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This study focuses on metallic nano-structure, particularly nanoparti-
cles with sizes in the nanometer range corresponding to a total number
of atoms usually between ∼ 102 to ∼ 106. These nano-objects have at-
tracted significant attention due to their unique physical and chemical
properties exploited thanks tospecificities an increased surface-to-
volume ratio and even the possibility of having a defect-free system.
Thanks to this and many other interesting features, nanoparticles
have found applications in various fields such as catalysis, electronics,
biomedicine, and mechanics. [1–4].

The Ph.D. was conducted at the "Laboratoire d’Etude des Microstruc-
tures" (LEM), a laboratory whose research is organised around two
main branches. One branch investigates the evolution of microstruc-
tures and their influence on physical properties of materials, in
particular predicting the mechanical properties of metallic alloys,
including the study of plasticity, via models at the mesoscopic scale
such as the discrete dislocation dynamics and the phase field method.
The second branch deals with low-dimensional material focusing
on synthesis, characterization, and electronic optical properties by
combining experiments and simulations at the atomic scale. The
present thesis aimed to leverage on the knowledge and the expertise
acquired at the LEM to study mechanical end electronic properties
of nano-structures, creating a new area of research within the labora-
tory. Consequently, the current study aims to firstly investigate the
interplay among shape, size, and composition of nanoparticles (NPs),
with the ultimate goal of engineering a new class of nano-objects
with targeted mechanical properties, and secondly to understand the
relation between mechanical deformation and electronic properties,
with the particular application of catalysis.

This manuscript is divided into seven chapters. The first chapter pro-
vides theoretical concepts and establishes a general context based on
previous bibliographical works, where this work is developed(Chapter
1). Chapter 2 describes the methodologies and techniques used in
the project. In the following four chapters the results are presented.
Chapter 3 focuses on how the elastic response of a nanoparticle is
influenced by their size and shape. In contrast, Chapter 4 examines
the plastic behavior of these structures, focusing on the onset of plas-
ticity. Chapter 5 explores the impact of composition by comparing the
response of pure materials to alloy systems. Chapter 6, throughout the
knowledge acquired in the field of mechanics, investigates the effects
of elastic and plastic deformation on local electronic properties. In the
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final chapter, the conclusions drawn from the previous chapters are
presented along with future perspectives for possible related work.

1.1 Total energy of a crystal

The opening chapters of this manuscript revolve around the Hamilto-
nian of a crystal. Although the problem is technically unsolvable, by
introducing certain approximations, we can simplify it and examine
the mechanical and electronic properties. This method is applicable to
bulk materials and nano-structures, covering single-element materials,
alloys, and systems with defects.

Within a solid, the nucleus of an atom oscillates around an equilibrium
position, while the core electrons and higher-energy electrons exhibit
different degrees of freedom depending on the system. In metals,
these higher-energy electrons can be highly delocalized (almost free),
while in non-metallic systems, they tend to be more localized. From
the perspective of quantum mechanics in materials science, the study
of total energy can be attributed to a fundamental problem known as
the many-particle Hamiltonian.

In this context, it is intuitive to consider that the contributions to the
total energy arise from the interactions of all electrons and ions in the
crystal. These contributions include both the kinetic energy and the
Coulomb interactions leading to the following Hamiltonian (𝐻):

𝐻 =
∑
𝑖

𝑃2
𝑖

2𝑀
+
∑
𝑗

𝑝2
𝑗

2𝑚
−
∑
𝑖 𝑗

𝑍𝑒2

(𝑟𝑖 − 𝑅 𝑗)
+ 1

2
∑
𝑖 𝑗

𝑒2

(𝑟𝑖 − 𝑟 𝑗)
+

+1
2
∑
𝑖 𝑗

𝑍2𝑒2

(𝑅𝑖 − 𝑅 𝑗)

(1.1)

The first two terms of equation 1.1 represent the kinetic contribution
given by ions and electrons (𝑇𝑒), respectively, where 𝑀 and 𝑃𝑖 stand
for the mass and momentum of the ion and 𝑚 and 𝑝 𝑗 for the electrons.
The indexes 𝑖 , 𝑗 correspond to the contribution over all the ions and
electrons, respectively. The last terms correspond to the Coulomb
interactions: the third one represents the electron-ion interaction,
𝑉𝐼𝑒 , fundamental to determine most of the electronic properties,
together with the electronic kinetic contribution, and with some
correction that can be brought by the electron-electron interaction
(fourth term𝑉𝑒𝑒 ). The last interaction is the ion-ion one,𝑉𝐼𝐼 describing
the repulsive and attractive behavior of the nucleus in a solid. In
all the contributions, 𝑍 and 𝑒 represent the atomic number and the
electron charge, respectively [5–7].
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The energy of the system can be calculated by solving the time
independent Shrödinger equation:

𝐻Ψ(𝑟𝑖 , 𝑅 𝑗) = 𝐸Ψ(𝑟𝑖 , 𝑅 𝑗), (1.2)

with 𝐸 the total energy, and Ψ the system wave-function that depends
on the nucleus and electronic position. The problem is unsolvable,
given the too-high number of degrees of freedom (represented by
all the ions and electrons). Some hypotheses are therefore required
to simplify it depending on the application of interest. During the
last century, two main ideas and classes were adopted to solve the
problem; an overview is presented in Figure 1.1.

Figure 1.1: Schematic view of differ-
ent types of solutions for the crystal
Hamiltonian. On one side, there is
the solution that leads to the de-
sign of interatomic potentials for
MD applications. On the other side,
the solution that leads to the elec-
tronic Hamiltonian, which allows
the study of the electronic proper-
ties of materials.

In the first class, the degrees of freedom given by the electrons are
removed, and their effect is embedded in 𝑉𝐼𝐼 to create an effective
interaction as:

𝐸𝑒𝑥𝑎𝑐𝑡(𝑅𝑖 , 𝑟𝑛) −→ 𝐸𝑎𝑝𝑝𝑟𝑜𝑥(𝑅𝑖) (1.3)

It is a strong approximation where all the information on electron
energies is lost. However, it can allow us to study the ion’s motion in
a potential that still considers the electronic effect. This assumption is
considered to develop inter-atomic potentials that can be used in MD
to emulate real mechanical tests or to understand the macroscopic
mechanical properties, such as ductility or elasticity. In the second
class of solution, the effect of electrons on the energies is explicitly
considered, but different strategies are used to simplify the problem.

The second class exploits the Born-Oppenheimer approximation,
that is a powerful tool that allows us to separate the electronic and
ionic contributions, simplifying them into two different and more
manageable problems. This approximation is based on the significant
difference in mass between electrons and ions, allowing the electrons
to adjust to the motion of the ions quickly. This separation leads to the
electronic and ionic Hamiltonian formulation, as depicted in Figure
1.1.

Obviously, the electronic Hamiltonian serves as a basis for various
models developed to analyze electronic properties. The level of ap-
proximation in these models determines the accuracy and details
they provide, ranging from the simple Fermi theory to the more
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B (GPa) 𝐸𝑏 (eV/at)

Cu 137 -3.49
Au 173 -3.81
Ni 186 -4.44
Pt 278 -5.84

Table 1.1: 𝐵, 𝐸𝑏 extracted from [6].
Materials with higher binding ener-
gies might exhibit higher bulk mod-
ulus values because they resist to
deformation more strongly.

sophisticated DFT. As the complexity increases, so does the computa-
tional cost. A good compromise between accuracy and computational
efficiency is achieved with the Tight-Binding (TB) formalism, which
is the method chosen in this work to address electronic properties
and is described in Section 2.5.

1.2 Mechanical properties of bulk materials

In the first class of approximation of the crystal Hamiltonian, the
behaviour of electrons is combined with that of ions, through a
potential. By studying an effective potential, it is possible to link
macroscopic properties with the atomic behaviour of the chosen
material. To understand this, we must introduce a useful quantity
called the binding or cohesive energy 𝐸𝑏 . It is defined as the energy
required to create or break a bond, and from it, we can recover
information on the type of bond or the elastic response of the material.
In Figure 1.2, we can observe two different materials and the difference

Figure 1.2: Figure (a): difference in
binding energy in two different ma-
terials. Figure (b): quadratic local
approximation of the inter-atomic
potential, that leads to one branch
of continuum mechanics.

(a) (b)

in the binding energy. Larger binding energy indicates very strong
bonds that can be ionic or covalent (as for ceramic material). On
the other hand, metals have lower binding energy with consequent
different properties, such as good ductile behavior.

The strength of a material is highly micro-structure dependent and
can be engineered, almost losing all the connection with the type of
bond. However, if we consider the elastic response, change in the
micro-structure does not affect the link with the binding energy too
much. This relation can be understood by observing the proportional
relation between the cohesive energy 𝐸𝑏 and the bulk modulus (𝐵)
in table 1.1, where the latter is defined as the material resistance to
isotropic deformation.

The connection between atomic physics and macroscopic behavior
can be made thanks to the harmonic approximation, where atoms can
be seen as a point of a network connected by springs, characterised
by a quadratic potential, see Figure 1.2b. This assumption allows
to study the heat or the phonon dispersion in a specific material,
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Throughout this study, tensors are
referenced using Einstein notation;
see the appendix for details 8.1

and to establishes the connection between an effective potential and
the elastic constants [7]. From this approximation, we can directly
establish the relation between the total energy of the system (𝐸𝑡𝑜𝑡) that
can be thought as the sum of all the potential in a crystal, the strain
tensor 𝜖𝑖 𝑗 , the volumetric factor (Ω) and the fourth-order elasticity
tensor (𝐶𝑖 𝑗𝑘𝑙) as:

𝐶𝑖 𝑗𝑘𝑙 =
1
Ω

𝜕2𝐸𝑡𝑜𝑡

𝜕𝜖𝑖 𝑗𝜕𝜖𝑘𝑙
, (1.4)

with 𝑖 , 𝑗 , 𝑘, 𝑙 representing the 𝑥, 𝑦, and 𝑧 directions [5].

1.2.1 Continuous theory - the linearized theory of elasticity

The central problem of continuous mechanics is deformation, i.e. how
a specific structure reacts to an external loading. It is a fundamental
issue from the engineering point of view because it allows for the
proper design of structures and materials able to withstand various
deformation conditions.

The continuous theory allows to reduce the complexity of the material
without considering all the degrees of freedom given by all the
atoms. In this case, the objects are considered homogeneous. This
theory is based on three fundamental quantities: stress, strain, and
displacement.

The stress tensor characterizes the internal forces acting per unit area
on a surface element, oriented in a specified direction. It is commonly
denoted by 𝝈 = 𝜎𝑖 𝑗 , for a force that acts in the 𝑖 direction on a surface
with a normal oriented in the 𝑗 one.

Regarding the strain, a material or structure can be deformed in differ-
ent ways, and two are the theories that deal with it: the infinitesimal
strain theory and the Finite strain theory. In the first, we make the
approximation that the displacement (∇𝒖) is very small, leading to
significant simplifications of the deformation problem [8]. The second
theory deals with large deformation, invalidating the assumption of
the infinitesimal strain theory . Our deformation condition, smaller
than 10%, places us in the first case, from which the strain (𝜺) is
defined:

𝜀𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

)
(1.5)

where 𝑖 and 𝑗 representing the 𝑥, 𝑦, and 𝑧 directions. The strain tensor
is symmetric and of the second order, 𝜀𝑖 𝑗 = 𝜀𝑗𝑖 . Stress and strain are
linked through Hooke’s law. Therefore, in case of small deformation,
the strain is directly proportional to the stress through the following
equation:

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙 (1.6)
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In the case of macroscopic material
it is preferred to talk about yield
point. In nano and pristine object,
the preferred choice is the critical
stress 𝜎𝑐 , the point where a disloca-
tion nucleate.

At this point, it is important to mention that 𝐶𝑖 𝑗𝑘𝑙 are written in the
Voigt notation in the manuscript, which is a way of simplifying the
fourth order tensor to a second order. Following the symmetries of the
𝝈 and 𝝐 tensor and dealing with a cubic crystal, it can be shown that
only three independent elastic constants exist: 𝐶11, 𝐶12 and 𝐶44.

Now that the fundamental quantities are introduced, we can move
on to the Partial Differential Equation (PDE), which describes how
a given object reacts to a load. When no acceleration is considered,
from Newton’s second law it can be derived:

𝜕

𝜕𝑥𝑖

(
𝜎𝑖 𝑗

)
= 𝑓𝑖 −→ ∇𝝈 = f (1.7)

with f representing the body force (as for gravity), zero in this case.
Here, 𝜎𝑖 𝑗 is obtained by:

𝜎𝑖 𝑗 =
𝜕𝑈

𝜕𝜀𝑖 𝑗
(1.8)

with𝑈 the elastic energy density given by:

𝑈 =
1
2
𝐶𝑖 𝑗𝑘𝑙𝜀𝑖 𝑗𝜀𝑘𝑙 (1.9)

More precisely,𝑈 measures the potential energy stored in the material
when it is elastically deformed. If the load is released, the elastic energy
dissipates, and the sample returns to its original shape.

1.2.2 Stress-strain curves analysis

In the field of materials science, mechanical properties can be probed
and measured through tensile or compressive tests. In these exper-
iments, a sample undergoes to pulling or pushing forces and the
corresponding displacement is measured. These quantities are closely
related to stress, 𝜎 = 𝐹/𝐴 with 𝐹 the force applied by, for instance,
an indenter and 𝐴 the sample area and to strain 𝜀 = Δ𝐿/𝐿0 with
Δ𝐿 the change in specimen’s dimension compared to the initial one
𝐿0. The stress-strain curve describes the relationship between stress
and strain (see Figure 1.3), from which two main regimes can be
identified: the elastic and the plastic one. In the elastic domain, the
study of the stiffness or of the Young’s modulus (𝐸) is fundamental.
This corresponds to the elastic response to an applied stress, the slope
of the linear part of the stress-strain curve, as depicted in Figure 1.3.
Any deformation in this regime is reversible; removing the loading,
the original configuration of atoms can always be recovered. The
limit between elasticity and plasticity is defined by the yield stress
or critical stress, denoted as 𝜎𝑦 in this work, and it is related to the
strength of the material (limit of the elastic regime in Figure 1.3). After
the 𝜎𝑦 , in the plastic regime, deformation in the system is irreversible.
The elementary mechanism regulating the elastic- plastic transition
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Figure 1.3: Typical stress and strain
curve for macroscopic material, brit-
tle and ductile.

change changing the size. In bulk systems, preexisting dislocations
start to move whereas, at the nanoscale, often, a dislocation nucle-
ates. In the plastic domain, we can define ductility as the ability of
a material to be permanently deformed without breaking. In this
regime, we usually observe hardening; the structure results harder
to deform as the loading increases.. This is the result of dislocation
microstructure formation due to the dislocation motion, interaction
and multiplication. In Figure 1.3, the difference between a ductile and
a brittle material is presented where, respectively, after reaching 𝜎𝑦 ,
one keeps deforming and the other one fails. This property can be
linked to the type of material and bonds such as ductile metallic and
brittle ionic bond.

In the context of our work, numerous theories and research efforts
have been devoted to understanding and controlling the three key
parameters: stiffness, strength, and ductility, around which our work
is designed.

1.2.3 Continuum theory of plasticity: introduction to
dislocations

Various theories study the onset of plasticity and the plastic regime
in crystalline materials , trying to predict the behavior of a sample
under external loading. We can mention Molecular Dynamics (small
sizes), Phase Field theory (crack and dislocation study by mean of
elastic field) or Discrete Dislocation Dynamics (based on the concept
that dislocation motion and interaction govern plasticity).

The first explanation of plasticity has been provided by Frenkel in
1923. He wanted to find a way to predict the shear yield point (𝜎𝑖𝑑𝑒𝑎𝑙)
of materials from a microscopic point of view. He calculated the
slip energy of two planes shearing one respect to the other. What
he found out is 𝜎𝑖𝑑𝑒𝑎𝑙 ∼ 𝐶44/2𝜋 for a metal; this is what usually is
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𝐶44 𝜎𝑖𝑑𝑒𝑎𝑙 𝜎𝑏𝑢𝑙𝑘

Au 45.4 7.22 0.20
Cu 81.8 13.0 0.79
Pt 100 13.0 0.17
Ni 131 20.8 0.46

Table 1.2: All the units in (GPa).
𝐶44 from [6]. Note for 𝜎𝑏𝑢𝑙𝑘 the ex-
act strength point can vary depend-
ing on a variety of factors including
its purity, its manufacturing history
(work hardening or annealing pro-
cesses), and its grain structure. Val-
ues extracted from [10–12],

referred as ideal shear strength [9] . Evident differences arise between
this theory, where the system is considered perfectly crystalline, and
reality. Aluminum, for example, is elastically deformed only for strain
lower than 10−5. Other materials such as germanium and silicon, at
room temperature, do not deform plastically and crack just after the
elastic regime [6].

The ideal shear strength is usually of the order of magnitude ∼ (GPa),
way larger compared to what can be found in bulk material ∼ MPa.
In table 1.2 some typical values for transition metal are listed. In the
following years, many different people proposed a theory on plasticity
based on dislocation motion. The basic idea is that to break a simple
line of atom’s bonds is easier than to shear a complete plane, much
lower energy is needed: plasticity is the result of defects motion.

Defects in a solid

In real crystals, imperfections are present in the form of point, line, sur-
face, or volume defects, which locally disrupt the regular arrangement
of atoms.

Thus, the point defects are vacant atomic sites or self-interstitial atoms
that can be generated through, for instance, irradiation. Besides, the
stacking faults are planar defects interrupting the regular stacking
sequence within a crystal. They can originate after a dislocation slip
or as intrinsic defects at the synthesis. Additionally, crystalline solids
typically consist of numerous randomly oriented grains separated by
grain boundaries constituting volume defects.

Lastly, line defects are called dislocations. Dislocations represents the
contour line of a sheared region, along a lattice direction, of the crystals.
They can be of two elemantary types: edge and screw dislocations.
As highlighted in Figure 1.4, assuming that the green lines are the
dislocation line directions, an edge dislocation configuration can be
visualized by adding a plane to half of the crystalline structure (left
figure). Conversely, a screw dislocation (right figure) can be pictured
by shearing the crystal along the dislocation line direction. A way to
identify a dislocation is to introduce the notion of Burgers vector, 𝒃.
The Burgers vector is the lattice direction in which a dislocation shear
a crystal. To visualize it, we can draw a circuit on a perfect lattice
(called the Burgers circuit, top of the panel in Figure 1.4). A difference
can be noticed by introducing an extra half plane and drawing the
circuit again among the same points; this difference is called the
Burgersvector. In the edge dislocation case, 𝒃 is perpendicular to the
dislocation line; meanwhile, in the screw case is parallel. Pure edge
or screw dislocation exists in a real crystal, nonetheless we mainly
observe mixed patterns: the summation of elementary edge and screw
dislocation.
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Figure 1.4: Edge dislocation (left),
screw dislocation (right) and Burger
circuit (top) as well as schematic rep-
resentation of the Burgers vector. Fig-
ure extracted from [13].

Dislocation motion

When loading a sample, and it starts to deform plastically, preexisting
dislocations begin to move and interact. In this study, we only consider
dislocation motion (glide) inside the plane defined by the Burgers
vector and the dislocation line (glide plane), but other mechanisms
exist as the non-conservative motion (climb), where the dislocation
moves out from the gliding plane. Plastic deformation happens by
dislocation gliding on a given plane, an example is presented in Figure
1.5, where the motion of an edge dislocation in the Burgers vector
direction is displayed. Dislocation motion is caused by internal or

Figure 1.5: Dislocation movement
inside a crystal. When the disloca-
tion gets out from the crystal a sur-
face step is created. Figure extracted
from [14].

external stress field acting on the line defects. The stress acting on a
dislocation is called the resolved shear stress (𝜎𝑟𝑠𝑠) defined as:

𝜎𝑟𝑠𝑠 = 𝒔 · 𝝈𝒏 (1.10)

with 𝝈 the stress tensor, 𝒏 the normal to the slip plane, and 𝒔 the slip
direction. In our case, it is the Burgers vector. This is an important
quantity because it gives the effective stress in the slip direction,
responsible for dislocation motion.

Another useful quantity is the von Mises stress (𝜎𝑣) which plays a
crucial role in macro-material to predict the yield of ductile systems
under complex loading scenarios. For a general three-dimensional
system, 𝜎𝑣 is given by:

𝜎2
v =

1
2
[
(𝜎11 − 𝜎22)2 + (𝜎22 − 𝜎33)2 + (𝜎33 − 𝜎11)2+

+6
(
𝜎2

23 + 𝜎2
31 + 𝜎2

12
) (1.11)
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with 𝜎11, 𝜎22, and 𝜎33 represent the normal stresses in the 𝑥, 𝑦, and
𝑧 directions respectively. 𝜎12, 𝜎23, and 𝜎31 denote the off diagonal
terms.

By evaluating the von Mises stress, one can assess the potential
for material failure by comparing it to the material’s yield strength.
Typically, the von Mises criterion is applied to situations and materials
where dislocations already exist. The notion of resolved shear stress
and von Mises stress are useful to study the onset of plasticity in
nanoparticles. As already mentioned, in such pristine object the onset
of plasticity occurs via dislocation nucleation. In our study, we are
not aiming to construct a comprehensive theory for the prediction of
nucleation or slip events. Instead, our focus is on the phenomenological
processes behind these events. Consequently, quantity such as 𝜎𝑣 and
𝜎𝑟𝑠𝑠 that accounts for all stress components demonstrate to be key
parameters.

Elastic energy in dislocation

When compressing, energy is transmitted, for instance, from the
indenter to the sample. In case of elastic deformation, no permanent
changes happen in the crystal. When releasing the load, the system
tends again to its original ground state. In the plastic regime, this
energy is used to move defects and thus to permanently displace
atoms, making the crystal different from its original configuration.
Around the dislocation, atoms undergo a stress field generated by
the presence of the dislocation. In Figure 1.5, the nature of this stored
energy is evident: atoms above the dislocation line are compressed,
and atoms below are stretched, far from their equilibrium position.
Potential energy is stored in this object. An important relation between
elastic energy 𝐸𝑒𝑙 and Burgers vector is 𝐸𝑒𝑙 ∝ 𝐶44𝑏

2 with 𝐶44 the shear
modulus. When loading our sample, the total elastic energy is given
by the interaction between the dislocation micro-structure induced
and the loading induced stress field [9].

Partial dislocation

The object of this study are transition metals such as copper, gold,
platinum, and nickel. These metals have an FCC structure. As we have
previously seen, dislocation energy is proportional to the square of
the Burgersvector ∝ 𝒃2. Slip is more likely to be in the direction with
the highest concentration of atoms where the distance between atoms
is lower, {111} planes in FCC lattice. Moreover, the shortest lattice
vectors are 𝑎/2⟨110⟩ and 𝑎⟨001⟩ where 𝑎 is the lattice parameter. The
elastic energy of a dislocation in the [110] is half the [001] direction;
thus, it is the privileged slip direction. Summarising, in an FCC
structure, four equivalent {111} planes can be found, each having
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three ⟨110⟩ slip directions and therefore twelve slip systems. When

(a) (b)

Figure 1.6: Figure (a): (111) slice of a
cubic FCC structure, and the differ-
ent layers in the [111] direction, A,B
and C. Figure (b): Partial dislocation
moving atom B in C position, creat-
ing a stacking fault. The effect of the
second partial dislocation bringing
back atom B in a B position. Figures
extracted from [9].

a dislocation moves of a translation lattice vector (as for 𝑎/2⟨110⟩),
it leaves the crystal behind intact and perfect. This is what is called
a perfect dislocation. What happens, in reality, is more complex. In
Figure 1.6, a slice normal to the [111] direction can be found together
with, at the right, the three-fold stacking sequence of an FCC structure.
It is straightforward to observe that for an atom it is easier to move
from a B position to C ("into the potential valley") compared to a
direct BB transition. This process creates a stacking fault inside the
crystal (transition BC) and the total energy increase of a quantity
called stacking fault energy (quantity per unit area). This position
is not stable since a B atom is stable in the B position. Thus, the
first partial dislocation is followed by a second partial dislocation,
bringing the B atom from the C position back to the B one. The perfect
dislocation 𝑏1 = 1

2 ⟨110⟩ might dissociate in two partial dislocations
called Shockley partial dislocations as:

𝑏1 =
1
2
⟨110⟩ → 1

6
⟨221⟩ + 1

6
⟨121̄⟩ (1.12)

This occurs if the energy of the two Shockley partial dislocations plus
the energy of the created stacking fault is smaller than the energy of
the perfect dislocations.

1.2.4 Engineering mechanical properties of bulk materials

This section aims to give a global overview of the main techniques
used nowadays for controlling and improving a material’s mechanical
response: the Hall-Petch effect, solid solution strengthening and strain
hardening.

The Hall-Petch effect is a physical phenomenon, observed in poly-
cristals, where the strength of the material increases as the grain size
decreases 𝜎𝑦 = 𝜎0 +

𝑘𝑦√
𝑑
, with 𝜎𝑦 the yield stress, 𝜎0 constant stress

needed to start dislocation motion, 𝑘𝑦 a strengthening coefficient and
𝑑 the grain size. Consequently, reducing the grain size increase the
number of grain boundaries. This type of defect slow down or block
dislocation motion increasing the total strength of the material. With
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the solid solution technique, materials are strengthened by exploiting
the same physical process. In this case, the dislocation are blocked
or slowed down by a substitutional defects. The added atoms create
lattice distortions and thus a local stress field that alters the dislocation
motion process.

When a solid solution is supersaturated (at high temperature), we have
the formation of small precipitates that help strengthen the sample.
This technique is called precipitation hardening. The strain hardening
process is a much simpler technique. Loading a metallic sample at first,
we deform it elastically and, secondly, plastically where dislocations
move and multiplicate themselves. This new crystal configuration is
stronger since dislocation motion is blocked by the formation of a
dislocation microstructure.

1.3 Mechanical properties at the nanoscale

From classical metallurgy to the era of nanotechnology, new tech-
niques for the production of materials with growing smaller scales led
to the discovery of many new interesting properties that nowadays are
used to improve the mechanical performance [4], such as composite
materials [15, 16], NEMS [17] and lubrifiant [18]. It is also important
to evaluate the mechanical stability of fundamental processes like
catalysis [2] or even in biological environments where nanoparticles
are highly applied in cancer treatment [1].

The first materials with lower dimensions used are thin films. De-
veloped in the 20th century, only after the invention of the vacuum
deposition technique, it discovers that the thinner the film (here lower
than 1𝜇𝑚) and the stronger it is, from which the motto smaller is

stronger is born. To move one dimension down into the study of
micro-pillars, we had to wait until the 2000’s. These micro-pillars are
object typically of few micrometers and possess varying aspect ratios.
In 2004, Uchic et al. [19, 20] are the first to discover that the "smaller is
stronger" principle also applies to micro-pillars. Indeed, pillars with
nanometric dimensions exhibit incredible strength compared to bulk
materials. As seen in Figure 1.7, the critical stress is highly improved
when the size is reduced. Moreover, it is also interesting to observe
the trace of the plastic events, with surface steps all around the pillar
surface. In this particular case, the critical stress (𝜎𝑐) is characterized
by the following power law:

𝜎𝑐 = 𝐴𝑑−𝛼 (1.13)

where 𝑑 represents the diameter of the micro-pillar and 𝛼 is a fitted
exponential.
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SEM: Scanning Electron Microscope
FIB/PFIB: (Plasma) Focused Ion
Beam

With advancements in techniques, we can now produce reduced-
sized pristine samples. However, the classical arguments on plasticity
discussed earlier cannot be directly applied to these samples. Micro-
pillars and nanoparticles possess significantly higher strength than
bulk materials, often approaching the theoretical limits discussed
in Section 1.2.3. Geer and colleagues in 2005 initially explained this
phenomenon through a process known as dislocation starvation [21].
The idea is based on the observation that micro-pillars typically
exhibit a residual dislocation density. During compression, disloca-
tions either escape through free surfaces or annihilate each other,
depending on their size, ultimately leaving the sample defect-free at
a certain point. The plastic transition in pristine systems is governed
by the process of dislocation nucleation. The experimental technique

Figure 1.7: Experimental nano-
indentation of micro-pillars. Stress
and strain curves highlighting size
effects. Results extracted from [19].

commonly employed for this purpose is called nano-indentation (or
nanocompression). Operating solely in compression, the objective is
to replicate the same curve observed for bulk materials in Section 1.2.2.
Nano-indentation experiments can be performed based on various
methods where the pico indenter being the most commonly used
instrument allowing for simultaneous imaging (SEM, FIB/SEM, PFIB)
and nanomechanical testing. These experiments enable the extrac-
tion of stress-strain curves. It is worth noting that strong theoretical
modeling is often employed in conjunction with these experiments.
Theoretical models serve to justify and comprehend the results, as well
as to design experiments from scratch. From a modeling perspective,
Molecular Dynamics, FE analysis and Dislocation Dynamics [22] are
commonly applied to study mechanical problems. In extreme cases,
Density Functional Theory [23] is also used. Each technique has its
advantages and disadvantages. Thanks to these approaches, many
important physical properties of mechanics at the nanoscale have
been highlighted allowing interpretation and deeper understanding
of experimental data. More specifically, three main parameters govern-
ing the mechanical response of nanoparticles have been emphasized:
firstly, we have the size as previously discussed concerning its effect
on strength. The second parameter is the composition, referring to the
choice of the elements (one, two or more) which can alter the atomic
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organization within the nanoparticle. Lastly, we have the parameter
of shape. The following sections provide a detailed literature anal-
ysis of the impact of these quantities on both the plastic and elastic
responses.

1.3.1 Plasticity

Size

Previously we have seen that dislocation nucleation controls mechan-
ics at the nanoscale. More precisely, this phenomenon can be divided
in two cases: heterogeneous and homogeneous nucleation. The first is
nucleation linked to the existence of previous defects (such as normal
defects or even surfaces). In contrast, the second refers to defect-free
systems [24] and nucleation happens far away from surfaces.

More generally, to introduce a dislocation, an energy barrier needs
to be overcome. The energy of the system has two main sources,
mechanical and thermal. The mechanical energy is transmitted by
an external loading, such as indentation, and the thermal factor
helps reduce the mechanical barrier and introduce stochasticity in the
process [9]. Following this reasoning, we can define two parameters
that characterize the source of a dislocation: the athermal strength
and the activation parameters. The first refers to the elastic limit at
which dislocation occurs without the help of thermal fluctuation.
Thus, by performing simulations at 0 K, we expect to find a fixed
value with no statistical behavior. Conversely, at fixed temperature,
we must consider the activation energy and the activation volume:
it is a probabilistic measure of dislocation nucleation events with
thermal fluctuation and an applied loading smaller the athermal limit
[25]. The activation volume is a very important parameter because it
allows the prediction of the nucleation event. For example, nucleation
is more likely to happen in a corner than on a free surface because
the activation volume on the surface is higher than the corner one.
As a result, the size effect in defect-free nano-structure (nanopillars,
nanoparticles...) is due to the reduction of the volume available
for nucleation. In 1953, Cottrell proposed a predictive model for
the critical stress of homogeneous nucleation of a dislocation loop
under a uniform stress field [26]. This model forecasts an elastic
limit of approximately ∼ 𝐺/30, notably larger than experimental
observations, but still substantially smaller than Frenkel’s theoretical
limit as discussed in Section 1.2.3.

The same model is used by Mordehai et al. in 2011 [27] to investigate the
size effect in nanostructures. This model is distinct from previous ones
as it incorporates a heterogeneous stress field, a concept introduced by
Williams and Bogy [28] for studying stress around singularities. This
approach is applied to tackle various problems, such as the nucleation
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of misfit dislocations [29, 30]. As proposed in this work, the following
equation 1.14 characterizes the stress (𝜏) within the nanoparticle:

𝜏 = 𝐴𝜎
( 𝑑
𝑟

)𝛼
, (1.14)

where 𝑟 denotes a spatial variable, 𝑑 represents the particle’s size, 𝐴
is a constant, and 𝜎 is the stress. The study carried out in [27] concen-
trates on Wulff-shaped nanoparticles, marking the first observation
and elucidation of the size effect in nanoparticles of a few hundred
nanometers. Figure 1.8 presents the experimental findings. This work
suggests that the elastic limit is determined by the nucleation of a par-
tial dislocation (Shockley ⟨112⟩{111}) at the top nanoparticle edges, a
type of nucleation also observed in other pristine FCC systems, as is
discussed further.

Figure 1.8: Size effect in micro-
particles. Experimental nano-
indentation, stress and strain curve
and real indented object. Figure
extracted from [27].

Composition

In the literature, many works are focused on different types of transi-
tion metals, characterized by a FCC structure such as Au [27], Cu[31],
Ni([32], strength record) Pt([33]) and generalized in 2016 by Feruz
and Mordehai [34]. All different materials with the identical shape
where exhibiting a critical stress given by equation 1.13 where the ex-
ponent 𝛼 is the same for all nanoparticles and 𝐴 depends on materials
properties such as stacking fault energy and Burgers vector.
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So far, only FCC-type metallic nanoparticles are discussed, but it is
clear that other classes of nanomaterials are also studied. Let’s take the
case of Body Centered Cubic (BCC) metallic nanoparticles such as Fe
[35] and Mo [36]. In this last work, an incredible stress value of 46 GPa
is reached for a 110 nm faceted nanoparticle (Bulk value ∼ 500 MPa).
Moreover, a dependence on shape is observed (rounded or faceted
nanoparticles) leading to a critical stress value independent of size.
Concerning semiconductors (important for electronic applications),
silicon is the most studied material. In 2003, Gerbirich et al. [37] found
that silicon nanoparticles are super hard. Furthermore, they can be
hardened and have an amorphous transition despite dislocating. In
2015 Wagner et al. discovered that Si nanocubes do not show size
effect in elastic moduli, critical stress, and strain [38]. This shape
dependence is deeply analyzed for cubes, rounded cubes sphere, and
Wulff shape [39]. Again cubic system shows no size effect contrary
to Wulff. Lastly, other materials are also studied to characterize their
mechanical properties as a function of size such as ceramics as MgO
[40] and Al2O3 [41].

In materials science, blending different elements can produce inter-
metallic compounds and alloys. These can typically exhibit properties
intermediate between those of the pure constituents. The pursuit
to engineer materials with precise properties and structures at the
nanometer scale has kindled interest in alloy nanoclusters or nanoal-
loys [42]. As highlighted in the previous section 1.2.4, alloying is a
potent strategy for modulating material properties, including the
impediment of dislocation motion.

Figure 1.9: (a) Typical engineering
stress-strain curves for a 40 nm par-
ticle. (b) Strength as a function of
particle size. (c) Strength as a func-
tion of chemical composition for 35
nm particles. The error bars repre-
sent one standard deviation. Figure
and caption extracted from [43]

Solid solution properties in bulk materials, can be reproduced at
the nanoscale, but the mechanism that regulates plasticity is much
more complex. One of the initial studies to characterize the effect of
alloying at the nanoscale is conducted by Chen et al. in 2020 [44]. They
illustrated a softening effect, i.e., a reduction in the critical stress 𝜎𝑐 , in
alloy compared to pure materials, taking the NiFe nanowire system
in traction as a case study. In the case of the NiCo system, a softer
but tougher behavior is identified, as documented in [43], a finding
that is in line with other research [45] on NiFe [46]. An illustration
of this softening effect is presented in Figure 1.9, where it is clear
that increasing the percentage of Co in a Ni matrix leads to earlier
dislocation nucleation. These works converge on a simple idea: the
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softening occurs due to an increase in local resolved shear stress. The
idea of elastic softening inducing a plastic softening is excluded [43]
(see Figure 1.10).

Figure 1.10: Characterization of
stresses in nanoparticles under com-
pression. Figure (a) MRAS (Maxi-
mum resolved shear stress) distribu-
tion scaled by the min-max in 35 nm
particles of pure Ni and Ni-0.3Co.
The inset shows the min–max scaled
MRAS distributions in the particle
cross-sections. Figure (b) MRAS in
the particles as a function of the z-
coordinate normal to the substrate
(z = 0 at the particle center). Only
the high end of the MRAS distribu-
tion is shown for clarity. Figure and
caption extracted from [43]

In addition to solid solutions, metallic nanoalloys can generate other
types of structure such as core-shell systems bringing many advances
in various fields [42]. Concerning mechanical properties, the tuneable
thickness of the shell represents a parameter that we can control and
possibly drive the mechanical properties in the desired way. One
example is proposed by Kilymis et al in case of SiC nanoparticles. [47]
where very atypical phenomena happen, such as a confined plasticity
in the core or shell of the nanoparticle and an increased strength,
depending on the shell thickness.

The last and probably more futuristic class of material are multi-
species alloys, from ternary systems to the wide class of High Entropy
Alloys [48, 49]. The latter is a system where five or more different
types of atoms are homogeneously mixed to improve the general
mechanical (high strength and ductility compromises) in bulk system
[50]. This can be simply explained by reminding us that plasticity
is regulated by dislocation motion. Changing this motion implies
improving mechanical properties; this highly disordered system
helps this process incredibly. At the nanoscale, the study is still at the
beginning since mastering their synthesis is already a challenge in
itself. To my knowledge, only one study is published until now [51].
In this work, Yan et al. found similar results to binary alloys, a general
softening due to the local stress induced by very different types of
atoms in the nanoparticle.

Shape

According to Feruz et al., [34], nanoparticles of similar shape (Wulff)
exhibit the same size effect. On the other hand, cubic systems such as
Si do not show size effects [38, 39], see Figure 1.11, different size effect
are recovered by changing the shape.
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Figure 1.11: Shape dependent size
effect: Yield stress as a function of
size, at 5 K. Results for compressions
along < 100 > are shown on the left
graph, and those for spherical and
Wulff-like nanoparticles and both <
100 > and < 111 > orientations are rep-
resented on the right graph. Dashed
lines have been added between data
points for visualizing trends. Figure
and caption extracted from [39]

However, shapes are not always as predicted in theory, as they may
have imperfections and defects. For example, sharp-cornered regions
can be smoothed, resulting in a deviation from the simulated proper-
ties and a significant impact on the mechanics of the nanoparticle. One
of the first studies on this topic is conducted on faceted and rounded
nanowires by Cao et al. [52]. The study revealed that smoothing the
edges of a square-shaped nanowire leads to delayed onset of plasticity.
The basic idea is that the shape influences the stress distribution that
controls nucleation. Square-shaped nanowires tend to nucleate at
lower stresses than rounded ones.

In the 0D world, Amodeo et al. [53] observed a similar strengthening
effect by rounding the edges of a cubic Ni3Al system (from a cube
to a sphere). Smoothing the corners changes the stress distribution
in the nanoparticle, and dislocation nucleation occurs not only at
the surface but also in the core of the nanoparticle (homogeneous
nucleation). Similarly, Sharma et al. [36] highlighted a strengthening
effect by smoothing the edges of faceted nanoparticles with Mo and
by rounding the edges of a cube to a sphere with Si [39].

In a recent publication, Zimmerman et al. [33] proposed an experimental
explanation for the nanoparticle shape effect. They modeled the yield
stress as

𝜎𝑦 = 𝐵𝐷 𝑖
𝑝𝑟𝑜 𝑗𝑄

𝑗 (1.15)

where 𝐵, 𝑖, and 𝑗 are fitted constants. 𝑄 is the ratio between the top
indented surface and the projected area of the entire nanoparticle on
a plane perpendicular to the applied loading and 𝐷𝑝𝑟𝑜 𝑗 can be related
to the size. The model agreed well with the experimental results,
confirming that shape is an important parameter to be controlled,
along with size, in order to predict the mechanical properties.

1.3.2 Elasticity

In 2012, Armstrong and Peukert explored the size-dependent elastic
properties of various structures such as cubic, Wulff-like, and spherical
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The effective Young’s modulus is the
elastic response of non-homogenous
and non-symmetric object. A better
introduction on this parameter is
proposed in Chapter 2

shapes. Their work highlighted clear effects below 20 nm and a high
dependence on the specific shape of structures [54]. In the studies that
followed, researchers carried out nano-indentation experiments on
nanoparticles, observing that the effective Young’s modulus values
differed from those of bulk materials [55, 56]. By 2016, an analytical
models is developed, describing the variation in elastic responses
when transitioning from a cube to an octahedron, which are detailed
in [57]. In Figure 1.12, you can find the results of the model together
with the MD results.

Figure 1.12: Dependence on shape
of the elastic response in nanoparti-
cles in the [111] direction for different
material. The value of the effective
response is normalised and ℎ is a pa-
rameter allowing to identifying the
nanoparticle shape. Figure extracted
from [57].

When it comes to numerical methods, Molecular Dynamics remains
the preferred tool for analyzing structural properties at the nanoscale.
However, the Finite Element analysis also offers a reliable alternative.
While not always the first choice, finite elements have proven to be an
useful method in nanoscale research. It has been used in a range of
research areas including the modeling of plastic relaxation in SiGe/Si
heteroepitaxial nanoislands[58–60], studying both elastic and plastic
behavior through dislocation dynamics simulations [22], calculating
stress distribution in nanoparticles during indentation [27, 36], and
understanding surface strain in core-shell nanoparticles [61], with
a comparison with molecular static (MS), as function of the size.
Similarly the previous work of Yang et al. [57], proposed a comparison
between the two method (FE and MS) changing the shapes, with a
fixed size, and looking at the effective Young’s modulus.

1.4 Electronic properties of deformed
nanoparticles

Deformed nano-materials have proven to be very useful nowadays
since strain can be used as an additional degree of freedom to control
and engineer devices. Probably the most known examples belong to
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the semiconducting world where the transport properties of CMOS in
the sub-130 nm range are improved by 70% by inducing strain in the
channel. This technology isadopted in devices produced by ADM, IBM,
and Intel [62, 63]. Strained materials become interesting in the catalytic
world by shifting the attention onto metallic objects where mechanical
deformations can enhance the catalytic properties such as fuel cells
[64], nowadays used for energy production, converting hydrogen to
water. However, one of the challenges of such applications lies in
the oxygen reduction reaction (ORR) at the cathode. This reaction
is typically catalyzed by platinum which is expensive and rare .
To overcome these limitations, researchers are exploring methods to
improve fuel cell performance while reducing the quantity of platinum
used. One promising approach is manipulating surface strain at the
interface, which has proven to be highly effective [65].

Interstingly, the strain can be controlled and optimized with two
main different techniques. The first way is through engineering the
structure by changing the morphology (different shapes or even size)
[66]. Indeed, surface strain arises naturally due to surface relaxation,
resulting from the lower coordination number at the surface compared
to the bulk. Some shapes are fascinating because they are naturally
defective, icosahedron or decahedron, and possess intrinsic twin
boundaries that induce surface strain [67, 68]. Considering alloys,
surface atoms different from platinum induce local strain due to
a mismatch in atomic parameter [69], or even to create core-shell
structures [61]. The second way consists in using external forces where
modifying some external conditions can induce changes in the lattice
parameter and then tuning certain chemical and physical properties.
For instance in catalytic reactions, sub-surface gas can apply pressure
and then induce strain in the material as well as bending a substrate
on which the catalyst is deposited. Additionally, introducing ions
such as doping can cause lattice distortions, leading to strain.

In this work, the focus is on investigating the effect of mechanical
deformation on the catalytic reactivities of metallic nanoparticles. The
following section presents the concepts and theoretical formalism that
enable the understanding of how electron properties are modified
by mechanical constraint, and how this might relate to catalytic
properties.

1.4.1 The tight-binding formalism

When analyzing the electronic problem, we can go back to the crystal
Hamiltonian seen in Section 1.1, from which we derived the electronic
Hamiltonian:

𝐻 = 𝑉𝑒𝑒 +𝑉𝐼𝑒 + 𝑇𝑒 (1.16)
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In this equation, 𝑉𝑒𝑒 represents the electron-electron interaction term,
𝑉𝐼𝑒 represents the electron-ion interaction term, and 𝑇𝑒 represents the
kinetic energy term.

The tight-biding approximation (semi-empirical) is a good compro-
mise in terms of computation time and accuracy (compared to DFT,
for example). It is therefore very well suited to investigate the periodic
systems, but one of its strength relies also on non-periodic systems
such as nanoparticles or defective structures. This formalism neglects
the electron-electron interaction and assumes that the electron wave
functions can be approximated as a linear combination of atomic wave
functions (𝜙𝛼) centered around each atomic site in the crystal lattice
(Ri). This is called the Linear Combination of Atomic Orbitals (LCAO)
method. The wave function is expressed using Dirac notation:

Ψ(r) =
∑
𝑖

∑
𝛼

𝑎𝑖 ,𝛼𝜙𝛼(r − Ri) → |Ψ⟩ =
∑
𝑖

∑
𝛼

𝑎𝑖 ,𝛼 |𝑖 , 𝛼⟩ (1.17)

where the |𝑖 , 𝛼⟩ stands for the orbital of type 𝛼 at site 𝑖. Assuming
one orbital per atom and projecting onto one state ⟨𝑗 | while imposing
the orthogonality of the atomic states (⟨𝑖 | 𝑗⟩ = 𝛿𝑖 , 𝑗), we can derive the
tight-binding Hamiltonian:

𝐻 =
∑
𝑖

|𝑖⟩ 𝜖𝑖 ⟨𝑖 | +
∑
𝑗

|𝑖⟩ 𝛽𝑖 , 𝑗 ⟨𝑗 | (1.18)

As we can see, 𝐻 comprises two terms. The first term, known as the
atomic level, corresponds to the energy level in an isolated atom,
denoted as 𝜖𝑖 , and is given by ⟨𝑖 |𝐻 |𝑖⟩. The second term involves the
hopping integrals, which represent the wave-function overlap, 𝛽𝑖 , 𝑗 ,
between sites 𝑖 and 𝑗. This parameter can be determined by evaluating
the integral ⟨𝑖 |𝐻 | 𝑗⟩ or can be fitted based on experimental or ab-initio
data, as adopted in this study.

The concept of hopping integrals has been generalized to include
all orbitals - 𝑠, 𝑝, and 𝑑 - and account for all angular dependencies,
building on the work by Slater and Koster [70, 71]. Various types of
bonds can form between orbitals while preserving angular momentum.
For instance, 𝑑 − 𝑑 orbitals can exhibit 𝜎, 𝜋, and 𝛿 bonds. Similar
bonding is possible for 𝑠 and 𝑝 orbitals, as well as for inter-atomic
bonds such as 𝑠−𝑝, 𝑠−𝑑, and 𝑝−𝑑. These values are typically derived
from DFT or experimental data [72] and utilized to reconstruct the
interactions of all orbitals through Slater-Koster coefficients.

For this work, it is interesting to introduce the ldos since this quantity
is analyzed to understand the electronic properties of deformed
nanoparticles. A local density of states description is particularly
useful in case of nanoparticles where the behavior of well-confined
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regions such as surfaces is relevant in deformed materials. The local
density of states for a generic atom 𝑖 is:

𝑑𝑖(𝐸) =
∑
𝑘

| ⟨𝑖 |Ψ𝑘⟩ |2 𝛿(𝐸 − 𝐸𝑘) (1.19)

This expression states that every contribution to the density of states
𝛿(𝐸 − 𝐸𝑘) is weighted by the probability | ⟨𝑖 |Ψ𝑘⟩ |2 of finding an
electron in a particular base state |𝑖⟩ and the summation spreads over
all the 𝑘-states with energy 𝐸𝑘 and wave function Ψ𝑘 that is a linear
combination of atomic states |𝑖⟩. The expression for the total density
of states can be reconstructed following 𝐷(𝐸) = ∑

𝑖 𝑑𝑖(𝐸).

1.4.2 From local density of states to catalytic properties

Fom Nørskov’s work, a direct link has been established between the
adsorption of atoms or molecules on a surface of a catalyst and its
local electronic properties [73, 74]. The core idea suggests that the
reaction activity of specific sites present at the surface is influenced by
the center of mass (or first momentum) of their local density of states
where the momentum of order 𝑝, denoted as 𝜇𝑝 , is defined as:

𝜇𝑝 =

∫ +∞

−∞
(𝐸 − 𝐻𝑖𝑖)𝑝 · 𝑑(𝐸), 𝑑𝐸 (1.20)

The first moment (𝜇1) corresponds to the center of mass or mean; the
second moment (𝜇2) represents the width or variance, and so on.

In the context of transition metals, the ldos exhibits a broad, semi-
filled 𝑠 band and a more narrow 𝑑-band, the occupancy of which
depends on whether the material is a late or early transition metal. The
narrowness of the 𝑑 bands is a result of the coupling matrix element
(𝑉𝑑𝑑) associated with localized 𝑑 states. Notably, the bandwidth
correlates with 𝑉𝑑𝑑, a concept grounded in tight-binding theory
[71].

During the interaction of an adsorbate state with the 𝑑 electrons of a
surface, bonding and antibonding states frequently emerge, similar to
the two-state problem. If the band is low and wide, a single resonance
appears at the band’s base (Figure 1.13a). However, if the bandwith is
small, a distinct antibonding state materializes above the band. If these
antibonding states are situated above the Fermi level, they are vacant
leading to stronger bonds as more of these states are unoccupied. In
simple terms, a narrower ldos correlates with stronger absorption, and
this is directly indicated by 𝜇1. When 𝜇1 is closer to the Fermi level,
the band is narrower and the adsoprtion is favoured.

There exist multiple strategies to adjust the 𝜇1 parameter, includ-
ing moving along the periodic table (vertically or horizontally) or
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.

Figure 1.13: The local density of
states of an adsorbate atom in two
limiting cases: (a) for a broad sur-
face band (such as 𝑠 band) ; (b) for a
narrow metal band (such as transi-
tion metal 𝑑 band). Figure extracted
from [73]

Tensile strain induce narrows the
ldos because the distance among
atoms is reduced, with a correspond-
ing lower 𝑉𝑑𝑑 . Compressive strain
induced ldos spreading, given the
increased hopping integral.

manipulating structural parameters such as strain or coordination.
Transitioning horizontally, for instance from silver to zirconium, causes
an upward shift of the 𝑑 bands and a reduction in occupancy of the
antibonding states, enhancing absorption energy. The interesting part
is that the relation between chemisorption with 𝜇1 is linear (different
𝜇1 are obtained with different metals [73].)

Figure 1.14: Effect of strain on the
density of states, simplified as a rect-
angle. Tensile stress reduce the hop-
ping integral reducing the distance
between the Fermi level and 𝜇1. Fig-
ure readapted from [65]

Figure 1.14 illustrates another method to modify 𝜇1: the use of strain.
This approach can narrows the 𝑑-band and moves the ldos center of
mass nearer to the Fermi level by directly increasing the interaction
strength with the adsorbate. In Figure 1.15, such effect is clear. The
tensile strain increases the chemisorption energy linearly of oxygen
on a Ruthenium surface [73]. In a similar manner reducing the
coordination number i.e. passing from a surface to an edge or a vertex
bands get narrower and 𝜇1 moves closer to the Fermi level, increasing
again the absorption properties.

One way to introduce nanoparticle strain is to work with a core-shell
system. The lattice parameter mismatch induces tensile or ductile
strain at the surface, depending on the chosen material. In [61], a
combination of Molecular Static and Finite Elements calculations is

Figure 1.15: Effect of strain on the
absorption energy of oxygen on a
Ruthenium surface. Tensile strain
induces a linearly increased energy.
Figure extracted from [73].
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used to understand surface strain at the nanoscale. After validating
the two methods, FE is applied to find the optimal configuration
(size and the number of layers of Pt at the surface) with the best
ORR activity. In Figure 1.16, you can observe at the left the stress
dependence on the size and the type of core-shell system. At the right,
a volcano plot is presented showing that compressive stress initially
induces improvement of the activity (as previously explained) and
then a reduction.

Figure 1.16: Tuning absorption prop-
erties of a nanoparticle by playing
with the surface strain, imposed by
the core-shell structure. The results
are produced also with FEM. Ab-
sorption properties increase with
the compressive strain, the ORR ac-
tivity shows the typical volcano plot.
Result extracted from: [61]

Now that a direct connection between absorption properties and the
ldos momentum, a parameter we can control, it is possible to design a
new structure to maximize the catalytic properties [75]. The connection
between absorption and catalysis is not straightforward. Both too
strong and too weak binding between the substrate and adsorbate
can hinder the reaction, and this is what is observed in the vulcano
plot, but this won’t be object of this discussion. An example comes
from [76], where a compressively strained nanoparticle increases the
performance by down-shifting the center of mass (further from the
Fermi level), thus reducing the absorption strength and suppressing
the adsorption of 𝑂𝐻 on the surface that blocks surface sites.

1.5 Aim of the present work

As seen in this overview, nanoparticles are captivating objects. Un-
derstanding and mastering their mechanical properties is vital for
various applications. This subject garners significant attention from
the international community, but there are still many aspects to
explore.

In this work, spread over four chapters, the mechanical and electronic
properties of nanoparticles are delved into. The initial three chapters
center on the elastic and plastic responses of pure metallic and
bimetallic NPs. Emphasis is placed on how the nanoparticles’ size,
shape, and composition influence their mechanical properties, including
stiffness (elasticity), strength, and ductility (plasticity).

Consistently with some prior work, in Chapter 3, the elastic prop-
erties of nanoparticles are computed for various transition metals
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(Au, Cu, and Pt). This analysis delves into the role of shape and
size in determining both effective and local elastic responses. Two
different simulation techniques, Molecular Dynamics and Finite El-
ement Method, are employed. Molecular Dynamics, a commonly
used tool at the nanoscale for determining structural and transport
properties, is detailed in Section 2.3. The Finite Element Method,
which addresses a wide range of problems using partial differential
equations, is described in Section 2.4. This research not only deals with
the properties of nanoparticles but also compares the results of both
techniques. This comparison highlights the efficiency of the Finite
Element Method at the nanoscale. Due to its shorter computation
time, it enables comprehensive analysis of nanoparticles.

Chapter 4 explores plastic properties, emphasizing the shift from
elastic to plastic regimes via critical stress, adopting the methodologies
from Chapter 3. The exploration starts with pure transition metals and
evolves to encompass bimetallic systems. Following this, Chapter 5
provides an exhaustive evaluation of the elastic and plastic behaviors
of the CuAu alloy across a spectrum of ordered and disordered
structures.

To conclude, Chapter 6 investigates the behavior of the local density
of states under varying loading conditions. It establishes a correlation
with the nanoparticle’s reactivity following Nørskov theory. For this
purpose, a specialized code for Tight Binding analysis is crafted,
detailed in Section 2.5, and then validated via DFT calculations.
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This chapter aims to provide insights into the techniques employed
for investigating mechanical and electronic properties at the nanoscale.
The initial Section offers a comprehensive overview of nano-indentation
techniques, discussing the common experimental methods currently
utilized (Section 2.1). This is followed by an introduction to the subject
of our investigation, namely nanoparticles, with particular emphasis
on their shape and size which play a central role in our analysis (Sec-
tion 2.2). The subsequent sections present the fundamental principles
of Molecular Dynamics (MD) (Section 2.3) and the Finite Element
Method (Finite Element Method (FEM)) (Section 2.4). These sections
specifically focus on how these methods can be employed to replicate
nano-indentation experiments.

Finally, the chapter shifts its focus to electronic properties. Section
2.5 introduces the methodology used to calculate the local density of
states based on the tight-binding Hamiltonian.

2.1 The nano-indentation experiment

As seen for bulk material (Section 1.2.2), where with an indenter
of a given shape a load is applied to a specimen to extract a force-
displacement curve, at the nanoscale where sizes are reduced, me-
chanical properties are probed using pico-indenter [33, 38, 77]. This
experimental setup allows for simultaneous imaging (SEM, TEM...
1) and nanomechanical testing. The procedure involves applying a
controlled compressive loading to the surface of a nano-object using
a hard indenter (typically made of diamond and available in various
shapes) such as a flat punch or a more rounded shape. The indenter
moves at speed of the order of nanometers per second, and the magni-
tude of the loading is usually below approximately 10 mN. In Figure
2.1 an example for an extremely small silver nanoparticle (20 nm) is
proposed. By performing nano-indentation experiments, researchers

Figure 2.1: TEM images taken from
the diffraction contrast of an in situ
nano-identation experiment. Figure
(a): probe and the nanoparticle be-
fore the nano-indentation experi-
ment. Figure (b-c) during deforma-
tion. Figure extracted from [78].
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can obtain force-displacement curves. The stress (force divided by
area) and strain values are obtained through area calculations using
SEM imaging, while the nanoparticle’s height (the size) measurements
are typically obtained using an Atomic Force Microscope (AFM). As
the area calculation is performed in real-time during the experiment,
the resulting stress-strain curves are referred to as true stress-strain
curves, and in this study we refer to them simply as stress and strain.

From an experimental standpoint, numerous factors can influence the
results and hinder reproducibility. For example, residual roughness on
the samples or on the indenter can alter the stress distribution within
the nano-structure. Other factors include: accurate area calculations,
the presence of residual defects and the strain rate sensitivity. These
are just a few symbolic examples to provide a general understanding
of the experimental conditions and techniques involved. Of course,
the topic itself is much more complex. In this context, modeling comes
into play, aiding in understanding the physics of nano-mechanics, and
facilitating the reproduction of experimental conditions as closely as
possible.

2.2 Nanoparticles

Nanoparticles are systems of finite size that cannot be considered
simple fragments of a crystalline solid, thus adopting structural
arrangements that differ from those of bulk [79]. In this context, Wulff
established a well-known rule to describe the equilibrium forms of free
polyhedral crystals [80]. Among all the possible identified structures,
we focus our study on morphologies experimentally observed, i.e.,
truncated cube, cuboctahedral, and Wulff shapes.

In Figure 2.2a, nanoparticles chemically produced are presented; this
technique allows perfect shape control. From left to right you can
observe cubes, cubo-octahedra and octahedra [81, 82]. The particular
case of icosahedral and other non crystalline NPs, common for small
aggregates, are not considered here since they are unstable for particles
larger than 4-5 nanometers [83].

In the domain of nano-mechanics, nanoparticles usually have sizes in
the range of 50-1000 nm and are produced with top-down approaches
[33, 82]. FCC metals usually show truncated-octahedral shapes, ex-
posing the (111) and the (001) facets. Nevertheless, many different
shapes and sizes have been probed over the years producing various
spectrums of different configurations.

From a numerical and atomistic standpoint, nanoparticles have a
limited size due to the high computational cost for systems with more
than 106 atoms, and the control over shape is reached by tuning the
surface energies. In the present work, the tool employed for structure
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(a) (b)

(c)

Figure 2.2: Figure (a): Chemically
produced nanoparticles of different
material (Ag, Au and Pt) with many
different shapes, from cubic to octa-
hedral shape. Figure extracted from
[81] Figure (b): Shape parameter ex-
tracted from an experimental SEM
image of a NP corresponding to the
ratio of the top surface area to its
projection on the 𝑥 and 𝑦 plane. Fig-
ure extracted from [33]. Figure (c):
Shape parameter extracted from nu-
merical (001) nanoparticles. At the
top some of the different possible
nanoparticles, truncated cubes and
a truncated octahedron and, at the
bottom, the top surface area (in red)
and the projected area (in blue).

generation is the Atomic Simulation Environment (ASE) [84], used
as a Python package to provide a fast and effective way to generate
nanoparticles with different sizes and shapes. As seen in Figure 2.2a.,
the shapes addressed in the present work are based on the FCC lattice,
leading to the presence of outer facets of (111) and (001) orientations.
NPs with sizes (𝑑) ranging from 4 to 25 nm (around 102 to 106 atoms,
respectively) are considered. More precisely, 𝑑 is defined as follows:

𝑑 = 2 ·
(3𝑉𝑒 𝑓 𝑓

4𝜋

)1/3

with 𝑉𝑒 𝑓 𝑓 being the effective volume of a sphere equal to the exact
volume of the considered nanoparticle. Thanks to this definition of 𝑑,
the size is strictly related to the number of atoms of the NP and allows
us a more methodical study of different shapes at the same size.

To distinguish between the different shapes of nanoparticles, a descrip-
tor can be defined as done in a previous study by Zimmerman et al. [33],
based on the calculation of the top surface area, and the nanoparticle
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shape projection on the 𝑥, 𝑦 plane. In Figure 2.2b, the extraction of
the top and projected areas from a SEM image by Zimmerman et al. is
illustrated. From these values, an effective radius is determined, and
the shape parameter is calculated by taking their ratio as follows:

𝐺 =
𝑑𝑡𝑜𝑝

𝑑𝑝𝑟𝑜 𝑗
(2.1)

Figure 2.2c displays (001) oriented faceted nanoparticles, with (001)
direction upwards: the top surface highlighted in red and the projected
area in blue. As the structure evolves from a truncated octahedron to
a cube, this parameter changes from 0 → 1. The Wulff structure is a
unique form of the TO class, its truncation is determined by surface
energies. For gold nanoparticles oriented along the (001), the TO
ranges from 0 to 0.45. At G = 0.45 we have the cubo-octahedron, and
for larger G values TC, as shown in Figure 2.3. The Wulff structures
have around 𝐺 = 0.14 (this value depends on the surface energies
considered).

Figure 2.3: Different shapes with the
corresponding shape parameter G.

2.3 Molecular dynamics

In this Section, we explore the application of MD calculations to nano-
indentation studies. MD is a computational technique that simulates
atomic behavior, while nano-indentation measures nanoscale me-
chanical properties. Below we provide an overview of MD principles
followed by the nano-indentation procedure. The final part of this
section discusses the importance of the inter-atomic potential, the
main families, and the choice for our study.

2.3.1 Theory

Molecular dynamics is a classical simulation technique that can be
used to compute transport and equilibrium properties in a many-body
problem. By classical, it is meant that the equation of motion of atoms
is completely classical, i.e. the Newton’s equation of motion. This
approximation is excellent when dealing with a large system and
negligible quantum effects on motion. One of the interesting char-
acteristics of MD is that simulations are similar to real experiments,
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as to prepare the sample, waiting for equilibrium and the motion of
atoms.

The basic idea is that every atom interacts with all other crystal
atoms through an inter-atomic potential. Therefore each atom feels the
potential contribution of the whole structure. For a given configuration
of atoms, the computed potential energy can be classically related to
force and, through Newton’s second law, to the position. This process
can be repeated iteratively until equilibrium, a condition in which
the resultant of the force acting on atoms is close to zero, is achieved.
Each MD code must follow a few basic steps:

▶ Initialization At the beginning of the simulation, the problem
must be initialized, i.e., the initial position 𝒓(𝑡) and the velocity
𝒗(𝑡) of atoms must be defined. The initial position will determine
the final structure, and the velocity is defined by temperature
thanks to the energy equipartition theorem.

▶ Force Calculation. What we want to calculate is the force
𝒇 (𝒓) that acts on all the elements of the system to observe
its evolution. This is done by considering the gradient of the
potential𝑈(𝒓):

𝒇 (𝒓) = −∇𝑈(𝒓) (2.2)

Whereas for a potential acting on one atom, we should consider
the contribution of all the 𝑁 − 1 atoms in the structure. This is
the most time-consuming part of the whole MD simulation; in
a system where we consider that each atom interacts with all
the system atoms, the computing time will scale with 𝑁2. To
avoid this problem, the contribution of an atom is considered
only if the distance is smaller than a fixed cutoff distance.

▶ Integration. Once the forces on each atom are calculated,
time integration is fundamental to compute the new position
𝑟(𝑡±Δ𝑡). It can be done numerically and the most used choice is
the Verlet Algorithm where considering the Taylor expansion
around 𝑡, we can derive:

𝒓(𝑡 + Δ𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − Δ𝑡) + 𝒂(𝑡)Δ𝑡2 (2.3)

The acceleration (𝒂) can be derived by the force (𝑭 = 𝑚𝒂), so
the position of any atom at the time 𝑡 + Δ𝑡 depends only on the
force and not on its velocity. This is the most simple, commonly
used and effective integration technique, even if others exist [85].

With this scheme, energy is conserved: it is an NVE ensemble, where
the three letters stand for a constant number of particles, constant
volume, and constant energy. For our analysis, we need to introduce
a different type of ensemble where the temperature is constant. From
a statistical point of view, this means bringing the sample into contact
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with a thermal bath. Thus, the atom’s energies follow the Boltzmann
distribution and, on average, the temperature is equal to the thermal
bath. There are two main thermostat types, Andersen and Nose-Hoover.
The first can be considered as a half-Monte Carlo method because
the interaction with the thermal bath is simulated by introducing
random force on atoms. In the second, and most used one, the effect
of the bath is completely deterministic thanks to the extension of the
Lagrangian, where the effect of the temperature is reproduced with
artificial coordinates and velocity.

Nowadays, molecular dynamics is a well-established simulation tech-
nique. Therefore, to analyze the mechanical properties of nanoparticles
in this work, we choose to use the LAMMPS code, which is widely
used in the scientific community. LAMMPS stands for Large-scale
Atomic/Molecular Massively Parallel Simulator, developed by the
Sandia National Laboratories [86].

2.3.2 Nano-indentation simulations based on MD
calculations

To model NPs compression via the nano-indentation procedure, MD
calculations are the most widespread technique [23, 27, 32, 53]. In
this procedure, the Verlet algorithm with a timestep of 1 fs, combined
with the Nose-Hoover thermostat at 0.01 K, integrates equations of
motion in the NVT canonical ensemble. The size of the simulation
supercell in all directions must be large enough to avoid artifacts due to
interaction between images caused by periodic boundary conditions.
Before compression, the NPs are relaxed at 0.01 K until convergence
of the total energy (a relative error of 𝜖𝑟 = 10−5 is considered) to get
the equilibrium configuration.

Figure 2.4: Typical stress and strain
curve, together with the configura-
tion used for the indentation, two
flat indenter compressing a nanopar-
ticle.
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2: 𝑣𝑠𝑜𝑢𝑛𝑑 = 3240𝑚𝑠−1 in gold

As seen in Fig. 2.4, the indenter and substrate are simulated with
two rigid infinite planes parallel to the (001) or (111) facet of the NP.
The effect of an indenter is implemented by introducing fictitious
repulsive forces to be integrated into MD simulation. In the present
studies, we used a quadratic repulsive force: 𝐹(𝑟) = −𝐾(𝑟 − 𝑅)2 with
𝐾 = 1000 eV Å−3 and 𝑅 corresponding to the indenter position in
agreement with previous works [22, 27]. During the simulation, we
use two moving indenters (bottom and top plane in Fig. 2.4), each of
them applying a strain rate of about 3 ·107s−1 which corresponds to an
indenter velocity of roughly 0.06 to 0.6 m s−1. As stated by Mordehai

et al. [27], the velocity has to be less than the speed of sound in the
considered material to allow the atoms to reorganize before a new
displacement is imposed. 2

Choosing the right temperature is crucial. In our scenario where we are
working with very low temperatures, we are moving away from the
typical experimental settings. As discussed in chapter one, this leads
to a loss in the random nature of dislocation nucleation. Studies have
shown that mechanical properties, specifically dislocation nucleation
and the corresponding critical stress, can vary significantly at finite
temperatures and with different strain rates, except at 0 K where the
results converge[87].

The force applied by the indenter is calculated by default by the
LAMMPS options and can be monitored step by step. Knowing also
its position, size, and surface area, the stress and strain curve can
be reproduced. The size is defined as the height in the 𝑧 direction
to be coherent in the strain definition. Care is needed for the area
calculation; its value can deeply influence the slope and the critical
stress even without changing the compression’s physics. Given that
our interest relies more on the physics than on breaking new records
in the critical stress value, to correctly compute the indented area a
Delaunay triangulation of the top atoms, at a distance smaller than 1
from the indenter is performed, as described in previous works [27,
39].

The typical results of a nano-indentation experiment obtained with
MD are sketched in Figure 2.4. During the very early stages of the
loading, the stress variation is initially linear corresponding to an
elastic regime. The slope of this curve can be called in many different
ways; in a bulk material it is the Young’s modulus or sometimes even
the stiffness. In this work, we will talk about effective Young’s modulus
𝐸𝑒 𝑓 𝑓 , since we will also extract it in inhomogeneous materials and
nanoparticles of different shapes, where the classical definition is
not properly valid. Then, the stress has a peak value, which defines
the yield point corresponding to the largest stress that the NP can
handle in the elastic regime. Above this point, a meaningful stress
reduction is noticed, indicating the onset of plastic deformation.
More precisely, the emergence of plasticity in NPs results from the
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heterogeneous nucleation of dislocations from the contact surfaces.
This drop is not only due to the nucleation but depends on how
the loading is controlled. Experimental results are carried on by
controlling the force acting on the nanoparticle through the indenter
and looking at the displacement. With this type of control, when
nucleation occurs, flat and constant stress would be recovered (see
Figure 1.7), until a strain burst is observed, causing the destruction
of the nanoparticle. Due to the burst, nano-structures rarely show a
ductile behavior or a hardening process in experimental sample. When
modeling, experiments are reproduced in a displacement-controlled
mode, where the indenter is moved down a certain amount every step
and the force is calculated. In this condition when the first dislocation
is nucleated in a defect-free nanoparticle, we observe the typical drop
of Figure 2.4.

2.3.3 Interatomic potential

In Chapter 1, we introduced the crystal Hamiltonian and the different
ways to simplify it for a given application. The best approach for
atomistic simulation is to develop an effective potential that considers
the interaction among ions and electrons. There are four main tech-
niques for constructing such a potential, as shown in Figure 2.5: pair
potential, cluster potential, pair functional, and cluster functional;
usually more the strategy is complex, and more it can be applied to
general different problems. Typically, longer computation times are
required for the Functional Cluster, while a simpler approach, such
as the Pair Potential, can be used for a limited application case. A
compromise is represented by Pair Functional and Cluster Potential
where the computation time is still reasonable, but a good level of
accuracy can be achieved [5, 88–90].

A pair potential model is a simple approach that works well within a
certain range of applications. An example of this is the Lennard-Jones
potential, which relies solely on the distance between atoms (𝑉(𝑅𝑖 𝑗))
and requires two parameters to be tailored for specific problem. A
more effective approach is the cluster potential, which introduces a
many-body interaction term to the pair interaction. The three-body
interaction, which requires angular forces to stabilize the structure
not accounted for in the pair potential, is the first and most common
approximation (as seen in Figure 2.5). The Stillinger-Weber potential
is a well-known example of this type, developed to analyze liquid
silicon and phase transitions [91].

Our case of study centers on the mechanical properties of nano-
structures, with a particular focus on phenomena like defect intro-
duction and motion linked to broken bonds. When a bond breaks,
there is a substantial shift in electron density surrounding the atom.
To more accurately capture this change, pair functionals have been
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degree of freedom
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Figure 2.5: Different families of interatomic potential.

Local environment function:

𝜌𝑖 =
∑
𝑖≠𝑗

𝑓 (𝑅𝑖 , 𝑗)

where 𝑓 is pairwise function, that
represents the electronic density de-
cay at a given site.

introduced. These functionals use a parameter to describe the elec-
tronic structure around the atom. The functional is represented as
𝐹(𝜌) in Figure 2.5, where 𝜌 is a parameter that characterizes the local
environment. There are two main types of potentials in this class:
the first uses the tight-binding formalism to determine the shape of
the functional and the local parameter, which is the local electronic
density bandwidth (𝜌 → 𝜇𝑖 second moment) in the SMA [89, 92].
The second type constructs the bonding theory around the electronic
background density (𝑛𝑖), known as the Embedded Atom Method
(EAM) [93]. The embedding function, denoted by 𝐹(𝜌), represents the
gain in energy when an atom is embedded in a background charge
density 𝜌 → 𝑛𝑖 (local electronic density of atom 𝑖). The function is
typically constructed with several fits of the 𝑛𝑖 =

∑
𝑗≠𝑖 𝑛𝑎𝑡(𝑅𝑖 𝑗), where

𝑛𝑎𝑡 is some radial function.

In this study, the SMA potential are the preferred choice. The work of
Ducastelle [89], started in what later became the LEM laboratory, and
it is based on the moment theory. Moreover, the SMA potentials are
simple in their form and, above all, in connection with the quantum
physics of crystal especially in the case of transition metals (considered
here).

The model assumes that the cohesion in a solid is determined by how
the 𝑑-band is filled, as proposed by Friedel [71]. This prediction is
based on approximating the local density with a simple rectangular
shape.

𝐹(𝜌) → 𝐸𝑏𝑜𝑛𝑑 = 2
∫

(𝐸 − 𝛼)𝑑𝑜𝑠(𝐸)𝑑𝐸 → 𝛼
√
𝜇2(𝑖) (2.4)

In the tight-binding formalism, 𝜇2 is strictly related to the hopping
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integral and the coordination number, establishing a direct connection
from the quantum mechanical world to the macroscopic one.

Considering only the bonding energy, the crystal would implode. This
does not happen because repulsive forces exist due to ion repulsion.
For this contribution, the choice is much simpler and a pair exponential
potential is chosen. The SMA potential finally shows as follows:

1
2
∑
𝑖 , 𝑗

𝑉(𝑅𝑖 , 𝑗) +
∑
𝑖

𝐹(𝜌𝑖)

⇓
1
2
∑
𝑖 , 𝑗

𝑉(𝑅𝑖 𝑗) −
∑
𝑖

𝛼
√
𝜇2(𝑖)

⇓∑
𝑖 𝑗

𝐴 · exp
[
− 𝑝

(
𝑅𝑖 𝑗/𝑟0 − 1

) ]
−
∑
𝑖

√∑
𝑗

𝜉2exp
[
− 𝑞

(
𝑅𝑖 𝑗/𝑟0 − 1

) ]
where 𝐴 and 𝑝 are fitted parameters on the repulsive component and
𝜉 and 𝑞 on the attractive one, with 𝑟0 the lattice parameter. We can
observe the two components in Figure 2.6, with the predominant
attractive behavior at larger distances and a repulsive behavior dom-
inating at short distance: the sum of the two contributions results
in the red curve, where an equilibrium position at a given atomic
distance appears. In the following chapters, the parameter values are
provided for the materials or the alloys of interest.

Figure 2.6: Sketch of an interatomic
potential, where the two contribu-
tions (attractive and repulsive) are
highlighted.

2.4 Finite Element at the nanoscale

This Section aims to provide a detailed description of the FE method
employed for extracting the mechanical properties of nanoparticles.
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The objective is to replicate the experimental nano-indentation experi-
ment by calculating the displacement field, stress, and strain within
the nanoparticle under a given displacement applied at boundary
conditions.

The Section is divided into two main parts. The first one provides an
overview of the Finite Element Method, along with the fundamental
theory used to replicate the experiment. The subsequent part provides
a more in-depth explanation of the implementation technique applied
to generate the results presented in Chapter 3, Chapter 4 and Chapter
5 .

2.4.1 The theory

Numerical techniques for approximating solutions to PDE are es-
sential, especially when exact solutions are only feasible for simple
cases. As a result, the Finite Element Method can be employed to
study very complex or geometries to calculate approximate solutions
to PDEs. The high adaptability of the FEM to different structures
and boundary conditions makes it well-suited for intensive use in
industrial applications and research. The FEM includes a large family

Figure 2.7: Construction of an ap-
proximated solution in finite ele-
ment, revised from comsol manual.

of different techniques that all share a similar pattern. In the following
the main characteristics shared by all the different techniques are
highlighted, with particular focus on the chosen one.

The first step in the FEM is discretizing a continuous domain into
a finite number of elements connected through nodes. This process
is known as meshing or discretization. Different element types are
used depending on the geometry: line elements for 1D systems,
triangular or quadrilateral elements for 2D systems, and cube or
tetrahedral elements for 3D systems. Each element is classified as a
beam or bar based on whether moments are allowed at the nodes.

https://www.comsol.com/multiphysics/finite-element-method
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In the discretized space, the solution to the problem, specifically the
displacement function 𝑢, is also discretized as 𝒖∗:

𝒖 ≈ 𝒖∗(𝑥) =
∑
𝑖

�̃�𝑎𝑵𝑎

Here, �̃�𝑎 represents the unknown displacement value at the nodes,
and 𝑵𝑎 denotes a basis or shape function. 𝑵𝑎 is equal to the identity
matrix at node 𝑎 and 0 at all other nodes. Figure 2.7 illustrates an
example where the real solution 𝒖 is approximated by the function
𝒖∗, with the displacement values �̃�𝑎 accurately calculated, for a one
dimensional case. Moreover the importance of generating a good
mesh is evident, as the node density should be higher in regions
where the solution varies rapidly. Once the solution is calculated at
each node, it is approximated in the space between them using an
element order such as linear, quadratic, or cubic, determined by the
shape function 𝑵𝑎 .

Let us explore now how the approximated solution 𝒖∗ can be de-
termined. The equations we aim to solve for the calculation of the
displacement 𝒖 are explained in the previous chapter (see Eq. (1.6)
together with Eq. (1.5)). Two main families adopted for this task are
the variational and weighted integral solutions. The first relies on the
minimization of the system’s total energy, such as the elastic energy
in our case, and the second on the minimization of residual, more a
mathematical and general approach that can be used even when the
variational principle is invalid.

Our equations are usually transformed to a linear system of the type:

𝑎(𝒖 , 𝒗) = 𝐿(𝒗) (2.5)

From the literature, 𝑎 is known as the bilinear form and 𝐿 as a linear
form, 𝒖 is the solution, and 𝑣 is a trial solution introduced in the
following. The idea of reducing the complexity of the problem is
commune to all the different techniques; all of them aim to simplify it
by reducing the problem to a linear one, also reducing the derivative
order of the equations, this is known as the weak form.

To derive the weak form, we introduce a test function 𝒗 in equation
1.6 and consider the integral. By using the divergence theorem, it can
be shown that:{

𝑎(𝑢, 𝑣) =
∫
Ω
𝝈(𝑢) : 𝝐(𝑣)𝑑𝒓 ∼

∫
Ω
𝝈(𝑢∗) : 𝝐(𝑣)𝑑𝒓

𝐿(𝑣) =
∫
Ω
𝒇 · 𝑣𝑑𝒓

∫
𝜕Ω

𝑻 · 𝑣𝑑𝒓 → 0
(2.6)

𝐿(𝒗) for our application is considered as zero, given that no body
forces 𝒇 are used, no traction 𝑇 = 𝝈 · 𝒏 is imposed on the external
surfaces as a boundary condition, with 𝒏 the normal vector to the
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surface. The system left is 𝑎(𝑢, 𝑣) = 0, where 𝝈(𝒖) : 𝝐(𝒗) represents
the inner product between the stress tensor defined in the space of
the solution function, and the strain tensor defined in the space of the
trial function. [94].

In modern FEM codes, many of the steps mentioned above are per-
formed partially by the software and the user. Defining the problem
correctly and ensuring a good discretization of the domain is crucial.
The definition of the stiffness matrix and its solution are handled
numerically, and in most cases, there is no need for manual interven-
tion.

Following this high-level approach, post-processing is essential for
result validation, and a detailed analysis of this aspect is presented
in the following Section. The Finite Element analysis code used is
FEniCS [95], an open-source platform that allows high-level coding
with Python or C++.

2.4.2 Nano-indentation simulations based on FE calculations

The nano-indention experiment can be reproduced in Finite Elements,
assuming a linear elastic material.. The main steps to be followed
are depicted in Figure 2.8. As previously underlined the first step

Figure 2.8: Main steps followed to compute elastic properties in nanoparticles. Mesh generation from the atomic positions,
choice of proper boundary conditions, and finally displacement and stress calculations.

is the discretisation. For this task a mesh is generated starting from
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the atomic positions of the nanoparticle, using the gmsh code[96].
To ensure accurate results, it is essential to consider the distribution
of mesh elements throughout the computational domain. The mesh
should be finer in regions with high displacement gradients (like
the nanoparticle top and bottom surface and, in general, edges and
corners) and coarser in region where the displacement field is smooth.
One should be careful to avoid excessive mesh density in coarser
regions; this may lead to unnecessary computational costs without
significant improvements in solution accuracy.

When the desired mesh is ready, the boundary conditions can be
specified. To emulate, at best, the Molecular Dynamics simulation
conditions, a displacement, 𝑢𝑡𝑜𝑝 , is imposed normal to the indented
top surface (pink surface in Figure 2.8), fixing the NP bottom. An
alternative solution (not adopted here) consists in imposing a force
acting at the top surface, the traction 𝑻 in equation 2.6. When the
mechanical equilibrium is computed, the solution 𝑢∗ is known at every
mesh nodes. Then, the stress and strain can be calculated following
equations 1.5 and 1.6, as depicted in Figure 2.8. Notice that the forth
order elastic tensor of equation 1.6, is reconstructed with the elastic
constants extracted from SMA potentials to be consistent with MD
simulations.

An important average factor useful for the comparison with MD is
the extraction of the slope of the stress and strain curve, the Effective
Young’s modulus (𝐸𝑒 𝑓 𝑓 = Δ𝜎/Δ𝜖, see Figure 2.4). Here, Δ𝜎 is the
stress of the top surface (pink region in Figure 2.8); this can be obtained
by integration of the reaction force over the domain and dividing it by
the relative area. The strain, on the other hand, is directly calculated
knowing the imposed displacement and the size of the nanoparticle
𝜖 = (𝑑 − 𝑢𝑡𝑜𝑝)/𝑑.

Different simulations are carried out to ensure a good refinement of
the glsfem solution. To this end 𝐸𝑒 𝑓 𝑓 is computed as a function of the
mesh density, as highlighted in Figure 2.9. The mesh is iterativeley
refined, the optimal mesh density has been chosen when an error
lower than 1% with respect to the previous 𝐸𝑒 𝑓 𝑓 value is reached.
Applying this criterion the convergence is found for density larger than
1Å3 (number of nodes divided by the NP volume). The nanoparticles
used to generate the mesh has an atomic density of ∼ 0.083. So, at
mesh density larger than 1Å3 the nodes have a distance between them
smaller than the interatomic distance: it can be argued that there is
no sense in using a sub-atomic mesh, that the physical model solved
with the method holds only at a larger scale, and so on. Such an
argument misses the global view of FEM; what we are interpreting as
a 10nm size nanoparticle could also be seen as a 10m nanoparticle,
and given that we are working at imposed strain, the result would
not change. Solutions computed on the same shape with the same
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dimensionless boundary condition (such as the strain) are said to
be self-similar, and the same result is always recovered. So even if a
mesh can seem sub-atomic, it is not; the quality of the mesh has to be
judged only by the quality of the solution. This point can be better
understood in the following Section, where the elastic response does
not depend on size (until an important surface effect takes place).

Other secondary but still crucial factors that can influence the solution
are the solver type, the convergence criterion, the type of the element,
and the choice of accurate boundary conditions. Solver type signif-
icantly impacts the efficiency and accuracy of the solution. Direct
solvers are accurate but computationally expensive for large-scale
problems, while iterative solvers offer scalability but require a careful
selection of preconditioners and convergence criteria. Considering the
size of the mesh, an iterative solver is preferred, either the coniugated

gradient or the GMRES solver. Convergence criteria are vital for as-
sessing solution accuracy. Both relative and absolute errors should be
considered, and the value of 10−5 is considered a reference. Moreover,
different element types (linear, quadratic, etc.) can deeply influence
the response. The results in Figure 2.9 use first-order elements; slightly
better results can be obtained with second-order elements, but there
is a considerable increase in computing time as drawn back.

Figure 2.9: Effective Young’s modu-
lus as a function of the mesh density,
results convergence with sub-atomic
meshes

2.5 Calculations of electronic properties

With the ultimate goal of investigating the properties of deformed
nanoparticles, we now turn our focus to their electronic properties.
In Chapter 1 we introduced the Tight-Binding Hamiltonian. In this
section, we will present the techniques we employed to diagonalize the
matrix and determine the energies. However, direct diagonalization
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can be computationally expensive, particularly for larger systems, as
in tit is the case in this study.

Here a different method, with respect to direct diagonalization, which
is more effective in our case of analysis, is presented and implemented
in the code described in Chapter 6, all details can be found in [97].
Two main steps are involved: tridiagonalization of the Hamiltonian
matrix and the calculation of the density of states using the Green’s
function (as shown in scheme 2.7).

𝐻
Recursion−−−−−−−→

©«
𝑎0 𝑏1
𝑏1 𝑎1 𝑏2

𝑏2 𝑎3 𝑏3
. . .

. . .

ª®®®®®¬
Continued−−−−−−−→

fraction
𝐺(𝐸) −→ 𝑙𝑑𝑜𝑠(𝐸) (2.7)

Before explaining the adopted technique used to tridiagonalize 𝐻, we
need to introduce Green’s function of the Hamiltonian:

𝐺 =
1

𝐸 + 𝑖𝜖 − 𝐻 (2.8)

𝐸 represents the system’s energy, and 𝜖 is an infinitesimal quantity.
Green’s function has a fundamental property that connects it with the
density of states as follows:

𝑑𝑛(𝐸) = − 1
𝜋

lim
𝜖→0+

𝐼𝑚(𝐺𝑛𝑛) (2.9)

Obviously, determining 𝐺 enables us to calculate the ldos. To achieve
this, we can use the continued fraction expansion. For instance, by
considering the matrix term 𝐺00(𝐸) of the Green matrix in equation
2.10-1, we obtain:

𝐺00(𝐸) = ⟨0| 1
𝐸 + 𝑖𝜖 − 𝐻 |0⟩ = 1

𝐸 − 𝑎0 −
𝑏2

1

𝐸−𝑎1−
𝑏2
2

𝐸−𝑎2−...

(2.10)

Note that 𝑎𝑖 and 𝑏𝑖 are called the coefficients of the continued fraction.
Looking again at equation 2.10-1, we observe that the recursion can be
stopped at any desired point, as the contributions eventually become
negligible.

Without excessive details, this expansion can be reconstructed based
on the tridiagonal matrix’s properties and the matrix’s minors. Tridi-
agonalization involves transforming the original Hamiltonian (sparse
matrix) into a tridiagonal matrix. The power of this process corre-
sponds to simplifying whatever system (nanoparticle, bulk, amor-
phous...) to a linear chain of atoms, where only nearest-neighbor
interactions are considered. In Figure 2.10, we can see the ideal final
system. The advantage of this process is that we avoid diagonalizing
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Figure 2.10: Equivalent system pro-
duced by the recursion method, all
the system can be transformed in a
linear chain

a large sparse matrix. Tridiagonal matrices have simple and elegant
mathematical properties, and a common method used for tridiag-
onalization is the Lanczos or Recursion method. An alternative is
represented by the moment’s method [97]. The final Hamiltonian
figures as follows:

𝐻 =
∑
𝑖

|𝑖⟩ 𝑎𝑖 ⟨𝑖 | +
∑
𝑖

𝑏𝑖+1(|𝑖⟩ ⟨𝑖 + 1| + |𝑖 + 1⟩ ⟨𝑖 |) (2.11)

𝑎𝑖 and 𝑏𝑖 represent the equivalent system’s hopping integral and
the on-site energy. The tight-binding model emerges as an optimal
tool for studying large (few thousand of atoms) and complex sys-
tems (nanoparticles, defected structures, amorphous, disordered, ...).
Moreover, within the framework of the recursion method, it makes it
possible to work in direct space while providing access to local elec-
tronical properties. In Chapter 6, this method is employed to analyse
the local electronic properties of nanoparticles, taking into account
variations in size and shape. We investigate perfect structures without
internal stress, those subjected to uniaxial compressive loading, and
scenarios with one or more stacking faults in the nanoparticle. How-
ever, while this method offers a broad overview, there are gaps in the
information it provides. Building on the insights from the first chapter
and drawing a clear connection to the realm of catalysis, especially
the absorption of hydrogen on the surface, Nørskov’s theory aids in
addressing and filling these informational gaps.
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In this section, we explore the influence of size and shape on the elastic
response of nanoparticles. We employ both the Finite Element Method
and Molecular Dynamics simulations and compare their respective
outcomes. Our analysis focus on the local results, taking into account
stress maps, but also considers the effective Young’s modulus (𝐸𝑒 𝑓 𝑓 ),
a global parameter. While MD is widely regarded as the method for
studying structural properties at the nanoscale, the answer is not as
straightforward for Finite Element analysis.

Surprisingly, there is a lack of comprehensive studies regarding the
effects of size and shape on the elastic properties of nanoparticles.
Most of the previously published works have focused on uniaxial
compression along specific orientations for relatively large NPs (above
10 nm), and the variety of NP shapes considered is rarely observed
(e.g., cubic, spherical, truncated spherical). However, these studies
are insufficient for fully understanding and predicting the elastic
deformation properties of metallic NPs. To address this gap, we in-
vestigate NPs with different sizes (ranging from 4 to 25 nm) and
shapes (truncated cube, cuboctahedral, truncated octahedral, and
Wulff structures) that closely resemble those observed experimentally.
We employ complementary approaches, i.e., MD and FE, to compre-
hensively analyze the elastic properties. Differently from Yang et al.

[57] and Moseley et al. [61], a full comparison is proposed in size and
shape at the same time (by means of size and shape map), from both
a local (stress map and local stress solution) and global (by means of
the effective Young’s modulus). The methodology outlined in Section
2.4 for nano-indentation is tailored to our case study. Further details
are provided, and a dedicated section the study of per-atom stress
in atomistic simulations. This thorough approach ensures a deeper
insight into the elastic behavior of nanoparticles.

3.1 Modeling conditions

Molecular Dynamics simulations are performed according to the
procedure described in Section 2.3 for gold, copper and platinum
nanoparticles. A SMA potential is used, and the fitted parameters
of Equation 2.3.3 can be found in Table 3.1. The nanoparticle sizes
ranged approximately from 4 nm to 20 nm, with a varying number of
atoms between 103 and 106. Indentation is carried out on both (001)
and (111) facets, with shape factors (see Section 2.2) ranging between
0.1 and 1 for the (001) facet, and 0.1 to 0.5 for the (111) facet.

https://doi.org/10.1002/smll.202302116
https://doi.org/10.1002/smll.202302116
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Table 3.1: SMA parameters (see
equation 2.3.3) for Au, Cu and Pt.
More detail on the potential in [98–
100]

𝑟0 (Å) p q A (eV) 𝜉 (eV)

Au 2.885 10.29 4.020 0.206 1.802
Cu 2.565 11.06 2.463 0.094 1.287
Pt 2.814 10.80 3.1976 0.199 2.232

Table 3.2: Comparison with SMA
model with experimental or DFT
results: lattice parameter 𝑎 (Å) and
Binding energy 𝐸𝑏 from [6], Surface
energies 𝛾001 and 𝛾111 (eV/at) from
[101], Elastic constants (GPa) 𝑇 = 4𝐾
values, for Au and Cu from [6]. Pt
Elastic constants from [102].

𝑎 𝐸𝑏 𝐶11 𝐶12 𝐶44 𝛾001 𝛾111

SMA (Au) 4.08 -3.81 186 154 44.5 0.30 0.22
Experiment or DFT (Au) 4.08 -3.81 192 163 42.0 0.78 0.68

SMA (Cu) 3.63 -3.39 171 125 74.0 0.48 0.39
Experiment or DFT (Cu) 3.62 -3.50 168 121 75.4 0.73 0.63

SMA (Pt) 3.98 -5.53 267 196 100 0.67 0.51
Experiment or DFT (Pt) 3.92 -5.86 373 241 77.6 0.91 0.64

Finite Element simulations are also performed using the procedure
outlined in Section 2.4. As previously mentioned, the elastic constants
for stress calculations are extracted from MD simulations, and the
values for the three chosen materials can be found in Table 3.2. For
the study of the (111) facet, the elastic constant tensor 𝐶𝑖 𝑗𝑘𝑙 is rotated
according to:

𝐶(111) = 𝑅𝐶𝑅−1 → 𝑅 =
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3.2 Virial vs Cauchy stress

In the following sections, one of the comparisons discussed concerns
stress maps and local solutions. While computing them with the
Finite Element Method is straightforward, the process with Molecular
Dynamics can be quite intricate. Before delving into this analysis, a
comparison of the main available techniques for atomistic stress study
is provided.

The most commonly used method for mapping stress onto the volume
of a nanoparticle is the one used by Kilymis et al. [39]. The stress tensor
can be calculated as follows:

𝑆𝑖 𝑗 ,𝑘 = −𝑚𝑣𝑖𝑣 𝑗 +𝑊𝑖 𝑗 (3.2)

Here, 𝑖 and 𝑗 are the cartesian coordinates 𝑥, 𝑦, and 𝑧, and 𝑘 represents
the atom. The first term in the equation accounts for the kinetic energy
contribution, where 𝑚 is the mass of the atom and 𝑣𝑖 is the velocity
in the 𝑖-th direction. In our specific case, this contribution can be
considered negligible (𝑇 ∼ 0). The second term,𝑊𝑖 𝑗 , incorporates all
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Hooke’s law:

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙 (3.3)

the inter-atomic interactions arising from the potential and is referred
to as the Virial contribution. This term can be directly computed using
the LAMMPS software. The quantity 𝑆𝑖 𝑗 ,𝑘 has units of [𝑃𝑎] · [𝑚3] and
to obtain the stress, it must be divided by the volume of the atom.
This volume can be calculated using the Voronoi tessellation which
is already integrated in LAMMPS code. It is worth noting that while
the volume is well-defined within the nanostructure, it becomes less
reliable near the surfaces. Since nucleation often starts at the surfaces,
this can limit the interpretation of results obtained from the last layer
of atoms.

Alternatively, a second option involves post-processing with OVITO
software [103]. This enables the calculation of displacement and strain
tensors based on a reference structure, typically an unstrained struc-
ture. Once the strain is computed for each atom, the stress tensor can
be obtained from Hooke’s law. Using this method, surface artifacts
are no longer a concern, making it suitable for comparison with Finite
Element results. However, it is important to note that this method does
not capture intrinsic strain and stress (residual stress) of the unloaded
nanoparticle important when dealing with surfaces compression [104],
and alloys, lattice mismatch can induce very high local stress. In Figure

Figure 3.1: Comparison between
Cauchy, and the new Virial stress
maps (𝜎𝑧𝑧 component) for a gold
truncated-octahedron nanoparticle
containing around 105 atoms. Simu-
lations are performed at T=0.1 K by
imposing nanoindentation of 4.8%
deformation on (001) facet. Stress
map view obtained with Paraview
software [105].

3.1, a comparison between two methods, the Virial stress (left) and
the Cauchy stress (right), is presented. The nanoparticle chosen for
this comparison is a (001) oriented gold truncated octahedron (15 nm
size and containing 105 atoms). The deformation of the nanoparticle
is pushed to its limits close to the nucleation point (here 4.8% defor-
mation), in order to amplify and observe any potential non-linear
effects. In this case, we are specifically examining the 𝜎𝑧𝑧 component
of stress. The Virial stress map shown in the Figure 3.1 is obtained by
subtracting the residual stress to the stress calculated by LAMMPS
at the nucleation point. As seen in Figure 3.1, both approaches give
similar tendencies with especially a conical region located near the
plane indenters. Within the nanoparticle, the values of the 𝜎𝑧𝑧 com-
ponent are also very close, this indicates that the impact of potential
non-linear effects is negligible. The white-blue-green atoms, which
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represent the sites where nucleation is likely to occur, are located in the
same region and exhibit similar magnitudes of stress. On the surface
of Virial solution, due to an incorrect Voronoi volume calculation
the first layer of atoms is compromised: all information on surface
compression are lost.

The same comparison can be done more clearly with the histogram
presented in Figure 3.2. By removing the initial stress, an almost
perfect agreement is achieved between the new Virial stress and the
Cauchy stress. With this in mind, the most suitable method is used for

Figure 3.2: Comparison among
Cauchy, Virial, and the Virial with-
out the residual stress (termed ’New
Virial’) is presented in a normalized
histogram for the 𝜎𝑧𝑧 component
for a gold truncated-octahedron
nanoparticle containing approxi-
mately 105 atoms. Simulations were
conducted at T=0.1 K, with an ap-
plied strain of 4.8% on the (001) facet.
At the top left, the stress and strain
curve for the analyzed nanoparticle
is provided, with the red dot mark-
ing the specific configuration being
examined.

the given application. When comparing with Finite Element analysis
and studying plasticity, the Cauchy stress is preferred. This approach
is simpler and analogous to Virial stress. On the other hand, when
studying alloys, particularly nano-alloys, the Virial stress becomes
crucial. The presence of residual stress due to lattice parameter
contraction for substitutional defects is fundamental to understand
the mechanical behavior of nano-alloys.

3.3 Gold nanoparticles under elastic deformation

In Section 2.4 and 2.3, we discussed the extraction of stress and strain
curves from MD and FE experiments, respectively. Based on the results
obtained in the previous section, we introduce an ultimate control
on the distribution of the stress map. In the subsequent sections, we
compare the two methods and analyze the specific effects of shape
and size. The analysis initially focuses on local (stress maps) and
global (stress-strain curves) elastic properties in Wulff structures and
is subsequently generalized to include all the investigated shapes.
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Figure 3.3: Stress maps calculated with MD and FE approaches for Wulff-shaped gold nanoparticles of (top) 20 nm and
(bottom) 6 nm diameter NPs and by imposing nanoindentation on (001) and (111) facets.

3.3.1 The stress map

Now that we have discussed the different ways to obtain the stress
field in atomistic simulations, we can move forward and compare
the results obtained from the two methods by examining the local
solutions in detail. The MD stress map was constructed by following
the Cauchy stress definition, while the FE method provides the
solution of the Partial Differential Equation in the nanoparticle domain
straightforwardly.

In Fig. 3.3, the stress distributions obtained from MD and FE calcula-
tions are presented for small (6 nm) and large (20 nm) Wulff structures
with 𝐺 ∼ 0.15 for the (001) surface and 𝐺 ∼ 0.38 for the (111) (see
Section 2.2 for more details). These correspond to nanoindentations
on a (001) facet (left) and on a (111) facet (right) at 2.5% strain, within
the linear regime. Regarding the (001) indentation, the stress is concen-
trated in two conical regions near the plane indenters. As previously
discussed in [22, 27], the maximum stress values are observed at
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the corners for all components of the stress field. Specifically, for the
𝜎𝑍𝑍 component, the stress field is negative due to the compression
imposed by the applied loading. Additionally, it is worth noting that
the presence of free surfaces causes the stress to decrease rapidly from
the top or bottom surface to the center of the nanoparticle.

Remarkably, both FE and MD calculations yield very similar results for
both NP sizes. The values of the stress tensor components computed
using the two approaches are very close, with differences of less
than 5%. Similar trends are observed for nanoindentations on the
(111) facets, regardless of particle size and shape. The only difference
compared to (001) indentation is that the stress distribution is more
homogeneous in the 𝑧 direction. This is due to the larger contact area
of the plane indenters, as Wulff structures have wider (111) surfaces
compared to (001). To conclude, both finite elements and atomistic
simulations are perfectly adapted to capture the elastic properties on
a local viewpoint from stress map analysis.

3.3.2 Stress-strain curve

In the previous section we discussed the mechanical properties of
NPs from a local point view via the stress maps. Here we want to
analyze global elastic properties, by the means of stress–strain curves,
comparing MD and FE outcomes.

Figure 3.4: Compressive stress as a
function of strain of Wulff-shaped
NP of different sizes: (a) 4 nm and (b)
18 nm. Comparison between FE and
MD calculations with indentation
on (001) and (111) facets. (a) (b)

For this purpose and to highlight elastic size effect, the mechanical
responses of NPs of different diameters 𝑑 are considered. Figure 3.4
depicts the stress-strain curves of a small (𝑑 = 6 nm) and larger (𝑑 = 20
nm) Wulff NPs nanoindented with plane indenter on the (001) and
(111) facets. The same 𝐺 factor defined in the previous section was
considered. In the case of MD simulations, deviation from linearity
in the elastic regime is observed for the small NP as seen in Fig. 3.4a.
This trend is found for all particles below 5-6 nm in agreement with
previous calculations [34, 39, 53] where the influence of surfaces on
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the mechanical behavior inside small NPs is emphasized and the non-
linear effect of the potential are exploited, given the high deformation
∼ 8%. Smaller nanoparticles become stiffer, a non negligible part of
atoms are on the surfaces, where they are naturally compressed. For
the larger NPs, a linear trend is observed in the elastic regime until
plastic deformation, whatever the facet considered (see Fig. 3.4b).

Obviously, finite elements fail to reproduce the deviation from the
linear regime observed for small particles (intrinsically, no deviation
from linearity can be observed); this is due to different reasons. First,
in case of few atoms it is very difficult to precisely define a NP shape
in MD calculations. Second, surface/volume ratio increases so surface
relaxation [104] (not included in the FE model) plays an important role
in the mechanical response. Last, the effect of corner and edges become
important. The last two point could be included with some extra work
in our FE formulation, but it was not the topic of our study. We made
a pragmatic choice: MD simulations nowadays are very fast for NPs
smaller than 5 nm. So, the idea is to use MD to model mechanical
behavior of NPs smaller than 5 nm, with a simple FE model for larger
system where MD simulations become computational demanding. In
contrast, the agreement between MD and finite elements for larger
particles is quite remarkable proving that a linear elasticity framework
can be used to model mechanical properties at the nanoscale

Figure 3.5: Effective Young’s modu-
lus as a function of the size for Wulff-
shaped gold nanoparticles. Compar-
ison between continuous and atom-
istic calculations with indentation
on (001) and (111) facets

To better analyse the elastic behaviour of NPs, effective Young’s modu-
lus (defined in Section 2.3) are extracted from the stress-strain curves
for all NP sizes. 𝐸𝑒 𝑓 𝑓 is a quantity directly by uniaxial loading experi-
ments or simulations (being the slope of the experimental stress-strain
curve that can be different from the bulk Young’s modulus value) and,
for this, is a key parameter for developing reliable applications [106–
109].
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The results for indentation on both facets are presented in Figure
3.6. Above 5 nm, it can be observed that MD and FE calculations
provide very similar results with extremely low errors. This is not so
surprising for large particles since finite elements reproduce the elastic
domain very well as revealed in Fig. 3.4b. For smaller particles, it is
clear that the deviation from linearity already discussed in Fig. 3.4a
is not reproduced with FE calculations. Furthermore, the parameter
𝐸𝑒 𝑓 𝑓 is also difficult to be defined for small NPs. For this reason an
error bar is introduced that consider different possible linear fit for
the elastic part of a given nanoparticle stress-strain curve. Due to the
deviation from linearity using MD calculations, 𝐸𝑒 𝑓 𝑓 values for small
NP have larger error bars than the large ones. Nevertheless, when
comparing results from FE and MD calculations even for small NPs,
the global slope of the curve is rather correct enabling to get effective
Young’s modulus values in agreement between both approaches. As
the size of the nanoparticles increase the value of the effective Young
modulus for both (001) and (111) indentation converges to a plateau
[54]. While the 𝐸(111)

𝑒 𝑓 𝑓
is larger than 𝐸(001)

𝑒 𝑓 𝑓
, as expected in anisotropic

media (𝐸(111) > 𝐸(001) for bulk), the value of the plateau depends on
the shape of the NP, as it the following sections.

In Figure 3.6, we can observe the dependence of the Young’s modu-
lus on the crystallographic direction for bulk gold. As the direction
changes from [001] to [111], the Young’s modulus, 𝐸, increases ac-
cordingly. See Appendix 8.3 for more details.

Figure 3.6: Gold bulk Young’s mod-
ulus as function of the direction,
from (001) to (111). Computed us-
ing the MD elastic constant that can
be found in table 3.2.

Studying nanoindentation of a Wulff Au nanoparticle, we have shown
both finite elements and atomistic simulations are perfectly adapted
to capture the elastic properties on both a local (stess map) and a
global (stress-strain curve) viewpoint. The agreement between the two
different approaches is good, notably for NPs with diameter above 5
nm. Consequently, for small NPs, surface sites are prevailing and FE
calculations are not able, by definition, to reproduce their influence,
hence the discrepancies observed in our study between the two
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approaches for small particles. On the other hand, beyond a certain size
of NPs (here 5 nm), the role of facet becomes of primary importance
give results in very good agreement between finite elements and the
atomistic approach.

3.3.3 Shape effects

To highlight shape effect on the elastic properties, the mechanical
responses of different Au NPs are considered. In Figure 3.7, the
calculated effective Young’s modulus for various NP shape as a
function of size are presented with indentation on (001) facet.

First, we can notice that the general observation of the previous
section for Wulff shape NPs are valid also for truncated-octahedra and
truncated cubes: for NPs larger than 5 nm the value of 𝐸𝑒 𝑓 𝑓 converge
to a plateau and no visible size effect is observed. In the case of the
truncated-octahedron, there is a stronger variation of the 𝐸𝑒 𝑓 𝑓 values
for small size NPs (< 5 nm) in MD calculations, from ∼ 200 to ∼
175 GPa. For larger particles, 𝐸𝑒 𝑓 𝑓 reaches a constant value around
175 GPa. Again, FE approach is not able to reproduce such a size
dependence, suggesting that the role of specific surface sites cannot
be neglected in small NPs.

Figure 3.7: Effective Young’s mod-
ulus as a function of the size for
gold nanoparticles with different
shapes. Comparison between con-
tinuous and atomistic calculations
with indentation on (001) facets.

On the other hand, the agreement between FE and MD for larger
particles is quite remarkable. More interestingly, a strong shape effect is
observed in Fig. 3.7, where the 𝐸𝑒 𝑓 𝑓 plateau value changes depending
on the shape. Indeed, wide differences are obtained ranging from
∼ 50 GPa (truncated cube) to ∼ 175 GPa (truncated octahedra). To
go beyond in our analysis, Figure 3.8 depicts the variation of the
effective Young’s modulus for different shapes at a given NP size
(here 18 nm). Again, a very good agreement is found between FE and
MD calculations. A maximum difference of about 4% is revealed and
corresponds to the truncated-cube shapes. Such deviation is due to
the non linearity of the stress-strain curves in approaching a cubic
system (for cubes a very large elastic deformation of about 10% is
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Figure 3.8: Effective Young’s modu-
lus as a function of the shape for gold
nanoparticles. Results correspond to
an indentation on (001) facets for a
20 nm diameter NP.

Figure 3.9: Effective Young’s mod-
ulus as a function of the size and
shapes for gold nanoparticles plot-
ted on a bi-dimensional map. Com-
parison between atomistic (on the
left) and continuous (on the right)
calculations for an indentation on
(001) facets.

observed before the plastic onset, so non-linear behaviour is observed
in MD simulations). Convergence is expected for bigger systems,
where surface effect and the critical strain are lower.

Very interestingly, a significant variation of the order of 200 GPa can
be observed between the two limiting shapes. This considerable effect
illustrates that the influence of the NP shapes on the elastic properties
is huge for a 18 nm nanoparticle.

To generalize, 𝐸𝑒 𝑓 𝑓 computed values in function of different shapes
(𝐺 descriptor) and of NP sizes ranging from 4 to 25 nm is pre-
sented in Fig. 3.9 in a bi-dimensional map for MD simulations (left
panel) for FE simulation (right panel). On one hand, no size effect is
identified (above 5 nm). Indeed, the variation of the 𝐸𝑒 𝑓 𝑓 with the
size of the NP is negligible, never exceeding few GPa for a given
NP shape. On the other hand, significant variation of the effective
Young’s modulus are remarked with NP shape. From truncated-cube
to truncated-octahedron structures, a difference of about 150 GPa
on the effective Young’s modulus is reported. Here again, we can
note that the agreement between the atomistic and finite element
calculations is remarkable whatever the shape and size of the NP.



3.4 Generalisation to other facets and systems 55

It is worth noting that as the 𝐺 factor approaches 1, the effective
Young’s modulus (𝐸𝑒 𝑓 𝑓 ) tends to converge towards the bulk value
shown in Figure 3.5. This indicates that when the nanoparticle shape
approaches an homogeneous stress distribution, the mechanical re-
sponse becomes more similar to that of the bulk material. Conversely,
when the 𝐺 factor decreases, the stress distribution cannot homoge-
neously distribute as in the bulk material. Instead, it becomes more
concentrated in the corners and edges of the top surface. This local-
ized stress concentration contributes to the deviation from the bulk
behavior and the emergence of shape effects in the nanoparticle’s
mechanical response. It is important to stress that our analysis show
that the shape, not the size, of the gold NPs has a wide impact on its
macroscopic measured elastic properties.

3.4 Generalisation to other facets and systems

As a next step, it is crucial to investigate if the shape effect in the
elastic response can be extended to the (111) facet. This is particularly
important since transition metal nanoparticles often expose this facet
when produced experimentally.

(a)

(b) (c)

Figure 3.10: Figure (a): Effective
Young’s modulus as a function of the
size and shapes for gold nanopar-
ticles plotted on a bi-dimensional
map. Comparison between atomistic
(on the left) and continuous (on the
right) calculations for an indentation
on (111) facets. Figure (b): Effective
Young’s modulus as a function of
the shape for gold nanoparticles. Re-
sults from continuous and atomistic
calculations correspond to an inden-
tation on (111) facets for a 20 nm
diameter NP. Figure (c): Effective
Young’s modulus as a function of
the size for three different shapes.

In Figure 3.10a, we observe the shape-size map for the comparison
between Finite Element and Molecular Dynamics simulations. The
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agreement is very good, similar to the (001) facet. However, surface
effects emerge earlier, and small oscillations due to a poor fit are
present in the MD map. The range of shapes considered in the (111)
analysis is smaller compared to (001), ranging from 0.1 to 0.5, due to
the geometry of nanoparticles.

A more detailed view of the agreement can be seen in Figure 3.10b,
where the shape effect on 𝐸𝑒 𝑓 𝑓 is investigated, and as a function
of the size in Figure 3.10c. Again, the agreement is excellent. It is
noteworthy that the map in Figure 3.10a follows a similar trend to that
in Figure 3.9, with higher values for lower 𝐺 factors and lower values
approaching the bulk counterparts for 𝐺 → 1. When 𝐺 is equal to 1,
the stress distribution becomes completely homogeneous, and if the
effect of lateral surfaces is negligible, the system becomes analogous
to a bulk system. This is true for the (001) nanoparticle and slightly
more complex for the (111) nanoparticle.

Figure 3.11: Inhomogeneous stress
distribution of different shapes with
different exposed facets (001) and
(111), Slice perpendicular to [010]
for the (111) and to [110] for the
(001) with a further rotation of 45
degree. 𝜖 = 0.1%

(a) (b)

Figure 3.12: Effective Young’s modulus as a function of the size (Figure (a)), and shape (Figure (b)) for Au, Cu and Pt Wulff
nanoparticles.
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Figure 3.11 provides a clearer visualization of this effect. It can be
observed that the stress distribution is influenced by the 𝐺 factor. This
factor plays a crucial role in determining the stress distribution and,
subsequently, the resulting elastic response, specifically the effective
Young’s modulus. For the (001) facet, this influence of the 𝐺 factor on
the stress distribution is particularly pronounced, and it directly im-
pacts the final elastic response, leading to variations in 𝐸𝑒 𝑓 𝑓 . Similarly,
for the (111) facet, the same trend can be observed. However, the key
distinction is that the shapes of the nanoparticles are not symmetric
along the 𝑧 direction. This asymmetry introduces an additional level of
complexity to the stress distribution and the resulting elastic response,
as seen in Figure 3.10a. To generalize our conclusions, the analysis
of the elastic properties of NPs is extended to other metals, such as
Cu and Pt. The calculated effective Young’s modulus are presented
in Figure 3.12a for different sizes with truncated octahedron shape
for the (001) facet. Whatever the material considered, we first see
that the finite elements reproduce the atomistic calculations for NP
sizes exceeding 5 nm. For smaller diameters, the differences are fairly
notable for Cu and Pt (< 40 GPa ) but minor for Au NPs (< 15 GPa).
Beyond this limit, no size effect is reported with a constant value for
𝐸𝑒 𝑓 𝑓 . Considering this time the shape dependence, it can be seen that
the elastic properties vary strongly with the shape of the particle.
As shown in 3.12b, significant variations in the elastic properties are
highlighted across all the transition metals. Indeed, 𝐸eff varies by
hundreds of GPa, moving from smaller values to larger values of G.

3.5 Conclusion

In this chapter, we have presented an extensive study on the elastic
deformations of metallic nanoparticles with different shapes and
sizes. We applied mechanical loading through nano-indentation on
(001) and (111) facets of the nanoparticles. By combining atomistic
and continuous calculations, we found that there is no size effect
for nanoparticles with a diameter larger than 5 nm. Interestingly, we
also observed that the elastic properties of nanoparticles are highly
influenced by their shape. We identified the ratio between the top
area and the projected area as a suitable descriptor to address this
shape dependence.

Moreover we can conclude by distinguishing three main size regimes:
small nanoparticles with sizes below 5 nm, intermediate nanoparticles
with sizes between 10 and 25 nm, and large nanoparticles with sizes
exceeding 25 nm. Small nanoparticles exhibit extremely high internal
stress before nucleation occurs, leading to non-linear elastic behavior.
MD simulations are particularly useful in this regime as they provide
fast and reliable results. For nanoparticles within the normal range of
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sizes (below 25 nm) that do not exhibit non-linear behavior, bothFE
and MD simulations offer accurate descriptions of the elastic problem.
However, FE simulations are generally faster than MD simulations in
this size regime. In the case of larger nanoparticles (above 25 nm), MD
simulations become increasingly time-consuming. Nanoparticles are
characterized by smaller critical strains and stress levels therefore, FE
simulations are more suitable for studying the mechanical behavior of
larger nanoparticles. Overall, the choice of simulation method depends
on the nanoparticle size, the presence of non-linear behavior, and
the computational resources available. Both FE and MD simulations
provide valuable insights into the elastic deformations of metallic
nanoparticles in different size regimes.

These findings are demonstrated by nanoindentation on Au, Cu, and
Pt nanoparticles, suggesting that our conclusions can be extended
to different transition metal nanoparticles. This study highlights
that controlling the shape of nanoparticles can be a viable approach
for engineering nano-objects with unique and targeted mechanical
properties.



Plastic properties of nanoparticles 4
In the earlier work by Ferruz et al. [34], size effect in Wulff nanopar-
ticles is investigated. The authors demonstrate that the exponential
dependence between critical stress (𝜎𝑐) for the onset of plasticity and
the size (𝑑) of a Wullf nanoparticle is universal with 𝜎𝑐 = 𝐴𝑑−𝛼. The
same 𝛼 parameter is recovered with only a rigid shift depending on
the material (transition metals) elastic constants is observed. Follow-
ing this, Kilymis et al. [39] have studied silicon nanoparticles with
various shape such as Wulff and cubes, faceted or with blunt edges.
Their results reveal a complex relationship between the shape of the
nanoparticle and the onset of plasticity. Interestingly, no size effects
are found for perfect cubic or spherical nanoparticles, specifically on
the (001) surfaces. This led to an intriguing question: might the same
principles apply to transition metals? These earlier findings are the
outcomes of atomistic simulations. More recently, a model based on
experimental results is proposed, focusing on the shape-dependent
mechanical response of Pt nanoparticles [33]. This model suggests
that the shape of a nanoparticle may also influence the size effect.

It is in this context that our analysis takes place. As suggested in
Chapter 3, a broad approach that include all differently faceted
nanoparticles is required. We intend to extend the work of Kilymis et al.

by exploring whether their findings can be generalized to transition
metals, for different nanoparticle shapes. Furthermore, we aim to
investigate whether the observations made by Ferruz et al., concerning
the universal size effect, can be extended to all shapes of nanoparticles.
By doing so, we aspire to enrich our understanding of the plasticity
onset, i.e. the dislocation nucleation process, in faceted transition
metal nanoparticle.

This chapter is organized into two distinct sections. In the first section,
we examine the onset of plasticity, mirroring the analysis conducted
in Chapter 3. The findings are thoroughly analysed with the aim of
complementing the previous studies reported above. In the second
part of this chapter, we turn our focus towards the understanding
of the underlying physical processes that give rise to the plasticity
onset.

4.1 Onset of plasticity

In a nano-indentation experiment, nanoparticles are first elastically
deformed, and then, when a certain stress is reached, they undergo
plastic deformation. This plastic transition is determined by the
nucleation of dislocations. In the case of FCC nanoparticles, 1/6⟨112⟩
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Figure 4.1: Typical stress and strain
curve calculated with Molecular Dy-
namics. The onset of plasticity is
highlighted with a red dot whereas
the orange dot represents the point
where the first dislocation shears the
whole structure.

Figure 4.2: Typical dislocation nu-
cleation, top row the dislocation is
inside the system, down line the dis-
location has slid out of the nanopar-
ticle and a complete stacking fault is
formed.

Shockley partial dislocations are nucleated, as discussed in Section
1.2.3 and 1.3. Figure 4.1 shows a typical stress-strain curve obtained
using Molecular Dynamics, for a truncated-octahedron structure. The
elastic regime is depicted in black. When a critical stress (𝜎𝑐) is reached
(represented by the red point), dislocation nucleation occurs resulting
in a drop in the measured stress value due to the displacement-
controlled method. The green region represents the subsequent plastic
regime, where dislocations glide out of the nanoparticle or interact
with each other. In most of the cases, the orange dot typically represents
the point where the first dislocation shears the whole structure, leaving
steps at the surface and a complete stacking fault inside the NP.
Moreover, the region between the two dots (red and orange) on the
stress-strain curve corresponds to the regime of reversible plasticity.
Unloading the nanoparticle causes all the dislocations to shrink and
to disappear leading to its recrystallisation [110].
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Since the stress is uniformly dis-
tributed in a cubic nanoparticle,
the nucleation becomes challenging.
This leads to a larger elastic strain
and the subsequent non-quadratic
behavior of the potential. This out-
come is characteristic of cubic struc-
tures and is commonly observed in
MD simulations.

Figure 4.2 provides a local view of the nanoparticle at the atomistic
scale of different moment of the indentation: the reversible plasticity
regime in the three snapshot at the top and the orange dot regime the
two at the bottom. In the top figure, the presence of a partial dislocation
(pink line) containing a stacking fault is visible. The dislocation defines
the boundary between the unslipped and slipped regions. The stacking
fault reaching the surface indicates that only first partial dislocation
is nucleated. The stacking fault region is interpreted as an Hexagonal
Close-Packed (HCP), 𝐴𝐵𝐶𝐴𝐵𝐶 → 𝐴𝐵𝐴𝐵𝐶𝐴) crystalline structure,
as discussed in Section 1.2.3. In the bottom figure, the dislocation
has sheared the system leaving behind the trace of its passage, the
stacking fault, and steps at the nanoparticle surface. Such observation
is in agreement with previous results[20]. In this chapter, the plastic
behaviour of the subsequent nanopartciles is not analysed. Here, we
will investigate the nucleation of the first dislocation and the critical
stress 𝜎𝑐 at which this phenomenon occurs.

To this end, stress and strain curves similar to those shown in Figure
4.1 were obtained utilizing the methodologies outlined in Section 2.3.
This was carried out on nanoparticles varying sizes and shapes, as
detailed in Chapter Chapter 3. The ultimate aim was to create a size
and shape map for the critical stress values, 𝜎𝑐 .

(a) (b)

Figure 4.3: Figure (a): shape effect in stress and strain curves for a 20 nm size Au nanoparticles . Figure (b): size effect in stress
and strain curves for Au nanoparticles with truncated-octahedral shape (𝐺 ∼ 0.25). In both cases, this corresponds to MD
calculations with indentation on (001) facets.

In Figure 4.3, the stress-strain curves calculated for gold nanoparticles
are depicted. In Figure 4.3a, the size is fixed while the shape 𝐺 is
represented by different colors. When 𝐺 increases, the slope of the
curve reduces as seen in Chapter 3. This leads to a decrease in the
critical stress but it is also accompanied by a considerably larger elastic
strain and a small deviation from linearity. In Figure 4.3b, we maintain
a constant shape factor (𝐺 = 0.25), changing the size. This analysis
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distinctly shows a size effect: smaller nanoparticles are stronger than
their larger counterparts. To go beyond, the maximum value from

Figure 4.4: Shape and size map for
the critical stress 𝜎𝑐 . Result for Gold
nanoparticles by imposing nanoin-
dentation on (001) facet.

each curve can be extracted and plotted as a function of size and shape,
allowing us to construct a map from this data. Figure 4.4 offers a visual
representation of this mapping, focusing on indentation of the (001)
facets of gold nanoparticles. Note that the same map was computed
also for copper and platinum with similar conclusions. At first glance,
the critical stress appears to exhibit a stronger dependence on size
for certain structures when compared to their elastic properties. It is
noteworthy that a flatter size behaviour is visible for 𝐺 → 1 where
the size effect becomes more pronounced as 𝐺 → 0.

(a) (b)

Figure 4.5: Size effect for two different shapes. Figure (a): 𝐺 = 0.9. Figure (b): 𝐺 = 0.2. Results for gold, copper and platinum
by imposing nanoindentation on (001) facet.

By creating sections of the shape and size map presented before
around 𝐺 = 0.2 and 𝐺 = 0.9 (which correspond to approximately to
the Wulff and truncated cube structures) and considering different
materials, we can study the variation of the critical stress with the
size. As seen in Figure 4.5, we can confirm but also extend the
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universal size effect highlighted by Ferruz et al. where only Wulff NPs
were investigated. Interestingly, the curves obtained for Pt, Cu and
Au,exhibit consistent size effects, with a rigid shift similar to what
is observed by [34]. The slope remains shape-dependent, implying
that identical shapes display the same slope 𝛼. This is a significant
accomplishment: the Universal size effect can be replicated across
diverse FCC shapes of transition metals. Furthermore, as suggested
by Kilmys et al., it’s plausible that this effect extends to numerous other
non-FCC and non-metallic systems. We further explore the role of

Figure 4.6: Shape effect on the
size dependencies of 𝜎𝑐 , for gold
nanoparticles on (001) facet.

shape in leading the critical stress in gold nanoparticles through a
map presented in Figure 4.6. The size effect weaken as we transition
from an octahedron (𝐺 = 0) to a cube (𝐺 = 1). This observation is
reinforced by analysing the dependence of 𝛼 (extracted exponent
from Figure 4.6) with the shape.

As seen in Figure 4.7, a strong variation is highlighted since 𝛼 decreases
from ∼ 0.5 to ∼ 0.1 for different 𝐺 values ranging from 0 to 1. This
tendency is observed for the three different materials, namely gold,
copper, and platinum. Moreover, around the shape 𝐺 = 0.4 there
is a net change in slope suggesting that two different families of
nanoparticles can be distinguished. In fact that point represents the
transition between truncated-octahedron to truncated-cube structure,
the cube-octahedron (see Figure 2.3). The two families differs from the
number of corner at the top (001) surface and 𝐺 tends to 1, resulting in
a more homogeneous distribution of the stress field inside the nano-
object. This effect was also observed in the analysis of the variation of
the effective Young’s modulus with respect to the shape, plotted in
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Figure 4.7: Variation of 𝛼 (extracted
from MD simulations) with the
shape. Results for gold, copper and
platinum nanoparticles with inden-
tation on (001) facets.

Figure 3.7.

This leads us to our first finding: both the shape and size of a nanopar-
ticle are key factors in modulating the onset of plasticity. This suggests
that the results obtained by Kilmys et al. are not limited to cubic and
Wulff silicon nanostructures, but can be extended to all intermediate
forms within FCC metals. Furthermore, our findings expand the
universal size effect to encompass a wider range of shapes.

The influence of the shape on the plastic onset can be further under-
stood by examining the results for nanoindentation on the (111) facets.
By computing the same size and shape map as shown in Figure 4.8a,
we can discern a pattern similar to that of the (001) facets. This pattern
exhibits higher critical stress for smaller 𝐺 values and smaller sizes,
although the behavior is not identical, possibly due to variations in top
surfaces, the number of top corners, and other geometric differences.
As discussed in the previous chapter and shown in Figure 3.11, the
(111) shapes lack symmetry in the 𝑧 direction, which could possibly
contribute to the less uniform behavior observed in Figure 4.8a. Taking
into account an exponential fit of the critical yield stress and extracting
the exponent 𝛼, we obtain the results depicted in Figure 4.8b. Here,
the exponents 𝛼 for the (111) surface, calculated for different values of
𝐺, are compared with those for the (001) surface. Interestingly, both
sets of curves seem to exhibit the same shape-dependent behavior.
The observed rigid shift can be interpreted by considering the two
facets as having distinct geometries. This outcome reinforces our
earlier findings: the shape, the size and the loading (depending on the
facet being indented) are all key parameters in determining the plastic
onset of nano-objects. This represents our final result and a broad
generalization applicable to FCC transition metals, and in principle to
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(a) (b)

Figure 4.8: Figure (a): Shape and size map for the critical stress 𝜎𝑐 . Result for Gold nanoparticles by imposing nanoindentation
on (111) facet. Figure (b): Variation of 𝛼 (extracted from MD simulations) with the shape. Comparison Results for gold
nanoparticles with indentation on (001) and (111) facets.

other nanostructures.
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4.2 Beyond the results: dislocation nucleation

Nucleation is an intricate phenomenon, often discussed statistically
in terms of activation volume to identify the most probable dislo-
cation nucleation sites [24, 25]. Moreover, a different approach can
be to predict nucleation sites by means strain or stress distribution
inside the nanoparticle. This approach aims to identify a critical lo-
cal stress/strain value that is reached before nucleation [111–114]. In
Chapter 3, we observed that the elastic response of the nanoparticles
is largely governed by their shape. Moreover, the resulting responses
can differ significantly due to the distribution of stress within the
nanoparticles. In cubic objects, stress is distributed homogeneously,
leading to a bulk-like mechanical response. On the other hand, as we
approach 𝐺 → 0, the response alters, and the stress distribution is
heterogeneous. Based on these previous observations, we opted in
the following to define a nucleation criterion based strain or stress
distribution using von Mises stress and the resolved shear stress.

It is important to note that these two stresses are considered in different
contexts. Resolved shear stress, i.e. the projection of the stress tensor
on the glide plane and on the slip direction of a given dislocation,
is used to compute the effective stress acting on a dislocation, while
von Mises stress is more general, such as determining when a ductile
material will begin to yield under complex, three-dimensional loading.
These two scalar quantities, despite their simple form, can provide
significant insights of the phenomenon of nucleation.

4.2.1 von Mises criterion

The von Mises stress (Equation 1.11), derived from the Cauchy stress
tensor, is computed from a FE model since the resulting stress map
is identical to that obtained with the Virial stress approach depicted
in Chapter 3. As inputs for the FE simulations, elastic constants and
critical strain are extracted from MD calculations. A linear interpola-
tion of the MD stress and strain curve was done to reduce non-linear
effect, the critical strain is extracted when the linear fit reaches the
critical stress.

Based on the critical strain value, the indentation is simulated in
the FE framework. Figure 4.9 illustrates the different outcomes in
the case of 21 nm gold nanoparticle for two distinct shapes, i.e. the
truncated octahedron and truncated cube. As seen in the histogram
plot (Figure 4.9a), the truncated cube structure presents a highly
localized von Mises stress distribution (a high peak ∼ 2.5 GPa), while
the Wulff structure exhibits a more dispersed distribution (centered
∼ 1.6 GPa for a width of ∼ 3 GPa). Again, this demonstrate that NP
shape has a strong influence on the internal stress distribution. To
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Figure 4.9: FE von Mises analysis for a 21 nm gold nanoparticle with nanoindentation on (001) facet. Results for applied
strain 𝜖 = 𝜖𝑐 (extracted from MD simulation). TC and TO stand for Truncated Cube and Truncated Octahedron respectively.
(a) Histogram form and (b) map form of the surface of the NP.

get a direct insight into the stress distribution at the surface, von
Mises maps are presented in Figure 4.9b for both shapes. Thus, it
is interesting to emphasize that for the Wulff structure, the stress is
strongly localized around the top end the bottom corners leaving
the center virtually unstressed. Conversely, in the truncated cube
structure, a less important localisation around the top and the bottom
corner is observed and the stress is homogeneously distributed around
a mean value in the NP volume.

An other intriguing observation is that the tails of the two distributions
appear to converge for the maximum von Mises stress to values around
3 GPa, as shown in Figure 4.9a. A visual inspection makes it possible
to realize that it corresponds to the corners (top and bottom). Very
interestingly, such regions are the place where stress concentration
and dislocation nucleation is observed. To link these two information
and analyse the shape effect, we can integrate around one of the top
corner the values of von Mises stress for different shapes. In this
context, the average stress is defined by the following equation:

⟨𝜎𝑣⟩ =
1
𝑉𝑡𝑜𝑡

∫
𝑉

𝜎𝑣(𝑉)𝑑𝑉 (4.1)

Here, 𝜎𝑣 is the von Mises stress and 𝑉 represents the volume of
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integration. In our case, a sphere is centered at the corner and the
intersection between the sphere and the nanoparticle is designated
as the total integrated volume 𝑉𝑡𝑜𝑡 . A typical example is presented
in Figure 4.10a where we can observe the computed stress map as
well as the volume extracted from the sphere where the calculation of
⟨𝜎𝑣⟩ is done. In Figure 4.10b the computed values of ⟨𝜎𝑣⟩ at different
sphere radius and shapes are presented.

Figure 4.10: Figure (a): von Mises stress map external (top left) calculated at critical strain for a 21 nm gold nanoparticle. At
the bottom left, representation of the volume inside the sphere where the stress is averaged to obtain ⟨𝜎𝑣⟩. Figure (b): ⟨𝜎𝑣⟩ for
different shapes as a function of the sphere radius.

We note that the mean values demonstrate significant variability for
lower 𝑅 values across different shapes. It is clear that when 𝐺 → 0,
stress concentrates predominantly at corners and edges leading to
large ⟨𝜎𝑣⟩ ∼ 7 GPa. Unlike the case of 𝐺 → 1 where ⟨𝜎𝑣⟩ decreases
significantly (∼ 4 GPa) corresponding to situation where the stress is
more uniform. Yet, as the radius expands, all ⟨𝜎𝑣⟩ begin to converge
to reach a converged value ∼ 1 GPa from a sphere radius larger than ∼
2 nm the same value. This suggests that nucleation initiates at similar
values irrespective of shape. This tendency persists even when we
replicate the process for different materials as depicted in Figure
4.11 where the ⟨𝜎𝑣⟩ obtained for a sphere radius equal to 2.5 nm is
presented as a function of 𝐺 for Au, Cu and Pt. No shape effect is
noted and this is particularly true for Au and Cu. Only a marked shift
is observed between the different elements.
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Figure 4.11: Converged value of ⟨𝜎𝑣⟩
for different shapes and different ma-
terials. Result for 21nm nanoparticle,
for a radius equal to 2.5nm.

By calculating an average of the values exhibited in Figure 4.10 and
showing this value as a function of the sphere radius, we can normalize
each curve using the corresponding 𝐶44, producing the results in
Figure 4.12. Initially dispersed values for small sphere radii eventually
converge to the same value for the three different materials. The
error bar represents the variation ⟨𝜎𝑣⟩ across all shapes from Figure
4.11. It appears that given a specific shape, there exists a universal
⟨𝜎𝑣⟩ condition for nucleation, at least for the transition metals. The
normalisation by 𝐶44 follows what previously done by Frenkel, Cottrel

and applied on nanoparticles by Ferruz et al.[34] (see Chapter 1 for
more details).

Figure 4.12: Normalised ⟨𝜎𝑣⟩ for dif-
ferent material, error determined by
the different shapes.

Our findings lend important insights into how shape impacts plastic
behavior in materials. By maintaining a constant size, we can under-
stand why the critical strain, 𝜖𝑐 , increase together with the shape factor,
𝐺. In the case of 𝐺 → 1, the stress distribution is homogenous, which
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requires higher strain to achieve a specific average von Mises stress,
⟨𝜎𝑣⟩. As for the critical stress, it is important to note that 𝜎𝑐 = 𝐸𝑒 𝑓 𝑓 𝜖𝑐 .
The effective Young’s modulus, 𝐸𝑒 𝑓 𝑓 , scales significantly when 𝐺 → 0,
while 𝜖𝑐 is reduced. Moreover, our improved understanding of nu-
cleation reveals that even the simple von Mises stress can capture
key information about its physics. Nucleation occurs when a certain
stress level is reached within a specific volume for all the different
shapes, and this value, when normalized by the elastic constant 𝐶44,
appears to be universal. This observation offers a simplified yet ef-
fective method to study the complex phenomenon of nucleation in
transition metals, that can be used to model dislocations nucleation
in mesoscale models.

4.2.2 The resolved shear stress analysis

In Section 1.3, we mention that Mordehai et al. refined Cottrell’s model
to develop a nucleation criterion based on a non-uniform stress
distribution of the form 𝜎𝑟𝑠𝑠 ∼ (𝑅/𝑟)−𝛼. Here, R is the nanoparticle’s
height, r is the distance from the singularity, and 𝛼 is a parameter
determined by fitting. This analysis shows the relationship between
critical stress and size, indicating a power law of the form 𝜎𝑐 ∼ 𝑅−𝛼,
where the exponent governing the stress distribution also controls
over the size effect. By repeating these calculations for various shapes,
we extend the study of size effects to a wider range of structure.

𝜎𝑟𝑠𝑠 is calculated using Equation 1.10, taking into account the (111)
slip plane and 1/6[112] Burger’s direction. Given the lack of clarity on
the methodology for extracting 𝜎𝑟𝑠𝑠 in [27], we present two primary
methods for calculating the spatial dependence of 𝜎𝑟𝑠𝑠 which is a
tricky point. The first one involves selecting a plane and line centred
at the maximum value of 𝜎𝑟𝑠𝑠 and extracting the spatial dependence.
The second method computes the average stress within a spherical
volume centred at the maximum, using the sphere radius as the spatial
dependence (as seen in the previous Section already) leading to the
following equation:

⟨𝜎𝑟𝑠𝑠⟩ =
1
𝑉𝑡𝑜𝑡

∫
𝑉

𝜎𝑟𝑠𝑠(𝑉)𝑑𝑉 (4.2)

This approach appears more reliable and is considered in the following.
The first one oversimplifies the complexity of the stress distribution
within a volume and slight variations in the maximum position could
lead to significantly different distributions. Conversely, the second
formulation averages the behaviour within the volume and it is then
less susceptible to local variations.

The Finite Element maps are computed by imposing a critical strain
𝜖𝑐 extracted from molecular dynamics, as in the previous Section.
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Figure 4.13: Resolved Shear Stress analysis. Figure (a): stress map and local solution, top external view, bottom slice view.
Figure (b): ⟨𝜎𝑟𝑠𝑠⟩ for different shapes of platinum as a function of the sphere radius. The logarithmic scale is used to put in
evidence the power law.

Again, a 21 nm Au nanoparticle is selected. In Figure 4.13a we can
observe the computed map of the resolved shear stress (𝜎𝑟𝑠𝑠). As
expected the stress concentrate at the top left vertex more than in the
right one, differently from a von Mises map it is asymmetric. This
is due to the projection of stress tensor on specif direction and in a
specific plane. Once the stress map is computed the integration for
different sphere radius can be repeated, as in the previous Section.
The results of this integration is shown in Figure 4.13b on logarithmic
scale to evidence the power law. ⟨𝜎𝑟𝑠𝑠⟩ appears to poorly fit the power
law, but with an exponent being shape-dependent, but deviating
from the expected values, for example with 𝐺 = 0.26 the expected is
∼ 0.4 and we get around 1.28. When 𝐺 → 1 the stress distribution
tends to be homogeneous and the slope of ⟨𝜎𝑟𝑠𝑠⟩ has a flatter trend
compared to truncated - octahedron structure, where very high stress
resides in corner and edges and rapidly goes to zero in the core of the
nanoparticle. What seems to drive the size effect is finally a purely
massive consideration with almost no effect due to surfaces. The
shapes determines the distribution that drives the plastic onset.

Analogous to the method employed in the previous section, we
apply the same procedure to the resolved shear stress by calculating
an average ⟨𝜎𝑟𝑠𝑠⟩ obtained for different 𝐺 values and analyzed its
variation as a function of the sphere radius. This has been done for
gold, copper and platinum. The results of this analysis are depicted
in Figure 4.14 together with the previous concerning the ⟨𝜎𝑣𝑚⟩. Again
all the curves are normalized using the corresponding 𝐶44. These
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Figure 4.14: Resolved Shear Stress
analysis. Normalised ⟨𝜎𝑟𝑠𝑠⟩ and
⟨𝜎𝑣𝑚⟩ for different material, error
determined by the different shapes.

findings align with those observed earlier, the convergence of the
resolved shear stress seems faster and with lowers errors, reinforcing
the observation that a universal value is reached across different
shapes and materials prior to nucleation.

4.3 Conclusion

In this chapter, we have determined the significant influence that both
shape and size exert on the plastic properties of nanoparticles. Our
investigations extend the previously established results of Kilmys et al.

concerning cubic and Wulff Silicon nano-structures to a more general
context, including different transition metals and different shapes
(defined by the variation of the geometrical parameter 𝐺 from 1 to 0).
Moreover, our work broadens the universal size effect theory proposed
by Ferruz et al., indicating that the shape determines the strength of the
size effect, while the material accounts for the rigid shift. In essence,
the parameter 𝐺 is not only representative of a nanoparticle’s shape
but also serves as an indicator of the nanoparticle’s elastic response
to a load. It dictates how stress disperses within the nanoparticle,
linking this information to the onset of plasticity.

The von Mises stress analysis reveals the reason behind the high
deformability of nanocubes in comparison to Wulff structures. This
is predominantly due to the presence of a critical local stress that
needs to be attained before nucleation can occur. Moreover, our ex-
ploration of the Resolved Shear Stress shows the principal driving
force behind nucleation: an exponential stress distribution within the
nanoparticle, with the exponent diminishing as 𝐺 tends to 1. Both
stress measurements highlight that nucleation can be understood in
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a rather straightforward manner; nucleation occurs when a certain
normalized stress value is reached within a sufficiently large volume
around nanoparticle vertex. While this study exclusively focused on
nanoparticles of fixed sizes, it would be interesting to expand this
research to encompass size variations, providing a more compre-
hensive understanding of the complex phenomena associated with
nucleation.

Consequently, our findings reaffirm the fundamental role of shape,
together with size, in determining the behaviour of nanoparticles
under deformation. Its impact seems to be stronger than the crys-
talline structure, material type, and the indented facet. Our study,
therefore, set the way for a new method of analysing nanoparticle
data, emphasizing that size effects can no longer be explored without
meticulous consideration of the NP shape.
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The investigation of the mechanical properties of nanoalloys is a
relatively recent development, emerging mainly after the beginning
of this Phd project. As we discussed in Chapter 1, solid solutions have
been employed to enhance the mechanical properties of materials
at the macro scale. However, the situation appears to become more
complicated at the nanoscale.

In the case of NPs, recent studies have revealed that many type of
solid solution, (including NiCo and NiFe), exhibit a softer behavior
compared to their bulk counterparts. This phenomenon is primarily
attributed to the instability of stacking fault energy at the surface,
where the formation of clusters intensifies local stress, thus triggering
early nucleation (see Figure 1.10). Intriguingly, solid solutions also
seem to demonstrate a higher level of toughness, exhibiting strain
hardening behavior not observed in pure nano-metals [43, 45, 46].
Moreover, in certain cases, such as NiFe, a transition from ordered,
L12 structure, to disordered systems results in order hardening [46,
115].

In light of these emerging trends, we decided to explore the mechan-
ical properties of Copper-Gold system. Understanding the stability
and structural properties of Cu𝑥Au1−𝑥 alloy is a significant area of
research because its extensively use in catalytic applications, such as
the selective hydrogenation of butadiene or CO oxidation [116, 117].
Additionally, being a different FCC system with respect from NiCo
solid solution, mentioned above, this analysis could help to clarify
our understanding of existing findings. In this chapter we first begin
to characterise Cu𝑥Au1−𝑥 bulk properties, by phase diagram analysis
and the extraction of elastic constants. After this, the focus shifts
to nanoparticles where the elastic and platic properties are closely
inspected with Molecular Dynamics and the Finite Element Method.
The primary goal of these investigations is not only to deepen our
understanding of the CuAu system, but also to enhance our overall
understanding of how plasticity begins in such complex systems, thus
enriching our collective knowledge in this field. In this study, we also
introduce a general method of analysis that is not only applicable to
the Copper-Gold system but it can be readily extended to investigate
other systems, particularly those with FCC structures
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5.1 Bulk - Copper-Gold alloys

The phase diagram of a material or alloy provides crucial information
about its potential phase and crystalline structure under different
conditions. Although these diagrams can include changes in both
temperature and pressure, in this study, we focus specifically on
variations triggered by temperature and concentration. Both gold and
copper, on their own, are typically found in the FCC structure, and
the same is observable in the copper-gold system, for all the different
concentrations.

Figure 5.1: Phase diagram of the
copper gold system, at different tem-
perature and different concentration
(extracted from [118]). The ordered
structure L12 and L10 are shown, to-
gether with the lattice parameters
𝑎, 𝑐 in two different directions, in
this case 𝑥, 𝑦 and 𝑧.

As shown in Figure 5.1, which represents the phase diagram of the
copper-gold (CuAu) alloy, the structural transitions are influenced by
temperature and composition. Above 900 K, the alloy is in the liquid
state. For intermediate temperatures, the system adopts the form of a
solid solution (called phase A1). Solid solutions are a unique form of
alloys wherein two or more types of atoms are uniformly distributed
throughout the material. In these solutions, the solute atoms, which
can be thought of as the ’guest’ atoms, are interspersed within the
host lattice. They may either replace the host atoms at regular lattice
sites, substitutional solid solutions, or occupy the spaces between the
lattice sites. In our analysis we will deal only with substitutional solid
solutions.

As the temperature is lowered further, ordering takes place, leading
to the formation of different phases. Of special interest are the L10
phase for the CuAu alloy and the L12 structure for the Cu3Au and
CuAu3 alloys. The L10 phase denotes an ordered alloy structure,
typically evident at lower temperatures, where copper and gold atoms
inhabit alternating layers in the CuAu alloy along a specific direction
(refer to Figure 5.1, alternating layers in the 𝑧 direction). This unique
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arrangement often leads to asymmetries in the lattice constants, where
𝑐, the parameter along the 𝑧 direction, is distinct from 𝑎, the in-plane
lattice parameter.

In contrast, the L12 structures, applicable to Cu3Au and CuAu3 alloys,
represent a situation where either copper or gold atoms reside at the
vertices of the cubic FCC structure, with the rest of the sites occupied
by the other metal. This configuration leads to pure and 50% mixed
layers, along the direction indicated as 𝑎 in Figure 5.1.

5.1.1 Validation of the SMA potential for bulk properties

The evaluation of mechanical properties in nanoparticles is carried
out using Molecular Dynamics, with support from the Finite Element
method. Prior to the analysis, it is essential to verify the suitability
of the selected CuAu potential. For this analysis, we have chosen a
SMA potential. The parameters for Au-Au and Cu-Cu interactions
remain the same as those defined in Table 3.1. These parameters are
displayed in Table 5.1 including now the Au-Cu bond parameters.

𝑟0 (Å) p q A (eV) 𝜉 (eV)

Au-Au 2.885 10.29 4.020 0.206 1.802
Cu-Cu 2.565 11.06 2.463 0.094 1.287
Au-Cu 2.725 10.68 3.242 0.132 1.515

Table 5.1: SMA parameters (see
equation 2.3.3) for Au-Au, Cu-Cu
and Au-Cu interactions. More detail
on the potential in [98]

In order to test the potential, different quantities are computed for
different concentration and different phases: lattice parameters, elastic
constants and enthalpy of formation, Δ𝐻f. All the values can be found
in Table 5.2. The formation enthalpy, is defined as the enthalpy change
that occurs when one mole of a substance in its standard state is
formed from its pure elements under similar conditions. For the
copper-gold alloy represented as Cu𝑥Au1−𝑥 , the formation enthalpy
is expressed as:

Δ𝐻f = 𝐸𝑡𝑜𝑡(𝐶𝑢𝑥𝐴𝑢1−𝑥) − 𝑥𝐸𝑡𝑜𝑡(𝐶𝑢) − (1 − 𝑥)𝐸𝑡𝑜𝑡(𝐴𝑢)) (5.1)

where 𝐸𝑡𝑜𝑡(𝐶𝑢𝑥𝐴𝑢1−𝑥) is the total energy of the mixed Cu +Au system
containing 𝑥Cu atoms and (1 − 𝑥)Au atoms in a given structure,
𝐸𝑡𝑜𝑡(𝐶𝑢) is the energy per atom of the FCC Cu and 𝐸𝑡𝑜𝑡(𝐴𝑢) is the
energy per atom of the FCC Au. If there are various potential mixing
patterns for a certain concentration and temperature, this parameter
can indicate which pattern is more stable or even if the alloy is likely
to exist, Δ𝐻 < 0 condition. The higher the formation enthalpy, the
greater the likelihood of a specific pattern or structure. As seen in
Table 5.2, all the three phases (L10, L12 and A1) are stabilised, for
the CuAu alloy, the ordered structure is more stable compared to
the A1, not astonishing considering that all the formation energies
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Table 5.2: SMA calculations for dif-
ferent mixing patterns and different
concentrations. Lattice parameters
in two different directions (𝑎 and 𝑐)
and the enthalpy of formation. Com-
parison with literature (lit.) values.

- a (Å) c (Å) Δ𝐻 (eV)

CuAu-A1 3.87 3.87 - 0.078
lit. - - -

CuAu-L10 3.92 3.83 -0.276
lit. 3.966 3.673 [119] -0.091[120]

Cu3Au-L12 3.74 3.74 - 0.226
lit. 3.74 3.74[6] -0.074 [120]

CuAu3-L12 3.93 3.93 -0.158
lit. 3.98 3.93[6] -0.059 [120]

Table 5.3: Elastic constants and
Young’s modulus 𝐸 values calcu-
lated with the SMA potential for
different mixing patterns and dif-
ferent concentrations. All quantities
are in (GPa). The 𝐸 values for the
L10 can be imprecise, they are com-
puted considered a simple average
as 𝐶′

11 = (𝐶11 + 𝐶22 + 𝐶33)/3 and
similarly for the 𝐶′

44 and 𝐶′
12. Com-

parison with literature (lit.) values.

- 𝐶11 𝐶12 𝐶44 𝐸001 𝐸111

Au 186 154 44.5 46.5 125

CuAu3-L12 193 149 53.7 63.2 145
lit. 189 145 47 [121] 63.1 128

CuAu-A1 175 143 54.8 46.4 147
lit. - - - - -

CuAu-L10 200/174 138/164 68.2/47.1 70.3 152
lit. 198/148 144/127 84/100 [119] - -

Cu3Au-L12 187 134 68.1 75.1 178
lit. 189 132 74 [121] 80.4 191

Cu 171 125 74.0 65.4 189

1: Computed elastic tensor for the
L10 structure, in the Voigt notations
shows as:

200 138 144 0 0 0
138 200 144 0 0 0
144 144 174 0 0 0
0 0 0 68.2 0 0
0 0 0 0 68.2 0
0 0 0 0 0 47.1



are computed at 0K. Regarding the lattice parameters, as previously
noted the L10 structure displays distinct lattice constants for the 𝑥, 𝑦,
and 𝑧 directions, with 𝑥 and 𝑦 being invariant. As illustrated in Figure
5.1, the lattice parameter 𝑎 varies from 𝑐, giving a ratio of 𝑐/𝑎 = 0.97 .
Contrarily, for the L12 structure, the lattice parameter remains uniform
across all directions, represented as 𝑐 = 𝑎.

The table 5.3 presents the values of the calculated elastic constants
and the directional modulus of elasticity. These are computed using
the methodology outlined in the supplementary material 8.3. Under-
standing these values is crucial for studying the elastic response in
nanoparticles. For the elastic constants, we observe a good match with
the literature values for the L12 system, though a larger deviation
is noticed for the L10 system. This discrepancy can be attributed to
the unique structural properties of the L10 phase, which induces an
asymmetric elastic tensor1 where 𝐶11 = 𝐶22 ≠ 𝐶33, 𝐶12 ≠ 𝐶13 = 𝐶23,
and 𝐶44 = 𝐶55 ≠ 𝐶66. Solid solutions have been more deeply tested at
many different concentrations. In this case, we consider ten different
simulation boxes (each containing approximately 10,000 atoms) for
each concentration, with a completely random atom distribution. We
perform bulk simulations with periodic boundary conditions aiming
to extract elastic constants and lattice parameters. The resulting values
are averaged across all the generated boxes. In table 5.2, we can find
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(a) (b)

Figure 5.2: Figure (a). Lattice parameter as function of copper concentration in Cu𝑥Au1−𝑥 systems, together with the Vegard’s
law. Figure (b). Elastic constant as function of the copper concentration in Cu𝑥Au1−𝑥 systems.

2: Vegard’s law: named after the
Norwegian physicist Lars Vegard,
is an empirical rule in materials sci-
ence which describes the relation-
ship between the composition of a
solid solution alloy and its lattice pa-
rameter. According to Vegard’s law,
the change in the lattice constant
of an alloy is linearly related to the
change in the concentration of its
constituents. It is not always valid.

the calculated values of Δ𝐻 𝑓 for the A1 structure, and as expected
the mixed pattern is stable. It is worth noting that the differences in
the elastic constants and lattice parameters due to different randomly
generated structures are minor and negligible. This suggests that any
local variations due to potential clustering are not significant, and
the global behavior of the alloy can be effectively represented as an
average.

Furthermore, the lattice parameter demonstrates a linear decrease
as the concentration of gold in the alloy diminishes, a behavior that
aligns well with Vegard’s law2 as shown in Figure 5.2a. Likewise,
the elastic constants appear to scale from gold to copper, following a
slightly nonlinear trend as depicted in Figure 5.2b. These subtle non-
linearities are more evident when calculating the Young’s modulus
(see how in Appendix 8.3). Particularly in the (001) direction, we can
observe that the Young’s modulus stays almost constant in all the
Au-rich region (see Figure 5.3a), while in the copper rich, it transitions
from gold to copper. A less pronounced deviation is found in the (111)
direction (see Figure 5.3b). Understanding the Young’s modulus of
the bulk solid solution is fundamental step for interpreting the results
obtained with the nanoparticles, which are elucidated in the following
sections. An intriguing aspect to discuss involves the validity of the
results presented in Figure 5.2b. The minor non-linearities leading
to significant deviations in the Young’s modulus behavior could be
artifacts of an imprecise potential or fluctuations due to the cutoff.
However, they could also be a manifestation of real physical behavior,
which would have profound implications for nanoparticle mechanics.
Previous studies have also documented similar nonlinear behaviors
of the Young’s modulus in the case of NiCo solid solutions [43]
suggesting that our results are not the result of an artefact of potential
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(a) (b)

Figure 5.3: Young’s modulus as a function of the copper concentration in Cu𝑥Au1−𝑥 systems. Figure (a). (001) direction.
Figure (b). (111) direction.

but of real physics to be understood.

An important step to confirm the applicability of the chosen SMA
potential in mechanical studies involves the computation of stacking
fault energies and unstable stacking fault energies. While these pa-
rameters might not significantly influence the analysis of elasticity,
they play a vital role in understanding the onset of plasticity and
ductility, affecting interactions and movements of dislocations. More
details on this subject are available in Appendix 8.6.

5.2 Copper-Gold Nanoparticles

5.2.1 The system

Nanoparticles can exhibit different mixing patterns, which are influ-
enced by various factors, including relative binding energy, surface
energy, and atomic size. Elements with lower surface energy tend to
stay on the surface to minimize the total energy, while smaller atoms
typically occupy the core. Other factors, although less relevant in this
context, can also play a role [42].

The main mixing patterns in nanoparticles can be segregated or
mixed configuration. Segregated nanoparticles can take the form of
core-shell structures, with one or more shells, or Janus nanoparticles,
where two different clusters of the same material share a common
interface. Mixed nanoparticles, on the other hand, can exhibit ordered
or disordered mixing, and a critical temperature defines the transition
between the two. Moreover the spectrum of possible pattern is broader,
local ordering could vary, segregation at the surfaces can appear also
in ordered structures, but this case is not here analysed. In Figure
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𝐸𝑏 𝑎 𝛾001 𝛾111

Au -3.81 4.08 0.30 0.22
Cu -3.49 3.61 0.48 0.39

Table 5.4: Lattice parameter 𝑎 (Å)
and Binding energy𝐸𝑏 from [6], Sur-
face energies 𝛾001 and 𝛾111 (eV/at)
from [101]

5.4 we can observe different mixing patterns for a generic system.
The phase diagram of the copper-gold nanoparticles is similar to the

Figure 5.4: Different mixing pat-
terns, starting from the left: the L12,
L10, partially segregated and solid
solution. At the top the nanoparti-
cles and at the bottom a (001) slice.

bulk one presented in Figure 5.1. We encounter ordered L10 structures
for CuAu alloys and L12 structures in Cu3Au and CuAu3 at low
temperatures. As the temperature increase, the system undergoes a
transition towards a solid solution A1. However, as mentioned before,
relative binding energy, surface energy, and atomic size potentially
result in segregation.

The copper-gold bulk system exhibits surface segregation, with gold
favoring migration to the surface [122, 123]. Furthermore, a recent
investigation revealed that gold segregates to the surface while still
maintaining a satisfactory degree of mixing at the core [124]. As shown
in Table 5.4, gold presents surface energy values approximately 35%
lower than those of copper and exhibits a larger lattice parameter.
Even if the alloying effect should obviously not be neglected, these
characteristics suggest that a certain degree of gold segregation at the
surface is to be expected.

For our study, 20 nm with shape 𝐺 ∼ 0.24 (from a (001) perspective)
nanoparticles are generated with varying concentrations ranging from
pure gold to pure copper, using a completely random configuration.
The solid solution nanoparticles were then subjected to Monte Carlo
minimization (at 𝑇 = 800 K) to look for configurations with lower
energy, so as eventually take into account gold segregation at the
surface. This approach allows for a more reasonable computational
time compared to molecular dynamics simulations.

In Figure 5.5a, we can observe a solid solution nanoparticle on the
left-hand side and the same nanoparticle after the Monte Carlo
minimization on the right-hand side. Evident segregation can be
observed on the surface, indicating a partial segregation phenomenon.
It is interesting to note, observing the slice of the two NPs, that at the
center of the right nanoparticle, the atoms still appear to be randomly
distributed, indicating a lack of significant segregation in the core
region as already discussed in [124].
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(a)

(b) (c)

Figure 5.5: Copper gold segregation in the CuAu nanoparticles. Figure (a) At the center the two configurations: A1, and
the same nanoparticle after Monte Carlo minimisation, showing gold segregation at the surface. At the sides the (001) slice
shows how segregation concerns only the external layers, while the core is not affected by the process. Figure (b): Surface
concentration of gold at the (001) and (111) surfaces. Segregation is weaker in the closed packed (111). Figure (c): gold
concentration as a function of a sphere radius. Gold concentration very high only in the last layers and the system stays A1 in
the core atoms.

It is possible to take the analysis a step further and study segre-
gation by facet. In Figures 5.5b and 5.5c, a quantitative analysis of
gold concentration at different surfaces, (001) and (111), for partially
segregated nanoparticles as a function of an increasing copper concen-
tration is presented. Thanks to the comparison with the solid solution
we see that the (001) surface tends to segregate (the Au content) more
than the (111) surface, being a closed packed it tends to segregates
less [124].

While, as demonstrated above, Au tends to segregate at the surface it
is interesting to understand Au/Cu atoms distribution in the inner
layers of a partially segregated nanoparticle. To this end, in Figure 5.5c,
for two nanoparticles (CuAu - A1 and the segregated counterpart),
gold concentration is plotted as a function of the radial distance from
the nanoparticle center. The solid solution is stable around the value
of approximately 50% copper concentration throughout, up to the
surfaces. In the case of the segregated nanoparticle, the outer shell
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is highly enriched in gold. It is important to consider that while the
average data may indicate outer shells rich in gold, the second layer
of atoms is actually rich in copper, suggesting a more complex atomic
arrangement beyond the surface.

The next section presents mechanical testing on nanoparticles. Each
nanoparticle consists of 306043 atoms, measures approximately (𝑑 ∼
20𝑛𝑚, with a truncated octahedral shape with (𝐺 ∼ 0.24 from (001)
perspective). In the solid solution A1 we cover all concentrations from
pure gold to pure copper, including their segregated versions (Segr.).
Ordered structures are represented by the CuAu-L10 structure (only
with gold top surfaces) and both CuAu3-L12 and Cu3Au structures.
Note that also CuAu3-L12 can be terminated in two different ways,
with a full Gold or mixed layer at the (001) surfaces, in this case both
configuration are considered, the same is valid for the Cu3Au-L12.
Segregation in ordered structures, similar to disordered ones, is not
discussed here, but represents a possible improvement of this work.

5.2.2 Elastic properties of Cu𝑥Au1−𝑥 nanoparticles.

Figure 5.6 presents the stress-strain curves for a set of different mixing
patterns, outcome of nano-indentation MD simulation of CuAu NPs
on the the (001) facet. As noted in Chapter 4, gold demonstrates softer
elastic behavior than copper. Clearly, the A1 configuration shows
a notable change in slope compared to pure gold and copper NP,
evidencing smaller 𝐸𝑒 𝑓 𝑓 . In this particular case, two different random
structures are probed (red lines in Figure 5.6) to show the effect of
different local distribution not on the elastic regime but only on the
plastic onset. Interestingly, the elasticity limit, rather than the effective
elastic modulus 𝐸𝑒 𝑓 𝑓 , shows greater sensitivity to these different
local configurations. This demonstrates that local atom arrangement
influences the distribution of the stress field inside the nanoparticle
and, consequently, the onset of plasticity. In segregated system (blue
line), both elastic and plastic behaviour aligns with that of gold.
Lastly, in the L10 structure (with gold surface), an increasing in slope
coupled with a reduction in critical stress is observed (black line).
Note that the elastic behaviour is still very close to that of pure Au NPs.
CuAu3 NPs mechanical properties are investigated and the results are
presented in Figure 5.7. Again, the A1 configuration shows softening
compared with pure copper, but has an elastic behavior close to that
of gold. In case of Au segregated in solid solution, as before, we tend
towards the behaviour of pure gold but the difference between the
configurations is less pronounced. In this case, the 𝐸𝑒 𝑓 𝑓 is comparable
with gold as CuAu3 solid solutions are rich in gold. As in the L10
system, the ordered L12 system presents an increase in 𝐸𝑒 𝑓 𝑓 , along
with a significantly higher critical stress.
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Figure 5.6: Compressive stress and
strain curve for 20 nm truncated oc-
tahedral CuAu NPs: solid solution
(A1), Au segregation (segr.), ordered
compound (L10) and pure copper
and gold. Two A1 structure are plot-
ted to show the effect of different
local distribution not on the elastic
regime but only on the plastic onset.

Figure 5.7: Compressive stress and
strain curve for 20 nm truncated
octahedral CuAu3 NPs: random
configuration (A1), Au segregation
(segr.), ordered compound (L12,
with last layer only with gold) and
pure copper and gold.

These results are summarized for different concentrations in Figure
5.8. The extraction of 𝐸𝑒 𝑓 𝑓 is obtained with the method outlined in
Chapter 3. Alongside the MD results, the FE elastic calculations are
also provided to verify their validity in characterizing the physical
properties of alloys. Specifically, this concerns both the A1 and the
ordered structures with the elastic constants extracted as detailed
in Section 5.1 (values can be found in Table 5.3). Due to increased
complexity, calculations for a segregated structure were not carried
out. However, a potential path to undertake could be the method put
forth by Moseley et al.[61].

Focusing first on the ordered structures, it can be observed that they
exhibit higher resistance to deformation on the (001) facet compared
to the disordered structures, especially in the case of the L12 structure.
The Finite Element method works effectively for ordered structures,
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3: Intrinsic stress in the undeformed
nanoparticle. See Chapter 3 for more
details.

suggesting that internal stresses from lattice mismatch and the con-
figuration of the structure do not significantly influence the elastic
response, keeping it linear. Conversely, in the disordered structures,
a significant deviation between the A1 and the Segr. configurations
is observed across all concentrations. This discrepancy is maximal
and exceeds 10% for the CuAu system. Counter-intuitively, the FE
solution using A1 elastic constants aligns perfectly with the segregated
structure and not with the solid solution. Taking into account what is
stated in Chapter Chapter 3, it is not surprising to observe that the
FE solution precisely mirrors that of the bulk (see 5.3a), exhibiting a
gold-like behaviour up to the 50% concentration. It appears as though
gold dictates the mechanical response.

Figure 5.8: (001) Effective Young’s
modulus at different Cu concentra-
tion for 20 nm truncated octahedral
NPs, with ordered structure: L10 and
L12, disordered structure: A1 and
the segregated counterpart. A com-
parison is proposed with two dif-
ferent methods, Finite Element and
Molecular Dynamics.

This distinct disparity may be due to two main factors: a pronounced
impact of the outer shell on the comprehensive behavior or a substan-
tial decrease of the residual stress 3 in the segregated configuration,
which profoundly transforms the elastic behavior. Importantly, the
latter assumption might imply the former. The impact of the shell is
probably not the main contribution; the correspondence with the FE
results indicates that in the A1 system, there exists a higher residual
stress, resulting in a smaller 𝐸𝑒 𝑓 𝑓 . As done in case of pure metallic
nanoparticles, the calculation of the local stress distribution can be a
significant tool to go further in our analysis. Figure 5.9a depicts the
𝜎𝑧𝑧 Virial stress distribution in two CuAu nanoparticles: one A1 and
its segregated counterpart. In the segregated nanoparticle, energy
minimization results in gold atoms migrating to the surface, thereby
significantly reducing the mean (from −100 MPa to 30 MPa) and vari-
ance of the stress distribution. The same distribution changes can be
observed for 𝜎𝑥𝑥 and 𝜎𝑦𝑦 . While it is typical for compressed materials
(𝜎𝑧𝑧 < 0) to be stiffer than those under tensile stress (𝜎𝑧𝑧 > 0), this
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(a) (b)

Figure 5.9: Figure (a): residual stress 𝜎𝑧𝑧 for indentation on (001) facet, computed with the Virial method for two CuAu
configurations : A1 and the segregated counterpart. Figure (b): comparison of the inter-atomic distances for the three different
kind of bond that can be found in a CuAu before and after the segregation: Au-Au, Cu-Cu, and Cu-Au. Results for undeformed
nanoparticles.

does not correspond to the observed reduction in stiffness in case
of A1 structures (⟨𝜎𝑧𝑧⟩ < 0). This can be explained by recognizing
that when a nanoparticle is indented, it is subject to a compressive
stress in the 𝑧 direction and a tensile stress in 𝑥 and 𝑦 ones. Thus,
the A1 structure may exhibit a softer response than its segregated
version since along the 𝑥 and 𝑦 directions, the atoms reduce their
compressive stress going towards an equilibrium position, and this
effect is not negligible. Figure 5.9b shows the distribution of inter-
atomic distances for three bond types (Au-Au, Cu-Cu, and Cu-Au) in
CuAu nanoparticles for both the A1 and the segregated systems. As
highlighted by our analysis, the A1 configuration displays roughly
equal distributions for all bond types. Upon segregation, the number
of Cu-Au bonds increases with corresponding decreases in the other
bond types. Interestingly, the average distances of pure bond types
deviate from the lattice parameters found in pure crystals. The system
appears to evolve from a random distribution to one predominantly
featuring Cu-Au bonds. The predominance of Cu-Au bonds in the
segregated NP can also explain the good agreement between 𝐸𝑒 𝑓 𝑓
computed with FE reported in Figure 5.8: the elastic response of the
segregated NP is more similar to an average medium with a fixed
value of elastic constants (as in our FE model) than A1 system, due to
the the large number of Cu-Au bonds.

Lastly, let us consider the case of ordered structures. The increased
stiffness of L10 and L12 structures observed in Figure 5.8 becomes
clear when examining Table 5.3. Notably, the Young’s modulus of
the bulk structure in the (001) direction shows a significant rise
compared to both Cu and Au, and this is reflected in the nanoparticle
mechanical behaviour. The same analysis is replicated for the (111)
facet, preliminary results are available Appendix 8.5.
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5.2.3 Plastic properties of Cu𝑥Au1−𝑥 nanoparticles.

As highlighted in the introduction, recent studies indicate that solid
solutions often display softer behavior than pure elements. This
phenomenon is mainly attributed to the local instability in stacking
fault energy, moreover Bisht et al. [43] explored and excluded the idea
that the strength softening might be linked to an elastic softening,
here this idea is reconsidered. Where with elastic softening is meant a
reduction in the stiffness.

To investigate the plastic properties of Cu𝑥Au1−𝑥 nanoparticles, we
focus our analysis on the critical stress. Figure 5.10 displays the
dependence of 𝜎𝑐 on the nanoparticle composition for 20 nm truncated
octahedral nanoparticles with indentation on (001) facet. Results are
extracted from the stress and strain curves previously utilized for the
elasticity study.

Figure 5.10: Critical stress at dif-
ferent copper concentrations for 20
nm truncated octahedral Cu𝑥Au1−𝑥
NPs with indentation on (001) facet.
A1 and segregated structure for the
disordered systems. L12 and L10 for
the ordered nanoparticles. The red
area represents the dispersion for all
the tested configurations in case of
the A1 structures.

The first observation here is the softening of the A1 systems in
comparison to the rich states. In other words, if a system is gold-
rich, it is softer than gold, and if it is copper-rich, it is softer than
Cu. It can also be noted that segregated structure demonstrate a
slightly stronger behavior compared to the A1 systems although it is
challenging to make conclusion about the results without adequate
statistics. Concerning the results on the ordered structures, the L10
system is softer with respect its A1 counterpart. On the contrary,
the L12 structure presents remarkably stronger behavior in both
concentrations to reach a critical stress around 5 GPa to be compared
with their equivalent in solid solution or segregated system, whose
values do not exceed 3.5 GPa. It is useful to specify that the A1 curve
has been produced by considering different local configurations (10
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Figure 5.11: Fifty different indenta-
tion for the A1 CuAu structure with
different local configuration. A dis-
tribution of the critical strain 𝜖𝑐 is
shown to highlight the dispersion
due to different local configuration,
that leads to earlier dislocation nu-
cleation.

An analogy for this phenomenon
can be found with temperature
when temperature is added to a sys-
tem, atoms start oscillating around
an equilibrium position, generat-
ing corresponding stress oscillations
that introduce stochasticity to the
event. The maximum critical stress,
𝜎𝑐,𝑚𝑎𝑥 , can only be reached at 0K or
with a certain probability at a fixed
temperature.

per every concentration). This allows us to statistically analyze the
nucleation events. The maximum value of critical stress, 𝜎𝑐,𝑚𝑎𝑥 is
shown with red dots in Figure5.10, while the red area represents the
dispersion of 𝜎𝑐 values for all the tested configurations. From these
outcomes it is clear that local configurations can trigger nucleation
at an earlier stage when the stress due to the local Au-Cu atom
distribution is excessively large. Since correct statistics are needed
to properly characterize the various plasticity mechanisms, a larger
sample size has been considered. In Figure 5.11, the effect of dispersion
due to different local arrangement is shown for the A1-CuAu system
from 50 configurations. As seen in the histogram form, 𝜖𝑐 (as in the
Figure) or 𝜎𝑐 (not shown here) follows a distribution function when
copper atoms are present into a gold matrix. This distribution may
depend on factors like geometry, alloying concentration, and other
possible parameters. While determining these dependencies is beyond
the scope of this work, it presents a fascinating direction for future
research.

A closer examination of Figure 5.8 reveals a tight correlation between
the onset of plasticity (Figure 5.10) and elastic behavior, coherent with
the findings of Chapter 4. The 𝜎𝑐,𝑚𝑎𝑥 curve is largely dictated by the ef-
fective elastic response of the nanoparticles: the elastic softening cause
a plastic softening. This is even confirmed by the segregated structures,
that consistently demonstrate a higher critical stress compared to A1
systems.

Bearing this in mind, we can revisit the analysis of nucleation events
in solid solutions. First, as highlighted by Sharma et al. [46] and
Bisht et al. [43], various local arrangements can lead to softening:
nucleation becomes a statistical event influenced by local clustering.
Secondly, strength softening is associated with elastic softening, which
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determines the 𝜎𝑐,𝑚𝑎𝑥 . This second factor is intimately tied to the
specific alloy analyzed and might be absent if no elastic softening
occurs in the bulk system. This observation aligns with the findings in
Chapter 4, where the effective medium response dictates nucleation.
The discussion can be further extended to segregated systems: when
internal residual stress is reduced, the elastic response is modified (as
seen in Figure 5.8), subsequently influencing the plastic response.

On the other side ordered structure (L10 and L12) exhibit different
behaviors at the onset of plasticity: while one displays softening (L10),
the other shows strengthening (L12). This discrepancy is likely due to
the ease of introducing a stacking fault in the L10 structure. Since it is
not a mixed structure, compared to the L12 structure, it might facilitate
the initiation of plastic deformation. The strengthening mechanism of
the L12 was already observed by Sharma et al. [46] and it can be linked
again to the stiffer elastic response.

5.2.4 Plastic Behavior in the L10 structure

An interesting ductile behavior has been observed deforming the L10
structure. This behavior is reported in this section, for a 20nm cubic
CuAu NP. Figure 5.12 shows the stress and strain curve obtained for
(001) nano-indentation using MD simulations. We can notice that for
low strain, we have a first (usual) elastic regime (region 1) followed by
a plastic regime (region 2) where an almost perfect plastic behavior is
observed. In region 2, after the nucleation of the first partial dislocation
at the critical stress, new dislocation events occurs. The nucleated
dislocations shear the cubic NP, exiting from the NP at the opposite
surface and leaving behind a stacking fault that completely crosses
the NP. Nucleation after nucleation every new stacking fault sums
up, changing the bonds locally from a horizontal L10 to a vertical
L10 as sketched in Figure 5.12. This transition continues until about
𝜀 = 0.25, where the structure becomes defect-free, crystalline, and
fully shifted in the vertical L10 structure displaying another elastic
stage with different properties (beginning of region 3). After forming
the vertical L10 structure, compressing it in the 𝑥 or 𝑦 direction could
potentially revert it back to the starting configuration.

Figure 5.13 displays the initial and final structures, both defect-free,
illustrating the reversible nature of this process. Similar results are
observed also for truncated cubes and truncated octahedrons.

This surprisingly plastic behavior, similarly observed in the literature
[125], is promising: with an applied cycling loading the system can
go back and forth from two different ordered structures, exhibiting
different elastic properties. However, This finding has to be analyzed
in details: an examination of the system’s stacking fault energy, would
facilitate a more precise interpretation the observed mechanisms.
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Figure 5.12: 20 nm L10 indenta-
tion stress-strain curve showing ini-
tial elastic deformation, followed by
plastic deformation with stacking
fault pile-up transitioning the struc-
ture from horizontal to vertical L10,
and finally complete structure recon-
struction leading to a second elastic
regime.

Figure 5.13: Initial, intermediate and final configuration of the cubic L10 structure analysed. The final structure is perfectly
crystalline.

5.3 Conclusion

In this chapter, many key findings regarding the mechanics of nano-
alloys are discussed, throughout the different stable phases of the
copper-gold system. In disordered structures different elastic behav-
ior can be observed. As the internal stress (residual stress) within
nanoparticles increases, their elastic response changes. This change
is evident when comparing an A1 structure to a segregated one. The
segregation observed is a way for the material to minimize energy
which helps to reduce its internal stress. Moreover the elastic response
of the A1 solid solution is not influenced by local configurations, but
it does exhibit elastic softening. Structures with more gold content
are softer than pure gold, and those richer in copper are softer than
pure copper. In contrast, ordered structures like L10 and L12 are stiffer,
aligning with bulk properties. This observation are made thanks to the
comparison between FE and MD. Following the discussion of Chapter
3 this latter is further validated for alloy systems at the nanoscale
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especially for sizes close to 20nm and subject to certain considerations.
FE calculations are suitable for disordered structures as long as the
internal strain (residual strain) within the nanoparticle is not too high.
This requires both similar lattice parameters and good mixing of
atoms. If these conditions are not satisfied, the use of Finite Elements
might produce divergent results. For ordered structure things works
better and good agreement is found for both L10 and L12 structures.

Considering the plastic onset, our investigation is a continuation of
previous research by Sharma et al., Bisht et al., and De la Rosa Abad

et al.. Thus, the comparison of A1 with its segregated counterpart
deepens the understanding of nucleation in solid solutions. The
plastic softening observed in many A1 systems can be attributed
to two main factors. First, different local configurations can lead to
instabilities in USFE, causing earlier nucleation to occur. The second
one is the elastic softening, resulting from either the material’s natural
softening or from residual stresses due to lattice mismatches. This last
factor confirms even more the hypothesis exposed in Chapter 4 with
nucleation depending mainly on the elastic field. For the L12 structure,
strengthening effect is observed, but it is missing in the L10 structure.
The reasons of both effect are still unknown and represents a possible
evolution of this work, that together with a full investigation of SFE
and USFE can confirms also the switch mechanism observed in the
plastic regime of L10 structure.
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Catalysis is an indispensable process for contemporary society, used
in countless industrial applications, from environmental protection
through pollutant degradation to the synthesis of pharmaceuticals. At
the core of these catalytic processes, nanoparticles play a fundamental
role due to their unique and tunable properties. These properties can
be engineered in various ways, one of which is through the deliberate
application of strain. This manipulation can, in turn, influence their
catalytic efficiency [65, 126].

There exists a well-known relationship between the absorption proper-
ties and structural characteristics of a material, as extensively demon-
strated by Nørskov and colleagues [61]. A key revelation from their
work is the discovery of a correlation between local electronic prop-
erties and the absorption of the studied structure. This finding has
been exploited to manipulate nanoparticle-catalysed reactions. In this
context, our analysis introduces the study of mechanically deformed
nanoparticles, inspecting the impact of both elastic deformation and
the subsequent plastic regime on local electronic and surface absorp-
tion properties.

This chapter starts with the implementation of a tight-binding code to
calculate local electronic properties in nanostructures. The develop-
ment process of the tool, its validation, and its application to our case
study, i.e. hydrogen adsorption on platinum nanoparticles, are dis-
cussed. Indeed, among the transition elements studied so far, namely
Au, Cu and Pt, the latter is the most interesting from a catalytic point
of view. In particular, numerous studies in the literature have focused
on the use of Pt nanoparticles for the development of hydrogen-
based applications[127]. By combining tight-binding analysis based
on Nørskov model and DFT calculations, we focus the following study
on hydrogen absorption at the surface of Pt nanoparticle under defor-
mation. Of course, the conclusions drawn could easily be generalized
to other adsorbed molecules (such as absorption of CO or 1

2O2) or
other types of catalyst.

6.1 Implementation of the Tight-Binding formalism

In this section, an overview of the main steps needed to implement
the code used for the local density of states calculations (equation
1.19) is presented. The starting point of our work is a pre-existing code,
developed by Dr Sylvan Latil (CEA Saclay), capable of computing local
DOS on single-orbital systems and implemented in Fortran following
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the tight-binding formalism described in Section 2.5. After building
the Hamiltonian, the recursion method is used to tridiagonalize the
matrix and the Green function method to calculate the local DOS. The
required inputs including hopping integrals, on-site energies, lattice
parameters, and so forth.

We expand the pre-existing code to facilitate multi-orbital studies, as
only 𝑠 orbitals are considered, and therefore not adequate for the study
of transition metals. As usual, hopping integrals are geometrically
constructed using the Slater-Koster (SK) method [70, 71]. Consequently,
we have at our disposal a complete set of basis integrating the 𝑠, 𝑝
and 𝑑 orbitals. Moreover, hopping integrals are until now fixed in the
code and do not explicitly take into account distance dependencies. To
overcome these two limitations in our code, the value of the hopping
integral is now exponentially modulated with the distance, denoted
by 𝑉hop = 𝑉sk · 𝑒−𝑞·(𝑟/𝑟0−1), where 𝑟0 is the lattice parameter, 𝑉sk is the
SK output with hopping parameters extracted from [72], and 𝑞 is a
fitted value based on DFT results. This spatial dependency is crucial
when examining strained materials, ensuring that strained structures
provide different results compared to non-strained structures.

For a proper study of local electronic properties of nanoparticles, the
determination of the Fermi level (𝐸 𝑓 ) is fundamental. This is obtained
by imposing a certain number of electrons per atom (for platinum, we
consider [𝑋𝑒]4 𝑓 145𝑑96𝑠1, accounting only for the 𝑠𝑝𝑑 electrons of the
last shell, thus considering 10 electrons) and identifying the energy at
which this condition is met. It is then important to integrate over the
DOS:

∫ 𝐸 𝑓

−∞
DOS(𝐸), 𝑑𝐸 = 10 (6.1)

This method works perfectly in bulk materials, but challenges arise
when dealing with surfaces, as in the case of nanoparticles. For
this reason, it is required to perform self-consistent calculations, a
necessary choice to acquire an accurate Fermi level [128]. The Fermi
level is defined by the total density of states (DOS). Nevertheless,

Figure 6.1: Evolution of the electrons
numbers during the self-consistent
loop in case of a Pt nanoparticle.

local charging effects can occur due to the non-conservation of the
total electron number. These effects manifest after imposing a global
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𝑉𝑑𝑑𝜎 𝑉𝑑𝑑𝜋 𝑉𝑑𝑑𝛿 𝑉𝑝𝑑𝜎 𝑉𝑝𝑑𝜋
−0.9328 0.4800 −0.0800 −1.1651 0.3328
𝑉𝑠𝑠𝜎 𝑉𝑠𝑝𝜎 𝑉𝑝𝑝𝜎 𝑉𝑝𝑝𝜋 𝑉𝑠𝑑𝜎

−1.0660 1.5227 2.5410 −0.3354 −0.8431
𝜖𝑠 𝜖𝑝 𝜖𝑑 𝑞𝜎 𝑞𝜋 𝑞𝛿

10.5293 20.2021 6.1859 4.3660 5.5890 6.2247

Table 6.1: Hopping integrals ex-
tracted from [72]. Exponential pa-
rameters 𝑞𝜎 , 𝑞𝜋, 𝑞𝛿 are calculated
from DFT calculation with in cooper-
ation with Dr Cyrille Bareteau (CEA
Saclay), the spatial dependence for
the 𝑠 and 𝑝 orbitals is set to 1.

Fermi level on the local density of states. In nanoparticles, where
the majority of atoms are in the core, enforcing the bulk Fermi level
on the surfaces, edges, and corner atoms leads to local and artificial
charging. To reduce these local charging effects, we implement a
self-consistent loop. During this process, the on-site energy of each
atom (represented by the diagonal components of the Hamiltonian)
is adjusted until charge conservation is achieved, thereby ensuring
the correct number of electrons per atom. By iteratively updating
these on-site energies, the self-consistent loop enables a more accurate
calculation of the Fermi level and eliminates the local charging effects
(results are considered converged when the relative error is less than
𝜖𝑟 < 8 · 10−4). A detailed illustration is presented in Figure 6.1, where
from left to right, we can observe the evolution of the electron numbers
per atom from a charged system to a neutral system, over four iteration
loops.

We ultimately implemented the code in Python, with all functions
written in Fortran, striking a balance between computing time and a
user-friendly interface for effective data post-processing. Furthermore,
the code is fully parallelized to allow the study of large systems, which
would otherwise be impossible. Everything is validated through the
study of well-known cases such as graphene or bulk platinum.

6.1.1 Validation of the tight-binding model

As previously mentioned, we perform different tests on various
examples. Of course, a crucial step is the fitting of the tight-binding
parameters to reproduce the electronic properties of platinum as
accurately as possible. To carry out this work, we collaborated with
Dr Cyrille Bareteau (CEA Saclay). The final parameters are presented
in the table 6.1. A demonstration is provided in Figure 6.2a, where we
present a comparison between the total density of states obtained from
the Density Functional Theory and our tight-binding calculations for
a FCC bulk platinum.

It is interesting to see that the tight-binding DOS adeptly replicates
the key characteristics of the DFT one.

Additionally, Figure 6.2a provides insight into the primary contribu-
tions from different orbitals. The 𝑠 orbitals, for example, show a wide
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(a) (b)

(c) (d)

Figure 6.2: Total DOS obtained from tight-binding and DFT calculations for a bulk FCC Pt. Figure (a) The different 𝑠𝑝𝑑
contributions. Figure (b) 𝑡2𝑔 and 𝑒𝑔 families. In all cases, the Fermi level is set to zero. Figure (c): Evolution of the tight-binding
total DOS together with the number of coefficient of the continued fraction (𝑎 and 𝑏) computed. Figure (d): Evolution of the
coefficients 𝑎, 𝑏.

energy distribution, reflecting their delocalized nature and substantial
overlap integral. Similarly, 𝑝 orbitals, while mirroring this behavior,
occur at slightly elevated energies. Conversely, the 𝑑-band shows a
marked different behavior. The energy levels are highly localized,
which is consistent with the specific properties of 𝑑-orbitals, often
being less delocalized and having a more significant role in deter-
mining chemical properties. Furthermore, we note the Fermi level
aligns with the rightmost peak, this is the reason behind the good
behaviour in catalysis of platinum [73]. Shifting our focus to Figure
6.2b, we present a comparison of the methodologies on two different
sets of orbitals within the 𝑑-band since in the case of a cubic symmetry
system, a judicious choice of axes can be used to classify the 𝑑 levels
into two groups: 𝑒𝑔 ( 𝑥

2−𝑦2

2 , 3𝑧2−𝑟2

2
√

3
) and 𝑡2𝑔 (𝑥𝑦, 𝑦𝑧, 𝑧𝑥). Once again, we

find a very good agreement between the two methods. Consequently,
our tight-binding parameters are perfectly adapted to deal with Pt
systems and this is especially true when looking at the 𝑑-band in
terms of mean (𝜇1) and variance (𝜇2) even if all the peaks are not
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perfectly reproduced.

Using this set of parameters, we present some calculated densities
of states for the FCC structure, enabling us to judge the accuracy
of the model. The series of recursion coefficients (𝑎, 𝑏) associated
with the calculation of the density of states is shown in Figure 6.2d.
This series converges fairly rapidly with the number of levels of the
continued fraction. In many cases, therefore, it is possible to consider
only the first levels of the continued fraction to study the energetic
properties of transition metals. Figure 6.2c shows how the density
of states varies with the number of coefficients calculated exactly. It
can be seen that the main details appear rapidly with the number of
coefficients (here 16). To assess the robustness of our parameterization

Figure 6.3: Transition of d-ldos from
the (001) surface to the bulk, in
three different layers. Comparison
between tight-binding and DFT re-
sults.

and the effectiveness of our self-consistency loop in ensuring charge
neutrality, we calculate the d-ldos of a Pt (001) surface. The results
presented in Figure 6.3 show again a good agreement for all three
layers (surface, sub-surface and sub-sub-surface). The same behavior
is obtained for the (111) surface and is not presented here. This analysis
of Pt surfaces confirms that our TB tool is perfectly suited to the case
of Pt nanoparticles with (001) and (111) facets.

6.1.2 Electronic properties of pristine Pt nanoparticles

The study can now move on the study of an unstrained, defect-free
nanoparticle. These investigations, which provide insights into perfect
conditions, are very important to understand the following sections.
For practical reasons, such as keeping the computation time for
DFT calculations reasonable, the analysis are performed on a small-
sized truncated octahedron made of 405 platinum atoms. Figure 6.9
presents the local density of states of specific sites present at the
surface from DFT and tight-binding calculations. Here again, the
main characteristics are perfectly reproduced, whether for vertices,
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edges, or atoms on (001) and (111) facets. At first sight, the width of
the 𝑑 is well related to the coordination number (Z𝑖) of each site 𝑖
according to the following sequence: Z𝑣𝑒𝑟𝑡𝑖𝑐𝑒

𝑖
< Z𝑒𝑑𝑔𝑒

𝑖
< Z(001)

𝑖
< Z(111)

𝑖
.

As discussed in Chapter 1.4, first and second moments (𝜇1 and 𝜇2) of

Figure 6.4: The local density of states
is investigated at four distinct sites
within a nanoparticle: the corner, the
(001) facet, the (111) facet, and the
core atom. Results were obtained
using two different methods: Den-
sity Functional Theory and Tight-
Binding. These studies were done on
a nanoparticle containing 405 atoms,
characterized by a truncated octahe-
dral shape. The Fermi level is set to
zero.

ldos are relevant quantities for identifying the catalytic properties of
nano-objects. As a result, from the local density of states presented
in Figure 6.4, we determine these quantities from both DFT and
tight-binding calculations (equation 1.20). Results for the first moment

(a) (b)

Figure 6.5: Analysis of the first moment distribution for a Pt nanoparticle containing 405 atoms. Results were obtained using
tight-binding and DFT calculations.

are presented in Figure 6.5a in a histogram form where different
populations of atoms can be identified. As expected, the values of 𝜇1
change according to the coordination number of each atom. Regarding
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tight-binding calculations,𝜇1 lie between−2.8 and−2.6 eV for the bulk
atoms which have 12 neighbors. The second population corresponds
to the surface atoms which first moment values are above −2.4 eV.
Then, edges and vertices are observed with lower coordination. This
distribution is more clearly visible in the Figure 6.5b where a direct
insight of the local 𝜇1 assignment on the surface of the nanoparticle is
presented. In case of DFT results, a noticeable shift in the 𝜇1 values is
revealed compared to those obtained from tight-binding calculations.
Furthermore, the main populations are also present but the different
families are not as well identified (see Figures 6.5a and b).

Our findings significantly improve when examining the second mo-
ment, parameter related to the ldos width. In Figure 6.6a, we observe

(a) (b)

Figure 6.6: Analysis of the second moment distribution for a Pt nanoparticle containing 405 atoms. Results were obtained
using tight-binding and DFT calculations.

a stronger resemblance between the calculated histograms obtained
by both methods compared to the 𝜇1 distribution. Indeed, except a
minor rigid shift, tight-binding and DFT results align almost perfectly
allowing a more precise reproduction of the various atom families
and their dependence on the coordination number. Bulk atoms with
higher coordination have √

𝜇2 values between 2.2 and 2.4 eV while
atoms with lower coordination have lower √𝜇2 values (around 1.7 to
2.1 eV). As a result, both methods successfully capture the expected
decrease in the bandwidth as we reduce the coordination number
(see Figure 6.6b). The ultimate aim of our work is to study the local
electronic properties of nano-objects, with a particular emphasis on
absorption properties. As discussed in the first chapter, these proper-
ties are directly linked to the first moments of the site. However, the
limited precision of the tight-binding method in describing the first
moment poses a challenge. First and second moments are linearly
related, with the relationship expressed as 𝜇1 ∝ √

𝜇2 [129], in Figure
6.7 this is verified for all the ldos DFT computed on the 405 atoms
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Figure 6.7: Linearity between 𝜇1
and √

𝜇2, for our ldos calculation of
nanoparticle in Step 1.

nanoparticle system. Given the promising results in describing the
second moment using the TB method and its linear relationship with
the first moment, we have decided to proceed by focusing our study
on 𝜇2 in the context of nanoparticles subjected to both elastic and
plastic deformation. This approach, we believe, will enable us to better
understand and quantify the impact of structural deformations on
the electronic and absorption properties.

6.2 Elastic deformation and first plastic event

Figure 6.8: Stress ans strain curve
obtained with MD calculations for
a truncated octahedral Pt nanoparti-
cle containing 405 atoms. The curve
is annotated with the various steps
at which electronic properties are
analyzed. The colors represent the
coordination of each atom.

We now focus on the impact of mechanical deformations on the
electronic properties of nanoparticles and the link with their catalytic
reactivities. Figure 6.8 presents a standard stress and strain curve
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obtained through the indentation of a truncated octahedron platinum
nanoparticle containing 405 atoms. The methodology is detailed
in Section 2.3. While the nanoparticle in its initial configuration
(step 1) has already been analyzed within the prior Section, we now
investigate the consequences of elastic deformation (step 2) and plastic
deformations, by introducing one or two stacking defects (steps 3 and
4), on the electronic properties.

6.2.1 Elastically deformed nanoparticle

Let first consider the effect of elastic deformation on the electronic
properties of a Pt nanoparticle. For this purpose, we consider an
elastically strained nanoparticle just before the first nucleation occurs.
This corresponds to step 2 in Figure 6.8 for a highly strained ( 𝜀 ∼ 0.1)
nanoparticle and leading to a high amount of stress (around 20 GPa).

(a) (b)

Figure 6.9: Effect of strain on the electronic properties of a Pt 405 nanoparticle by comparing before (step 1) and after (step 2)
elastic deformation. Tight-binding analysis of the local 𝜇2 distribution (a) in a histogram form and (b) on surface sites of the
nanoparticle.

Figure 6.9a shows the local distribution of the second moment for
each atom in a histogram form before (in blue) and after the elastic
deformation (in red). As previously discussed, different populations
can be identified, i.e. bulk atoms and surface sites such as vertices,
edges and atoms on (111) and (001) facets. For the core atoms, the
stress spreads the local 𝜇2 distribution but does not change the aver-
age value. The effect of stress is mostly noticeable at the top surface,
where the indenter load is applied. Indeed, we see a small shift (less
than 0.01 eV) of the local 𝜇2 distribution to both left and right. To go
beyond, the surface site analysis in 6.9b provides a direct insight into
the distribution at the surface of the nanoparticle and confirms the
presence of different populations. Under uniaxial stress, atoms present



102 6 Improving absorption properties of nanoparticles through plastic deformation

Figure 6.10: Change in coordination
number for the nanoparticle in Step
3.

in the middle of the facet are compressed because they cannot relaxed
leading to a right shift in the histogram distribution. In contrast, the
atoms on the sides (such as edges or vertices) can relax, reducing the
average stress on each atom. Such mechanism induces the leftward
𝜇2 shift as seen in the histogram analysis. However, it is important to
note that these changes in electronic properties are very small even
for large elastic deformations.

To conclude, our study based on tight-binding calculations clearly
shows that electronic properties are little altered during elastic uniaxial
deformation. It is worth pointing out that such elastic stresses can
exist as soon as nanoparticles are inserted into matrices, as is often
the case for practical needs. This strongly suggests that the various
applications envisaged for the use of Pt nanoparticles will not be
affected by elastic deformation such as catalytic reactions.

6.2.2 Plastically deformed nanoparticle

In this section, the impact of plastic deformation on local electronic
properties is analyzed. More precisely, the case presented here cor-
responds to step 3 in Figure 6.8 where the nanoparticle reaches the
plastic regime just after the critical stress. As seen in Chapter 4, this
transition from elastic to plastic behaviour is due to the dislocation
nucleation at the top corner which moves on its slip plane until it gets
out, leaving a trace behind. As seen in Figure 6.10, such phenomenon
lead to a surface step all around the nanoparticle with the presence of
a stacking fault inside. The emergence of the surface step allows the
creation of new different sites with specific electronic properties since
there is a significant change in terms of coordination.

Once the stacking fault is created, the nanoparticle is relaxed within
MD calculations to remove the effect of the indenter, allowing to
simulate a more realistic nanoparticle.

Figure 6.11a depicts the local distribution of the second moment
for the surface’s atoms (√𝜇2 < 2.2) in a histogram form of the
initial nanoparticle (step 1) and after the first plastic event (step3).
As we can observe, electronic properties of surface sites are clearly
altered. Interestingly, our analysis shows the presence of sites whose
coordinates largely change during plastic deformation with very low
values of √

𝜇2 around 1.7 eV. Besides, the surface site analysis in
Figure 6.11b clearly reveals the atoms affected. Indeed, the presence
of a surface step around a stacking fault results in the formation of
surface atoms whose coordination is considerably reduced, narrowing
their bandwidth.
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(a) (b)

Figure 6.11: Effect of strain on the electronic properties of a Pt 405 nanoparticle by comparing before (step 1) and after (step 3)
plastic deformation. Tight-binding analysis of the local 𝜇2 distribution. Figure (a): in a histogram form with a zoom on the
surface sites. Figure: (b) on surface sites of the nanoparticle.

Consequently, our tight-binding analysis highlighted the fact that
electronic properties are strongly modified in the plastic regime. Al-
though the characteristic peaked distribution that gives nanoparticles
their unique selectivity attributes is lost with the plastic transition, this
change is significant and could potentially enhance the absorption
properties of a nanoparticle, making it beneficial for catalytic reactions.
To assess this assumption, we chose to couple our tight-binding model
to DFT calculations of hydrogen adsorption on plastically deformed
nanoparticle.

6.2.3 Adsorption of H on a platinum nanoparticle from DFT
calculations

It is useful to see whether the conclusions drawn from the tight-
binding model are correct for the plastically deformed nanoparticle
corresponding to step 3. For this purpose, analysis of the local surface
𝜇2 distribution from DFT calculations are presented in Figure 6.12
for the Pt nanoparticle under analysis. Through this comparison, it
seems that DFT calculations are in good agreement with our tight-
binding model where a minor shift between the two distribution
in the histograms is observed. More interestingly, sub-coordinated
sites giving rise to a reduction of 𝜇2 are also present in case of
DFT calculations. To go beyond, we perform DFT calculations of H
absorption on a Pt nanoparticle with or without plastic deformation
and on specific sites identified thanks to our tight-binding analysis.
In this context, the quantity of interest is the absorption energy, 𝐸𝑎𝑏𝑠 ,
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Figure 6.12: Comparison of √
𝜇2

computed with two different meth-
ods, DFT and TB for the surface sites.
Step 3 nanoparticle.

defined as follows:

𝐸𝑎𝑏𝑠 = 𝐸𝑁𝑃+𝐻 − 𝐸𝑁𝑃 − 1
2
𝐸𝐻2 (6.2)

with 𝐸𝑁𝑃+𝐻 the total energy including the Pt nanoparticle and the ab-
sorbed hydrogen, 𝐸𝑁𝑃 the total energy of the isolated Pt nanoparticle,
and 𝐸𝐻2 the total energy of a 𝐻2 molecule. In all cases, two types of
calculation are carried out, i.e. to investigate the H absorption on a
static Pt nanoparticle whose structure is directly derived from MD
simulations as well as Pt nanoparticles relaxed from DFT calculations.
Note that DFT calculations are performed with the help of Dr. Hakim
Amara (LEM/ONERA-CNRS), using the Quantum Espresso code
[130, 131]. To highlight the possible effect of plastic deformation on

Figure 6.13: Final configuration in
the chemisorption energy calcula-
tion, in four different sites of interest:
(111), (001), Edges, and vertex. Hy-
drogen on the surface of 405 atoms
nanoparticle.
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the H absorption properties, the initial nanoparticle must naturally
be considered as a reference. In this case, we study the interaction of
H with specific surface sites namely vertices, edges, (001) and (111)
facets. Results are presented in Table 6.2. According to our calcula-

𝜇2 𝐸𝑎𝑏𝑠,𝑟𝑒 𝑙𝑎𝑥 𝐸𝑎𝑏𝑠,𝑠𝑡𝑎𝑡𝑖𝑐

(111) 2.04 -0.414 -0.348
(001) 1.90 -0.253 -0.144

Edges 1.84 -0.517 -0.519
Vertex 1.77 -0.438 -0.516

Table 6.2: DFT absorption en-
ergy calculation, with and without
atomic relaxation, together with the
second moment.

tions, it seems that sub-coordinated atoms favor the adsorption of
H. This is particularly true in case of static calculations where the
following hierarchy is observed : E(001)

𝑎𝑏𝑠
<E(111)

𝑎𝑏𝑠
<E(𝑣𝑒𝑟𝑡𝑒𝑥)

𝑎𝑏𝑠
≃ E(𝑒𝑑𝑔𝑒)

𝑎𝑏𝑠
. At

this point, we can precise that the final configurations obtained after
relaxation of the H atom do not correspond specifically to interaction
with a single surface site of the Pt nanoparticle, but several, as can be
seen in the Figure 6.13.

When moving to the plastically deformed Pt nanoparticle, atoms
that exhibit a significant reduction in 𝜇2 are selected for absorption
calculation. Specifically, we focus on three atoms on the (111) surface
that (see Figure 6.14), after the introduction of a stacking fault, transi-
tion to being part of a step. In Table 6.3, we highlight the impact of
plasticity on the absorption energy. Whatever the type of calculations,
these different sites give rise to absorption energies of around −0.5 eV
which are very close to the preferential sites obtained for the initial
nanoparticle. In other words, the plastic transition transforms (111) to
edge like sites, that are highly favorable to the adsorption of H.

Figure 6.14: Three different final con-
figuration for absorption , where
hydrogen bonds with the plastified
nanoparticle.

𝜇2 𝐸𝑎𝑏𝑠,𝑟𝑒 𝑙𝑎𝑥 𝐸𝑎𝑏𝑠,𝑠𝑡𝑎𝑡𝑖𝑐

Site 1 1.92 -0.512 -0.514
Site 2 1.93 -0.528 -0.527
Site 3 1.93 -0.519 -0.514

Table 6.3: DFT absorption en-
ergy calculation, with and without
atomic relaxation, together with the
second moment.
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6.3 Improving absorption properties

6.3.1 Influence of plastic events

Thanks to the insights of the previous sections, we decided to investi-
gate what happens when a Pt nanoparticle undergoes further plastic
deformation, depicted as step 4 in Figure 6.8. During this deformation,
a second partial dislocation is nucleated, together with the creation
of a second stacking fault. Notably, a new step appears around the
nanoparticle. This step affects atom coordination, introducing the
possibility of new sites that might be intriguing for absorption. The

(a) (b)

(c)

Figure 6.15: Stacking fault’s effect on the second moment - results computed with the Tight-Binding method. Figure (a):
energy distribution of the initial configuration (labelled 1) and after the first dislocation nucleation (labelled 3). Figure (b):
energy distribution of the initial configuration (labelled 1) after the second dislocation nucleation (labelled 4), all energy
distribution are focused on surface sites. Figure (c): atomic distribution.

outcomes of this analysis are displayed in Figure 6.15. Panel (a) show
the earlier study (step 3), where only the first stacking fault is present.
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Moving on to panel (b), we see the nanoparticle after the introduc-
tion of the second stacking fault. In this case, there is a rise in the
number of new sites with low energy (below 1.8 eV), around the
double compared to step 3. Panel (c) specifically illustrates that these
low-energy sites are located on the newly formed surface step. In
essence, while nanoparticles that have undergone plastic deformation
or contain stacking faults may lose some of their inherent energy
selectivity, they compensate by offering numerous new low-energy
sites. These sites could potentially enhance the absorption properties
of the nanoparticle.

6.3.2 Larger nanoparticles

The tight-binding analysis offers advantages over DFT, particularly
when examining larger systems. While DFT is typically limited to
hundreds of atoms, tight-binding can handle thousands. This capacity
allows us to shift from the theoretical model of 405 atoms to more
substantial systems that mirror experimental conditions more closely.
We expanded our study to include two additional nanoparticles and
compared the results at step 3, marking the first plastic event. These
new nanoparticles possess truncated octahedral shapes and consist
of 1139 and 5341 atoms, corresponding to diameter around 2.5 and
5.6nm, respectively. Figure 6.16 depicts the stress and strain curves for
all three particles. Notably, due to their distinct shapes (at this size it
is difficult to fix the shape, the shape strongly depends on the number
of atoms), the medium-sized nanoparticle exhibits slightly different
elastic behavior, but we can still see that bigger is the nanoparticle
and lower is the critical stress. A notable change as nanoparticle size

Figure 6.16: True stress and strain
curve obtained with MD and with
the methodology explained in Chap-
ter 2 for Platinum. Three different
sizes and slightly different shapes.
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increases is the decrease in the surface-to-volume ratio. Consequently,
a larger portion of atoms resides in the core. In terms of percentage,
there are fewer atoms at the vertices and edges, with an increase in
the (001) and (111) facets. Mechanically speaking, size introduces
another variation. With plastic deformation, larger systems exhibit,
more almost simultaneous nucleation events. This results in a more
significant number of surface steps forming on the nanoparticle’s
surface, and it can be observed in Figure 6.17, where multiple sites
change coordination at step 3. In Figure 6.18, several key aspects are

Figure 6.17: Effect of first plastic tran-
sition on the coordination number
for the three platinum nanoparticles
under analysis, with: 5341, 1139, and
405 atoms.

highlighted. Here, we compare the second moment calculated via
tight-binding formalism for both step 3 and step 1. Panel (a) features
the previous 405-atom study. Panels (b) and (c) present the results
for the 1139 and 5341-atom systems, respectively. One immediate
observation from the undeformed nanoparticles is the shift in energy
distribution. Smaller nanoparticles have a higher percentage of sites
on corners and edges. As the system size increases, there is a notable
rise in sites at high 𝜇2, those on the (001) and (111) surfaces.

Looking at the deformed nanoparticle, in big systems, many sites with
low √

𝜇2 values appear during plastic deformation, in number and
not in percentage. This is due to the lower surface to volume ratio. As
seen in Figure 6.18, zooming in on the histograms show low-energy
sites (again below 1.8 eV) whose number increases with particle size.
Interestingly, a closer examination of the larger 1139 and 5341 systems,
show that these low energy sites appear to emerge from the bulk,
contrary to smaller system where they where simply converted from
other surface sites. Our study confirms that nanoparticles close in
size to those studied experimentally and under plastic deformation
are also likely to enhance their surface reactivity. More specifically,
we show that nanoparticle size can influence not only the number
but also the nature of surface sites reactive to a gaseous environment.
In practice, an experimental sample is made up of an assembly of
nanoparticles with dispersed diameters. Thus, absorption properties
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(a)

(b)

(c)

Figure 6.18: Second moment
distribution computed with the
tight-binding calculations. Platinum
nanoparticles with three different
sizes before (labelled 1) and after
the first plastic event (labelled 3):
405 (Figure (a)), 1139 (Figure (b)),
and 5431 (Figure (c)). A zoom is
proposed for the low energy sites.
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of the different NPs can be controlled by the charge imposed, since
the latter differs according to size, enabling novel engineering of the
catalytic properties of NPs.

6.4 Conclusion

In concluding this chapter, it is important to highlight that we develop
a tight-binding code (𝑠, 𝑝 and 𝑑 orbitals) specifically designed to
analyze ldos including self-consistent loop to ensure charge neutrality
in non-homogeneous systems. This tool has been optimized for parallel
computation of large systems (several thousand atoms) such as pristine
particles or deformed (elastically and plastically).

After validating the code using DFT calculations, we gained a deeper
understanding of how external loads affect the surface reactivity
properties of Pt nanoparticle containing 405 atoms. This has been
done by performing a fine 𝜇2 analysis of the ldos as the Nørskov
model. Our research reveals that applying a uniaxial force (elastic
load) to nanoparticles induces no significant changes in their ldos,
even under significant strains (around 10%). In contrast, when the
nanoparticles experience permanent change (plastic deformation),
the alterations are far more pronounced. This leads to the emergence
of new low-coordinated sites on the surface (i.e., surface steps). While
this phenomenon reduces selectivity by creating fewer sites at the
same energy, it introduces new energy sites (low 𝜇2), potentially
enhancing the nanoparticle’s overall absorption properties. These
findings, based on the TB formalism, align with the results from
DFT hydrogen absorption calculations on a small platinum system
(consisting of 405 atoms).

Thanks to this validation, we extend our tight-binding analysis to a
plastically deformed NP. The absorption is intensified as multiple
surface steps are created, further amplifying the reactivity process.
Lastly, when considering larger systems, that mimic experimental
particles, the surface-to-volume ratio decreases, and the percentage
of low-coordinated sites (like edges and vertices) drops. However, the
total number of available sites increase: for larger NP, in the plastic
regime, more dislocation nucleation events occurs at the same time at
lower stresses.
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This study revolves around the analysis of how three fundamental
factors, namely size, shape and composition, influence mechanical
behaviour of nanoparticles, analyzing their elastic and the plastic
response, as well as local electronic properties, with a particular
focus on absorption reactivity. In the modelling work presented in
this manuscript, the subjects are metallic nanoparticles, in the range
of about 5-20 nm, of gold, platinum, copper, and the particular
case copper-gold alloy. Different modelling techniques have been
developed, used or validated to describe multi-scale and multi-physics
mechanism, i.e. MD simulations based on SMA-type inter-atomic
potentials, finite element calculations, tight-binding Hamiltonian
using Green function formalism as well as DFT calculations.

Based on atomistic and continuous calculations, we determined that
for transition metal nanoparticles, under external loading, with a
diameter larger than 5 nm, there is no size effect on the effective elastic
response. Instead, the shape of the particle is fundamental, highly
controlling the elastic response. By using a shape descriptor, 𝐺, which
turns out to evaluate the homogeneity of the stress distribution in
nanoparticles, we are now able to predict the effective elastic response
of a nanoparticle in a given direction. These results are demonstrated
for NPs with FCC structures under an applied load on both surfaces,
(001) and (111).

The distribution of the stress field in a NP also dictates the plastic
onset, affecting the critical (yield) stress measure. Our findings clearly
show that the onset of plasticity depends on NP size and shape. An
universal size and shape effect (independent on the material) of the
critical stress has been highlighted, expanding results from literature
on the Wulff nanoparticles to a broader range of FCC structures,
including cubes, truncated-cubes and all truncated octahedrons. A
core insight from our research is that the more heterogeneous the
elastic field, the stronger the size effect becomes. By examining the
von Mises stress and the resolved shear stress, particularly around
the corners of compressed nanoparticles where nucleation typically
occurs, we noticed that nucleation starts when a local stress condition
is reached. Essentially, irrespective of their shapes, these nanoparticles
began the nucleation process once a specific internal stress level is
achieved within them.
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The methodology developed and insights got for pure NPs has been
applied to study nano-alloys, focusing on the elastic and plastic
responses of ordered and disordered structures in the copper-gold
system. In solid solution A1, our calculations reveals that the elastic
response does not depend on local configuration, but an elastic
softening is detected with respect to the bulk counterpart. Gold-rich
structures are softer than pure gold, while copper-rich are softer
compared to pure copper. In the copper-gold system, we also look at
segregated nanoparticles. Their reduced residual stress leads to less
elastic softening than in the A1 structure, aligning with bulk elastic
response. On the other side, ordered structures, such as L10 and L12,
are stiffer, consistent with expected bulk properties. In the plastic
regime, by comparing A1 with its segregated version, we deepen our
understanding of dislocation nucleation in alloys. In A1 configurations,
plastic softening is observed. This phenomenon is due to two main
factors. First, various local arrangements can lead to different stress
distributions at the NP corners: nucleation becomes a statistical
event influenced by local clustering. Secondly, strength softening
is associated with elastic softening, which, implicitly, determines
critical stress vaules. Again for the L12 structure, the well known
strengthening effect is recovered, but it is absent in L10, and the
reasons are still under investigation.

Concerning the modelling techniques, thanks to the comparison
between FE and atomistic simulations, we can state that FE is effective
for nanoscale applications. FE provides accurate results for structures
down to 5 nm. However, there can be discrepancies at large strains
for metals like platinum, copper, and gold. By extending this analysis
to alloys, various mixing patterns were examined using both MD
ans FE. Ordered structures, including L10 and both copper-rich and
gold-rich L12, displayed a close match with FE, having errors less than
5%. Conversely, in the disordered A1 structure, lattice mismatches
introduce internal stresses. This can change the nanoparticle’s elastic
response, leading to variations between FE and atomistic models. This
discrepancy was evident when compared to segregated structures
that have minimized internal stress. These structures, indeed, showed
a perfect match with FE.

Deformed nanoparticles are exploited to study changes in their elec-
tronic properties. For this purpose, a costume tool is developed based
on the tight-binding formalism to compute the effects of both elastic
and plastic deformation on the electronic properties of indented Pt
NPs. Our results emphasize that, unlike elastic deformation, plastic
deformation introduces new, low coordinated surface sites that can
enhance NP surface reactivity. The enhanced surface reactivity of
these new sites is confirmed by DFT calculations examining Hydrogen
absorption on plastically deformed Pt NPs.
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7.2 Perspective

This study has solved many questions, which were unanswered until
now, but from the moment our method of analysis was put in place,
many more questions become apparent. Here the main ideas are
presented in order of subject.

For the structural modeling method, additional development might
account for size effects in the elastic response. This could involve
introducing different local elastic constants (for alloy systems) or
adding surface strain to address surface contraction. The framework
presented in Chapter 3 can be improved by better mimicking real
nanoparticles. Edge smoothing and imperfection in the shape, such
as roughness, can be introduced. This can induce changes in the
shape parameter 𝐺, on the stress distribution and consequently on
the physics of dislocation nucleation. Concerning the shape and size
effect of the critical stress a forthcoming publication will provide
further insights, offering detailed explanation of our results, through
a simplified 2D study.

In the study of alloys, ordered structures represents another significant
research area. The L12 structure shows strengthening at the plastic
onset and a hardening process in the plastic regime, not yet analyzed.
This needs to be better understood, backed by a comprehensive study
of the stacking fault energy, which is more complex than observed in
Appendix 8.6 for solid solutions. The same is true for the L10 structure
and the switching mechanism reported in the final section of Chapter
5. It remains to be seen if the same process can be reproduced with
other structures or elements, and check if this mechanism can be
captured from an experimental point of view.

In the electronic domain, after an initial refinement of the Nørskov
model, the studies might shift to alloy systems under deformation, as
for core-shell, janus or ordered and disordered structures.

Finally, from bimetallic systems, the focus may shift to High Entropy
Alloys, a growing field of research. The study could initially center on
ternary systems, possibly expanding to systems with 4 or 5 elements,
such as CoNiPt, CoNiPtCu, CoNiPtAu, and CoNiPtAuCu. An ongoing
ANR project targets this area, aiming to enhance both theoretical and
experimental understanding of their mechanical properties. Exploring
partial segregation and different effects of residual stress could offer
more insight into nucleation events and potentially reveal new tunable
properties, possibly softer plastic behavior, enhanced ductility, and the
prevention of strain burst phenomena. From a modelling point of view,
this can be done by developing new potentials in the atomistic domain,
or by adapting new strategies in the finite elements framework, such
as the definition of local elastic constants or the addition of local strain
simulating that induced by lattice mismatch.
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Supplementary material 8
8.1 Convention

8.1.1 crystallographic convention

In crystallography, specific notations distinguish between vectors,
planes, and their families. Here’s a brief outline of the convention
used in this work.

▶ [𝑖 𝑗𝑘] Represents a direction vector along the lattice parameters
𝑖, 𝑗 and 𝑘.

▶ (𝑖 𝑗𝑘) Denotes a plane that is normal (perpendicular) to the
vector [𝑖 𝑗𝑘].

▶ {𝑖 𝑗𝑘} Refers to the set or family of equivalent planes that have
the same crystallographic properties as the (𝑖 𝑗𝑘) plane.

▶ ⟨𝑖 𝑗𝑘⟩ Indicates the set or family of direction vectors equivalent
to [𝑖 𝑗𝑘] in terms of their crystallographic significance.

8.1.2 Einstein Notation

The Einstein summation notation, is a concise way to represent
sums over repeated indices, typically used in tensor operations. This
notation is especially valuable when working with multi-dimensional
arrays (like tensors) in the context of continuum mechanics and
physics.

In Einstein notation, whenever an index is repeated in a term, it implies
a summation over that index. For example, considering vectors 𝑎𝑖 and
𝑏𝑖 , the dot product can be written as:

𝑎𝑖𝑏𝑖

This implicitly means:
𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖

where 𝑛 is the dimension of the vectors.

When working with second order tensors, like the stress 𝜎𝑖 𝑗 and strain
𝜖𝑖 𝑗 tensors, and a fourth order elastic tensor 𝐶𝑖 𝑗𝑘𝑙 , relationships can
be concisely written using Einstein notation.

For instance, the linear relationship between stress and strain can be
written in tensor form as:

𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙𝜖𝑘𝑙
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In the above expression, both 𝑘 and 𝑙 are repeated indices, indicating
a summation over them. This means that for each pair of 𝑖 , 𝑗, we sum
over all combinations of 𝑘, 𝑙. In a 3D space, this would mean that
𝑖 , 𝑗 , 𝑘, 𝑙 each take on values 1, 2, or 3 corresponding to the x, y, and z
directions, respectively.

8.2 Elastic properties - Copper and platinum

More results concerning the elastic properties of Copper and Platinum
nanoparticles for nano-indentation on (001) facets are presented in
the Figure 8.1 and 8.2.

Figure 8.1: Copper, comparison be-
tween FE and MD. (001) facet

Figure 8.2: Platinum, comparison
between FE and MD. (001) facet

8.3 Directional Young’s modulus

These equations describe the methodology for computing the compli-
ance matrix (the inverse of the stiffness matrix or the elastic constants)
and the direction-dependent Young’s modulus in a face-centered
cubic (FCC) structure.

The compliance matrix, denoted as 𝑆ℎ𝑘𝑙 , which is derived from the
elastic constant tensor 𝐶ℎ𝑘𝑙 , provides a measure of how the material
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strain responds to stress. In an FCC structure, the elements of the
compliance matrix are given by:

𝑠11 =
𝑐11 + 𝑐12

(𝑐11 − 𝑐12)(𝑐11 + 2𝑐12)
𝑠12 =

−𝑐12

(𝑐11 − 𝑐12)(𝑐11 + 2𝑐12)

𝑠44 =
1
𝑐44

The Young’s modulus, 𝐸, is a measure of the material’s stiffness. In an
FCC structure, 𝐸 is direction-dependent (represented by the Miller
indices ℎ𝑘𝑙). The inverse of the Young’s modulus is given by:

1
𝐸ℎ𝑘𝑙

= 𝑠11 − 2(𝑠11 − 𝑠12 −
1
2
𝑠44)(𝑚2𝑛2 + 𝑛2𝑝2 + 𝑝2𝑚2) (8.1)

The coefficients 𝑚, 𝑛, and 𝑝 represent the direction cosines that define
the ℎ𝑘𝑙 direction in respect to the Cartesian axes:

𝑚 =
ℎ√

ℎ2 + 𝑘2 + 𝑙2

𝑛 =
𝑘√

ℎ2 + 𝑘2 + 𝑙2

𝑝 =
𝑙√

ℎ2 + 𝑘2 + 𝑙2

These direction cosines normalize the ℎ𝑘𝑙 indices, enabling us to
examine the material behavior along different crystallographic direc-
tions. This framework allows us to compute the direction-dependent
Young’s modulus, a crucial element for understanding and predict-
ing the mechanical behavior of anisotropic materials like crystalline
alloys[132].

8.4 Alloy - CoPt

We make use of the SMA potential developed by Front et al., primarily
for structural analysis of the cobalt platinum alloy[133]. We test this
potential from a more mechanical point of view, although our analysis
is confined to the 𝐴1 structure, which represents a solid solution.
Notably, we observe a significant deviation from Vegard’s Law in
the case of the lattice parameter. In addition, the elastic constant
shows an unusual behavior at around an 80% concentration of cobalt.
This peculiar behaviour also mirrors in the calculations of Young’s
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(a) (b)

(c) (d)

Figure 8.3: Figure (a). Lattice parameter as function of copper density. Figure (b). Elastic constant as function of the cobalt
density. Figure (c): Young’s modulus as a function of the cobalt density, (001) direction. Figure (d): (111) direction.

modulus, implying an unanticipated change in the material’s stiffness
at this particular concentration. However, because of these anomalous
results, we put the use of this potential on hold for further study and
refinement.
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8.5 (111) Cu𝑥Au1−𝑥 Elastic and Plastic behaviour

Figure 8.4: Stress and strain curve.
CuAu system (111) facet, A1, segr.,
L10 and pure copper and gold.

(a) (b)

Figure 8.5: Figure (a):(111) Effective Young’s modulus at different Cu concentration, with ordered structure: L10 and L12,
disordered structure: A1 and the segregated counterpart. A comparison is proposed with two different methods, Finite
Element and Molecular Dynamics. Figure (b): Critical stress at different copper concentrations. A1 and segregated structure
for the disordered systems. L12 and L10 for the ordered nanoparticles.

Similar observations to Chapter 5 are replicated for the (111) facet. In
Figure 8.5, we present the stress-strain curve for the CuAu system,
and the extracted elastic properties. The disparity between the two
disordered systems is less significant in gold-rich nanoparticles and
more pronounced in copper-rich ones. The Finite Element curve
accurately aligns with the bulk trend depicted in Figure 5.3b. However,
it markedly deviates from the 𝐴1 systems, with discrepancies of the
order of 20% and less than 10% in the segregated structure. It is
probable that the residual 𝜎𝑧𝑧 in the (111) direction system deviates
on average more than that in the (001) system.
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8.6 Stacking-Fault energy

For an accurate study of the plastic regime, a detailed examination
of the selected inter-atomic potentials is essential. This goes beyond
the simple extraction of elastic constants as detailed in Chapter 3,
and the size effect analysis of 𝜎𝑐 outlined in Chapter 4. Typically, this
includes analysis of both the SFE and the USFE. The SFE indicates
a material’s tendency to deform through planar slip, in presence of
partial dislocations, or deformation twinning. The higher the SFE,
the less likely the material is to form stacking faults or twins during
deformation. The USFE is the energy barrier to create a stacking fault:
if the energy barrier to is low, then the material might deform, creating
or extendig a stacking fault, more easily. To compute both quantities
MD simulation were performed. We employ the NPT ensemble (to
allow relaxation of the simulation box) for a 30× 30× 30 atomic layers
with periodic boundary conditions in 𝑥 an 𝑦 directions, setting the
[111] direction parallel to 𝑧. After an intial energy minimisation the
crystal is then split into two parts ( upper and lower with respect 𝑧
direction) and the top section is shifted in the plane (a typical example
is shown in Figure 8.6). This procedure emulates that presented by
Gola et al.[120].

Figure 8.6: Sample created for the
SFE calculation. 27000 atoms with
boundary conditions in all direction
but void is added along 𝑧. The [111]
is aligned with 𝑧 to allows the fault
to be in the plane 𝑥 − 𝑦. Figure (a)
pristine sample. Figure (b) sample
with stacking fault. (a) (b)

By shifting in the x and y directions, we can determine the stacking
fault energy 𝛾𝑠ℎ as:

𝛾𝑠ℎ =
𝐸𝑠ℎ − 𝐸𝑝

𝐴

Here, 𝐸𝑠ℎ is the shifted system energy, 𝐸𝑝 is the perfect system’s
energy, and 𝐴 is the stacking fault area.

Figure 8.7 displays the result for pure gold. The red regions mark high-
energy areas where atomic gliding is less probable, while the blue
regions denote potential valleys where gliding is more likely, as given
by Equation 1.12. This behavior corresponds with movement along the
B-C direction as depicted in figure 8.8, where introducing the initial
partial dislocation locally turns the crystal to an HCP structure.
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Figure 8.7: The surface energy 𝛾𝑠ℎ
computed for at different 𝑥 and 𝑦

shifts. In red is unlighted the direc-
tion where the second minimum can
be found.

Figure 8.8: Partial dislocation mov-
ing atom B in C position, creating
a stacking fault. The effect of the
second partial dislocation bringing
back atom B in a B position. Figures
extracted from [9].

- STE USTE

Au -5.61 112
lit. 39 103
Cu -12.1 149
lit. 51 179
Pt 27.4 254
lit. - -

Table 8.1: Computed values of SFE
and USFE, units are in𝑚𝐽/𝑚2. Liter-
ature lit. values extracted from [120]

In Figure 8.9, the map shown in Figure 8.7 is cut along the indicated
direction and the results is shown for three different material: gold,
copper and platinum (corresponding to the potential already used in
the previous chapters). in this Figure the maximum value represents
USFE, i.e. the energy barrier to overcome to create a stacking fault,
while the energy value of the three minimum is SFE the energy
associated to the creation of the stacking fault itself.

Figure 8.9: Surface energy 𝛾𝑠ℎ along
the [112̄] for three different material,
Gold, Copper, and Platinum

Table 8.1 shows that the USFE values are consistent with findings in
Chapter 4, displaying a higher value for Pt compared to copper and
gold. This pattern mirrors the rigid shift seen in size effects. However,
regarding SFE, we observed a discrepancy, for copper and gold, where
the faulted structure, an HCP structure, appears more stable contrary
to experimental data and other research [120]. Contrary, for platinum,
the initial FCC structure is the more stable configuration, aligning
well with experimental findings.
We continued to analyze the SFE of the copper-gold alloy, focusing
first on the A1 configuration. The previous procedure is followed, in
the NPT minimisation atoms are allowed to relax before the rigid shift,
to create the expected residual strain due to lattice mismatch. In this
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preliminary findings no statistic is made, with one sample for the one
concentration. In Figure 8.11a, the extracted slice in the [112̄] direction

Figure 8.10: A1 surface energy 𝛾𝑠ℎ
along the [112̄] for three different
material, Gold, Copper, and the var-
ious concentration between them.
Figure (b) Extracted SFE. Figure (c)
Extracted USFE

is depicted, and Figure 8.11b presents the derived SFE and Figure
8.11c the USFE values. Regarding the USFE, despite some fluctuations
due to lack of statistic, a potential barrier transitioning from that of
gold to that of copper can be observed. This transition contradicts the
previous assumption that USFE is associated with nucleation stress,
instead appearing to follow the elastic constant 𝐶44 more closely.
Turning to the SFE, we found it to be consistent with earlier data for
pure materials, showing negative values. Notably, at intermediate
concentrations, the SFE turns positive, indicating a greater stability in
the FCC structure, a positive outcome. An analysis of the stress and
strain curves in Figure 5.6 shows no notable tougher behaviour in the
A1 configuration, suggesting that strain bursts are still possible (After
the first maximum 𝜎𝑐 , there is no hardening). Impurities only trigger
earlier nucleation without much effect on slowing its progression.

(a) (b)

Figure 8.11: Figure (a): A1 surface energy 𝛾𝑠ℎ along the [112̄] for three different material, Gold, Copper, and the various
concentration between them. Figure (b) Extracted SFE. Figure (c) Extracted USFE
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