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Chapter 1 – Introduction

1.1 Introduction en Français

Le contenu de cette thèse est divisé en deux parties. La première partie traite du sujet
des problèmes de complémentarité des valeurs propres de Pareto et de leurs problèmes
inverses correspondants. La seconde partie est consacrée à l’accélération des méthodes
d’optimisation du premier-ordre en analysant les dynamiques inertielles associées.

1.1.1 Problèmes de complémentarité des valeurs propres de Pareto

La première étape fondamentale vers la résolution d’un large éventail de problèmes en
finance, en médecine et dans de nombreuses autres disciplines consiste à formuler un
modèle mathématique approprié. L’intérêt se porte alors sur la conception et l’étude
d’algorithmes numériques efficaces pour traiter le modèle mathématique en question, ce qui
joue un rôle central dans les mathématiques appliquées. Souvent, ces modèles peuvent être
considérés comme des problèmes d’optimisation, l’objectif étant d’optimiser un ensemble
de paramètres d’intérêt pratique. Les problèmes de complémentarité des valeurs propres,
en particulier, sont l’un des types de modèles les plus fréquemment utilisés pour formuler
une variété de problèmes dans les domaines de l’ingénierie, de l’économie et des sciences.

Les problèmes de complémentarité constituent un outil important et efficace pour
relever un large éventail de défis d’optimisation numérique. Par conséquent, une multitude
d’algorithmes ont été proposés et examinés dans la littérature pour traiter ces problèmes de
manière efficace. Les problèmes de complémentarité aux valeurs propres (EiCP), également
connus sous le nom de problèmes de valeurs propres contraints par un cône, représentent
une sous-classe dans le domaine des problèmes de complémentarité. Ils étendent les
problèmes classiques de valeurs propres, lorsque le cône coincide avec l’espace tout entier,
un domaine d’intérêt significatif avec des applications en physique et en ingénierie. La
genèse des EiCP remonte à leur apparition initiale dans l’examen des états d’équilibre
statique dans les systèmes mécaniques contenant un nombre fini de degrés de libertés et
soumis à un contact unilatéral avec frottement. Les problèmes de complémentarité aux
valeurs propres ont été largement explorés dans la littérature à la fois d’un point de vues
théorique et numérique. Les applications de l’EiCP couvrent un large éventail de domaines,
notamment les analyses dynamiques de systèmes mécaniques structurels, les systèmes
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Chapter 1 – Introduction

vibro-acoustiques, les simulations de circuits électriques non-réguliers, le traitement du
signal, la dynamique des fluides, ainsi que les problèmes de contact en mécanique. D’un
point de vue mathématique, la résolution de l’EiCP consiste à trouver un nombre réel λ et
un vecteur non nul correspondant x ∈ Rn \ {0} tels que la condition suivante soit satisfaite

K ∋ x ⊥ (λx− Ax) ∈ K∗, (1.1)

où K est un cône convexe fermé dans Rn, ⊥ indique l’orthogonalité dans Rn, K∗ représente
le cône dual positif associé à K, qui est défini par

K∗ = {y ∈ Rn : ⟨y, x⟩ ≥ 0, ∀x ∈ K} .

Dans (1.1), A ∈ Mn(R) est une matrice donnée n× n (pas nécessairement symétrique).
Le scalaire λ et le vecteur x sont respectivement appelés valeur propre et vecteur propre
de (1.1). Il est clair que lorsque K coïncide avec l’espace tout entier, (1.1) coincide avec
le problème classique aux valeurs propres (connu en algèbre linéaire). Une situation
importante correspond à l’orthant positif K = Rn

+. Dans ce cas, (1.1) est appelé problème
de complémentarité aux valeurs propres de Pareto (ou simplement problème aux valeurs
propres de Pareto en abrégé).

Contribution

Dans cette thèse, nous limiterons notre étude au cas où K = Rn
+ est l’orthant positif, d’où

le problème de complémentarité aux valeurs propres de Pareto. Bien que l’analyse spectrale
théorique de l’EiCP ait été bien développée (voir [124]), la recherche d’algorithmes efficaces
pour la résolution de l’EiCP est absolument nécessaire. Nous considérons l’approche
consistant à formuler le problème aux valeurs propres de Pareto comme un système
d’équations non linéaires, dans l’objectif d’utilisation des méthodes de points intérieurs
pour la résolution numérique de ces systèmes. Les méthodes de points intérieurs sont
connues pour être l’une des méthodes les plus efficaces en optimisation numérique depuis le
travail fondateur de Karmarkar [94] pour la programmation linéaire. De plus, les méthodes
de points intérieurs en général et les méthodes primales-duales en particulier peuvent-être
étendues pour traiter les problèmes d’optimisation non linéaires, et en particulier les prob-
lèmes de complémentarité non linéaires, voir par exemple les références [127]. La base de la
plupart des implémentations des méthodes primales-duales est fournie par l’algorithme du
prédicteur-correcteur de Mehrotra, qui sera adapté dans cette thèse au contexte de l’EiCP.
La méthode des points intérieurs non paramétriques NPIPM présentée dans [148] sera
adaptée à cette classe de problèmes. L’idée de base de la NPIPM est de faire du paramètre
de relaxation, qui est souvent mis à jour de manière ad hoc dans les méthodes de points
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intérieurs, une variable en introduisant une équation appropriée. Nous comparons ces deux
méthodes avec une méthode existante appelée la méthode de projection sur treillis (LPM),
et une méthode de lissage appelée la méthode Soft Max (SM) que nous proposons sur la
base d’un esprit similaire à celui de la NPIPM. Enfin, nous étudions le problème inverse
de l’EiCP qui revient à construire une matrice A ∈ Mn(R) dans laquelle son ensemble
de valeurs propres de Pareto contient un ensemble prescrit de nombres réels distincts;
plus précisément, nous adaptons LPM et MPCM au contexte des problèmes inverses aux
valeurs propres de Pareto et nous les comparons avec plusieurs méthodes existantes.

1.1.2 Accélération des méthodes d’Optimisation du premier ordre

Pourquoi l’optimisation du premier ordre

Au cours des dernières décennies, la prolifération explosive de l’apprentissage automatique
et du big data a engendré un changement de paradigme dans divers domaines scientifiques
et industriels. Cette montée en puissance est emblématique d’une transition profonde
de la programmation conventionnelle, fondée sur des règles, vers des approches axées
sur les données, dans lesquelles les algorithmes discernent des schémas et des relations
à partir d’une grande quantité d’informations. Au cœur de cette révolution se trouvent
les algorithmes d’optimisation, qui servent de pivot pour affiner les modèles, améliorer la
précision des prévisions et accélérer les processus de prise de décision. Ces algorithmes,
enracinés dans la théorie de l’optimisation mathématique, ajustent méticuleusement les
paramètres du modèle pour minimiser ou maximiser une fonction objective, garantis-
sant ainsi l’utilisation la plus efficace des ressources disponibles. Grâce à un raffinement
itératif, les techniques d’optimisation ont catalysé des percées dans diverses applications,
allant du traitement du langage naturel et de la vision par ordinateur aux systèmes
de recommandation et aux véhicules autonomes. Leur rôle critique dans l’exploitation
de la puissance de l’apprentissage automatique et du big data est palpable, éclairant
une trajectoire vers des systèmes de plus en plus sophistiqués et performants dans l’ère
florissante de l’intelligence artificielle.

Étant donné le rôle central des algorithmes d’optimisation dans le paysage contemporain
de l’apprentissage automatique et de l’analyse des données massives, il est impératif
de souligner l’importance de la conception et de la mise en œuvre de méthodologies
d’optimisation hautement efficaces. Alors que les ensembles de données continuent de
croître en taille et en complexité, et que les ressources informatiques deviennent progres-
sivement puissantes, la demande de stratégies d’optimisation capables de naviguer sur ce
formidable terrain devient de plus en plus prononcée. Les algorithmes d’optimisation de
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Chapter 1 – Introduction

premier ordre, qui consistent en des algorithmes d’optimisation utilisant uniquement des
informations de premier ordre de la fonction objective f , à savoir ∇f , occupent une position
de première importance dans le domaine de l’optimisation en raison de leur efficacité et de
leur évolutivité dans le traitement d’ensembles de données à grande échelle et d’espaces de
paramètres à haute dimension. Ces algorithmes fonctionnent en utilisant l’information
du gradient, qui indique la direction de la montée ou de la descente la plus raide d’une
fonction. Cette caractéristique les rend légers sur le plan informatique et bien adaptés
aux scénarios dans lesquels la mémoire et les ressources de traitement sont limitées. En
outre, les algorithmes du premier ordre présentent des propriétés de convergence favorables,
convergeant souvent vers un minimum local en un nombre raisonnable d’itérations. Leur
simplicité et leur facilité de mise en œuvre en font un choix attrayant pour un large éventail
d’applications, allant de l’apprentissage de modèles complexes d’apprentissage automatique
à la résolution de problèmes d’optimisation convexe à grande échelle répandus dans divers
domaines tels que le traitement des signaux, la reconstruction d’images et la finance. En
outre, les algorithmes du premier ordre constituent une base solide pour des techniques
d’optimisation plus sophistiquées, servant de blocs de construction pour des approches
hybrides qui combinent les forces de différents paradigmes d’optimisation.

Faits historiques sur les méthodes du premier ordre

Après l’introduction de la méthode de descente du gradient (GDM) au milieu du XIXe siècle,
le paysage de l’optimisation numérique s’est transformé avec l’introduction de la méthode
de la boule pesante par Polyak en 1964. L’incorporation par Polyak d’un terme appelé mo-
mentum à la méthode de descente du gradient (GDM) a considérablement amélioré le taux
de convergence de l’algorithme dans le cas fortement convexe. La représentation continue
de la méthode de la boule pesante est l’équation différentielle du second ordre suivante

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0.

Le coefficient γ devant ẋ(t) est appelé frottement visqueux. (HBF) assure une convergence
exponentielle de f(x(t)) vers minHf pour une fonction lisse fortement convexe f . Le taux
de convergence de (HBF) pour les fonctions convexes générales est de O(1/t), ce qui n’est
pas plus rapide que la méthode de la plus forte pente ou la descente de gradient.

Les travaux fondamentaux de Nesterov en 1983 ont abouti à la méthode du gradient
accéléré de Nesterov (NAG). S’appuyant sur les fondements posés par la méthode de la
boule pesante, (NAG) a introduit un terme de correction du momentum qui la distingue
de ses prédécesseurs. Cette innovation a permis une percée dans les taux de convergence,
permettant une convergence significativement plus rapide par rapport aux méthodes
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Chapter 1 – Introduction

précédentes. En fait, (NAG) a atteint le taux de convergence optimal de la valeur objective
parmi les méthodes de premier ordre. Une question naturelle à poser à ce stade est de
savoir quel est le système dynamique correspondant à (NAG) ? Su, Boyd et Candès [143]
ont plus tard répondu à cette question en remplaçant γ dans (HBF) par un coefficient
d’amortissement visqueux évanescent, désigné par γ(t) = α/t, où α est un paramètre
positif. Cela a apporté un complément substantiel au domaine. Le système dynamique en
question est connu sous le nom de dynamique de Su-Boyd-Candès et est donné par

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

Dans ce cas continu, on a la convergence des valeurs f(x(t)) − minHf = O(1/t2) pour
toute trajectoire x(t) de (AVD)α avec α ≥ 3. Le coefficient d’amortissement visqueux α

t

tend vers zéro lorsque le temps t s’approche de l’infini, d’où la terminologie “amortissement
évanescent”. Les propriétés de convergence de la dynamique (AVD)α ont fait l’objet
de nombreuses études récentes, voir [22, 24, 30–32, 35, 36, 41, 43, 109, 143]. Le cas où le
paramètre α = 3 est crucial car il correspond à l’algorithme historique de Nesterov. À
l’exception du cas unidimensionnel, où la convergence des trajectoires a été démontrée [36],
la question de savoir si les trajectoires convergent dans ce cas est encore une question
ouverte. Dans l’article Attouch-Chbani-Peypouquet-Redont [35], il a été démontré que
chaque trajectoire converge faiblement vers un minimiseur de f pour des valeurs α > 3.
Le résultat discret correspondant a été obtenu par Chambolle-Dossal [65]. De plus, il a
été prouvé dans [41] et [109] que pour α > 3, le taux de convergence asymptotique des
valeurs est en fait o(1/t2). Apidopoulos-Aujol-Dossal [24] et Attouch-Chbani-Riahi [36]
ont étudié la situation sous-critique où α < 3 et ont montré que le taux de convergence
des valeurs objectives est O(t−

2α
3 ). Ces taux sont optimaux, ce qui signifie qu’ils peuvent

être atteints ou approchés de manière arbitraire.
En 2009, Beck et Teboulle ont présenté l’algorithme FISTA (Fast Iterative Shrinkage-

Thresholding Algorithm), apportant une contribution significative au domaine de l’optimisation
convexe. Cette innovation représentait une fusion sophistiquée des techniques de gradient
proximal avec la méthode du gradient accéléré de Nesterov. Le résultat est un algorithme
très efficace capable de résoudre rapidement un large spectre de problèmes d’optimisation
convexe ayant une structure additive, où la fonction-objectif est la somme d’une fonction
lisse et d’une fonction non lisse. Cet algorithme trouve des applications dans diverses
disciplines scientifiques, notamment le traitement du signal, l’apprentissage statistique,
la reconstruction d’images et la modélisation parcimonieuse.

Ces dernières années, l’incorporation du terme d’amortissement piloté par le Hessien,
qui implique le Hessien ∇2f de la fonction-objectif f , dans les systèmes dynamiques
a reçu beaucoup d’attention. L’amortissement piloté par le hessien a un lien naturel
avec la propriété de frottement en mécanique et en physique, voir [82]. Il permet de
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contrôler et d’atténuer les effets d’oscillations qui se produisent naturellement avec les
systèmes inertiels. Plusieurs travaux sur ce sujet existent dans la littérature, nous pouvons
citer pare exemple Attouch-Peypouquet-Redont [42], Attouch-Chbani-Fadili-Riahi [34], et
Shi-Du-Jordan-Su [138].

Contribution

Nous considérons le système dynamique non régulier suivant

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0,

qui englobe plusieurs termes différents, notamment le frottement sec (qui correspond à φ),
l’amortissement visqueux et l’amortissement piloté par le Hessien. Nous dérivons de cette
dynamique, par le biais d’une discrétisation temporelle, des algorithmes d’optimisation
correspondants. Nous analysons les propriétés de convergence de ces algorithmes et menons
ensuite des expériences numériques pour illustrer leur efficacité. En outre, nous étudions
également une inclusion d’évolution doublement non linéaire de la forme

(DRYAD) γ
(
ẋ(t) + β∇f(x(t))

)
+ ∂φ

(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) ∋ 0, t ∈ [t0,∞).

Nous procédons à l’accélération de la convergence de cette dynamique via les techniques
de mise à l’échelle du temps et de calcul de la moyenne développées par Attouch, Bot
et Nguyen [28] pour obtenir la dynamique du second ordre suivante avec des taux de
convergence optimaux

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇φ s

γ(α−1)

(
− s

γ(α− 1)
∇f
(
z(s) +

s

α− 1
ż(s)

))
= 0.

En outre, une approche duale de (DRYAD) sera examinée, dans laquelle la variable
fonctionnelle du système dynamique résultant est le gradient de la fonction objective ∇f .

1.1.3 Plan de la thèse

La thèse se compose de 7 chapitres et sera organisée comme suit. Le chapitre 2 est
consacré au contexte mathématique. Le chapitre 3 traite de la résolution du problème de
complémentarité des valeurs propres de Pareto, où le problème en question est considéré
comme un système d’équations non linéaires. Nous étudions ensuite l’utilisation de deux
méthodes de points intérieurs, à savoir NPIPM et MPCM. Une méthode de lissage appelée
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SM, dont l’idée s’inspire de la NPIPM, est proposée. Une méthode existante, appelée
LPM, est proposée avec la SM comme contrepartie de comparaison aux deux méthodes
de points intérieurs données. Le chapitre 4 traite du problème de complémentarité de
l’inverse des valeurs propres de Pareto, l’objectif étant de construire une matrice A ayant
pour valeurs propres de Pareto un ensemble de réels distincts donnés. Le chapitre 5 traite
des algorithmes d’optimisation inertielle du premier ordre avec des effets de seuil associés
au frottement sec. Dans le chapitre 6, nous étudions une équation d’évolution doublement
non linéaire et son dual, après quoi les techniques de mise à l’échelle du temps et de
calcul de la moyenne, développées par Attouch, Bot et Nguyen [28], seront adoptées pour
obtenir une dynamique inertielle correspondante avec des taux de convergence accélérés.
Le chapitre 7 présente les conclusions et les perspectives.

1.2 Introduction in English

The content of this thesis is divided into 2 parts. The first part deals with the subject of
Pareto eigenvalue complementarity problems and their corresponding inverse problems.
Then, from the standpoint of non regular dynamical systems, we concentrate our research
on the topic of first order optimization algorithms and dynamics.

1.2.1 Pareto eigenvalue complementarity problems

The first fundamental step towards solving a wide range of problems in finance, medicine,
and many other disciplines is formulating an appropriate mathematical model. Interest
would be then directed to designing and studying effective numerical algorithms to tackle
the mathematical model in question, which plays a central role in applied mathematics.
Oftentimes, these models can be cast under optimization problems where the aim is to
optimize an array of parameters of interest for practical purposes. Eigenvalue complemen-
tarity problems, in particular, are one of the most frequently used types of models utilized
to formulate a variety of problems in engineering, economics and sciences.

Complementarity problems are a valuable and efficient tool for addressing a diverse
range of numerical optimization challenges. Consequently, a multitude of algorithms
have been put forth and scrutinized to handle these problems effectively. Eigenvalue
Complementarity Problems (EiCP), also known as cone-constrained eigenvalue problems,
represent a subclass within the realm of complementarity problems. They expand upon
classical eigenvalue problems, an area of significant interest with applications in physics
and engineering. The genesis of EiCP can be traced back to their initial appearance
in the examination of static equilibrium states in finite-dimensional mechanical systems
with unilateral frictional contact. Subsequently, they have been extensively explored
both theoretically and numerically. The applications of EiCP span a wide array of fields,
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encompassing dynamic analyses of structural mechanical systems, vibro-acoustic systems,
electrical circuit simulations, signal processing, fluid dynamics, as well as contact problems
in mechanics. Mathematically speaking, solving EiCP consists in finding a real number λ
and a corresponding nonzero vector x ∈ Rn such that the following condition holds

K ∋ x ⊥ (λx− Ax) ∈ K∗, (1.2)

where K is a closed convex cone in Rn, ⊥ indicates the orthogonality, K∗ stands for
its positive dual cone, which is defined by

K∗ = {y ∈ Rn : ⟨y, x⟩ ≥ 0 ∀x ∈ K} .

In (1.2) A ∈ Mn(R) is a given n × n matrix (not necessarily symmetric). The scalar λ
and vector v are respectively called eigenvalue and eigenvector of (1.2). It is clear that
when K coincides with the whole space, (1.2) recovers the classical eigenvalue problem in
linear algebra. One important situation corresponds to the nonnegative orthant K = Rn

+.
In this case, (1.2) is called the Pareto eigenvalue complementarity problem (or just the
Pareto eigenvalue problem for short).

Contribution

In this thesis, we will restrict our study to the case of K = Rn
+ being the nonnegative

orthant, hence the Pareto eigenvalue complementarity problem. While the theoretical spec-
tral analysis for EiCP has been well-developed (see [124]), investigation towards designing
efficient algorithms for solving EiCP is of absolute necessity. We consider the approach
of formulating the Pareto eigenvalue problem as a nonlinear system of equations, and
then our objective is to use interior point methods to contribute to the resolution of such
systems. Interior point methods are known to be one of the most efficient and ubiquitous
methods in numerical optimization since the founding work of Karmarkar [94] for linear
programming. Moreover, interior point methods in general and primal-dual methods, in
particular, can be extended to tackle nonlinear optimization problems, and in particular
nonlinear complementarity problems, see e.g. [127]. The basis for most implementations
of the primal-dual methods is provided by the Mehrotra predictor corrector algorithm,
which will be adapted in this thesis to the context of EiCP. The Non Parametric Interior
Point Method (NPIPM) which was introduced in [148] will be adapted for this class of
problems. The basic idea of the NPIPM is to make the relaxation parameter, which
is often updated in an ad hoc manner in interior point methods, become a variable by
introducing a proper equation. We compare these two methods with an existing method
called the Lattice Projection Method (LPM), and a smoothing method called the Soft Max
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method (SM) that we propose based on a similar spirit as NPIPM. Finally, we study the
inverse problem of EiCP which amounts to constructing a matrix A ∈ Mn(R) in which its
set of Pareto eigenvalues contains a prescribed set of distinct real numbers; specifically,
we adapt LPM and MPCM to the context of inverse Pareto eigenvalue problems and
compare them with several existing methods.

1.2.2 First order optimization from the perspective of dynam-

ical systems

Machine learning and why first order optimization

In recent decades, the explosive proliferation of machine learning and big data has
engendered a paradigm shift in various scientific and industrial domains. This surge
is emblematic of a profound transition from conventional, rule-based programming to
data-driven approaches, wherein algorithms discern patterns and relationships from co-
pious amounts of information. Central to this revolution are optimization algorithms,
serving as the linchpin for refining models, enhancing predictive accuracy, and expediting
decision-making processes. These algorithms, rooted in mathematical optimization theory,
meticulously fine-tune model parameters to minimize or maximize an objective function,
thus ensuring the most efficient utilization of available resources. Through iterative re-
finement, optimization techniques have catalyzed breakthroughs in diverse applications,
ranging from natural language processing and computer vision to recommender systems
and autonomous vehicles. Their critical role in harnessing the power of machine learning
and big data is palpable, illuminating a trajectory towards ever more sophisticated and
capable systems in the burgeoning era of artificial intelligence.

Given the pivotal role of optimization algorithms in the contemporary landscape of
machine learning and big data analytics, it is imperative to underscore the significance of
designing and implementing highly efficient optimization methodologies. As datasets con-
tinue to burgeon in size and complexity, and computational resources become progressively
potent, the demand for optimization strategies that can navigate this formidable terrain
becomes increasingly pronounced. First-order optimization algorithms, which consist of
optimization algorithms that only utilize first order information of the objective function
f , namely ∇f , hold a position of paramount importance in the realm of optimization due
to their efficiency and scalability in handling large scale datasets and high dimensional
parameter spaces. These algorithms operate by utilizing gradient information, which
indicates the direction of the steepest ascent or descent of a function. This characteristic
renders them computationally lightweight and well-suited for scenarios where memory and
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processing resources are constrained. Additionally, first-order algorithms exhibit favorable
convergence properties, often converging to a local minimum in a reasonable number of
iterations. Their simplicity and ease of implementation make them an attractive choice
for a wide array of applications, ranging from training complex machine learning models
to solving large-scale convex optimization problems prevalent in various domains such
as signal processing, image reconstruction, and finance. Moreover, first-order algorithms
provide a solid foundation for more sophisticated optimization techniques, serving as
building blocks for hybrid approaches that combine the strengths of different optimization
paradigms.

Historical facts on first order methods

Beginning with the inception of the Gradient Descent Method (GDM) in the mid-19th
century, the optimization landscape saw a transformative shift with the introduction of
the Heavy Ball Method by Polyak in 1964. Polyak’s incorporation of momentum terms
to (GDM) significantly enhanced the convergence rate of the algorithm in the strongly
convex case. The continuous representation of the heavy ball method is the following
second order differential equation

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0.

The coefficient γ in front of ẋ(t) is said to correspond to the viscous damping. (HBF)
ensures exponential convergence of f(x(t)) to minHf for a smooth strongly convex function
f . The convergence rate of (HBF) for general convex functions is O(1/t), which isn’t
faster than the steepest descent approach.

Nesterov’s seminal work in 1983 yielded the Nesterov Accelerated Gradient (NAG)
method. Building on the foundation laid by the Heavy Ball Method, (NAG) introduced a
momentum correction term that distinguishes it from its predecessors. This innovation
resulted in a breakthrough in convergence rates, enabling significantly faster convergence
compared to previous methods. In fact, (NAG) achieved the optimal convergence rate
in the objective value amongst first order methods. A natural question to be asked at
this point is what is the corresponding dynamical system for (NAG)? Su, Boyd, and
Candès [143] later gave an answer to this question by replacing γ in (HBF) by a vanishing
viscous damping coefficient, denoted by γ(t) = α/t, where α is a positive parameter. This
has made a substantial addition to the field. The dynamical system in question is known
as the Su-Boyd-Candès dynamic and is given by

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.
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We have the inversely quadratic convergence rate of the values f(x(t))−minHf = O(1/t2)

for any trajectory x(t) of (AVD)α with α ≥ 3. The viscous damping coefficient α
t

vanishes
(tends to zero) as time t approaches infinity, hence the terminology Asymptotic Vanishing
Damping. The convergence properties of the dynamic (AVD)α have been the subject of
many recent studies, see [24,30–32,35,36,41,43,44,109,143]. The case where the parameter
α = 3 is crucial since it matches Nesterov’s historical algorithm. With the exception of the
one dimensional case, where convergence of the trajectories has been demonstrated [36], the
question of whether the trajectories converge in this case is still unanswered. According to
Attouch-Chbani-Peypouquet-Redont [35], each trajectory weakly converges to a minimizer
of f for values α > 3. The corresponding algorithmic result was obtained by Chambolle-
Dossal [65]. Furthermore, it has been proved in [41] and [109] that for α > 3, the asymptotic
convergence rate of the values is actually o(1/t2). Apidopoulos-Aujol-Dossal [24] and
Attouch-Chbani-Riahi [36] investigated the subcritical situation where α < 3 and showed
that the convergence rate of the objective values is O(t−

2α
3 ). These rates are optimal,

which means they can be reached or approached arbitrarily closely.
In 2009, Beck and Teboulle introduced the Fast Iterative Shrinkage-Thresholding Algo-

rithm (FISTA) [52], making a significant contribution to the domain of convex optimization.
This innovation represented a sophisticated amalgamation of proximal gradient techniques
with Nesterov’s accelerated gradient method. The result was a highly efficient algorithm
capable of swiftly solving a broad spectrum of convex optimization problems having the
additive structure, where the objective function is the sum of a smooth function and a
nonsmooth function. This algorithm finds applications in various scientific disciplines,
including signal processing, statistical learning, image reconstruction, and sparse modeling.

In recent years, the trend of incorporating the Hessian driven damping term, which
involves the Hessian ∇2f of the objective function f , to dynamical systems has been
receiving a great deal of attention. The Hessian driven damping has a natural connection
with the strong damping property in mechanics and physics, see [82]. It helps to control and
attenuate the oscillation effects that occur naturally with inertial systems. Several works
on this topic include Attouch-Peypouquet-Redont [42], Attouch-Chbani-Fadili-Riahi [34],
and Shi-Du-Jordan-Su [138].

Contribution

We will be considering the following non regular dynamical system

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0,
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that encompasses several different terms including dry friction (which corresponds to φ),
viscous damping, and Hessian driven damping. We derive from this dynamic, through tem-
poral discretization, corresponding optimization algorithms. We analyze the convergence
properties of the algorithms and conduct numerical experiments afterward to illustrate their
efficiency. Additionally, we also study a doubly nonlinear evolution inclusion of the form

(DRYAD) γ
(
ẋ(t) + β∇f(x(t))

)
+ ∂φ

(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) ∋ 0, t ∈ [t0,∞).

We proceed to accelerate the convergence of this dynamic via the time scaling and averaging
techniques developed by Attouch, Bot, and Nguyen [28] to attain the following second
order dynamic with optimal convergence rates

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇φ s

γ(α−1)

(
− s

γ(α− 1)
∇f
(
z(s) +

s

α− 1
ż(s)

))
= 0.

Additionally, a dual approach to (DRYAD) will be examined where the resulting dynamical
system’s functional variable is the gradient of the objective function ∇f . By doing so,
we gain a greater understanding of the behavior of ∇f .

1.2.3 Outline of the thesis

The dissertation consists of 7 chapters and will be organized as follows. Chapter 2 is
devoted to the mathematical background. Chapter 3 deals with the resolution of the
Pareto eigenvalue complementarity problem where the problem at hand is cast under
a system of nonlinear equations. We then study the use of two interior point methods,
namely NPIPM and MPCM. A smoothing method called SM with the idea inspired by
NPIPM is proposed. Together with SM as comparison counterparts to the two given
interior point methods is an existing method called LPM. Chapter 4 deals with the inverse
Pareto eigenvalue complementarity problem where the aim is to construct a matrix A

attaining a set of given distinct reals as Pareto eigenvalues. Chapter 5 deals with first
order inertial optimization algorithms with threshold effects associated with dry friction.
In Chapter 6, we investigate into a doubly nonlinear evolution equation and its dual
after which the time scaling and averaging techniques, developed by Attouch, Bot, and
Nguyen [28], will be adopted to attain corresponding inertial dynamics with accelerated
convergence rates. Chapter 7 provides conclusions and perspectives.
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Chapter 2 – Mathematical background

We will be presenting in this section the fundamentals of Hilbert spaces, and convex
analysis. To fix the idea, we will only be working with vector spaces over the real numbers.
A reference for this includes [51].

2.1 Hilbert spaces

In optimization, the inner product plays a crucial role in defining concepts like gradient,
orthogonality, and convexity, providing the mathematical foundation for various algorithms
and optimization techniques.
Definition 2.1 Given a vector space X, a function ⟨·, ·⟩ : X ×X → R is called an inner
product on X if it satisfies the following three conditions

(i) Linearity: ⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩ ∀x, y ∈ X, and a, b ∈ R,

(ii) Symmetry: for every x, y ∈ X, ⟨x, y⟩ = ⟨y, x⟩,

(iii) Positive definiteness: if x is not zero then ⟨x, x⟩ > 0.

We say that the norm ∥ · ∥ on X is induced from the inner product ⟨·, ·⟩ on X if ∥x∥ =

⟨x, x⟩2 for every x ∈ X.

Definition 2.2 Given a vector space X, equipped with an inner product ⟨·, ·⟩ : X×X → R.
X is said to be a Hilbert space if it is complete with respect to the norm induced by
⟨·, ·⟩ : X ×X → R.

From now on, unless stated otherwise, when considering a Hilbert space we will always use
the notation ∥ · ∥ and ⟨·, ·⟩ for its inner product and the corresponding norm, respectively.
We list several useful equalities, which can be checked directly using the definitions of
norms and inner products.

Proposition 2.1 Given a Hilbert space H, we have the following:
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(i) ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ for all x, y ∈ H,

(ii) ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2),

(iii) ⟨x, y⟩ = 1
4
(∥x+ y∥2 + ∥x− y∥2).

We present the Cauchy Schwartz inequality which plays a crucial role in Hilbert spaces.
It compares the inner product of 2 arbitrary elements of a Hilbert space with the prod-
uct of their norms.
Theorem 2.1 (Cauchy Schwartz inequality) Let H be a Hilbert space, the following
inequality holds true for every x, y ∈ H

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Proof. For every real number α, we have according the the definition of inner products

⟨x− αy, x− αy⟩ = ∥x∥2 − 2α⟨x, y⟩+ α2∥y∥2.

Hence, the determinant of this quadratic function (with respect to α) has to be non-
positive, which translates to

|⟨x, y⟩|2 ≤ ∥x∥2∥y∥2.

This completes the proof.

Note that ⟨·, ·⟩ is a bilinear operator, so according to the Cauchy Schwartz inequality,
we have that ⟨·, ·⟩ is a continuous bilinear mapping.

Theorem 2.2 (Riesz representation theorem) If T : H −→ R is a bounded/ contin-
uous linear mapping on a Hilbert space H, there exists some v ∈ H such that for every
u ∈ H we have

T (u) = ⟨u, v⟩.

Moreover, sup∥u∥=1 T (u) = ∥v∥.

The Riesz representation theorem answers the question of what the analogy of the gradient
of functionals on Euclidean spaces is for functionals on Hilbert spaces. The result is
captured in the following corollary.
Corollary 2.1 (Gradient of smooth functionals on Hilbert spaces) Suppose f : H −→
R is Fréchet differentiable at x ∈ H. Denote by f ′(x) the Fréchet derivative of f at x. By
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definition, f ′(x) is a bounded linear mapping from H into the reals. Applying the Riesz
representation theorem, there exists some element in H, denoted by ∇f(x) ∈ H such that

f ′(x)(y) = ⟨∇f(x), y⟩.

We call ∇f(x) the gradient of f at x.

Definition 2.3 Let H be a Hilbert space and (xk) be a sequence in H. Then (xk) is said
to converge to x if and only if for every x ∈ H

⟨xk, y⟩ −→ ⟨x, y⟩ as t −→ ∞.

Theorem 2.3 Any Hilbert space is a reflexive Banach space. As a result, Kakutani’s
theorem yields that any bounded sequence in a Hilbert space H has a subsequence converging
weakly to an element in H.

It is straightforward from the above theorem that we have the following corollary, which is
a useful remark to show the weak convergence of a bounded sequence in Hilbert space.

Corollary 2.2 Let H be a Hilbert space and (xk) be a bounded sequence in H. If the set
of weak accumulation points of (xk) has a cardinality of at most 1, then (xk) converges
weakly to some element in H.

In fact, using this corollary we can prove a more verification-friendly result to show the
weak convergence of a bounded sequence in Hilbert spaces, namely the Opial’s lemma.

Lemma 2.1 (Opial’s lemma) Let S be a nonempty set of a Hilbert space H. Suppose
that (xk)k is a sequence in H which satisfies

• limk→∞ ∥xk − p∥ exists for all p ∈ S.
• For each subsequence (xkl)l of (xk)k that converges weakly to x, we have x ∈ S.

Then, there exists x ∈ S such that (xk)k converges weakly to x.

Proof. As mentioned right before the statement of the lemma, it is sufficient to show
that if x and y are two weak cluster points of (xk), meaning there are two subsequences
(xmk

) and (xnk
) such that (xmk

) and (xnk
) converges weakly to x and y respectively, then

x = y.
It is apparent that we have for all n ∈ N (or from the first item of Proposition 2.1)

∥xn − x∥2 = ∥xn − y∥2 + ∥x− y∥2 + 2⟨xn − x, xn − y⟩. (2.1)

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

26



Chapter 2 – Mathematical background

The first assumption of the lemma follows that ∥xn − x∥2 and ∥xn − y∥2 are strongly
convergent, say to a and b, respectively. Now, replacing xn in 2.1 respectively by (xmk

)

and (xnk
) and pass to the limit, we obtain

a = b+ ∥x− y∥2,

a = b− ∥x− y∥2.

This means that ∥x− y∥2=0, hence x = y. The proof is completed.

2.2 Convex analysis

To start off, we introduce the concept of convex sets.
Definition 2.4 A subset C of a Hilbert space is said to be convex if and only if for every
x and y in C and λ ∈ [0, 1] we have

λx+ (1− λ)y ∈ C.

Particularly, H and ∅ are convex.
A convex combination of a collection {x1, x2, · · · , xn} is an element defined by

x =
n∑

i=1

αixi,

where αi ≥ 0 such that
∑n

i=1 αi = 1.
The set of all convex combinations of elements of a set C is called the convex hull of C,
denoted by Co(S). The following provides a characterization of convex sets through
convex hulls.
Proposition 2.2 A subset C of a Hilbert space H is convex if and only if it coincides
with its convex hull.

Let us enumerate some of the basic properties of convex sets.
Proposition 2.3 The following properties hold true

(i) The sum of two convex sets is a convex set.

(ii) The product of a convex set with a real number remains convex.

(iii) The intersection of an arbitrary family of convex sets is a convex set.

(iv) The convex hull Co(S) is the smallest convex sets containing S.

(v) The closure and interior of a convex set is a convex set.
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Definition 2.5 Let C be a subset of a Hilbert space H. We call C a cone if λx ∈ C for
all x ∈ H and λ ≥ 0.

Definition 2.6 Let C be a convex subset of a Hilbert space H. The positive dual cone of
C is defined by

C∗ = {y ∈ H : ⟨y, x⟩ ≥ 0 ∀x ∈ C} .

Definition 2.7 Let C be a convex subset of a Hilbert space H. The normal cone to C at
x ∈ C is defined by

NC(x) = {v ∈ H : ⟨v, y − x⟩ ≤ 0 for all y ∈ C} .

Let us now move on to some notions concerning functions.
Definition 2.8 An extended real-valued function f : H → R∪ {+∞} defined on a Hilbert
space H is caller proper if its domain, defined by

dom(f) = {x ∈ H : f(x) < +∞} ,

is non empty.

Definition 2.9 Let f : H → R ∪ {+∞} be an extended real-valued function defined on a
Hilbert space H. The function f is said to be convex if and only if for all x, y ∈ dom(f)

and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If the above inequality holds strictly for λ ∈ (0, 1), meaning that for all x, y ∈ dom(f)

and λ ∈ (0, 1), we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y),

we call the function f to be strictly convex.

Proposition 2.4 Let f : H → R ∪ {+∞} be an extended real-valued function defined on
a Hilbert space H. If f is convex then for any α ∈ R the sublevel set

{x ∈ H : f(x) ≤ α} ,

is also convex.
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It’s worth mentioning the first-order characterization of convex functions which is a
fundamental property that distinguishes convex functions from non convex ones
Definition 2.10 A smooth function f : H → R ∪ {+∞} defined on a Hilbert space H is
convex if and only if for all x, y ∈ dom(f), one of the following is satisfied

(i) f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

(ii) ⟨∇f(x)−∇f(y), x− y⟩ ≥ 0.

Essentially, the first item says that if the function’s graph lies above its tangent lines at
all points in its domain, then it is convex. Conversely, if this condition is not satisfied for
even a single pair of points, the function is not convex. The second item, on the other
hand, characterizes the monotonicity of (smooth) convex functions.

Definition 2.11 An extended real-valued function f : H → R∪{+∞} defined on a Hilbert
space H is called lower semicontinuous at a point x ∈ dom(f) if for every sequence (xk)

converging to x we have

f(x) ≤ lim inf
n−→∞

f(xk).

We call f to be lower semicontinuous on H if it is lower semicontinuous at every point
in dom(f). In this case, we also refer to f as a closed function. The interpretation of
this is due to the following proposition
Proposition 2.5 Given a function f : H −→ R ∪ {+∞}, f is lower semicontinuous on
H if and only if for every α ∈ R the sublevel set

{x ∈ H : f(x) ≤ α} ,

is closed in H.

We have similar definitions for the concept of weakly lower semicontinuity.
Definition 2.12 An extended real-valued function f : H → R∪{+∞} defined on a Hilbert
space H is called weakly lower semicontinuous at a point x ∈ dom(f) if for every sequence
(xk) converging weakly to x we have

f(x) ≤ lim inf
n−→∞

f(xk).

We call f to be weakly lower semicontinuous on H if it is weakly lower semicontinuous
at every point in dom(f). In this case, we also refer to f as a weakly closed function.
The interpretation of this is due to the following proposition
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Proposition 2.6 Given a function f : H −→ R ∪ {+∞}, f is lower semicontinuous if
and only if for every α ∈ R the sublevel set

{x ∈ H : f(x) ≤ α} ,

is weakly closed in H.

We have the following interesting result connecting the two concepts in the case of
f being convex.
Proposition 2.7 When f : H −→ R∪ {+∞} is convex, f is lower semicontinuous if and
only if it is weakly lower semicontinuous.

Proof. Taking advantage of the characterization of these two concepts through sublevel
sets, it is necessary and sufficient to prove that for any α ∈ R the closedness and weak
closedness of the sublevel set

{x ∈ H : f(x) ≤ α} ,

are equivalent. Since f is convex, the sublevel set is also convex. The result follows from
the Mazur’s theorem.

Definition 2.13 We call a function f : H −→ R ∪ {+∞} strongly convex with constant
m if

g(x) = f(x)− m

2
∥x∥2,

defines a convex function g.

Analogously to convex functions, first order characterizations can be obtained for strong con-
vexity
Proposition 2.8 Suppose f : H −→ R∪ {+∞} is a smooth function. Then the following
statements are equivalent

(i) f is strongly convex with constant m.

(ii) For any x, y ∈ dom(f), ⟨∇f(x)−∇f(y), x− y⟩ ≥ m∥x− y∥2.

(iii) For any x, y ∈ dom(f), f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m
2
∥x− y∥2.

We should also mention this useful estimation when it comes to strongly convex functions
Proposition 2.9 If f : H −→ R is a strongly convex function with constant m, then f

has a unique global minimizer x∗ satisfying

m

2
∥x− x∗∥2 ≤ f(x)− f(x∗) ≤ 1

2m
∥∇f(x)∥2 ∀x ∈ dom(f).
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One of the most important quantitative assumptions in convex optimization and analysis
is the Lipschitz continuity of a function. This property essentially guarantees that a
function’s output doesn’t change too quickly in response to small changes in its input.
Specifically, if a function is Lipschitz continuous, there exists a non-negative constant
(referred to as the Lipschitz constant) that bounds how much the function’s value can
differ for any two points in its domain, relative to the distance between those points. To
put it rigorously, we have the following definition
Definition 2.14 Consider a smooth function f : H −→ R defined on a Hilbert space H.
f is said to be Lipschitz continuous with constant L if and only if for all x, y ∈ H

∥f(x)− f(y)∥ ≤ L∥x− y∥.

A crucial implication from the Lipschitz continuity is the gradient descent lemma, which
establishes a quadratic upper bound on how much the function value can increase when
moving from x to y, taking into account both the gradient and the Lipschitz continu-
ity. It provides a theoretical foundation for the convergence proofs of various convex
optimization algorithms.
Lemma 2.2 (Gradient descent lemma) Consider a smooth function (of class C1) f :

H −→ R defined on a Hilbert space H. Suppose that f is Lipschitz continuous with
constant L, then we have

f(x) ≤ f(y) + ⟨∇f(y)x− y⟩+ L

2
∥x− y∥2 ∀x, y ∈ H.

In fact, when f is convex, the Lipschitz continuity assumption is equivalent to the gradient
descent lemma.

Now, let us introduce the notion of subgradients in the context of convex analysis. Sub-
gradients are a fundamental concept in convex analysis, providing a generalization of
gradients for non differentiable convex functions.

Definition 2.15 For a convex function f : H −→ R defined on a Hilbert space H, a
vector g is considered a subgradient of f at a point x if, for all points y ∈ H,

f(x) ≥ f(y) + ⟨g, x− y⟩.

The set consisting of all such g is called the subdifferential of f at x, denoted by ∂f(x)

Essentially, a subgradient g provides a linear approximation of f that lies below the
function’s graph. Subgradients are particularly crucial in situations where functions are
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not differentiable at certain points. For example, in cases involving non-smooth convex
functions or functions defined on non-smooth domains, traditional gradients may not exist.
Subgradients, however, offer a means to generalize the concept of derivative and extend it
to these non-differentiable settings. Moreover, subgradients are indispensable in the study
of duality theory.

As a generalization of the gradient, the subdifferential also enjoys the monotonicity property
Proposition 2.10 Consider a convex function f : H → R ∪ {+∞} defined on a Hilbert
space H, for all x, y ∈ dom(f), u ∈ ∂f(x), and v ∈ ∂f(y), we have ⟨u− v, x− y⟩ ≥ 0.

The following proposition gives a necessary and sufficient condition for minimizers of
a convex function via subdifferential.
Proposition 2.11 Consider a closed convex function f : H → R ∪ {+∞} defined on a
Hilbert space H, x∗ is a minimizer of f if and only if 0 ∈ ∂f(x∗).

The Fenchel conjugate is an important concept in convex analysis and optimization
theory. It plays a crucial role in duality theory, which is fundamental in understanding
and solving optimization problems.
Definition 2.16 Given a function f : H → R ∪ {+∞} defined on a Hilbert space H, its
Frenchel conjugate f ∗ : H → [−∞,+∞] is defined by

f ∗(v) = sup {⟨v, x⟩ − f(x) : x ∈ H} ,

and the biconjugate of f is f ∗∗ = (f ∗)∗.

Proposition 2.12 Given a proper function f : H → R∪{+∞} defined on a Hilbert space
H, then we have the following properties

(i) The Fenchel conjugate f ∗ is convex and lower semicontinuous on H.
(ii) f(x) + f ∗(v) ≥ ⟨v, x⟩ for all x, v ∈ H.
(iii) f ∗∗(x) ≤ f(x) for all x ∈ H.
(iv) f ∗∗(x) = f(x) for all x ∈ H if and only if f is closed and convex.

The following result gives a connection between subgradients and Fenchel conjugates
of convex functions.
Proposition 2.13 Given a convex function f : H → R∪{+∞} defined on a Hilbert space
H, then for any x ∈ dom(f) we have that v ∈ ∂f(x) if and only if

f(x) + f ∗(v) = ⟨v, x⟩.
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Chapter 3 – Interior point methods for solving Pareto eigenvalue complementarity
problems

This chapter covers the material discussed in the published paper [13], which was
produced in collaboration with S. Adly and M. Haddou

3.1 Introduction

The area of complementarity problems (CP) has received great attention over the last few
decades due to their various applications in engineering, economics, and sciences. Since the
pioneering work by Lemke and Howson, who showed that computing a Nash equilibrium
point of a bimatrix game can be modeled as a linear complementarity problem [99], the
theory of CP has become a useful and effective tool for studying a wide class of problems
in numerical optimization. As a result, a variety of algorithms have been proposed
and analyzed in order to deal efficiently with these problems, see the thorough survey
[73] and references therein. On the other hand, Eigenvalue Complementarity Problems
(EiCP) (also known as cone-constrained eigenvalue problems) form a particular subclass of
complementarity problems that extend the classical (linear algebra) eigenvalue problems.
Solving classical eigenvalue problems is also a topic of great interest and finds its various
applications in physics and engineering, see [79,146]. EiCP appeared for the first time in the
study of static equilibrium states of finite dimensional mechanical systems with unilateral
frictional contact [122], and since then it has been widely studied both theoretically
and numerically. On this subject, we refer to [15–17, 75, 88, 90–92, 96, 102, 116, 129]
and references therein. Applications of EiCP were found in many fields such as the
dynamic analysis of structural mechanical systems, vibro-acoustic systems, electrical
circuit simulation, signal processing, fluid dynamics, and contact problems in mechanics
(see for instance [105–108, 123]). Mathematically speaking, solving EiCP consists in
finding a real number λ ∈ R and a corresponding nonzero vector x ∈ Rn \ {0} such
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that the following condition holds

K ∋ x ⊥ (λx− Ax) ∈ K∗, (3.1)

where K is a closed convex cone in Rn, ⊥ indicates the orthogonality, and K∗ stands
for its positive dual cone, which is defined by

K∗ = {y ∈ Rn : ⟨y, x⟩ ≥ 0 ∀x ∈ K} .

In (3.1) A ∈ Mn(R) is a given n× n matrix (not necessarily symmetric).
Such scalar λ and vector x are respectively called eigenvalue and eigenvector of (3.1). It is
clear that when K coincides with the whole space, (3.1) recovers the classical eigenvalue
problem in linear algebra. One important situation corresponds to the nonnegative orthant
K = Rn

+. In this case, (3.1) is called the Pareto eigenvalue complementarity problem (or
just the Pareto eigenvalue problem for short). It is shown in [124, 136] that

3(2n−1 − 1) ≤ max
A∈Mn(R)

card[σ(A)] ≤ n2n−1 − (n− 1),

where σ(A) denotes the Pareto spectrum of A containing all eigenvalues of the Pareto
eigenvalue problem corresponding to A, and card[σ(A)] denotes the cardinality of σ(A).
This means that the number of Pareto eigenvalues grows exponentially with the dimension
n of the matrix A. Therefore, finding all Pareto eigenvalues of a large or even medium-sized
problem is not an easy task, especially in the context of iterative methods. For instance,
a matrix of order 25 may have more than 3 million Pareto eigenvalues, which is notably
huge.

While the theoretical spectral analysis for EiCP has been well-developed (see [124]),
investigation towards designing efficient algorithms for solving EiCP is of absolute necessity.
There are several interesting approaches for solving EiCP in the literature. Let us briefly
summarize some of the existing methods.

• The Semismooth Newton Method (SNM), studied in [17], is specially tailored for
dealing with the Pareto eigenvalue problem

x ≥ 0n, λx− Ax ≥ 0n, ⟨x, λx− Ax⟩ = 0, (3.2)

which is one of the most interesting examples of cone-constrained eigenvalue problems. The
symbol 0n refers to the n-dimensional zero vector and x ≥ 0n indicates that each component
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of x is nonnegative. The idea proposed in [17] is to convert (3.2) into a system of equations

Uφ(x, y) = 0n, (3.3)

Ax− λx+ y = 0n, (3.4)

⟨1n, x⟩ − 1 = 0, (3.5)

and then apply a nonsmooth Newton type algorithm to the (semismooth) resulting system.
Here Uφ is the vector function corresponding to some complementarity function φ

Uφ(x, y) =


φ(x1, y1)

φ(x2, y2)
...

φ(xn, yn)

 ,

where φ : R2 → R stands for any function that satisfies φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥
0, ab = 0.
We refer to [17] for more details.

• The Lattice Projection Method (LPM) proposed in [15] is another semismooth ap-
proach for solving Pareto eigenvalue problems. It is different from SNM in the sense
that LPM does not use any complementarity function. Its principle is based on the
observation that for every λ > 0

0n ≤ x ⊥ λx− Ax ≥ 0n ⇐⇒ (PRn
+
◦ A)(x) = λx,

where PRn
+

stands for the projection operator onto Rn
+. Therefore, the system to solve

in this case can be rewritten as

max(ỹ, 0n)− λx = 0n,

Ax− ỹ = 0,

⟨1n, x⟩ − 1 = 0,

(3.6)

where the max function is carried out componentwisely. Finally, a nonsmooth Newton
type algorithm is used to solve (3.6). In [15], the authors have shown that LPM is a more
efficient and robust method for solving Pareto eigenvalue problems than SNM.
There are several other approaches to tackle EiCP problems. Indeed, one can see EiCP as a
global optimization problem and then use Branch-and-Bound techniques [91] or some other
global optimization methods. One can also use smoothing techniques by interpreting EiCP
as a system of nonlinear complementarity equations, see, for instance, [81,103,141,150,151].
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In this chapter, we consider the approach of formulating the Pareto eigenvalue problem
as a nonlinear system of equations, and then our purpose is to use interior point methods
to solve such systems. Interior point methods are known to be one of the most efficient and
ubiquitous methods in numerical optimization since the founding work of Karmarkar [94] for
linear programming. Moreover, interior point methods in general and primal dual methods
in particular can be extended to tackle nonlinear optimization problems, and in particular
nonlinear complementarity problems, see e.g. [127]. The basis for most implementations of
the primal-dual methods is provided by the Mehrotra predictor corrector algorithm, which
is considered in this chapter in the context of EiCP. The Non Parametric Interior Point
Method (NPIPM) which was introduced in [148] will be adapted to our context. The basic
idea of the NPIPM is to make the relaxation parameter, which is often updated in an ad
hoc manner in interior point methods, become a variable by introducing a proper equation.
We compare these two methods with two other ones namely the Soft Max method (SM)
and the Lattice Projection Method (LPM).

This chapter is organized as follows: In Section 3.2, we introduce two considered interior
point methods including NPIPM and the Mehrotra Predictor Corrector Method (MPCM).
The smoothing method SM is introduced in Section 3.3. In these sections, along with
the methods’ formulation, we also provide conditions under which the nonsingularity of
the Jacobian at a solution is ensured. Section 3.4 is devoted to some numerical tests for
solving three Pareto eigenvalue problems corresponding to three given matrices of order
3, 4, and 5, which are known to have the maximum number of Pareto eigenvalues (9, 23,
and 56 Pareto eigenvalues respectively). This test game constitutes a first comparison of
the four methods, namely MPCM, NPIPM, LPM, and SM. After that, we compare the
four methods by using the performance profiles [72] on a set of data taken from random
generators and the MatrixMarket. The average computing time, the average number of
iterations, the percentage of failure and the maximum number of eigenvalues found by
each solver are used as performance measures to compare these algorithms. Section 3.5
provides an application of NPIPM, MPCM and LPM to a geomechanical fracture problem
with data provided by IFP Energies Nouvelles. In this application, we consider the closed
convex cone K = Rm

+ × Rn−m in the EiCP. In this latter case, the problem is known
as the partially cone-constrained eigenvalue problem. Finally, we show in Section 3.6
that MPCM and NPIPM can be extended to deal with more general cone-constrained
eigenvalue problems, including the quadratic pencil eigenvalue complementarity problem.
We end this chapter with some concluding remarks in Section 3.7.
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3.2 Interior point methods for eigenvalue complemen-

tarity problems

3.2.1 Non Parametric Interior Point Method (NPIPM)

The problem (3.1) can be represented by the following system of equations

Ax− λx+ y = 0n, (3.7)

⟨1n, x⟩ − 1 = 0, (3.8)

x • y = 0, (3.9)

x ∈ K, y ∈ K∗, (3.10)

where • denotes the Hadarmard product meaning that x • y = (x1y1, ..., xnyn)
T . Now,

unambiguously, we will use the notation xy instead of x • y.

The Non Parametric Interior Point Method (NPIPM) was first introduced in the thesis [148].
Inspired by the classical IPM for optimization, the first step towards NPIPM is to introduce
the relaxation parameter µ > 0 and then to replace the equation (3.9) by xy = µ1n. We
now add the following equation which distinguishes NPIPM from the classical IPM

1

2

(
∥PK∗(−x)∥2 + ∥PK(−y)∥2

)
+ µ2 + ϵµ = 0, (3.11)

where ϵ > 0 is a fixed positive real number.
One of the reasons behind considering equation (3.11) is that with µ ≥ 0, this equation
is equivalent to condition (3.10). Indeed, since K is a closed convex cone, it holds that
K = K∗∗. It is straightforward to check thatPK∗(−x) = 0,

PK(−y) = 0.
⇐⇒

x ∈ K,

y ∈ K∗.

Notice that when we introduce equation (3.11), µ becomes a variable, so the situation is
quite different from classical IPMs where µ is a parameter. This additional equation in
the NPIPM’s algorithm will make µ be driven to zero automatically using the Newton
method. At this point, NPIPM is somehow more advantageous than classical IPMs in the
sense that there is no need to find a good strategy to drive µ to zero, which can vary from
one problem to another.
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Set X = (x, y, λ), and denote by L the following system of equations

L(X,µ) =

 Ax− λx+ y

⟨1n, x⟩ − 1

xy − µ1n

 ,
and

GK(X,µ) =

[
L(X,µ)

1
2

(
∥PK∗(−x)∥2 + ∥PK(−y)∥2

)
+ µ2 + ϵµ

]
.

In the particular case where K is the nonnegative orthant Rn
+, which is a self dual closed

convex cone, we can easily rewrite GK (and for the ease of notation GRn
+
= G) as follows

G := GRn
+
(X,µ) =

 L(x, y, λ, µ)

1
2

n∑
i=1

(min {xi, 0}2 +min {yi, 0}2) + µ2 + ϵµ

 .
Accordingly, its Jacobian matrix has the form

JG(X,µ) =

[
∂L
∂X

∂L
∂µ

M 2µ+ ϵ

]
. (3.12)

where

M = [min {x1, 0} , ...,min {xn, 0} ,min {y1, 0} , ...,min {yn, 0}] . (3.13)

When x, y ≥ 0 (in the componentwise sense), the determinant det(JG(X,µ)) = (2µ +

ϵ) det( ∂L
∂X

). One can notice that the presence of the term ϵµ in the equation (3.11) pre-
vents JG(X,µ) from being ill-conditioned near a solution, in which case µ may get too small.

NPIPM Algorithm
1. Initialization: Select X0 = (x0, y0, λ0) such that x0 ∈ int(K), y0 ∈ int(K∗), λ0 ∈ R

and µ0 > 0; Set k = 0.
2. Unless the stopping criterion is satisfied, do the following
3. Compute the Newton direction by solving the following linear system

JG(X
k, µk)dk = −G(Xk, µk) with dk =

[
dkX
dkµ

]
and dkX =

 dkx

dky

dkλ

 . (3.14)
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4. Find a stepsize αk ∈ (0, 1] as large as possible such that

xk + αkdkx ∈ int(K), (3.15)

yk + αkdky ∈ int(K∗). (3.16)

5. Update Xk+1 = Xk + αkdk and set k = k + 1.
Basically, the NPIPM algorithm employs a (damped) Newton method to solve the system
G(X,µ) = 0 where stepsizes are chosen such that during the iteration, xk and yk respec-
tively lie in the interior of K and K∗.

In what follows, we consider the nonnegative orthant case K = Rn
+ for our theoret-

ical results.
Proposition 3.1 Assume that the µk generated by the NPIPM algorithm is well-defined
and that the sequence of stepsizes satisfies lim inf αk > 0. Then (µk)k is a positive decreasing
sequence and converges to 0 as k goes to +∞.

Proof. With (x, y, µ) ∈ int(Rn
+) × int(Rn

+) × int(R+), the linear system, for which
the Newton direction is satisfied, gives[

∂L
∂X

∂L
∂µ

01×(2n+1) 2µ+ ϵ

][
dX

dµ

]
= −

[
L(x, y, λ, µ)

µ2 + ϵµ

]
.

This implies that (2µ + ϵ)dµ = −(µ2 + ϵµ). In other words, we have dµ = −µ
2 + ϵµ

2µ+ ϵ
.

Therefore, with α ∈ (0, 1] being the stepsize, we have

µ+ := µ+ αdµ

= µ− α
µ2 + ϵµ

2µ+ ϵ

=
(2− α)µ2 + (1− α)ϵµ

2µ+ ϵ
> 0 (since µ > 0 and α ∈ (0, 1]).

Moreover, it is clear that µ+ < µ. Thus, µk is a positive and decreasing sequence and
therefore has a limit which is denoted by µ∗. We have also shown that

µk+1 = µk − αk (µ
k)2 + ϵµk

2µk + ϵ
.
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Letting k → ∞ yields

αk (µ
k)2 + ϵµk

2µk + ϵ
→ 0.

Since lim inf αk > 0 and µk > 0, it follows that
(µ∗)2 + ϵµ∗

2µ∗ + ϵ
= 0 and consequently, µ∗ = 0.

Remark 3.1 The assumption on lim inf αk might seem too restrictive at first glance.
However, when the algorithm converges to a nondegenerate solution (i.e., the Jacobian
matrix at this solution is nonsingular), we observe practically superlinear or quadratic
convergence and at the few last iterations we can choose stepsizes αk to be near 1 (for
more details, see e.g. [57, Theorem 6.9]).
Remark 3.2 Note that in the algorithm NPIPM, it is possible to use a line search such as
the Armijo line search after Step 4. In order not to distort the comparison with the other
methods like LPM, we have opted not to use any line search technique in this context.
Furthermore, extensive preliminary numerical experiments show that NPIPM with or
without line search has equivalent performances.
The following lemmas will be useful. The first one is inspired by the Schur comple-
ment result.
Lemma 3.1 Suppose A,B,C, and D are matrices of dimension n× n, n×m,m× n, and
m×m, respectively. If D is nonsingular, we can easily check the following decomposition[

A B

C D

]
=

[
In B

0 D

][
A−BD−1C 0

D−1C Im

]
,

and therefore we have det

([
A B

C D

])
= det(D) det(A−BD−1C).

The proof of Lemma 3.1 is straightforward and will be omitted.
Lemma 3.2 Given an n× n matrix A and x ∈ Rn \ {0}, set

S = ATA+ 1n1
T
n − 1

∥x∥2
ATxxTA.

Then, one has the following equivalent statements

(a) M =

[
A −x
1Tn 0

]
is nonsingular.

(b) S is nonsingular.
(c) S is (symmetric) positive definite.
(d) For all y ∈ Rn \ {0}, if Ay ∈ span(x), then

∑n
i=1 yi ̸= 0.
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Proof. A direct calculation gives

MTM =

[
E F

F T g

]
,

where E = ATA+ 1n1
T
n , F = −ATx and g = ∥x∥2 > 0.

We have

M is nonsingular ⇐⇒MTM is nonsingular

⇐⇒ E − Fg−1F T is nonsingular (due to Lemma 3.1)

⇐⇒ S is nonsingular.

The equivalence between (b) and (c) is due to the fact that S is positive semidefinite.
Indeed, let y ∈ Rn \ {0}, we have

yTSy = ∥Ay∥2 − |xTAy|2

∥x∥2︸ ︷︷ ︸
my≥0

+

(
n∑

i=1

yi

)2

︸ ︷︷ ︸
ny≥0

,

where my ≥ 0 due to the Cauchy-Schwarz inequality.
For the last equivalence,

S is positive definite ⇐⇒ ∀y ∈ Rn \ {0} , my + ny > 0

⇐⇒ ∀y ∈ Rn \ {0} , my ̸= 0 or ny ̸= 0

⇐⇒ ∀y ∈ Rn \ {0} , if my = 0, then ny ̸= 0.

Note that my = 0 if and only if Ay and x are linearly dependent, which can be translated
into Ay ∈ span(x). The proof is thereby completed.

The next proposition provides a characterization of the nonsingularity of the Jacobian
matrix JG at a solution (X, 0) of the system G(X,µ) = 0, where X = (x, y, λ). Before
giving the statement of this proposition, we would like to introduce some notations. For
a given matrix D of size n × n, I and J being subsets of {1, 2, . . . , n}, DIJ denotes the
submatrix created by rows and columns of D with indices in I and J respectively. Similarly,
if x ∈ Rn, xI represents the vector containing components of x with indices in I.
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Proposition 3.2 Denote X = (x, y, λ). Assume (X, 0) is a solution of G(X,µ) = 0.
Then, JG(X, 0) is nonsingular if and only if (x, y) satisfies the strict complementarity
conditions, i.e., xi + yi > 0 for every i = 1, 2, ..., n, and the principle submatrices Ãαα of
Ã = A− λIn, where α = {1 ≤ l ≤ n : xl ̸= 0}, satisfy

for all y ∈ R|α| \ {0} , if Ãααy ∈ span(xα), then
|α|∑
i=1

yi ̸= 0. (3.17)

Proof. Since at the solution we have x ≥ 0 and y ≥ 0, the Jacobian matrix JG(X)

has the form

JG(X, 0) =

[
∂L
∂X

∂L
∂µ

01×(2n+1) ϵ

]
.

It is necessary and sufficient to show the nonsingularity of the first block ∂L
∂X

of JG(X, 0).
A simple computation yields

∂L

∂X
=

 Ã In −x
1Tn 01×n 0

diag(y) diag(x) 0n×1

 ,
where Ã = A− λIn.
We can see that if the strict complementarity does not hold, then there exists i ∈
{1, 2, . . . , n} such that xi = yi = 0. This, according to the form of ∂L

∂X
shown above, leads

to ∂L
∂X

being singular. Through this observation, it is seen that the strict complementarity
assumption is not discardable.
To complete the proof, we show that JG(X, 0) is nonsingular if and only if the condition
(3.17) holds. If y = 0, then the strict complementarity condition implies xi > 0 for every
i = 1, .., n. Using the Laplace expansion along the last n rows of ∂L

∂X
gives

∣∣∣∣det( ∂L∂X
)∣∣∣∣ =

∣∣∣∣∣
n∏

l=1

xl det

([
Ã −x
1Tn 0

])∣∣∣∣∣
̸= 0 (due to Lemma 3.2).

If y ̸= 0, we assume it has k nonzero components yj1 , .., yjk , where 1 ≤ jl ≤ n for all
1 ≤ l ≤ k. Due to the strict complementarity assumption, the vector x has n− k nonzero
components which we will denote by xi1 , .., xin−k

, where 1 ≤ il ≤ n for all 1 ≤ l ≤ n−k. Set

α = {i1, i2, .., in−k} and β = {j1, j2, .., jk} .
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Since exchanging rows (resp. columns) of a matrix does not change its rank, with the
strict complementarity assumption we can do so for the matrix ∂L

∂X
in a proper way so

that we obtain the following matrix with the same rank as ∂L
∂X

H =



[
Ãββ Ãβα

Ãαβ Ãαα

] [
Ik×k 0k×(n−k)

0(n−k)×k I(n−k)×(n−k)

] [
0k×1

−xα

]
1Tn 01×n 0

yj1

yj2
. . .

yjk
0

. . .

0





0

0
. . .

0

xi1
. . .

xin−k


0n×1



,

where xα = [xi1 , .., xin−k
]T .

Applying the Laplace expansion along the last n − k rows of the H and Lemma 3.2,
we get successively

|det (H)| =

∣∣∣∣∣∣∣∣∣∣
n−k∏
l=1

xil det




Ãββ Ãβα Ik×k 0k×1

Ãαβ Ãαα 0(n−k)×k −xα
1Tk 1Tn−k 01×k 0

diag(yj1 , .., yjk) 0k×(n−k) 0k×k 0k×1



∣∣∣∣∣∣∣∣∣∣

(3.18)

=

∣∣∣∣∣∣∣
n−k∏
l=1

xil

k∏
l=1

yjl det


 Ãβα Ik×k 0k×1

Ãαα 0(n−k)×k −xα
1Tn−k 01×k 0



∣∣∣∣∣∣∣ (3.19)

=

∣∣∣∣∣
n−k∏
l=1

xil

k∏
l=1

yjl det

([
Ãαα −xα
1Tn−k 0

])∣∣∣∣∣ (3.20)

̸= 0. (3.21)

This completes the proof of Proposition 3.2.
Remark 3.3 We can see that the condition for the Jacobian’s nonsingularity shown in
Proposition 3.2 is not restrictive to the eigenvalue complementarity problems. The fact
that the strict complementarity assumption cannot be eliminated has made our proof
become simple since only basic linear algebra is used. We note that for problems where
the Jacobian matrix can be nonsingular without the strict complementarity conditions, we
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may need further assumptions such as the P-matrix property. For more details, we refer
to Theorem 2.8 in [93].
Now we give an example in dimension 2 to illustrate Proposition 3.2.
Example 3.1 Consider the following matrix

A =

[
3 −4/3

3 −1

]
.

It can be checked that λ1 = 1 is a Pareto eigenvalue of A, which is also a double standard
eigenvalue of A. This follows from ker(A−λ1I2)

2 = R2. So the assumptions of Proposition
3.2 cannot be satisfied and therefore the Jacoibian JG(X1, 0) is singular.
On the other hand, another solution of this problem is λ2 = −1 with the corresponding
eigenvector x2 = [0 1]T and dual vector y2 = [4/3 0]T . This solution satisfies the strict
complementarity, and moreover with

α = {2} and Ã =

[
4 −4/3

3 0

]
,

we have

Sα = ÃT
ααÃαα + 1|α|1

T
|α| −

1

∥xα∥2
ÃT

ααxαx
T
αÃαα = 1 ̸= 0,

We can see that this solution satisfies all the assumptions of Proposition 3.2. Therefore,
the Jacobian JG(X2, 0) is nonsingular, where X2 = (x2, y2, λ2).

3.2.2 Mehrotra Predictor Corrector Method (MPCM)

MPCM was first proposed in 1989 by Sanjay Mehrotra [110], as a variant of the primal-dual
interior point method for optimization problems. Most of today’s interior-point general-
purpose software for linear and nonlinear programming are based on predictor-corrector
algorithms like the one of Mehrotra. We give now a description of the method when
applied to eigenvalue complementarity problems. For this purpose, let us set

F (X) =

 Ax− λx+ y

⟨1n, x⟩ − 1

xy

 , where X = (x, y, λ). (3.22)
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The Jacobian matrix of F has the form

JF (X) =

 A− λIn In −x
1Tn 01×n 0

diag(y) diag(x) 0n×1

 .
MPCM Algorithm

1. Choose an initial point such that x0 ∈ int(K), y0 ∈ int(K∗), λ0 ∈ R and let k = 0.
2. Compute the affine scaling (predictor) direction dka, which is given by solving the

linear system JF (X
k)dka = −F (Xk), and then compute a stepsize αk

a ∈ (0, 1] that
ensures

xk + αk
adx

k
a ∈ int(K), (3.23)

yk + αk
ady

k
a ∈ int(K∗), (3.24)

where

dka =

 dxka

dyka

dλka

 .
3. Use the information from the predictor step to compute the corrector direction by

solving the following linear system

JF (X
k)dkc = −F (Xk) +Bk with Bk =

(
0(n+1)×1

µk1n − dxkady
k
a

)
, (3.25)

where µk = γkσk with γk = 1
n
⟨xk, yk⟩ and σk =

(
rka
rk

)3
is the adaptively chosen

centering parameter, where

rk = γk, (3.26)

rka = 1
n
⟨xk + αk

adx
k
a, y

k + αk
ady

k
a⟩. (3.27)

4. Find a step size αk
c ∈ (0, 1] such that

xk + αk
cdx

k
c ∈ int(K), (3.28)

yk + αk
cdy

k
c ∈ int(K∗), (3.29)
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then compute the next iterate Xk+1 = Xk + αk
cd

k
c and update k = k + 1.

Remark 3.4 The Jacobian matrix JF associated with MPCM is just the matrix ∂L
∂X

in
the previous section. Hence, the nonsingularity condition for MCPM in the case K = Rn

+

is the same as that of NPIPM.
Remark 3.5 Despite its efficiency in practice, there is no convergence result available
yet for the Mehrotra predictor corrector method even in a general context of nonlinear
programming. Here, we do not give any result on the convergence of MPCM when applied
to solve Pareto eigenvalue problems.

3.3 Smoothing Method

For comparison purposes, we propose in this section a smoothing method, called the
Soft Max method (SM) for solving Pareto eigenvalue problems. It is known that several
smoothing techniques can be used to address nonlinear complementarity problems where
we would substitute nonsmooth equations with differentiable approximations. The first
step to be done towards SM is to observe that the condition K ∋ x ⊥ (λx − Ax) ∈ K∗

can be presented as follows:
For all ρ > 0, we have

K ∋ x ⊥ (λx− Ax) ∈ K∗ ⇐⇒ x = PK(x− ρy) with y = λx− Ax. (3.30)

Indeed, since K is a closed convex cone, one has for y = λx − Ax:

K ∋ x ⊥ (λx− Ax) ∈ K∗ ⇐⇒ −y ∈ NK(x)

⇐⇒ −ρy ∈ NK(x)

⇐⇒ x− ρy ∈ x+NK(x)

⇐⇒ x = PK(x− ρy),

where NK(x) stands for the nornal cone to K at x.

Consider K = Rn
+, in this case (3.30) becomes

(x ≥ 0, λx− Ax ≥ 0, ⟨x, λx− Ax⟩ = 0) ⇐⇒

y = λx− Ax,

x = max(0, x− ρy).
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Unfortunately, the max function is not differentiable, it, however, can be smoothed
in the following way

max(t, s) ∼ fµ(s, t) = µ ln(es/µ + et/µ) when µ→ 0.

More precisely, we have the following proposition:
Proposition 3.3 |fµ(s, t)−max(s, t)| ≤ µ ln(2) ∀µ > 0, s ∈ R, t ∈ R.

Proof. Without loss of generality, we assume that s ≥ t. Since R ∋ x 7→ ex and
int(R+) ∋ x 7→ ln(x) are increasing, we have

|fµ(s, t)−max(s, t)| =
∣∣µ ln(es/µ + et/µ)− s

∣∣
= µ

∣∣ln(es/µ + et/µ)− ln(es/µ)
∣∣

= µ
(
ln(es/µ + et/µ)− ln(es/µ)

)
≤ µ

(
ln(2es/µ)− ln(es/µ)

)
= µ ln(2).

The proof is thereby completed.

With this observation, we are led to consider the following (uniform) approximation of
the equation x = max(0, x − ρy)

x = µ ln(1 + e(x−ρy)/µ),

or

x− µ ln(1 + e(x−ρy)/µ) = 0,

where ρ > 0 is given.
Set

P (X,µ) =

 Ax− λx+ y

⟨1n, x⟩ − 1

x− µ ln(1 + e(x−ρy)/µ)

 .
As the spirit of a smoothing method, we apply the Newton method to this system so that
µ will ultimately be driven to 0. One common option is to consider µ as a parameter while
applying the Newton method to P (X,µ). However, one may face issues with finding good
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strategies to update µ after each iteration. In our context, we choose the same strategy as
NPIPM, which consists in keeping µ as a variable controlled by the following equation

1

2

n∑
i=1

(min {xi, 0}2 +min {yi, 0}2) + µ2 + ϵµ = 0,

where ϵ > 0 is fixed.
Now, the (damped) Newton method can be applied to solve the following system:

Q(X,µ) =

[
P (X,µ)

1
2

∑n
i=1(min {xi, 0}2 +min {yi, 0}2) + µ2 + ϵµ

]
= 0,

where stepsizes will be chosen such that µ will be driven to 0, which means that the
sequence µk will converge to 0. To this end, the same way of selecting stepsizes as in
NPIPM is chosen . As a result, we have a similar result for SM as Proposition 3.1. That
is, assume that (Xk, µk) is the sequence generated by SM and that lim inf αk > 0, where
αk is the sequence of stepsizes. Then, µk is a positive decreasing sequence convergent to 0.
A simple computation yields the Jacobian matrix of Q(Xk, µk), where Xk = (xk, yk, λk)

JQ(X
k, µk) =


A− λkIn In −xk 0n×1

1Tn 01×n 0 0

Uk V k 0n×1 W k

01×n 01×n 0 2µk + ϵ

 ,

where U = diag

(
1

1 + ec
k
1

, ..,
1

1 + eckn

)
, V = ρ.diag

(
ec

k
1

1 + ec
k
1

, ..,
ec

k
n

1 + eckn

)
, and W k ∈

Rn×1 satisfying

W k
i = − ln

(
1 + ec

k
i

)
+ cki

ec
k
i

1 + ec
k
i

∀1 ≤ i ≤ n.

Here cki =
xki − ρyki

µk
for all i = 1, 2, . . . , n.

Assume that (Xk, µk) is the sequence generated by SM and that it converges to a solution
(X∗, 0) of Q(X,µ) = 0. We will now provide a condition to ensure the nonsingularity for
SM, that is a condition under which lim

k→∞
JQ(X

k, µk) is nonsingular.

Proposition 3.4 Assume that (Xk, µk) is the sequence generated by SM and that it con-
verges to a solution (X∗, 0) of Q(X,µ) = 0, where X∗ = (x∗, y∗, λ∗). Then, lim

k→∞
JQ(X

k, µk)
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is nonsingular if (x∗, y∗) satisfies the strict complementarity, i.e., x∗i + y∗i > 0 for ev-
ery i = 1, 2, ..., n, and the principle submatrices Ãαα of Ã = A − λ∗In, where α =

{1 ≤ l ≤ n : x∗l ̸= 0}, satisfy

for all y ∈ R|α| \ {0} , if Ãααy ∈ span(x∗α), then
|α|∑
i=1

yi ̸= 0.

Proof. Denote by

α = {1 ≤ l ≤ n : x∗l ̸= 0} and β = {1 ≤ l ≤ n : y∗l ̸= 0} .

Due to the strict complementarity assumption and the fact that µk → 0, we have

lim
k→∞

cki =

+∞ if i ∈ α,

−∞ if i ∈ β,

and therefore

lim
k→∞

ec
k
i =

+∞ if i ∈ α,

0 if i ∈ β.

This leads to U∗ = limk→∞ Uk ∈ Rn, V ∗ = limk→∞ V k ∈ Rn and that U∗ and V ∗ are
the diagonal matrices satisfying

U∗
ii =

0 , if i ∈ α,

1 , if i ∈ β
and V ∗

ii =

ρ , if i ∈ α,

0 , if i ∈ β.

It is clear that the nonsingularity of limk→∞ JQ(X
k, µk) is equivalent to that of

lim
k→∞

 A− λIn In −xk

1Tn 01×n 0

Uk V k 0n×1

 =

 A− λIn In −x∗

1Tn 01×n 0

U∗ V ∗ 0n×1

 ,
which can be proved by the same arguments given in the proof of Proposition 3.2.
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3.4 Numerical tests

Our first comment concerns the choice of initial points. First we present how initial points
for the three methods including MPCM, NPIPM and SM are chosen. A random vector
ξ ∈ Rn is first chosen with the uniform distribution on (0, 1]n. After that, we set

x0 =
ξ

⟨1n, ξ⟩
,

λ0 =
⟨x0, Ax0⟩
⟨x0, x0⟩

,

µ0 = 10−2 fixed (only for NPIPM and SM).

For y0, we initially assign y0 = λ0x0 − Ax0 and then replace any nonpositive component
of y0 by 0.01.

Regarding LPM, after getting a random vector ξ ∈ Rn with the uniform distribution
on [0, 1]n, we set

x0 =
ξ

⟨1n, ξ⟩
,

ỹ0 = Ax0,

λ0 =
⟨x0, Ax0⟩
⟨x0, x0⟩

,

Our second comment is that we use the built-in backslash function of Matlab for solving
the linear system of equations at each iteration. Finally, for all the considered algorithms, a
solution (λ, x) ∈ R×Rn is claimed to be found when the following conditions are satisfied

∥min(x, λx− Ax)∥2 ≤ 10−8,

∥x∥2 > 10−6,

where the min function is carried out componentwisely.
Remark 3.6 In the way of choosing initial points presented above, we first take x0 so
that the condition ⟨1n, x0⟩ = 1 is satisfied, and then select λ0 as if it is a Pareto eigenvalue
corresponding to x0 and, as we can see, a necessary condition for that is λ0 = ⟨x0,Ax0⟩

⟨x0,x0⟩ .
Remark 3.7 Hereafter, whenever numerical experiments are conducted, this pattern of
choosing initial points will be applied.
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3.4.1 Testing on special matrices

The first numerical experiment is given by taking matrices of order 3, 4 and 5 that are
known to have 9, 23 and 57 Pareto eigenvalues, respectively.

A1 =

 5 −8 2

−4 9 1

−6 −1 13

 , A2 =


132 −106 18 81

−92 74 24 101

−2 −44 195 7

−21 −38 0 230


and

A3 =


788 −780 −256 156 191

−548 862 −190 112 143

−456 −548 1308 110 119

−292 −374 −14 1402 28

−304 −402 −66 38 1522

 .

We compare MPCM, NPIPM, LPM, and SM by computing the average number of
iterations, computing time and percentage of failures.
Remark 3.8 In our case, a failure is declared if the number of iterations exceeded 100 or
the Jacobian matrix is ill-conditioned according to Matlab’s criterion.

The comparison results are summarized in Table 3.1 where “Iter” denotes the average
number of iterations and “Failure (%)” represents the percentage of failures to find a
solution of the corresponding EiCP.
We note that 7× 103 initial points have been used to find all the Pareto eigenvalues of
A3 simultaneously by MPCM, NPIPM and LPM. SM shows its inefficiency in finding
many solutions when it only finds around 50 eigenvalues of A3 despite being run with
105 initial points. A quick look at the table clearly reveals that LPM performs best
among all the considered solvers and that NPIPM and LPM are the most robust with
respect to initial points.

Methods A1 A2 A3

Iter Failure (%) Iter Failure (%) Iter Failure (%)

MPCM 6 8 8 5 7 0.6

NPIPM 9 0 10 0.6 8 0.2

LPM 6 0 7 0 7 0

SM 8 33 8 44 9 46

Table 3.1: Comparison of the 4 solvers on the matrices A1, A2 and A3
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Remark 3.9 We compare the number of iterations because the computational effort in
each iteration of all solvers is almost the same.

3.4.2 Performance Profiles

In this section, we compare the 4 solvers that have been defined in Section 3.1 and
Section 3.2. In order to complete this experiment, we choose the performance profiles
developed by E. D. Dolan and J. J. Moré [72] as a tool for comparing the solvers. The
performance profiles give for each t ∈ R, the proportion ρs(t) of test problems on which
each solver under comparison has a performance within the factor t of the best possible
ratio.
Average computing time, average number of iterations, percentage of failure and maximum
number of eigenvalues found by each solver are used as performance measures to compare
these algorithms.
Due to the absence of a library dedicated to EiCP, we have chosen a set P of 40 random
matrices for this test. Let S be the set of the four solvers that will be compared. The
performance ratio is defined by

rp,s =
tp,s

min {tp,s : s ∈ S}
,

where p ∈ P , s ∈ S, and tp,s is either
• the average number of iterations required to solve problem p by solver s corresponding

to Figure (a), or
• the maximum number of solutions corresponding to Figure (b), or
• the percentage of failure (in the sense of Remark 3.8) corresponding to Figure (c), or
• the average computing time corresponding to Figure (d).

The performance of the solver s ∈ S is defined by

ρs(t) =
1

np

card {p ∈ P : log2(rp,s) ≤ t},

where, np is the number of problems, and t is a real factor. The numerical experiments
are conducted on an ordinary computer. All the program codes are written and executed
in Matlab 9.6.

Figure 1a presents the performance profiles of the four solvers with the criterion: the
average number of iterations that each solver takes to find a solution. We observe that SM
and LPM have the most number of wins, dominating MPCM and NPIPM. Also, on the
considered interval, SM outperforms other solvers, followed by LPM, MPCM and NPIPM
respectively.
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Figure 3.1: The performance profiles of MPCM, NPIPM, LPM and SM.

Figure 1b presents the performance profiles of the four solvers corresponding to the
average computing time. We can see that relative to this criterion, SM is the best solver,
closely followed by LPM, while NPIPM and MPCM have no wins. Another interesting
point is that on the interval [0.5, 1.5] the performances of NPIPM and MPCM are quite
competitive compared to the others.

Figure 1c displays the performance profiles of the four solvers when considering the
maximum number of solutions found by each one. MPCM can solve 100 % of the problems
with the greatest efficiency and has the most number of wins, followed respectively by
NPIPM, LPM and SM. As in the previous test on the three given matrices, SM shows
that its ability to find many solutions is the worst among all the methods.

In Figure 1d, we depicted the performance profiles of the four solvers for the percentage of
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failure. LPM encounters the least number of failures among all the methods while the
performances of the MPCM and NPIPM are quite the same in this regard. With respect
to this criterion, SM is not the winner on any problem and performs the worst.

In conclusion, SM proved to be the best solver when it comes to the average num-
ber of iterations and computing time while the situation with it is completely reversed
with respect to other criteria. Concerning the percentage of failure, LPM ranks first. The
performances of MPCM and NPIPM are roughly equivalent regarding all criteria except
the average number of iterations where MPCM performs better. MPCM can find the most
number of solutions among all the methods.

We have made various numerical experiments and realized that SM could only solve
problems of small size. Accordingly, we now conduct another comparison only between
MPCM, NPIPM and LPM on a set of problems of larger sizes. We have chosen a set of 30
square matrices with an average size of 131, all of them taken from the Matrix Market 1.

1https://math.nist.gov/MatrixMarket/
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Figure 3.2: The performance profiles of MPCM, NPIPM and LPM.

Looking at Figure 3.2 where we present the performance profiles of the three solvers
MPCM, NPIPM and LPM on a set of problems of larger size, we can conclude that LPM
is the best one with the most number of wins regardless of the criterion considered. In
terms of the average number of iterations, MPCM wins over NPIPM on the given interval.
Regarding the maximum number of solutions and the average computing time, we can
see that MPCM performs slightly better than NPIPM. We note that LPM is a robust
solver, respectively followed by NPIPM and MPCM.

3.5 Partially constrained eigenvalue problems

In this section, we consider a class of problems called partially constrained eigenvalue
problems. As its name suggests, in this class of problems, only a portion of the unknown
x is cone-constrained while the remaining components of x are free. Assume the first
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m components of x are nonnegative, and the other ones are not restricted. In this case,
x can be written with two splitting parts as follows

x =

[
xc

xf

]
,

where xc is the m-dimensional block vector containing the first m components of x
and xf is the remaining part which, of course, belongs to Rn−m. As a result, it turns
out that we are dealing with a cone-constrained eigenvalue problem constrained by
the following convex cone

Km,n−m = Rm
+ × Rn−m.

More precisely, the problem now is to find a non zero x ∈ Rn and λ ∈ R such that

Km,n−m ∋ x ⊥ (λx− Ax) ∈ K∗
m,n−m. (3.31)

Because K∗
m,n−m = Rn

+ × {0}, we can express the cone-constrained eigenvalue problem
corresponding to the convex cone Km,n−m as follows

xc ≥ 0, xf is free, x ̸= 0, (3.32)

λxc − Axc ≥ 0, λxf − Axf = 0, (3.33)

⟨xc, λxc − Aλxc⟩ = 0. (3.34)

In reality, some applications related to solving boundary value problems by boundary
integral equation methods can lead to this kind of problem, see [124, Example 1] for
an instance in mechanics. We will now present a partially cone-constrained eigenvalue
problem arising from a geomechanical fractures problem.
Let N ≥ 1 be an integer and A be a 3N × 3N matrix with real entries. We are interested
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in finding λ ∈ R such that there exists a 3N -vector u satisfying

(λu− Au)1 = 0,

(λu− Au)2 = 0,

0 ≤ u3 ⊥ (λu− Au)3 ≥ 0,

(λu− Au)4 = 0,

(λu− Au)5 = 0,

0 ≤ u6 ⊥ (λu− Au)6 ≥ 0,

...

(λu− Au)3N−2 = 0,

(λu− Au)3N−1 = 0,

0 ≤ u3N ⊥ (λu− Au)3N ≥ 0,

u ∈ RN\ {0} ,

(3.35)

where (Au− λu)i denotes the i-th component of Au− λu.

We can see that this system of equations is not exactly the problem of the form (3.31).
However, by some simple reformulation, it can be transformed into a cone-constrained
eigenvalue problem corresponding to the convex cone KN,2N = RN

+ × R2N . Indeed, there
always exists a permutation σ, which is a bijective from {1, 2, .., 3N} into itself, such that

σ({1, 2, .., N}) = {3i : i = 1, 2, .., N} .

Denote I = {σ(1), σ(2), .., σ(N)} and J = {σ(N + 1), σ(2), .., σ(3N)}. Set ũi = uσ(i) and

Ã =

[
AII AIJ

AJI AJJ

]
.
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It can be seen that solving system (3.35) is equivalent to solving the following sys-
tem of equations

0 ≤ ũ1 ⊥ (λũ− Ãũ)1 ≥ 0,

...

0 ≤ ũN ⊥ (λũ− Ãũ)N ≥ 0,

(λũ− Ãũ)N+1 = 0,

(λũ− Ãũ)N+2 = 0,

...

(λũ− Ãũ)3N = 0,

ũ ∈ RN\ {0} ,

(3.36)

which is a cone-constrained eigenvalue problem corresponding to the convex cone KN,2N .

Now we give some numerical results for problem (3.35) by using the three methods
including MPCM, NPIPM and LPM. Data for this numerical result are from IFP Energies
Nouvelles (IFPEN). We consider 6 problems with N ranging from 2, 3, 15, 61, 500 to 1500,
which means that the maximum size of the matrix A we have to deal with is 4500.
First of all, in order to use NPIPM, we reformulate (3.35) using slack and relaxation
variables like it was done previously: Find (u,w, λ, µ) ∈ R3N × RN × R× R+ such that

Au− λu+ g(w) = 0,

u3w1 − µ = 0,

...

u3NwN − µ = 0,

3N∑
i=1

u2i − 1 = 0,

1

2

N∑
i=1

(min {u3i, 0}2 +min {wi, 0}2) + µ2 + ϵµ = 0,

(3.37)

where g(w) = [0, 0, w1, 0, 0, w2, ..., 0, 0, wN ]
T , and ϵ > 0 is fixed. The normalization made

for u in the above system is to prevent it from being identical to zero. We apply NPIPM to
the system (3.37). On the other hand, we can also use MPCM to solve this kind of problem
by doing exactly what has been described for MPCM in Section 3.2 with a difference that
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in this case the function F in (3.22) would be substituted by

F (u,w) =


Au− b+ g(w)

u3w1

...
u3NwN

 .

Table 3.2 compares the 3 methods, namely MPCM, NPIPM and LPM on Problem

N MPCM NPIPM LPM

Nmax Iter T(s) F (%) Nmax Iter T(s) F (%) Nmax Iter T(s) F (%)

2 5 12 0.0005 5 5 22 0.0007 0.2 5 9 0.0003 42

3 6 12 0.0005 12 6 20 0.0008 5.7 4 10 0.0003 62

15 5 11 0.001 4 4 19 0.002 1.6 3 9 0.0008 32

61 21 16 0.03 19 17 21 0.03 4.2 16 24 0.03 54

500 4 12 3.3 2 3 21 5.3 0.5 4 15 2.5 67

1500 30 20 48 39 16 29 34 3 14 32 34 94

Table 3.2: Comparison of MPCM, NPIPM and LPM on the 6 problems

(3.35) with 6 matrices from IFPEN, where “Nmax” denotes the number of solutions found,
“Iter”and “T” denote the average number of iterations and computing time respectively
while “F” denotes the percentage of failure. We observe that all the methods converge for
the 6 matrices in the sense that they can all manage to find at least a solution, especially
in the cases N = 500 and N = 1500. Another point that can be observed from Table 3.2
is that NPIPM is the most robust solver among the three with respect to initial points.
In terms of computing time, LPM outperforms the others, while MPCM and NPIPM
have roughly the same computing time except for the last case where NPIPM is quite
faster. With respect to the average number of iterations, we can say in general that
MPCM performs best, followed respectively by LPM and NPIPM. We point out that LPM
experienced many failures and found the fewest number of solutions. Finally, it is clear
that MPCM found the most solutions compared to the others.
Remark 3.10 The number of failures of LPM is rather high and tends to increase with
the problem’s size. This event could be explained by the fact that bad conditioning during
the computation of the projection could occur in concrete situations. On the other hand,
interior point methods, particularly NPIPM do not suffer from this drawback because we
are in the interior.
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3.6 Extension of MPCM and NPIPM for solving quadratic

pencils under conic constraints

MPCM and NPIPM can be adjusted so as to deal with more general cone-constrained
eigenvalue problems. For simplicity, we consider the quadratic pencil eigenvalue comple-
mentarity problem presented as follows.
Given a triplet (A0, A1, A2) of three matrices of size n× n, we define the corresponding
quadratic pencil as follows

M(λ) = A0 + λA1 + λ2A2.

Then, the quadratic pencil eigenvalue complementarity problem corresponding to the
quadratic pencil M(λ) is the problem of finding λ ∈ R and x ∈ Rn \ {0} such that

0 ≤ x ⊥M(λ)x ≥ 0. (3.38)

Problem (3.38) can be reformulated into

M(λ)x− y = 0,

⟨1Tn , x⟩ − 1 = 0,

x ≥ 0, y ≥ 0.

(3.39)

Now we can see that MPCM and NPIPM can be applied in an attempt to solve the
system (3.39).
Remark 3.11 Let us observe that MPCM and NPIPM not only can be applied to solve
the quadratic pencil eigenvalue complementarity problem but might be applicable for
solving similar problems in which the quadratic pencil in (3.38) is substituted by a matrix
pencil of order m, with m > 2.
Consider the following quadratic pencil

M(λ) = λ2

 2 0 0

0 6 0

0 0 10

+ λ

 7 0 0

0 30 0

0 0 20

+

 −2 6 0

2 16 3

0 5 0

 . (3.40)

Solving the corresponding problem associated with this quadratic pencil by MPCM and
NPIPM with a sample of 104 random initial points gives 12 solutions as shown in Table
3.3.
Table 4 summarizes the results of MPCM and NPIPM on the problem corresponding to
the pencil.(3.40).
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Pareto eigenvalue Pareto eigenvector Dual vector

x1 x2 x3 y1 y2 y3

λ1 = −4.3930 0 1 0 6 0.0000 5

λ2 = −3.7656 1 0 0 0 2 0

λ3 = −3.6524 0.8712 0.1288 0 0 0 0.6438

λ4 = −2.0000 0 0 1 0 3 0

λ5 = −1.9613 0 0.1318 0.8682 0.7909 0 0

λ6 = −1.9580 0.0954 0.1277 0.7769 0 0 0

λ7 = −0.7689 0.3877 0.4006 0.2116 0 0 0

λ8 = −0.6986 0.5036 0.4964 0 0 0 2.4820

λ9 = −0.6820 0 0.6426 0.3574 3.8554 0 0

λ10 = −0.6070 0 1 0 6 0 5

λ11 = 0.0000 0 0 1 0 3 0

λ12 = 0.2656 1 0 0 0 2 0

Table 3.3: Solutions of the problem corresponding to the pencil (3.40) solved by MPCM and
NPIPM

Methods Nmax Iter Failure (%)

MPCM 12 8 9.7

NPIPM 12 9 0.2

Table 3.4: Comparison between MPCM and NPIPM on the pencil (3.40)

It can be seen that while the number of solutions found and the average number of
iterations of MPCM and NPIPM are roughly the same, the percentage of failure of NPIPM
is less than MPCM, which means that NPIPM is a more robust method with respect
to initial points. This has been seen when we carried out the numerical experiments in
Section 3.5.

For a given quadratic pencil (3.38) under conic constraints, a standard approach consists
in using a reduction technique. More precisely, problem (3.38) can be reduced into an

affine pencil as follows: Find λ ∈ R and

[
x

u

]
∈ R2n \ {0} such that

Rn
+ × Rn ∋

[
x

u

]
⊥

[
A0 A1

0n×n In

][
x

u

]
+ λ

[
0n×n A2

−In 0n×n

][
x

u

]
∈ Rn

+ × {0}n .

(3.41)
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This equivalence can be seen by first rewriting (3.38) as follows

u = λx,

0 ≤ x ⊥ A0x+ A1u+ λA2u ≥ 0.
(3.42)

It is clear that expressing (3.42) in the matrix form gives (3.41).
Using MPCM and NPIPM for solving the equivalent problem (3.41) with the data in
(3.40), we get the following table

Methods Nmax Iter Failure (%)

MPCM 6 15 63

NPIPM 6 13 37

Table 3.5: Comparison between MPCM and NPIPM with the data (3.40)

Looking at Table 3.5, we see that with the reformulated problem (3.41), MPCM and
NPIPM take more iterations to reach a solution and experience much more failures than
they do with the initial problem (3.38). Furthermore, in this case both methods can
find only 6 solutions given the same number of initial points. Regarding the number
of failures, NPIPM is seen to be more robust.

3.7 Conclusions

In this chapter, we have considered two interior-point methods for solving eigenvalue
complementarity problems. We have also presented an application of the methods to
a geomechanical problem. Numerical experiments have been made to compare the per-
formances of MPCM and NPIPM relative to two other common methods, namely LPM
and SM. NPIPM has proved to be an efficient and robust method for solving eigenvalue
complementarity problems, especially through its display on the geomechanical fracture
problem. More precisely, we can observe that its percentage of failure remains very low in
all six problems. Particularly in the case where the problem’s size is 4500, its percentage
of failure is around 3%, which is a very appealing property. The performance of MPCM
is generally equivalent to that of NPIPM except in terms of robustness. There are some
open questions regarding the use of MPCM and NPIPM or interior point methods in
general for solving eigenvalue complementarity problems. The first issue could be the way
to select efficiently initial points. It would be also interesting to consider other interior
point methods and compare their performances to MPCM and NPIPM in the context
of eigenvalue complementarity problems. As well, inexact Newton methods could be of
great interest to use in our context. This would allow us to solve large scale problems.
The question of local and global convergence of our algorithms for the Pareto eigenvalue
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complementarity problem is open and needs further investigation. These points are out of
the scope of the current dissertation and will be the subject of a future research project.
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Chapter 4 – Solving inverse Pareto eigenvalue problems

This chapter covers the material discussed in the published paper [14], which was
produced in collaboration with S. Adly

4.1 Introduction

Recall that the Pareto Eigenvalue Problem (PEP) corresponding to an n× n matrix A
consists in finding a scalar λ ∈ R such that the linear complementarity system

x ≥ 0n, λx− Ax ≥ 0n, ⟨x, λx− Ax⟩ = 0

admits a nonzero solution x ∈ Rn. Such an x is called a Pareto eigenvector of A corre-
sponding to the Pareto eigenvalue λ. We have used some standard notations here: the
symbol 0n refers to the n-dimensional zero vector, x ≥ 0n indicates that all components of
x are nonnegative, and ⟨·, ·⟩ denotes the usual inner product of Rn. The concept of Pareto
eigenvalue arises naturally in a variety of applications such as the dynamic analysis of
structural mechanical systems, vibro-acoustic systems, electrical circuit simulation, signal
processing, fluid dynamic, contact problems in mechanics (see for instance [105–108,123]).
It should be noted that finding all Pareto eigenvalues of a medium or high order matrix can
be challenging since the number of Pareto eigenvalues grows exponentially with the order
of the matrix A, see [136]. For instance, a matrix of order 20 could have more than 1.5
million Pareto eigenvalues. A rich variety of algorithms for computing Pareto eigenvalues
have been proposed in [13,15–17,88,90–92,96,102,116,129], just to mention a few references.

On the other hand, in this chapter we are interested in the Inverse Pareto Eigenvalue
Problem (IPEP) which consists in constructing a matrix A ∈ Mn(R) whose Pareto
spectrum contains a prescribed set Θ = {λ1, ..., λp} of distinct reals. Here, the Pareto
spectrum of A refers to the set of all Pareto eigenvalues of A and Mn(R) denotes the set
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of matrices of order n with real entries. If denoting by X = [x1, ..., xp] the rectangular
matrix containing the (unknown) Pareto eigenvectors of A and by λ⃗ = (λ1, ..., λp)

T the
vector containing the given Pareto eigenvalues, we can present IPEP abstractly as X ≥ O, Xdiag(λ⃗)− AX ≥ O, ⟨X,Xdiag(λ⃗)− AX⟩ = 0,

Each column of X is not identical to the zero vector,
where O is a zero matrix of appropriate size, ⟨X, Y ⟩ = tr(XTY ) is the trace inner product,
and diag(λ⃗) refers to the diagonal matrix whose diagonal is λ⃗. It should be noted that if
one solution to the above problem is found, one can produce many others by left-right
permutation operations, see [76] for details. There are other inverse Pareto eigenvalue
problems different from what we consider in this note. For instance, in [137], the authors
have considered the problem of finding a matrix A of order n whose Pareto spectrum is
exactly a prescribed set. However, they only studied the solvability of such the problem
but put aside the numerical resolution.
In this note, we will formulate the inverse Pareto eigenvalue problem under consideration
as different systems of nonlinear equations. The resulting systems can be smooth or nons-
mooth depending on how it is formulated. Newton-type methods can then be employed to
solve such nonlinear systems. The IPEP can also be formulated as nonlinear optimization
problems, see for instance [61]. In principle, there is no relation between the order of the
matrix A and the cardinality of the target set Θ = {λ1, ..., λp}. However, to avoid the
overdetermination for the resulting system (which will be made precise later, see Remark
4.1), the authors have intentionally assumed that p should not exceed n2. Apparently, the
case in which p ≤ n is not of interest because the IPEP can then be solved explicitly by
taking as matrix A any diagonal matrix that contains the λk’s on its diagonal. Even more,
in our numerical tests, we have avoided the case in which p is greater than the triangular
number τn := n(n+ 1)/2. This is due to the fact that it has been shown in [76] that if
p ≤ τn, then the IPEP is solvable with a matrix of order n for an arbitrary sample of
cardinality p. By contrast, the case in which p > τn has not been well understood yet and
may need further investigations.

The rest of this chapter is organized as follows. In Section 4.2, we respectively formulate
the problem as two smooth nonlinear systems of equations; the first one contains com-
plementarity conditions and we adapt the Mehrotra predictor corrector method [110] to
address it; the second system is yielded with the help of the “squaring trick” and therefore
does not impose any constraint on the variables; as a result, it is then solved by a Newton
type method. In Section 4.3, we first present two methods based on complementarity
function techniques, namely SNMmin and SNMFB, and then the lattice projection method
proposed in [15]. We conduct some numerical experiments in Section 4.4 to compare the
performances of all the methods with respect to the average number of iterations and the
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percentage of failures. Section 4.5 is devoted to the extension of MPCM, ST, SNMmin

and SNMFB to inverse quadratic pencil eigenvalue complementarity problems. We end
the chapter with some concluding remarks and perspectives in Section 4.6.

4.2 Smooth approach

4.2.1 The Mehrotra Predictor Corrector Method (MPCM)

Mathematically speaking, the problem at hand is that of solving a system of the form
xk ≥ 0n, λkxk − Axk ≥ 0n, ⟨xk, λkxk − Axk⟩ = 0

⟨1n, xk⟩ = 1

for all k ∈ {1, .., p} , (4.1)

where the unknown variables are the columns of the matrix A ∈ Mn(R) and the vectors
x1, ..., xp ∈ Rn, and 1n denotes the n dimensional vector of all ones. The last equation is
added to ensure that xk is not identical to the zero vector.

By introducing the slack variables yk = λkxk − Axk, we reformulate (4.1) as

xk ≥ 0n

yk ≥ 0n

⟨xk, yk⟩ = 0

(A− λkIn)xk + yk = 0n

⟨1n, xk⟩ − 1 = 0

for all k ∈ {1, .., p} , (4.2)

The Mehrotra predictor corrector method was first proposed in 1989 by Sanjay Mehrotra
[110], as a variant of the primal-dual interior point method for optimization problems.
Because of their efficiency, most of today’s interior-point general-purpose software for
linear and nonlinear programming is based on predictor-corrector algorithms like the one
of Mehrotra. Here we adapt this method to deal with the IPEP of the form (4.2). Let
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us define F : Rnp × Rnp × Rn2 −→ R2np+p as

F (Z) =



Ax1 − λ1x1 + y1
...

Axp − λpxp + yp

⟨1n, x1⟩ − 1
...

⟨1n, xp⟩ − 1

X̂ • Ŷ


, Z = (X̂, Ŷ , Â), (4.3)

where 
X̂ =


x1
...

xp

 ∈ Rnp, Ŷ =


y1
...

yp

 ∈ Rnp, Â =


a1
...

an

 ∈ Rn2
,

xi ∈ Rn, yi ∈ Rn, ai ∈ Rn, A = [a1, ..., an] ∈ Mn(R).
Here, the notation p • q denotes the Hadamard product of p ∈ Rm and q ∈ Rm. That is,
(p • q)i = piqi for all i ∈ {1, ...,m}.

We can easily show that the Jacobian matrix of F can be expressed in terms of block
matrices as

JF (Z) =

 M Inp XT ⊗ In

Ip ⊗ 1Tn 0p×np 0p×n2

diag(Ŷ ) diag(X̂) 0np×n2

 ,
where M is the block diagonal matrix whose i-th diagonal block is A−λiIn, X = [x1, ..., xp],
⊗ stands for the tensor product, and λ⃗ = (λ1, ..., λp)

T

The description of this method reads as follows. First we choose initial points such
that X̂0 > 0np, Ŷ

0 > 0np, Â
0 ∈ Rn2 . Set Zk = (X̂k, Ŷ k, Âk) and let k = 0. At the predictor

step, MPCM first computes the affine scaling (predictor) direction dka, which is given by
the least norm solution of the underdetermined linear system JF (Z

k)dka = −F (Zk), and
then compute a step size αk

a ∈ (0, 1] that ensures

X̂k + αk
adX̂

k
a > 0np, (4.4)

Ŷ k + αk
adŶ

k
a > 0np, (4.5)
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where

dka =

 dX̂k
a

dŶ k
a

dÂk
a

 ∈ Rnp × Rnp × Rn2

.

Now, the algorithm uses the information from the predictor step to compute the corrector
direction dkc by finding the least norm solution of the following linear system

JF (Z
k)dkc = −F (Zk) +Bk, with Bk =

(
0(np+p)

µk1np − dX̂k
a • dŶ k

a

)
, (4.6)

where µk = γkσk with γk = 1
n
⟨X̂k, Ŷ k⟩ and σk =

(
rka
rk

)3
is the adaptively chosen cen-

tering parameter with

rk = 1
n
⟨X̂k, Ŷ k⟩, (4.7)

rka = 1
n
⟨X̂k + αk

adX̂
k
a , Ŷ

k + αk
adŶ

k
a ⟩. (4.8)

Finally, we find a step size αk
c ∈ (0, 1] such that

X̂k + αk
cdX̂

k
c > 0np, (4.9)

Ŷ k + αk
cdŶ

k
c > 0np, (4.10)

and then compute the next iterate Zk+1 = Zk + αk
cd

k
c and update k = k + 1.

Remark 4.1 At each iteration, we have to solve a linear system with 2pn+ p equations
and 2pn+ n2 unknown variables which represent entries of eigenvectors, dual vectors and
the matrix A. If p > n2 which is the overdetermined case, the system is likely to have no
solution. This clarifies what we have said in the introduction, which is that we should
stick to the case where p ≤ n2.

4.2.2 The Squaring Trick (ST)

As its name suggests, the squaring technique helps to get rid of the nonnegativity con-
straints in (4.2) with the setting

xk = u
[2]
k = uk • uk,

yk = v
[2]
k = vk • vk.
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One gets in this way a smooth system

H(Z) =



Au
[2]
1 − λ1u

[2]
1 + v

[2]
1

...
Au

[2]
p − λpu

[2]
p + v

[2]
p

∥u1∥2 − 1
...

∥up∥2 − 1

Û • V̂


= 0, Z = (Û , V̂ , Â), (4.11)

with 2pn + p equations and 2pn + n2 unknown variables, namely
Û =


u1
...

up

 ∈ Rnp, V̂ =


v1
...

vp

 ∈ Rnp, Â =


a1
...

an

 ∈ Rn2
,

ui ∈ Rn, vi ∈ Rn, ai ∈ Rn, A = [a1, ..., an] ∈ Mn(R).
The Jacobian matrix of H is of the form

JH(Z) =

 2Mdiag(Û) 2diag(V̂ ) (U [2])T ⊗ In

N 0p×np 0p×n2

diag(V̂ ) diag(Û) 0np×n2

 ,
where M is the block diagonal matrix whose i-th diagonal block is A − λiIn, N is the
p−block diagonal matrix whose i−th diagonal block is 2uTi , the square operator [·][2] is
taken componentwisely, and U = [u1, u2, ..., up].

In order to solve (4.11), we use a Newton method specially tailored for dealing with
underdetermined systems of equations. It consists in applying the recursive formula

Zk+1 = Zk − [JH(Z
k)]†H(Zk) k = 0, 1, 2, ..., (4.12)

where M † denotes the Moore-Penrose inverse of the rectangular matrix M .

In the case of convergence of the sequence generated by (4.12), to guarantee that its
limit is a zero of H, we assume that JH(Zk) is of full row rank for k ∈ N (see [149]).
In this case we can compute the term ∆Zk = −[JH(Z

k)]†H(Zk) as the least norm
solution of the linear system

JH(Z
k)∆Zk = −H(Zk).
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Interested readers in more details about theoretical and convergence analysis of the fixed
point iteration (4.12) can consult references such as [85, 149].
Remark 4.2 As we look at JH(Z), clearly a necessary condition for it to be of full row
rank is that Ui ̸= 0 and Vi ̸= 0 for all i ∈ {1, 2, ..., np} which amounts to saying that we
have strict complementarity conditions.

4.3 Nonsmooth approach

4.3.1 Nonlinear complementarity functions

Throughout this section, we denote by Φl an l-complementarity function (NCP-function)
which is defined as follows. The function Φl : Rl × Rl → Rl is called an l-complementarity
function if for all X ∈ Rl, Y ∈ Rl, and i ∈ {1, ..., l}, we have

(Φ(X, Y ))i = 0 ⇐⇒ Xi ≥ 0, Yi ≥ 0, XiYi = 0.

Due to this property, the complementarity function technique consists in reformulat-
ing (4.2) as

L(Z) =



Ax1 − λ1x1 + y1
...

Axp − λpxp + yp

⟨1n, x1⟩ − 1
...

⟨1n, xp⟩ − 1

Φnp(X̂, Ŷ )


= 0, Z = (X̂, Ŷ , Â), (4.13)

where 
X̂ =


x1
...

xp

 ∈ Rnp, Ŷ =


y1
...

yp

 ∈ Rnp, Â =


a1
...

an

 ∈ Rn2
,

xi ∈ Rn, yi ∈ Rn, ai ∈ Rn, A = [a1, ..., an] ∈ Mn(R),
and Φnp : Rnp × Rnp −→ Rnp can be any np-complementarity function.
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In this note, we consider Φnp being one of the following NCP functions

Φnp
FB(X, Y ) = X + Y − [X [2] + Y [2]][1/2],

Φnp
min(X, Y ) = min(X, Y ),

where the square root operation [·][1/2] and the min function is carried out componentwisely.
The two given NCP functions are not differentiable, but they are locally Lipschitz and
semismooth [17]. The former was introduced by Fischer [74] and has been proven to be a
useful tool for studying complementarity problems. Let us now recall some basic facts
about the semismooth Newton method.

Given a locally Lipschitz mapping ϕ : Rm −→ Rm, Rademacher’s theorem ensures
the existence of the Jacobian matrix Jϕ(z) at almost every z ∈ Rm. The B-subdifferential
of ϕ at a point z ∈ Rm is defined by

∂Bϕ(z) =
{
lim
k
Jϕ(zk) : ∃(zk) ⊂ Dϕ : zk → z

}
,

where Dϕ is the set of differentiability points of ϕ. The Clarke generalized Jacobian [67]
of ϕ is given by

∂ϕ(z) = co ∂Bϕ(z),

where “co” stands for the convex hull of the set ∂Bϕ(z). The function ϕ is said to be
semismooth [111] at z ∈ Rm if it is locally Lipschitz around z, directionally differentiable
at z and satisfies the following condition

sup
M∈∂ϕ(z+h)

∥ϕ(z + h)− ϕ(z)−Mz∥ = o(∥h∥).

For solving the equation ϕ(x) = 0 with ϕ being semismooth, the semismooth Newton
method [128] refers to applying the following recursive formulation

zk+1 = zk + hk, k = 0, 1, 2, ...,

where hk is given by solving a linear system Mkhk = −ϕ(zk) for some Mk ∈ ∂ϕ(zk). Under
the semismoothness of the function ϕ and nonsingularity conditions of its generalized
Jacobian, the sequence (zk) generated by the semismooth Newton method converges at
least superlinearly. Precisely, we have the following theorem, see [128].
Theorem 4.1 Let z̄ be a zero of the locally Lipschitz function ϕ. Suppose that ϕ is semis-
mooth at z̄, and all matrices in ∂ϕ(z̄) are nonsingular. Then, there exists a neighborhood
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V of z̄ such that the semismooth Newton method initialized at any z0 ∈ V generates a
sequence (zk) that converges at least superlinealy to z̄

We note that the two considered NCP functions are semismooth and the remaining
components of L are continuously differentiable. This follows that L is semismooth. Now
we turn to solving our system L(Z) = 0. We solve it by using the following trivial extension
of the semismooth Newton method just described above to underdetermined systems.

• Choose an initial point Z0.
• One has a current point Zk. Pick Mk ∈ ∂L(Zk) and compute

Zk+1 = Zk − (Mk)†L(Zk).

The Clarke generalized Jacobian of L at Z is the set of all the matrices having the form M Inp XT ⊗ In

Ip ⊗ 1Tn 0p×np 0p×n2

U V 0p×n2

 ,
where M is the block diagonal matrix whose i-th diagonal block is A−λiIn, X = [x1, ..., xp],
and U and V are matrices of order np such that

[U, V ] ∈ ∂Φnp(X̂, Ŷ ).

Here, Φnp is one of the two np-complementarity functions Φnp
FB or Φnp

min(X, Y ). In these
cases, we refer to [119] for the formulas of U and V .

4.3.2 The Lattice Projection Method (LPM)

In contrast with the complementarity function technique described above, the Lattice
Projection method [15] does not employ any NCP function but rather utilizes the following
observation: For any λ > 0, we have

x ≥ 0, λx− Ax ≥ 0, ⟨x, λx− Ax⟩ ≥ 0 ⇐⇒ max(Ax, 0) = λx,

where the max function is taken componentwisely.

Throughout this section, without loss of generality we assume λi > 0 for all i ∈ {1, 2, ..., p}.
This is due to the fact that given A ∈ Mn(R), we have σ(A + µIn) = σ(A) + µ for all
µ ∈ R. Here σ(A) denotes the Pareto spectrum of A. As a result, we can always transform
the initial problem into an equivalent one where all the prescribed Pareto eigenvalues are
positive.
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Using the slack variables yk = Axk and taking into account the above equivalence,
we have the corresponding reformulation of the IPEP

K(Z) =



Ax1 − y1
...

Axp − yp

max(y1, 0)− λ1x1
...

max(yp, 0)− λpxp

⟨1n, x1⟩ − 1
...

⟨1n, xp⟩ − 1



= 0, Z = (X̂, Ŷ , Â), (4.14)

where 
X̂ =


x1
...

xp

 ∈ Rnp, Ŷ =


y1
...

yp

 ∈ Rnp, Â =


a1
...

an

 ∈ Rn2
,

xi ∈ Rn, yi ∈ Rn, ai ∈ Rn, A = [a1, ..., an] ∈ Mn(R).
Clearly this system is locally Lipchitz and semismooth. Analogously to the previous
section, we adopt the Semismooth Newton method to solve this system. Given a matrix

Q having m columns, we define Q(:) :=


q1
...
qm

 where qi is the i-th column of Q. The

Clarke generalized Jacobian of K is the set of all the matrices having the form
Ip ⊗ A −Inp XT ⊗ In

−diag
(
(1n×pdiag(λ⃗))(:)

)
C 0np×n2

Ip ⊗ 1Tn 0p×np 0p×n2

 ,
where X = [x1, x2, ..., xp] and C belongs to the Clarke generalized Jacobian of the function
Rnp ∋ Y 7→ max(Y, 0) at Ŷ . For the formula of the Clarke generalized Jacobian of such
the function, one can consult in, for instance, [67].
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4.4 Numerical tests

First of all, we present how to choose initial points for each method.
MPCM: we generate a random matrix A uniformly distributed on [−1, 1]n×n and

random vectors ω1, ..., ωp uniformly distributed on ]0, 1]n. Then we set

X =

[
ω1

⟨1n, ω1⟩
, . . . ,

ω1

⟨1n, ωp⟩

]
,

Y = Xdiag(λ⃗)− AX.

Finally, the initial points are set as follows

X̂0 = X(:), Ŷ 0 = max(Y (:), 0.01), and Â0 = A(:),

where the max operator is carried out componentwisely.
ST: we generate a random matrix A with uniform distribution on [−1, 1]n×n, random

vectors ω1, . . . , ωp uniformly distributed on [−1, 1]n and a random matrix D uniformly
distributed on {−1, 1}n×p. Then we set

U =

[
ω1

∥ω1∥
, . . . ,

ω1

∥ωp∥

]
X = U [2],

Y = Xdiag(λ⃗)− AX,

V = D • |Y |[1/2],

where the absolute value operator | · | is carried out componentwisely. Finally, the
initial points are set as follows

Û0 = U(:), V̂ 0 = V (:), and Â0 = A(:).

SNMmin,SNMFB: we generate a random matrix A uniformly distributed on [−1, 1]n×n

and random vectors ω1, ..., ωp uniformly distributed on [−1, 1]n. Then we set

X =

[
ω1

⟨1n, ω1⟩
, . . . ,

ω1

⟨1n, ωp⟩

]
,

Y = Xdiag(λ⃗)− AX.
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Finally, the initial points are set as follows

X̂0 = X(:), Ŷ 0 = Y (:), and Â0 = A(:).

LPM: we generate a random matrix A uniformly distributed on [−1, 1]n×n and random
vectors ω1, ..., ωp uniformly distributed on [−1, 1]n. Then we set

X =

[
ω1

⟨1n, ω1⟩
, . . . ,

ω1

⟨1n, ωp⟩

]
,

Y = AX.

Finally, the initial points are set as follows

X̂0 = X(:), Ŷ 0 = Y (:), and Â0 = A(:).

Secondly, we mention that a solution is called to be found by a method if the norm of
the objective function corresponding to that method at an iterate is less than or equal to
10−8. A failure is declared when the number of iterations exceeds 100, or the (generalized)
Jacobian matrix is ill-conditioned according to Matlab’s criterion.

This section is divided into two parts. The first one is to consider a particular ex-
ample and then apply all our methods to solve it. The solution matrix A resulting
from each method is provided; moreover, we also provide the Pareto spectrum of those
solutions. After that, we will compare the five methods using performance profiles in
which we take into consideration the average number of iterations and the percentage of
failures as performance measures. To this end, we now first consider an example in which
Θ = {1, 2, 4, 6, 8, 12} is the set of prescribed eigenvalues and n = 3 is the order of matrices
to be found. Applying all five methods yields different solutions as summarized in Table
4.1. Now, we compare the 5 discussed solvers. In order to complete this experiment, we
choose the performance profiles developed by E. D. Dolan and J. J. Moré [72] as a tool
for comparing the solvers. The performance profiles give for each t ∈ R, the proportion
ρs(t) of test problems on which each solver under comparison has a performance within
the factor t of the best possible ratio.
We have chosen a set P of 30 problems corresponding to 30 random vectors with pos-
itive components. For each problem, we run the five methods with 1000 initial points,
and we look for matrices A of order n such that n is the smallest integer satisfying
p ≤ τn := n(n+ 1)/2, where p is the number of Pareto eigenvalues. The average number
of iterations and the percentage of failures are used as performance measures. Let S be
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Method A σ(A)

MPCM

 20 −534.1521 −278.6133
0.1643 −3.6195 976.5402
0.0008 −0.0438 9.6195

 Θ ∪ {−3.6195}

ST

 1 49.9629 190.639
−0.0038 12 0.067
−0.0787 122.2038 9

 Θ ∪ {1.0174}

SNMFB

 20.3198 −9.6546 −13.8467
6.2351 6 −13.5499
2.3572 −0.369 2

 Θ ∪ {8.3198}

SNMmin

 21 −4.2692 0.8295
29.399 −4.6058 4.4803
22.3138 −7.4444 9.6058

 Θ ∪ {−4.6058}

LPM

 8 0.242 −27.2918
−5.4576 12.3301 −80.2682
0.2931 −0.1412 2

 Θ ∪ {1.809}

Table 4.1: Five different solutions resulted from the five methods

the set of the five solvers that will be compared. The performance ratio is defined by

rp,s =
tp,s

min {tp,s : s ∈ S}
,

where p ∈ P , s ∈ S, and tp,s is a performance measure. The performance of the
solver s ∈ S is defined by

ρs(t) =
1

np

size {p ∈ P : log2(rp,s) ≤ t},

where, np is the number of problems, and t is a real factor, and size(O) denotes the
cardinality of O. For more details, we refer to [72].
Figure 1 represents the performance profiles of the 5 methods, namely MPCP, LPM,

ST (Squaring Trick), SNMFB (Semismooth Newton Method with ΦFB), and SNMmin

(Semismooth Newton Method with Φmin) on a set of 30 random problems in which the
average percentage of failures and the average number of iterations are taken as performance
measures. It can be seen that with respect to the average percentage of failures, SNMFB

performs the best when there are nearly 80 % of problems it wins over all other methods.
ST ranks second in this regard; the performances of SNMmin, LPM and MPCM regarding
this criteria are generally the same. By contrast, in terms of the average number of
iterations, LPM has the most number of wins; ST and SNMmin do not differ much in
their performances and are followed respectively by SNMFB and MPCM. Regardless of
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(a) tp,s = the average number of iterations (b) tp,s = the percentage of failures

Figure 4.1: Performance profiles of MPCM, ST, SNMFB, SNMmin and LPM on inverse Pareto
eigenvalue problems

the criterion considered, we can see that MPCM performs the worst. In addition, we have
tested with various problems and found that MPCM can only solve small size problems.

4.5 Extension to inverse quadratic eigenvalue comple-

mentarity problems

In this section, we show how these methods (except LPM) can naturally be extended to
cope with more general inverse eigenvalue complementarity problems. To fix the idea,
the case corresponding to the quadratic pencil (defined later) will be considered. The
corresponding problem is called the inverse quadratic pencil eigenvalue complementarity
problem.

First, let us recall that Mr(λ) is called a pencil with respect to a finite collection
{A0, A2, ..., Ar} (r ≥ 1) of real matrices of order n if it admits the following form

Mr(λ) =
r∑

k=0

λkAk.

The Pareto eigenvalue problem is just a particular case of the following model

0 ≤ x ⊥Mr(λ)x ≥ 0, (4.15)

where Mr(λ) is a pencil of order r.
We generalize the inverse Pareto eigenvalue problem by considering the inverse problem
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to (4.15). More precisely, given a prescribed set of distinct real numbers Θ = {λ1, ..., λp},
the inverse problem to (4.15) concerns finding a collection {A0, ..., Ar} of n× n matrices
such that Ar ̸= 0n×n and for each λ ∈ Θ, (4.15) admits a non trivial solution x ∈ Rn. We
refer to this type of problem as the inverse pencil eigenvalue complementarity problem;
moreover, in the particular case in which r = 2, they are referred to as the inverse quadratic
pencil eigenvalue complementarity problem.

Formally, the inverse quadratic pencil eigenvalue complementarity problem consists of
solving a system of the form
xk ≥ 0n, A0xk + λkA1xk + λ2kA2xk ≥ 0n, ⟨xk, A0xk + λkA1xk + λ2kA2xk⟩ = 0, k = 1, . . . , p,

⟨1n, xk⟩ = 1, k = 1, . . . , p,

A2 ̸= 0n×n,

(4.16)

where the unknown variables are the columns of the n× n matrices A0, A1 and A2, and
the vectors x1, ..., xp ∈ Rn.
By introducing the slack variables yk = (A0 + λkA1 + λ2kA2)xk, we reformulate (4.16) as

xk ≥ 0n

yk ≥ 0n

⟨xk, yk⟩ = 0

(A0 + λkA1 + λ2kA2)xk − yk = 0n

⟨1n, xk⟩ − 1 = 0

∥A2∥2F − 1 = 0

for all k ∈ {1, .., p} , (4.17)

where ∥A2∥F =
(∑n

i=1

∑n
j=1(A2)

2
ij

)1/2
is the Frobenius norm of A2. The last equation is

imposed without loss of generality in order to ensure that A2 ̸= 0n×n.

Apparently, all the methods that we have considered (except LPM), including MPCM,
ST, SNMFB and SNMmin, can be employed to solve the system (4.17). In what follows,
we will provide the functions as well as the Jacobians/generalized Jacobians associated
with each of those methods.
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4.5.1 Applying MPCM

The function F : R2np+3n2 → R2np+p+1 corresponding to the MPCM is defined as follows

F (Z) =



(A0 + λ1A1 + λ21A2)x1 − y1
...

(A0 + λpA1 + λ2pA2)xp − yp

⟨1n, x1⟩ − 1
...

⟨1n, xp⟩ − 1

∥A2∥2F − 1

X̂ • Ŷ


, Z = (X̂, Ŷ , Â0, Â1, Â2), (4.18)

where 

X̂ =


x1
...

xp

 ∈ Rnp, Ŷ =


y1
...

yp

 ∈ Rnp,

Âj =


aj1
...

ajn

 ∈ Rn2
, Aj =

[
aj1, ..., a

j
n

]
∈ Mn(R) ∀j ∈ {0, 1, 2} ,

xi ∈ Rn, yi ∈ Rn, aji ∈ Rn ∀i ∈ {1, ..., n} , ∀j ∈ {0, 1, 2} .
The Jacobian matrix of F has the form

JF (Z) =


M −Inp [XT diag(λ⃗)XT diag(λ⃗[2])XT ]⊗ In

Ip ⊗ 1Tn 0p×np 0p×3n2

01×np 01×np [01×n2 01×n2 2ÂT
2 ]

diag(Ŷ ) diag(X̂) 0np×3n2

 ,

where M is the block diagonal matrix whose i-th diagonal block is A0 + λiA1 + λ2iA2,
λ⃗ = (λ1, ..., λp)

T and X = [x1, ..., xp].
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4.5.2 Applying ST

The function H : R2np+3n2 → R2np+p+1 corresponding to the ST is defined as follows

H(Z) =



(A0 + λ1A1 + λ21A2)u
[2]
1 − v

[2]
1

...
(A0 + λpA1 + λ2pA2)u

[2]
p − v

[2]
p

∥u1∥2 − 1
...

∥up∥2 − 1

∥A2∥2F − 1

Û • V̂


, Z = (Û , V̂ , Â0, Â1, Â2), (4.19)

where 

Û =


u1
...

up

 ∈ Rnp, V̂ =


v1
...

vp

 ∈ Rnp,

Âj =


aj1
...

ajn

 ∈ Rn2
, Aj =

[
aj1, ..., a

j
n

]
∈ Mn(R) ∀j ∈ {0, 1, 2} ,

ui ∈ Rn, vi ∈ Rn, aji ∈ Rn ∀i ∈ {1, ..., n} ,∀j ∈ {0, 1, 2} .
The Jacobian matrix of H is of the form

JH(Z) =


2Mdiag(Û) −2diag(V̂ ) [(U [2])T diag(λ⃗)(U [2])T diag(λ⃗[2])(U [2])T ]⊗ In

N 0p×np 0p×3n2

01×np 01×np [01×n2 01×n2 2ÂT
2 ]

diag(V̂ ) diag(Û) 0np×3n2

 .

where M is the block diagonal matrix whose i-th diagonal block is A0 + λiA1 + λ2iA2, N is
a p−block diagonal matrix whose i−th diagonal block is 2uTi and U = [u1, ..., up]
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4.5.3 Applying SNMFB and SNMmin

The function L : R2np+3n2 → R2np+p+1 corresponding to SNMFB or SNMmin is de-
fined as follows

L(Z) =



(A0 + λ1A1 + λ21A2)x1 − y1
...

(A0 + λpA1 + λ2pA2)xp − yp

⟨1n, x1⟩ − 1
...

⟨1n, xp⟩ − 1

∥A2∥2F − 1

Φnp(X̂, Ŷ )


= 0, Z = (X̂, Ŷ , Â0, Â1, Â2), (4.20)

where 

X̂ =


x1
...

xp

 ∈ Rnp, Ŷ =


y1
...

yp

 ∈ Rnp,

Âj =


aj1
...

ajn

 ∈ Rn2
, Aj =

[
aj1, ..., a

j
n

]
∈ Mn(R) ∀j ∈ {0, 1, 2} ,

xi ∈ Rn, yi ∈ Rn, aji ∈ Rn ∀i ∈ {1, ..., n} , ∀j ∈ {0, 1, 2} ,
and ϕnp is one of the two complementarity functions considered in Section 4.3.

The Clarke generalized Jacobian of L at Z contains all the matrices having the form
M −Inp [XT diag(λ⃗)XT diag(λ⃗[2])XT ]⊗ In

Ip ⊗ 1Tn 0p×np 0p×3n2

01×np 01×np [01×n2 01×n2 2ÂT
2 ]

U V 0np×3n2

 ,

where M is the block diagonal matrix whose i-th diagonal block is A0 + λiA1 + λ2iA2,
X = [x1, ..., xp], and U and V are matrices of order np such that

[U, V ] ∈ ∂Φnp(X̂, Ŷ ).

Here, Φnp is one of the two np-complementarity functions Φnp
FB or Φnp

min(X, Y ).
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By using a similar technique as the proof of Proposition 3.4 in [76], we can have a
similar result concerning a condition on p relative to n that ensures given p arbitrary
distinct real numbers λi’s we can always find a triplet (A0, A1, A2) of n×n matrices whose
corresponding quadratic pencil eigenvalue complementarity problem admits all λi’s as
solutions. Before diving into the result, we need the following lemma
Lemma 4.1 Let A0, A1 and A2 be matrices of order n. Then. for all α ∈ R we have

γ ∈ σ(A0, A1, A2) ⇐⇒ γ − α ∈ σ(A0 + αA1 + α2A2, A1 + 2αA2, A2).

Proof. Set λ = γ − α, we have

γ ∈ σ(A0, A1, A2) ⇐⇒ λ+ α ∈ σ(A0, A1, A2)

⇐⇒ 0 ≤ x ⊥
[
A0 + (λ+ α)A1 + (λ+ α)2A2

]
x ≥ 0, for some x ̸= 0

⇐⇒ 0 ≤ x ⊥
[
A0 + αA1 + α2A2 + λ(A1 + 2αA2) + λ2A2

]
x ≥ 0

⇐⇒ λ ∈ σ(A0 + αA1 + α2A2, A1 + 2αA2, A2),

which completes the proof of Lemma 4.1.
Proposition 4.1 For an arbitrary collection Θ = {λ1, ..., λp} of distinct real numbers
with p not exceeding τn = n(n+ 1)/2 with n ≥ 2, there exists at least a triplet (A0, A1, A2)

of n × n matrices such that all the λi’s, i = 1, . . . , p, are solutions of the corresponding
problem (4.15) with r = 2.

Proof. It is sufficient to prove this statement in the case p = τn. Let us observe first,
according to Lemma 4.1 that we can assume without loss of generality that λi > 0 for
all i ∈ {1, ..., p}. We set A1 = diag(λ1, .., λn), where λ1, ..., λn are assumed to be the
first n smallest numbers in Θ and A2 = −In. The remaining τn − n = C2

n elements
λn+1, λn+2, ..., λp of Θ can be indexed over the set ∆ = {(i, j) : 1 ≤ i < j ≤ n}, which
means we can have a one to one correspondence, denoted by µ, that associates each pair
(i, j) ∈ ∆ with µij belonging to the set {λn+1, ..., λp}. Now we define A0 as follows

A0(i, j) =


0, i = j,

µ2
ij − µijλi, i < j,

µ2
ji − µjiλi, j < i.
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We can verify that for all 1 ≤ i ≤ n

0 ≤ ei ⊥ (A0 + λiA1 + λ2iA2)ei ≥ 0,

where ei denotes the n-th basis vector of Rn.
We can also show that for (i, j) ∈ ∆

0 ≤ (ei + ej) ⊥ (A0 + µijA1 + µ2
ijA2)(ei + ej) ≥ 0.

Therefore, the proof is completed.
Now we give some numerical results for the inverse quadratic pencil eigenvalue comple-
mentarity problem. As a first example, we consider Θ = {1, 2, 4, 6, 8, 12} and n = 3.
Table 4.2 shows how the 4 methods presented in this section give different solutions to
the given problem. Analogously to Section 4, we also compare MPCM, ST, SNMFB

and SNMmin on the quadratic pencil eigenvalue complementarity problem by using the
performance profiles. As can be seen from Figure 4.2, the two most attractive methods

(a) tp,s = the average number of iterations (b) tp,s = the percentage of failures

Figure 4.2: Performance profiles of MPCM, ST, SNMFB and SNMmin on inverse quadratic
pencil eigenvalue complementarity problems

among the four to solve this type of problem are ST and SNMFB. SNMmin ranks third
while MPCM performs the worst as it does in inverse Pareto eigenvalue problems. We
can see that these figures of performance profiles are consistent with those in the case
of the inverse Pareto eigenvalue problem.
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Method (A0, A1, A2) σ(A0, A1, A2)

MPCM

A0

 0.4485 2.6022 −1.3082
5.7842 10.7159 4.8616
0.3623 5.4577 2.9938


Θ ∪ {−3.4113,−3.4021,−1.6773, 12.4942}

A1

 −0.6728 −1.194 −4.6145
−0.7954 5.4956 1.0699
0.5499 2.3657 0.5036


A2

 0.2243 0.1453 0.7278
0.188 −0.5324 −0.1022

−0.1938 −0.1417 −0.1097



ST

A0

 −0.4428 −0.6096 −0.2637
−0.364 −0.0004 0.3199
−1.4729 −0.9470 0.0078


Θ ∪ {−10.7246, 1.6019, 1.9634, 5.9484}

A1

 2.7137 2.3261 −0.1233
0.5981 0.0003 −0.1339
−2.5919 0.559 1.494


A2

 0.2569 −0.1802 −0.4104
0.2516 0 0.0135
0.6905 −0.039 −0.4375



SNMFB

A0

 −2.6976 −0.2255 −0.607
−0.7477 0.7451 −0.8772
0.2708 −1.7924 −1.4494


Θ ∪ {−7.7249, 0.7392}

A1

 −0.9479 1.8798 −0.185
0.3456 1.469 0.89
−2.3656 0.6169 2.3231


A2

 0.1721 −0.2877 0.3694
−0.0576 −0.067 0.5595
0.4113 0.1444 −0.4902



SNMmin

A0

 −1.2595 −1.113 −4.6623
0.5841 4.6952 5.8726
0.4464 −7.2773 0.1566


Θ ∪ {−323.7934}

A1

 1.2556 0.764 11.4069
−0.2102 −1.9563 −3.9018
1.8169 1.6159 −0.0326


A2

 0.0039 0.1104 −0.786
0.005 0.1956 0.4686
0.0106 0.3348 0.0016


Table 4.2: Four different solutions resulted from the four methods

4.6 Conclusions

In this chapter, we have presented five methods for solving the inverse Pareto eigenvalue
problem. Both smooth and nonsmooth approaches are considered. To compare the 5
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given methods, we have used the performance profiles by Dolan & Moré [72]. Numerical
experiment showed that the interior point method, namely MPCM, is not a good method
for solving this type of problem. Furthermore, depending on the criterion considered,
we can decide whether LPM or SNMFB is the best. In particular, while SNMFB shows
that it experiences the fewest failures among the 5 methods, LPM takes the fewest
number of iterations to find a solution. Finally, we show that 4 (out of 5) considered
methods including MPCM, ST, SNMFB and SNMmin can be extended to deal with inverse
quadratic pencil eigenvalue complementarity problems. We consider only the case of the
nonnegative orthant K = Rn

+, which corresponds to Pareto eigenvalue problems. It would
be interesting to extend, the methods considered in this chapter, to the more general
case of cone-constrained eigenvalue problems involving a general closed convex cone K of
Rn. The convergence analysis of the Mehrotra predictor corrector method (MPCM) for
IPEP as well as the improvement of the upper bound τn in Proposition 4.1 need further
investigations and are open questions. This is out of the scope of the current version
and will be the subject of a future research project.
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with dry friction

This chapter covers the material discussed in the published paper [8], which was produced
in collaboration with S. Adly and H. Attouch

5.1 Introduction

Throughout this chapter, H is a real Hilbert space equipped with the scalar product
⟨·, ·⟩ and the associated norm ∥ · ∥. The objective function f : H → R is assumed to
be differentiable with Lipschitz continuous gradient. Unless otherwise specified, f is not
assumed to be convex. When we consider the continuous dynamic on which the algorithms
are based, and where the Hessian is involved, more regularity is needed for f which is then
assumed to be C2. Weakening these assumptions by removing the smoothness of f will be
examined at the end of the chapter. We will analyze the convergence properties of several
algorithms that can be obtained by temporal discretization of the differential inclusion

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0, (5.1)

where γ > 0 and β > 0 are respectively the viscous damping and Hessian damping
coefficients, and φ is a dry friction potential function with a sharp minimum at the
origin. This type of autonomous system, with a damping which acts as a closed loop
control of the sum of the velocity and gradient terms, was recently introduced by Attouch,
Bot, and Csetnek in [27]. It falls within the general framework of the use of inertial
dynamics in optimization to accelerate algorithms, as mechanical intuition naturally
suggests. An abundant literature has been devoted to the link between damped inertial
dynamics and corresponding optimization algorithms obtained by temporal discretization,
see e.g. [31,35,58,59,120,125,143] for recent developments on the subject. The term γẋ(t)

in (5.1) models the viscous damping with a fixed positive coefficient γ > 0. Thus our
algorithms are linked to the heavy ball with friction method of Polyak [125] (as opposed to
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the Nesterov acceleration method [143] which corresponds to a viscous damping coefficient
which vanishes asymptotically (γ(t) → 0 as t → +∞) . This framework is well suited
to dry friction, and will allow us to provide first order algorithms which are robust and
converge for nonconvex and nonsmooth optimization problems.

Dry friction Following [3–5,7], we say that the potential function φ satisfies the dry
friction property (DF)r, r > 0, if the following properties are satisfied:

(DF)r


φ : H → R+ is convex continuous,

minξ∈H φ(ξ) = φ(0) = 0,

φ(ξ) ≥ r∥ξ∥ ∀ξ ∈ H.

The function φ(x) = r∥x∥, r > 0 is a model example of potential which satisfies the
dry friction property. In what follows, the friction potential function φ is assumed to
satisfy the dry friction property. An important property associated with dry friction is
stated in the lemma below (see [3–5] for further details).
Lemma 5.1 Suppose that φ : H → R+ satisfies (DF)r. Then one has B(0, r) ⊂ ∂φ(0),
and therefore

∥x∥ ≤ λr =⇒ proxλφ(x) = 0.

In the above formula, proxφ : H → H denotes the proximal mapping associated with the
convex function φ. Recall that, for any x ∈ H, for any λ > 0

proxλφ(x) = argminξ∈H
{
λφ(ξ) + 1

2
∥x− ξ∥2

}
.

Lemma 5.1 establishes a thresholding property for the proximal operator associated with
a dry friction potential. It will play a key role in showing that after a finite number of
steps our algorithm will arrive at the regime of the steepest descent method.

The algorithm We will focus on various temporal discretizations of (5.1) and their
links with numerical optimization. Our main results concern the convergence properties
of the proximal-gradient algorithm

(IPAHDD-C1)

yk =
1
h
(xk − xk−1) + β∇f(xk−1),

xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

∇f(xk)
)
,

which comes from the temporal discretization with step size h > 0 of (5.1). (IPAHDD) is
the terminology introduced by Adly and Attouch [3] for this type of algorithm, which is a
shorthand for Inertial Proximal Algorithm with Hessian Damping and Dry friction. The
suffix C refers to the Composite form in which the dry friction acts in (5.1). (IPAHDD-C1)
is a first-order autonomous algorithm whose behavior has some similarities with the heavy
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ball with friction method, and with the steepest descent method (when φ is a prox-friendly
function). Indeed, as we will see, it can be advantageously compared to these two methods
in the presence of errors/perturbations. Specifically, the algorithm handles errors more
efficiently than the other two methods when dealing with external errors, while it performs
at least as well in situations involving additive errors.

Motivation As a specific property of (5.1), the dry friction term ∂φ
(
ẋ(t)+β∇f(x(t))

)
involves both the velocity vector and the gradient of f . This makes this dynamic different
from that studied previously, where the term of dry friction concerns only the velocity
vector. This is a simple yet nontrivial modification which undoubtedly makes the dynamics
totally different from that studied in [3–5,7]. A major advantage of considering the dry
friction term in this new form is that the iterates generated by our algorithm will converge
towards a critical point of f (a minimizer in the case where f is convex). In fact, any
stationary point x∞ of the dynamic (5.1) satisfies: ∂φ(β∇f(x∞)) +∇f(x∞) ∋ 0. This is
equivalent to β∇f(x∞) = proxβφ(0), which, combining with the fact that the potential φ
satisfies the dry friction property (DF)r, implies that ∇f(x∞) = 0 (see Lemma 5.1), i.e.,
x∞ is a critical point of f . By contrast, for each sequence (xk) generated by the algorithms
in [3–5,7], there is only convergence of (xk) towards an “approximate” critical point x∞
of f , that is, −∇f(x∞) ∈ ∂φ(0). Dry friction is an important subject in mechanics. It
produces stabilization of mechanical systems in finite-time. This contrasts with the viscous
damping that can asymptotically produce many small oscillations. This makes it an
attractive tool for optimization. The use of dry friction in optimization is a relatively
new topic. First results concerning the property of finite convergence under the action
of dry friction were obtained by Adly, Attouch, and Cabot [7]. Corresponding results for
Partial Differential Equations have been obtained by Amann and Diaz in [22]. Despite
certain formal analogies, our study clearly stands out from the study of optimization
algorithms using the notion of sharp minimum, because in our situation the sharpness
property relates to the velocity and not the function to be minimized.

Hessian driven damping The combination of viscous friction with dry friction and
Hessian driven damping has been considered by Adly and Attouch in [3–5]. Even if
the dynamic (5.1) requires that the potential f is twice differentiable, the associated
algorithm is a first-order one. In fact, since the term ∇2f(x(t))ẋ(t) is the time derivative
of ∇f(x(t)), we obtain that its temporal discretization contains only the gradients of f
at two consecutive steps, and is therefore relevant to first-order algorithms. The Hessian
driven damping has a natural connection with the strong damping property in mechanics
and physics, see [82]. It helps to control and attenuate the oscillation effects that occur
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naturally with inertial systems. The first result involving the Hessian-driven damping
concerned the dynamic with fixed viscous damping

(DIN)γ,β ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0

see [21]. The terminology (DIN) refers to the interpretation of this system as a (regularized)
Dynamic Inertial Newton method. Several recent papers have been devoted to the
combination of this dynamic with the Nesterov accelerated gradient method, see [34,
42, 60, 64, 95, 101, 138, 143].

Results Under suitable conditions on the damping parameters γ, β and the step size h, we
show that any sequence (xk)k generated by the algorithm (IPAHDD-C1) converges weakly
to a minimizer of f when f is convex, and to a critical point of f when f is a nonconvex
function which satisfies the Kurdyka-Lojasiewicz property. Moreover, the sequence (xk)k
follows the steepest descent method after a finite number of steps, and the summability
property is satisfied

∑
∥∇f(xk)∥2 < +∞. The convergence results tolerate the presence

of errors, under weak assumptions. When f is strongly convex, (IPAHDD-C1) achieves
exponential convergence. We show that various discretizations of the dynamic (5.1) lead to
different algorithms which share similar convergence properties, including the combination
of dry friction and Hessian-driven damping with the extrapolation method of Nesterov. We
finally consider corresponding splitting algorithms for composite minimization, including
the case of nonsmooth nonconvex d.c. programming, and Lasso problems.

Contents In section 5.2, we proceed with the Lyapunov analysis of the inertial proximal-
gradient algorithm (IPAHDD-C1). In section 5.3, we analyze the convergence properties
of (IPAHDD-C1) and successively examine the case of a general convex function f , then
the strongly convex case, and finally the case of a nonconvex function f which satisfies the
Kurdyka-Lojasiewicz property. In section 5.4, we show the robustness of the algorithm
(IPAHDD-C1) with respect to perturbations, and errors. In section 5.5, we examine two
variants of the algorithm which have a structure similar to that of the accelerated gradient
method of Nesterov. In section 5.6, based on the variational properties of Moreau’s
envelope, we extend our results to the case where f : H → R ∪ {+∞} is a convex
lower semicontinuous and proper function, and then we examine the case of nonsmooth
d.c. problems. In section 5.7 we extend our analysis to the case of additive composite
optimization problems of Lasso type, and obtain a corresponding splitting algorithm.
Section 5.8 is devoted to numerical experiments. We complete the chapter with some
concluding remarks and perspectives.
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5.2 Lyapunov analysis of the (IPAHDD-C1) algorithm

Given a constant step size h > 0, we consider the following temporal discretization of
(5.1), which is implicit with respect to the nonsmooth operator ∂φ, and explicit with
respect to the smooth operator ∇f :

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ

(
1

h
(xk+1 − xk) + β∇f(xk)

)
+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) ∋ 0. (5.2)

Set yk := 1
h
(xk − xk−1) + β∇f(xk−1), k ≥ 1. Let us reformulate (5.2) with the help

of yk. We obtain
yk+1 +

h
1+γh

∂φ(yk+1) ∋ 1
1+γh

yk +
(γβ−1)h
1+γh

∇f(xk).
Equivalently,

yk+1 = prox h
1+γh

φ

(
1

1 + γh
yk +

(γβ − 1)h

1 + γh
∇f(xk)

)
, (5.3)

which gives xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

∇f(xk)
)
.

Therefore, we obtain the following algorithm

(IPAHDD-C1)

Initialize : x0 ∈ H, x1 ∈ H.

yk =
1
h
(xk − xk−1) + β∇f(xk−1).

xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

∇f(xk)
)
.

Note that the discretization of the first order equivalent system in time and space introduced
in [27] leads to a similar algorithm.

5.2.1 Energy estimates

We can now state our main result concerning the algorithm (IPAHDD-C1).
Theorem 5.1 Let f : H → R be a differentiable function such that infH f > −∞, and
whose gradient is L-Lipschitz continuous. Assume that the friction potential φ : H → R
satisfies the dry friction property (DF)r for some r > 0. Suppose that the positive
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parameters h, γ, β satisfy the relation

hL ≤ 2γ

γβ + 1
. (5.4)

Let (xk)k be a sequence generated by (IPAHDD-C1). Then, the energy-like sequence (Ek)k

Ek :=
1

2
∥1
h
(xk − xk−1) + β∇f(xk−1)∥2 + (γβ + 1)

(
f(xk)− inf

x∈H
f(x)

)
is non-increasing, and the following energy properties are satisfied:

+∞∑
k=1

∥∇f(xk)∥2 < +∞ and
+∞∑
k=1

∥xk+1 − xk∥2 < +∞.

Proof. Multiplying (5.2) by h and rewriting it using yk, we obtain for k ≥ 1

yk+1 − yk + γ(xk+1 − xk) + h∂φ(yk+1) + h∇f(xk) ∋ 0. (5.5)

Taking the scalar product of (5.5) with yk+1, we obtain

∥yk+1∥2 − ⟨yk, yk+1⟩+ γ⟨xk+1 − xk,
1

h
(xk+1 − xk) + β∇f(xk)⟩+ h⟨∂φ(yk+1), yk+1⟩

+ h⟨∇f(xk),
1

h
(xk+1 − xk) + β∇f(xk)⟩ = 0.

Equivalently

∥yk+1∥2 − ⟨yk, yk+1⟩︸ ︷︷ ︸
A

+
γ

h
∥xk+1 − xk∥2 + (γβ + 1)⟨xk+1 − xk,∇f(xk)⟩︸ ︷︷ ︸

B

+h⟨∂φ(yk+1), yk+1⟩+ βh∥∇f(xk)∥2 = 0.

(5.6)

1) Estimate h⟨∂φ(yk+1), yk+1⟩. Using the convexity of φ and φ(0) = 0 = minH φ, we
have

h⟨∂φ(yk+1), yk+1⟩ ≥ hφ(yk+1). (5.7)

2) Estimate A. We have

A ≥ ∥yk+1∥2 − ∥yk∥∥yk+1∥ ≥ ∥yk+1∥2 −
1

2

(
∥yk+1∥2 + ∥yk∥2

)
=

1

2
∥yk+1∥2 −

1

2
∥yk∥2. (5.8)
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3) Estimate B. According to the classical gradient descent lemma, we obtain

B ≥ γ

h
∥xk+1 − xk∥2 + (γβ + 1)(f(xk+1)− f(xk)−

L

2
∥xk+1 − xk∥2) (5.9)

≥ (γβ + 1)(f(xk+1)− f(xk)) +

(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2

≥ (γβ + 1)(f(xk+1)− f(xk)).

where the last inequality follows from the assumption (5.4) on the parameters, which gives
equivalently γ

h
− L

2
(γβ + 1) ≥ 0. By combining (5.6), (5.7), (5.8) and (5.9), we obtain

1

2
∥yk+1∥2 −

1

2
∥yk∥2 + (γβ + 1)(f(xk+1)− f(xk)) + hφ(yk+1) + βh∥∇f(xk)∥2 ≤ 0. (5.10)

Equivalently

Ek+1 − Ek + hφ(yk+1) + βh∥∇f(xk)∥2 ≤ 0, (5.11)

where
Ek :=

1

2
∥yk∥2 + (γβ + 1)

(
f(xk)− inf

x∈H
f(x)

)
.

By summing the inequalities (5.11) from k = 1 to N , and using that Ek ≥ 0, we obtain

h
N∑
k=1

φ
(1
h
(xk+1 − xk) + β∇f(xk)

)
+ βh

N∑
k=1

∥∇f(xk)∥2 ≤ E1 − EN+1 ≤ E1.

Letting N → +∞, and since h, β are supposed to be positive, we obtain

+∞∑
k=1

∥∇f(xk)∥2 < +∞ and
+∞∑
k=1

φ
(1
h
(xk+1 − xk) + β∇f(xk)

)
< +∞. (5.12)

Since φ satisfies the dry friction property (DF)r for some r > 0, we also deduce that

+∞∑
k=1

∥1
h
(xk+1 − xk) + β∇f(xk)∥ < +∞, that is

+∞∑
k=1

∥yk∥ < +∞. (5.13)

Therefore, limk yk = 0, which implies ∥yk∥2 ≤ ∥yk∥ for k large enough, and hence∑+∞
k=1 ∥yk∥2 < +∞. This property, combined with

∑+∞
k=1 ∥∇f(xk)∥2 < +∞ immedi-

ately gives

+∞∑
k=1

∥xk+1 − xk∥2 < +∞.

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

96



Chapter 5 – First order inertial optimization algorithms with threshold effects associated
with dry friction

The proof is thereby completed.

5.2.2 Finite time transition to the steepest descent method

Let us now prove that after a finite number of steps, the sequence (xk)k follows the
steepest descent method.
Theorem 5.2 Let f : H → R be a differentiable function such that infH f > −∞, and
whose gradient is L-Lipschitz continuous. Assume that the friction potential φ : H → R
satisfies the dry friction property (DF)r for some r > 0. Suppose that the positive
parameters h, γ, β satisfy the relation

hL ≤ 2γ

γβ + 1
. (5.14)

Let (xk)k be a sequence generated by (IPAHDD-C1). Then, after a finite number of steps

1

h
(xk+1 − xk) + β∇f(xk) = 0,

i.e. the sequence (xk)k follows the steepest descent method.

Proof. The proof relies on Lemma 5.1. Recall that, according to (5.3), we have the follow-
ing equivalent formulation of the algorithm (IPAHDD-C1): yk+1 = prox h

1+γh
φ (zk) , where

zk =
1

1 + γh
yk +

(γβ − 1)h

1 + γh
∇f(xk).

According to (5.12), (5.13), and since the general term of a convergent series neces-
sarily goes to zero,

lim
k

∇f(xk) = lim
k
yk = 0.

According to the definition of zk, we get limk zk = 0. Therefore, there exists k0 ∈ N
such that for all k ≥ k0,

∥zk∥ ≤ hr

1 + γh
.

According to Lemma 5.1, this implies that yk+1 = prox h
1+γh

φ (zk) = 0 for all k ≥ k0.
Equivalently, 1

h
(xk+1 − xk) + β∇f(xk) = 0 for all k ≥ k0, which means that after a finite

number of steps, the sequence (xk)k follows the steepest descent algorithm. This completes
the proof.
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Remark 5.1 When H is of finite dimension, let us give another proof of the fact that
yk = 0 after a finite number of steps, i.e. , (xk)k follows the steepest descent. We argue
by contradiction, which leads to suppose that there exists a subsequence (ykl)l such that
∥ykl+1∥ > 0 for all l ∈ N. From (5.5), we have

−1

h
(ykl+1 − ykl)−

γ

h
(xkl+1 − xkl)−∇f(xkl) ∈ ∂φ(ykl+1).

Due to the monotoncity of the subdifferential ∂φ, we have

⟨−1

h
(ykl+1 − ykl)−

γ

h
(xkl+1 − xkl)−∇f(xkl)− ∂φ(0),

ykl+1

∥ykl+1∥
⟩ ≥ 0 ∀l ∈ N.

Since the sequence wl =
( ykl+1

∥ykl+1∥

)
l

is bounded in a finite dimensional space, it has a
convergent subsequence. For notational convenience, we use the same notation and
therefore assume wl → w. It is clear that ∥w∥ = 1. Letting l → ∞ in the above inequality,
it follows that

⟨∂φ(0), w⟩ ≤ 0.

Since B(0, r) ⊂ ∂φ(0), the above inequality implies that

⟨ru, w⟩ ≤ 0 ∀u ∈ B(0, 1).

Choose u = w, it follows that r∥w∥2 ≤ 0, and hence w = 0. This is a contradiction with
∥w∥ = 1.

5.2.3 Estimating the transition process

Let us give some information about the number of steps after which the iterates (xk)k follow
the steepest descent algorithm. According to the proof of Theorem 5.1, this is satisfied as
soon as ∥zk∥ ≤ hr

1+γh
, where zk = 1

1+γh
yk +

(γβ−1)h
1+γh

∇f(xk). Let us take advantage of the
summation estimates that we have obtained in the proof of Theorem 5.1, namely

+∞∑
k=1

∥yk∥ ≤ E1

hr
,

+∞∑
k=1

∥∇f(xk)∥2 <
E1

hβ
. (5.15)

According to the definition of zk, elementary algebra gives

∥zk∥2 ≤
2

(1 + γh)2
∥yk∥2 +

2(γβ − 1)2h2

(1 + γh)2
∥∇f(xk)∥2.
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According to (5.15) and the inequality
∑+∞

k=1 ∥yk∥2 ≤ (
∑+∞

k=1 ∥yk∥)2, we infer

+∞∑
k=1

∥zk∥2 ≤ 2

(1 + γh)2

(
E1

hr

)2

+
2(γβ − 1)2h2

(1 + γh)2
E1

hβ
.

Set M := 2
(1+γh)2

(
E1

hr

)2
+ 2(γβ−1)2h2

(1+γh)2
E1

hβ
. We have

+∞∑
k=1

∥zk∥2 ≥
2k∑
i=k

∥zi∥2 ≥ k inf
k≤i≤2k

∥zi∥2.

Therefore infk≤i≤2k ∥zi∥ ≤
√

M
k
. Combining the above results, we obtain that

k ≥ M(1 + hγ)2

h2r2
=⇒ ∃i, k ≤ i ≤ 2k such that

1

h
(xi+1 − xi) + β∇f(xi) = 0.

5.2.4 Exponential convergence rate of (yk) to zero

Recall that yk = 1
h
(xk − xk−1) + β∇f(xk−1), k ≥ 1.

Proposition 5.1 Set q = 1√
1+2γh

∈ (0, 1). Then, there exists k0 ∈ N such that

∥yk∥ ≤ qk−k0∥yk0∥ ∀k > k0.

Proof. The convergence rate of (yk)k can be established as follows. First, we have

yk+1 − yk + γ(xk+1 − xk) + h∂φ(yk+1) + h∇f(xk) ∋ 0.

Taking the scalar product of the above inclusion with yk+1, and using the convexity
of φ, we obtain

∥yk+1∥2 − ⟨yk, yk+1⟩+ γ⟨xk+1 − xk, yk+1⟩+ hφ(yk+1) + h⟨∇f(xk), yk+1⟩ ≤ 0. (5.16)

Since ∇f(xk) → 0, we have (γβ − 1)∇f(xk) ∈ ∂φ(0) for k sufficiently large due to the
dry friction condition. By definition of the subdifferential, we deduce that

φ(yk+1) ≥ (γβ − 1)⟨∇f(xk), yk+1⟩.

Equivalently

φ(yk+1) + ⟨∇f(xk), yk+1⟩ ≥ γβ⟨∇f(xk), yk+1⟩.
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According to the above inequality and the Cauchy-Schwarz inequality, from (5.16) we
deduce that

1

2
∥yk+1∥2 −

1

2
∥yk∥2 + γ⟨xk+1 − xk, yk+1⟩+ γβh⟨∇f(xk), yk+1⟩ ≤ 0.

Equivalently

1

2
∥yk+1∥2 −

1

2
∥yk∥2 + γh⟨1

h
(xk+1 − xk) + β∇f(xk), yk+1⟩ ≤ 0.

According to the definition of yk+1, this gives

(1 + 2γh)∥yk+1∥2 ≤ ∥yk∥2.

Set q = 1√
1+2γh

∈ (0, 1), we finally deduce that ∥yk+1∥ ≤ q∥yk∥ for k sufficiently large, say
k ≥ k0. Therefore,

∥yk∥ ≤ qk−k0∥yk0∥ ∀k > k0.

The proof is thereby completed.
We now analyze the convergence of the sequences (xk) generated by the algorithm

(IPAHDD− C1).

5.3 Convergence results

Let us state our main result concerning the convergence properties of the sequences gener-
ated by the algorithm (IPAHDD-C1). They rely on the fact that after a finite number of
steps the sequences follow the steepest descent method, and the well-known results relating
to this algorithm. We proceed with a unified statement, then examine successively the
different cases, f convex, strongly convex, and f non-convex satisfying the (KL) property.
Theorem 5.3 Let f : H → R be a differentiable function whose gradient is L-Lipschitz
continuous, and such that infH f > −∞. Assume that the friction potential φ : H → R
satisfies the dry friction property (DF)r for some r > 0. Suppose that the positive
parameters h, γ, β satisfy the relation

hL ≤ 2γ

γβ + 1
. (5.17)

Then for any sequence (xk)k generated by the algorithm (IPAHDD-C1), we have the
following convergence properties, described below based on the geometric properties of f :

(i) Case f convex with argminHf ̸= ∅. Then (xk)k converges weakly, and its limit is a
minimizer of f .

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

100



Chapter 5 – First order inertial optimization algorithms with threshold effects associated
with dry friction

(ii) Case f µ-strongly convex with parameter µ > 0 such that either hβ = 1
L

or hβ ≤
2

µ+L
.

Let x∞ be the unique minimizer of f . Then, we have linear strong convergence of
(xk)k to x∞.

(iii) Take H = RN and suppose that f : H → R satisfies the (KL) property. Then (xk)k
converges, and its limit is a critical point of f .

Proof. (i) According to Theorem 5.1, after a finite number of steps, say k ≥ k0

xk+1 = xk − hβ∇f(xk)

i.e. , the sequence (xk)k≥k0 follows the classical gradient scheme with the fixed step size
s = hβ > 0. It is then a classical result (see for example [51, Corollary 28.9]) that
the sequence converges weakly, and its limit is a minimizer of f , whenever the step
size s satisfies s = hβ < 2

L
. Clearly this is satisfied, because, under the assumption

(5.17) on the parameters, we have

hL ≤ 2γ

γβ + 1
<

2γ

γβ
=

2

β
.

Let us recall that the Opial’s lemma is the key ingredient to prove the weak conver-
gence of the iterates.
(ii) We have shown that, after a finite number of steps, the sequence (xk) follows

the steepest descent method. Therefore, the conclusion follows from the classical result
concerning the convergence rate of the steepest descent method for strongly convex
objective functions, see for example [48].
(iii) H = RN and f satisfies (KL). Basic facts concerning the (KL) properties are

recalled in the appendix. Since the sequence (xk) follows the steepest descent method, the
conclusion follows from the convergence result of Attouch, Bolte and Svaiter [26, Theorem
3.2] concerning the convergence of the gradient method for functions satisfying the (KL)
property.

The following theorem concerns the convergence property of the algorithm (IPAHDD− C1)

in the case where f is strongly convex and where the friction potential function φ is
under a different setting.
Theorem 5.4 Let f : H → R be a µ-strongly convex and smooth function whose gradient
is L-Lipschitz continuous. Let x∞ be the unique minimizer of f . Assume that the function
φ : H → R is a convex function which is differentiable and satisfies minξ∈H φ(ξ) = φ(0) = 0,
and whose gradient is Lipschitz continuous on any bounded subset of H such that
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(i) there exists a positive constant α such that for all u in some ball centered at zero in
H

⟨∇φ(u), u⟩ ≥ α∥u∥2.

(ii) there exist p ≥ 1, r > 0 such that for all u ∈ H, φ(u) ≥ r∥u∥p.
Suppose that the positive parameters h, γ, β satisfy the relation

γ

h
− L

2
(γβ + 1) ≥ 0.

Then, for any sequence (xk)k generated by the algorithm (IPAHDD− C1), we have expo-
nential convergence rate to zero as k → ∞ for f(xk)− f(x∞), ∥xk − x∞∥ and ∥yk∥, where
yk = 1

h
(xk−xk−1)+β∇f(xk−1). Moreover, if 1

h
−Lβ ≥ 0, we have exponential convergence

rates to zero as k → ∞, in the following ergodic sense: there exists C > 1 such that

(
1

h2
− Lβ

h
)

∑n
k=1(1 +

h
2β
)k∥xk − xk−1∥2∑n

k=1(1 +
h
2β
)k

+ β2

∑n
k=1(1 +

h
2β
)k∥∇f(xk−1)∥2∑n

k=1(1 +
h
2β
)k

= O
( 1

Cn

)
.

Proof. Repeating the proof of Theorem 5.1 with the awareness of the assumption
(ii), we infer that

∞∑
k=1

∥yk∥p <∞.

It follows that the sequence (yk)k is convergent to zero or in particular bounded. We
call K the Lipschitz constant of ∇φ on the bounded set containing {yk : k ∈ N}. As
a result, we have for all k ≥ 1

∥∇φ(yk)∥ ≤ K∥yk∥.

From assumption (i) and repeating the proof of Theorem 5.1, we have

1

2
∥yk+1∥2 −

1

2
∥yk∥2 + (γβ + 1)(f(xk+1)− f(xk)) + hα∥yk+1∥2 + βh∥∇f(xk)∥2 ≤ 0.

Set Ek = 1
2
∥yk∥2 + (1 − ϵβ + γβ)(f(xk) − f(x∞)) + ϵ⟨xk − x∞, yk⟩ where ϵ > 0 will

be chosen later. We have

Ek+1 − Ek =
1

2
∥yk+1∥2 −

1

2
∥yk∥2 + (1− ϵβ + γβ)(f(xk+1)− f(xk))

+ ϵ⟨xk+1 − x∞, yk+1⟩ − ϵ⟨xk − x∞, yk⟩.
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Now we estimate the last two terms in the above equality. We have

ϵ⟨xk+1 − x∞, yk+1⟩ − ϵ⟨xk − x∞, yk⟩ = ϵ⟨xk+1 − xk, yk+1⟩+ ϵ⟨xk − x∞, yk+1 − yk⟩.

Substituting yk+1 − yk by −γ(xk+1 − xk) − h∇φ(yk+1) − h∇f(xk) gives

ϵ⟨xk+1 − x∞, yk+1⟩ − ϵ⟨xk − x∞, yk⟩

= ϵ⟨xk+1 − xk, yk+1⟩+ ϵ⟨xk − x∞,−γ(xk+1 − xk)− h∇φ(yk+1)− h∇f(xk)⟩

=
ϵ

h
∥xk+1 − xk∥2 + ϵβ⟨xk+1 − xk,∇f(xk)⟩+ ϵh⟨x∞ − xk,∇f(xk)⟩

+ ϵ⟨xk − x∞, γ(xk − xk+1)− h∇φ(yk+1)⟩

≤ ϵ

h
∥xk+1 − xk∥2 + ϵβ(f(xk+1)− f(xk)) + ϵh⟨x∞ − xk,∇f(xk)⟩

+ ϵ∥xk − x∞∥(γ∥xk − xk+1∥+Kh∥yk+1∥)

≤ ϵ

h
∥xk+1 − xk∥2 + ϵβ(f(xk+1)− f(xk)) + ϵh⟨x∞ − xk,∇f(xk)⟩

+ ϵh
µ

2
∥xk − x∞∥2 + ϵh

2

( γ

h
√
µ
∥xk − xk+1∥+

K
√
µ
∥yk+1∥

)2
≤ ϵ

h
∥xk+1 − xk∥2 + ϵβ(f(xk+1)− f(xk)) + ϵh⟨x∞ − xk,∇f(xk)⟩

+
ϵhµ

2
∥xk − x∞∥2 + ϵγ2

hµ
∥xk − xk+1∥2 +

ϵhK2

µ
∥yk+1∥2.

To summarize, we have

ϵ⟨xk+1 − x∞, yk+1⟩ − ϵ⟨xk − x∞, yk⟩

≤ (
ϵ

h
+
ϵγ2

hµ
)∥xk+1 − xk∥2 + ϵβ(f(xk+1)− f(xk)) + ϵh(⟨x∞ − xk,∇f(xk)⟩

+
µ

2
∥xk − x∞∥2) + ϵhK2

µ
∥yk+1∥2

≤ (
ϵ

h
+
ϵγ2

hµ
)∥xk+1 − xk∥2 + ϵβ(f(xk+1)− f(xk)) + ϵh(f(x∞)− f(xk)) +

ϵhK2

µ
∥yk+1∥2.
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Accordingly, we have

Ek+1 − Ek

≤ 1

2
∥yk+1∥2 −

1

2
∥yk∥2 + (1 + γβ)(f(xk+1)− f(xk)) + (

ϵ

h
+
ϵγ2

hµ
)∥xk+1 − xk∥2

+ ϵh(f(x∞)− f(xk)) +
ϵhK2

µ
∥yk+1∥2

≤ −hα∥yk+1∥2 − βh∥∇f(xk)∥2 + (
ϵ

h
+
ϵγ2

hµ
)∥xk+1 − xk∥2 + ϵh(f(x∞)− f(xk))

+
ϵhK2

µ
∥yk+1∥2

= (
ϵhK2

µ
− hα)∥yk+1∥2 − βh∥∇f(xk)∥2 + (

ϵ

h
+
ϵγ2

hµ
)∥xk+1 − xk∥2 + ϵh(f(x∞)− f(xk))

≤ (
ϵhK2

µ
− hα + 2hϵ+

2hϵγ2

µ
)∥yk+1∥2 + (2hϵβ2 +

2hϵγ2β2

µ
− βh)∥∇f(xk)∥2

+ ϵh(f(x∞)− f(xk)).

We choose ϵ > 0 to be sufficiently small such that there exists C1 > 0 such that

Ek+1 − Ek ≤ −C1(∥yk+1∥2 + ∥∇f(xk)∥2 + f(xk)− f(x∞)). (5.18)

Moreover, for ϵ > 0 so small that 1 − ϵβ + γβ > 0, we have

Ek+1

=
1

2
∥yk+1∥2 + (1− ϵβ + γβ)(f(xk+1)− f(x∞)) + ϵ⟨xk+1 − x∞, yk+1⟩

=
1

2
∥yk+1∥2 + (1− ϵβ + γβ)(f(xk+1)− f(xk)) + ϵ⟨xk+1 − xk, yk+1⟩+

ϵ

h
⟨xk − x∞, xk+1 − xk⟩

+ ϵβ(⟨xk − x∞,∇f(xk)⟩+ f(x∞)− f(xk)) + (1 + γβ)(f(xk)− f(x∞))

≤ 1

2
∥yk+1∥2 + (1− ϵβ + γβ)(⟨∇f(xk), xk+1 − xk)⟩+

L

2
∥xk+1 − xk∥2) + ϵ⟨xk+1 − xk, yk+1⟩

+
ϵ

2h
∥xk − x∞∥2 + ϵ

2h
∥xk+1 − xk∥2 +

ϵβ

2µ
∥∇f(xk)∥2 + (1 + γβ)(f(xk)− f(x∞))

≤ 1

2
∥yk+1∥2 + (1− ϵβ + γβ)(∥∇f(xk)∥∥xk+1 − xk∥+

L

2
∥xk+1 − xk∥2) + ϵ∥xk+1 − xk∥∥yk+1∥

+
ϵ

2h

2

µ
(f(xk)− f(x∞)) +

ϵ

2h
∥xk+1 − xk∥2 +

ϵβ

2µ
∥∇f(xk)∥2 + (1 + γβ)(f(xk)− f(x∞)).

Taking into account that ∥xk+1 − xk∥ ≤ h2∥yk+1∥+ h2β∥∇f(xk)∥, we choose ϵ > 0 small
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enough so that there exists C2 > 0 satisfying

Ek+1 ≤ C2(∥yk+1∥2 + ∥∇f(xk)∥2 + f(xk)− f(x∞)). (5.19)

From (5.18) and (5.19), we have

Ek+1 ≤ C3Ek,

where C3 =
C2

C1+C2
∈ (0, 1). This apparently implies that Ek ≤ Ck−1

3 E1.

On the other hand,

Ek =
1

2
∥yk∥2 + (1− ϵβ + γβ)(f(xk)− f(x∞)) + ϵ⟨xk − x∞, yk⟩

≥ 1

2
∥yk∥2 + (1− ϵβ + γβ)(f(xk)− f(x∞))− ϵ

2
∥xk − x∞∥2 − ϵ

2
∥yk∥2

≥ (
1

2
− ϵ

2
)∥yk∥2 + (1− ϵβ + γβ − ϵ

µ
)(f(xk)− f(x∞)).

Choose ϵ > 0 to be small enough so that 1
2
− ϵ

2
> 0 and 1 − ϵβ + γβ − ϵ

µ
> 0. As a

result, there exists C4 > 0 such that

Ek ≥ C4(∥yk∥2 + f(xk)− f(x∞)).

From the above inequality, the strong convexity of f and the fact that Ek ≤ Ck−1
3 E1, we

derive the first part of the theorem.

Now we turn to the second part. In this part, recall that we assume 1
h
− Lβ ≥ 0.

We have shown that

Ck−1
3 E1 ≥ C4(∥yk∥2 + f(xk)− f(x∞)).
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Equivalently,

C5C
k−1
3 ≥ ∥yk∥2 + f(xk)− f(x∞), where C5 =

E1

C4

> 0

≥ 1

h2
∥xk − xk−1∥2 + β2∥∇f(xk−1)∥2 +

2β

h
⟨xk − xk−1,∇f(xk−1)⟩+ f(xk)− f(x∞)

≥ (
1

h2
− Lβ

h
)∥xk − xk−1∥2 + β2∥∇f(xk−1)∥2 +

2β

h
(f(xk)− f(xk−1)) + f(xk)− f(x∞)

≥ (
1

h2
− Lβ

h
)∥xk − xk−1∥2 + β2∥∇f(xk−1)∥2 + (

2β

h
+ 1)(f(xk)− f(x∞))

− 2β

h
(f(xk−1)− f(x∞)).

Set uk =
(h+ 2β)k+1

h(2β)k
(f(xk) − f(x∞)), k ≥ 0 and m = 1 + h

2β
> 1. Multiplying the

above inequality with mk gives

C5

C3

(C3m)k ≥ (
1

h2
− Lβ

h
)mk∥xk − xk−1∥2 + β2mk∥∇f(xk−1)∥2 + uk − uk−1.

Taking the sum on both sides of the above inequality over k = 1, 2, .., N gives

C5

C3

N∑
k=1

(C3m)k ≥ (
1

h2
− Lβ

h
)

N∑
k=1

mk∥xk − xk−1∥2 + β2

N∑
k=1

mk∥∇f(xk−1)∥2 + uN − u0.

This implies that

C5

C3

N∑
k=1

(C3m)k +
h+ 2β

h
(f(x0)− f(x∞)) ≥(

1

h2
− Lβ

h
)

N∑
k=1

mk∥xk − xk−1∥2

+ β2

N∑
k=1

mk∥∇f(xk−1)∥2.

The multiplication of the left hand side of the above inequality with 1∑N
k=1 m

k
is equal to

h(N) =


C5

C3

N(m−1)
mN+1−1

+ h+2β
h

(f(x0)− f(x∞)) m−1
mN+1−1

, C3m = 1,

C5

C3

(C3m)N+1−1
C3m−1

m−1
mN+1−1

+ h+2β
h

(f(x0)− f(x∞)) m−1
mN+1−1

, C3m ̸= 1.

It is straightforward to see that h(N) = O
(

1
CN

)
for some C > 1. This completes our

proof.
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With another different setting for the dry friction potential φ, we have the following theo-
rem which deals with nonconvex objective function f using the Kurdyka-Lojasiewicz theory.
We will consider in this case H = RN . We will show that the convergence of a sequence
generated by (IPAHDD-C1) is still achieved provided that some assumptions on f and φ
are imposed. First of all, let us recall the definition of the Kurdyka-Lojasiewicz property.

Definition 5.1 Let f : Rd → R be a proper and continuously differentiable function. f
is called to have the Kurdyka-Lojasiewicz (KL) property at u∗ which is a critical point of
f if there exists η ∈ (0,∞], a neighborhood U of u∗, and a concave, continuous function
θ : [0, η) → R+ which vanishes at 0, and which is smooth on (0, η), and such that θ′ > 0

such that

θ′(f(u)− f(u∗))∥∇f(u)∥ ≥ 1, ∀u ∈ U ∩ [f(u∗) < f < f(u∗) + η].

The function θ in the above definition is called the desingularizing function associated
with the KL function f . Now we state the convergence result.
Theorem 5.5 Let f : RN → R be a C2 function whose gradient is L-Lipschitz continuous,
and such that infRN f > −∞. Let φ : RN → R+ be a convex function which is differentiable.
Let (xn)n be a bounded sequence generated by (IPAHDD-C1). We make the following
assumptions on the data f, φ and the positive parameters γ, β, h:

• (assumptions on φ): Suppose that φ satisfies the following growth conditions: there
exist positive c, ϵ and δ such that φ(u) ≥ c∥u∥2 for all u ∈ RN , and ∥∇φ(u)∥ ≤ δ∥u∥
for all u with ∥u∥ ≤ ϵ.

• (assumptions on γ, β and h): Suppose that these parameters satisfy the following
relation

γ

h
− L

2
(γβ + 1) > 0,

1− βδ > 0.

• (assumption on f): Suppose that the function H satisfies the (KL) property, where
H : RN × RN → R is defined by

H(x, y) = (γβ + 1)f(x) +
1

2

∥∥∥1
h
(x− y) + β∇f(y)

∥∥∥2.
Moreover, f is supposed to satisfy∥∥∥− 1

h
IN + β∇2f(x)

∥∥∥ ≤ D, ∀x ∈ RN for some D ≥ 0.

Then, the following properties are fulfilled
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(i)
∑∞

n=1 ∥xn+1 − xn∥ <∞.
(ii) xn → x∞ as n→ ∞, where x∞ is a critical point of f .

Proof. Repeating the proof of Theorem 5.1, we have

Ek+1 − Ek + hφ(Xk+1) + βh∥∇f(xk)∥2 + (
γ

h
− L

2
(γβ + 1))∥xk+1 − xk∥2 ≤ 0,

where Xk and Ek are defined as in the proof of Theorem 5.1. From this inequality,
we can conclude that

∞∑
n=1

∥xk+1 − xk∥2 <∞, and hence ∥xk+1 − xk∥ → 0 as k → ∞,

∞∑
n=1

∥∇f(xk)∥2 <∞, and hence ∥∇f(xk)∥ → 0 as k → ∞,

and that

Ek+1 − Ek + (
γ

h
− L

2
(γβ + 1))∥xk+1 − xk∥2 ≤ 0.

Equivalently

H(xk+1, xk) + l∥xk+1 − xk∥2 ≤ H(xk, xk−1), (5.20)

where l = γ
h
− L

2
(γβ + 1) > 0.

Since f is bounded from below, this implies that

lim
k→∞

H(xk, xk−1) ∈ R.

Denote by ω((xn)n) the set of limit points of (xn)n and by crit(f) the set of critical points
of f , that is x ∈ crit(f) if and only if ∇f(x) = 0.
We notice that ω((xn)n) ⊂ crit(f). This together with the fact that xk+1 − xk → 0

implies that ω((xn+1, xn)n) ⊂ crit(H). From (5.20), we can infer that H is constant on
ω((xn+1, xn)n). Indeed, for x∗ ∈ ω((xn)n), we have

H(x∗, x∗) = (γβ + 1)f(x∗) = lim
k→∞

H(xk, xk−1).

Since H satisfies the (KL) property, we denote by θ its desingularizing function. Now, we
consider 2 cases.

Case 1: There exists k̄ such that H(xk̄+1, xk̄) = H(x∗, x∗). From the decreasing property
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(5.20), this follows that (xn)n is a constant sequence from which the conclusion is immediate.

Case 2: For all k ≥ 0, H(xk+1, xk) > H(x∗, x∗). Since θ is concave and θ′ > 0, we
derive from (5.20) that

∆k := θ(H(xk, xk−1)−H(x∗, x∗))− θ(H(xk+1, xk)−H(x∗, x∗))

≥ θ′(H(xk, xk−1)−H(x∗, x∗))(H(xk, xk−1)−H(xk+1, xk))

≥ θ′(H(xk, xk−1)−H(x∗, x∗))l∥xk+1 − xk∥2

≥ l∥xk+1 − xk∥2

∥∇H(xk, xk−1)∥
,

where the last inequality is true for sufficiently large k and obtained by applying Lemma 6
in [56] to the non empty compact set Ω = ω((xk+1, xk)k).
Moreover, a direct calculation yields

∇H(xk, xk−1) =

 (γβ + 1)∇f(xk) + 1
h

(
1
h
(xk − xk−1) + β∇f(xk−1)

)
(
− 1

h
IN + β∇2f(xk−1)

)(
1
h
(xk − xk−1) + β∇f(xk−1)

)
 .

Recall that we have the following equality

1

h2
(xk+1 − xk)−

1

h2
(xk − xk−1) +

γ

h
(xk+1 − xk) +∇φ( 1

h
(xk+1 − xk) + β∇f(xk))

+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) = 0.

According to the L-Lipschitz continuity of f , the growth conditions of φ and the fact that
1
h
(xk+1 − xk) + β∇f(xk) → 0, we have for k large enough that

∥∇f(xk)∥ ≤ (
1

h2
+
γ

h
+
δ

h
)∥xk+1 − xk∥+ (

1

h2
+
Lβ

h
)∥xk − xk−1∥+ δβ∥∇f(xk)∥,

or

(1− δβ)∥∇f(xk)∥ ≤ (
1

h2
+
γ

h
+
δ

h
)∥xk+1 − xk∥+ (

1

h2
+
Lβ

h
)∥xk − xk−1∥.

Since 1 − δβ > 0, this implies that there exists C1 > 0 such that

∥∇f(xk)∥ ≤ C1

(
∥xk+1 − xk∥+ ∥xk − xk−1∥

)
.
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With this inequality, we can also prove that there exists C2 > 0 such that

∥∇f(xk−1)∥ ≤ C2

(
∥xk+1 − xk∥+ ∥xk − xk−1∥

)
.

In view of the two above inequalities and the assumption
∥∥∥− 1

h
IN + β∇2f(xk−1)

∥∥∥ ≤ D,
we implies that there exists C3 > 0 such that

∥∇H(xk, xk−1)∥ ≤ C3

(
∥xk+1 − xk∥+ ∥xk − xk−1∥

)
.

Taking into account the above inequality, we continue the estimation of ∆k as follows

∆k ≥
l

C3

∥xk+1 − xk∥2

∥xk+1 − xk∥+ ∥xk − xk−1∥
.

Equivalently,

∥xk+1 − xk∥2 ≤
C3

l
∆k(∥xk+1 − xk∥+ ∥xk − xk−1∥),

which implies

∥xk+1 − xk∥ ≤
√
C3

l
∆k(∥xk+1 − xk∥+ ∥xk − xk−1∥)

≤ ∥xk+1 − xk∥+ ∥xk − xk−1∥
4

+
C3

l
∆k.

Finally we get for k large enough, say k ≥ k0

∥xk+1 − xk∥ ≤ 1

3
∥xk − xk−1∥+ C4∆k,

where C4 =
4C3

3l
.

Summing up the above inequality yields

∞∑
k=k0

∥xk+1 − xk∥ ≤ 1

2
∥xk0 − xk0−1∥+

3

2
C4θ(H(xk0 , xk0−1)−H(x∗, x∗)) <∞.

Since RN is complete, the above implies that (xn)n is a convergent sequence. The proof is
thereby completed.
Remark 5.2 If in addition to the assumptions of the above theorem, we assume that
f is coercive, then the boundedness of the sequence (xn)n is guaranteed. On the other
hand, if f is supposed further to be convex, then the last assumption on f is automatically
satisfied.

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

110



Chapter 5 – First order inertial optimization algorithms with threshold effects associated
with dry friction

In the above theorem, if the desingularizing function of H is of the form s 7→ cs1−ξ, ξ ∈
(0, 1/2], we can have a result concerning convergence rate of the sequence (xn)n. More
specifically,
Proposition 5.2 Under the assumptions of Theorem 5.5, we assume furthermore that
the desingularizing function of H is of the form s 7→ cs1−ξ, where ξ ∈ (0, 1/2]. Then there
exist c > 0 and Q ∈ [0, 1) such that

∥xk − x∞∥ ≤ cQk.

Proof. Recall from the previous proof that we have for k large enough

∥xk+1 − xk∥ ≤ 1

3
∥xk − xk−1∥+ C4∆k.

Summing up this inequality, we get

∞∑
p=k

∥xp+1 − xp∥ ≤ 1

2
∥xk − xk−1∥+

3

2
C4θ(H(xk, xk−1)−H(x∗, x∗)).

Set mk =
∑∞

p=k−1 ∥xp+1 − xp∥. We can express the above in terms of mk as follows

mk+1 ≤
1

2
(mk −mk+1) +

3

2
C4θ(H(xk, xk−1)−H(x∗, x∗)).

According to Lemma 6 of [56], we have for k large enough

θ′(H(xk, xk−1)−H(x∗, x∗)) ≥ 1

∥∇H(xk, xk−1)∥
.

In view of the form of θ, this implies that there exists C5 > 0 such that

(H(xk, xk−1)−H(x∗, x∗))ξ ≤ C5∥∇H(xk, xk−1)∥ ≤ C5C3

(
∥xk+1 − xk∥+ ∥xk − xk−1∥

)
.

Further we have

θ(H(xk, xk−1)−H(x∗, x∗)) = c.(H(xk, xk−1)−H(x∗, x∗))1−ξ.

Therefore we have there exists C6 > 0 such that

θ(H(xk, xk−1)−H(x∗, x∗)) ≤ C6

(
∥xk+1 − xk∥+ ∥xk − xk−1∥

) 1−θ
θ

≤ C6(mk+1 −mk+2 +mk −mk+1)
1−θ
θ .
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Coming back to the estimation of mk we have

mk+1 ≤
1

2
(mk −mk+1) +

3

2
C4C6(mk −mk+2)

1−θ
θ .

Since θ ∈ (0, 1/2], this follows 1−θ
θ

≥ 1. Hence, we get from the above inequality there
exists a > 0, b > 0 such that

mk+1 ≤ a(mk −mk+1) + b(mk −mk+2).

Equivalently

(1 + a)mk+1 − (a+ b)mk + bmk+2 ≤ 0.

Consider the equation bt2 − (1 + a)t− (a+ b) = 0. Clearly this equation has two distinct
solutions with opposite signs t1 and t2. WLOG, we assume that t1 < 0. Therefore

mk+2 − (t1 + t2)mk+1 + t1t2mk ≤ 0.

This follows that

mk+2 − t1mk+1 ≤ t2(mk+1 − t1mk).

Based the induction principle, this follows that there exist c > 0 and Q ∈ [0, 1) such
that for k large enough

mk+1 − t1mk ≤ cQk,

which, due to t1 < 0, implies mk+1 ≤ cQk. By noticing the following inequality

mk+1 =
∞∑
p=k

∥xp+1 − xp∥ ≥ ∥xk − x∞∥,

the proof is completed.

5.4 Errors, perturbations

Let us examine the effect of introducing errors, and then external perturbations.
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5.4.1 Errors

When ∇f(xk) is evaluated with an exogenous additive error ek, the algorithm becomes

(IPAHDD-C1-errors)

yk =
1
h
(xk − xk−1) + β(∇f(xk−1) + ek−1).

xk+1 = xk − βh(∇f(xk) + ek) + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

(∇f(xk) + ek)
)
.

The perturbed algorithm (IPAHDD-C1-errors) incorporates exogenous additive errors
denoted by ek. In each iteration, k, we calculate yk and xk+1 using the current, and past
states and gradients, along with exogenous errors. This refinement helps the algorithm
to handle situations where gradient calculations include added errors, which often occur
in real-world scenarios where exact gradient computations face inaccuracies. As a result,
the algorithm proves its adaptability and usefulness outside ideal situations.
Theorem 5.6 Let’s make the assumptions of Theorem 5.1 and suppose furthermore that
the inequality condition on γ, β and h in Theorem 5.1 is strict. Suppose that the sequence
(ek)k of perturbations, errors satisfies:∑

k ∥ek∥2 < +∞.

Then any sequence (xk)k generated by the algorithm (IPAHDD-C1-errors) satisfies
(i) 1

h
(xk+1 − xk) + β∇f(xk) = −βek after a finite number of steps.

(ii)
∑+∞

k=1 ∥∇f(xk)∥2 < +∞ and
∑+∞

k=1 ∥xk+1 − xk∥2 < +∞. So ∇f(xk) → 0,
xk+1 − xk → 0.

Proof. Let us reconstruct the dynamic with respect to yk from which this perturbed
algorithm is derived. By definition of yk, we have

yk+1 =
1

h
(xk+1 − xk) + β(∇f(xk) + ek). (5.21)

Dividing the second equation of (IPAHDD-C1-errors) by h, and reformulating it in
terms of yk+1, we obtain

yk+1 = prox h
1+γh

φ

(
1

1 + γh
yk +

(γβ − 1)h

1 + γh
(∇f(xk) + ek)

)
. (5.22)

By definition of the proximal operator, this gives

yk+1 +
h

1 + γh
∂φ(yk+1) ∋

1

1 + γh
yk +

(γβ − 1)h

1 + γh
(∇f(xk) + ek).
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Equivalently

(1 + γh)(yk+1 − yk) + h∂φ(yk+1) + γhyk ∋ (γβ − 1)h(∇f(xk) + ek).

This gives

(yk+1 − yk) + h∂φ(yk+1) + γhyk+1 − (γβ − 1)h(∇f(xk) + ek) ∋ 0.

According to (5.21) we obtain

(yk+1−yk)+h∂φ(yk+1)+γh
(1
h
(xk+1−xk)+β(∇f(xk)+ek)

)
−(γβ−1)h(∇f(xk)+ek) ∋ 0.

After simplification we get

(yk+1 − yk) + h∂φ(yk+1) + γ(xk+1 − xk) + h∇f(xk) ∋ −hek. (5.23)

The proof is now parallel to that of Theorem 5.1. Taking the scalar product of (5.23)
with yk+1, we obtain

∥yk+1∥2 − ⟨yk, yk+1⟩+ γ⟨xk+1 − xk,
1

h
(xk+1 − xk) + β(∇f(xk) + ek)⟩+ h⟨∂φ(yk+1), yk+1⟩

+ h⟨∇f(xk),
1

h
(xk+1 − xk) + β(∇f(xk) + ek)⟩ = −h⟨ek, yk+1⟩.

According to the assumption (5.14) on the parameters, similar calculation as in The-
orem 5.1 gives

1

2
∥yk+1∥2 −

1

2
∥yk∥2 + (γβ + 1)(f(xk+1)− f(xk)) +

(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2

+hr∥yk+1∥+ βh∥∇f(xk)∥2 ≤ h∥ek∥∥yk+1∥+ γβ∥ek∥∥xk+1 − xk∥+ hβ∥ek∥∥∇f(xk)∥.

Equivalently

Ek+1 − Ek + hr∥yk+1∥+ βh∥∇f(xk)∥2 +
(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2

≤ h∥ek∥∥yk+1∥+ γβ∥ek∥∥xk+1 − xk∥+ hβ∥ek∥∥∇f(xk)∥,

where
Ek :=

1

2
∥yk∥2 + (γβ + 1)

(
f(xk)− inf

x∈H
f(x)

)
.
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We deduce that

Ek+1 − Ek + h(r − ∥ek∥)∥yk+1∥+ βh∥∇f(xk)∥2 +
(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2

≤ γβ∥ek∥∥xk+1 − xk∥+ hβ∥ek∥∥∇f(xk)∥

≤ 1

2

(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2 +

γ2β2

2
(
γ
h
− L

2
(γβ + 1)

)∥ek∥2
+
1

2
βh∥∇f(xk)∥2 +

1

2
βh∥ek∥2

Since ek → 0, we obtain the existence of a constant C > 0 such that for k sufficiently large

Ek+1 − Ek +
hr

2
∥yk+1∥+

1

2
βh∥∇f(xk)∥2 +

1

2

(
γ

h
− L

2
(γβ + 1)

)
∥xk+1 − xk∥2 ≤ C∥ek∥2.

By summing the above inequalities we deduce that

+∞∑
k=1

∥∇f(xk)∥2 < +∞, and
+∞∑
k=1

∥yk∥ < +∞. (5.24)

Let us now prove that after a finite number of steps, the sequence (xk)k follows the
steepest descent method. The proof relies on Lemma 5.1. Recall that, according to
(5.22), we have yk+1 = prox h

1+γh
φ (zk) , where

zk =

(
1

1 + γh
yk +

(γβ − 1)h

1 + γh
(∇f(xk) + ek)

)
.

According to (5.24), since the general term of a convergent series necessarily tends towards
zero, we have that limk ∇f(xk) = limk yk = 0. Therefore, according to the definition
of zk, and since ek tends to zero, we have limk zk = 0. So, there exists k0 ∈ N such
that for all k ≥ k0,

∥zk∥ ≤ hr
1+γh

.

By Lemma 5.1, this implies that yk+1 = prox h
1+γh

φ (zk) = 0 for all k ≥ k0. Equivalently,
1
h
(xk+1 − xk) + β∇f(xk) = −βek for all k ≥ k0, which means that after a finite number of

steps, the sequence (xk) follows a perturbed steepest descent algorithm. This ends the
proof.

As a consequence of Theorem 5.6, and of the properties of the perturbed steepest
descent [120], we obtain the following convergence result.
Corollary 5.1 Under the summability assumption

∑
k ∥ek∥ < +∞, there is convergence

of the sequences (xk) generated by (IPAHDD-C1-errors) in the convex case, and in the
nonconvex case finite dimensional case under (KL).
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5.4.2 External perturbation

The algorithm (IPAHDD-C1) enjoys remarkable strutural stability. Consider the per-
turbed version of (5.1)

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ e(t),

where the right-hand side e(·) takes into account an external perturbation, of forcing term.
A temporal discretization similar to that in Section 5.2 gives

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ(

1

h
(xk+1 − xk) + β∇f(xk))

+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(xk) ∋ ek. (5.25)

Solving the above inclusion with respect to xk+1 gives the following algorithm:

(IPAHDD-C1-pert)

yk =
1
h
(xk − xk−1) + β∇f(xk−1).

xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

∇f(xk) + h
1+γh

ek

)
.

In the (IPAHDD-C1-pert) algorithm, we include ek to account for unexpected changes or
disturbances, often called external perturbations. These disturbances might come from
measurement noise, unpredictable data, or random elements in the optimization process
itself, common in real-world situations. By including ek, our algorithm can better handle
these unexpected changes. This makes the algorithm stronger and more flexible, allowing
it to work well in real-world applications, even when conditions are not perfect.
We have the following convergence results for this perturbed version of (IPAHDD-C1),
where we emphasize that the convergence results hold under a very weak assumption
on the perturbation terms.
Theorem 5.7 Let’s make the assumptions of Theorem 5.1, and suppose that the sequence
(ek)k of perturbations satisfies:

lim
k

∥ek∥ = 0 as k → +∞.

Then any sequence (xk)k generated by (IPAHDD-C1-pert) satisfies the following properties:

(i) 1
h
(xk+1 − xk) + β∇f(xk) = 0 after a finite number of steps.
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(ii)
∑+∞

k=1 ∥∇f(xk)∥2 < +∞ and
∑+∞

k=1 ∥xk+1 − xk∥2 < +∞. So ∇f(xk) → 0,
xk+1 − xk → 0.

(iii) The sequence (xk) converges in the following cases:
(a) f convex with argminHf ̸= ∅. Then (xk)k converges weakly, and its limit is a

minimizer of f .

(b) f : RN → R satisfies the (KL) property. Then (xk)k converges to a critical
point of f .

Proof. The proof is a direct adaptation of Theorem 5.1. The basic energy esti-
mate becomes

Ek+1 − Ek + (hr − ∥ek∥)∥yk+1∥+ βh∥∇f(xk)∥2 ≤ 0, (5.26)

where
Ek :=

1

2
∥yk∥2 + (γβ + 1)

(
f(xk)− inf

x∈H
f(x)

)
.

Since limk ∥ek∥ = 0, we deduce that for k large enough,

Ek+1 − Ek +
1

2
hr∥yk+1∥+ βh∥∇f(xk)∥2 ≤ 0. (5.27)

We conclude by similar arguments as in Theorem 5.1.
Remark 5.3 The above result suggests that, when combined with approximation or
variation of the data (f , φ, γ, β), the algorithm (IPAHDD-C) converges under minimal
assumptions, much weaker than the standard ones based on summability properties. In
particular, in order for FISTA or the gradient descent to preserve the convergence results in
the presence of perturbations, it is common practice to impose some stringent summability
conditions on the perturbations which might fail to be satisfied in practice. For instance,
FISTA when perturbed, has the same convergence results as in the error-free case as
long as the perturbations satisfy

∑
k∥ek∥ < +∞. On the other hand, the corresponding

condition for our algorithm is only that the perturbation sequence (ek) converges to 0,
which can cover various cases where

∑
k∥ek∥ < +∞ does not satisfy, for example when

∥ek∥ = 1/k.

5.5 Variants using Nesterov extrapolation method

We construct algorithms, still obtained by temporal discretizations of the differential inclu-
sion

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0,

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

117



Chapter 5 – First order inertial optimization algorithms with threshold effects associated
with dry friction

and which have an analogous structure to the accelerated gradient method of Nesterov
[114, 115]. Specifically, we consider the following discretization of the dynamic

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) + ∂φ(

1

h
(xk+1 − xk) + β∇f(xk))

+
β

h
(∇f(xk)−∇f(xk−1)) +∇f(zk) ∋ 0. (5.28)

There is some flexibility in the choice of the point zk where the gradient of f is computed.
By taking zk = xk, we obtain the algorithm (IPAHDD-C1) studied in section 5.2. In
this section, we consider two different choices for zk, which are in accordance with the
structure of the extrapolation step in the Nesterov accelerated gradient method (but here
the extrapolation coefficient is fixed, taken less than one):

5.5.1 Case 1

Take zk = xk +
1

1+γh
(xk − xk−1). With this choice of zk in (5.28), elementary calculation

gives the following algorithm:

(IPAHDD-C2)

Initialize : x0 ∈ H, x1 ∈ H.

zk = xk +
1

1+γh
(xk − xk−1).

wk =
1
h
(zk − xk) +

β
1+γh

∇f(xk−1) +
hβγ
1+γh

∇f(xk)− h
1+γh

∇f(zk)

xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ (wk) .

Theorem 5.8 Let f : H → R be a differentiable function whose gradient is L-Lipschitz
continuous, and such that infH f > −∞. Assume that the friction potential function
φ : H → R satisfies the dry friction property (DF)r for some r > 0. Suppose that the
positive parameters h, γ, β satisfy the relationγ > max {2hL, L/2} ,

β < min
{

γ+γ2h−2Lh
Lh

, 2+(2γ−L)h
γ2h+γ

}
.

Then any sequence (xk)k generated by the algorithm (IPAHDD-C2) satisfies the following
properties:

(i) 1
h
(xk+1 − xk) + β∇f(xk) = 0 after a finite number of steps.

(ii)
∑+∞

k=1 ∥∇f(xk)∥2 < +∞ and
∑+∞

k=1 ∥xk+1 − xk∥2 < +∞.
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Proof. Let us rewrite (5.28) with the help of yk = 1
h
(xk − xk−1) + β∇f(xk−1). Equiv-

alently, we have

yk+1 − yk + γ(xk+1 − xk) + h∂φ(yk+1) + h∇f(zk) ∋ 0.

By taking the scalar product of the above inclusion with yk+1 we obtain

∥yk+1∥2 − ⟨yk, yk+1⟩+ γ⟨xk+1 − xk, yk+1⟩+ h⟨∂φ(yk+1), yk+1⟩+ h⟨∇f(zk), yk+1⟩ = 0.

(5.29)

We can easily check that

γ⟨xk+1 − xk, yk+1⟩ =
γh

2
∥yk+1∥2 +

γ

2h
∥xk+1 − xk∥2 −

γhβ2

2
∥∇f(xk)∥2. (5.30)

According to the L-Lipschitz continuity of ∇f , we have

h⟨∇f(zk), yk+1⟩ =

h⟨∇f(zk)−∇f(xk), yk+1⟩+ h⟨∇f(xk), yk+1⟩

≥ −hL
1 + γh

∥xk − xk−1∥∥yk+1∥+ h⟨∇f(xk), yk+1⟩

=
−h2L
1 + γh

∥yk − β∇f(xk−1)∥∥yk+1∥+ h⟨∇f(xk), yk+1⟩

≥ −h2L
1 + γh

∥yk∥∥yk+1∥ −
h2Lβ

1 + γh
∥∇f(xk−1)∥∥yk+1∥+ h⟨∇f(xk), yk+1⟩

≥ −h2L
1 + γh

∥yk∥∥yk+1∥ −
h2Lβ

2(1 + γh)
(∥∇f(xk−1)∥2 + ∥yk+1∥2) + h⟨∇f(xk), yk+1⟩.

Moreover, according to the gradient descent lemma

h⟨∇f(xk), yk+1⟩ = βh∥∇f(xk)∥2 + ⟨∇f(xk), xk+1 − xk⟩

≥ βh∥∇f(xk)∥2 + f(xk+1)− f(xk)−
L

2
∥xk+1 − xk∥2.

By combining the two estimates above, we obtain

h⟨∇f(zk), yk+1⟩ ≥
−h2L
1 + γh

∥yk∥∥yk+1∥ −
h2Lβ

2(1 + γh)
(∥∇f(xk−1)∥2 + ∥yk+1∥2)

+ βh∥∇f(xk)∥2 + f(xk+1)− f(xk)−
L

2
∥xk+1 − xk∥2.

(5.31)

By combining (5.29), (5.30) and (5.31), and using the dry friction property φ(u) ≥ r∥u∥,
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we obtain

∥yk+1∥2 − ⟨yk, yk+1⟩+
γh

2
∥yk+1∥2 +

γ

2h
∥xk+1 − xk∥2 −

γhβ2

2
∥∇f(xk)∥2 + hr∥yk+1∥

− h2L

1 + γh
∥yk∥∥yk+1∥ −

h2Lβ

2(1 + γh)
(∥∇f(xk−1)∥2 + ∥yk+1∥2)

+ βh∥∇f(xk)∥2 + f(xk+1)− f(xk)−
L

2
∥xk+1 − xk∥2 ≤ 0.

Therefore,

(1 +
γh

2
− h2Lβ

2(1 + γh)
)∥yk+1∥2 − (1 +

h2L

1 + γh
)∥yk∥∥yk+1∥+ (

γ

2h
− L

2
)∥xk+1 − xk∥2

+ (βh− γhβ2

2
− h2Lβ

2(1 + γh)
)∥∇f(xk)∥2 +

h2Lβ

2(1 + γh)
(∥∇f(xk)∥2 − ∥∇f(xk−1)∥2)

+ f(xk+1)− f(xk) + hr∥yk+1∥ ≤ 0.

For each k ≥ 1 set

Ek :=
1

2
(1 +

γh

2
− h2Lβ

2(1 + γh)
)∥yk∥2 +

h2Lβ

2(1 + γh)
∥∇f(xk−1)∥2 + f(xk)− inf

H
f. (5.32)

We deduce that

Ek+1 − Ek +
1

2
(1 +

γh

2
− h2Lβ

2(1 + γh)
)∥yk+1∥2 − (1 +

h2L

1 + γh
)∥yk∥∥yk+1∥

+
1

2
(1 +

γh

2
− h2Lβ

2(1 + γh)
)∥yk∥2 + (

γ

2h
− L

2
)∥xk+1 − xk∥2

+ (βh− γhβ2

2
− h2Lβ

2(1 + γh)
)∥∇f(xk)∥2 + hr∥yk+1∥ ≤ 0.

According to the assumptions on γ, h and β, we have
γ
2h

− L
2
≥ 0,

βh− γhβ2

2
− h2Lβ

2(1+γh)
> 0.

Let us show that

1

2
(1 +

γh

2
− h2Lβ

2(1 + γh)
)∥yk+1∥2 − (1 +

h2L

1 + γh
)∥yk∥∥yk+1∥

+
1

2
(1 +

γh

2
− h2Lβ

2(1 + γh)
)∥yk∥2 ≥ 0.
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Indeed, a sufficient condition for this is1 + γh
2
− h2Lβ

2(1+γh)
> 0,

(1 + h2L
1+γh

)2 − (1 + γh
2
− h2Lβ

2(1+γh)
)2 ≤ 0.

which is equivalent to (since γ > 0, h > 0, β > 0)

1 +
h2L

1 + γh
≤ 1 +

γh

2
− h2Lβ

2(1 + γh)
,

or

β ≤ γ + γ2h− 2Lh

Lh
, (5.33)

which is fullfiled, according to our assumptions on γ, h and β. We have shown that

Ek+1 − Ek + (βh− γhβ2

2
− h2Lβ

2(1 + γh)
)∥∇f(xk)∥2 + hr∥yk+1∥ ≤ 0, (5.34)

where Ek has been defined in (5.32). By summing the above inequalities, we obtain

+∞∑
k=1

∥∇f(xk)∥2 < +∞,
+∞∑
k=1

∥yk∥ < +∞. (5.35)

Let us now prove that after a finite number of steps, the sequence (xk)k follows the
steepest descent method. The proof relies on Lemma 5.1. Recall the following equivalent
formulation of (IPAHDD-C2)

yk+1 = prox h
1+γh

φ (wk) ,

where

wk =
1

h
(zk − xk) +

β

1 + γh
∇f(xk−1) +

hβγ

1 + γh
∇f(xk)−

h

1 + γh
∇f(zk).

According to (5.35), and since the general term of a convergent series necessarily goes to zero,
we have that limk ∇f(xk) = limk yk = 0. By definition of yk this implies limk(xk−xk−1) = 0,
and hence limk(zk − xk) = 0. According to the Lipschitz continuity of ∇f , we have

∥∇f(zk)∥ ≤ ∥∇f(zk)−∇f(xk)∥+ ∥∇f(xk)∥

≤ L∥zk − xk∥+ ∥∇f(xk)∥ −→ 0 as k tends to +∞.
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Taking into account all these observations, we easily deduce that limk wk = 0. Therefore,
there exists k0 ∈ N such that for all k ≥ k0,

∥wk∥ ≤ hr
1+γh

.

According to Lemma 5.1, this implies that yk+1 = prox h
1+γh

φ (wk) = 0 for all k ≥ k0.
Equivalently, 1

h
(xk+1 − xk) + β∇f(xk) = 0 which means that after a finite number of steps,

the sequence (xk) follows the steepest descent algorithm. This completes the proof.

5.5.2 Case 2

Take zk = xk +
1

h(1+γh)
(xk − xk−1) in (5.28). With this choice of zk, elementary calculation

gives the following algorithm:

(IPAHDD-C3)

Initialize : x0 ∈ H, x1 ∈ H.

zk = xk +
1

h(1+γh)
(xk − xk−1).

wk = zk − xk +
β

1+γh
∇f(xk−1) +

hβγ
1+γh

∇f(xk)− h
1+γh

∇f(zk)

xk+1 = xk − βh∇f(xk) + h prox h
1+γh

φ (wk) .

A similar proof to the one of Theorem 5.8 gives
Theorem 5.9 Let f : H → R be a differentiable function whose gradient is L-Lipschitz
continuous, and such that infH f > −∞. Assume that the friction potential function
φ : H → R satisfies the dry friction property (DF)r for some r > 0. Suppose that the
positive parameters h, γ, β satisfy the relationγ > max

{
L
2h
, 2L,Lh

}
,

β < min
{

2+2γh−L
γ(1+γh)

, γ+hγ2−2L
L

}
.

Then any sequence (xk)k generated by the algorithm (IPAHDD-C3) satisfies the following
properties:

(i) 1
h
(xk+1 − xk) + β∇f(xk) = 0 after a finite number of steps.

(ii)
∑∞

k=1 ∥∇f(xk)∥2 < +∞ and
∑∞

k=1 ∥xk+1 − xk∥2 < +∞.
Remark 5.4 As an immediate consequence of Theorem 5.8 and 5.9, and of the classical
properties of the steepest descent method, we obtain the convergence of the sequence (xk)

in the convex case, and in the nonconvex case under (KL). Similar results are still valid
for the perturbed version of these algorithms.
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Remark 5.5 In Theorems 5.8 and 5.9, a crucial assumption is γ > max {2hL, L/2},
resp. γ > max {L/2h, 2L,Lh}. Thus the viscous damping coefficient γ must remain
sufficiently large. The above approach excludes the case where the viscous damping
tends asymptotically to zero. It seems difficult to combine dry friction with the Nesterov
accelerated gradient method because dry friction involves a finite time stabilization property
whereas Nesterov method is based on the asymptotic vanishing of the damping coefficient.

5.6 Nonsmooth problems

We consider the extension of our study to two nonsmooth situations: the nonsmooth
convex case, and the nonsmooth d.c. optimization.

5.6.1 Nonsmooth convex case

Suppose that f : H → R ∪ {+∞} is a closed, convex and proper function such that
argminHf ̸= ∅. We will reduce to the smooth case by means of the Moreau-Yosida
approximation of f . Recall that the Moreau envelope of f of index λ > 0 is the function
fλ : H → R defined by, for all x ∈ H,

fλ(x) = minξ∈H
{
f(ξ) + 1

2λ
∥x− ξ∥2

}
.

As a classical result, fλ is convex, differentiable and its gradient is 1
λ
-Lipschitz continuous.

Moreover, we have argminHf = argminHfλ and minH f = minH fλ. One can consult
[29, 51, 62] for an in-depth study of the properties of the Moreau envelope in a Hilbert
framework. Exploiting this property of the Moreau envelope, we can equivalently consider
the problem in which f is substituted by its Moreau envelope, and hence we recover the
smooth case. Since ∇fλ(x) = 1

λ
(x− proxλf(x)), we obtain the following algorithm:

(IPAHDD-C-nonsmooth)

Initialize : x0 ∈ H, x1 ∈ H.
yk =

1
h
(xk − xk−1) +

β
λ
(xk − proxλf (xk−1))

wk =
1

1+γh
yk +

(γβ−1)h
(1+γh)λ

(xk − proxλf (xk))

xk+1 = xk − βh
λ
(xk − proxλf (xk)) + h prox h

1+γh
φ (wk)

The two nonsmooth functions f and φ enter the algorithm via their proximal mappings.
In addition, these proximal steps are computed independently, which makes the algorithm
(IPAHDD-C-nonsmooth) a splitting algorithm. Based on the properties of the Moreau
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envelope, a direct adaptation of Theorem 5.1 gives the following convergence results
for (IPAHDD-C-nonsmooth).
Theorem 5.10 Let f : H → R ∪ {+∞} be a closed, convex, proper function such that
argminHf ̸= ∅. Assume that the friction potential function φ : H → R satisfies the dry
friction property (DF)r for some r > 0. Suppose that the positive parameters h, γ, β, λ
satisfy the relation

γ
h
− 1

2λ
(γβ + 1) ≥ 0.

Then any sequence (xk)k generated by the algorithm (IPAHDD-C-nonsmooth) converges
weakly and its limit is a minimizer of f . Moreover,

(i) 1
h
(xk+1 − xk) +

β
λ
(xk − proxλf (xk)) = 0 after a finite number of steps;

(ii)
∑+∞

k=1 ∥xk − proxλf (xk)∥2 < +∞.

Proof. By replacing the Lipschitz constant L in Theorem 5.1 by 1
λ
, and using the

equality ∇fλ(xk) = 1
λ
(xk − proxλf (xk)), the result follows immediately.

Remark 5.6 It is worth mentioning that under the assumptions on the parameters in
the above theorem, the first item is a relaxed proximal point algorithm

xk+1 = xk +
hβ

λ
(proxλf (xk)− xk),

where the relaxation parameter hβ/λ < 2. Since proxλf is firmly nonexpansive, the
convergence can be also derived within the theory of Krasnosel’skǐı-Mann iteration (see
Corollary 5.15 in [51])

5.6.2 Nonsmooth nonconvex d.c. problems

Suppose that f = g − h where g, h : H → R ∪ {+∞} are closed, convex and proper
functions. Following Hiriart-Urruty [86], consider the problem in which f is substituted by
the difference of the Moreau envelopes of g and h, so recovering the smooth case. Given
λ > 0, according to the properties of the Moreau envelope, the regularized function
ψλ : H → R defined by

ψλ = gλ − hλ,

is differentiable and its gradient is 2
λ

Lipschitz continuous. Moreover, if x is a criti-
cal point of ψλ, we have

∇ψλ(x) = ∇gλ(x)−∇hλ(x)

= −1

λ

(
proxλg(x)− proxλh(x)

)
= 0.
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Therefore, u := proxλg(x) = proxλh(x), and the point u, which is so defined, verifies
∂g(u) − ∂h(u) ∋ 0, which is a critical point of f = g − h in the sense of Toland [144].
The algorithm now writes

(IPAHDD-CDC)

Initialize : x0 ∈ H, x1 ∈ H.

yk =
1
h
(xk − xk−1)− β

λ
(proxλg(xk−1)− proxλh(xk−1))

xk+1 = xk +
βh
λ
(proxλg(xk)− proxλh(xk))

+h prox h
1+γh

φ

(
1

1+γh
yk − (γβ−1)h

(1+γh)λ
(proxλg(xk)− proxλh(xk))

)

According to the above results, a direct adaptation of Theorem 5.1 gives the following result:
Theorem 5.11 Let f = g− h where g, h : H → R∪ {+∞} are closed, convex and proper
functions. Assume that the friction potential φ : H → R satisfies the dry friction property
(DF)r for some r > 0. Take λ > 0, and suppose that the positive parameters h, γ, β
satisfy the relation

h

λ
≤ γ

γβ + 1
. (5.36)

Then, for any sequence (xk)k generated by the algorithm (IPAHDD-CDC), we have that
(xk)k satisfies

(i) 1
h
(xk+1 − xk) + β(∇gλ(xk)−∇hλ(xk)) = 0 after a finite number of steps.

(ii)
∑∞

k=1 ∥∇gλ(xk)−∇hλ(xk)∥2 < +∞ and
∑∞

k=1 ∥xk+1 − xk∥2 < +∞.
(iii) If H is a finite dimensional space, and gλ − hλ verifies the (KL) property, then the

sequence (xk) converges to some x∞ such that u := proxλg(x∞) = proxλh(x∞) is a
critical point in the sense of Toland of f = g − h, i.e. ,

∂g(u)− ∂h(u) ∋ 0.

Remark 5.7 As a particular case of practical importance, suppose that g and h are convex
functions which are semialgebraic. Then their Moreau envelopes are still semialgebraic [26],
and so is the difference of their Moreau envelopes. In this case, we have that gλ − hλ
verifies the (KL) property, and so the above convergence result is valid in this nonsmooth
nonconvex situation.
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5.7 Splitting algorithms for the Lasso-type problems

Take H = Rn. We consider Lasso-type splitting algorithms for additively structured
minimization problems. The function f to be minimized is written as

f(x) = 1
2
∥Ax− b∥2 + g(x),

where A is an m× n matrix, b ∈ Rm and g : Rn → R ∪ {+∞} is a closed, convex proper
function.
A direct application of the nonsmooth algorithm (IPAHDD-C-nonsmooth) to this minimiza-
tion problem would require calculating (at least approximately) the proximal operator of f .
It’s not easy in general. To overcome this difficulty, we use a change of metric, a technique
already used in [3], [34]. For a symmetric and positive definite matrix M ∈ Rn×n, we denote
by ⟨·, ·⟩M = ⟨M ·, ·⟩ the scalar product on Rn induced by M , and by ∥ · ∥M the associated
norm. For a given closed, convex function f , the Moreau’s envelope of index λ > 0 associ-
ated with the metric induced by M is the function fM

λ : H → R defined by, for x ∈ Rn,
fM
λ (x) = minξ∈H

{
f(ξ) + 1

2λ
∥x− ξ∥2M

}
.

The Moreau envelope fM
λ is a smooth function whose gradient for the Euclidean struc-

ture is given by

∇fM
λ (x) =

1

λ
M(x− proxMλf (x)), (5.37)

where proxMλf(x) = argminξ∈H
{
f(ξ) + 1

2λ
∥x− ξ∥2M

}
. As a classical result, ∇fM

λ is 1
λ
-

Lipschitz continuous for the norm ∥ · ∥M . From this, by using classical linear algebra,
we easily deduce that

∥∇fM
λ (x1)−∇fM

λ (x2)∥ ≤ 1

λ

√
µmax(M)

µmin(M)
∥x1 − x2∥ ∀x1 ∈ H, x2 ∈ H,

where µmin(M) and µmax(M) are respectively the smallest and the largest eigenvalue of
M .
We set M = In − λATA. If λ ∈ [0, 1

∥A∥2 [, then M is symmetric positive definite. In
this case, we have

proxMλf (x) = proxλg(x− λAT (Ax− b)). (5.38)

The formula (5.38) can be consulted in [66, section 4.6, p. 190]. Using (5.37) and
(5.38), we get

∇fM
λ (x) =

1

λ
M(x− proxλg(x− λAT (Ax− b))).
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Since argminHf
M
λ = argminHf , we can replace f with fM

λ to recover the smooth case,
and obtain

(IPAHDD-C-lasso)

Initialize : x0 ∈ H, x1 ∈ H.

zk =
1
λ
M(xk − proxλg(xk − λAT (Axk − b))).

yk =
1
h
(xk − xk−1) + βzk−1.

xk+1 = xk − βhzk + h prox h
1+γh

φ

(
1

1+γh
yk +

(γβ−1)h
1+γh

zk

)
.

Theorem 5.12 Let A be an m × n matrix, b ∈ Rm and g : Rn → R ∪ {+∞} be a
closed, convex proper function. Take f = 1

2
∥A · −b∥2 + g and suppose that argminRnf ̸= ∅.

Assume that φ : Rn → R satisfies the dry friction property (DF)r for some r > 0. Set
M = In − λATA with λ ∈ [0, 1

∥A∥2 [, and suppose that the positive parameters h, γ, β, λ
satisfy the relation

γ
h
− 1

2λ

√
µmax(M)
µmin(M)

(γβ + 1) ≥ 0.

Then, for any sequence (xk)k generated by the algorithm (IPAHDD-C-lasso), we have that
(xk)k converges, and its limit is a minimizer of f . Moreover

(i) 1
h
(xk+1 − xk) + βzk = 0 after a finite number of steps;

(ii)
∑∞

k=1 ∥zk∥2 < +∞, where zk =
1
λ
M(x− proxλg(x− λAT (Ax− b))).

Proof. Replacing the Lipschitz constant L in Theorem 5.1 by 1
λ

√
µmax(M)/µmin(M),

and recalling that zk = ∇fM
λ (xk), then the result follows immediately.

5.8 Some numerical experiments

We use the performance profiles developed by Dolan and Moré as a tool for comparing
different solvers. For each t ∈ R, the performance profiles give the proportion ρs(t) of test
problems on which each solver s under comparison has a performance within the factor t
of the best possible ratio. We choose the number of iterations found by each solver as a
performance measure. We give a brief description of the performance profiles as follows
(for more details, we refer to [72])
Let S be the set of the solvers that will be compared and ns the number of solvers.
The performance ratio is defined by

rp,s = log2

(
tp,s

min {tp,s : s ∈ S}

)
,
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where p ∈ P , s ∈ S, and tp,s is the performance measure (the number of iterations in our
case).
The performance of the solver s ∈ S is defined by

ρs(t) =
1

np

size {p ∈ P : rp,s ≤ t},

where, np is the number of problems, and t is a real factor.

5.8.1 Comparing the three algorithms (IPAHDD-C1), (IPAHDD-

C2) and (IPAHDD-C3)

We perform numerical tests to compare the algorithms defined in the previous sections,
and which deal with general differentiable function f with Lipschitz continuous gradient.
We take φ : Rn → R given by x 7→ φ(x) = r∥x∥, r = 0.1. First consider the simple
situation where the function f : Rn → R is quadratic

f(x) = 1
2
∥Ax− b∥2, A ∈ Rm×n, (m ≤ n), b ∈ Rm are chosen randomly.

The matrices A are generated randomly. We have chosen a set P of 40 different problems
with 40 matrices A ∈ Rm×n. The numerical experiments are carried out on an ordinary
computer. All the codes are written and executed in MATLAB R2019a. We use the same
initial points and the same stopping criterion, i.e., either the number of iterations exceeds
105 or ∥∇f(xk)∥ ≤ 10−6. Regarding the choices of parameters h, β and γ, depending on
the considered algorithm the parameters are chosen such that the assumptions in Theorem
5.1, or in Theorem 5.8, or in Theorem 5.9 are satisfied. In particular, the parameter
selections are as follows.
For (IPAHDD-C1), to respect the condition in Theorem 5.1 we chose γ = 0.3, β = 1, and

h =
2γ

L(γβ + 1)
.

For (IPAHDD-C2), to respect the condition in Theorem 5.8 we chose h = 0.5, and

γ = 1.001max {2Lh, L/2} ,

β = 0.99min

{
γ + γ2h− 2Lh

Lh
,
2 + (2γ − L)h

γ2h+ γ

}
.
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For (IPAHDD-C3), to respect the condition in Theorem 5.9 we chose h = 0.5, and

γ = 1.001max

{
L

2h
, 2L,Lh

}
,

β = 0.99min

{
2 + 2γh− L

γ(1 + γh)
,
γ + hγ2 − 2L

L

}
.

For other variants of the algorithms, the parameters are chosen in the same spirit.
Figure 5.1(a) reveals that (IPAHDD-C2) is the most efficient method out of the three
in the sense that it requires the least number of iterations to reach a solution. Despite
their good convergence properties, the algorithms which are based on the dry friction
damping are not as fast as the FISTA method. This is easily understandable since our
methods are proved to follow the steepest descent method regime after a finite number of
steps. However, the situation is reversed if we introduce perturbations in the algorithms,
as shown in the following experiments.

(a) (b)

Figure 5.1: Performance profiles of (IPAHDD-C1), (IPAHDD-C2) and (IPAHDD-C3) (left),
(IPAHDD-C1-pert), (IPAHDD-C2-pert), (IPAHDD-C3-pert), (FISTA-pert), (Gradient-pert) and
(Heavyball-pert) (right).

Following the suggestion of an anonymous reviewer, we conduct an experiment which
compares a model algorithm, IPAHDD-C1, with the gradient descent (GD) and FISTA
in the error-free case so that we can see the behavior of the algorithm at the early stage.
Specifically, we test the three algorithms on the following toy least squares problem with
the objective function f(x1, x2) = 1

2
(x21+1000x22). As we can see from Figure 5.2, since our

algorithm eventually becomes the gradient descent, it is reasonable that it performs slower
than FISTA. At the early stage of (IPAHDD-C1) where the inertial effects are involved, we
can see the oscillation effects which are commonly observed in inertial algorithms. After
that, it loses its inertial effects and becomes the gradient descent. Indeed, we observe a
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Figure 5.2: A concrete comparison between (IPAHDD-C1), FISTA and the gradient descent

linear convergence at the final stage of the algorithm, which is consistent with the strong
convexity of the function considered. In addition, the convergence of (IPAHDD-C1) is
comparable with the gradient descent.

5.8.2 Introducing errors

Recall that for the heavy ball method, introducing errors (ek) does not affect the fast
convergence property as long as

∑
∥ek∥ < +∞. For the FISTA algorithm, the condition

is even more stringent, we need to assume that
∑
k∥ek∥ < +∞, see [35, Theorem 5.1]

and [134]. A unified presentation of these results is given in [33, Theorem 2.1]. By contrast,
in our situation, to preserve the convergence properties, we just need to assume that
limk ∥ek∥ = 0. For the development of perturbations aspects of first order optimization
methods, interested readers can consult [33, 35,44,46,47,50,53,134,140,147], and [38] in
the case of the Hessian driven damping. We will now compare the perturbed versions of
our algorithms, namely (IPAHDD-C1-pert), (IPAHDD-C2-pert) and (IPAHDD-C3-pert)
(the two latter are respectively the perturbed version of (IPAHDD-C2) and (IPAHDD-C3)
and defined in the same way as (IPAHDD-C1-pert)) with the perturbed gradient method,
the perturbed Heavy Ball method and the perturbed FISTA method which are given below

(Gradient-pert)
Initialize : x0 ∈ Rn.

xk = xk−1 − γ(∇f(xk−1) + ek).

(Heavyball-pert)
Initialize : x0 ∈ Rn.

xk+1 = xk + α(xk − xk−1)− γ(∇f(xk) + ek).
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(FISTA-pert)

Initialize : y0 = x0 ∈ Rn, (tk)k≥1 : tk =
k+1
2
.

xk = yk−1 − γ(∇f(yk−1) + ek).

yk = xk +
tk−1
tk+1

(xk − xk−1).

The sequence (tk)k in the above algorithm satisfies t1 = 1 and t2k ≥ t2k+1 − tk+1. Under
this property, Beck and Teboulle [52] showed the O(1/k2) convergence rate for the above
algorithm in the error-free case, i.e. when ek = 0, ∀k ≥ 1. Indeed, as explained above,
under the summability property

∑
k∥ek∥ < +∞, the convergence rate is as in the

error-free case (see [35] or [134]). For numerical purposes, we choose the sequence (ek)

such that ∥ek∥ = 1/k; in fact, for each k we choose a random vector ξ ∈ Rn with the
uniform distribution on ]0, 1[n and then set ek = (1/(k∥ξ∥))ξ. In this way, the conditions∑
k∥ek∥ < +∞ and

∑
∥ek∥ < +∞ are not satisfied, which allows us to check the advantage

of our methods in presence of perturbations compared to (FISTA-pert), (Gradient-pert) and
(Heavyball-pert). We use performance profiles on the quadratic problem, as we did before
to carry out this comparison. As anticipated, we can see from Figure 5.1(b) that FISTA, the
gradient method and the Heavy Ball method suffer substantially from the perturbations
when the conditions

∑
k∥ek∥ < +∞ and

∑
∥ek∥ < +∞ are not satisfied, while the

proposed algorithms prove their robustness and preserve their behavior as in the non-
perturbed case. This naturally leads to considering stochastic versions of our algorithms.
Remark 5.8 Let us recall the dynamical system corresponding to the algorithm (IPAHDD-C1-pert)
(also (IPAHDD-C2-pert) and (IPAHDD-C3-pert))

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ e(t). (5.39)

In a mechanical context, the error t 7→ e(t) is interpreted as external forces or excitation
applied to a mechanical system. We know that IPAHDD-C1-pert are obtained by temporal
discretizations of this dynamical system. On the other hand, we would like to emphasize
that (Gradient-pert), (Heavyball-pert) and (FISTA-pert) are actually the discretizations
of the following dynamical system (see [35])

ẍ(t) +
γ

t
ẋ(t) +∇f(x(t)) = e(t). (5.40)

Here, it should be noticed that the equation (5.40) is a just special case of the inclusion
(5.39) in which we set β = 0, φ ≡ 0, and the viscous damping coefficient is time dependent
and of the form γ(t) = γ

t
. This means that the inclusion (5.39) and the equation (5.40)

have the same continuous structure. In the temporal discretizations of these dynamics, the
term e(t) becomes ek, that could be interpreted as a perturbation coming from an external
force. Therefore, comparing discretized versions of them is a totally fair comparison.
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Another comment is that if we look at the equation 5.40, the perturbations in (Gradient-
pert), (Heavyball-pert) and (FISTA-pert) should not be understood as born in the
calculations of the gradients but should be understood as independent external errors.
The reason why the formulas of these three algorithms seem like that they deal with
gradient-associated errors is because they involve only one gradient term in their formulas.
This is unlike our algorithms, where we have some additional “correcting terms” related to
the gradients which stem from the dry friction and the Hessian driven damping.

5.8.3 Nonsmooth nonconvex d.c. problems

Let us illustrate the algorithm (IPAHDD-CDC) with nonsmooth nonconvex problems of
DC type. Given n ≥ 2, consider the function f : Rn → R defined by

f(x) = ∥Ax− b∥22 − ∥AT b∥2∥x∥2, (5.41)

where A is an orthogonal matrix of order n and b ∈ Rn. We choose 5 random orthogonal
matrices A of size ranging from 20 to 60 while b has all its coordinates equal to one.
To apply the algorithm (IPAHDD-CDC), we rely on the “trivial” DC decomposition
f = g − h where g : x 7→ ∥Ax − b∥22 and h : x 7→ ∥AT b∥2∥x∥2. Clearly, g and h are
semialgebraic. The orthogonality of A is assumed only to facilitate the computations
of proxg. Therefore, according to Remark 5.7, we have that gλ − hλ satisfies the (KL)
property for λ > 0. As a result, under the assumptions of Theorem 5.11, the sequence
(xk) generated by the algorithm (IPAHDD-CDC) converges to some x∞, and proxλh(x∞)

is a critical point of f in the sense of Toland. It is easy to show that u is a critical
point of f in the sense of Toland if and only if u ≠ 0 and 2AT (Au − b) − ∥AT b∥2u

∥u∥2 = 0.
The stopping condition we use for (IPAHDD-CDC) is either the number of iterations
exceeding 105 or uk ̸= 0 and

∥∥∥2AT (Auk − b)− ∥AT b∥2uk

∥uk∥2

∥∥∥
2
≤ 10−6. Figure (5.3) depicts the

behavior of the quantities ∥∂g(uk)− ∂h(uk)∥ and
∥∥∥ 1
h
(xk+1−xk)+β(∇gλ(xk)−∇hλ(xk))

∥∥∥
over iterations, where uk = proxλh(xk), in five problems of different sizes. (IPAHDD-
CDC) deals with the five problems successfully. In Figure 5.3(b), we observe that after
a certain number of iterations, the norm of the sum of the discrete velocity vector and
gradient terms is decreasing and approaching zero. This is in accordance with Theorem
5.11, which establishes that after a finite number of iterations, the algorithm follows the
steepest descent regime. We now consider the algorithm (IPAHDD-CDC-pert) which
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Figure 5.3: Algorithm (IPAHDD-CDC) with f : x 7→ ∥Ax − b∥22 − ∥AT b∥2∥x∥2 and different
initial data.

is a perturbed version of (IPAHDD-CDC).

(IPAHDD-CDC-pert)

Initialize : x0 ∈ Rn, x1 ∈ Rn.

yk =
1
h
(xk − xk−1)− β

λ
(proxλg(xk−1)− proxλh(xk−1))

xk+1 = xk +
βh
λ
(proxλg(xk)− proxλh(xk))

+h prox h
1+γh

φ

(
1

1+γh
yk − (γβ−1)h

(1+γh)λ
(proxλg(xk)− proxλh(xk)) +

h
1+γh

ek

)

It is easy to check that under the assumptions of Theorem 5.11 together with limk ∥ek∥ = 0,
the conclusions of Theorem 5.11 also hold true for the algorithm (IPAHDD-CDC-pert).
It is well-known that the classical DC algorithm (DCA), introduced by Pham Dinh
Tao et al [121] is one of the algorithms that solve effectively nonsmooth and nonconvex
optimization problems of the form

inf
x∈Rn

{f(x) := g(x)− h(x)} ,

where g and h are lower semicontinuous proper real extended valued convex functions.
Briefly, the algorithm consists in constructing two sequences (xk) and (yk) such that the se-
quences of values of the primal and dual objective functions {g(xk)− h(xk)} , {g∗(xk)− h∗(xk)}
are decreasing, and their corresponding limits x∞ and y∞ satisfy local optimality con-
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Figure 5.4: Performance profiles of (IPAHDD-CDC-pert) and (DCA-pert) on the problem (5.41)

ditions [97]. Precisely, the standard (DCA) reads as follows. Choose an initial point
x0 ∈ dom(g) = {x ∈ Rn : g(x) < +∞}, and for k = 0, 1, . . . , set

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk) = argminx∈Rn

{
g(x)− ⟨yk, x⟩

}
.

For the purpose of comparison with (IPAHDD-CDC-pert), we propose the following
perturbed version of DCA

(DCA-pert)
yk ∈ ∂h(xk)

xk+1 ∈ ∂g∗(yk) + ek = argminx∈Rn

{
g(x)− ⟨yk, x⟩

}
+ ek

Using performance profiles with the number of iterations as a performance measure, we
make a comparison between (IPAHDD-CDC-pert) and (DCA-pert) on the d.c. problem
(5.41). The perturbation sequence here is chosen in the same way as before, i.e., for each
k we choose a random vector ξ ∈ Rn with the uniform distribution on ]0, 1[n and then set
ek = ξ

k∥ξ∥ . The performance profiles in Fig. 5.4 show that in the presence of perturbations,
(IPAHDD-CDC-pert) outperforms (DCA-pert). Specifically, (IPAHDD-CDC-pert) wins
over (DCA-pert) on 80% of the problems used for this experiment; moreover, the number of
problems that can be solved by (IPAHDD-CDC-pert) is higher (compared to (DCA-pert)).

5.9 Concluding remarks

In this chapter, we presented a new way of handling dry friction in first order inertial
algorithms. While in previous works, dry friction comes as a nonlinear action on the
velocity, we now consider its action on a weighted sum of the velocity vector and the
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gradient of the function f to be minimized. The sequences thus generated converge
towards critical points of f (global minima when f is convex), whereas previously we
only end up with approximate critical points of f . In addition, after a finite number of
steps, the algorithm changes its nature and passes from an inertial algorithm to a steepest
descent method. This combined with the Hessian-driven damping makes it possible to
considerably reduce the oscillations: one benefits from the inertial effect at the beginning,
then one passes to a method of gradient. In many ways, this closed loop control of the
algorithm/dynamic has similarities to restart methods. Most importantly, the algorithm
enjoys remarkable structural stability and robustness properties. It is a well known fact
that there is a trade-off between fast convergence of optimization methods and their
robustness to perturbations. Thus the algorithm is an interesting balance between fast
convergence and robustness. This makes the algorithm a promising tool for dealing with
stochastic/noisy situations in nonconvex, nonsmooth optimization. Its combination with
approximation techniques is also promising. In addition, the technique that is developed
is quite flexible. By relying on the threshold effect attached to dry damping, one can
imagine controlling the dynamics, and thus switching to different regimes, forcing finite
time synchronization of nonlinear oscillators, and many others. Several questions require
additional investigations, concerning for example general composite optimization problems,
as well as the study of the associated stochastic algorithms.

5.10 Appendix

5.10.1 Another proof of the iterate’s weak convergence

We start by recalling the following well-known Opial’s lemma that will be used in the proof.
Lemma 5.2 (Opial’s lemma) Let S be a nonempty set of a Hilbert space H. Suppose
that (xk)k is a sequence in H which satisfies

• limk→∞ ∥xk − p∥ exists for all p ∈ S.
• For each subsequence (xkl)l of (xk)k that converges weakly to x, we have x ∈ S.

Then, there exists x ∈ S such that (xk)k converges weakly to x.
In the item (i) of Theorem 5.3, let us give a direct proof that (xk)k converges weakly to

a minimizer of f , without using the fact that after a finite number of steps, the iterates
follow the steepest descent method. The proof is based on Opial’s lemma. According to the
convexity of f , and hence the monotonicity of ∇f , we have for all k ≥ 1 and for all z ∈ H

β⟨∇f(xk−1), xk−1 − z⟩ = β⟨∇f(xk−1)−∇f(z), xk−1 − z⟩+ β⟨∇f(z), xk−1 − z⟩

≥ β⟨∇f(z), xk−1 − z⟩.
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Therefore,

⟨yk, xk−1 − z⟩ = ⟨1
h
(xk − xk−1), xk−1 − z⟩+ β⟨∇f(xk−1), xk−1 − z⟩

≥ 1

2h
(∥xk − z∥2 − ∥xk−1 − z∥2 − ∥xk − xk−1∥2) + β⟨∇f(z), xk−1 − z⟩,

where yk = 1
h
(xk − xk−1) + β∇f(xk−1).

This, together with the Cauchy Schwarz inequality, implies

1

2h
(∥xk − z∥2 − ∥xk−1 − z∥2) ≤ (∥yk∥+ β∥∇f(z)∥)∥xk−1 − z∥+ 1

2h
∥xk − xk−1∥2.

To check the first item of the Opial’s lemma, let us now assume that z ∈ argminHf

which is fixed. As a result, it follows

1

2h
(∥xk − z∥2 − ∥xk−1 − z∥2) ≤ ∥yk∥∥xk−1 − z∥+ 1

2h
∥xk − xk−1∥2. (5.42)

By summing the above inequalities from k = 1 to N ≥ 1, we obtain

1

2h
(∥xN − z∥2 − ∥x0 − z∥2) ≤

N∑
k=1

∥yk∥∥xk−1 − z∥+ 1

2h

N∑
k=1

∥xk − xk−1∥2. (5.43)

Recall that we have already obtained
∑∞

k=1 ∥xk − xk−1∥2 < +∞ and
∑∞

k=1 ∥yk∥ < +∞.
Set P =

∑∞
k=1 ∥yk∥ ≥ 0, Q =

∑∞
k=1 ∥xk − xk−1∥2 ≥ 0 and mn = max0≤i≤n ∥xi − z∥. For

all n ≥ 1 and 1 ≤ i ≤ n, we deduce from (5.43) that

1

2h
(∥xi − z∥2 − ∥x0 − z∥2) ≤ P.mi−1 +

1

2h
Q ≤ P.mn +

1

2h
Q.

It follows that for all n ≥ 1, we have

m2
n − ∥x0 − z∥2 ≤ 2hPmn +Q,

or

m2
n − 2hPmn − ∥x0 − z∥2 −Q ≤ 0.

The above inequality implies that

mn ≤ hP +
√
h2P 2 + ∥x0 − z∥2 +Q ∀n ≥ 1,

which means that (mn)n is bounded, and hence the sequence (∥xk − z∥)k is bounded.

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

136



Chapter 5 – First order inertial optimization algorithms with threshold effects associated
with dry friction

Combining this boundedness property with (5.43), we can easily show that (∥xk − z∥)k is
a Cauchy sequence in R, and hence converges. We have shown that (xk)k fulfills the first
item of the Opial’s lemma.
Now, we turn to proving that (xk)k also satisfies the second item of the Opial’s lemma.
To this end, take any subsequence (xkl)l of (xk)k and assume that (xkl)l converges weakly
to some x ∈ H. Since f is convex, we have for all z ∈ H

f(z) ≥ f(xkl) + ⟨∇f(xkl), z − xkl⟩.

Let us pass to the lim inf as l → +∞ in the above inequality. Since (∇f(xkl))l converges
strongly to 0 and (xkl)l is bounded, we obtain

f(z) ≥ lim inf
l→∞

f(xkl).

Moreover, f is weakly lower semicontinuous, so the above inequality gives

f(z) ≥ f(x).

Since z can be taken arbitrarily in H, we deduce that x ∈ argminHf .
With all things considered, we apply the Opial’s lemma to deduce that there exists
x∞ ∈ argminHf such that (xk)k converges weakly to x∞ in H.
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This chapter covers the material discussed in the submitted paper [9], which was produced
in collaboration with S. Adly and H. Attouch

6.1 Introduction

In recent years, the interplay between continuous optimization and the theory of dynamical
systems has resulted in significant advancements in the field of applied mathematics.
The investigation of the long-term behavior of inertial dynamics, particularly within the
context of a Hilbert space for convex differentiable optimization, has become a focal
point. In this chapter, we delve into a new layer of complexity by considering threshold
effects associated with dry friction in the framework of inertial dynamics. We lay our
foundation on a doubly nonlinear first-order evolution equation that involves two potentials.
The differentiable function f to be minimized interacts with the system’s state via its
gradient and the nonsmooth dry friction potential φ = r∥ · ∥, r > 0, that operates on
a linear combination of the velocity vector and the gradient of f through its convex
subdifferential. These two potential components interplay to shape the dynamics of the
system. In order to shed light on the centrality of ∇f(x), we adopt a dual formulation
approach, featuring a Riemannian gradient structure, thus providing a deeper insight into
the dynamics of the system. Building on the general acceleration method proposed by
Attouch, Bot, and Nguyen [28], and recently extended by Adly and Attouch [6] to dry
friction, our methodology incorporates time scaling and averaging of a first-order continuous
differential equation. These techniques pave the way for obtaining fast convergence results
for second-order time-evolution systems that include dry friction, asymptotic vanishing
damping, and Hessian-driven damping in an implicit form. In this chapter, we develop
these concepts, provide mathematical proofs in support of our results and illustrate this
through numerical simulations. We believe that these new results can contribute to the
understanding and development of accelerated gradient methods from the continuous time
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perspective, potentially providing valuable insight into intricate optimization problems.
Let us just briefly recall some facts about previous related works and at the same time
highlight differences between those and our work in this chapter. First, acting as the basis
upon which our current chapter is built is the work by Attouch, Bot, and Nguyen [28]
on the acceleration of first order dynamics via the time scaling and averaging techniques.
The authors in that paper provide a generic approach by which second order dynamics
with improved convergence properties can be deduced from first order ones; what is
notable is while one needs to develop a Lyapunov analysis for the convergence of the
first order dynamic, the improved convergence properties of the resulting second order
dynamic obtained by the time scaling and averaging techniques can be yielded solely by
the differential and integral calculus. Making use of this acceleration approach, we, in this
chapter, manage to speed up the convergence of a doubly nonlinear evolution equation
that involves the presence of dry friction. However, the addition we make, which is not
performed in the original paper [28], is that we further propose a dual approach to the
initial evolution system by introducing a dual dynamic with the function variable being
the gradient of the function to be minimized f . The study of the dual dynamic makes
it possible to have a better understanding of the properties of the gradient of f . This
dual dynamic, which has a Riemannian gradient structure, further yields a second order
dynamic with accelerated convergence rates via the time scaling and averaging techniques.
Considering the dual approach is, in fact, initiated by Adly and Attouch in [6] where they
also study a doubly nonlinear evolution system involving dry friction which turns out to be
a special case of our first order dynamic. What distinguishes our work with [6] is largely
in the first order dynamic itself. Equipped with a slightly different dry friction term, our
first order dynamic improves that of [6] in the sense that the limit point of the solution
trajectory is now the exact critical point, not just an approximate one. This difference in
the dynamic will be precisely indicated shortly.
Throughout this chapter, H is a real Hilbert space equipped with the scalar product ⟨·, ·⟩
and the associated norm ∥ · ∥. We first look at the first-order evolution equation.

(DRYAD) γ(ẋ(t) + β∇f(x(t))) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) ∋ 0, t ∈ [t0,∞)

that is a doubly nonlinear dynamic that involves two potentials.
We make the following standing assumptions on the two potentials f and φ.

f : H → R is a continuously differentiable function which is bounded from below.

∇f is Lipschitz continuous on the bounded sets of H.

φ : H → R satisfies φ(x) = r∥x∥ for some r > 0 and γ > 0, β ≥ 0.
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This doubly nonlinear differential inclusion contains the term ∂φ
(
ẋ(t) + β∇f(x(t))

)
attached to dry friction, hence the abbreviation (DRYAD) for Dry friction Acting Doubly.
The case β = 0 and γ = 1, was studied in [6]. It’s worth noticing that the basic starting
dynamic for the majority of gradient methods in optimization is the steepest descent
method. The first potential, designated as f , affects the system’s state via its gradient
and is a differentiable function to be minimized. The velocity vector is affected by the
second potential φ = r∥ · ∥. The study of the associated dynamics’ asymptotic behavior is
significantly altered by the presence of this nonsmooth dry friction potential.
One distinctive characteristic of (DRYAD) is the inclusion of the dry friction term ∂φ

(
ẋ(t)+

β∇f(x(t))
)
, which incorporates both the velocity vector and the gradient of f . This

differentiation sets it apart from previously studied dynamics, where the dry friction
term exclusively involves the velocity vector. Although seemingly straightforward, this
modification significantly alters the dynamics in comparison to those investigated in [3,5–7].
An advantageous aspect of representing the dry friction term in this new form is that
each trajectory generated by (DRYAD) converges towards a critical point of f , specifically
a minimizer in the case of convex f . In fact, any stationary point x∞ of the dynamic
(DRYAD) satisfies ∂φ(β∇f(x∞)) + (1 + γβ)∇f(x∞) ∋ 0. This condition is equivalent to
β∇f(x∞) = prox β

1+γβ
φ(0), which, in combination with the dry friction property (DF)r,

implies that ∇f(x∞) = 0 if β > 0 (see Lemma 5.1). Thus, x∞ corresponds to a critical point
of f . In contrast, in the case β = 0, each trajectory generated by the dynamic converges
towards an “approximate" critical point x∞ of f , characterized by −∇f(x∞) ∈ ∂φ(0).
To emphasize the role played by the gradient, we also examine the dual approach that
involves the dual variable g(x) = ∇f(x), and the corresponding evolution reads

∇2f ∗(g(t))ġ(t) +
γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) = 0,

thus making appear the Riemannian structure associated with the Hessian of the convex
Fenchel conjugate function f ∗ (when this function is assumed of class C2) associated with
f . Here, projB(0,r) denotes the projection operator onto the closed ball B(0, r). Our first
investigation focuses on the convergence properties of the trajectories produced by the
primal evolution system (DRYAD) and its dual.

Next, we leverage the universal acceleration approach developed by Attouch, Bot, and
Nguyen [28], wherein they employ a time scaling technique on a first-order continuous
differential equation and subsequently apply the method of averaging. These techniques
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give a second-order evolution system when applied to (DRYAD)

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇φ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0,

that involves dry friction aspects (smoothly via the gradient of the Moreau envelope
∇φ s

γ(α−1)
of φ), asymptotically vanishing viscous damping (which is closely related to

Nesterov’s accelerated gradient method), and a damping term that is driven by the Hessian
of f in an implicit form. Doing the same for the dual dynamic, we obtain

∇2f ∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗

β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0.

In the case of these inertial systems, there is no necessity to conduct a Lyapunov analysis
due to the utilization of the scaling and averaging method. Instead, we exploit the
convergence results of the first-order system (DRYAD) by employing techniques from
differential and integral calculus. Consequently, we achieve fast convergence results for
second-order time-evolution systems that incorporate dry friction, asymptotically vanishing
viscous damping, and Hessian-driven damping in the implicit form.

6.1.1 Some historical facts

Let’s discuss the function and significance of each damping term involved in our in-
ertial dynamics.

Viscous friction

The term γẋ(t) in (DRYAD) models the viscous damping with a positive coefficient γ > 0.
This is linked to the heavy ball with friction method of Polyak [125,126]. Precisely, in [125]
Polyak introduced the Heavy Ball with Friction method, which is based on the following
inertial system with a fixed viscous damping coefficient

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0.

The Heavy-Ball Method (HBF) ensures exponential convergence of f(x(t)) to minHf

for a smooth strongly convex function f . The convergence rate of (HBF) for general
convex functions is O(1/t), which isn’t faster than the steepest descent approach. Su-
Boyd-Candès’ approach of introducing a vanishing viscous damping coefficient in [143],
denoted by γ(t) = α/t, where α is a positive parameter, made a substantial addition
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to the field. The corresponding ordinary differential equation (ODE) known as the Su-
Boyd-Candès dynamic represents a continuous surrogate of the Nesterov accelerated
gradient (NAG) method and is given by

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0.

We have the inversely quadratic convergence rate of the values f(x(t))−minHf = O(1/t2)

for any trajectory x(t) of (AVD)α with α ≥ 3. The viscous damping coefficient α
t

vanishes
(tends to zero) as time t approaches infinity, hence the terminology Asymptotic Vanishing
Damping. The convergence properties of the dynamic (AVD)α have been the subject
of many recent studies, see [20, 21, 30, 32, 35, 36, 41, 43, 44, 109, 143]. The case where the
parameter α = 3 is crucial since it matches Nesterov’s historical algorithm. With the
exception of the one dimensional case, where convergence of the trajectories has been
demonstrated [36], the question of whether the trajectories converge in this case is still
unanswered. According to Attouch-Chbani-Peypouquet-Redont [35], each trajectory weakly
converges to a minimizer of f for values α > 3. The corresponding algorithmic result was
obtained by Chambolle-Dossal [65]. Furthermore, it has been proved in [41] and [109] that
for α > 3, the asymptotic convergence rate of the values is actually o(1/t2). Apidopoulos-
Aujol-Dossal [24] and Attouch-Chbani-Riahi [36] investigated the subcritical situation
where α < 3 and showed that the convergence rate of the objective values is O(t−

2α
3 ).

These rates are optimal, which means they can be reached or approached arbitrarily closely.

Dry friction

Following [3–5], we say that the potential function φ satisfies the dry friction property
(DF)r, r > 0, if the following properties are satisfied:

(DF)r


φ : H → R+ is convex continuous,

minξ∈H φ(ξ) = φ(0) = 0,

φ(ξ) ≥ r∥ξ∥ ∀ξ ∈ H.

The function φ(x) = r∥x∥, r > 0 is a model example of potential which satisfies the dry
friction property, which will be used throughout this chapter. An important property
associated with dry friction is stated in the lemma below (see [3–5] for further details).
Lemma 6.1 Suppose that φ : H → R+ satisfies (DF)r. Then one has B(0, r) ⊂ ∂φ(0),
and therefore

∥x∥ ≤ λr =⇒ proxλφ(x) = 0.
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In the above formula, proxφ : H → H denotes the proximal mapping associated with the
convex function φ. Recall that, for any x ∈ H, for any λ > 0

proxλφ(x) = argminξ∈H
{
λφ(ξ) + 1

2
∥x− ξ∥2

}
.

For a thorough background on convex analysis in Hilbert spaces, we refer to [51].
Lemma 6.1 establishes a thresholding property for the proximal operator associated
with a dry friction potential.

Dry friction holds significant importance in the realm of mechanics as it induces stabiliza-
tion of mechanical systems within finite time. This stands in contrast to viscous damping,
which tends to produce numerous small oscillations asymptotically. Consequently, dry
friction serves as an appealing tool for optimization purposes. Although the use of dry
friction in optimization is a relatively recent topic, initial findings regarding the property of
finite convergence under the influence of dry friction were obtained by Adly, Attouch, and
Cabot [7]. Corresponding results for Partial Differential Equations have been established
in [22,68,71,132].

Hessian-driven damping

The combination of viscous friction with dry friction and Hessian driven damping has
been considered by Adly and Attouch in [3–5]. The Hessian driven damping has a natural
connection with the strong damping property in mechanics and physics, see [82]. It helps
to control and attenuate the oscillation effects that occur naturally with inertial systems.
Recent research has concentrated on the inertial dynamic

(DIN)α,β ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

which combines asymptotic vanishing damping with Hessian-driven damping. The corre-
sponding algorithms involve a correcting term in the Nesterov accelerated gradient method
which reduces the oscillatory aspects, see Attouch-Peypouquet-Redont [42], Attouch-
Chbani-Fadili-Riahi [34], Shi-Du-Jordan-Su [138]. Related to this is the Inertial System
with Implicit Hessian Damping

(ISIHD) ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0,

considered by Alecsa-László-Pinta in [19], see also Attouch-Fadili-Kungurtsev [38] in the
perturbed case. The justification for using the term “implicit" stems from the observation
that through Taylor expansion (as t → ∞ we obtain ẋ(t) → 0) one has

∇f
(
x(t) + β(t)ẋ(t)

)
≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),
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hence making the Hessian damping appear indirectly.

6.1.2 Contents

The structure of this chapter is as follows. In Section 6.2, we study the first order system
(DRYAD), where we show the wellposedness of the system, energy estimates and some
convergence properties. A dual approach to (DRYAD) is studied in Section 6.3. Then, in
Section 6.4, we use the time scaling and averaging techniques for (DRYAD) to obtain an
inertial dynamic with accelerated convergence results. We also employ these techniques
for the dual dynamic of (DRYAD) in Section 6.5. We illustrate our theoretical results
with some numerical examples in Section 6.6.

6.2 Study of the first order system (DRYAD)

6.2.1 Wellposedness, and energy estimates: f not necessarily

convex

Recall that our approach is based on the dynamical system (DRYAD)

(DRYAD) γ(ẋ(t) + β∇f(x(t))) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) ∋ 0,

which is a doubly nonlinear evolution equation.
Let us first observe that the Cauchy problem associated with (DRYAD) is well posed.
In fact, we can rewrite (DRYAD) as follows

(I +
1

γ
∂φ)(ẋ(t) + β∇f(x(t))) ∋ −1

γ
∇f(x(t)).

This is equivalent to

ẋ(t) + β∇f(x(t)) = prox 1
γ
φ(−

1

γ
∇f(x(t))), (6.1)

where prox 1
γ
φ denotes the proximal operator which is single-valued since φ : H → R is a

convex function (hence ∂φ is a maximally monotone operator). Set T : H → H defined by
T (y) = −βy + prox 1

γ
φ(− 1

γ
y), Equation (6.1) can be cast under the form

ẋ(t) = T (∇f(x(t))) = F (x(t)),
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where F = T ◦∇f . Since T is globally Lipschitz continuous and ∇f is Lipschitz continuous
on the bounded sets, F is Lipschitz continuous on the bounded sets. This property
guarantees the existence and uniqueness of a local solution to (DRYAD) according to the
classical Cauchy-Lipschitz theorem.
To pass from a local to a global solution, we need the following energy estimates

γ

∫ t

t0

∥y(s)∥2ds+ r

∫ t

t0

∥y(s)∥ds+ β

∫ t

t0

∥∇f(x(s))∥2ds+ f(x(t)) ≤ f(x(t0)),

where y(t) = ẋ(t) + β∇f(x(t)).
This, combined with f being bounded below, classically implies the global existence
property. In order to achieve this energy estimate, we proceed as follows. Taking the
scalar product of (DRYAD) with y(t), we obtain

γ∥y(t)∥2 + ⟨∂φ(y(t)), y(t)⟩+ ⟨∇f(x(t)), ẋ(t) + β∇f(x(t))⟩ = 0

As a property of dry friction, we have

⟨∂φ(y(t)), y(t)⟩ ≥ r∥y(t)∥.

Therefore,

γ∥y(t)∥2 + r∥y(t)∥+ β∥∇f(x(t))∥2 + d

dt
f(x(t)) ≤ 0.

Taking the integration from t0 to t yields the energy estimate. We summarize what has
just been shown in the following theorem.
Theorem 6.1 Given an arbitrary x0 ∈ H, there exists a unique global solution trajectory
x : [t0,∞) → H such that x(t0) = x0 to the system (DRYAD). Furthermore, we have the
following properties

• t 7→ f(x(t)) is decreasing

•
∫ ∞

t0

∥ẋ(t) + β∇f(x(t))∥2dt <∞

•
∫ ∞

t0

∥ẋ(t) + β∇f(x(t))∥dt <∞

•
∫ ∞

t0

∥∇f(x(t))∥2dt <∞.

Taking advantage of the following form of (DRYAD)

ẋ(t) + β∇f(x(t)) = prox 1
γ
φ(−

1

γ
∇f(x(t))),
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it is easy to show, using Lemma 6.1, that if ∥∇f(x(t))∥ ≤ r then the system (DRYAD)
becomes the gradient flow (continuous steepest descent method), that is, ẋ(t)+β∇f(x(t)) =
0. We will see later that ∇f(x(t)) tends to zero as t tends to +∞. There is therefore a
change in the nature of the dynamic after a certain time, going from a doubly nonlinear
evolution equation to the gradient flow (without perturbation). Since the acceleration of
gradient flow is well understood, it is interesting to examine the new dynamics and their
convergence properties attached to our approach.
We initially examine the primal problem and subsequently explore its dual approach.

6.2.2 (DRYAD) seen as the perturbed gradient flow: f convex

Let us start from the equivalent formulation of (DRYAD) given by

ẋ(t) + β∇f(x(t)) = prox 1
γ
φ(−

1

γ
∇f(x(t))).

Let us show that the right hand side of the above equality, defined by g(t) := prox 1
γ
φ(− 1

γ
∇f(x(t))),

satisfies ∫ ∞

t0

∥g(t)∥dt < +∞.

Indeed we have∫ ∞

t0

∥g(t)∥dt =
∫
∥∇f(x(t))∥≤r

∥g(t)∥dt+
∫
∥∇f(x(t))∥>r

∥g(t)∥dt.

On the set {∥∇f(x(t))∥ ≤ r}, we have according to Lemma 6.1

g(t) = prox 1
γ
φ(−

1

γ
∇f(x(t))) = 0.

Hence, ∫ ∞

t0

∥g(t)∥dt =
∫
∥∇f(x(t))∥>r

∥g(t)∥dt.

Then note that the proximal mapping of φ is nonexpansive, and is equal to zero at
zero. So we have

∥g(t)∥ = ∥prox 1
γ
φ(−

1

γ
∇f(x(t)))∥ ≤ 1

γ
∥∇f(x(t))∥.

On the set {∥∇f(x(t))∥ > r}, we deduce that

∥g(t)∥ ≤ 1

γ
∥∇f(x(t))∥ ≤ 1

γr
∥∇f(x(t))∥2.
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Therefore,∫ ∞

t0

∥g(t)∥dt =
∫
∥∇f(x(t))∥>r

∥g(t)∥dt ≤ 1

γr

∫
∥∇f(x(t))∥>r

∥∇f(x(t))∥2dt.

Finally we get, ∫ ∞

t0

∥g(t)∥dt ≤ 1

γr

∫ ∞

t0

∥∇f(x(t))∥2dt.

According to Theorem 6.1 we have ,∫ ∞

t0

∥∇f(x(t))∥2dt < +∞.

Thus, (DRYAD) is the gradient flow with a right-hand side in L1(t0,+∞), which classically
preserves the convergence properties of the gradient flow. We refer to [62] for further
details on this topic.

We have established that (DRYAD) can be regarded as a perturbed gradient flow with
the perturbation belonging to L1(t0,+∞). As a result, it exhibits the classical convergence
properties observed in the gradient flow literature [62]. Additionally, as we will prove in the
subsequent section, (DRYAD) eventually transforms into the unperturbed gradient flow af-
ter a finite time. Consequently, it inherits all the convergence rates detailed in Theorem 6.5.
Remark 6.1 It is an open question to obtain convergence rates for the perturbed gradient
flow equation (6.7) under the sole assumption

∫ +∞
t0

∥g (t)∥ dt < +∞. We know that there
is convergence of the trajectories, but in the above result, to get convergence rates, we
need also to use the energy assumption

∫ +∞
t0

t ∥g (t)∥2 dt < +∞.

6.3 A dual approach to (DRYAD)

Examining the dual dynamic of (DRYAD) can help us better comprehend the convergence
properties of gradients, which is of fundamental importance in (DRYAD).
To begin with, let us recall our dynamical system

γ(ẋ(t) + β∇f(x(t))) + ∂φ(ẋ(t) + β∇f(x(t))) +∇f(x(t)) ∋ 0.
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Set Ψ(x) = γ
2
∥x∥2 + φ(x). We have ∂Ψ(x) = (γI + ∂φ)(x). We transform the orig-

inal system as follows

A := γ(ẋ(t) + β∇f(x(t))) + ∂φ(ẋ(t) + β∇f(x(t))) +∇f(x(t)) ∋ 0,

⇐⇒ −∇f(x(t)) ∈ ∂Ψ(ẋ(t) + β∇f(x(t)))

⇐⇒ ∇f(x(t)) ∈ ∂Ψ(−ẋ(t)− β∇f(x(t))),

⇐⇒ − ẋ(t)− β∇f(x(t)) ∈ ∂Ψ∗(∇f(x(t)))

⇐⇒ ẋ(t) + ∂G(∇f(x(t))) ∋ 0, where G(x) =
β

2
∥x∥2 +Ψ∗(x)

⇐⇒ − ẋ(t) ∈ ∂G(∇f(x(t)))

⇐⇒ ẋ(t) ∈ ∂G(−∇f(x(t)))

⇐⇒ −∇f(x(t)) ∈ ∂G∗(ẋ(t))

⇐⇒ ∂G∗(ẋ(t)) +∇f(x(t)) ∋ 0

We have G∗ = (β
2
∥ · ∥2 +Ψ∗)∗ which is exactly the Moreau envelop of Ψ, denoted by Ψβ.

Hence, we have the dual dynamical system of (DRYAD) of the following form

∇Ψβ(ẋ(t)) +∇f(x(t)) = 0.

Set g(t) = ∇f(x(t)), and the idea is to transform this dynamical system such that the
left hand side is a function of g(t). To this end, we have

∇Ψβ(ẋ(t)) + g(t) = 0 ⇐⇒ −g(t) = ∇Ψβ(ẋ(t))

⇐⇒ ẋ(t) = ∇Ψ∗
β(−g(t)).

Assume that f is a convex function, it follows that

g(t) = ∇f(x(t)) ⇐⇒ x(t) ∈ ∂f ∗(g(t)).

Therefore,

d

dt
(∂f ∗(g(t)))−∇Ψ∗

β(−g(t)) ∋ 0.

Since Ψβ = (β
2
∥ · ∥2 +Ψ∗)∗, we have Ψ∗

β = β
2
∥ · ∥2 +Ψ∗ and hence ∇Ψ∗

β(x) = βx+∇Ψ∗(x).
Let us recall that Ψ(x) = γ

2
∥x∥2 + φ(x). Based on the specific form of the dry friction,
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we can compute the Fenchel conjugate of Ψ as follows

Ψ∗(x) =
1

2γ
dist2(x,B(0, r)).

Hence, we can compute its gradient ∇Ψ∗(x) = 1
γ
(x − projB(0,r)(x)). Therefore

∇Ψ∗
β(x) = βx+∇Ψ∗(x) = βx+

1

γ
(x− projB(0,r)(x)) =

γβ + 1

γ
x− 1

γ
projB(0,r)(x).

Plugging this into d
dt
(∂f ∗(g(t))) − ∇Ψ∗

β(−g(t)) ∋ 0, we have

d

dt
(∂f ∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) ∋ 0. (6.2)

Assume that f ∗ is of class C2, this system can be equivalently written as

(DDRYAD) ∇2f ∗(g(t))ġ(t) +
γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) = 0,

thus making appear the Riemannian structure associated with the Hessian of the convex
function f ∗.
Let us summarize the above results in the following statement, and establish the con-
vergence rates of the gradients.
Theorem 6.2 Let x : [t0,∞) → H be a global solution trajectory of (DRYAD). Suppose
that f is convex. Then g(t) := ∇f(x(t)) is a solution trajectory of the generalized
Riemannian flow.

d

dt
(∂f ∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) ∋ 0.

Furthermore, the following convergence properties hold as t→ ∞
• The function t 7→ D(g(t), 0) is decreasing where

D(g(t), 0) = f ∗(0)− f ∗(g(t)) + ⟨∇f ∗(g(t)), g(t)⟩

• ∥g(t)∥ = ∥∇f(x(t))∥ = o
(

1√
t

)
Proof. First, we define the Bregman distance function

D(g(t), 0) = f ∗(0)− f ∗(g(t)) + ⟨∇f ∗(g(t)), g(t)⟩.

We have t 7→ D(g(t), 0) is nonnegative because f ∗ is convex.
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Let us derivate t 7→ D(g(t), 0) to get

d

dt
D(g(t), 0) = − d

dt
f ∗(g(t)) + ⟨ d

dt
∇f ∗(g(t)), g(t)⟩+ ⟨∇f ∗(g(t)), ġ(t)⟩

= ⟨ d
dt
∇f ∗(g(t)), g(t)⟩

= −γβ + 1

γ
∥g(t)∥2 + 1

γ
⟨projB(0,r)(g(t)), g(t)⟩,

where the last inequality comes from the dual inclusion (6.2).
Define h(x) = γΨ∗(x) = 1

2
dist2(x,B(0, r)). We have h is a smooth and convex function.

Therefore, according to the first order characteristic of convex functions we have

0 ≥ h(g(t))− ⟨g(t)− projB(0,r)(g(t)), g(t)⟩.

Therefore,

⟨projB(0,r)(g(t)), g(t)⟩ = ∥g(t)∥2 − ⟨g(t)− projB(0,r)(g(t)), g(t)⟩ ≤ ∥g(t)∥2 − h(g(t))

Using this inequality gives us the following estimate of d
dt
D(g(t), 0)

d

dt
D(g(t), 0) ≤ −β∥g(t)∥2 − 1

γ
h(g(t))

Considering the integral while acknowledging the nonnegativity of D(g(t), 0) yields∫ t

t0

β∥g(s)∥2 + 1

γ
h(g(s))ds ≤ D(g(t0), 0)

Due to the nonnegativity of β∥g(s)∥2 + 1
γ
h(g(s)), we can take the limit as t tends to

infinity and obtain ∫ ∞

t0

β∥g(s)∥2 + 1

γ
h(g(s))ds ≤ D(g(t0), 0) <∞

Let us now pass from this integral property to asymptotic properties. Recall that we have

d

dt
(∂f ∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) ∋ 0
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Taking the scalar product of both sides of this inclusion with ġ(t), we obtain

⟨ d
dt
(∂f ∗(g(t))), ġ(t)⟩+ β

2

d

dt
∥g(t)∥2 + 1

γ
⟨g(t)− projB(0,r)(g(t)), ġ(t)⟩ = 0

⇐⇒ ⟨ d
dt
(∂f ∗(g(t))), ġ(t)⟩+ β

2

d

dt
∥g(t)∥2 + 1

γ
⟨ḣ(g(t)), ġ(t)⟩ = 0

⇐⇒ ⟨ d
dt
(∂f ∗(g(t))), ġ(t)⟩+ β

2

d

dt
∥g(t)∥2 + 1

γ

d

dt
h(g(t)) = 0

Due to the convexity of f ∗, we have ⟨ d
dt
(∂f ∗(g(t))), ġ(t)⟩⟩ ≥ 0. Combining this with

the last equality, we have

d

dt

(β
2
∥g(t)∥2 + 1

γ
h(g(t))

)
≤ 0,

which means that the function t 7→ β
2
∥g(t)∥2 + 1

γ
h(g(t)) is decreasing. On the other

hand, we have∫ ∞

t0

β

2
∥g(s)∥2 + 1

γ
h(g(s))ds ≤

∫ ∞

t0

β∥g(s)∥2 + 1

γ
h(g(s))ds <∞.

Therefore we obtain that

lim
t→∞

t
(β
2
∥g(t)∥2 + 1

γ
h(g(t))

)
= 0.

Or equivalently (due to the nonnegativity of the underlying functions and the fact that
h(g(t)) ≤ 1

2
∥g(t)∥2)

lim
t→∞

t∥g(t)∥2 = lim
t→∞

t∥∇f(x(t))∥2 = 0, or ∥g(t)∥ = ∥∇f(x(t))∥ = o
( 1√

t

)
.

The last conclusion is obtained due to the following lemma (see [1, Lemma 5.2]).
Lemma 6.2 Let h : [t0,∞] → R+ be a nonincreasing function belonging to L1([t0,∞]).
Then it holds that limt→+∞ th(t) = 0.
The proof of Theorem 6.2 is thereby completed.

As a consequence we have the following corollary.
Corollary 6.1 Suppose that f : H → R is a convex differentiable function that satisfies
S = argminf ̸= ∅. Let x : [t0,+∞[ → H be a solution trajectory of (DRYAD). Then the
following statements are satisfied:

(i) (convergence of gradients towards zero) ∥∇f (x (t))∥ = o

(
1√
t

)
as t→ +∞.
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(ii) (integral estimate of the gradients)
∫ +∞

t0

t ∥∇f (x (t))∥2 dt < +∞.

(iii) (convergence of values) f (x (t))− infH f = o

(
1

t

)
as t→ +∞.

(iv) The solution trajectory x(·) converges weakly as t → +∞, and its limit belongs to
S = argmin f .

Proof. It follows from Theorem 6.2 that ∇f(x(t)) approaches zero as t approaches
infinity, precisely displayed in the first item. As previously stated, when ∥∇f(x(t))∥ ≤ r,
the system becomes the gradient flow. Consequently, there exists a T > 0 such that for all
t ≥ T , the system is the gradient flow. Therefore, any solution trajectory generated by
(DRYAD) inherits all the convergence rates of the continuous steepest descent method listed
in Theorem 6.5 (in the appendix) which includes the last three items of this theorem.

When H is a finite dimensional Euclidian space, we have the following corollary concerning
the convergence property (DRYAD) when the objective function f is not necessarily convex
but satisfies the Kurdyka–Lojasiewicz property. Let us recall some basic facts concerning
the Kurdyka–Lojasiewicz property, which we briefly designate by (KL). No convexity
assumption is made on the function f to be minimized. A function f : RN → R satisfies
the (KL) property if its values can be reparametrized in the neighborhood of each of its
critical points so that the resulting function becomes sharp. This means that there exists
a continuous, concave, increasing function θ such that for all u in a slice of f , we have

∥∇(θ ◦ f)(u)∥ ≥ 1.

The function θ captures the geometry of f around its critical points, and is called a
desingularizing function; see [25, 26], for further details.
Corollary 6.2 Suppose that f : RN → R is a differentiable function that satisfies the (KL)
property. Then, any bounded solution trajectory of (DRYAD) has a finite length and hence
converges to a critical point of f .

Proof. Since (DRYAD) arrives at the regime of the gradient flow from a sufficiently
large time, the statement of the corollary follows from the result of Lojasiewicz [104]
Remark 6.2 Let us present a dual viewpoint on the finite time stabilization property.
Since ∇f(x(t)) converges to zero as t → ∞, from a sufficiently large time T , we have
∇f(x(t)) ∈ B(0, r) and hence g(t)− projB(0,r)(g(t)) = 0. As a result, the dual dynamical
system becomes

d

dt
(∂f ∗(g(t))) + βg(t) = 0,
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or equivalently

∇2f ∗(g(t))ġ(t) + βg(t) = 0,

when f ∗ is assumed to be twice continuously differentiable.

6.4 Applying the time scaling and averaging techniques

to (DRYAD)

Before going further, let us mention that these techniques of scaling and averaging were
initiated by Attouch, Bot and Nguyen [28] for the gradient flow method. In our specific
case, we have adapted these techniques to address our problem, and we now recapitulate
only the essential elements required for our analysis.

6.4.1 Time scaling

The time scaling technique is in fact a change of variable t = τ(s), where τ is an
increasing function from R+ to R+ which is continuously differentiable and which tends
to ∞ when s → ∞. Set

y(s) = x(τ(s))

We have

ẏ(s) = τ̇(s)ẋ(τ(s))

As a result, to obtain the corresponding dynamical system associated with the new
trajectory y(s), we respectively replace x(t) and ẋ(t) in the original system with y(s)

and ẏ(s)
τ̇(s)

. To this end, we obtain

γ
( ẏ(s)
τ̇(s)

+ β∇f(y(s))
)
+ ∂φ

( ẏ(s)
τ̇(s)

+ β∇f(y(s))
)
+∇f(y(s)) ∋ 0.

Using the positive homogeneity of degree zero of ∂φ, this system can be simplified as

ẏ(s) +
τ̇(s)

γ
∂φ
(
ẏ(s) + βτ̇(s)∇f(y(s))

)
+
γβ + 1

γ
τ̇(s)∇f(y(s)) ∋ 0 (6.3)
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6.4.2 Averaging

Let us attach to y(·) the new function z : [s0,∞] → H defined by

ż(s) +
1

τ̇(s)
(z(s)− y(s)) = 0,

with z(s0) = y(s0) = x0 given in H. Equivalently,

y(s) = z(s) + τ̇(s)ż(s).

By temporal derivation we have

ẏ(s) = (1 + τ̈(s))ż(s) + τ̇(s)z̈(s)

After plugging y(s) and ẏ(s) by their expressions in terms of z(t) into the dynamical
system obtained from time scaling (6.3) and dividing both sides by τ̇(s) we have

z̈(s) +
τ̈(s) + 1

τ̇(s)
ż(s) +

γβ + 1

γ
∇f(z(s) + τ̇(s)ż(s)) +

1

γ
∂φ(a(s)) ∋ 0 (6.4)

where a(s) = ẏ(s) + βτ̇(s)∇f(y(s)).
Let us return to the dynamical system (6.3) and express it using the notation a(s).
So we have

a(s) +
τ̇(s)

γ
∂φ(a(s)) +

τ̇(s)

γ
∇f(y(s)) = 0

Therefore

∂φ(a(s)) = − γ

τ̇(s)
a(s)−∇f(y(s))

= − γ

τ̇(s)

(
I +

τ̇(s)

γ
∂φ
)−1(

− τ̇(s)

γ
∇f(y(s))

)
−∇f(y(s))

=
γ

τ̇(s)

[
−
(
I +

τ̇(s)

γ
∂φ
)−1(

− τ̇(s)

γ
∇f(y(s))

)
− τ̇(s)

γ
∇f(y(s))

]
= ∇φ τ̇(s)

γ

(− τ̇(s)
γ

∇f(y(s)))

= ∇φ τ̇(s)
γ

(
− τ̇(s)

γ
∇f(z(s) + τ̇(s)ż(s))

)
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Plugging this into the dynamical system (6.4) gives

z̈(s) +
τ̈(s) + 1

τ̇(s)
ż(s) +

γβ + 1

γ
∇f(z(s) + τ̇(s)ż(s)) (6.5)

+
1

γ
∇φ τ̇(s)

γ

(
− τ̇(s)

γ
∇f(z(s) + τ̇(s)ż(s))

)
= 0

(6.6)

Finally we have obtained a second order dynamical system by doing time scaling and
averaging from the original first order dynamic. In order to have fast convergence prop-
erties, we choose τ such that the viscous damping coefficient in this dynamical system
asymptotically vanishes as follows

τ̈(s) + 1

τ̇(s)
=
α

s
,

for some α > 1. We can easily show that this is achieved by setting τ(s) = s2

2(α−1)
.

Hence, the dynamical system (6.5) becomes the following which we will call (iDRYAD)

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇φ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0

The corresponding convergence properties for z(s) with this specific choice of τ are
captured in the following theorem
Theorem 6.3 Let f be a convex smooth function whose gradient is Lipschitz continuous on
the bounded sets and such that argminf is non empty. Assume α > 3, let z : [s0,∞] → H
be a solution trajectory of

z̈(s) +
α

s
ż(s) +

γβ + 1

γ
∇f
(
z(s) +

s

α− 1
ż(s)

)
+

1

γ
∇φ s

γ(α−1)

(
− s

γ(α− 1)
∇f(z(s) +

s

α− 1
ż(s))

)
= 0

Then we have the following properties
• f(z(s))− infH f = O(1/s2)

• ∥∇f(z(s))∥ = O(1/s)

•
∫ ∞

s0

s3∥∇f(z(s) + s

α− 1
ż(s))∥2ds <∞

• only assume that α > 1, then z(s) converges weakly and its limit belongs to argmin f

Proof. Since our original system follows the steepest descent method after a finite
time, the results are achieved according to [28]. Let us present the main lines. First,
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we interpret the transition from y to z as an averaging process. Precisely, rewriting
the relation between y and z we obtain

sż(s) + (α− 1)z(s) = (α− 1)y(s)

Multiplying this equation with sα−2, we get

sα−1ż(s) + (α− 1)sα−2z(s) = (α− 1)sα−2y(s),

which is equivalent to

d

ds
(sα−1z(s)) = (α− 1)ss−2y(s).

Integrating this equation from s0 to s, we obtain

z(s) =
sα−1
0

sα−1
y(s0) +

α− 1

sα−1

∫ s

s0

uα−2y(u)du,

which can be written abstractly as

z(s) =

∫ s

s0

y(u)dµs(u),

where µs is the positive Radon measure [s0, s] defined by

µs =
sα−1
0

sα−1
δs0 + (α− 1)

uα−2

sα−1
du,

where δs0 denotes the Dirac measure at s0. Since µs is positive and has the integral over
[s0, s] being 1, it is a probability measure. It is clear that z(s) can be seen as the average
of trajectory y(·) on [s0, s] with respect to µs.
For the first item of the theorem, we use the Lipschitz continuity of the gradient of f

f(z(s))− infHf ≤ f
(∫ s

s0

y(u)dµs(u)
)
− infHf +O(1/s2).

What remains is to show that

f
(∫ s

s0

y(u)dµs(u)
)
− infHf = O(1/s2),

which can be achieved by making use of the convexity of f , and hence the Jensen inequality.
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For the second item, since ∇f(x∗) = 0 and according to [115, Theorem 2.1.5], we have

1

2L
∥f(z(s))∥2 ≤ f(z(s))− infHf.

This inequality combined with the first item gives us the result.

For the third item, according to Corollary 6.1, we have for any solution trajectory
of (DRYAD) that ∫ +∞

t0

t ∥∇f (x (t))∥2 dt < +∞.

Making a change of variable associated with the time scaling step

t = τ(s) =
s2

2(α− 1)
,

we obtain ∫ +∞

t0

s3 ∥∇f (y (s))∥2 dt < +∞,

where y(s) = x(τ(s)). In light of the averaging step, we replace y(s) with x(s) + s
α−1

ẋ(s)

and obtain the result of this item.

For the last item which concerns the weak convergence of z(s), we argue as follows. We know
that the solution trajectory of the steepest descent dynamic converges weakly to a solution
x∗ ∈ S = argmin f . This immediately gives that y(s) = x(τ(s)) converges weakly to x∗. To
pass from this result to the result of z(·), we use the interpretation of z as an average of y

z(s) =
sα−1
0

sα−1
y(s0) +

α− 1

sα−1

∫ s

s0

uα−2y(u)du.

In order to have the weak convergence of z(·), meaning ⟨z(s), v⟩ → ⟨x∗, v⟩ as s→ ∞ for
all v ∈ H, after elementary calculus, it is sufficient to require that if a(·) is a positive real
valued function which satisfies limr→∞ a(r) = 0, then lims→∞A(s) = 0, where

A(s) =
α− 1

sα−1

∫ s

s0

rα−2a(r)dr,

which indeed can be proven to be true.
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6.5 Applying the time scaling and averaging techniques

to the dual system (DDRYAD)

Let us recall the dual dynamical system

d

dt
(∂f ∗(g(t))) +∇Ψ∗

β(g(t)) ∋ 0

Performing similarly to the case of (DRYAD), we can apply the time scaling and averaging
to the dual system to obtain the following second order dynamic

(iDDRYAD) ∇2f ∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗

β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0,

where the relation of g(t) with w(t) is as followsv(s) = g(τ(s)),

v(s) = w(s) + τ̇(s) + ẇ(s)
, with τ(s) =

s2

2(α− 1)

Here v is associated with the scaling step and w is associated with the averaging step.
Recall that for the dual dynamic, given that f is convex we have

lim
t→∞

t∥g(t)∥2 = 0

As τ(s) → ∞ as s → ∞, we can replace t with τ(s) in the above limit to obtain

lim
s→∞

s∥v(s)∥ = 0, or ∥v(s)∥ = o(1/s)

The differential equation connecting v and w gives us the interpretation of w as an
average of v as follows:

w(s) =

∫ s

s0

v(u)dµs(u),

where µs =
sα−1
0

sα−1 δs0 + (α− 1)u
α−2

sα−1 du is a probability measure on [s0, s]. Here δs0 denotes
the Dirac measure at s0.
According to the convexity of ∥ · ∥ and the Jensen inequality, we obtain that

∥w(s)∥ = o(1/s)
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The following theorem summarizes the results we just showed for this second order
dual dynamic
Theorem 6.4 Let x : [t0,∞) → H be a global solution trajectory of (DRYAD). Suppose
that f is convex. Then g(t) := ∇f(x(t)) is the solution trajectory of the generalized
Riemannian flow

d

dt
(∂f ∗(g(t))) +

γβ + 1

γ
g(t)− 1

γ
projB(0,r)(g(t)) ∋ 0.

Set τ(s) = s2

2(α−1)
with α > 1, and v(s) = g(τ(s)). Define w as the solution of the

differential equation

ẇ(s) +
1

τ̇(s)
(w(s)− v(s)) = 0, with w(s0) = v(s0) = x0.

Then w satisfies the following inertial system

∇2f∗
(
w(s) +

s

α− 1
ẇ(s)

)(
ẅ(s) +

α

s
ẇ(s)

)
+∇Ψ∗

β

(
w(s) +

s

α− 1
ẇ(s)

)
= 0,

and we have ∥w(s)∥ = o(1/s) as s→ ∞.

6.6 Numerical results

In this section, we will use adapted standard Runge-Kutta methods to solve numerically
the involved continuous dynamics and conduct a series of numerical illustrative experiments
to illustrate the theoretical results discussed in the previous sections.
Example 6.1 Let us begin this section by considering an example to illustrate the dynamic
(DRYAD) in dimension 2 in the case of a convex and quadratic function. More precisely,
let us set f(x1, x2) = ax21 + bx22 with 0 ≤ a < b and the initial condition x(1) = (1, 1) and
ẋ(1) = (0, 0). Note that f is of the form f(x) = ⟨x,Qx⟩ with Q = diag([a, b]). We take
φ(x) = r∥x∥2, with r = 0.1.
In Figure 6.1 we illustrate the behaviors of several quantities associated with (DRYAD).
Figure 6.1(a) shows the value of the objective function f along the trajectory as a function
of time. We can see that the function value decreases over time which is in accordance
with the theoretical result. Figure 6.1(b) shows the trajectory of the system starting from
an initial position and finally ending up at the unique minimizer of f . The last two figures
display the convergences towards zero of the velocity and gradient vectors.
Example 6.2 Let us now compare the two primal dynamics (DRYAD) and (iDRYAD)
on a quadratic function in dimension 2.
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Figure 6.1: Illustration of the convergence results of (DRYAD).

Similarly to Example 6.1, we consider 4 comparison criteria in Figure 6.2, namely the
objective value, solution trajectories, norm of the gradient, and norm of the velocity. As
can be seen from the figures, (iDRYAD) displays a superior performance compared to
(DRYAD) which confirms our theoretical results.

Example 6.3 We conduct the same numerical experiments as the previous example to
compare the two dual dynamics (DDRYAD) and (iDDRYAD).
In this comparison, in addition to providing the solution trajectories of (DDRYAD) and
(iDDRYAD) on the plane, we also present the evolutions of the norm of their trajectories,
which are supposed to converge to zero according to the theoretical results. Clearly,
(iDDRYAD) outperforms (DDRYAD).
Example 6.4 Let us conclude the numerical tests with this example where we bring
together the 4 dynamics, namely (DRYAD), (iDRYAD), (DDRYAD), and (iDDRYAD)
into one plot. To this end, we will display the norms of the gradients of the two primal
dynamics’ trajectories and the norms of the two dual dynamics’ trajectories. We will see
the evolutions of these 4 quantities which are supposed to converge to zero as time tends
to infinity. We use a quadratic problem for this numerical test.
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Figure 6.2: Comparison between (DRYAD) and (iDRYAD)
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Figure 6.3: Comparison between (DDRYAD) and (iDDRYAD)
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Figure 6.4: Comparing the four dynamics

If we look at Figure 6.4, in addition to the observation that the second order dynamics
have faster convergences than the first order ones, which has been seen in previous examples,
we can also say that the primal dynamics seem to have slightly better performances than
the dual dynamics in terms of convergence to zero of their respective considered quantities

In summary, based on the above examples and the theoretical results, it is evident
that inertial dynamics exhibit accelerated convergence rates for objective values, gradient
norms and velocity vectors in both primal and dual contexts. These enhanced convergence
properties present important advantages in the optimization field by facilitating more
effective and efficient optimization processes. The ability to achieve faster convergence
means that optimal or near-optimal solutions can be obtained more quickly, reducing
computation time and improving resource utilization. These benefits not only improve
overall optimization efficiency but also the performance of various optimization applications.
Consequently, the enhanced convergence properties of inertial dynamics make them
extremely valuable and desirable tools in the optimization field.

6.7 Conclusion

In this chapter, we study the long-time behavior of inertial dynamics with dry friction in a
Hilbert setting for convex differentiable optimization problems. The analysis made use of
the the time scaling and averaging techniques developed by Attouch, Bot and Nguyen [28]
to accelerate first order dynamical systems. We initially study a doubly nonlinear first-order
evolution equation, and subsequently adopt the mentioned acceleration method to obtain
a second-order in time evolution system involving dry friction, asymptotically vanishing
viscous damping, and a damping driven by the Hessian in the implicit form. The obtained
accelerated convergence rates of the inertial dynamic do not require developing a Lyapunov
analysis, but instead rely on the convergence results of the original first-order system
and tools from differential and integral calculus. However, there are several questions
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that require more research regarding this topic. One natural direction is to study the
case where the objective function f is a nonsmooth convex function by replacing the
gradient terms in (DRYAD) with the subdifferential of f . Another important area is to
design from (DRYAD) the associated first order dynamic representing the minimization
problem of additive functions where f is the sum of a smooth and a nonsmooth function.
Regarding the dual formulation of (DRYAD), the double differentiability of the Legendre-
Frenchel transform f ∗ of the convex function f plays a crucial role in the formulation
of the dual dynamic approach. This poses an issue since this assumption may not be
available in practice. The numerical experiments highlight the accelerated convergence
properties of inertial dynamics as opposed to their first order counterparts. While we
have focused on continuous-time scenarios in this chapter, it is important to explore the
temporal discretization of these dynamics and examine the convergence properties of the
associated algorithms. In addition, it would be interesting to carry out tests on various
optimization problems at different scales. This research will enable us to gain a deeper
understanding of these algorithms, their optimization efficiency and their applicability
to a wider range of problem sizes.

6.8 Appendix

6.8.1 Asymptotic convergence rates for the perturbed gradient

flow

Let us provide asymptotic convergence rates for the perturbed gradient flow, which we
have relied on in previous sections.
Theorem 6.5 Suppose that f : H → R is a convex differentiable function that satisfies
S = argminf ̸= ∅ and that has Lipschitz continuous gradient on bounded sets. Let
z : [t0,+∞[ → H be a solution trajectory of

ż(t) +∇f(z(t)) = g(t) (6.7)

where g : [t0,+∞[ → H is such that∫ +∞

t0

∥g (t)∥ dt < +∞ and
∫ +∞

t0

t ∥g (t)∥2 dt < +∞. (6.8)

Then the following statements are satisfied:

(i) (convergence of gradients towards zero) ∥∇f (z (t))∥ = o

(
1√
t

)
as t→ +∞.

(ii) (integral estimate of the gradients)
∫ +∞

t0

t ∥∇f (z (t))∥2 dt < +∞.
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(iii) (convergence of values) f (z (t))− infH f = o

(
1

t

)
as t→ +∞.

(iv) The solution trajectory z(·) converges weakly as t → +∞, and its limit belongs to
S = argmin f .

Proof. For the sake of completeness, let us recall some of the arguments used in the
asymptotic analysis of the perturbed steepest descent system when the perturbation g

satisfies (6.8). Given z∗ ∈ S, let T > t0 be fixed and for every t0 ≤ t ≤ T consider

ET (t) := t
(
f (z (t))− inf

H
f
)
+

1

2
∥z (t)− z∗∥2 +

∫ T

t

⟨z (τ)− z∗ + τ ż (τ) , g (τ)⟩ dτ.

Differentiating ET gives for all T ≥ t ≥ t0

d

dt
ET (t) = f (z (t))− inf

H
f + t ⟨∇f (z (t)) , ż (t)⟩+ ⟨z (t)− z∗, ż (t)− g (t)⟩ − t ⟨ż (t) , g (t)⟩

= f (z (t))− inf
H
f − t ∥ż (t)∥2 − ⟨z (t)− z∗,∇f (z (t))⟩

≤ −t ∥ż (t)∥2 , (6.9)

where the second equality comes from (6.7), and the last inequality follows from the
convexity of f . By integration from t0 to t, we deduce that

t
(
f (z (t))− inf

H
f
)
+

1

2
∥z (t)− z∗∥2

≤ C +

∫ t

t0

⟨z (τ)− z∗, g (τ)⟩ dτ +
∫ t

t0

τ ⟨ż (τ) , g (τ)⟩ dτ −
∫ t

t0

τ ∥ż (τ)∥2 dτ

≤ C +

∫ t

t0

∥z (τ)− z∗∥ ∥g (τ)∥ dτ +
1

2

∫ +∞

t0

τ ∥g (τ)∥2 dτ − 1

2

∫ t

t0

τ ∥ż (τ)∥2 dτ. (6.10)

We obtain the following estimate (recall that C denotes a generic constant), satisfied
for all t ≥ t0

1

2
∥z (t)− z∗∥2 ≤ C +

∫ t

t0

∥z (τ)− z∗∥ ∥g (τ)∥ dτ.

According to Gronwall Lemma, we conclude that for all t ≥ t0

∥z (τ)− z∗∥ ≤
√
2C +

∫ t

t0

∥g (τ)∥ dτ ≤
√
2C +

∫ +∞

t0

∥g (τ)∥ dτ < +∞.

The trajectory is therefore bounded. Using this property and (6.8) allows us to as-
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sert from (6.10) that

t
(
f (z (t))− inf

H
f
)
+

1

2
∥z (t)− z∗∥2 +

1

2

∫ t

t0

τ ∥ż (τ)∥2 dτ ≤ C. (6.11)

The above estimate does not depend on T , so it is satisfied for all t ≥ t0. It immediately
gives the convergence rate of the values for the solution trajectories of the perturbed (SD)

f(z(t))− inf
H
f ≤ C

t
.

Since t (f (z (t))− infH f) +
1
2
∥z (t)− z∗∥2 ≥ 0 for t ≥ t0, letting t goes to +∞ in

(6.11), we get ∫ +∞

t0

t ∥ż (t)∥2 dt < +∞.

According to the constitutive equation (6.7) we get∫ +∞

t0

t ∥∇f(z(t)∥2 dt ≤ 2

∫ +∞

t0

t ∥ż (t)∥2 dt+ 2

∫ +∞

t0

t ∥g (t)∥2 dt < +∞.

Let us differentiate the anchor function, which is another classical ingredient of the
Lyapunov analysis

d

dt

(
1

2
∥z (t)− z∗∥2

)
= ⟨z (t)− z∗, ż (t)⟩

= −⟨z (t)− z∗,∇f (z (t))⟩ − ⟨z (t)− z∗, g (t)⟩

≤ −
(
f (z (t))− inf

H
f
)
+ sup

t≥t0

∥z (t)− z∗∥ · ∥g (t)∥ (6.12)

≤ sup
t≥t0

∥z (t)− z∗∥ · ∥g (t)∥ . (6.13)

Recall that the trajectory z(·) is bounded. According to assumption (6.8), we deduce
that the right hand side of (6.13) belongs to L1 ([t0,+∞[). Therefore, from [1, Lemma
5.1] we obtain that

lim
t→+∞

∥z (t)− z∗∥2 ∈ R exists

and so limt→+∞ ∥z (t)− z∗∥ ∈ R does. In other words, the first condition of Opial’s lemma
is fulfilled. Furthermore, since limt→+∞ f (z (t)) = infH f and f is convex and weakly lower
semicontinuous, the second condition of Opial’s lemma is also fulfilled. This gives the
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weak convergence of the trajectory z(t) as t → +∞ to an element in S = argmin f .
Now let us show that in fact

lim
t→+∞

t
(
f (z (t))− inf

H
f
)
= 0,

meaning that the convergence rate of f (z (t))− infH f is actually o (1/t). To see this, we
integrate (6.12) from t0 to t > t0 and then let t converge to +∞. This yields∫ +∞

t0

1

t
t
(
f (z (t))− inf

H
f
)
dt =

∫ +∞

t0

(
f (z (t))− inf

H
f
)
dt < +∞ (6.14)

and thus lim inft→+∞ t (f (z (t))− infH f) = 0. It remains to show that this limit ex-
ists. To this end we compute the time derivative of t (f (z (t))− infH f) and apply
once again [1, Lemma 5.1]

d

dt

(
t
(
f (z (t))− inf

H
f
))

= f (z (t))− inf
H
f + t ⟨∇f (z (t)) , ż (t)⟩

= f (z (t))− inf
H
f − t ∥ż (t)∥2 − t ⟨g (t) , ż (t)⟩

≤ f (z (t))− inf
H
f +

1

4
t ∥g (t)∥2 .

Statement (iii) follows from assumption (6.8) and (6.14).
Let L be the Lipschitz constant of ∇f on a ball containing the trajectory z(·). It follows
from [34, Lemma 1] that for every t ≥ t0

0 ≤ t

2L
∥∇f(z(t))∥2 ≤ t(f(z(t))− inf

H
f),

which implies that limt→+∞ t ∥∇f(z(t))∥2 = 0 and proves (i).

Manh Hung LE| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

168



7
Conclusion and perspectives

Manh Hung LE | Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

169



Chapter 7 – Conclusion and perspectives

This thesis encompasses two primary subjects. The first subject explores the Pareto
eigenvalue complementarity problem alongside its corresponding inverse problem, while
the second delves into first-order optimization from the perspective of continuous dy-
namical systems.

Specifically, in the exploration of the first topic, given a matrix of size n × n, we
investigate the following system:

K ∋ x ⊥ (λx− Ax) ∈ K∗, (7.1)

where K represents the nonnegative orthant, a closed convex cone in Rn, and K∗ denotes
the positive dual cone of K, defined by

K∗ = {y ∈ Rn : ⟨y, x⟩ ≥ 0 ∀x ∈ K} .

Any λ ∈ R that satisfies this condition with some non-zero λ is termed a Pareto eigenvalue
of A. The exponential growth in the number of Pareto eigenvalues of a matrix with its size
underscores the challenge of identifying all Pareto eigenvalues for medium to large-scale
matrices. we propose the utilization of interior-point methods to address Pareto eigenvalue
complementarity problems. Here, we demonstrate the efficacy of a nonparametric interior
point method (NPIPM) and an adapted Mehrotra predictor-corrector method (MPCM), a
widely acknowledged primal-dual interior point method. These methods exhibit efficiency
across various problem instances, including those with real-world data. Additionally, we
also present a proposed nonparametric smoothing method that demonstrates notable
strength in resolving Pareto eigenvalue complementarity problems. We establish conditions
ensuring the nonsingularity of the Jacobian matrix associated with our algorithms, which
is particularly beneficial in the realm of Newton’s method. In Chapter 4, we extend our
study to the inverse problem, where a set of distinct real numbers is provided, and the
task is to identify a matrix attaining these reals as Pareto eigenvalues. The exploration
of these topics not only contributes to advancing the understanding of Pareto eigenvalue
complementarity problems but also sheds light on novel methodologies for addressing such
challenges within the realm of mathematical optimization.

Continuing with the discussion on the second subject, focusing on first-order optimization
from the perspective of dynamical systems, Chapter 5 delves into the convergence properties
of various proximal gradient inertial algorithms. These algorithms are discretized from
a non-regular dynamical system described by:

ẍ(t) + γẋ(t) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0,
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which incorporates elements of dry friction, viscous damping, and Hessian-driven damping.
Notably, the unique feature of this dynamic lies in the novel form of the dry friction term,
where the action of dry friction is on a weighted sum of the velocity and the gradient,
as opposed to solely the velocity. This innovative formulation enables our algorithms
to converge to the exact critical point of the function being minimized, thus surpassing
previous methodologies. Theoretical analyses underscore the robustness of our algorithms
against perturbations or errors, a characteristic substantiated by numerical tests.
In Chapter 6, we extend our exploration to a doubly nonlinear evolution equation fea-
turing two potentials:

γ(ẋ(t) + β∇f(x(t))) + ∂φ
(
ẋ(t) + β∇f(x(t))

)
+∇f(x(t)) ∋ 0.

This formulation represents a generalization of the gradient flow, incorporating the presence
of dry friction. Our investigation initially focuses on studying the convergence properties
of this dynamic. Subsequently, we leverage the generic acceleration technique pioneered
by Attouch, Bot, and Nguyen, known as time scaling and averaging. This technique
enables the transformation of the original evolution equation into an inertial dynamic
featuring dry friction and an implicit Hessian-driven damping term. Notably, our analysis
demonstrates that this dynamic exhibits accelerated convergence properties. Further-
more, numerical experiments underscore the superior performance of inertial systems
over their first-order counterparts.

There are several open questions and potential avenues for advancement stemming from
these works.
For Chapter 3, further investigation into alternative interior point methods presents
an intriguing prospect. Comparing their performances against the MPCM, NPIPM,
and SM methodologies in the context of eigenvalue complementarity problems could
provide valuable insights into the relative strengths and weaknesses of different approaches.
Moreover, the exploration of inexact Newton methods within our framework holds promise
for resolving large-scale problems more efficiently. Also, exploring the possibility of
incorporating global convergence techniques into our algorithms represents a promising
area of research.
For Chapter 5, a notable area of interest centers around the exploration of algorithms
for general composite optimization problems, as well as their related stochastic variants.
The idea of studying stochastic variants is suggested by the robustness of our proposed
algorithms against perturbations and errors. It would also be interesting to extend the
analyses for the following dynamic

ẍ(t) +
α

t
ẋ(t) + ∂φ

(
ẋ(t) + β∇f(x(t))

)
+ β∇2f(x(t))ẋ(t) +∇f(x(t)) ∋ 0,
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where we replace the fixed vicious damping coefficient by an asymptotic vanishing term of
the form α

t
. This concept is inspired by the work of Su, Boyd, and Candès [143] where

they introduce a continuous representation of the Nesterov accelerated gradient method
using this type of viscous damping. By incorporating this principle, we aim to explore the
potential of deriving new dynamics that exhibit accelerated convergence properties.
As for Chapter 6, several intriguing questions arise. Firstly, there is a need to explore
scenarios where the objective function f is a nonsmooth nonconvex function. This
exploration could shed light on the behavior of the dynamical system in optimizing
functions characterized by nonsmoothness and nonconvexity. Another question is how to
design from (DRYAD) the associated first-order dynamic representing the minimization
problem of additive functions where f is the sum of a smooth and a nonsmooth function.
Last but not least, understanding how to discretize the resulting inertial systems to achieve
fast optimization algorithms is of paramount importance. This is however not trivial
and likely to require extensive effort. Exploring these open questions and directions for
progression promises to advance the field of optimization and dynamical systems, paving
the way for innovative techniques and solutions to challenging optimization problems.
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Études mathématiques et numériques de la complémentarité aux valeurs
propres et des problèmes d’accélération dans l’optimisation du premier ordre

Résumé : Dans cette thèse, j’explore deux sujets clés. Premièrement, je m’intéresse à l’étude
mathématique et numérique du problème de complémentarité des valeurs propres de Pareto et
de sa contrepartie inverse. Notre approche utilise des méthodes de points intérieurs, complétées
par une technique de lissage non paramétrique. L’efficacité des méthodologies proposées est
soulignée par un ensemble d’expériences numériques. En mettant l’accent sur l’optimisation
continue, nous adoptons une perspective de systèmes dynamiques. Plus précisément, nous
étudions divers algorithmes inertiels à gradient proximal, discrétisés à partir d’un système
dynamique inertiel non régulier comportant des éléments de frottement sec et d’amortissement
piloté par le Hessien. En outre, nous examinons une équation d’évolution doublement non
linéaire régie par deux potentiels, ainsi que l’accélération de sa convergence par l’application de
techniques de mise à l’échelle temporelle et de calcul de la moyenne, ce qui se traduit par une
dynamique inertielle comportant un frottement sec et un amortissement implicite induit par le
hessien. Les tests numériques corroborent la performance supérieure des systèmes inertiels par
rapport à leurs homologues du premier ordre, ce qui correspond aux résultats théoriques.

Mots clés : Problèmes de complémentarité, méthodes des points intérieurs, optimisation du
premier ordre, optimisation convexe, algorithmes inertiels, systèmes dynamiques.

Mathematical and numerical studies of eigenvalue complementarity problems
and acceleration methods in first-order optimization

Abstract: In this thesis, I explore two key topics. Firstly, I delve into the mathematical and
numerical study of the Pareto eigenvalue complementarity problem and its inverse counterpart.
Our approach employs interior point methods, supplemented by a non-parametric smoothing
technique. The efficacy of these proposed methodologies is underscored through an array of
numerical experiments. Shifting our focus to continuous optimization, we adopt a dynamical
systems perspective. Specifically, we study various proximal gradient inertial algorithms,
discretized from a non-regular inertial dynamical system featuring elements of dry friction
and Hessian-driven damping. Additionally, we examine a doubly nonlinear evolution equation
governed by two potentials, and its convergence acceleration through the application of time
scaling and averaging techniques, which results in inertial dynamics featuring dry friction and
implicit Hessian-driven damping. The numerical tests corroborate the superior performance of
inertial systems over their first-order counterparts, aligning with the theoretical results.



Keywords: Complementarity problems, interior point methods, first-order optimization, convex
optimization, inertial algorithms, dynamical systems.
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