resembling
unconventional instruments like a 10-inch wide by 16-inch deep snare drum, these models
are still bound by the constraints of their underlying equations and resolution algorithms.
In addition to their computational heftiness, physical models also encounter difficulties
with their intricate control methods. While parameters directly related to physical prop-
erties, such as membrane stiffness, prove valuable to expert users familiar with the nuances
of drum heads and tuning, an average end-user can easily become overwhelmed by the
sheer number of parameters in complex but exhaustive physical models.

To make physical models more accessible, a more inclusive approach could incorpo-
rate higher-level controls, particularly perception-related ones. In theory, manipulating
all physical parameters of a model to achieve consistent timbre alterations and control
through perceptual features is feasible. However, there is a lack of practical exploration in
this area, and physical models still impose significant demands on end-users and comput-
ers alike. To address these limitations, there is a need for further research and development
to refine physical models and make them more user-friendly and adaptable to a broader
range of musical goals. This is where physically informed deep learning could be used,
but it is beyond this document’s scope.

1.5 Deep Learning

Deep learning is a subfield of machine learning inspired by the brain’s structure and
function, specifically the neural networks that make up the brain. It involves training
artificial neural networks on large datasets, allowing the neural network to learn. In this
context, learning means using optimization methods such as stochastic gradient descent
to adapt the weights to minimize an objective function.

Deep learning has achieved state-of-the-art results in many areas, including image and

CHAPTER 1. INTRODUCTION 16

speech recognition [LeCun et al., 1998; Krizhevsky et al., 2012; He et al., 2016], image
and speech synthesis [van den Oord et al., 2018; Karras et al., 2020; Xiao et al., 2022],
natural language processing [Stiennon et al., 2020], and even playing games such as chess
and go [Silver et al., 2016, 2018]. It has also been applied to many real-world problems,
including healthcare, finance, and transportation.

Required components of a neural network There are three essential components
that are required to construct a neural network, all of which significantly influence its
performance. The first is the network architecture, which determines the number of
layers and the types of neurons used. These neurons and layers use weights as parameters
to determine the contribution of their respective inputs in producing the output. During
the training process, these weights are adjusted to influence the behavior of neurons and
ultimately improve the network’s performance according to the training criterion. The
second component is the optimization algorithm, which adjusts the weights and biases
of the network to minimize the loss function. Let us consider a classification task as an
example. In this case, the optimizer would adjust the weights so that the predicted output
aligns with the expected output according to the loss function. The third and arguably
most critical component is the training dataset, which is utilized for training the network
through the selected architecture and optimization algorithm.

Classic Architectures Several popular neural network architectures are commonly
used in deep learning, including multi-layer perceptrons (MLP), convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs). The MLP uses a stack of fully
connected layers, i.e., matrix multiplications plus bias term, with non-linearities, also
known as activation functions, on the output of each layer. The universal approximation
theorem for MLP [Cybenko, 1989] states that a neural network with a single hidden layer
can approximate any continuous function on a compact input domain to arbitrary accu-
racy as long as a sufficiently large number of neurons is used. While MLPs were popular
in the early days of neural networks, their popularity has waned recently as newer and
more powerful architectures have emerged. However, this theorem demonstrating the im-
mense representational power of MLPs provided a theoretical foundation for their early
practical applications in machine learning and artificial intelligence.

A CNN is an evolution of the MLP, where convolution layers replace the fully connected
layers. The convolution layer applies a convolution operation to the input data using a set
of learned kernels, which are then transformed element-wise by a (non-linear) activation
function to obtain a feature map. During backpropagation training [Kelley, 1960; LeCun,
1985], the convolutional layers learn these kernels, which represent filters, adjusting the
weights of each to improve the overall network performance gradually. Convolutional
neural layers achieve shift-invariance by restricting the receptive field of the hidden units
to a local neighborhood, which enables them to extract local features efficiently. This
organization allows reusing the same feature at different places. This was crucial in
CNN’s success in image and signal processing tasks. This contrasts with fully connected
layers in multi-layer perceptrons, which do not have such a property.

Finally, there are RNNs. While MLPs and CNNs are feedforward architectures, RNNs
have connections that allow a recurrence within a hidden layer. In other words, the out-
put of a hidden layer is fed back into its input. This recurrence can be represented as a

CHAPTER 1. INTRODUCTION 17

graph with cycles, while a feedforward network is represented as acyclic graphs. It’s worth
noting that any RNN can be unrolled into a feedforward network, as shown in [Rumel-
hart and McClelland, 1987], and this property allows backpropagation training of RNNs
[Goodfellow et al., 2016]. The recurrent architecture is better suited than the feedforward
one in the case of sequence learning with long-term dependencies. Its evolutions like the
Long Short-Term Memory [Hochreiter and Schmidhuber, 1997] show that the existence
of an internal state is extremely interesting regarding sequence learning such as speech
recognition [Sak et al., 2014]. The other interesting point for sequence learning is that
RNNs can work with varying length inputs. However, it should be noted that RNNs are
harder to train than MLP or CNN, mostly due to vanishing/exploding gradient and more
complex architecture to take care of long-term dependencies compared to MLP or CNN.

A Data-Hungry Method One of the critical challenges in deep learning is the need
for a large amount of labeled data to train the network effectively [Russakovsky et al.,
2015]. However, it is possible to use transfer learning to circumvent this issue when the
application allows it [Pan and Yang, 2010; Torrey and Shavlik, 2010]. Transfer learning
entails retraining a pre-trained network on a generally smaller but application-specific
dataset. It can also be used when a massive model has been trained already, and a new
dataset is available. Transfer learning is useful in this case to avoid retraining the model
from scratch, as transfer learning can yield better performances than random initialization
[Yosinski et al., 2014].

Overall, deep learning has dramatically advanced the field of machine learning and has
the potential to solve a wide range of problems in various contexts. One significant ad-
vancement in deep learning is the emergence of a new generation of generative models that
can be applied to various tasks, like image, text, or audio generation. Among these mod-
els, some can be used for drum synthesis, and particularly for this thesis, the Generative
Adversarial Networks [Goodfellow et al., 2014]

1.6 Sound Perception and subjective evaluation

This section will briefly review how humans perceive sound and how to get perceived
quality assessments and psychophysical measurements when working with audio signals.

1.6.1 Sound and Hearing

First, we will describe how a sound can be described as a physical phenomenon. A sound is
a vibration that propagates as an acoustic wave through a material medium (gas, liquid, or
solid) [ANSI/ASA S1.1-2013, 2020]. This acoustic wave propagates as pressure variations,
and in the case of air, through air pressure variations. The human ear can respond to a
pressure variation stimulus one billion times less than atmospheric pressure. On the other
end of the spectrum, the pain threshold amounts to 1 millionth of this quantity but is still
a thousandth of atmospheric pressure [Rossing, 2000]. The sound pressure level (SPL)
is generally given in decibels (dB-SPL). In this case, 0dB corresponds to 2 ∗ 10−5Pa at
1000Hz and is the threshold of human hearing.

CHAPTER 1. INTRODUCTION 18

While SPL can be accurately measured, as it is a pressure measurement, loudness is a
subjective quality. In this context, loudness can be defined as the auditory perception
of a sound pressure level. Since it is related to auditory perception, i.e., hearing, two
individuals might perceive loudness differently at a given SPL level. Loudness also depends
on the frequency of the sounds: for the same SPL level, 50Hz and 1000Hz sine waves
will give different perceived loudness. This phenomenon is described in the ISO standard
226 [ISO 226, 2003]. The loudness of a sound is not described as a physical occurrence,
but as the result of the physical stimulation of the hearing mechanism that leads to the
perception of sound. All in all, a sound can be described considering two aspects:

• A physical phenomenon bound to acoustic waves

• The perception of the aforementioned acoustic waves

1.6.2 Subjective evaluation of quality

In speech and audio processing applications where humans are the end-users, these end-
users are also the ultimate evaluation of performance and quality. In this context, subjec-
tive evaluation refers to experimental setups where human subjects evaluate or quantify
performance and quality using the subject’s senses. From a high-level perspective, the
task is simple; subjects are asked to answer questions such as:

• Does X sound good?

• How good does X sound?

• Does X or Y sound better?

• How intelligible is X?

In general, subjective evaluation in speech and audio refers to the perceptual assessment
of sound quality [Giordano et al., 2012]. However, it is important to note that there
are situations, such as in telecommunications, where the evaluation focus may be on the
system’s intelligibility, such as during participation in a dialogue over a telecommunication
network.

Aspects of quality

To evaluate subjective quality aspects, the appropriate evaluation questions are tightly
bound to the target application and context. For example, the quality requirements
for a teleconference system differ from those in a music production environment or even
medical applications like hearing aids. As most subjective evaluation methods of perceived
quality are targeted toward speech synthesis, we will describe the different techniques and
requirements in that context.

The perceived quality of an audio signal can be described, for example, through charac-
teristics such as:

CHAPTER 1. INTRODUCTION 19

• Noisiness, which describes the amount of noise the speech signal is perceived to have
(synthesis artifact or perceptually uncorrelated noise, unlike sibilant, for instance)

• Distortion, which describes how much speech signal parts are destroyed (perceptu-
ally correlated noise). However, it is relatively common to consider uncorrelated
noises as distortions.

• Intelligibility, which describes the level to which the meaning of the speech signal
can be understood.

• Listening effort, which refers to the amount of work a listener has to use in listening
to the signal and how much listening fatigue and annoyance a user experiences,

• Resemblance, which describes how close the speech signal is to the original signal

• Naturalness, which describes how natural an artificial speech source sounds, often
used as a last resort when no other adjective feels suitable.

Note that we can also think of intelligibility and listening effort as different aspects of
sound quality. Indeed, we can perceive noisiness and distortions but still not be annoyed
by the quality and can listen to the sound effortlessly. The listening effort is usually related
to the loss of intelligibility. If the end-user needs to listen carefully, it becomes exhausting
in the long term. However, context plays a crucial role in determining these levels and
aspects of quality. Intelligibility is a fundamental quality aspect; communication cannot
happen without it. Once achieved, individuals may seek high-quality communication for
better comprehension, engagement, and reduced listening effort.

To evaluate the performance of an audio synthesis model, it is essential to compare the
generated samples with known recorded samples of the target instrument. In this case,
the evaluation aims to measure how accurately the model can reproduce the instrument’s
sounds. For instance, in the context of neural instrument synthesis, comparing synthesized
sounds to either training data or data obtained through already available methods [Re-
nault et al., 2022; Lavault et al., 2022a] is an answer to "Which method sounds better?".
However, in the context of music production, generating samples that are not necessarily
realistic may be interesting for exploring sound spaces. In this case, quality might not be
as much of a concern compared to the case of speech or musical instrument synthesis. For
instance, the ease of control with a neural synthesizer can also be measured, regardless of
the output quality [Ramires et al., 2022].

Choice of Test Participants

When designing a subjective listening experiment, one of the first and most important
questions is the choice of participants, mainly whether the listeners are either naive or
expert. By naive listeners, we refer to listeners who do not have prior experience in
analytic listening or expert knowledge of the subject tested. On the other hand, expert
listeners are subjects trained in critical listening and can evaluate minor differences in
sound samples through ear training or domain knowledge.

Expert listeners are, of course, the most sought-after listeners because they can give
accurate and repeatable results and might also provide feedback on the artifacts and
distortions found during the listening tests.

CHAPTER 1. INTRODUCTION 20

However, the problem is that such valuable listeners are rare and do not generally represent
the end-user capabilities well. It is uncertain whether the preferences of expert listeners
align with average users. For example, expert listeners might notice a distortion, like an
exaggerated sibilance or resonance that an average user would not perceive due to lack
of ear training.The same can also be said about music mastering where expert engineers
can perceive distortion effects of dynamics compressor when the average listener cannot
[Hjortkjær and Walther-Hansen, 2014; Katz, 2014] The expert would therefore be unable
to enjoy the system under test, while it would be deemed excellent for the average user.

In music production, the target audience is typically end-listeners who may not have
a technical background in music production. Therefore, the terms ’naive’ and ’expert’
may not be the most relevant for subjective evaluation in this context. However, if the
clients or target audience are music producers, it may be appropriate to consider experts
as the relevant group of testers. These specialized groups of testers would be extremely
beneficial to experiments aiming to evaluate perceptual control mechanisms [Ramires
et al., 2022]. If the clients or target audience are musicians, knowing the intricacies and
expected behavior of the tested instrument is crucial for evaluating the sound quality of
synthesis models. Such understanding can provide valuable insights into the shortcomings
of certain methods compared to others.

1.6.3 Evaluation of Stimuli Perception

In terms of subjective evaluation, we can go beyond subjective quality measurement and
enter into the field of psychophysics. Psychophysics is a branch of psychology that studies
the relationship between physical stimuli and the sensations and perceptions they produce.
It is concerned with how the physical characteristics of stimuli, such as their intensity,
frequency, and duration, are related to the psychological experiences they produce, such
as the sensations of loudness, brightness, and pain. In the context of this thesis, the
main research question related to the field of psychophysics is whether individuals can
distinguish between different levels of stimuli.

As an example, we will focus in this section on a simple attribute of sonic perception: the
loudness of sound, since we can easily translate this example to various sonic interactions.

Perception Thresholds

As described in [Giordano et al., 2012], the perception of a sound involves two thresholds:
the absolute threshold, i.e., the smallest or highest detectable value of a stimulus attribute
(e.g., the lowest detectable sound level or the highest level that causes pain or damage),
and the differential threshold, i.e., the smallest discriminable difference in a stimulus
attribute (e.g., the smallest discriminable difference in level). The absolute threshold can
be considered a particular case of the differential threshold.

When measuring an absolute threshold (in our example, the absolute threshold for sound
level), test participants are repeatedly presented with a small set of stimuli ranging from
near silence to clearly perceivable. In this case, participants are asked if they detect a
stimulus. In the case of the differential threshold, the overall method changes a bit. In an
experiment aimed at measuring the differential threshold, on each trial, the participants

CHAPTER 1. INTRODUCTION 21

are presented with two stimuli: a standard stimulus whose properties remain constant
across all trials (e.g., a 60dB SPL sound) and a comparison stimulus that varies from
trial to trial (in our example, a sound from a set ranging from barely quieter to barely
louder than the standard stimulus). Participants indicate in which of the paired stimuli
the target attribute has the largest or the lowest value. For our loudness perception
example, the question can be which of the two stimuli is louder.

Experimental Setup

The simplest of all psychometric experiments is the constant stimuli method [Giordano
et al., 2012], which follows the experience described above. This method is called constant
stimuli because it refers all measurements to a reference stimulus. Once the experiment
has been performed, the data gathered can be analyzed using a fitted psychometric func-
tion. A psychometric function is a mathematical function that relates an individual’s
performance on a psychological or psychophysical test to the level of some psychological
construct, such as loudness. These functions are typically used to evaluate the validity and
reliability of psychological tests and to understand how an individual’s performance on a
test relates to their underlying psychological abilities. The absolute threshold can thus
be defined as the stimulus intensity, which is perceived 50% of the time (in other words,
the stimulus intensity where the decision is purely random). The differential threshold is
defined as the average of the stimulus values judged louder than the standard 25% and
75% of the time.

In most cases, none of the results are directly linked to the precise response probabilities
for calculating the thresholds. In part for this reason, and partly for the need to integrate
experimental data across all the investigated stimuli, a psychometric function is usually
fitted to the observed response probabilities for all stimuli with a cumulative normal
distribution, for instance, among others [Wichmann and Hill, 2001a,b]). In this case, the
threshold measures are derived from the parameters of the fitted function.

Of course, the method of constant stimuli has many shortcomings. The first of the list is
its susceptibility to biases. For this, more advanced techniques exist, but go beyond the
scope of this chapter.

1.7 Contributions

The contributions of this thesis can be listed as follows:

• New drum sound data set with objective and subjective measurement of hit velocity
and extended tuning annotations described in Section 3.4

• An adaptation of a state-of-the-art deep image generator for direct waveform gen-
eration [Lavault et al., 2022b], found in Section 4.2

• Objective and subjective evaluation of the sound quality of the proposed method
demonstrating significant improvement compared to the state of the art [Lavault
et al., 2022a,c] shown in Section 4.2

CHAPTER 1. INTRODUCTION 22

• A deep-learning method for high-level control with timbral features of neural drum
synthesis, improving on state-of-the-art neural drum synthesizers in terms of objec-
tive measurements of controllability [Lavault et al., 2022b] in Section 4.3

• Subjective evaluation of the perception of the error margin on high-level control
parameters and comparison to objective measurements concluding on the impercep-
tibility of the average error in most cases [Lavault et al., 2022c], found in details in
Section 4.3

• An extension of the aforementioned high-level control to incorporate dynamics con-
trol in a neural drum synthesizer in Section 4.5.

CHAPTER 1. INTRODUCTION 23

Chapter 2

State of the Art

2.1 Introduction

This chapter describes general neural network audio synthesis methods and their appli-
cation to drum synthesis. In addition to studying the existing contributions for synthesis
tasks, we will briefly review the control methods of generative neural networks. Finally, we
will describe subjective and deep-learning-based objective evaluation metrics of generation
quality.

2.2 Synthesis with deep neural networks

This section will describe different synthesis methods involving neural networks and how
to control these neural synthesizers.

2.2.1 WaveNet

The WaveNet model, initially presented in [van den Oord et al., 2016], was primarily
developed for synthesizing speech in text-to-speech systems. The general idea of WaveNet
is to condition the generation of a given sample by all the previous samples. This can
be mathematically represented as the joint probability of a waveform x = {x1, · · · , xT }
factorized as a product of conditional probabilities as follows:

p(x) =
T∏

t=1
p(xt|x1, ..., xt−1) (2.1)

Therefore, each audio sample xt is conditioned on the samples at all previous time steps.

To that end, the authors introduced causal convolutions, ensuring the model cannot
violate the ordering in which the data is modeled. This can be done by zero-padding
the signal before the convolution operation appropriately.

In addition to causal convolutions, the authors also used dilated convolutions. A dilated
convolution is a convolution operation applying a filter that covers a larger area than

24

its actual length, achieved by skipping input values at specified intervals, also known as
dilation rate. This convolution operation can be considered equivalent to using a larger
filter derived from the original filter but expanded with zero values. This offers the
advantage of increasing the receptive field of the convolutional layers, while keeping the
actual filter size and number of necessary layers small.

These two special convolutions combined are illustrated in Fig. 2.1. The causal part
means the element at a time step t is only dependent on the past events and not the
future, which in the figure can be visualized as a clear left-to-right structure (i.e., past
to present). The dilated convolution can be considered skipping part of the connections
between the elements while still keeping the causal relationship, which here means an
element can only be connected to an element that is either at time t or before. All of this
makes WaveNet an autoregressive model. It is worth noting that contrary to an RNN,
WaveNet has no recurrent path, which helps keep the training process simpler.

Figure 2.1: Visualization of a stack of dilated causal convolutional layers, reproduced from
[van den Oord et al., 2016], figure 3

By means of conditioning the network, the authors could use it for text-to-speech synthesis
but also showed preliminary results on music synthesis without any formal evaluation
apart from the demonstrations in their supplementary material.

The first formal use of WaveNet for musical instrument synthesis was in [Engel et al.,
2017]. It is also this article that introduced the NSynth dataset. NSynth is a massive
data set (300k samples) of musical notes over 1000 unique instruments. The samples are
four seconds-long monophonic 16kHz files. Still, none of the instruments in the datasets
are among the instruments of interest for this project, making this dataset less useful.

Using the NSynth dataset, [Engel et al., 2017] compared a spectral-based autoencoder
to a modified WaveNet autoencoder. In addition to the WaveNet architecture described
in [van den Oord et al., 2016], [Engel et al., 2017] used an encoder that takes raw audio
waveform as input, from which this encoder produces an embedding. This embedding con-
trols then the WaveNet decoder, which is simply a modified version of WaveNet described
above, which then becomes:

p(x) =
T∏

t=1
p(xt|x1, ..., xt−1, f(x)) (2.2)

where f(x) is the embedding from the encoder. The embedding f(x) is then used to bias
every layer in the WaveNet Decoder with a different linear projection of said embeddings.
The overall network architecture is shown in Fig. 2.2.

CHAPTER 2. STATE OF THE ART 25

Figure 2.2: WaveNet autoencoder. Note that the embeddings are distributed in time and
upsampled to the original resolution before biasing each decoder layer. Reproduced from
[Engel et al., 2017], figure 1b.

To measure the reconstruction quality, the authors used an external classifier on the pitch
values and a setup similar to the Inception Score to estimate quality. It should be noted
that the authors did not provide any subjective evaluation of quality.

Back to drum synthesis, there are no instances of WaveNet specifically used for drum
synthesis.

2.2.2 Auto-Encoders

Deterministic Auto-Encoder

An autoencoder (AE) is a neural network designed for generative and dimensionality
reduction tasks [Bourlard and Kamp, 1988; Vincent et al., 2010]. It is composed of an
encoder and a decoder. The encoder maps the input data to a latent space, representing
the data’s essential features. The decoder then maps this latent representation back to
the original data space, reconstructing the input data. If the autoencoder sets its output
equal to the input for all cases, it doesn‘t add much value. Usually, they are restricted to
approximate copying and only copy the inputs similar to the training data.

When the latent space is of a smaller dimension than the data, the autoencoder is called
under-complete. The low-dimensional latent space forces the autoencoder to capture the
most salient features of the training data [Goodfellow et al., 2016].

The learning process is described simply as minimizing the following loss function:

L(x,Decoder(Encoder(x))) (2.3)

L represents a loss function penalizing the dissimilarity between the outputDecoder(Encoder(x))
and the target input x. A commonly used loss function for this purpose is the mean
squared error.

Interestingly, when the decoder is linear, and the mean squared error is employed as the
loss function, an autoencoder can capture the same subspace as Principal Component
Analysis (PCA). In this scenario, an autoencoder trained to perform the copying task

CHAPTER 2. STATE OF THE ART 26

inadvertently learns the principal subspace of the training data as an additional outcome.
Using non-linear encoders and decoders can yield non-linear and more general versions
of PCA [Goodfellow et al., 2016]. In other words, auto-encoders described above are
deterministic and mostly useful for dimensionality reduction. It should be noted that
they cannot be used as generative models per se as they do not define a distribution.

Variational Auto-Encoder

Variational Autoencoders (VAEs) [Kingma and Welling, 2014] are generative models that
learn to generate new data samples by leveraging their probabilistic nature, distinguishing
them from autoencoders. Let x represent the training data, z denote the latent variables,
and p(x, z) be the parametric model governing their joint distribution, referred to as
the generative model. This model is defined over these variables. We aim to perform
maximum likelihood learning to determine the generative model parameters. Specifically,
we aim to maximize the marginal likelihood of the dataset X, denoted as log p(X), which
is computed by summing the logarithm of the generative model probability for each x ∈ X,
i.e., maximizing the following equation:

log p(X) =
∑
x∈X

log(p(x)) (2.4)

However, computing this likelihood directly is usually impractical due to its intractability.
To address this, we introduce an inference model, denoted as q(z|x), a parametric model
defined over the latent variables. We optimize the variational lower bound on the marginal
log-likelihood for each observation x, denoted as log p(x). The lower bound, denoted as
L(x, θ), is given as follows:

log p(x) ≥ Eq(z|x)[log p(x, z) − log q(z|x)] = L(x, θ) (2.5)

Here, θ represents the parameters of the generative model p and the inference model q.
When the latent variables z are continuous, we can optimize the lower bound using a
re-parameterization of q(z|x), as introduced in [Kingma and Welling, 2014].

The re-parameterization, known as the re-parameterization trick, enables backpropagation
with neural networks. The re-parameterization trick involves expressing the distribution
q(z|x) as a deterministic mapping gφ(ε, x) of a continuous random variable ε. For example,
in the case of a univariate Gaussian distribution, instead of directly sampling z from
qµ,σ(z) = N(µ, σ2), we can rewrite it as z = gµ,σ(ε) = µ+ ε · σ, where ε ∼ N(0, 1).

This approach, which optimizes the variational lower bound using a parametric inference
network and re-parameterization of continuous latent variables, is commonly referred to
as VAE. When rearranging the lower bound L(x, θ), we end up with:

L(x, θ) = Eq(z|x)[log p(x, z) − log q(z|x)]
= Eq(z|x)[log p(x|z) + log p(z) − log q(z|x)]
= Eq(z|x)[log p(x|z)] − Eq(z|x)[log q(z|x) − log p(z)]
= Eq(z|x)[log p(x|z)] −DKL(q(z|x)||p(z)) (2.6)

CHAPTER 2. STATE OF THE ART 27

Figure 2.3: Visualization of the architecture and sampling from a VAE. The (µ, σ) block
represents the output of the encoder, that are the parameters of a multidimensional
Gaussian distribution.

The first term in eq. (2.6) can be interpreted as the expectation of the negative recon-
struction error, while the Kullback-Leibler divergence term DKL(q(z|x)||p(z)) acts as a
regularizer. To align with the terminology of autoencoders, this generative model can
be viewed as a regularized autoencoder, with q(z|x) serving as the encoder and p(x|z)
as the decoder. To sample from a VAE, randomly generate a latent variable using the
mean and standard deviation predicted by the inference model q and pass it through the
decoder p to generate a new data sample. Regarding control, the latent representation
inside the VAE is interesting because it gives external control without complex methods,
the latent space being smooth by design. Figure 2.3 presents a VAE architecture and
sampling method schematic.

Wasserstein Auto-Encoder

The Wasserstein Auto-encoder (WAE) is a recent evolution of auto-encoders that extends
the idea of regularized auto-encoders. It was introduced in [Tolstikhin et al., 2018], who
proposed two ways to regularize the network: one using a critic network, inspired by the
Generative Adversarial Network (GAN) [Goodfellow et al., 2014; Gulrajani et al., 2017],
and another using the Maximum Mean Discrepancy (MMD). The WAE architecture is
designed to learn a continuous and smooth latent space distribution, which can be used
to generate high-quality data. Regularizing the latent space distribution with the Wasser-
stein distance allows the WAE to generate less blurry images than traditional Variational
Auto-Encoders (VAEs). The critic network approach involves training a separate dis-
criminator network to distinguish between samples from the prior distribution and the
learned latent space distribution, hence penalizing generated samples far from the tar-
get distribution. Alternatively, the MMD approach measures the difference between the
empirical distribution of the latent space representations and the prior distribution. The
MMD penalty encourages the learned latent space to be close to the prior distribution by
penalizing large differences between the two distributions.

Auto-Encoders for Drum Synthesis

The first strong proposition for drum synthesis was [Aouameur et al., 2019]. Here, the gen-
erative model consists of two networks: a Conditional Wasserstein autoencoder (CWAE),
which learns to generate Mel-scaled magnitude spectrograms, and a Multi-Head Convolu-
tional Neural Network (MCNN), which estimates the audio from the computed magnitude
spectrogram. They also provided a creative interface using the most significant axes ob-
tained with a PCA on the latent variable. However, the authors of [Aouameur et al., 2019]
didn’t provide objective or subjective quality measurements apart from demo sounds.

Currently, no known examples of members of the auto-encoder family being used to gen-

CHAPTER 2. STATE OF THE ART 28

erate audio with external timbral features. Some studies, such as [Aouameur et al., 2019;
Caillon and Esling, 2021], have developed interfaces to easily control audio generation
by exploring the latent space and the release of Max4live plugins to the general public.
However, these interfaces do not provide the capability for explicit control over timbral
properties. While some dimensions of the latent space may correspond to a perceptible
variation in timbre, it is not explicitly controllable. The same can be said about dynamics
control, through MIDI velocity or not.

2.2.3 Adversarial models

Generative Adversial Networks

Initially described in [Goodfellow et al., 2014], Generative Adversarial Networks (GAN)
are an approach for obtaining generative models via the adversarial training of two models.
One of these two is an actual generative modelG, called the generator, capturing the target
data distribution, and a discriminative model D called the discriminator that estimates
the probability that a sample came from the training data rather than the generative
model. This framework is a minimax two-player game with the value function V (G,D).
A possible formulation for this can be found in [Goodfellow et al., 2014]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (2.7)

Where:

• pdata represents the distribution over the training data

• pz represents the distribution over the input variables, often containing random
noise.

Moreover, D(x) represents the probability that x came from the data pdata rather than pg,
where pg is the distribution induced by the generator. This can be rewritten as a two-step
optimization process:

min
D

VGAN(D) = −Ex∼pdata(x)[log(D(x))] − Ez∼pz(z)[log(1 −D(G(z))))]

min
G
VGAN(G) = 1

2Ez∼pz(z)[log(1 −D(G(z)))]
(2.8)

which is the training algorithm used in practice instead of the direct minimax game. A
visualization of the GAN framework can be found in Fig. 2.4.

Evolutions of GANs

When GANs were first presented, they were a groundbreaking contribution, but soon after,
rapid developments were made to improve the results, particularly in image synthesis. The

CHAPTER 2. STATE OF THE ART 29

Figure 2.4: Visualization of the GAN framework. The grey dashed line represents the
backpropagation for the discriminator training, and the purple dashed lines represent the
backpropagation for the generator training.

first thing that saw improvements was the adversarial loss. It was found that the original
loss function using the sigmoid cross-entropy may lead to vanishing gradients problems
during the learning process.

Improvement on the adversarial loss One of the first propositions was the Least-
Square GAN (LSGAN) [Mao et al., 2017] to deal with the vanishing gradient problem
found with the original formulation of the GAN. By replacing the cross-entropy from
eq. (2.8) with a square function, the vanishing gradient problem is mitigated. In this
case, the overall objective becomes:

min
D

VLSGAN(D) = 1
2Ex∼pdata(x)[(D(x) − 1)2] + 1

2Ez∼pz(z)[D(G(z))2]

min
G
VLSGAN(G) = 1

2Ez∼pz(z)[(D(G(z)) − 1)2]
(2.9)

The authors achieved better image quality and more stable training using the least-square
loss (eq. (2.9)) when compared to the original GAN formulation.

Another variation on the GAN loss function was the Wasserstein GAN (WGAN) [Ar-
jovsky and Bottou, 2017]. With the same goal as LSGAN, WGAN is an approach to
stabilize GAN training and improve the overall quality of the generative model. The key
idea behind WGAN is using the Wasserstein distance to measure the distance between
the true and generated probability distributions. Unlike traditional GANs that use the
Jensen-Shannon divergence, Wasserstein GANs use a more reliable distance metric to
train the generator and discriminator networks. The generator learns to generate samples
closer to the true distribution by minimizing the Wasserstein distance between the two
distributions.

Compared to the original formulation of GANs, using the Wasserstein distance brings
several advantages. Firstly, it helps avoid the vanishing gradients caused by the loga-
rithm function in the original GAN loss. Vanishing gradients can be a significant issue in
GANs as they can slow down the learning of the generator and may cause it to converge
to suboptimal solutions. By contrast, the Wasserstein distance smoothes the objective
function (it becomes linear when LSGAN is quadratic while the original GAN is logarith-
mic), easing the training of both the generator and the discriminator. Moreover, using
the Wasserstein distance produces more robust and less overpowered discriminators. In
vanilla GANs, the training process encourages the discriminator to become too efficient,

CHAPTER 2. STATE OF THE ART 30

often leading it to achieve near-perfect accuracy. As a result, it can become challenging
for the generator to produce samples that will fool the discriminator. Thus, mode collapse
and a lack of diversity in generated samples can occur. Since Wasserstein GANs use a
discriminator whose aim is not to classify real and fake data but to estimate how far or
close the real and fake distributions are, allowing the generator to produce varied outputs
that still fall within the probability distribution of the real data.

Mathematically, the Wasserstein GAN [Arjovsky and Bottou, 2017] can be described as:

min
G

max
D

[
Ex∼Pdata(x)[D(x)] − Ez∼Pz(z)[D(G(z))]

]
(2.10)

subject to:
∀x, y ∈ X : |D(x) −D(y)| ≤ |x− y| (2.11)

where G is the generator network, D is the discriminator network, Pdata(x) is the distri-
bution of real data, Pz(z) is the prior distribution of noise input, X is the space of input
data. However, the 1-Lipshitz constraint on D described in eq. (2.11) is unusable in terms
of computation. To this end, WGAN-GP (for Wasserstein GAN with Gradient Penalty)
was introduced in [Arjovsky and Bottou, 2017].

The gradient penalty can be described as follows:

Ex̃∼Px̃

[
(||∇x̃D(x̃)||2 − 1)2

]
(2.12)

where x̃ is a random interpolation between a real and a generated sample, Px̃ is the
distribution of x̃, and ∇x̃D(x̃) is the gradient of the discriminator’s output with respect
to x̃. In other words, WGAN-GP penalizes the discriminator if its gradient is not 1 between
the real data space and the generated data space. This is not a Lipshitz constraint, which
in turn was described in [Petzka et al., 2018] with WGAN-LP, where the penalty becomes:

Ex̃∼Px̃ [max(0, ||∇x̃D(x̃)||2 − 1)] (2.13)

Network architecture and training Beyond the new losses, the subject of GANs saw
two major evolutions of importance for the present thesis and the overall generative model
ecosystem: the progressive growth of GANs (PGAN) [Karras et al., 2018] and StyleGAN
(SGAN)[Karras et al., 2019, 2020].

The first evolution of interest to us was the progressive growth of GAN. In this framework,
the adversarial process is not altered, but there is a twist during training. As the name
suggests, the critical notion is progressively growing the generator and discriminator. By
starting from a low resolution (in the paper, 4×4 images) and adding new layers of higher
resolution after a fixed number of training steps, this model was able to learn increasingly
fine details. The overall process is shown in Fig. 2.5a while the addition of new layers
is detailed in Sect. 2.2.3. This method reportedly sped up the training process as well
as stabilized it. This sped-up and stabilized network allowed the authors to generate
high-resolution images up to 1024 × 1024.

However, the success was short-lived, as the next evolution arrived with StyleGAN [Karras
et al., 2019]. While conserving the progressive-growing methodology, the authors divided
their generators into mapping and synthesis networks. In StyleGAN, the input noise
vector is not directly transformed into an image but instead into an intermediate latent

CHAPTER 2. STATE OF THE ART 31

(a) Effect of Progressively Adding Layers to the
Generator and Discriminator

(b) Phasing in and Adding New Layers to the
Generator and Discriminator Models in a PGAN
network.

Figure 2.5: Visualization of the "Progressive Growing of GANs," reproduced from [Karras
et al., 2018]

space W by the mapping network. By manipulating the values of these components in
the intermediary latent space, the generated images can be modified to exhibit specific
desired attributes without explicit conditioning. For example, increasing or decreasing
a particular component can change the level of detail in the generated image or modify
its color palette. This level of control enables users to guide the generation process and
influence specific characteristics of the generated images.

The intermediary latent is used inside the synthesis generator through Adaptative In-
stance Normalization (AdaIN) to achieve such result. The key idea is to transform an
intermediary latent vector w ∈ W into a style through a learned affine transform, which
gives us the style vector y = (ys, yb). This style vector controls the AdaIN operation after
each convolution operation. We then have:

AdaIN(xi, y︸︷︷︸
=(ys,yb)

) = ys,i
xi − µ(xi)
σ(xi)

+ yb,i (2.14)

Each feature map xi is normalized separately and then scaled and biased using the corre-
sponding scalar components from style y, separated into ys and yb as scale and bias style
terms.

StyleGAN was the first to enable intuitive and scale-specific control of the synthesis.
Quickly afterward, StyleGAN2 superseded StyleGAN [Karras et al., 2020], where several
improvements were brought up and produced high-resolution photo-realistic face images.
In addition to these improvements, the authors also showed the limits of Progressive
Growing and PGANs and reverted to a more straightforward training of the full network
instead of the per-layer progressive training.

Finally, it is worth noting the original article [Goodfellow et al., 2014] did not intro-
duce any means to control the content to be generated. Later proposals introduced the
possibility of controlling the generation. This will be detailed in Sect. 2.2.6.

CHAPTER 2. STATE OF THE ART 32

GANs for general audio synthesis

Although GANs have been predominantly used in tasks related to image generation, their
application in audio synthesis has also been significant. Regarding instrument synthesis,
the first notable effort was GANSynth [Engel et al., 2019]. GANSynth uses a Progressive
GAN base to generate real-time audio signals, allowing users to control different aspects of
the generated sound. It was trained on NSynth [Engel et al., 2017] and can generate a wide
range of sounds, from individual notes to complex melodies and chords. It is an example
of how GANs can be used for audio generation and manipulation, and represents an
important step towards making machine learning more accessible for musical applications.

Drum Synthesis with GANs

Of course, GANs are also of use for drum synthesis. In this context, the first example
of GAN was [Donahue et al., 2019], where a GAN was used for several audio generation
tasks, including drum synthesis, in the temporal domain.

Following the advancement allowed by PGANs, Nistal et al. [Nistal et al., 2020] proposed
a spectral-domain generator for drum sounds incorporating high-level control features
from the AudioCommons feature set [Pearce et al., 2016]. In parallel, Drysdale et al.
[Drysdale et al., 2020] also used a PGAN for drum synthesis in the temporal domain for
synthetic sounds only. A newer version backed with a VST plugin was released in 2022
[Nistal et al., 2022].

Since StyleGAN, the successor of PGAN, showed significant improvements in image qual-
ity, the results on drum synthesis also followed suit [Drysdale et al., 2021]. The goal here
was to explore the use of style inversion for creative synthesis.

2.2.4 Differentiable Digital Signal Processing

Google’s Differentiable Digital Signal Processing (DDSP) [Engel et al., 2020] is another
approach to enhance machine learning models’ audio signal processing capabilities by mak-
ing these audio processing blocks differentiable and hence compatible with deep learning
frameworks. DDSP uses DSP blocks to synthesize sounds and a deep neural network
to control the synthesis models, allowing for a clear division of tasks. Unlike additive
synthesis, where adjusting hundreds of parameters was difficult given a set of controls like
instrument type, pitch, and velocity, DDSP models with learned controls facilitate music
synthesis while reusing well-known additive synthesis techniques and making them easier
to use.

Compared to autoregressive, variational, or adversarial models, the DDSP approach uti-
lizes naturally strong domain knowledge and integrates it with deep learning rather than
using the deep neural network capabilities to learn this knowledge from the training data.

DDSP allows new ways to integrate standard audio processing blocks inside a deep-
learning framework out-of-the-box, mixing the strong inductive biases of the signal-based
approach and the expressivity of neural networks.

CHAPTER 2. STATE OF THE ART 33

Figure 2.6: DDSP autoencoder architecture. Red blocks are part of the neural network
architecture, green blocks are the latent representation, and yellow blocks are determin-
istically controlled synthesizers and effects provided by DDSP. Reproduced from [Engel
et al., 2020].

The authors show that combining interpretable modules allows the manipulation of each
separate model component. The applications include the separate manipulation of pitch
and volume, the ability to realistically extend to pitches that were not seen during training,
the capability to remove the effects of room acoustics without prior knowledge of the
recorded room, the potential to apply the extracted room acoustics to different settings,
and the timbre transfer.

To showcase the capabilities of this DDSP module, the authors provided a modified auto-
encoder and a multi-resolution spectral loss as shown in Fig. 2.6. The encoder is a mix
of several specialized encoders that aim at estimating target parameters such as the F0.
The decoder estimates the control parameters for the differentiable synthesizer and noise
generator from this parameter set. Finally, the multi-resolution spectral loss function
enables the network to learn more fine-grained spectral features of the audio, which can
be essential for instrument modeling and timbre transfer tasks.

To summarize, DDSP provides a set of differentiable audio processing blocks, making
them compatible with modern deep-learning frameworks. It allows for a clear separation
between synthesis (with DSP blocks) and control tasks (with DNNs), making manipulat-
ing and modifying sound characteristics easier. Finally, an audio plugin for Digital Audio
Workstations using a trained (and trainable) DDSP model is available.

For the moment, the main applications of DDSP apart from the ones described in the
original paper are keyboard synthesis, either piano [Renault et al., 2022], or recreation of
a classic FM synthesizer [Caspe et al., 2022]. As for drums, no example can be found in
the literature yet.

2.2.5 Diffusion models

The first introduction of the diffusion models was in [Sohl-Dickstein et al., 2015], where the
authors aimed to propose a novel approach that simultaneously achieves both flexibility
and tractability. Diffusion models are, at their core, a generative Markov chain. This
Markov chain converts a real-world distribution, implied by the training data, into a
target data distribution, generally a Gaussian, through diffusion. The reverse process,

CHAPTER 2. STATE OF THE ART 34

learned by a network, is called denoising and is the useful generation process here and is
illustrated in Fig. 2.7.

Figure 2.7: Diffusion probabilistic models are parameterized Markov chains trained to
denoise data gradually. A neural network parametrizes the denoising model pθ. Repro-
duced from the companion website of [Ho et al., 2020]

To align with the content depicted in Fig. 2.7 (reproduced from [Ho et al., 2020], we will
now introduce the equations within a diffusion model. In this model, the chain denoted as
q introduces minimal Gaussian noise during each step t. The parameters of the Gaussian
distribution are adjusted based on a noise schedule controlled by betat, i.e., when and how
much noise to add during the generative process. This schedule governs the variation in
the noise characteristics. This iterative process is repeated for a total of T steps. As the
number of time steps increases, more original input features are gradually eroded.

q(x1:T |x0) :=
T∏

t=1
q(xt|xt−1), q(xt|xt−1) := N (

√
1 − βtxt−1, βtI) (2.15)

The goal of the denoising process pθ is to learn the denoising steps to undo the forward
process iteratively. In this way, the reverse process appears as if it is generating new data
from random noise.

pθ(x0:T) := p(xT)
T∏

t=1
pθ(xt−1|xt), pθ(xt−1|xt) := (xt−1;µθ(xt, t),Σθ(xt, t)) (2.16)

Given the similar form to a VAE, since an objective for p would be to maximize the
likelihood, the ELBO loss seen with the VAE can be reused in this context [Ho et al.,
2020].

While diffusion models offer a tractable method by defining the end point of the chain
as the target distribution and making intermediate steps in the diffusion chain tractable,
a drawback of this method is that it can be computationally expensive at inference time
due to the number of steps, which may limit its practicality in certain contexts, mostly
embedded or real-time applications.

Recent improvements in diffusion models like [Dhariwal and Nichol, 2021] have shown
more than excellent results in image generation, significantly improving upon the state-
of-the-art generative models like StyleGAN 2. In [Xiao et al., 2022], the authors’ used a
GAN to take care of the denoising, making the small steps in the denoising process larger.
Most notably, this system could provide a mix of GAN and diffusion model qualities, i.e.,
inference speed and overall quality for GANs and mode coverage for diffusion, almost
solving the classic trilemma of generative models: quality, mode coverage, and inference
speed.

Following the successes for image generation, it was not long before diffusion processes
were used for sound processing [Kong et al., 2021; Juanpere and Välimäki, 2022]. Drum

CHAPTER 2. STATE OF THE ART 35

sound generation also benefited from diffusion models with [Rouard and Hadjeres, 2021].
In this article, the authors provided a diffusion model engineered for drum generation
with supplementary controllable sampling schemes. In particular, what was proposed in
this article was a class-mixing strategy, allowing the controllable creation of clear chimeric
sounds and an inpainting method to generate different tails given a fixed attack portion.
In this context, inpainting involves filling in missing or corrupted parts of the sound using
the diffusion process. This inpainting capacity is especially interesting for sound design
work.

2.2.6 Control strategies

Controlling the output of a generative model can be difficult without resorting to su-
pervised learning. Supervised approaches train the network to generate specific outputs
given certain input conditions, making control over the generator more explicit. While
VAEs are often praised for their explicit latent vector, allowing greater control over the
output [Aouameur et al., 2019], it can be difficult to know which latent space dimensions
correspond to specific controls.

Controlling GANs

While vanilla GANs are a popular generative model in their own right, they generally don’t
have a latent space as well-behaved as the VAEs. The first example of a conditional GAN
was in [Mirza and Osindero, 2014]. The idea here is to provide both the generator and
discriminator with the labels to enforce a class-dependent generation and discrimination,
as shown in Fig. 2.8a. However, the network has no incentive to follow this information
through its loss.

To that end, the literature proposes a solution in the form of Auxiliary Classifier Gen-
erative Adversarial Network (ACGAN) [Odena et al., 2016]. ACGAN incorporates sup-
plementary data such as class labels and utilizes an auxiliary classifier network in com-
bination with the discriminator in addition to the class label concatenated to the latent
in the generator, as shown in Fig. 2.8b. The auxiliary classifier network is responsible
for classifying the generated images based on their respective class labels. This allows
for control over the class label explicitly in the generator. While this method allows for
supervised generation on discrete labels, it is incompatible with continuous variables due
to its construction.

In [Mescheder et al., 2018], the authors used an even more straightforward method: con-
catenating an embedding of the labels to the latent and utilizing the label index to take
the correct output from the discriminator different heads (one output head per class).
This method was then reused with StyleGAN [Karras et al., 2019]. This is the closest
method to providing a direct and intuitive way to control the generator output.

CHAPTER 2. STATE OF THE ART 36

(a) Visualization of the Conditional GAN [Mirza and Osindero, 2014]

(b) Visualization of the Auxiliary Classifier GAN [Odena et al., 2016]

Figure 2.8: Visualization of GAN control-methods.

Controlling Diffusion Models

Auxiliary embeddings provide external control in diffusion models. This is illustrated in
[Dhariwal and Nichol, 2021], where the authors integrated class information into normal-
ization layers through an embedding. Additionally, the same paper introduced another
technique called classifier guidance, which suggests utilizing gradients derived from a
pre-trained classifier to motivate the network to acquire class-specific knowledge. It is
important to emphasize that the classifier guidance technique can be used for uncondi-
tional and conditional synthesis. However, it is not a control method per se. Notably, this
technique demonstrated a behavior of balancing diversity and quality, i.e., increasing one
often comes at the cost of reducing the other. As another example, [Kong et al., 2021]
used class conditioning similarly. The shared embedding is used in two ways: through
1 × 1 convolutions, mapping it to a different space, and as a bias term. Overall, the idea
is to use embeddings of the control vectors to modify the activations to match.

Control over timbral features

When it comes to drum synthesis control, beyond the usual labels that are the type of
instrument to generate like a snare drum, kick drum, hi-hat, or crash cymbal, the Audio-
Commons feature set [Pearce et al., 2016] is a common choice for high-level control over
the timbre. Prior research has explored timbral features for drum synthesis in [Ramires
et al., 2020] and [Nistal et al., 2020]. These two studies employ neural drum synthesizers
that can generate drum and cymbal sounds based on continuous feature control inputs.
The methods use the feature values directly and leverage the expressive power of neural
networks (a U-Net in [Ramires et al., 2020] and a GAN in [Nistal et al., 2020]) to utilize
the control.

Ramires et al. used the features as input for their U-Net, allowing the network to learn
the different associations without additional constraints. In contrast, Nistal et al. [Nistal
et al., 2020] used the discriminator in their GAN for discrimination and feature esti-

CHAPTER 2. STATE OF THE ART 37

mation. They also constrained the generator to follow the input to encourage using the
features at the generator’s input, similar to the approach in [Odena et al., 2016].

2.3 Evaluation Strategies for Generative Models

The evaluation of generative models proves to be a non-trivial undertaking. In the context
of GANs, this is particularly valid, as they employ implicit density estimation, which
consequently lacks a direct approach for evaluating the probability density of individual
elements in the training set.

Although subjective evaluation is the most human-like way to measure sound quality,
it can be influenced by individual preferences, biases, and other factors. This makes it
difficult to control and obtain consistent results, especially when evaluating complex or
subtle aspects of sound quality. Consequently, many tests may be required, which can
be costly. On the other hand, objective evaluation has the advantage of being quantified
and standardized, allowing for more reliable and reproducible results. Second, objective
evaluation is often more efficient and cost-effective than subjective evaluation because
it can be automated and performed quickly using specialized software. As a result, it
makes evaluating large data sets more manageable. It also facilitates comparisons between
configurations or models on the same data set. We will describe here a few evaluation
strategies for both the synthesis quality and timbral control.

2.3.1 Quality Evaluation

Mean Opinion Score

The Mean Opinion Score (MOS) is a widely used method for evaluating the subjective
quality of audio signals. It is commonly used to evaluate the perceptual quality of various
audio processing systems, such as speech coding, music compression, and sound synthesis.

To obtain the MOS value, a group of human listeners is asked to evaluate the quality of
the audio samples on a numerical scale, typically ranging from 1 to 5 [ITU, 1996], where 1
represents the lowest grade, and 5 represents the highest. The scores obtained from each
listener are then averaged to obtain the final MOS value for the audio samples.

However, a sufficient number of listeners should be included in the listening test to ob-
tain a reliable MOS value, typically ranging from 20 to 50 or more, depending on the
study’s requirements. Moreover, setting up a MOS experiment is costly in time and
money. Therefore, careful consideration is required when designing and conducting MOS
experiments to ensure they are well-controlled and provide meaningful results. It should
also be noted that the listening conditions should be controlled to provide the least bias
due to the reproduction system.

Overall, the MOS is the judge of peace regarding quality evaluation. Still, its cost will
hinder testing multiple models or comparing several solutions efficiently, which saw the
rise of neural network-based evaluation metrics.

CHAPTER 2. STATE OF THE ART 38

Inception Score for Objective Generative Model Evaluation

The Inception Score (IS) [Salimans et al., 2016] measures the quality of generated images
from a generative model, such as a generative adversarial network (GAN). It is calcu-
lated by measuring the marginal likelihood of the generated images and the conditional
likelihood of the generated pictures given the classes predicted by the Inception network.

The Inception network is a deep convolutional neural network trained on ImageNet [Deng
et al., 2009], a large dataset of real-world images, and can extract a rich set of features
from images. We can also use the Inception Network to predict the classes of images,
such as objects and scenes.

We can calculate the IS as follows:

IS = exp(Ex[DKL(p(y|x) ∥ p(y))]) (2.17)

where x is a generated image, y is the predicted class of the image, and p(y|x) and p(y) are
the conditional and marginal likelihoods of the image and predicted class, respectively.

The Inception Score is a metric that can also be applied to audio data, but it requires the
Inception model to be retrained specifically for this purpose. This was demonstrated in
[Nistal et al., 2021], where they used Mel-Spectrograms instead of images to distinguish
between different types of drums and cymbals and then reused the classifier features to
calculate the IS. Another example of the Inception Score used for audio is in [Engel et al.,
2019]. However, the authors did not use the Inception model directly. Instead, they
applied a similar calculation on the features of a pitch classifier trained on the NSynth
dataset.

However, Barratt et al. showed the limits of the IS in [Barratt and Sharma, 2018]. As
stated in that paper, the Inception Score shows excellent sensitivity to small changes
in weight, even if these changes do not make the final classifier accuracy change. Fur-
thermore, the Inception network used for the score calculation was trained on one data
set (ImageNet). Being trained on one massive but specific dataset makes its extension
to other datasets nontrivial. The main problem is the possible misalignment of classes
between the dataset to test and ImageNet. In [Barratt and Sharma, 2018], the authors
showed that the classification of examples from CIFAR-10 does not yield coherent results,
invalidating the hypothesis of good classification of the examples. Another point is that
the Inception Score is not robust against overfitting, which makes it even more necessary
not to use it as a holistic metric. Although these problems were only demonstrated on im-
ages, it is reasonable to assume that similar outcomes could be observed on spectrograms
and audio data.

Fréchet Distance for Objective Generative Model Evaluation

The objective of this section is to provide an explanation of the Fréchet distance and its
application in the evaluation of generative models.

CHAPTER 2. STATE OF THE ART 39

Fréchet Distance between probability distributions The Fréchet Distance [Fréchet,
1957] is a distance between probability distributions. The intuition behind the works is
the concept of global distance between two distributions, especially the distance defined
as the minimum among all global distances. The squared deviation defines the global
distance in the Fréchet distance. For two distributions X and Y , the Fréchet distance is
defined formally as:

dF (X, Y) = min
α,β

E[∥α− β∥2] (2.18)

where α and β have distribution X and Y .

We can also define this over the set of couplings H of X and Y . In that case, H(X, Y) is
a joint probability measure whose marginals are X and Y , respectively.

dF (X, Y) = min
H

E(α,β)∼H∥α− β∥2 (2.19)

which can finally be written in integral form as :

dF (X, Y) = min
H

∫
∥α− β∥2dH(α, β) (2.20)

In other words, it is the 2-Wasserstein distance on Rn [Vaserstein, 1969].

A special case for normal distributions has been derived in [Dowson and Landau, 1982].
For two multivariate Gaussian distributions with means µX and µY and covariance ma-
trices ΣX and ΣY , the Fréchet distance between these distributions is:

d2 = |µX − µY |2 + tr(ΣX + ΣY − 2(ΣXΣY)1/2). (2.21)

Application to the evaluation of Generative Models Fréchet Inception Distance
(FID) [Heusel et al., 2017] measures the distance between the distributions of two sets of
images. It is commonly used to evaluate the performance of generative models, such as
generative adversarial networks (GANs).

Mathematically, FID is defined as the Fréchet distance between the feature distributions
of two sets of images, as measured by the Inception network. The feature distributions
are the distributions of the activations of the Inception network when applied to the two
sets of images. The Fréchet Inception Distance assumes the distributions being measured
are Gaussian, since the Gaussian distribution is the maximum entropy distribution for a
given mean and covariance.

Under these assumptions and taking into account eq. (2.21), the FID is calculated as
follows:

FID = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg) 1
2) (2.22)

Where µr and µg are the means of the feature distributions of the authentic and generated

CHAPTER 2. STATE OF THE ART 40

images, respectively, and Σr and Σg are the covariances of the feature distributions of the
authentic and generated images, respectively.

The audio equivalent of the FID is the Fréchet Audio Distance [Kilgour et al., 2019] (FAD),
which measures the distance between the distributions of two sets of audio samples. Its
goals are similar to the FID, but it is used as a metric of synthetic audio against real-world
audio.

The FAD calculation uses the embedding from a VGGish model [Hershey et al., 2017]
instead of the Inception network. VGGish is a CNN-based classifier designed for audio,
based on the VGG architecture originally developed for image recognition [Simonyan and
Zisserman, 2015]. It has been trained on a large dataset of YouTube videos, similar to
the YouTube-8M dataset [Abu-El-Haija et al., 2016], and can recognize over 3000 audio
classes. No information on the different classes was given in [Kilgour et al., 2019], but it is
reasonable to assume it is a subset of [Abu-El-Haija et al., 2016]. The activations obtained
from the 128-dimensional layer directly preceding the final classification layer serve as the
embeddings. The input to the VGGish model consists of 96 consecutive frames of 64-
dimensional log-mel features extracted from the magnitude spectrogram of 1 second of
audio. The only difference from the FID is the network used to get the embeddings. The
underlying statistical process remains the same: the assumption of Gaussian distribution
of the embeddings and the same computation of the distance.

It also should be noted that the FAD was developed and described as a metric to measure
distortions to evaluate music enhancement models. While its use as an objective empirical
metric for evaluating generative models has already been seen in the literature [Nistal
et al., 2020; Rouard and Hadjeres, 2021], it should be noted that there is no experimental
proof of the correlation between the FAD and qualitative metrics such as Mean Opinion
Score for generation evaluation since the FAD was built as a distortion measurement
metric. We can, however, expect interpretable results on how well two different models
perform on the same dataset. A further subjective evaluation must be performed to obtain
a quality evaluation measurement.

Handling of Mode Collapse

Mode collapse in a GAN occurs when the generator produces a limited variety of outputs
that do not fully represent the diversity of the training data. This happens when the
generator learns to map multiple input samples to the same output, resulting in the loss
of information about the true distribution of the data. The generator gets stuck in a
local minimum and fails to explore the full possibilities the training data offers. This can
happen when the discriminator becomes too powerful and quickly identifies the generator’s
outputs as fake, leading the generator to converge to a limited set of samples that can
fool the discriminator.

Subjective evaluation can only provide a limited view of the audio generated and may
not fully capture the extent of the mode collapse. This is where objective metrics can
help to quantify the diversity and quality of the generated audio, in addition to subjective
evaluation.

The Inception Score was designed with mode collapse in mind, as the aim in [Salimans
et al., 2016] was to create a metric that would detect the quality and the diversity.

CHAPTER 2. STATE OF THE ART 41

However, as stated in [Barratt and Sharma, 2018], the Inception Score can be fooled by
networks capable of outputting neither.

Regarding the FID, it measures the distance between the distribution of real images and
the distribution of generated images in a feature space, calculated using a pre-trained
Inception network. The FID is more robust to mode collapse than the Inception Score
while still considering the quality and diversity of generated images. Indeed, in the case
of mode collapse, where the generator produces a limited variety of images, the FID
score would be high because the generated distribution is far from the real distribution,
indicating the poor performance of the generator. Therefore, the FID can be a useful
metric for detecting mode collapse in GAN-generated images.

2.3.2 Timbre Control Evaluation

Objective evaluation can be utilized to assess the coherence of the timbral features used
as input to the model. However, ensuring that any modification in these features corre-
spondingly impacts the model’s output is equally important.

To address this, [Ramires et al., 2020] introduced an ordering criterion, emphasizing the
need to objectively evaluate the coherence of the timbral features used as input to the
model. This criterion was then used by [Nistal et al., 2020] in their effort of timbral
control for neural drum synthesizer. The main idea behind this criterion is to ensure the
model behaves correctly by confirming that any change in the timbral features used as
input leads to a corresponding change in the model’s output. Ramires et al. aimed to
ensure the coherence of timbral features used as input to the model by varying individual
features while holding the others constant. The accuracy of the generated output was
assessed via the same features used for training. It should be noted that Ramires et al.
used a min/max scaling to force the features to be between 0 and 1 on their dataset. For
each individual feature, three values were set: low (0.2 on the normalized scale), mid (0.5),
and high (0.8). The resulting outputs were x̂i

low, x̂i
mid, and x̂i

high, and their corresponding
features were fsi

low, fsi
mid, and fsi

high for the i-th feature. The hypothesis was that
for coherent modeling, the models must follow the order fsi

low < fsi
mid < fsi

high. The
ordering accuracy was tested three times, with E1 checking the condition fsi

low < fsi
high,

E2 checking fsi
mid < fsi

high, and E3 checking fsi
low < fsi

mid over all values of i. Although
this metric gives a general idea of how well the system functions, it does not provide any
information about how closely the generated samples match the intended input.

There is currently no state-of-the-art method for subjectively evaluating timbre control
in neural synthesis. To evaluate timbre control subjectively, we can consider two perspec-
tives. The first is whether the synthesis quality deteriorates with more control over the
process. This raises the question whether increasing the number of control parameters in
a synthesizer can lead to an undesirable output, an essential consideration when designing
a synthesizer that allows for control of individual timbral features. The second perspec-
tive is determining how noticeable control errors are to human listeners. In other words,
if the control parameters used to synthesize a sound are inaccurate, to what extent can a
listener identify these inaccuracies in the final output?

These perspectives are critical in understanding the limitations and opportunities of neural
synthesis, and they can guide the development of more effective models that meet the

CHAPTER 2. STATE OF THE ART 42

needs of both creators and listeners.

Although there are no examples of subjective evaluation for timbre controls for the
two main perspectives described above, it is possible to reuse the methods discussed in
Sect. 1.6. More precisely, psychophysical experiments can be performed to determine the
extent of control errors that human listeners can detect and conclude on the capabilities
of the tested control method.

2.4 Conclusion

This short state-of-the-art review shows the lack of high-quality control for neural drum
synthesizers with a common compromise between high-quality and precise timbral control
before 2019, as shown in Tabl. 2.1. However, new methods were found quickly after the
beginning of the thesis, in early 2020 and beyond, moving from evolved GAN models
[Nistal et al., 2020; Drysdale et al., 2020] to diffusion models [Rouard and Hadjeres,
2021] as shown in Tabl. 2.2. It also reviews the most common objective metrics for
measuring audio generation quality. It allows comparing networks trained on the same
dataset while considering the limitations compared to subjective evaluation.

Reference Sample Rate Duration Timbral Control
WaveGAN [Donahue et al., 2019] 16kHz 1.1s ✗
NDM [Aouameur et al., 2019] 16kHz 1.3s ✗
NeuroDrum [Ramires et al., 2020] 16kHz 1s ✓

Table 2.1: Comparison of state-of-the-art neural drum synthesizers before the start of the
thesis (before the end of 2019)

Reference Sample Rate Duration Timbral Controls
DrumGAN [Nistal et al., 2020] 16kHz 1.1s ✓
Adversarial Audio[Drysdale et al., 2020] 44.1kHz 0.4s ✗
CRASH [Rouard and Hadjeres, 2021] 44.1kHz 0.4s ✗
DrumGAN VST [Nistal et al., 2022] 44.1kHz 0.5s ✓

Table 2.2: Comparison of state-of-the-art neural drum synthesizers published during the
thesis (from 2020 onwards)

At the start of the project (i.e., end of 2019), the only available solutions were [Donahue
et al., 2019] [Aouameur et al., 2019] and [Ramires et al., 2020], as shown in Tabl. 2.1. In
this context, we investigated GANs, more precisely StyleGAN, to generate drum sounds.
The novel (at that time) style-based approach appeared very convincing for image gen-
eration and basic control over the generation. We can also leverage the fact GANs use
discriminators instead of direct reconstruction losses. Combining a discriminator with
"handicapped" generators should allow us to obtain new interesting sounds.

More recent research encourages the usage of diffusion-based methods for high-quality
images and even drum sounds with interesting inpainting capabilities. This was enough

CHAPTER 2. STATE OF THE ART 43

of a breakthrough to question the validity of a GAN-based approach, especially in the
middle of a thesis.

The first argument against a change in direction is the overall inference time. Diffusion
models have a high computational cost that makes them unusable on consumer-grade
computers letting GAN-based approaches a head start upon diffusion models. As this
project aims at creating a synthesizer with acceptable inference performances, using GANs
appears to be a great compromise between quality and inference speed as VAEs do not
provide the highest quality available in the state-of-the-art.

Another issue with considering the new diffusion methods is that they would require a
complete redesign of our synthesizer and, as such, more time spent rebuilding a system.
Given the timeline of the project and the publication of [Rouard and Hadjeres, 2021] at
the end of 2021, it would have been too short to consider, as it would have taken at least
a year to change direction completely.

For network evaluation, we have two main evaluation points and two methods: sound
quality and control and objective and subjective methods. In terms of sound quality
and even if the Fréchet Audio Distance (FAD) has already been used in state-of-the-art
literature for objective quality evaluation, one should remember that it was not engineered
with GAN evaluation in mind, which in turn implies we have to use subjective evaluation
as a final metric.

Regarding control evaluation, the state-of-the-art provides an ordering criterion with clear
limitations. It should then be noted that no subjective evaluation has been conducted on
this subject. We can also add the evaluation metric used for the control evaluation case
and introduced in [Ramires et al., 2020] is weak as it is only an ordering criterion. In
addition, the results with this ordering metric are far from perfect, as we will see later
in this document in Table 4.8. This objective evaluation of timbral control shows clear
limitations. Instead of using the raw values of the descriptors, using the descriptors as
differentiable functions should yield better results, especially in light of the strong results
obtained with DDSP.

From this, we can say that generative adversarial networks are a great compromise to mix
high-quality generation, precise and coherent high-level controls, and good inference time
performance, even if newer propositions can supersede them on certain points. Given the
objectives listed in Sect. 1.1, they appear to be the best compromise for the present study.

CHAPTER 2. STATE OF THE ART 44

Chapter 3

Databases

3.1 Introduction

As our drum synthesis method is data-driven, exploring the data used for the training
and inference is necessary. We will especially describe the two datasets we used in our
experiments and how we built them.

3.2 ENST Drums

The ENST-Drums database [Gillet and Richard, 2006] is a large and somewhat varied
database aimed at research for automatic drum transcription and general drum audio
processing.

This dataset was built by recording three professional drummers specializing in different
music genres. Each drummer provided about 75 minutes of audio recordings. As these
drummers come from different musical backgrounds, they all played drumkits with the
toolset of their respective genres: sticks, rods, brushes, or mallets. The drum kits recorded
range from small jazz-oriented drum kits to larger rock drum sets.

In addition to 8 individual audio channels, the performances were filmed from two angles,
providing further data to process for tasks such as performance analysis.

3.2.1 Subset of Interest

Some parts of ENST-Drums are not helpful for our application to drum synthesis. First
and foremost, the videos of the performances and the recordings of these performances
are not interesting for our target application. Since we aim to generate one-shot samples,
we will select samples without cross-talk, i.e., no full performances and only single hits
using close mics only.

Regarding cymbals, the data set provides no close miking except for the hi-hat. Moreover,
the cymbals are recorded using a stereo pair of overhead microphones. The overhead

45

microphones are positioned at a considerable distance from the components of the drum
kit (around 1m), which means that they do not satisfy the close-miking condition we
established for constructing our dataset.

Regarding drums, close mics are available for all instruments: kick drum, snare drum,
and toms. These monophonic recordings represent a drum kit’s expected sound when
recorded. However, not all microphones are helpful at all times. For instance, the kick
drum microphone can pick up the snare when the snare drum is played, and inversely. To
avoid this problem, we only keep recording the related close mic for each instrument. In
other words, the kick drum samples come from the kick drum microphone only, as do the
other drums and their specific, close microphones. The subset we will use will comprise
close-miking of kick, snare, tom, and hi-hat and the relative population of the dataset is
given in Tabl. 3.1.

Element Proportion
Kick 4%
Snare 18%
Toms 45%
Closed hi-hat 11%
Open hi-hat 22%

Table 3.1: Dataset population

3.2.2 Shortcomings

The first and obvious shortcoming with our subset is the small size of the overall data
set, and even more so for the subset. While the problem might not be a problem for clas-
sification or transcription using non-machine-learning-based approaches, our generation
task with neural networks will need more data to avoid overfitting on a subset lacking
variations. Given [Nistal et al., 2020] successfully trained a GAN for drum synthesis with
a data set made of 200k samples, we aim for a data set of approximately the same size.

3.3 Data augmentation

As the selected subset of ENST-Drums comprises 350 samples, we must augment the
subset to avoid overfitting and encourage better generation variability. For this, we reused
the proposed method of [Jacques and Roebel, 2018] initially aimed at drum transcription.

We used SuperVP 1 to process the ENST-Drums subset. The modifications to the sounds
consist of a gain applied to transient/attack components [Röbel, 2003], noise components,
and independent transposition of the signal source and the spectral envelope. Table 3.2
shows the set of parameters. The limits have been obtained using informal subjective eval-
uation of the modified sounds to avoid transformations that can be perceived as unnatural

1SuperVP is available free of charge in the form of a Max/MSP object at https://forum.ircam.
fr/projects/detail/supervp-for-max/

CHAPTER 3. DATABASES 46

https://forum.ircam.fr/projects/detail/supervp-for-max/
https://forum.ircam.fr/projects/detail/supervp-for-max/

by a human listener. A more thorough evaluation of the extreme values was conducted as
part of our neural synthesizer’s subjective sound quality evaluation in Sect. 4.2.5. Count-
ing the different combinations of parameters amounts to 360 possible combinations, which
increases the number of samples available for training from 350 to approximately 120k.

Process Parameters
Remix attack 0.1, 0.3, 0.6, 1.5, 2, 3
Remix noise 0.6, 1.5, 2, 3
Transposition 0, ±100, ±200
Spectral envelope transposition 0, ±200

Table 3.2: Augmentation operations and parameters

3.4 Apeira Drums

In the following section, we will introduce the content of our new dataset of drum sounds
called Apeira-Drums. This dataset contains high-quality (48kHz-24bits) recordings of
drum sounds using several microphones and drums. We also provide information on
drum tuning and cymbal choices. The recording protocol was documented in case further
recordings need to be added with other drums, cymbals, or drummers. Finally, we also
describe the hit velocity measurements done during recording sessions. These measure-
ments aim to give a ground truth for MIDI velocity estimation using either state-of-the-art
piezoelectric sensors or special accelerometer units.

3.4.1 Structure of the dataset

The dataset consists of drum sounds and measurements sorted into different categories:

• Close miking

• Overheads

• Ambiance microphones

• Microphone crosstalk

• Accelerometer data

• Trigger info

The "close miking" samples are the raw drum sounds recorded by the microphones of
interest over the drum. The "Accelerometer data" and "Trigger info" are either processed
data from a Redison Senstroke smart drum stick sensor (containing an accelerometer,
full sensor shown in Fig. 3.1) or the raw signal recorded through piezoelectric triggers,
which are in contact with the drum head at the moment of impact. "Overheads" samples
are comprised of a pair of stereo overheads. These are not deemed as critical as the

CHAPTER 3. DATABASES 47

close miking samples but can be added to taste by the dataset end-user. "Ambiance
microphones" are for room microphone recordings, using premium recording gear as part
of the signal path for added color and creative processing. "Microphone crosstalk" refers
to all the audio picked up by other microphones than the one intended to capture the
sound source of interest.

Figure 3.1: Redison Senstroke sensor mounted on a Vater 5A drumstick.

3.4.2 Recording Setup

The dataset is composed of drum sounds recorded at 48kHz-24bit, a step-up when com-
pared to ENST-Drums [Gillet and Richard, 2006], IDMT-Drums [Dittmar and Gärtner,
2014], and FreeSound [Font et al., 2013]. The raw recordings were cut using the tran-
sient detection algorithm from [Röbel, 2003]. All the running microphones went through
Yamaha SB16-ES preamplifiers, except when stated otherwise. We used premium pream-
plifiers on ambiance recordings to color the recordings with the euphonic characteristics
of these premium preamplifiers. This was chosen during the recording process during
informal A/B testing.

All preamplifiers are bound to a digital Dante network through an Ethersound-Dante-
AES/EBU interface. The recording was made using Cubase 10.5 at a native sample rate
of 48kHz and a resolution of 24 bits. All recordings were made at L’Ampli. Studio 3 in
Le Creusot, France. Fig. 3.2 shows the recording setup and layout.

3.4.3 Dataset Contents

We selected two Yamaha Stage Custom drum kits and three snare drums to ensure max-
imum variety. There are five crash cymbals, one ride, one pair of hi-hats, and two effect

CHAPTER 3. DATABASES 48

Figure 3.2: Photography of the recording setup (Yamaha Stage Custom)

cymbals. All the drums and cymbals are recorded using a pair of Vater 5A drumsticks
except for the kick drum, where a felt beater and a wooden beater were used. The
supplementary material accompanying the dataset shows the complete list of drums and
cymbals. The dataset amounts to 1492 drum and cymbal close mic sounds. We also add
the stereo overheads and the variety of room recordings.

Figures Fig. 3.3a and 3.3b show the mean envelopes computed on the dataset samples.
These envelopes were generated using the close mics sounds from the dataset, with one
envelope per type of drum or cymbal. For each sample of one given type, the final envelope
is the filtered mean of the analytical part of the Hilbert transform of these peak-normalized
samples. We defined the peak normalization for a signal x as :

x̂ = x

max(|x|) (3.1)

The Hilbert transform is calculated using the Discrete Fourier Transform on the dataset’s
first 65636 samples of each normalized sound. This length is the same length used in
[Lavault et al., 2022b]. However, all the sounds in the dataset are longer. We can see
that 1.4s is too short for the cymbals to decay fully.

3.4.4 Trigger and accelerometer data

The accelerometer data from the Senstroke sensor needs some explanation. Note that the
output of the accelerometer is included in the dataset.

The raw output of the sensor looks something similar to:

CHAPTER 3. DATABASES 49

(a) Mean normalized envelopes for shell drums (b) Mean normalized envelopes for cymbals

Figure 3.3: Mean normalized envelopes on the dataset, shortened to 1.4s

21580; 0.969...; 0.02...; 0.24...; 0.02...; 0.0; 0.0; 0.0; 30.89; 255

Our most interesting data lies in the second to last column, which gives an estimated MIDI
velocity whose estimation will be described in the next paragraph. The rest represent a
timestamp, an estimate of the position, and the magnetometer output. Please note that
the position algorithm was not initialized in our experiments. This does not influence the
MIDI velocity measurement, as these two measurements are separated.

Apeira Technologies, which funded this thesis, developed the Senstroke signal processing
program. As a result, we have detailed knowledge about the sensor and its processing.
The MIDI velocity estimation in the Senstroke relies on the angular speed combined with
an impact detection algorithm that we cannot disclose in this context. If we denote ω the
angular speed at the moment of impact, the estimated velocity V is given by :

V = 5.3 × ω (3.2)

It represents an estimation of the MIDI velocity on a commercial electronic drum kit.
The scaling factor was defined to match the MIDI velocity output of a state-of-the-art
electronic drum kit. Contrary to the MIDI standard, this value is neither an integer nor
bounded by 127.

The triggers are standard in live audio and electronic drum kits. They are generally used
to trigger sounds using specialized sound modules, hence the name. To work effectively,
these sensors are placed in contact with the drum head, in general, by holding on to the
drum’s rim. The idea of recording trigger signals in Apeira Drum is to have a reference
signal independent of the microphone. While mostly useful for automatically segmenting
raw audio files, they are also expected to provide a velocity estimation since they are used
in state-of-the-art MIDI velocity-compatible drum modules.

Spectrograms of such signals are shown in Fig. 3.4. The main difference with microphone
signals is the weaker decay at higher frequencies (500 to 5000 Hz) and the lack of promi-
nence of lower frequencies (≤ 100 Hz). The first point can be explained by the contact
between the head and the sensor making higher order modes prominent on it but not
necessarily in the air: it can be further illustrated by comparing Fig. 1.2a and 3.4c. The
diminution of lower frequencies is due to the limited physical capabilities of the sensor to
handle them at a mechanical level.

CHAPTER 3. DATABASES 50

We also noticed that at very high velocities (f and above), the trigger signals present
traces of distortion. As these do not come from the recording setup, we assume the sensor
can saturate when excited with enough force. This can be illustrated in Fig. 3.4d, where
the plot above shows the signal from a trigger at pp velocity, i.e., the lowest available,
compared to a trigger signal at velocity fff, i.e., the highest available. The trigger distortion
at high velocities can be seen in Fig. 3.4c and 3.4d by the presence of frequencies above
8000Hz for a short time near the transient. For clipped edges on the waveform, as shown
in Fig. 3.4d: the hard clipping induced by the sensor saturating creates higher frequencies
that are not representative of the movement of the drum head.

(a) Trigger signal for the kick drum (Yamaha
22")

(b) Trigger signal for the snare drum (Yamaha
Snare)

(c) Trigger signal for the toms (Yamaha 10"
tom)

(d) Example of clipping in trigger signals. The
plot above shows a trigger signal at a lower ex-
citation level (pp), and the plot below shows a
trigger signal at a high excitation level (fff) on
the same snare drum.

Figure 3.4: Examples of trigger signal spectrograms on real drums (Apeira Drums)

3.4.5 Recording Protocol

The recorded drummer was instructed to play eight hits for the drums and 6 hits for the
cymbals at 8 different dynamics levels, going from pianississimo (ppp) to fortississimo
(fff). The dataset we describe here contains four dynamic levels out of the eight. These

CHAPTER 3. DATABASES 51

4 levels are pianissimo (pp), mezzo-piano (mp), forte (f) and fortississimo (fff). This is
done for convenience, to help with smaller proof-of-concept experiments while remaining
larger than IDMT-Drums or ENST-Drums. Each set of hits in our recordings consists of
drum or cymbal strikes with the same dynamics level without any variation in technique
or crescendo effect.

Different techniques were recorded whenever it made sense, like hitting the hi-hat with
different opening levels or parts of the stick.

3.4.6 Repeatability

To ensure the recording session is as repeatable as possible, we compiled all the drum
tunings used during the recording of this dataset. We used a calibrated DrumDial for
the measurements. Even for expert musicians and engineers, drum tuning is challeng-
ing [Toulson and Hardin, 2020]. Using a calibrated tensiometer allows for a repeatable
recording setup, e.g., using the dataset as a ground truth against other drummers in dif-
ferent locations. This allows us to be able to repeat the recordings of the drums used in
our session, with another drummer or in another studio to do one of the following:

• Recording of the same drums with different drummers,

• Effect of tuning on a given drum and head combination,

• Effect of microphone placement for a given tuning combination.

3.4.7 Discussion

We have to concede that Apeira Drums is not as massive in terms of the number of
samples as the one used by Sony in [Nistal et al., 2020; Rouard and Hadjeres, 2021]. We
considered applying the same augmentation technique we used for our augmented ENST-
Drums dataset but with reduced limits to minimize artifacts in the Apeira Drums dataset.
However, due to time constraints, we could not do so as the development of Apeira Drums
was completed towards the end of the project. This will limit the use of the dataset to
velocity study in Sect. 4.5. In addition, we plan to release the subset described here to
the community with all the sounds and sensor data and a commercial version based on
the whole dataset aimed at music producers.

3.5 Dataset used in the document

In this section, we describe the different contents and abbreviations we will use in the
following chapters :

ENST-OG: Subset of ENST Drums containing all closed-miked drums and hi-hat. This
data set represents real drum sounds. It is used in our perceptual evaluation of

CHAPTER 3. DATABASES 52

sound quality. This data set has all its elements at a 44.1kHz sample rate. The
samples have varying lengths, but all have a duration above 1 second.

ENST-AUG: Augmented version of ENST-OG, as described in [Lavault et al., 2022b].
Note that the augmentation process preserves the labels. It is used as a training
data set for our neural drum synthesizer. This data set has the same sample rate
as ENST-OG, and the length of the sounds is unchanged.

ENST-AUG-EX: Subset of ENST-AUG containing only extreme examples of augmen-
tation. It is used to evaluate sound quality to evaluate the perceptual coherence of
the augmented training data (ENST-AUG) compared to the original drum samples
in (ENST-OG)—same sample rate and duration since it is a subset of ENST-AUG.

SWG-SQ (StyleWaveGAN Sound Quality): Samples generated with StyleWaveGAN
trained on ENST-AUG without descriptors and with random latent for all labels in
ENST-AUG. This set is only used in the sound quality evaluation. These sounds
have a duration of 1.5s at a 44.1kHz sample rate.

DG-SQ: Samples for kick, snare, and cymbals labels provided by Javier Nistal generated
with a version of DrumGAN providing drum type conditioning according to [Nistal,
2022]. These were trained on the private data set used in [Nistal et al., 2020]. This
set is used in the sound quality evaluation as the state-of-the-art reference. The
elements from this data set have a duration of 1.1s and a sample rate of 16kHz.

SWG-CQ (StyleWaveGAN Control Quality): Snare samples generated with Style-
WaveGAN trained on ENST-AUG using descriptor controls. This data set is used
for the control quality evaluation. Only snare samples are used to remain consistent
with the objective evaluation performed in [Lavault et al., 2022b]. The sounds from
this data set have the same sample rate and duration as SWG-SQ.

AD: Version of Apeira Drums described previously, with all drums and cymbals.

AD-SStroke: Subset of Apeira Drums aligning cymbals close mic recordings and Sen-
stroke velocity estimation

CHAPTER 3. DATABASES 53

Chapter 4

Drum Synthesis with Adversarial

networks

4.1 Introduction

After an overview of the state of the research field, this chapter will present the main
contribution of this thesis: StyleWaveGAN. StyleWaveGAN is a neural drum synthesizer
with drum instrument conditioning and additional timbral and velocity controls.

We will separate this chapter into four main sections. First, Section 4.2 will introduce
StyleWaveGAN and compare results obtained with StyleWaveGAN against results ob-
tained with other neural synthesizers from the state-of-the-art. This first comparison will
notably evaluate the audio quality of the generated sound. In Section 4.3, we will present
the result of the proposed method for timbral control using differentiable timbral descrip-
tors. In the same section, we will also describe the result of a psychophysical experiment
to obtain information on the perception of control error, i.e., answering the question, "Is
the control error perceivable?". In Section 4.4, we will discuss a hybrid synthesis method
that combines an oscillator bank with StyleWaveGAN to mitigate the shortcomings of
the original version. Finally, we will show how we built a velocity descriptor based on the
signal energy and how we can use this descriptor as velocity control in Sect. 4.5.

Note that the content presented in Sect. 4.2 and 4.3 of this chapter are extensions of the
work previously published [Lavault et al., 2022b,a,c], such that there is significant overlap
between them. The other sections presented here are unpublished works.

4.2 StyleWaveGAN (Basic structure)

4.2.1 Introduction

Our first contribution to the neural drum synthesis field was StyleWaveGAN [Lavault
et al., 2022b]. Based on a StyleGAN-like architecture [Karras et al., 2019][Karras et al.,
2020], StyleWaveGAN is a modification made to output waveforms instead of images.

54

Trained on the augmented subset of ENST-Drums described previously (ENST-AUG),
StyleWaveGAN can generate drum sounds of kick, snare, toms, and hi-hat (closed or open)
while offering better performance than the state-of-the-art for objective and subjective
evaluation metrics.

This section will first detail the structure of StyleWaveGAN and how it differs from
StyleGAN [Karras et al., 2019, 2020]. We will then present results using two evaluation
methods, one involving an objective measurement with the Fréchet Audio Distance [Kil-
gour et al., 2019](FAD), already described in Sect. 2.3.1, and the other involving human
listeners for subjective quality assessment.

4.2.2 Structure

This section will describe how StyleWaveGAN descends from StyleGAN and how it is
adapted to work for direct waveform generation.

Generative Adversarial Networks and StyleGAN

We have seen in Chapter 2 that Generative Adversarial Networks (GAN) describe a family
of training procedures in which a generative model (the generator) competes against a
discriminative adversary (the discriminator) that learns to distinguish whether a sample
is real or fake [Goodfellow et al., 2014].

Instead of a vanilla GAN, we use an evolution called StyleGAN. [Karras et al., 2019,
2020]. StyleGAN attempts to mitigate the entangled representation when using noise as
the generator’s latent input. The key idea here is to use a style encoding, a vector obtained
through a mapping network and then used to control (through an affine transform) every
layer of a synthesis network. The affine transform from the mapping network output to
a style vector can be expressed as:

y = A× w + b (4.1)

where y is the style vector, A is the learned matrix corresponding to the linear part of the
transform, w is the intermediary representation from the mapping network, and b is a bias
term to make this transform affine. The "A" blocks in Fig. 4.1a and Fig. 4.1b correspond
to eq. (4.1), where each block has a different set of weights.

Proposed Architecture

Since StyleGAN was initially used for high-quality image generation, we must modify it
for direct waveform generation. In particular, we transform 2D convolutions (3 × 3) into
1D causal convolutions (which means we ended up with filters of length 9) [van den Oord
et al., 2016], and the upsampling is done with an averaging filter before each convolution
block in the synthesis network. Similarly, the learned 4 × 4 × 512 starting tensor in
StyleGAN (c.f. Fig. 4.1a) is replaced by an equivalent learned layer of format 16 × 512.
The mapping network has 4 layers instead of 8. We use the same number of filters per
layer as StyleGAN2 [Karras et al., 2020]. Like StyleGAN2, the synthesis network uses

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 55

input/output skips, and the discriminator is a residual network. The loss function we use
is WGAN-LP [Petzka et al., 2018] instead of WGAN-GP [Arjovsky and Bottou, 2017] used
in StyleGAN. This loss function follows the principle of the Wasserstein GAN [Gulrajani
et al., 2017]. The differences between these losses have been described previously in
Sect. 2.2.3. Figure 4.1 shows a side-by-side architecture comparison between StyleGAN
and StyleWaveGAN.

(a) StyleGAN, reproduced from [Karras et al.,
2019]

(b) StyleWaveGAN (skip connections are not
shown for clarity). NAL stands for Noise Ad-
dition Layer.

Figure 4.1: Comparison between StyleGAN and StyleWaveGAN. Here, “A” stands for
a learned affine transform, and “B” applies learned per-channel scaling factors to the
noise input. Since StyleWaveGAN uses style-controlled noise layers, it has no per-channel
global scaling like StyleGAN.

In this work, we follow [Ramires et al., 2020; Drysdale et al., 2020] using a temporal
signal representation. We know that in [Nistal et al., 2021], the authors found the mag-
nitude+instant frequency and complex STFT (i.e., spectral representations) are the best
representations on NSynth with the same network architecture. However, the sounds in
NSynth are mostly non-percussive, which differs greatly from drum sounds.

In our case, we conducted informal perceptual evaluations performed in the initial phase
of this study to support our idea that the temporal representation produces better audio
quality than spectral representation for the same network size: we suppose the preference
towards temporal is because of the high amount of noise and the importance of the
transient in the drum sounds, which were not as precise with the spectral version of our
network.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 56

Noise Addition Layers

StyleGAN introduced explicit noise inputs in the generator network to generate stochastic
detail. More precisely, these noise inputs are single-channel images of uncorrelated Gaus-
sian noise. Such noise image is broadcasted to all feature maps using learned per-feature
scaling factors (B blocks in Fig. 4.1a) and then added to the output of the corresponding
convolution, as shown in Fig. 4.1a. The noise layer in StyleGAN can be described as:

B(n) = CC
i=1λin (4.2)

where B is the layer’s output, λ is a learned per-channel scaling factor, n is the noise
image, and C is a concatenation operator on the channels going from 1 to C, with C being
the number of channels of the previous convolutional layer’s activations.

As stated above, this means the same noise is replicated on every channel but with a
different scaling λi. In that case, n has format M ×T × 1 where M is the batch size, T is
the time duration at the layer, and the layer’s output B(n) has format M × T × C. The
layer’s output is then summed with the activations of the previous convolution layer. It
should be noted that the noise addition in StyleGAN is independent of the style mechanism
(A blocks in Fig. 4.1a).

For StyleWaveGAN, however, we modified the noise addition layers B of StyleGAN to
make them style-dependent, as described in eq. (4.3). We also added an envelope (a fixed
linear fade out) on the noise directly to avoid noisy tails. Controlled noise addition is
helpful in our drum synthesis application since some classes need more noise than others
to obtain a good-quality synthesis. We can summarize StyleWaveGAN’s noise-addition
layer with the following equation:

NoiseLayer(w, n) = AdaIN(CC
i=1n, y) + bNAL = AdaIN(CC

i=1n,Aw + b) + bNAL (4.3)

where NoiseLayer(w, n) is the layer’s output, w is the mapped latent, y = Aw+B is the
affine transformation from mapped latent w to style y with learned parameters A and b
(as described in eq. (4.1)), n is the single-channel white noise which is then replicated on
every channel with the concatenation operation C described above, AdaIN the operation
described in eq. (2.14), and finally, bNAL is a bias term.

The fade-out is omitted in the equation for the sake of clarity. The layer’s output is then
summed to the activations of the previous convolution layer.

Pre-computed Output Envelopes

One of the drawbacks of having noise addition layers is the lack of control of the decay
of said noise. Even with a parametric fade-out of the noise learned by the layer, which
gave better results in informal testings, the generated sounds have an audible noisy tail,
making them easily identifiable by a human listener. We added pre-computed envelopes
after the network’s output to mitigate this problem.

We obtained these envelopes from the training data, assigning one envelope to each drum
or cymbal type. For each sample of one given type, the final envelope is the filtered
mean of the analytical part of the Hilbert transform of these normalized samples. A small
fade-out is applied to avoid audible clicks at the end of the generated sounds.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 57

Let us consider H the Hilbert transform, F a filter (in our case, a Savitzky-Golay filter
[Savitzky and Golay, 1964]), and nc the number of samples in the class c. We obtain the
envelope for the peak-normalized sounds of class c, (si,c)1≤i≤nc , by computing :

ec = F
(

1
nc

∑
i

|H(si,c)|
)

(4.4)

Figure 4.2: Generated envelopes from the training dataset (ENST-Drums)

The final audio is obtained by multiplying the output of the synthesis network and the
matching envelope element-wise. If the output is correct, the internal energy needs to be
quasi-stationary because the envelope would represent the energy in this case. We also
hypothesize that it will help the generator by reducing the dynamic range generated by
the non-linearities inside the network.

The output time signal of the synthesis y is obtained from the output x of the last
convolutional layer of the said network by multiplying the envelope signal ec for drum
class c defined above as in the following equation:

y = x⊙ ec (4.5)

where ⊙ is the Hadamard (i.e., element-wise) product.

Controlling the Network

To match the project prerequisites, our synthesizer should be able to generate specific
types of drums according to a class, e.g., generating a snare drum, a kick drum, or a

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 58

closed hi-hat. But we also want to introduce a notion of intuitive control of the timbral
properties. The timbral control will be detailed in Sect. 4.3. However, the control method
is the same for the labels and the timbral features.

In our experiments, we use 5 labels, which are the drum types in ENST-AUG, i.e., kick,
snare, tom, closed hi-hat, and open hi-hat. Regarding the implementation, the one-
hot encoded labels and audio descriptors (labels x controls in Fig. 4.1b) are fed into an
embedding layer whose output is concatenated to the latent z and fed to the mapping
network. These same labels and descriptors are also concatenated after the mapping
network, which can be seen by the style × labels × controls block in Fig. 4.1b. Using this
method, we expect a better disentanglement between the class label and the descriptors
during the style encoding.

AutoFade

Progressive Growing of GANs has been proposed in [Karras et al., 2018] and used in
[Drysdale et al., 2020; Nistal et al., 2020]. However, it’s worth noting that Progressive
Growing was used in [Karras et al., 2018, 2019] but not in [Karras et al., 2020]. Since
StyleWaveGAN is based on StyleGAN 2 [Karras et al., 2020], we did not use Progres-
sive Growing. However, in our experiments, we developed and evaluated a variant of
Progressive Growing called AutoFade.

It is a ResNet architecture with a convolution path and a bypass, where a learned pa-
rameter is used to fade more or less of one path. Rather than fixing a value like ResNet
[He et al., 2016], we let the network choose the best value as part of the training process
without the need to train it similarly to Progressive GAN. AutoFade especially avoids the
checkpoint management and supervised phasing of the layers of Progressive GAN.

Before we proceed with the mathematical description of AutoFade, let us review the
fundamental components of a ResNet block [He et al., 2016]:

y = F(x,W) + x (4.6)

where x is the input to the block, F is a nonlinear function that represents the residual
mapping to be learned, W represents the weights of the residual mapping, and y is the
output of the block. This means F does not need to encode information already in x, and
the gradient flows easier to previous layers, mitigating vanishing gradient problems.

A similar version called the Highway Network [Srivastava et al., 2015] proposed the fol-
lowing variation :

y = F(x,WH) · T (x,WT) + x · (1 − T (x,WT)), (4.7)

where x is the input, WH , and WT are the learnable parameters for the transformation
and gating functions, F(x,WH) is the nonlinear transformation function, T (x,WT) is the
gating function that controls the flow of information, and y is the output. The gating
function can take various forms, such as a sigmoid function or a rectified linear unit
(ReLU) function. The idea behind the highway network is to allow the information to

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 59

bypass the transformation function if it is deemed unnecessary or redundant, making it a
superset of ResNet.

In the case of AutoFade, this becomes:

y = sin(α)F(x,W) + cos(α)x (4.8)

It’s worth noting that α is independent of x or F(x,W) in eq. (4.8).

It makes this structure an intermediate between ResNet and Highway Networks. For
the latter, it would mean that α would depend on the input x. AutoFade is similar to
Progressive Growing in that the α parameter changes over time. However, contrary to
Progressive Growing, the parameter is not forced to increase by hyperparameters but
changes with the gradient information. The "growing" depends on the data and the
training iteration. Since we use trigonometric functions in eq. (4.8), we guarantee the
conservation of the standard deviation if both inputs have equal variance.

Regarding our preliminary results with AutoFade, we did not observe any advantages
in utilizing progressive growing or AutoFade within the generator, consistent with the
findings reported in [Karras et al., 2020]. However, we did notice an improvement when
we employed the AutoFade technique for the discriminator. As a result, in the subsequent
sections, we will focus solely on examining the effectiveness of the AutoFade feature as
part of the discriminator.

4.2.3 Training Setup

The training procedure is the same as StyleGAN 2 [Karras et al., 2020], except that we
trained the network on 2M samples instead of 25M samples. With a batch size of 10,
it adds up to 200k iterations. This is the same number of iterations as one of the 6
progressive growing steps of DrumGAN [Nistal et al., 2020]. It should be noted that the
batch size in [Nistal et al., 2020] is at least 12. Full network training on a single Nvidia
GeForce 1080GTX takes 7 days without descriptors and 10 days with descriptors. Please
note that adding labels does not change the training time.

Dataset

We use the ENST-AUG dataset described in Sect. 3.5. As shown in Table 3.1, our
augmented dataset is quite unbalanced, so to obtain a balanced dataset, we use a sampler
that randomly takes elements from sub-datasets (one per label) such that training data
becomes uniformly distributed over drum classes.

Note that dataset balancing is standard in classification tasks but uncommon for genera-
tion tasks. One such example is [Su et al., 2020], but it is the only one we could find in
a generation context.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 60

Baseline

The main objective of StyleWaveGAN is to provide better quality than other GAN-based
neural synthesizers. By comparing the sound quality of these references on the same
training dataset, we can determine whether our model improves on these references or
not. The most appropriate candidates we could use for our baseline are DrumGAN [Nistal
et al., 2020] and [Drysdale et al., 2020] since they are GAN-based models and made up
the state-of-the-art in terms of GAN drum synthesizers at the beginning of the project.
Unfortunately, these are not reproducible because of missing source code or/and missing
or unknown meta parameters. Therefore, we will compare to [Ramires et al., 2020] using
the distributed code and a re-implementation of [Donahue et al., 2019], both trained on
our augmented dataset.

Because NeuroDrum [Ramires et al., 2020] works at a 16kHz sample rate, we adapted
our model to use this sample rate for this comparison. We also compared with WaveGAN
[Donahue et al., 2019] using our dataset with 44.1kHz. Here, we configured both networks
to generate 0.3s (@44.1kHz).

4.2.4 Objective evaluation of sound quality

We used the Fréchet Audio Distance (FAD) [Kilgour et al., 2019], described in Sect. 2.3.1,
as a reference-free evaluation metric already described in a previous section. We compared
the embedding of the augmented database to the embedding obtained from 64k samples
generated by the evaluated network. We aim to measure the sound quality, as estimated
by the FAD, between StyleWaveGAN and baseline networks and different configurations
of StyleWaveGAN. Regarding computational inference cost, we achieve a generation rate
of 52 drum sounds/s on one 1080GTX with the network in full resolution (1.5s at 44.1kHz
sample rate).

The results with the FAD are presented in tables Tab. 4.1 to 4.4.

Network FAD
Baseline [Ramires et al., 2020] 25.35
StyleWaveGAN@16kHz 11.48

Table 4.1: FAD comparison to NeuroDrum [Ramires et al., 2020] (lower is better)

Network FAD
Baseline@44.1kHz [Donahue et al., 2019] 13.08
StyleWaveGAN@44.1kHz (SWG) 7.75

SWG +Discriminator with AutoFade (AF) 6.84

SWG + Balanced dataset (B) 7.89
SWG + AF + B 7.92

Table 4.2: FAD on networks without any conditioning (lower is better)

The first result for the unconditioned synthesis is that, compared to the baseline, we
improved our result in terms of FAD, as shown in Tab. 4.1 and 4.2.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 61

Network FAD
SWG + labels 6.85
SWG + labels + AF 6.72
SWG + labels + AF + Balanced data (B) 6.65
SWG + labels + AF + B + Envelope 3.62

Table 4.3: FAD on label-conditioned networks (lower is better)

Class SWG SWG + AF + B SWG + AF + B + Env
Kick 8.79 11.71 3.58

Snare 7.87 7.53 4.29

Tom 8.17 8.09 6.27

Closed HH 10.12 6.97 4.23

Open HH 8.26 8.91 4.12

Table 4.4: Intra-class FAD for label-conditioned StyleWaveGAN

We can also see from Tabl. 4.2 that using AutoFade in the discriminator helped to get
a better generation in this context. These results confirm the benefit of AutoFade when
added to the discriminator, which leads us to keep it in the discriminator for all following
experiments.

The results with dataset balancing are mitigated. Without the label conditioning, using it
did not decrease the FAD: since it makes the training and evaluation dataset different (in
proportions), the learned distribution differs, negatively impacting the FAD. This result in
the unsupervised context can be seen in Tabl. 4.2. However, it improved the supervised
generation, as seen in Tabl. 4.3. The impact on the intra-class FAD of AutoFade and
dataset balancing is shown in Tabl. 4.4. It lowers the FAD generally, except for the kick
and open hi-hat. Since we see more improvements than deterioration in FAD, we will
use the data balancing approach in our subsequent experiments. Output envelopes have
a powerful impact on the FAD for all drum classes. They reduce the FAD by nearly a
factor of two for all drum classes, besides for the tom. Since it gave the most significant
improvement in terms of FAD, we will use envelopes estimated from the dataset in all of
our subsequent experiments.

4.2.5 Subjective evaluation of sound quality

In Sect. 4.2.4, a comparison of StyleWaveGAN, NeuroDrum [Ramires et al., 2020], and
WaveGAN [Donahue et al., 2019] was made using the reference-free Fréchet Audio Dis-
tance. As FAD measurements alone are insufficient, a subjective evaluation was conducted
to assess a few selected methods from the state-of-the-art. We will describe the details
of this subjective evaluation in the following section. We will first describe the different
datasets used in this context. Then, we will explain the results of this evaluation and the
extended feedback from expert listeners. Finally, we will discuss the limitations of this
particular evaluation.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 62

Evaluation Methodology

Choosing a baseline The results obtained in Sect. 4.2.4 showed a significant improve-
ment in FAD between StyleWaveGAN and either NeuroDrum or WaveGAN. NeuroDrum
and WaveGAN are reproducible but are older baselines, so we wanted to compare Style-
WaveGAN to more recent methods.

For the following subjective test, we have considered three other state-of-the-art methods
to be the baseline for our subjective evaluation experiment, which are DrumGAN [Nistal
et al., 2020], Drysdale et al. [Drysdale et al., 2020], and CRASH [Rouard and Hadjeres,
2021]. [Nistal et al., 2020] and [Drysdale et al., 2020] both use GANs and are much
closer in terms of methods to StyleWaveGAN than [Rouard and Hadjeres, 2021], which is
based on an entirely different approach and requires significantly longer inference times.
Accordingly, we considered the comparison with either [Nistal et al., 2020] and [Drysdale
et al., 2020] most interesting since they use the same GAN framework as StyleWaveGAN.
However, we couldn’t reproduce any of these methods due to the lack of publicly avail-
able source code and meta-parameters. Therefore, we had to rely on comparing results
produced by the original authors using their respective training sets.

A problem is the varying means of conditioning used in the different methods. While
[Drysdale et al., 2020] only provides conditioning with drum type, DrumGAN presented
in [Nistal et al., 2020] only has perceptual feature conditioning. A later version [Nistal
et al., 2022] uses drum type conditioning and perceptual feature conditioning, but was
not available when these experiments took place.

It should be noted that the generation capacity of these models differs considerably.
DrumGAN can generate samples of 1.1 s at 16kHZ, while [Drysdale et al., 2020] and
[Rouard and Hadjeres, 2021] generate samples of 0.4s and 0.5s at 44.1kHz, respectively.
In the following discussion in Sect. 4.2.5, the test participants indicate that the decay
time is essential to evaluate the realness of drum sounds. This gives an advantage to
DrumGAN with its longer samples. However, the sample rate of DrumGAN is lower than
StyleWaveGAN, which constitutes a major disadvantage in subjective listening tests.

It is worth noting that Drysdale et al. focus on sample-based electronic music (EM).
Samples used in EM are inherently synthetic and are built to sound different from real
drums. Since our subjective testing aims to evaluate how close the synthesized sounds are
to a real drum, having synthetic samples in the training set will continually be assessed
as worse. Given the limitations discussed before, we selected DrumGAN [Nistal et al.,
2020] as our baseline, representing one of the state-of-the-art models for our perceptual
test as it produces the most extended samples and uses a similar training method as
StyleWaveGAN. And to obtain sounds generated by DrumGAN for our experiment, we
asked Javier Nistal, author of DrumGAN, to provide a set of cherry-picked DrumGAN
samples labeled Kick, Snare, and Cymbals. Since these experiments took place before the
release of DrumGAN VST [Nistal et al., 2022], these provided samples came from the
original DrumGAN.

Evaluation Setup This study uses datasets described in Sect. 3.5. Our subjective
evaluation aims to assess the generated sound quality between DrumGAN (DG-SQ) and
StyleWaveGAN (SWG-SQ) against real data references, unprocessed (ENST-OG) and

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 63

processed (ENST-AUG-EX). ENST-OG is a real-world reference, and ENST-AUG-EX
contains extreme augmented examples used during the StyleWaveGAN training and can
be considered a worst-case scenario regarding training data quality. SWG-SG contains
samples generated by the best-performing network configuration regarding FAD, i.e., su-
pervised StyleWaveGAN with AutoFade, dataset balancing, and output envelopes.

DG-SQ (DrumGAN) provides a state-of-the-art baseline that has been successfully com-
pared to other approaches in the literature, as seen in [Nistal et al., 2020]. However, since
the samples used are at 16kHz sample-rate (compared to SWG 44.1kHz), the comparison
will be unfair to DrumGAN. As such, the comparison between the two methods can only
be considered as a sanity check.

Listeners and test conditions

Both listening tests took place remotely. Because of this, the evaluation conditions were
not as controlled as usual listening tests. To add as much control to the test as possible,
the test participants were asked to take the test in a silent environment or, at least, reduce
the background as much as possible. To add a form of loudness reference, a test sound
(a snare drum sound at -23LUFS-M) was used for test participants to set the loudness
to a "comfortable level". All test stimuli were normalized using the Loudness Unit (and a
level of -23 LUFS-M).

For the perceptual quality evaluation, all test participants were presented with 24 sam-
ples to rate on a 5-point scale. The five levels of the scale are "Bad," "Poor," "Fair,"
"Good," and "Excellent" and are represented with values of 1,2,3,4, and 5, respectively.
We randomly picked these samples among the ENST-OG, ENST-AUG-EX, SWG-SQ,
and DG-SQ datasets. The mean opinion score (MOS) is calculated as the average score
given by the test participants. Nine (9) participants took part in this test. Even if the
number of participants (9) is low, most (5) are audio professionals and can be qualified
as expert listeners. Regarding listening equipment, the participants, either professional
or not, used their own listening devices, like studio speakers or headphones.

Listening device Sound Quality
Studio Speakers 2

Headphones 7
Earbuds 0

Age Group Sound Quality
Age 0-17 0

Age 18-25 1
Age 26-40 4
Age 41-65 4
Age 66+ 0

Table 4.5: Listening devices and age groups for the subjective evaluation of sound quality

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 64

Results of the subjective evaluation of sound quality

The total Mean Opinion Score (MOS) with their confidence interval at 95% is shown in
Tabl. 4.6 and Fig. 4.3.

Dataset
MOS All Labels Cymbals Kick Snare

ENST-OG 4.2 ± 0.3 4.1 ± 1.1 4.1 ± 0.6 4.4 ± 0.3
ENST-AUG-EX 3.8 ± 0.5 3.3 ± 1.3 4.0 ± 0.5 3.9 ± 0.5
SWG-SQ 3.5 ± 0.4 3.9 ± 0.7 3.0 ± 0.7 3.6 ± 0.8
DG-SQ 2.3 ± 0.5 2.3 ± 1.3 2.8 ± 0.6 1.6 ± 0.8

Table 4.6: MOS on different datasets depending on the instrument label (1 is lowest, 5 is
highest)

Figure 4.3: MOS on different datasets depending on the instrument label (1 is lowest, 5
is highest)

As a first result, we can see the score of the augmented samples in ENST-AUG-EX is
slightly lower than the actual samples from the original dataset ENST-OG. It indicates
that the extreme cases of our augmentation strategy are indeed too extreme and less
natural than the originals. This is especially true for the snare and the cymbals. If
we reuse the same augmentation pipeline in future works, we should select less extreme
augmentation parameters. The main problem reported by test participants is that pitch
change negatively affects the sound’s attack, making them sound less natural than the
real data. It is sufficiently present to be perceived and graded worse than an authentic
sample. However, these extreme parameter combinations remain rare in the complete set
of augmented sounds and act as a worst-case scenario in this evaluation.

Rest to compare StyleWaveGAN samples to DrumGAN samples. However, since Drum-
GAN samples use a lower sample rate (16kHz) and are not coming from a model trained on

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 65

ENST-AUG, we can expect them to have less high-frequency content (8kHz and above).
While this is not too much of an issue with the kick drum due to the lack of meaningful
high-frequency content, it makes DrumGAN appears worse for drum and cymbal sounds
with high amount of noise content. In other words, snare drum and hi-hat. Another
problem is the training dataset, as these DrumGAN samples are coming from the dataset
described in [Nistal et al., 2020] and not ENST-AUG. Given all these limitations, hav-
ing such sounds in the experiments can only serve as a sanity check for the other tested
sounds, and not so much a regular comparison.

All these limitations are transcribed into the results. For the snare drum and the hi-hat,
the lower sample rate of DrumGAN samples makes them take a significant drop in terms
of MOS. However, for the kick drum, SWG and DrumGAN perform sensibly the same in
terms of perceived quality: the lower sample rate does not impact the perceived quality
here, and more details on the reasons for SWG shortcomings are described below. Since
all the potential issues listed above happened, we can say that the augmentation process
and StyleWaveGAN results should compete fairly against a DrumGAN with a higher
sampling rate, like DrumGAN VST [Nistal et al., 2022], when trained on the augmented
ENST-Drums dataset.

We now discuss the StyleWaveGAN results in detail. Given that we trained StyleWave-
GAN on the entire dataset of augmented samples, a perfect model should produce results
between the test results of the actual data and the extreme examples of the augmented
data. We note that StyleWaveGAN achieves this performance level only for cymbals.
Snare and kick synthesis are evaluated as less natural than the augmented samples. A
discussion with the participants of the perceptual tests, who are audio professionals,
reveals the following problems. First, StyleWaveGAN fails to produce the long tail of res-
onances that characterize kick drum sounds. In addition, this discussion brought up that
the model lacks energy in the frequency band below 100Hz for the kick drum, making it
sound not as good. For snare drum synthesis, the main issue is that SWG creates hybrids
of sounds generated with sticks, mallets, and brushes. Concatenating, for example, an
attack of a snare sound obtained with a stick and the decay of a snare sound obtained
with a brush creates fair-sounding but unrealistic samples.

These difficulties with kick and snare sounds indicate that the current implementation
of the discriminator is insufficient. However, increasing the capacity of the discriminator
would extend the training duration, which is already quite long (7 days on one 1080
GTX). We showed evidence of the capacity of our network processed samples using state-
of-the-art solutions (SuperVP) as well as an indirect comparison to DrumGAN. Given
the limited time we had for this project, the subsequent investigations will focus on the
question of sound control. We will keep the question of improving the discriminator for
future studies.

4.3 Timbral controls

4.3.1 Introduction

Having achieved experimental validation of the enhancements brought by StyleWaveGAN
over state-of-the-art neural drum synthesizers, with favorable results across both quanti-

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 66

tative and qualitative metrics, we are now ready to focus on timbral controls, reassured in
the soundness of our approach. When it comes to timbral features, the AudioCommons
feature set [Pearce et al., 2016] is the most commonly found in the state-of-the-art. Re-
garding the state-of-the-art, there exist two proposals: [Ramires et al., 2020] and [Nistal
et al., 2020].

In their study, Ramires et al. employed a U-Net architecture and incorporated timbral
features and the energy envelope of the target signal as conditioning inputs. However,
the U-Net’s objective function centered solely on reconstruction loss without explicitly
accounting for control precision.

On the other hand, Nistal et al. applied the ACGAN principle [Odena et al., 2017] to
estimate the timbral features. In this setup, the generator uses the timbral features as
conditioning, just like Ramires’ U-Net, while the discriminator is designed to achieve
two tasks: distinguishing real and fake samples, as in a standard GAN discriminator,
and predicting the accurate timbral features of both real and fake samples. An additional
mean squared error (MSE) loss term is incorporated into the generator’s objective function
to encourage the generator’s effective utilization of the timbral feature conditioning.

However, both these methods use the descriptor values only. In Ramires’ case, the de-
scriptor values are only found as conditioning input, not as part of the training objective.
Nistal et al. address this limitation by utilizing the discriminator to estimate the timbral
features through the ACGAN principle explained earlier. However, it remains uncertain
how accurately the control values are approximated and to what degree the characteristics
contributing to the timbre descriptors are manifested in the generated sounds.

To tackle this issue, we will study how we can incorporate the features’ information directly
into the training loop and measure how accurate the control can be, objectively with ad-
hoc metrics and subjectively with psychophysical tests. fully met for either [Ramires
et al., 2020] or [Nistal et al., 2020].

4.3.2 AudioCommons descriptors

The Audio Commons project implements a collection of perceptual models that describe
high-level timbral characteristics of a sound [Pearce et al., 2016]. These features are
specially crafted from the study of popular timbre designations given to a collection of
sounds from the Freesound dataset. The perceptual models were built by combining
existing low-level features found in the literature [Peeters, 2004], which correlate with
the chosen timbral designation. These descriptors are built to match the training dataset
used by Pearce et al. such that the descriptor range goes from 0 to 100 on their dataset.

The available timbral features are summarized in Tabl. 4.7.

4.3.3 Differentiable AudioCommons descriptors

Contrary to [Ramires et al., 2020] and [Nistal et al., 2020], we reimplemented the al-
gorithms describing those timbral features to use them during the training process as
differentiable functions.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 67

Model Description
Booming refers to a sound with deep and loud resonant components. It is com-

puted from the weighted average of loudness estimation on 1/3 octave
bands, weighted towards lower frequencies.

Brightness Refers to the clarity and amount of high-pitched content in the analyzed
sound. It is computed from the spectral centroid and the spectral energy
ratio.

Depth refers to the sensation of perceiving a sound coming from an acoustic
source beneath the surface. A linear regression model estimates the
depth from the spectral centroid of the lower frequencies, the proportion
of low-frequency energy, and the low-frequency limit of the audio.

Hardness refers to the stiffness or solid nature of the acoustic source that could
have produced a sound. It is estimated using a linear regression model
on spectral and temporal features extracted from the attack segment of
a sound event.

Roughness refers to a sound’s irregular and uneven sonic texture. It is estimated
from the interaction of peaks and nearby bins within frequency spectral
frames. When neighboring frequency components have peaks with sim-
ilar amplitude, the sound is said to produce a ‘rough’ sensation.

Sharpness refers to a sound that might cut if it were to take on physical form. It
is computed from the loudness on 1/3rd octave bands, which is then
weighted and averaged against the energy.

Warmth refers to sounds that induce a sensation analogous to that caused by the
physical temperature. It is calculated with a linear regression between
the fundamental frequency, the high-frequency decay, and the energy in
the "warmth" region (below 900Hz)

Table 4.7: Summary of AudioCommons models [Pearce et al., 2016]. The descriptors we
chose for controlling the synthesis of StyleWaveGAN are highlighted in bold.

While neural networks should be capable of estimating these timbral features, they can
encounter some difficulties. The most comparable method to ours, DrumGAN [Nistal
et al., 2020], employing the ACGAN principle, utilizes the GAN’s discriminator, trained
on the fly, to predict the desired control feature value from the input sounds. How-
ever, this method doesn’t necessarily guarantee the same level of accuracy as directly
implementing the timbral features based on a reference implementation. Notably, if the
generator and discriminator fail to converge and replicate the training data distribution,
it remains uncertain how accurately the control values are approximated and to what
extent the characteristics contributing to the timbre descriptor are faithfully reflected in
the generated sounds. Moreover, implementing the features directly allows for a correct
evaluation of signals with descriptor values outside the range of values available in the
training dataset. For this reason, we chose to implement these descriptors in our model
directly as differentiable functions. The code for our implementation of these descriptors
can be accessed at https://github.com/ALavault/tf_timbral_models.

Implementation methodology Before considering the actual implementation method-
ology, it’s worth noting that the original implementation of AudioCommons relied on

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 68

https://github.com/ALavault/tf_timbral_models

Numpy [Harris et al., 2020]. While Numpy is an excellent toolbox for signal process-
ing in Python, it does not support automatic differentiation. This means we had to
re-implement most signal processing blocks (spectrograms and filters most notably) to fit
the differentiable operators available in Tensorflow.

For instance, the spectrograms have been reimplemented using the STFT block from
Tensorflow, while the filters have been reimplemented using a spectral conversion. We
cannot expect a one-to-one correspondence because these implementations differ slightly
from the original AudioCommons descriptors. However, we have achieved a maximum
error of less than 1% on the ENST-OG dataset. We assume this error is imperceptible,
and the subsequent results from our subjective evaluation support this.

Reducing the number of features StyleWaveGAN uses only 3 out of the 8 descrip-
tors found in bold in Tabl. 4.7. These descriptors were selected following an informal
survey among drummers and musicians. The survey consisted of the following question:
"Among the following features (cf. Tabl. 4.7), which one would you like to have in a drum
synthesizer ?" Brightness and warmth were deemed necessary as they represent opposite
ends of the frequency spectrum and are standard terms in the music production jargon.
Depth was interesting since it allowed for temporal manipulation of the lower frequencies,
especially their decay. While the other AudioCommons features are also of interest, we
focused on these three as they represent the preferred choices of potential future users.

Integration in StyleWaveGAN Finally, we integrated these differentiable descriptors
into the training loop as a constraint on the generator. By including a penalty term,
specifically the L1 norm between the features from the current batch of training data
x and the features calculated on the generated batch G(z), the generator is encouraged
to learn how to follow the descriptor input and produce sounds that match the desired
features. In our case, x is a batch of drum sounds drawn from the training database. In
other words, the generator is adapted to minimize the following loss:

lnewG(z, c, x) = l(G(z, c, FT (x))) + |FT (x) − FT (G(z, c, FT (x)))|︸ ︷︷ ︸
≥0

(4.9)

where l is the original loss of the StyleWaveGAN generator, x is a batch of training data,
z is the latent vector, c are the one-hot encoded labels, and FT ()̇ are the values of the
features given its input. Here, |FT (x) − FT (G(z, c, FT (x)))| serves as a penalty to incite
the network to follow the control input. Remark that the labels c are not mandatory
for the timbral control to work. Our differentiable descriptors replace the proxy network,
meaning that the estimation of the features can be done with better robustness than the
one done by the proxy network. This also allows our discriminator to use its total capacity
for its discrimination task contrary to [Nistal et al., 2020], which uses the discriminator’s
capacity to estimate the timbral features.

4.3.4 Objective evaluation

In this section, we discuss the results of our control method compared to [Ramires et al.,
2020] and [Nistal et al., 2020] using the metric from [Ramires et al., 2020]. We also

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 69

propose a new metric for objective evaluation to address the shortcomings of the afore-
mentioned metric.

Brightness

We only focus on one class (snare) and one descriptor (brightness) for the first presentation
of the idea. Figure 4.4 shows the relation between target and synthesized brightness
for NeuroDrum and StyleWaveGAN. To create a baseline to compare ourselves to, we
trained NeuroDrum on this subset with only the brightness descriptor. Results are shown
as mean values and standard deviation in black dots (StyleWaveGAN) and blue crosses
(NeuroDrum). The solid red vertical lines show the limiting values in the training dataset.
The reference target values used for the ordering comparison according to [Ramires et al.,
2020] are marked with dotted blue lines. Finally, a histogram of the brightness values on
the target dataset is overlaid in light blue.

Figure 4.4: Target brightness vs. generated brightness (single descriptor). Black dots are
for StyleWaveGAN, and blue crosses are for NeuroDrum

Figure 4.4 demonstrates that while the mean value of the perceptual brightness of a sound
produced by NeuroDrum increases with the target brightness, it remains far off the target
brightness most of the time. In contrast, the synthesized brightness of StyleWaveGAN
is very close to the target value for all values present in the training set. It remains
somewhat close to the target outside the brightness limits of the training data.

To compare to [Ramires et al., 2020; Nistal et al., 2020], we are using the ordering
criterion first introduced in [Ramires et al., 2020] and later used in [Nistal et al., 2020],
and described extensively in Sect. 4.3.4.

The small error in the synthesized feature values generated with StyleWaveGAN results in
a consistent ordering for all three criteria. Table 4.8 reproduces the results for brightness

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 70

Features E1 E2 E3

Network
dataset D1 D2 D1 D2 D1 D2

DrumGAN 0.74 - 0.71 - 0.7 -
NeuroDrum 0.99 0.91 0.99 0.80 0.99 0.68
SWG - 1.00 - 0.94 - 0.98

Table 4.8: Ordering accuracy for the feature coherence tests for brightness on samples
generated with the baseline NeuroDrum [Ramires et al., 2020] and DrumGAN (from
[Nistal et al., 2020]). D1 refers to the results obtained in [Nistal et al., 2020] and repro-
duced here, and D2 refers to the results obtained on our augmented dataset, ENST-AUG.
(Higher scores are better)

control taken from table 3 in [Nistal et al., 2020] comparing NeuroDrum and DrumGAN,
trained on a different dataset under the column "D1". The results under column "D2"
are for our network, trained on our augmented dataset. We matched and improved the
results from NeuroDrum in this configuration. Since NeuroDrum performed consistently
better than DrumGAN on D1 and StyleWaveGAN performed consistently better than
NeuroDrum, we can assume that StyleWaveGAN should perform better than DrumGAN
if trained on the same dataset. All these results support our hypothesis that replacing
a trained feature estimator as in [Nistal et al., 2020; Odena et al., 2017] by directly
implementing the feature estimator allows for a significantly improved control consistency
of the final network.

Other Descriptors

We will discuss here the results for the depth and warmth descriptors. Results are shown
in Tabl. 4.9 and Fig. 4.5a and 4.5b. In Fig. 4.5a and 4.5b, a histogram of the dataset
values can be observed overlapped in light blue similarly to Fig. 4.4.

(a) Target depth vs. Generated depth (single
descriptor)

(b) Target warmth vs. Generated warmth
(single descriptor)

Figure 4.5: Results for depth and warmth descriptors in the single descriptor case.

Figure 4.5a shows the results for the depth descriptor. This figure shows that the depth
descriptor behaves similarly to the brightness descriptor, shown in Fig. 4.4. Note, however,
that the extrapolation appears slightly less consistent and smooth.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 71

From this result, we can infer that the network has a harder time learning the depth
descriptor. The deviation from the reference line for low depth (depth < 30, marked by
the first blue dashed line) can be explained by the low number of samples to train the
network at this level, i.e., less information to learn from, which may result in overfitting
to the limited data available and reduced generalization capability.

Figure 4.5b shows the results for the warmth descriptor. The performance is on par with
the brightness descriptor except for the region between the third dashed line and the
rightmost red solid line. This can be explained by a lack of training data in this region,
as shown on the overlaid histogram. This region represents the values that are greater
than 0.8 when using the min/max normalization, i.e., {x ∈ X| d(x)−minX d(x)

maxX d(x)−minX d(x) ≥ 0.8}
where X represents the samples from the dataset and d the descriptor of interest.

These results from Fig. 4.5a and 4.5b are coherent with results from the criterion shown
in Tabl. 4.9. The deviation for low depth values is correlated to a lower E3 feature (low
vs. mid) and similarly for higher warmth values with a slightly lower E2 feature (mid
vs. high). The rest of the evaluation criteria are over 90% of correct ordering, which is
coherent with the almost linear but slightly noisy examples shown in Fig. 4.5a and 4.5b
but is slightly worse than the brightness descriptor.

Descriptor
Evaluation Point E1 E2 E3

Depth 0.99 0.99 0.71
Warmth 1.00 0.86 0.90

Table 4.9: Ordering accuracy for other features of interest using StyleWaveGAN (higher
is better)

Results with Multi-dimensional Descriptor Controls

Using three individual networks for controlling the individual descriptor is not that in-
teresting for a real-world application. In this next step, we investigate controlling the
network with a 3-dimensional vector of warmth, depth, and brightness descriptors.

Ordering Criterion We use the same label to evaluate the control quality with the
ordering accuracy but change the evaluation method slightly. While we use the same
ordering criterion, we generate samples in a way that can create sounds outside of the
training dataset. More precisely, we take a set of actual features from a batch of the
training data and then modify the descriptor to be evaluated to 20, 50, or 80 percent of
the min/max value for the said descriptor.

More mathematically, this means that for a sample x from the dataset, we estimate the
descriptors values D(x) = (dbrightness(x), ddepth(x), dwarmth(x)). The descriptor d to be
evaluated is then changed to a value dtarget such that :

dtarget − minX d(x)
maxX d(x) − minX d(x) ∈ {0.2, 0.5, 0.8}

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 72

Since the network is trained on data, it will learn to reproduce similar features as the
actual data, which means only a part of the possible combinations. When using descriptors
simultaneously for control, unseen combinations may happen. While these combinations
are not problematic if they can be interpolated, extrapolation to unseen data can lead
to issues. This behavior is shown in Fig. 4.4, 4.5a and 4.5b where the fidelity is strong
within the dataset limits with minimal dependence on the training dataset statistics, but
the extrapolation capabilities are limited.

This method’s results are shown in Table 4.10.

Descriptor
Features E1 E2 E3

Brightness 1.0 1.0 1.0
Depth 1.0 1.0 0.99
Warmth 0.98 0.59 0.97

Table 4.10: Ordering accuracy for multiple descriptors using Multi-dimensional Descriptor
Controls with StyleWaveGAN (higher is better)

Table 4.10 shows some interesting and strong results. First, the brightness descriptor
achieves full ordering accuracy on all three target values. Almost the same can be said
for the depth descriptor where E3 lowers to 99%, i.e., between low and mid targets. The
warmth descriptor performs well on E1 and E3, i.e., low to high and low to mid, when
the E2 value is low. Given that the two other values are higher than 97%, there is an
issue with the higher values in the dataset, but not enough to disturb the low to high
accuracy. We already know there is a low of training data in the E2 region, as shown on
the histogram in Fig. 4.5b, and this is most likely the reason for the poor performance
here.

Mean Absolute Error Metric As shown in Tabl. 4.10, training the descriptors with
the proposed differentiable error function produces a network following controls with a
precision such that the ordering criterion proposed in [Ramires et al., 2020] and used in
[Nistal et al., 2020] is no longer sufficient to evaluate the control precision. As a criterion
based on ordering rather than accuracy, it is limited in its ability to capture the complexity
and nuances of the problem fully. Because Tabl. 4.10 shows that all descriptors, except
for one, achieve an accuracy of over 97% in ordering, a new metric is necessary to more
precisely capture the limitations of the timbral control method that was tested and to
investigate the behaviors that decrease the criterion. In the following, we propose a
refined evaluation criterion that allows evaluating control precision with more precision,
not considering ordering but errors and linearity.

This criterion will be using the Mean Absolute Error (MAE) between the target values
and the output values on three regions based on quantiles of the dataset values :

• F1: MAE evaluated using only the target descriptor values within the 20th and
50th quantiles

• F2: MAE evaluated using only the target descriptor values within the 50th and
80th quantiles

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 73

• F3: MAE evaluated using only the target descriptor values within the 20th and
80th quantiles

First, the interest in working with quantiles is that we expect to cover the same amount
of dataset values each time while avoiding extreme values.

The results are shown in Tabl. 4.11. The values in the table are not percentages or relative
to the descriptor values; they are absolute errors. We also note that these errors have the
same unit as the described descriptors.

In Table 4.11, the lines labeled single show the results using networks with only one
descriptor, and the lines labeled combined show the results when the descriptor of interest
is set. Still, the others are taken from an actual sound from the training dataset. The
lines labeled "combined, dataset" show the results when all the descriptors values are
taken from the training dataset.

Configuration
Features F1 F2 F3

NeuroDrum (brightness, single) 7.22 10.40 8.81
Brightness (single) 0.83 1.06 0.98
Depth (single) 1.06 1.15 1.10
Warmth (single) 1.15 1.01 1.08
Brightness (combined) 0.97 1.36 1.17
Depth (combined) 1.33 1.50 1.41
Warmth (combined) 1.29 3.31 2.33
Brightness (dataset, combined) 0.75 0.95 0.85
Depth (dataset, combined) 0.99 1.03 1.00
Warmth (dataset, combined) 1.42 1.37 1.39

Table 4.11: Mean absolute error for several configurations (lower is better)

StyleWaveGAN performs significantly better than NeuroDrum in every tested configura-
tion. The combination of descriptors tends to worsen the MAE slightly.

Impact of control loss on control precision We will start the evaluation of the
effectiveness of the timbre control for the different timbre features by means of studying
the difference obtained when using two different loss functions. The two loss functions we
have studied as control loss are the L1 and L2 norm of the deviation between the target
and generated timbre features.

The L2 loss performs better than the L1 loss when using brightness and depth with
values from the dataset as seen in Tabl. 4.12. Outside of the dataset, the interpolation
capabilities generally suffer from worse performances overall than the L2 norm, except
for the depth descriptor. Results with warmth are considerably inferior when using the
L2 loss in both cases. An offset can explain the problem with the warmth descriptor and
L2 norm as the control loss. This phenomenon can be seen in Fig. 4.6b when compared
to Fig. 4.6a, which shows the results with L1 loss. Red lines show the limit values of
the dataset, and the green vertical lines show the position of the 20th, 50th, and 80th
quantiles.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 74

Configuration
Features F1 F2 F3

Brightness (L1, combined) 0.97 1.36 1.17
Depth (L1, combined) 1.33 1.50 1.41
Warmth (L1, combined) 1.29 3.31 2.33
Brightness (L2, combined) 1.16 (+19.6%) 1.73 (+27.20%) 1.45 (23.93%)
Depth (L2, comb.) 1.21 (-9.02%) 1.29 (-14.00%) 1.26 (-10.63%)
Warmth (L2, comb.) 4.96 (284.5%) 2.49 (-24.00%) 3.69 (58.37%)
Brightness (L1, dataset, combined) 0.75 0.95 0.85
Depth (L1, dataset, comb.) 0.99 1.03 1.00
Warmth (L1, dataset, comb.) 1.42 1.37 1.39
Brightness (L2, dataset, comb.) 0.66 (-12.00%) 0.85 (-10.52%) 0.76 (-10.59%)
Depth (L2, dataset, comb.) 0.77 (-22.22%) 0.54 (-47.00%) 0.65 (-35.00%)
Warmth (L2, dataset, comb.) 6.92 (387.32%) 6.28 (358.39%) 6.60 (374.82%)

Table 4.12: Absolute and relative Mean Absolute Error for the L2 loss compared to the L1
loss (lower is better). For the L2 loss, values between brackets show the relative difference
between the MAE with L1 and L2 losses.

Due to time constraints, we could not perform further studies to determine why we ob-
served an offset when evaluating the model trained with 3D perceptual controls using
L2 loss. It is unclear whether this is due to a local minimum that we can solve through
retraining with different weight initialization or if it indicates a systematic issue with the
loss weighting, which we could address by increasing the weight of the warmth descriptor
error in the loss function. Unfortunately, conducting systematic evaluations of numerous
training runs is time-consuming, and we could not conduct further studies.

The overall worse performance with the L2 loss confirms our original implementation
choice of using L1 loss.

Linearity Since we improved significantly over our baseline, this motivates us further
to study the behavior of our timbral control method. Suppose the control method works
correctly and produces a perfect output that matches the control input exactly. In that
case, we should observe a strong linear correlation between the output and the input. To
evaluate this, we will compute a linear least-square regression on the domain bound by
the 20th and 80th quantiles and use its determination coefficient R2 as a metric of good
linearity. In this case, R2 is equal to :

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (4.10)

where n is the number of samples, yi is the output value of the i-th measure, ŷi the
corresponding predicted value and ȳ the average of the measured values. The results are
compiled in Tabl. 4.13.

Apart from a significantly better fit than NeuroDrum, we can see that the determina-
tion coefficient is generally quite satisfying except for the warmth when used with values

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 75

(a) Generated values for warmth when syn-
thesizing snare drum sounds with control val-
ues obtained from the snare drum sounds
in ENST-AUG using StyleWaveGAN trained
with the L1 loss for the control error and com-
bined descriptors. The blue error bars show
the just-noticeable difference at the points of
interest obtained with our psychometric ex-
periment described in Sect. 4.3.5

(b) Generated values for warmth when syn-
thesizing snare drum sounds with control val-
ues obtained from the snare drum sounds
in ENST-AUG using StyleWaveGAN trained
with L2 loss for the control error and com-
bined descriptors.

Figure 4.6: Effect of loss function on generated descriptors

outside the dataset. The determination coefficient, also known as R-squared (R2), is a
measure that can be interpreted as the percentage of variance explained by the linear
model. In this study, the R-squared values were generally above 50%, indicating that a
significant portion of the variability in the data can be explained by the linear relation-
ship between the descriptor control and its target, in our case, the timbral descriptors.
Therefore, we can conclude that the behavior of the descriptor control is mostly linear
with respect to its target, which is far from being the case for NeuroDrum on our dataset.
This result is illustrated in Figure 4.7c, where there is a bend in the output value, where
the warmth descriptor values are taken in an evenly spaced interval between 0 and 100,
hence with combinations that are not present in the dataset.

This bend is due to the distribution of descriptor values in the dataset. Indeed, for high
warmth values, the values of the other two descriptors remain confined to a narrow range
(a variation of fewer than 5 points around 50 for brightness and 66 for depth, these values
being already quite rare in the dataset). So, when the control inputs of brightness and
depth cover the full range of descriptor values available in the dataset as our evaluation
method does, the warmth value has to be extrapolated by the network since such a
combination was not seen during training.

However, this behavior is not shown when evaluating control values from the dataset (R2 =
0.08 when using a continuum of values becomes R2 = 0.45 when using a combination seen
during training). For the other descriptors, the linearity remains satisfying whatever
evaluation method is used, on the dataset or using a continuum.

Overall, for unseen combinations falling within the range of the training set, the error
stays below 4 points and has a good linearity, indicating a promising outcome. However,
for combinations outside the dataset, the results are less conclusive. A saturation phe-

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 76

Configuration
Features

R2

NeuroDrum (brightness) 0.03
Brightness (single) 0.75
Depth (single) 0.70
Warmth (single) 0.76
Brightness (combined) 0.47
Depth (combined) 0.67
Warmth (combined) 0.08
Brightness (dataset, combined) 0.72
Depth (dataset, combined) 0.62
Warmth (dataset, combined) 0.45

Table 4.13: Determination coefficient for several configurations (higher is better)

nomenon occurs quickly in these areas, leading to noisy estimations. It is worth noting,
however, that values outside the dataset range tend to be coherent, with values higher
than the maximum value of the dataset generally remaining higher and vice versa for
values lower than the minimum value. These considerations can be seen in Fig. 4.7a
to 4.7c.

To conclude, we have demonstrated that our method for timbral controls works better than
the state-of-the-art almost everywhere in the min/max values of the training dataset and
can extrapolate further than the min/max values available in the dataset while retaining
the overall signification of the features and interpolate between unseen combinations of
descriptors within the dataset limits.

4.3.5 Subjective evaluation

This section presents the methodology and the results of our subjective evaluation of the
control error. Since we now know that our descriptor control method works with an error
limited to a few percent, the main question changed from "Can we control the network
with differentiable descriptors?" to "is the control error perceivable by a human listener?".

Going back to the objectives of this project, this question about the perception of the
control error is key to knowing if we could use such a control method in an actual music
production context. Indeed, if the error can be perceived but remains small, the control
method would still be usable because most users will not listen to the drum alone. This
means that in a real music production context, the control error may not be heard even if
it would be perceived when isolated from the rest of the production. On the other hand,
if the control error is not perceivable, this becomes more interesting. In that case, we
can choose a less sophisticated control approach, simplifying the synthesizer even more.
Moreover, this would imply that we don’t need to improve our timbral control technique
significantly. In any case, showing the potential of deep hybrid learning in the context of
deep neural network control will be an outstanding achievement.

The following results are taken from [Lavault et al., 2022c].

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 77

(a) Target brightness vs. Generated bright-
ness with combined descriptors

(b) Target depth vs. Generated depth with
combined descriptors

(c) Target warmth vs. Generated warmth with
combined descriptors

Figure 4.7: Target vs. Output for the combined descriptors

Subjective evaluation for control quality evaluation

We use one of the psychophysical methods described in [Giordano et al., 2012] to measure
the absolute perception threshold. Our experiment uses the constant stimulus method.
With the constant stimulus method, two sounds are played, one after the other, one
being the reference generated with descriptor value v obtained from the dataset and the
other being generated with a descriptor value v + ∆. The test subjects are then asked
if the stimuli were perceived as identical or different. Following [Giordano et al., 2012],
we determine the differential threshold as the psychometric function’s slope at the 50%
threshold.

Due to time constraints, we only used a subset of snare samples in this experiment from
dataset SWG-CQ. We choose to use the measurement points corresponding to the ones
we used for the MAE metric described in Sect. 4.3.4. By doing so, we hope to be able to
compare the subjective equality points to the MAE and draw conclusions about whether
or not the deviation due to the size of the error is perceived. The descriptor values v are
then computed to match the 20th, 50th, and 80th quantiles of the descriptor of interest.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 78

The offset ∆ is selected from the set

D = {x|x = 0.25zwith z ∈ Z and − 8 ≤ x ≤ 8}. (4.11)

Note that the AudioCommons descriptor values are normalized and range from 0 to 100 so
that the variations used in the test always cover ±8% of the full range of the descriptor.
We chose this range of variation since the MAE results in [Lavault et al., 2022b] and
reproduced in Tabl. 4.11 is always lower than 4, which makes the chosen range of variation
the double of a global upper bound of the MAE metrics.

The order in which we play the two samples is essential, and both orderings are in the
test. Since we chose the sample pairs randomly, this ensures that all orderings are equally
present. A fade-out is applied to each sample to avoid noisy tails impacting the evaluation.

Since subjective equality measures are only valid for a single stimulus intensity, having
multiple target values will allow us to extrapolate subjective equality points over a broader
range of values.

Descriptor Ordering Steps Total
Brightness 2 65 130

Depth 2 65 130
Warmth 2 65 130

Table 4.14: Summary of absolute threshold experiments data set

Table 4.14 summarizes the dataset’s content of pairs of samples from SWG-CQ used in
this experiment.

Listeners and Test conditions

Like in the sound quality experiment, we provide the participants’ listening devices and
age distribution in Tabl. 4.15. And the evaluation methodology described in Sect. 4.2.5
is reused here as well.

Listening device Number of Participants
Studio Speakers 2
Headphones 27
Earbuds 2
Age Group Number of Participants
Age 0-17 0
Age 18-25 13
Age 26-40 9
Age 41-65 9
Age 66+ 0

Table 4.15: Listening devices and age groups for the control quality perceptual test

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 79

Results of subjective evaluation of control error perception

To interpret our results from the subjective evaluation of control error, we need to study
different thresholds on the estimated probability distribution of the data. We are inter-
ested in the just noticeable difference, the differential threshold in this case.

We calculate an estimated Cumulative distribution function (CDF) and choose the sig-
moid function as our psychophysical function. Mathematically speaking, this means we
try to fit the following function to the CDF:

ψ(x, b, d) = 1
1 + exp(−bx+ d) (4.12)

where b and d are real parameters estimated with a least-square estimator.

Figures 4.8a to 4.8c present the cumulative probability of detecting a difference across all
the different values.

(a) Psychometric results for brightness and for
the descriptor value corresponding to the 80th
quantile for differential threshold estimation

(b) Psychometric results for depth and for
the descriptor value corresponding to the 20th
quantile for differential threshold estimation

(c) Psychometric results for warmth and for
the descriptor value corresponding to the 50th
quantile for differential threshold estimation

Figure 4.8: Psychometric results for differential threshold estimation

In this context, the differential threshold is the metric we are interested in. It is measured

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 80

as the slope around 50% of the psychometric function and is obtained as the difference
of the 25% and 75% values, as described in Sect. 1.6.3.

These results are shown in Tabl. 4.16.

Descriptor Q20 Q50 Q80
Brightness 2.63 (28%) 2.55 (37%) 3.29 (26%)
Depth 3.55 (28%) 2.53 (40%) 3.79 (26%)
Warmth 3.13 (45%) 2.83⋆ (48%) 3.91 (35%)

Table 4.16: Summary of differential experiments for every 3 measurement points with the
fitted sigmoid. Between parenthesis, the ratio between the MAE on the dataset and the
differential threshold in percentages. Values marked with ⋆ are below the MAE metric
when considering values outside the dataset.

Our main goal with this experiment was to measure whether the error between our net-
work’s control and the output is perceptible. Our MAE metric measures the mean error
on a segment. We chose the measurement points for the psychophysical experiment to be
the endpoints of the segments of our MAE metric to be able to make some conclusion. For
further illustration, we added blue error bars on Fig. 4.6a at the different measurement
points. The error bars show the points of subjective equality for each measurement point.
This figure shows the generated sample output values are mostly within the limits of the
differential threshold on the segments of interest. Regarding the comparison with the
MAE metric, we can say that it is significantly lower than the point of subjective equal-
ity, as shown in Table 4.16 where the MAE is always lower than 50% of the differential
threshold.

We claim that the average error is imperceptible. Moreover, the overall error is almost
always lower than the differential threshold, hence not perceivable, mainly when control
values are taken from the training set (Figure 4.6a). The MAE metric is even lower
than the differential threshold for values from the dataset and slightly above it in only
one instance for interpolated values. Simply put, the average error is imperceptible when
using values from the dataset and almost imperceptible when interpolating (except for
one outlier).

Based on these strong findings, we can draw some conclusions. Firstly, the error should
only be noticeable in some cases. Specifically, generating different sounds with the same
descriptor controls should not result in noticeably different timbral properties. Addi-
tionally, we discovered that control is not necessarily perceived symmetrically; the same
variation with a different sign could result in different points of subjective equality. Lastly,
the positive results of our perceptual experiment suggest that a discrete control approach
could be practical, where a step of 1 unit should be imperceptible in nearly all cases. By
employing a discrete control approach with a step of 1 unit, precision would be reduced,
but the advantage would be a greater convenience for professional audio production, and
we now have the guarantee that it will not be perceivable.

This strong result shows how powerful deep hybrid learning can be. Combining the
strengths of both deep learning and classical signal processing, deep hybrid learning can
revolutionize how we approach complex control problems and enable us to achieve per-
formance and precision previously thought inaccessible, in our case, for intuitive music

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 81

synthesizer controls.

4.4 StyleWaveGAN with trainable oscillator bank

4.4.1 Introduction

Given the encouraging results of StyleWaveGAN in terms of objective and subjective
evaluations of sound quality, we set out to improve the quality even further with minimal
changes to the discriminator architecture.

From the subjective evaluation we conducted, we gathered the feedback of a few expert
listeners on sound quality. As stated in Sect. 4.2.5, the main problem was the lack of
strong note perception in the shell sounds. This problem is understandable and some-
what expected, as generating sine waves with neural networks in the time domain can be
challenging, notably for long-term stable oscillations, which are difficult to learn without
additional supervision or architectural constraints.

Given the success of Differentiable Digital Signal Processing (DDSP) [Engel et al., 2020] in
musical instrument synthesis, we thought of adding network-controlled oscillators to help
the synthesis by providing the hard-to-generate sine waves and partials. This oscillator
bank is the first step toward a hybrid synthesis combining classical oscillators and GANs.

4.4.2 StyleWaveGAN-OSC

We will describe the results obtained using more traditional synthesis concepts integrated
into StyleWaveGAN.

Additive Synthesis and Differentiable Oscillators

With the release of Differentiable Digital Signal Processing (DDSP) [Engel et al., 2020],
using oscillators with neural networks was possible and showed great capabilities in terms
of synthesis when presented with harmonic content. A notable example of this application
on the piano [Renault et al., 2022] showed that the DDSP approach made high-quality
instrument synthesis and performance modeling possible with minimal networks. While
the latter is not interesting to us, the former is a great inspiration for the following
contribution. By using non-harmonic series (even if slightly non-harmonic), Renault et
al. could generate convincing piano performances with DDSP.

What is of interest for our application is to dissociate the stable resonances, which an
oscillator bank would then generate, from the residual part, which the StyleWaveGAN
network would then generate. The style-based generator of StyleWaveGAN would be used
as a generator for the oscillator parameters, taking the part of the controller network in
the original DDSP model. The underlying premise is that StyleWaveGAN’s discriminator
will discern the less stable oscillations compared to real-world drum signals, prompting
the generator to favor oscillators.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 82

To help the discriminator in its task, a method akin to the constraints applied to the
harmonic components of a classical additive model (described in Sect. 1.4.1 and eq. (1.2))
will be employed. Alongside this, an additional goal is to restrict the parameter space
of the oscillators as much as possible. By doing so, the challenge for the discriminator
is expected to be diminished, especially considering that the discriminator is already
operating at its limits. It’s worth noting a discriminator based on time-domain signals,
like ours, is not entirely equivalent to a loss function based on spectral magnitudes like
the one in DDSP. This is particularly relevant when dealing with phase since the spectral
loss is independent of phase, while the time-domain discriminator is not.

Oscillator constraints Our hypotheses for the oscillators are the following:

• The amplitude is constant,

• The decay of the instant frequency follows an exponential decay,

Because StyleWaveGAN utilizes envelopes in its output stage, the inner layers operate on
a nearly constant energy representation. Therefore, if we employ these oscillators before
the envelope, it makes sense to use a constant amplitude. We added an exponential decay
to the instant frequencies to match the pitch glide effect on drum shells.

We can justify the exponential decay of the instant frequency by the physical study of
membrane modeling [Fletcher and Bassett, 1978; Avanzini et al., 2012]. In the first ref-
erenced paper ([Fletcher and Bassett, 1978]), the authors present an initial assessment
indicating that drums experience a downward frequency shift caused by membrane de-
flection. They approximated this frequency shift with a quadratic decay model. However,
the most significant finding from their study was that the relative (percentage) frequency
variation was consistent across all the drum overtones. The second cited paper ([Avanzini
et al., 2012]) expanded on this research and revealed a pitch glide that closely resembled
exponential decay.

We can also show this behavior on real drum sounds compared to synthetic glides to
further this information. To this end, we use a pitch tracker (CREPE [Kim et al., 2018])
to follow the pitch glide’s evolution. Figure 4.9a shows the output of a pitch tracker on
a real tom sound. This figure shows a clear 45Hz pitch glide, equivalent to 3 semitones.
The decay shown of the fundamental in this figure appears to be close to exponential, as
expected from [Fletcher and Bassett, 1978; Avanzini et al., 2012]. To further justify this
claim, we compare two models of frequency evolution. The first one, we will call "linear
decay," can be expressed as, for t ≥ 0:

flinear(t) = fstop + δmax(−λt+ δ, 0) (4.13)

The second, we will call "exponential decay," can be expressed as, for t ≥ 0:

fexponential(t) = fstop + δ exp(−λt) (4.14)

We will first compare the real frequency evolution to the linear one, as shown in Fig. 4.9b.
Here, the solid blue line shows the real drum pitch estimation using CREPE, and the

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 83

(a) Pitch measurement of real tom sound
(Yamaha Stage Custom 10") using CREPE

(b) Pitch measurement of a synthesized
sine wave with linear pitch glide against a
real drum sound pitch measurement using
CREPE.

(c) Pitch measurement of a synthesized sine
wave with exponential pitch glide against a
real drum sound pitch measurement using
CREPE.

Figure 4.9: Comparison of pitch measurements between real tom sound and synthetic
sine with pitch glide using CREPE

dashed red line shows the fitted linear decay model. The linear model does not match the
real drum’s frequency evolution, making us discard it for further experiments.

However, when comparing Fig. 4.9a and Fig. 4.9c, the similarities are much more evident,
and the synthetic model matches the overall shape of the decay. Please note, the solid
blue line shows the real drum pitch estimation, and the dashed red line shows the fitted
exponential decay model, just like the Fig. 4.9b.

Overall, it appears safe to assume the pitch glide of a real drum can be modeled by a
decreasing exponential between two frequencies or a steady-state frequency and a pitch
interval, as proposed in eqs. (4.13) and (4.14). To convert a frequency+delta model to a
two-frequencies one, one should consider that fstop = fstop and δ = fstart − fstop with fstart

the frequency at t = 0. The same experiment can be done with other tom sounds, with
similar results.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 84

Deriving oscillator phase When working with sinusoids, the argument of the sinusoid
is the phase, denoted as P (t). The instantaneous frequency of the sinusoid can be obtained
as the derivative of the phase with respect to time, i.e., dP

dt
. Suppose we want a certain

frequency evolution for the sinusoid. In that case, we must integrate the desired frequency
evolution to obtain the corresponding phase evolution. Specifically, if we denote the
desired frequency evolution as f(t), the phase evolution can be obtained as the integral
of f with respect to time: P (t) =

∫ t
0 f(u)du.

When the desired frequency evolution is a decreasing exponential, the frequency decay is
of the form f(u) = a exp(−λu) + b with a and b two positive constant parameters. In this
case, we end up with the phase P :

P (t) =
∫ t

0
f(u)du =

∫ t

0
a exp(−λu) + bdu = a

λ
(1 − exp(−λt)) + bt (4.15)

If we set a = fstart − fstop and b = fstop, and λ = 1
τ

we end up with the instantaneous
frequency:

f(t) = (fstart − fstop) exp(− t

τ
) + fstop (4.16)

and the overall phase

P (t) = τ(fstart − fstop)(1 − exp(− t

τ
)) + fstopt (4.17)

An oscillator of such a bank can be defined as:

o(t, fstart, fstop, τdecay, φ0, A) = A cos (2πP (t, fstart, fstop, τdecay) + φ0) (4.18)

We can note the instantaneous frequency dP
dt

is indeed a decreasing exponential between
fstart and fstop

f(t, fstart, fstop, τdecay) = fstop + (fstart − fstop) exp
(

− t

τdecay

)
(4.19)

We then have 4 parameters to control per oscillator: amplitude, start frequency, stop
frequency, and decay. The phase is an additional parameter setting the initial conditions
at t = 0 for P .

These oscillators are controlled by the style mechanism from [Karras et al., 2019, 2020]
and described in Sect. 2.2.3. In other words, starting from an intermediary representation
w, we end up with eq. (4.19) with:

τdecay = ReLU(Sdecay × w + bdecay) (4.20)
fstart = ReLU(Sstart × w + bstart) (4.21)
fstop = ReLU(Sstop × w + bstop) (4.22)

where the Sx are learned matrices transforming the mapped intermediary latent w into
actual values and bx a bias vector. We use the ReLU on the frequencies and the decay as a

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 85

constraint, so the parameters have meaningful and positive values. Finally, Fig. 4.10 shows
how the oscillator bank is inserted inside StyleWaveGAN. The output of the synthesis
generator is summed with the signal generated from the oscillator bank, and the sum is
processed through the envelopes described in Sect. 4.2.2.

Figure 4.10: StyleWaveGAN generator with oscillator bank added.

Simplifying the oscillator model In our preliminary experiments, it turned out that
despite the constraints of the oscillator parameter space, the discriminator could not
properly adapt the oscillator parameters. Frequency crossing was the main problem we
encountered in these preliminary experiments. We speculated that such crossings did
appear due to the low-frequency modulations of the sinusoids observed in the generated
sounds. Given the oscillator amplitudes are constant, these oscillatons appear difficult
to explain otherwise. This problem will put the network in a position that most likely
represents a local minimum. Therefore, gradient descent will not allow for resolving
the situation. To ensure oscillator frequencies cannot cross and to further simplify the
parameter space by means of removing permutation ambiguity, we introduce two further
constraints:

• frequency decay time τ and frequency decay step δ are shared by all oscillators.

• start and stop frequencies are ordered so that the first frequency is always the lowest.

Sharing the same frequency decay step for all oscillators can be expressed as f i
start =

(1+δ)f i
stop with δ ≥ 0 for the i-th oscillator. Such constraint will keep the frequency ratio

relationship between the oscillators. This is reasonable from a physical standpoint, as it

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 86

follows the observations from [Fletcher and Bassett, 1978], where the frequency variation
ratio was found to be the same for all the partials. The same can be said about the
frequency decay τ . Furthermore, by having such a simplified model, we are avoiding
crossing between the oscillators. In other words, eq. (4.19) would be simplified to:

f(t, δ, fstop, τ) = fstop

(
1 + δ exp

(
− t

τ

))
(4.23)

where δ and τ are shared among all oscillators.

Moreover, it is essential to highlight the importance of ensuring frequency ordering, as it
notably simplifies the generator’s task. The generator can more easily generate appropri-
ate amplitudes for each frequency component by organizing the frequencies in a specific
order, such as from low to high, the lowest having generally the highest amplitude. When
using multiple oscillators, we use the cumulative sum of the frequencies to ensure the
frequencies are arranged in ascending order. In other words, for a set of positive numbers
f1 to fn, the cumulative sums give the following:

(f1, · · · , fn) → (f1, f1 + f2, · · · ,
n∑

i=1
fi) (4.24)

The ascending order is guaranteed since all fi are positive (because of the ReLU).

Lastly, the frequency should have an upper bound to avoid aliasing, such as not exceeding
half of the sample rate. This can be enforced by clipping the values above the limit.
However, the oscillator frequencies remain low in practice (below 2000Hz) for data at a
44100Hz sampling rate, which is below the Nyquist frequency of 22500Hz, making aliasing
not happen in practice. To illustrate this point, we provide examples in Fig. 4.11 of the
two classes that generate partials with the highest frequencies: the hi-hat. Given that the
generated oscillations remained limited to lower frequency regions in all our experiments,
we did not use the clipping strategy to enforce the anti-aliasing constraint.

Constant-energy representation in the discriminator

Using pre-computed envelopes at the output (as described in Sect. 4.2.2) significantly
improved the FAD results for StyleWaveGAN, as seen in Sect. 4.2.5, The synthesis network
works on an almost constant energy representation using these envelopes.

We hypothesize that such representation allows the synthesis network not to be biased
towards some parts of the sound and facilitates the training process by reducing the time-
dependent impact of the decay. Given the significant effect of such representation with
the synthesis network, we hypothesize using it in the discriminator would bring low-level
information up in volume, allowing the discriminator to provide better information to the
generator. This is effectively a dynamic range compression technique.

There are two possible approaches to incorporating a "constant-energy" gain compensation
in the discriminator. We either take the estimated energy envelope of the signal and
inverse it, or we use the pre-computed average envelopes. By using the envelopes, we can
force the discriminator to only work on transformed sounds following the constant-energy
gain compensation described above. Since it is the actual internal representation of the

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 87

(a) Output of the oscillator bank for closed hi-
hat.

(b) Output of the oscillator bank for an open
hi-hat.

Figure 4.11: Examples of the oscillator bank output for closed and open hi-hat. The
number of oscillators is 8, but the spectrograms show fewer partials, as some frequencies
are extremely close to each other and can’t be discriminated (the difference is < 0.001Hz
in this case). Note these spectrograms were obtained with a version of SWG-OSC with
the frequency ordering but different decay times. This result holds for the single decay
version as well.

generator, making both networks work in the same compensated domain should benefit
the overall generation process in terms of quality.

In any case, the gain compensation can be expressed as:

x̂ = x

e
(4.25)

In this context, x̂ represents the transformed signal, x represents the original signal, and e
represents the envelope selected from those described in Sect. 4.2.2, depending on the class
label of x, although we could have opted for a more accurate envelope estimation using
a windowed energy method. However, a challenge in using on-the-fly energy calculation
involves introducing additional parameters for envelope generation to the discriminator.
As we set out to modify the discriminator as minimally as possible, using pre-computed
envelopes helps alleviate the parameter issue. Still, it comes at the cost of compromising
the fit of the data. Figure 4.12 illustrates the effect of gain compensation using the
pre-computed envelopes.

Label-dependent Style

We will introduce here a modified version of the style mechanism that establishes an
explicit dependence on the class label.

The style mechanism employed in StyleGAN and StyleWaveGAN, as described in Sect. 2.2.3,
utilizes the AdaIN method to regulate the contributions of feature maps in the generation
process (c.f. eq. (2.14)). However, this mechanism lacks explicit label dependency. Indeed,
when considering regular StyleWaveGAN, the intermediary vector w already contains the

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 88

(a) Real tom sound (Yamaha Stage Custom, 10", Apeira Drums)

(b) Sound generated by original StyleWaveGAN

(c) Sound generated by StyleWaveGAN with oscillators

Figure 4.12: Examples of waveforms and spectrograms of real and synthesized sounds by
StyleWaveGAN trained on ENST-AUG, with the constant-energy transform applied

one-hot encoded label, but there is no guarantee the network will use this information
as part of the style mechanism as there is no constraint on this. Also, this entangles the
label information with the intermediary representation w.

To address this problem and create an explicit dependency on the class label, we increase
the dimension of the affine transform. Let us consider a case with n labels. Instead of
producing a vector of dimension 2N , the first N being for the linear transformation and
the second part being the bias, we generate a style y of dimension n2N to have 2N per
class (a linear transform and a bias for each class label). In that case, the label dependency
of the style is explicit.

In this scenario, we have:
y = (yci

)1≤i≤n (4.26)
where each yci

is of size 2N .

Let us consider a mapping from the intermediate latent space w to the label-dependent

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 89

style, denoted as yc. Consequently, the AdaIN transform becomes:

AdaIN(xi, yc︸︷︷︸
=(ys,c,yb,c)

) = ys,ci

xi − µ(xi)
σ(xi)

+ yb,ci
(4.27)

where yc = (ys,c, yb,c) is the label-specific style.

We will employ this mechanism with the oscillators to acquire distinct value sets depending
on the label, while the intermediary representation w remains unchanged.

4.4.3 Objective evaluation

The goals of our experiments are the following:

• Measuring the difference in FAD compared to the original StyleWaveGAN

• Checking if the network uses the oscillators effectively, with or without labels.

• Getting insights on the internal representation of the generator and its effect on the
discriminator.

To answer these different points, we will consider the following setups

• a StyleWaveGAN baseline, without the oscillators

• two versions of StyeWaveGAN with oscillators, with and without label-dependent
style control

• A version of one of the networks with constant-energy gain compensation

The FAD comparison between the configurations would be a good indication of the overall
contribution of the oscillators and gain compensation for the generation quality. To further
observe if the oscillators are used effectively, we will have to study some spectrograms of
generated sounds and compare the presence of clear sinusoids or not.

All figures for this subsection use the best version of the network we could obtain. In
all experiments with oscillator banks, the affine transform has its parameters initialized
following a Gaussian distribution N (0, 1).

Observations on the harmonic contents of the generated drum sounds for

SWG-OSC

We can observe Fig. 4.13 to answer the point about the effective use of the oscillator
bank. We can observe the thin horizontal lines characteristic of clear sine waves on the
spectrogram of Fig. 4.13c. Compared to Fig. 4.13b, the original StyleWaveGAN sample is
noisier and does not present strong harmonic content. Regarding waveforms, StyleWave-
GAN with oscillators shows a shorter decay time than the non-oscillator StyleWaveGAN.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 90

Finally, compared to an actual tom recording in Fig. 4.13a, the oscillator-based sam-
ple shows inconsistencies in terms of the decay of the harmonics. Similarly, the decay
is not as smooth in Fig. 4.13b and 4.13c as in Fig. 4.13a. It should be noted that the
oscillator-based StyleWaveGAN shows a shorter decay than the oscillator-less version.

Where the real samples have high frequencies and harmonics decaying rapidly (≈0.2s), the
synthesized samples have inconsistent decays of the harmonics, especially with a longer
decay for the higher frequencies compared to the real and oscillator-less samples. This
can be explained by the network trying to add high-order partials through the noise and
convolution layers instead of the oscillator bank, which is limited to 8 oscillators in our
experiment.

(a) Real tom sound (Yamaha Stage Custom, 10", Apeira Drums)

(b) Sound generated by original StyleWaveGAN

(c) Sound generated by StyleWaveGAN with oscillators

Figure 4.13: Examples of waveforms and spectrograms of real and synthesized tom sounds
with StyleWaveGAN trained on ENST-AUG

Measurements with Fréchet Audio Distance for SWG-OSC

In terms of FAD, we have several networks to compare. In Table 4.17, we use the following
abbreviations to describe the tested variations of StyleWaveGAN:

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 91

SWG-OG: The "original" StyleWaveGAN, as seen in Sect. 4.4

SWG-OSC: StyleWaveGAN with an oscillator bank

SWG-OSC-PL: StyleWaveGAN with per-label oscillator bank, as described in Sect. 4.4.2

SWG-EDISC: StyleWaveGAN with per-label oscillator bank and constant-energy dis-
criminator

Dataset
Model SWG-OG SWG-OSC SWG-OSC-PL SWG-EDISC

Full dataset 3.62 4.21 3.60 8.02
Tom 6.27 6.13 5.75 17.56

Closed Hi-hat 4.23 3.7 5.57 3.04

Open Hi-hat 4.12 5.13 5.09 8.12
Snare 4.29 6.09 3.08 4.31
Kick 3.58 3.86 4.13 5.60

Table 4.17: FAD for tested variations of StyleWaveGAN on ENST-Drums (lower is better)

The results compiled in Tabl. 4.17 are obtained by computing the FAD on 64000 generated
samples. When a specific drum or cymbal is mentioned in the table, only samples with
the correct label are generated. The number of tested samples remains at 64000.

We slightly improved FAD compared to the original StyleWaveGAN using a per-label os-
cillator bank (SWG-OSC-PL). More importantly, the performance on the toms and snare
is quite improved, but we have to concede worse results for the cymbals. This partial
degradation in measured FAD is evidence that adding the oscillators helps the generation
of resonant drums like toms and snares, but hinders the synthesis of the cymbals due to
their chaotic behavior. However, the network did not turn down the oscillator amplitude
to zero, which makes us hypothesize the network uses the oscillators but not in a perceiv-
able or perceptually relevant way. Concerning the shells, informal listening tests showed
improved resonances on toms and a noticeable pitch-bend effect, typical of such drums.
For snare and kick drums, the generated sounds appeared to have the resonances found
lacking during the subjective evaluation in Sect. 4.2.5, but the overall sound quality was
slightly lower.

Effect of the constant-energy representation

The other notable result comes from the constant-energy discriminator (SWG-EDISC).
First, let us observe the influence of the transform on drum sounds, especially the toms.
Figure 4.12 shows the results when using a sample from one of the datasets of real drum
sounds, a sample from the original SWG, and a sample from the per-oscillator variation.
The first observation is the reduced dynamic range, which we expected from such a trans-
formation. In particular, for Fig. 4.12c, this is the output of the generator network before
the envelope. This figure shows a low-frequency beating phenomenon effectively percep-
tible by a human listener, as observed in informal listening tests. Such low-frequency
artifact is most likely due to problems during the up-sampling process in the first layers
of the generator.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 92

(a) Tom sample by StyleWaveGAN trained with a constant-energy discrimi-
nator, without constant energy compensation applied

(b) Tom sample with constant energy transformation applied

Figure 4.14: Tom sample by StyleWaveGAN trained with a constant-energy discriminator,
with constant energy compensation applied at the input

From Fig. 4.14a and 4.14b, we can see the samples are considerably noisier than their
counterpart from Fig. 4.12c and 4.13c. Also, the beating phenomenon observed above is
even more pronounced here. This beating is notably apparent in the transformed version
Fig. 4.14b.

If the discriminator functions correctly, the generator is not motivated to introduce ad-
ditional noise since all relationships remain constant. The fact the generated sounds are
far noisier may suggest that the discriminator is not powerful enough for this application
and can be fooled by a noisy generation.

While we must recognize that the discriminator needs improvement, addressing this issue
within the thesis was not feasible given the time constraints.

4.5 Velocity control

4.5.1 Introduction

Although we now have significant command over the timbral aspects of the generated
output, as measured by objective and subjective criteria, as shown in Sect. 4.3, Style-
WaveGAN is not yet suitable for musical production or performance. One of the most
fundamental attributes of musical performance is dynamics, which includes the varying
hit velocity applied to the diverse components of a drum kit. Along with the capac-
ity to control timbral properties, StyleWaveGAN requires dynamics control to ensure its

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 93

viability in a music production setting.

Velocity estimation is common for automatic transcription tasks [Gillick et al., 2019;
Callender et al., 2020], but these datasets are unsuitable for one-shot drum synthesis.
These datasets comprise full performances on electronic drum kits, taking the form of
MIDI files and stereo output of the performance. In this case, there is no separation
between the sound sources (i.e., the different drums and cymbals), as only one sound file
of the whole drum kit per performance can be found. Moreover, even if the sound sources
were separable, the electronic drum sound module used to record the performances would
lack the variability of real performances on real drums. On the other hand, no one-shot
sound database is available with MIDI velocity annotation, especially with real drum
sounds. Given the non-existence of adequate datasets, we created the Apeira Drums
dataset, as described in Sect. 3.4.

To add dynamics control to StyleWaveGAN, we could leverage the prior knowledge from
timbral controls Sect. 4.3. This means we would consider a velocity target at the input,
just like the timbral features, and we would then use a penalty loss between generated
and real samples using an external differentiable estimator. In this section, we will study
two methods for velocity estimation: one using neural networks and another using a
differentiable signal descriptor based on energy. More precisely, we will use the global
dynamics indication used during the recording of Apeira Drums (Sect. 3.4) for the neural
velocity descriptor and the velocity estimation obtained from the Senstroke as a ground
truth also found in Apeira Drums for the signal-based descriptor.

4.5.2 Neural Velocity Estimator

Description of the Neural Velocity Descriptor

Contrary to timbral features, there is no absolute and well-defined metric for velocity.
Moreover, velocity differs from gain, making it even harder to create a data-agnostic
feature. It is important to understand that, in this context, the term "data-agnostic" refers
to an estimator unaffected by the recording conditions, particularly the recording gain. For
instance, a sound from ENST-Drums and one from Apeira Drums might have the same
peak value/energy but represent different dynamic levels (due to different preamplifier
gain and recording conditions).

We can leverage neural networks’ capabilities and expressive power here. Instead of craft-
ing a signal-based descriptor like [Peeters, 2004; Pearce et al., 2016], we can automatically
utilize a neural network to generate the descriptor. In our situation, this means the neural
velocity descriptor is trained before the synthesizer.

This neural velocity descriptor will have as its objective to minimize the mean square
error between the output of the network and the dynamic level. More precisely, it aims to
estimate the dynamic level as a dynamics annotation. Since we have 4 dynamic levels in
the Apeira Drum dataset, we can build an estimator using this information as the target
while having a peak-normalized input. In our case, 1 for pianissimo to 4 for fortississimo.

During training, we added a random noise taken from a Gaussian distribution with a
standard deviation of 0.17 to the label to avoid over-fitting as a form of soft labeling.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 94

Choosing such a standard deviation allows us to generate 99% of the randomized values
between ≈ ±1

2 through numerical calculation with the Gaussian distribution. The same
neural velocity estimator without soft labeling is also trained for comparison purposes,
and we will refer to it as the "discrete label" velocity estimator. Finally, a version of
the neural velocity estimator without any input normalization is trained to measure the
impact of the peak normalization.

Using the mean squared error (MSE) as the training loss should allow us to build Gaussian
models around the target values, retaining a notion of similarity that we would lose in
a pure discrete classification context. We hypothesize that doing so will help with the
interpolation when used to control a neural synthesizer.

Regarding implementation and training, we use a random 90/10 dataset shuffle split to
measure the mean square error on a validation set. The peak normalization should prevent
a dependency between the peak level of the input and the dynamic level, contributing to
the descriptor’s data agnosticism.

The network is a convolutional neural network (CNN) whose input is a peak-normalized
version of the first 250ms of the input sound samples. We then transform the audio
input into a Mel-spectrogram before going through the different layers. This is motivated
by [Bous and Roebel, 2023], where the authors provided a method to disentangle the
Mel spectrogram from its level on human voice signals and also provided a voice level
estimator using this representation. Another argument in favor of the Mel spectrogram
is the compactness of its representation, which is expected to lead to small and efficient
models, making it a viable candidate for a descriptor.

The network has 6 1D convolutional layers :

• Layer 1: filter size 5, 220 filters

• Layers 2-3: filter size 5, 200 filters

• Layers 4-5: filter size 3, 100 filters

• Layer 6: filter size 3, 50 filters

For this task, we trained the network on 8192 epochs with a batch size of 32. The
optimizer used here is Adam [Kingma and Ba, 2015].

Experimental Results of the Neural Velocity Estimators on Apeira Drums

This section presents the performance of neural velocity estimators based on the velocity
information found in Apeira Drums.

We must create this baseline, since we have no baseline or state-of-the-art to compare
ourselves. We will reuse the Apeira Drums dataset (AD) for this evaluation experiment
and check if the neural velocity estimator has good generalization capabilities.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 95

Neural Velocity Descriptor on Apeira Drums The first measurement of the quality
of our different configurations of neural velocity estimators is a measure of their discrim-
inatory power. We expect our estimators to, at least, predict the subjective velocity
instruction given to the drummer.

To measure the capacity of the velocity estimator to work well in most cases, we use the
validation set used during training to evaluate the network’s performance. We then do
the validation process against the true values, i.e., those unaffected by the soft-labeling
process.

Method
Dynamic pp mp f fff

Shells, soft-labeling (SL) 0.06 0.08 0.07 0.10
Shells, Soft-labeling and no normalization (SLNN) 0.08 0.10 0.07 0.12
Shells, Discrete values (DV) 0.02 0.07 0.03 0.08
Cymbals (SL) 0.21 0.23 0.13 0.24
Cymbals (SLNN) 0.23 0.24 0.12 0.24
Cymbals (DV) 0.15 0.12 0.13 0.31
Cymbals + Shell (SL) 0.11 0.11 0.08 0.21
Cymbals + Shell (SLNN) 0.10 0.11 0.11 0.28
Cymbals + Shell (DV) 0.11 0.18 0.08 0.15

Table 4.18: Root mean squared error of the neural velocity estimator (validation split,
close mics only, lower is better)

Method
Dynamic pp mp f fff

Shells (SL) 1.00 0.99 1.00 0.99
Shells (DV) 1.00 0.99 1.00 0.99
Cymbals (SL) 0.95 0.93 0.99 0.93
Cymbals (DV) 0.97 0.98 0.98 0.92
Cymbals + Shell (SL) 0.98 0.98 0.99 0.96
Cymbals + Shell (DV) 0.97 0.98 0.99 0.97

Table 4.19: Accuracy of the neural velocity estimator (validation split, close mics only,
higher is better)

The results of the validation split of the training dataset are acceptable. The Root Mean
Squared Errors (RMSE) shown in Tabl. 4.18 for the soft-label networks are close to the
ones obtained with discrete ones. The version where the input was not peak normalized
(as defined in eq. (3.1)) shows slightly worse RMSE than other versions, especially at
higher levels. The worse performance of the non-normalized version leads us to discard it
for other measurements, shown in Tab. 4.19 to 4.21.

We can define an accuracy metric by using rounding of the output. We will consider
the prediction accurate if the rounded output equals the target. We show the results for
this metric in Table 4.19. The accuracy is overall greater than 95% for all cases. With
such performance, the network can safely be added to control the velocity of a neural
synthesizer, as long as the training data is used to train the synthesizer.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 96

Method
Dynamic pp mp f fff

Shells (SL) 1.16 0.62 0.77 0.90
Shells (DV) 1.23 0.60 0.73 0.96
Cymbals (SL) 1.38 0.67 0.24 0.83
Cymbals (DV) 0.81 0.34 0.58 1.29
Cymbals + Shell (SL) 1.02 0.69 0.72 0.94
Cymbals + Shell (DV) 1.24 0.59 0.52 0.91

Table 4.20: Root mean squared error of the neural velocity estimator on private test
dataset (lower is better)

Method
Dynamic pp mp f fff

Shells (SL) 0.30 0.74 0.41 0.59
Shells (DV) 0.14 0.81 0.45 0.50
Cymbals (SL) 0.00 0.42 0.95 0.18
Cymbals (DV) 0.07 0.82 0.60 0.17
Cymbals + Shell (SL) 0.56 0.56 0.56 0.46
Cymbals + Shell (DV) 0.17 0.66 0.65 0.37

Table 4.21: Accuracy of the neural velocity estimator on private test dataset (higher is
better)

Generalization Capabilities The same evaluation was conducted on a private dataset
of drum sounds recorded with the same protocol as the Apeira Drums to further the vali-
dation split results and explore the estimation network’s generalization capabilities. This
dataset was recorded with the same microphones and drummer but with different drums
and cymbals. From Tab. 4.20 and 4.21, we can see that the proposed estimation net-
work has difficulties generalizing to the test data while performing well on the validation
split. The first hypothesis would be an overfitted neural velocity estimator on the train-
ing set. This would take the form of high accuracy and low MSE on the training set but
results similar to Tab. 4.20 and 4.21. And it is indeed the case, as accuracy and MSE on
Tab. 4.18 and 4.19, are above 90% and less than 0.31 respectively when it drops below
50% in general and with MSE up to 1.38 while Tab. 4.18 and 4.19 show an example of
overtraining. However, it should be noted the metrics are not uniformly worse and that
the most impacted dynamics levels are the extremes (i.e., pp and fff).

Given the recording setups were the same, as per Apeira Drums recording protocol, an-
other hypothesis would be that the drummer did not manage to keep the hit dynamics
coherent over the few weeks the recording session took place. To study this hypothesis,
we could use the trigger sensor data. Assuming that the energy of the trigger sensor
correlates with the hit strength, we could compare the mean and variance of trigger en-
ergy between the proposed dataset and the test data. The energy of the trigger signal is
computed on a 682ms frame by summing the square of the signal on said frame.

Results are compiled in Tabl. 4.22. There is a noticeable difference in the energy levels of
the trigger signals between the two datasets (training and test). This raises the question

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 97

Model Mean Standard deviation
Training, pp 0.56 0.47
Test, pp 1.21 3.92
Training, mp 13.30 10.44
Test, mp 7.07 4.16
Training, f 38.07 25.75
Test, f 32.95 12.46
Training, fff 167.81 71.11
Test, fff 172.45 54.36

Table 4.22: Mean and standard deviation of signal energy on trigger sensors for snare
drums on different datasets (assuming normal distribution)

whether the velocity estimator would be better trained using trigger energy instead of raw
waveforms. However, it is important to consider that piezoelectric triggers can experience
physical saturation at higher velocities, which appear as clipping on the recorded signals,
as shown in Fig. 3.4d. While using the piezoelectric triggers might be a dead end, using
energy to estimate velocity may be a promising direction for further exploration.

Application to StyleWaveGAN of Neural Velocity control

Class
Dynamic pp mp f fff

Kick 0.35 0.43 0.07 0.15
Snare 0.01 0.08 0.27 0.32
Tom 0.05 0.00 0.03 0.21

Closed HH 0.02 0.01 0.03 0.08
Half-opened HH 3.96 1.01 0.02 0.15

Open HH 0.21 0.06 0.06 0.11
Crash 0.10 0.06 0.10 0.10
Ride 0.11 0.07 0.06 0.14

Special 0.14 0.09 0.04 0.18

Table 4.23: Mean squared error computed using the estimated velocity of samples gener-
ated by StyleWaveGAN with velocity control (lower is better)

This subsection presents the results of integrating a velocity control with StyleWaveGAN.
This study uses a single estimator for all shells and cymbals. We used the soft-label esti-
mator, as its RMSE is close to the discrete version shown in Tabl. 4.18. More importantly,
its accuracy is more consistent than the discrete version, as shown in Tab. 4.19 and 4.21.

To establish a loss for the velocity control, we pass the generated samples through the es-
timator, calculate the MSE between the estimated velocity and the control input, and use
the result as the velocity control loss. Note that the velocity model used for providing the
velocity loss when training the synthesizer has been trained on the same training dataset.
Therefore, the generalization problem revealed with the test dataset in Sect. 4.5.2 should
not pose a problem here. We used the non-discrete velocity model in our experiment.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 98

(a) Target velocity vs. estimated velocity for
snare drum synthesis with StyleWaveGAN

(b) Histogram of estimated velocity values
from snare drum samples taken from the train-
ing dataset

(c) Histogram of estimated velocity values for
generated snare drum samples (target values
from the training dataset)

Figure 4.15: Histogram of target and estimated velocity values for generated snare drum
samples using the neural velocity descriptor

Table 4.23 shows the MSE computed between batches of generated samples with set
descriptor values (at 1,2,3 and 4 to represent the different dynamic levels). First, we can
conclude that the velocity control error remains significantly smaller than the velocity step
for nearly all instruments and all velocity levels. There is an exception with a significant
error with the half-opened hi-hat for pp and mp velocities. A second problem is the pp
and mp velocities of the kick. Finally, we note a general tendency to increase control
error, especially for the highest dynamics level (fff). This increase is particularly marked
for the snare and tom drums. We can further study the case of the snare drum. From
Fig. 4.15a, we can see that the network functions somewhat correctly regarding control
accuracy. In this figure are plotted the error bars for a set of target velocities in black, a
blue line representing the identity function, and vertical red lines showing the limit of the
target values for the dataset. The error around the target values and the average increases
for higher dynamic levels. The synthesizer tends to generate samples with higher dynamic
levels than requested for the snare drum. Figures 4.15b and 4.15c show the difference in
terms of distribution between computed velocity values on the snare drum subset and
the values calculated on the generated snare drum samples with these values as targets.
The distribution for the lowest dynamic levels is similar but slightly offset towards higher
values. We can, however, note the deviation and offset increase at higher dynamic levels.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 99

This offset may be partly due to the higher-level outlier values, which we can see in
Fig. 4.15b between target values of 3 and 4.

4.5.3 Signal-based Velocity Descriptor

Following the results we showed in Sect. 4.3 of the differentiable descriptors with Style-
WaveGAN compared to neural estimation as in DrumGAN or NeuroDrum, we can expect
good performance from signal-based descriptors of velocity.

Contrary to the neural descriptor, we do not aim to provide a data-agnostic velocity
descriptor. However, we will rely on the fact that we recorded the Apeira Drums dataset
to provide equal recording gain for all samples and soft-label on velocity using dynamics
indications. The special and robust recording protocol used for Apeira Drums is essential
here, as we can use the energy of the recorded sounds without risking errors due to
mismatched gains and recording protocol.

We will use the following energy estimation formula as our velocity feature:

P (x) =
∑

n

x[n]2 (4.28)

where x[n] is the n-th element of a sampled signal x.

While we could employ a more complex descriptor using, for instance, filtered parts of
the signal, such a simple descriptor should provide enough information on the viability
of using the energy as a velocity descriptor and the viability of a signal-based descriptor
compared to a neural one.

Velocity information is part of a standard MIDI message, as it is a fundamental component
of the MIDI specification. This linkage is particularly relevant in the context of automatic
transcription datasets, such as those used for drums and piano transcription [Hawthorne
et al., 2019; Gillick et al., 2019; Callender et al., 2020]. However, these datasets are
limited to one instrument [Hawthorne et al., 2019] or use sample-based synthesizers as
their output [Gillick et al., 2019; Callender et al., 2020], which limits either the variety
(one instrument) or the expressivity (by limits of samplers).

This section will show how we can leverage the data available in Apeira Drums, especially
the MIDI velocity estimate from the Senstroke sensor, to create a general velocity feature.
A general velocity feature compatible with MIDI velocity would be important for our drum
synthesizer. First, such a velocity feature would make StyleWaveGAN velocity-aware.
Second, it would make the integration with MIDI controllers easy, hence increasing the
usability of StyleWaveGAN in a music production context.

Energy and Senstroke MIDI velocity

The Senstroke sensor, whose firmware was developed by Apeira Technologies and used
during the cymbal recordings of Apeira Drums, outputs a velocity value proportional to
the angular velocity at the moment of impact, as described in eq. (3.2). Please note

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 100

that the outputted value is a floating-point number, contrary to the expectations of the
MIDI standard, which expects an integer between 0 and 127. The scaling for the velocity
estimation was done so that a hit on a Roland electronic drum kit outputs a similar MIDI
velocity as the accelerometer. Even if such measurements were informal and are highly
dependent on the electronic drum used, the commercial success of the Senstroke is enough
of an argument to justify a good fit between its output and MIDI velocities, as described
in Sect. 3.4.

Our first task here will be to compare the energy of the cymbal recording to the estimated
MIDI velocity, as shown in Fig. 4.16a. We know that the cymbal microphone was placed
at 1m of the recorded cymbal and pointed at the cymbal’s bell (which corresponds to
the mounting point of the cymbal stand) with an angle of 30 degrees. We measured the
distance with a laser telemeter and fixed the angle for the recording process. In other
words, the recording conditions are repeatable.

From the observation of Fig. 4.16a, we can expect a non-linear relationship between
angular velocity and energy that appears to be logarithmic. To this end, we also studied
the relationship between the logarithm of energy and estimated velocity, as shown in
Fig. 4.16b.

More precisely, we are testing the following model:

V̂ (s) = a log(P (s)) + b (4.29)

where V̂ is the estimated MIDI velocity of the signal s, P (s) is the energy of the signal s
and a, b are coefficients obtained through a linear regression.

(a) Senstroke MIDI Velocity Estimation vs.
Energy ((eq. (4.28))) for Cymbals

(b) Senstroke MIDI Velocity Estimation vs.
log-Energy (eq. (4.29)) for Cymbals

Figure 4.16: Comparison of Senstroke MIDI Velocity Estimation vs. Energy Estimation
for Cymbals from dataset AD-SS

Upon analyzing Fig. 4.16a and 4.16b, we can first observe that the velocity estimated with
the accelerometer exceeds the maximum value of 127 permitted by the MIDI 1.0 standard.
Please note that the values can be scaled and rounded to fit within the permitted MIDI
range a posteriori to address this issue.

We can further study this model by working on the model’s residuals and checking the
estimated probability distribution.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 101

(a) Distributions of real and estimated veloci-
ties on AD-SS

(b) Histogram of residuals from the model es-
timation on the dataset AD-SS

Figure 4.17: Histogram and Residuals for the log-energy to velocity estimator

The results from the inverted model are shown in Fig. 4.17a. The blue histogram is the
ground truth, and the orange one is the histogram of the MIDI velocities estimated from
log-energy. The smooth lines with colors corresponding to the histogram bars are the
Kernel Density Estimation on the data [Rosenblatt, 1956; Parzen, 1962], with the kernel
bandwidth obtained using Scott’s rule [Scott, 1992]. We can learn from this figure that
the velocity estimator has an acceptable performance.

To ensure that our estimator follows the normality of the error hypothesis of linear re-
gression, we also provide Fig. 4.17b. In this figure, we plot the histogram of residuals
and check its normality with the Anderson–Darling test [Anderson and Darling, 1952]. It
tests the null hypothesis that a sample is drawn from a population that follows a normal
distribution with unknown mean and variance. In this case, the normality of the residuals
is not rejected by the test with a confidence level of 95%, since the p-value is 0.85.

Since the model is derived from the model described eq. (4.29), we have a guarantee that
the ordering is correct so that we can check the distributions directly. We can then utilize
the Kolmogorov-Smirnov test as an additional metric to test the hypothesis that the
descriptors’ distribution conforms to the empirical velocity distribution. In our analysis,
we set a confidence level of 95%, meaning that we will only reject the null hypothesis in
favor of the alternative if the p-value is less than 0.05. Upon performing the Kolmogorov-
Smirnov test, we obtained a p-value of 0.54, above our threshold of 0.05. As a result, we
cannot reject the null hypothesis, indicating that the two distributions are a good fit for
one another.

We have established a linear relationship between equivalent MIDI velocity and the loga-
rithm of the energy. We have determined that energy is suitable for velocity estimation,
with a minimal skew in the estimation.

In turn, this means we can use the logarithm of the energy of a signal to obtain an estimate
of the MIDI velocity. These findings are noteworthy and will drive our future work in this
area.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 102

Application to StyleWaveGAN of Signal-Based Velocity Estimator

To incite StyleWaveGAN to learn dynamics control, we will use the log-energy as an
additional input feature, in the same way as the timbral descriptors were integrated, as
described in Sect. 4.3. We choose to use the logarithm of the energy as the velocity feature
instead of the MIDI velocity. The idea here is to use the energy as the global descriptor
for any drum or cymbal, but afterward use an instrument-dependent scaling to obtain
the MIDI velocity. Since the model described in eq. (4.29) is invertible, it can go from
velocity to energy. This means we can move from a MIDI velocity to a target energy. The
network is trained in the same configuration as Sect. 4.3, i.e., supervised StyleWaveGAN
with the additional velocity feature. The feature is integrated through the loss function
described in eq. (4.9). In this case, FT = V described in eq. (4.29).

To illustrate how this would be implemented in a MIDI-compatible synthesizer, we provide
Fig. 4.18. The key idea is to separate the MIDI control from the synthesizer control.

Since the energy distribution differs from instrument to instrument, having a fixed velocity
scale would be a problem, as some instruments would not span the whole allowed scale.
On the other hand, even if every instrument sees its equivalent MIDI velocity scaled in
the range of 0 to 127, its energy would remain unchanged.

Having the MIDI velocity as an input feature is necessary from a user standpoint. This
allows the end-user to manipulate well-known quantities while retaining a meaningful
feature for the synthesizer. However, the network should work on the energy as it is not
class-dependent, contrary to the MIDI velocity similarly to the timbral descriptors from
Sect. 4.3.

Figure 4.18: Implementation of velocity to energy scaling in StyleWaveGAN

Figure 4.19a shows the target and estimated velocity values for generated snare drum
samples with the signal-based velocity estimator scaling from 0 to 127, the log-energy
lying in a different interval. The scaling is possible because we showed a linear relationship
between log-energy and Senstroke MIDI velocity ground truth in eq. (4.29), which can
be summarized as MIDI velocity ∝ log(P) with P being the energy of the signal. This
applies the principle shown in Fig. 4.18.

In orange are the target values, and in blue are the estimated velocity from the generated
audio samples. It should be noted that the log-energy being the target, the velocity
estimation shown in Fig. 4.19a is simply an affine scaling such that the lowest energy
sound in the dataset has velocity 1 and the highest energy sound in the dataset has
velocity 127. The same experiment was carried out with a linear interpolation between
the min value on the snare drum dataset in log-energy and +33% of the maximum value
on the dataset with 250 steps. This experiment aims to study the network’s capacity to
handle values outside the training dataset and its interpolation capabilities. Figure 4.19b
shows the results of this experiment, with the same scaling as in Fig. 4.19a.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 103

Regarding objective results, the best-case scenario would be similar to the brightness
feature control described in Sect. 4.3. In other words, the network could interpolate
within the dataset’s limits and be capable of extrapolating unseen combinations beyond
the limits to some extent.

To give a more objective measurement than eyeballing a plot, we provide Tabl. 4.24 where
we compute the mean absolute error and the root mean squared error.

Just like Sect. 4.3, we also provide a linearity metric by using the determination coefficient
of linear regression on the data given by:

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 (4.30)

Case Mean Absolute Error Root Mean Squared Error R2

Values from dataset 1.37 2.04 0.99
Values Interpolated 1.68 2.47 0.99
Values Extrapolated 10.48 12.36 0.86

Table 4.24: Control Errors and Determination Coefficient with the signal-based velocity
descriptor, given in velocity units

(a) Values with target values from the dataset.
Note the axes are in velocity units, with 127
corresponding to the maximum log-energy on
the dataset.

(b) Velocity using a continuum of values. Note
the axes are in velocity units, with 127 corre-
sponding to the maximum log-energy on the
dataset, indicated by a dashed red line.

Figure 4.19: Velocity Control with StyleWaveGAN, using values from the dataset and a
continuum of values within the dataset, snare drum only. Note the axes are in velocity
units, with 127 corresponding to the maximum of log-energy on the dataset

The results are shown in Fig. 4.19a and 4.19b: these are promising and are accompanied
by satisfactory metrics in Tabl. 4.24.

Note that the metrics are from the scaled log-energy to MIDI velocity. Figures 4.19a
and 4.19b show a case where instead of using the energy directly for control, we scaled
the energy so that the values from the dataset max out at 127, with the minimum value

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 104

from the dataset being mapped to 1. This velocity scaling means we now have a MIDI-
compatible estimator for this instrument (here, snare drums in the same recording con-
ditions) through scaling the control before the network, as described in Fig. 4.18. It is
worth noting, however, that the network will continue to operate on the energy descriptor
and not the MIDI-scaled version.

As for objective metrics, as shown in Tabl. 4.24, the fidelity achieved on the dataset is
satisfying, with an MAE of only 1.37 MIDI units and an RMSE of 2.04 MIDI units.
This implies the measure is close to its target with minimal deviation and coherent with
Fig. 4.19a where the values are close to the target. The interpolated case, whose error
values are found in the "Values Interpolated" row, is based on a set of values ranging from
1 to 127 with a fixed step and aims to evaluate the network’s capability to interpolate
between the values in the training dataset. The MAE and RMSE remain close to the case
where values were taken from the dataset (1.68 vs. 1.37 and 2.47 vs. 2.04). The results
are worse than the values from the dataset case but remain rather close. From this, we
can safely assume the network can follow the velocity control on the velocity range from
the dataset. This is coherent with Fig. 4.19b, where the interpolated case corresponds to
the values at the left of the red dashed line. The overall shape of the generated values
follows the one from Fig. 4.19a with good fidelity, and in fact, Fig. 4.19b appears to be
simply a smoothed version of Fig. 4.19a on this range from 1 to 127.

The extrapolated case, whose error values are found in the "Values Extrapolated" row,
describes the behavior when the velocity value exceeds 127. Figure 4.19b shows clearly
that the values extrapolated are not as precise and close to the target, and also suffer
from increased deviation. However, the values remain relatively consistent in terms of
the order. This behavior is also described in Tabl. 4.24 where the MAE and RMSE
significantly increase compared to the training set of the interpolated case.

In terms of linearity, the training set evaluation and the interpolated case provide excellent
determination coefficients (0.99 for both), which means most of the behavior can be
explained by a linear model. While not as good with an R2 of 0.86, the extrapolated case
performs better than the timbral control on that point, as shown in Tabl. 4.13.

This finding underscores the effectiveness and strength of the signal-based descriptor
approach.

These results suggest that the signal-based descriptor is a powerful and valuable approach
for achieving accurate and scalable drum synthesis, and should be reasonably extensible
to other musical instruments.

4.5.4 Discussion

On Neural Velocity Descriptor

Even if the performances shown in the results were not outstanding in any way, we were
able to prove that it is indeed possible to use dynamic information as part of the control
of a neural synthesizer.

When examining the half-opened hi-hat case, it becomes evident that when comparing

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 105

the actual audio with the generated audio for this category, the training dataset’s audio
samples exhibit either an absence or a subtle and momentary attack at the lowest levels.
However, regardless of the velocity input, the generator produces a clear attack transient.
Therefore, the velocity estimator interprets these sounds as having higher velocity values
than desired. Here the velocity control loss may not be sufficient to counter the weight of
the overwhelming majority of examples seen by the discriminator, and all have a strong
attack transient. Conditioning the discriminator on the drum type and the velocity may
help here.

Concerning the problems with tom and snares, we hypothesize that these more signifi-
cant errors are because the generator does not produce drum sounds with the same signal
properties as the real-world drum sounds shown in the subjective evaluation in Sect. 4.2.5.
A particular problem are the resonances produced by the drums mentioned above: the
generator replaces most of these using noise. This mismatch in signal properties is par-
ticularly problematic when training with an estimator trained only on authentic drum
sounds. Due to the mismatch, the estimator may not produce a coherent gradient; ac-
cordingly, the loss will not work as expected. We note that the fff error remains relatively
small for instruments with fewer strong resonances, like most cymbals.

On Signal-Based Velocity Descriptor

The signal-based estimator displayed excellent performance compared to its neural net-
work counterpart. Our results were comparable to those obtained with the timbral control
of StyleWaveGAN shown in Sect. 4.3. The same conclusion holds: reliable and determinis-
tic losses are preferable to neural-based solutions if they exist. Expertly designed features
are beneficial, especially in audio, given the extensive state-of-the-art research on percep-
tion and signal features [McAdams et al., 1995; Peeters, 2004; Peeters et al., 2011; Pearce
et al., 2016; Lavault et al., 2022b] but will necessitate some preliminary engineering to
make them compatible with deep-learning frameworks. While our experiment with Style-
WaveGAN used only the raw energy, we can use the scaling obtained in Sect. 4.5.3 to
convert input velocity to target energy. We also introduce an example of per-instrument
scaling to ensure the velocity on the training set is within preset bounds for MIDI com-
patibility, while showing interpolation on the training dataset range is of great quality.
At the same time, the extrapolation outside the limits remains acceptable.

CHAPTER 4. DRUM SYNTHESIS WITH ADVERSARIAL NETWORKS 106

Chapter 5

Conclusion

5.1 General Conclusion

With the advances of deep learning and especially deep generative models, a human-
machine interface responding to complex human perception will transform how music and
sound can be produced. This document presented how Generative Adversarial Networks
(GAN) can build a neural drum synthesizer with intuitive and musically relevant controls.

Starting from a review of the existing state-of-the-art methods and their limitations, we
built upon these by choosing one specific generative model. We augmented its capabilities
to provide improved perceived quality and high-level control features. The neural synthe-
sizer we present in this document, StyleWaveGAN, is a modified image generator built
to generate waveforms and accept different control inputs, allowing for good inference
performance while being able to generate longer sounds compared to the state-of-the-art.

From there on, we showed that the proposed model demonstrates improved synthesis
quality compared to other specialized drum generation models for both objective metrics
(FAD) and the perceived quality as measured in perceptual tests. This is substantial
progress on the way toward high-quality neural synthesizers.

In addition to sound generation quality, the project’s other objective was to create a con-
trollable synthesizer with high-level features. By implementing differentiable variants of
commonly used timbre descriptors and using these to establish a differentiable feature
control loss, we significantly improved the control precision achieved with the proposed
model compared to the existing approaches from the state of the art. We observed notable
enhancements in our system’s performance. This encouraged us to adopt a refined met-
ric for measuring control precision based on absolute errors at particular quantile-based
regions since the previous metric used to assess control quality was relatively weak. To
establish a baseline, we conducted psychophysical experiments to gauge the perception
threshold around the values used in this new metric. Our findings indicate that the control
error with our method is not noticeable except in the most extreme cases.

Finally, we experimented with adding different oscillators and velocity control to Style-
WaveGAN to improve the generation quality and go even further with drums’ synthesis
control based on the specialized sensor data from a new drum sound dataset.

107

All in all, this document presents the results of the use of generative adversarial networks
for the synthesis and control of drum sounds, where we achieved the following:

• improvement over state-of-the-art neural drum synthesizers while not achieving fully
realistic synthesis (section 4.2.5)

• a sufficiently fast model to be capable of being integrated into real-time applications,

• Basic and more advanced control over the timbral properties of the sounds 4.3 and
velocity 4.5

5.2 Limitations and Future Works

As it stands now, StyleWaveGAN achieves good performances, but we cannot claim it
can generate realistic samples in all cases. Even if the worst examples can be used in a
musical context with some processing added, the quality of certain types of drums can
be seen as uneven. These results are mostly due to a potentially weak discriminator that
could benefit from working in the frequency domain, making it better at discriminating
unstable sinusoids and then classifying them as fake.

Regarding velocity and dynamics, we confirmed the superiority of a signal-based descrip-
tor over neural network-based ones, as we have already shown with timbral descriptors.
However, this descriptor only loosely relates to standard MIDI velocity control and ne-
cessitates fine-tuning per instrument to make it fit the MIDI velocity range.

Finally, the timbral features StyleWaveGAN uses do not cover the entire AudioCommons
feature set. While this was justified by doing an informal survey among drummers and
musicians to know which were the features to implement in priority, having the whole
set reimplemented and compatible with deep-learning frameworks would make the results
of this thesis even more substantial when it comes to differentiable timbral features and
their integration to the network control.

In terms of future works, the list is still long. First, the neverending quest for improved
sound quality is followed closely by extending the results to both public and private parts
of Apeira Drums. While recording as many samples as the augmented ENST-Drums seems
impossible, an extended Apeira Drums coupled with a revised augmentation pipeline
could provide a dataset similar in size to the augmented ENST-Drums presented in this
document while not being subject to a perceivable degradation in quality, as was ENST-
AUG. From this augmented Apeira Drums dataset, we would have to reintroduce the
timbral features and expand the list of available timbral features from the AudioCommons
package to not only the three prioritized ones in this document.

CHAPTER 5. CONCLUSION 108

Bibliography

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, A., Toderici, G., Varadarajan, B., and
Vijayanarasimhan, S. (2016). YouTube-8M: A Large-Scale Video Classification Bench-
mark. ArXiv, abs/1609.08675.

Anderson, T. W. and Darling, D. A. (1952). Asymptotic Theory of Certain "Goodness
of Fit" Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics,
23(2):193–212.

Andresen, U. (1979). A New Way in Sound Synthesis. In Audio Engineering Society

Convention 62.

ANSI/ASA S1.1-2013 (2020). Acoustical terminology. Standard, American Na-
tional Standards Institute/Acoustical Society of America. https://webstore.ansi.
org/standards/asa/ansiasas12013r2020.

Aouameur, C., Esling, P., and Hadjeres, G. (2019). Neural Drum Machine: An Interac-
tive System for Real-time Synthesis of Drum Sounds. In International Conference on

Computational Creativity.

Arjovsky, M. and Bottou, L. (2017). Towards Principled Methods for Training Generative
Adversarial Networks. arXiv preprint arXiv:1701.04862.

Avanzini, F., Marogna, R., and Bank, B. (2012). Efficient synthesis of tension modulation
in strings and membranes based on energy estimation. The Journal of the Acoustical

Society of America, 131(1):897–906.

Barratt, S. and Sharma, R. (2018). A Note on the Inception Score. arXiv preprint

arXiv:1801.01973.

Bilbao, S. (2012). Time domain simulation and sound synthesis for the snare drum. The

Journal of the Acoustical Society of America, 131(1):914–925.

Bilbao, S. and Webb, C. J. (2013). Physical Modeling of Timpani Drums in 3D on
GPGPUs. J. Audio Eng. Soc, 61(10):737–748.

Bonada, J., Serra, X., Amatriain, X., and Loscos, A. (2011). Spectral Processing, chap-
ter 10, pages 393–445. John Wiley & Sons, Ltd.

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, 59(4-5):291–294.

Bous, F. and Roebel, A. (2023). Analysis and Transformation of Voice Level in Singing
Voice. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 1–5.

109

https://webstore.ansi.org/standards/asa/ansiasas12013r2020
https://webstore.ansi.org/standards/asa/ansiasas12013r2020

Brown, A. (1990). Modern Jazz Drumset Artistry. The Black Perspective in Music,
18(1/2):39.

Caillon, A. and Esling, P. (2021). RAVE: A variational autoencoder for fast and high-
quality neural audio synthesis. arXiv preprint arXiv:2111.05011.

Callender, L., Hawthorne, C., and Engel, J. (2020). Improving Perceptual Quality of
Drum Transcription with the Expanded Groove MIDI Dataset.

Caspe, F., McPherson, A., and Sandler, M. (2022). DDX7: Differentiable FM Synthesis
of Musical Instrument Sounds. Proceedings of the 23rd International Society for Music

Information Retrieval Conference.

Chaigne, A., Touzé, C., and Thomas, O. (2005). Nonlinear vibrations and chaos in gongs
and cymbals. Acoustical science and technology, 26(5):403–409.

Chamberlin, H. (1985). Musical applications of microprocessors. Hayden Books, Indi-
anapolis, IN.

Chowning, J. M. (1977). The Synthesis of Complex Audio Spectra by Means of Frequency
Modulation. Computer Music Journal, 1(2):46–54.

Clark, J. J. (2003). Advanced programming techniques for modular synthesizers.

Collins, S. (2007). Amen to that: sampling and adapting the past. M/C Journal, 10(2).

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-

matics of Control, Signals, and Systems (MCSS), 2(4):303–314.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. IEEE.

Dhariwal, P. and Nichol, A. (2021). Diffusion Models Beat GANs on Image Synthesis. In
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors,
Advances in Neural Information Processing Systems, volume 34, pages 8780–8794.
Curran Associates, Inc.

Dittmar, C. and Gärtner, D. (2014). Real-time transcription and separation of drum
recordings based on NMF decomposition. In Proceedings of the 17th International Con-

ference on Digital Audio Effects (DAFx-14), Erlangen.

Donahue, C., McAuley, J., and Puckette, M. (2019). Adversarial Audio Synthesis. In
International Conference on Learning Representations.

Dowson, D. and Landau, B. (1982). The Fréchet distance between multivariate normal
distributions. Journal of Multivariate Analysis, 12(3):450–455.

Drysdale, J., Tomczak, M., and Hockman, J. (2020). Adversarial Synthesis of Drum
Sounds. Proceedings of the 23rd International Conference on Digital Audio Effects

(DAFx2020),, pages 24–30.

Drysdale, J., Tomczak, M., and Hockman, J. (2021). Style-based drum synthesis with
GAN inversion. In Extended Abstracts for the Late-Breaking Demo Session of the 22nd

Int. Society for Music Information Retrieval Conference.

BIBLIOGRAPHY 110

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and Roberts, A. (2019).
GANSynth: Adversarial Neural Audio Synthesis. In International Conference on Learn-

ing Representations.

Engel, J., Hantrakul, L. H., Gu, C., and Roberts, A. (2020). DDSP: Differentiable Digital
Signal Processing. In International Conference on Learning Representations.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., and Simonyan,
K. (2017). Neural audio synthesis of musical notes with WaveNet autoencoders. In
International Conference on Machine Learning, pages 1068–1077. PMLR.

Fletcher, H. and Bassett, I. G. (1978). Some experiments with the bass drum. The Journal

of the Acoustical Society of America, 64(6):1570–1576.

Fletcher, N. H. and Rossing, T. D. (1998). The Physics of Musical Instruments. Springer
New York.

Font, F., Roma, G., and Serra, X. (2013). Freesound Technical Demo. In Proceedings

of the 21st ACM International Conference on Multimedia, MM ’13, page 411–412, New
York, NY, USA. Association for Computing Machinery.

Fréchet, M. (1957). Sur la distance de deux lois de probabilité. Comptes Rendus Hebdo-

madaires des Seances de L Academie des Sciences, 244(6):689–692.

Gillet, O. and Richard, G. (2006). ENST-Drums: An extensive audio-visual database
for drum signals processing. ISMIR 2006 - 7th International Conference on Music

Information Retrieval, pages 156–159.

Gillick, J., Roberts, A., Engel, J., Eck, D., and Bamman, D. (2019). Learning to Groove
with Inverse Sequence Transformations. In International Conference on Machine Learn-

ing (ICML).

Giordano, B. L., Susini, P., and Bresin, R. (2012). Experimental methods for the percep-
tual evaluation of sound-producing objects and interfaces. In Sonic Interaction Design

:. MIT Press.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative Adversarial Nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., editors, Advances in Neural

Information Processing Systems, volume 27. Curran Associates, Inc.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017). Improved
training of Wasserstein GANs. In Advances in Neural Information Processing Systems,
volume 2017-Decem, pages 5768–5778.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–
362.

BIBLIOGRAPHY 111

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S.,
Elsen, E., Engel, J., and Eck, D. (2019). Enabling factorized piano music modeling
and generation with the MAESTRO dataset. In International Conference on Learning

Representations.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 2016-Decem, pages 770–778.

Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C.,
Plakal, M., Platt, D., Saurous, R. A., Seybold, B., Slaney, M., Weiss, R. J., and
Wilson, K. (2017). CNN Architectures for Large-Scale Audio Classification. In 2017

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
page 131–135. IEEE Press.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Ad-

vances in Neural Information Processing Systems, volume 2017-Decem, pages 6627–
6638.

Hjortkjær, J. and Walther-Hansen, M. (2014). Perceptual effects of dynamic range
compression in popular music recordings. Journal of the Audio Engineering Society,
62(1/2):37–41.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv

preprint arxiv:2006.11239.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computa-

tion, 9(8):1735–1780.

Holmes, T. (2020). Electronic and experimental music. Routledge, London, England, 6
edition.

ISO 226 (2003). Acoustics — Normal equal-loudness-level contours. Standard,
International Organization for Standardization, Geneva, CH. https://www.iso.
org/fr/standard/34222.html.

ITU (1996). Methods for subjective determination of transmission quality. Recommenda-
tion P.800, International Telecommunication Union. https://www.itu.int/rec/T-REC-
P.800-199608-I.

Jacques, C. and Roebel, A. (2018). Automatic drum transcription with convolutional
neural networks. In 21th International Conference on Digital Audio Effects, Sep 2018,

Aveiro, Portugal.

Juanpere, E. M. and Välimäki, V. (2022). Realistic gramophone noise synthesis us-
ing a diffusion model. In 25th International Conference on Digital Audio Effects

(DAFx20in22), pages 240–247.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of GANs
for improved quality, stability, and variation. In International Conference on Learning

Representations.

BIBLIOGRAPHY 112

https://www.iso.org/fr/standard/34222.html
https://www.iso.org/fr/standard/34222.html
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for gen-
erative adversarial networks. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 4401–4410.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Ana-
lyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 8110–8119.

Katz, B. (2014). Mastering Audio. Focal Press, Oxford, England, 3 edition.

Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10):947–
954.

Kilgour, K., Zuluaga, M., Roblek, D., and Sharifi, M. (2019). Fréchet audio distance: A
reference-free metric for evaluating music enhancement algorithms. Proceedings of the

Annual Conference of the International Speech Communication Association, INTER-

SPEECH, 2019-Septe:2350–2354.

Kim, J. W., Salamon, J., Li, P., and Bello, J. P. (2018). Crepe: A convolutional repre-
sentation for pitch estimation. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 161–165.

Kingma, D. P. and Ba, J. L. (2015). Adam: A method for stochastic optimization. 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, pages 1–15.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Bengio, Y.
and LeCun, Y., editors, 2nd International Conference on Learning Representations,

ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. (2021). Diffwave: A ver-
satile diffusion model for audio synthesis. In International Conference on Learning

Representations.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger,
K., editors, Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc.

Lavault, A., Roebel, A., and Voiry, M. (2022a). StyleWaveGAN: Style-based synthesis of
drum sounds using Generative Adversarial Networks for higher audio quality. In 30th

European Signal Processing Conference (EUSIPCO 2022), Belgrade, Serbia.

Lavault, A., Roebel, A., and Voiry, M. (2022b). StyleWaveGAN: Style-based Synthesis
of Drum Sounds with Extensive Controls using Generative Adversarial Networks. In
19th Sound and Music Computing Conference (SMC 2022), Saint-Etienne, France.

Lavault, A., Roebel, A., and Voiry, M. (2022c). Subjective Evaluation of Sound Quality
and Control of Drum Synthesis using StyleWaveGAN. In 25th International Conference

on Digital Audio Effects (DAFx20in22), Vienna, Austria.

LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil asymétrique. Pro-

ceedings of Cognitiva 85, Paris, pages 599–604.

BIBLIOGRAPHY 113

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Legge, K. A. and Fletcher, N. H. (1989). Nonlinearity, chaos, and the sound of shallow
gongs. The Journal of the Acoustical Society of America, 86(6):2439–2443.

Liski, J., Mäkivirta, A., and Välimäki, V. (2021). Audibility of group-delay equalization.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:2189–2201.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. (2017). Least squares
Generative Adversarial Networks. In Proceedings of the IEEE international conference

on computer vision, pages 2794–2802.

McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., and Krimphoff, J. (1995).
Perceptual scaling of synthesized musical timbres: Common dimensions, specificities,
and latent subject classes. Psychological Research, 58(3):177–192.

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which training methods for GANs
do actually converge? In 35th International Conference on Machine Learning, ICML

2018, volume 8, pages 5589–5626. International Machine Learning Society (IMLS).
http://arxiv.org/abs/1801.04406.

Mirza, M. and Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv

preprint arXiv:1411.1784.

Nistal, J. (2022). Exploring Generative Adversarial Networks for controllable musical

audio synthesis. PhD thesis, Institut Polytechnique de Paris.

Nistal, J., Aouameur, C., Velarde, I., and Lattner, S. (2022). DrumGAN VST: A Plu-
gin for Drum Sound Analysis/Synthesis With Autoencoding Generative Adversarial
Networks. arXiv e-prints, pages arXiv–2206.

Nistal, J., Lattner, S., and Richard, G. (2020). DrumGAN: Synthesis of Drum Sounds
With Timbral Feature Conditioning Using Generative Adversarial Networks. In ISMIR.

Nistal, J., Lattner, S., and Richard, G. (2021). Comparing representations for audio syn-
thesis using generative adversarial networks. In 2020 28th European Signal Processing

Conference (EUSIPCO), pages 161–165. IEEE.

Odena, A., , V., and Olah, C. (2016). Deconvolution and Checkerboard Artifacts. Distill,
1(10):e3.

Odena, A., Olah, C., and Shlens, J. (2017). Conditional Image Synthesis with Auxil-
iary Classifier GANs. In Precup, D. and Teh, Y. W., editors, Proceedings of the 34th

International Conference on Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 2642–2651. PMLR.

Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on

Knowledge and Data Engineering, 22:1345–1359.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals

of Mathematical Statistics, 33(3):1065–1076.

Pearce, A., Brookes, T., and Mason, R. (2016). Hierarchical ontology of timbral semantic
descriptors. AudioCommons - Deliverable D5.1, pages 1–34.

BIBLIOGRAPHY 114

http://arxiv.org/abs/1801.04406

Peeters, G. (2004). A large set of audio features for sound description (similarity and
classification) in the CUIDADO project. CUIDADO Ist Project Report, 54(0):1–25.

Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., and McAdams, S. (2011). The
Timbre Toolbox: Extracting audio descriptors from musical signals. The Journal of the

Acoustical Society of America, 130(5):2902–2916.

Petzka, H., Fischer, A., and Lukovnikov, D. (2018). On the regularization of Wasserstein
GANs. In International Conference on Learning Representations.

Pieslak, J. (2007). Re-casting Metal: Rhythm and Meter in the Music of Meshuggah.
Music Theory Spectrum, 29(2):219–245.

Ramires, A., Chandna, P., Favory, X., Gomez, E., and Serra, X. (2020). Neural Percussive
Synthesis Parameterised by High-Level Timbral Features. In ICASSP, IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing - Proceedings, volume
2020-May, pages 786–790. Institute of Electrical and Electronics Engineers Inc.

Ramires, A., Juras, J., Parker, J. D., and Serra, X. (2022). A Study of Control Methods
for Percussive Sound Synthesis Based On GANss. In 25th International Conference on

Digital Audio Effects (DAFx20in22).

Renault, L., Mignot, R., and Roebel, A. (2022). Differentiable piano model for midi-to-
audio performance synthesis. In International Conference on Digital Audio Effects.

Roads, C., Pope, S. T., Piccialli, A., and De Poli, G. (2013). Musical Signal Processing.
Routledge.

Roads, C. and Strawn, J. (1996). The computer music tutorial. MIT Press.

Röbel, A. (2003). A new approach to transient processing in the phase vocoder. In Proc.

of the 6th Int. Conf. on Digital Audio Effects (DAFx03), pages 344–349.

Rodet, X. (1997). Sinusoidal+residual models for musical sound signals analy-
sis/synthesis. Applied Signal Processing, 4:131–141.

Rosenblatt, M. (1956). Remarks on Some Nonparametric Estimates of a Density Function.
The Annals of Mathematical Statistics, 27(3):832–837.

Rossing, T. D. (2000). Science of Percussion Instruments. World Scientific.

Rossing, T. D., Bork, I., Zhao, H., and Fystrom, D. O. (1992). Acoustics of snare drums.
The Journal of the Acoustical Society of America, 92(1):84–94.

Rouard, S. and Hadjeres, G. (2021). CRASH: Raw Audio Score-based Generative Mod-
eling for Controllable High-resolution Drum Sound Synthesis. In Lee, J. H., Lerch, A.,
Duan, Z., Nam, J., Rao, P., van Kranenburg, P., and Srinivasamurthy, A., editors, Pro-

ceedings of the 22nd International Society for Music Information Retrieval Conference,

ISMIR 2021, Online, November 7-12, 2021, pages 579–585.

Rumelhart, D. E. and McClelland, J. L. (1987). Learning Internal Representations by

Error Propagation, pages 318–362. MIT Press.

BIBLIOGRAPHY 115

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV),
115(3):211–252.

Sak, H., Senior, A. W., and Beaufays, F. (2014). Long Short-Term Memory Recurrent
Neural Network Architectures for Large Scale Acoustic Modeling. In INTERSPEECH,
pages 338–342.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X., and Chen,
X. (2016). Improved techniques for training gans. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing

Systems, volume 29. Curran Associates, Inc.

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 36(8):1627–1639.

Scott, D. W. (1992). Multivariate Density Estimation. Wiley.

Serra, X. and Smith, J. (1990). Spectral Modeling Synthesis: A Sound Analysis/Synthesis
System Based on a Deterministic Plus Stochastic Decomposition. Computer Music

Journal, 14(4):12–24.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., and Hassabis, D. (2016). Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature, 529(7587):484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D.
(2018). A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In Bengio, Y. and LeCun, Y., editors, 3rd International Confer-

ence on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings.

Smith, J. O. (2010). Physical Audio Signal Processing. http://ccrma.stanford.edu/~
jos/pasp/. online book, 2010 edition.

Smith, J. O. and Serra, X. (1987). Parshl: An analysis/synthesis program for non-
harmonic sounds based on a sinusoidal representation. In Proceedings of the 1987 In-

ternational Computer Music Conference, ICMC; 1987 Aug 23-26; Champaign/Urbana,

Illinois.[Michigan]: Michigan Publishing; 1987. p. 290-7. International Computer Music
Conference.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep Un-
supervised Learning using Nonequilibrium Thermodynamics. In Bach, F. and Blei, D.,
editors, Proceedings of the 32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research, pages 2256–2265, Lille, France.
PMLR.

BIBLIOGRAPHY 116

http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/pasp/

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A., Amodei,
D., and Christiano, P. F. (2020). Learning to summarize with human feedback. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances

in Neural Information Processing Systems, volume 33, pages 3008–3021. Curran As-
sociates, Inc.

Stilson, T. S. and Smith, J. O. (1996). Alias-free digital synthesis of classic analog
waveforms. In International Conference on Mathematics and Computing.

Su, K., Liu, X., and Shlizerman, E. (2020). Audeo: Audio generation for a silent per-
formance video. In Advances in Neural Information Processing Systems, volume 2020-
Decem. Neural information processing systems foundation.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2018). Wasserstein auto-
encoders. In International Conference on Learning Representations.

Torrey, L. and Shavlik, J. (2010). Transfer learning. In Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques, pages 242–264.
IGI global.

Toulson, R. (2021). Drum Sound and Drum Tuning. Focal Press.

Toulson, R. and Hardin, M. (2020). Evaluating the accuracy of musicians and sound
engineers in performing a common drum tuning exercise. In Audio Engineering Society

Convention 149. Audio Engineering Society.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A. W., and Kavukcuoglu, K. (2016). Wavenet: A generative model
for raw audio. In The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA,

13-15 September 2016, page 125. ISCA.

van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K.,
van den Driessche, G., Lockhart, E., Cobo, L. C., Stimberg, F., Casagrande, N., Grewe,
D., Noury, S., Dieleman, S., Elsen, E., Kalchbrenner, N., Zen, H., Graves, A., King,
H., Walters, T., Belov, D., and Hassabis, D. (2018). Parallel WaveNet: Fast High-
Fidelity Speech Synthesis. In Dy, J. G. and Krause, A., editors, Proceedings of the

35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,

Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning

Research, pages 3915–3923. PMLR.

Vaserstein, L. N. (1969). Markov processes over denumerable products of spaces, describ-
ing large systems of automata. Problemy Peredachi Informatsii, 5(3):64–72.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Learning
useful representations in a deep network with a local denoising criterion. Journal of

Machine Learning Research, ll (Dec), pages 3371–3408.

Wichmann, F. and Hill, N. (2001a). The psychometric function: I. Fitting, sampling, and
goodness of fit. Perception and Psychophysics, 63:1290–1313.

Wichmann, F. and Hill, N. (2001b). The psychometric function: II. Bootstrap-based
confidence intervals and sampling. Perception and psychophysics, 63:1314–29.

BIBLIOGRAPHY 117

Wilbur, C. and Rossing, T. D. (1997). Subharmonic generation in cymbals at large
amplitude. Journal of the Acoustical Society of America, 101:3144–3144.

Xiao, Z., Kreis, K., and Vahdat, A. (2022). Tackling the Generative Learning Trilemma
with Denoising Diffusion GANs. In International Conference on Learning Representa-

tions.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features
in deep neural networks? Advances in neural information processing systems, 27.

BIBLIOGRAPHY 118

	Introduction
	Objectives
	Background
	Physics of drum sounds
	Basic Physics of Drum and Cymbals
	Shells
	Cymbals

	Drum Synthesis
	Signal-based drum synthesis method
	Physics-based models for drum synthesis

	Deep Learning
	Sound Perception and subjective evaluation
	Sound and Hearing
	Subjective evaluation of quality
	Evaluation of Stimuli Perception

	Contributions

	State of the Art
	Introduction
	Synthesis with deep neural networks
	WaveNet
	Auto-Encoders
	Adversarial models
	Differentiable Digital Signal Processing
	Diffusion models
	Control strategies

	Evaluation Strategies for Generative Models
	Quality Evaluation
	Timbre Control Evaluation

	Conclusion

	Databases
	Introduction
	ENST Drums
	Subset of Interest
	Shortcomings

	Data augmentation
	Apeira Drums
	Structure of the dataset
	Recording Setup
	Dataset Contents
	Trigger and accelerometer data
	Recording Protocol
	Repeatability
	Discussion

	Dataset used in the document

	Drum Synthesis with Adversarial networks
	Introduction
	StyleWaveGAN (Basic structure)
	Introduction
	Structure
	Training Setup
	Objective evaluation of sound quality
	Subjective evaluation of sound quality

	Timbral controls
	Introduction
	AudioCommons descriptors
	Differentiable AudioCommons descriptors
	Objective evaluation
	Subjective evaluation

	StyleWaveGAN with trainable oscillator bank
	Introduction
	StyleWaveGAN-OSC
	Objective evaluation

	Velocity control
	Introduction
	Neural Velocity Estimator
	Signal-based Velocity Descriptor
	Discussion

	Conclusion
	General Conclusion
	Limitations and Future Works

	References

