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Résumé Long

L’information est transférée d’une personne à une autre par le biais de la com-
munication. Par ce transfert, nous transmettons nos pensées et nos intentions par
le biais de signaux multimodaux tels que les mots, les gestes et la prosodie. Cet
échange de signaux est un processus bidirectionnel d’envoi et de réception dans
lequel les comportements des interlocuteurs s’adaptent l’un à l’autre. Cette adap-
tation est continue, dynamique et réciproque, ce que nous appelons l’adaptation
réciproque. S’adapter aux autres permet aux interactions d’être engageantes et
efficaces.

Les agents socialement interactifs (SIA; Lugrin et al. [2021]) sont des agents
physiques ou virtuels, tels que des robots ou des agents virtuels, capables de mener
des conversations naturelles avec des personnes de manière autonome (c.-à-d.
leurs utilisateurs) en échangeant des signaux multimodaux, verbaux et non ver-
baux (Ball et al. [2000]) d’une manière socialement intelligente. Comme les in-
terlocuteurs humains, ils peuvent agir en tant que partenaires conversationnels
en adaptant leurs comportements en fonction de ceux de leurs interlocuteurs.
Le domaine des SIAs s’est développé depuis plus de 20 ans sous de nombreux
noms tels que agents virtuels intelligents (IVA), agents conversationnels animés
(ACAs), et robotique sociale (Cassell [2001], Dautenhahn [1998]). Ils partagent
tous une définition similaire et poursuivent le même objectif: faire progresser
la recherche et le développement d’agents socialement intelligents montrant des
comportements autonomes par le biais d’incarnations physiques ou virtuelles. Les
SIAs transmettent leur message (intention ou sentiment) verbalement par le biais
de mots et émettent un comportement non verbal semblable à celui des humains,
tel que des gestes du visage, du corps et des mains pendant le discours (Cassell
et al. [2000]), pour compléter leur message.

Les agents animés ont pour objectif commun d’améliorer la communication
et l’expérience de l’utilisateur (engagement, rapport et appréciation). Plusieurs
travaux se sont concentrés sur l’amélioration de l’interaction elle-même pour
une expérience plus fluide avec l’agent (Bailenson and Yee [2005], Huang et al.
[2010], Ritschel et al. [2017], Weber et al. [2018]). L’utilisation des SIAs a été
observée dans diverses applications, montrant leurs utilité dans l’enseignement ou
le coaching (Anderson et al. [2013], Pecune et al. [2016], Jones and Castellano
[2018], Pereira Santos et al. [2023]), l’assistance (Biancardi et al. [2021], Sidner
et al. [2018]) et la santé (Raffard et al. [2018], Ring et al. [2016], Shidara
et al. [2022], Khamis et al. [2021]). Dans le domaine des traitements médicaux
en particulier, l’utilisation des SIAs a considérablement augmenté ces dernières
années (Khamis et al. [2021], Shidara et al. [2022].

La recherche sur les SIAs s’intéresse à la création d’un SIA capable d’interagir
avec les gens d’une manière sociale et engageante. Il est essentiel de garantir les
aspects sociaux, d’engagement (le démarrage, le maintien et la fin des liens perçus
entre les personnes au cours d’une interaction; Sidner et al. [2003]) et le rapport
(affect positif, attention mutuelle et coordination; Tickle-Degnen and Rosenthal
[1990]) pour attirer l’attention des utilisateurs et mener l’interaction de manière
continue. Pour que la communication soit efficace, les agents jouant le rôle de
partenaires d’interaction doivent jouer les rôles actifs de locuteur et d’auditeur.
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Les études sur l’interaction humain-humain ont montré que la communica-
tion est multimodale. Différents canaux (ou modalités composées de comporte-
ments verbaux et non verbaux) de communication participent à la transmission de
l’intention et des émotions d’une personne. Ils sont synchronisés à la fois au niveau
intrapersonnel (entre les indices d’une même personne) et au niveau interperson-
nel (entre les interlocuteurs). Pour que les SIAs jouent le rôle d’interlocuteurs, ils
doivent non seulement transmettre leur message en alignant leurs signaux multi-
modaux dérivés d’eux-mêmes (compte tenu de la relation intrapersonnelle; Knapp
et al. [2013]), mais aussi s’adapter constamment et réciproquement à leurs inter-
locuteurs, en coordonnant leurs comportements avec les signaux multimodaux de
leurs interlocuteurs (compte tenu de la relation interpersonnelle; Burgoon et al.
[1995]). Démontrer une telle capacité d’adaptation est essentiel pour les rela-
tions interpersonnelles (Cappella [1991]) et peut permettre aux SIAs d’être perçus
comme socials, engageants et établissant un rapport (Biancardi et al. [2021], Oer-
tel et al. [2020], Delaherche and Chetouani [2010], Gupta et al. [2019], Huang
et al. [2010], Raffard et al. [2018]).

Objectif de la recherche

La motivation du travail présenté dans cette thèse est de développer un SIA capable
non seulement de servir d’un locuteur dans un monologue mais aussi d’un parte-
naire d’interaction active échangeant les rôles de locuteur et d’auditeur. Pour être
considéré comme un bon partenaire de communication, il doit posséder les com-
pétences sociales nécessaires pour attirer et maintenir l’attention et l’implication
de ses interlocuteurs. La capacité d’adaptation est une compétence sociale impor-
tante, innée chez l’humain, qui permet un tel engagement. Notre objectif est de
créer des SIAs engageantes et sociales en les dotant d’une capacité d’adaptation ré-
ciproque. Malgré les diverses avancées des SIAs, plusieurs défis restent à relever
pour créer des SIAs adaptatifs. Parmi les défis qui attendent d’être relevés, nous
nous concentrons sur les aspects suivants.

Modélisation de l’adaptation

Lors d’une conversation, les humains communiquent avec leurs interlocuteurs par
le biais d’une multitude de signaux multimodaux (verbaux et non verbaux) tout
en adaptant constamment leur comportement à celui de leurs interlocuteurs. Tous
les signaux provenant de soi-même et des partenaires d’interaction sont pris en
compte pour la génération de son comportement. Pour que les SIAs puissent
s’adapter de la même manière, il est essentiel qu’ils aient eux aussi la même capac-
ité d’adaptation. L’SIA et l’interlocuteur humain doivent constamment s’adapter
l’un à l’autre. Par conséquent, la modélisation de cette capacité d’adaptation, de
la multimodalité et de la relation interpersonnelle, doit être effectuée lors du calcul
des comportements des SIAs.
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Évaluation de l’adaptation

L’évaluation des interactions a toujours été une tâche ardue. En particulier,
l’évaluation de la présence d’une adaptation, et notamment sa quantification,
n’est pas triviale. L’évaluation de l’adaptation serait très utile pour évaluer les
interactions humain-humain et humain-agent.

Fonctionnalité en temps réel

Les SIAs sont conçues dans le but final d’être déployées pour de nombreuses appli-
cations réelles. Pour qu’elles puissent être présentées au public et démontrer leur
utilité, elles doivent fonctionner en temps réel. Cet aspect temps réel doit être
assuré pour tout système d’interaction car la communication se déroule générale-
ment sans délai et est inattendue. Par conséquent, l’existence d’un retard pourrait
nuire à l’expérience de l’utilisateur. Cela n’est pas souhaitable pour les SIAs qui
recherchent l’engagement et la satisfaction de l’utilisateur.

Alignement temporel

Lors de la production d’un comportement, la parole et le geste correspondants
sont alignés et synchronisés dans le temps. Cet aspect de l’alignement temporel
est essentiel pour la génération d’un comportement. Il s’agit d’un problème difficile
qui doit être résolu, en particulier pour assurer la synchronisation temporelle des
signaux multimodaux pendant la perception et la génération en temps réel.

La portée de la thèse

Le thème principal de la thèse est la création d’un SIA adaptatif servant
d’interlocuteur social et engageant. Notre objectif est d’activer la façade adaptative
du SIA en lui fournissant une capacité d’adaptation réciproque et en garantissant
son utilisation en temps réel. Nous relevons les défis susmentionnés en appro-
fondissant les trois études de cette thèse. Chaque objectif d’étude et les questions
de recherche associées sont détaillées.

Analyse des interactions humain-agent

Quel est le rôle de l’adaptation et comment la saisir ? Il est difficile d’obtenir
une image claire de l’adaptation et de connaître son rôle exact dans la manière
dont elle affecte d’autres aspects tels que l’engagement et les dimensions sociales.
Afin de mieux comprendre l’adaptation et de découvrir comment elle peut être
mesurée, nous analysons les interactions humain-humain dans le but d’appliquer
ces connaissances aux interactions humain-agent.

Questions de recherche:

Dans cette étude, nous examinons la question de recherche suivante:
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1. Adaptation réciproque: L’adaptation réciproque (synchronie et boucle
d’entraînement) est-elle liée à l’engagement et/ou aux dimensions sociales
de la chaleur et de la compétence des interlocuteurs ?

Génération de comportements avec capacité d’adaptation réciproque

Adopter un comportement approprié à une situation donnée, tel que des gestes co-
hérents avec la parole et correspondant au comportement des interlocuteurs, est
une capacité inhérente qui donne l’impression d’être réalisée sans effort. Néan-
moins, lorsque nous essayons de modéliser l’interaction entre les signaux multi-
modaux échangés, la modélisation n’est pas évidente. La relation entre les sig-
naux sociaux (relations interpersonnelles et intrapersonnelles, et multimodalité)
doit être prise en compte ainsi que leur temporalité. Cette étude vise à mod-
éliser l’adaptation réciproque en capturant les relations et la temporalité des sig-
naux échangés et à générer des comportements SIA adaptatifs (voir Chapitres 6 et
8). En particulier, nous restituons les gestes faciaux du SIA (expressions faciales
et mouvements de la tête/du regard), car la richesse de l’expression faciale ren-
force les capacités de communication qui sont vitales pour la sociabilité des SIAs
(Halberstadt [1983]).

Research Questions:

Dans cette étude, nous examinons les questions de recherche suivantes:

1. Modélisation de l’adaptation réciproque: Comment modéliser l’adaptation ré-
ciproque ?

2. Impact de la modélisation de l’adaptation sur la dynamique interpersonnelle: La
dotation d’une capacité d’adaptation réciproque améliore-t-elle la dynamique
interpersonnelle (en termes de synchronie et d’engagement) des comporte-
ments de SIA générés ?

3. Impact de la modélisation de l’adaptation sur la qualité du comportement de
SIA: La dotation d’une capacité d’adaptation réciproque améliore-t-elle la
qualité du comportement de SIA (en termes de la naturalité et de la vraisem-
blance humaine) ?

4. Impact de la capture de la relation intrapersonnelle: La modélisation explicite
de la relation intrapersonnelle (modélisation de la relation entre les modal-
ités) influence-t-elle la dynamique interpersonnelle et/ou la qualité du com-
portement du SIA ?

Système d’interaction humain-agent en temps réel

Pour étudier pleinement l’effet de la fourniture d’un SIA adaptatif, il est important
que le SIA soit testé et évalué avec des utilisateurs humains réels dans un scé-
nario de la vie réelle. L’impression du SIA peut être évaluée d’un point de vue à
la troisième personne. Cependant, comme les SIAs visent à interagir avec des util-
isateurs humains réels pour leur déploiement, il est préférable d’obtenir le retour
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d’information des utilisateurs réels interagissant d’un point de vue à la première
personne. Il est donc nécessaire de mettre en œuvre un système en temps réel et de
l’utiliser pour vérifier l’importance de l’intégration de l’adaptation réciproque dans
le SIA (voir Chapitre 7).

Questions de recherche:

Dans cette étude, nous nous penchons sur les questions de recherche suivantes:

1. Effet du SIA adaptatif en temps réel sur l’expérience de l’utilisateur: Un SIA
adaptatif peut-elle améliorer l’expérience de l’utilisateur (perception de
l’agent) ?

2. Effet du SIA adaptatif en temps réel sur la performance de l’application:
Un SIA adaptatif peut-elle améliorer l’efficacité de la thérapie cognitivo-
comportementale (TCC ou CBT en anglais; l’application santé que nous
avons choisie) ?

Comportements non verbaux

Les signaux non verbaux, également appelés langage corporel, constituent une
part importante des signaux de communication. Alors que la communication ver-
bale transmet des informations par le biais d’un langage au contenu explicite, le
comportement non verbal peut transmettre des informations de manière implicite
et envoyer un message plus fort lorsqu’il est associé à un contexte verbal.

Le comportement non verbal est transmis par le "langage corporel", qui com-
prend les gestes, les expressions faciales, les mouvements du corps et le regard
(Burgoon et al. [2011]). Nous considérons le comportement non verbal comme
des signaux sociaux multimodaux qui transfèrent des informations de manière im-
plicite ou explicite par le biais d’actions qui peuvent indiquer les attitudes ou les
sentiments d’un individu sans utiliser de mots (c.-à-d. des informations lexicales).
La prosodie (ou indices vocaux), comme la hauteur et le volume de la voix, est
également un signal non verbal qui contient des informations pertinentes.

Lors de la transmission d’un message de communication, nous modifions, de
manière intentionnelle ou non, notre comportement (Burgoon et al. [2011]). Ces
intentions de communication sont généralement transmises par le biais de mes-
sages verbaux. Les comportements non verbaux véhiculent également de telles
intentions, consciemment ou non. L’ajout de signaux non verbaux aux signaux
verbaux peut transmettre le même message plus clairement et plus fermement à
l’interlocuteur. En outre, la barrière de la langue,un problème inévitable pour la
compréhension verbale et le retour d’information, peut être franchie grâce aux
gestes. La compréhension de différentes langues n’est pas nécessaire pour man-
ifester et reconnaître des sentiments et/ou des pensées. Le comportement non
verbal est donc fondamental et influent sur la communication.

Les canaux non verbaux englobent les aspects comportementaux et les carac-
téristiques physiques qui constituent l’apparence physique des personnes (Knapp
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et al. [2013]). Ils englobent les gestes, la posture, les expressions faciales, le com-
portement oculaire et le toucher. Ils comprennent également les caractéristiques
de la parole, qui sont des indices vocaux.

Adaptation

Au cours d’une interaction, le comportement des interlocuteurs s’adapte.
L’adaptation se fait en coordonnant (ou en synchronisant) le comportement de
l’un avec celui de l’autre et en entraînant et en étant entraîné en permanence
par le partenaire qui interagit. L’adaptation (e.g. la coordination ou la syn-
chronisation du comportement) implique des phénomènes complexes tels que
la perception de signaux sociaux et la réponse à ces signaux sociaux dans une
fenêtre temporelle donnée (Chartrand and Lakin [2013], Burgoon et al. [1995]).

Les participants à la conversation échangent en réagissant aux signaux sociaux
des autres. L’échange ne se fait pas simplement à tour de rôle entre les partici-
pants (avec un seul réacteur à la fois), mais la coordination implique différents
processus tels que l’anticipation et la production de comportements. Condon and
Ogston [1966] souligne qu’il existe des synergies intrapersonnelles qui se forment
entre les comportements d’une personne et que ces synergies sont coordonnées
entre les interlocuteurs (au niveau interpersonnel). Pour être coordonnés, ces
comportements doivent correspondre les uns aux autres dans l’action et dans le
temps (Hove and Risen [2009], Burgoon et al. [1995]). Pour la coordination
interpersonnelle, il est essentiel que les comportements soient alignés au mo-
ment opportun (Delaherche et al. [2012]). Cette coordination des signaux sociaux
peut également être appelée la synchronie interpersonnelle. Pickering and Garrod
[2004] parle d’alignement défini comme l’adaptation des comportements verbaux
des interlocuteurs. La coordination interpersonnelle des comportements est une
opération continue qui se déroule automatiquement dans le temps au cours d’une
interaction naturelle (Schmidt and Richardson [2008]). L’adaptation est donc dy-
namique.

Il est également important de noter que la coordination interpersonnelle, qui
se fait passivement et involontairement pour s’adapter au comportement du parte-
naire, a un certain retard dans la perception et l’adaptation. Chartrand and Bargh
[1999], qui affirment que la coordination interpersonnelle est causée par un com-
portement de mimétisme, appellent ce phénomène d’adaptation inconsciente (ou
de mimétisme) l’effet caméléon. Cette perception du signal des interlocuteurs est
sensible à l’alignement temporel. Pour les signaux non verbaux, l’alignement tem-
porel (ou le délai de mimétisme) se situe dans une fenêtre temporelle de 2 à 4
secondes (Leander et al. [2012]).

Un entraînement continu se produit entre les interlocuteurs (Prepin and
Pelachaud [2011]). Lorsqu’une personne adopte un comportement, elle entraîne
le comportement mimétique de son interlocuteur. L’entraînement ne se limite
pas à un simple mimétisme, mais il incite également l’émetteur du signal initial à
continuer à adopter le même comportement ou à renvoyer le même signal. Nous
appelons ce processus d’entraînement séquentiel une boucle d’entraînement.
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Pour englober les divers aspects de l’adaptation, principalement la synchronie
interpersonnelle et la boucle d’entraînement, nous désignons l’adaptation con-
tinue, dynamique et réciproque du comportement par le terme d’adaptation ré-
ciproque.

Pour le reste de notre travail, nous choisissons de définir les termes suivants
comme suit:

Synchronie (ou synchronie interpersonnelle): coordination interpersonnelle
de signaux sociaux alignés au moment opportun, comme indiqué par
Delaherche et al. [2012].

Boucle d’entraînement: processus en boucle montré entre les interlocuteurs qui
entraînent continuellement le comportement de mimétisme de leur interlocu-
teur, l’un après l’autre, comme mentionné par Prepin and Pelachaud [2011].

Adaptation réciproque: adaptation du comportement des interlocuteurs au cours
d’une interaction continue, dynamique et réciproque.

Interaction humain-agent (HAI)

L’interaction humain-agent (HAI) est l’interaction entre les humains et les SIAs.
Son objectif est d’améliorer l’interaction entre l’humain et l’agent. Les progrès
de l’HAI se concentrent sur une myriade d’aspects tels que l’engagement (Oer-
tel et al. [2020]), la présence sociale (Pereira et al. [2014], Li [2015]) et le
réalisme du comportement (Ferstl et al. [2021]) des agents. Dans le cadre de
l’interaction humain-agent, de nombreux signaux sociaux de diverses modalités
sont échangés. Comme dans l’interaction humain-humain, (l’humain et l’agent
envoient et reçoivent des signaux multimodaux qu’ils interprètent et utilisent
les informations perçues pour produire leur prochain comportement. La gestion
de l’échange d’informations multimodales est également un aspect essentiel de
l’interface humain-machine.

Etat de l’Art et Discussion

La génération de signaux non verbaux dépend du temps, comme les problèmes de
séries temporelles. La rétention de mémoire présente dans les réseaux récurrents
tels que RNN, LSTM et TCN s’est révélée très prometteuse pour la prévision des
séries temporelles. Comme les comportements humains dépendent fortement des
comportements antérieurs, cet aspect de la mémoire est également important pour
notre situation. Le comportement devant être continu, il est de plus préférable
d’utiliser la prédiction adaptative en ligne avec l’aspect de la prédiction basée sur
les données temporelles précédentes d’une manière autorégressive.

Les modèles de pointe montrent comment la relation entre les signaux soci-
aux de soi-même (relation intrapersonnelle), les signaux des interlocuteurs (rela-
tion interpersonnelle) et les signaux multimodaux peut être modélisée. Pour notre
travail, nous voulons modéliser l’adaptation réciproque en considérant les deux
facettes de la temporalité (à la fois intrapersonnelle et interpersonnelle) et de la
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multimodalité ainsi que l’aspect de la continuité pour la génération du comporte-
ment non verbal de notre agent. La modélisation de la multimodalité est absente
dans Feng et al. [2017], Dermouche and Pelachaud [2019b] et la continuité n’est
pas assurée pour Feng et al. [2017], Grafsgaard et al. [2018], Dermouche and
Pelachaud [2019b], Jonell et al. [2020], Tuyen and Celiktutan [2022]. Bien que
Ng et al. [2022] réponde à nos trois critères, il nécessite beaucoup de données
d’entraînement. Dans notre cas, nous utilisons une petite base de données (réf.
Chapitre 4), leur modèle n’est donc pas adapté à notre application. Nous pro-
posons un nouveau modèle, le modèle ASAP (Augmented Self-Attention Pruning)
présenté dans le Chapitre 6, qui rend les comportements non verbaux continus
(pour le locuteur et l’auditeur) performants avec un petit ensemble de données. Il
apprend également à capturer la relation interpersonnelle entre les interlocuteurs
à partir des signaux multimodaux échangés afin de doter les SIAs d’une capacité
d’adaptation réciproque. En outre, nous développons un autre modèle, le modèle
HI2-ADAM (Historical Intrapersonal Interpersonal ADAptive Multimodal) détaillé
dans le Chapitre 8, qui capture également l’adaptation réciproque pour générer
un comportement non verbal adaptatif et continu du SIA (pour les deux rôles)
comme le modèle ASAP. Le modèle HI2-ADAM intègre mieux l’adaptation entre
les interlocuteurs en modélisant explicitement la relation intrapersonnelle avec les
historiques de modalité (mémoire de modalité) et un encodage plus approfondi des
signaux multimodaux.

Divers efforts ont été déployés pour quantifier la qualité des comportements
non verbaux. Néanmoins, il n’existe pas encore de mesure parfaite pour les éval-
uer. En particulier, plusieurs aspects de la qualité du comportement tels que le na-
turel et la ressemblance avec l’humain peuvent être triviaux pour un humain, mais
toujours très difficiles d’accès pour une machine (Fitrianie et al. [2020, 2021]).
Ainsi, l’évaluation humaine reste une partie essentielle de l’évaluation du com-
portement (Feng et al. [2017], Karras et al. [2017], Chu et al. [2018], Sadoughi
and Busso [2018], Alexanderson et al. [2020], Jonell et al. [2020], Yuan and Ki-
tani [2020], Cai et al. [2021], Fitrianie et al. [2020]). Pour mieux évaluer la syn-
chronie interpersonnelle entre l’humain et l’agent et pour compléter l’évaluation
subjective, nous proposons l’utilisation de nouvelles mesures pour l’évaluation
du comportement de l’agent, présentées au Chapitre 6, et de nouvelles mesures
d’adaptation réciproque (mesures de synchronie et de boucle d’entraînement), in-
troduites au Chapitre 5.

Corpus NoXi

Pour notre étude, nous utilisons la base de données NoXi (Cafaro et al. [2017])
qui est un corpus d’interactions en face-à-face médiées par l’écran. Elle contient
des conversations dyadiques naturelles parlant d’un sujet commun. Chaque dyade
d’interaction est composée d’une paire de participants ayant deux rôles différents,
appelés expert et novice. L’expert est celui qui transfère des informations dans le
but de partager ses connaissances sur un sujet et qui mène donc la conversation
en parlant plus fréquemment et plus longtemps. Le novice (l’autre partenaire
d’interaction) reçoit les informations et réagit aux propos de l’expert sur le sujet.
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Le corpus NoXi se compose de 3 parties en fonction du lieu d’enregistrement
(France, Allemagne et Royaume-Uni). Pour notre travail, nous n’utilisons que
l’enregistrement du site français qui consiste en 21 interactions dyadiques réalisées
par 28 participants avec une durée totale de 7h22min.

Nous obtenons les caractéristiques du comportement non verbal des deux par-
ticipants en interaction par extraction de caractéristiques. Pour chaque pas de
temps, les caractéristiques visuelles et audio sont extraites en utilisant les outils
OpenFace (Baltrušaitis et al. [2016]) et openSMILE (Eyben et al. [2010]) (après
une phase de débruitage) respectivement et sont traitées séparément.

Pour analyser l’interaction humain-agent, nous ne nous contentons pas
d’examiner les signaux de bas niveau (c.-à-. les caractéristiques extraites)
échangés dans les interactions humain-humain du corpus NoXi, mais nous
étudions également les signaux de haut niveau qui sont annotés. Les annotations
de l’engagement (Dermouche and Pelachaud [2019a]) et des dimensions sociales
(chaleur et compétence; Biancardi et al. [2017]) sont disponibles pour le corpus
NoXi (disponibles avec l’outil d’annotation NOVA (Heimerl et al. [2019]). En
outre, les annotations de l’état conversationnel sont récupérées automatiquement
en effectuant une détection de l’activité vocale (VAD), qui est un classificateur
binaire qui détecte la présence de la parole humaine dans l’audio, sur les fichiers
audio déboisés.

Contribution

Cette thèse contribue aux communautés de recherche du SIA et du traitement des
signaux multimodaux pour générer des comportements non verbaux adaptatifs du
SIA en capturant les relations intrapersonnelles et interpersonnelles à partir de sig-
naux multimodaux. Les contributions apportées par cette thèse sont les suivantes.

Proposition de nouvelles mesures d’adaptation réciproque

A partir de l’analyse de l’interaction humain-humain, nous avons étudié
l’adaptation présente dans les conversations. Cette étude a servi de base
pour proposer de nouvelles mesures d’adaptation réciproque. Les mesures
d’adaptation réciproque, qui consistent en des mesures de synchronie et de boucle
d’entraînement, ont été utilisées pour étudier la relation entre l’adaptation et les
dimensions de l’engagement, de la chaleur et de la compétence. Les nouvelles
mesures proposées ont montré leur utilité dans l’évaluation de la qualité de
l’interaction humain-agent. Elles ont été utilisées pour les évaluations objectives
de notre système IAVA (réf. Chapitre 7) et du modèle HI2-ADAM (réf. Chapitre 8).

Rendre les comportements adaptatifs des SIAs

La capacité d’adaptation réciproque, qui est une capacité importante innée chez
les humains pour les communications interactives et engageantes, est conférée aux
SIAs en modélisant la multimodalité, la relation interpersonnelle et/ou la relation
intrapersonnelle. Nous générons des comportements adaptatifs des agent virtuels

x



via notre modèle ASAP (réf. Chapitre 6) et le modèle HI2-ADAM (réf. Chapitre 8).
Il a été démontré que le comportement rendu par SIA surpasse les techniques de
pointe en générant un comportement naturel, humain, synchronisé et engageant.
Grâce à nos mesures d’adaptation réciproque (réf. Chapitre 5), nous avons égale-
ment pu valider objectivement que les comportements prédits étaient effective-
ment réciproquement adaptatifs ainsi que l”utilité de ces mesures dans l’évaluation
de la qualité de l’interaction entre l’humain et l’agent.

Développement d’un système SIA interactif et adaptatif en temps réel

Le but ultime du développement d’agents animés, qu’il s’agisse de SIAs ou de
robots, est de les déployer en temps réel avec l’utilisateur final humain. Le
fonctionnement en temps réel est essentiel, en particulier pour l’adaptation dans
l’interaction humùain-agent ou humain-robot. Nous avons créé un système de
SIA interactif et adaptatif, notre système IAVA (réf. Chapitre 7), qui garantit
l’aspect temps réel. En appliquant le système IAVA à l’application médicale du CBT,
nous avons vérifié l’efficacité des SIAs avec des capacités d’adaptation réciproque
pour donner une impression positive aux utilisateurs (être perçu comme naturel,
humain, engageant, synchrone, et établir un rapport) et pour améliorer l’effet
du CBT. En outre, pour démontrer la possibilité d’utiliser notre système de SIA
adaptatif dans d’autres applications, nous avons également testé notre système
pour la SST. Nous avons constaté que les utilisateurs ont une impression similaire
de l’agent pour les deux applications, SST et CBT, malgré la nature différente
des scénarios. En outre, nous avons collecté une base de données d’interactions
humain-agent (CBT-HAI DB). Les interactions CBT entre le SIA et l’utilisateur
ont été enregistrées et la base de données a été mise à la disposition de la
communauté des chercheurs (après signature du formulaire EULA).

Mots-clés: Interactions Humain-Agent, Adaptation Réciproque, Agents Con-
versationnels Animés, Génération des Expressions Faciales, Apprentissage
profond, Multimodalité
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Abstract

Information is transferred from one person to another via communication.
Through this transfer, we convey our thoughts and intentions via multimodal sig-
nals such as words, gestures, and prosody. This exchange of signals is a two-way
process of sending and receiving where the behaviors of the interlocutors adapt
to each other. Such adaptation is continuous, dynamic, and reciprocal which we
refer to as reciprocal adaptation. Adapting to others allows interactions to be en-
gaging and effective. Endowing such capacity to Socially Interactive Agents (SIAs),
physical or virtual embodied agents (such as virtual agents and robots), can make
them more social and engaging, and perceived as natural and human-like. Never-
theless, this endowment is a challenging task. The agent needs to know how to
adapt as both a speaker and a listener while emitting behaviors related to its own
speech synchronized over its modalities, intrapersonal relationship, and with its
interlocutor’s behaviors, interpersonal relationship. The central focus of this thesis
is to develop an adaptive SIA with reciprocal adaptation capabilities. We propose
computational models, ASAP and HI2-ADAM, to render SIA’s adaptive behaviors as
both a speaker and a listener. ASAP generates adaptive and continuous behavior
using multimodal signal information from its user and itself by modeling the inter-
personal relationship between them. HI2-ADAM captures the reciprocal adaptation
and intrapersonal relationship in an explicit way by modeling the modality history
of each interlocutor and learning from the relation between these different histo-
ries. As it is important for agents to act as interactive partners and continuously
adapt their behaviors in real time, we create a real-time interactive and adaptive
agent, IAVA system, and provide new measures, reciprocal adaptation measures,
for the evaluation of human-agent interaction quality.

Keywords: Human-Agent Interaction, Reciprocal Adaptation, Socially Inter-
active Agents, Facial Expression Generation, Deep Learning, Multimodality
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This chapter introduces the field of Socially Interactive Agents (SIAs) and
presents the research context and aim upon which the thesis is built. The
thesis objectives and research questions are presented and the contributions and
publications are briefly listed. It is finished with an outline of the thesis structure.
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1.1. SOCIALLY INTERACTIVE AGENTS

1.1 Socially Interactive Agents

Socially Interactive Agents (SIAs; Lugrin et al. [2021]) are embodied agents that
are physical or virtual, such as robots or virtual agents (see Figure 1.1), capable
of autonomously carrying out natural conversations with people (i.e. their users)
by exchanging multimodal, verbal and nonverbal, signals (Ball et al. [2000]) in
a socially intelligent manner. The field of SIA has grown for more than 20 years
under manifold names such as Intelligent Virtual Agents, Embodied Conversa-
tional Agents, and Social Robotics (Cassell [2001], Dautenhahn [1998]). They all
share a similar definition pursuing the same purpose of advancing the research
and development of socially intelligent agents displaying behaviors autonomously
through physical or virtual embodiments.

SIAs transmit their message (intention or feeling) verbally via words and emit
human-like nonverbal behavior, such as facial, body, and hand gesturing during
speech (Cassell et al. [2000]), to complement their message.

Figure 1.1 Illustration of SIAs. From left to right: Greta (Niewiadomski et al. [2009]),
Meta avatar a, Furhat robot (Al Moubayed et al. [2013]), Miroki robot b, and Pepper robot
(Pandey and Gelin [2018]).

ahttps://developer.oculus.com/documentation/unity/meta-avatars-overview/
bhttps://enchanted.tools/robot

Embodied agents have the common goal of improving communication and
the user’s experience (engagement, rapport, and liking). Several works have fo-
cused on enhancing the interaction itself for a smoother experience with the agent
(Bailenson and Yee [2005], Huang et al. [2010], Ritschel et al. [2017], Weber
et al. [2018]).

The use of SIAs has been seen for various applications showing their useful-
ness in teaching/coaching (Anderson et al. [2013], Pecune et al. [2016], Jones
and Castellano [2018], Pereira Santos et al. [2023]), assisting (Biancardi et al.
[2021], Sidner et al. [2018]), and providing healthcare (Raffard et al. [2018],
Ring et al. [2016], Shidara et al. [2022], Khamis et al. [2021]). Especially for
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1.1. SOCIALLY INTERACTIVE AGENTS

medical treatment, the employment of SIAs has greatly increased in recent years
proving the utility of SIAs (Khamis et al. [2021], Shidara et al. [2022].

1.1.1 Research context

The goal of SIA research is to create SIAs that are capable of interacting with peo-
ple in a social and engaging way. Ensuring such aspects of socialness, engagement
(starting, maintaining, and ending the perceived connections to each other during
an interaction; Sidner et al. [2003]), and rapport (positive affect, mutual atten-
tion, and coordination; Tickle-Degnen and Rosenthal [1990]) is essential to grab
the attention of its users and continuously carry out the interaction. To render
effective communication, the agents taking the role of interacting partners must
play active roles of both speaker and listener.

Human-human interaction studies have shown that communication is multi-
modal. Different channels (or modalities composed of verbal and nonverbal be-
haviors) of communication participate in passing one’s intention and emotions.
They are synchronized both intrapersonally (between the cues of the same per-
son) and interpersonally (between interlocutors) illustrated in Figure 1.2.

Figure 1.2 Illustration of intrapersonal and interpersonal relationships.

For SIAs to act as interlocutors, they need to not only pass their message by
aligning their multimodal signals derived from themselves (considering the in-
trapersonal relationship; Knapp et al. [2013]) but also constantly and reciprocally
adapt to their interlocutors by coordinating their behaviors to their interlocutors’
multimodal signals (taking into account the interpersonal relationship; Burgoon
et al. [1995]). The display of such adaptation capability is key to interpersonal
relationships (Cappella [1991]) and may enable SIAs to be perceived as social,
engaging, and establishing rapport (Biancardi et al. [2021], Oertel et al. [2020],
Delaherche and Chetouani [2010], Gupta et al. [2019], Huang et al. [2010], Raf-
fard et al. [2018]).

1.1.2 Research aim

SIAs have the goal to not solely serve as a speaker in a monologue but also as an
active interacting partner exchanging the speaking roles of speaker and listener.
For them to communicate with their interlocutors, they must have the social skills
to attract and maintain their interlocutors’ attention and involvement. One impor-
tant social skill, innate to humans, that enables such engagement is the adaptation
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capacity that is continuous, dynamic, and reciprocal. We refer to such adaptation as
reciprocal adaptation of which its endowment may allow SIAs to be considered as
a good communication partner. Despite the diverse advances of SIAs, various chal-
lenges remain to be solved for the creation of adaptive SIAs. The main challenges
that await to be addressed are as follows.

Figure 1.3 Illustration of Human-Agent Interaction with reciprocal adaptation.

Adaptation modeling:

In a conversation, humans communicate with their interlocutors via a multitude
of multimodal signals (verbal and nonverbal) while constantly adapting their be-
havior to those of their interlocutors. All signals originating from oneself and
interacting partners are taken into account for the generation of one’s behavior.
For SIAs to adapt in the same way, it is essential for them to also have the same
adaptation capability. The SIA and human interlocutor should constantly adapt to
each other as shown in Figure 1.3. Hence, the modeling of such adaptation skill, of
multimodality and interpersonal relationship, must be performed when computing
SIA behaviors.

Adaptation assessment:

Interaction evaluation has always been an onerous task. Notably, the assessment
of the presence of adaptation, particularly quantifying it, is not trivial. The assess-
ment of adaptation would be substantially helpful for evaluating human-human
and human-agent interactions.

Real-time functionality:

SIAs are designed with the final objective of being deployed for copious real-life
applications. For them to be shown to the public and demonstrate their helpful-
ness, they need to function in real time. This real-time facet needs to be assured for
any interaction system as communication generally proceeds with no delay and is
unexpected. Thus, the existence of a delay might deter the user experience which
is unwanted for SIAs that seek user engagement and satisfaction.
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Temporal alignment:

When producing a behavior, the corresponding speech and gesture are timely
aligned and synchronized. This aspect of time alignment is critical for behavior
generation. It is a challenging problem that must be solved especially assuring the
temporal sync of multimodal signals during perception and generation in real time.

1.2 Thesis Scope

The major theme of the thesis is to create an adaptive SIA serving as a social and
engaging interlocutor. Our goal is to enable the adaptive facade of SIA by supplying
the SIA with reciprocal adaptation capacity and ensuring its real-time use. We
address the aforementioned challenges by digging deeper into the three studies of
this thesis. Each study objective and associated research questions are detailed.

1.2.1 Human-Agent interaction analysis

What is the role of adaptation and how can adaptation be captured? It is hard
to get a clear image of adaptation and know its exact role in how it affects other
aspects such as engagement and social dimensions. With the aim of getting a
better understanding of adaptation and finding out how it can be measured, we
analyze human-human interactions with the goal of applying this knowledge to
human-agent interactions (see Chapter 5).

Research Questions:

In this study, we investigate the following research question:

1. Reciprocal adaptation: Is reciprocal adaptation (synchrony and entrainment
loop) related to engagement and/or social dimensions of warmth and com-
petence of the interlocutors?

1.2.2 SIA behavior generation with reciprocal adaptation capacity

Exhibiting appropriate behavior for a given situation, such as gestures that are co-
herent with speech and matching the interlocutors’ behavior, is an inherent ability
that makes it seem to be done effortlessly. Nevertheless, when we try to model the
interplay between the exchanged multimodal signals, the modeling is not evident.
The relation between social signals (interpersonal and intrapersonal relationship,
and multimodality) needs to be considered as well as their temporality. This study
aims to modelize the reciprocal adaptation by capturing the relations and temporal-
ity of interchanged signals and to generate adaptive SIA behaviors (see Chapters
6 and 8). In particular, we render the SIA’s facial gestures (facial expressions and
head/gaze movements) as the richness of facial expression elevates communica-
tion skills which are vital for the sociability of SIAs (Halberstadt [1983]).
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Research Questions:

In this study, we investigate the following research questions:

1. Reciprocal adaptation modeling: How can we model the reciprocal adaptation?

2. Impact of adaptation modeling on interpersonal dynamics: Does the endow-
ment of reciprocal adaptation capability improve interpersonal dynamics (in
terms of synchrony and engagement) of the generated SIA behaviors?

3. Impact of adaptation modeling on SIA behavior quality: Does the endowment
of reciprocal adaptation capability improve the quality of the SIA’s behavior
(in terms of naturalness and human-likeliness)?

4. Impact of capturing intrapersonal relationship: Does the explicit modeling of
the intrapersonal relationship (modelization of the relation between modal-
ity) influence the interpersonal dynamics and/or the quality of the SIA’s be-
havior?

1.2.3 Real-time system of human-agent interaction

To fully investigate the effect of providing an adaptive SIA, it is important for the
SIA to be tested and evaluated with real human users in a real-life scenario. The
impression of the SIA may be assessed via a third-person point of view. However,
as SIAs aim to interact with real human users for their deployment, it is better
to get the feedback of the actual users interacting in a first-person point of view.
Therefore, the implementation of a real-time system is necessary and the system
should be used to verify the significance of the embedding of reciprocal adaptation
to the SIA (see Chapter 7).

Research Questions:

In this study, we investigate the following research questions:

1. Effect of real-time adaptive SIA on user experience: Can an adaptive SIA en-
hance the user experience (agent perception)?

2. Effect of real-time adaptive SIA on application performance: Can an adaptive
SIA improve the effectiveness of CBT (user mood and state change; our cho-
sen healthcare application)?

1.3 Thesis contribution

The main focus of this thesis is to develop an interactive and adaptive SIA. We
develop a real-time adaptive SIA of which its nonverbal behaviors, notably its facial
expressions and head/gaze movements, are generated by capturing intrapersonal
and/or interpersonal relationships from multimodal signals. The contributions of
this thesis are discussed below.
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Novel measures of reciprocal adaptation

Our first contribution is the proposition of novel measures of reciprocal adaptation.
The adaptation measures are introduced and explained in detail in Chapter 5. The
relation between adaptation and the dimensions of engagement, warmth, and
competence was checked via our newly proposed measures. Moreover, the useful-
ness of the measures was verified for the assessment of human-agent interaction
quality. The adaptation measures were used for the objective evaluations of our
IAVA system (ref. Chapter 7) and HI2-ADAM model (ref. Chapter 8).

Parts of Chapter 5 appeared in ICAART (Woo et al. [2023e]).

Adaptive SIA behavior generation models

Reciprocal adaptation skill is a crucial one that plays a fundamental role in human
communication enabling interactive and engaging interactions. SIAs can acquire
this ability by modeling the interaction aspects of multimodal communication, and
interpersonal and intrapersonal dynamics. We propose two different computational
models to endow the reciprocal adaption capability which are:

• ASAP model (ref. Chapter 6) modeling the reciprocal adaptation focusing
on the aspects of interpersonal temporality (via self-attention pruning tech-
nique), multimodality (multimodal signal encoding), and behavior prediction
continuity (via autoregressive adaptive online prediction technique).

• HI2-ADAM model (ref. Chapter 8) generating adaptive SIA behavior as both
speaker and listener by encoding the multimodality, and intrapersonal (ex-
plicit modeling of modality histories) and interpersonal relationships.

The generated SIA behavior, of both models, outperforms the state-of-the-art
methodologies in terms of naturalness, human-likeness, synchrony, and engage-
ment.

Parts of Chapter 6 appeared in 28th International Conference on Intelligent
User Interfaces (Woo et al. [2023d]) and parts of Chapter 8 appeared in arXiv
preprint (Woo et al. [2023a]).

Real-time adaptive SIA

Real-time functionality is important for any system interacting with human end-
users. To validate the usefulness of SIAs with reciprocal adaptation ability, we
developed a real-time adaptive SIA system, our IAVA system (ref. Chapter 7). The
efficiency of adaptive SIAs is shown for the applications of Cognitive Behavior
Therapy (CBT) and Social Skills Training (SST). The system renders a positive
impression to its users, as it is perceived to be natural, human-like, engaging, in
sync, and building a rapport. Furthermore, it proved its serviceability in improving
the CBT effect. A new human-agent interaction database (CBT-HAI DB) has been
collected of the CBT interactions between the real-time adaptive SIA and human
users which is available to the research community upon demand.
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Parts of Chapter 7 appeared in ACM International Conference on Intelligent
Virtual Agents (IVA ’23) (Woo et al. [2023c,b]) and in 2023 International Con-
ference on Multimodal Interaction (Saga et al. [2023b]), and submitted to IJHCS
(Woo et al. [2023f]).
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• (Preprint) - Jieyeon Woo, Mireille Fares, Catherine Pelachaud, and Catherine
Achard. Amii: Adaptive multimodal inter-personal and intra-personal model
for adapted behavior synthesis. arXiv preprint arXiv:2305.11310, 2023a
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Pelachaud. Adaptive virtual agent: Design and evaluation for real-time
human-agent interaction. International Journal of Human-Computer Studies,
2023f

1.5 Thesis Outline

The thesis is organized into 5 parts which are as follows.
Part I presents the theoretical background, discusses related work, and intro-

duces the corpus. More specifically, Chapter 2 establishes the background knowl-
edge around SIA, human-agent interaction, nonverbal behavior, and adaptation.
Chapter 3 provides insight into existing approaches of sequence prediction, non-
verbal behavior generation, multimodal signal processing, and human-agent in-
teraction evaluation. Chapter 4 explains the corpus.

Part II focuses on human-human interaction analysis. Analysis of human-
human interactions around synchrony is done to propose new reciprocal adap-
tation measures in Chapter 5.

Part III is devoted to the behavior generation of SIA with reciprocal adaptation.
In Chapter 6, we present our ASAP model, a model that models the interpersonal
relationship (or reciprocal adaptation) rendering social and engaging SIA behaviors.

Part IV describes the development and evaluation of our real-time adaptive SIA
system. In Chapter 7, we detail the system architecture design and evaluate with
Cognitive Behavioral Therapy (CBT) and Social Skills Training (SST) as its proof-
of-concepts.

Part V demonstrates the modeling of reciprocal adaptation with intrapersonal
modality history. We propose our HI2-ADAM model, Chapter 8, which captures the
reciprocal adaptation and intrapersonal relationship in an explicit way by model-
ing each modality history (or memory) of each interlocutor and learning from the
relation between these different histories.
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The interaction between SIAs and humans (Human-Agent Interaction or HAI)
is an important field that needs to be studied to ameliorate the use of embodied
agents. Like human-human interaction, HAI also consists of social signals, verbal
and nonverbal, exchanged between interlocutors, and the adaptation is present
throughout the interaction. In this chapter, we draw attention to the theoretical
background and definition of nonverbal behaviors, adaptation, and HAI to present
the founding concept of our work.
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2.1. NONVERBAL BEHAVIORS

2.1 Nonverbal behaviors

Nonverbal signals, which are also referred to as body language constitute a major
part of communication signals. While verbal communication transfers informa-
tion through language containing explicit content, nonverbal behavior can convey
information implicitly and send a stronger message when combined with verbal
context.

2.1.1 Terminology of nonverbal behavior

Nonverbal behavior is conveyed through "body language" including gestures, fa-
cial expressions, body movements, and gaze (Burgoon et al. [2011]). We consider
nonverbal behavior as multimodal social signals that transfer information implic-
itly or explicitly via actions that can indicate an individual’s attitudes or feelings
without using words (i.e. lexical information). Prosody (or vocal cues), such as
pitch and loudness of voice, is also a nonverbal signal that contains pertinent in-
formation.

2.1.2 Importance in communication

When transmitting a communication message, we intentionally or unintentionally
vary our behavior (Burgoon et al. [2011]). Such communicative intentions are
generally transferred via verbal messages. Nonverbal behaviors also covey such
intent consciously and unconsciously. Adding nonverbal signals to verbal cues can
transmit the same message more clearly and strongly to the interlocutor. Further-
more, the language barrier (an inevitable problem for verbal comprehension and
feedback) can be broken via gestures. The understanding of different languages
is not needed to manifest and recognize feelings and/or thoughts. Nonverbal be-
havior is fundamental and influential in communication.

2.1.3 Types

Nonverbal channels encompass the behavioral aspects with physical characteristics
that make up people’s physical appearance (Knapp et al. [2013]). These embrace
gestures, posture, facial expressions, eye behavior, and touch. They also include
speech characteristics which are vocal cues.

Gestures:

Gestures are body movements made up of a combination of head, arm, and hand
motions. They are frequently studied in two groups of gestures that are speech-
independent and those that are speech-related.

• Speech-independent gestures do not accommodate verbal cues. Neverthe-
less, they do transfer a direct meaning (via linguistic wordings or phrases
produced at the same time) which can be considered as a direct translation
of the verbal message. Such translated body signals, which are often culture-
specific (Kita [2009]), are signals that people abided by tacit agreement.
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They are represented by signs such as the head nod for agreement or the
hand sign of "V" for victory that are solely produced without verbal signals.

• Speech-related gestures are deeply linked with or assist speech. Such types
of gestures generally have the purpose of illustrating the content of what
is being said. These motions help the interlocutor to understand better the
message that is being transmitted. They can visually picture the information,
detect which word or phrase is being emphasized by the speaker, infer the
process or path of thought, or directly see which object or location is being
pointed at.

Posture:

The posture is the position of the body (in particular the torso). Its inclination in-
dicates the degree of engagement, attention, or involvement within an interaction.
The stance of leaning forward can be interpreted as a positive sign of engagement
and closeness while leaning back will be perceived as being bored or keeping a
distance from the other interacting partner (D’Mello et al. [2007]). The mimicry
or mirroring of posture may also reflect rapport (Sharpley et al. [2001]).

Facial expressions:

Facial expressions are critical in comprehending people’s actions and behavior.
They are the most representative cues for expressing emotional state and attitude
(Ekman and Friesen [1978], Argyle [2013]). Daily people make various faces
conveying emotions such as anger, disgust, fear, sadness, excitement, boredom,
sympathy, calmness, awkwardness, and confusion. By displaying such expressions
they provide feedback on the signal sender’s state. With the variation and enrich-
ment of the facial expressions the interaction flow is managed and the communi-
cation skills of the exhibitor are heightened (Halberstadt [1983]).

Eye behavior:

Eye behavior is the eye movement of where we are looking at. When observing,
not only does the point where we look matter but the duration (how long we look
at or away) and the timing (when we look) also carry weight in communication.
Especially during a conversation, the mutual gaze (interlocutors looking into each
others’ eyes; or eye contact) is an essential factor that serves as an indication of
social presence, interest, engagement, or impression (Mason et al. [2005], Kom-
patsiari et al. [2017]).

Touch:

Touch is another way of communicating especially affect. It can convey an ex-
tensive range of meanings. Jones and Yarbrough [1985] identified distinct and
relatively unambiguous meanings of social touch which are support, apprecia-
tion, inclusion, sexual interest/intent, affection, playful affection, playful aggres-
sion, compliance, attention-getting, announcing a response, greetings, and depar-
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ture. Touch is heavily dependent on the relationship between the touchee and the
toucher. It is effective for social bonding and disclosing emotions (Chatel-Goldman
et al. [2014], Hertenstein et al. [2009]).

Vocal cues:

Vocal cues (or speech prosody) are vocal expressions that convey meaning or in-
formation about the speaker’s emotions, intents, or attitudes. Prosody is similar
to facial expressions in the way that it is affected by the surrounding social com-
ponents (Scherer et al. [1991], Argyle [2013]). Vocal cues are vocalization char-
acteristics represented by various frequencies and intensities. We can change the
way we speak (tone of voice) through the choice of pitch (high or low), volume
(loud or soft; or loudness), speed (fast or slow; or pace of speaking or speech rate).
Moreover, the same phrase can be spoken differently, stressing words or phrases,
by changing the pronunciation, enunciation, or articulation. The rhythm can also
be modified by inserting break points with pauses or adding musicality. These
acoustic features hint at the state of the speaker containing pragmatic, synthetic,
emotional, and contextual information. In addition, depending on the prosodic
cues, the same utterance could be interpreted differently. For example, the word
"ok" could be understood as a positive or negative response depending on how it
is said.

2.2 Adaptation

During an interaction, behavior adaptation between interlocutors takes place. The
adaptation is done by coordinating (or synchronizing) one’s behavior to that of the
other and by constantly entraining and being entrained by the interacting part-
ner. Adaptation (e.g. behavior coordination or synchronization) involves complex
phenomena such as perceiving social signals and responding to these social signals
within a given time window (Chartrand and Lakin [2013], Burgoon et al. [1995]).

2.2.1 Reciprocal Adaptation

Conversation participants exchange by reacting to each other’s social signals. The
exchange is not simply alternated by taking turns between the participants (hav-
ing a single reactor at the time), but the coordination involves different processes
such as anticipating and producing behaviors. Condon and Ogston [1966] point
out that there are intrapersonal synergies that are formed between one’s behaviors
and these synergies are coordinated across the interlocutors. They split the coor-
dination into two types: intrapersonal coordination for the behavior coordination
within oneself and interpersonal coordination for behavior coordination between
multiple people in an interaction. To be coordinated these behaviors should match
each other in action and time (Hove and Risen [2009], Burgoon et al. [1995]). We
can note that Chartrand and Lakin [2013] used the term behavioral mimicry (a
type of adaptation) when referring to the display of the same behavior at the same
time by 2 or more participants. For interpersonal coordination, an essential aspect
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is that the behaviors are timely aligned (Delaherche et al. [2012]). This coordina-
tion of social signals may also be referred to as interpersonal synchrony. Pickering
and Garrod [2004] talk about alignment defined as the adaptation of interlocu-
tors’ verbal behaviors. The interpersonal coordination of behaviors is an ongoing
operation that turns automatically in time during a natural interaction (Schmidt
and Richardson [2008]). Thus, adaptation is dynamic.

It is also important to note that interpersonal coordination, which is done pas-
sively and unintentionally to match the interacting partner’s behavior, has a certain
delay in perception and adaptation. Chartrand and Bargh [1999], who state that
interpersonal coordination is caused by mimicry behavior, call this unconscious
adaptation (or mimicry) phenomenon the chameleon effect. This perception of
interlocutors’ signal is sensible to temporal alignment. For nonverbal signals, the
temporal alignment (or the mimicry time delay) is along a time window of 2 to 4
seconds (Leander et al. [2012]).

Continuous entrainment occurs between the interlocutors (Prepin and
Pelachaud [2011]). When a person shows a behavior, it entrains the mimicry
behavior of their interactant. The entrainment doesn’t end with a simple mimicry
but it also rentrains the initial signal sender to continue performing the same
behavior or to resend the same signal. We refer to this process of sequential
entrainment as entrainment loop.

Adaptation, notably synchrony and entrainment, is closely linked to interac-
tion (e.g. human-human, human-machine, and human-agent interactions) dimen-
sions. The dynamic mutual adaptation has been shown to boost the engagement
level of the interlocutor and to build a stronger rapport between the interlocutors
within the interaction Delaherche et al. [2012], Raffard et al. [2018].

Figure 2.1 Illustration of reciprocal adaptation.

To encompass the diverse adaptation aspects, mainly interpersonal synchrony
and entrainment loop, we refer to the continuous, dynamic, and reciprocal behav-
ior adaptation as reciprocal adaptation (illustrated in Figure 2.1).

2.2.2 Definitions of relevant terms

For the rest of our work, we choose to define the following terms as:

Synchrony (or interpersonal synchrony): interpersonal coordination of social
signals that are timely aligned, as stated by Delaherche et al. [2012].

15



2.3. HUMAN-AGENT INTERACTION (HAI)

Entrainment loop: looped process shown between interlocutors of continuously
entraining the mimicry behavior of their interactant one after another as
mentioned by Prepin and Pelachaud [2011].

Reciprocal adaptation: behavior adaptation of interlocutors during an interac-
tion that is continuous, dynamic, and reciprocal.

2.3 Human-Agent Interaction (HAI)

The domain of Human-Agent Interaction (HAI) derives from the research
on Human-Machine Interaction (HMI; Human-Computer Interaction or Man-
Machine Interaction Boy [2017], Dix [2003]) which studies how humans interact
with machines. To get a better picture of what HAI is, we need to go back to the
origins of HMI and see how it started. With the appearance of machines, their
advantage of automating manual work has raised the discussion on the difference
in the feasibility of tasks. The comparison between humans and machines in
whether the same assignment could be done and which performs better in terms
of perfection, speed, and cost-effectiveness became the interest of researchers.
Fitts [1951], one of the pioneers of HMI, attempted to distinguish humans and
machines by systematically characterizing each of their strengths and weaknesses,
via "humans are better at/machines are better at" (HABA-MABA) approach as
seen in Figure 2.2.

The efforts of separating tasks and allocating them to the one that fits best,
human or machine, have been made. Nevertheless, for certain tasks, the perfor-
mance of humans and machines overlapped. The variable task assignment area is
illustrated in Figure 2.3.

As complex tasks, such as medical surgery, require the capabilities of both hu-
mans (to make sophisticated judgments) and machines (to perform precise move-
ments), task allocation of to whom the task should be assigned eventually became
unclear. Researchers started to drive towards the cooperation of humans and ma-
chines to benefit from the distinctive advantages of each side, opening the doors to
research in Human-Machine Collaboration. For such collaboration, the system de-
sign of taking humans into the machine interaction loop (i.e. human-in-the-loop)
is a requisite. The interaction between a human being and a machine is referred
to as Human-Machine Interaction which focuses on ameliorating the design and
use of interfaces (of computers and agents) allowing human users to interact with
them in novel and convenient ways.

2.3.1 Terminology of HAI

HAI replaces the terminology of "machine" with "agent" representing a subdomain
of HMI. It focuses on the interaction between humans and embodied agents (or
Socially Interactive Agents; SIAs). In HMI, the agent is defined as "anything that
can be viewed as perceiving its environment through sensors and acting upon that
environment through actuators" (Russell [2010]). Russell thinks with an Artifi-
cial Intelligence (AI) perspective concentrating on the autonomy of entities that
compromise various systems. For our work, we take the definition of agents from
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Figure 2.2 HABA-MABA approach of Fitts [1951].

Figure 2.3 Perspective of human and machine/agent capabilities for adaptive allocation
and adjustable autonomy (Bradshaw et al. [2017]).

Lugrin et al. [2021] defining them as SIAs (or embodied agents) that are capable
of autonomously carrying out natural conversations with people in a socially in-
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telligent manner. With this definition of agent, we consider HAI as the interaction
between humans and SIAs.

2.3.2 Objective

Like HMI, the objective of HAI is to improve the interaction between the human
and the agent. The advancement of HAI focuses on myriad aspects such as en-
gagement (Oertel et al. [2020]), social presence (Pereira et al. [2014], Li [2015]),
and behavior realism (Ferstl et al. [2021]) of agents.

Within the human-agent interaction, numerous social signals of diverse modal-
ities are exchanged. As in human-human interaction, the human and agent send
and receive multimodal signals which they interpret and use the perceived infor-
mation for the production of their next behavior. The management of the exchange
of multimodal information is also a key aspect of HAI.
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In this Chapter, we present an overview of the relevant works addressing our
topic of interest of generating reciprocally adaptive nonverbal SIA behaviors from
multimodal signals. We start by introducing the techniques (i.e. computational
models) for the different aspects of sequence prediction, nonverbal behavior gen-
eration (capturing intrapersonal and interpersonal temporalities), and multimodal
signal processing. As for rendering SIA behaviors, as evaluating them is also im-
portant, we describe the evaluation methods employed for HAI.
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3.1 Sequence prediction techniques

Generating nonverbal behaviors can be considered a similar problem to forecasting
future nonlinguistic action sequences. It is thus interesting to investigate existing
sequence prediction techniques that could be applicable to nonverbal behaviors.

The methods of sequence prediction can be broadly split into two: offline and
online prediction. Offline prediction predicts by giving a sequence of data all at
once while online prediction refers to the inference method in which the data
are predicted sequentially one after another. We look into these two types to
pick the technique that suits best for generating smooth and continuous nonverbal
behavior.

3.1.1 Offline prediction

Offline prediction infers with the whole input data given from the start. The en-
tire sequence is predicted at once and this prediction is done in groups (or se-
quences) and is done independently without considering the previously outputted
prediction. Its application can be easily seen for sequence to sequence predic-
tions. Models for such predictions generally have the structure of an autoencoder
that encodes the inputted sequence and a decoder that predicts the resulting se-
quence by decoding the output of the encoder. Sequence to sequence prediction
models produce good results for machine translation (Sutskever et al. [2014],
Moslem et al. [2023]) and speech recognition (Li et al. [2018], Radford et al.
[2023]). The representative models that can be seen in the literature are Bi-
directional Long Short-Term Memory (BLSTM; Graves and Schmidhuber [2005]),
autoencoders (Greenwood et al. [2017], Ahuja and Morency [2019], Yuan and
Kitani [2020]), Generative Adversarial Network (GAN; Goodfellow et al. [2014],
Ferstl et al. [2019]), normalizing flow (Henter et al. [2020], Papamakarios et al.
[2019]), and Transformers (Vaswani et al. [2017], Bhattacharya et al. [2021],
Fares et al. [2022], Radford et al. [2023]).

3.1.2 Online prediction

Unlike offline prediction, online prediction renders the output in a sequential man-
ner predicting for each time-step separately. Among the appliance domains of on-
line prediction, the most representative one is the time series forecasting. Time
series forecasting has a wide range of applications such as weather forecasting
(Kumar and Jha [2013], Wan et al. [2019]), traffic flow forecasting (Lippi et al.
[2013], Tian and Pan [2015]), or stock market prediction (Kim [2003], Tsan-
tekidis et al. [2017]). Various models based on online prediction can be seen
in the literature such as Multilayer Perceptron (MLP), Recurrent Neural Network
(RNN), Long Short-term Memory (LSTM), Convolutional Neural Network (CNN),
and Temporal Convolutional Network (TCN; Palmer et al. [2006], Mohammadi
et al. [2018], Tian and Pan [2015], Tsantekidis et al. [2017], Wan et al. [2019]).

Online prediction can be separated into two types which are sliding window
prediction and adaptive online prediction. For sliding window prediction, predic-
tions are made independently for each time-step, using only the data of the current
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sliding window, and thus without considering the previous output data. Adaptive
online prediction also predicts sequentially for every time-step but it uses a mem-
ory that is continuously updated during iteration. Thus, the whole sequence of
input data is considered to make the prediction at the given time-step and not
only the data of a sliding window. This update of the latent vector using the full
input data sequence allows adaptive online prediction to render continuous output
data.

The output continuity can be further enhanced for both online prediction tech-
niques, sliding window prediction and adaptive online prediction, by integrating
the past outputs as input for the future prediction. More precisely, the observa-
tions from previous time-steps are fed to a regression equation to predict the value
at the next time-step. Such technique that predicts by feeding the output back to
the model is called to be autoregressive.

3.2 Nonverbal behavior generation for HAI

The generation of the multimodal behavior of SIAs requires modeling the tempo-
rality of exchanged social signals. Both intrapersonal temporality (coordination
of the multimodal communicative behaviors within a single person) and interper-
sonal temporality (multimodal behaviors arising during dyadic or multi-person in-
teractions) are essential components of the reciprocal adaptation as we adapt our
behaviors depending on our prior behaviors and the behaviors shown by others.

3.2.1 Intrapersonal temporality

Previous works that modelize intrapersonal temporality proposed models that gen-
erate facial expressions and communicative gestures linked to speech. They focus
on the modeling of intrapersonal relationship for a single person (multimodality
within the same person). These works employ various Deep Learning (DL) tech-
niques. Several works employ the Feed-Forward Neural Network (FFN; Bebis and
Georgiopoulos [1994]) to compute communicative behaviors such as 3D facial
animations or head motion from audio (Karras et al. [2017], Ding et al. [2015]).
Other models such as the Bi-directional Long Short-Term Memory (BLSTM; Graves
and Schmidhuber [2005]) for head movement prediction from sliding temporal
windows of prosody features or 3D human body gesture generation from audio
utterances (Sadoughi and Busso [2018], Hasegawa et al. [2018]), the conditional
autoencoder, the Conditional Variational Autoencoder (CVAE) to predict head pose
with speech or to generate diverse body poses via DLow sampling method (Green-
wood et al. [2017], Yuan and Kitani [2020]), the Generative Adversarial Network
(GAN; Goodfellow et al. [2014]) for generating multiple plausible realizations of
real looking communicative gestures or head movements from each speech seg-
ment by sampling from a conditioned distribution (Ginosar et al. [2019], Ferstl
et al. [2019]), normalizing flow based model (MoGlow method) to speech driven
gesticulation generation (Alexanderson et al. [2020]). Recent models employ the
Transformers (Vaswani et al. [2017]) to generate emotive body gestures based on
text (Bhattacharya et al. [2021]) or face and upper body gestures based on visual,
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speech, and linguistic modalities (Fares et al. [2022, 2023]). They have shown
that natural and human-like behaviors can be generated by modeling intraper-
sonal relationship.

3.2.2 Interpersonal temporality

Interpersonal temporality is the temporal relationship between participants within
an interaction.

The modeling of nonverbal behaviors for dyadic interactions started off with
rule-based systems such as manually designed rules that were used for predicting
backchannels (Truong et al. [2010]), decision trees for chatbot systems generat-
ing natural responses and their timing (Nishimura et al. [2007]), and multimodal
probabilistic models that predict backchannels via multimodal signals (Morency
et al. [2010]). The generation of nonverbal behavior such as facial expression,
head and body motion started to flourish with the rise of DL models. Feng et al.
[2017] modelized the relationship between a human user and a SIA. They gener-
ate the agent’s facial gestures using the agent’s and human’s previously predicted
facial gestures by creating a Feed-Forward Neural Network (FFN) model. They
solely use visual features (facial landmarks) and do not make use of the multi-
modal information present in the interaction. Also, it is exposed to the problem
of outputting discontinuous predictions between two time-steps. Grafsgaard et al.
[2018] learn by encoding the multimodal signals (facial expression, body motion,
and speech) using a Long Short-Term Memory (LSTM) model to predict the facial
expression and motion of a partner with the speech of both partners and their
facial expression and motion features. The interpersonal relationship is modeled
by encoding both partners’ behaviors; the multimodality is considered but their
behavior predictions risk to be not fluid. Dermouche and Pelachaud [2019b] also
study the interpersonal relationship by referring it as the interactive loop to gener-
ate the agent’s behavior. They additionally modelize the temporality of nonverbal
signals by introducing their Interactive Loop LSTM (IL-LSTM) that considers both
agent’s and user’s upper face behaviors to model the agent’s nonverbal behaviors.
Similarly, to the model in Feng et al. [2017], the IL-LSTM has the same issue of
only taking unimodal input features (facial gestures). As it generates using the
sliding window prediction it produces jerky movements and does not consider the
whole interaction context. Ahuja et al. [2019] integrates interpersonal and intrap-
ersonal dynamics via selective attention. They forecast body pose sequences based
on the human interlocutor’s audio and body pose and audio of the agent.

For motion generation, several works use generative models such as Generative
Adversarial Network (GAN; Goodfellow et al. [2014]) and normalizing flow-based
models to generate motions that are more diverse and realistic. An extended sys-
tem of MoGlow (Henter et al. [2020]) is used by Jonell et al. [2020] to predict the
agent’s facial expression based on the audio of both partners and the facial expres-
sion of the human by encoding all modalities using a RNN and passing their con-
catenation to a neural network at each time-step of the flow. Tuyen and Celiktutan
[2022] forecast the upper body motion (face, body, and hand landmarks) with a
context-aware model that consists of three components of context encoder, gen-
erator, and discriminator. The context encoder encodes the interacting partner’s
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nonverbal behaviors (body motion and audio) and passes the encoded contextual
information to the generator along with the target person’s body motion. Then the
actions outputted by the generator is injected into the discriminator with the con-
textual information to validate the motion. The two generative models employed
in Jonell et al. [2020], Tuyen and Celiktutan [2022] create various possible behav-
iors by modeling the two facades of interpersonal temporality and multimodality.
Nevertheless, they face the same problem of not establishing a continuous link be-
tween two sequentially but separately predicted outputs. With the emerging trend
of the Transformers model (Vaswani et al. [2017], Ng et al. [2022]) generate a
continuous 3D facial motion of the listener via an autoregressive transformation-
based predictor taking the output of the cross-modal attention that combines the
speaker’s facial motion and audio inputs and that of Vector Quantised Variational
AutoEncoder (VQ-VAE; Van Den Oord et al. [2017]) which discretizes the listener’s
past facial motion. Their architecture allows the modeling of interpersonal tempo-
rality and multimodality, and render continuous predictions via the autoregression.
One point that could be hindersome about the model is that transformer-like mod-
els require massive amount of data to train. Thus, it might not be suitable for all
applications that do not have sufficient amount of data.

3.3 Multimodal signal processing

The multimodality of signals that can come from words, prosody, and facial expres-
sion, is an important aspect that needs to be dealt with for the task of generating
nonverbal behavior to ensure an engaging interaction. The works presented in
the previous section use multimodal signals (audio, visual, and textual features)
for nonverbal behavior generation. Nevertheless, they do not all explicitly model
multimodality. Explicit modeling of multimodal signals can provide a deeper un-
derstanding of the exchanged information. Therefore, we observe how these mul-
timodal signals can be explicitly processed from models applied for different tasks,
including but not limited to nonverbal behavior generation. Chu et al. [2018]
propose a neural conversation model generating facial expressions alongside text.
Their goal is to add richness to their generation by exploiting modalities in a sep-
arate manner. Rather than concatenating both modalities, they use a RNN ded-
icated to each modality and then obtain the global description by concatenating
the history of each modality. Rajagopalan et al. [2016] extended the LSTM for
multimodal learning by proposing Multi-View LSTM (MV-LSTM) which explicitly
models modality-specific and cross-modality interactions. Thus, the model defines
four types of memory cells: modality-specific cells, coupled cells, fully connected
cells, and input-oriented cells. MV-LSTM shows promising results (high accuracy
for the engagement level prediction task) in exploiting multi-view relationships
for behavior recognition. Another approach that learns from multiple modalities
was proposed by Zadeh et al. [2018]. Their structure, named Memory Fusion
Network (MFN), learns view-specific dynamics in isolation by training a LSTM for
each modality and finds cross-view interactions by associating a relevance score to
the memory dimensions of each LSTM via an attention mechanism. It stores the
cross-view information over time in the Multi-view Gated Memory acting like a
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dynamic memory module. MFN has been tested on several multimodal databases
and performs highly in sentiment analysis, emotion recognition, and speaker traits
recognition. Sharma et al. [2021] modeled an attention-based multimodal for vi-
sual question answering of medical images. They use attention modules to focus
on the most relevant part of the medical images and questions. Their study shows
that the multimodal information can be better captured via the attention mecha-
nism and the interpretability of the results can also be obtained.

Existing models presented above show how we can consider the temporal co-
herence or explicitly model multimodal signals. Nevertheless, for the nonverbal
behavior generation, these two aspects of temporality and multimodality are not
fully considered. In an interaction both multimodal and temporal relations of ex-
changed signals can be observed simultaneously and are correlated. The different
modalities provide additional information and the capture of complementary in-
formation can be strengthened by explicitly modeling multimodal signals. These
multimodal signals also need to be temporally coherent with each other. The tem-
poral sync must be ensured not only between the different modalities of the same
person (intrapersonal temporality) but also between those of his/her interlocutor
(interpersonal temporality). Considering the two aspects together can further help
capture and understand the correlation between them. It will thus be interesting
to investigate how to embed their dynamics for engaging dyadic interactions.

3.4 HAI evaluation

The evaluation of SIA’s non-verbal behavior sequences is a difficult and ill-posed
problem. We do not display the same behavior all the time. For the same event,
depending on various factors such as the person that we are interacting with, the
time of day, and our mood, we communicate and react differently to our inter-
locutor. For example, we may or may not respond to a nonverbal signal (e.g.
smile), with more or less intensity and more or less latency. In the same way,
head movements are important in maintaining engagement but they do not obey
strict and precise laws, and a multitude of movements are possible in response
to an interlocutor. However, not all occurring movements are perceived as social,
convincing, informative, or even carrying meaningful information. This is what
we want to learn during sequence generation: to generate multimodal behavior
sequences that convey the intended intention (e.g. maintaining engagement) and
are perceived as such by the human interlocutors.

3.4.1 Subjective measures

But how do we evaluate the quality of the generative behaviors models? There is
no unanimous answer to this question today. A large literature on human-agent
interaction evaluation has been done to qualitatively measure behavior quality.
Various aspects of the generated behaviors are assessed which are:

• Behavior naturalness (Fitrianie et al. [2021], Von der Pütten et al. [2010]):
e.g. "Is the behavior of the virtual agent artificial?";
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• Behavior human-likeliness (Fitrianie et al. [2021], Von der Pütten et al.
[2010]): e.g. "Does the virtual agent behave like a human?";

• Engagement (Fitrianie et al. [2021], Von der Pütten et al. [2010]): e.g. "The
virtual agent was engaged in the conversation?";

• Synchrony (Prepin et al. [2013], Louwerse et al. [2012]): e.g. “The virtual
agent and I were agreeing to each other?”;

• Rapport (Wang and Gratch [2009], Von der Pütten et al. [2010]): e.g. "I
think the virtual agent and I established a rapport.".

3.4.2 Objective measures

While some studies focus on evaluating only based on subjective study (Jonell
et al. [2020]), objective measures are also vital to fully assess the quality. We
present here some quantitative measures used in the literature (Feng et al. [2017],
Dermouche and Pelachaud [2019b], Grafsgaard et al. [2018], Ng et al. [2022]).

Behavior precision

Like any other regression model evaluation, we could accept a generated behavior
to be correct based on its quantitative closeness to the ground truth. In other
words, the accuracy is calculated using metrics such as Mean Squared Error (MSE;
Ding et al. [2015], Sadoughi and Busso [2018]), Root Mean Squared Error (RMSE
or L2; Feng et al. [2017], Dermouche and Pelachaud [2019b], Ng et al. [2022]),
Mean Average Error (MAE; Ginosar et al. [2019]), and Average Position Error
(APE; Hasegawa et al. [2018], Ahuja and Morency [2019], Ahuja et al. [2019])
for each sample.

Behavior likelihood

Various outcome behaviors could derive from the same surrounding signals. There
is not a fixed behavior (the ground truth) for a given situation and there are mul-
tiple plausible answers. A lot of solutions are used to estimate the quality of se-
quences generated using Generative Adversarial Network (GAN). They are often
based on the principle that several sequences are generated for the same test-
ing example. A solution consists of estimating the distribution over generated
sequences and then, calculating the log-likelihood of the ground truth sequence
(Sadoughi and Busso [2018], Jonell et al. [2020], Mao et al. [2021]). Another
solution is to measure the smallest distance between the generated sequences and
the ground truth one, and average these distances along the testing sequences.
Aliakbarian et al. [2021] estimate the diversity of the generated sequences as the
average distance between all pairs of generated sequences. At the same time, they
measure the quality using a binary classifier that discriminates between real and
generated sequences. Other authors use statistical measures of Inception Score
(ID) or Frechet Inception Distance (FID) to measure the generation fidelity of hu-
man motion (Aliakbarian et al. [2020], Cai et al. [2021]).
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Behavior Synchrony

All the previous measures assume that several sequences are generated for the
same test sequence or that we can estimate the distribution of real sequences. The
reciprocal adaptation leads us to a very specific case where the previous measures
cannot be applied. The mutuality of the adaptation must be evaluated and the
whole interaction must be taken into account. More importantly, a lot of temporal
dependencies exist between both partners and these phenomena are not observed
using the previous measures. Thus, we are also interested in the interpersonal
relationship and how to measure it.

While conversing, the speech and movement of the interlocutors are dynami-
cally coordinated (i.e. interpersonal synchrony). However, the detection of such
coordination is not so simple. In a real conversation, the signals do not always
happen simultaneously at the same moment. The signals generally are exchanged
one after another. The most common way to measure interpersonal synchrony
is via Pearson’s correlation (PCC; Campbell [2008], Delaherche and Chetouani
[2010], Reidsma et al. [2010], Zadeh et al. [2018], Ng et al. [2022]).

Each interlocutor can send or respond to a signal with a certain time delay (af-
ter a perception time (Chartrand and Bargh [1999])). For example, when a person
smiles, the interacting person can respond to this smile or not. This response is
perceived as a mimic of the first smile if it happens within a time delay of 2 to 4
seconds (Leander et al. [2012]). Thus, we need to take into account time shifts.
Several works address this by applying the time-lagged cross-correlation (TLCC;
Boker et al. [2002], Ashenfelter et al. [2009], Beňuš et al. [2011]). A hindersome
limitation of correlation is that a window length of interaction must be chosen to
perform the correlation. However, the window sizes can vary for each produced
motion and are not the same for interactors.

Another method of synchrony evaluation is the recurrence analysis (Shock-
ley et al. [2003], Varni et al. [2010]). The analysis assesses “recurrence points”
which are points in time where similar states (or patterns of change) are visited
by two different systems. The recurrent analysis depends on manipulable states
(e.g. posture state or affect state) and shows a graphical representation (a diag-
onal structure) of time periods when two systems visit the same state. For the
recurrent analysis, the evaluation requires a fixed length of system periods and
time shifts.

The mimicking behaviors can also differ in terms of duration and intensity.
This implies that the sequence comparison also needs to be invariant to dilations
when comparing the signals. A well-known technique that deals with such aspects
is Dynamic Time Warping (DTW; Müller [2007]). The similarity between two
temporal sequences of different speed and length can be measured.

New indicators characterizing synchrony phenomena were introduced by
(Rauzy et al. [2022]). They consider the two signal timescales as oscillating
normal modes associated with the sum and the difference of the trajectories (xsum

for symmetric mode and xdiff for asymmetric mode). Based on the two, they
propose new indicators (mode characteristic periods, coupling factor, coefficient
of synchrony, and energy) to evaluate the synchrony.
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Model
Interpersonal

features
Modalities Continuity

Small
dataset

Karras et al. [2017] a, e ✓
Alexanderson et al. [2020] a, v, s ✓ ✓

Fares et al. [2023] a, v, t
Feng et al. [2017] ✓ v

Grafsgaard et al. [2018] ✓ a, v
Dermouche and Pelachaud [2019b] ✓ v ✓

Jonell et al. [2020] ✓ a, v ✓
Tuyen and Celiktutan [2022] ✓ a, v

Ng et al. [2022] ✓ a, v ✓
Our proposition ✓ a, v ✓ ✓

Table 3.1 SIA behavior generation models. Input modalities marked as a:audio, v:visual,
t:text, e:emotion, and s:style.

As an alternative to temporal methods, spectral analysis was suggested. The
evolution of relative phase for a stable time-lag between interlocutors is measured
(Oullier et al. [2008], Richardson et al. [2007]). It also renders information about
the coordination stability with the flatness degree of the phase distribution and
the overlapping frequency via the cross-spectral coherence. The synchrony can be
also measured in the time-frequency domain via cross-wavelet coherence (Hale
et al. [2020]).

3.5 Discussion

The generation of nonverbal signals is time-dependent like time series problems.
The memory retention present within recurrent networks such as RNN, LSTM,
and TCN, has shown great promise in time series forecasting. As human behaviors
heavily depend on previously performed ones, this aspect of memory is also impor-
tant for our situation. Moreover, as behavior must be continuous, it is preferable
to employ adaptive online prediction along with the aspect of predicting based on
the previous time-stamped data in an autoregressive manner (ref. Section 3.1).

The aforementioned models (ref. Sections 3.2 and 3.3), resumed in Table 3.1,
show how the relationship between the social signals of oneself (intrapersonal re-
lationship), the signals of the interlocutors (interpersonal relationship), and the
multimodal signals can be modeled. For our work, we want to model the recipro-
cal adaptation by considering the two facets of temporality (both intrapersonal and
interpersonal) and multimodality along with the continuity aspect for the genera-
tion of our agent’s nonverbal behavior. The multimodality modeling is absent in
Feng et al. [2017], Dermouche and Pelachaud [2019b] and the continuity is not as-
sured for Feng et al. [2017], Grafsgaard et al. [2018], Dermouche and Pelachaud
[2019b], Jonell et al. [2020], Tuyen and Celiktutan [2022]. While Ng et al. [2022]
meets all three of our criteria, it requires a lot of training data. In our case, we
use a small database (ref. Chapter 4), making their model not suitable for our
application. We propose a new model, Augmented Self-Attention Pruning (ASAP)
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model presented in Chapter 6, that renders continuous nonverbal behaviors (for
both speaker and listener) performing with a small dataset. It also learns to cap-
ture the interpersonal relationship between the interlocutors from the exchanged
multimodal signals to endow SIAs with the reciprocal adaptation capability. More-
over, we develop another model, Historical Intrapersonal Interpersonal ADAptive
Multimodal model (HI2-ADAM) model detailed in Chapter 8, which also captures
the reciprocal adaptation to generate adaptive and continuous nonverbal SIA be-
havior (for both roles) like the ASAP model. HI2-ADAM model better encodes the
adaptation between the interlocutors by explicitly modeling the intrapersonal re-
lationship with the modality histories (modality memory) and a deeper encoding
of the multimodal signals.

Various efforts have been made to quantify the quality of nonverbal behav-
iors (ref. Section 3.4). Nevertheless, there is not yet a perfect metric to evalu-
ate them. Especially several aspects of behavior quality such as naturalness and
human-likeness might be trivial for a human, but still very hard to access for a ma-
chine (Fitrianie et al. [2020, 2021]). Thus, human evaluation remains a critical
part of behavior evaluation (Feng et al. [2017], Karras et al. [2017], Chu et al.
[2018], Sadoughi and Busso [2018], Alexanderson et al. [2020], Jonell et al.
[2020], Yuan and Kitani [2020], Cai et al. [2021], Fitrianie et al. [2020]). To
better evaluate the interpersonal synchrony between the human and the agent and
to complement the subjective evaluation, we propose the use of new metrics for
agent behavior evaluation, presented in Chapter 6, and new reciprocal adaptation
measures (synchrony and entrainment loop measures), introduced in Chapter 5.
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This Chapter presents the corpus that we chose to use for our study of gen-
erating reciprocally adaptive behavior for human-agent interaction (consisting of
analysis in Chapter 5, reciprocal adaptation modeling in Chapters 6 and 8, and
real-time system in Chapter 7). We also explain the applied processes of feature
extraction and data processing along with the employed annotations.
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4.1 NoXi Corpus

For our study, we use the NoXi database (Cafaro et al. [2017]), shown in Fig-
ure 4.1, which is a corpus of screen-mediated face-to-face interactions. It contains
natural dyadic conversations talking about a common topic. Each interacting dyad
consists of a pair of participants with two different roles which are called expert
and novice. The expert is the one who transfers information with the goal of shar-
ing his/her knowledge on a topic and thus who leads the conversation by talking
more frequently and for a longer time. The novice (the other interacting partner)
receives the information and responds to the sayings of the expert on the topic.

Figure 4.1 Snapshots of the NoXi corpus’s recording session.

The NoXi corpus consists of 3 parts depending on the recording location
(France, Germany, and UK). For our work, we only use the recording from
the French location which consists of 21 dyadic interactions performed by 28
participants (23 males and 5 females) with a total duration of 7h22min. The
participants’ age is in the range of 18 − 45 years old mainly consisting of 21 − 25
years.

4.2 Feature Extraction

We obtain nonverbal behavior features for both interacting participants through
feature extraction. For each time-step, the visual and audio features, listed in
Table 4.2, are extracted using opensource toolkits of OpenFace (Baltrušaitis et al.
[2016]) and openSMILE (Eyben et al. [2010]) (after a denoising phase explained
below) respectively.

4.3 Data processing

To clean up the data, we process the visual and audio features separately.

4.3.1 Visual data processing

We process the visual data on the extracted visual feature by firstly filtering out
unsuccessful extractions (with a success rate under 0.7) as there are some mo-
ments where OpenFace extracts the features with low accuracy extracting wrong
feature values. We interpolate (linear interpolation) to fill in the dropped values
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Feature Description

Visual

Head Rotation
Rx Head rotation around the x axis
Ry Head rotation around the y axis
Rz Head rotation around the z axis

Head Translation
Tx Head translation around the x

axis
Ty Head translation around the y

axis
Tz Head translation around the z

axis

Gaze (or Eye Movement)
Gx Gaze around the x axis
Gy Gaze around the y axis

Facial Action Units (Facial AUs
detailed in Appendix A in
Chapter 10; Ekman and Friesen
[1976])

AU1 Inner brow raiser
AU2 Outer brow raiser
AU4 Brow lowerer
AU5 Upper lid raiser
AU6 Cheek raiser
AU7 Lid tighten
AU12 Lip corner puller for smile
AU15 Lip corner depressor

Audio

Fundamental Frequency (or
Pitch)

F0 Predominant frequency repre-
senting the speech quality

Loudness Speech intensity from the audi-
tory spectra

Voicing probability Speech presence probability ex-
pressed as a probability score in
the range of 0 to 1

Mel-Frequency-Cepstral Co-
efficients (MFCC; Logan
[2000])

Representation of the short-term
power spectrum of a sound; rep-
resented by 13 MFCC features
(0-12)

Table 4.2 Extracted features from the NoXi corpus.

and smooth out the feature data by applying a median filter (with a window size
of 7 found after manual verification). Then, different scaling techniques, normal-
ization (shifting and rescaling values to make the data range between 0 and 1;
or Min-Max scaling) and standardization (setting the attribute mean to 0 and the
distribution to have a unit standard deviation) methods depicted in Table 4.3, are
applied depending on the characteristic of each feature. The scaling technique
of Type 1 (a standardization method) is applied to the head rotations (Rx,y,z),
head translations (Tx,y,z), and gaze (Gx,y) as their values are centered around the
mean with a unit standard deviation. For facial AUs (AU1, AU2, AU4, AU5, AU6,
AU7, AU12, and AU15), the Type 2 scaling technique (a normalization method) is
employed as their intensity values ranges from 0 to 5.
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4.3.2 Audio data processing

The audio processing starts with the denoising of the audio files, removing sur-
rounding sound, via Audacity’s noise reduction (Audacity [2017]). The denoised
audio is used to extract the audio features. The extracted audio features are pro-
cessed with their corresponding scaling technique similar to the preprocessing of
visual features as found in Table 4.3. The applied scaling techniques for different
audio features are as follows. Type 1 is applied to the 12 MFCCs (1-12) showing
data centers around a mean and different standard deviations of which we want
to scale to 1. Type 2 is applied to the pitch (F0) ranging from 0 to each speaker’s
maximum pitch level. Type 3 (a normalization method) is applied to loudness also
ranging from 0 to each speaker’s maximum loudness value with different standard
deviations. To respond to the difference in standard deviation, the standardization
method (Type 3) includes a multiplication with α (feature standard deviation co-
efficient) which allows the different values of the same feature to share the same
standard deviation value. Type 4 (a normalization method) is applied to MFCC0
consisting of values varying between a minimum and maximum value.

All the features are adjusted to 25fps for our study.

Scaling Technique Feature(s)
Type 1 f−µ

σ Rx,y,z, Tx,y,z, Gx,y, and MFCCs (1-12)
Type 2 f

fmax
AUs(1, 2, 4, 5, 6, 7, 12, 15) and F0

Type 3 f
fmax

∗ α Loudness
Type 4 f−fmin

fmax−fmin
MFCC0

Table 4.3 Scaling technique types corresponding to each feature. f corresponds to the
feature values, fmax corresponds to the maximum feature value, fmin corresponds to the
minimum feature value, µ corresponds to the mean of the feature values, σ corresponds
to the standard deviation of feature values, and α corresponds to the feature standard
deviation coefficient.

4.4 Annotations

To analyze the human-agent interaction, we not only look into low-level signals
(i.e. extracted features) exchanged within human-human interactions of the NoXi
corpus but also study the high-level signals that are annotated. Annotations of
engagement and social dimensions of warmth and competence, annotated at the
signal level, are available for the NoXi corpus (available with the annotation tool
NOVA (Heimerl et al. [2019]) shown in Figure 4.2).

For the engagement annotations, the perception change of engagement was
characterized in Dermouche and Pelachaud [2019a] with five levels (0: strongly
disengaged; 1: partially disengaged; 2: neutral; 3: partially engaged; 4: strongly
engaged). In Biancardi et al. [2017], the continuous annotations of social di-
mensions of warmth and competence were done with scores ranging from 0 to 1
(0: very low degree of perceived warmth or competence; 1: very high degree of
warmth or competence). As the work of Biancardi et al. [2017] focuses on the
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Figure 4.2 NOVA annotation tool.

expert, we also use the annotations on the three aspects of engagement, warmth,
and competence of the expert.

We also get the annotations of the conversational state automatically by per-
forming voice activity detection (VAD), which is a binary classifier that detects the
presence of human speech in audio, on the denoised audio files.
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Chapter 5
Human-Agent Interaction Analysis
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In this Chapter, we present the analysis of a corpus of dyadic human-human
interactions around adaptation. With the goal to better analyze human-agent in-
teractions, we propose new reciprocal adaptation measures.
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5.1 Introduction

Research around SIAs mostly focuses on the development of creating a more so-
cial, engaging, and human-like SIAs. Not only is it important to develop such SIAs
but it is also essential to evaluate their quality. Nevertheless, the task of evaluating
the agent’s quality is challenging. In particular, the way of objectively evaluating
human-agent interactions is not evident. As SIAs are interacting with the human
users, the assessment must not only be done at the agent’s side but also at the
interaction level considering the human interlocutor. To address this problem,
we propose new measures of adaptation by looking into real human-human in-
teractions. Among the different aspects of adaptation, we focus on assessing the
synchrony and entrainment loop of dyads.

As a first step in studying our adaptation measures, we observe how synchrony
and entrainment loop participate in the perception perspectives of engagement
between interlocutors and interlocutors’ social attitudes. We hypothesize to see a
relationship between reciprocal adaptation (synchrony and entrainment loop) and
engagement levels. We also hypothesize that reciprocal adaptation may have an
impact on the perception of the social dimensions of warmth and competence of
the interlocutors.

In our study, we focus on smile, a social signal that may convey a great va-
riety of communicative and emotional functions (Niedenthal et al. [2010], Hess
et al. [2014]). Smiles are frequently observed during an interaction (Knapp et al.
[2013]). They can signal friendliness and positive emotions; they can be used as
a polite signal to greet an acquaintance; they can be indicated as agreement and
liking; etc. Smile is an important socio-emotional signal that has received a lot
of interest in affective computing domains. Previous studies have highlighted the
power of smiling SIAs to achieve such a goal (Wang and Ruiz [2021], Ochs and
Pelachaud [2013]).

We present new reciprocal adaptation measures that can be employed to objec-
tively evaluate the quality of the agent in human-agent interaction. Our ultimate
goal is to build socially interactive SIAs that are able to maintain user engagement
during an interaction. In the scope of this section, we are interested in studying
the reciprocal adaptation of smile behaviors in dyadic interactions. To do so, we
propose new objective measures that study the synchrony of behaviors including
their absence of response and behavior entrainment loop to better understand
how nonverbal behavior adaptation emerges during an interaction. We aim to in-
vestigate how they are displayed between the participants of an interaction and
how they participate in the perception of conversational engagement and social
attitudes of the participants. We look at the relation of reciprocal adaptation with
the engagement level and the social dimensions of warmth and competence.

5.2 Related Works and Limitations

During a conversation, interlocutors dynamically adapt by coordinating their
speech and behaviors (Condon and Ogston [1967], Burgoon et al. [1995],
Bernieri and Rosenthal [1991], Chartrand and Lakin [2013]). Among the various
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social signals that are produced during an interaction, the smile is one of the
most important human interaction signals. The smile alone can express diverse
information (e.g. affect state, level of engagement, and intrinsic nature) to the
interacting partner in a variety of social contexts (Ekman [1992], Hess et al.
[2002]). The presence of a smile that incorporates such diverse implications can
impact the perception by other partners (e.g trust, intelligence, warmth, and
attractiveness) (Scharlemann et al. [2001], Lau [1982], Reis et al. [1990]). As
such, we want to check the influence of smiles between the interlocutors and thus
hold an interest in measuring the smile adaptation. To find out how to measure
the adaptation of smiles, we investigate related measures notably synchrony
measures (e.g. measures for nonverbal signals and biomedical signals).

Early works on synchrony started off with manual assessment done by trained
observers who were trained to perceive it directly in the data. Such evaluations
were based on behavior coding methods that evaluate the interaction behaviors
on a local scale by analyzing them in micro-units (Cappella [1997], Condon and
Sander [1974]). However, the training of observers is very labor-intensive which
led them to switch to a judgment method that uses a Likert scale to rate behaviors
on a longer time scale (Cappella [1997], Bernieri et al. [1988]). The problem
with manual annotations, that rely on perception by a third party, is that it is very
costly. Manual annotations are very time-consuming and there is a risk of being
biased as the label decision depends heavily on the annotator. Thus, we want an
objective evaluation technique that can automatically process and render a non-
biased synchrony measure.

Automatic measures enable us to avoid the tedious work of manual annotation
by automatically capturing relevant social signals that detect the presence of syn-
chrony. Measures that are frequently employed for interpersonal synchrony are
Pearson’s correlation (PCC; Campbell [2008], Delaherche and Chetouani [2010],
Reidsma et al. [2010], Zadeh et al. [2018], Ng et al. [2022]), time-lagged cross-
correlation (TLCC; Boker et al. [2002], Ashenfelter et al. [2009], Beňuš et al.
[2011]), and recurrence analysis (Shockley et al. [2003], Varni et al. [2010]).
Nevertheless, to perform such measures, a fixed window size is necessary. This
may be problematic as produced motions may vary in length and do not happen
exactly after a certain time but within a time delay (e.g. 2 to 4 seconds) (Char-
trand and Bargh [1999], Leander et al. [2012]).

The response of a smile is very dynamic. Each smile is not produced with
the same length, and as stated above, the timing of the smile varies. For example,
when we are asked to reproduce a smile that we have made, it is almost impossible
to recreate the exact same smile with the same duration and timing. To address
such dynamics, the measure must be invariant to dilations and shifts. A frequently
used technique to do so is the Dynamic Time Warping (DTW) (Müller [2007])
which assesses the similarity between two temporal sequences of different speed
and length. Nevertheless, the DTW matches every index of a sequence with one or
more indexes from the other, which can be problematic for our case of nonverbal
behaviors as both cases of a behavior occurring or not are correct answers (i.e.
absence of response, for instance a person can reply with a smile or choose to not
reply but both cases are plausible responses) but the DTW will consider it as an
error.
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The field of biomedical signal processing also holds a big interest in such
synchrony measures for applications such as detecting synchrony in EEG
(Bakhshayesh et al. [2019]). Various metrics are employed from point to point
measures such as correlation and coherence (a linear correlation computed in
the frequency domain via cross spectrum), correntropy coefficient (a correlation
measure that is sensitive to nonlinear relationship and high order statistics),
wav-entropy coefficient (a correntropy computed in the time-frequency domain
with wavelet transforms), to measures that are solely focused on synchronization
like phase synchrony (an amplitude-independent estimation of signal phase
relationship) and event synchronization (a measure calculated from the number
of occurrences of predefined signal events, counting events that are followed by
another event in the other signal within a specified time, and their symmetric
counterpart). Yet these measures are not suitable for our use as stated above for
point to point measures because the subsequences of a signal might have different
phase delays which could be troublesome.

In our work, we are interested in measuring how people adapt their behavior, in
particular their smiles, during an interaction. During an interaction, participants
may respond and adapt to each other’s behavior. These interactive behaviors may
serve not only to reinforce the relationship between the participants (their en-
gagement in the interaction) but also to display different social attitudes. We are
interested in measuring reciprocal adaptation as a function of synchrony patterns
and entrainment loop. Our measure of synchrony patterns includes when par-
ticipants respond or not to each other’s behaviors. The absence of response is
considered as an error by the point to point measures (e.g. correlation) and the
DTW approach and is completely ignored by the recurrent analysis, spectral analy-
sis, and cross-wavelet analysis. However, the absence of response may also convey
important information about the interaction. In order to study the impact of the
absence of response, we need to introduce a new measure.

5.3 Synchrony measures

To our knowledge, existing measures, mentioned above, are not suitable for our
problem, notably regarding the absence of a response and capturing the entrain-
ment loop. To overcome this limitation, we propose a new way to measure the
reciprocal adaptation for a dyadic pair that measures the synchrony of behaviors
including their absence of response while tolerating time swift, dilation, deletion,
and insertion, and capture the behavior entrainment loop. This measure is also
able to detect the addition (produced by oneself without the reaction of the other)
and the suppression (produced by the other without the reaction of oneself) of
signals as illustrated in Figure 5.1.

5.3.1 Definition

We first address the problem by taking into account the absence of response when
measuring synchrony. Our method derives from the classical sequence dissimilar-
ity quantification technique called edit distance or Levenshtein distance (Navarro
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Figure 5.1 Illustration of synced pairs and unsynced pairs (i.e. addition and suppression).

[2001]). Its use can be mostly observed in fields such as natural language pro-
cessing (Lhoussain et al. [2015]) and bioinformatics (Chang and Lawler [1994])
as it compares the similarity between two strings (e.g. words) by counting the
minimum number of transformation operations that are required to convert one
string into the other. We grab the concepts of insertion and deletion of the edit
distance while we don’t use the concept of substitution.

We evaluate the synchrony with signal activation by converting continuous val-
ues to binary values and extracting subsequences corresponding to active signal
parts, with their starting (s) and ending (e) times. We choose to binarize the con-
tinuous values to better see the impact of absence of response. Let us consider an
active subsequence (sequence of 1) A from person PA and B from person PB.

To detail, we use the term smile to refer to AU12; though we are aware thaa
t smile may be produced by different facial AUs (e.g. AU11, AU13...) in combi-
nation with other AUs (such as AU6 or AU1, AU2; Ekman and Friesen [1982]).
The analysis studies the smile activation values which are obtained by binarizing
the continuous intensity value of smile (AU12) with the threshold of 1.5/5 which
is the minimal intensity (manually identified) for a smile activation.

Figure 5.2 Illustration of two subsequences.

We consider that both subsequences are synchronized or paired (i.e. synced
pair) if:

|eA − eB|+ |sA − sB| ≤ threshold (5.1)
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where sA and sB are the starting time points and eA and eB are the ending time
points of subsequences A and B respectively, and the threshold is set to twice the
mimicry time delay. The subsequences are illustrated in Figure 5.2. For our ap-
plication of measuring the synchrony of smile, we took the threshold of 4 seconds
(considering all responses that happen within a maximum of 4 seconds); actually
the literature on nonverbal behavior mimicry states that the mimicry time delay
can vary from 2 to 4 seconds (Chartrand and Bargh [1999], Leander et al. [2012]).

If several subsequences of a person check this condition with the same sub-
sequence of the other person, a synced pair is formed with the one that has the
minimum distance. The other subsequences are not paired.

Both paired subsequences and unpaired subsequences of persons A and B, il-
lustrated in Figure 5.1, are considered to estimate the synchrony:

PA&PB =
nb. of synced pairs

total nb. of events

PA&¬PB =
nb. of unpaired subseq.s(seqA|seqB)

total nb. of events

PB&¬PA =
nb. of unpaired subseq.s(seqB|seqA)

total nb. of events

where the total number of events is the sum of the number of synced pairs and the
number of unpaired subsequences (i.e. unsynced pairs corresponding to addition
and suppression cases) of both persons A and B.

Each measure renders a probability that corresponds to:

• PA&PB: PA and PB responding to each other,

• PA&¬PB: PA is active but not PB,

• PB&¬PA: PB is active but not PA.

PA&PB means that both participants smile simultaneously or with a small de-
lay corresponding to the reacting time; this measure represents the sync between
PA and PB. For PA&¬PB and PB&¬PA, only one of the person is acting (PA
smiles and PB does not smile, and vice versa), these measures indicate that PA
and PB are not in sync.

5.3.2 Analysis

Smile Statistics To start off, we wanted to visualize the statistics of smiles in
terms of their occurrence frequency and duration in our database depending on
the person’s role (expert or novice). We annotate Person 1 (novice in the NoXi
database; ref. Chapter 4) as P1 and Person 2 (expert in the NoXi database; ref.
Chapter 4) as P2.

With the visualization of the smile occurrence statistics in Figure 5.3 (left), we
note that P1 tends to smile more often than P2. The context of the dyadic inter-
action of the NoXi corpus is mainly friendly and positive. Participants were paired
between one who wanted to talk about a topic and one who wanted to learn about
this topic (Cafaro et al. [2017]). Within such an interaction context, having P1
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Figure 5.3 Number of smiles produced by P1 and by P2 (left) and Smile durations of P1
and P2 (right).

smiling more than P2 can be explained by P1 displaying positive backchannels or
showing actively his/her involvement when P2 is talking. Along with the number
of smiles produced by the participants, we also hold interest in the smile dura-
tion statistics. Figure 5.3 (right) shows that P1 generally maintains his/her smile
longer than P2. This can further support our analysis that P1’s smiles may have
the purpose of showing conversational involvement.

Smile Synchrony Statistics Going back to our initial objective of investigating the
reciprocal adaptation of smile and its relation with the perception of social atti-
tudes, we start by analyzing the smile with our measures of synchrony behaviors
including their absence of response.

We computed the probability densities, via our proposed measures, to visualize
the distribution of 3 cases: P1 and P2 responding to each other (P1&P2), P2
smiling to P1 but not reversely (P2&¬P1), and P1 smiling to P2 but not reversely
(P1&¬P2).

We can remark, in Figure 5.4, that during the conversation both P1 and P2
produce smiles that are in sync responding to one another (smiling at the same
time or following back within the mimicry delay of 4 seconds) and also smiles that
are not responded by the other partner. As seen in Figure 5.3, P1 has a higher
probability of smiling even during the absence of the other interacting partner’s
response (P1&¬P2), because of his/her tendency to smile more than P2.

Synchrony Clustering To better investigate the synchrony between the two inter-
locutors, we decided to first check if the smile synchrony of the 21 video dyads of
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Figure 5.4 Probability of smiles that are in sync (P1&P2), P2 smiling without the response
of P1 (P2&¬P1) and P1 smiling without the response of P2 (P1&¬P2).

the NoXi corpus can be classified into different groups. We performed a dendro-
gram hierarchical clustering to cluster the dyads using our obtained measures of
synchrony behaviors including their absence of response (P1&P2, P2&¬P1, and
P1&¬P2). As seen in Figure 5.5, we split our data into three clusters by cutting
the dendrogram with a threshold of 1.0. The cluster classes can be visualized in
the 3-dimensional space of our proposed measures in Figure 5.6.

In Figure 5.7, we can note in cluster 1 that a low synchronization
level (P1&P2 ∼ 0.072) occurs along with when P2 smiles very frequently
(P2&¬P1 ∼ 0.924) while P1 does not smile much (P1&¬P2 ∼ 0.004). A
medium synchrony (P1&P2 ∼ 0.231) is seen, in cluster 2, when P1 smiles a lot
(P1&¬P2 ∼ 0.637) and P2 smiles a bit (P2&¬P1 ∼ 0.146). For cluster 3, a high
synchrony (P1&P2 ∼ 0.33) is observed when P1 and P2 both smile frequently
(P2&¬P1 ∼ 0.408 and P1&¬P2 ∼ 0.305).

We can deduce from these three clusters that the highest level of synchroniza-
tion (P1&P2 ∼ 0.33) is correlated with both interacting partners who tend to
smile frequently, while the lower levels of synchronization, in cluster 1 (P1&P2 ∼
0.072) and cluster 2 (P1&P2 ∼ 0.231), are correlated with the situation when
one of the partners, independent of his/her role, does not respond much. This
shows how the presence of smile reciprocity is an important factor with respect to
synchrony level (P1&P2); a partner that nearly does not respond to other’s smile
(P1&¬P2 ∼ 0.023 in cluster 1) deteriorates the synchrony of the two even when
the other interlocutor smiles a lot (P2&¬P1 ∼ 0.924 in cluster 1). It confirms that
synchronization is highly dependent on coordination between partners (Burgoon
et al. [1995], Tschacher et al. [2014]).
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Figure 5.5 Dendrogram of synchrony measures where the distance is the distance between
the sample points in the 3D space of our proposed measures of synchrony. Threshold of
1.0.

Figure 5.6 3D visualization of the three synchrony classes obtained using the dendrogram.

Relationship between Synchrony and Engagement & Social Attitudes We also want
to see if synchrony plays a role in the perception of engagement and social at-
titudes of warmth and competence. As we have previously hypothesized, recip-
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Figure 5.7 Probability density of smiles that are in sync (P1&P2), or not (P2&¬P1 and
P1&¬P2) for each class obtained with the dendrogram: (left) cluster 1; (middle) cluster
2; (right) cluster 3.

rocal adaptation (synchrony and entrainment loop) being related to engagement
and social dimensions of warmth and competence, we hypothesize the follow-
ing based on previous literature (Biancardi et al. [2021], Lau [1982], Reis et al.
[1990], Biancardi et al. [2017], Cuddy et al. [2011]):

• Hypothesis 1: positive correlation between synchrony (P1&P2) and engage-
ment level,

• Hypothesis 2: positive correlation between synchrony (P1&P2) and warmth
level,

• Hypothesis 3: negative correlation between synchrony (P1&P2) and compe-
tence level.

For the annotations, we base on previous works done on the NoXi corpus (avail-
able with the annotation tool NOVA (Heimerl et al. [2019]). For the engagement
annotations, the perception of engagement was characterized in Dermouche and
Pelachaud [2019a] with five levels (0: strongly disengaged; 1: partially disen-
gaged; 2: neutral; 3: partially engaged; 4: strongly engaged). In Biancardi et al.
[2017], the continuous annotations of social dimensions of warmth and compe-
tence were done with scores ranging from 0 to 1 (0: very low degree of perceived
warmth or competence; 1: very high degree of warmth or competence). As the
work of Biancardi et al. [2017] focuses on P2 (expert), we also evaluate the im-
pact of synchrony on the three aspects of engagement, warmth, and competence
of P2.

To test if our assumptions are correct, we observe the engagement and the so-
cial attitudes depending on the synchronization levels of 1, 2, and 3 which corre-
spond to the synchrony score P1&P2 of clusters 1, 2, and 3 respectively (obtained
from our measures of synchrony). The analysis was done with two different meth-
ods.
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The first method, method 1, consists of computing the local average value of
engagement and/or social attitudes levels only on the segments where a smile
occurs, either on both participants’ faces (condition P1&P2) or for just on one
participant’s face (condition P2&¬P1 or P1&¬P2). A delay of 2 seconds is con-
sidered for the reaction lag of the evaluator, as proposed in Mariooryad and Busso
[2014]). We then compute the mean of all the averaged values of segments.

The second method, method 2, uses the global average value of the engage-
ment level (respectively of the warmth and competence levels) over the entire
video of each dyad, independent of the smile synchrony sequence. For this sec-
ond method, as a single value is computed for each entire video of the corpus, we
cannot use it to see the relationship that depends on our measures of synchrony
(P1&P2, P2&¬P1, and P1&¬P2) as they derive from a single sample (i.e. one
smile occurrence).

So all in all, we evaluate the relationship between synchrony and engagement
(identically for both social attitudes) using three conditions:

• Condition 1: method 1 and averaged values of segments belonging to
(P1&P2, P2&¬P1, and P1&¬P2),

• Condition 2: method 1 and averaged values of segments belonging to syn-
chrony levels 1, 2, and 3,

• Condition 3: method 2 for video dyad of synchrony levels 1, 2, and 3.

Figure 5.8 Engagement (left), warmth (center), and competence (right) levels measured
for condition 1.

For the engagement, we can see in Figure 5.8 (left) that similar levels of
engagement are obtained for P2 disregarding whether P1 and P2 are in sync
(P1&P2 ∼ 2.986) or not (P2&¬P1 ∼ 2.996 and P1&¬P2 ∼ 3.0). When looking
at the relationship depending on the synchrony level, in Figure 5.9 (left) we can
observe that the level 1 (∼ 2.682) indicates a lower engagement level compared to
levels 2 and 3 (3.0 for both) and in Figure 5.10 (left) the proportional relationship
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Figure 5.9 Engagement (left), warmth (center), and competence (right) levels measured
for condition 2.

Figure 5.10 Engagement (left), warmth (center), and competence (right) levels measured
for condition 3.

between engagement and synchrony level is clearly shown (level 1 ∼ 2.538, level
2 ∼ 2.832, and level 3 ∼ 3.033). Thus, we found a positive relationship between
engagement and synchrony levels. Our analysis shows that the more engaged
the participants are the more they show behavior synchronization (here smile of
P1&P2). It validates our first hypothesis. Condition 3 offers a clearer view. That
is, providing a global average value for the engagement level better represents the
characteristics of engagement of participants in an interaction; only looking at the
short sequences of smiling moments is not sufficient to capture the whole picture
of the engagement.

The warmth dimension in Figure 5.8 (middle) shows that when P1 and P2
are in sync (for their smile, at least) P2 is perceived warmer (P1&P2 ∼ 0.499)
compared to when they are not in sync (P2&¬P1 ∼ 0.493 and P1&¬P2 ∼ 0.477).
P2 is also thought to be warmer when he/she is the only one smiling (P2&¬P1 ∼

46



5.3. SYNCHRONY MEASURES

0.493) against the opposite situation (P1&¬P2 ∼ 0.477; only P1 smiling). In
Figure 5.9 (middle), the lower level of warmth at synchrony level 1 (∼ 0.32)
is distinguishable from the higher levels of warmth at synchrony levels 2 and 3
(∼ 0.49 and ∼ 0.481 respectively). When looking at Figure 5.10 (middle), we
can see a rise in warmth level as the synchrony level increases (level 1 ∼ 0.448,
level 2 ∼ 0.483, and level 3 ∼ 0.493). The results for warmth tell us that being
in synchrony with the other interacting participant gives a warmer impression
and that the improvement of synchrony level (P1&P2) conducts the growth in
warmth level which validates our hypothesis 2. Moreover, the smiling tendency
of the interlocutor is linked to his/her impression of warmth which is conformed
with the literature that (genuine) smiles are signals of warmth (Lau [1982], Reis
et al. [1990]).

In the case of the social trait of competence, we can remark in Figure 5.8 (right)
that P2 is perceived as more competent when P2 is the only one smiling with no
smiling back from P1 (P2&¬P1 ∼ 0.513) followed up by when P1 is smiling alone
(P1&¬P2 ∼ 0.507) and then by when P1 and P2 are in sync (P1&P2 ∼ 0.502).

Previous researches (Bernstein et al. [2010], Biancardi et al. [2017]) have
highlighted that a smiling person is perceived as more affiliative and less dom-
inant. In the context of an interaction, the interplay of participants’ behaviors
modulates their perception. In a study on behavior mimicry, Tiedens and Fragale
[2003] have reported that when participants have different status (here in NoXi,
knowledgeable on a topic vs wanted to learn on this topic), it seems to be corre-
lated with complementarity pattern rather than mimicry. In the NoXi corpus, P2
acts as the "expert" that conveys information on a topic that P1 is interested to
learn more about. Thus, P2 has the role of a knowledgeable person on the topic
of discussion. It confers him/her a form of expertise and thus of competence. In
the context of the NoXi corpus, when P2 displays a smile which is not responded
by a smile of P1, P2 appears to be more competent than in the other smiling con-
ditions. However, coordination of behaviors of both participants appears to mod-
ulate this inference as reported in previous studies (Tiedens and Fragale [2003]).
Further studies involving other nonverbal signals (e.g. frowning, sighting) need
to be conducted to see if this condition leads to complementarity.

In Figures 5.9 (right) and 5.10 (right), the increase in synchronization level
leads to the rise in the perception of competence level. We could say that the
higher the synchronization the more the interlocutors show involvement that gives
a feeling of being more proficient around the subject of discussion and thus ap-
pearing more competent. This finding is against our hypothesis 3, of synchrony
(P1&P2) having an indirect relationship with competence level. Instead it fol-
lows previous literature work that saw the phenomenon of smiling people being
perceived as intelligent and trustworthy (Lau [1982], Scharlemann et al. [2001]).
However, it is against our hypothesis with is based on observation of Biancardi
et al. [2017], Cuddy et al. [2011] that smiling behavior is negatively associated
with competence. In our case, we remark a halo effect which occurs when the
judgments of an undescribed targeted dimension (i.e. competence) goes towards
the same direction as the other given dimension (i.e. warmth). Contrary to Bian-
cardi et al. [2017], Cuddy et al. [2011]’s study that looks only at one person, in
our study we focus on the interaction and on how participants in a dyad interact
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with each other. This could explain the differences in our results and Lau [1982],
Scharlemann et al. [2001] and in Biancardi et al. [2017], Cuddy et al. [2011].

5.4 Entrainment Loop measure

5.4.1 Definition

We are also interested in capturing the entrainment of smile. The smile of PA
can entrain the smile of PB which then entrains PA to continue to smile or to
smile again within a certain time delay and vice versa. We refer to this as the
entrainment loop of smile. The entrainment loop consists of two types:

• Type 1: continuous smile, seen in Figure 5.11;

• Type 2: repeated smile with an overlap or within a certain time delay (i.e.
mimicry delay of 4 seconds), seen in Figure 5.12 and Figure 5.13 respectively.

Figure 5.11 Entrainment loop type 1 of a continuous smile of PA.

Figure 5.12 Entrainment loop type 2 of a repeated smile of PA with overlap.

Figure 5.13 Entrainment loop type 2 of a repeated smile of PA within the mimicry delay
of 4 seconds.

We capture these two types of entrainment loop and count the number of oc-
currences of entrainment loops for each interaction.
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5.4.2 Analysis

We also want to observe the impact of entrainment loop on the aspects of engage-
ment and social dimensions of warmth and competence.

Types of Entrainment Loop We first check the number of occurrences of the two
types of entrainment loop.

Figure 5.14 Number of occurrences of the two entrainment loop types.

In Figure 5.14, we can notice that the two entrainment loop types’ occurrence
frequencies are not negligible. With this, we can state that both types should be
considered.

Relationship between Entrainment Loop and Engagement & Social Attitudes As
above, we observe the relationship of entrainment loop with the aspects of en-
gagement and social attitudes via the aforementioned methods (using method 1:
local average value or method 2: global average value of the engagement, warmth,
and competence levels). Before analyzing the relationships, we cluster the inter-
actions into two groups by splitting them with the median number of occurrences
of entrainment loops (for both types).

For the engagement, we can note that the engagement level increases with
respect to the entrainment loop occurrences for both method 1 (low ∼ 2.490 and
high ∼ 2.956) and method 2 (low ∼ 2.928 and high ∼ 2.985), in Figure 5.15 (left)
and in Figure 5.16 (left) respectively.

For the social attitudes, when looking at them for method 1, we can remark
with their median values that warmth and competence attitude levels decrease
(low ∼ 0.493 and high ∼ 0.480, and low ∼ 0.512 and high ∼ 0.507 respectively),

49



5.4. ENTRAINMENT LOOP MEASURE

Figure 5.15 Engagement (left), warmth (center), and competence (right) levels measured
with method 1 (local average value) for entrainment loop.

Figure 5.16 Engagement (left), warmth (center), and competence (right) levels measured
with method 2 (global average value) for entrainment loop.

in Figure 5.15 (left) and (right) respectively, when entrainment loop occurrence
transits from low to high. Nevertheless, for both cases, we can see that the class for
high entrainment loop occurrence is more concentrated ranging at a high warmth
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level (0.394 < low < 0.497 and 0.462 < high < 0.508) and low competence
level (0.505 < low < 0.558 and 0.503 < high < 0.508) in Figure 5.16 (left) and
(right) respectively. Thus, we can state that at the moment of the entrainment,
the warmth level rises and the competence level decreases which is inline with the
findings of Biancardi et al. [2017], Cuddy et al. [2011].

For method 2, both warmth and competence levels increase (low ∼ 0.475 and
high ∼ 0.488, and low ∼ 0.509 and high ∼ 0.510 respectively). However, no
significance can be found for competence, thus validating only for warmth level to
be correlated to the number of entrainment loops.

5.5 Discussion

As reciprocal adaptation occurs naturally as we converse, it generally passes un-
noticed without giving any explicit attention to it. Nevertheless, this aspect of
reciprocal adaptation, particularly interpersonal synchronization and entrainment
loop, is an important factor for interactive and engaging communication. With our
new reciprocal adaptation evaluation measures, that assess synchrony behaviors in-
cluding their response absences and measures entrainment loop, we were able to
carry out several statistical analyses on smile synchrony, clustering synchroniza-
tion levels (level 1, level 2, and level 3), and the relationship with engagement
and social dimensions (warmth and competence). Also, we observed the relation
between entrainment loop occurrences and engagement and social dimensions.

We validated our hypotheses of observing a positive correlation between syn-
chrony and entrainment loop with engagement and warmth, while we see a halo
effect for competence. Thus, we can say that reciprocal adaptation, which is as-
sessed via our measures, also has a direct relation with engagement and social
attitude.

Behavioral expressions such as other facial muscle movements (e.g. eyebrow
and mouth), hand/body gestures might also be relevant to model synchrony and
entertainment. They may require a more complex modeling but it will be interest-
ing to study them and to check that they also show similar relationships with the
dimensions of engagement and social attitude.

Our reciprocal adaptation measures (three synchrony measures and entrain-
ment loop measure) can be used to evaluate if the agent produced human-like
behaviors with reciprocal adaptation for human-agent interaction. This can be
done by comparing the values obtained by the human-agent interaction against
those obtained from human-human interaction. To detail, the human-agent inter-
action quality can be assessed by checking if the results of the agent, obtained via
our reciprocal adaptation measures, show similar behaviors with those of the real
human-human interaction for both synchrony behaviors including their absence
of response and behavior entrainment loop.
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5.6 Contributions and Conclusion

5.6.1 Contributions

Our contributions are as follows:

• We propose new reciprocal adaptation measures.

• We observe a direct relationship between reciprocal adaptation (interper-
sonal synchrony and entrainment loop) and dimensions of engagement and
warmth.

5.6.2 Conclusion

In this chapter, we propose novel measures of reciprocal adaptation which can be
used as objective measures to evaluate the agent behavior quality in human-agent
interaction. In detail, they can be used to measure whether an agent (i.e. agent be-
havior generating computational model) offers similar adaptation properties as a
human in an interaction. Through these measures, we were able to find a positive
relation between reciprocal adaptation and the dimensions of engagement and so-
cial attitude. These results are promising for the field of human-agent interaction
in providing a new way of evaluating the interaction quality.

The key points of this Chapter:

Addressing Hypothsis

• Reciprocal adaptation (synchrony and entrainment loop) is related to
engagement and social dimensions of warmth and competence of the
interlocutors.

Reciprocal adaptation measures

• New objective measures for the evaluation of the agent behavior qual-
ity in human-agent interaction.

• Assess synchrony behaviors including their response absences and mea-
sure entrainment loop.

• Reciprocal adaptation has a direct relation with engagement and
warmth.

Publication

• Jieyeon Woo, Catherine Pelachaud, and Catherine Achard. Recipro-
cal adaptation measures for human-agent interaction evaluation. In
ICAART, 2023e
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Chapter 6
Reciprocally adaptive SIA behavior
generation
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In this Chapter, we present the modeling of reciprocal adaptation concentrating
on the modelization of interpersonal temporality, multimodality, and behavior con-
tinuity. Our proposed Augmented Self-Attention Pruning (ASAP) model renders
natural and human-like behaviors, as both listener and speaker, that are engaging
and in sync with the interlocutor.
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6.1 Introduction

We aim to provide SIAs with the capacity of reciprocal adaptation to enhance their
behaviors so that they can behave naturally like a human. We use multimodal
features (visual and acoustic) and produce SIA behaviors of an active interactant
as both listener and speaker. We hold attention to the aspect of behavior coher-
ence, synchrony, and continuity. Behaviors are made up of continuous values that
evolve over time (for example for human motion the body landmark positions
change smoothly in time). We also intend to assure the production of continuous
behaviors by looking at their temporal continuity. Behavior motions should not
only be continuous but also coherent and in sync with those shown by the inter-
actant. We thus focus on the temporal alignment and the appropriateness of the
generated SIA behavior type (e.g. a smile in response of an interlocutor’s smile).
Along with modeling of such properties, we look into how the quality of the gen-
erated behaviors could be quantified via objective measures.

For this study, we pose the following research questions (RQs):

• RQ 1: endowing reciprocal adaptation capability to the SIA improves the
interpersonal dynamics (synchrony and engagement) of the generated agent
behaviors;

• RQ 2: agent behavior quality (naturalness and human-likeliness) can be en-
hanced with the modeling of reciprocal adaptation.

To create such a SIA that adapts its behaviors to its interlocutor, we propose
the Augmented Self-Attention Pruning (ASAP) model. ASAP models the reciprocal
adaptation of interaction partners throughout the interaction using multimodal
signal information of both interlocutors along with the interpersonal relationship
between them.

This chapter is structured as follows: Section 6.2 presents a brief state of the art
of related techniques for continuous nonverbal behavior prediction and evaluation
measures; Section 6.3 introduces the problem that is being addressed; Section 6.4
details the implementation of our ASAP model and provides objective and subjec-
tive evaluation results; Section 6.5 summarizes our findings.

6.2 Related Works and Limitations

We are interested in generating social nonverbal behaviors of SIAs. The gesture
generation task is similar to sequence forecasting in the sense that we are predict-
ing the future sequence depending on past information. This motivates us to learn
from techniques that forecast sequences and apply them to our goal of generating
agent nonverbal behaviors. Sequence prediction consists of two types which are
offline prediction and online prediction.

Offline prediction infers the entire sequence at once. One of the most popular
uses of this technique is sequence to sequence (Seq2seq) prediction. Seq2seq
models have shown promising results for various applications such as machine
translation (Sutskever et al. [2014], Moslem et al. [2023]) and speech recognition
(Li et al. [2018], Radford et al. [2023]).
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Online prediction, on the other hand, outputs sequentially making predictions
for each time-step individually. This prediction technique is popularly used for
time series forecasting (Kumar and Jha [2013], Wan et al. [2019], Lippi et al.
[2013], Tian and Pan [2015], Kim [2003], Tsantekidis et al. [2017]) which can
be grouped into two types: sliding window prediction (input data inside a sliding
window are used to predict the next time-step) and adaptive online prediction (up-
date of the latent vector using the full input data sequence rendering continuous
output data). To further enhance output continuity, observations from previous
time-steps can be used. The technique of feeding back the output to the model for
the next prediction is referred to be autoregressive. This can be applied to both
sliding window and adaptive online predictions.

The memory retention present within recurrent networks such as RNN, LSTM,
and TCN, has shown great promise in time series forecasting. As human behav-
iors heavily depend on previously performed ones, this aspect of memory is also
important for our situation. Moreover, as behavior must be continuous, employing
the adaptive online prediction in an autoregressive manner is preferable.

For our study, we focus on dyadic interactions which leads us to concentrate
on modeling the temporal relationship between participants during an interaction.
We look into the literature that models interpersonal relationship (or reciprocal
adaptation).

In the work of Feng et al. [2017] and Dermouche and Pelachaud [2019b],
SIA’s facial gestures are synthesized based on past gestures of both, SIA and User,
without considering the existing relation with audio modality (Pell [2005], Yehia
et al. [2002]), and do not ensure the motion continuity. Grafsgaard et al. [2018]
synthesize interlocutor’s gestures based on the interlocutors’ audio and their facial
modalities. In the work of Jonell et al. [2020], SIA’s facial gestures are generated
based on SIA’s speech and the User’s speech and facial gestures. However, these
models (Grafsgaard et al. [2018], Jonell et al. [2020]) are prone to produce non-
continuous gestures. Ahuja et al. [2019] generates body pose sequences based on
the User’s audio and body pose and audio of the SIA by capturing interpersonal
and intrapersonal dynamics via selective attention. Tuyen and Celiktutan [2022]
predicts the upper body motion (face, body, and hand landmarks) with a context-
aware encoder-decoder model learning from contextual information (encoding of
interacting partner’s nonverbal behaviors of body motion and audio) and SIA’s
body motion. The works presented in Ng et al. [2022] ensure SIA’s behavior con-
tinuity by employing autoregressive online inference while modeling SIA’s and
User’s multimodal features. Only the listener’s behavior is modeled.

The aforesaid works for behavior generation model the interpersonal relation-
ship and/or the multimodal signals. The multimodal aspect is missing in Feng
et al. [2017], Dermouche and Pelachaud [2019b] and Feng et al. [2017], Graf-
sgaard et al. [2018], Dermouche and Pelachaud [2019b], Ahuja et al. [2019],
Jonell et al. [2020], Tuyen and Celiktutan [2022] do not assure the continuity
aspect. Ng et al. [2022] ensure both aspects but their model cannot be employed
with a small training data. We try to resolve these issues and model the reciprocal
adaptation by capturing the interpersonal temporality and multimodality while en-
suring the generated agent’s behavior continuity and the functioning with a small
amount of training data.
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6.3 Problem Definition

In this chapter, we focus on generating nonverbal behavior (SIA’s facial expressions
and head/gaze movements; ref. Chapter 4) for dyadic interactions. The rendered
behaviors should be continuous and capture interpersonal relationship. The agent
should be able to produce behavior for both speaker and listener roles and the
behavior prediction model should ideally work even with a small database.

With the goal to create a SIA capable of adapting its behaviors to its interlocu-
tor, we propose the Augmented Self-Attention Pruning (ASAP) model that models
the reciprocal adaptation of interaction partners throughout the interaction. The
multimodal signal information of both interacting partners along with the inter-
personal relationship between them are captured. Specifically, ASAP allows us to:
(1) capture multimodal information of visual and acoustic features; (2) learn from
both interactants through data augmentation technique; (3) better select key fea-
tures within the interaction via the self-attention mechanism with pruning; (4)
generate continuous nonverbal behaviors by updating cells’ memories at each step
of the inference phase with autoregressive adaptive online prediction; (5) gener-
ate behaviors as both active listener and speaker; (6) and train without needing a
massive amount of data.

6.4 Augmented Self-Attention Pruning (ASAP) Model

We hold interest in generating social nonverbal behavior of a SIA (be a speaker or
a listener) when interacting with its human interlocutor. In particular, we aim to
model the reciprocal adaptation, by capturing the behavior coordination of both
interactants, notably the interpersonal relationship.

6.4.1 Model Architecture

We propose a new architecture that models the reciprocal adaptation which is our
Augmented Self-Attention Pruning (ASAP) model12, as illustrated in Figure 6.2. It
takes 100 previous frames (t − 99 : t) for both human user and SIA to predict the
agent behavior of the next frame (t + 1). ASAP consists of three key techniques:
data augmentation technique, self-attention pruning, and autoregressive adaptive
online prediction. Each technique has its own usage which are as follows. The
data augmentation technique learns from both interactants enabling the training
without needing a massive amount of data. The self-attention pruning selects key
features within the interaction from multimodal information. The autoregressive
adaptive online prediction generates continuous SIA nonverbal behaviors.

Data augmentation

Since our database is not that large, we make use of a data augmentation tech-
nique. To learn the reciprocal adaptation we need accurate data from both partic-

1The code is available here: https://github.com/jieywoo/ASAP.
2The demonstration video is available here: https://www.youtube.com/watch?v=feojlOrFCIg.
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ASAP model architecture

Figure 6.2 ASAP (Augmented Self-Attention Pruning) model architecture. The self-
attention pruning section takes the speech Xspeech and the facial gestures Xface of the
previous 100 frames of both the SIA (A) and the User (U) to learn the interpersonal re-
lationship (or reciprocal adaptation) between them. The SIA’s facial gesture for the next
frame at t+1 Ŷ A

face is generated. To infer the next A’s behavior, we feed back the predicted
A’s behavior and the ground truth of U .

58



6.4. AUGMENTED SELF-ATTENTION PRUNING (ASAP) MODEL

ipants. This leads us to propose a data augmentation technique that learns from
both interlocutors in an equal manner, during the training phase, instead of using
classical data augmentation techniques, such as adding noise or dropouts. That
is, we learn from the characteristics of both interacting partners. For each batch
of the training phase, we assign randomly the interlocutor identity that will be
played by the agent to one of the interlocutors. We learn to predict the behaviors
of this interlocutor. Then, we follow by alternating and assigning the interlocutor
identity for the agent to the other interlocutor and continue the learning process.
For a better understanding, we refer to each interacting person of a dyad as U1 for
person 1 and U2 for person 2. There are two possible choices of giving the SIA the
interlocutor identity of either U1 or U2. During each batch, the interlocutor iden-
tity of the SIA is reassigned randomly (to either maintain the same identity of the
previous batch or to switch identities from U1 to U2 or U2 to U1). The SIA learns
to generate the behavior of the corresponding interlocutor identity. The data aug-
mentation simulates the interlocutors’ behaviors without separating whether it’s
those of a speaker or a listener. It only takes into account the interlocutor identity
(either U1 or U2). By doing so, the model learns to predict equally the behav-
iors of both participants and focuses on modeling the interaction between the two
rather than the specific characteristics of a single person. At the inference stage,
the SIA will be one of the interlocutors (U1 or U2) and the user will be the other
interlocutor (U2 or U1 reciprocally). Thus, the data augmentation is done with
the identities of the SIA A and the user U instead of U1 and U2.

Self-Attention Pruning

To better model the reciprocal adaptation, we want to capture interpersonal re-
lationship (interpersonal behavior coherence and synchrony) and multimodality
from key features. The selection of relevant features is done via an attention
mechanism. A self-attention, using the multi-head attention of the Transformers
(Vaswani et al. [2017]), is performed using all interlocutors and visual and acous-
tic modalities (XA

speech, XA
face, X

U
speech, and XU

face). The self-attention layer captures
key information to model which behaviors should occur along with mimicry and
synchronization mechanisms all at once. However, most attention heads within
the multi-head attention (MHA) contain redundant information (Michel et al.
[2019], Voita et al. [2019]) which leads the model to overfit. Michel et al. [2019]
and Voita et al. [2019] demonstrate the overfitting problem caused by redundant
attention heads can be solved by applying pruning (i.e. pruning removes redun-
dant heads). Our aim is to modelize the reciprocal adaptation, by retrieving key
information via pruning. Pruning allows us to drop repetitive heads only ren-
dering attention to dissimilar heads encoded with unique information and it also
increases the inference speed. The pruning of attention heads is similar to struc-
tured pruning where neurons are pruned. An example of structured pruning is
given in Figure 6.3.

Instead of pruning the neurons, we prune the attention heads. Our technique
differs from the conventional pruning technique which prunes a given percentage
of less significant neurons or connections (for unstructured pruning). Once the
model is trained, the same neurons/connections are pruned out disregarding the

59



6.4. AUGMENTED SELF-ATTENTION PRUNING (ASAP) MODEL

Figure 6.3 Example of structured pruning.

input. For our pruning technique, we learn to choose which head(s) are meaning-
ful for each specific frame via a pruning mask. For each input sequence, a custom
pruning mask is applied. To detail, as seen in Figure 6.2, the input sequence that
consists of T = 100 frames from t−T+1 to t are passed through the MHA (with the
depth of d and h attention heads). A custom pruning mask is learned to minimize
the loss of the network for each input sequence to prune the attention heads (each
with the dimension of d × T ). The custom pruning mask selects to learn from
a certain number of attention heads h′ out of h heads. In this way, the pruned
attention heads vary for each prediction. For each head, the significance factor
is obtained by applying a sigmoid function σ(h) = 1

1+e−h element-wise and then
binarized (by rounding) within the pruning mask. To detail, the pruning mask is
a vector of dimension h where each element corresponds to the significance factor
of each h MHA head which is obtained via the sigmoid function. The significance
factor is binarized for each element to only leave significant heads as 1 and the
rest as 0. Non-significant heads are removed after applying the pruning mask to
the attention heads outputted by the MHA. Then, the information of the key heads
is grouped together (dimension reduced from h × d × T to h′ × d × T ), and then
the essential information among the information of the key heads is obtained via a
dense layer (or fully connected layer; the self-attention pruning module rendering
the final dimension of d×T ). With our pruning technique, we can ensure that our
model accesses only unique and relevant information for each prediction.

Autoregressive adaptive online prediction

We want to generate continuous SIA behaviors Ŷ A
face which are assured by applying

the adaptive online prediction. During the whole course of the interaction, the
model updates the LSTM memory in a continuous way as in Yang et al. [2017].
Non-continuous values come from the predictions that are made independently for
each input sequence without conserving previous memories (i.e. temporal sliding
window). By applying adaptive online prediction during the inference phase, we
circumvent this problem as the past information is kept within the memory cells
of the LSTM and used to make new predictions. Also, the prediction is made in an
autoregressive fashion by feeding back the predicted values of previous time-steps
as input for the prediction at the next time-step.
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6.4.2 Implementation Details Training Regime

All models are implemented in Tensorflow and trained using the French NoXi
dataset (Cafaro et al. [2017]) (ref. Chapter 5). They are trained for 1000 epochs
on 2.20GHz Intel Xeon Linux server with NVIDIA GeForce GTX TITAN X and 64GB
RAM. They all share the same parameters: batch size of 32 and Adam optimizer
(Kingma and Ba [2014]) with a linear learning rate scheduler (learning rate start-
ing from 0.001, factor 0.2 decay on plateau, and patience 3). The best set of
hyperparameters is chosen for each model after manual optimization, via manual
grid search, based on the validation set. For ASAP, after fine-tuning the MHA, four
attention heads (h = 4) with a depth of d = 16 and cell sizes of cSelfAP = 64 for the
dense layer within the self-attention pruning technique, clstm = 20 for the LSTM
layer, and cdense = 20 for the final dense layer were used. Mean Squared Error
(MSE) was used as the objective function during the learning stage. The dataset
is split for training:validation:testing in the ratio of 70:10:20 and we ensured that
the test set contains pairs of dyads that were never seen in the train and validation
sets. To assure that the training and test sets do not include the same person, we
have manually excluded participant pairs for the test set.

6.4.3 Database and Feature Extraction

The French NoXi database (Cafaro et al. [2017]), introduced in Chapter 4, is used
for the ASAP model training and evaluation. ASAP employs visual features of
eye movements (Gx and Gy), head rotations (Rx, Ry, and Rz), 6 upper face AUs
(AU1, AU2, AU4, AU5, AU6, and AU7), and smile (AU12). Speech and facial
gestures are highly tied together (Pell [2005], Yehia et al. [2002]). With this
relation, we focus on capturing visual prosody, that is we use speech information
to drive SIA’s facial gestures. We utilize audio features of fundamental frequency,
loudness, voicing probability, and 13 MFCCs. As such the dimensions of Xspeech is
Tx16 (XA

speech or XU
speech), Xface is Tx12, and Ŷ A

face is 1x16.

6.4.4 Objective Evaluation

Our goal is to evaluate if ASAP captures the reciprocal adaptation between two
participants, that is the interpersonal relationship encoded with multimodal sig-
nals. Also, we check the quality of our generated SIA behavior with both roles
as listener and speaker. We compare the performance of ASAP to that of two re-
cent state-of-the-art models, which are the works of Dermouche and Pelachaud
[2019b] and Woo et al. [2021], by evaluating their generated nonverbal behav-
iors both quantitatively and qualitatively.

As mentioned above in Section 6.2, evaluating nonverbal behaviors has always
been a challenge. Until now there is no perfect measure that can thoroughly
quantify the dynamics of the behaviors. To assess our model, we propose to use
several objective measures, one metric for each measuring type (i.e. point to point,
statistical, and resemblance).
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Objective Evaluation Measures

As point to point measure, we use the RMSE (Feng et al. [2017], Dermouche
and Pelachaud [2019b], Ng et al. [2022]), to evaluate our generated nonverbal
behaviors. This measure provides information on the quality of learning. However,
it is not always pertinent to compute the exact behaviors that may arise during an
interaction, as different reactions (behaviors) of a participant may arise. Indeed,
it is difficult to reproduce the same behavior of a person from a database that
contains various participants (excluding the targeted person) each possessing a
personality and showing different behaviors. We chose to use another measure to
further evaluate our model.

We are interested in measuring if the behaviors generated by our model have
similar distributions as in the NoXi database. That is we check if both, predicted
behaviors and ground truth have a similar number of occurrences. Taking the
smile as an example, during the course of a conversation the smile intensity of a
participant varies continuously. In the NoXi database, the intensity distribution of
smiles is more concentrated around subtle and low levels (with a percentage of
84%). We want to assess the quality of the produced nonverbal behaviors glob-
ally not on the sequence level but on the entire interaction. Using the example of
smiles, we want to see if smiles are predicted throughout the interaction in terms
of the distribution of smile intensity level. For this purpose, we check the prob-
ability distribution similarity using statistical measures. As previously presented
measures for behavior likelihood, in Chapter 3, do not suit our case, we propose
the usage of Kolmogorov-Smirnov (KS) two-sample test (Massey Jr [1951]). Its
use is new to behavior quality evaluation. The KS test is a statistical measure
that estimates the quality in a quantitative manner by measuring the difference
in density probability between the ground truth and the generated sequence for
each output dimension. The KS test measures the distance between the generated
ŷ(t) and real y(t) data distributions (or more precisely the cumulative distribution
functions Fŷ(t) and Fy(t)):

KSdist = max
t

|Fŷ(t)− Fy(t)| (6.1)

The KS test is applied independently for each feature and the average score is
calculated.

Point to point metrics and statistical measures for density distribution do not
capture the temporal dependencies that exist between partners. To better observe
the temporal dependencies, we employ the Dynamic Time Warping (DTW) (Müller
[2007]). DTW measures the similarity between two temporal sequences that may
vary in speed and length. DTW, like the RMSE, can be used between Ŷ A(t)&Y A(t),
where Ŷ A(t) is the generated agent’s behavior and Y A(t) is the human ground
truth behavior representing the agent. Instead of having another precision mea-
sure, we want to measure whether the reciprocal adaptation is well captured. The
presence of reciprocal adaptation (interpersonal temporal dependency) is verified
by seeing if the interlocutors show similar behaviors, responding to each other. We
check the proximity (resemblance) of the generated agent’s behavior and that of
the interacting human (Ŷ A(t)&Y U(t)) and the proximity of the behaviors between
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both humans (Y A(t)&Y U(t)) to see if the agent behavior shows the same adapta-
tion trends as seen in the ground truth. The DTW distance does not have to be
small. Actually, it would be easy to copy the behavior of the human at the previous
moment to have a DTW of almost zero. This high resemblance between partners
can be perceived as an everlasting imitation (like a parrot) and thus may rather
hinder the perception of human-like behavior. Thus, DTW between Ŷ A(t)&Y U(t)
must be similar to the DTW between Y A(t)&Y U(t) and not necessary small. As
our interactions are very long (around 20min for each interaction), we compute
the DTW in small chunks of 1min and a stride of 30s. Applying DTW in chunks
speeds up the computation. All the chunks cover the whole interaction.

Smile (AU12), a key socio-emotional signal (Knapp et al. [2013]) frequently
observed during an interaction, is produced by both speaker and listener and is of-
ten imitated between interlocutors (Hess and Bourgeois [2010]). Previous studies
have demonstrated that smile helps SIAs to better manage their interaction with
their human users (Wang and Ruiz [2021], Ochs and Pelachaud [2013]). Thus,
for DTW distance evaluation of Ŷ A(t)&Y U(t), we focus on the smile.

Objective Evaluation Results and Discussion

To compare our model with that of the literature, we need to use the same fea-
tures. As a result, we first evaluate our model with the features presented in
Dermouche and Pelachaud [2019b] (features set 1) and then with those in Woo
et al. [2021] (features set 2). The features set are composed as the following:

• Features set 1: only visual features (eyes movement, head rotation, and
AU12 intensity and activation) of both interlocutors along with conversa-
tional state (ref. Chapter 4) inputted to predict visual features of the SIA at
5fps;

• Features set 2: visual and acoustic features (eye movement, head rotation,
upper face AUs and AU12 intensities, fundamental frequency, loudness, voic-
ing probability, and 13 MFCCs) of both interlocutors to predict the visual
features (including upper face AUs) of the SIA at 25fps.

Concerning the evaluation of the eye movement, we evaluate the value of the
eye angles like we do for the head rotation. However, we cannot assess if the
predicted eye movement corresponds to looking at the same target (e.g. its in-
terlocutor) as in the ground truth as this information is not available in the NoXi
dataset (both cameras recording the two interlocutors are not calibrated).

All models were trained and their behaviors were generated for each features
set. We conduct an objective evaluation for the two sets of features.

The performance of ASAP is compared with the baseline models for each fea-
tures set using the proposed objective evaluation measures. We consider the fol-
lowing baseline models:

• IL-LSTM (Dermouche and Pelachaud [2019b]): models only the interper-
sonal relationship based only the visual modality (facial gestures) of both the
agent and human user,
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Methods RMSE KS test

Features set 1
IL-LSTM 0.172 0.298

sym-IL-LSTM 0.171 0.293
ASAP (ours) 0.131 0.115

Features set 2
IL-LSTM 0.444 0.559

sym-IL-LSTM 0.374 0.415
ASAP (ours) 0.239 0.301

Table 6.1 Average RMSE and KS test results for features set 1 and 2.

Features set Method DTW Y A(t)&Y U (t) (Ground truth) DTW Ŷ A(t)&Y U (t)

Features set 1
IL-LSTM

21.7
27.3

sym-IL-LSTM 27.2
ASAP (ours) 26.9

Features set 2
IL-LSTM

1317.5
1562.7

sym-IL-LSTM 257.5
ASAP (ours) 1399.3

Table 6.2 DTW of smile for features set 1 and 2.

• Symmetrized IL-LSTM with online LSTM (sym-IL-LSTM; Woo et al.
[2021] ): models the interpersonal relationship based on multimodal fea-
tures (speech and facial gestures) of both the agent and human user, and
assure motion continuity.

In Table 6.1, the three models of each features set are evaluated quantitatively
by computing the RMSE and performing the KS two-sample test. The KS test was
used as it statistically measures the probability distribution similarity between our
predictions and ground truth (real interaction). The average score of the output
features is calculated (average of 6 output features scores (2 eyes angles, 3 head
rotations, and AU12 intensity) for features set 1 and that of 12 output features
scores (2 eyes angles, 3 head rotations, and the intensities of 6 upper face AUs and
AU12) for features set 2). From both features sets 1 and 2, we can observe that
the RMSE and the KS test scores have better values for ASAP than the baseline
models.

The DTW between Y A(t)&Y U(t) represents the distance (resemblance) be-
tween the signals of the two human participants’ interlocutor identities of U1 and
U2 (U1 being the human representing the agent and U2 being the human inter-
locutor). The DTW distance is interpreted as the closer the distance gets, the more
the two signals of Y A(t) and Y U(t) are similar. We check if the models’ DTW dis-
tance Ŷ A(t)&Y U(t) is close to that of the ground truth interaction (human-human
interaction) Y A(t)&Y U(t).

As stated above, smile is a key social signal that is apparent to improve SIA’s
interaction which leads us to focus on smile. We can see, in Table 6.2, that for
smile of features set 1, our ASAP performs better than the baseline models in
terms of having the DTW distance the closest to the ground truth DTW (26.9, 21.7
respectively). The same conclusion can be drawn for features set 2 (1399.3, 1317.5
respectively). Note that the small value obtained with sym-IL-LSTM model can be
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interpreted as a close imitation of the behavior of its interlocutor that may deter
the perception of the behavior to be human-like.

Therefore, we can conclude that our ASAP model outperforms the baseline
models for the three objective evaluation methods, that is RMSE, KS test, and
resemblance via DTW distance between Y A(t)&Y U(t).

6.4.5 Subjective Evaluation

Relying only on objective evaluations is not enough to fully assess the quality of
the generated agent’s behavior. We perform a user perceptive study to complement
the objective evaluation where we look more particularly at how the generated
multimodal signals and the modeling of the reciprocal adaptation (interpersonal
relationship) by our model influence: 1) the perception of the generated agent be-
haviors’ naturalness and human-likeliness; 2) the perception of the interpersonal
dynamics such as the synchrony between the interlocutors and the perception
of their engagement. To evaluate these aspects of human-agent interaction, we
ask the participants to score the interacting SIA along 4 measurement constructs:
behavior naturalness, behavior human-likeliness, interaction synchrony, and en-
gagement.

Questionnaires to evaluate the perception of behavior naturalness, behavior
human-likeliness, and engagement are formulated based on existing question-
naires of human-agent interaction evaluation (Fitrianie et al. [2020], Von der
Pütten et al. [2010]). We use a set of three synonyms and antonyms for each
dimension. To evaluate the perception of synchrony, we use the dyadic stances of
mutual understanding, attention, agreement, interest, and pleasantness proposed
by Prepin et al. [2013], Louwerse et al. [2012].

A set of 14 questions (3 for each construct of behavior naturalness, behavior
human-likeliness, and engagement, and 5 for interaction synchrony), listed in Ta-
ble 6.3 are used. The users are asked to answer each question using a Likert scale
of 5 points (ranging from 1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree),
to 5 (strongly agree)). The user’s answers are grouped into the 4 constructs by av-
eraging their values.

Subjective Evaluation Method

The evaluation is done via Prolific, an online crowd-sourcing platform. 20 video
clips of an approximate duration of 7s are manually extracted from the human-
human videos of NoXi. In each video clip, a human participant has the speaking
turn (talking about a common subject) or is the listener (expressing nonverbal
behaviors with visual and acoustic feedbacks which include backchannels such as
"ok" and "yes") and the other human participant is either, respectively, listener or
speaker.

For our study, we compare four conditions (the three models which are: ASAP
and our two baseline models of IL-LSTM and sym-IL-LSTM) with the features set 2
and the ground truth human-human interaction from NoXi (GT)). To evaluate the
quality of these conditions, we replace one of the human participants (being the
speaker in 10 video clips and listener in the other 10 video clips) with a SIA whose
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Construct Question

Naturalness
The behavior of the virtual character is artificial.
The behavior of the virtual character is realistic.
The behavior of the virtual character could exist in reality.

Human-likeliness
The virtual character behaves like a human.
The behavior of the virtual character resembles a machine.
The behavior of the virtual character resembles that of a human.

Engagement
The virtual character is engaged in the conversation.
The virtual character pays attention to the human speaker.
The virtual character ignores the human speaker.

Synchrony

The virtual character and the human understands each other.
The virtual character and the human agree with each other.
The virtual character and the human pay attention to each other.
The virtual character and the human are interested in the discussion.
The virtual character and the human have a good time together.

Table 6.3 Set of 14 questions used for subjective evaluation.

behavior is driven by the computational models or the GT. The SIA was animated
using the open source Greta SIA platform (Niewiadomski et al. [2009]) by passing
visual features (predictions of the computational models or the GT) along with the
audio of the GT. An image of a video is shown in Figure 8.2 in which it displays
a SIA (left side of the screen) and a human participant (right side of the screen).
The lower face was blurred so that the mouth movements would not hinder the
evaluators’ perception during the study.

Figure 6.4 User perception test video clip example of an interaction between a SIA (left)
and a human participant (right).

Four videos (the agent displaying the behavior of the agent in one of the four
conditions) are created for each of the 20 human-human video clips of the NoXi
database. So, we have a total of 80 videos where the SIA replaces one of the human
interlocutors (see Figure 8.2). The behaviors of the GT condition are also shown
by replacing the selected human with the SIA. We use the same setting when
comparing videos of the GT with videos of the computational models. As such we
eliminate any impact a participant may have toward the virtual character Shiban
et al. [2015].
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Not to make an evaluation that lasts too long which may deteriorate the con-
centration of the perception study participants and thus hinder the study, we split
the perception test into four groups. Each group has 5 human-human interaction
video clips to evaluate (i.e. each participant evaluates 20 short videos of 7s of
human-agent interaction for all four conditions). All the videos are shuffled so
that their order does not impact our perception study.

For each perception test group, we recruit 30 participants and ask them to eval-
uate each video (20 videos per group) with the aforementioned set of questions.
To filter out inattentive participants, for each video we randomly include atten-
tion check questions (e.g. "Is the virtual character playing tennis with the human
interlocutor?").

Subjective Evaluation Results and Discussions

The participants’ responses are grouped together according to their correspond-
ing construct (behavior naturalness, behavior human-likeliness, synchrony, and
engagement) for each condition (GT, our two baseline models of IL-LSTM and
sym-IL-LSTM, and ASAP). We visualize the distribution for each construct, in Fig-
ures 8.3 and 8.4, and report the median values in Table 6.4.

One-way ANOVA reports significant differences among all animation condi-
tions for all four constructs: behavior naturalness (F = 41.5, p < 0.001), behavior
human-likeliness (F = 43.1, p < 0.001), synchrony (F = 66.9, p < 0.001), and en-
gagement (F = 90.0, p < 0.001). A post-hoc pairwise comparison analysis is per-
formed by running Tukey’s honestly significantly differenced (HSD) test. Tukey’s
HSD reveals the following. Statistical significant differences were found between
all pairs (p < 0.001) except for the pair of (sym-IL-LSTM, ASAP) for the constructs
of behavior naturalness and human-likeliness (p = 0.9 and p = 0.9 respectively).
Concerning the constructs of synchrony and engagement, all pairs were reported
to be significantly different (p < 0.003). A two-tailed t-test was performed between
all possible pairs of compared animations for each construct to test the statistical
significance. The t-test p-values reported significant differences between all pairs
(p < 0.001) except for the pair of (sym-IL-LSTM, ASAP) for the constructs of be-
havior naturalness and human-likeliness (p = 0.7 and p = 0.5 respectively). T-test
yields significant differences among all conditions for synchrony and engagement
constructs.

Methods Naturalness Human-likeliness Synchrony Engagement
GT 3.00/3.03 3.00/3.02 3.40/3.30 4.00/3.60

IL-LSTM 2.33/2.42 2.33/2.38 2.60/2.59 2.67/2.63
sym-IL-LSTM 2.67/2.63 2.67/2.59 2.80/2.78 3.00/3.01
ASAP (ours) 2.67/2.66 2.67/2.63 3.00/2.97 3.33/3.24

Table 6.4 Median/mean values of naturalness, human-likeliness, synchrony, and engage-
ment.

From the subjective results, the simulation with GT values (median/mean)
receives the highest values for all four constructs, namely behavior naturalness
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Figure 6.5 Distribution of behavior naturalness (left) and human-likeliness (right). Me-
dian represented by orange line and mean represented by green dashed line.

Figure 6.6 Distribution of synchrony (left) and engagement (right). Median represented
by orange line and mean represented by green dashed line.

(3.00/3.03), behavior human-likeliness (3.00/3.02), synchrony (3.40/3.30), and en-
gagement (4.00/3.60). Via the constructs of behavior naturalness and human-
likeliness, a rise in quality can be noticed between that of IL-LSTM (2.33/2.42,
2.33/2.38 respectively) and the other two computational models of sym-IL-LSTM
(2.67/2.63, 2.67/2.59 respectively) and our ASAP model (2.67/2.66, 2.67/2.63 re-
spectively). We assume that this difference is due to the application of adaptive
online prediction, instead of sliding window prediction as in IL-LSTM, which en-
ables the generation of continuous motions which may lead to a higher perception
of naturalness and human-likeliness. The quality of the generated agent behavior
along the constructs of synchrony and engagement increases from the IL-LSTM
(2.60/2.59, 2.67/2.63 respectively), to sym-IL-LSTM (2.80/2.78, 3.00/3.01 respec-
tively), to ASAP (3.00/2.97, 3.33/3.24 respectively). We can remark that modeling
of reciprocal adaptation allows SIA to be more in sync and engaged with its inter-
locutor.

We also want to evaluate if our ASAP model can produce behaviors for SIA
being both a listener and a speaker. We check the quality of the generated agent
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Figure 6.7 Distribution of behavior naturalness (left) and human-likeliness (right). Me-
dian represented by orange line and mean represented by green dashed line.

Figure 6.8 Distribution of synchrony (left) and engagement (right). Median represented
by orange line and mean represented by green dashed line.

behavior of ASAP along the four constructs by comparing the produced behaviors
as a listener and a speaker, as shown in Figures 6.7 and 6.8.

For the SIA being either a listener or a speaker or both combined, one-way
ANOVA reported significant differences for the construct of synchrony (p = 0.02)
but no significance for the other three constructs of behavior naturalness, behavior
human-likeliness, and engagement. Tukey’s HSD on synchrony revealed a signif-
icant difference between listener and speaker (p = 0.01). A two-tailed t-test was
performed and showed significant differences between listener and speaker for the
constructs of synchrony (p = 0.005) and engagement (p = 0.02).

We can remark that ASAP generates both listener (2.5, 2.3, 3.0, 3.3 respectively)
and speaker (2.7, 2.7, 3.2, 3.3 respectively) behaviors with similar qualities which
indicates that ASAP can be used to generate SIA behaviors for an entire interaction.

Our subjective evaluation results are inline with the results of the objective
evaluation. Our ASAP model performs better than that of the baseline models of
IL-LSTM and sym-IL-LSTM. Thus, ASAP outmatches the baselines along the four
constructs (naturalness, human-likeliness, synchrony, and engagement), notably
in terms of synchrony and engagement, and is the most similar to the GT both
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quantitatively and qualitatively. Moreover, ASAP can serve to produce SIA behavior
for both speaker and listener.

6.5 Contributions and Conclusion

6.5.1 Contributions

Our work makes the following contributions:

• We propose the modeling of reciprocal adaptation and show how the endow-
ment of such capability can make SIAs behave more social and engaged as
both speaker and listener;

• Our results show that ASAP out-performs state-of-the-art models quantita-
tively and qualitatively notably for interaction synchrony and engagement.

6.5.2 Conclusion

Having the goal to create an expressive SIA capable of interacting with the user
while maintaining his/her attention, we develop a predictive model that produces
the agent’s nonverbal behaviors serving as both active speaker and listener. We
modelize the reciprocal adaptation of our ASAP model by focusing on the aspects
of interpersonal temporality, multimodality by encoding multimodal signals, and
behavior prediction continuity with the autoregressive adaptive online prediction.
Our model outperforms the baseline models through both objective and subjec-
tive evaluations. ASAP shows great promise in rendering natural and human-like
behaviors that are engaging and in sync with the interlocutor addressing our two
research questions.
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The key points of this Chapter:

Addressing Research Questions

• The endowment of reciprocal adaptation capability improves interper-
sonal dynamics (synchrony and engagement) of the generated agent
behaviors.

• The quality of the agent’s behavior (naturalness and human-likeliness)
is also enhanced with the modeling of reciprocal adaptation.

ASAP Model

• We modelized the reciprocal adaptation via ASAP model by focusing
on the aspects of interpersonal temporality, multimodality by encoding
multimodal signals, and behavior prediction continuity with the autore-
gressive adaptive online prediction.

• ASAP shows great promise in rendering natural and human-like behav-
iors that are engaging and in sync with the interlocutor.

Publication

• Jieyeon Woo, Catherine Pelachaud, and Catherine Achard. Asap: En-
dowing adaptation capability to agent in human-agent interaction. In
28th International Conference on Intelligent User Interfaces, 2023d

71



Part IV

Real-time adaptive SIA system
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Chapter 7
Adaptive SIA system for real-time
human-agent interaction
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In this Chapter, the design of an adaptive SIA system that provides real-time
human-agent interaction is presented. The usefulness of the system is validated
by applying it to a medical care application of Cognitive Behavior Therapy (CBT)
as a proof-of-concept. The display of adaptive SIA behavior is shown to increase
the user experience (user’s impression of the agent) and the effectiveness of the
chosen application.
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7.1 Introduction

Adaptation is a key aspect of interpersonal relationships (Cappella [1991]). It can
serve to indicate our engagement and rapport which can also elicit enhancement of
involvement of others (Delaherche et al. [2012], Oertel et al. [2020], Gupta et al.
[2019], Huang et al. [2010], Raffard et al. [2018]). Interlocutors adapt their
behaviors throughout the interaction continuously, reciprocally, and dynamically
to those of the others, referred to as reciprocal adaptation (ref. Chapter 2). The
reciprocal adaptation arises between interlocutors in real time following a looped
process.

Strengthening interpersonal relationships is important in any task in which
people work together. In particular, in psychotherapy, including cognitive behav-
ior therapy (CBT; Beck [2020]), the development of rapport (VandenBos [2007])
and the collaborative relationship between the supporter and the help-seeker has
been emphasized, and their impact on treatment effectiveness has been investi-
gated. Relationships of mutual understanding, acceptance, and sympathetic com-
patibility between or among individuals have been shown to contribute to the ef-
fectiveness of psychotherapy (DeVault et al. [2014], Huang et al. [2010], Raffard
et al. [2018]). Adaptation, both verbal and nonverbal, strengthens the relation-
ship between supporter and help-seeker, resulting in help-seekers feeling more
at ease and more likely to confront their problematic relationships and improv-
ing adherence and persistence rate with the supporter’s suggestions. In medical
and psychological fields, it is known that rapport affects the effectiveness of CBT
(Asay and Lambert [1999], Ardito and Rabellino [2011], Norcross and Lambert
[2018]). During real therapy between a patient and a therapist, health support
is provided through face-to-face interactions. The therapist not only provides the
therapy through verbal communication but also expresses the feeling of sympathy
and engagement non-verbally with their patient (Ramseyer and Tschacher [2014],
Koole and Tschacher [2016]).

Virtual agents interact with human users by playing the role of interlocutor.
Their central objective is to improve the human users’ interaction experience by
increasing their users’ engagement level. A way to attain their goal is to adapt
their behaviors depending on those of their users. For such embodied agents, they
need to display continuous and adaptive behaviors in real time. Adaptive agents,
adapting their verbal and/or nonverbal behavior, have demonstrated their use in
increasing the user engagement (Schroder et al. [2011], Ritschel et al. [2017], We-
ber et al. [2018], Biancardi et al. [2021]), rapport (Huang et al. [2010], Raffard
et al. [2018]), interaction synchrony (Raffard et al. [2018]), and impression of
the agent (liking, naturalness, and human-likeliness) (Bailenson and Yee [2005],
Huang et al. [2010], Biancardi et al. [2021]). The real-time aspect of behavior gen-
eration along with the fluid dialogue management needs to be assured throughout
the whole interaction for both interlocutor roles of a listener and a speaker which
is not a trivial task.

The use of virtual agents can be seen in various domains ranging from as-
sistance (Sidner et al. [2018], Biancardi et al. [2021]) to healthcare (Philip et al.
[2020], Bickmore [2022], Shidara et al. [2022]). Virtual agents have been demon-
strated to be promising tools, notably for medical care, in gaining users’ trust and
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acceptance (Philip et al. [2020]). Several studies have highlighted the benefits
of using virtual agents in e-health applications (Philip et al. [2020], Lisetti et al.
[2013], Lucas et al. [2014], Bickmore [2022]). As such several conversational
agents have been developed to deliver CBT focusing on the treatment (Ring et al.
[2016], Fitzpatrick et al. [2017], Kimani et al. [2019], Shidara et al. [2022]).
However, human supporters communicate with their help-seekers through behav-
ior (both verbal and nonverbal) that are adapted to that of their help-seekers
(Ramseyer and Tschacher [2008]). It is thus important for virtual CBT agents to
also communicate verbally and non-verbally, and adapt their behavior to that of
their users. It is not clear from previous studies whether behaviors with recipro-
cal adaptation, more specifically facial expressions and head movements, have an
impact on improving the effectiveness of human-agent interaction during CBT.

The contributions of this study are twofold: (1) to elucidate whether adapt-
able virtual agents can enhance the experience perceived by users themselves, and
(2) to ascertain whether adaptable virtual agents can improve the effectiveness of
CBT through comparative experiments. We develop an adaptive virtual agent that
renders adaptive behavior in real-time based on the behavior shown by human
interlocutors. To generate the agent’s behavior in our system, we adopted the
ASAP model which renders mutually adaptive agent behavior (ref. Chapter 6).
Our system loops through the processes of social signal perception, agent adaptive
behavior generation, agent visualization, and signal transmission, ensuring real-
time responsiveness. Furthermore, we demonstrate that non-verbal adaptation
of virtual agents contributes to the achievement of interaction objectives in pairs
of users and virtual agents. For this proof-of-concept, we incorporate a scenario
based on CBT (Beck [1979, 2020]) into the virtual agent. CBT is an established
mental healthcare method that provides face-to-face dialogues with users, similar
to our system’s setup. As CBT is effective not only for mental illnesses such as
depression and anxiety disorders but also for coping with daily psychological dis-
tress, it becomes a suitable option for the general public (Greenberger and Padesky
[2015]). In this study, we target the general population and conduct interactions
based on CBT to cope with daily psychological distress. This research reveals how
the adaptation of non-verbal behavior affects the relationship that users feel with
the agent and how it impacts the objectives of the interaction. Additionally, we
analyze how the relationship with the agent and the goals of the interaction are
interrelated.

7.2 Related Works and Limitations

This section outlines relevant research on how the reciprocal adaptation of virtual
agents has been modeled and can influence user perceptions in communication
and the impact of reciprocal adaptation on mental health care, which is key to our
interest.
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7.2.1 Models of adaptation in HAI

Adapting to interlocutors is an essential part of interaction. Agents that interact
with human users by taking the role of an interlocutor should also have the skill
of adaptation. Related research has worked on creating conversational agents
(virtual agents, humanoid robots, chatbots) that can adapt to their users. The
adaptation can be done at different levels shown via various social cues (ver-
bal, nonverbal, and/or conversational strategy) which are employed for diverse
applications such as providing information, company, assistance, education, and
medical care.

For the interaction to be personalized based on the interlocutor, several works
have focused on adapting the agent’s verbal context and/or conversational strat-
egy. Nishimura et al. [2007] created a dialog system for chatbots that generates
natural responses along with the response timing based on the user’s inputs via
decision trees. Ritschel et al. [2017] looked at the variation of linguistic style
and its impact. The linguistic style was used to represent the robot’s personality.
The adaptation of linguistic style was modeled by a reinforcement learning model
based on the user’s engagement level which was estimated from the user’s gaze
and posture. Their study showed that adapting linguistic style can improve the
user’s engagement. Weber et al. [2018] studied the adaptation of jokes based on
the user’s sense of humor. The user’s humor was detected without explicit user
feedback through the user’s smile and laughter. They proposed a robot that per-
forms real-time adaptation using reinforcement learning and demonstrated that
their robot performs significantly better in terms of amusement level by making
jokes that consider its user’s sense of humor compared to those that produce jokes
randomly. Ding et al. [2022] created a conversational agent, TalkTive, that gen-
erates backchannels aiming to help the elderly to be engaged during cognitive
assessments. TalkTive predicts the verbal backchanneling form that can be either
reactive backchannels (e.g. "hmm") or proactive backchannels (e.g. "please keep
going") and its timing.

The nonverbal channel plays a major role in communication. Other works
have concentrated on modeling the nonverbal adaptation of agents. Huang et al.
[2010] designed a virtual agent that produces visual backchannels via conditional
random fields (CRFs) from the user’s gaze, prosody, and lexical features. Their
study denoted that visually adapted backchannels can reinforce the rapport agents
build with their users and can be perceived as more natural. Schroder et al. [2011]
also developed a virtual agent that produces nonverbal backchannels (smile, head
movement, and vocalization). Agent displaying backchannels was able to engage
its user better than an agent that does not. Agent’s adaptation has also been ex-
pressed through the production of mimicry behavior. Bailenson and Yee [2005]
created a virtual agent that renders the mimicry behavior. It imitates the user’s
head movements within a delay of 4sec. A mimicking agent was shown to be
perceived as more positive and persuasive than one that does not mimic the user.
Raffard et al. [2018] also assessed the effect of mimicking virtual agents, with a
mimicry delay varying between 0.5sec and 4sec, with participants suffering from
schizophrenia and healthy participants. Their results revealed that the rapport
and interaction synchrony was improved with the display of mimicry behavior for
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both participant groups. Adaptive nonverbal behavior is not only the one that is
produced as a reaction to the user or copying the user’s behavior but also the one
that matches the user’s behavior. Anderson et al. [2013] made a virtual agent
framework for job interviews facilitating self-reflection and providing personal-
ized coaching. The agent serves as a virtual recruiter that generates its nonverbal
behaviors according to the user’s face and hand gestures. Pecune et al. [2016] cre-
ated a virtual agent for virtual tutor-child interaction that determines the agent’s
social goal (actions and communicative intentions) depending on its social role
and its social relation toward the interacting child. Their study showed that the
agent’s role and social relation influence the agent’s perception in terms of so-
cial attitude. Jones and Castellano [2018] proposed an adaptive robotic tutor
for primary school children. Their robot based on open learner model (OLM)
helped children to develop self-regulated learning (SRL) skills. Pereira Santos
et al. [2023] built an embodied agent for obstetric simulation training. The agent
playing the role of a digital patient adapts its facial expressions in real time via
the behavior that is commanded by an on-screen controller. Sidner et al. [2018]
realized a real-time architecture for companion agents (virtual agents and robots)
that provides companionship for the elderly. The agent adapts its gesture via the
user’s facial gestures and motions. Biancardi et al. [2021] created a virtual agent
that adapts its behaviors to that of its interlocutor. It serves as a virtual museum
guide and aims to maximize the user’s engagement. Their virtual agent is capable
of adapting its nonverbal cues at the behavioral and conversational levels. They
demonstrated that the adaptive agent was perceived as more positive than the
non-adaptive agent.

7.2.2 Mental health care with virtual agents

CBT is an effective and well-established healthcare method for addressing mental
illnesses such as depression and anxiety and for daily health care. Although CBT
is effective, its lack of accessibility is a serious issue, as it requires a high level of
skill for supporters. Various types of conversational agents have been employed
to promote the use of CBT. Conversational agents include text-based agents, such
as those used in messaging applications, robotic platforms, and virtual agents.
Among them, text-based agents are particularly common due to their ease of use
and are often used as smartphone applications for convenient access. Two exam-
ples of such applications are Wysa (Inkster et al. [2018]) and Woebot (Fitzpatrick
et al. [2017]), which have been tested for their ability to assist individuals exhibit-
ing mild to moderate depression and anxiety symptoms. These tools are designed
to provide regular mental health care interventions rather than clinical treatment.
On the other hand, one limitation of these text-based agents is that they com-
municate only via language. In mental health care, interactions using nonverbal
behavioral modalities are important for improving the relationship between the
supporter and the help-seeker, as they influence various aspects, such as under-
standing the psychological state of the other person, empathic behavior, and sense
of presence.

Virtual agents and robots have the advantage of face-to-face multimodal in-
teraction, including facial expressions, gestures, and voice. In particular, virtual
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agents can be used at a relatively low cost, and their appearance and voice can
be customized. For these reasons, virtual agents are anticipated for use in mental
health care. DeVault et al. [2014] conducted experiments of medical interviews
with virtual agents that operated using the Wizard-of-OZ method or autonomously.
The results showed that users felt a rapport with the agent. It was also suggested
that an autonomous agent without an operator behind them could facilitate user
self-disclosure. In addition, attempts are being made to use virtual agents not only
for medical interviews for screening purposes but also for mental health care, such
as CBT. Shidara et al. [2022] developed a virtual agent that delivers CBT which
helps users to identify and rectify automatic thoughts. They alternated the conver-
sational strategy for participants who needed help in identifying their automatic
thoughts via a language model-based automatic thought classifier. Ring et al.
[2016] also illustrated a virtual therapist agent for CBT counseling. The system
dialogue is managed with the user’s speech and affect (detected from the user’s
speech). Along with the dialogue management, they generate the agent’s nonver-
bal behavior, which is automated via the Behavior Expression Animation Toolkit
(BEAT; Cassell et al. [2001]). The potential efficacy of affect-aware agents for the
guidance of CBT scenarios is presented. Efforts have also been made to improve
user receptivity by adjusting the appearance of the agent and its set age, etc. Par-
mar et al. [2022] have systematically manipulated animation quality, speech qual-
ity, rendering style, and simulated empathy in the domain of health counseling.
They investigate the effects on virtual agents’ perceptions in terms of spontaneity,
engagement, trust, credibility, and persuasion. The results showed that the agents
improved their ability to persuade but hindered their ability to improve trust. In
terms of agent design, suggestions include agents tailored to black church com-
munities (O’Leary et al. [2020]) and agents with the appearance of older adults
(Razavi et al. [2022]) to provide realistic conversational practice to older adults
at risk for isolation and social anxiety. While adaptations such as these have been
made, the mental health impact of real-time adjustment of nonverbal behaviors
such as facial expressions and head movements is not clear.

In this study, we seek to develop a virtual agent that is capable of adapting its
behavior to its interacting user. We focus mainly on the nonverbal adaptation of
the agent generating expressive and adaptive agent’s facial expressions and head-
/gaze movements. We integrate the ASAP model (ref. Chapter 6) to enable the
reciprocal adaptation to virtual agents. We intend to check how human interac-
tants perceive adaptive agents in terms of naturalness, human-likeliness, interac-
tion synchrony, and engagement. We aim to also adapt the conversational strategy
(or conversational move) for our selected scenario, the CBT scenario, to the user’s
response. Compared to the previous works, we tried to assure the real-time func-
tioning of our agent at the frame-level to display continuous agent movements.
Moreover, to our knowledge, no non-verbal adaptive agent has yet been intro-
duced for the application of CBT. We intend to improve the interaction itself, more
precisely the user experience (perception of the agent), and at the same time the
effect of CBT compared to previous CBT systems (Ring et al. [2016], Shidara et al.
[2022]) by rendering adaptive agent behavior.
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7.3 Method

Figure 7.1 Real-time expressive and adaptive agent system setup (left) and architecture
(right). The proposed system interacts with the user via a virtual agent that shows ex-
pressive and adaptive behavior in real time. It captures the user’s face with a webcam
and the user’s speech with a microphone. The agent is displayed in front of the user on a
monitor and its speech is rendered via a speech synthesizer and a speakerphone. Consists
of 4 main functionalities: perception of the user’s and agent’s own behavior (in orange),
generation of expressive and adaptive behavior (in green), dialog management (in blue),
and visualization of the agent’s behavior (in violet)

To improve the user’s interaction experience and the perception of the agent,
we built a real-time expressive and adaptive virtual system using the ASAP model,
to render reciprocally adaptive agent behaviors. Our system, illustrated in Fig-
ure 7.1, is composed of 4 main functionalities: perception of the user’s and agent’s
own behavior (via OpenFace, openSMILE, and ASR), generation of expressive and
adaptive behavior (via behavior generation module), dialog management (via dia-
logue management module), and visualization of the agent’s behavior (via frame-
level behavior realizer and behavior realizer modules and Ogre3D). For the ef-
fectiveness assessment of our system, CBT is chosen as our proof-of-concept to
validate our experimental hypotheses stated in the upcoming sections.

7.3.1 Real-time Expressive and Adaptive Agent System

For an agent to be capable of interacting in real time and displaying expressive and
adaptive behavior, it needs to possess the following functionalities:

• perception of the user’s behavior;

• perception of its own behavior;

• generation of expressive and adaptive behavior;
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• dialog management;

• visualization of its behavior.

We build an expressive, interactive, and adaptive virtual agent system, IAVA
system (see Appendix B in Chapter 11 for more detail), that provides real-time
human-agent interaction. Each of the functionalities is endowed to our agent by
employing the corresponding techniques. We present in detail each functionality.

Perception of User’s Behavior

An agent interacting with a human user needs to act accordingly to its user. It
needs to take into account the user’s behavior (speech and gesture). To do so, the
agent first needs to perceive such signals. The perception can be separated into
three parts:

• User’s speech content;

• User’s speech prosody;

• User’s gesture.

User’s speech content The user’s speech content is important as the user’s inten-
tions are explicitly expressed via words. This information is essential for all types
of automatic systems interacting with the user which is easily seen in conversa-
tional AI assistants such as Google, Alexa, and Siri. To capture this information
of speech content, we choose to integrate the Google ASR 1. Automatic Speech
Recognition (ASR), also referred to as Speech-to-Text (STT), is the transcription
technology that captures the audio of spoken words and transforms it into written
text. The ASR technique identifies full phrases and transcribes them as the user is
speaking.

User’s speech prosody When we speak, our intentions are conveyed via the
speech content but we also vary the way we speak using our voice qualities. Our
speech can vary in pitch (high or low), loudness (loud or soft), and duration (fast
or slow). This variation in speech is referred to as speech prosody. We extract the
speech prosody using openSMILE (Eyben et al. [2010]), an open-source toolkit
for audio feature extraction. We choose to retrieve the prosodic features of:

• Fundamental frequency representing the pitch;

• Loudness quantifying the sound energy;

• Voicing probability estimating a percentage of unvoiced and voiced energy;

• Mel-frequency Cepstral Coefficient (MFCC; Logan [2000]) which is a repre-
sentation of the short-term power spectrum of a sound.

These features are obtained in real-time with a frequency of 100Hz.
1https://cloud.google.com/speech-to-text
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User’s gesture For the gesture, we decide to focus on the perception and the
generation of the facial gestures (facial expressions and head/gaze movements)
of both the human user and the agent. For the perception of the user’s facial
gestures, we use OpenFace (Baltrušaitis et al. [2016]), an open-source toolkit, to
extract the facial features at the frame-rate of 30fps which are as follows.

• Gaze movements (Gx and Gy) which are the gaze angles w.r.t. the x and y
axis;

• Head movements (Rx, Ry, and Rz) which are the Euler head rotations w.r.t.
the x, y and z axis;

• Facial expressions via facial Action Units (AUs; Ekman and Friesen [1976])
which are facial muscle movements defined by the Facial Action Coding Sys-
tems (FACS; Ekman and Friesen [1978]). We use AU1 (inner brow raiser),
AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper lid raiser), AU6
(cheek raiser), and AU7 (lid tightener).

Perception of Agent’s Behavior

The agent needs to behave not only depending on its user’s behavior but also with
respect to its previously displayed behavior and its current intention (e.g. agent
utterance). For the agent to act as such, it needs to also perceive (or remember) its
own behavior (i.e. the agent behavior at timestep t takes into account its previous
behavior until timestep t−1). For this, the agent remembers its previous behaviors
(speech content and prosody computed in real time via openSMILE at 100Hz,
and previously rendered facial gestures) within its internal memory along with
its currently exhibiting behavior.

Generation of Expressive and Adaptive Agent’s Behavior

The behavior signals that are perceived by the human user and the agent
are used to generate expressive and adaptive agent behavior. We employ the
Augmented Self-Attention Pruning (ASAP) model (ref. Chapter 6). This model
generates expressive agent facial gestures that are reciprocally adaptive. It learns
interpersonal relationships via real human-human interactions, from a corpus
of screen-mediated face-to-face interactions, the NoXi database (Cafaro et al.
[2017]), with its self-attention pruning and data augmentation techniques. It
also assures the movement continuity of the generated behavior by performing
autoregressive adaptive online prediction.

The pre-trained ASAP model is integrated into our system. The perceived vi-
sual and audio features of the past 100 time-steps of both human user and agent
are passed to the ASAP model to render the agent’s expressive and adaptive visual
behavior at the next time-step. The communication protocols of ZeroMQ 2 (Hint-
jens [2013]) and OSC (Open Sound Control) 3 (Wright [2005]) are used to pass
the signals (for visual and audio signals respectively), after syncing the different

2https://zeromq.org
3https://opensoundcontrol.org
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sampling rates to 25Hz which is the ASAP model’s sampling rate, to the model for
the prediction. The model generates the agent’s behavior with an inference speed
of 0.008s.

Dialog management

During a conversation, the dialog is managed between interlocutors by taking
turns, and the next flow of discussion is decided depending on the speech content.
The agent also needs to be able to behave similarly in a real-time conversation
with its human user. To this aim, we use Flipper2.0 (or Flipper; van Waterschoot
et al. [2018]) which is a dialog engine that can flexibly direct the conversational
flow. The utterance text of the user’s speech is obtained from the ASR and passed
to Flipper via ActiveMQ 4(Snyder et al. [2011]), a communication protocol, to
choose the next conversational move based on a rule-based structure.

Visualization of Agent

For the visualization of the animation of the virtual agent, we use the Greta plat-
form (Niewiadomski et al. [2009]) which is an open-source virtual agent platform
simulating an agent’s verbal and nonverbal behavior in real time. The agent’s
speech (its next conversational move chosen by the Flipper dialog engine) is trans-
formed from text to audio using the CereProc 5 speech synthesizer (or Text-to-
Speech (TTS)) within the internal audio module. The matching mouth movements
are also produced along with the speech audio by the internal behavior realizer
module. For the display of the agent’s adaptive facial gesture, generated by the
integrated ASAP model, the predictions are passed to the frame-level behavior re-
alizer module. The agent’s behavior outputted by the behavior realizer modules
(adaptive agent behavior and mouth movements) is then passed to Ogre3D 6, an
open-source scene-oriented 3D rendering engine, for display.

System Setup and Performance

For the system setup, a virtual agent is displayed in front of the user on a monitor
(in a close-up of their face, head, and shoulders), as depicted in Figure 7.1. The
user’s speech is captured via a microphone and the user’s facial gestures (head and
gaze movements, and facial expressions) are obtained through a 1080p RGB web-
cam. The agent’s spoken utterance (speech of the chosen conversational move) is
rendered using a speech synthesizer and a speakerphone.

The system runs on two computers in parallel. The first computer continuously
displays the agent’s behavior via the Greta platform. The second computer runs
the ASAP model, generating expressive and adaptive agent behavior in real time,
along with the perception toolkits of OpenFace and openSMILE (for facial feature
extraction and prosodic feature extraction respectively).

4https://activemq.apache.org
5https://www.cereproc.com
6https://www.ogre3d.org/
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For the system’s performance, real-time functioning (25Hz) is assured. A single
system loop execution time of 0.04s with no delay is assured. To detail, the system
loop consists of perception (approx. 0.03s), behavior generation (approx. 0.008s),
communication (approx. 0.001s), and visualization (approx. 0.001s) which are all
synced.

To run the system, there is a space requirement of approximately 7GB for the
setup and use which consists of 2GB for platform visualization, 2GB for OpenFace
and openSMILE, and 3GB for execution and data saving. Hardware specifications
are: 2 computers with 2.4GHz Intel Core i9 mounted with NVIDIA Quadro RTX
4000 and 64GB RAM.

7.3.2 Cognitive Behavior Therapy

To assess if endowing virtual agents with reciprocal adaptation mechanisms en-
hances their user’s experience, we choose to use the CBT scenario as our proof-of-
concept.

CBT (Beck [1979, 2020]) is a mental health treatment that restructures auto-
matic thoughts (or irrational thoughts). These automatic thoughts are those that
come up to our minds suddenly and unconsciously. Because of their nature of oc-
curring unexpectedly, we are not aware of them but they affect our mood. These
thoughts often elicit negative feelings but can also evoke misleading positive emo-
tions. To help people to recognize and rectify automatic thoughts into balanced
ones, the CBT treatment is delivered. The restructuring of thoughts is done by
asking the participants several fact-finding questions to guide them through the
process of identification of such thoughts and changing them. The key effect of
CBT is that it clarifies irrational situations and thoughts, and brightens people’s
moods.

By applying our adaptive virtual agent to CBT, we expect to see an amelioration
in the effectiveness of CBT in mood improvement along with the user’s experience,
notably the enhancement of the agent’s perception.

Scenario

We choose to work with the CBT scenario presented in Shidara et al. [2022]
which is presented in Figure 7.2. We follow the same scenario (translated to
French) of asking the participants to self-report their mood (negative mood inten-
sities asked before and after the CBT session via questions Q3 and Q14), helping
them to identify their automatic thought (via question Q4), and guiding them with
fact-finding questions (by asking questions concerning proof, disproof, disputing,
Socratic questioning, balanced thought, and caring words). For the identifica-
tion of participants’ automatic thought, their response is verified by an automatic
thought classifier model (detailed below) to check if it corresponds to an auto-
matic thought. The model performs a classification on the participants’ response
by checking whether it is based on negatively distorted cognition or factual valid-
ity to judge if they have correctly identified an automatic thought. The next con-
versational move (agent’s utterance) is selected depending on whether the user’s
answer is an automatic thought or not.
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Figure 7.2 Scenario of utterances spoken by system used in Shidara et al. [2022] under
the copyright terms of CC BY.

Automatic Thought Classifier

Training data Test data Feature Accuracy F1-score

D D
TF-IDF 0.73 0.81
BERT 0.67 0.76

TF-IDF + BERT 0.67 0.76

G D
TF-IDF 0.70 0.79
BERT 0.70 0.79

TF-IDF + BERT 0.67 0.78

D + G D
TF-IDF 0.76 0.83
BERT 0.73 0.79

TF-IDF + BERT 0.73 0.79

Table 7.1 Classification results of automatic thought for French. D: data collected in Shi-
dara et al. [2022], G: sentences from Greenberger and Padesky [2015], and the score in
bold represents the best score.

The automatic thought classifier is a classification model that serves to validate
whether the participants have successfully identified their automatic thought. The
model is based on the Support Vector Machine (SVM) classifier algorithm with
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a linear kernel (Shidara et al. [2022]). We get the French word embeddings
from a pre-trained language model for word representations, the Bidirectional
Encoder Representations from Transformers (BERT; Devlin et al. [2018]), and use
the embeddings to train the automatic thought classifier. The choice of using BERT
embeddings was chosen after testing different combinations of training data and
distributed representations of Term Frequency-Inverse Document Frequency (TF-
IDF), BERT, and both TF-IDF and BERT. The classification results for French are
reported in Table 7.1 which shows that TF-IDF has the best accuracy and F1-score
of 0.76 and 0.83 respectively when evaluated on sentences from Greenberger and
Padesky [2015] (e.g. "If I’m not a total success, I’m a failure." and "I’ll be so up-
set, I won’t be able to function at all.") and trained with both data collected in
Shidara et al. [2022] and sentences from Greenberger and Padesky [2015]. How-
ever, through supplementary evaluation of French automatic thought sentences
(more complex and longer versions of sentences from Greenberger and Padesky
[2015]), the classification with TF-IDF failed (none of the sentences in the supple-
mentary evaluation was correctly classified) while the one with BERT performed
with similar accuracy and F1-score of 0.73 and 0.79 respectively. Thus, BERT was
selected as our input feature for the automatic thought classifier.

When inputting the participant’s response (user’s utterance), the model iden-
tifies automatic thoughts by performing binary classification. If the response was
identified by the classifier as an automatic thought, the agent moves on to the
next item of the scenario. However, if it was determined not to be an auto-
matic thought, the agent provides a hint and asks the user again for an automatic
thought. The agent provides at most six hints (from Beck [2020]) and if the user
was unsuccessful to answer with an automatic thought even after six attempts,
failing for the seventh time, the agent moves on to the next item. The automatic
thought classifier is integrated within the dialogue management module (ref. Sec-
tion 7.3.1 and Figure 7.1).

7.3.3 Experiment

Hypotheses

To investigate the usefulness of a virtual agent showing expressive and adaptive
behavior, we propose three experimental conditions which are as follows:

• RA: Reciprocal Adaptation;

• MM: Mismatched Movement;

• SP: Still Posture.

Each condition is detailed in Table 7.2.
We build our study upon the work of Shidara et al. [2022] which demonstrated

that interacting with virtual agents helps to improve the effectiveness of CBT (in
improving people’s mood and state).

For our study, we hypothesize that adaptive and expressive agents can further
enhance the user experience (agent perception in terms of behavior naturalness,
human-likeness, synchrony, and engagement) and the effectiveness of CBT (user
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Experimental Conditions Characteristic

Reciprocal Adaptation (RA)
Agent showing expressive and adaptive behavior;

w/ ASAP model.

Mismatched Movement (MM)
Agent displaying pre-registered mismatched behavior;

expressive but not adaptive.

Still Posture (SP)
Still posture with only lip-sync;

w/o ASAP model Shidara et al. [2022].

Table 7.2 Experimental conditions.

mood and state change) based on the previous observation that virtual agents
with adaptation help improve the interaction. Thus, we expect agents enabled
with reciprocal adaptation (RA) to outperform agents showing random behaviors
(or mismatched behavior; MM) and still agents (or in a still position; SP).

Our hypotheses are the following:

• H1: Reciprocally adaptive agents are more positively perceived and more
effective for CBT compared to agents showing mismatched behaviors (RA >
MM);

• H2: Reciprocally adaptive agents are more positively perceived and more
effective for CBT compared to agents in a still position (RA > SP).

Protocol of Experiment

For the experiment of the interaction of human users with our agent system to
proceed smoothly, we conduct our experiment with the following protocol:

i) Oral explication.

ii) Signing consent forms.

iii) Lecture of a document on automatic thought.

iv) Filling out pre-questionnaires.

v) Interaction between the participant and our virtual agent.

vi) Filling out post-questionnaires.

The detail of the protocol is as follows. We start the experiment by giving the
participants an oral explication of the aim of the study and the experimental pro-
tocol (pre-questionnaire, interaction with our agent, and post-questionnaires) is
given to the participant. The participants sign two consent forms: one to partici-
pate in the experiment and the other to give the authorization of use concerning
the collected data. The participant is then invited to read a document explain-
ing what an automatic thought is for a better understanding of the CBT scenario.
They start by filling out the pre-questionnaires before the interaction. After the
interaction with our virtual agent, they finish by filling out post-questionnaires.

86



7.3. METHOD

Evaluating Questionnaires and Measures

To assess the potency of our system especially for our proof-of-concept of the CBT
scenario and validate our hypotheses, we use questionnaires and objective mea-
sures from the literature.

Questionnaires For the evaluation of the perception of the agent, on a 5-point
Likert scale (from 1 (not at all) to 5 (very)), we formulate our questionnaires
based on existing questionnaires of human-agent interaction evaluation which are
the following:

• Behavior naturalness (Fitrianie et al. [2021], Von der Pütten et al. [2010]):
e.g. "Is the behavior of the virtual agent artificial?";

• Behavior human-likeliness (Fitrianie et al. [2021], Von der Pütten et al.
[2010]): e.g. "Does the virtual agent behave like a human?";

• Engagement (Fitrianie et al. [2021], Von der Pütten et al. [2010]): e.g. "The
virtual agent was engaged in the conversation?";

• Synchrony (Prepin et al. [2013], Louwerse et al. [2012]): e.g. "The virtual
agent and I were agreeing to each other?";

• Rapport (Wang and Gratch [2009], Von der Pütten et al. [2010]): e.g. "I
think the virtual agent and I established a rapport.".

The same questionnaires were used for the agent perception constructs of behavior
naturalness, behavior human-likeliness, engagement, and synchrony as in Chap-
ter 6 (questions at the third person point of view; e.g. "Are the human and the
virtual character/agent agreeing to each other?") with questions reformulated at
the first person point of view (e.g. "The virtual agent and I were agreeing to each
other?").

As CBT is a psychological therapy, to assess the effectiveness of CBT we take
the questionnaires from the psychology field which are as follows.

• State-Trait Anxiety Inventory (STAI; Spielberger et al. [1971]): psychological
inventory consisting of 40 self-report items for measuring participant’s anx-
iety level (state and trait with 20 items each scored from 1 (not anxious at
all) to 4 (very anxious)), e.g. "I feel nervous.";

• Kessler Psychological Distress Scale (K6; Kessler et al. [2002]): six-item self-
report measure via a 5-point Likert scale (ranging from 0 (none of the time)
to 4 (all of the time)) for measuring participant’s psychological distress level,
e.g. "How often did you feel so depressed that nothing could cheer you up?";

• Cognitive Change-Immediate Scale (CC; Schmidt et al. [2019], Vittorio et al.
[2022]): five-item self-report measure (rated on a scale from 0 (not at all)
to 6 (completely)) that assesses help-seekers’ experience of cognitive change
and cognitive skill use during sessions, e.g. "I noticed myself thinking less
negatively.".
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The anxiety state change is calculated via STAI-state score (total score of 20
STAI state items), which is reported before and after the CBT session, using Equa-
tion 7.1.

Anxiety state change = STAI-statepre − STAI-statepost (7.1)

For psychological distress, the participants reported their distress level using
the K6 scale before and after the session. Before the experiment, the participants
responded to the K6 scale taking into account how they felt over the previous 30
days. After the experiment, they were asked to report whether they felt a change
for any of the K6 items after the CBT session. The change in psychological distress
level is measured via K6 score (total score of 6 K6 items) by Equation 7.2.

Psychological distress level change = K6pre −K6post (7.2)

We also measure the mood change by computing the mood change score,
defined in Equation 7.3, presented in Shidara et al. [2022]. The mood scores
(moodpre and moodpost) are self-reported mood scores (negative mood intensities
between 0-100; 0 for happy and 100 for depressed).

Mood change =
(moodpre −moodpost)

moodpre
(7.3)

Measures To fully evaluate the performance of our system, we also assess it via
objective measures. As we focus on the adaptation, it is interesting to investigate
whether it was established within the interaction between our agent and the user
along with the evaluation of behavior appropriateness. We employ the measures of
Kolmogorov-Smirnov two-sample test (KS test) and DTW, presented in Chapter 6,
along with reciprocal adaptation measures of Synchrony (Sync) and Entrainment
Loop (EL), introduced in Chapter 5, between the behaviors of the user and the
agent under one of the experimental conditions (RA, MM, or SP).

For the DTW, we check the proximity/resemblance between the agent’s gener-
ated behavior (for one of the experimental conditions of RA, MM, or SP) and the
user’s behavior against that of the human-human interaction (interactions in the
NoXi database (Cafaro et al. [2017]); ref. Chapter 4) to evaluate reciprocal adap-
tation. To detail, to assess the CBT session, the behaviors of the user and the agent
under one of the experimental conditions (RA, MM, or SP) are used to compute
the proximity score. This CBT session score is compared with the human-human
interaction score which is the average of the scores obtained from the pairs of
interlocutors within NoXi.

We also computed the quantity of movement (∆Qmvt) which is the quantity of
movement (head rotations Rx, Ry, and Rz) defined as in Equation 7.4:

∆Qmvt =
T∑
t=1

√
(Rx,t −Rx,t−1)

2 + (Ry,t −Ry,t−1)
2 + (Rz,t −Rz,t−1)

2 (7.4)

where T is the sequence length.
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Statistical Analysis A one-sided Welch’s t-test was employed to compare the mea-
suring aspects of user experience and CBT effectiveness for the experimental group
pairs of (RA,MM) and (RA,SP) to examine our two hypotheses.

Interpretation The perception of the agent factors of behavior naturalness,
human-likeliness, synchrony, engagement, and rapport are interpreted as render-
ing a more positive agent impression when the score is closer to 5.

For the interpretation of the agent’s quantitative measure, the lower the values
are for the metrics of Qmvt and KS test, the better the agent performs as it is closer
to the human interlocutor within a human-human interaction. Concerning the
measures of synchrony and entrainment loop, the higher the value the better they
are.

For the measures of CBT, the CBT is effective, showing the improvement of a
certain factor, when:

• Mood: mood score (negative mood from pre to post) decreases or high mood
change score;

• Anxiety: anxiety state (anxiety level from pre to post) decreases or high
anxiety state change score;

• Psychological distress: psychological distress level (stress level from pre to
post) decreases or high psychological distress level change score;

• Cognitive change: high CC score (experience of cognitive change and cogni-
tive skill).

Experimental Setting

A sample size of 60 French-speaking participants (confidence level of 90 with a
margin of error of 10 for the French population with a higher education degree
(population portion of 33%)). We separate them into our 3 experimental con-
ditions of RA, MM, and SP having 20 participants for each condition. Table 7.3
presents the demographics of the recruited participants per experimental condi-
tion (RA, MM, and SP). The inclusion criteria for this study were French-speaking,
18 years or older, and no vision or hearing impairments.

RA MM SP
Number of participants 20 20 20
Gender

Male 14 11 15
Female 6 9 5

Age
Under 30 17 15 16
Above 30 3 5 4

Table 7.3 Participant demographics per condition (RA, MM, and SP).
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7.4 Results

To validate our hypotheses, we study the impact of our real-time adaptive agent on
the perception of the agent, effectiveness for CBT (user mood and state change),
and the relation between the agent perception and user mood/state change.

7.4.1 Perception of Agent’s Behavior

We also hold interest in whether our experimental conditions (RA, MM, and SP)
influence how the participants perceive the agent (perception of the agent’s behav-
ior) along the 5 factors of naturalness, human-likeliness, synchrony, engagement,
and rapport.

Figure 7.3 Perception of the agent’s behavior along naturalness, human-likeliness, syn-
chrony, engagement, and rapport. The central line in bold represents the mean value of
each condition (RA, MM, and SP) and the colored-filled contour represents the standard
deviation of each condition.

For the perception of the agent’s behavior, we can note, in Figure 7.3 and Ta-
ble 7.4, that the condition of showing reciprocally adaptive behavior (RA) is per-
ceived as the most natural, human-like, in sync, engaged, and to have a rapport
with the participant among the three experimental conditions. An agent show-
ing reciprocally adaptive behavior is indeed perceived more positively along all 5
aspects compared to an agent displaying random behavior (or mismatched behav-
ior; MM) validating our first hypothesis H1 (RA > MM). We also validate that RA
condition is better than a still agent (or in a still position; SP) also for all 5 as-
pects validating our second hypothesis H2 (RA > SP). A significant difference was
found between the experimental conditions of RA and MM for the engagement
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Factor
RA MM SP

Mean SD Mean SD Mean SD
Naturalness 2.77 1.030 2.40 0.762 2.55 0.728

Human-likeliness 2.50 1.070 2.08 0.779 2.30 0.871
Synchrony 3.11 0.941 2.79 0.706 2.86 0.732

Engagement 3.52 0.964 2.95 0.678 3.23 0.659
Rapport 3.18 0.860 2.72 0.620 2.95 0.743

Factor
Between RA-MM Between RA-SP

Cohen’s d P-value Cohen’s d P-value
Naturalness 1.28 0.210 0.767 0.448

Human-likeliness 1.41 0.169 0.647 0.522
Synchrony 1.22 0.232 0.938 0.355

Engagement 2.15 0.039 1.085 0.286
Rapport 1.97 0.057 0.935 0.356

Table 7.4 Mean and standard deviation of agent behavior perception factors for the con-
ditions of RA, MM, and SP. Significance difference between the condition pairs (RA,MM)
and (RA,SP) reported via one-sided Welch’s t-test.

aspect (Cohen’s d=2.15 and p-value=0.039). No significance was found for the
other aspects and for the aspects between RA and SP conditions.

It is interesting to notice that the least performing condition for all 5 factors is
the MM condition which shows random and unsynced agent behaviors. It seems
that the display of random behavior disregarding the interlocutor rather hinders
the impression of the agent. Maintaining a still posture (SP) is preferred to show-
ing non-adaptive behaviors that not considering the participant at all.

We also look at objective measures of DTW, KS test, and synchrony and entrain-
ment loop measures. For the quantitative study, as we want to see the influence
of having adaptive behaviors, we compare our conditions of adaptive (RA) and
non-adaptive (MM).

We can check in Figures 7.4 and 7.5 and Table 7.5 that the condition dis-
playing reciprocally adaptive behavior (RA) performs better than that showing
non-adaptive or mismatched behavior (MM) in terms of head movement quantity
(via Qmvt), density distribution similarity (via KS test), and DTW resemblance.
In addition, we can remark that the adaptive condition (RA) is better than the
non-adaptive condition (MM) in being in sync and in entraining its interlocutor’s
behavior. Via these quantitative measures, we can also note that an adaptive agent
scores better than a non-adaptive one further supporting our prior observation that
the RA condition renders a better impression than the MM condition.

7.4.2 User Mood and State Change

We investigate the global effect of CBT for all three experimental conditions (RA,
MM, and SP) combined, with a total number of 60 participants, and the effect of
each experimental condition. We assess the effect of the CBT experiment by look-
ing at the factors of mood, anxiety, psychological distress, and cognitive change.
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Measure
RA MM

Cohen’s d P-value
Mean SD Mean SD

∆Qmvt 12.4 11.8 41.6 31.0 -3.933 <0.001
KS Rx 0.688 0.274 0.832 0.228 -1.807 0.079
KS Ry 0.521 0.203 0.705 0.143 -3.324 0.002
KS Rz 0.652 0.218 0.897 0.136 -4.272 <0.001
KS AU1 0.413 0.237 0.623 0.165 -3.263 0.003
KS AU2 0.376 0.224 0.862 0.080 -9.126 <0.001
KS AU4 0.758 0.241 0.961 0.121 -3.372 0.002

DTW AU1 115 44.9 128 25.8 -1.105 0.278
DTW AU2 106 30.3 82.3 26.7 2.604 0.013
DTW AU4 109 54.8 182 30.8 -5.228 <0.001
SyncAU1 2.98 3.47 0.00 0.00 3.835 0.001
SyncAU2 2.33 4.82 0.00 0.00 2.155 0.044
SyncAU4 15.6 30.4 0.00 0.00 2.293 0.033
ElAU1 173 105 148 88.7 0.817 0.419
ElAU2 222 144 0.00 0.00 6.898 <0.001
ElAU4 365 613 181 170 1.292 0.210

Table 7.5 Mean and standard deviation of agent perception objective measures for the
conditions of RA and MM. Significance difference between the condition pair (RA,MM)
reported via one-sided Welch’s t-test.

Figure 7.4 DTW resemblance, synchrony, and entrainment loop between adaptive (RA)
and non-adaptive (MM) conditions.

For the factors that represent the change of the participant’s state before and
after (pre & post) the experiment, we calculate their change. For these factors of
change (mood, anxiety, and psychological distress), each participant responds to
the corresponding questionnaires (mood score, STAI, and K6) twice (before and
after the experiment) to measure the change. As the same questionnaires are used
twice, we are in the case of having repeated measures. Thus, we can visualize
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Figure 7.5 KS test between adaptive (RA) and non-adaptive (MM) conditions. The central
line in bold represents the mean value and the colored-filled contour represents the stan-
dard deviation of each condition.

RA MM SP
Mean SD Mean SD Mean SD

Mood score
pre 59.3 24.5 70.0 19.8 51.0 24.1
post 36.0 23.1 35.6 21.9 33.3 22.1

K6
pre 8.05 3.85 6.50 3.00 7.30 2.75
post 6.10 3.46 5.65 4.72 7.40 3.12

STAI-State
pre 33.6 9.20 34.5 11.3 35.6 7.98
post 32.3 8.84 33.9 10.5 36.8 9.42

STAI-Trait
pre 43.5 11.0 42.9 9.86 44.7 7.37

Table 7.6 Mean and standard deviation of user mood and state measures (pre and post)
for the conditions of RA, MM, and SP.

the difference to check whether there was a change as shown in Figure 7.6 and
Table 7.6.

Mood Change

Looking at the mood scores before (pre) and after (post) the experiment, depicted
in Figure 7.6 (left) and Table 7.6, we can remark that the mood score, which
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Figure 7.6 Change in user mood (mood scores) and states (anxiety level via STAI-State
and psychological distress level via K6) before (pre) and after (post) the experiment.

Measure
RA MM SP

Mean SD Mean SD Mean SD
Mood Change Score 0.376 0.251 0.483 0.313 0.246 0.440

∆STAI-State 1.40 7.63 -0.50 4.67 -1.20 6.49
∆K6 1.95 3.39 0.85 2.74 -0.10 2.43
CC 11.8 7.30 10.2 6.58 11.0 5.20

Measure
Between RA-MM Between RA-SP

Cohen’s d P-value Cohen’s d P-value
Mood Change Score -1.192 0.241 1.149 0.260

∆STAI-State 0.949 0.350 1.161 0.253
∆K6 1.128 0.267 2.197 0.035
CC 0.705 0.485 0.374 0.711

Table 7.7 Mean and standard deviation of user mood and state measures for the conditions
of RA, MM, and SP. Significance difference between the condition pairs (RA,MM) and
(RA,SP) reported via one-sided Welch’s t-test.

indicates the participant’s emotional state of being depressed, decreases. This
indicates that CBT treatment using our agent platform helps participants to change
their negative mood to a positive one.

When looking at the mood change scores, shown in Table 7.7, we can remark
on the difference in experimental conditions (RA, MM, and SP). Adaptive agent
(RA) better ameliorates the participants’ mood during the CBT session compared
to when the agent retains a still position (SP). However, the non-adaptive condi-
tion (MM) presents stronger changes in mood scores. We assume that the presence
of the agent’s movement (independent of the adaptation) helps in improving the
participants’ mood as participants may feel at ease by getting the agent’s visual
feedback. No significance was found between the pairs of (RA,MM) and (RA,SP)
for mood change score.
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Anxiety State Change

For the anxiety level change, we look into the STAI-State inventory in which par-
ticipants report their current anxiety level.

The anxiety level obtained by STAI-State, in Figure 7.6 (center) and Table 7.6,
shows a slight improvement (decrease in anxiety level) after the experiment (post)
compared to that reported before (pre). This may be interpreted as our CBT agent
platform also helps the participants to ameliorate their anxiety levels.

The difference in experimental conditions (RA, MM, and SP) shows different
effects on the anxiety level change as seen in Table 7.7. Showing reciprocally
adaptive agent behavior (RA) seems to help in improving the anxiety state. How-
ever, agents with no motion (SP) or showing random ones (MM) may deter the
state of the participants by increasing their anxiety level instead of relieving them.
No significance was found between the condition pairs for anxiety state change.

Psychological distress level change

By observing the psychological distress level obtained via the K6 scale, shown in
Figure 7.6 (right) and Table 7.6, we can see that participants’ stress level improves
after the experiment (post) compared to that reported before (pre), shown by the
decrease in stress levels. This may be interpreted as our CBT agent platform is
indeed helpful in ameliorating participants’ psychological distress.

When looking at the distress level change, shown in Table 7.7, we can check
the difference in experimental conditions (RA, MM, and SP). The psychological
distress state seems to improve when the agent is expressive (MM and RA). We
can also assume that showing reciprocally adaptive agent behaviors (RA) is more
effective in amending the stress level than showing unsynced and random behav-
iors (MM). When the agent is in a still position (SP), the agent may render the
participants in a more stressful state.

Welch’s t-test yielded significant variation between the pair of (RA,SP) for dis-
tress change while no significance was found for the pair of (RA,MM).

Cognitive change

With the CC scale, results reported in Table 7.7, we can check that the participants
all felt the experience of cognitive change and cognitive skill use during the CBT
experiment with our agent platform (CC>0). We can also remark that the condi-
tion of RA performs better for cognitive change compared to SP and MM condi-
tions. It seems that displaying reciprocally adaptive agent behaviors (RA) helps
in experiencing cognitive change and eliciting cognitive skills. We can also check
that showing random agent behaviors (MM) rather deters such change. We report
no significant statistical differences between the experimental condition pairs.

With this finding, we can validate our hypotheses H1 and H2, showing the re-
lationship of RA>MM and RA>SP respectively, for the CBT effectiveness measures
of change in mood, anxiety state, and psychological distress level. Mood change
only validates H2 of RA>SP.
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7.4.3 Relation between Perception of Agent and User Mood and State
Change

Figure 7.7 Correlation between factors of agent perception with p-values marked as
***:p < 0.001 (see Appendix C in Chapter 12 for graph interpretation).

Looking at the scores given by the participants along the factors of the percep-
tion of the agent, Figure 7.7, we can note that the 5 factors are heavily correlated
(direct relation) to one another with significant differences (p < 0.001). We can
remark that the factors of agent perception are closely linked with each other.
From Figure 7.8, positive correlations between user mood and state change fac-
tors are also noticeable, notably between the pairs of (anxiety state change, CC)
and (anxiety state change, psychological distress level change). This implies that
the mood and state change well complement each other for the participants’ CBT
performance evaluation.

We are also interested in looking at the relationship between CBT effective-
ness (change in mood, anxiety state, distress level, and cognitive state) and the
participant’s perception of the agent along these 5 factors (naturalness, human-
likeliness, synchrony, engagement, rapport). We can remark, via Figure 7.9, that
the anxiety level and the 5 factors of the agent’s impression are correlated (STAI-
State has a direct relation with the 5 factors) with significant differences for nat-
uralness (p = 0.008), human-likeliness (p = 0.049), synchrony (p = 0.01), and
rapport (p = 0.013). We can observe the same improvement in cognitive change
(CC has a direct relation with the 5 factors) differing significantly for all 5 factors
at p < 0.001. For the other two factors of CBT effectiveness (mood and psycholog-
ical distress), no significant correlation was found with any of the 5 factors of the
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Figure 7.8 Correlation between factors of user mood change and state change with p-
values marked as *:p < 0.05, **:p < 0.01, and ***:p < 0.001 (see Appendix C in Chap-
ter 12 for graph interpretation).

perception of the agent. Our results indicate that the impression of virtual agents
is positively correlated to user anxiety state and cognitive change.

7.5 Discussion

Through qualitative and quantitative evaluations, we were able to validate that the
display of adaptive behavior leads to the agent’s positive perception of being consid-
ered as more natural, human-like, in sync, engaged, and having built a rapport with
the participant. The results are in line with previous studies which demonstrated
that agents displaying adaptive behaviors increase the user’s engagement (Schroder
et al. [2011], Ritschel et al. [2017], Weber et al. [2018], Biancardi et al. [2021]),
rapport (Huang et al. [2010], Raffard et al. [2018]), interaction synchrony (Raf-
fard et al. [2018]), and impression of the agent (Bailenson and Yee [2005], Huang
et al. [2010], Biancardi et al. [2021]). We were able to also remark a non-adaptive
agent is perceived less well than a static one (in a still position). This implies that
non-adaptive behavior can rather hinder the impression of the agent. Showing
just expressive behavior that does not take into account the interlocutor is worse
than not showing any behavior.
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Figure 7.9 Correlation between factors of agent perception, user mood change, and user
state change with p-values marked as *:p < 0.05, **:p < 0.01, and ***:p < 0.001 (see
Appendix C in Chapter 12 for graph interpretation).

Concerning the effectiveness of CBT, we were able to check that our virtual agent
system, disregarding the different conditions (RA, MM, and SP), helps deliver CBT
in improving users’ moods and states of anxiety, psychological distress, and cog-
nitive change. This highlights the advantage of deploying virtual agents in gen-
eral notably in healthcare. The adaptive condition showed its usefulness in having
higher effects of CBT. We noticed that agents showing random expressive behavior
can still improve the impact of the application. These results are consistent with
findings in the medical and psychological fields that rapport (VandenBos [2007])
affects the effectiveness of CBT (Asay and Lambert [1999], Ardito and Rabellino
[2011], Norcross and Lambert [2018]), and in the engineering field that nonver-
bal behavior affects rapport (DeVault et al. [2014], Huang et al. [2010], Raffard
et al. [2018]) as defined in the context of human-agent interaction (Gratch and
Lucas [2021]). This may be related to the presence of the agent that the partici-
pants feel during the CBT session. Expressive agents may heighten the feeling of
the agent being physically present with the participants thus leading to a psycho-
logical ease to interact and benefit the effect of the interaction and thus the CBT
treatment.

We also found correlations between the factors of perception of the agent’s im-
pression, between the user’s mood and states, and between the perception of the
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agent’s impression and the user’s anxiety state and cognitive change. The positive
correlation observed between the factors of perception of the agent’s impression,
revealing a halo effect, shows that the factors are indeed tightly connected which
can be grouped as a global impression of the agent. The correlations found be-
tween user mood and state change factors, especially the positive relation between
anxiety and distress state changes, denote that these factors complement one an-
other in showing the effect of CBT. The interdependence seen between agent per-
ception and user states (anxiety and cognitive) may be interpreted as the user
states can be ameliorated by improving the agent’s impression which can be done
by endowing the agent with the skill to adapt.

7.6 Social Skills Training System Application

Our real-time adaptive virtual agent system proved its usefulness for the proof-of-
concept of CBT. To manifest that our system is applicable to various domains, its
use needs to be confirmed with other use cases. To address this, we applied our
system to Social Skills Training (SST; Bellack et al. [2013]), a behavioral therapy
for improving social skills in people, to demonstrate our system’s applicability and
effectiveness to other usages.

Our system applied for SST (Saga et al. [2023b]) replaces the CBT-related mod-
ule (automatic thought classifier) with the SST-related module. The SST-related
module is based on the system of Saga et al. [2023a], comprised of:

• SST evaluation module: estimates eye contact, facial expression, and vocal
variation scores ranging from 1 to 5. The scores are predicted via random for-
est models based on multimodal features (average voice intensity, F0, smile,
head poses, nodding, facial AUs, and gestures.;

• SST feedback module: selects a set of pre-defined SST performance feedback
sentences to reflect users’ nonverbal behaviors during the interaction.

We are interested in whether participants interacting with our system perceive
the agent in a similar way for different applications, in our case the SST and
CBT. For the SST experiment, we followed the same experimental protocol and
questionnaires of human-agent interaction evaluation as in the CBT experiment.
Furthermore, the SST experiment is conducted under the reciprocal adaptation
(RA) condition. 15 French-speaking participants with similar demographics, as in
the CBT experiment, were recruited. We compare the agent perception results
of the two along the 4 factors of naturalness, human-likeliness, synchrony, and
engagement.

We check, in Figure 7.10 and Table 7.8, that for both applications of SST and
CBT, displaying reciprocally adaptive behavior, the agent is perceived in the same
way in terms of naturalness, human-likeliness, synchrony, and engagement. No
significance was found for all aspects between CBT and SST applications.

We have also asked participants to respond to additional questionnaires con-
cerning the SST effectiveness evaluation. The analysis of the effect of SST is on-
going. Like CBT, we expect to further improve the SST performance with our
adaptive agent.
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Figure 7.10 Perception of the agent’s reciprocally adaptive behavior of SST and CBT ap-
plications (RA condition for both) along naturalness, human-likeliness, synchrony, and
engagement. The central line in bold represents the mean value of each application (SST
and CBT) and the colored-filled contour represents the standard deviation of each condi-
tion.

Factor
CBT SST

Mean SD Mean SD
Naturalness 2.77 1.030 2.98 0.707

Human-likeliness 2.50 1.070 2.73 0.681
Synchrony 3.11 0.941 3.28 0.831

Engagement 3.52 0.964 3.80 0.795

Factor
Between CBT-SST

Cohen’s d P-value
Naturalness -0.68 0.501

Human-likeliness -0.74 0.467
Synchrony -0.56 0.582

Engagement -0.93 0.362

Table 7.8 Mean and standard deviation of agent behavior perception factors for the appli-
cations of SST and CBT. Significance difference between the application pairs (SST,CBT)
reported via one-sided Welch’s t-test.

7.7 Contributions and Conclusion

7.7.1 Contributions

Our work makes the following contributions:

• We propose an adaptive SIA system that provides real-time human-agent in-
teraction;
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• The display of adaptive SIA behavior can further improve the user experience
in terms of the user perception of the agent’s impression (naturalness, human-
likeliness, synchrony, engagement, and rapport);

• Adaptive agent is effective in delivering CBT as it can enhance users’ moods
and states (anxiety, psychological distress, and cognitive).

• Adaptive agent gives a similar impression (naturalness, human-likeliness,
synchrony, and engagement) for different applications of CBT and SST.

• A human-agent interaction database (CBT-HAI DB) has been collected by
recording the CBT interactions and made available to the research commu-
nity (available after signing the EULA form).

7.7.2 Conclusion

Adapting to other people is an essential communication skill. Virtual agents inter-
acting with their users need to know how to adapt to their interlocutors to provide
a lively and interesting interaction. In this work, we developed a virtual agent
endowed with adaptation capacity that is capable of functioning in real-time. The
healthcare application of CBT was selected as a proof-of-concept to demonstrate
the use of our adaptive agent. The agent showed its utility in delivering CBT by
enhancing users’ moods and states (anxiety, psychological distress, and cognitive).
Moreover, showing adaptive behavior can further improve the user experience in
terms of the user perception of the agent’s impression along the factors of natural-
ness, human-likeliness, synchrony, engagement, and rapport. However, expressive
agents are not always positively perceived since non-adaptive ones rather deter
the user’s impression. Through our study, expressive agents (adaptive and non-
adaptive) have shown their effectiveness in improving users’ negative moods and
states, compared to static ones (in a still position). Adaptive agents are full of
promise as they can ameliorate user impressions and be employed for various ap-
plications.
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The key points of this Chapter:

Addressing Hypotheses

• Adaptive and expressive agents can further enhance the user experience
(agent impression) and the effectiveness of CBT (user mood and state
change).

• Agents enabled with reciprocal adaptation (RA) are expected to out-
perform agents showing random behaviors (or mismatched behavior;
MM) and still agents (or in a still position; SP).

Real-time Adaptive SIA System

• An adaptive SIA system functioning in real-time and delivering CBT
treatment.

• The display of adaptive SIA behavior enhances the user perception of
the agent’s impression (user experience) in terms of naturalness, human-
likeliness, synchrony, engagement, and rapport;

• CBT becomes effective with an adaptive agent compared to a non-
expressive and non-adaptive agent. It improves users’ moods and states
(anxiety, psychological distress, and cognitive).

• Application of our adaptive SIA system to SST. A similar agent impres-
sion is given to the users for different applications (SST and CBT).

• Novel human-agent interaction database (CBT-HAI DB).

Publications

• (Under revision, Submitted to IJHCS) - Jieyeon Woo, Kazuhiro Shidara,
Catherine Achard, Hiroki Tanaka, Satoshi Nakamura, and Catherine
Pelachaud. Adaptive virtual agent: Design and evaluation for real-time
human-agent interaction. International Journal of Human-Computer
Studies, 2023f

• Jieyeon Woo, Michele Grimaldi, Catherine Pelachaud, and Catherine
Achard. Iava: Interactive and adaptive virtual agent. In ACM Interna-
tional Conference on Intelligent Virtual Agents (IVA ’23), 2023c

• Jieyeon Woo, Michele Grimaldi, Catherine Pelachaud, and Catherine
Achard. Conducting cognitive behavioral therapy with an adaptive vir-
tual agent. In ACM International Conference on Intelligent Virtual Agents
(IVA ’23), 2023b

• Takeshi Saga, Jieyeon Woo, Alexis Gerard, Hiroki Tanaka, Catherine
Achard, Satoshi Nakamura, and Catherine Pelachaud. An adaptive vir-
tual agent platform for automated social skills training. In Proceedings
of the 2021 International Conference on Multimodal Interaction, 2023b
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Chapter 8
Modeling Reciprocal Adaptation with
Intrapersonal Memory
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This Chapter presents the HI2-ADAM model that generates adaptive SIA be-
havior as both speaker and listener by encoding the multimodality and intraper-
sonal (explicit modeling of modality histories) and interpersonal relationships. The
deeper encoding of multimodality and explicit modeling of the intrapersonal and
interpersonal temporalities show promising results in rendering SIA behavior that
performs well in terms of reciprocal adaptation resemblance (and interlocutor syn-
chrony) and behavior human-likeliness.
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8.1 Introduction

In Chapter 6, we were able to generate reciprocally adaptive SIA behavior via the
ASAP model which modelizes the interpersonal relationship (or reciprocal adapta-
tion). The ASAP model notably improved the agent’s interpersonal dynamics of
synchrony and engagement.

The behavior adaptation shown during an interaction is interpersonal, inter-
locutors adapt to each other, but the behaviors are also coordinated intraperson-
ally. To better generate adaptive behavior, unlike the ASAP model which only
models the interpersonal relationship, in this chapter we also modelize the intrap-
ersonal relationship. We propose a new model, HI2-ADAM, which explicitly cap-
tures intrapersonal relationship by modeling each modality history (or memory)
of each interlocutor and learn from the relation between these different histories.
It also has a deeper encoding of interpersonal relationship present between the
interlocutors.

We expect that the better management of multimodality of HI2-ADAM can en-
hance the behavioral aspects of naturalness and human-likeliness. This manage-
ment could be done by providing explicit modeling of the multimodality within the
intrapersonal relationship notably by modeling each modality history (or memory)
and the relation between the different histories.

Our overall aim is to create a social and engaging SIA by modeling its behavior
adaptation (explicitly capturing intrapersonal and interpersonal relationships and
multimodality) while ensuring behavior continuity.

We pose the following research questions (RQs):

• RQ 1: interpersonal dynamics of synchrony and engagement can be aug-
mented by modeling the interpersonal relationship (or reciprocal adaptation);

• RQ 2: behavioral aspects of naturalness and human-likeliness can be im-
proved by capturing the intrapersonal relationship with the modelization of
the relation between modality histories.

We propose Historical intrapersonal interpersonal ADAptive Multimodal
(HI2-ADAM) model, a novel method to synthesize adaptive facial gesturing for
SIAs. We explicitly model the intrapersonal relationship by encoding the prior
emitted multimodal signals and their histories (modality memory) while ensuring
motion continuity. We model the interpersonal relationship (or reciprocal adap-
tation) from the learned intrapersonal representation encodings to generate SIA
behavior for both roles of speaker and listener. We explore the best way to capture
the reciprocal adaptation to generate adaptive nonverbal SIA behavior within
a dyadic setting. intrapersonal and interpersonal relations are learned through
attention mechanisms.

The chapter is organized as follows. Section 8.2 describes the proposed HI2-
ADAM model architecture and reports our experiments (objective and subjective
evaluation results and discussions). We finally report our contributions and con-
clude in Section 8.3.
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8.2 Historical intrapersonal interpersonal ADAptive Multi-
modal (HI2-ADAM) Model

8.2.1 Model Architecture

Like the ASAP model (ref. Chapter 6), we focus on generating adaptive nonver-
bal SIA behavior as both a speaker and listener. We train on real human-human
interactions, to learn human-human interpersonal and intrapersonal relationships
for SIA and simulate our predictions on a SIA.

We propose a new model architecture, the Historical intrapersonal interper-
sonal ADAptive Multimodal model (HI2-ADAM), to synthesize adaptive facial ges-
tures for SIAs. It takes as input speech and facial gestures of both SIA (A) and User
(U), corresponding to their past behaviors (behaviors they displayed so far), and
predicts SIA’s and User’s facial gestures at the next time step. We choose to synthe-
size the gestures of both SIA and User, during the training phase, to better learn
interpersonal and intrapersonal relations.

We employ similar features as for the ASAP model (ref. Chapter 6) which are
composed of facial gestures (Gx,y, Rx,y,z, and AUs (1,2,4,6, and 12)) and speech
features (F0, loudness, voicing probability, MFCCs (0-12)).

HI2-ADAM model operates as follows. It takes as input the 100 past frames
(t− 99 : t; found through empirical tuning and also used in Woo et al. [2021] and
in ASAP (ref. Chapter 6)), where t is the current frame, of the:

1. Speech features of A (XA
speech) and those of U (XU

speech),

2. Facial features of A (XA
face) and those of U (XU

face).

For each prediction of the next frame (t+ 1), the model predicts:

1. A’s facial gestures (Ŷ A
face),

2. U ’s facial gestures (Ŷ U
face).

HI2-ADAM consists of three main components, as illustrated in Figure 8.1. The
first component is the intrapersonal encoder Eintra, which explicitly encodes the
intrapersonal relation via the management of multimodal signals. It manages the
multimodality and learns the intrapersonal relation from each modality history via
a modality memory schema. This schema consists of encoding each modality -
speech features and facial features - corresponding to the past 100 frames. The
second component is the interpersonal encoder Einter, which encodes the interper-
sonal relations by applying cross-attentions between A’s and U’s features’ embed-
dings. The last component is the behavior generator which generates A’s and U’s
facial gestures of the next frame. These components are detailed in the following.

Intrapersonal Encoder (Eintra) As shown in Figure 8.1, Eintra takes as input
Xspeech and Xface of either A or U and generates the corresponding intrapersonal
embedding Zintra. It consists of two sub-encoders. The first is the modality
memory encoder (Espeech or Eface). The second is the dual-modality encoder
Edual.
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HI2-ADAM model architecture

Figure 8.1 HI2-ADAM (Historical Intra-personal Inter-personal ADAptive Multimodal)
model architecture. The intrapersonal encoder (Eintra) takes the speech Xspeech and the
facial gestures Xface of the previous 100 frames of either the SIA (A) or the User (U)
to encode the corresponding intrapersonal relationship Zintra. The interpersonal encoder
(Einter) learns from intrapersonal relationships ZA

intra and ZU
intra to encode the interper-

sonal relationship between them Zinter. The behavior generator (Gface) takes ZA
intra,

ZU
intra, and Zinter to generate the sequence of facial gesture for the next frame at t + 1

Ŷ A
face and Ŷ U

face. At training time, HI2-ADAM is trained with human-human (U1-U2) inter-

actions (U1 for A and U2 for U) and predicts both of humans’ facial gestures (Ŷ U1
face and

Ŷ U2
face). At inference time, HI2-ADAM renders the facial gestures of A and U . To infer the

next A’s behavior, we feed back the predicted A’s behavior and the ground truth of U .

Modality Memory Encoder (Espeech or Eface) Both Espeech and Eface takes its
corresponding modality - Xspeech or Xface respectively - as input and renders the
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modality memory embedding Zmem
speech and Zmem

face representing the past 100 frames.
Each corresponding modality memory encoder firstly learns the modality specific
information by applying self-attention, with a h = 2 (where h is the head size),
preceded and followed by dense layers (Ed) with c = 16 (where c is the cell size).
Then, it embeds the memory sequence of the chosen modality via a LSTM layer
(Em) with c = 16, as depicted in Figure 8.1. It takes Xmod - where mod represents
either speech or facial gestures - and outputs Zmem

mod , and can be expressed as:

Zmem
mod = Em (Ed (SA (Ed (Xmod)))) (8.1)

where SA(·) denotes self-attention layer.
Dual-modality Encoder (Edual) Edual captures the relationship between the

multimodal signals by applying cross-attention mechanisms on the corresponding
modalities: CAspeech and CAface with h = 2 followed by Ed with c = 16, as shown
in Figure 8.1. CAspeech has a query Q equals to Zmem

speech with key K and value V

equal to Zmem
face . CAface has a query Q equals to Zmem

face with key K and value V
equal to Zmem

speech. Edual takes Zmem
speech and Zmem

face as inputs and generates Zintra. It can
be written as:

Zintra = Ed ([CAspeech (Qspeech, Kface, Vface) ,

CAface (Qface, Kspeech, Vspeech) ])
(8.2)

where CA(Q,K, V ) denotes cross-attention layer and [·] denotes concatenation
layer.

Interpersonal Encoder (Einter)

As illustrated in Figure 8.1, Einter takes as input ZA
intra and ZU

intra, which are the
intrapersonal representations of A and U respectively. It renders Zinter, a repre-
sentation of interpersonal relation between A and U . Einter applies cross-attention
mechanisms on the both intrapersonal representations: CAA and CAU with h = 2
followed by Ed with c = 16. CAA has a query Q equals to ZA

intra with key K and
value V equal to ZU

intra. CAU has a query Q equals to ZU
intra with key K and value

V equal to ZA
intra. It can be written as:

Zinter = Ed

([
CAA

(
QA, KU , V U

)
, CAU

(
QU , KA, V A

)])
(8.3)

where CA(Q,K, V ) denotes cross-attention layer and [·] denotes concatenation
layer.

Behavior Generator (Gface)

Gface takes as input the:

1. A’s intrapersonal representation (ZA
intra),

2. U ’s intrapersonal representation (ZU
intra),

3. interpersonal representation of A and U (Zinter).
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It generates the corresponding facial gestures Ŷ A
face and Ŷ U

face by decoding with a
dense layer (Dd) with c = 20, as depicted in Figure 8.1. The final outputs Ŷ P

face

can be written as:
Ŷ P
face = Dd

(
ZP

intra, Zinter

)
(8.4)

where P represents either A or U. At training time, HI2-ADAM synthesizes Ŷ U
face

to better learn interpersonal and intrapersonal relations. Ŷ U
face is disregarded at

inference time since the aim is to predict only A.

8.2.2 Implementation Details Training Regime

We train our model on real human-human (U1-U2) interactions using the French
NoXi dataset (Cafaro et al. [2017]) as explained in Chapter 4. The HI2-ADAM
model uses the same features as the ASAP model presented in Chapter 6. The em-
ployed features consist of visual (Gx, Gy, Rx, Ry, Rz, AU1, AU2, AU4, AU6, and
AU12) and acoustic features (fundamental frequency, loudness, voicing probabil-
ity, and 13 MFCCs). Our model learns to synthesize adapted gestures of U1 and U2.
During inference, HI2-ADAM synthesizes the behavior of A and U . Ŷ A

face is inferred
using the previous prediction of A and the ground truth of U . We apply adaptive
online prediction to generate continuous A’s behavior in an autoregressive fashion.

We split our dataset into 3 sets: training (70%), validation (10%), and test
(20%). The test set does not include data of speakers and listeners that are seen
during training. The aim is to test HI2-ADAM’s capacity to extrapolate on new
unseen speakers and listeners and therefore its capability to generalize.

To train our model, we use the Mean Squared Error (MSE) as our loss function
and the Adam optimizer (Kingma and Ba [2014]) with Cyclical Learning Rate
(CLR) (Smith [2017]) (triangular learning rate policy, base_lr of 1e− 7, max_lr of
1e − 3, and step size factor of 10). The training was done for 300 epochs (with
an average runtime of 125h) on a 2.2GHz Intel Xeon Linux server with NVIDIA
GeForce GTX TITAN X and 64GB RAM with a batch size of 32. The best set of
hyperparameters is chosen after manual optimization, via manual grid search,
based on the validation set.

8.2.3 Baselines

For the evaluation, we compare HI2-ADAM against the baseline models (base) which
learns from the interpersonal relationship. The baselines are as follows.

• IL-LSTM (Dermouche and Pelachaud [2019b]): generates SIA’s facial ges-
tures based on unimodal input features (facial gestures) of its own (A) and
those of the human user (U). A LSTM model with a sliding window prediction
is used making it prone to jerky movements.

• Symmetrized IL-LSTM with online LSTM (sym-IL-LSTM; Woo et al.
[2021]): generates SIA’s facial gestures by modeling the multimodality
of speech and facial gestures of both itself (A) and the human user (U),
and assures motion continuity by employing a LSTM with adaptive online
prediction and autoregression.
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• ASAP (ref. Chapter 6): generates reciprocally adaptive and continuous SIA’s
facial gestures learned from speech and facial gestures of both itself (A) and
the human user (U). The interpersonal relationship and multimodality are
learned via a LSTM with attention mechanism of transformers and pruning
technique. Furthermore, the motion continuity is assured via the autoregres-
sive adaptive online prediction. The intrapersonal relationship and its history
is not modelized.

8.2.4 Objective Evaluation

To assess our model, we conduct an objective evaluation to check its performance
against the state-of-the-art approaches, which we select as our baselines, and to
verify the effectiveness of each HI2-ADAM’s key components through ablation stud-
ies.

Objective Evaluation Measures

We want to assess whether the generated behavior is appropriate and reciprocally
adaptive. To do so, we employ the metrics used for ASAP (ref. Chapter 6) of
RMSE and Kolmogorov-Smirnov two-sample test (KS test) (Massey Jr [1951]) to
measure the behavior appropriateness of A’s predictions (Â) against its ground
truth (GT) behavior (A). We also employ the DTW (Müller [2007]) resemblance
for reciprocal adaptation resemblance assessment.

In addition to these metrics, MAE is used to measure the distance between the
predictions and GT to measure the generated error along with RMSE. To thor-
oughly evaluate the reciprocal adaptation resemblance, of which we measure the
resemblance between Â and U ’s GT data (U), new metrics are performed, in addi-
tion to DTW resemblance. The additional reciprocal adaptation resemblance met-
rics are as follows:

• Time lagged cross-correlation coefficient (TLCC) (Boker et al. [2002]):
linear relationship invariant to speed, which is used to quantify global syn-
chrony. TLCC is computed in chunks of 8s with a time lag of 2s as in Ng et al.
[2022].

• Synchrony (Sync) and Entrainment Loop (EL) (ref. Chapter 5): synchrony
and entrainment loop measures to evaluate the reciprocal adaptation between
Â and U.

Lower values denote better performance for MAE, RMSE, and KS test. For the
resemblance metrics (TLCC, DTW, Sync, and EL), the closer the value of the metric
is to the GT, the better the model performs in generating adaptive A’s behaviors.

Objective Evaluation Results and Discussion

The evaluation results are listed in Table 8.1. ∆base represents the change in per-
formance over the best-performing baseline approach for each metric.
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MAE RMSE KS test TLCC DTW Sync EL

GT 0.334 1317.5 132.4 1172.3
IL-LSTM 0.304 0.415 0.329 0.343 1216.2 45.3 323.3
sym-IL-LSTM 0.180 0.227 0.284 0.335 1281.3 33.3 232.3
ASAP 0.185 0.254 0.282 0.317 1399.3 142.0 1890.5
HI2-ADAM-noEm 0.099 0.132 0.515 0.271 1228.4 79.1 603.8
HI2-ADAM-noEdual 0.143 0.186 0.396 0.300 1352.6 262.3 2255.8
HI2-ADAM-noEinter 0.136 0.178 0.406 0.261 1127.8 82.3 586.3
HI2-ADAM 0.156 0.197 0.437 0.291 1319.6 137.4 989.0
∆base ↓ 0.024 ↓ 0.030 ↑ 0.155 ↑ 0.042 ↓ 79.7 ↓ 4.6 ↓ 534.9

Table 8.1 Objective evaluation of HI2-ADAM against the baselines along with ablations
using the selected metrics. GT denotes ground truth interaction. The best results are
highlighted in bold. ∆base represents the change in performance over the best-performing
baseline approach of each metric. ∆base entries in green when HI2-ADAM outperforms
best baseline, in red when it is not the case.

Comparing with Baselines We remark that HI2-ADAM outperforms the baselines
in terms of behavior appropriateness. This is reflected through low errors of MAE
and RMSE represented by ∆base (↓ 0.024 and ↓ 0.020 respectively). For the density
distribution, via the KS test, we observe that HI2-ADAM performs comparatively
less than the baselines indicating that HI2-ADAM possesses the least similar den-
sity distribution compared to that of the GT. In detail, ASAP performs the best
in terms of having the most similar density w.r.t. GT (0.282) and HI2-ADAM the
worst (0.437) with ∆base of ↑ 0.155. This low performance of HI2-ADAM does not
imply that it generates wrong SIA behavior but that it has either a smaller or a
wider range of behavior variety than that of the GT. The focus of this study is not
to produce a variety of behaviors but to generate SIA behaviors that are adaptive
to its interlocutor. Thus, this weak performance of the KS test metric is not criti-
cal for our aim. Moreover, HI2-ADAM performs the best in terms of the reciprocal
adaptation resemblance metrics as seen in the Table 8.1. DTW, synchrony, and
entrainment loop of Â&U show that HI2-ADAM resembles the GT the most with
∆base of ↓ 79.7, ↓ 4.6, and ↓ 534.9 respectively. For the three measures of DTW, syn-
chrony, and entrainment loop, we report the trend for smile (i.e. AU12), as it is a
very important social signal, and as the synchrony measures (Sync and EL) were
proposed for AU12. For the other AUs, we observed that the proposed measure
significantly outperformed the state-of-the-art methods for eyebrow movements
(AU1 and AU2). With TLCC, we remark that the sym-IL-LSTM is the closest to the
GT while HI2-ADAM is the farthest one with ∆base of ↑ 0.042. As DTW considers
the variation of sequence length while being invariant to speed unlike TLCC, it
represents better the global correlation. Thus, for the interpretation, we can put
more emphasis on the DTW results compared to that of TLCC. This comparative
study shows that the inclusion of explicit modeling of intrapersonal relation lever-
ages the quality of produced gestures in terms of both behavior appropriateness
and reciprocal adaptation resemblance.
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Ablation studies To check for the effectiveness and influence of each of HI2-
ADAM’s key encoders, we conduct additional ablation studies. We perform the
ablations of:

• Modality Memory Encoder Em (noEm),

• Dual-modality Encoder Edual (noEdual),

• Interpersonal Encoder Einter (noEinter).

The ablation of each of HI2-ADAM key encoder - Em, Edual, and Einter - results
in the improvement of the reciprocal adaptation resemblance. This is seen by an
increase in DTW (87.0, 33.0, and 187.6 respectively), synchrony (48.3, 124.9, and
45.1 respectively), and entrainment loop resemblance (385.2, 900.2, and 402.7 re-
spectively). TLCC shows that the insertion of Em improves the HI2-ADAM by 0.020
along with Einter by 0.030. However, Edual slightly deteriorates the performance by
0.009. As in the baseline comparison study, it is better to concentrate on the other
reciprocal adaptation resemblance metrics as DTW is a more dynamic measure of
synchrony than TLCC. However, this enhancement of reciprocal adaptation resem-
blance is at the expense of lowering its behavior appropriateness performance. This
is observed via MAE (0.057, 0.013, 0.020 respectively) and RMSE (0.065, 0.011,
0.019 respectively). The same conclusion can be drawn by looking at KS test re-
sult. The fall of performance is seen for the additions of Edual (0.041) and Einter

(0.031) while Em improves (0.078). This compromise of losing behavior appropri-
ateness to gain an adaptive one may be a good exchange. It is more valuable to
generate SIA behaviors with adaptation capacity than to reproduce the same GT
behavior. In fact, in a human-human interaction, there could be multiple possible
behaviors and generation timings facing the same interacting partner’s behavior.
This might vary depending on the various factors such as the context, situation,
and interlocutor’s personality and mood.

We can conclude that it is important to model the intrapersonal relation with
the encodings of Em and Edual, and the interpersonal relation with Einter to synthe-
size adaptive nonverbal facial gestures for both roles as speaker and listener.

8.2.5 Subjective Evaluation

To fully evaluate the perceived quality of the generated agent’s behavior, we con-
duct a subjective evaluation via user perceptive study. The user study complements
the objective evaluation by looking into the influence of our HI2-ADAM model on
the perception of the aspects of: 1) the generated agent behaviors’ naturalness and
human-likeliness; 2) the interpersonal dynamics such as the synchrony between the
interlocutors and their engagement.

The perception of human-agent interaction is evaluated along the constructs
of behavior naturalness, behavior human-likeliness, interaction synchrony, and
engagement using the same questionnaires as in Chapter 6.
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Subjective Evaluation Method

The perceptive study is conducted on Prolific, an online crowd-sourcing platform.
8 video clips, each with a duration of 10s, extracted from the NoXi database are
used. The video clips consist of a SIA and a human participant conversing while
taking speaking turns. They have both speaking and listening turns. A participant
that has the speaking turn talks about a common topic and the other that has
the listening turn reacts via nonverbal behaviors (visual and acoustic) including
backchannels (head nod and/or verbal reply of "yes").

For the subjective evaluation, we consider 4 conditions: IL-LSTM, ASAP, HI2-
ADAM, and GT (ground truth human-human interaction from NoXi). We replace
one of the human participants with a SIA. The SIA keeps the speech of the human
participant that it is replacing, but its facial expressions and its head movements
are driven by one of the computational models (IL-LSTM, ASAP, and HI2-ADAM).
For the ground truth condition, we use the same evaluation setting of visualizing
it on the SIA for the fairness of quality visualization. This choice of keeping the
same setting is to eliminate any impact that may be caused by the participants’
impression of the virtual character (Shiban et al. [2015]).

For the SIA animation generation, the Greta platform (Niewiadomski et al.
[2009]), an open source SIA platform, is used. The SIA’s visual animation is
merged with the audio of the ground truth. For the perception study, we dis-
play a SIA and a human participant side-by-side, as seen in Figure 8.2. As we
do not render the mouth movements, we blur them so that they won’t hinder the
evaluators’ perception of the SIA during the assessment as for ASAP.

For each of the 8 video clips extracted from NoXi, 4 videos of the SIA are cre-
ated. Each of the 4 videos displays the SIA behavior of either one of the compu-
tational models (IL-LSTM, ASAP or HI2-ADAM) or the ground truth. A total of 32
(8 ∗ 4) human-agent videos, as shown in Figure 8.2, are used as stimuli in our
study.

Figure 8.2 Example of a video clip used for the user perception study. It depicts an inter-
action between a SIA (left) and a human participant (right).

To lighten the workload of our crowd-sourced users, as a long evaluation may
lower the users’ concentration and hinder the perception study, we split the study
into two groups. Each group evaluates 16 videos of 10 seconds (4 conditions for
each of the 4 video clips) and the videos are shuffled randomly to circumvent the
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impact that the ordering might have on the study. 60 participants are recruited
for the group study and evaluate each video (16 videos per group) with the afore-
said set of 14 questions to evaluate the 4 constructs. We filter out untrustworthy
crowd-sourced works via attention check questions (e.g. "Is the virtual character
swimming?").

Subjective Evaluation Results and Discussion

For the analysis, we group the participants’ responses of the aforementioned
14 questions into the 4 constructs of behavior: naturalness, behavior human-
likeliness, synchrony, and engagement. The distribution of each condition, which
are GT, IL-LSTM (Dermouche and Pelachaud [2019b]), ASAP (ref. Chapter 6),
and HI2-ADAM, is represented for each of the 4 constructs, Figure 8.3 and 8.4. We
also report the median and mean values in Table 8.2.

We report statistical significance via one-way ANOVA, Tukey’s honestly signifi-
cant difference (HSD) test, and two-tailed t-test. For all four conditions, one-way
ANOVA reports significant differences for all four constructs: behavior naturalness
(F = 25.7, p < 0.001), behavior human-likeliness (F = 29.6, p < 0.001), synchrony
(F = 22.0, p < 0.001), and engagement (F = 25.7, p < 0.001). We perform a
post-hoc pairwise comparison analysis with Tukey’s HSD which reveals the fol-
lowing. Tukey’s HSD shows statistically significant differences between all pairs
(p < 0.001) except between the pairs of (IL-LSTM, ASAP) and (ASAP, HI2-ADAM)
for the constructs of behavior naturalness and human-likeliness (p = 0.22 with
p = 0.52 and p = 0.12 with p = 0.37 respectively). For synchrony and engagement
constructs, all pairs are found to be significantly different (p < 0.001) except be-
tween the pair of (ASAP, HI2-ADAM) (p = 0.9 and p = 0.9 respectively). We also
test the statistical significance by performing post-hoc t-test between all possible
pairs of compared animations (or conditions) for each construct. Significant differ-
ences between all pairs (p < 0.001) except between the pair of (ASAP, HI2-ADAM)
(p = 0.98) for all four constructs.

Figure 8.3 Distribution of behavior naturalness (left) and human-likeliness (right). Me-
dian represented by orange line and mean represented by green dashed line.

Looking at the results, we can note that the SIA visualization for the GT con-
dition receives the highest values for all four constructs in terms of both median
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Figure 8.4 Distribution of synchrony (left) and engagement (right). Median represented
by orange line and mean represented by green dashed line.

Methods Naturalness Human-likeliness Synchrony Engagement
GT 3.33/3.24 3.33/3.22 3.80/3.62 4.00/3.73

IL-LSTM 2.33/2.36 2.17/2.27 3.00/2.89 3.00/2.84
ASAP (ours) 2.67/2.56 2.33/2.51 3.20/3.23 3.33/3.26

HI2-ADAM (ours) 2.67/2.70 2.67/2.68 3.40/3.28 3.33/3.26

Table 8.2 Median/mean values of naturalness, human-likeliness, synchrony, and engage-
ment.

and mean values: behavior naturalness (3.33, 3.24 respectively), behavior human-
likeliness (3.33, 3.22 respectively), synchrony (3.80, 3.62 respectively), and engage-
ment (4.00, 3.73 respectively).

The global trend of the increase in quality in the order of IL-LSTM, ASAP,
and HI2-ADAM is noticeable across the 4 constructs of behavior naturalness, be-
havior human-likeliness, synchrony, and engagement. A clear difference can be
observed between IL-LSTM and the two computational models of ASAP and HI2-
ADAM. IL-LSTM reports the lowest median and mean values for all constructs:
behavior naturalness (2.33, 2.36 respectively), behavior human-likeliness (2.17,
2.27 respectively), synchrony (3.00, 2.89 respectively), and engagement (3.00, 2.84
respectively). We assume that the difference in behavior naturalness and human-
likeliness derives from the method of inferring the predictions. ASAP and HI2-
ADAM both apply adaptive online prediction which generates continuous motions
while IL-LSTM employs sliding window prediction. The higher perception of the
constructs of naturalness and human-likeliness for the two computational models,
ASAP and HI2-ADAM, may have been due to the generation of continuous behavior
motions. For the synchrony and engagement constructs, the modeling of recipro-
cal adaptation (or interpersonal relationship) tends to lead to the rise in these con-
structs (Biancardi et al. [2021]) for ASAP and HI2-ADAM compared to IL-LSTM.
We observe that such reciprocal adaptation modeling increases the synchrony and
engagement between SIAs and their interlocutors. This observation validates our
qualitative results and further demonstrates that the behavioral appropriateness
(linked to the perception of behavior naturalness and human-likeliness) and recip-
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rocal adaptation resemblance (linked to the perception of interpersonal dynamics
of synchrony and engagement) are enhanced by the modeling of behavior conti-
nuity and reciprocal adaptation (i.e. ASAP and HI2-ADAM). We remark the same
observation, as for ASAP (ref. Chapter 6), that such reciprocal adaptation modeling
increases the synchrony and engagement between SIAs and their interlocutors.

Between ASAP and HI2-ADAM, we remark an augmentation of values for the
constructs of naturalness (median: 2.67, mean: 2.56 and median: 2.67, mean:
2.70 respectively), human-likeliness (median: 2.33, mean: 2.51 and median: 2.67,
mean: 2.68 respectively) and synchrony (median: 3.20, mean: 3.23 and median:
3.40, mean: 3.28 respectively). For the engagement, similar values are found for
both ASAP (median: 3.33, mean: 3.26) and HI2-ADAM (median: 3.33, mean: 3.26).
We note that the HI2-ADAM generates behaviors that elicit a higher perception
of behavior naturalness and human-likeliness. We assume that it is due to the
modeling of intrapersonal relationship, notably via the modeling of the history of
each modality. This is inline with the previously reported objective ablation study,
where the behavior appropriateness, in terms of behavior distribution similarity
via KS test, is improved by the addition of the modality memory encoder Em.
Also, the deeper encoding of the interpersonal dynamics, via our interpersonal en-
coder Einter, we notice a further improvement of the sync between the SIA and
the human participant. We can check the same impact of adding the interpersonal
encoder in the qualitative ablation study where the reciprocal adaptation resem-
blance, seen by the metrics of DTW and reciprocal adaptation measures (Sync and
EL), is enhanced by the inclusion of the interpersonal encoder. While the statisti-
cal results do not show significant differences between ASAP and HI2-ADAM, the
results of HI2-ADAM do not imply a fall in performance compared to ASAP but
rather a rising tendency of the perceived human-likeliness and synchrony via the
median values.

Our subjective evaluation results obtained through the user perception study
are aligned with our objective evaluation. Our HI2-ADAM model outperforms the
baseline models of LSTM and ASAP being the closest one to the GT, notably in
terms of human-likeliness and synchrony. We validate that HI2-ADAM is capable
of improving interpersonal dynamics of synchrony and engagement by capturing
interpersonal relationship (via the interpersonal encoder Einter). Also, the encoding
of each modality’s history (or memory) and the relationship between the modality
histories (within the intrapersonal encoder Eintra) ameliorates the behavior natu-
ralness and human-likeliness.

8.3 Contributions and Conclusion

8.3.1 Contributions

Our contributions are as follows:

• We propose HI2-ADAM, an approach to capture the reciprocal adaptation of
SIA behaviors.
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• We explicitly model the intrapersonal and interpersonal relationships by en-
coding prior emitted multimodal signals and their history via our modality
memory encoders.

8.3.2 Conclusion

In this work, we propose a new approach to generate adaptive SIA behavior as both
speaker and listener by encoding the multimodality and intrapersonal and interper-
sonal relationships. We conclude that HI2-ADAM model outperforms state-of-the
art approaches both quantitatively and qualitatively in producing SIA behavior for
both speaker and listener, notably in terms of reciprocal adaptation resemblance,
behavior human-likeliness, and synchrony.

The key points of this Chapter:

Addressing Research Questions

• Interpersonal dynamics of synchrony and engagement can be aug-
mented by modeling the interpersonal relationship (or reciprocal adap-
tation).

• Behavioral aspects of naturalness and human-likeliness can be im-
proved by capturing the intrapersonal relationship with the modeliza-
tion of the relation between modality histories.

HI2-ADAM Model

• The reciprocal adaptation was modeled via HI2-ADAM model to gener-
ate adaptive SIA behavior as both speaker and listener by encoding the
multimodality and intrapersonal (explicit modeling of modality histo-
ries) and interpersonal relationships.

• HI2-ADAM produces natural and engaging behaviors that show remark-
able performance in terms of reciprocal adaptation resemblance (and
interlocutor synchrony) and behavior human-likeliness.

Publications

• (Preprint) - Jieyeon Woo, Mireille Fares, Catherine Pelachaud, and
Catherine Achard. Amii: Adaptive multimodal inter-personal and
intra-personal model for adapted behavior synthesis. arXiv preprint
arXiv:2305.11310, 2023a
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In this thesis, we work on developing an adaptive Socially Interactive Agent
with reciprocal adaptation capabilities acting as an interactive conversational part-
ner that is social, engaging, and perceived as natural and human-like. To ac-
complish this challenging task, we started by analyzing the adaptation present
in human-human interactions and proposed new measures of reciprocal adaptation
(ref. Chapter 5). After investigating the presence and role of adaptation, using the
investigation as a basis, we modeled the reciprocal adaptation to generate adaptive
nonverbal SIA behaviors via two computational models of ASAP (ref. Chapter 6)
and HI2-ADAM (ref. Chapter 8). To evaluate the impact of reciprocally adaptive
SIA behaviors in real time, a real-time system, IAVA system, of a SIA endowed with
the adaptation capability was implemented and showcased for the applications of
Cognitive Behavior Therapy and Social Skills Training (SST) (ref. Chapter 7).

This Chapter concludes the thesis. It starts by summarizing the contributions of
this thesis. Then, the limitations of this work and the future directions of research
are presented.
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9.1 Summary of Contribution

This thesis contributes to the research communities of SIA and multimodal signal
processing for generating adaptive nonverbal SIA behaviors by capturing intraper-
sonal and interpersonal relationships from multimodal signals. We discuss in detail
the contributions made by this thesis.

Proposition of novel reciprocal adaptation measures

From the analysis of human-human interaction, we studied the adaptation present
in conversations. The investigation served as a foundation to propose novel mea-
sures of reciprocal adaptation. The reciprocal adaptation measures, consisting of
synchrony and entrainment loop measures, were employed to study the relation-
ship between adaptation and the dimensions of engagement, warmth, and com-
petence. The newly proposed measures showed their usefulness in assessing the
human-agent interaction quality. They were used for the objective evaluations of
our IAVA system (ref. Chapter 7) and HI2-ADAM model (ref. Chapter 8).

Rendering adaptive SIA behaviors

The reciprocal adaptation capability, which is an important capacity innate to hu-
mans for interactive and engaging communications, is endowed to SIAs by mod-
eling multimodality, interpersonal relationship, and/or intrapersonal relationship.
We generate adaptive SIA behaviors via our ASAP model (ref. Chapter 6) and
HI2-ADAM model (ref. Chapter 8). The rendered SIA behavior is shown to out-
perform state-of-the-art techniques in generating natural, human-like, in sync, and
engaging behavior. Through our reciprocal adaptation measures (ref. Chapter 5),
we were also able to objectively validate that the predicted behaviors were indeed
reciprocally adaptive and the usefulness of these measures in assessing the quality
of human-agent interaction.

Development of a real-time interactive and adaptive SIA system

The ultimate goal when developing embodied agents, both SIAs and robots, is to
deploy them in real time with the human end-user. The real-time operation is es-
sential, especially for the adaptation in human-agent or human-robot interaction.
We created an interactive and adaptive SIA system, our IAVA system (ref. Chap-
ter 7), that assures the real-time aspect. By applying the IAVA system to the medi-
cal application of CBT, we verified the efficiency of SIAs with reciprocal adaptation
capabilities in giving a positive impression to the users (being perceived as natural,
human-like, engaging, in sync, and building a rapport) and in improving the CBT
effect. Furthermore, to demonstrate the possibility of employing our adaptive SIA
system in other applications, we have also tested our system for SST. We found
that a similar impression of the agent is given to the users for both applications of
SST and CBT despite their different nature of scenarios. Moreover, we collected
a human-agent interaction database (CBT-HAI DB). The CBT interactions between

119



9.2. LIMITATIONS AND FUTURE WORK

the SIA and the user were recorded and the database was made available to the
research community (available after signing the EULA form).

9.2 Limitations and Future Work

This thesis tackles the challenge of creating adaptive SIAs that can function in real
time. While the core challenges were addressed, there is still room for improve-
ment. Here we present some limitations of our work and propositions to move
forward.

Training database

The NoXi database (ref. Chapter 4) was used to train our adaptive SIA behav-
ior generation models of ASAP (ref. Chapter 6) and HI2-ADAM (ref. Chapter 8).
The database, made up of human-human interactions, has a total duration of only
7h22min. The database is quite small for the gesture generation task. We ad-
dressed this problem of having such a small database via our modeling technique.
Nevertheless, it will be helpful to have a bigger database to create more adaptive
SIA behaviors. This could be done using the entire NoXi database of all three loca-
tions (French, English, and German with a total duration of 25h18min). However,
this risks generalizing the cultural aspects of the three countries, and the prosodic
information has to be addressed differently as the spoken language is different.
Another solution is to create a new corpus of dyadic interactions with a setting
similar to the NoXi database.

Generation of adaptive SIA gestures

In this work, adaptive SIA behaviors, consisting of facial expressions and head-
/gaze movements, were generated. In addition to these behaviors, the adaptive
behavior generation can be extended to the SIA’s full body motion (notably for
upper body gestures including hand gestures and torso movements) by training
the models (ASAP and HI2-ADAM) with the full body data. Furthermore, the full
body adaptive gestures can be visualized in real time by extending the IAVA system
and by integrating generation models trained for the full body to it. In addition,
the adaptive prosodic behavior can be modeled and endowed to the SIA such as
laughter and voice prosody. The adaptive behavior generation models for such
diverse behavior types can also be parameterized to simulate unique individuals
with different social attitudes and personality traits.

Merging different levels of adaptation

This thesis mainly works on modeling the adaptation at the signal level. However,
adaptation can be found at multiple levels from low (i.e. signal level) to high (i.e.
context/intent level). The next step may be to mix both high-level and low-level
adaptations and give this skill to the SIA. Also, the endowment of adaptive verbal
and nonverbal behavior may allow the SIA to become a better interlocutor.
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Cultural differences in adaptive behavior

Another possible direction of research is to investigate the adaptation between
cultures. The culture may play an important role in the form, frequency/timing,
and appropriateness of adaptation. It may be interesting to study this cultural
difference. Also, we could test whether the adaptive behavior of one culture could
be employed by the users of another culture and be perceived in the same way.

Trustworthiness of AI models

The use of AI models like our adaptive behavior generation models, ASAP and
HI2-ADAM, may pose ethical concerns and risks such as the distribution of harmful
content, data privacy violations, sensitive information disclosure, amplification
of existing bias, and lack of explainability and interpretability. To prevent such
problems, developers of AI models should be cautious when creating such models
by following the regulations and requirements of EU’s Artificial Intelligence Act
(AIA). Also, they should provide enough information about their system to their
users and conduct thorough pretests. Adding explicability to AI models would
help the interpretation of the AI’s decision and increase the users’ trustworthiness
towards AI.
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Chapter 10
Appendix A

Facial gestures (eyebrow, cheek, and mouth movements) can be characterized/an-
notated by facial landmarks or Action Units (AUs; Ekman and Friesen [1976]).

10.1 Face landmarks

Face landmarks, shown in Figure 10.1 are key attributes of a human face such
as eyebrows, nose, mouth, and eye corners. They allow the identification of an
individual by distinguishing from different faces. Such facial landmarks have been
successfully used for various computer vision applications of face alignment, face
swapping, and emotion detection.

Figure 10.1 Illustration of facial landmarks (68 facial landmark coordinates). Image from
pyimagesearch [2017].

10.2 Facial AUs

FACS (Facial Action Coding System), developed by Ekman and Friesen [1976], is a
facial muscle scheme based on manual facial expression analysis. It is a technique
to interpret facial expressions by dividing facial muscle movements into 46 AUs,
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as illustrated in Figure 10.2. Each AU matches a certain facial muscle movement
or expression. Facial gestures can be expressed by a single AU or a combination
of AUs, as shown in Figure 10.3. Especially for the production of emotions, mul-
tiple AUs are combined to formulate complex expressions. AUs have been used in
various studies notably for emotion studies.

Figure 10.2 Illustration of facial action units (Li et al. [2005]).

Figure 10.3 Illustration of different combinations of facial action units (Li et al. [2005]).
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Appendix B

We report here additional information regarding the IAVA system architecture
(Woo et al. [2023c]) described in Chapter 7.

Figure 11.1 IAVA system architecture.

IAVA is composed of six parts, as illustrated in Figure 11.1, which are: 1)
physical input devices; 2) Adaptive Behavior Realizer; 3) Dialogue Manager; 4)
database; 5) rendering; and 6) physical output devices.
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11.1 System Inputs and Outputs

Our system makes use of various physical devices as input and output, and com-
municates multiple signals via different communication protocols.

11.1.1 Physical devices

The system uses a 1080p RGB webcam to capture the user’s face, a pin micro-
phone to capture the user’s speech, a speakerphone to render the agent’s speech
utterance, and a monitor to display the virtual agent (in a close-up of their face,
head, and shoulders) as shown in Figure 11.2.

Figure 11.2 The system is equipped with a webcam to capture the user’s face and a micro-
phone to capture the user’s speech. The virtual agent is displayed in front of the user.

11.1.2 Signals

The input and output signals communicated within the system are as follows.

Visual features: The visual features of the user are extracted in real time at 30fps
by processing the webcam-rendered images of the user using OpenFace. To be
more specific, the visual features of eye movements (around the x and y axes),
head rotations (around the x, y, and z axes), 6 upper face AUs (which are AU1,
AU2, AU4, AU5, AU6, and AU7) along with that of the smile (AU12) are passed to
the model to generate the agent behavior.

Audio features: The audio features of both human user and agent are obtained
separately in real time at 100 Hz from the user’s speech captured by the micro-
phone via openSMILE. To detail, the fundamental frequency, loudness, voicing
probability, and 13 MFCCs are fed to the model for the prediction.

Utterance text: The text of the user’s utterance is acquired by ASR from the mi-
crophone captured user’s speech. The text utterance is given as input to the Flipper
engine to manage the dialogue.

Agent animation: The agent animation realized for each frame is visualized with
Ogre3D and displayed on the monitor.
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Agent speech: The selected agent’s speech is generated via the Greta platform’s
Audio module, to transform the text selected by the Dialogue Manager into audio,
and the audio is rendered with the speakerphone.

11.1.3 Communication protocols

The signals are passed between different toolkits and modules via communication
protocols which are:

ZeroMQ: ZeroMQ 1 (Hintjens [2013]) is an asynchronous network messaging li-
brary that is used for distributed and concurrent systems. Messages such as binary
data, serialized data, and simple strings can be sent without a dedicated message
broker. In our system, it is used to transmit real-time OpenFace signals directly to
the model.

ActiveMQ: ActiveMQ 2 (Snyder et al. [2011]) is an open-source message bro-
ker which can foster multi-client or multi-server communication. IAVA employs
ActiveMQ messages to send the user’s utterance recognized by the ASR to Flipper.

OSC: OSC (Open Sound Control) 3 (Wright [2005]) is a lightweight and flexible
protocol for real-time message communication. The advantages of OSC are its pos-
sibility to receive signals from other computers and platforms, and its availability
in multiple programming languages. Our system makes use of OSC to commu-
nicate between the computational model externally running in Python and the
Ogre3D of the Greta platform operating in Java.

11.2 Adaptation Behavior Realizer

To generate real-time adaptive behavior, we implement the Adaptation Behavior
Realizer (ABR) module. The ABR module consists of two main components which
are the Behavior Generator module and the Frame-level Behavior Realizer module
as seen in Figure 11.3.

11.2.1 Behavior Generator module

The Behavior Generator module integrates a pre-trained computational model,
ASAP model (Woo et al. [2023d]), which generates the agent behavior that is
reciprocally adaptative. The model takes the past 100 time-steps of both the hu-
man user’s and the agent’s behavior (visual and audio features) to predict the
agent’s visual behavior at the next time-step. The ASAP model learns interper-
sonal relationship from real human-human interactions (Cafaro et al. [2017]). It

1https://zeromq.org
2https://activemq.apache.org
3https://opensoundcontrol.org
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Figure 11.3 The Adaptation Behavior Realizer generates the agent’s adaptive behavior
and visualizes it at the frame-level. The agent’s behavior is predicted with the Behavior
Generator module via the ASAP model (Woo et al. [2023d]) which considers the face and
speech signals from both the human user and agent of the past time-steps. The generation
is then rendered for each frame at 25fps via the Frame-level Behavior Realizer module.

models the reciprocal adaptation capability and endows it to the agent from mul-
timodal signals exchanged within a dyadic interaction with its data augmentation
and self-attention pruning techniques. It generates the agent’s adaptive behav-
ior (outputting facial AUs and head/gaze movements) while assuring movement
continuity via autoregressive adaptive online prediction for every frame (at each
time-step) at 25fps.

To obtain the agent’s behavior at 25Hz, the Behavior Generator module first
extracts the features individually with different sampling rates as the following:

• User’s audio features via openSMILE at 100Hz and communicated internally;

• User’s visual features via OpenFace at 30Hz and communicated with Ze-
roMQ;

• Agent’s audio features via openSMILE at 100Hz and communicated with
OSC;

• Agent’s visual features via the computational model at 25Hz and communi-
cated internally.

We sync the different sampling rates to 25Hz (i.e. 25fps) which is the com-
putational model’s sampling rate. The last 100 time-steps’ signals are stocked and
updated of all four feature categories with internal objects for the agent’s behavior
prediction of the next time-step. Each prediction, composed of the agent’s facial
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expression (AU1, AU2, AU4, AU5, AU6, AU7, and AU12), head rotations, and gaze,
is sent via OSC to the Frame-level Behavior Realizer module to display the agent’s
behavior at the frame-level. After each prediction, the four feature categories of
user and agent are saved into the database in a CSV format at the sampling rate
of 25Hz.

11.2.2 Frame-level Behavior Realizer

The Frame-level Behavior Realizer module receives the agent’s behavior generated
by the Behavior Generator module via OSC. The Greta platform’s original Behav-
ior Realizer module (Niewiadomski et al. [2009]) generates the agent’s behavior
by passing the user’s raw input data through the Intent Planner module and the
Behavior Planner module. It realizes the behavior in sequences that corresponds
to the command sent by the Intent Planner. Our Frame-level Behavior Realizer
module, which can be seen in Figure 11.3, differs from the original Behavior Re-
alizer in the sense that it enables the generation of behaviors at the frame-level
(at each time-step) which allows the virtual agent to continuously show smooth
behavior throughout the whole interaction. Moreover, it produces the agent’s be-
havior directly from the raw user input data. It is also possible to select the types
of agent behavior that will be displayed via an interactive window. The types of
agent behavior that can be activated are the following:

• Each upper face Action Unit (AU1, AU2, AU4, AU5, AU6, and AU7);

• Smile (AU12);

• Blink (AU45) which is automatically generated internally;

• Gaze (around the x and y axes);

• Head movement along each axis (x, y, and z);

• Mouth movement.

The IAVA system checks which agent behavior types are activated, at the begin-
ning of the interaction, and displays them. For the ones that are deactivated, the
agent will show the default behavior (value of 0 for the intensity of the AUs and 0
degrees for the head rotations and gaze angles). The selected combination of the
agent’s behavior is passed directly to the Ogre3D for rendering.

11.3 Dialogue Manager

The natural flow of the dialogue is managed by the Dialogue Manager. The dia-
logue is controlled by the Flipper engine which continuously communicates with
the Turn-taking Management module, as illustrated in Figure 11.4, to choose the
next conversational move. For the application of CBT, the Automatic Thought Clas-
sifier module is integrated into the Dialogue Manager. The process is as follows.
Flipper first receives via ActiveMQ the utterance text of the user’s response from
the ASR. For each new utterance, it checks whether the utterance corresponds to
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Figure 11.4 The Dialogue Manager manages the conversation dialogue. It selects the
next conversational move while assuring the natural flow of the interaction by constantly
communicating with the Turn-taking Management module. For the CBT application, the
Automatic Thought Classifier module was integrated into the Dialogue Manager

an automatic thought via the Automatic Thought Classifier module and directs the
conversational flow with the Turn-taking Management module. The modules are
further explained below. The communicative intentions selected by Flipper are
then instantiated into mouth movements which are combined and synchronized
with the agent’s speech via the Greta platform’s standard treatment of passing by
the Greta platform’s original modules of Behavior Planner, Behavior Realizer, and
Speech Synthesizer. The produced agent’s mouth movements and speech are each
sent to the Orgre3D and Audio module for rendering, as shown in Figure 11.1.
This process is repeated for each user’s utterance throughout the interaction.

11.3.1 Turn-taking Management module

Turn-taking is managed with the Turn-taking Management module to assure a
smooth and natural flow of the conversation. The module keeps track of the
speaking state of the agent and that of the human user. It handles conversational
turn-taking by looking at both speaking states. By observing these two states,
the agent interprets whether the user has finished answering and is giving their
speaking turn (to address single responses made up of several utterances linked
with pauses) and whether the user is reacting with backchannels (i.e. not aim-
ing at taking the speaking turn), and thus decide when to take the speaking turn.
After the agent decides to take the turn, it proceeds with its next conversational
move.
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11.3.2 Automatic Thought Classifier module

For CBT interaction, to proceed with the CBT scenario proposed in Shidara et al.
[2022], a semantic analysis of the user’s utterance needs to be done to identify
whether the user has answered with an automatic thought or not. The structural
content of the dialogue is processed by the Automatic Thought Classifier module.
The module integrates the classifier model presented in Shidara et al. [2022] using
the classifier algorithm of Support Vector Machine (SVM; linear kernel) with the
French word embeddings from Bidirectional Encoder Representations from Trans-
formers (BERT; Devlin et al. [2018]), which is a pre-trained language model for
word representations. As in Shidara et al. [2022], the raw text is tokenized and a
part-of-speech tag is associated with each token. All input sentences are covered
with [CLS] and [SEP] tokens, which are placed at the beginning and the ending
respectively, and are fed to BERT with a hidden vector of 768 dimensions. These
tags are used as the inputs of the classifier model. The model identifies automatic
thoughts by performing binary classification on the user’s utterance. Depending
on whether the user’s response is an automatic thought or not, the next agent’s
utterance is decided.

11.4 Animation Rendering

Figure 11.5 The Animation Rendering module displays the generated agent’s behaviors,
which are the agent’s facial gestures obtained by the Adaptation Behavior Realizer and the
agent’s mouth movements sent by the Dialogue Manager, and renders the agent’s speech
produced by the Dialogue Manager.

The final animation of the generated agent’s behavior, which consists of the
agent’s facial gestures obtained at the frame-level by the Adaptation Behavior Re-
alizer and the agent’s mouth movements and speech produced by the Dialogue
Manager is rendered by the Animation Rendering module. The agent’s facial ges-
tures and mouth movements, visualized together via Ogre3D, and the agent’s ut-
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terance, produced by Greta platform’s Audio module, are each passed to their
corresponding physical output devices (monitor and speaker respectively).

11.5 System Performance and Specifications

The IAVA system works in real time, executing a single system loop every 0.04s.
The single system loop consists of:

• perception of 0.03s with OpenFace at 30fps and openSMILE at 100Hz;

• adaptive behavior generation of < 0.01s via the ASAP model;

• communication and visualization of < 0.01s.

All signals within the system are synced without any delay for it to function in
25Hz, and thus generate and display the agent’s behavior every 0.04s.

For the functioning of the system, a space requirement of approximately 7GB
is needed which consists of: 2GB for platform visualization, 2GB for OpenFace
and openSMILE, and 3GB for execution and data saving.

In addition to the memory space requirement, hardware specifications must be
met which are two computers with 2.4GHz Intel Core i9 mounted with NVIDIA
Quadro RTX 4000 and 64GB RAM.

132



Chapter 12
Appendix C

We present here the interpretation of correlation graphs (Figures 7.7, 7.8, and 7.9)
presented in Chapter 7.

The graphs were obtained via Jamovi, an open-source statistical software 1

(Şahin and Aybek [2019]).

Figure 12.1 Example correlation graph for the interpretation explication.

For the explication of the graph interpretation, we use the example correlation
graph shown in Figure 12.1. The example graph shows 3 relations between the
constructs 1, 2, and 3. Each subgraph shows the correlation between:

• Subgraph (2,1): constructs 1 & 2;

• Subgraph (1,1): constructs 1 & 3;

• Subgraph (1,2): constructs 2 & 3.

1https://www.jamovi.org/
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Štefan Beňuš, Agustín Gravano, and Julia Hirschberg. Pragmatic aspects of tem-
poral accommodation in turn-taking. Journal of Pragmatics, 43(12):3001–3027,
2011.

Frank J Bernieri and Robert Rosenthal. Interpersonal coordination: Behavior
matching and interactional synchrony. 1991.

Frank J Bernieri, J Steven Reznick, and Robert Rosenthal. Synchrony, pseudosyn-
chrony, and dissynchrony: measuring the entrainment process in mother-infant
interactions. Journal of personality and social psychology, 54(2):243, 1988.

Michael J Bernstein, Donald F Sacco, Christina M Brown, Steven G Young, and
Heather M Claypool. A preference for genuine smiles following social exclusion.
Journal of experimental social psychology, 46(1):196–199, 2010.

Uttaran Bhattacharya, Nicholas Rewkowski, Abhishek Banerjee, Pooja Guhan,
Aniket Bera, and Dinesh Manocha. Text2gestures: A transformer-based network
for generating emotive body gestures for virtual agents** this work has been
supported in part by aro grants w911nf1910069 and w911nf1910315, and in-
tel. code and additional materials available at: https://gamma. umd. edu/t2g.
In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pages 1–10. IEEE, 2021.

135



BIBLIOGRAPHY

Beatrice Biancardi, Angelo Cafaro, and Catherine Pelachaud. Analyzing first im-
pressions of warmth and competence from observable nonverbal cues in expert-
novice interactions. In Proceedings of the 19th acm international conference on
multimodal interaction, pages 341–349, 2017.

Beatrice Biancardi, Soumia Dermouche, and Catherine Pelachaud. Adaptation
mechanisms in human–agent interaction: Effects on user’s impressions and en-
gagement. Frontiers in Computer Science, 3:696682, 2021.

Timothy Bickmore. Health-related applications of socially interactive agents. In
The Handbook on Socially Interactive Agents: 20 years of Research on Embodied
Conversational Agents, Intelligent Virtual Agents, and Social Robotics Volume 2:
Interactivity, Platforms, Application, pages 403–436. 2022.

Steven M Boker, Jennifer L Rotondo, Minquan Xu, and Kadijah King. Windowed
cross-correlation and peak picking for the analysis of variability in the associa-
tion between behavioral time series. Psychological methods, 7(3):338, 2002.

Guy A Boy. The handbook of human-machine interaction: a human-centered design
approach. CRC Press, 2017.

Jeffrey M Bradshaw, Paul Feltovich, and Matthew Johnson. Human-agent interac-
tion. Handbook of human-machine interaction, pages 283–302, 2017.

Judee K Burgoon, Lesa A Stern, and Leesa Dillman. Interpersonal adaptation:
Dyadic interaction patterns. Cambridge University Press, 1995.

Judee K Burgoon, Laura K Guerrero, and Valerie Manusov. Nonverbal signals. The
SAGE handbook of interpersonal communication, pages 239–280, 2011.

Angelo Cafaro, Johannes Wagner, Tobias Baur, Soumia Dermouche, Mercedes Tor-
res Torres, Catherine Pelachaud, Elisabeth Andre, and Michel Valstar. The noxi
database: multimodal recordings of mediated novice-expert interactions. pages
350–359, 11 2017. doi: 10.1145/3136755.3136780.

Yujun Cai, Yiwei Wang, Yiheng Zhu, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun
Liu, Chuanxia Zheng, Sijie Yan, Henghui Ding, et al. A unified 3d human mo-
tion synthesis model via conditional variational auto-encoder. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 11645–11655,
2021.

Nick Campbell. Multimodal processing of discourse information; the effect of syn-
chrony. In 2008 Second International Symposium on Universal Communication,
pages 12–15. IEEE, 2008.

Joseph N Cappella. Mutual adaptation and relativity of measurement. Studying
interpersonal interaction, 1:103–117, 1991.

Joseph N Cappella. Behavioral and judged coordination in adult informal social
interactions: Vocal and kinesic indicators. Journal of personality and social psy-
chology, 72(1):119, 1997.

Justine Cassell. Embodied conversational agents: representation and intelligence
in user interfaces. AI magazine, 22(4):67–67, 2001.

136



BIBLIOGRAPHY

Justine Cassell, Tim Bickmore, Lee Campbell, Hannes Vilhjalmsson, and Hao Yan.
Human conversation as a system framework: Designing embodied conversa-
tional agents. Embodied conversational agents, pages 29–63, 2000.

Justine Cassell, Hannes Högni Vilhjálmsson, and Timothy Bickmore. Beat: the be-
havior expression animation toolkit. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, pages 477–486, 2001.

William I. Chang and Eugene L. Lawler. Sublinear approximate string matching
and biological applications. Algorithmica, 12(4):327–344, 1994.

Tanya L Chartrand and John A Bargh. The chameleon effect: the perception–
behavior link and social interaction. Journal of personality and social psychology,
76(6):893, 1999.

Tanya L Chartrand and Jessica L Lakin. The antecedents and consequences of
human behavioral mimicry. Annual review of psychology, 64:285–308, 2013.

Jonas Chatel-Goldman, Marco Congedo, Christian Jutten, and Jean-Luc Schwartz.
Touch increases autonomic coupling between romantic partners. Frontiers in
behavioral neuroscience, 8:95, 2014.

Hang Chu, Daiqing Li, and Sanja Fidler. A face-to-face neural conversation model.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7113–7121, 2018.

William S Condon and William D Ogston. Sound film analysis of normal and
pathological behavior patterns. Journal of nervous and mental disease, 1966.

William S Condon and William D Ogston. A segmentation of behavior. Journal of
psychiatric research, 5(3):221–235, 1967.

William S Condon and Louis W Sander. Neonate movement is synchronized with
adult speech: Interactional participation and language acquisition. Science, 183
(4120):99–101, 1974.

Amy JC Cuddy, Peter Glick, and Anna Beninger. The dynamics of warmth and
competence judgments, and their outcomes in organizations. Research in orga-
nizational behavior, 31:73–98, 2011.

Kerstin Dautenhahn. Embodiment and interaction in socially intelligent life-like
agents. In International Workshop on Computation for Metaphors, Analogy, and
Agents, pages 102–141. Springer, 1998.

Emilie Delaherche and Mohamed Chetouani. Multimodal coordination: exploring
relevant features and measures. In Proceedings of the 2nd international workshop
on Social signal processing, pages 47–52, 2010.

Emilie Delaherche, Mohamed Chetouani, Ammar Mahdhaoui, Catherine Saint-
Georges, Sylvie Viaux, and David Cohen. Interpersonal synchrony: A survey of
evaluation methods across disciplines. IEEE Transactions on Affective Computing,
3(3):349–365, 2012.

Soumia Dermouche and Catherine Pelachaud. Engagement modeling in dyadic
interaction. In 2019 international conference on multimodal interaction, pages
440–445, 2019a.

137



BIBLIOGRAPHY

Soumia Dermouche and Catherine Pelachaud. Generative model of agent’s behav-
iors in human-agent interaction. In 2019 International Conference on Multimodal
Interaction, pages 375–384, 2019b.

David DeVault, Ron Artstein, Grace Benn, Teresa Dey, Ed Fast, Alesia Gainer, Kallir-
roi Georgila, Jon Gratch, Arno Hartholt, Margaux Lhommet, et al. Simsensei
kiosk: A virtual human interviewer for healthcare decision support. In Proceed-
ings of the 2014 international conference on Autonomous agents and multi-agent
systems, pages 1061–1068, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Chuang Ding, Lei Xie, and Pengcheng Zhu. Head motion synthesis from speech
using deep neural networks. Multimedia Tools and Applications, 74(22):9871–
9888, 2015.

Zijian Ding, Jiawen Kang, Tinky Oi Ting Ho, Ka Ho Wong, Helene H Fung, Helen
Meng, and Xiaojuan Ma. Talktive: a conversational agent using backchannels
to engage older adults in neurocognitive disorders screening. In Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems, pages 1–19,
2022.

Alan Dix. Human-computer interaction. Pearson Education, 2003.

Sidney S D’Mello, Patrick Chipman, and Art Graesser. Posture as a predictor of
learner’s affective engagement. In Proceedings of the Annual Meeting of the Cog-
nitive Science Society, volume 29, 2007.

Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–
200, 1992.

Paul Ekman and Wallace V Friesen. Measuring facial movement. Environmental
psychology and nonverbal behavior, 1(1):56–75, 1976.

Paul Ekman and Wallace V Friesen. Facial action coding system. Environmental
Psychology & Nonverbal Behavior, 1978.

Paul Ekman and Wallace V Friesen. Felt, false, and miserable smiles. Journal of
nonverbal behavior, 6:238–252, 1982.

Florian Eyben, Martin Wöllmer, and Björn Schuller. Opensmile: the munich versa-
tile and fast open-source audio feature extractor. In Proceedings of the 18th ACM
international conference on Multimedia, pages 1459–1462, 2010.

Mireille Fares, Catherine Pelachaud, and Nicolas Obin. Transformer network
for semantically-aware and speech-driven upper-face generation. In EUSIPCO,
2022.

Mireille Fares, Catherine Pelachaud, and Nicolas Obin. Zero-shot style transfer
for multimodal data-driven gesture synthesis. In 2023 IEEE 17th International
Conference on Automatic Face and Gesture Recognition (FG), pages 1–4. IEEE,
2023.

138



BIBLIOGRAPHY

Will Feng, Anitha Kannan, Georgia Gkioxari, and C Lawrence Zitnick. Learn2smile:
Learning non-verbal interaction through observation. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 4131–4138.
IEEE, 2017.

Ylva Ferstl, Michael Neff, and Rachel McDonnell. Multi-objective adversarial ges-
ture generation. In Motion, Interaction and Games, pages 1–10. 2019.

Ylva Ferstl, Sean Thomas, Cédric Guiard, Cathy Ennis, and Rachel McDonnell.
Human or robot? investigating voice, appearance and gesture motion realism
of conversational social agents. In Proceedings of the 21st ACM international
conference on intelligent virtual agents, pages 76–83, 2021.

Siska Fitrianie, Merijn Bruijnes, Deborah Richards, Andrea Bönsch, and Willem-
Paul Brinkman. The 19 unifying questionnaire constructs of artificial social
agents: An iva community analysis. In Proceedings of the 20th ACM International
Conference on Intelligent Virtual Agents, pages 1–8, 2020.

Siska Fitrianie, Merijn Bruijnes, Fengxiang Li, and Willem-Paul Brinkman. Ques-
tionnaire items for evaluating artificial social agents-expert generated, content
validated and reliability analysed. In Proceedings of the 21st ACM International
Conference on Intelligent Virtual Agents, pages 84–86, 2021.

Paul M Fitts. Human engineering for an effective air-navigation and traffic-control
system. 1951.

Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. Delivering cognitive
behavior therapy to young adults with symptoms of depression and anxiety us-
ing a fully automated conversational agent (woebot): a randomized controlled
trial. JMIR mental health, 4(2):e7785, 2017.

Shiry Ginosar, Amir Bar, Gefen Kohavi, Caroline Chan, Andrew Owens, and Jiten-
dra Malik. Learning individual styles of conversational gesture. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3497–3506, 2019.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Proceedings of the 27th International Conference on Neural Information Process-
ing Systems - Volume 2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014.
MIT Press.

Joseph Grafsgaard, Nicholas Duran, Ashley Randall, Chun Tao, and Sidney
D’Mello. Generative multimodal models of nonverbal synchrony in close re-
lationships. In 2018 13th IEEE International Conference on Automatic Face &
Gesture Recognition (FG 2018), pages 195–202. IEEE, 2018.

Jonathan Gratch and Gale Lucas. Rapport between humans and socially interac-
tive agents. In The Handbook on Socially Interactive Agents: 20 years of Research
on Embodied Conversational Agents, Intelligent Virtual Agents, and Social Robotics
Volume 1: Methods, Behavior, Cognition, pages 433–462. 2021.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, 18
(5):602–610, 2005. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2

139



BIBLIOGRAPHY

005.06.042. URL https://www.sciencedirect.com/science/article/pii/S0
893608005001206. IJCNN 2005.

Dennis Greenberger and Christine A Padesky. Mind over mood: Change how you
feel by changing the way you think. Guilford Publications, 2015.

David Greenwood, Stephen Laycock, and Iain Matthews. Predicting head pose
from speech with a conditional variational autoencoder. ISCA, 2017.

Aman Gupta, Finn L Strivens, Benjamin Tag, Kai Kunze, and Jamie A Ward. Blink
as you sync: Uncovering eye and nod synchrony in conversation using wear-
able sensing. In Proceedings of the 23rd International Symposium on Wearable
Computers, pages 66–71, 2019.

Amy G Halberstadt. Family expressiveness styles and nonverbal communication
skills. Journal of Nonverbal Behavior, 8:14–26, 1983.

Joanna Hale, Jamie A Ward, Francesco Buccheri, Dominic Oliver, and Antonia
F de C Hamilton. Are you on my wavelength? interpersonal coordination in
dyadic conversations. Journal of nonverbal behavior, 44(1):63–83, 2020.

Jennifer Hamet Bagnou, Elise Prigent, Jean-Claude Martin, Jieyeon Woo, Liu Yang,
Catherine Achard, Catherine Pelachaud, and Céline Clavel. A framework for the
assessment and training of collaborative problem-solving social skills. In Com-
panion Publication of the 2021 International Conference on Multimodal Interac-
tion, pages 381–384, 2021.

Dai Hasegawa, Naoshi Kaneko, Shinichi Shirakawa, Hiroshi Sakuta, and Kazuhiko
Sumi. Evaluation of speech-to-gesture generation using bi-directional lstm net-
work. In Proceedings of the 18th International Conference on Intelligent Virtual
Agents, pages 79–86, 2018.

Alexander Heimerl, Tobias Baur, Florian Lingenfelser, Johannes Wagner, and Elisa-
beth André. Nova-a tool for explainable cooperative machine learning. In 2019
8th International Conference on Affective Computing and Intelligent Interaction
(ACII), pages 109–115. IEEE, 2019.

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. Moglow: Probabilistic
and controllable motion synthesis using normalising flows. ACM Transactions on
Graphics (TOG), 39(6):1–14, 2020.

Matthew J Hertenstein, Rachel Holmes, Margaret McCullough, and Dacher Kelt-
ner. The communication of emotion via touch. Emotion, 9(4):566, 2009.

Ursula Hess and Patrick Bourgeois. You smile–i smile: Emotion expression in social
interaction. Biological psychology, 84(3):514–520, 2010.

Ursula Hess, Martin G Beaupré, Nicole Cheung, et al. Who to whom and why–
cultural differences and similarities in the function of smiles. An empirical reflec-
tion on the smile, 4:187, 2002.

Ursula Hess, Stephanie Houde, and Agneta Fischer. Do we mimic what we see or
what we know. pages 94–107, 2014.

Pieter Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.",
2013.

140

https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206


BIBLIOGRAPHY

Michael J Hove and Jane L Risen. It’s all in the timing: Interpersonal synchrony
increases affiliation. Social cognition, 27(6):949–960, 2009.

Lixing Huang, Louis-Philippe Morency, and Jonathan Gratch. Learning backchan-
nel prediction model from parasocial consensus sampling: a subjective eval-
uation. In Intelligent Virtual Agents: 10th International Conference, IVA 2010,
Philadelphia, PA, USA, September 20-22, 2010. Proceedings 10, pages 159–172.
Springer, 2010.

Becky Inkster, Shubhankar Sarda, Vinod Subramanian, et al. An empathy-driven,
conversational artificial intelligence agent (wysa) for digital mental well-being:
real-world data evaluation mixed-methods study. JMIR mHealth and uHealth, 6
(11):e12106, 2018.

Patrik Jonell, Taras Kucherenko, Gustav Eje Henter, and Jonas Beskow. Let’s face
it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in
dyadic settings. In Proceedings of the 20th ACM International Conference on In-
telligent Virtual Agents, pages 1–8, 2020.

Aidan Jones and Ginevra Castellano. Adaptive robotic tutors that support self-
regulated learning: A longer-term investigation with primary school children.
International Journal of Social Robotics, 10:357–370, 2018.

Stanley E Jones and A Elaine Yarbrough. A naturalistic study of the meanings of
touch. Communications Monographs, 52(1):19–56, 1985.

Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen. Audio-
driven facial animation by joint end-to-end learning of pose and emotion. ACM
Transactions on Graphics (TOG), 36(4):1–12, 2017.

Ronald C Kessler, Gavin Andrews, Lisa J Colpe, Eva Hiripi, Daniel K Mroczek, S-
LT Normand, Ellen E Walters, and Alan M Zaslavsky. Short screening scales
to monitor population prevalences and trends in non-specific psychological dis-
tress. Psychological medicine, 32(6):959–976, 2002.

Alaa Khamis, Jun Meng, Jin Wang, Ahmad Taher Azar, Edson Prestes, Árpád
Takács, Imre J Rudas, and Tamás Haidegger. Robotics and intelligent systems
against a pandemic. Acta Polytechnica Hungarica, 18(5):13–35, 2021.

Kyoung-jae Kim. Financial time series forecasting using support vector machines.
Neurocomputing, 55(1-2):307–319, 2003.

Everlyne Kimani, Timothy Bickmore, Ha Trinh, and Paola Pedrelli. You’ll be great:
Virtual agent-based cognitive restructuring to reduce public speaking anxiety. In
2019 8th international conference on affective computing and intelligent interac-
tion (ACII), pages 641–647. IEEE, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Sotaro Kita. Cross-cultural variation of speech-accompanying gesture: A review.
Language and cognitive processes, 24(2):145–167, 2009.

Mark L Knapp, Judith A Hall, and Terrence G Horgan. Nonverbal communication
in human interaction. Cengage Learning, 2013.

141



BIBLIOGRAPHY

Kyveli Kompatsiari, Vadim Tikhanoff, Francesca Ciardo, Giorgio Metta, and Ag-
nieszka Wykowska. The importance of mutual gaze in human-robot interac-
tion. In Social Robotics: 9th International Conference, ICSR 2017, Tsukuba, Japan,
November 22-24, 2017, Proceedings 9, pages 443–452. Springer, 2017.

Sander L Koole and Wolfgang Tschacher. Synchrony in psychotherapy: A review
and an integrative framework for the therapeutic alliance. Frontiers in psychol-
ogy, 7:862, 2016.

Neeraj Kumar and Govind Kumar Jha. A time series ann approach for weather
forecasting. Int J Control Theory Comput Model (IJCTCM), 3(1):19–25, 2013.

Sing Lau. The effect of smiling on person perception. The Journal of social psy-
chology, 117(1):63–67, 1982.

N Pontus Leander, Tanya L Chartrand, and John A Bargh. You give me the chills:
Embodied reactions to inappropriate amounts of behavioral mimicry. Psycholog-
ical science, 23(7):772–779, 2012.

Aouragh Si Lhoussain, GUEDDAH Hicham, and YOUSFI Abdellah. Adaptating the
levenshtein distance to contextual spelling correction. International Journal of
Computer Science and Applications, 12(1):127–133, 2015.

Bo Li, Tara N Sainath, Khe Chai Sim, Michiel Bacchiani, Eugene Weinstein, Patrick
Nguyen, Zhifeng Chen, Yanghui Wu, and Kanishka Rao. Multi-dialect speech
recognition with a single sequence-to-sequence model. In 2018 IEEE interna-
tional conference on acoustics, speech and signal processing (ICASSP), pages 4749–
4753. IEEE, 2018.

Jamy Li. The benefit of being physically present: A survey of experimental works
comparing copresent robots, telepresent robots and virtual agents. International
Journal of Human-Computer Studies, 77:23–37, 2015.

Stan Z Li, Anil K Jain, Ying-Li Tian, Takeo Kanade, and Jeffrey F Cohn. Facial
expression analysis. Handbook of face recognition, pages 247–275, 2005.

Marco Lippi, Matteo Bertini, and Paolo Frasconi. Short-term traffic flow forecast-
ing: An experimental comparison of time-series analysis and supervised learn-
ing. IEEE Transactions on Intelligent Transportation Systems, 14(2):871–882,
2013.

Christine Lisetti, Reza Amini, Ugan Yasavur, and Naphtali Rishe. I can help you
change! an empathic virtual agent delivers behavior change health interven-
tions. ACM Transactions on Management Information Systems (TMIS), 4(4):1–28,
2013.

Beth Logan. Mel frequency cepstral coefficients for music modeling. In In Interna-
tional Symposium on Music Information Retrieval. Citeseer, 2000.

Max M Louwerse, Rick Dale, Ellen G Bard, and Patrick Jeuniaux. Behavior match-
ing in multimodal communication is synchronized. Cognitive science, 36(8):
1404–1426, 2012.

Gale M Lucas, Jonathan Gratch, Aisha King, and Louis-Philippe Morency. It’s only a
computer: Virtual humans increase willingness to disclose. Computers in Human
Behavior, 37:94–100, 2014.

142



BIBLIOGRAPHY

Birgit Lugrin, Catherine Pelachaud, and David Traum. The Handbook on Socially
Interactive Agents: 20 years of Research on Embodied Conversational Agents, Intel-
ligent Virtual Agents, and Social Robotics Volume 1: Methods, Behavior, Cognition.
Morgan & Claypool, 2021.

Wei Mao, Miaomiao Liu, and Mathieu Salzmann. Generating smooth pose se-
quences for diverse human motion prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 13309–13318, 2021.

Soroosh Mariooryad and Carlos Busso. Correcting time-continuous emotional la-
bels by modeling the reaction lag of evaluators. IEEE Transactions on Affective
Computing, 6(2):97–108, 2014.

Malia F Mason, Elizabeth P Tatkow, and C Neil Macrae. The look of love: Gaze
shifts and person perception. Psychological science, 16(3):236–239, 2005.

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the
American statistical Association, 46(253):68–78, 1951.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than
one? Advances in neural information processing systems, 32, 2019.

Mohsen Mohammadi, Faraz Talebpour, Esmaeil Safaee, Noradin Ghadimi, and
Oveis Abedinia. Small-scale building load forecast based on hybrid forecast
engine. Neural Processing Letters, 48(1):329–351, 2018.

Louis-Philippe Morency, Iwan de Kok, and Jonathan Gratch. A probabilistic mul-
timodal approach for predicting listener backchannels. Autonomous Agents and
Multi-Agent Systems, 20(1):70–84, 2010.

Yasmin Moslem, Rejwanul Haque, and Andy Way. Adaptive machine translation
with large language models. arXiv preprint arXiv:2301.13294, 2023.

Meinard Müller. Dynamic time warping. Information retrieval for music and mo-
tion, pages 69–84, 2007.

Gonzalo Navarro. A guided tour to approximate string matching. ACM computing
surveys (CSUR), 33(1):31–88, 2001.

Evonne Ng, Hanbyul Joo, Liwen Hu, Hao Li, Trevor Darrell, Angjoo Kanazawa,
and Shiry Ginosar. Learning to listen: Modeling non-deterministic dyadic facial
motion. arXiv preprint arXiv:2204.08451, 2022.

Paula M Niedenthal, Martial Mermillod, Marcus Maringer, and Ursula Hess. The
simulation of smiles (sims) model: Embodied simulation and the meaning of
facial expression. 2010.

Radoslaw Niewiadomski, Elisabetta Bevacqua, Maurizio Mancini, and Catherine
Pelachaud. Greta: an interactive expressive eca system. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume
2, pages 1399–1400, 2009.

Ryota Nishimura, Norihide Kitaoka, and Seiichi Nakagawa. A spoken dialog sys-
tem for chat-like conversations considering response timing. In Text, Speech
and Dialogue: 10th International Conference, TSD 2007, Pilsen, Czech Republic,
September 3-7, 2007. Proceedings 10, pages 599–606. Springer, 2007.

143



BIBLIOGRAPHY

John C Norcross and Michael J Lambert. Psychotherapy relationships that work
iii. Psychotherapy, 55(4):303, 2018.

Magalie Ochs and Catherine Pelachaud. Socially aware virtual characters: The
social signal of smiles. IEEE Signal Processing Magazine, 30(2):128–132, 2013.

Catharine Oertel, Ginevra Castellano, Mohamed Chetouani, Jauwairia Nasir, Mo-
hammad Obaid, Catherine Pelachaud, and Christopher Peters. Engagement in
human-agent interaction: An overview. Frontiers in Robotics and AI, 7:92, 2020.

Teresa K O’Leary, Elizabeth Stowell, Everlyne Kimani, Dhaval Parmar, Stefan Olaf-
sson, Jessica Hoffman, Andrea G Parker, Michael K Paasche-Orlow, and Timothy
Bickmore. Community-based cultural tailoring of virtual agents. In Proceedings
of the 20th ACM International Conference on Intelligent Virtual Agents, pages 1–8,
2020.

Olivier Oullier, Gonzalo C De Guzman, Kelly J Jantzen, Julien Lagarde, and
JA Scott Kelso. Social coordination dynamics: Measuring human bonding. Social
neuroscience, 3(2):178–192, 2008.

Alfonso Palmer, Juan Jose Montano, and Albert Sesé. Designing an artificial neural
network for forecasting tourism time series. Tourism management, 27(5):781–
790, 2006.

Amit Kumar Pandey and Rodolphe Gelin. A mass-produced sociable humanoid
robot: Pepper: The first machine of its kind. IEEE Robotics & Automation Maga-
zine, 25(3):40–48, 2018.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and
inference. arXiv preprint arXiv:1912.02762, 2019.

Dhaval Parmar, Stefan Olafsson, Dina Utami, Prasanth Murali, and Timothy Bick-
more. Designing empathic virtual agents: manipulating animation, voice, ren-
dering, and empathy to create persuasive agents. Autonomous agents and multi-
agent systems, 36(1):17, 2022.

Florian Pecune, Angelo Cafaro, Magalie Ochs, and Catherine Pelachaud. Evalu-
ating social attitudes of a virtual tutor. In Intelligent Virtual Agents: 16th Inter-
national Conference, IVA 2016, Los Angeles, CA, USA, September 20–23, 2016,
Proceedings 16, pages 245–255. Springer, 2016.

Marc D Pell. Prosody–face interactions in emotional processing as revealed by the
facial affect decision task. Journal of Nonverbal Behavior, 29:193–215, 2005.

Andre Pereira, Rui Prada, and Ana Paiva. Improving social presence in human-
agent interaction. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 1449–1458, 2014.

Carlos Pereira Santos, Joey Relouw, Kevin Hutchinson-Lhuissier, Alexander van
Buggenum, Agathe Boudry, Annemarie Fransen, Myrthe van der Ven, and Igor
Mayer. Embodied agents for obstetric simulation training. In Proceedings of
the 28th International Conference on Intelligent User Interfaces, pages 515–527,
2023.

144



BIBLIOGRAPHY

Pierre Philip, Lucile Dupuy, Marc Auriacombe, Fushia Serre, Etienne de Sevin,
Alain Sauteraud, and Jean-Arthur Micoulaud-Franchi. Trust and acceptance of
a virtual psychiatric interview between embodied conversational agents and out-
patients. NPJ digital medicine, 3(1):2, 2020.

Martin J Pickering and Simon Garrod. Toward a mechanistic psychology of dia-
logue. Behavioral and brain sciences, 27(2):169–190, 2004.

Ken Prepin and Catherine Pelachaud. Basics of intersubjectivity dynamics: Model
of synchrony emergence when dialogue partners understand each other. In
International Conference on Agents and Artificial Intelligence, pages 302–318.
Springer, 2011.

Ken Prepin, Magalie Ochs, and Catherine Pelachaud. Beyond backchannels: co-
construction of dyadic stancce by reciprocal reinforcement of smiles between
virtual agents. In Proceedings of the Annual Meeting of the Cognitive Science Soci-
ety, volume 35, 2013.

pyimagesearch. Visualizing the 68 facial landmark coordinates from the ibug 300-
w dataset, 2017. URL https://pyimagesearch.com/wp-content/uploads/2
017/04/facial_landmarks_68markup.jpg. [Online; accessed September 15,
2023].

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In In-
ternational Conference on Machine Learning, pages 28492–28518. PMLR, 2023.

Stéphane Raffard, Robin N Salesse, Catherine Bortolon, Benoit G Bardy, José Hen-
riques, Ludovic Marin, Didier Stricker, and Delphine Capdevielle. Using mimicry
of body movements by a virtual agent to increase synchronization behavior and
rapport in individuals with schizophrenia. Scientific reports, 8(1):17356, 2018.

Shyam Sundar Rajagopalan, Louis-Philippe Morency, Tadas Baltrusaitis, and
Roland Goecke. Extending long short-term memory for multi-view structured
learning. In Computer Vision–ECCV 2016: 14th European Conference, Amster-
dam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pages
338–353. Springer, 2016.

Fabian Ramseyer and Wolfgang Tschacher. Synchrony in dyadic psychotherapy
sessions. Simultaneity: Temporal structures and observer perspectives, pages 329–
347, 2008.

Fabian Ramseyer and Wolfgang Tschacher. Nonverbal synchrony of head-and
body-movement in psychotherapy: different signals have different associations
with outcome. Frontiers in psychology, 5:979, 2014.

Stéphane Rauzy, Mary Amoyal, and Béatrice Priego-Valverde. A measure of the
smiling synchrony in the conversational face-to-face interaction corpus paco-
cheese. In Workshop SmiLa, Language Resources and Evaluation Conference, LREC
2022, 2022.

S Zahra Razavi, Lenhart K Schubert, Kimberly van Orden, Mohammad Rafayet Ali,
Benjamin Kane, and Ehsan Hoque. Discourse behavior of older adults interact-
ing with a dialogue agent competent in multiple topics. ACM Transactions on
Interactive Intelligent Systems (TiiS), 12(2):1–21, 2022.

145

https://pyimagesearch.com/wp-content/uploads/2017/04/facial_landmarks_68markup.jpg
https://pyimagesearch.com/wp-content/uploads/2017/04/facial_landmarks_68markup.jpg


BIBLIOGRAPHY

Dennis Reidsma, Anton Nijholt, Wolfgang Tschacher, and Fabian Ramseyer. Mea-
suring multimodal synchrony for human-computer interaction. In 2010 interna-
tional conference on cyberworlds, pages 67–71. IEEE, 2010.

Harry T Reis, Ilona McDougal Wilson, Carla Monestere, Stuart Bernstein, Kelly
Clark, Edward Seidl, Michelle Franco, Ezia Gioioso, Lori Freeman, and Kimberly
Radoane. What is smiling is beautiful and good. European Journal of Social
Psychology, 20(3):259–267, 1990.

Michael J Richardson, Kerry L Marsh, Robert W Isenhower, Justin RL Goodman,
and Richard C Schmidt. Rocking together: Dynamics of intentional and unin-
tentional interpersonal coordination. Human movement science, 26(6):867–891,
2007.

Lazlo Ring, Timothy Bickmore, and Paola Pedrelli. An affectively aware virtual
therapist for depression counseling. In ACM SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI) workshop on Computing and Mental Health,
pages 01951–12, 2016.

Hannes Ritschel, Tobias Baur, and Elisabeth André. Adapting a robot’s linguistic
style based on socially-aware reinforcement learning. In 2017 26th ieee inter-
national symposium on robot and human interactive communication (ro-man),
pages 378–384. IEEE, 2017.

Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc.,
2010.

Najmeh Sadoughi and Carlos Busso. Novel realizations of speech-driven head
movements with generative adversarial networks. In 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6169–
6173. IEEE, 2018.

Takeshi Saga, Hiroki Tanaka, Yasuhiro Matsuda, Tsubasa Morimoto, Mitsuhiro
Uratani, Kosuke Okazaki, Yuichiro Fujimoto, and Satoshi Nakamura. Automatic
evaluation-feedback system for automated social skills training. Scientific Re-
ports, 13(1):6856, 2023a.

Takeshi Saga, Jieyeon Woo, Alexis Gerard, Hiroki Tanaka, Catherine Achard,
Satoshi Nakamura, and Catherine Pelachaud. An adaptive virtual agent plat-
form for automated social skills training. In Proceedings of the 2021 International
Conference on Multimodal Interaction, 2023b.
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