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Abstract

Complementarity problems occur in many scientific fields: economics, physics, transport, game theory,
and mathematics.

In this thesis, we offer several theoretical, algorithmic, and numerical contributions to solve the
complementarity problems and optimal control problems under complementarity constraints. We are
particularly interested in the regularization methods for the numerical resolution of these types of
problems, we have proposed new regularization techniques.

Indeed, In the first part, we focused on optimal control problems under complementarity constraints.
We studied optimal control problems governed by semilinear elliptic variational inequalities involv-
ing constraints on the state. We presented a new regularisation schema for the complementarity
constraints. We proved that Lagrange multipliers exist.

Then, in the second part, we have studied linear complementarity problems (LCPs) and nonlinear
complementarity problems (NCPs) by proposing new methods of regularisation to solve these kind of
problems. The idea of these methods takes inspiration from interior point methods.

Throughout this manuscript, we have focused on the theoretical properties of algorithms and their

digital applications.

Key words: Interior points methods, Linear complementarity problem, Nonlinear com-
plementarity problem, Optimal control, Regularization methods, #-function, Newton’s

method, Semismooth analysis, Global convergence, Local convergence.






Résumé

Les problemes de complémentarité interviennent dans de nombreux domaines scientifiques : économie,
physique, transport, théorie des jeux et mathématiques.

Dans cette these, on apporte plusieurs contributions théoriques, algorithmiques et numériques pour
résoudre des probléemes de complémentarité et de contréle optimal sous contraintes de complémentar-
ité. On s’intéresse plus particulierement aux méthodes de régularisation pour la résolution numérique
de ces deux types de problemes, ot nous avons proposé de nouvelles techniques de régularisation.

En effet, dans la premiere partie, nous nous sommes intéressés aux problémes de controle optimal
sous contraintes de complémentarité. Nous avons étudié les problemes de controle optimal régis par
les inégalités variationnelles elliptiques semi-linéaires impliquant des contraintes sur la variable d’état.
Nous avons présenté un nouveau schéma de régularisation pour la contrainte de complémentarité.
Nous avons prouvé l'existence de multiplicateurs de Lagrange.

Ensuite, dans la deuxiéme partie, nous avons étudié les problemes de complémentarité linéaire et
non linéaire en proposant de nouvelles méthodes de régularisation pour résoudre ce genre de problémes.
L’idée de ces méthodes prend inspiration de la méthode des points intérieurs.

Dans ce travail nous nous sommes concentrés sur les propriétés théoriques des algorithmes et leurs

applications numériques.

Mots clés : Méthode de point intérieur, Probléme de complémentarité linéaire, Prob-
léeme de complémentarité non linéaire, Contréle optimal, Méthodes de régularisation,
f-fonction, Méthode de Newton, Analyse semi-lisse, Convergence globale, Convergence

locale.
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Notations

We consider here classical notations:

R"” :  The n-dimensional real Euclidian vector space

R% :  The nonnegative orthant of R"

R% : The positive orthant of R"

R : The set of all n x n squared real matrices

A = (ai;), a matrix with entries a;;

detA =|A| : The determinant of a matrix A

trA = >, a;, the trace of a matrix A

AT : The transpose of a matrix A

Al :  The inverse of a matrix A

A, : The columns of A indexed by «

A, : The rows of A indexed by «

Anp : Submatrix of A with rows and columns indexed by a and 3, respectively
Iy, :  Identity matrix of order k

diag(a) :  The diagonal matrix with diagonal elements equal to the components of the vector a
T :  The i-th component of x

2T : The transpose of vector z

xt The nonnegative part of a vector, z* = max(z,0)

T~ : The nonpositive part of a vector, z~ = max(—z, 0)

x! = (i,...,i)T xi#0foralli=1,...,n

e : The n-dimensionzl vector of ones, e = (1, ..., 1)T

.y . The Hadamart product of x and y, .y = (£1y1, ..., TnYn)"
% = (%,...,%)T, yi #0foralli=1,...n

log(z) = (log(zy), ...,log(:cn))T, z; >0foralli=1,...,n

e’ = (e, .. )T

<z, y> . The standard inner product of vector in R”, <z, y >= 2Ty
zly : and y are perpendicular

(Ea : The l,-norm of a vector z € R™, |z|, = X7, |:c,~]p)1/p

ix



|| : The le-norm of a vector z € R™, unless otherwise specified

|| = (|z1], ... |#n])", the componentwise absolute value of a vector z € R”

|| oo : The lp-norm of a vector z € R™, ||x]lon = maxi<i<n |24

=y : The (usual) partial ordering, z; > y;, i=1,...,n

>y : The strict ordering, z; > y;, i=1,...,n

sign(x) : Denotes a vector with the components equal to —1, 0 or 1

min(x,y) :  The vector whose i-th component is min(z;, y;)

max(z, y) : The vector whose i-th component is max(x;, y;)

Ai(A) : The eigenvalues of A e R™*", i=1,...,n

Amax(A) : The largest eigenvalues of A e R™*™, i=1,...,n

Amin(A) The smallest eigenvalues of A € R"™*", i =1,...,n

Omin(A) : The largest singular value of A e R™*™ i=1,...n

Omin(A) : The smallest singular value of A e R™*" i=1,...,n

p(A) = max()\;(4)), the spectral radius of A

| All2 = +/p(AT A), the spectral norm of A

Vu = (%, vy %), the gradient of a scalar function u

C*(Q) = (u ‘R — R | ul™ exists for all n), is the space of all functions that are smooth
(infinitely continuously differentiabl) on

CL(Q) : The space of real valued smooth functions with compact support in 2

LP(Q), 1<p< o : The space of Lebesgue-mesurable functions with finite norm defined as follows
LP(Q) = (u: Q — R;, u is measurable and {, |u[Pdz < c0) with the norm
lullr = (Vg [ulPdz) >

WP (Q) . The Sobolev space of u € LP(Q) functions where D¥u is also in LP(Q) for k < m,
with the norm [[u|wm.r = Yocpepm [DFulzr

WP (2) :  The completion of C§(Q2) in the norm ||.|wz.m

H(Q) :  The Sobolev space Wy " (Q2), by taking m = 1 and p = 2, and denote

the corresponding norm as follows |uf = (g, |Vu[*dz) 12




Acronyms

NLP
MPCC
VI

CP

LCP
NCP
MiCP
AVE
KKT
SQO
C-function
IPOPT
KNITRO
SNOPT

Nonlinear program

Mathematical program with complementarity constraints
Varitional inequalities

Complementarity problems

Linear pomplementarity problems

Nonlinear complementarity problems

The mixed complementarity problems

Absolute value equation

Karush-Kuhn-Tucker

Sequential quadratic programming
Complementarity function

The Interior Point Optimizer

Nonlinear Interior point Trust Region Optimization

Sequential Quadratic Optimization Technique
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1 Introduction

L’optimisation est une branche des mathématiques et de 'informatique en tant que disciplines. Elle
intervient pratiquement dans tous les processus de modélisation actuels et elle joue un réle trés im-
portant dans beaucoup de domaines. Qu’il s’agisse de problemes de la recherche opérationnelle, de
mathématiques appliquées, d’analyse, d’analyse numérique, de statistiques, de théorie des jeux, de
programmation linéaire ou encore en théorie du controle.

Le probléme d’optimisation consiste a déterminer une solution qui maximise ou minimise 1’objectif
quantitatif tout en respectant éventuellement certaines contraintes. Les problemes d’optimisation
sont tres divers par leurs natures et leurs structures, alors chaque type de ces problemes sera résolu
d’une maniere différente [50, 103, 108]. Les problemes d’optimisation sont classés selon leurs fonctions
objectifs et leurs contraintes : optimisation linéaire, optimisation non-linéaire, optimisation linéaire
quadratique et optimisation convexe...etc.

En optimisation, le probleme de complémentarité en dimension finie consiste a résoudre un systéme
fini d’inéquations tout en respectant une équation particuliere qui exprime la complémentarité entre
les composantes. C’est cette caractéristique importante qui distingue le probleme de complémentarité
du systeme d’inéquations traditionnel. Dans ce cas, le probléme de complémentarité consiste a trouver

x € R™ qui satisfait la condition suivante :
0<G(x)LH(z) >0, (CP)

ou la notation 1 signifie perpendiculaire, G, H : K — R" deux fonction et K un cone, c’est-a-dire
que si x € K alors 7x € K pour tout 7 > 0. La condition de complémentarité peut ainsi étre réécrite
comme G;(x)H;(x) = 0 pour tout i = 1, ..., n.

Bien que le probleme de complémentarité ne soit pas un probleme d’optimisation mais simplement
un probleme de réalisabilité et est d’un grand intérét pour I'optimisation. En effet, les conditions
nécessaires d’optimalité de nombreux problemes d’optimisation peuvent étre représentées sous la forme
(CP).

L’intérét d’étudier ce type de probleme a commencé en 1964 lorsqu’il a été introduit par Richard W.
Cottle dans sa theése de doctorat puisque les applications sont nombreuses et dans plusieurs domaines

différents.



Chapter 1. Introduction

Tout d’abord, les probléemes de complémentarité sont apparus dans les conditions d’optimalité de
Karush-Kuhn-Tucker [64, 70] mais peuvent aussi servir & modéliser certains phénomenes décrits par
des systeémes d’équations qui sont en quelque sorte en compétition.

Quelques exemples d’applications sont les problémes d’équilibre économique [42], les jeux bimatriciels
[71], le probleme d’équilibre du trafic de Wardrop [46], les problémes d’écoulement diphasiques [21,
24, 25, 49] et les simulations de contacts et de mouvements de fluides [37]. Une raison importante
pour laquelle les problemes de complémentarité sont si répandus dans l'ingénierie et ’économie est
que la notion de complémentarité est synonyme d’équilibre du systeme étudié. L’équilibre de l'offre
et la demande est au centre de tous les systémes économiques. La complémentarité est également au

coeur des problémes d’optimisation avec contraintes.

Au fil des années, le sujet est devenu une discipline proprement dite des mathématiques. La littéra-
ture des problémes de complémentarité a bénéficié des contributions apportées par les mathématiciens
(pure, appliquée et informatique), les informaticiens et les différents ingénieurs (génie civil, électrique,
mécanique et systémes). Plusieurs livres et plus d’un millier d’articles concernant ce sujet ont été
publiés [34, 39, 42, 83]. Beaucoup de résultats théoriques de base pour les problémes de complémen-
tarité sont connus depuis longtemps; une excellente étude dans ce domaine peut-étre trouvée dans

[56]. Autres références et des travaux plus récents peuvent également étre trouvés dans [42, 89].

Les difficultés majeures pour résoudre le probléme de complémentarité (CP) viennent de deux
aspects essentiellement géométriques. D’une part, I’ensemble des solutions de ce probleme n’est en
général pas convexe et pas connexe. D’autre part, 'intérieur relatif de ’ensemble des solutions est

vide, c’est-a-dire qu’il n’existe pas de z* solution de (CP) tel que G(z*) > 0, H(xz*) > 0.

Diverses méthodes numériques existent pour résoudre ce probleme. Parmi celles-ci on peut citer les
méthodes de reformulation qui transforment (CP) comme un systéme d’équations sans contraintes ou
encore les méthodes d’activation de contraintes qui utilisent une procédure combinatoire pour déter-
miner les contraintes actives. Au vu des difficultés géométriques énoncées plus haut, une approche
naturelle est d’utiliser des techniques de relachement, autrement appelées techniques de régularisation.
Ces techniques relachent les contraintes du probleme pour le rendre plus simple puis tentent de se
rapprocher du probleme initial. Ce processus méne bien souvent a des méthodes itératives. Ce sont ces
méthodes qui sont au coeur de ce manuscrit. Parmi les méthodes de régularisation les plus connues, on
peut citer les méthodes de point-intérieur et les méthodes de pénalisations ou de fonctions de mérites.
Ces dernieres transforment le probleme de complémentarité (CP) comme un probléme d’optimisation
avec une fonction objectif qui incite a faire respecter les contraintes du probleme de complémentar-
ité. La méthode des points-intérieurs peut aussi étre interprétée comme une reformulation avec une

pénalité logarithmique.




Une généralisation naturelle du probleéme (CP) est de considérer la résolution d’un probléme d’optim-
isation avec un probléme de complémentarité inclus dans les contraintes. On appelle probléme
d’optimisation sous contrainte de complémentarité le probléme qui consiste a minimiser une fonc-
tion f: R™ — R telle que

min, ¢ gn f(x)
s.a g(x) <0, h(xz) =0, (MPCC)
0<G(z)LH(z) =0,

pour des fonctions de contraintes g, h,G, H : R" — R"™. De nombreuses applications utilisent le

probleme (MPCC) par exemple en contrdle optimal, en physique ou encore en recherche opérationnelle.

Cette theése comporte 6 chapitres. Tout au long de ce document, nous nous intéresserons aux tech-
niques de régularisation pour les problémes de complémentarité et de controle optimal sous contraintes
de complémentarité. Ces techniques de régularisation ont notamment permis de développer différentes
méthodes qui seront abordées dans chacun des chapitres qui composent ce manuscrit. Nous résumons

le contenu des différents chapitres ainsi que les résultats obtenus.

Dans le chapitre 2, nous introduisons les outils mathématiques qui seront nécessaires dans ce travail
de theése. D’abord, nous présentons quelques rappels essentiels sur ’optimisation et les problemes de
complémentarité, a savoir : ’analyse convexe, quelques résultats de programmation mathématique
et un rappel de certains aspects de cone. Puis, nous énoncons des définitions et les propriétés de
quelques classe de matrices qui interviennent de maniere essentielle dans ce manuscrit. Ensuite, nous
introduisons les notations habituelles et générales de ’analyse et de 'optimisation non lisse et semi-
lisse. Enfin, nous présentons quelques techniques de régularisation introduite dans [4, 52] pour les
problemes de complémentarité et établissent différentes propriétés qui seront utiles pour notre these.
Ce chapitre ne présente aucune contribution théorique, cependant nous avons donné des résultats que
nous utilisons dans la suite. Les trois autres chapitres contiennent nos contributions. Nous résumons

ci-dessous le contenu de chacun.

Nous terminerons enfin par une synthese de différents apports et contributions de cette these, et les

perspectives qui peuvent s’en dégager.




Chapter 1. Introduction

Partie I : Probleme de contrdle optimal sous contraintes de

complémentarité

Cette premiere partie se concentre sur ’étude de probleme de contréle optimal sous contraintes de

complémentarité.

Chapitre 3 : Une nouvelle méthode de régularisation pour les problemes de controle
optimal avec des obstacles régis par des inégalités variationnelles elliptiques

semi-linéaires

Dans le chapitre 3, qui est notre premiére contribution de cette thése, nous nous sommes intéressés aux
problémes de controle optimal régis par les inégalités variationnelles elliptiques semi-linéaires impli-
quant des contraintes sur la variable d’état. Nous avons présenté un nouveau schéma de régularisation

pour la contrainte de complémentarité. Nous allons écrire notre probléme sous la forme :

min {J(y, V) = % L(y — 2)2dx + g L(v - Ud)%zg;} . (P

Ay+g(y)=f+v+& dans Q, y =0 sur 09Q,

(y,v,€) € D,

ou
D = {(y,v,8) € Hy(Q) x L*(Q) x L*(Q) | v € Uga, y =0, £=0, (y,£), = 0}.

En effet, la difficulté vient du fait que I’ensemble réalisable D est non convexe puisqu’on a une con-
trainte de complémentarité et donc on ne peut pas utiliser directement les méthodes d’analyse convexe
ni méme les outils de programmation non linéaire non convexes.

Pour écrire des conditions d’optimalité, nous avons utilisé des méthodes adaptées et plus générales,
malheureusement, I’ensemble des contraintes est d’intérieur vide vu la contrainte de complémentarité.

Pour pallier ce probléme, nous avons relaxé la contrainte de complémentarité.

min J(y,v)
(P%) Ay+g(y) = f+v+ & dans Q, ye HE(Q),
(y,v,€) € Da




avec

De — {(:q,v,f) £ HY(Q) x LX(Q) x LX(9) /

y+§
y+a E+a

vE Uy, y =0, £=0, <1,a.e.z’nﬂ}.
Nous avons prouvé 'existence de multiplicateurs de Lagrange. Leur existence est un outil important
pour résoudre les problemes relaxés. Pour l'implémentation de l’algorithme, nous avons opté pour

Penvironnement et le langage AMPL et sur des méthodes de points intérieurs.

Contributions du chapitre :

— Nous avons proposé un nouveau schéma de régularisation pour la contrainte de com-

plémentarité y >0, £ =0, < y,& >= 0.

— Nous avons montré que notre probleme relaxé est une bonne approximation du prob-
léme initial.
— Nous avons démontré un théoreme qui consiste a prouver ’existence de multiplicateurs

de Lagrange de notre probléme.

— Le probleme relaxé proposé a également été étudié numériquement au moyen de sim-
ulations avec AMPL.

Partie II : Probleme de complémentarité

Cette deuxieme partie se concentre sur de nouvelles méthodes numériques pour résoudre les problemes

de complémentarité linéaire et non linéaire.

Chapitre 4 : Une approche lisse pour résoudre un probléme de complémentarité non

linéaire

La deuxieme contribution de cette theése est décrite dans le chapitre 4. Nous nous intéressons désormais
a la résolution des problemes de complémentarité non linéaire (NCP), autrement dit on cherche x € R"

qui satisfait I’équation non linéaire suivante:
>0, F(z)=0, zTF(z)=0. (NCP)

ou F: R" —» R".

Nous reformulons notre probleme NCP, d’une facon équivalente, en un systéme d’équations lisses.
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Comme une premiere étape, nous écrivons

(r) () (r) (2(T)Y)) = ) =
z;’ =20, Fi(")=0 e O.(x;)+60,(Fi(z\")) =1, i=1,...,n
o 0, : R —] — o0, 1] une famille de fonctions qui satisfait les propriétés suivantes :

1. 0, deux fois continument différentiable;

3. 0, est une fonction croissante et concave;
4. 0, est négative sur R_;
5. }i_)r%ﬁr(x) =1 Vz>0.
Nous donnons ici quelques exemples de fonctions 6, sur R :

T

. 6)(x) =

ztr
o« 03(w) =1—exp(—a/r) ;

log(1 +
. 09%(z) = M
l+z+7r
En utilisant les fonctions ¢, = 1 — 6, avec ¢, : R —]0, +00[, nous allons ainsi résoudre le systéme

lisse suivant

Gy(z,F(x)) =0,

ou

B "y n
Gr(x,y) := (Gr(xi7yi>)i:1,...,n = (rw ! [1/1 <7Z> + 9 (f)]) , , Vax,yeR" etr>0.
i=1,...,n
Nous avons étudié les problémes de complémentarité non linéaires (NCP) en proposant une nouvelle
méthode pour résoudre ce genre de probléme. L’idée de cette méthode prend inspiration de la méthode
des points intérieurs en créant de nouvelles techniques de régularisation. La différence majeure de nos
méthodes est le fait qu’on a besoin d’aucun processus pour mettre a jour le parametre de régularisation

r qu’on considere comme une nouvelle variable d’out NCP est équivalent au probléme suivant :

Sl P+ 31F- @)+ 4er |
2 2




Chapitre 5 : Nouvelles méthodes lisse pour résoudre les problemes de complémentarité

Dans un second travail dans la partie IlI, nous avons étudié le probleme de complémentarité linéaire

(LCP) en proposant deux nouvelles méthodes pour résoudre ce genre de problémes. Ce probleme

n n
Jz~|? = ) min’(2;,0), et |F(z)]* = ) min’*(Fi(x),0).
i=1 =1

Contributions du chapitre :

Nous avons proposé une nouvelle méthode pour résoudre les NCP basé sur une tech-

nique de régularisation.
Nous avons présenté un algorithme non paramétrique pour résoudre les NCP.

Nous avons montré que notre probleme relaxé est une bonne approximation du prob-
léme initial.
Nous avons prouvé que tout point limite d’une suite {x}} générée par notre algorithme

correspond & une solution de NCP.

Nous avons montré que notre matrice jacobienne est inversible si et seulement si la

fonction F' est Py-fonction.
Nous avons prouvé la convergence locale et globale.

Nous avons montré que la nouvelle matrice jacobienne associée a notre approche est
inversible si et seulement si la matrice jacobienne associée au probléme de point in-

térieurs est inversible.

linéaire

consiste a trouver x € R" tel que

pour une matrice M d’ordre n et un vecteur ¢ € R”. L’idée de ces deux méthodes prend inspiration
de la méthode de points intérieurs en créant de nouvelles techniques de régularisation de la condition
de complémentarité. Il est clair que ce probléme n’est pas simple, car la condition de complémentarité

n’est pas différentielle. Pour pallier cette difficulté, nous introduisons une famille de fonctions 6 voir

0< (Mz+q)la >0, (LCP)

[53]. En utilisant cette classe de fonctions, LCP est régularisé pour r» > 0 comme

y=Mz+q) =20, >0, O.(z;) +6,(z) <1, i=1,....n.
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D’apres les propriétés des fonctions 6,., lorsque r tend vers 0, ce probleme régularisé devrait étre
équivalent a LCP.

Nous introduisons aussi une notre formulation pour notre probleme LCP. On remarque que
0<zlz>20 < VYp>0, z—mazx(0,x—pz)=0,

ou la fonction max est une fonciton de R™ dans R"™ composante par composante, c’est-a-dire que pour
un vecteur € R” on a max(z) = (max(z;))i=1,..n. Nous avons approximé la fonction max par une

fonction différentiable d’ou le probleme LCP est régularisé pour » > 0 comme

Ti — Pz
y=(Mx+q) =0, x>0, x;—rlog|1l+e T =0, i=1,..,n.

La différence majeure de nos méthodes est le fait qu’on a besoin d’aucun processus pour mettre a jour
le parametre de régularisation r qu’on considere comme une nouvelle variable d’ou LCP est équivalent

aux deux problémes suivants :

Mx+q—=z
Fo(X) = | r(0:(x) + 0,(z) — e) =0,
SlamI? 4 1= 4 0% e

et

i Mzx+q—z
T — pz

Fs(X) = x—rlog|le+e T =0,

L= 12 o Ll—(2 o 2
| slamlF + 5l P+t ter
ou les fonctions 6,., log et e sont des fonctions de R™ dans R™ composante par composante, c¢’est-a-dire

que pour un vecteur z € R” on a

Or(x) = (GT(mi))izl,...,n’ log(z) = (log(xi))izl,...,n et e” = (exi)z‘=1,...,n'

Nous nous intéressons aussi a la résolution d’équation en valeur absolue (AVE), autrement dit on

cherche z € R™ qui satisfait ’équation non linéaire suivante :

Az — |z| = D. (AVE)




En utilisant une décomposition de la valeur absolue, on se ramene facilement & un probleme de

+

complémentarité. Soit 27 = max(x,0) et x~ = max(—z,0), il vient que z = 27 — 2~ et que

|z| =t + 2~ pour tout z € R™ si ™ et = sont orthogonaux d’ott AVE est équivalent au probléme

de réalisabilité suivant
Azt —27)— (2t +27)=0b, 0<aztlz >0,

c’est un probléeme des valeurs absolues (AVE) qui a été reformulé vers le probleme LCP.

Contributions du chapitre :

— Nous avons proposé deux nouvelles méthodes pour résoudre les LCP en se basant sur

deux techniques de régularisation.
— Nous avons présenté un algorithme non paramétrique pour résoudre les LCP

— Nous avons montré que notre probleme relaxé est une bonne approximation du prob-

léme initial.

— Nous avons prouvé que tout point limite d'une suite {z)} générée par notre algorithme

correspond a une solution de LCP.

— Nous avons montré que notre matrice jacobienne est inversible si et seulement si la

fonction F est Py-fonction.
— Nous avons prouvé la convergence locale et globale.

— Nous avons montré que les deux nouvelles matrices jacobiennes associées a notre ap-

proche sont inversibles si et seulement si la matrice jacobienne associée au probleme

de point intérieurs est inversible.
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Nos travaux de theése ont donné lieu & des articles et conférences dont :

Articles

41 E. H. Osmani, M. Haddou and N. Bensalem. A new relaxation method for optimal control
of semilinear elliptic variational inequalities obstacle problems. Numerical Algebra, Control &
Optimization, 2021, (DOI:10.3934 /naco.2021061).

#1 E. H. Osmani, M. Haddou, L. Abdallah and N. Bensalem (2021). New smoothing methods for
solving the linear complementarity problem with Py-matrix, article soumis. Disponible sous
archives-ouvertes.fr/hal-03516404.

&0 E.H. Osmani, M. Haddou, N. Bensalem and L. Abdallah. A new smoothing method for non-
linear complementarity problems involving Pyp-function. Statistics, Optimization & Information
Computing, 2022, (DOI:10.19139/s0ic-2310-5070-1493).

Conférences

IZ" E. H. Osmani, M. Haddou and N. Bensalem. A smooth approach to the solution of nonlinear
complementarity problems involving Py-function. 8th International Conference on Optimization
and Applications (ICOA). Sestri Levante, Italy, 06-07 octobre 2022, Publisher: IEEE,
(DOI:10.1109/ICOA55659.2022.9934180).

5" E. H. Osmani, M. Haddou and L. Abdallah. A new approach for solving the linear com-
plementarity problem using smoothing functions. 7th International Conference on Optimiza-
tion and Applications (ICOA). Wolfenbiittel, Germany, 31 mai 2021, Publisher: IEEE,
(DOI:10.1109/ICOA51614.2021.9442649).

" E. H. Osmani, M. Haddou and N. Bensalem. Solving optimal control of semilinear elliptic varia-
tional inequalities obstacle problems usingsSmoothing functions. ICDDPOC: XV. International
Conference on Deterministic Dynamic Programming and Optimal Control. Vienna, Austria,
29-30 juillet 2021, Vol. 15, No. 7, (2888-2415-2759-2981).

2" E. H. Osmani, N. Bensalem. Les méthodes directes en controle optimal et transfert d’un prob-
léme du controle optimal en probleme d’optimisation non linéaire. Un seminaire ’Optimisation
Combinatoire et Continué: Méthodes et Applications’. Sétif, Algérie, 2-3 décembre 2018.
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2 Mathematical background

In this chapter, we present basic results from convex analysis, variational analysis, and nonlinear
programming that are used in the following chapters. Among the major references that have been

used while studying these topics, we may cite some important books such as [96] for convex analysis,

[97] for variational analysis, [40] for variational inequalities and complementarity problems, and

finally [5] for various subjects on optimization.
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Chapter 2. Mathematical background

2.1 Convex analysis and cones

In this section, we introduce elementary notions about convex sets, convex functions and cones.

2.1.1 Convex sets

Definition 2.1.1. A subset C' of R" is convex if Yz, y € C, Vt € [0,1]
tr +(1—t)yeC.

A geometrical interpretation of this definition is that a set is convex if any segment joining two points

of this set also belongs to this set as illustrated on Figure 2.1.

Figure 2.1: Some examples of two convex sets and a non-convex set.

Some elementary operations that preserve the convexity of a set are collected in the following
proposition

Proposition 2.1.2. For any collection {C;|i € I} of convex sets C; < R™ we have:
1. C1 X ... x Cypy, s convex in R™ x ... x R"m
2. nerC; is conver, here with n; =n for all i;
3. The finite sum Y ,;~, is convex, with n; =n for all i.

For a set C' < R™, the convex hull of C, denoted by conv C, is the intersection of all convex sets
containing C.

12



2.1. Convex analysis and cones

Proposition 2.1.3. For a set C < R"”, it holds that conv C' is the set of all convex combinations of
_ 1} |

Cones are fundamental geometric objects associated with sets. They play a key role in several aspects

elements of C, i.e.,

L

I
—

m
conv C = {thz | z; € C,t; =0,

=1 A

2.1.2 Cones and polyhedral sets

of mathematics.
Definition 2.1.4. A set K < R" is called a cone if tx € K for all x € K and for allt > 0.

It can be observed that if K is a non-empty closed cone then 0 € K. Examples of convex cones

include linear subspaces of R" and the non-negative orthant R} := {z | z; >0, i = 1,...,n}.

Definition 2.1.5. Given a cone K < R", the polar of K is the cone defined by

KO:{yGR”|yTa:<O, Vee K}.

2.1.3 Convex functions

Let f:R™ - Ru {—o0,00}. An important and useful set associated with a function f is the epigraph
defined by
epi f:={(z,a) eR" xR | a>= f(z)}.

The epigraph is thus a subset of R?*! that consists of all points of R”*! lying on or above the graph

of f. An optimisation problem can thus be expressed equivalently in terms of its epigraph as
inf f =inf{a | (z, @) €epi f}.
For an extended real-valued function f: R"™ — R u {+o}, f is convex if and only if
fltx+ (1 —t)y) <tf(z)+ (1 —1t)f(y), Vz,yeR" Vte (0,1).

The function is called strictly convex if the above inequality is strict for all z,y € R™ with x # y and
t € (0,1). A function is concave whenever —f is convex.

A characterisation of the convexity of a function f can also be done using the epigraph of the function.

Definition 2.1.6. A function f : R" — R U {—o,0} with f # o0 is called conver if epi [ is a

non-empty convex set.

13
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Figure 2.2: Epigraph of a convex function.

An illustration is given on Figure 2.2 and now we give some examples of convex and concave

functions.

Example 2.1.7. Ezamples of convex functions are:
reR - |z|, x € R |z|2, z € R exp(x).
Ezxamples of concave functions are:

X
zeR, >z, Ry > ——
X

1 x € R — exp(—x).

Ezamples of functions that are neither convexr nor concave:

reRw—sinz, reR—cosz, re R— —.
x

Definition 2.1.8. The function f : R™ — R u {—w0, 00} is lower semi-continuous at x if

f(x) = lim inf f(y),

and lower semi-continuous on R™ if this holds for every x € R™.

14



2.2. Optimisation and variational inequalities

Example 2.1.9. The function
eR" s 0 if x=0,
1 otherwise,

18 not continuous but lower semi continuous.

2.2 Optimisation and variational inequalities

We discuss in this section the definition of an optimisation problem, a local minimum and some related

problems called variational inequalities and complementarity problems.

2.2.1 Optimisation problems and local minima

Consider the problem of minimising a continuous function f : R® — R over a compact set C' < R"
denoted by

min f(x).

zeC

Existence of minimisers is given by the the classical Weierstrass Theorem.

Theorem 2.2.1. Let f : K < R” — R be a continuous function defined on a compact set C. Then,

there exists a global minimiser x* € C of f on C, that is,

f(@*) < f(z),Vz e C.

It is to be mentioned here that the continuity hypothesis on f may be reduced to lower semi-
continuity. Minimising a non-linear smooth function over an arbitrary compact set is already a very
hard problem. An example is given in Figure 2.3. A more realistic and more accessible goal for
numerical methods is to compute a local minimum. A point z* € C is a local minimum of f over C' if
there exists € > 0 such that for all z € V.(z) n C it holds that

f@®) < fl2),

where V.(z) denots a neighbourhood centred in z* of radius e.
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Figure 2.3: How to find the minimum of a function?

2.2.2 Variational inequalities and properties

Variational inequalities are intimately connected with optimisation problems. First, let us defined a

variational inequality.

Definition 2.2.2. Let K be a subset of R™ and F' be a map from K into R"™. The variational inequality,
denoted (VI) is to find the vectors x € K such that

(y—2)'F(z) =0, VyeK. (V)

The set of solutions to this probelm is denoted SOL(K, F).
It is obvious that, when K = R™ then x € SOL(K, F) if and only if F'(x) = 0. When K be a cone,
ie., if z € K then tz € K for all t > 0 then (VI) admits an equivalent form that is known as a

complementarity problem.

Definition 2.2.3. Let K be a cone and F : K — R™. The complementarity problem, denoted (CP) is
to find r € R™ such that
KszlF(x)e —K°, (CP)

where the notation 1 means that 7 F(x) = 0.

Proposition 2.2.4. [40] Let K be a cone in R". Then x € R" is a solution of (V1) if and only if x
is a solution of (CP).
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There are many special cases of (CP) which are very important in modeling. We now introduce the
most important ones. One of this case, where K is the nonnegative orthant of R", i.e.,

K = {x e R" : x > 0}. We call this case the nonlinear complementarity problem or (NCP) for short.

Definition 2.2.5. Let F' : R™ — R"™. The non-linear complementarity problem, denoted (NCP) is to
find x € R™ such that

>0, F()=0, 27F(x)=0 or 0<2lF(x)>0. (NCP)
This problem formulation can be written equivalently as
z; =0, Fl(ib) =0, ZL‘zFl(IL‘) =0, +=1,...,n.

It is important to discriminate two types of solutions for NCPs. In the degenerate solution z* is a
component i such that x} = Fj (z*) = 0 holds. For the nondegenerate solution z* no such component
exists, i.e. for i = 1,...,n it holds x} + Fj (z*) > 0. The degenerate case is numerically more difficult.
Examples which lead to complementarity problems are the Nash equilibrium problem, the barrier

problem and KKT conditions. We show a simple case of the last one.

Example 2.2.6. Let f : R™ — R be a conver and continuously differentiable function. Then the
stmple optimization problem

min f(z) s.t. x>0,

is equivalent to the KK T-conditions
=0, Vf>0, 2IVf(z) =0,
which obviously forms a complementarity problem.
In the special case of F' being an affine function given by:
F(z) =Mz + q,

for some vector ¢ € R™ and matrix M € R™ ™ we get the linear complementarity problem.

Definition 2.2.7. Given a vector ¢ € R™ and a matriz M € R"*", the (LCP) is to find a vector
x € R™ satisfying
0<zl(Mzx+q)=>0. (LCP)

A generalization of the (NCP) is the mixed complementarity problem abbreviated as (MiCP).
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Chapter 2. Mathematical background

Definition 2.2.8. Let G and H be two mappings from R™ x R? into R™ x R, respectively. The
(MiCP) is to find (u,v) € R™ x R"? such that

G(u,v) =0 and 0<vlH(u,v)>=0. (MiCP)

We have the following relation between problem classes. The notation P — () means that we can

derive problem @ by specializing problem P, i.e., problem @ is a special case of P.

VI — CP — MiCP — NCP — LCP

See [40] for more details and further results.

2.2.3 Classes of matrices

In this section, we will introduce some classes of matrices which play an important role in studying
the (LCP).

Definition 2.2.9. M € R™*" is a Py-matriz if one of the following equivalent properties is satisfied.
o« VI {1,2,...,n}, det(M;r) = 0.
o Vx e R™\{0}, there exists an index i such that z; # 0 and x;(Mzx); = 0.
o VI c{1,2,...,n}, the real eigenvalues of My are nonnegative.

Example 2.2.10. Here is an example of Py-matriz,

One of the most important classes of matrices is P-matrix that we define as following.
Definition 2.2.11. M € R™*" {s a P-matriz if one of the following equivalent properties is satisfied.
o VI {1,2,...,n}, det(My) > 0.
e Yz eR", such that tMx < 0, we have z = 0.
o VI c{1,2,...,n}, the real eigenvalues of My are positive.

o Vq there exists a unique solution to the (LCP).
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2.2. Optimisation and variational inequalities

Example 2.2.12. Here is an example of P-matrix

Definition 2.2.13. M € R™*" is a S-matriz if it satisfies one of the following equivalent conditions.
o YqeR", the (LCP) is feasible.
o There exists x = 0 such that Mx > 0.
o There exists x > 0 such that Mx > 0.

Example 2.2.14. Here is an example of S-matrix

Definition 2.2.15. A matriz M € R"*" is a Z-matriz if M;; <0 for all i # j.

Example 2.2.16. Here is an example of Z-matriz

1 -2
0 4

Definition 2.2.17. M € R™™" is M-matriz if M is a Z-matriz and M satisfies one of the follow

equivalent conditions.
o M is a P-matrix.
o M is invertible and M~' > 0, i.e., positive semi-definite, x7 M~z > 0 for all x € R™.
o All eigenvalues of M have a positive real part.
e M is a S-matriz.

Example 2.2.18. Here is an example of M-matrix

19



Chapter 2. Mathematical background

We have the following relation between classes of matrices.

M - P - P

l |
Z S

Here, the relation A — B means that A ¢ B, may be strictly. For more classes of matrices, see Figure
2.2.1 of [6].

2.2.4 Py and P functions

We consider a function F': R™ — R™ and we define two properties that is used in this thesis.

Definition 2.2.19. A map F' is said to be a Py-function if it satisfies the following condition

V:c;éy, Jie {17 2,...,%}, (xz_yz)(Fz(x)_Fz(y)) = 0.

Here the index i may depend on x, y.

Definition 2.2.20. A map F' is said to be a P-function if it satisfies the following condition

Ve £y, Jie{l, 2,...n}, (x;—y)(Fi(z)— Fi(y)) > 0.

Here the index i may depend on x, y.

Definition 2.2.21. A map F is said to be a unifromly P-function if there exists a constant p > 0
such that

die {17 2, ”'777’}7 (xz - yz)(E@:) - Fz(y)) = :U’Hx - y”%

Here the index i may depend on x, y.

Proposition 2.2.22. [/0] Every uniformly P-function must be P-function, which in turn must be
Po-function. If F is a P-function then it is a Po-function. If F' is a Po-function then F + eld, with
€ > 0 is a P-function.
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2.3. Nonlinear optimization problem

2.3 Nonlinear optimization problem
Consider the following nonlinear minimization or maximization problem (NLP):

optimize f(x)
subject to
g9i(x) <0,
hj(z) = 0.

(NLP)

Where x € C' is the optimization variable chosen from a convex subset of R™, f is the objective or
utility function, g;(¢ = 1,...,m) are the inequality constraint functions and h;(j = 1,...,1) are the
equality constraint functions. The numbers of inequalities and equalities are denoted by m and [
respectively. We present in this section optimality conditions for NLP. We introduce the classical
Karush Kuhn Tucker (KKT) optimality conditions in Sect. 2.3.1. These optimality conditions require
some hypotheses on the set {x € R" | g(x) < 0, h(x) = 0} that are called constraint qualifications. A
short review of some of these constraint qualifications is presented in [81].

Let the generalised Lagrangian L(z, u, A) be
L(z, 1, A) = f(2) + u" g(x) + ATh(z),

where g(z) = (g1(x), ..., gm(x))T, h(z) = (h1(x),....,h(z))T and (u,)) is the vector of Lagrange

multipliers.

2.3.1 Karush-Kuhn-Tucker optimality conditions

In mathematical optimization, the Karush—-Kuhn—Tucker (KKT) conditions, also known as the Kuhn—Tucker
conditions, are first derivative tests (sometimes called first-order necessary conditions) for a solution in
nonlinear programming to be optimal, provided that some regularity conditions are satisfied. The KKT
conditions were originally named after Harold W. Kuhn and Albert W. Tucker, who first published
the conditions in 1951 [70]. Later scholars discovered that the necessary conditions for this problem
had been stated by William Karush in his master’s thesis in 1939 [64]. The Karush-Kuhn-Tucker

theorem then states the following.

Theorem 2.3.1. [105] If x*, u* is a saddle point of L(x,pn) in x € C, p =0, then * is an optimal
vector for the above optimization problem. Suppose that f(x) and g(x), are convex in x and that there
exists xg € C' such that g(xo) < 0. Then with an optimal vector x* for the above optimization problem

there is associated a non-negative vector p* such that L(x*, u*) is a saddle point of L(x, u).
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Since the idea of this approach is to find a supporting hyperplane on the feasible {x € X : g;(x) <
0,7 = 1,...,m}, the proof of the Karush-Kuhn-Tucker theorem makes use of the hyperplane separation
theorem [65].

The system of equations and inequalities corresponding to the KKT conditions is usually not solved
directly, except in the few special cases where a closed-form solution can be derived analytically. In
general, many optimization algorithms can be interpreted as methods for numerically solving the KKT

system of equations and inequalities [22].

2.3.2 Necessary conditions

Suppose that the objective function f : R® — R and the constraint functions ¢g; : R” — R and
hj : R" — R are continuously differentiable at a point z* € R™. If z* is a local optimum and
the optimization problem satisfies some regularity condition (see [81]), then there exist constants
pi(i = 1,...,m) and \;(j = 1,...,1), called KKT multipliers, such that the following four groups of
conditions hold:

Stationarity

For minimizing f(z):

\i +Z)\Vh +2wgz *) = 0.

7=1 =1

For maximizing f(x):

—Vf(x +Z>\Vh —I—Engz *) = 0.

J=1 =1

Primal feasibility

hj(z*) =0, for j=1,..,1,
gi(z*) <0, for i=1,...,m

Dual feasibility

w; =0, for i=1,....m

Complementary slackness

Z pigi(z*) = 0
i=1
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The last condition is sometimes written in the equivalent form: p;g;(x*), for i = 1,...,m. In the
particular case m = 0, i.e., when there are no inequality constraints, the KKT conditions turn into
the Lagrange conditions, and the KKT multipliers are called Lagrange multipliers. If some of the
functions are non-differentiable, subdifferential versions of Karush-Kuhn-Tucker (KKT) conditions

are available, see [99].

2.4 Nonsmooth Analysis

In this section, we introduce subdifferentials and semi-smooth functions in the sense of Clarke [31, 32].
A very important class of functions for reformulation is the NCP-function. We use these functions to
reformulate our problems as a non-linear unconstrained equation to which we can apply well-known

numerical methods for computing solutions.

2.4.1 Lipschitz functions

In this subsection, we introduce one of the most important classes of functions which is the class of

Lipschitz continuous function. Because most of NCP-functions be Lipschitz continuous functions.

Definition 2.4.1. A function f : R™ — R is called a Lipschitz function on a subset R of R™ if for all

x, y € R, there exists a constant L > 0 such that

[f(z) = f(y)l < Llz -yl

The constant L is called Lipschitz constant.

Definition 2.4.2. A function f : R™ — R is called a locally Lipschitz function in a point x € R™ if

there exists a positive real number € such that f is Lipschitz on B(x,¢).
Example 2.4.3. Let fuin, frp:R?> - R,

o fmin = min{a, b};

o fre(a, b) =va?>+b>—(a+b).

Then these functions are Lipschitz continuous functions.

2.4.2 Subdifferentials

We introduce three subdifferentials which are interconnected. Let U — R™ be an open set and the
function G : U — R™ be a locally Lipschitz continuous function. We denote D¢g the set where G is
differentiable, for more details, see [6, 31, 32, 40].
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Definition 2.4.4. (Bouligand-subdifferential) The B-subdifferential of G at a point x € U is
defined as
0pG(z) = {H e R™" | H{zp} € Dg : {xp} — & and G (z,,) — H}.

Definition 2.4.5. (Generalized Jacobian) The generalized Jacobian of Clarke [32] is defined as
0G(z) = co(dpG(x)),

where "co" stands for the convex hull. When m = 1, we also call 0G(z) the generalized gradient of

G, which is a row vector.

Example 2.4.6. Let f(x) = |z|. This function is not differentiable at 0. Then dpf(x) = {—1, 1} and
0f(x) = [-1, 1].
Definition 2.4.7. (Clarke-subdifferential) The C-subdifferential of G at a point x € U is defined

as

00G(z) = [0G1 () x 0G2(x) X ... x 0Gy(x)]7,

or

0cG(x) = {MT e (R™™™: M = (My, My, ..., My,), M;e dGi(z), 1<i<m}.

Example 2.4.8. Consider the Euclidean function

G:R" >R

n 1/2
r — Glx) |x|2—<2x> .

o
Then
0pG(0) = {z € R™ : |afs = 1} = 0B(0,1) = Sp_1,
0G(0) = {x e R"; ||x||2 1} = B(0,1),
0pG(x) = 0G(z) = {7—

I ” T} vz #0.

Where B(0,1) is a unit ball and Sy,—_1 is the unit sphere in R".
Proposition 2.4.9. [6, 32, /0] Let G : R™ — R™ be locally Lipschitz continuous. Then
1. dpG(x) € 0G(x) € 0cG(x) for all x € R™.

2. 0G(x) is a nonempty set, conver and compact subset of R™*™. This implies that 0pG(x) is a

nonempty set too.
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2.4. Nonsmooth Analysis

3. G is continuously differentiable on an open set D < R™ if and only if 0G(x) = {G'(z)} is a

stngleton.

2.4.3 Semi-smooth functions

For the problems we study in this thesis we need the notion of semi-smooth functions. The set of
these functions is a subset of the set of locally Lipschitz continuous functions and a superset of the

set of continuously differentiable functions. First, we recall the concept of directional derivative.

Definition 2.4.10. A function G : R™ — R™ is called directionally differentiable at point x € R™ if

the limit o i) G
G (x,d) = PH(I] (z + t) — Gl@) eR™,

exists for all direction d € R".

Definition 2.4.11. Let U < R" be open and G : U — R™ be a locally Lipschitz continuous which is

directionally differentiable. Then G is called semi-smooth at x € U if

Hd — G (z,d)

lim =0.
d—0, HedG(x+d) Id|

Definition 2.4.12. Let G is a semi-smooth function. G is called strongly semi-smooth in x € U if

Hd — G (z,d)

lim < 0.
d—0, HeoG(z+d) [d|?

Proposition 2.4.13. [23] Suppose that G : R™ — R™ is a locally Lipschitzian function. If each

component of G is (strongly) semi-smooth at x, then G is (strongly) semi-smooth at x.
Lemma 2.4.14. [23] Let U < R™ be open, x € U and G : U — R™ be a function. Then
e If G is continuously differentiable around x, then G is semi-smooth in x.

o If G is differentiable around z and G is Lipschitz continuous around z, then G is strongly

semi-smooth in x.

2.4.4 NCP-functions

In this subsection we introduce the NCP-functions, which plays an important part in this thesis. Then
we will show how to reformulate the complimentarity problems via NCP-functions. We start with the
definition of NCP-function.
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Chapter 2. Mathematical background

Definition 2.4.15. A function ¢ : R> — R with the property
¢(a,b) =0<==a=>0, b=>0, ab=0,

is called NCP-function.
Here are some examples of NCP-functions.
e Min-function

®min(a,b) = min(a, b).

e Fischer-Burmeister function
¢rB =Va?+ b — (a+D).

o ¢1(a,b) =&(la—b]) — (&(a) + £(b)) where € : R — R be strictly increasing and £(0) = 0.

o ¢2 = s min*{0,a + b} — ab.
It is not too difficult to check these functions are NCP-functions. This is obvious for the minimum
function ¢min. We verify this for ¢pp. From squaring ¢rp(a,b) = 0 it follows that

a? + 0% = (a +b)?,
and from this we conclude that
ab =0,

and ¢pp(a,b) = 0 is equivalent with

a+b=+a?+b%>0,

together with ab = 0 this means that either a = 0, b = 0 or @ = 0, b = 0 holds. This is the first
implication. The other implication can be directly verified with the same case distinction a =0, b > 0
and a =0, b=0.

Let F : R® — R" be a function and ¢ : R> — R be a NCP-function. Then we define the vector-valued
function @ : R” — R" as - _

¢(x1, F1(z))
P(x2, Fo(z))

_d)(xna FTL(‘,E))
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2.4. Nonsmooth Analysis

The following result describes the connection of ® to the complementarity problem.

Theorem 2.4.16. A wvector xz* € R" is a solution of the complementarity problem (NCP) (resp.

(LCP)) if and only if ©* is a solution of the nonlinear equation system ®(x) = 0.

Proof. From the definition of ® and the property of NCP-functions it follows immediately

P(z) =0 <= ¢z, Fi(z)) =0 Vi=1,..,n,
' >0, Fz) >0, ;F(x) =0, Vi=1,.,n.

which is the assertion of this theorem. O

With this theorem we have reduced the complementarity problem to the well known problem of
solving a nonlinear system of equations. If F' and the NCP-function ¢ are continuously differentiable
then @ is also continuously differentiable and we can solve the equation system ® = 0 e.g. with
Newton’s method. A further requirement for Newton’s method is that the Jacobian @ (z*) in the
solution z* has to be nonsingular. The next result shows that this might not be fulfilled in the given

context.

Theorem 2.4.17. [23] Let F : R* — R™ and ¢ : R*> — R be differentiable and x* be a degenerate
solution of (NCP) (resp. (LCP)). Then the Jacobian ® (z*) contains a zero row i, where
*

z} = F;(z*) = 0 holds, and is therefor singular.

Proof. Since ¢ and F' are differentiable the composed function ¢(z;, Fj(z)) is differentiable and we

calculate the Jacobian of x — ¢(z;, Fi(z)) with the chain rule. This clearly gives

Fra 3a oz b

0p(ws, Fi(x)) _ 0¢(wi, Fi(x)) OFi(x)  0¢(wi, Fi(x)) 1

9

where e; is the i-th unit vector. Since z* is degenerate, there is an index ¢ with F;(z*) = zf = 0. Now
let i be such an index. Since 0¢(x;, F;(x)) is the i-th component function of ® the row vector W
is the i-th row of the Jacobian ® (). The proof is complete if we show that V¢(0,0) = (0,0)” holds.

For the first partial derivative we have

04(0,0) _ . #(t,0) — $(0,0) 0-0

= lim = lim —— =0,
aa t—0 t t—0 t
which follows from the NCP-function definition. In the same way, we have
o
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2.4.5 Newton method for semi-smooth functions

In this subsection, we will introduce the semi-smooth Newton method, which is a version of Newton’s
method, for solving nonlinear equation systems under weaker requirements. The theory of the semi-
smooth Newton method was developed by Qi [93] see also [40, 91, 94] for related material. Let

G : R™ — R be a given function and consider the problem of finding a solution z* € R" for
G(z) = 0.

If G is differentiable we can try to solve this with the classical Newton method. It produces a sequence

(2%) = R™ according to the rule
d =2~ G ()G, i=0,1,2, ...

for a starting vector 20 € R™. If G is not differentiable then the Jacobian G’ (%) might not exist and
the next iterate 2* is not defined. With the theory of subdifferentials from subsection 2.4.2, it presents

itself to generalize Newton’s method for locally Lipschitz continuous functions G as follows
o =gt — H7'G(2Y), i=0,1,2,...

where H; € 0G(z*). In the following algorithm, we restrain ourselves to the B-subdifferential but the

generalized Jacobian would be equally possible.

Algorithm 2.1 (Semismooth Newton method)

1. (Initialization) Choose z° € R”, ¢ > 0 ans set k = 0.
2. (Termination Criterion) If |G(2*)| < &, stop.
3. (Newton Direction Calculation) Choose a matrix Hy € dgpG(z¥)
and find a solution d* of the linear system
Hyd* = —G(2").
4. (Update) Set zF+1 = 2k + @* k =k + 1, and go to 2.

In the termination criterion one can use any norm. But it is sometimes useful to choose a certain norm.
For differentiable functions G this algorithm reduces to the classical one since dgG(z') = {G (2%)}

holds for such functions.
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In the rest of this subsection, we will show that this algorithm has the same local convergence prop-
erties as the classical Newton method if certain requirements are met. Note that the use of the

generalized Jacobian would not alter the convergence properties but a little the requirements thereof.

Definition 2.4.18. Let G : R™ — R" be Lipschitz continuous in x € R™. Then x is called BD-reqular

if all matrices H € 0pG(x) are nonsingular.

Example 2.4.19. We consider the scalar function G(z) = |z|. In the solution z* = 0 we have
0pG(0) = {—1,1}. Therefore x = 0 is BD-regular for this function. On the other hand does 0G(0) =
[—1,1] contain zero. As a result, the generalized Jacobian fails to satisfy a comparable reguarity
condition, and hence fails to meet a crucial convergence requirement. This is a significant benefit of

using the B-subdifferential to formulate the semismooth Newton technique.
The next step toward a convergence result is the following Lemma.

Lemma 2.4.20. Let G : R™ — R"™ be locally Lipschitz continuous and let x* € R™ be a BD-regular
point of G. Then there are numbers € > 0 and ¢ > 0 so that all matrices H € dpG(x) for all points

x € Be(x*) are nonsingular and
|H Y| <c¢ VHedpG(x) VYze B.(z*).

Proof. see (]94] Proposition 3.1) O

For differentiable functions, this result simplifies to a well-known Lemma once more. Finally, the

main theorem can be stated.

Theorem 2.4.21. Let G : R™ — R™ be semismooth and let x* be a BD-reqular solution for G(x) = 0.

Then there is a € > 0 so that for every starting vector 2° € B.(z*) the following holds:
1. Algorithm 2.1 is well defined and produces a sequence (x°) which converges to x*.
2. The convergence rate is superlinear, i.e. |z —2*| = o (|2’ — 2*|)
3. If G is strongly semismooth then the convergence rate is quadratic, i.e. |z"™—z*| = O (|2 — 2*|?)

Proof. see (]94] Theorem 3.2). O

We can solve nonlinear systems with nondifferentiable functions if they are semismooth. In particu-
lar we can solve nonlinear systems that stem from complementarity problems. These techniques may
present difficulties to converge. An efficient approach is to approximate min(z;, Fj(z)) =0, i = 1,...,n,
by a smooth one. The following section introduces some smoothing functions and establishes different

properties that will be useful for our thesis.
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2.5 0 functions

In this thesis we propose some smoothing techniques to regularize the complementarity problem or the
complementarity constraints for example (z > 0, z > 0 and z;2,=0) or min(z;, z;) = 0 and construct
relaxed problems that are suitable for non linear programming (NLP) algorithms. Many regularization

and relaxation techniques have already been proposed, here is an incomplete list of such methods

T2 =0 isrelaxed to x;z; <7r Vi, [95, 101]
212 =0 isrelaxed to iz =7 Vi, [95, 101]
22 =0 isrelaxed to zlz<r Vi, [95, 101]

T2 =0 isrelaxed to +/(z; — 2)2 + 412 — (z; + 2) =0 Vi, [38]

zT2=0 isrelaxed to rln {e%i + e%zi} =0 Vi, [19,41].

In almost all these techniques, the complementarity problem or the complementarity constraints
(x =2 0, z = 0 and z;2,=0) or min(z;,z;) = 0 are replaced by some smooth approximations and
maintain the positivity constraints. In our approach, we maintain the positivity constraints and

interpret the complementarity constraint componnent-wise as:
Vi, At most one of x; or z; is nonzero.
So, we construct some parameterized real functions that satisfy:
(Or(x) ~1if x#0) and (0,(x) ~0if x =0),
to count nonzeros and then replace the constraint
z;z; =0,

by
07«(331) + GT(ZZ) < 1.
In this section, we elaborate on how such a regularized function can be actually built up from a

function that is not differentiable everywhere. Our smoothing technique is based on the continuous

approximation of a more elementary object, namely the step function.
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The step function is understood here to be the function & : Ry — {0, 1} defined as

0 if t=0
(1) = ! ’ (2.5.1)
1 if t>o0.

As an indicator of positive arguments ¢ > 0 over R, the step function & "descriminates" the argument
t = 0 by assigning a zero value to it. The price to be paid for this sharp detection is the discontinuity

of & at t = 0. We wish to have a regularization of &, that is, a family of functions
{S(,r): Ry —[0,1),r > 0}, (2.5.2)
such that
« (., r) is a smooth function of ¢ = 0, for all > 0;
« S is continuous with respect to r, in some functional sense;
o lim,jo S(.,7) = 3(.), in some functional sense.

To obtain such a family, we follow the methodology developed by Haddou and his coauthors [4, 52],
the key ingredient of which is a smoothing function. This notion turned out to be a versatile tool in
a wide variety of pure and applied mathematical problems [14, 53, 54, 81]. We begin with a "father"

function, from which all other regularized functions will be generated.

Definition 2.5.1. (@-smoothing function). A function 8 : R — [0,1) is said to be a 0-smoothing

function if it is continuous, nondecreasing, concave, and

0(0) =0,
(2.5.3)
lim 6(t) = 1.
t—-+o0
The two most common examples of smoothing functions are:
1. the rational function 6' : R — (—o0, 1) defined by
o1(t) = H% for t=0 and 0'(t)=t for t<O. (2.5.4)
2. the exponential function 6% : R — (—o0,1) defined by
02(t) = 1 — exp(—t). (2.5.5)
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A more general "recipe" to build such function is to consider nonincreasing probability density
functions

f:R, — R, and then take the corresponding cumulative distribution function on R i.e.,

o(t) = fo fly)dy, t=0, (2.5.6)

we complete the definition of § on R_ by 6(¢) = t to get a continuous, nondecreasing function. The
nonincreasing assumption on f gives the concavity of 6. Once a favorite #-smoothing has been selected,
the next step is to dilate or compress it in order to produce a family of regularized functions for the

step function .

Definition 2.5.2. (0-smoothing family). Let 0 be a 0-smoothing function. The family of functions

t
{QT(t) = 9(;), r > 0} , (2.5.7)
1s said to be the 0-smoothing family associated with 6.

Obviously, 6, is a smooth function of ¢ > 0 for all » > 0. It is also continuous with respect to r at
each fixed r > 0. From the defining properties (2.5.3), it can be readily shown that

lim 6, (t) = S(t), Vt=0. (2.5.8)

r—0

In other words, & is the limit of 6, in the sense of pointwise convergence. Thus, {(.,r) = 6,, r > 0}
is a good family of regularized functions in the sense of (2.5.2). Associated with the two examples
(2.5.4)-(2.5.5) are:

1. the rational family 6! : R — (—o0, 1) defined by

t
for t>0 and - for t<O0. (2.5.9)
t+r T

6L(t) =

2. the exponential family 2 : R — (—o0, 1) defined by

02(t) = 1 — exp(—t/r). (2.5.10)

Figure 2.4 display the two families (2.5.9)-(2.5.10) for a few values of the parameter r. We can see

that the smaller r is, the steeper is the slope at t = 0 and the closer to & the function is.
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0 functions

(a) Function 0:

(b) Function ¢°
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Figure 2.4: Function 6, for a few values of r.

2.5.0.1 f-smoothing of a complementarity condition

A 0-smoothing function paves the way for a smooth approximation of a complementarity condition.
Let (z,2) € R? be two scalars such that

(2.5.11)

that is,

=0, z>=0,

In the (x, z)-plane, the set of points obeying (2.5.11) is the union of the two semi-axes {z >0, z = 0}
and

{x = 0, z = 0}. Visually, the nonsmoothness of (2.5.11) is manifested by the "kink" at the corner
(x,z) = (0,0). It is also clear that the corresponding set is non-convex. We consider two possible
smooth approximations of (2.5.11), depending how it is rewritten in terms of the step function <.
Through this manuscript, we use the functions 6, to regularise the complementarity problem. The
following lemma, provides an intuition of the motivation behind such a technique and shows the link

between this family of functions and the complementarity.

Lemma 2.5.3. Assuming x = 0 and z = 0, we have the equivalence

(2.5.12)

33

10



Chapter 2. Mathematical background

The equivalence (2.5.12) suggests us to impose
x>0, 2=20, 6O.(x)+0,(z)=1, (2.5.13)

for r > 0, as a smooth approximation of (2.5.11). Replacing & by 6, in (2.5.12) is logical. Replacing
"<" by "="in (2.5.12) and the (2.5.13) seems to be a bold move, but this is motivated by the fact
that we want an equality to be mounted into the system of equations. Some times an additional

assumption (strict complementarity x + z > 0) is made to get such equations.

Proof. Prove by contradiction that

lim(0,(z) +6,(2)) < 1=z L 2.

r—0

Suppose z, z > 0, then
lim (0, (z) + 6,(2)) = lin%) Or(z) + lir% 0-(z) = 2.

r—0
This leads to a contradiction and therefore x 1 z. Conversely it is clear that x 1 z implies x = 0 or
z = 0 and the result follows. O

In the case of the function 8}, it holds that
0L (2) +0M(2) =1 = 2z =12
A classical property shared by all concave functions that vanish in zero is the subadditivity.
Lemma 2.5.4. 0, is sub-additive for non-negative values, i.e. given x = 0 and z = 0, it hold that
0r(x) + 0, (2) = 0, (x + 2). (2.5.14)

Proof. Since 0 is concave, we obtain

Vo #zeR, Vte (0,1), th.(x)+ (1 —1)0.(2) <O,(tx+ (1 —1t)z),
with equality if ¢ =0 or ¢ = 1 and if = 2. Considering z = 0 and 6,(0) = 0 yields

0,(tx) = 0,(tx + (1 —t)z) > t0,.(x) Vie (0,1),

with equality if ¢ = 0 or 1 and if z = 0.
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2.5. 0 functions

Let i € {1,...,n} and suppose that z; + z; # 0 (the case x; = z; = 0 stay true)

2

;
O (x;) + 0,(2;) = 0,-((z; + ZZ)ac n z) + 0, ((; + Zl)x v

2
= Or(zi + 2;) + Or(z; + 2
m+ar(l i) m+%r(l i)

=0, (z; + 2;),

)

Ty

with equality if and only if z; = 0 or z; = 0,
xizi =0 <= 0p(xz;) + 0,(2) = 0, (x; + 2).

This concludes the proof.
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3 A new relaxation method for optimal control

of semilinear elliptic variational inequalities

obstacle problems

This chapter is a paper accepted in Numerical Algebra, Control & Optimization [86].

In this chapter, we investigate optimal control problems governed by semilinear elliptic variational
inequalities involving constraints on the state, and more precisely the obstacle problem. Since we

adopt a numerical point of view, we first relax the feasible domain of the problem, then using both

mathematical programming methods and penalization methods we get optimality conditions with

smooth Lagrange multipliers. Some numerical experiments using the Interior Point Optimizer
(IPOPT), Nonlinear Interior point Trust Region Optimization (KNITRO) and Sequential Quadratic
Optimization Technique (SNOPT) are presented to verify the efficiency of our approach.

Contents
3.1 Introduction . . . . . . . . . . L e 38
3.2 Problem setting . . . . . . .. .. L 39
3.3 A relaxed problem . . . . .. ... oL 41
3.3.1 Existenceresult . . . . . . ... L 44
3.4 The mathematical programming point of view . . . . . . . ... ... ... 47
3.5 Penalization approach . . . . . . . . . ... 0 oo 49
3.5.1 The penalized problem . . . . . . . . .. ..o 49
3.5.2  Optimality conditions for the penalized problem . . . . . . .. .. ... .. 52
3.6 Optimality conditions for (P%) . . . . .. .. ... .. .. .. .. ... 56
3.6.1 Qualification assumptions . . . . . . ... oL o oo 56
3.6.2 Sufficient condition for (H2) with p=2. . . . . . . . . .. .. ... 60
3.7 Numerical results . . . . . . . . . . s 62
3.71 Example 1 . . . . . . o e 62
3.72 Example 2 . . . . . L. e 66
3.8 Conclusion . . . . . . . . e 68

37



Chapter 3. A new relaxation method for optimal control of semilinear elliptic variational
inequalities obstacle problems

3.1 Introduction

In this chapter, we investigate optimal control problems where the state is described by semilinear
variational inequalities. These problems involve state constraints as well. We may consider these
problems from many points of view. In [10, 11], the authors provide first-order necessary optimality
conditions. Indeed, they use some relaxation of the original problem governed by variational inequal-
ities and involving constraints on both the control and the state. Their reformulation of the problem

involves nonconvex coupling constraints on both the state and the control variables.

In our work, we use the methodology of [10, 11] and generalize their results to the semilinear case.
It is known that Lagrange multipliers may not exist for such problems [15]. Nevertheless, providing
qualification conditions, one can exhibit multipliers for relaxed problems. These multipliers usually
allow getting optimality conditions of Karush-Kuhn-Tucker type. Our purpose is to get optimality
conditions that are useful in practice: when the penalization parameter € goes to 0, all the variables and
multipliers exist, and remain bounded. Indeed, we have to ensure the existence of Lagrange multipliers
to prove the convergence of lagrangian methods and justify their use. These kinds of problems have
been extensively studied, see for instance [3, 7, 13, 45, 58, 79]. Especially, the variational iteration
method solves quadratic optimal control problems of systems governed by linear partial differential
equations [3, 58]. The idea consists of deriving the necessary optimality conditions by applying the

minimum principle of Pontryagin, which leads to the well known Hamilton—Pontryagin equations.

In this work, we interpret the variational inequality as a state equation, introducing another control
function as in [10, 11]. Then, we consider the problem as a "standard" control problem governed by a
semilinear partial differential equation, involving pure and mixed control-state constraints which are
not necessarily convex. In order to derive some optimality conditions, we have to "relax" the domain;
so we do not solve the original problem but this point of view will be justified and commented on.
Then, by the use of mathematical programming in Banach spaces methods [102, 111] and penalization

techniques, we provide first-order necessary optimality conditions.

The first part of this chapter is devoted to the presentation of the problem: we recall some classical
results on variational inequalities there. In section 3.3, we propose relaxations of the original problem.
In section 3.4, we briefly present some mathematical programming results in Banach spaces. Next, we
use a penalization technique and apply the tools of the previous section to the penalized problem. For
the penalized problems, we obtain optimality conditions and assuming some qualification conditions
we may pass to the limit to get optimality conditions for the original problem. In the last section, we

present some numerical results and propose a conclusion.
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3.2. Problem setting

3.2 Problem setting

Let © be an open, bounded subset of R with a smooth boundray 0€2. For convenience, in the sequel
we denote || . ||y, the norm in Banach space V, and more precisely || . ||2 the L?(Q)-norm. In the
same way, <{.,.) denotes the duality product between H~(Q) and H(Q) and ( . ), the L?({2)-inner

product. Let us set
K={yl|ye H&(Q), y =1 a.e. in Q}, (3.2.1)

where 1 is a H?(2) n H}(Q) function. In the sequel g is a non decreasing, C! real-valued function

such that g/ is bounded, locally Lipschitz continuous and
FyeR, 38 =0 such that VyeR |g(y)| <~ + Blyl, (3.2.2)

and f belongs to L2(Q). Moreover, U,q is a non empty, closed and convex subset of L?(€2). For each
v in U,q we consider the following variational inequality problem: find y € K such that
a(y,z) +Gly) —G(z) = (v+ f,y—2), VzeK, (3.2.3)

where G is a primitive function of g, and @ is a bilinear form defined on H}(Q) x H}(Q) by

- = oy
aly,z) =aly,z) + J b; zda:—i—f cyz dz, 3.24
:2) =al.2) + 33 | gl des | (3:2.4

where a(y, 2) = 23", S aij%% dx and a;j, b;, c belong to L*(€2). Moreover, we assume that a;

belongs to C%(Q) (the space of Lipschitz continuous functions in ) and that ¢ is nonnegative.
The bilinear form af(.,.) is continuous on H}(2) n H(Q) [7, 45], i.e.
M >0, ¥(y,2) € HYQ) m HYQ),  aly.2) < M [y llngeay 11 g (3.25)
and coercive [7, 45], i.e.
36 > 0, Vy e H} (), aly,y) =61y ||§,5(Q) . (3.2.6)
We define the elliptic differential operator A from H}(Q) to H~1(Q) by

V(z,v) € Hy(Q) x Hy(Q)  (Ay,z) = a(y, 2).

By the coercivity of the problem (3.2.3) in y and v, for any v € L?(Q), (3.2.3) has a unique solution
y = y[v] € H}() (see [8] for example).
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Chapter 3. A new relaxation method for optimal control of semilinear elliptic variational
inequalities obstacle problems

As the obstacle function belongs to H?(2), we have an additional regularity result: y € H?(2) x H ()
(see [8, 12]). Moreover (3.2.3) is equivalent to (see [79])

Ay+g(y) =f+v+& y=v, €20, &y—1) =0, (3.2.7)

where 7§ > 07 stands for "¢(z) = 0 almost everywhere on 7. The system (3.2.7) can be viewed
as the optimality system for problem (3.2.3), £ is the multiplier associated to the constraint y > 1.
It is a priori an element of H~1(Q) but the regularity result for y shows that ¢ € L?(Q), so that

&y =) =(&y— ),

Remark. Applying the simple transformation y* = y — ¥, we may assume that ¥ = 0. Of course,
functions g and f are modified as well, but this shift preserves their generic properties (local Lipschitz-

continuity, monotonicity). The second part of equation (3.2.4), is integrated into the function g.

We denote similarly the real valued function g and the Nemitsky operator such that g(y)(z) =
g(y(z)) for every x € Q. Therefore we keep the same notations. Now, let us consider the optimal
control problem defined as follows:

def 1

min{J(y,v) =3 fg(y — 2q)%dx + g JQ(U —wg)dx |y =y[v], ve Uiy, ye K} ,

where z4,v4 € L?(2) and v > 0 are given quantities.
This problem is equivalent to the problem governed by a state equation (instead of inequality) with

mixed state and control constraints:

min {J(y, v) = % L(y _2g)da + g L(v — vd)de} G

Ay+g(y)=f+v+€& inQ, y=0 on 09, (3.2.8)
(y,v,€) € D, (3.2.9)

where
D = {(y,v,6) € H3(Q) x L2(Q) x L*(Q) | v e Upg, y =0, €= 0, (y,£), = 0}. (3.2.10)

We assume that the feasible set D = {(y,v,£) € D / relation (3.2.8) is satisfied} is non empty. We
know, then that problem (7P) has at least an optimal solution (not necessarily unique) that we denote
(y,,&), (by the coercivity of the problem (3.2.3) in y, and v see for instance [8, 12]).

Similar problems have been studied also in [16] but in the convex context (D is convex).
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3.3. A relaxed problem

Here, the main difficulty comes from the fact that the feasible domain D is non-convex and has an
empty relative interior because of the bilinear constraint ” (y,£), = 0”. So, we cannot use generic
convex analysis methods that have been used for instance in [16]. To derive optimality conditions
in this case, we are going to use methods adapted to quite general mathematical programming [102,
111]. Unfortunately, the domain D (i.e. the constraints set) does not satisfy the usual (quite weak)
assumption of mathematical programming theory. This comes essentially from the fact that L%-
interior of D is empty. So, we cannot ensure the existence of Lagrange multipliers. This problem
does not satisfy classical constraint qualifications (in the usual KKT sense). One can find several

counter-examples in finite and infinite dimensions in [15].

3.3 A relaxed problem

In order to "relax" the complementarity constraint "(y,&) = 0" we introduce a family of C! functions
0y : RT — [0,1], (a > 0) with the following properties (see [52] for more precision on these smoothing

functions):
(i) Ya > 0, 6, is nondecreasing, concave and 6,(1) < 1;
(i) Ya >0  6,(0) = 0;
(i) Vo >0 lim fo(z) =1 and  lim 0.,(0) > 0.

Example 3.3.1. The functions below satisfy assumption (i — iii) (see [52]):

0L (z) = —

o(@) z+a’
1

92?9(:17) _ log(1 + )

Clog(l1+z +a)

Functions 6, are built to approximate the complementarity constraint in the following sense:
V(z,y) e R xR ay = 0=0,(2) + 0a(y) <1,

for a small enough. More precisely, we have the following proposition:

Proposition 3.3.2. Let (y,v,£) € D and 0} satisfying (i — iii). Then

(1,8 =0= 0L (y) + 0L (&) <1 a.e. in Q.
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The proof of the proposition it is based on the followings lemmas:
Lemma 3.3.3. For any e >0, and z,y = 0, there exists ag > 0 such that
Va < ag,  (min(z,y) =0) = (0u(z) + 0a(y) < 1) = (min(z,y) < e).

Proof. The first property is obvious since 6,(0) = 0 and 6, < 1. Using assumption (#i7) for x = €, we
have

V>0, Jap>0|Va<ay 1—-04() <,
so that, if we suppose that min(z,y) > ¢, assumption (i) gives
Vr >0, 6Ou(x)+0a(y) > 20,(c) > 2(1 —7).

Then if we choose r < 3, we obtain that 0, (z) + 04 (y) > 1. O

Lemma 3.3.4. we have

1. V=0, Vy=0 0.z)+0L(y) <1< zy<a? and
2.2 =0, Vy=0 zy=0=02"z)+02'(y) <1 = 2.y < a?

where 021 verifying (i — iii) and 021 = 6.

Proof. (1) We have
2zy + ax + ay

Yy + axr + ay + a?’

04 () + 0,(y) =
so that

0L(z) +0L(y) <1 <= 2zy+az +ay <zy+azx +ay + o?

= 1.y < o?.

(3.3.1)

The first part of (2) follows obviously form Lemma 3.3.3 and the second one is a direct consequence
of (1) since
0" (2) + 021 (y) < 1= Oa(x) +0a(y) < 1.

O]

More precisely, we consider the relaxed domain D, instead of D, with a > 0, using the function 6}
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3.3. A relaxed problem

we obtain:

Dazﬁyu@eﬂame%me%m/

: (3.3.2)
Y .
Uug, y =0, £=0, <1, ae in
ve Uy, vy & y+a+§+a a.e. in }
and the relaxed domain D¢ instead of D, with a > 0
D% — { (. 0.6) < H(@) x 22 x L)/
(3.3.3)
log(1 +y) log(1 +¢) :
aas 2 9 2 I < ]., -€. Q 3
vEUat y =0, £20 log(l+y+a) log(l+¢&+ a) a.c.m

in the case of the function 6.

We may justify and motivate this point of view numerically, since it is usually not possible to ensure

¥y 4 &
y+a + E+a

it may be chosen small as wanted, but strictly positive. So, the problem turns to be qualified if the

2

"(y,€)y = 0”7 during a computation but rather < 1”7 where « is a prescribed tolerance:

bilinear constraint ” (y,§), = 07 is relaxed to ”_¥= + &% <17 a.e. in Q.
In the sequel, we consider an optimal control problem (P%) where the feasible domain is D, instead
of D. Moreover, we must add a bound constraint on the control £ to be able to ensure the existence

of a solution of this relaxed problem. More precisely we consider:

min J(y,v)
(P%) Ay+gly) = f+v+EinQ, ye Hy(Q),
(y>v7§) € DO&7R

where R > 0 may be very large and

Dar ={(y,v,€) €Da | |[€]l2 < R}

From now on, we omit the index R since this constant is definitely fixed, such that

R= €]z (3.3.4)

where (y,v,€) is a solution of (P).
We will denote Dy, := Dy.g, and Vog = {£ € L*(Q) | € = 0,]| € ||2< R}. Vaq is obviously a closed,
convex subset of L2(Q). As (¢,7,€) € D, we see with (3.3.4) that D, is non empty for any o > 0.
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3.3.1 Existence result

In order to prove an existence result for (P“), we state first a basic but essential lemma.

Lemma 3.3.5. Assume that (yn,vy,) is a bounded sequence in HE(Q) x L*(Q) such that &, := Ay, +
9(yn) — f — vn is bounded in L*(Q)). Then, one may extract subsequences (still denoted similarly) such
that

e v, converges weakly to some ¥ in L*(Q);
e Y, converges strongly to some § in HL(Q);
e g(yn) converges strongly to g(4) in L*(Q);

o Ayn + g(yn) — f — vn converges weakly to Aj + g(§) — f —  in L*(Q).

Proof. Let (yn,vs) be a bounded sequence in H}(2) x L?(); therefore (y,,v,) weakly converges to
some (7,7) in H}(Q) x L*(Q) (up to a subsequence). Similarly, &, weakly converges to some & in
Lo (§2). Thanks to [68] (Theorem 17.5, p174), assumption (3.2.2) yields that

(Yn)n=0 bounded in L?(2) = (9(yn))n=0 bounded in L?(Q).

As, y, weakly converges to 7 in H} (), it strongly converges in L?(f2) a.e. in Q. As g is continuous,
9(yn) converges a.e. in Q as well (up to subsequences). We conclude then (Lebesgue theorem), that
g(yn) strongly converges to g(4) in L?(Q2). Moreover when Ay, = —g(y,) + f + v, + &, is bounded in
L?(9) it will converge weakly to some Z in L?(f2). As ¥, weakly converges to 7 in H{(Q), then Ay,
converges to Aj in H~1(Q2), so 2 = Aj and Ay, weakly converges to Aj in L?(2) as well. Therefore
Ay, strongly converges to Ag in H~1(Q).

Finally we get the weak convergence of Ay, + g(yn) — f — vn to Aj + g(§) — f — ¥ in L?(R2) and the
strong convergence of y,, to 7 in H} (). dJ

So that, we can consider that problem (P®) is a "good" approximation of the original problem (P)

in the following sense:

Theorem 3.3.6. For any a > 0, (P%) has at least one optimal solution (denoted (Yo, va,E&an)). More-
over, when a goes to 0, yo strongly converges to § in HZ(Q)) (up to a subsequence), v, strongly
converges to ¥ in L2(Q) (up to a subsequence), £, weakly converges to & in L2(Q) (up to a subse-

quence), where (ij,7,€) is a solution of (P).
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3.3. A relaxed problem

Proof. Let (yn,vn,&n) be a minimizing sequence such that J(yy,,v,) converges to d* = inf(P?). As

J(Yn,vy) is bounded, there exists a constant C' such that we have:
Vo || vy |l2< C.

So, we may extract a subsequence (denoted similarly) such that v, converges to v, weakly in L?(£2)
and strongly in H _I(Q). As U,q is a closed convex set, it is weakly closed and v, € U,q. On the other

hand, we have Ay, + g(yn) — f —vn = &, a.e. in Q. So

<Ayna yn> + <g(yn)a yn> = <f + Un, yn> + <yna £n>
In view of Lemma 3.3.4, we have:

Yn én

+ 2
Yn +a &+«

Yyn =0, V& =0, S 1= ynbn <,

the integral by the two ways, gives

Un n
yn +a &+«

<1l ynfn < 042 = <ym§n> < aQArea(Q).
So

CAYny Yn) +9Wn)s Yn) = {f + 0, Yn) + Yny ) <+ UnyYn) + a2Area(Q).

The monotonicity of g gives

(AYns Yny < {AYns Yny +{g(yn) — 9(0),yn) < {f + vn — g(0), yn) + a*Area(9).

Using the coercivity of A, we obtain

6 119 1By < 1 £ + v = 900) 131 gl 9 Ly +a®Avea(®) .
< C | yn ”H&(Q) +a?Area(Q).

This yields that y, is bounded in H} (), since  is bounded, so y,, converges to y, weakly in Hg ()
and strongly in L?(Q2). Moreover as y, € K, and K is a closed convex set, K is weakly closed and
Yo € K. We have assumed that V4 is L?(Q)-bounded. So, we can apply Lemma 3.3.5 and obtain that
&, weakly converges to £, = AYa + g(Ya) — f — Va € Vag in L2(9).

Remark 3.3.7. &, = Ay, + 9(yn) — f — vn, weakly converges to &4 = Aya + 9(ya) — f —va in H ().

Unfortunately the weak convergence of &, to &, in H—1(Q) is not sufficient to conclude.
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We need this sequence to converge weakly in L*(Y). That is the reason why we have bounded &, in
L2(92).

in L2(Q)

At last, ™ +a + f" converges to = +a + 5

and the weak convergence of &, in L?(£2) and we obtam

Ya o
Yot fata

continuity of J give:

< 1, we just prove that (ya,va,&n) € Do. The weak convergence and the lower semi-

d® = lim inf J(yn, vn) = J(Ya, va) = d*.

n—0o0

So J(Ya, va) = d* and (Ya, Va,&a) is a solution of (PY).

o Now, let us prove the second part of the theorem, we need to proof when o goes to 0 we have y,
strongly converges to § in H}(Q2), v, strongly converges to ¢ in L?*(Q) and &, weakly converges
to € in L?(Q), where (7, 9,€) is a solution of (P).

First we note that (7,9, &) belongs to D for any a > 0. So:
Va >0 J(Ya,va) < J(y,0) < 400, (3.3.6)

and v, and y, are bounded respectively in L?(2) and H}(f2). Indeed, we use the previous arguments

since v, is bounded in L?(2) and

4 H Yo H%{é(g < H [+ va —g(0) H%{ H Yo HHl ) T Area(Q)

(3.3.7)
< C|| Ya HH1 +a2Area(Q)

So (extracting a subsequence) v, weakly converges to some ¥ in L?(2) and y, converges to some §
weakly in H}(Q) and strongly in L?(€2).

As above, it is easy to see that &, weakly converges to & = Agj +9(9)— f —7in L(Q) (thanks Lemma
3.3.5), and that § € K, © € Uyq, & € Voq. In the same way 50‘

As 0 < JHon + ﬁfa < 1, from Lemma 3.3.4 we get:

y y+a §+o¢

Ya €a

" 2
Ya+a Eu+a

<1 <= 0<y.éa <,

at the limit as a \, 0 this implies that §€ = 0 < {y, §~> =0. So (g, 9, E) € D. This yields that

J(@,%) < J (5, ). (3.3.8)
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Once again, we may pass to the inf-limite in (3.3.6) to obtain:
J(9,0) < Iin%inf I Yoy Vo) < J(Y,0).
a—

This implies that
J(’gv ’6) = J(Q? @)7
therefore (¢, 7, &) is a solution of (P). Moreover, as lim0 J (Yous Vo) = J(7,0) and y, strongly converges
a—>
to ¢ in L2(Q), we get lin% || va |l2=|| © ||2, so that v, strongly converges to @ in L?(£2). We already
o—>

know that &, weakly converges to & in L2(€). So

€a +Va = 9(Ya) + [ = Aya converges to £+ —g(§) + f = A,

weakly in L?(£2) and strongly in H~1(2). As A is an isomorphism from H}(Q) to H~1(Q) this yields
that y, strongly converges to § in H{ (). O

We see then, that solutions of problem (P®) are “good ” approximations of the solution of problem
(P).
Now, we would like to derive optimality conditions for the problem (P?), for a > 0. In the sequel, we
study the unconstrained control case: U,g = L?(Q). We first present some mathematical programming

tools that allow proving the existence of Lagrange multipliers.

3.4 The mathematical programming point of view

The non-convexity of the feasible domain does not allow to use convex analysis to get the existence
of Lagrange multipliers. So we are going to use quite general mathematical programming methods in
Banach spaces and adapt them to our framework.

The following results are mainly due to Zowe and Kurcyusz [111] and Troltzsch [102] and we briefly
present them in the following.

We will work in real Banach spaces X, U, Z1 and Z5. Our admissible set U,y is a convex closed subset
of U.

In the definition of the forthcoming problem, f is a real function defined on X x /. We assume that
f is Fréchet-differentiable. T" and G are Fréchet continuously differentiable transformations of X x U
into Z1 and Z, respectively. We also consider that Z, is partially ordered with respect to some given

convex closed cone P S Zy,ie. x 2y xz—ye P.
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Now, consider the mathematical programming problem defined by:
min {f(z,u) | T(z,u) =0, G(z,u) <0, u€ U} (3.4.1)

We denote the partial Fréchet-derivative of f,7T, and G with respect to  and u by a corresponding
index = or u. We suppose that the problem (3.4.1) has an optimal solution that we call (xg, ug), and

we introduce the sets:

Upad(ug) ={u el | IN =0, Fu™ € Upg, u = A(u"™ —ug)},
P(G(zo,up)) ={z€ 22| IN=0, Ipe —P, z =p — AG(zo,u0)},
P ={ye 2y |{y,p)=0, Vpe P}.

One may now announce the main result about the existence of optimality conditions.

Theorem 3.4.1. [111] Let uy be an optimal control with corresponding optimal state xo and suppose

that the following reqularity condition is fulfilled:

T (x ,uo) (@, u = 21,
V(21,22) € Z1 x Z9  the system { ,( 0, vo)(#,u) ! (3.4.2)
G (z0,u0)(z,u) —p = 22,
is solvable with (x,u,p) € X x Uyq(ug) x P(G(xo,up)).
Then a "Lagrange multiplier" (y1,y2) € Z7 x Z5 ewists such that
f;(l‘o, ’U,()) + T;C({L‘(), ’U,O) * Y1 + G;C(.’B(), uo) * Yo = 0, (3.4.3)
(f;(xo,uo) +T;(ac0,u0) * 1 +G/w(x0,u0) *yg,u—uo)xxu >0, Yu€ Uy, (3.4.4)
Y2 € P+, (yg, G(x07u0))25"x22 =0. (345)

Mathematical programming theory in Banach spaces allows us to study problems where the feasible
domain is not convex, this is precisely our case (and we cannot use the classical convex theory and the
Gateaux differentiability to derive some optimality conditions). The Zowe and Kurcyusz condition
(3.4.2) is a very weak condition to ensure the existence of Lagrange multipliers. It is natural to try to
see if this condition is satisfied for the original problem (P), unfortunately, it is impossible (see [9])
and this is another justification (from a theoretical point of view) of the fact that we have to take D,
instead of D.

On the other hand, if we apply the previous general result "directly" to (P“) we obtain a complicated
qualification condition (3.4.2) which seems difficult to ensure.

So, we would rather mix these "mathematical-programming methods" with a penalization method in
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order to "relax" the state-equation as well and make the qualification condition weaker and simpler.

3.5 Penalization approach

3.5.1 The penalized problem

One of the difficulties comes from the fact that we have a coupled system. It would be easier if we
had only one condition. In order to split the different constraints and make them "independent", we
penalize the state equation to obtain an optimization problem with non-convex constraints. Then we
apply the previous method to get optimality conditions for the penalized problem. Of course, we may
decide to penalize the bilinear constraint instead of the state equation: this leads to the same results
(see [7, 11] for example).

Moreover, we focus on the solution (Yu, Va,&a), S0, following Barbu [7], we add some adapted penal-
ization terms to the objective functional J.

From now on, o > 0 is fixed, so we omit the index a when no confusion is possible. For any ¢ > 0 we
define a penalized functional J* on (H2(2) n H} () x L2(2) x L?(£2)) as follows:

1
Ty v) + 5 |l Ay+gy)—f—v—£€|3
a 1 1
J&(y,v,8) = + 5 11 AW — o) B 5 llv—va I (3.5.1)
1
sl e gl

and we consider the penalized optimization problem

min {J2(y,,€) | (y,v,€) € Da, y € H*(Q)nHy(2)} (Pa)

Theorem 3.5.1. The penalized problem (PS,) has at least a solution
(Ye, ve, &) € (H2(Q) n HL(Q)) x L*(Q) x L*().

Proof. The proof is almost the same as the one of Theorem 3.3.6. The main difference is that we have
no longer Ay, + g(yn) — f — vp — &, = 0, for any minimizing sequence. Anyway, y,, vpn, &n, Ay and
g(yn) are bounded in L?(2), and it is standard to see that any weak-cluster point of this minimizing

sequence is feasible and is a solution to the problem,

Ay + g(yn) — f — v — & — 0, weakly in L*(Q2).
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Now, we may also give a result concerning the asymptotic behavior of the solutions of the penalized

problems.

Theorem 3.5.2. When & goes to 0, (ye,ve, &) strongly converges to
(Yous Var, €a) € (H(Q) n HE(2)) x L2(2) x L3(Q).

Proof. The proof is quite similar to the one of Theorem 3.3.6. We have:
Ve >0 Jg<y6)7}€7§6) < Jsa(ya7va7€a) = J(yocavoc) = joz < +. (352)
So

1
2J(y5,1}€) + - H Aye +g(3/6) —f—ve—¢& H% + H A(Ye — Ya) H%

+ || ve — va H%"‘ || & — &a ||%

< 2Ja-

(3.5.3)
Therefore v, Ay. and & are L%(Q)-bounded; this yields that Ay. + g(y.) — f — v. is L?(Q)-bounded
and y. is H*(2) n Hj(€Q)-bounded. So, using Lemma 3.3.5, we conclude that
(i) v converges to some © weakly in L?(£);
(ii) y. converges to some § strongly in HJ (£2);
(iii) & converges to some & weakly in L2(9);
(iv) Ay. + g(yz) — f — v. — & converges to Aj + g(§) — f — 7 — € weakly in L2(Q).

Moreover, the inequality
|| Aye +9(ye) — f —ve — & ||g < 2€ja,

implies the strong convergence of Ay, +g(y.)— f —v. —& to 0 in L?(Q). Therefore Aj+g(§) = f+0+E.
It is easy to see that § € K, 0 € Uyg and & € V,q. Moreover, as y. converges to § strongly in L2(2)

and &, converges to & weakly in L?(9), we know that ysyja gfja(é 1) converges to gfa + 54% So
g%c + Efa < 1 and (7, 9,€) belongs to D,. Relation (3.5.2) implies that
1 2 1 2 1 2
J(Ye, ve) + ) 1 A(ye — ya) [I2 +§ || ve —va [l +§ | & — &a |12< I (Ya; va)- (3.5.4)
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Passing to the inf-limit and using the fact that (7, 7,€) belongs to Dy, we obtain

oo 1 - 1, . 1, =
TG0 | AG —30) 1B+ 115 v [+ 11 €~ I
< J (Yo, Vo) (3.5.5)
< J(5,0).

Therefore, A(§ — yo) = 0 (which implies § = yo since A(§ — yo) € HA(Q)), ¥ = v, and & = &,.
We just prove the weak convergence of (ye, vz, &:) t0 (Yo, Va, Ea) in HE () x L2(Q) x L?(Q), and that
lin%J(yE,va) = J(Ya,va). Relation (3.5.4) gives

E—>

1 A@e = ya) 13+ Il ve = va 13 + || & = &a 113 < 20T (Yar va) — T (¥e, 0:)]; (3.5.6)

therefore we get the strong convergence of Ay, towards Ay, in L?(Q), that is the strong convergence
of y. to yo in H2(Q) n H(2). We get also the strong convergence of (ve,&.) towards (va,&q) in
L%(Q) x L*(Q). Let us remark, at last, that y. converges to y, uniformly in Q, since H2(Q) n H}(Q) <

c(Q). 0

Corollary 3.5.3. If we define the adjoint state p. of the penalized problem as the solution of
A*p. + g (ye)pe = ye — 24 on Q, pe € H(Q), (3.5.7)
then p. strongly converges to p, in H(SY), where p, satisfies

Ao + g (Ya)Pa = Yo — 24 on €. (3.5.8)

Proof. We have seen that || Y- —ya ||coc— 0. Therefore y. remains in a bounded set of R (independent
of €). As g is a C! function, this means that || ¢ (y:) || is bounded by a constant C' which does
not depend on . In particular g (y.) is bounded in L?(Q) and Lebesgue’s theorem implies the strong

convergence of ¢ (y.) to ¢ (yo) in L2(Q). Let p. be the solution of (3.5.7), this gives

(A Dey D) +4g (Ye)pe, ey = (Ve — 2dy Do),

! . .
as g = 0 and A* is coercive we get

31 pe ) <I1we = za lla-10)ll Pe [y -
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So, pe is bounded in H}(Q) and weakly converges to p in HE (). Moreover, p. is the solution to

A*pa =—g (ys)ps +Ye — 24 on €,

the left-hande side (weakly) converges to —g (ya)P + Yo — 2q in L?(Q); this completes the proof. [

3.5.2 Optimality conditions for the penalized problem

We apply Theorem 3.4.1 to the penalized problem (P%).
We set
z=y, u=(v¢8), (zo,u0)= (7c,vc,&),
X =H?(Q) nHIQ), Zy=XandU = L*(Q) x L*(Q), Uug = Usq x Vaa,
P ={yeH*Q)nHj(Q) | y >0} x R, f(a,u) = J(y,v,£),

Gly) = (G130, € Galy 0] = | =i (12w ) —avea(@)]

there is no equality constraint and G is C!,

G (Yo, ve, € (,v,€) = [—y; (y, M)Q - (&, ML} .

Here
uad(vsaés) = {()\'U - )‘Uev ,uf - ,Ulgs) / A =0, w=0,ve Uads fe Vad}a

P(G(y&vsage)) = { [_p +AYe ;s =Y — A <17 ysyj_ o + 55%‘ a>2 + )\Area(Q)}

eH%mmHame/%A>ap>o}

Let us write the condition (3.4.2). For any (z,) in X x R we must solve the system:

—y+Dp— AyYe = z,

o o Ye &e _
(rtap), (et oea (13 g5, - -

with u, v, A =0, £ € Vg, ve Uy, and y € X. Taking y from the first equation into the second we

have to solve:

(p—kya ~ 2, (yafa)g>2+ (u(&—fe),(fafa)z);rv

+)\<1, ve  , & >—)\Area(Q)=5.
Yeta Lt a),
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So

(o rvan), 2 (e g, (-9 i),

—I—’y+)\<1, Ve, e >—/\Area(Q)
y-+a & +a/,

[0
:B+ (Za (ys +Oé)2>2 =P,

with g, v, A= 0, £€ Vyq, ve Uyg. We see that we may take: pu=1, £ =&, p=0, and if p = 0, we

choose A =0, v=p. If p <0, we have two cases:

o If

<1, Ve 4 & )—Area(Q)=C<O,
ye+ta L t+a/,

then we Set’y:)\<ya,(yja)2> , A= g
€ 2

o If

(1, Yo 4 S >fArea(Q)=O,
Yye ta &t a/,

o
then we set v =0, A= —2 suchthat n =\ (9o, ————— | .
e g ! <y€ (ye + 04)2>2

Indeed, we have

(1, Ye 4 & )—Area(Q)=0,
Ye ta &t a),

in view of Lemma 3.3.4, we have

(1, Ye + & > — Area(Q) = 0 < y..& = a? ae. in Q.
Ye + o &+ 2

Therefore y. and . are strictly positive. (Since « >0 fixed). Hence, n > 0 and A > 0.

So, condition (3.4.2) is always satisfied and we may apply Theorem 3.4.1, since J& is Fréchet differ-

entiable, and

ng (yEa Ve, 65)(?/; v, 6)

Y
= ( (‘]g);(y€7v€7£€) (J?);(ysyvsaés) (Jaa>/§(ysavsa£s) > o RCAN B
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we have: 1
Jyv) + 5 1Ay +9(y) = f v =€ [3
T (y,v,€) = +% | Aly — yo) \|§+% 0= vg |2 (3.5.9)
1
bolle—glB.
So,
’ 1
(T2, (e ver ) = (L = 2a)y + — (A+ 9 (). Ave + 9(ue) = [ —v: — &),
+ (A, A(ye - ya))z .
(Jg);;(ysavsags) = (v, 0 — Ud)2 + (1,0 — Ua)g
1
- g (17Ay5 + g(ye) - f — Ve — 68)2 .
/ 1
(Jga)g(yavva,fa) = (1756 - 504)2 - g (17 Aya + g(ya) - f — Ve — fa)Q .
Therefore
ng (y€7 U€>§€)(y?va§) = (ya Ye — Zd)Q +v (Ua Ve — Ud)z + (Ua Ve — 'Ua)g
+ (575& - fa)z + (Ay’A(ys - ya))Q + (QE>A€y — U= 5)2 )
where 4
__ Ave+ () — fove =& (g and A=A+ 4 (y). (3.5.10)

There exists s. € X* and r. € R such that:

o
Vye X (y7 Ye — Zd)Q + (Qaa Asy)Q + (AyvA(ya - ya))Q + Te (y7 (y+a>2> - <S€7 y>X*,X =0,
e 2
(3.5.11)
Vo€ Uy (V(Ve —Vq) + Ve — Vo — Qe U — Vg )y = (3.5.12)
«
V€ € Vaa ( Cray + & — &€ — §€> (3.5.13)
&e _
1, — Area(Q2) | =0, (3.5.14)
Ye + « §€ +a),
Yye X, y =0, <Sg,y>_)(‘* x =0, <85,y5>)(*7)( = 0. (3515)

Here (.,.)x* x denotes the duality product between X and the dual space X'*.
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Finally, we can state optimality conditions for the penalized problem, without any further assumption:

Theorem 3.5.4. The solution (ye,ve, &) of problem (P2) satisfies the following optimality system:

Vye K (pe+ e, Ac(y — )y + (A(y — ), A(ye — ¥a)),

N N L (3.5.16)
Te \Y — Ye, W ) )
Voe Uz (V(ve —vg) + Ve —Vq — Ge, ¥ — Ve)y =0, (3.5.17)
«
VEeV, <r5_QE+§5_€a7€_§E =0, 3.5.18
¢ " rap : (35.18)
Ye &e .
re >0, 7|1, + — Area(Q2) | =0, (3.5.19)
ye +a L ta/,
where p. is given by (3.5.7) and q. by (3.5.10), and K = K n (H%(Q) n H{(Q))

Proof. Relation (3.5.11) applied to y — y. gives:

Vye X (y — Y, Ye — Zd)Q + (QEv Aa(y - ya))Q + (A(y - ys)a A(ys - ya))g
S
€ y yE) (yE + Oé)2 )
:<357y>X*,X - <557ya>X*,X-

So, with (3.5.15), we obtain

~ [0
Vye K (pa + QEaAe(y - ya))Q + (A(y - ya)aA(ya - yoe))2 + 7e <y — Ye, (y i a)2> = 0.
e 2

95



Chapter 3. A new relaxation method for optimal control of semilinear elliptic variational
inequalities obstacle problems

3.6 Optimality conditions for (P%)

3.6.1 Qualification assumptions

Now we would like to study the asymptotic behavior of the previous optimality conditions (3.5.16)-
(3.5.19) when e goes to 0 and we need some estimations on ¢. and r.. We have to assume some

qualification conditions to pass to the limit in the penalized optimality system. We have

Acye —ve — & = Ay + g(ye) —ve — & — [+ f + 9 (e)ye — 9(%e).
We set
We = gl(ye)ye - g(ye) and wq = gl(ya)ya - g<ya)7 (361)

so that
Aeys_vs_§5 :5QE+f+Ws'

Let us choose (y,v,&) in K x Uyg X Vg, and add relation (3.5.16)-(3.5.18). We have:

(P, Ac(Y — Ye))g + (Ges Ae(Y — ¥e))o + (AW — ¥Ye), AlYe — Ya))g + (=G, v — ve),

e
+ (V(ve — Va) + Ve — Vo, U — Ve )y + T y—ys,m
e 2

e ((50[‘1‘0()2’5 £s> +(£€_£aag_£€)2+(—q€,£_£€)2
= 0.

So that:

€ a 2

< (p57 As(y - ye)z + (A(y - ya)aA(ya - ya))g
+ (V(Ua - Ud) + Ve — Vg, UV — Us)z + (fe — &0y — 5&‘)2 — € H qe H% .

The right hand side is uniformly bounded with respect to € by a constant C' which only depends of y,

v, £. Here, we use as well Theorem 3.5.2 when ¢ goes to 0. Moreover, relation (3.5.19) gives

Ye &e
1, + = r.Area(€),
Ts( Ye + §s+a>2 refrea(()
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so that we finally obtain:

- <qs’Ay Ho ey —f v _E_%)fra [((ysja)?y _%)2 i <(§eja)2§ _€6>2] (3.6.2)

< C(%uf)?

where

A + — ] — Ve — i ’
o = A I T T 2 (0) and Az = At ), e = 6 () — gl

We consider two cases:

(i) I

(1, Yo S ) < Area(Q),
Yot ECata/,

<1’ Ye 4 & > _)(1’ Yo I a > :
Yeta Lt a), Yo+ Eat+a/,

there exists £g > 0 such that

as

Ve < e, <1, Yo, L > < Area(Q),
Yeta L t+a/,

and relation (3.5.19) implies that r. = 0, so the limit value is 7, = 0.

(ii) I

(1 Yo 4 S ) = Area(2),
2

Yot €+

<1’ Ye 4 & > _)(1’ Yo I a > ’
Yeta Lt a), Yo+ Eat+a/,

there exists £g > 0 such that

as

Ve < e, (1, Ve 4 S ) = Area(Q),
ye+a L+ a/,

we cannot conclude immediately, so we assume the following condition (#):

Ye &
) ’ 5 5 = 5
(Hq Ya >0 such that (1 + ) Area(R)
Yyeta  Sta/,

g is locally Lipschitz continuous, and U,g has a non empty L®-interior (denoted Into,(Uyq)) and
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_(f + Wa) € IntoO(Uad)'

Theorem 3.6.1. Assume (H1), then re is bounded by a constant independent of € and we may extract

a subsequence that converges to r.

Proof. We have already mentioned that r, = 0 when

<1, Ve & ) < Area(Q).
2

Ye +ta &+ a

In the other case, as g/ is locally Lipschitz continuous, then w, uniformly converges to wq on €.
Indeed, we prove that y. uniformly converges to y,. Therefore, there exists g > 0 such that y. — y,
remains in a bounded subset of R™ independently of € €]0,ep[. The local Lipschitz continuity of q
yields

19 (1)) — 9 Wa(@)] < Mlye(@) — ya(@)] < M || g — ya ey Vo,

where M is a constant that does not depend of . Thus || ¢'(v:) — ¢ (ya) ||o— 0. As

l9 (We)ve — 9 Wa)val <19 Wellve — val + 19 (¥) — 9 (Wa)ll¥al,
we get
Il 9 (W)ye — 9 Wa)Va llo< M || ye = Ya lloo + || 9 (We) — 9 Wa) llol] Ya |loo— 0.

Similarly || g(y:) — 9(Ya) |lco— 0. As we supposed —(f + wq) € Into, (Upg), then —(f + we) € Uyq for €
smaller than some gg > 0.
Now, we choose y = 0, v = —(f + w.) and £ = 0 in relation (3.6.2). We obtain

where C' is independent of ¢ since w, is uniformly bounded with respect to e, for € €]0, &o[.
We still need to proof that:

<(y€_fa)27y6> +<(€E )2;£e> #0, Va>0 and e — 0,

(1, Yo 4 & > = Area(Q).
2

Yeta &+ a

as

So, we have:
Ye I &e
Yet+a &+ a

=1, a.e. in £,
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in view of section 2.5 we obtain

Ye &e

ia + o 1l =yl = a® = (y, &), = A®Area(Q), ae. in Q.
3 13

Therefore, the set {z € Q, /y.(z) # 0, & (x) # 0} is not empty, and the set {z € Q, /y.(z) =0, & (x) =

0} is empty when € goes to 0 since « is fixed. Hence we obtain:

« (e
<(y5+a)27y£)2+ <(f€+a)2’§€>2#0’ Ya > 0.

Passing to limit as € — 0, we obtain

(6% (63
<<ya +a>2’ya> * <<§a+a>2’§a>2 70, va=0

From (3.6.3), r. is uniformly bounded (independently of €). So the relation (3.6.2) becomes:

V(90,8 € K x Ust x Var = (4 Ay+g )y —f —v—E—w.) < Cuug.  (364)

Then we have to do another assumption to get the estimation of g. (H2):
Ipe[l,+mw], Feo >0, Ip>0,
(H2) Ve €]0,e0[, Vx € LP(Q) such that || x [|rp)< 1,
(Y5, v5, &5) bounded in K x Uy x Vg (uniformly with respect to x and ¢), such that
AYS + g (ye)ys = f + we + 05 + € — px in Q.
Then we may conclude:

Theorem 3.6.2. Assume (Hi) and (Hz), then q- is bounded in Lp/(Q) by a constant independent of

1,1 _
e (here 54—17—1).

Proof. (Hz2) and relation (3.6.4) when applied with (y5,v5,&5) give:

Yx e LP(Q), || x llere)< 1, p(@esX) o wpp < Cye < C.

Then passing to the limit in the penalized optimality system, we obtain the following result.
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Theorem 3.6.3. Assume (H1) and (H2), if (Yo, Va,&a) @S a solution of (P®), then Lagrange multi-
pliers (qa,ra) € LP () x RY exist, such that

Vye K, [A+g (4a)](y—va) € L"(),

N N ; (3.6.5)
_ e P >0,

(et LA+ g 0=, 4o (=)
Vv e Uug, v—va€LP(Q) (V(va—vd) = GV —Va) sy pp = 0, (3.6.6)
eV (e l@ (itn-mé-G) >0 (367)

(ga + a) Lr xLp
Ta [(1, Yo 4 ba > —Area(Q)] =0, (3.6.8)
Yo+ Eata/,

where py 18 given by (3.5.8).

3.6.2 Sufficient condition for (H;) with p=2.

In this subsection we give an assumption dealing with (yu, Ve, &) independently of . We consider
p = 2 which corresponds to one of the useful cases and for which we established several results in
section 3.3. We always assume that gl is locally Lipschitz continuous (for example g is C?), and we
set the following (H3)

3p >0, Jvg € Intep (Uga), VX € L?() such that || X ||12(q)< 1,
I(yx,Ex) € K x Vg (uniformly bounded by a constant M independent of X),
such that Ayx + ¢ (Ya)yx = f + wa + Vo + Ex — pX in Q.
Proposition 3.6.4. If ¢ is locally Lipschitz continuous then (Hz) —> (Hs).

Proof. We have seen that || ye — ya [|o— 0, || g/ (ye) — g,(ys) |loo— 0

and || we — W ||oo— 0. Let be X € L?(Q) such that || X |]2< 1 and

(Y, 0, Ex) € K x Intop (Ung) X Vg given by (Hsz). As vy € Intos(Uyg), there exists pg > 0 such that
B (vo, p) € Uygq. As yx is bounded by M, then for € small enough (less than some gy > 0), we get

|| wa —we + (9 (¥e) — 9 (Ya))yx [l
<l wa —we lleo + 11 9 (W) — 9 (Wa) ool Y |0

<P0;

therefore v5 = v + (¢ () — ¢ (Va))yx + Wa — we belongs to U,y and
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105 ll2 < [l vo [l2 + || wa —we [l2 + 1| (9'(5e) = 9 (va))yae |l2 < C,

v% is L?-bounded independently of X and e. Now, we set y5 = yx € K and &5 = &x € Vyq to obtain

Ay + 9 (W)y = Ayx + 9 (Ya))yx + (9 () — 9 (ya))yx
= f+wat+v0+E&x — pX + (9 (1) — 9 (Ya) ya
= f+we+v0+ (9 (Y) — g Wa))Wx + Wa — we + Ex — pX
= [ +we + vy + & —pdA.

We can see that (Hz) is satisfied. O

We obtain, as an immediate consequence, the following result about the existence of Lagrange

multipliers.

Theorem 3.6.5. Let (Yo, Vo, Ea) be a solution of (P%) and assume (H1,Hs), then Lagrange multipliers
(qa> 7o) € L2(Q) x RT exist, such that

_ , «
K « %} A « - Ya al\ 7 99 T Ja = ) <M.
WER, (oot a4+ 00 -1)), + 1o (=) 200 (309)
Vv € Upd, (V(Va — Vd) — Ga, U — Va)y =0, (3.6.10)

To O

4 Vad, —s — 00§ — & | =0, 3.6.11
eV (Eotm—mb—t). 6.1

Ya &a _
ro || 1, + — Area(Q2)| =0, (3.6.12)

Yo+t Eata/,

where po is given by (3.5.8).

Proof. We take vg = —(f + wq) to ensure (H3). Let X € L(Q) such that

X |2 @< 1.

Weset {xy = XT+X7 = |X] = 0, where XY = max(0,X) and X~ = max(0, —X). As || X || ;2 < 1,
it is clear that £y € V4. Let yx be the solution of

[A+ g (a)yx = Ex — X =2X~ >0 (ae.), ye HY(Q),

thanks to the properties of [A+ g/ (yo)] and the maximum principale, then yy = 0 a.e. in Q. Therefore
yx € K and (H3) is satisfied (with p = 1). The optimality system follows and we prove that the
multiplier g, is a L?(2)-function. O
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Corollary 3.6.6. If g is linear and —f € U,q, the conclusions of Theorem 3.6.5 are valid.

Proof. If g is linear, we use the same proof as the one of Theorem 3.6.5 to bound ¢. in L?(2). It is
sufficient that —f € Ugq. O

Remark. The Lagrange multiplier (g, 7o) € L*(Q) x RT in (3.6.5) works. But for some evamples
such that complex constraints, it becomes invalid, it is generally called as Lagrange crisis, and there

are some methods to overcome the crisis, see for example [57].

Next we describe numerical experiments that are carried out by means of AMPL languages [1],
with the IPOPT solver [106] (“Interior Point OPTimizer”), KNITRO solver [26] (“Nonlinear Inte-
rior point Trust Region Optimization”) and SNOPT solver [51](“Sequential Quadratic Optimization
Technique”).

3.7 Numerical results

In this section, we report on some experiments considering 2D-examples. For two different smoothing
functions, we present some numerical results using three solvers from different families: the IPOPT
nonlinear programming algorithm, the KNITRO and SNOPT solver on AMPL [1] optimization plat-
form. Our aim is just to verify the qualitative numerical efficiency of our approach.

The discretization process is based on finite difference schemes with a N x N grid and the size of the
grid is given by h = % on each side of the domain.

We take Q =]0,1[x]0,1[c R?, A := —A the Laplacian operator (Ay = ‘32?

o+ ‘32—5’> . We fix the toler-
ance to tol = 1073.

2
ox3

In our experiments, we use the two following functions

0L (z) = —
o) r+a’
QIOg(x) _ log(l + H?)

Clog(l+x+a)

3.7.1 Example 1

We set Uyg = L?(2), v =0.1, zg=1and vg =0, g(y) = >

We fixe the smoothing parameter to 10™3 and the penalization parameter to 1073,

200[2z1 (21 — 0.5)% — 29(1 — 29) (621 — 2)] if 21 < 0.5,

far,22) =
200(0.5 — x1) else,

62



3.7. Numerical results

and

200 —0.5)2(1 — if z1 < 0.5,

P(z1,22) = [#122(21 )7 (1 — 2)] if 2
200[(z1 — 1)za(z1 — 0.5)2(1 — 22)] else.

Obstacle f(z1,ma) Source term

U(xy, £2)

Figure 3.1: Data of the considered example.

States 3
E(xix)

Control Obstacle

Figure 3.2: Optimal solution with IPOPT solver using the 6}, N=20, a = 1073, and ¢ = 1073.

Figure 3.1 presents the data from Example 1. On the right is the function f and on the left is
the obstacle ¢. Using these data, we solve the problem (P%) using IPOPT solver and report on the
solutions in 3D, in figure 3.2. We find that the state satisfies the obstacle constraint and that the
function ¢ is greater than or equal to 0. The complementarity constraint is satisfied and its error is
equal to 3.15e-7 (we do not need « very close to 0 to have a good approximation of our problem), the

equality constraint is satisfied and the obtained objective value is equal to J(u,v) = 0.6490659.
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3.7.1.1 Details of the numerical tests
Numerical simulation results using IPOPT solver

In our experiments we make a logarithmic scaling for these two functions to bound their gradients.

Each constraint
Oa((y — )ij) + 0a(&ij) < 1,

is in fact replaced by the following inequality

2 o o > .
a” In + = 0, 0<ié,j<N+1,
((y—w)m‘ ta  §jta

in the case of the . function and
o ln <2 B ( log(1+ (y — ¥)iy) log(1 + &,j) >> >0,
log(1+ (y —¢)ij +a) log(l+&; +a)

in the case of the 018,

0<i,j<N+1,

This scaling technique is proposed and used in [19] to avoid numerical issues.
We fix the penalization parameter to ¢ = 1073, Tables 3.1 and 3.2 give in view of Example 1 and for
different values of the parameter «, the complementarity error, the state equation error, and the value

of the objective function when using each of the two smoothing functions.

Table 3.1: Using the 6. smoothing function -Example 1- N=20.

a JAy—gly)—f-v—~&l2 -8, J
lel 4.19213e-06 0.00554001  6.4520064¢-01
1.e-2 9.73059¢-06 3.90692¢-05 6.4808311c-01
1.3 1.66885¢-05 3.15736e-07  6.4906597¢-01
le-4 7.20318¢-06 3.45708¢-09  6.4906596¢-01

Table 3.2: Using the 0!°¢ smoothing function -Example 1- N=20.

a |JAy—gy)—f-v—C&ll2 (y—1,8), J
le-1 4.77128¢-06 0.00275542  6.4585951¢-01
1.e-2 1.00013e-05 2.29846¢-05  6.4810490e-01
1.e-3 1.67039¢-05 2.54095¢-07  6.4906099e-01
le-4 3.05604e-07 3.97519e-09  6.4906099e-01
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In Table 3.1 and Table 3.2, for different values of «, using the two smooth functions # and 6%,
we notice that when « goes to 0 our approach gives consistent results and we also notice that the
complementarity error goes to 0, the state equation goes to 0 and objective value remains almost the
same for o < 1.e-3.

We present now, the effect of the penalization parameter €, where « is fixed. Table 3.3 gives in
view of Example 1 and for different values of the parameter e, the complementarity error, the state

equation error, and the obtained value.

Table 3.3: Using the §. smoothing function -Example 1- N=20 where o = 1072 is fixed.

e | NAy—gly)—f—v—=Ell2 (w—9,9), J
lLe-1 0.000190242 6.60632e-05 6.4772424e-01
l.e-2 2.49746e-05 5.1126e-05 6.4776774e-01
l.e-3 9.73059¢-06 3.90692¢-05  6.4808311e-01
l.e-4 2.50301e-06 3.77642¢-05 6.4810870e-01

Numerical test using different NLP solvers

We prove that all the variables and multipliers involved in our optimality conditions exist and remain
bounded. So, one can at least in theory use any standard NLP solver to try to tackle discrete versions
of the relaxed problem.

In this subsection, we consider 3 solvers from different families

- a free Interior point solver IPOPT,

- a commercial one KNITRO,

- and a sequential quadratic programming solver SNOPT.

Our main concern is to analyse their efficiency on our problems. Even, we provide information about
the number of iterations, it is difficult to make any comparison: iteration of different solvers corre-
sponds to different numerical efforts. We only want to check if these solvers are able to solve the
problems.

Table 3.4 gives in view of Example 1 and for the value of the parameter o = 1072, and € = 1073, the

complementarity error, the state equation error and the obtained value, and the number of iterations.

Table 3.4: Using the 6. smoothing function -Example 1- N=20.

Solver | [|Ay—g(y)—f—-v—Ell2 (y—v,&), J Nb.Iter
SNOPT 3.73674e-09 9.04096e-07 6.47795123e-1 46346
KNITRO 7.72611e-13 9.05794e-05 6.4779048¢-01 64
IPOPT 9.73059¢-06 3.90692¢-05 6.4808311e-01 478
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In view of Table 3.4, we remark that, the 3 algorithms obtain the same solution and almost the
same objective value. This suggests that our approach can be implemented using any standard NLP

solver.

3.7.2 Example 2

We present now, some numerical results an example given in [17]. We take  =]0,1[x]0, 1[c R?,

A := —A the Laplacian operator. The discretization is done via finite-differences and the size of the
grid is given by % on each side of the domain.

We set Uyg = L3(), v = 100, vg =0, and g(y) = 0, ¥ (x1,22) =0

200[z122(21 — 3)2(1 — 22)] if 0 < x <1/2,
za(z1,22) =
200[(z1 — Dza(zr — 3)*(1 —x2)] f1/2 <2y <1,
and
Fler ) = 200(221 (21 — )% — 22(1 — 22) (621 — 2)] if 0 < 29 < 1/2,

200(3 — 1) if 1/2 <2 < 1.

Moreover, we put a = 1073 and e = 1073, This example is constructed such that the null control

v* = 0 is the optimal control for the original problem (P) and

zg if0 <z <1/2,

0 if1/2<a <1,

and J* = J(y*,v*) = 22 ~ 0.0496.

Exact State Solution Optimal State

Figure 3.3: Example 2 using 61, N = 15 and o = 1073.

In figure 3.3, using IPOPT solver we draw the approximate and exact solutions. Using the smooth

function 0}, and for a = 1073 our approach gives consistent results.
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Table 3.5: Using the 6. smoothing function -Example 2- N=15.

o |Ay—gy) —f—v—=¢&lls (=98, lly—y*llz |[v—=v"fla |J—J

le-1 3.63549¢-08 0.00420714  0.00029353  3.63549¢-07 2.24511¢-05
1.e-2 4.61188¢-08 4.35654¢-05 3.21283¢-06  4.60966e-07  3.93248¢-05
1.3 3.51106e-13 4.39172e-07 2.54572e-08 5.07363e-07  3.94924e-05
le-4 3.93201e-13 1.19934e-09  2.01061e-08  1.72508e-06  3.94944¢-05

Table 3.6: Using the } smoothing function -Example 2-a = 1073.

N |J — J*

3 0.009068814
6 0.000722747
9 0.000270778
12 5.37292e-05
15 3.94924e-05
18  9.16493e-06
21  8.82412e-06
24 8.85534e-07

In Table 3.5, for different values of a, using the smooth function @}, we notice that when a goes
to 0 our approach gives consistent results. The complementarity error goes to 0 and the error on the
state equation goes to 0. We remark that when o < 1072 the largest error concerns the cost function.
We decided to use this criterion to analyse the mesh dependence when the value of alpha « is fixed. In
Table 3.6, for different values of N, using the smooth function 6, we found that for N large enough
(N = 15) the approximation is good. We also remark that we do not need to take N extremely large
(N < 30).

Remark. (Constrained control case) Up to now, we investigate optimal control problems governed
by semilinear elliptic variational inequalities involving constraints on the state i.e. ye K = {y | y €
H}(Q), y = a.e. in Q}, and for unconstrained control i.e. v € Uyq = L*(1).

It is possible to add constraints on the control. In the following, we give two examples for which the

assumption of Theorem 3.6.5 is satisfied.

e We can consider an admissible control of the form

U ={veL?Q) | v=Aae inQ},

67



Chapter 3. A new relaxation method for optimal control of semilinear elliptic variational
inequalities obstacle problems

where A € L*. If one can find a real number p > 0 such that A + p < —f then the assumption
of Theorem 3.6.5 is satisfied.

. it is globally Lipschitz-continuous and C?. Then

We can choose g(z) = —ﬁ :

, 3y2 +1
0<wa =9 Ya)la—9Ya) = W =
(e}

So —f =3 < —f —wo < —f and one can consider a set of admissible controls defined as

Uy ={vel?Q) | A<v<T a.e. in },

where A,T' € L*(Q) such that A+ p < —f —3 and —f < T — p, (with p > 0 is a real number)
then the assumption of Theorem 3.6.5 is satisfied since —(f + wq) < Intre(Ugg)-

3.8 Conclusion

In this chapter, we introduce a new regularization schema for optimal control of semilinear elliptic

variational inequalities with complementarity constraints. We prove that Lagrange multipliers exist.

The existence of Lagrange multipliers is an important tool to describe and study algorithms to compute

the solutions(s) of (P%) (that are “good approximations” of the original problem (P)).

In our numerical experiments, we use several standard NLP solvers and obtained promising results.

The next step will be to develop an approach based on our optimality conditions.
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4 A smooth approach to the solution of
nonlinear complementarity problems

involving Py-function

This chapter is a paper accepted in Statistics, Optimization & Information Computing [87].

In this chapter, we present a family of smoothing methods to solve nonlinear complementarity problems
(NCPs) involving Pp-function.

Several regularization or approximation techniques like Fisher-Burmeister’s method, interior point
methods approaches, or smoothing methods already exist. All the corresponding methods solve a
sequence of nonlinear systems of equations and depend on parameters that are difficult to drive to
zero. The main novelty of our approach is to consider the smoothing parameters as variables that
converge by themselves to zero. We do not need any complicated updating strategy, and then obtain
nonparametric algorithms. We prove some global and local convergence results and present several

numerical experiments, comparisons, and applications that show the efficiency of our approach.
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Chapter 4. A smooth approach to the solution of nonlinear complementarity problems involving
Po-function

4.1 Introduction

The nonlinear complementarity problem (NCP) consists in finding x € R™ satisfying
r>0 F(z)=0 zTF(z)=0, (4.1.1)

where F' : R" — R"™. When F is linear, problem (4.1.1) reduces to a linear complementarity problem
(LCP).

NCPs arise in many practical applications, for example, the Karush-Kuhn-Tucker (KKT) systems of
mathematical programming problem, economic equilibria, and engineering design problems can be
formulated as NCPs (see, for instance, [42, 56, 82]).

Different concepts have been developed to study and solve these problems: reformulation as a system
of nonlinear equations or a minimization problem (see [44, 47, 60, 72, 84, 88, 90]). Recently, there
have been strong interests in equation reformulation methods for solving the NCPs. One of the
most effective methods is to transform the NCP into semi-smooth equation (NCP functions) and solve
using semi-smooth Newton methods. The most well-known NCP functions are the Fisher-Burmeister’s
function introduced by Fisher Burmeister in [43] and the min function studied by Kanzow, Yamashita
and Fukushima [62]. Another well-known class of algorithms corresponds to the smoothing methods.
The main idea of smoothing approaches is to approximate or regularize the NCP to obtain smooth
equations depending on some parameter (see, for example, [27, 61, 69, 92, 109]).

In this chapter, we present a smoothing approximation scheme to solve (4.1.1). We replace
0<zlF(x)=0, (4.1.2)

by a sequence of smoothed systems of the form

Gy, F(2)) 1= (Gr(is Fi(@))iey. . = (w [¢ (%) +u (F(”)]) -0 @

=1,...

All the functions and parameters involved in (4.1.3) will be explicit later. Depending on the context,
we apply several functions (6,1, Gy, ...) on reals or vectors. When applied to vectors, we consider that
they apply component-wise. The novelty of our approach is that we do not need any complicated
strategy to update the regularization parameter r since we will consider it as a new variable. To solve
the smoothed equations system we will use the standard Newton-like method. Without requiring a
strict complementarity assumption at the solution of equation (4.1.1), we prove that the proposed
algorithm is well defined, globally and superlinearly convergent. At the end of the chapter, we present

numerical results to prove the effectiveness of the algorithm.
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4.2. Preliminaries and problem setting

This chapter is organized as follows: some definitions are introduced in section 4.2. We present our
approximation and formulation in section 4.3. In section 4.4, we discuss our approach and scheme to
solve (4.1.1). The convergence properties of the algorithm are given in section 4.5. The section 4.6 is
devoted to the numerical results with a comparison of our method with other approaches. Finally, we

conclude our chapter.

4.2 Preliminaries and problem setting

Consider the NCP, which is to find a solution of the system:
>0, F(z)>0 and 2'F(z)=0 or 0<z L F(z) >0, (4.2.1)

where F' : R" — R is a continuous function satisfying some additional assumptions to be precised
later.

From (4.2.1), we obtain the equivalent formulation for component-wise products
x>0, F(x) =20 and i Fi(x) =0, i=1,2,...,n.

Or equivalently

9N

where ”.” stands for the Hadamard product. It provides an explanation for the term "complementar-
ity", namely, for all i = 1,2,...,n, x; and F;(x) are complementary in the sense that if one of them is
positive then the other term must be zero.

A particular and important class of NCP is the LCP class defined below.

Definition 4.2.1. When F' is affine function:
F(z)=Mz+q, xeR" qeR", MeR"™™

The corresponding NCP is called an LCP. So an problem is to find x € R™ such that
>0, Mzr+q=>0 and z'(Mz+q)=0.

To solve NCP, there are essentially three different classes of methods: equation-based methods
(smoothing), merit functions, and projection-type methods. Our goal in this chapter is to present new
and very simple smoothing and approximation schemes to solve NCP and to produce efficient numer-

ical methods. In our approach, we do not need any complicated strategy to update the smoothing
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parameter since we will consider it as a new variable.
First, let us introduce the usual assumptions on F' and the ones that will be used in this chapter.
A well-known and studied situation corresponds to monotone functions F' and several methods and
algorithms have been developed in this case.
Almost all the solution methods consider at least the following important and standard condition on
the mapping F' (monotonicity): We recall that F' is said to be monotone if F' : R"” — R" satisfies for
any (z,9) € R,

(2= 9)" (F(x) - F(y)) > 0.

In this work, we will consider a weaker assumption on F"
F isa Py-function, (Hp)

to prove the convergence of our approach. We recall the following definitions of Py and P functions.
We say that F': R™ — R™ is a Py-function (respectively P-function) if Y,y € R™ with x # y, there

exists an index iy € {1,2,...,n} such that

(@i = yio) [ Fig (%) — Fig(y)] = 0,

(respectively  (zi, — yio ) [Fio (x) — Fiy(y)] > 0).

It is important to notice that the index ¢g can depend on z and y.
A matrix is called a Pp-matrix (resp. P-matrix) if all its principals minors are nonnegative (resp.
positive). Note that F' is a Po-function if and only if VF(z) is a Po-matrix for all z € R™. If VF(z)

is a P-matrix for all z € R™, then F' is a P-function. However, the converse is not necessarily true.

4.3 Smoothing approximation functions

In the first part of this section, we introduce the smoothing functions and establish different properties
that will be useful for the presentation and the convergence of our algorithm. In the second part of
this section, we present a new smoothing function for NCP.

A function ¢ : R? — R is said to be a NCP function if ¢ satisfies

#(a,b) =0 <= a=>0, b>0, ab=0. (4.3.1)
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An example of such function i ¢min : R? — R,
®min(a, b) = min{a, b}.

Then, @iy is a NCP function. Problem (4.2.1) is then equivalent to the following system of nonlinear

equations:

_(bmin(ml? Fl(x))

Gmin (w2, Fa(x))

H(z) = = 0. (4.3.2)

_Qbmin(wm Fn(x))_

This system is clearly nonsmooth; classical Newton-like methods can not be used to try to solve it. To
overcome this difficulty, there exist several semi-smooth approaches. These techniques may present
difficulties to converge. An efficient approach is to approximate (4.3.2) by a smooth one. The following
subsection introduces some smoothing functions and establishes different properties that will be useful

for our study.

4.3.1 Definition and properties of the smoothing functions

We start our discussion by introducing the function 6 with the following properties (these funtions
were used in [2, 4, 14, 52]). Let 6 : R —] — o0, 1[ be a non-decreasing continuous function such that
0(t) <0 if t<0, 6(0)=0 and tkrfme(t) = 1.

For instance,

_t ift >0,
ol(t) =< t+1

t if t <0,

and
0%(t)=1—e"", teR.

We will often return to these two examples very different from each other. We will also use these two
functions in the numerical section.

In order to “detect” if ¢ = 0 or ¢ > 0 in a “continuous way”, we introduce 6,(t) = 6(%) for r > 0 and
}i_r&)@(t) =1forallt>0.
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4.3.1.1 f-smoothing of a complementarity condition

Let z, z € R be two scalars such that
0<zlz>0, (4.3.3)

that is,

=0, z2z>20, zz=0.

In the (z, z)-plane, the set of points obeying (4.3.3) is the union of the two semi-axes {x > 0, z = 0}
and {x = 0, z > 0}. Visually, the nonsmoothness of (4.3.3) is manifested by the "kink" at the corner
(z,z) = (0,0).

We consider two possible smooth approximations of (4.3.3), depending how it is rewritten in terms of

f-function.
Lemma 4.3.1. [52] Given x,z € Ry and the parameter r > 0, we have the equivalence
rz=0 < 7li\]zjt(l)(@r(ac) +0,(2)) < 1.
Lemma 4.3.2. [52] 0, is sub-additive for non-negative values, i.e. given x, z = 0 it holds that
Or(x) +0,(2) = Op(x+ 2),
and with equality if and only if xt =0 or z = 0,
rz=0 < 0,(z) 4+ 0,.(2) = 0,.(z + ).
Now, let us discuss the following equation in the one-dimensional case. Let s,t € R, be such that
0,(t) + 0,(s) = 1. (4.3.4)

For instance, let us take §!. The equality (4.3.4) is then equivalent to st = 2.
So, when r goes to 0, we simply get st = 0. The equation (4.3.4) applied with s = x € Ry and
t = F(x) € Ry is then an approximation of the relation zF(x) = 0.

4.3.2 A new smoothing function using #-function

Our aim is to propose a large class of #-functions for which the problems

2" >0, Fz™)y>0 and 0,(zM) +6,(F(z™)) =1, (4.3.5)
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are well-posed and any limit point of (;E(T)) when 7 goes to 0, is a solution of NCP. In the multidimen-

sional case, the equation just above has to be interpreted as a system of n equations,
0,2y + 0,(Fi(a) =1, i=1,..,n.

Note that the relation (4.3.5) is symmetric in z and F'(z). Thus, our problem can be seen as a fixed
point problem for the function F, g(z) defined just below. Indeed, the equation (4.3.5) is equivalent

to
v =0, (1—6,(F(2))) = 16" (1 - 8(F(x)/r)) =: Fy ().

By symmetry of the equation (4.3.5), we also have the relations:
F(z) =011 —-0,(z)) =ro (1 — 0(z/7)),

but we shall not go that direction. As in [53] we propose another way to approximate a solution of the
NCP problem as follows. Let ¢,.(t) = 1 — 6,.(t), the relation (4.3.5) is equivalent to the three following
equalities

(@) + U (F(x)) = 1 = 4,(0),
O [he(2) + ¢ (F(2))] =0 and

ot o (2) + v (F2)] = 0.

For the sequel, we set for any =,y € R” and any r > 0

Gr(,y) 1= (Gl 9i))ic, = (" [0 (%) +w(y7)]) . (4.3.6)

=1,...

where ¢ : R —]0, +00[.
First, we characterize the solutions (z,y) of G,(z,y) = 0 when 9 satisfies some conditions independent
of F. Let 0 < a < 1. We say that 1 satisfies condition (H,) if there exists s, > 0 such that

1 1
P(s) < =¢(as) Vs =s, or equivalently 5t 50(&8) <0(s) Vs = s, (Hy,)

DN | =

The condition (H,) imposes that the decay of 1(s) is under some uniform control for large s or in
terms of 6 that 0(s) should grow enough quickly with some uniformity for large s. Since 1) and 6 are
monotone, it is interesting to take a as large as possible in the condition (H,) since (H,) = (Hp) for

b<a.
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Note that we can never take a = 1 because § < 1 unless # is constant and equal to one for large s.
But in some cases, a can be chosen as close to 1, see for instance 2.

One can obtain by simple calculations that:

1. For 6%, we have

.
i t>0,
Pty =4 t+1
1—¢t if t<0,
1
and the condition (H,) is only satisfied for 0 < a < 1/2 with s, > T oa"
—2a
2 —t e . . . In2
2. For 6%, we have ¥(t) = e~* and the condition (H,) is satisfied for any 0 < a < 1 with s, = . .
—a

From now on, all the results use the function 7). Obviously, everything can be easily transposed on
6. The following lemma compare the function G, defined in (4.3.6) to the min function and will be

useful for the rest of our analysis.

Lemma 4.3.3. If ¢ : R —]0, +0[ is an invertible non-increasing function, then for any (s,t) € R?
and any r > 0
Gy (s,t) < min(s,t).

Proof. Let s,t € R be fixed. By symmetry, we can assume that s = min(s,¢). Since ¢ > 0, we

obviously have
P(s/r) < Y(s/r) +P(t/r).

By the fact that v is invertible and non-increasing, we get

W (s/r) + e(t/r)) < s/r.

Thus, from the definition of G, we conclude that

Gr(s,t) = rp [(s/r) + ¥ (t/r)] < s = min(s,t).

The next theorem shows how the condition (H,) gives information about the behavior of G,.

Theorem 4.3.4. Let 1) : R —]0, +00[ be an invertible non-increasing function such that

Jim (t) = +00,9(0) = 1, and lim <(t) = 0.
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If o satisfies the condition (H,) for some a € ]0,1[, then for all s,t € R,
li t) = i t) =0.
limy Gr(s,t) =0 < min(s,t) =0

Proof. We start by the direct implication:
Let s,t € R be fixed. By Lemma 4.3.3, for any » > 0 we have G,(s,t) < min(s,t) and, then
min(s,t) > 0. We finish the proof by contradiction as follows. Assume that s = min(s,t) > 0.

Since v is nonincreasing and s < ¢, we have

P(s/r) +(t/r) < 29(s/r).

By assumption (H,) and for r small enough, 2¢(s/r) < 1(as/r). Indeed, the ratio s/r goes to infinity

as r goes to 0 because s > 0. Hence

P(s/r) +¢(t/r) < P(as/r).

Now since ¢! is nonincreasing,

as/r < P L(W(s/r) + U(t/r)),

or equivalently with r small enough, s < a=1G,(s,t).

Passing to the limit, li\I‘T(l) Gr(s,t) = 0 and, then s < 0 in contradiction with s > 0.
T

Now, we prove the converse (<):

Assume s = min(s, t). Hence, s = 0. Since 9(0) = 1, we have
Gr(s,t) = ro™ (1 + (/).

If t = 0 then lim G, (s,t) = lim r¢p=1(2) = 0.
0 N0
If t > 0 then 11\1‘1[1) Y(t/r) = 0. Thus li\r‘% G, (s,t) = 0 by continuity of ¢~
In both cases, we have li\INI(l] G,(s,t) = 0. O

For both 6! and 62 examples, the assertion of Theorem 4.3.4 is clearly satisfied. Indeed direct

computations lead to
1 1 . - .
1. For s > 0 and ¢t > 0 such that — + n < —, we have the following explicit expression
s r

st —r?

. 4.3.
s+t+2r ( 37)

Gi(s,t) =
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Note that the denominator is not zero when s,¢ are nonnegative even when s = ¢t = 0. In

addition, when min(s,¢) > 0 we have ll\r‘% Gl(s,t) = 387—:t < min(s,t).
2. For any s,t € R, we have the following explicit expression
G?(s,t) = —rlog(e™" + e !/). (4.3.8)
Assume s = min(s, t). Then we have s — rlog(2) < G?%(s,t) because
efs/r + eft/r < 2675/7“'

Thus, min(s,t) — rlog(2) < G?(s,t) < min(s,t). Passing to the limit as r goes to 0, we conclude
that }1{% G?(s,t) = min(s,t).

Figure 4.1 illustrate the behaviour of G, (z, —z).

Figure 4.1: Comparison of G%(z, —r) and min(z, —z).

Now, we focus on the case where 1) satisfies (H,) for all a €]0,1[ and prove a stronger result.

Theorem 4.3.5. Let 1) : R —]0, +oo[ be an invertible non-increasing function such that

Jim (t) = +00,9(0) = 1, and lim <(t) = 0.
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If o satisfies (H,)for all a € 10,1, then for any s,t > 0,

}1\1‘1%) Gr(s,t) = min(s,1).

Proof. By Lemma 4.3.3, we have
Vr >0, Vs,teR, G,(s,t)<min(s,t).

Thus, we have to concentrate on the lower bound of G...
Let s,t > 0 such that s = min(s,t) > 0. For each a €]0,1[ and when r is sufficiently small (i.e.

s/r = sq > 0) we can apply the assumption (H,) to get
U(s/r) +P(t/r) < 2¢(s/r) < ¢(as/r).
Since 1 ~! is nonincreasing, we deduce
as/r < P7H(W(s/r) +P(t/r)).

Thus, for any a €]0, 1] and any 0 < r < s/s,, we have as < G,(s,1),
Hence,

amin(s,t) = as < lim inf Gy (s,t) < lim sup G, (s,t) < min(s, t).
N0 .0

By taking a " 1, we obtain the desired result. O

4.3.3 An approximate formulation

In this section, we present two new reformulations of the complementarity problem (4.2.1) by corre-

sponding to two approximation schemes.

4.3.3.1 Approximation of NCP using 6!-function

Using 6}-function, we regularize each complementarity constraint by considering

0, 2, 20,20 b G, %) Tz 17 0 =1
2z =0, ;=02 > T, %) 1= ——————— =0, i=1,...,n.
e ' ! Y T w2+ 2r
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This approximation yields the following formulation

F(z) = z,
(Ps,) 2>0, 220, r\0, (4.3.9)
Gl(z,2) =0

We consider the family {Hy (.), r > 0}, where

F(x)— =z

Hy (z,2) =
" Gz, 2)

(4.3.10)

is a regularized function of H defined in (4.3.2).

Lemma 4.3.6. Let Hy (v, z) be defined by (4.3.10). Then, for any (v, z) € R2" the Jacobian matriz
of Hy (w,z2) is
V() I

VHy (z,z) = ;
91 Dy(z,z) Dyp(z,z)

where Dy(z, 2) = diag{ay(x, 2), ..., an(x, 2)} and Dy(x, z) = diag{bi(z, 2), ...,bp(z, 2)} are two diagonal

matrices, given by

) 2 ) 2
<>z(+> , W,z):(%”) , i1

T; + z; + 2r T; + z; + 2r

4.3.3.2 Approximation of NCP using #2-function

Using the #2-function defined above, we obtain an approximate formulation for NCP

F(z) = z,
(Py,) x>0, 2>0, 70, (4.3.11)
G?(x,2) =0
Where
Gg(:):,z) = (G%(w,,zl))zzl n = <—7’]og(e—$i/r + e—Zi/T))' X
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We consider the family {Hy,(.), r > 0}, where

Hj, (x,2) = 2(22;)2 , (4.3.12)

is a regularized function of H defined in (4.3.2).
Lemma 4.3.7. Let Hj (z,z) be defined by (4.3.12). Then, the Jacobian matriz of Hy, (v, z) is

VF(z) -1

VHy (z,2) =
’ Qn(r,2) Qulx,2)

where Qi (x, z) = diag{ki(x, 2), ..., kn(x,2)} and Qi(x, z) = diag{ly(z,2),....l,(x,2)} are two diagonal
matrices, given by

e~ Ti/T e—%i/T

ki(x, z) = li(x,2z) = i=1,...,n.

e—xi/r + e—zi/r’ e—xi/r + e—zi/r’

In order to study the nonsingularity of the Jacobian matrix of Hy (w, z) (resp. Hy, (7, 2)) , we state

first a basic but essential lemma.

Lemma 4.3.8. Let M € R™*" be a Py-matrixz. Then any matriz in the following form is nonsingular:
N + N¢M,

where Ng € R™™ 4s a positive (negative) diagonal matriz, and Ny € R™ ™ is a nonnegative (non-

positive) diagonal matrizx.

Proof. Let Ny = diag(s1, s2, ..., sp) and N; = diag(t1, ta, ..., t,). If Ny is positive, and Ny is nonnegative,
then s; >0 and t; = 0 for all i =1,2,....n. .
Let v € R™ be a vector such that (Ng + N;M)v = 0. Then, we have v; = ——(Muv);.

i
tA
It yields v} = ——v;(Mwv);. If t; = 0, then v; =0, Vi=1,...,n.
Si
If v; # 0, we have z—z > 0. Owing to v? > 0, we have v;(Mv); < 0. If v;(Mv); = 0, then v; = 0.
Otherwise, v;(Mwv); < 0 contradicts the property of M. Based on the above discussion, it is concluded

that v = 0, then Ng + N;M is a nonsingular matrix. ]

By Lemma 4.3.8, we can obtain a property of Hy and Hy, if F' is a Po-matrix.

Theorem 4.3.9. Let F' be a Py-function. Then, for any r > 0, and any (x,z) € R%r” the Jacobian
matriz VHg (z,z) (resp. VHy (z,2)) is nonsingular.
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Proof. For all » > 0 and from Lemma 4.3.6 and Lemma 4.3.7, it follows that the diagonal matrix
D, (z,z) (resp. Qk(x, z)) is non-negative, and Dy(z, ) (resp. Q;(x, z)) is non-negative diagonal matrix.
Since F' is a Py-function, the Jacobian matrix VF(z) is a Pp-matrix.
We have

det(VHy, (z,2)) = det(Dq(z, z) + VF(z)Dy(z, 2)),

and
det(VHy,(x,2)) = det(Qp(z, 2) + VF(2)Qi(x, 2)).

Since VF(z) is a Po-matrix and from Lemma 4.3.8, it follows that Dg(z,2) + VF(x)Dy(z, z) (resp.
Qr(z,2) + VF(2)Qi(z, 2)) is nonsingular. Hence VHy (w, z) (resp. VHy, (z,2)) is nonsingular. O

4.4 New approach for solving nonlinear complementarity problems

In this section, we present the idea of our algorithms, we take inspiration from the well-known interior-
point methods (IPMs) usually used in nonlinear programming. Even though we don’t have any
objective function to minimize, the regularization idea behind IPM can be used to tackle NCP.

One can replace the original nonsmooth problems NCPs by a sequence of regularized problems

F =
Hy(X) =0, < (z) =2 (4.4.1)
T.2 =re,
where
F _
x| err, mx = |F@#] (4.4.2)
z r.z2 —re

and r = 0 is the smoothing parameter, e € R™ is the vector whose components are all equal to 1.

The Jacobian matrix of H, with respect to X, does not depend on r and can be denoted by

VH,(X) = Vf;(:c) ;(I , (4.4.3)

where Z and (resp. X) the diagonal matrix of z (resp. z).
The main difficulty in this approach, is to drive r to 0. In Haddou et al [104] the authors propose a

new technique where r is considered as a new variable.
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4.4.1 When the parameter becomes a variable

In the system (4.4.1), the status of the parameter r is very distinct from that of the variable X. While
X is computed "automatically" by a Newton iteration, » has to be updated "manually" in an ad-hoc
manner.

Our goal is to find a strategy that decreases r during iterations and ensures the nonnegative of
variables. However, we must adjust the strategy when the model or its parameters are changed. To
avoid this trouble, we consider r as an unknown of the system instead of a parameter as in [104].

We feel that it would be judicious to incorporate the parameter r into the variables. Let us, therefore,

consider the enlarged vector of unknowns
X
X = e R?" x Ry, (4.4.4)

and then consider a system of 2n + 1 equations
Hy(X) =0, (4.4.5)

to be on X. To this end, let us remind ourselves that our ultimate goal is to solve Hgl (X) , together
with the inequalities > 0, z = 0. We restrict our choice of f-function to 6,(t) = 61(¢).

Thus, it is really natural to first consider

Hy(X) = Ho, (X) . (4.4.6)
where _
T _ F(CC) -z
0% | LX)

This construction turns out to be to naive. Indeed, if we start from some 7° and solve the smooth
system (4.4.6) by the smooth Newton method, since the last equation is linear, we end up with r* =0
at the first iteration. Once the boundary of the interior region is reached, we are "stuck" there.

To prevent r from rushing to zero in just one iteration, we could set

Hp, (X)

7,2

Hp(X) = (4.4.7)
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At this stage, system (4.4.7) is not yet fully adequate. Indeed, the last equation is totally decoupled
from the others. Everything happens as if r follows a prefixed sequence, generated by the Newton
iterates of the scalar equation 72 = 0, regardless of X. It is desirable to couple r and X in a tighter

way. In this respect, we advocate

Hg, (X)

Hy(X) =
sle=I? + 272 + r?

(4.4.8)

where
n n
Jz~|* = Y min’(2;,0), [z |* = ) min®(z;,0).
=1 =1

This choice has the benefit of taking into account the nonnegativity condition z > 0 and z > 0.
Indeed, the last equation of (4.4.8) implies that, as long as r > 0, we are ascertained that x= = z= = 0.
This amounts to saying that x > 0 and z > 0. Should a component of x or z become negative during
the iteration, this equation would contribute to “penalize” it.

2

Since r is now considered as a variable and the scalar function ¢ — %| min(t, 0)|* is differentiable and

its derivative is equal to min(¢,0). From this observation, the Jacobian matrix of Hy is:

V.Hy V.Hj 0.Hj
VxHy(X) = , (4.4.9)

where 2~ is the vector of components x; = min(z;,0) and similarly for z~,

V. F —I
v, = [ VPO v, - ,
lja(x>z) ljb(waz)

2nxn 2nxn

Onxl

OrHy, = diag A 20" — @) e ’
Ti+2zi+2r  (x+ 2z +2r)? 1<i<n 2nx1

and e is a n-dimensional vector whose entries are equal to 1.
If Hy(X) = 0 where X € R2" x R, we obtain r = 0 and = = 2~ = 0. Hence in this case, VxHy(X)

becomes singular, since det(VxHy(X)) = 0. To solve this issue, we add a small enough positive
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parameter ¢ in the last equation. We get

1 1

QHCL‘_“2 + in_Hz +7r24+er=0.
Hence, we define the following systems

Hp, (X)

a2 + ="+ 02 +er

Hy(X) = —0.

Lemma 4.4.1. Let X € Z (the closure of Z), where Z is the interior region defined in

E={X=(z,2)eR*™ | >0, z>0}.

Letr e R and X = [X;7]T. Then,

det VHy(X) = (¢ + 2r) det VHg (X).

(4.4.10)

(4.4.11)

(4.4.12)

Ife+2r >0, the two Jacobian matrices VHy and VHy are singular or nonsingular at the same time.

Proof. Thanks to the assumption X € =, we have z > 0 and z > 0, so that z— = z~ = 0. Expanding

the determinant of (4.4.11) with respect to the last row yields the desired result.

4.5 Convergence

O

In this section, we propose a generic algorithm to solve NCP and prove some convergence results.

From now on, the enlarged equation (4.4.11) is selected as the reference system in the design of our

new algorithm. The idea is simply to apply the standard Newton method to the smooth system

(4.4.11). To enforce a global convergence behavior, we also recommend using « line search like Armijo

back-tracking technique.

Now, we present our algorithm for our method described above:
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Algorithm 4.1 Nonparametric method with Armijo line search

Chose X0 = (X%, 79), XV e =, 10 =< 2220 > /n, 7€ (0,1/2), 0€ (0,1). Set k = 0.
If Hy(X*) = 0, stop.

Find a direction d* e R?"*1 such that
Hy (XF) 4 VxHy(XF)d* = 0.
Choose ¢* = o/ € (0,1), where j; € N is the smallest integer such that
O(Xk 4 gikd*) — O(XF) < 7o/ VO(XF)TdF.

Set Xk+1 = XF 4+ ¢*d* and k — k + 1. Go to step 2.

The merit function used in the line search is:

O(X) = 5 [Ho(X)|P.

A detailed description of nonparametric method is given in Algorithm 4.1. A few comments are in

order:

The initial point X = (X% 7%) must be an interior point, namely, X° > 0 and the initial

0 0

parameter 7’ =< 20,20 > /n has the correct order of magnitude.

If X* € 2, then (%)~ = (2¥)~ = 0 and

-1
VmHgI Vzﬂgl (9TH51 o (Xk)
01

dr* erk + (r)?
0T 0 et 2k )

)

provided that the Jacobian matrix is invertible. The increment for the parameter is then

erk + (rF)?

dr¥ =
£+ 2rk

There is no need to truncate the Newton direction d* to preserve positivity for z**1 and zF+1,
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since nonnegativity is "guaranteed" at convergence. However, if we want all the iterates to be

nonnegative, so we need to carry out additional damping after Step 4 (Armijo’s line search).

Proposition 4.5.1. Let F' be a continuous differentiable Py-function. Then, step 8 in Algorithm 4.1
1s well-defined.

Proof. We know that for all k >0, ¥ > 0,X* > 0, and € > 0,
k k rk k
det VHy(X") = (¢ + 2r") det VHy, (X").
By Theorem 4.3.9, VHgf (X*) is nonsingular, so Step 3 of Algorithm 4.1 is well-defined. O

4.5.1 Global convergence analysis

Definition 4.5.2. (Regular zero). Let X* € R*"! be a zero of Hy, that is, Hg(X*) = 0. If the Jacobian

matriz VxHg(X*) is nonsingular, X* is said to be a regular zero of Hy.

The main interest of Algorithm 4.1 lies in the prospect of global convergence, as envisioned by
the theory that we are developing now. This global convergence theory, is primarily based on the
regularity of zeros [Definition (4.5.2)]. We reproduce a concise result that can be found in the book
of Bonnans [20], in view of its importance to our algorithm.

We will prove the global convergence of Algorithm 4.1. First, we show that every d € A is a descent

direction of © at X, where
AX)={deR" | VxHp(X)d =—Hjy(X)}. (4.5.1)

Lemma 4.5.3. (see [107]) If X is not a solution of NCP, i.e. ©(X) > 0, then every d € A(X) satisfies
the descent condition for X, i.e., VO(X)Td < 0.

Using the preceding results, we can prove the following global convergence theorem.

Theorem 4.5.4. Every limit point X* = (X*,7*) of a sequence {XF} generated by Algorithm 4.1

corresponds to a solution of NCP.

Proof. Since the sequence {O(X¥)} is nonnegative and decreases monotonically, it converges to some
©* = 0. We assume ©* > 0. Let X* be an accumulation point of {X*} and {X*},cx be a subsequence
converging to {X*}. Taking a further subsequence if necessary, we can assume without loss of generality
that kh_)l’llw d® = d*, because A is uniformly compact near and closed at X* (see [107]). Furthemore, by

the closedness of A, we have
d* e A(X*). (4.5.2)
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Since O(XF + ¢*d*) — O(XF) < ¢Fr VO(XF)Td* < 0. Tt is obvious that {¢¥7 VO(X*)Td*} converges
to 0. In order to prove VO(X*)Td* — 0, we show that {¢*} is bounded away from 0. Now suppose

that there exists a subsequence such that (¥ — 0. By the line search rule, we have

O(Xk + o*dF) — O(Xk)

- > 7 VO(XF)Tdk, (4.5.3)

g

where 0% = lfj—-kk. Since 0% — 0, taking the limit of both sides of (4.5.3) yields
voxHTd* > rve(x*)Ta*. (4.5.4)

Since ©(X*) = ©* > 0 by assumption, it follows from (4.5.2) and Lemma 4.5.3 that VO(X*)7d* < 0.
Since 7 < 1, this contradicts (4.5.4). This implies that {¢*} is bounded away from 0, and hence,
{VO(X*)Td*} converge to 0. That is,

lim VOXM)Tdk = vo(x*Td* = 0. (4.5.5)

k—o0
It then follows from (4.5.2) and Lemma 4.5.3 that ©(X*) = 0. This is contradictory to ©* > 0.
Therefore, we must have ©(X*) — 0, which implies that any accumulaton point X* of {X¥} satisfies
©(X*) = 0 and hence is a solution of NCP. The proof is complete.
O

Below is a result about the Jacobian matrix of Hp(X), when r goes to 0.

Lemma 4.5.5. Suppose that X* = (x*,2*) is a solution of NCP, then we have the following equality

Vi=1,..,n,

lim %lf max ((V,GL(x*, 2%))iu, (V.GHz*, %)) = i,

where

V.G(z*, 2*) = diag ((( il >2> ) and V,GL(z*,2*) = diag ((( T >2) )
Iy ’ = ¥ | % | o ) z2 ) = ok ok 0. :
wizw) ) x tai 2] )

Proof. By considering the two possible situations (z} > z}) and (z} < z}), very simple calculation

give:
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2. zf >af
. zi+r 2 xi +r 2 2F4r 2> Z+r \2 1
max [ ( ———) , | —+—— =——) =2 (—=—) =-.
xf 4+ 2f 4+ 2r xf +zF 4 2r xf +2F 4+ 2r 22F +2r 4
Since V.G and V.G are bounded, the proof is complete by passing to the limit. O

Lemma 4.5.6. Let X* = (2%, 2*) be a solution of NCP satisfying the strict complementarity condition
(i.e. zF+zF >0, Vie{l,..,n}). We have

VF<1’*) —Inxn Onx1
}1_{% (VXHG(X*vT)): (b(Z*) ¢(X*) Onx1 |>

O1xn O1xn 3
where
1 if 2F#0 d zf=0 1 4 *#0 d zf=0
¢(Z%)ii = 7oA 0 and and  $(X*)i; = voar# 0 and
0 if 2f=0 and =} #0, 0 if =0 and 2 #0.
Proof. By definition
F(z)—=z
Ho(X) = Gy (x, 2)

%Hm*H2 + %Hz*H2 +7r2 +er

The Jacobian matrix of Hy is:

VIF(m) —Inxn Onx1
VxHp(X) = | V,GL(z,2) V.GMz,2) 0,Gl(x,2)
(z7)T (z7)T 2r+e¢

1. The derivative of GL(z, 2) with respect to x is:

zF+r 2
\v4 Gl *, * = di 7 ’
Al <<<x3‘”3‘ +27”> )Kign)

when r goes to 0 the only two cases to consider are:

o ¥ —0,and 2z > 0Vie {1,..,n} then
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lim (VoG (2%, 2*))is — lim (2" g
11 xr .,z ;i = 1111 =
0 e Yrso \ 2F 4 2r

T —

z;k;é()
o ¥ >0,and zf — 0Vie {1,...,n} then
2
hI% (VoGL(z*,2%)); = lim <r> =0
r—

r—0 \ ¥ + 2r
zf‘—»O ¢

*
z; #0

2. The derivative of GL(z,z) with respect to z is:

¥ +r 2
V.GL(z*, 2%) = di L ,
el ) g<<<2>>>

as below, the only two cases to consider are:

o 27 —0,and 2 >0 Vie {l,...,n} then

2
. 1 * .. — i " =
Tl‘:_)l’%o(szr($ s 2 ))n }1_1;% <ZZ* +27"> 0.
T —

z;“ #0

o 27 >0,and 2z — 0 Vie{l,...,n} then

lim (V.GL(x*, 2*))s — lim [ 2" o
11m xr .,z g = 11m | —/—— =
0 oo Yoo \aF +2r

2T

.Z’;k #0

3. The derivative of G1(x,z) with respect to r is:

aTGl(x* Z*> _ _2T + 2(T2 - xz"z:‘)
e of+zf+2r (xF4+2r)?), )

geeey

when 7 goes to 0 the only two cases to consider are:

o ¥ —0,and 2z > 0Vie {1,..,n} then

—2r 2r?
1. 1 * V). — 13 =

7;:—% (0 G (@7, 27))i Ny (zf‘ Tt (zF +2T)2) !
7

z;";é()

—0
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o 27 >0,and 2 —> 0Vie{l,...,n} then

—2r 272
. T/,.% %\ . _ 1 —
}:_%O(aTG’”(x ,27))i }ﬂl—{% <x;" + 2r + (xf + 27“)2> 0
2*
:E;"#O
0
Finally, since X* = (z*, z*) is a solution of NCP, we have z* > 0 and 2* > 0, so that 27 = 27 = 0.
Hence
VF(x*) —Inxn Onx1
}1_{% (Vng(X*,T)) = ¢(Z*) ¢(X*) Onxl
O1xn O1xn €

We present now, two situations where we can conclude about the nonsingularity of lin% VxHp(X*, 7).
T

Lemma 4.5.7. Suppose that X* = (x*,z*) is a solution of NCP, we have two possibilities when

computing the determinant of Hy on (z*, z*).

o If X* = (z*,2%) satisfies the strict complementarity condition, then by Lemma 4.5.12,

V Tc{l,..,n} we have:

)
lim det (VxHg(X*,r)) = * * = PN = | VE(x*)n),
lim det (VHy(X*, 7)) HZ) 9OV 0N =E e s )| TV
0 0 €

therefore the matrix hH(l) VxHy(X*,r) exists and is invertible if F' is P-function.
g

o If X* = (z*,2%) does not satisfy the strict complementarity condition, then by Lemma 4.5.12,

V Tc{l,..,n} we have:

VF(z*) —Inxn 0
}i_r)r(l) det (VxHy(X*,r)) = o(Z*)  o(X*)) 0
0 0 €
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VF(x*) _Inxn c VF(IL’*) - Inxn _Inxn
O(Z%)  P(X¥) O(Z%) + p(X*)  o(X¥)

from Lemma 4.5.5 we have:

liminf max ((V,Gy(2*,2%))u, (V.Gr(z*, 2%))i) =

1 .
0 s 1 > 0, Vi = 1, e n, (456)

hence lir% (Vo Gi(a*,2%) + V.GL(z*, 2%)) = ¢(Z*) + ¢(X*) is a positive diagonal matriz.

From Lemma 4.5.8, we take:

M = VE(@*) = Inxn,
Ny = ¢(X*), (4.5.7)
Ns = ¢(Z*) + ¢(X*)7

where Ny is a positive diagonal matriz, and Ny is a nonnegative diagonale matriz. Therefore the

matriz hH(l] VxHy(X*,r) exists and is invertible if VF(x*) — I xpn is Po-matriz.
r—

Remark 4.5.8. The matriz lir% VxHy(X*,r) ezists and is invertible if VF (x*) — Bl xn is Po-matriz
r—
for any B> 0. Since p(Z*) + BP(X™) is a positive diagonal matrix for any 5 > 0.

Remark 4.5.9. If VF(2*) — Bl xn is Po-matriz for any B > 0 then VF(x*) is a P-matriz.
In the following, we focus our attention on the superlinear convergence rate of Algorithm 4.1.

Theorem 4.5.10. (Theorem 6.9, [20]). Let Hy : R — R pe g continuously differentiable

function.

(i) (Local analysis) Let X* be a regular zero of Hy. If X° is close enough to X*, then (¥ =1 for

all k, and X¥ converge to X* super-linearly (and we recover the standard Newton method).

(ii) (Limit point) Let X* be a limit point of sequence {XF}. If VHy(X*) is invertible, then X* is a
reqular zero of Hy. If X* is a reqular zero of Hy, then ¢¥ =1 for k big enough and X* converge

to X* super-linearly.

Proof. We apply Theorem 4.5.4 and Lemma 4.5.7 under some condition on F. O

The next lemma measures the “additional coercivity” effect of the smoothing.
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Lemma 4.5.11. Assume F is a Py-function, then
(i) Hy is a P-function.
(ii) If Hy(X,0) exists then it is a Po-function.

Proof. (i) Let X, Y be two distinct vectors of R?". Since F is a Py-function there exists an index
i€ {l,...,2n} such that X; #Y; and (X; — Y;)(Fi(X) — Fi(Y)) = 0. Without loss of generality, we can
suppose that X; > Y; and F;(X) > F;(Y).

Since 9 and ¢! are decreasing, we obtain consecutively that for any r > 0,

D(Xi/r) + P(E(X) /1) < (Yifr) + O(F(Y)/r), (4.5.8)
G (X, Fi(X)) > Gy (Ys, Fi(Y)).

Hence, Hy is a P-function.
We will now deal with the case where X; = Y;, Vi < 2n + 1. For ¢ = 2n + 1, we can suppose that

Xont1 > Yonta

(Xont1 — Yont1)(Ha(X)ans1 — Ho(Y)any1) =(r1 — ro)(r + ery — 13 — erg) > 0.

Hence, Hy is a P function.
(i) If Hp(X,0) exists, passing to the limit in (4.5.8) as r N\, 0, we obtain that Hy(X,0) is a Po-

function. 0

Now we would like to study the asymptotic behavior of the Jacobian matrix of our method with the

Jacobian matrix of IPM when r goes to 0 and we need a lemma that is used to prove our main result.

Lemma 4.5.12. We consider the following system

ZX =0
Z7>0, X>0,

(4.5.9)

where Z = diag(z) and X = diag(x).
Assume that Z, X are strictly complementary (i.e. Z + X > Opxpn). Then J is singular if and only if

T is singular, where

93



Chapter 4. A smooth approach to the solution of nonlinear complementarity problems involving
Po-function

where ¢(.) is defined in Lemma 4.5.6, here ¢ operates component-wise on Z and X .

Proof. By the strict complementarity hypothesis, we range the rows and the columns of J and T as

follows
VF(z), -1,

Jo = Zy 0 0 0 )
0 0 0 X

where Xs > 0 and Z; > 0, and

VF(.ZU)U _Icr
1 0 0
0
(T)U =
1 1 0
0
0 0 0 1

The determinant of the two matrices J, and (7)., are equal to

VF(.’I))G _IO'
det(Jo) =| (z1 0\ (o o) |=x]]=]]z det(0),
0 O 0 X ie]h iGHQ
2

VF(z), —I,
1 0 0

- 0 .

det(T5) = =+ [[ o) [[o(z) det(C),
1 1 0 iel; icly
0
0 0 0 1

where C'is a certain matrix, Iy = {i | z; >0} and Iy = {i | z > 0}. Since

+]Je[[z  and  []o()]] o)

i€lly ’iE]IQ ’iE]Il iEHQ

are nonzeros, then we can conclude that J and 7' are invertibles and singulars at the same time. [
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Theorem 4.5.13. Suppose that X* = (x*,z*) is a solution of NCP which satisfies the strict com-

plementarity, and VHo(X*) be defined by (4.4.3) (the Jacobian matriz of the interior-point method)

is invertible. Then hH(l) VxHy(X*,r) is invertible, i.e., the two Jacobian matrices are singular or
T —>

nonsigular at the same time.

Proof. In view of Lemma 4.5.12, and thanks to the assumption X* = (z*, 2*) is a solution of NCP,

we have z* > 0 and z* > 0, so that x— = 2z~ = 0. Hence

V) i) v
lim det (V H (X*,r)) = 7% X* 0 — e x —Inxn
Jig det (VcHy 4(77)  H(x7) o
0 0 €

where ¢(.) is defined in Lemma 4.5.6, Z* = diag(z*) and X* = diag(z*).
From Lemma 4.5.12, we conclude that if Vx Hy(X*) is invertible then lirr(l) VxHp(X*,r) is invertible.
7

This means, that if the IPM converges our method converges. O

Hypothesis Hy (F is a Po-function) assures us that our method is well defined and the Theorem

4.5.13 shows that the domain of convergence of our method is at least as large as that of the IPM.

4.6 Numerical experiments and applications

In this section, we present some numerical experiments for the two smoothing functions. Our aim is
just to verify the theoretical assertions for these two “extreme” cases.

First, we study eight test problems with various sizes and characteristics. Then, we present a com-
parison on some randomly generated problems of our method and other approaches that have been
suggested recently in [29, 48]. We also present numerical results for two concrete examples. All the
codes are written in Matlab 2020R, and run in the system of Windows 10 with PC i5 8-th Gen and
16.00 GB RAM. We take the precision € = 1079 (the termination criterion).

Example 4.6.1. We consider eight test problems (that can be found in [36, 55, 59, 67, 98, 110]) with
various sizes and characteristics. In some cases, F' is monotone or strongly monotone whereas others
can have a non-connected solution set, in this case, F' is at most a Py-function. A precise description

of each test problem is given in the appendiz.
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Table 4.1: Results for 6; and 0.

Pb  size Iter Opt. Feas. cpu time(s) r
(01, 02) (01, 62) (01, 62) (01, 02) (01, 62)
Pl 10 (114,47) (7.58¢-11, 7.66e-13) (0, 8.23¢-11 ) (0.04, 0.0073)  (2.96¢-04, 0.0014)
100 (134,65) (9.31e-12, 1.15e-15) (0, 1.51e-12) (0.14, 0.07)  (1.06e-04, 9.21e-04)
500 (148, 66)  (1.87e-12, 6.39¢e-16) (0, 4.28e-12) (5.24, 2.52) (4.90e-05, 8.95e-04)
1000 (153, 68)  (1.05e-12, 7.82¢-14) (0, 1.04e-09) (25.30, 11.41)  (3.70e-05, 0.0012)
P2 10 (116, 47)  (7.53e-11, 7.66e-13) (0, 8.23e-11) (0.01, 0.02) (2.83e-04, 1.41e-03)
100 (133, 74)  (7.64e-12, 2.64e-13) (0, 3.47e-10) (0.19, 0.10 ) (8.74e-05, 0.0013)
500 (147, 84)  (1.60e-12, 1.29¢-12) (0, 8.62¢-08) (5.25, 3.14) (4.01e-05, 0.0014)
1000 (153, 115)  (8.22¢-13, 2.25¢-15) (0, 3.02e-10) (24.47,19.89)  (2.86e-05, 9.53¢-04 )
P3 10 (14, 16)  (3.46e-10, 1.65¢-19) (0, 3.99¢-18) (0.006, 0.02) (0.001, 4.49¢-04)
100 (108, 44)  (4.99¢-10, 3.63¢-20) (0, 4.75¢-21) (0.22, 0.05) (0.0014, 0.0042)
500 (353,140)  (7.58¢-10, 3.97e-11)  (9.68¢-13, 7.54e-11)  (35.03, 5.14) (0.0011, 0.002)
1000 (675, 265) (8.94e-10, 2.32¢-10 )  (1.31e-12, 1.58e-11)  (91.41, 24.77) (0.0011, 0.002 )
P4 4 (53, 58) (2.97e-10, 1.20e-10)  (1.24e-07, 4.19e-08)  (0.008, 0.0242)  (6.06e-04, 1.72e-04)
P5 4 (16, 14) (3.02¢-10, 1.92¢-10) (0, 3.84e-10 ) (0.003, 0.009) (0.0026, 0.018)
P6 7 (10, 13) (1.06e-10, 7.16e-11) (0, 0) (0.1264, 0.0044) (0.0016, 1.33e-04)
P7 5  (33,30) (2.23e-11, 1.16e-10 ) (0, 3.44¢-14) (0.011, 0,016) (0.004, 0.003)
PS 10  (65,45) (7.2lel1,2.27e-11) (L34e-12, 5.18¢-11)  (0.18, 0.16) (0.0018, 3.76¢-04)

In this table, Size stands for the number of variables, Iter corresponds to the total number of

Jacobian evaluations, Opt. and Feas. correspond to the following optimality and feasibility measures

Opt. := max |z;F;(z)]

I<isn

and Feas. := | min(z, 0)|; + | min(F(z), 0)1.

The results clearly show that our methods are efficient. We also remark that the second smoothing
function is much more efficient and powerful than the first one.

In the next table, we compare the results of 02-smoothing approach to three state-of-the-art methods
(Namely: Fischer Burmeister (FB-Alg) [29], Newton Min (Min-Alg) and projection method (PM:-
Alg)[39]. We make a comparison among Algorithm 4.1, FB-Alg, Min-Alg, and PM-Alg by implement-
ing these algorithms to solve the same benchmark test problems available in the literature. Since, we

can not compare the iterative numbers, we only present the optimality measures, and cpu time(s).
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Table 4.2: Comparison of Algorithm 4.1 (62) with FB-Alg, Min-Alg and PM-Alg.

Pb size || Algorithm 4.1 (6s) FB-Alg Min-Alg PM-Alg
Opt. time(s) Opt. time(s) Opt.  time(s) Opt.  time(s)
Pl 10 7.66e-13 0.0073 42311 0.0273 3.11e-07  0.0092 2.5¢-09  0.63
100 1.15¢-15 0.07 1.55¢-10  0.1052 1.55¢-14  0.0134 9.1e-11  5.48
500 6.39¢-16 2.52 447e-11 10.3936 || 1.55e-14  0.0282 4.7e-10  96.37
1000 7.82¢-14 11.41 447e-11 96.5009 || 1.55¢-14  0.0557 8.8e-11  224.04
P2 10 7.66e-13 0.02 2.47e-11  0.0512 1.76e-12  0.0136 2.2¢-10  1.19
100 2.64e-13 0.10 1.25e-10  1.7285 5.06e-17  0.0193 7.1e12 576
500 1.29¢-12 3.14 6.0de-11  5.6432 2.06e-12  0.6265 5.3e-12 11241
1000 2.25¢-15 19.89 9.5le-12  25.1059 || 2.20e-13  3.2308 2.9e-11  336.20
P3 10 1.65¢-19 0.02 6.58¢-11  0.0272 4.24e-17  0.0078 6.4e-11  1.03
100 3.63¢-20 0.05 5.90e-11  0.0327 4.24e-17  0.0080 1.8e-12  5.19
500 3.97e-11 5.14 1.30e-11  1.6040 4.24e-17  0.020 5.8¢-13  90.22
1000 2.32¢-10 24.77 5.56e-11 11.0915 || 4.2de-17  0.0314 2.4e-11  350.06
P4 4 | 1.20e-10 0.0242 || 2.94e-14 0.0435 [/ 6.12e-10 0.0019 | 3.1e-12  0.19
P5 4 | 1.92¢-10 0.009 | 23710 02752 | 2.22¢16 0.0120 || 1de-12  0.34
P67 | 7.16e-11 0.0044 | 5.70e-10 01158 [ 6.05¢-17 0.0341 || 23e-11 031

The results clearly show that our methods are efficient, competitive, and superior to the Fischer

Burmeister method and projection method.

Example 4.6.2. This example is described in [55, 98]. The corresponding function F(x) is of the
form:
F(z) = (AAT + B+ D)z + g,

where the matrices A, B and D are randomly generated as: any entry of the square n x n matriz A
and of the n x n skew-symmetric matriz B is uniformly generated from | — 5, 5[, and any entry of
the diagonal matriz D is uniformly generated from 10, 3[. The vector q is uniformly generated from
] — 500, 0.

The matriz AAT + B+ D is a positive definite and the function F is strongly monotone. We used the
M-files proposed in [98] to generate A, B, D and q.

In this example, we will compare our methods already mentioned in sections 4.3 and 4.4, named:
Algorithm 4.1 (01), Algorithm 4.1 (82) to some other methods (Newton min method (Min-Alg), Fischer-
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Burmeister’s method [29] (FB-Alg) and the classical interior-point method [/8] (IPM-Alg)). In order
to complete this experiment, we propose the performance profiles, developed by E. D. Dolan and J. J.
Moré [35], as a tool for the comparative analysis of these methods.

We set 'ng = 5" as the number of methods and we have chosen "n, = 100" (problems to be tested).

We are interested in the comparison of the computation time and the number of iterations.

" [—Awgorithm 4.1 ¢,)
| e Algorithm 4.1 (02)

IPM-Alg
= = Min-Alg
7 |——FB-Alg

—— Algorithm 4.1 (91
Algorithm 4.1 (1),
IPM-Alg

P(r

Figure 4.2: Performance profiles where ¢,  represents the average computation time.

The figure above shows the performance profiles of five methods where the performance measure
is execution time. It is clear that our method with the Os-function captures our attention (admits
the highest probability value). In fact, in the interval [0, 1], our method is able to solve 99% of the
problems, while the other methods do not reach 20% and require more time. We also notice that IPM-
Alg is the slowest compared to others. However, for t > 4, the three algorithms FB-Alg, Min-Alg, and
Algorithm 4.1 with 01-function confirm their robustness. Figure 3 also indicates that, with respect to
the computation time, with the same initial points and under the same stopping criterion, our method
with Oa-function (resp. 01-function) is the fastest method, followed respectively by Min-Alg, FB-Algor,
and IPM-Alg.
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(a) For n=64 (b) For n=100
—Rgoitma1 G, T U —— Algorithm 4.1 (6,
| e Algorithm 4.1 (),
IPM-Alg
= = Min-Alg
7 |——FB-Alg

Figure 4.3: Performance profiles where t,, s represents the average number of iteratoins.

In Figure 4.8, we illustrate the performance profiles of five methods considering the number of
iterations required as a performance measure. We notice that our method with the 62-function is the
winner (admits the highest probability value) followed by our method with the 6 -function, Min-Algo,
and FB-Alg. We also note that IPM-Alg needs more iterations to resolve problems. The performance

of our method with the 01-function becomes interesting beyond t = 3.

Example 4.6.3. (Geochemical Models [80]) The problem comes from Geochemistry. We introduce a
model which are 2-salts. The main idea is that we need to find a way to reformulate a general problem
to a problem which has a form like G(x) = 0. We show the numerical results by applying several
iteration methods.

Let T, K are constant vectors which have meaning in chemistry. We define the problem as follows:

Let x = (-ZUl,CL’Q,l‘g) andp = (p17p2)7

H:R° — R s o G:R° > R®
F:R>—>R
T, —x1 —p1 H(x,p)
’ Kl—l’lﬂfg )
(.T7 p) - H(l’,p) = T2 — T2 — P2 T — F(l’) = K (Qf,p) - G(.’L’,p) = PTF(QZ')
2 — T2T3
T3 — To — T p=0,F(x) =0
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We want to solve the equation

Gla,p) =0 <

H(z,p)
PTF(x)

p=0,F(x) >0

Using our approach with 6, = 0} (resp. 0, = 6% ), we reformulate (4.6.1) and we get

Goi(z,p) =

| Slz= 2+ 3272 + r? + er ]

Kl — X1xr3 — 21
Ky — wox3 — 22
T1 — 1 — X4
TQ — X9 — Iy
T3 — Ty — X1
oz —T‘2

T4+ 21+ 2r
Tr29 — T

T5 + 20 + 2r

and considering x4 = p1, T5 = Pa.

G@?(Z’,p) =

K|y — 123 — 1
Ko — x9x3 — 29
T —x1— x4
Ty — x9 — x5
T3 — X2 — X1
—rlog(e=®4/" 4 ¢=#1/T)
—rlog(e /" 4 e=#2/T)

3l 12 + 51717 + 72 +er

(4.6.1)

Since our focus is on the effect of different smoothing approaches in solving (4.6.1), we replace the

complementarity constraint by the Min function, and by the Fischer-Burmeister’s function [29]. The

corresponding two algorithms are referred to as Min-Alg and FB-Alg, respectively. We make a compar-
ison among Algorithm 4.1, Min-Alg, and FB-Alg, IPM-Alg (The classical interior-point method [/8])
by implementing these algorithms to solve problem (4.6.1).
The Table 4.3, and Figure j.4 show the results with the intial point xo = (3,1,4,5,6)T, T = (2,6)7,
and K = (37.5837,7.6208)7.
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Table 4.3: Comparison of Algorithm 4.1 (6;) and Algorithm 4.1 (62) with Min-Alg, FB-Alg, and IPM-

Alg.

Iter Algorithm 4.1 (61) Algorithm 4.1 (65) Min-Alg FB-Alg IPM-Alg
k |G (%] |Gz (%) |Garin(®)| |Grp®)|  [Grem(a®)]
0 24.5837 24.5837 24.5837 24.5837 24.5837
1 8.2104 13.2212 13.3538 8.9798 8.3720
2 2.5518 12.0213 12.1412 4.2253 6.2486
3 4.1723 9.6610 11.0112 1.2774 1.8581
4 1.9497 6.1377 9.9651 0.4355 1.2035
9 0.0382 1.3388 9.0020 0.2001 0.8359
6 0.0063 0.3347 8.1192 0.1049 0.2406
7 0.0012 0.0838 7.1321 0.0537 0.0032
8 2.4936e-04 0.0210 6.0534 0.0272 5.1935e-05
9 5.0533e-05 0.0052 4.6609 0.0137 1.6166e-05
10 1.0487e-05 0.0013 2.9998 0.0068 4.9426e-06
11 2.1474e-06 3.2750e-04 1.2778 0.0034 1.5108e-06
12 4.4258e-07 8.1875e-05 0.0563 0.0017 4.6172e-07
13 9.1435e-08 2.0469e-05 1.2410e-05  8.5782e-04  1.4110e-07
14 1.8834e-08 5.1172e-06 4.4658e-12  4.2899e-04  4.3119e-08
15 4.5031e-09 1.2793e-06 2.1451e-04 1.3176e-08
16 9.6186e-10 3.1982e-07 1.0726e-04  4.0264e-09
17 7.9956e-08 5.3631e-05  1.2304e-09
18 1.9989e-08 2.6816e-05  3.7597e-10
19 4.9973e-09 1.3408e-05
20 1.2493e-09 6.7041e-06
21 3.1233e-10 3.3520e-06
34 4.0918e-10
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2-salts model [|G(x")|| 2-salts model log(||G(x")[])

25
—— Algorithm 4.1 (91) —— Algorithm 4. 1(6‘)
—— Algorithm 4.1 (92) ol —— Algorithm 4.1 (92) ]
20 Min-Alg Min-Alg
—+—IPM —F—IPM
—+— FB-Alg 5t —+— FB-Alg
151
-10 -
-15
10
-20 -
% ¥
5L
-25
Ak
0 I SR -30
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Figure 4.4: 2-salts model of |G(2*)||, and log(|G(z¥ ) .

In Figure 4.4, all methods are quadratic convergence. The best method based on the number of
iterations is semi-smooth Newton min method (14 iters). Next is our method for 61 function with (16
iters). Next is the classical interior-point method and our method for 6y function with (18 iters) and
(21 iters), respectively. The last is the Fischer-Burmeister’s method with (34 iters).

Example 4.6.4. (An ordinary differential equation) We consider the ordinary differential equation

"

z (t) = |o(t)| = =2 -,
z(0) = —4, 2'(0) =5, (4.6.2)
t € [0, 5].
First, we discretize the EDO equation by using the finite difference scheme. We use the second-order
centred finite difference to approximate the second order derivative

Ti—g — 2wi1 + x5
[

— |$Z| = (—2 — t)l'. (4.6.3)
Equation (4.6.3) was derived with equispace gridpoints t; = ih, i = 1,..., N. In order to approzimate
the Neumann boundary conditions we use a center difference

1 — T /
- =1. 4.6.4
57 z (0) (4.6.4)
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Using the classical decomposition of the absolute value [2] we reformulate (4.6.3) as follows

where
1
N1 = ﬁ
and q = —h—12

Nizt — Naz™ =g,

0<azt La =0,

2—h2
-2  1—h2
1
1 -2 1-—h2
[s—10n| [ 2+n ]
—4 2+ 2h
| 0 | [2+Nh|

(4.6.5)

2+ h?

—2 14+ h?

1 -2 1+h2

N is invertible, then the problem (4.6.5) is reduced to a standard LCP.
We compare the obtained solution by our methods to the predefined Runge-Kutta odedd function in
Matlab [78]. The domain is t € [0, 5], initial conditions z(0)

35

30

25

20

s Algorithm 4.1 (6‘)
Oded5

Both methods solve the problem and gives consistent results.

35

30

25

20 -

—4, 2'(0) =5 and N = 100.

. Algorithm 4.1 (62)
0Oded5

Figure 4.5: Numerical solution of (4.6.2) with ode45 and both methods.
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4.7 Conclusion

In this chapter, we have presented a new smoothing approach for solving the nonlinear complementar-
ity problem. For such an approach, some useful properties have been analyzed, which was employed
to develop a well-defined and efficient Jacobian Newton algorithm for solving the nonlinear comple-
mentarity problem with Py-function. We have established the global convergence and the super-linear
convergence for the developed algorithm. Numerical experiments prove the efficiency of our study in

the following aspects:

1. It can find the solution of NCP either with less number of iteration, or with higher precision
than the other.

2. It is relatively more robust for the increasing dimension of the test problem. In particular, it

seems more suitable to solve large-scale problems.

3. It is more efficient to find the nondegenerate solution of NCP with less iteration number than
the others.

4.8 Appendix

We give in this appendix a brief description of each test example.
1. The two first examples P1 and P2 [59] correspond to strongly monotone function
1 .
F(z) = (Fi(z), ..., Fo(z)T with Fj(z) = =241 + 22 —2i 1 + -2 — by, i=1, .., n

where z9 = 7,41 = 0 and b; = (—1)" (resp. b; = (?k)i), i=1, .., n, for P1 (resp. P2).

2. P3 is another strongly monotone test problem from [36] where F(z) = (Fy(x), ..., Fy(z))? with

T
Fi(z) = —xi41 + 2x; — x;—1 + arctan(z;) + (z — 5) , o i=1, ., n, (xog=xp41 =0).

3. P4 and P5 are known as the degenerate and non-degenerate examples of Kojima-Shindo [67].

P4 and P5 are respectively defined by
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Sx% + 2x129 + 256% +x3+3x4—6 3:1}% + 2x129 + QI% + 23+ 3x4 —6
Fy(e) 273 + 1 + 23 + 1073 + 224 — 2 Fye) = 223 + x1 + 23 + 1023 + 274 — 2
31’% + x129 + 2ac% 4+ 2x3+9x4 — 9 31‘% + x129 + 2$§ 4+ 2x3 + 3x4 — 1

a? + 323+ 2x3 4+ 3w4 —3 | | 2+ 323 + 205+ 304 -3

P5 has a unique solution z* = (@, 0, 0, %) with F(z*) = (0, 2+ @, 5, 0) while P4 has two
optimal solutions z* = (@, 0, 0, %) with F(z*) = (0, 2+ @, 0, 0) and z** = (1, 0, 3, 0)
with F(z*) = (0, 31, 0, 4).

The first optimal solution of P4 is degenerate since z3 = F3(z*) = 0.

. [110] In problem (4.2.1), z € R” and F(x) : R” — R7 is given by

201 —x3+ x5+ 3x6 — 1

To + 225 + x5 —x7 — 3
—x1 + 223 + x4 + x5 + 206 — 47 + 1
FG(QJ): T3+ x4+ 25 —26— 1
—r1— 29 —x3— T4+ 5

—3x1 — 9 — 223+ x4 + 4

ro +4x3—1.5

P6, has a non-degenerate solution

2* = (0.2727, 2.0909, 0, 0.54545, 0.4545, 0, 0)7.

. A complete description of P7 and P8 can be found in [55, 98]. These two examples correspond
to the Nash-Cournot test problem with N =5 and N = 10.
Let z € RN, Q = Yl a; and define the functions C;(z;) and p(Q) as follows:

1 bj+1

P(Q) = 50007 Q7 , Cilz:) = ciary + ——LYx. " |
T (A
1+ b

The NCP-function is given by

Fi(@) = Cl(a:) = P(Q) =2/ (Q), i=1,..,N,
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with ¢;, L, b; > 0 and v = 1. For our numerics, we used:
« N =5 c=[10,8,6,4,2]", b =[1.2,1.1,1,0.9,08]", L = [5,5,5,5,5]7,e = [1,1,1,1,1]"
and v = 1.1.
« N=10, c=[5,3,8,5,1,3,7,4,6,3]", b=[1.2,1,0.9,0.6,1.5,1,0.7,1.1,0.95,0.75] 7,
L = [10, 10,10, 10,10, 10, 10,10, 10, 10]",e = [1,1,1,1,1,1,1,1,1,1]7 and v = 1.2.

Exact solution of 2-salts model

We compute the exact solution for the problem (4.8.1) in case where the NCP-function is the min-

function. We want to compute exact solution of

Th—x1—p
T — w9 — P
G($,p) = T3 — Ty — 1 = 0. (4.8.1)

min(pl, K1 — 1‘1.%'3)

_min(pg, KQ — $23§‘3)_

When having in hand the exact solution of (4.8.1), we choose the initial point in the code and also
prove the existence and uniqueness of the solution of (4.8.1). Here we have some conditions as

p;i =0, K1 —x123 =0, K9 — 2913 = 0. Therefore we have four cases.

1. prl >0 pg > 0.
In this case, since K1, K3 > 0 then from (4.8.1) we have x1, 9, 3 > 0and T —z1 =p1 > 0 =

O<ZL‘1<T1, TQ—$2=p2>O:>O<JJ2<T2.

K
K, = xr123 K, = 1'1(1‘1 + 1‘2) = VK1 + Ko
Ks
Ky = z9+23 = Ko = zo(x1+20) = Ty = ——
( ) LOVE K,
Th T T K1 d a7 > i >0
enp; =T — 21 =T) — ————= and we nee —————— since .
PETR TR T K, VR TR, TN
K K
The same for po = To — x90 = Ty — —— =2 and the conditon T > 2 We get the
K+ Ky K1+ Ks

exact solution of (4.8.1) in this case

K K.
(%’,p):< ! 2 ’ \/K1+K2> Tl_

K Ky T
bJ 77 T = 9
VKL + Ko VK + Ko VKL + Ko 2 VKL + K2>
(4.8.2)
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K1 KQ
here T > and T >
W L= UK+ Ky 27 UK, + Ky

2. pr1=0p2>0.

Since p; = 0 then 21 =T, K7 = x123 and 23 = 29 + £1 = 29 + T7. Since py > 0 then

Ko — 22
Ky = wox3 = x9(x0+Th) =T = 22772 and we get a equation
)

_ T+ \T? + 4K, (48.3)
5 . 8.

x2

Since Ty, To = 0, K9 > 0, then z9 > 0 and x3 = To+x2 > 0. We also need To—xo > 0 or Ty > xo.
Then we have T22+T1T2—K2 > (. The last condition to check is that K} > x123 = z1(z1 +22) =

KQ—I'% Kg—l‘% K2
T (T) + x2) = + x9). Then 9 > —(————.
1( ! 2) X9 ( X9 2) 2 \/m
K>
This implies T» > 29 > ——————. Then we get the solution = = [T}, za, Ti + z2, 0,Th — z2]"
P 2 2 VKL 1 K, g - [T1, w2, T1 2 2 2]
here x9 is in (4.8.3), T3 + TyT — Ko > 0 and T > 2

3. pr1>0p2=0.
Since po = 0 then z9 = T3, Ko > xox3 and 3 = x93 + 1 = 15 + x1. Since p; > 0 then

K, — 22
Ki=mas=x1(r1+To) =Ty = et | and we get a equation
1
~Ty + /1% + 4K
.’E%+T2£L‘1—K1=O<:>.’E1= 2 \/2271

Since we want the solution = to be nonnegative, we choose

Ty + /T + 4K
_ Tt 22+ Lo, (4.8.4)

x1

If Ty, 75, K1 > 0 is then 1y > 0 and 3 = T5 + 1 > 0. We also need T} — 1 > 0 or

—Ty +/T§ + 4K,
Tl— 5 >0

N T12 +T1T5 — K1 > 0 to ensure that p; = 17 — x; is nonnegative.

Kl—x% Kl—l'% K1

The last one is to check Ko > zox3 = To(Th +x1) = +1) 1 = —V—m

2 273 h(Th 1) o ( o 1) 1 VKt K,

K,
then we get T} > —————. Then we get the solution = = [z, T, To + x1, To — x1, 0|7 where
get L1 VKt K, ) (21, T>, 15 1,42 1,0]
K,

xyisin (4.84) and T2 + /T — K1 > 0 and T} > ———.

4. pr1=0p2=0.
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We get
T = Ty
Ty = T5
r3 = x1+x9 =11+ T5.

We need some conditions that K1 — x123 = p1 = 0 = K = T1(T1 + T») and the same for
Ky = Th(Th + T3) = 0. If T1, T» is nonnegative then the exact solution of (4.8.1) is

x = [Ty, Ty, T1 + T, 0, 0]7,

where K7 > T1(T1 + TQ) >0and Ky > T2<T1 + TQ) = 0.
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5 New smoothing methods for solving the

linear complementarity problems involving

Po-matrix

This chapter is a paper submitted to RAIRO entitled: New smoothing methods for solving the linear

complementarity problems with Pp-matrix. We have chosen to present this chapter this way for a

better correspondence with our paper [85].

Based on smoothing techniques, we propose two new methods to solve linear complementarity problems
(LCPs) called TLCP and Soft-LCP. The idea of these two new methods takes inspiration from interior-

point methods in optimization. The technique that we propose avoids any parameter management

while ensuring good theoretical convergence results. In our approach we do not need any complicated

strategy to update the smoothing parameter r since we will consider it as a new variable. Our methods

are validated by extensive numerical tests, in which we compare our methods to several other classical

methods.
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5.6.3 An ordinary differential equation . . . . . . ... 140
5.6.4 Application to Absolute Value Equation . . . . . . . .. .. ... ... ... 142
5.7 Conclusion . . . . . . . .. e 146

5.1 Introduction

The linear complementarity problem consists in finding a vector in a finite-dimensional real vector
space that satisfies a certain system of inequalities. Specifically, given a vector ¢ € R™ and a matrix

M € R™™ ™ the linear complementarity problem, abbreviated LCP, is to find a vector x € R™ such that
O0<zl (Mzx+gq)=0. (5.1.1)

This problem is known to have a unique solution for any ¢ € R" if and only if M is a P-matrix
[34, 100]. The linear complementarity problem has many important applications in engineering and
equilibrium modeling [42, 89], and many numerical methods are developed to solve LCPs [18, 28].
Although the effectiveness of complementarity algorithms has improved substantially in recent years,
the fact remains that increasingly more difficult problems are being proposed that are exceeding
the capabilities of these algorithms. As a result, there is a real need to propose new methods and
algorithms to address complicated and difficult situations. To solve LCP, there are essentially three
different classes of methods: equation-based methods (smoothing), merit functions, and projection-
type methods. Our goal in this chapter is to present new and very simple smoothing and approximation
schemes to solve LCP and to produce efficient numerical methods.

Many algorithms have been proposed to solve problem LCP [34, 83]. They may be based on pivoting
techniques [33, 71], which often suffer from the combinatorial aspect of the problem, on interior point
methods, which originate from an algorithm introduced by Karmarkar in linear optimization [63],
see also [66] for one of the first accounts on the use of interior-point methods to solve LCP. Some
researchers try to solve LCP by reformulating them as an unconstrained optimization [47], and on
nonsmooth Newton approaches [39], and rewrite the complementarity conditions as a system of smooth
equations [73], such as the one considered here. See [34, 83] for other iterative methods.

In this work, we propose two new algorithms called TLCP and Soft-LCP for solving the LCP. The
principle of these algorithms is as follows: first, we proposed two smoothing techniques to regularize

the complementary condition, we replace

0<zlz=0,

110



5.2. Preliminaries and problem setting

07‘((13)4—07"(2) =€, ’I“\O,

and
T — pz

Vp >0 r=rlogle+e T , T\ 0,

where 60, log, e and max operates component-wise on x and z, and e € R" is the vector whose
entries are all equal to 1, then we give a strategy that decreases r during iterations and ensures the
nonnegatives of variables. The main difference in our approach is that we do not need any complicated
strategy to update the parameter r since we will consider it as a new variable. Finally, the two new
algorithms are solved using the standard Newton method. To enforce a global convergence behavior,
we also recommend using Armijo’s line search.

This chapter is structured as follows. In section 5.2 of this chapter we gives some definitions and
properties of the smoothing functions. In section 5.3, we present our two approximation for the
problem LCP and give the new formulation of the problem LCP. In section 5.4, we propose two
new methods to solve the LCP. In section 5.5, we propose two generic algorithms to solve LCP and
prove some convergence results. In section 5.6, we provide some numerical results where we present a
comparison on some randomly generated problems of our two methods with other approaches that have
been suggested recently in [29, 48] and we study two concrete examples, the first one is a second-order
ordinary differential equation and the second is an obstacle problem also, we tested our algorithms on

several absolute value equations problems. Finally, we conclude our chapter.

5.2 Preliminaries and problem setting

In this section, we present some necessary definitions and lemmas. A matrix M € R™*" is said to be
positive definite if (x, Mz) > 0 for all nonzero = € R”. M € R"*" is called a P-matrix if all its minors
are positive. As a consequence, if M is positive definite, then M is a P-matrix. A matrix M € R™*"
is a Py-matrix if every of its principal minors is nonnegative.

First, we state a result for the unique solution of an LCP, the following result was proved by Cottle,
Pang, and Stone [34]. Next, we give the definition of #-smoothing function and Soft-Max function

that will use to approximate the complementarity condition.

Theorem 5.2.1. (Theorem 3.3.7, [3/]). A matrix M € R™™" is a P-matriz if and only if the LCP

(5.1.1) has a unique solution for every q € R™.
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5.2.1 Definition of #-smoothing function

We introduce the function 6 with the following properties (these functions were used in [53, 52]).

Let 6 : R —] — o0, 1], be a non-decreasing continuous smooth concave function such that
0(t) <0 if t<0, #(0) =0 and tligl@@(t) =1.

One possible way to build such function is to consider non-increasing probability density functions

f: Ry — R, and then take the corresponding cumulative distribution function

o(t) — L f(@)da.

By definition of f we can verify that

+00

lim 0(t) = f(x)dx =1,

t—+00 0

and
0
9(0) :L F@)dz = 0.

The non-decreasing hypothesis gives the concavity of §. We then extend this functions for negative
values in a smooth way.

Example of this family are 0(t) = ¢/(t + 1) if t > 0 and 0'(t) = t if t < 0.

We introduce 6, (t) := (%) for r > 0. This definition is similar to the perspective functions in convex

analysis. This functions satisfy
0,(0) =0 Vr >0 and lim~0(t) =1 Vt>O0.
There are some examples of such functions

t
1 = i > 1 = 1
0, (t) Ty ift>0 and 6.(t)=t/rift <0,

02(t) =1—e /", teR.

The function 8! will be extensively used in this chapter.

5.2.1.1 f-smoothing of a complementarity condition

Let (z,2) € R? be two scalars such that

0<zlz>0, (5.2.1)
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that is,
=0, z2z>20, xz=0.

In the (z, z)-plane, the set of points obeying (5.2.1) is the union of the two semi-axes {x > 0, z = 0}
and {r = 0, z > 0}. Visually, the nonsmoothness of (5.2.1) is manifested by the "kink" at the corner
(x,z) = (0,0).

We consider two possible smooth approximations of (5.2.1), depending how it is rewritten in terms of

f-function.
Lemma 5.2.2. [52] Given x,z € Ry and the parameter r > 0, we have the equivalence
rz=0 < }i\r%(er(x) +0,(z)) < 1.
Lemma 5.2.3. [52] 0, is sub-additive for non-negative values, i.e. given x, z = 0 it holds that
Or(z) + 0.(2) = 0.(z+ 2).
and with equality if and only if x =0 or z = 0,
rz =0 < 0,(z)+ 0.(2) = 0,.(z + 2).

Our objective is to approximate the complementarity constraints by using these theta functions

then we will present the max function which will be the basic idea of our second approximation.

5.2.2 Soft-Max Function

Let f be a function defined as:

f(x1, .oy xy) = max(xq, ..., Tp),

obviously, the max function is non-differentiable. We approximate the max function by a smooth

function, noted Soft-Max function as introduced in [30]:

Vr >0, fr(x1,.yxpn) = rlog ( Z e wi/T) )

i=1

Indeed: Vr > 0 and Vz € R",

n
rlog ( Z e xi/r) < rlog ( nmax e xi/T) = max z; + rlogn,
i=1 ! !
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n n
e"’“/r> <rlog< exi/T> + rlogn.
i=1 i=1

|maxx; — fr(z)| <rlogn, Vi=1,..n.
1

and

max z; < rlog (
(2

Then

Thus f; is a uniformly smoothing approximation function of f. Notice that the accuracy of the Soft-

Max approximation depends on scale r. Figure 5.1 illustrate the behaviour of Soft-Max function.

Soft-Max function

e
4L
08 R
_— N\ s
ol /
N \ /
% 06 \
g \ /
E N /
N, /
04r N\ /
X // max(x,-x)
. 7 ————r=1
. o r=0.5
02y N ---—r=025
\ =04
\/ r=0.05
0
1 0.5 0 0.5 1

Figure 5.1: Smoothing by Soft-Max function.

5.3 An approximate formulation

In this section, we present our two formulations for LCP (5.1.1), the first with the #-function and the
second with the Soft-Max function.
Consider the linear complementarity problem, which is to find a solution of the system F(X) = 0,
with
Mz +q—
FX)y= [T (5.3.1)
x.z

where X = (z, z) € R¥. Recall that the Hadamard product z.z of two vectors = and z is the vector

having its ith component equal to x;z;.
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5.3.1 Approximation of LCP using -function
We reformulate the problem LCP using 6,.-function, we regularize each complementarity constraint by
considering
xizi =0, 2;, 20, =0 by 6O.(x;)+6:(zi)=1, ;=20, 2, =20 Vi=1,..n.
In fact z;z; = 0 should be approximated by

0-(z;) + 0,(z;) <1, (both can be zeros)

but we use an implicit assumption of strict complementarity. Using this approximation, we obtain the
following formulation:
Mz +q = z,
(Fp) x>0, z=0, (5.3.2)
(0r(x) + 0,(2) —e) = 0.

We consider the family {Fy(.), > 0}, where

M —
Trq—2 eR”, and X=|"|eR?, (5.3.3)
r(0r () + 0,(2) —e€) z

Ff(X) =

is a regularized function of F' defined in (5.3.1). Here, it is understood that 6, operates componentwise
on x and z, while e € R" is the vector whose entries are all equal to 1. It is highly recommended

that the smoothed complementarity equations in (5.3.3) be premultiplied by r, so as to control the

(1) = -0 (t> ,

can be seen to blow up when r \, 0, while 76,.(t) tends to the finite limit 6’ (0).

magnitude of their partial derivatives.
Indeed, for all ¢ > 0,

5.3.2 Approximation of LCP using Soft-Max

It is obvious that the vectors x and z satisfy complementarity condition if and only if

T max (0, x1 — pz1)

Vp >0, =

Ty max (0, x, — pzn)
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Using the Soft-Max function defined below, we approximate

T — Pz
max(0,x; —pz;)) by rlog|l+e 7 , Yi=1,...n, (5.3.4)

we obtain

Mx+qg=2z2 Vp>0,
T —pz

(P (5.3.5)
x—rlogle+e T = 0.
We consider the family {F!(.), r > 0}, where
Mx+q—z
FT(X) = TZPEN\ | eR™, and X =|"|eR?, (5.3.6)
z—rlog|le+e T z

is a regularized function of F' defined in (5.3.1). By the same way as for (5.3.3), log(.), (") operates

componentwise on z and z.

Lemma 5.3.1. Let F7(X) be defined by (5.3.6). Then, for any (x,z) € R® the Jacobian matriz of
Fr(X) is
M -1

VER = bx) pix)

where Dy(X) = diag{a1(X), ..., an(X)} and Dp(X) = diag{bi(X), ..., b, (X)} are two diagonal matrices,

and
Ti — Pz

a(X) = = S e )
l1+e 7 1+e 7
Let Fjy(X) be defined by (5.3.3). We restrict our choice of 0-fucntion to 0,(t) = 01(t). Then, the
Jacobian matriz of Fj(X) is
M —I
Qe(X)  Qu(X)

where Qr(X) = diag{k1(X), ..., kn(X)} and Qi(X) = diag{l1(X), ..., ,(X)} are two diagonal matrices,

VF{(X) =
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and

r2 7,2

ki(X) = @) L;(X) = [CFTSek i=1,...,n.

Lemma 5.3.2. Let M € R™*" be a Po—matriz. Then any matriz in the following form is nonsingular:
NS + NtM7

where Ng € R"™ ™ s a positive (negative) diagonal matriz, and Ny € R™ ™ is a nonnegative (non-

positive) diagonal matrizx.

Proof. Let Ny = diag(s1, $2, ..., $n) and Ny = diag(t1, to, ..., t,). If Ny is positive, and V; is nonnegative,
then s; >0 and t; =0 foralli=1,2,...,n.

t,
Let v € R™ be a vector such that (Ns + NyM)v = 0. Then, we have v; = ——(Mwv); Vi=1,...,n.
Si

t4
It yields v = ——v;(Mwv);. If t; = 0, then v; = 0.

Si
If v; # 0, we have % > 0. Owing to v? > 0, we have v;(Mv); < 0. If v;(Mv); = 0, then v; = 0.
Otherwise, v;(Mwv); < 0 contradicts the property of M. Based on the above discussion, it is concluded
that v = 0, then Ny + N;M is a nonsingular matrix. O

By Lemma 5.3.2, we can obtain a property of F and Fjy if M is a Pp-matrix.

Theorem 5.3.3. Let M be a Py-matriz. Then, for any r > 0, and any (x,z) € ]Ri” the Jacobian
matriz VF] (X) (resp. VFg(X)) is nonsingular.

Proof. For all r > 0 and from Lemma 5.3.1, it follows that the diagonal matrix D, (X) (resp. Qr(X))
is non-negative, and Dj(X) (resp. @;(X)) is non-negative diagonal matrix.

We have det(VF] (X)) = det(Dq(X)+MDy(X)) (resp. det(VFg (X)) = det(Qr(X)+MQ;(X))), since
M is a Pp-matrix and from Lemma 5.3.2, it follows that D, (X) + M Dy(X) (resp. Qr(X) + MQ;(X))
is nonsingular. Hence VF] (X) (resp. VFy (X)) is nonsingular. O

5.4 Solving LCP via new algorithm

In this section, we present the idea of our algorithms for optimization problems to solve the LCP, but
here we don’t have any objective function to minimize. Our methods take inspiration from IPMs.
We recall that the IPMs have replaced the original nonsmooth problem LCP by a sequence of regu-
larized problems

F.(X) =0, (5.4.1)
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where
Mx +q—
X=|"er? EFRX=|"""1° (5.4.2)
z T.Z2—Te
and r = 0 is the smoothing parameter. The Jacobian matrix of F,. with respect to X, does not depend

on 7 and can be denoted by
M -1
VxF.(X) = , (5.4.3)
Z X

where Z = diag(z) and X = diag(x), i.e., the diagonal matrix of z (resp. x).

5.4.1 When the parameter becomes a variable

In the system (5.4.1), the status of the parameter r is very distinct from that of the variable X. While
X is computed "automatically" by a Newton iteration, r has to be updated "manually" in an ad-hoc
manner.

Our goal is to find a strategy that decreases r during iterations and ensures the nonnegative of
variables. However, we must adjust the strategy when the model or its parameters are changed. To
avoid this trouble, we consider r as an unknown of the system instead of a parameter as in [104].

We feel that it would be judicious to incorporate the parameter r into the variables. Let us therefore

consider the enlarged vector of unknowns
X
X = e R?" x Ry, (5.4.4)

and then consider a system of 2n + 1 equations
Fo(X) =0, (resp. Fy4(X)=0), (5.4.5)

to be on X. To this end, let us remind ourselves that our ultimate goal is to solve FJ(X) = 0 (resp.

FY(X) = 0), together with the inequalities z > 0, z > 0. Thus, it is really natural to first consider

Mx+q—z
Fo(X) = | r (0} (z) + 0L(2) —e) | - (5.4.6)

r
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and ~ _
Mx+q—z
T — pz
Fo(X)=|z—rlogle+e T . (5.4.7)
L T |

This construction turns out to be to naive. Indeed, if we start from some % and solve the smooth
system (5.4.6) and (5.4.7) by the smooth Newton method, since the last equation is linear, we end up
with 7! = 0 at the first iteration. Once the boundary of the interior region is reached, we are "stuck"
there.

To prevent r from rushing to zero in just one iteration, we could set

Mx+q—=z
Fo(X) = | r (0}(z) + 0(2) —e) | - (5.4.8)
r2
and ) i
Mx+q—z
T — pz
Fs(X)=|z—rlogle+e T . (5.4.9)
L r2 _

At this stage, system (5.4.8) (resp. (5.4.9)) is not yet fully adequate. Indeed, the last equation is
totally decoupled from the others. Everything happens as if r follows a prefixed sequence, generated
by the Newton iterates of the scalar equation r? = 0, regardless of X. It is desirable to couple 7 and

X in a tighter way. In this respect, we advocate

Mx+q—=z
Fo(X) = | r(}(z) + 6L(z) —e) | (5.4.10)
sl + 5277 + 72

and

Mx+q—z
T — pz

Fo(X)=|z—rlog|le+e , (5.4.11)

| gl + gl +
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where

n n
Jz~|* = Y min’(2;,0), [z7|* = ) min®(z;,0).
i=1 =1

This choice has the benefit of taking into account the nonnegativity condition x > 0 and z > 0.
Indeed, the last equation of (5.4.10) and (5.4.11) implies that, as long as r > 0, we are ascertained
that = = 2z~ = 0. This amounts to saying that > 0 and z > 0. Should a component of x or z
become negative during the iteration, this equation would contribute to “penalize” it.

2

Since r is now considered as a variable and the scalar function ¢t — %\ min(¢,0)|* is differentiable and

its derivative is equal to min(¢,0). From this observation, the two Jacobian matrices of Fy and F are:

Mnxn _Inxn Onx1
VxFo(X) = | Qp(X) Qi(X) We |, (5.4.12)
(@)t ()t 2
and
Mpsn  —Inxn Onpxi
VxFs(X) = | Du(X) Dp(X) Ve | (5.4.13)
()T ()T o
where 2~ is the vector of components x; = min(z;,0) and similarly for z~,
T — Pz
T
— T
V =diag | | —log(l+e r )+ r—Ta ,
1+e T

x? 22
W = di d L1 :
8 ((( 2 (a1 >>

If Fp(X) = 0 (resp. F4(X) = 0) where X € R¥ x R, we obtain r = 0 and 2~ = 2~ = 0. Hence in
this case, VxFy(X) becomes singular (resp. VxF(X) becomes singular) since detVxFg(X) = 0 (resp.

T — Pz Ty — PZz'e

1<isn

detVxF4(X) = 0). To solve this issue, we add a small enough positive parameter ¢ in the last equation.
We get

Lo, Ly 2 2

Sz + Sl + 7% +er = 0. (5.4.14)
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Hence, we define the following systems

Mx+q—z
Fo(X)=| r(6k(x) +0L(2) —e) =0, (5.4.15)

_%Hx_||2 + %HZ_HQ +72 4+ er |

and
Mx+q—z
T — pz

Fs(X)=| z—rlog|e+e T = 0. (5.4.16)

[ Sz + 312702 + r? + er ]

Lemma 5.4.1. Let X € =, where = is the interior region defined in

[1]

={X=(r,2)eR*™ | >0, z>0}. (5.4.17)

Letr € R and X = [X;7]T. Then,
det VFo(X) = (e + 2r) det VFy(X).

and
det VF4(X) = (e 4+ 2r) det VF](X).

If e + 2r > 0, the two Jacobian matrices VFg and VFy (resp. VF, and VF] ) are singular or

nonsingular at the same time.

Proof. Thanks to the assumption X € =, we have z > 0 and z > 0, so that z— = z~ = 0. Expanding
the determinant of (5.4.15) and (5.4.16) with respect to the last row yields the desired result. O

5.5 Convergence

In this section, we propose two generic algorithms to solve LCP and prove some convergence results.
From now on, the enlarged equations (5.4.15) and (5.4.16) are selected as the reference systems in
the design of our new algorithms. The idea is simply to apply the standard Newton method to the
smooth system (5.4.15) and (5.4.16). To enforce a global convergence behavior, we also recommend
using « line search like Armijo back-tracking technique.

Now, we present our algorithms for our methods described above:
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Algorithm 5.1 Nonparametric TLCP with Armijo line search

1. Choose X? = (X, 79), X0>0, r0 =< 29 2> /n, 7€(1,1/2),0€ (0,1). Set k = 0.
2. If Fa(XF) = 0, stop.

3. Find a direction d* € R?"*! such that
Fo(X*) + VxFp(XF)d* = 0.
4. Choose (¥ = ¢7F € (0,1), where j, € N is the smallest integer such that
Oy(X* + ord") < (1 — 270%) Oy(X*).

5. Set XF+1 = XF 4 ¢kd* and k < k + 1. Go to step 2.

Algorithm 5.2 Nonparametric Soft-LCP method with Armijo line search

1. Choose X? = (X%, 79), X0>0, r" =< 2% 2% > /n, 7€ (1,1/2), 0€(0,1). Set k = 0.
2. If Fy(XF) = 0, stop.

3. Find a direction d* € R?"*! such that
Fo(XF) + VxFs(XF)ak = 0.

4. Choose (¥ = ¢7r € (0,1), where j, € N is the smallest integer such that
Os(XF + gk dr) < (1 — 2707F) BO4(XF).

5. Set XF+1 = XF 4 (K@% and k < k + 1. Go to step 2.
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The merit function used in the line search is
1 2 1 2
O0(X) = LIFs(X) (resp. O(X) = 5|Fu(X)).

A detailed description of Nonparametric Soft-LCP is given in Algorithm 5.2. A few comments are in

order:

e« The initial point X = (X° %) must be an interior point, namely, X° > 0 and the initial

parameter

0 0

r? =< 2920 > /n has the correct order of magnitude.

o If X* >0, then (z¥)~ = (2¥)~ = 0 and

-1
g | AXE| (VR o Fr(xh) F7(XP)
drk 0 £+ 2rk erk 4 (rk)?

provided that the Jacobian matrix is invertible. The increment for the parameter is then

k 5Tk + ('f’k)g
drt = ———— 3~
€+ 2r
« There is no need to truncate the Newton direction d* to preserve positivity for 25+ and zF+1,

since nonnegativity is "guaranteed" at convergence. However, if we want all the iterates to be

nonnegative, so we need to carry out an additional damping after Step 4 (Armijo’s line search).

Proposition 5.5.1. Let M € R™*" be a Py-matriz. Then, step 3 in Algorithm 5.1 (resp. Algorithm
5.2) is well-defined.

Proof. We know that for all k > 0, r* > 0,X* > 0, and € > 0,
det VF,(XF) = (¢ + 2rF) det VFT" (XF),

and
det VFo(XF) = (¢ + 2r*) det VE) (X").

By Theorem 5.3.3, we know that VFSTk(Xk) (resp. Vng (X*)) is nonsingular, so Step 3 of Algorithm
5.1 (resp. Algorithm 5.2) is well-defined. O
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5.5.1 Global convergence analysis

Definition 5.5.2. (Regular zero). Let X € R?™ be a zero of F, that is, F(X) = 0. If the Jacobian

matriz VF(X) is nonsingular, X is said to be a reqular zero of F.

The main interest of Algorithm 5.1 and Algorithm 5.2 lies in the prospect of global convergence,
as envisioned by the theory that we are developing now. This global convergence theory, is primarily
based on the regularity of zeros [definition 5.5.2]. We reproduce a concise result that can be found in
the book of Bonnans [20], in view of its importance to our algorithm.

We will prove the global convergence of Algorithm 5.1 (resp. Algorithm 5.2). First, we show that
every d € Ay (resp. d € A, ) is a descent direction of ©y at X (resp. ©, at X ), where

Nog(X) ={deR" | VxFe(X)d = —-Fp(X)}. (5.5.1)
and
Ns(X)={deR" | VxF;X)d=—-FsX)}. (5.5.2)

Lemma 5.5.3. (see [107]) If X is not a solution of LCP, i.e. Og(X) > 0 (resp. O4(X) > 0), then
every d € Ng(X) (resp. d € Ns(X)) satisfies the descent condition for X, i.e., VOo(X)Td < 0 (resp.
VOo,(X)Td <0).

Similar to the proof in [107], we can prove the following result.

Theorem 5.5.4. Every limit point X* = (X*,r*) of a sequence {XF} generated by Algorithm 5.1
(resp. Algorithm 5.2) corresponds to a solution of LCP.

Now we would like to study the asymptotic behavior of the Jacobian matrix Fy (resp. Fy ) when r

goes to 0.

Lemma 5.5.5. Let X* be a solution of LCP satisfying the strict complementarity condition and Fg(X)
be defined by (5.4.15). Then the Jacobian matriz of Fo(X*,r) when r goes to 0 is:

Mnxn _Inxn Onxl
lim (VxFo(X*,7)) = | ¢(Z*) ¢9(X*) Onx1 |5

r—0
O1><n Ol><n €
where
0 if 2f+#0 and zf =0 0 if xf+#0 and zF =0
o(Z%)ii = ! and  ¢g(X™)i = ‘ !
1 if 2f=0 and xf #0, 1 if 2f =0 and 2z #0.
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Proof. Let S defined as
S = {(i zi,r)) Op(x:) +0;(z0) = 1,Vie {1,...,n}},
by Lemma 5.2.3, we have
0L () +0M(z) =1 = wiz; =1% Vie{l,..,n}.
We can therefore define the set S in the form:
S = {(xs,25,7)) mizi — 12 =0,Vie{l,.. n}}

Since X* = (z*, z*) is a solution of LCP, we deduce that (x*, z*,r) is near to S, then

w2 =1 =o(r),

: * % 2
Le. x;z; —r

is negligent by 7. In view of the assumption of the strict complementary of X* = (z*, z*)

we have to consider two cases if 2z > 0 then x} = o(r) and if 2} > 0 then zf = o(r) . By definition

(Fp), (X) Mz +q -z
F (X) = | (F X)| = e + I —re
o (o), (X) Ti+T  Zi+T)1cicn
(Fo)3 (X) a2+ 12+ 2+ er
The jacobian matrix of Fy is:
Mnxn _Inxn On><1
VFo(X) = | V, (Fp), (X) V2 (Fo)y (X) 07 (Fp)y (X) |-
()7t (z7)7T 2r + ¢

1. The derivative of (Fg), (X, r) with respect to z is:

2
. T
m(FwQ(as*,z*,r)=dlag<<<xf+r>) | )
1<i<n

when r goes to 0 and in view of the strict complementary of X* = (x*, 2*), the only two cases

to consider are:

o ¥ —0,and 27 >0 Vie{l,..,n} then
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r—0 r—0
m;" —0
zj‘ #0

lim (V, (Fg), (¥, 2%,7))ii = lim <0(7«)r+7«>2 — lim (f>2 — 1.

o 27 >0,and 2} -0 Vie{l,..,n} then

2
1 . T
,ll_r)% (Va (Fo)y (27,27, 7))ii = 71~1—I>I(1] (1:*4—7“) =0.

x:" #0

2. The derivative of (Fy), (X, r) with respect to z is:

2
. T
VZ (]F@)Q ($*7Z*,T) = dlag <<(z;‘—|—7‘> ) ' ) s
1<i<n

as below, the only two cases to consider are:

e zf—0,and 27 >0 Vie{l,..,n} then

2
. 1 T
}13(1) (V2 (F9)2 (x;kvzz?k’r))ii = lim (Z?" + r> =0
xj‘—)O zj‘—»O '

zl* #0

e zF¥>0,and 27 -0 Vie{l,..,n} then

2
i . T
i (7 (o) (e, =) =l (()+> _1
zZ.—>

mf #0

3. The derivative of Fy o(X, ) with respect to r is:

2 2
0, (Fo), (%, 2%, 7) = SO N (/S R :
x4 2F 4 ‘
1<ig<n

when 7 goes to 0 and in view of the strict complementary of X* = (x*, 2*), the only two cases

to consider are:

o ¥ —0,and 27 >0 Vie{l,..,n} then

lim (2 (Fo), (o7, 25, ); = lim ((U(j)+ (+) - 1) ~o.

zj‘ —0
z;k;éO
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o 27 >0,and 2} -0 Vie{l,..,n} then

lim (3, (Fo), (x5, 2F,7))i = lim ((ﬁﬂ)z + (O(igﬂrf - 1) —0.

r—0
mf#O
zf—»O
Finally, since X* = (z*, 2*) is a solution of LCP, we have z* > 0 and z* > 0, so that = = 2z~ = 0.
Hence
0
Mnxn _Inxn
}%VxF@(X*,T) = ¢9(Z*) ¢9(X*) 0 ’
len len 3
O

Here we present the same result but for the system [Fy(X).

Lemma 5.5.6. Let X* be a solution of LCP satisfying the strict complementarity condition and F4(X)
be defined by (5.4.16). Then the Jacobian matriz of Fs(X*,r) when r goes to 0 is:

Mnxn _Inxn Onxl

lim (VxFs(X*, 7)) = | 65(Z2%) ¢s(X*) Onsr |5
01><n O1><n 3

where
(2% )i = 1 4f 2f#0 and zf =0 and  du(X*)i = 1 df af #0 and 2F =0
0 if =zf=0 and zf #0, 0 if 2f =0 and zF #0.
Proof. Let -~ _
Mx+q—=z
(E.), (X) L
Fs(X) = (Fe)y (X) | = x;—rlog|1+e T
(F.); (%) t<izn
sle™ 12+ 3712 + 72 +er
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The Jacobian matrix of Fj is:

Mnxn _Inxn Onxl
ViFs(X) = | Vo (Fs)y (X) V2 (Fs)y (X) 0r (Fy)y (X)
(z7)T (z7)T 2r+¢

Let us to calculate lir% VxFs(X*,7) :
r—

1. The derivative of (Fy), (X, r) with respect to z is:

Va (Fs)y (2%, 2%, 1) = diag

* *
i — P%

1+e T 1<i<n

when r goes to 0 and in view of the strict complementary of X* = (x*, 2*), the only two cases

to consider are:

o 27 —0,and 2 >0 Vie {l,...,n} then

1
lim (V, (Fs)q (2F,2f,7))s = lim ————— = 1.

r—0 r—0 _PE
:r;kHO 1+e =
ZF#0
e zF>0,and 2 — 0Vie {1,...,n} then
li F * ¥ li L
im (V, (Fs)y (2, 2f,7))i = lim —=0.
r—0 r—0 x5
z' =0 1+e™
zF #£0

2. The derivative of (F;), (X, r) with respect to z is:

e T
F * % —di P
Ve e G |
L+e r 1<ign
as below, the only two cases to consider are:
o 2f - 0,and zF >0 Vie{l,...,n} then
N
. . e r
lim (vz (Fs)g ($;k, Z;k, ’I”))” = lim p——— = 0.
r—0 r—0 p
xf—»O 1+e

zz* #0
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o 27 >0,and 2 —> 0Vie{l,...,n} then

a¥
i : e
ll_ll% (Ve (Fs)y (27, 2, 7))ii = ll_rf(l)p — =,
20 l+er

x?‘;ﬁ(]
we take p = 2 to ensure the convergence (see Figure 5.4).

3. The derivative of (F), (X, ) with respect to r is:

xF — pzf z i r
7 7 Lt " 'e
Or (Fg)y (z*,2%,7) = | —log(l+e 7 )+ L 7 7 ,
(3

1<isn

when r goes to 0 and in view of the strict complementary of X* = (x*, 2z*), the only two cases

two consider are:

e 2 —0,and 2z >0 Vie {1,...,n} then

2 ¥
. T . et e
lim (0 (Fs), (27, 27,7))i = lim | —log(1 +e7777) — |70
zF—0 1+e r
2z; 70
e 27 >0,and 2 — 0Vie{l,...,n} then
a¥
xj‘ * e rI
lim (0 (Fs)y (@], 2,7)); = lim [ —log(1 +e™ )+ =% + | =0.
r—0 r—0 r *;
zF—0 1+er
:cf;éO

Finally, thanks to the assumption X* = (z*, z*) is a solution of LCP, we have z* > 0 and z* > 0, so

that = = 2= = 0. Hence

0
Mnxn _Inxn
lim VseFs (X5, 7) = | \gs(Z%) ¢s(X*)) 0 |,
0 0 €

O]

We present now, the situations where we can conclude about the nonsingularity of lin% VxFo(X*, )
77—

(resp. lin% VxFs(X*,7)).
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Lemma 5.5.7. Suppose that X* = (x*,2*) is a solution of LCP, we have one possibilitie when
computing the determinant of Fg on (xz*,2*). (resp. Fys on (z*,2%)).
If X* = (x*, 2*) satisfies the strict complementarity condition, then from Lemma 5.5.9,

vV Tc{l,..,n}, we have:

0
Mnxn _Inxn
. * Mnxn _Inxn
lim det (VxFg(X*,7)) = || \¢p(2*) ¢p(X*)) 0 ||=¢ . .|| = &M,
r $0(Z*)  dp(X™)
0 0 €

therefore the matriz lin% VxFo(X*,r) exists and is invertible if M is P-matriz.
7>

0
Mnxn _Inxn
. * Mnxn _Inxn
lim det (VxFs(X*,7)) = || \pa(Z2*) ¢s(X*)) 0 | =¢ . .o || = &lMul,
r ¢s(Z%)  ¢s(X¥)
0 0 €

therefore the matriz liH(l) VxFs(X*,r) exists and is invertible if M is P-Matriz.
7>

In the following, we focus our attention on the superlinear convergence rate of Algorithm 5.1 and
Algorithm 5.2.

Theorem 5.5.8. (Theorem 6.9, [20]). Let Fy : R2"*L — R2HL (resp. By @ R2FL — R2HL ) pe g

continuously-differentiable function.

(i) (Local analysis) Let X* be a reqular zero of Fy (resp. Fy ). If X° is close enough to X, then
¢F =1 for all k, and X* converge to X* super-linearly (and we recover the standard Newton
method).

(ii) (Limit point) Let X* be a limit point of sequence {XF}. If VFa(X*) (resp. VIFy(X*)) is invert-
ible, then X* is a regular zero of Fy (resp. Fg). If X* is a regular zero of Fg (resp. Fs), then
¢k =1 for k big enough and X¥ converge to X* super-linearly.
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Proof. We apply Theorem 5.5.4 and Lemma 5.5.7 under some condition on F'. ]

Now we would like to study the asymptotic behavior of the Jacobian matrix of our methods with
the Jacobian matrix of interior-point methods when r goes to 0 and we need a lemma that is used to

prove our main result.

Lemma 5.5.9. We consider the following system

(5.5.3)

where Z = diag(z) and X = diag(x). Assume that Z, X are strictly complementary. Then J is

singular if and only if T is singular, where

M I M I
J = , and T =
zZ X o(Z) (X)
such that
1 4 t#0
P(t) =
0 if t=0,

here ¢ operates componentwise on Z and X , and it verifies the following system

Proof. By the strict complementarity hypothesis, we range the rows and the columns of J and T as

follows
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where X9 > 0 and Z; > 0, and

MJ _IO'
1 0 0
0
(T)U =
1 1 0
0
0 0 0 1

Mo _Io
1 0 0
0
det(Ty) = =+ [ [ o) ][ [é(z) det(C),
1 1 0 i€ly i€l
0
0 0 0 1

where C is a certain matrix, I} = {i | z; >0} and Iy = {i | z > 0}. Since
+ Hxl Hzi and Hgb(xl) qu(zi),
i€llp i€ls ielly i€ls

are nonzeros, then we can conclude that J and T are invertibles and singulars at the same time. [

Theorem 5.5.10. Suppose that X* = (x*, z*) is a solution of LCP which satisfies the strict comple-

mentarity condition (i.e. xf + zF >0, Vie {1,...,n}), and VxFo(X*) define by (5.4.3) (the Jacobian

matriz of the Interior-Point Methods) is invertible. Then hII(l) VxFo(X*,r) is invertible, i.e. the two
7>

Jacobian matrices are singular or nonsigular at the same time.

Proof. In view of Lemma 5.5.9, and thanks to the assumption X* = (z*, 2*) is a solution of LCP, we

132



5.5. Convergence

have z* > 0 and z* > 0, so that z— = 2z~ = 0. Hence
0
Mnxn _Inxn M I
lim det (VxFo(X*,1)) = || \gp(2%) @p(x*)) 0 | =¢|{ " ™"
0 0 €

where ¢y(.) is defined in Lemma 5.5.5, Z* = diag(z*) and X* = diag(x*).
From Lemma 5.5.9, we conclude that if VxFy(X*) is invertible then lir% VxFg(X*,r) is invertible.
r—
This means, that if the Interior Point Method converges our method converges.
O

Here we present the same result but for the system F(X).

Theorem 5.5.11. Suppose that X* = (x*,z*) is a solution of LCP which satisfies the strict com-

plementarity condition, and VxFy(X*) define by (5.4.3) (the Jacobian matrixz of the Interior-Point

Methods) is invertible. Then liH[l) VxFs(X*,r) is invertible, i.e. the two Jacobian matrices are singular
r—

or nonsigular at the same time.

Proof. In view of Lemma 5.5.9, and thanks to the assumption X* = (z*, z*) is a solution of LCP, we

have * > 0 and 2* > 0, so that x= = 2z~ = 0. Hence
0
Mnxn _Inxn M I
lim det (VxFs(X*,7)) = || \¢o(2%) ou(x*)) 0 ||=¢/| """
r— ¢S(Z*) ¢5(X*>
i 0 0 € |

where ¢4(.) is defined in Lemma 5.5.6, Z* = diag(z*) and X* = diag(z™*).
From Lemma 5.5.9, we conclude that if VxFy(X*) is invertible then hH(l) VxFs(X*,r) is invertible.
r7r—
This means, that if the Interior Point Method converges our method converges.
[

Hypothesis (M is a Pyp-matrix) assures us that our method is well defined and the Theorem 5.5.10
(resp. Theorem 5.5.11) shows that the domain of convergence of our method is at least as large as

that of the interior-point methods.
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5.6 Numerical results

Through this chapter, we studied two methods Soft-LCP and TLCP to solve the LCP, we present in
this section some numerical experiments. First, we present a comparison on some randomly generated
problems of our two methods with other approaches that have been suggested recently in [29, 48].
Then, we study two concrete examples, the first one is a second order ordinary differential equation
and the second is an obstacle problem that can be formulated as LCP (5.1.1).

Finally We tested our algorithms on several absolute value equations problems. Our results are very
promising and outperform standard methods.

For all the numerical tests and all the considered methods, the used codes are simple Matlab codes.
We restrict our choice of -function to 6} (z).

Our aim is to validate our approach and run some preliminary comparison with other methods, and

not to optimize the performance of the algorithm.

5.6.1 Comparisons of methods for LCPs

We generate for several problem sizes, n=32, 64, 128, 256 the data (M, q) in order to have a solution
for LCP as follows

R=rand(n, n);
M=R'*R+n*eye(n);
h=rand(n) ;
z=round(h).*rand(n, 1);
t=(1-round(h)).*rand(n, 1);
q=-M*t+z;
We compare our two methods denoted Soft-LCP and TLCP with other methods:

e TLCP2 method which is the same algorithm with a different formulation for the complementarity
6’7«(331) + Or(zi) — Gr(xi + ZZ') =0.
In this case we don’t necessarily need the constraint
LR U S
7"+ |z |F + " +er =0.
Sl P+ 5127
since it is a reformulation of the complementarity and not a relaxation (we can use a fixed r).

o The classical interior-point method IPM [48].
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o The classical Fischer-Burmeister method [29], we regularize each comlementarity constraint by

considering

rizi =0, 2;=20,2>0 by A/2?+22+12—(vi4+2)=0, i=1,..,n

T> = 0 and solve

The main idea of all these methods is to regularize the complementarity condition x
a system of equations using Newton’s method. We use an Infeasible IPM and the classical Fischer-
Burmeister method referred to as FB-Algor to compare with our methods. For TLCP2, we have fixed
r to 1. We take for all this methods the initial point (zg, z9) = 1, where 1 € R" is the vector whose
components are all equal to 1 and 79 = {(zp, z0y/n and the precision is set as 107°.

The comparative results are given in the Table 5.1 to 5.5. We are interested in the following aspects:
the comp.err, computed as |7 2|, feas.err computed as | Mz +q— z|| the number of iterations computed

as nb-iter and the time.

Table 5.1: Results from Soft-LCP with n=32, 64, 128, 256.

n comp.err feas.err r nb-iter  time
32 4.8594e-07 3.1676e-14 0.0021 9 0.0081
64 1.6217e-05 9.4826e-13 0.0072 10 0.0292
128 1.1151e-07 5.5129e-12  0.0014 14 0.0364
256 5.1985e-06 9.3893e-12  0.0020 23 0.1900

Table 5.2: Results from FB-Algor with n=32, 64, 128, 256.

n comp.err feas.err r nb-iter  time
32 4.5973e-08 1.2373e-07 1.324e-06 12 0.0218
64  9.3296e-08 2.8274e-07 9.715e-06 14 0.0305
128  5.1455e-08 1.8937e-07 4.799e-06 15 0.0372
256  2.2314e-07 5.5151e-07 4.050e-06 17 0.1294
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In the above comparisons, we notice that our methods have much better results in terms of iteration
numbers and CPU-time than classic interior-point-method IPM and FB-Algor. The TLCP method

Table 5.3: Results from TLCP with n=32, 64, 128, 256.

n comp.err feas.err r nb-iter  time
32 3.0137e-07 1.0516e-13 4.8821e-04 11 0.0083
64 1.1888e-07 7.1035e-13 4.8813e-04 11 0.0121
128  4.5973e-07 4.8634e-12  4.8793e-04 11 0.0244
256 4.4479e-07 9.9347e-12  2.4369¢-04 12 0.0986

Table 5.4: Results from TLCP2 with n=32, 64, 128, 256.

n comp.err feas.err r nb-iter  time
32 7.0412e-09 8.7429e-09 1 11 0.0154
64 5.7344e-09 2.1192e-09 1 12 0.0429
128  2.3476e-07 1.02336e-08 1 11 0.1993
256 8.0873e-08 8.92116e-07 1 38 1.6799

Table 5.5: Results from IPM with n=32, 64, 128, 256.

n comp.err feas.err r nb-iter time
32 9.4531e-07 0 0 198 0.5606
64  9.8840e-07 1.3455e-12 0 212 0.9313
128  9.1254e-07 4.1933e-10 0 248 3.6056
256  9.4437e-07 0 0 238 8.7353

requires the fewest iteration numbers.
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The average computatic

Figure 5.2: Performance profiles where ¢, s represents the average computation time.

The figure above shows the performance profiles of five solvers where the performance measure

is execution time. It is clear that the TLCP method captures our attention (admits the highest
probability value). In fact, in the interval [0, 1], TLCP is able to solve 99% of the problems, while
the other solvers do not reach 20% and require more time. We also notice that IPM is the slowest
compared to others. However, for £ > 2, the three algorithms TLCP, Soft-LCP and FB-Algor confirm

their robustness. Figure 5.2 also indicates that, with respect to the computation time, with the same

initial points and under the same stopping criterion, TLCP is the fastest solver, followed respectively
by Soft-LCP, FB-Algor, TLCP2 and IPM.

—

The average number of iterations

Figure 5.3: Performance profiles where ¢, s represents the the average number of iterations.
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In Figure 5.3, we illustrate the performance profiles of five solvers considering the number of iter-
ations required as a performance measure. We notice that TLCP is the winner (admits the highest
probability value) followed by FB-Algor, Soft-LCP. We also note that IPM and TLCP2 need more

iterations to resolve problems. The performance of Soft-LCP becomes interesting beyond ¢t = 2.

5.6.1.1 Sensitivity of p

We will now study the sensitivity of the parameter p. We solve our problem using Soft-LCP with
different parameters p. We take p =1,1.1,1.2,...,100. and n = 128.

Sensitivity Analysis 0 < p <5

Sensitivity Analysis 5 < p < 100

1100
1000 1000 f —
900 - ] 900
800 - ] 800 +
700 1 700
£ o0f S 600
o ©
B 500f 3 5001
400 ] 400 |
300 ] 300
200 1 200
100 - 1 100 | L
0 — L L L L L L L L 0 L L I/'}V\. S —
0 10 20 30 40 50 80 70 80 90 4 2 0 2 4 6 8

Figure 5.4: Sensitivity Analysis of p.

We notice a loss of convergence between 0 and 2, however between 2 and 12 convergence is assured,
then from 13, there is a divergence. We conclude that we cannot choose p as a random parameter. In
all the cases where there is convergence, the number of iterations is almost the same however in the
event of divergence the number of iterations exceeds the maximum number fixed in our algorithm.

We have fixed p = 3 in our approach to ensure the convergence.
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5.6.2 An obstacle problem

Let f and g two continuous functions defined in [0, 1]. We want to solve the following obstacle problem:
find w : [0,1] — R such that:

E &
\VARR\
e =
] 8
~ T
]
=
=
—_

|
:\.
—
8
N~—
|
~
—~
8
~—
=
£
—~
=
|
<
—~
8
=
I
=

and u(0) = u(1) = 0.

The first equation means a maximum concavity of the function u. In the second equation, we want the
solution u to be above g. In the third equation, we have at least equality in one of the two previous
equations. In order to get a linear complementarity problem, we set z = u — g and we discretize by
using the finite difference. We introduce a uniform subdivision z; = i = h,i = 0,... N + 1 of [0,1],
where h = ﬁ

We use the second-order centered finite difference to approximate the second order derivatives 2" ()

and ¢’ (x). We then try to solve the following problem:

—2i—1122,—2; —9i—1+29i—gi
i—1 h2z i+1 gi—1 h2_(]7, gi+1 fz > O,
zz = 0, fori=1...,N, ug=uny1 =0.
—zi—1+22;+2; —gi—1+29:—gi
< Zi—1 hQZZ Zit1 9i—1 hzgz 9i+1 fl) (27,) — O7

Where g; = g(x;), fi = f(x;), zi = z(x;) and u; = u(x;). We obtain the following complementarity

problem:
(Mz+q)Tz = 0,
z = 0,
Mz+q = 0,
where
2 -1
1 -1
Mzﬁ ,and g = Mg — f.
-1
-1 2

If 1 is not an eigenvalue of M is equivalent to AVE, ([74], Prop. 2),

(M—1)"Y (M + Dz —|z| = (M —-1)"'q.

139



Chapter 5. New smoothing methods for solving the linear complementarity problems involving
Po-matrix

We present in the following figures, the results of our two methods and LPM method from [74]. The

obstacle g is chosen here to be
g(z) = max(0.8 — 20 * (z — 0.2)%, max(1 — 20(z — 0.75)%,1.2 — 30(z — 0.41)?))

f(z) =1and N = 50.
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Figure 5.5: Numerical solution of the obstacle problem (5.6.2) with TLCP, Soft-LCP methods, and
method from [74].

We remark that the both TLCP, Soft-LCP, and LPM method [74] have 19 common points on the
curve g and none below g over 50 points. This example also confirms that our approach, TLCP and

Soft-LCP method gives consistent results.

5.6.3 An ordinary differential equation

We consider the ordinary differential equation

z (t)—|zt)| = —-2—t, x(0)=-4, 2(0)=5 telo, 5] (5.6.1)
First, we discretize the EDO equation by using the finite difference scheme. We use the second-order
centred finite difference to approximate the second order derivative

Ti—o —2xi1 + Xy

h2 — ‘l‘z| = (—2 — t)i. (5.6.2)
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Equation (5.6.2) was derived with equispace gridpoints t; = i¢h, i = 1,...N. In order to approximate

the Neumann boundary conditions we use a center difference

1 — T /
- - = = 1. .0.
o ' (0) (5.6.3)

Using the classical decomposition of the absolute value [2] we reformulate (5.6.2) as follows

Nizt — Noz~ =
TR = (5.6.4)
0<zt Lz >0,
where
2 —h2 2 + h?
-2 1—h? -2 1+4+Ah?
1 1
Nl:ﬁ 1 s NZZﬁ 1 )
1 =2 1—h? 1 -2 1+h?
8 —10h 24+ h
. —4 2+ 2h
and ¢ = —77 ) —
0 2+ Nh

Nj is invertible, then the problem (5.6.4) is reduced to a standard LCP.
We compare the obtained solution by Soft-LCP and TLCP to the predefined Runge-Kutta ode4b
function in Matlab [78]. The domain is ¢ € [0, 5], initial conditions (0) = —4,z (0) = 5 and N = 100.
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Figure 5.6: Numerical solution of (5.6.3) with ode45 and both methods.

Both methods solve the problem and gives consistent results.

5.6.4 Application to Absolute Value Equation
We consider the absolute value equation (AVE), defined as
Az — |z| =D, (5.6.5)

with A € R™" and b € R™. We studied two cases where AVE has a unique solution and for general

AVE. Using the same technique as in [2], (5.6.5) can be cast as the following complementarity problem

Azt —27) = (T +27) =b, 0<at Lz~ >0, (5.6.6)

equivalent to
(A-—Dxt =(A+ Dz +b, 0<z™ L2 >0, (5.6.7)
where 27 = max(z,0) and 2~ = max(—=z,0). This decompsition guarantes that |z| = 2% + 2~. So

AVE can be cast as the following LCP
=Mz +q, 0<z™ Lz~ >0, (5.6.8)

with M = (A—I)"Y(A+1)and g = (A—1)"'b.
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5.6.4.1 Random uniquely solvable generated problem

We consider the special case where AVE is uniquely solvable, to guarantee the convergence of the
Newton method. One way to generate such AVE is to generate a matrix A with singular values
exceeding 1. We first chose a random A from a uniform distribution on [—10,10], then we chose a
random z from a uniform distribution on [—1,1]. Finally we computed b = Az — |z| . We ensured
that the singular values of each A exceeded 1 by actually computing the minimum singular value
and rescaling A by dividing it by the minimum singular value multiplied by a random number in the
interval [0,1]. We generate like [77] for the several values for n = 32, 64, 128, 256, 512, 1024, the
data (A, b) by the following Matlab code in order to have a solution for AVE:

n=input(’dimension of matrix A=");
R=10*(rand(n,n)-rand(n,n));
A=R/(min(svd(R))*rand(1));
x=rand(n,1)-rand(n,1);
b=A*x-abs(x).

The required precision for solving AVE is 1076, For each n we consider 100 instances.
Now, we compare our methods Soft-LCP and TLCP to Generalized Newton method from [75], which

is denoted GN. In this method, we solve each iteration a linear system:
(A— D(2")z" = b, (5.6.9)

where D(z') = diag(sign(z’)). Results are summarized in Table 5.6, which gives the number of
iterations, the time required to solve all the 100 instances. Our methods solve all 100 AVEs to an
accuracy of 1076 and validate our approach. We notice that the GN method is the fastest because at
each iteration it solves only one linear system, the TLCP method gives the fewest iterations to solve

the 100 instances.
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Table 5.6: Comparison of Soft-LCP and TLCP with GN method, in the case with singular values of
A exceeds 1 for 100 randomly generated AVE of size n.

n it-Soft-LCP  Time-Soft-LCP  it-TLCP Time-TLCP it-GN Time-GN

32 201 0.0394 104 0.0238 255 0.0071
64 201 0.1041 107 0.0646 274 0.0182
128 200 0.2844 111 0.1767 274 0.0641
256 212 1.6986 106 0.9727 290 0.2301
512 284 11.0947 110 5.0497 295 1.2925
1024 284 42.1565 111 45.3930 291 14.8541

5.6.4.2 Random generated problem

Now we present results for general AVE, which is the main interest of our algorithm. The data are
generated like [74] for several n and for several values of the parameteres, in each situation we solve
100 instances of the problem. We choose a random A from a uniform distributin on [—10, 10], then
chose a random z from a uniform distribution on [—1,1] and set b = Az — |z|. The data (A,b) are

generated by Matlab script:

n=input(’dimension of matrix A=");
rand(’state’,0);
A=10*(rand(n,n)-rand(n,n));
x=rand(n,1)-rand(n,1);
b=A*x-abs(x);

We will compare 4 methods valid for general AVE:
e« TLCP method from Algorithm 1;
e Soft-LCP method from Algorithm 2;
o Concave minimization method CMM from [74];
o Successive linear programming method LPM from [76];

In Table 5.7-5.10, "nnztot" gives the number of violated expressions for all problems, "nnzx" gives
the maximum violated expressions for one problem, "nb-iter" gives the number of iteration for all the
problems. We also provide the time in seconds and the number of problems where we did not manage

to solve AVE.
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Table 5.7: Results from TLCP on with 100 consecutive random AVEs.

n nnztot nnzx nb-iter time nb-failure

32 3 1 1647 0.6274 3
64 ) 1 1776 1.2548 5
128 ) 1 2359 2.4182 7
256 8 1 2448  22.8817 8

Table 5.8: Results from Soft-LCP on with 100 consecutive random AVEs.

n  nnztot nnzx nb-iter time nb-failure
32 1 1 960 0.4287 1

64 1 1 1032 0.8351 1

128 3 1 1478 1.6692 3

256 1 1 1996  18.3965 1

Table 5.9: Results from CMM on with 100 consecutive random AVEs.

n nnztot nnzx nb-iter time nb-failure
32 13 1 640 4.2832 13

64 11 1 588 7.0034 11
128 13 1 693 19.9940 13
256 15 1 753 143.6931 15
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Table 5.10: Results from LPM on with 100 consecutive random AVEs.

n nnztot nnzx nb-iter

32 8 1
64 19 4
128 21 3
256 29 5

313

411
433
606

time nb-failure
2.2422 8
6.0978 18
18.2642 20
156.4612 22

In every cases our methods manage to reduce the number of unsolved problem, which was our

principal aim. In every case it gives the smallest number of unsolved problem in a very reasonable

time.

5.7 Conclusion

In this chapter, we propose two methods to solve the LCP. A complete analysis is provided to validate

our approach. Furthermore, a numerical study shows that our approach is interesting. Numerical

experiments on several LCP problems and a comparison with some existing methods proves the effi-

ciency of our study.

We have presented an application of absolute value equation (AVE) and two examples (an obstacle

problem and ODE) and show that our two methods are promising.
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6 General conclusion and perspectives

This manuscript presents different regularisation/relaxation methods for complementarity problems,
and optimal control problems under complementarity constraints. In particular, in Section 2.5 we
introduce a family of smoothing functions that are central in the regularisations proposed through

this document.

In Chapter 3, we propose a numerical investigation of optimal control problems governed by semi-
linear elliptic variational inequalities with state constraints. To obtain the optimality system of the
underlying problem, we first relaxed the feasible domain and then applied some mathematical pro-
gramming and penalization techniques. We reported on several numerical experiments using various
optimization platforms, and solvers such as KNITRO, IPOPT, and SNOPT to illustrate the efficiency
of the proposed numerical scheme.

In Chapter 4, we used again the smoothing functions to propose a regularisation technique for NCPs.
We have developed a smoothing method to solve NCPs involving Py-functions, and proposed a "non-
parametric" algorithm to solve the nonlinear equations based on the (semi-smooth) Newton method.
We performed some global and local convergence analysis of the proposed method. Then, we presented
extensive numerical experiments that demonstrate the efficiency of our approach.

Thereafter, still based on smoothing techniques, we have proposed in Chapter 5 two new methods
to solve LCPs. We provied a complete analysis to validate our approach. Numerical experiments
on several LCP problems and comparisons to other existing methods proved that our approach is

promising.

Regarding the work done in chapter 3, we would like to go further: use our optimality conditions
to develop our code and conduct more extensive experiments. Concerning the LCP and NCP, we
would like in future work to weaken the hypotheses to attack real problems. Several questions remain
open. In particular for AVE problems: A good topic of research is the study of the AVE without any
condition or assumption on the existence and uniqueness of solutions. Another interesting question is
the reformulation of the nonlinear AVE (F(z) — |z| = b) as LCP or NCP and deducing new results

concerning its solvability.
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Titre : Méthodes numériques pour les problémes de complémentarité et les problémes de contréle optimal sous contraintes

de complémentarité.

Mots clés : Méthode de point intérieur, probléme de complémentarité linéaire, probléme de complémentarité non linéaire,
contrble optimal, méthodes de régularisation, convergence globale-locale.

Résumé : Les problémes de complémentarité interviennent
dans de nombreux domaines scientifiques économie,
physique, transport, théorie des jeux et mathématiques.

Dans cette thése, on apporte plusieurs contributions
théoriques, algorithmiques et numériques pour résoudre des
problemes de complémentarité et de contrdle optimal sous
contraintes de complémentarité.

On s'intéresse plus particulierement aux méthodes de
régularisation pour la résolution numérique de ces deux types
de problémes, ou nous avons proposé de nouvelles
techniques de régularisation.

En effet, dans la premiére partie, nous nous sommes
intéressés aux problémes de contrbdle optimal sous
contraintes de complémentarité.

Nous avons étudié les problémes de contréle optimal régis
par les inégalités variationnelles elliptiques semi-linéaires
impliqguant des contraintes sur la variable d’état.
Nous avons présenté un nouveau schéma de régularisation
pour la contrainte de complémentarité.

Nous avons prouvé [lexistence de multiplicateurs de
Lagrange.

Ensuite, dans la deuxiéme partie, nous avons étudié les
problémes de complémentarité linéaire et non linéaire en
proposant de nouvelles méthodes de régularisation pour
résoudre ce genre de problémes. L’idée de ces méthodes
prend inspiration de la méthode des points intérieurs.

Dans ce travail nous nous sommes concentrés sur les
propriétés  théoriques des algorithmes et leurs
applications numériques.

Titre: Numerical methods for complementarity problems, and optimal control problems under complementarity constraints.

Key words: Interior points methods, linear complementarity problem, nonlinear complementarity problem, optimal control,

regularization methods, global-local convergence.

Abstract: Complementarity problems occur in many
scientific fields: economics, physics, transport, game
theory, and mathematics.

In this thesis, we offer several theoretical, algorithmic, and
numerical contributions to solve the complementarity
problems and optimal control problems under
complementarity constraints.

We are particularly interested in the regularization methods
for the numerical resolution of these types of problems, we
have proposed new regularization techniques.

Indeed, In the first part, we focused on optimal control
problems under complementarity constraints.

We studied optimal control problems governed by semi
linear elliptic variational inequalities involving constraints on
the state. We presented a new regularisation schema for
the complementarity constraint. We proved that Lagrange
multipliers exist.

Then, in the second part, we have studied linear
complementarity problems (LCPs) and nonlinear
complementarity problems (NCPs) by proposing new
methods of regularisation to solve these kind

of problems. The idea of these methods takes inspiration
from interior point methods.

Throughout this manuscript, we have focused on the
theoretical  properties of algorithms and  their
digital applications.
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