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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)
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Résumé en français

Introduction et contexte

L’apprentissage collatéral, conceptualisé par le philosophe, psychologue et réforma-
teur de l’éducation John Dewey, décrit l’apprentissage accidentel qui se produit dans
et en dehors de la salle de classe (Dewey, 1997). Sur la base de cette définition, et
en l’étendant au contexte de l’apprentissage profond (Deep Learning, DL), nous dis-
ons qu’il y a apprentissage collatéral lorsqu’un modèle apprend plus d’informations
que prévu. Dans les sections suivantes, nous présentons des cas dans lesquels un tel
phénomène se produit, mais nous fournirons ici quelques intuitions de base. Prenons
un ensemble de données de vision par ordinateur très courant comme ImageNet1,
utilisé par la grande majorité des travaux dans le domaine de la vision par ordina-
teur. Il contient un millier de classes d’objets et de sujets différents, tels que des
animaux et des véhicules, par exemple des vaches et des avions. Il est raisonnable
de prédire que, compte tenu de la nature de ces sujets, les images contenant des
vaches et des animaux similaires présenteront des scènes communes (par exemple,
des champs d’herbe) dans la grande majorité des cas. De même, pour les images
d’avions, nous verrons probablement une bonne partie du ciel. Compte tenu de
cette corrélation entre les sujets et les contextes dans lesquels ils apparaissent, un
modèle entraîné sur ces données s’appuiera probablement sur des indices de paysage
pour reconnaître la classe de sujets. Si on lui présente les mêmes sujets mais dans
un contexte complètement différent, par exemple une vache sur une plage, le mo-
dèle sera-t-il suffisamment robuste pour fournir la bonne classification ? En résumé,
pour être robustes, les modèles de DL ne doivent pas être affectés par le problème
de l’apprentissage collatéral. Pour une analyse plus détaillée, dans le cadre de cette
thèse, nous distinguons certains scénarios spécifiques dans lesquels l’apprentissage
collatéral peut poser problème, à savoir les données biaisées et l’imagerie médicale
multi-sites. En outre, cette thèse fournit également quelques indications dans le
contexte de la préservation de la vie privée.

Données biaisées L’apprentissage de bonnes représentations pour un ensemble de
données est généralement réalisé en minimisant une fonction de coût d’un modèle
donné. Toutefois, dans la pratique, cela ne garantit pas la capacité du modèle à
se généraliser à des données nouvelles et inédites. Souvent, les données de test
présentent des différences par rapport aux données d’apprentissage, un phénomène
communément appelé écart entre domaines (domain gap ou domain shift) (Ganin
and Lempitsky, 2015; Quinonero-Candela et al., 2008). Bien que ce phénomène
puisse se produire de nombreuses façons différentes et que des domaines de recherche

1https://www.image-net.org/
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entiers y soient consacrés, dans cette thèse, nous nous intéressons principalement à
deux cas: le changement de diversité et le changement de corrélation (Ye et al., 2022).
Pour fournir une explication formelle de ces deux différents types de changements de
domaine, définissons un échantillon x comme la composition de différentes sources
de signaux S, que nous pouvons modéliser comme des variables aléatoires. Un
changement de diversité se produit lorsque la distribution d’une certaine source Si ∈
S change d’un domaine source S à un domaine cible T , de distributions respectives
pS et pT : ∃i | pS(Si) ̸= pT (Si) ; tandis qu’un changement de corrélation peut être
défini comme ∃i, j ̸= i | pS(Si|Sj) ̸= pT (Si|Sj), ce qui signifie que la distribution de la
source Si, conditionnée par une autre source Sj, varie entre le domaine de la source
et le domaine de la cible. Dans ces deux cas, l’apprentissage collatéral signifie que
le modèle capture les corrélations ou informations parasites dans les données.

Effet de site en imagerie médicale L’effet de site fait référence à un phénomène
où la performance ou le comportement d’un modèle d’apprentissage automatique est
influencé par l’origine ou la source spécifique des données. Chaque centre médical
peut avoir son propre équipement d’imagerie, ses propres protocoles et pratiques
d’acquisition de ces images. En raison de ces variations, les images provenant de
différents centres peuvent présenter des différences subtiles en termes de qualité
d’images, de résolution et même de facteurs tels que l’éclairage ou le positionnement
du patient. Lors de l’apprentissage d’un modèle d’apprentissage automatique pour
analyser ces images, le modèle peut apprendre par inadvertance des schémas spé-
cifiques au site ou au centre médical d’où proviennent les images. Par exemple,
il peut apprendre à reconnaître certains artefacts d’images ou des caractéristiques
propres à un appareil d’imagerie particulier. Cela devient problématique car les
performances du modèle peuvent se dégrader lorsqu’il est appliqué à des images
provenant d’un autre centre médical. Le modèle peut avoir du mal à interpréter
correctement les données ou à fournir des résultats exacts pour l’aide au diagnostic
simplement parce qu’il a ajouté les informations collatérales des images provenant
du site d’entraînement original (Glocker et al., 2019). Cette thèse aborde le pro-
blème de l’effet de site dans le contexte de la neuro-imagerie pour la prédiction de
l’âge du cerveau et des images de radiographie thoracique pour la prédiction de la
Covid-19.

Fuite d’informations privées La protection de la vie privée est une autre ques-
tion centrale de tout type de système de traitement de l’information. Le problème de
la confidentialité des données dans les algorithmes basés sur l’intelligence artificielle
(IA) remonte à bien avant l’avènement du DL. Cependant, avec l’avènement du DL,
il est devenu difficile de fournir des garanties sur le type d’informations apprises
par les modèles, en raison de leur nature de boîte noire. Par exemple, comment
pouvons-nous garantir qu’aucune information privée collatérale n’est apprise par un
modèle de DL déployé sur les données des utilisateurs ? Ou, par exemple, dans un
contexte d’apprentissage fédéré, comment s’assurer que les informations partagées
ne contiennent aucune caractéristique d’identification ? Ce sont des questions per-
tinentes qu’il faut prendre en considération lors du déploiement de solutions basées
sur le DL, car il a été démontré qu’il est possible de divulguer des informations
privées à partir de ces systèmes (Fredrikson et al., 2015; Song et al., 2017).
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Gestion de l’apprentissage collatéral

Nous avons vu comment l’apprentissage collatéral affecte l’apprentissage profond de
différentes manières. Il est clair qu’il est nécessaire de concevoir des méthodes pour
traiter ce problème afin de rendre l’apprentissage profond plus fiable et digne de
confiance. Cette thèse propose différentes approches à cette fin. Certaines d’entre
elles sont basées sur des techniques de régularisation qui contraignent le processus
d’apprentissage, tandis que d’autres sont exprimées plus généralement comme un
objectif d’optimisation qui peut être moins sujet à l’apprentissage collatéral lui-
même. En outre, nous donnons des indications sur la manière dont l’apprentissage
collatéral peut être atténué par un choix judicieux des tâches de pré-entraînement
et des stratégies d’apprentissage par transfert.

Apprentissage de la représentation Une compréhension plus complète de la
manière dont les modèles profonds peuvent apprendre des représentations puissantes
peut certainement être utile pour atténuer le problème de l’apprentissage collatéral.
Dans cette thèse, nous adoptons un point de vue d’apprentissage métrique pour
formaliser le processus d’apprentissage, ce qui nous permet de proposer un ensem-
ble de fonctions de coût contrastives, adaptées à la fois à la classification et à la
régression. Nous proposons une nouvelle fonction contrastive pour la classification
sur des images naturelles, et une nouvelle fonction contrastive pour la régression afin
d’estimer l’âge du cerveau dans le contexte de la neuro-imagerie. Dans ce dernier
cas, la fonction proposée présente également un certain degré d’invariance à l’effet de
site, qui est un problème d’apprentissage collatéral spécifique à l’imagerie médicale.

Régularisation La régularisation est une technique bien connue pour améliorer
les capacités de généralisation d’un modèle. Dans cette thèse, nous présentons dif-
férentes nouvelles méthodes de régularisation pour traiter les biais dans les don-
nées. La première méthode proposée est EnD, qui vise à démêler les caractéris-
tiques de biais dans la représentation des données. En outre, à partir de notre cadre
d’apprentissage de représentation métrique, nous proposons un terme de régularisa-
tion amélioré, FairKL, qui est plus efficace pour atténuer l’apprentissage collatéral.

Pré-entraînement et apprentissage par transfert robustes Des représen-
tations robustes peuvent être obtenues non seulement par la régularisation ou de
nouvelles fonctions de coût, mais aussi en choisissant soigneusement la tâche de
pré-entraînement et la stratégie d’apprentissage par transfert. Dans ce travail, nous
montrons comment le pré-entraînement sur un grand ensemble de données d’images
radiographiques du thorax peut être utilisé pour apprendre des représentations ro-
bustes, utiles pour la prédiction de la Covid-19.

Apprentissage collatéral dans les images naturelles
Débiaisage par désenchevêtrement Dans ce chapitre, nous présentons la pre-
mière approche que nous proposons pour traiter la question de l’apprentissage col-
latéral dans des données biaisées, appelée EnD (de Entangling and Disentangling).
Plus précisément, nous traitons la question du décalage de corrélation. L’intuition
de base d’EnD est que les représentations d’échantillons biaisés ont tendance à être
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naturellement regroupées sur la base des caractéristiques collatérales communes qui,
dans ce cas, représentent le biais. EnD est une méthode supervisée, qui suppose donc
que l’on dispose de connaissances préalables sur le biais, sous la forme d’étiquettes.
Elle consiste en un terme de régularisation qui vise à supprimer les caractéris-
tiques de biais des représentations apprises, au moyen de l’enchevêtrement et du
désenchevêtrement entre différents échantillons. Pour donner une idée de l’intuition
qui sous-tend cette approche, prenons l’exemple de Biased-MNIST (Bahng et al.,
2020), où le biais de corrélation est déterminé par la couleur de l’arrière-plan et le
chiffre. Si nous considérons deux “8” avec deux couleurs de fond différentes (par ex-
emple violet et orange), notre objectif est de forcer l’intrication entre leurs représen-
tations latentes de manière à ce que les caractéristiques communes (c’est-à-dire le
chiffre) soient prédominantes. EnD se compose de deux termes:

• un terme de désenchevêtrement (disentangling), dont la tâche est d’essayer
de dé-corréler autant que possible les représentations de tous les échantillons
appartenant à la même classe de biais b ;

• un terme d’enchevêtrement (entangling) qui tente de forcer les corrélations
entre la représentation d’échantillons provenant de différentes classes de biais
mais ayant la même classe cible t.

Contrairement aux autres techniques de débiaisage, nous n’introduisons pas de
paramètres supplémentaires à apprendre et nous ne modifions pas les données d’entrée :
le modèle est naturellement conduit à choisir des caractéristiques profondes non bi-
aisées, sans introduire d’informations a priori supplémentaires sur les données. Nos
expériences montrent l’efficacité d’EnD par rapport à d’autres techniques de débiais-
age, excellant dans les cas de données fortement biaisées. EnD a obtenu des résultats
de pointe sur différents ensembles de données, notamment Biased-MNIST, CelebA
et IMDB.

Apprentissage non biaisé de la représentation avec FairKL

Dans ce chapitre, nous présentons un cadre unifié pour analyser et comparer les
formulations existantes de fonctions de coût contrastives telles que InfoNCE (Chen
et al., 2020), InfoL1O (Poole et al., 2019) et SupCon (Khosla et al., 2020). En outre,
nous proposons également une nouvelle fonction de coût contrastive supervisée qui
peut être considérée comme l’extension la plus simple de la fonction InfoNCE à
un cadre supervisé avec des exemples positifs multiples. En utilisant l’approche
d’apprentissage métrique proposée, nous pouvons reformuler chaque perte comme
un ensemble de conditions contrastives, et parfois même non contrastives, ce qui est
surprenant. Nous montrons que la fonction SupCon largement utilisée n’est pas une
extension directe de la fonction InfoNCE puisqu’elle contient en fait un ensemble de
contraintes non contrastives. Notre analyse permet de comprendre en profondeur les
différentes fonctions de coût, en expliquant pleinement leur comportement d’un point
de vue métrique. En outre, en tirant parti de l’approche d’apprentissage métrique
proposée, nous explorons la question de l’apprentissage biaisé. Nous soulignons les
limites des fonctions contrastives étudiées lorsqu’elles traitent des données biaisées,
même si le coût sur l’ensemble d’apprentissage est apparemment minimisé. En
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analysant de tels cas, nous fournissons une caractérisation plus formelle du biais.
Cela nous permet finalement de formuler un nouvel ensemble de contraintes de
régularisation pour le débiaisage qui est général et peut être ajouté à n’importe quelle
fonction de coût contrastive ou non contrastive. Nos contributions sont résumées
ci-dessous :

1. Nous introduisons un cadre théorique simple mais puissant pour l’apprentissage
supervisé des représentations, à partir duquel nous formulons différentes fonc-
tions de coût contrastive. Nous montrons comment les fonctions contrastives
existantes peuvent être exprimées dans notre cadre, ce qui permet une com-
préhension uniforme des différentes formulations. Nous dérivons une forme
généralisée de la fonction SupCon (ϵ-SupCon), proposons une nouvelle fonc-
tion ϵ-SupInfoNCE, et démontrons empiriquement son efficacité ;

2. Nous donnons une définition plus formelle du biais, grâce à l’approche d’appren-
tissage métrique proposée, qui est basée sur les distances entre les représen-
tations. Cela nous permet de construire un nouvel ensemble de contraintes
de régularisation de débiaisage efficaces, que nous appelons FairKL. Nous
analysons également, théoriquement et empiriquement, le pouvoir de débi-
aisage des différentes fonctions contrastives, en comparant ϵ-SupInfoNCE et
SupCon.

Avec ϵ-SupInfoNCE, nous avons obtenu des résultats au niveau de l’état de l’art sur
des repères de vision standard tels que CIFAR-10, CIFAR-100 et ImagenNet. En
utilisant FairKL, nous avons également obtenu de nouveaux résultats au niveau de
l’état de l’art sur des benchmarks de débiaisage tels que Biased-MNIST, Corrupted-
CIFAR10, bFFHQ, 9-Class ImageNet et ImageNet-A.

Extension au cas de biais inconnus

Dans cette section, nous présentons l’approche de débiaisage de bout en bout non
supervisée que nous proposons, en montrant comment une technique explicitement
supervisée telle que EnD et FairKL peut être étendue au cas non supervisé, lorsque
les étiquettes de biais ne sont pas disponibles. Pour ce faire, nous montrons com-
ment les informations sur les biais peuvent être partiellement, et parfois totalement,
récupérées d’une manière totalement non supervisée. L’algorithme que nous pro-
posons se compose de trois étapes séquentielles : tout d’abord, nous formons un
classifieur capturant les biais, en utilisant des techniques d’optimisation standard
(par exemple SGD ou Adam) ; ensuite, nous récupérons les informations relatives
aux biais dans l’espace latent du classifieur biaisé au moyen d’une méthode de re-
groupement (par exemple KMeans), afin d’obtenir un prédicteur de biais, que nous
utilisons pour classer tous les échantillons d’entraînement dans différentes classes de
biais. Enfin, nous appliquons une technique de débiaisage supervisée (telle que EnD
ou FairKL) en utilisant les étiquettes de biais prédites, afin d’obtenir un classifieur
débiaisé. Avec cette approche, nous sommes capables d’égaler les performances des
méthodes de base supervisées, et parfois même de les dépasser.
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En outre, nous montrons également que l’étape de regroupement peut être évitée
et que le codeur biaisé peut être directement utilisé comme une fonction de simila-
rité biaisée, avec une reformulation appropriée du terme de régularisation de débi-
aisage (Barbano et al., 2023). Le fait d’éviter l’étape de pseudo-étiquetage peut
réduire de manière significative la complexité de l’apprentissage, en supprimant le
choix d’un algorithme de regroupement et des hyperparamètres correspondants. En
outre, l’utilisation d’un score continu plutôt que d’une étiquette rigide peut permet-
tre d’exploiter des informations plus riches et d’être plus robuste face aux erreurs
de regroupement.

Apprentissage collatéral en imagerie médicale

Neuro-imagerie

Dans ce chapitre, nous nous concentrons sur un cas spécifique d’apprentissage col-
latéral dans les images médicales : la prédiction de l’âge du cerveau à partir d’ensembles
de données d’imagerie multi-sites. Le vieillissement du cerveau implique des pro-
cessus biologiques complexes, tels que l’amincissement du cortex, qui sont très
hétérogènes d’un individu à l’autre, ce qui suggère que les gens ne vieillissent pas
de la même manière. La modélisation précise du vieillissement cérébral au niveau
du sujet est un objectif de longue date en neurosciences, car elle pourrait améliorer
notre compréhension des maladies liées à l’âge telles que les troubles neurodégénéra-
tifs. À cette fin, des prédicteurs de l’âge du cerveau reliant la neuroanatomie à l’âge
chronologique ont été proposés à l’aide de l’apprentissage profond (DL) (Peng et al.,
2021). Une estimation précise de l’âge du cerveau s’est avérée très utile pour dé-
tecter une accélération anormale par rapport à l’âge chronologique, un phénomène
généralement lié au déclin cognitif et à la neurodégénérescence (Franke et al., 2010).
Afin de construire des modèles d’âge cérébral plus robustes et plus précis, insensibles
au site, le défi OpenBHB (Dufumier et al., 2022) a été récemment lancé. Comme
nous le montrons dans cette thèse, l’apprentissage contrastif est plus robuste au
bruit dans les données ou les étiquettes que les approches traditionnelles de bout
en bout, telles que celles utilisant l’entropie croisée, ce qui permet d’obtenir de
meilleurs modèles de généralisation. Pour cette raison, dans ce travail, nous pro-
posons une nouvelle fonction de coût contrastif pour la régression dans le contexte
du défi OpenBHB, où l’âge chronologique doit être appris sans être affecté par le
bruit lié au site. Avec notre méthode, nous obtenons les meilleurs résultats dans le
classement officiel.

Notre contribution est double :

• En nous appuyant sur notre cadre d’apprentissage métrique, nous proposons
une nouvelle méthode de régression par apprentissage contrastif pour la pré-
diction de l’âge du cerveau. La fonction de coût proposée définit un degré de
positivité entre les échantillons d’entrée en tirant parti d’une fonction noyau
définie sur la différence d’âge chronologique des patients ;

• Nous obtenons des performances de pointe en matière de prédiction de l’âge
du cerveau dans le cadre du défi OpenBHB. La fonction proposée montre
également une plus grande robustesse à l’effet de site dans les données.
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Il convient de noter qu’au moment de la rédaction du présent document et à notre
connaissance, la fonction que nous proposons est l’une des premières tentatives
d’utilisation de l’apprentissage contrastif pour les tâches de régression. En effet, la
notion d’échantillons positifs et négatifs est ancrée dans le cadre de l’apprentissage
contrastif et n’est pas directement adaptée à la régression.

L’expérience COVID-19

Afin de former des modèles d’apprentissage automatique pour la détection de la
Covid-19, de nouveaux ensembles de données ont été collectés au cours des dernières
années. Cependant, surtout au début de la pandémie, le défi n’était pas facile à
relever, car les ensembles de données étaient rares et constitués à partir de différentes
sources, y compris des ensembles de données préexistants collectés à partir de sources
accessibles au public. Ce faisant, les ensembles de données résultants ont souvent
été fortement influencés par la diversité des données recueillies, car ils contenaient
des biais et des informations prêtant à confusion provenant des différents sites. C’est
pourquoi de nombreux travaux publiés n’ont obtenu de bonnes performances qu’en
apparence, et étaient en fait affectés par le problème de l’apprentissage collatéral.
Dans ce chapitre, nous décrivons les travaux de recherche que nous avons menés au
cours des trois dernières années, depuis les premiers efforts visant à apporter une
contribution méthodologique pour évaluer correctement les performances des mo-
dèles, jusqu’aux efforts continus qui ont abouti à Co.R.S.A2, un projet financé pour
évaluer l’impact et l’utilité des outils de détection de la Covid-19 basés sur l’IA dans
la pratique clinique de tous les jours. Comme pour la neuro-imagerie, ce chapitre
traite de la question de l’apprentissage collatéral. Cependant, à la différence des
chapitres précédents, nous montrerons que l’apprentissage collatéral peut être at-
ténué non seulement par de nouvelles pertes ou techniques de régularisation, mais
aussi par d’autres méthodes telles que l’apprentissage par transfert. Ce chapitre se
veut un exemple pratique de la manière dont l’apprentissage collatéral peut parti-
culièrement affecter le domaine médical.

Grâce à la collaboration avec différents grands hôpitaux italiens (A.O.U Città della
Salute e delle Scienza, Torino, A.O. Mauriziano, Torino, A.O. U San Luigi Gonzata,
Orbassano, Torino, Centro Cardiologico Monzino, Milano, et ASL TO3, Torino),
nous avons réussi à commencer la collecte du COvid Radiographic images DAta-
set for AI (CORDA), un ensemble de données d’imagerie COVID-19 multi-sites,
contenant 3852 images de différentes modalités (CX, CT)3. Outre l’ensemble de
données librement accessibles, nos contributions comprennent deux approches dif-
férentes pour la détection de la COVID : une première méthode d’apprentissage
profond ciblant le diagnostic direct à partir des images de radiographie thoracique
(CXR) (comme le font généralement la plupart des travaux basés sur l’apprentissage
profond), et une deuxième méthode comprenant une étape intermédiaire, dans laque-
lle les résultats radiologiques sont d’abord mis en évidence, puis le diagnostic est
formulé. Nous utilisons la première approche pour montrer comment l’apprentissage
collatéral a affecté de nombreux travaux publiés sur la détection de la Covid-19 à

2https://corsa.di.unito.it/
3https://zenodo.org/records/7821611
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partir d’images CXR, en particulier dans les premières phases de la pandémie. Nous
montrons que la deuxième approche est plus efficace ; en particulier, la tentative
d’élaboration directe d’un diagnostic à partir des clichés radiologiques est sujette à
des biais ou à des effets de site. L’imitation du processus de décision du radiologue
s’avère plus robuste face à ces problèmes car elle se concentre sur la détection de
résultats radiologiques objectifs, ce qui permet de construire un espace de représen-
tation plus robuste.

Quelques conseils sur l’apprentissage collatéral et la
protection de la vie privée
Dans ce chapitre, nous analysons brièvement une autre menace posée par l’apprentis-
sage collatéral, qui est liée à l’apprentissage d’informations potentiellement sensibles
à partir des données. Comme nous l’avons expliqué dans l’introduction, les réseaux
neuronaux peuvent apprendre plus de caractéristiques que prévu. Par exemple, un
modèle entraîné pour la prédiction de l’âge sur des images faciales peut apprendre en
plus des caractéristiques de sexe. Cela peut également se produire dans les images
médicales. Dans certains cas, il peut être trivial d’extraire ces informations de la
sortie du modèle ou de l’espace latent. Cela peut bien sûr représenter un problème
réel lors du déploiement de systèmes basés sur le DL en production, car ils peu-
vent entraîner des fuites d’informations privées ou sensibles. Dans ce chapitre, nous
analysons si les techniques que nous avons proposées pour le débiaisage peuvent
également contribuer à prévenir ce problème. Le raisonnement qui sous-tend cette
approche est que nous pourrions être en mesure de traiter les informations privées
de la même manière que nous traitons les biais. Nous menons une analyse empirique
qui nous permet de démontrer qu’il existe une classe non vide d’algorithmes de débi-
aisage qui peuvent être déployés à ces deux fins. En particulier, si l’algorithme de
débiaisage donné est capable de cacher des informations privées plutôt que de sim-
plement les repondérer, alors il peut être déployé avec succès pour la préservation de
la vie privée. Dans nos expériences, nous avons réussi à empêcher un attaquant de
récupérer des caractéristiques liées au sexe à partir de la sortie d’un réseau neuronal
entraîné sur des images faciales.
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Part I

Background
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Chapter 1

Introduction

In the last two decades, Artificial Neural Network (ANN) models received huge inter-
est from the research community. Nowadays, complex and even ill-posed problems
can be tackled provided that one can train a deep enough ANN model with a large
enough dataset. Furthermore, ANNs are quickly becoming a powerful tool helping
us make a variety of decisions (Johnson et al., 2016; Kraus and Feuerriegel, 2017).
ANNs are usually trained to process a desired output from some inputs. However,
we do not have a clear idea of how information is represented inside of a network.
This lack of understanding makes it difficult to interpret and explain the decisions
made by ANNs. Recently, AI trustworthiness has been formally recognized as a ma-
jor prerequisite for people and societies to use and accept such systems (AI HLEG,
2019; Zhang and Dafoe, 2019). In April 2019, the High-Level Expert Group on AI
of the European Commission defined the three main aspects of trustworthy AI (AI
HLEG, 2019): it should be lawful, ethical, and robust. Providing a warranty on this
topic is currently a matter of study and discussion (Schramowski et al., 2020; Stock
and Cissé, 2018; Teso and Kersting, 2019; Wang et al., 2020a).

This thesis focuses mainly on the aspect of robustness. While many different mean-
ings can be attributed to the concept of robustness (Drenkow et al., 2021), in this
thesis we refer to robustness as the ability to achieve and preserve good model per-
formance under the presence of noise and biases in the data. A more comprehensive
explanation will be provided in the following sections, by introducing the concept
of Collateral Learning.

1.1 Aim of this work

The aim of the work in this thesis is to deal with the task of learning data repre-
sentations, which, ideally, should satisfy the following requirements. They should
be:

1. General enough in order to capture a meaningful variability of the data;

2. Discriminative enough for solving a desired downstream task;

3. Robust to confounding factors and spurious information in the data.
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The first and second points can be referred to as representation learning: a process in
which machine learning algorithms and models (e.g. neural networks) extract mean-
ingful information from the data, which can then be used, for example, for classifi-
cation. Representation learning can be supervised, unsupervised, or self-supervised.
Recently, contrastive learning has become one of the most relevant approaches for
representation learning, both in self-supervised and supervised forms (Chen et al.,
2020; Khosla et al., 2020). Representation learning in the form of Contrastive Learn-
ing (CL) will be the subject of extensive analysis in this work, with a focus on the
supervised case. A detailed introduction to representation learning and contrastive
learning can be found in Section 2.1.
About the third and last point, in the rest of this manuscript, a better explanation
will be provided by introducing the concept of Collateral Learning. This represents
the core of this work, as finding a way to mitigate the impact of spurious informa-
tion such as biases in the data has proven to be necessary for the development and
deployment of real-world deep learning applications.

The methods presented in this work will be developed with the goal of generalizabil-
ity. For this reason, the first chapters will focus on natural images. This allows us to
exploit established benchmarks and larger datasets for assessing the efficacy of our
contributions. Later in the work, the proposed methods will be tailored for tackling
specific biomedical applications, such as brain imaging and chest X-ray diagnosis.

We will also briefly mention how Collateral Learning can pose an issue from the
point of view of privacy. In fact, it can be shown that ANNs can learn different
information from a given dataset, some of which might be considered sensitive (e.g.
gender, sex, age, etc.). When sharing a model, or even just its output, it might be
possible to retrieve and disclose such sensitive information.

1.2 Collateral Learning

Collateral learning, conceptualized by John Dewey, describes the accidental learning
that occurs in and outside the classroom (Dewey, 1997).

“Perhaps the greatest of all pedagogical fallacies is the notion that
a person learns only the particular thing he is studying at the time.
Collateral learning in the way of formation of enduring attitudes, of
likes and dislikes, may be and often is much more important than the
spelling lesson or lesson in geography or history that is learned. For
these attitudes are fundamentally what count in the future. The most
important attitude that can be formed is that of desire to go on learning.”
(Dewey, Experience and Education)

Based on this definition, and extending it to the Deep Learning (DL) context, we say
that collateral learning occurs when a model learns more information than intended.
In the following sections, we will present cases in which such a phenomenon occurs,
but here we will provide some basic intuitions. Consider a very common computer
vision dataset such as ImageNet (Deng et al., 2009), used by the vast majority of
works in the computer vision domain. It contains one thousand classes of different
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Figure 1.2.1: Examples of distribution shifts in image classification datasets.
Datasets at both ends show apparent differences (diversity and correlation shifts).
However, many realistic datasets lie in the middle and can be affected by collateral
learning to some extent. Credits to Ye et al. (2022).

objects and subjects, such as animals, and vehicles, for example, cows and airplanes.
It is reasonable to predict that, given the nature of such subjects, images containing
cows and similar animals will exhibit common scenes (e.g. grass fields) in the vast
majority of cases. Similarly, with plane images, we will be probably looking at a
good portion of the sky as well. Given such a correlation between the subjects and
the contexts they appear in, a model trained on this data will probably rely on land-
scape clues for recognizing the subject class. If presented with the same subjects
but in a completely different context, for example, a cow on a beach (Beery et al.,
2018), will the model be actually robust enough to provide the correct classification?

Focusing on the concept of robustness for AI, Attenberg et al. (2015) discussed
the problem of finding the so-called “unknown unknowns” in data. These unknown
unknowns relate to the case when the deep model elaborates information in an
unintended way, but shows high confidence on its predictions. In recent years, dur-
ing the Covid-19 pandemic, this behavior affected many works proposing DL-based
solutions for Covid-19 detection from Chest X-ray images. Unfortunately, the avail-
able datasets, especially at the beginning of the pandemic, were heavily biased.
This often resulted in models mistakenly predicting a Covid-19 diagnosis with high
confidence, due to the presence of unwanted biases, for example by detecting the
catheters or medical devices for positive patients, their age (at the beginning of
the pandemic, most ill patients were elderly people), or even by recognizing the
origin of the data itself (when negative cases were augmented borrowing samples
from other datasets) (Apostolopoulos and Mpesiana, 2020; Sethy and Behera, 2020;
Tartaglione et al., 2020). The latter phenomenon, also commonly known in medical
imaging as site effect (Glocker et al., 2019; Howard et al., 2021), is particularly rel-
evant in neuroimaging (Chen et al., 2022; Dufumier et al., 2022; Nguyen et al., 2018).

In summary, in order to be robust, DL models should not be affected by the col-
lateral learning problem. For a more detailed analysis, in the scope of this thesis,
we distinguish some specific scenarios where collateral learning can be a problem,
namely biased data and multi-site medical imaging. Furthermore, this thesis will
also provide some hints in the context of privacy preservation.
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1.2.1 Biased data

Learning good representations for a given dataset is usually achieved by minimizing
some loss function of a given model, as explained in Section 2.1. However, in practice,
this does not guarantee the ability of the model to generalize to new and unseen
data. Often, testing data exhibit differences with respect to the training data, a
phenomenon which is commonly known as domain gap or domain shift (Ganin and
Lempitsky, 2015; Luo et al., 2019; Quinonero-Candela et al., 2008). While there are
many different ways in which this can happen, with whole research fields dedicated
to them, in this thesis we are mainly interested in two cases: diversity shift and
correlation shift (Ye et al., 2022). To provide a formal explanation of these two
different types of domain shifts, let us define a sample x as the composition of
different signal sources S, which we can model as random variables. A diversity
shift happens when the distribution of a certain source Si ∈ S changes from a source
domain S to a target domain T : ∃i | pS(Si) ̸= pT (Si); while a correlation shift can
be defined as ∃i, j ̸= i | pS(Si|Sj) ̸= pT (Si|Sj), meaning that the distribution of the
source Si, conditioned on another source Sj, varies between the source and target
domain. In both these cases, collateral learning means that the model captures the
spurious correlation/information in the data. An example of these kinds of domain
shifts is illustrated in Figure 1.2.1.

Diversity shift

To provide a more intuitive understanding, let us consider an example. Imagine
we are working with a dataset that contains images of different animals. In this
scenario, Si could represent a specific attribute of the images, such as their color
distribution. A diversity shift would occur if, for instance, in the source domain
S, the images predominantly feature animals with brown fur, while in the target
domain T , the images primarily depict animals with white fur.
This change in the distribution of the attribute (in this case, fur color) across the
source and target domains can have a significant impact on the performance of a
machine learning model. It may lead to the model making inaccurate predictions or
classifications on data from the target domain, as it has been primarily trained on
data from the source domain.

Addressing diversity shift is crucial in machine learning tasks, particularly when the
goal is to deploy models in real-world applications where the distribution of data can
vary over time or across different environments. Techniques to mitigate diversity
shift typically involve strategies like domain adaptation, where the model is trained
to align the distributions of relevant features across different domains, allowing it to
better generalize to unseen data.

Correlation shift

Many datasets are biased, namely they contain easy-to-learn features that are highly
correlated with the target class only in the dataset but not in the true underlying
distribution of the data. In the latest years, it has become increasingly evident how
neural networks tend to rely on simple patterns in the data (Geirhos et al., 2019;
Li et al., 2021). As deep neural networks grow in size and complexity, guaranteeing
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that they do not learn spurious elements in the training set is becoming a pressuring
issue to tackle. It is indeed a known fact that most of the commonly-used datasets,
such as ImageNet (Deng et al., 2009), are biased (Geirhos et al., 2019; Torralba
et al., 2011) and that this affects the learned models (Tommasi et al., 2017). In
particular, when the biases correlate very well with the target task, it is hard to
obtain predictions that are independent of the biases. Furthermore, if the bias is
also easier to learn than the desired features (e.g. a simple pattern or color), we will
most likely obtain a biased model, whose predictions majorly rely on these spurious
attributes and not on the true, generalizable, and discriminative features. In fact,
based on these observations, a bias can be characterized on its “malignancy” as either
benign or malignant, as done by Arpit et al. (2017); Nam et al. (2020) In order to
be malignant, a bias must:

• have a strong enough correlation with the target task;

• be an easier pattern to learn that the target features.

Malignant biases are more harmful for the generalization capabilities of a model,
as they can prevent the true discriminative features from being learned. For this
reason, debiasing algorithms usually focus on this kind of biases. To illustrate this
concept with an example, let us consider a scenario where we are dealing with
medical data. In this context, Si could represent a patient’s blood pressure, while
Sj could represent their cholesterol levels. A correlation shift would occur if the
relationship between blood pressure and cholesterol levels differs between the source
domain S and the target domain T . For instance, in the source domain, high blood
pressure might be strongly correlated with high cholesterol levels, while in the target
domain, this correlation might be weaker or even reversed.
This change in the relationship between different sources of information can have a
significant impact on the performance of a machine learning model, especially if the
model relies on these correlations to make accurate predictions or classifications.
Not only malign biases but also benign biases could represent an issue, as their
collateral information can be easily learned by the model and impact its behavior.
Furthermore, this could be exploited post-training, in order to retrieve some charac-
teristics of the training set, leading to a leakage of potentially private information.

1.2.2 Site-effect in medical imaging

Site-effect in medical imaging is an instance of collateral learning and is essentially
an issue of domain shift. However, given its relevance in the field of machine learning
for medical imaging (Chen et al., 2022; Glocker et al., 2019; Howard et al., 2021;
Nguyen et al., 2018; Wachinger et al., 2021), it is worth dedicating a separate dis-
cussion to this topic.

Site-effect refers to a phenomenon where the performance or behavior of machine
learning model is influenced by the specific origin or source of the data. Each medical
center may have its own imaging equipment, protocols, and practices for acquiring
these images. Due to these variations, the images from different centers may have
subtle differences in terms of image quality, resolution, and even factors like lighting
or positioning of the patient. When training a machine learning model to analyze
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Figure 1.2.2: Principal Component (PC) of the learned representations for the IMDB
Face dataset using a vanilla model (a) and a regularized model (b). We indicate with
µf and µm the mean of the female and male samples’ representations, respectively.
Collateral gender features are learned by the model even if training for a different
task (age prediction) if no explicit care is taken. More details in Chapter 8.

these images, the model may inadvertently learn patterns that are specific to the
site or medical center where the images originated. For example, it might learn to
recognize certain image artifacts or characteristics that are unique to a particular
imaging device. This becomes problematic because the model’s performance may
degrade when applied to images from a different medical center. It may struggle
to accurately interpret the data or make accurate diagnoses just because it has
overfitted the collateral information of the images from the original training site.
This thesis tackles the site-effect problem in Part III, in the context of neuroimaging
for brain age prediction and Chest X-ray Images for Covid-19 prediction.

1.2.3 Leakage of private information

Privacy is another central matter of any kind of information processing system. The
problem of data privacy in AI-based algorithms deepens its roots before the uprising
of DL. However, with the advent of DL, it has become hard to provide guarantees
on what type of information is learned by the models, due to their black-box nature.
For example, how can we ensure that no collateral private information is learned
by a DL model deployed on users’ data? Or, for example, in a federated learning
context, how can ensure that the shared information does not contain any identify-
ing feature? These are relevant questions one needs to take into consideration when
deploying DL-based solutions, as it has been shown that it is possible to disclose
private information from such systems, for example with inversion attacks as shown
by Fredrikson et al. (2015). Allowing information not relevant to the learning task
to be stored inside the network is a known phenomenon. For example, Song et al.
(2017) empirically show how accurately some side information can be recovered,
resulting in a potential lack of privacy.

An example of how potentially sensitive information can be retrieved from the
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learned representations is presented in Figure 1.2.2, where a model is trained on
the IMDB Face dataset (Rothe et al., 2018) for age prediction from facial images.
Looking at the learned representations, it is very easy to tell apart male individuals
from female ones, even if such (collateral) information was not directly used during
training. By using regularization methods such as the ones proposed in this thesis
it is possible to prevent the model from learning such information.

1.3 Dealing with Collateral Learning

We have seen how collateral learning affects deep learning in different ways. It is clear
that devising methods for dealing with this issue is necessary in order to make deep
learning more reliable and trustworthy. This thesis proposes different approaches
for this purpose; some of them are based on regularization techniques that constrain
the learning process, while others more generally derive an optimization objective
which can be less prone to collateral learning itself. Additionally, we also provide
hints on how collateral learning can be mitigated by careful choice of pre-training
tasks and transfer learning strategies.

Representation Learning A more throughout understanding of how deep mod-
els can learn powerful representations can certainly be helpful in mitigating the
collateral learning issue. In this thesis, we adopt a metric learning point of view
to formalize the learning process, which allows us to derive a set of contrastive loss
functions, suited for both classification and regression. In Chapter 4 we will derive
a contrastive loss for classification on natural images, while in Section 6.1 we will
propose a contrastive loss for regression in neuroimaging for estimating brain age.
In the latter case, the proposed loss will also exhibit a certain degree of invariance
to site effect, which is a collateral learning issue specific to medical imaging.

Regularization Regularization, which will be explained in Section 2.1, is a well-
known technique for improving the generalization capabilities of a model. In Sec-
tion 3 we will present the first proposed regularization method, EnD, to tackle biases
in the data. An improved regularization technique, FairKL, will be then presented
in Section 4.2, which will be shown to be more effective in mitigating collateral
learning.

Robust pre-training and transfer learning Robust representations can be
achieved not only through regularization or derivation of novel loss functions, but
also by carefully choosing the pre-training task and the transfer learning strategy.
In Chapter 7 we will show how pre-training on a large dataset of Chest X-ray images
can be used to learn robust representations, useful for Covid-19 prediction.

1.4 Organization of this thesis

This work introduces the concept of Collateral Learning in Deep Learning, which
refers to all those instances in which DL models learn “more” information than we
expect. This concept aims at bridging the gap among different fields of research such
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as robustness, debiasing, generalization in medical imaging, and privacy preserva-
tion. For this reason, this thesis is organized into different parts.

In Part I, we provide the background of this work. Chapter 1 defines the aim of the
work, and provides a definition of Collateral Learning, along with relevant examples
and practical applications. Chapter 2 provides an overview of the relevant related
literature. It illustrates the basis for deep representation learning, debiasing and
medical imaging.

Part II and III represent the main contribution of this work. In Part II we focus on
developing methods for robust representation learning on natural images. In Chap-
ters 3 and 4 we propose different supervised learning approaches for representation
learning and debiasing. In Chapter 5 we present our ongoing work for extending the
previous methods to the unsupervised scenario.
Part III focuses on Collateral Learning in medical images. We present, in Chapter 6,
our efforts to build a robust brain age prediction model leading to the diagnosis of
brain conditions. After that, Chapter 7 will present our contributions for Covid-19
diagnosis from chest X-ray imaging, highlighting the threats posed by Collateral
Learning.

In Part IV, we will briefly touch upon another instance of Collateral Learning, specif-
ically the issue of privacy preservation in DL-based systems in Chapter 8.

Finally, in Part V, we will draw the conclusions of this work, summarizing the
contributions and findings during this PhD. We will also illustrate some of ongoing
the related work, and provide insights about future developments in the field of
Collateral Learning and robust representation learning.

1.5 Publications

The work in this thesis has led to the publication of several papers, both in conference
and journals. Below is a list of the publications achieved.

Journal articles

(J1) Unsupervised learning of unbiased visual representations. C. A. Barbano,
E. Tartaglione, and M. Grangetto. Submitted to Journal of Machine Learning
Research.

(J4) Detection of subclinical atherosclerosis by image-based deep learning
on chest x-ray: a retrospective model development and validation
study. G. Gallone, A. Presta, F. Iodice, D. Tore, O. D. Filippo, M. Visciano,
C. A. Barbano, A. Serafini, W. G. Marra, J. Hughes, M. Iannacone, P. Fonio,
A. Fiandrotti, A. Depaoli, M. Grangetto, G. M. D. Ferrari, F. D’Ascenzo.
Submitted to Radiology, 2023.

(J2) Simplify: A python library for optimizing pruned neural networks.
A. Bragagnolo and C. A. Barbano. SoftwareX, 2022.
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(J3) Unveiling covid-19 from chest x-ray with deep learning: A hurdles
race with small data. E: Tartaglione, C. A. Barbano, C. Berzovini, M.
Calandri, and M. Grangetto. International Journal of Environmental Research
and Public Health, 2020.

Conference articles

(C1) Unbiased supervised contrastive learning. C. A. Barbano, B. Dufumier,
E. Tartaglione, M. Grangetto, and P. Gori. ICLR, 2023.

(C2) Integrating Prior Knowledge in Contrastive Learning with Kernel
B. Dufumier, C. A. Barbano, R. Louiset, E. Duchesnay, and P. Gori. ICML,
2023

(C3) Contrastive learning for regression in multi-site brain age prediction.
C. A. Barbano, B. Dufumier, E. Duchesnay, M. Grangetto, and P. Gori. ISBI,
2023.

(C4) A two-step radiologist-like approach for Covid-19 computer-aided
diagnosis from chest X-ray images. C. A. Barbano, E. Tartaglione, C.
Berzovini, M. Calandri, and M. Grangetto. ICIAP, 2022.

(C5) End: Entangling and disentangling deep representations for bias
correction. E. Tartaglione, C. A. Barbano, and M. Grangetto. CVPR, 2021.

(C6) Bridging the gap between debiasing and privacy for deep learning.
C. A. Barbano, E. Tartaglione, and M. Grangetto. ICCV (Workshop), 2021.

(C7) Unitopatho, a labeled histopathological dataset for colorectal polyps
classification and adenoma dysplasia grading. C. A. Barbano, Daniele
Perlo, E. Tartaglione, A. Fiandrotti, L. Bertero, P. Cassoni, and M. Grangetto.
ICIP, 2021.
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Chapter 2

Related Works

This Chapter provides an overview of the relevant literature in the fields of deep rep-
resentation learning, debiasing, and medical imaging. First, we introduce the basics
of deep learning, starting from fully connected neural networks up to convolutional
networks and the different existing methods for training them. Then, we focus on
existing debiasing techniques, by providing a high-level categorization (supervised,
prior guided, unsupervised) of the different state-of-the-art methods. Finally, we
introduce the topic of medical imaging and provide an overview of the relevant deep
learning methods in neuroimaging (for brain age prediction) and chest X-ray (for
Covid-19 detection).

2.1 Deep Representation Learning

Deep Learning (DL) is a subfield of Machine Learning (ML), which has become
predominant in almost all ML applications. Compared to traditional ML, which re-
quires a lot more manual crafting of input features and transformations (e.g. dimen-
sionality reduction), and, in general, relies more on human domain knowledge, DL
models aim at learning a desired representation starting directly from the raw data,
by applying a number of parametric non-linear transformations. The parameters
are optimized by minimizing an error function defined over the output of the model
and some ground truth labels (i.e. supervised learning) or, for example, over some
other metric computed on the output alone (i.e. self-supervised / unsupervised).
Compared to previous ML models (e.g. support vector machines, trees, etc.) DL
models are more computationally expensive due to the higher number of parameters.

Deep Learning has shown unprecedented performance, especially when dealing with
large quantities of data. This was made possible by multiple technological ad-
vances, such as widespread access to the Internet, which allowed the creation of
large datasets such as ImageNet (Deng et al., 2009), and the advances in computa-
tional power, made possible by the rapid development of Graphics Processing Units
(GPU).

In this Section, we provide an overview of DL models, from simple fully-connected
networks to the state-of-the-art architectures and optimization techniques that are
commonly used nowadays.
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2.1.1 Multi-Layer Perceptrons

Multilayer perceptrons are a type of ANNs. Strictly following the definition, they
are composed of multiple layers of perceptrons (with thresholding function), but
the term is often also used when referring to feedforward artificial networks. ANNs
are composed of layers of more general computing units (neurons) with different
activation functions and affine transformations (i.e. dot product as in the previous
examples, or convolution as we will later see). From now on we will use the more
generic term neural network.

Figure 2.1.1: Sample architecture of a multilayer perceptron / ANN.

Figure 2.1.1 shows a sample architecture for a multilayer neural network. Neural
networks are typically acyclic graphs, organized in layers. In a fully-connected net-
work, such as the one shown in Figure 2.1.1, each neuron in a layer is connected
to every neuron in the previous layer. Every connection is weighted by a learnable
weight. The fully-connected layers are also called dense layers. The depth of the
network is given by the number of layers, which is usually at least three: the input
layer, one or more hidden layers and the output layer. Each neuron performs an
affine transformation (dot product in fully-connected networks), followed by a non-
linear activation function. Activation functions are a fundamental component in
any neural network. Their non-linearity allows the network to approximate complex
functions. Without non-linear activation functions, a network of any given depth
could be replaced by a single layer performing a linear transformation. Moreover, to
allow for the gradient-based optimization techniques (that will be explained in Sec-
tion 2.1.1), the activation functions should be differentiable (i.e. tanh or sigmoid).
By far, the most common activation function is ReLU, defined as:

ReLU(x) = max(0, x) (2.1.1)

Even though formally ReLU is non-differentiable at zero (the value of the derivative
at zero is arbitrarily chosen to be either 1 or 0), it provides a number of advantages
when compared to standard sigmoidal functions: it has a more efficient computation,
promotes sparsity in the network and reduces the vanishing gradient problem Glorot
et al. (2011).

Most of the operations in a neural network can be expressed in terms of matrix
multiplication, which has the advantage of being highly parallelizable. Let’s now
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assume a network with N layers. Given the n-th layer, with 0 ≤ n ≤ N , containing
j neurons, we can express its set of parameters θn:

θn =


w0

n

w1
n
...
wj

n

 =


w0

n,0 w0
n,1 . . . w0

n,k b0n
w1

n,0 w1
n,1 . . . w1

n,k b1n
...

... . . . ...
...

wj
n,0 wj

n,1 . . . wj
n,k bjn

 (2.1.2)

where wj
n,i is the i-th weight of the j-th neuron in the n-th layer, bjn is a bias term

of the j-th neuron in the n-th layer, and k is the number of neurons in the previous
layer (for n = 0, k represents the number of dimensions of the input vector). Each
row of the matrix contains the weights of a neuron in that layer.
To obtain a prediction from the neural network, it is sufficient to perform a feed-
forward pass, recursively applying the transformation for each layer in the network.
Denoting with ŷn the output of the n-th layer, the forward pass of a neural network
can be summarized as:

ŷn = f(ŷn−1 · θTn ) (2.1.3)

where f is the non-linear activation function, and ŷ0 is the input layer1.
The outputs of the final layer of a neural network (called logits) are then usually
normalized to obtain a probability distribution, where each value represents the
probability of the sample belonging to a certain class. Commonly used normalization
functions include Sigmoid or Softmax.

Gradient Descent Training a neural network is usually achieved by defining an
error function with respect to some desired output. The error is also usually called
loss. This can be accomplished by computing the gradient of the loss with respect to
each parameter in the network and using it to make adjustments by moving in the
direction of the steepest decrease in the error. Gradient-based optimization requires
the loss and activation functions to be differentiable. This technique is known as
Gradient Descent (GD). We can define the update for a set of parameter w as:

w(t+1) = w(t) + η∇L(y, ŷ) (2.1.4)

where L is the loss function, y is the desired output, ŷ is the network prediction, and
η is a hyperparameter which determines convergence speed called learning rate. The
standard process for training a neural network using GD consists in performing a
forward pass on the entire dataset, computing the global error (i.e. sum or average of
error for each sample), and then obtaining the gradients for each layer’s parameters.
This last step is usually called backward pass: the gradients of a layer will depend
on the output of successive layers and can be computed with the backpropagation
algorithm (Rumelhart et al., 1986), which makes use of the chain rule2.
Using the entire dataset just to perform a single update step is often very time con-
suming, when dealing with large datasets (or even too computationally expensive, if

1We won’t be explicitly showing the bias term for each set of weights, as it is irrelevant to the
understanding of the proposed concepts. To account for it, it is sufficient to consider an additional
dimension with the corresponding input value set to 1.

2Most of the modern deep learning frameworks such as TensorFlow and PyTorch makes this step
trivial, by constructing a computation graph, which allows to easily compute chained derivatives.
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storing the computational graph for each sample is required). This is why Stochastic
Gradient Descent (SGD) is usually employed. In SGD, a forward-backward pass is
performed on each sample (randomly drawn from the dataset), making small adjust-
ments at every iteration. This procedure, however, could lead to a noisy learning
process, especially in the presence of outliers. Hence, it is much more common to
employ a variant of SGD called mini-batch stochastic gradient descent, where more
than one sample are drawn at every iteration. The error is then computed on the
entire mini-batch and averaged among the samples, before propagating the gradi-
ents. In this work, when talking about SGD, we will be referring to its mini-batch
implementation. Having employed a matrix notation in the previous equations, it is
now very easy to understand this approach: instead of an input vector x, a matrix
x of size N × K will be used, where N is the size of the mini-batch and K is the
number of dimensions of a single sample. Each row of the matrix will represent a
single data point.

Loss functions Common loss functions include Mean Squared Error (MSE), Bi-
nary Cross Entropy (BCE) and Cross Entropy (CE). For classification tasks, BCE
and CE are usually employed. BCE is generally used on binary classification tasks,
while CE is commonly employed for multiclass classification (problems with more
than one class, but in which samples are assigned a single label). Denoting with ỹ
the normalized output of the network, the general form of the CE loss, for a given
sample, is:

LCE = −
N−1∑
n=0

yn log ỹn (2.1.5)

where N is the total number of classes, yn is a binary value (0 or 1) indicating
whether the sample belongs to n-th class and ỹn is the model prediction for the n-th
class. For a binary classification task, Equation 2.1.5 can be reduced to the BCE
formula:

LBCE = − [y log ỹ + (1− y) log (1− ỹ)] (2.1.6)

where y is the label for the given sample. BCE is also used in multilabel classification
problems, where more than one label can be assigned to a single sample. In a multi-
label problem with N classes, each n-th output component is treated independently
from the others (this is effectively the same as having N different binary classifiers).
Hence, for every sample, a different loss is computed on each single class. Denoting
with Ln the loss on a given sample for the n-th class, the total loss can be obtained,
for example, by summation:

LBCE =
N−1∑
n=0

Ln
BCE = −

N−1∑
n=0

[yn log ỹn + (1− yn) log(1− ỹn)] (2.1.7)

where yn and ŷn are respectively the ground truth and the prediction for the n-
th class. An example of a multilabel classification problem will be presented in
Section 7.2.1 for classifying different lung pathologies.
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Regularization One of the most common problems in deep learning and machine
learning algorithms is overfitting. This happens when a model cannot generalize to
unseen data because the training data was just memorized. To address this issue,
the most common approach is adding a regularization term to the loss function,
which prevents the models from memorizing the training data. The general form of
a regularized loss function can be denoted as:

Lreg = L+ λR (2.1.8)

where L denotes the loss function, R is the regularization term, and λ is a hyper-
parameter determining the amount of regularization to apply.
By far, the most common technique is the L2 regularization, which adds a penalty
for larger parameters and drives them towards zero. An L2-regularized loss function
is formulated as follows:

LL2 = L+ λ∥w∥22 (2.1.9)

where ∥.∥22 is the squared L2-norm. When deriving the regularized loss, we obtain
the following update rule (dropping the constant 2):

w ← (1− ηλ)w + η∆w (2.1.10)

The L2-regularization is often called weight decay as the weight is multiplied for a
factor smaller than one before applying the update. This makes it harder for the
model to overfit, as noise in the data will have less of an impact on the network
weights (Krogh and Hertz, 1992). Other regularization techniques exist besides L2,
such as L1 or, for example, the ones proposed in this thesis in Chapters 3 and 4.

2.1.2 Neural networks for image processing

When dealing with images, another kind of layer is preferred instead of dense layers:
the convolutional layer. Neural networks built using this kind of layer are commonly
called convolutional network. As the name implies, these models adopt convolution
as their primary affine transformation function. The major advantage of convolu-
tional networks is that they do not require as much pre-processing compared to
traditional image processing algorithms, eliminating the need to hand-craft filters,
as they are learned through gradient descent. In 1989, Yann LeCunn proposed a
system to recognize hand-written ZIP code numbers, where the convolution filters
were learned through backpropagation, which became the foundation of convolu-
tional networks for image processing (LeCun et al., 1989). Convolutional networks
are composed of a set of convolution filters that are successively applied in order to
extract meaningful features from the image, while also reducing the input dimen-
sionality.

A typical architecture of a convolutional network is shown in Figure 2.1.2. We can
identify two main building blocks: the encoder, made by the convolutional layers,
which has the goal of extracting features from the input data, and the classifier,
which is usually a fully-connected network taking as input the extracted features.
As we can notice from Figure 2.1.2, convolution is usually applied together with
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Figure 2.1.2: A convolutional network. Credits to Shreyak (2020)

another transformation called pooling.

We are now going to briefly describe the main types of layers we can find in a stan-
dard convolutional network. For both of the layers presented below, we can control
a number of hyperparameters: the size of the filter, the stride (which determines
the amount by which the filters shift on the input tensor), and the amount of zero
padding applied on the input tensor.

Convolutional layer We can denote a convolutional layer by its parameter tensor
θ of shape Cout×Cin×Wk×Hk, where Cout is the number of channels in the resulting
tensor, Cin the number of input channels (i.e. 3 for RGB images) and Wk and Hk

are the width and height of the convolution filters. Given an input tensor x of shape
Cin ×W ×H, where W and H are the width and height, the affine transformation
performed by the layer (here denoted by ⋄) for the c-th output channel can be
described with:

x ⋄ θc =
Cin−1∑
i=0

xi ∗ θc,i (2.1.11)

where ∗ is the 2D cross-correlation operation.3 Each output channel θc can be
obtained by summing across the input channel i the result of the cross-correlation
between the i-th channel of the input tensor xi and the corresponding convolution
filter θc,i. The output of a convolutional layer is called feature map. Similarly to
dense layers, convolutional layers are followed by an activation function, which is
commonly ReLU.

Pooling layer Pooling layers perform a fixed transformation, which helps in re-
ducing data dimensionality and the computational complexity of the network. The
pooling operation consists of a sliding window that computes a fixed function of their

3Similarly to the fully-connected network, the bias term can be taken into account with this
formulation by considering an additional input channel, filled with the constant value 1.
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input and does not require any learnable parameter. They are usually employed af-
ter a number of convolutional layers, also helping in achieving better translation
invariance. The two most common types of pooling are max pooling, where for each
windowed region only the maximum value is retained, and average pooling in which
each region is substituted with the average value.

State-of-the-art network architectures

Throughout the years, many architectures of convolutional networks were proposed,
ranging from the older but foundational LeNet-5 (LeCun et al., 1998) to more recent
networks such as VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016)
and DenseNet (Huang et al., 2017), just to name a few. This section concludes the
introduction to deep learning and neural networks, by presenting the state-of-the-art
convolutional architectures that will be later used in this work.

ResNet ResNet was originally introduced in 2015 by the Microsoft Research
team (He et al., 2016). It won first place in the ImageNet Large Scale Visual Recog-
nition Competition (Deng et al., 2009) in 2015 with a top-5 error rate of 3,57%.
ResNet allows for much deeper networks compared to previous architectures like
VGG, thanks to the introduction of residual connections.

Figure 2.1.3: A residual
block. Credits to He et al.
(2016)

Figure 2.1.3 shows an example of residual connec-
tion. F(x) denotes the output of a block of layers on
a certain input x. The residual connection consists in
adding a shortcut from x to the block output (also
called skip connection), which allows the gradients
to flow in two directions. The reason for skip con-
nections is that, when dealing with deep networks,
gradients can become increasingly small after each
layer and this could prevent the network from learn-
ing. This problem is known as gradient degradation.
Residual connections help in attenuating this prob-
lem, by providing an alternative path for gradient
flow, without experiencing the degradation problem. A block of layers with a resid-
ual connection is called residual block. Residual blocks are repeated multiple times
along the depth of the network. The original paper provides different ResNet vari-
ants, containing up to 152 layers. Resnet-18 and ResNet-50 were used in this work,
with 18 and 50 layers respectively.

DenseNet DenseNet (Huang et al., 2017) is a widely used network architecture,
which elaborates on the residual connection idea proposed by ResNet, taking it
a step further. Figure 2.1.4 shows an example of DenseNet architecture. Every
convolutional layer is connected to all of the following convolutional layers with
skip connections. The major difference between DenseNet and ResNet is that skip-
connections are implemented by concatenation rather than addition. This allows for
a better feature reuse as each feature map will be used as additional input by the
subsequent layers. DenseNet architectures achieve better performance than ResNet
on ImageNet and a number of other datasets. In this work, the popular DenseNet-
121 (containing 121 layers) was used.
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Figure 2.1.4: DenseNet architecture. Credits to Huang et al. (2017).

Transfer Learning

Some of the networks used in this work have been pre-trained on ImageNet (Deng
et al., 2009) and later on different datasets. This pre-training step is commonly
employed in deep learning tasks, as it provides a good initialization for the model
encoder. Many of the features that the network has learned to extract can in fact
be re-used successfully on different tasks (Pan and Yang, 2009). This approach is
commonly known as transfer learning and has been exploited multiple times in this
work. When using transfer learning, the “knowledge” that the network gained could
prove to be useful on a different (but related) problem. Usually, transfer learning
is applied to the network encoder, as the fully-connected classifier is replaced with
one suited for the new task. Also, depending on the task at hand and the size of
the training dataset, different choices on how to implement transfer learning can be
taken: when switching to another problem, the entire network could be re-trained
on the new data (also known as finetuning), or, conversely, the encoder could be
frozen, meaning that only the new fully-connected classifier will be trained.

2.1.3 Contrastive Learning

In recent years, the topic of deep representation learning has increasingly gained
traction in the machine learning community. Contrastive Learning (CL) has be-
come the most widespread approach for this purpose, and many losses and frame-
works have been proposed (Chen et al., 2020; Khosla et al., 2020; Oord et al., 2019;
Poole et al., 2019). In short, Contrastive Learning approaches aim at pulling posi-
tive samples’ representations (e.g. of the same class) closer together while repelling
representations of negative ones (e.g. different classes) apart from each other. Con-
trasting positive pairs against negative ones is an idea that dates back to previous
research (Hadsell et al., 2006; Oord et al., 2019; Tian et al., 2020) and has seen
various applications in different tasks, such as face recognition (Schroff et al., 2015).
Within the different proposed Contrastive Learning methods, we can identify two

40



←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T t′ ∼
T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2.1.5: SimCLR framework. Two separate data augmentation operators are
sampled from the same family of augmentations (t ∼ T and t′ ∼ T ) and applied to
each data example to obtain two correlated views. b A base encoder network f(·)
and a projection head g(·) are trained to maximize agreement using a contrastive
loss. Credits to Chen et al. (2020).

prominent approaches, self-supervised with SimCLR (Chen et al., 2020) and super-
vised with SupCon (Khosla et al., 2020).

Self-supervised CL SimCLR is designed for learning powerful representations
from unlabeled data. It employs strong data augmentation techniques, creating
multiple augmented versions of an input image. These augmented samples are then
passed through a deep neural network, typically based on architectures like ResNet.
The contrastive loss function encourages the model to bring representations of simi-
lar data points closer together while pushing apart representations of dissimilar data
points. The idea of aligning representations of samples through small transforma-
tions actually dates back to 1992 (Becker and Hinton, 1992). Figure 2.1.5 provides
an overview of the SimCLR framework: an image x is transformed by applying a
set of augmentations T , obtaining two different views x̃i and x̃j (positive samples).
The agreement between the latent representation of the positive samples is then
maximized with the InfoNCE loss, also known as NT-Xent:

LInfoNCE
i,j = − log

exp(sim(zi, zj)/τ)∑
k ̸=i exp(sim(zi, zk)/τ)

(2.1.12)

where zi and zj are the normalized latent representation of the positive pair, sim(u,v) =
uTv/∥u∥∥v∥ is the cosine similarity function, and τ is a temperature parameter.
In this framework, all the samples k ̸= i in the minibatch are considered negatives,
thus their agreement is minimized by the loss function. Indeed, Eq. 2.1.12 can be
decomposed into two separate terms:

LInfoNCE
i,j = − log (exp(sim(zi, zj)/τ)︸ ︷︷ ︸

alignment

+ log
∑
k ̸=i

exp(sim(zi, zk)/τ)︸ ︷︷ ︸
uniformity

(2.1.13)

known as alignment and uniformity (Dufumier et al., 2021a; Wang and Isola, 2020).
Alignment pushes the encoder to encode similar samples with similar features, while
uniformity favors a distribution on the hypersphere that preserves maximal infor-
mation, such as a uniform distribution. The result of this process is that samples
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Figure 2.1.6: Difference between self-supervised and supervised contrastive learning.
With SupCon, samples from the same class are closer in the latent space than with
SimCLR. Credits to Khosla et al. (2020).

are distributed in the latent space according to their similarity in the input space,
which, for self-supervised learning is strongly dependent on the chosen augmenta-
tion scheme. Picking the best kind of augmentations or finding alternative solutions
when applying data augmentation is not trivial (e.g. medical images) and is an ac-
tive area of research (Dufumier, 2022; Dufumier et al., 2023). Chapter 9 will briefly
mention this topic. In the main parts of this thesis, however, we will not deal with
this issue, as we will focus on supervised learning. Self-supervised contrastive ap-
proaches like SimCLR are usually employed for pre-training on large datasets, with
subsequent finetuning on a downstream task such as classification or regression.

Supervised CL SupCon (which stands for Supervised Contrastive) incorporates
labels from the original task (e.g., classification labels) to guide the learning process.
While data augmentation can still be applied, SupCon mainly leverages the labels
for defining positive and negative samples in the contrastive loss computation. The
SupCon loss is proposed as an extension of the InfoNCE loss employed by SimCLR:

LSupCon
i = − 1

|P (i)|
∑

j∈P (i)

log
exp(sim(zi, zj)/τ)∑

k∈A(i) exp(sim(zi, zk)/τ)
(2.1.14)

where P (i) is the set of indices of all positive samples of i, and A(i) is the set
of indices of all the other samples in the minibatch, excluding the positive sample
generated by augmentation. Including all positive samples based on the actual label
in the alignment term helps in creating a better-organized representation space,
as illustrated in Figure 2.1.6. Furthermore, it has been shown that SupCon can
outperform standard optimization using cross-entropy (Khosla et al., 2020), and is
also more robust against label corruption (Graf et al., 2021) which could perhaps
be seen as an instance of collateral learning.
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CL for regression Few works have tackled regression tasks with contrastive learn-
ing approaches, as the definition of positive and negative samples is rooted in the CL
framework. For regression problems, however, no such hard distinction can be made
as the target variable is continuous. A first approach that tries to avoid this issue
can be found in Xue et al. (2022). In this work, a threshold is used to determine pos-
itive and negative samples based on the difference of target labels, then the SupCon
loss is used. The main shortcoming of this approach is that the threshold has to be
chosen manually. A relevant approach that avoids thresholding is y-Aware (Dufu-
mier et al., 2021a,b). Here, a contrastive loss is weighted by continuous meta-data
(in a weakly supervised setting); however, the final aim of this method is to obtain
a latent space suitable for downstream classification tasks, and not for regression.
A detailed comparison with this method will be provided in Chapter 6. A similar
approach is also proposed by Wang et al. (2022) for eye gaze estimation, where the
alignment term is conditioned by the similarity between gaze directions. Another
relevant approach can be found in Zha et al. (2022), where the distance of the labels
of two samples is used to condition the uniformity term.

Why CL is relevant The contrastive learning approach is especially relevant
for this thesis as it can be analyzed analytically, thus providing a more in-depth
understanding of the optimization process. For this purpose, in this thesis, we will
adopt a metric learning point of view, allowing us to precisely define the goal of
the learning process using simple, yet powerful, metric constraints. From there, we
will be able to derive both InfoNCE and SupCon losses, characterize their behavior,
and, most importantly, propose novel contrastive losses that can help mitigate the
Collateral Learning problem.

2.2 Debiasing
As we have seen in the Introduction (1), one of the most important instances of Col-
lateral Learning is represented by biased data. Addressing the issue of biased data
and how it affects neural network generalization has been the subject of numerous
works. Back in 2011, Torralba et al. (2011) showed that many of the most commonly
used datasets are affected by biases. In their work, they evaluate the cross-dataset
generalization capabilities based on different criteria, showing how data collection
could be improved. With a similar goal, Tommasi et al. (2017) propose different
benchmarks for cross-dataset analysis, aimed at verifying how different debiasing
methods affect the final performances. Data collection should be carried out with
great care, in order not to include unwanted biases. Leveraging data already publicly
available could be another way of tackling the issue. Gupta et al. (2018) explore the
possibility of reducing biases by exploiting different data sources, in the practical
context of sensors-collected data. They propose a strategy to minimize the effects
of imperfect execution and calibration errors, showing improvements in the gener-
alization capability of the final model.

Khosla et al. (2012) employ max-margin learning (SVM) to explicitly model dataset
bias for different vision datasets. Beutel et al. (2019) provide insights on algorithmic
fairness in a production setting, and propose a metric named conditional equality.
They also propose a method, absolute correlation regularization, for optimizing this
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metric during training. Another possibility of addressing these issues on a data
level is to employ generative models, such as GANs (Goodfellow et al., 2014), to
clean up the dataset with the aim of providing fairness (Sattigeri et al., 2018; Xu
et al., 2018). Madras et al. (2018) also employ a GAN to obtain fair representations.

All the above-mentioned approaches generally deal directly at the data level and
provide useful insights for designing more effective debiasing techniques. In the re-
lated literature, we can most often find debiasing approaches based on ensembling
methods, adversarial setups, or regularization terms which aim at obtaining an un-
biased model using biased data. We distinguish three different classes of approaches,
in order of complexity: those that need full explicit supervision on the bias features
(e.g. using bias labels), those that do not need explicit bias labels but leverage some
prior knowledge of the bias features, those which no dot need neither supervision
nor prior-knowledge.

2.2.1 Supervised approaches

Among the relevant related works, debiasing techniques which are supervised, mean-
ing that they require explicit bias knowledge in the form of labels, can be most com-
monly found. The most widespread approach is to use an additional bias-capturing
model, with the task of specifically capturing bias features. This bias-capturing
model is then leveraged, either in an adversarial or collaborative fashion, to enforce
the selection of unbiased features on the main model. The typical multi-model ap-
proach for debiasing can be formally described as follows: given a shared encoder
f(·), a target classifier g(·), and a bias classifier d(·), the goal is to optimize the
following objectives:

Lprimary = LCE(y, g(z)) + (1− LCE(b, d(z)))

Lbias = LCE(b, d(z))
(2.2.1)

where z = f(x), and y and b are the target and bias labels respectively. By alter-
nating the optimization of the two objectives, this formulation forces the encoder to
encode samples into latent representations z that do not contain bias features. The
idea behind this kind of optimization is shared by different works, some of which
focus more on adversarial learning whereas others on making the predictions of the
target and bias classifier independent from each other (e.g. orthogonal).

We can find the typical supervised adversarial approach in the work by Alvi et al.:
BlindEye (Alvi et al., 2018). They employ an explicit bias classifier, which is trained
on the same representation space as the target classifier, using a min-max optimiza-
tion approach. In this way, the shared encoder is forced to extract unbiased repre-
sentations. Similarly, Kim et al. (2019) propose Learning Not to Learn (LNL), which
leverages adversarial learning and gradient inversion to reach the same goal. Ad-
versarial approaches can be found in many other works, for example in Wang et al.
(2019b), where they show that biases can be learned even when using balanced
datasets, and they adopt an adversarial approach to remove unwanted features from
intermediate representations of a neural network. Also, Xie et al. (2017) propose an
adversarial framework for learning invariant representations with respect to some
attribute in the data, similarly to Alvi et al. (2018). Moving away from adversarial
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approaches, Wang et al. (2020b) perform a thorough review of the related literature,
and propose a technique based on an ensemble of classifiers trained on a shared fea-
ture space. A similar approach is followed by Clark et al. with LearnedMixin (Clark
et al., 2019). They train a biased model with explicit supervision on the bias labels,
and then they build a robust model forcing its prediction to be made on different
features.

Another possibility is represented by the application of adjusted loss functions or
regularization terms. For example, Sagawa et al. propose Group-DRO (Sagawa
et al., 2019), which aims at improving the model performance on the worst-group in
the training set, defined based on prior knowledge of the bias distribution. Generally,
in this context, the objective function has a form similar to the following:

L = LCE(y, g(z)) +R(z, y, b) (2.2.2)

where R is a regularization term that tries to force the invariance to bias features
in the latent space. The debiasing methods that will be proposed in this thesis fall
into this latter category.

2.2.2 Prior-guided approaches

In many real-world cases, explicit bias labels are not available. However, it might
still be possible to make some assumptions or have some prior knowledge about
the nature of the bias. Bahng et al. (2020) propose ReBias, an ensembling-based
technique. Similarly to the work presented earlier, they build a bias-capturing model
(an ensemble in this case). The prior knowledge about the bias is used in designing
the bias-capturing architecture (e.g. by using smaller receptive fields for texture
and color biases). The optimization process consists in solving a min-max problem
with the aim of promoting independence between the biased representations and
the unbiased ones. A similar assumption for building the bias-capturing model
is made by Cadene et al. (2019) with RUBi. In this work, logits re-weighting is
used to promote independence of the predictions on the bias features. Borrowing
from domain generalization techniques, another kind of approach aiming at learning
robust representation is proposed by with HEX (Wang et al., 2019a). They propose a
differentiable neural-network-based gray-level co-occurrence matrix (Haralick et al.,
1973; Lam, 1996), to extract biased textural information, which is then employed
for learning invariant representations. A different context is presented by Hendricks
et al. (2018). They propose an Equalizer model and a loss formulation that explicitly
takes into account gender bias in image captioning models. In this work, the prior is
given by annotation masks indicating which features in an image are appropriate for
determining gender. Related to this approach, another possibility is to constrain the
model prediction to match some prior annotation of the input, as done in the work
of Ross et al. (2017), where gradients re-weighting is used to encourage the model
to focus on the right input regions. Similarly, Selvaraju et al. (2019) propose HINT,
which optimizes the alignment between manual visual annotation and gradient-based
importance masks, such as Grad-CAM (Selvaraju et al., 2017).
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2.2.3 Unsupervised approaches

Increasing in complexity, we consider as unsupervised approaches those methods
that do not

• require explicit bias information,

• use prior knowledge to design specific architectures.

In this setting, building a bias-capturing model is a more difficult task, as it should
rely on more general assumptions. For example, Nam et al. (2020) propose a tech-
nique named Learning from Failure (LfF). They exploit the training dynamics: a
bias-capturing model is trained with a focus on easier samples, using the Gener-
alized Cross-Entropy (Zhang and Sabuncu, 2018) (GCE) loss, which are assumed
to be aligned with the bias, while a debiased network is trained emphasizing sam-
ples which the bias-capturing model struggles to learn. Similar assumptions are
also made by Luo et al. (2022) where GCE is also used for dealing with biases
in a medical setting using Chest X-ray images. Ji et al. (2019) propose an unsu-
pervised clustering method that is able to learn representations invariant to some
unknown or “distractor” classes in the data, by employing over-clustering. Although
not strictly for debiasing purposes, another clustering-based technique is proposed
by Van Gansbeke et al. (2020): they employ a two-step approach for unsupervised
learning of representations, where they mine the dataset to obtain pseudo-labels
based on neighbor clusters. A recently proposed approach can be found in Nam
et al. (2022) with SSA. Here, the authors propose to assign pseudo-labels based on
biased clusters, similarly to the method proposed in Section 5.1. However, in order
to do so, they still require a small set with bias annotations.

2.3 Medical Imaging
In this section we provide an overview of the related works in the field of medical
imaging, focusing on Neuroimaging and Chest X-Ray (CXR) images. The main
focus of this thesis is dealing with collateral learning, which, in medical imaging,
is often represented by site-effect and domain generalization issues, as already pre-
sented in Section 1.2.2. In the context of Neuroimaging, we will focus on structural
brain Magnetic Resonance Images (MRIs) with the aim of building robust brain
age prediction models. This task has gained relevance in the field, as accurate age
estimatation can enable the detection of cognitive decline and neurodegeneration.
For what concerns CXR images, we will deal with the detection of Covid-19. This
has of course a great relevance, given the recent pandemic.

2.3.1 Neuroimaging

Neuroimaging is a branch of medical imaging that focuses on the brain. It is an
important tool to diagnose diseases and brain health, and for studying and analyz-
ing how the brain works and responds to different activities. There are two main
categories of imaging techniques:

• Structural imaging, which is used to analyze the brain structure (e.g. sMRI);
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• Functional imaging, which is used to analyze the brain function (e.g. fMRI,
PET, MEG).

In this thesis, we will focus on structural brain Magnetic Resonance Images (MRI).
The structural information of the brain is the basis for providing a diagnosis or a
prediction such as brain age, so we give here a small overview of the human brain
anatomy4. The brain can be divided into three high-level parts: the the brainstem,
the cerebellum, and the cerebrum. The latter is the largest part and comprises gray
matter (also called the cerebral cortex) and white matter (at the center). As shown
in Figure 2.3.1, the cerebral cortex is divided into four sections, called lobes. Each
lobe is responsible for specific functions:

• Fontal lobe. This is the largest lobe, and is involved in the determination of
the personality, decision-making and movement. It also contains Broca’s area,
which is associated with speech ability.

• Parietal lobe. This lobe is responsible for visual object identification, under-
standing spatial relationships, and interpreting stimuli such as pain and touch.
It also contains Wernicke’s Area, which is associated with speech understand-
ing.

• Occipital lobe. This lobe is involved with vision.

• Temporal lobe. This lobe is involved in short-term memory, speech process-
ing, and other skills such as musical rhythm.

MRI uses magnetic fields and radio waves to produce three-dimensional images of
the brain structures, without employing ionizing radiation (X-rays). The resolution
of the image is determined by the strength of the magnetic field. It is able to
measure gray matter structure (cerebral cortex). The output of an MRI scan is a
3D volume composed of voxels, from which different measurements can be derived,
such as cortical thickness, grey matter density, and others. Such information can be
relevant for diagnosing brain disorders such as Alzheimer’s Disease, Schizophrenia,
Bipolar Disorder, etc. Furthermore, from MRI scans, it is possible to predict the
BrainAGE (Franke and Gaser, 2019; Franke et al., 2010) which has become a very
important indicator of brain health in neuroimaging.

Brain Age Prediction

During a healthy aging process, the brain changes due to progressive and regressive
neuronal changes, following a specific pattern: for example, gray matter shows an in-
crease in volume from birth to the age of four, and then progressively decreases until
around 70; white matter increases until around 20 years, from which it remains con-
stant; cerebrospinal fluid increases steadily from after 20 years (Pfefferbaum et al.,
1994). On the other hand, neurodegenerative diseases and brain conditions show
an altered aging pattern. For this reason, accurately modeling the healthy aging
of the brain is important. BrainAGE (Franke et al., 2010) was proposed as an
automatic method for estimating the age of healthy subjects in T1-weighted MRI

4https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-
brain
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Figure 2.3.1: Brain anatomy. Credits to Sukel (2019).

scans, using a kernel method for regression. It consists of a preprocessing step of the
images, dimensionality reduction with Principal Component Analysis (PCA), and
age prediction with a Relevance Vector Machine (RVM) (Tipping and Bishop, 2000;
Tipping, 2001). It achieved a Mean Absolute Error (MAE) of 5 years on healthy
subjects in aged 19-86 years. BrainAGE has been subsequently validated and em-
ployed by many works in the field (Franke and Gaser, 2019), and it now represents
a relevant marker for assessing healthy aging of the brain. With the advent of Deep
Learning, arguably, the process can be reduced to training a feed-forward neural net-
work minimizing a simple supervised loss such as L1. In this thesis, we will adopt
this approach, as it also removes the need for explicit dimensionality reduction in
the input data.

Accelerated aging and Alzheimer’s Disease detection

Neurodegenerative disorders and brain conditions such as Alzheimer’s Disease (AD)
exhibit an altered (e.g. accelerated) brain aging process. Comparing the chrono-
logical age of a patient with their predicted brain age can be a good indicator of
whether the aging process is following a healthy path, or shows possible alterations.
Franke and Gaser (2019) show that AD patients exhibit on average a brain age delta
(difference between brain age and chronological age) of around 6 to 10 years, while
healthy patients show no significant gap, during both preliminary and follow-up ac-
quisitions. Additionally, patients showing progressive Mild Cognitive Impairment
(MCI) showed an increase in age gap across follow-ups, depending on whether their
condition was stable (sMCI) or progressive (pMCI), leading to AD in the latter
case. This makes building robust models for accurate modeling the brain aging a
very relevant topic in the field.
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Of course, with the aim of detective conditions such as AD or MCI, other approaches
not tied to brain aging were proposed. Wen et al. (2020) provides a comprehensive
review of the recent state-of-the-art on deep learning for the classification of such
diseases. Most of these works leverage convolutional neural networks, with the aim
of directly predicting a final diagnosis form the input MRI scan (either using the
whole 3D volume or 2D slices). The most predominant classification task found is
Healthy Cases (HC) vs AD, followed by the differentiation of MCI cases from HC.
A less frequent, but clinically relevant task, is distinguishing pMCI subjects from
sMCI. In this thesis, we will focus on the first two tasks, leaving the last as future
work.

Site-effect in neuroimaging data

In Franke et al. (2010), authors show that the BrainAGE method exhibits some
robustness to the influence of different scanners in the data. This is indeed a relevant
problem in the neuroimaging field (Chen et al., 2022; Fortin et al., 2016; Glocker
et al., 2019; Nguyen et al., 2018), as different scanners can influence the resulting
image and thus have an effect on the model prediction. We explained the issue of
site effect in the Introduction section (1.2.2). One of the most common methods
for dealing with this issue in neuroimaging is ComBat (Fortin et al., 2017), a data
harmonization method that was originally developed for genomics data (Johnson
et al., 2007). In this thesis, we will compare to the ComBat baseline, in order to
assess the robustness of our methods towards Collateral Learning.

2.3.2 Chest X-ray and Covid-19

In this Section, we provide a brief overview of the main works on the topic of deep
learning diagnosis from CXR images, specifically on Covid-19 detection.
Previous to the Covid-19 pandemic, the topic of DL diagnosis from CXRs was al-
ready of interest in the scientific community. For example, in Shin et al. (2016) CNNs
are investigated for the classification of interstitial lung disease (ILD). Other works
also showed that deep learning can be used to detect and classify ILD tissue (Anthi-
mopoulos et al., 2016; Bondfale and Bhagwat, 2018). Anthimopoulos et al. (2016)
focus on designing a CNN tailored to match the ILD CT texture features, e.g. small
filters and no pooling to guarantee spatial locality. Other contributions focus on the
classification of CXRs for SARS diagnosis (Xiaoou Tang et al., 2004; Xie Xuanyang
et al., 2005).

The issue of Collateral Learning for Covid-19 was particularly evident in the early
phases of the pandemic, as the community rushed to develop DL-based diagnostic
systems. Some of the proposed approaches leveraged transfer learning and publicly
available data (Apostolopoulos and Mpesiana, 2020; Narin et al., 2020; Sethy and
Behera, 2020) to achieve reasonable performance on Covid-19 diagnosis. Wang and
Wong (2020) represented one of the most relevant approaches, proposing a novel
neural network architecture named COVID-Net.
However, the main issue of all these approaches was represented by the scarcity of
available data. They typically employed the COVID-ChestXRay dataset (Cohen
et al., 2020), consisting of, at the time, approximately 100 CXR Covid-19 cases.
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Furthermore, in order to build Covid-19 negative cases, data were sampled from
other datasets, such as the Kermany dataset (Kermany, 2017). However, as we will
discuss in detail in Chapter 7, this introduces a number of issues related to Collat-
eral Learning. Some of these were related to transfer learning, as the choice of the
pretraining task plays a relevant role in the final accuracy. Also, the most widely
used datasets did not contain exhaustive metadata about the population (e.g. gen-
der or age) and this could lead to models exploiting hidden biases.

Following research, including our own contributions, helped raise awareness on this
issue, by providing recommendations for employing DL to detect Covid-19 from
CXR images (Roberts et al., 2021). In this thesis, we will retrace the development
of this field, which represents a real-world example of how Collateral Learning should
be taken into account when developing DL tools.
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Part II

Collateral Learning in Natural
Images
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Chapter 3

Debiasing Through Disentanglement

3.1 Introduction
In this Chapter, we present the first approach that we propose for dealing with the
issue of collateral learning in biased data. Specifically, we deal with the issue of
correlation shift, as explained in the Introduction (Section 1.2). The basic intuition
behind this approach is that representations of biased samples tend to be naturally
clustered together based on the common collateral features, which in this case rep-
resent the bias. The method we present in this section is a supervised method, thus
it assumes that prior knowledge about the bias is available, in the form of labels.
Although having this prior knowledge may seem unrealistic at first, some realistic
scenarios of such occurrence can be encountered (they will be presented later). Fur-
thermore, in Chapter 5, we will also present how to extend this approach to the
unsupervised case.

Figure 3.1.1: Biased-MNIST by Bahng et al. (2020). The bias is given by the
correlation between digit and background color. This dataset is an example of
correlation shift (1.2), as the color distribution C in the training set (S) and in the
test set (T ) is different, and is determined by the sample label y: pS(C|y) ̸= pT (C|y).

To visualize an example, we now introduce the Biased-MNIST dataset (Bahng et al.,
2020) which will be used throughout the rest of this work as a first benchmark for
the proposed methods. An example of Biased-MNIST is presented in Figure 3.1.1:
in this dataset, the collateral information is represented by the color. This dataset
is built upon the well-known MNIST dataset (Deng, 2012), by injecting color into
the background of the images. The color is injected in such a way that there is a
high degree of correlation with the different digits. Ten predefined colors are associ-
ated with the ten different classes. Given an image, the background is colored with
the predefined color for that class with a probability ρ, and with any one of the
other colors with a probability (1− ρ). Higher values of ρ will lead to more biased
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data. In this work, we will experiment with different degrees of correlation in the
training dataset. An unbiased test set is built with ρ = 0.1, meaning that, for any
given digit, a random color is selected. Given the absence of correlation between
color and digit class in the unbiased test set, a model must learn to classify shapes
instead of colors, in order to reach a high accuracy on the unbiased test set. This
is a very simple yet effective benchmark for assessing whether the model is learning
collateral features, which should in fact be discarded or ignored in order to obtain
robust representations.

3.2 Preliminary analysis

To assess the efficacy of this benchmark, and to show the natural tendency of neural
networks to prefer simpler patterns, we train a vanilla model without any debiasing
method, using the setup presented in Section 3.4.1. By analyzing the training pro-
cess with different values of ρ, we can identify when the color bias shifts from being
benign to malignant (as defined in Section 1.2). Figure 3.2.1 shows the training
accuracy of a vanilla model trained with different values of ρ. Given that, in this
case, the number of target classes and the number of different colors (bias classes) is
the same, we are able to compute a bias pseudo-accuracy by finding the permutation
of the predicted labels which maximizes the accuracy with respect to the ground
truth bias labels: this value provides an indication of how the final predictions of
the model are aligned with the bias. From Figure 3.2.1a we observe that the target
accuracy on the training set is, as expected, close to 100%, while the bias accuracy
is exactly the value of ρ, meaning that the models learned to recognize the digit.
This holds true also for the unbiased test set (Fig 3.2.1b), where the value ρ = 0.1.
However, if we focus on the higher end of ρ values (most difficult settings) as shown
in Figure 3.2.1c, we observe a rapid inversion in the trend: the target accuracy
decreases, dropping to 10% for ρ = 0.999, while the bias accuracy becomes higher,
close to 100% towards the end of the ρ range. In these settings, given the strong
correlation between target and bias classes, it is clear that the bias has become easier
for the model to learn, and thus malignant.

These results can be viewed as further confirmation that neural networks tend to
prefer and prioritize the learning of simpler patterns first, as noted by Nam et al.
(2020); Shah et al. (2020) and especially by Arpit et al. (2017).

3.3 The EnD regularization

The first debiasing approach that we propose consists of a regularization term that
aims at removing bias features from the learned representations, through means of
entanglement and disentanglement across different samples. To give a basic idea of
the intuition behind this approach, let us take Biased-MNIST as an example. If
we consider two "8" with two different background colors (e.g. purple and orange),
our goal is to force the entanglement between their latent representations in such a
way that the common features (i.e. the digit) will be predominant. We name this
technique EnD (from Entangling and Disentangling).
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Figure 3.2.1: Effect of varying bias strength (ρ) on the model, on the training set
(a), and on the unbiased test set (b) and (c). Results are reported in terms of mean
and std across three different runs for every value of ρ. Given that the number
of bias classes (colors) and target classes (digits) is the same, we can compute the
bias accuracy by finding the permutation of predicted labels which maximizes the
overlap with the ground truth bias labels. From (c) we can observe when the color
bias really starts affecting the classification performance of the model, turning into a
malignant bias. From around ρ = 0.99, models start making their predictions based
on the color.
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Our goal is to train a model to correctly classify the data into the T possible classes
but at the same time prevent the use of the bias features contained in the data.
Toward this end, we are going to build our regularization strategy, which consists
of two terms:

• a disentangling term, whose task is to try to de-correlate as much as possible
the representations of all the samples belonging to the same bias class b;

• an entangling term, which attempts to force correlations between the repre-
sentation of samples from different bias classes but having the same target
class t.

3.3.1 Method

Given a neural network encoder f : X → RN which extracts feature vectors of size
N and a classifier g : RN → N which provides the final prediction, we consider the
neural network (g ◦ γ ◦ f)(·) where γ : RN → RN is a normalization function
to obtain z = γ(x) = x/∥x∥2. The EnD regularization term Rend is applied jointly
with the loss function L (e.g. cross-entropy), forcing (γ ◦ f)(·) to filter out biased
features from the extracted representation z. Hence, the overall objective function
we aim to minimize is

J = L+Rend, (3.3.1)

where Rend is the sum of the disentangling and entangling terms, weighted by two
hyper-parameters α ≥ 0 and β ≥ 0:

Rend = αR⊥ + βR∥ (3.3.2)

Within a mini-batch, let i ∈ I ≡ {1 . . .M} be the index of an arbitrary sample xi.
We define yi, ti and bi as the predicted, ground truth target and bias label for the
i-th sample, respectively. The disentangling term R⊥ is defined, for the i-th sample,
as:

R⊥
i =

1

|B(i)|
∑

a∈B(i)

|zi · za| (3.3.3)

where B(i) := {j ∈ I | bj = bi} \ {i} is the set of all samples sharing the same bias
class of xi, which are commonly named as bias-aligned in the related literature. The
goal of this term is to suppress the common features among bias-aligned samples.
The entangling term R∥ is defined, for the i-th sample, as:

R∥
i = −

1

|J(i)|
∑
j∈J(i)

zi · zj (3.3.4)

where J(i) := {j ∈ I | tj = ti}\B(i) is the set of all samples sharing the same target
class of xi but with different biases, also known as bias-conflicting. Complementarily
to the disentangling term, the goal of this term is to encourage correlation bias-
conflicting samples of the same target class, in order to introduce invariance with

56



Figure 3.3.1: Effect of EnD: representations of bias-conflicting samples of the same
target class (represented by the arrow shape), with respect to z0, are entangled
through the R∥ term, bias-aligned samples (represented by the arrow color) are
disentangled through the R⊥ term.

respect to the biased features. So, for the i-th sample, the entire EnD regularization
term Rend

i can be written as:

Rend
i = α

1

|B(i)|
∑

a∈B(i)

|zi · za| − β
1

|J(i)|
∑
j∈J(i)

zi · zj . (3.3.5)

The final Rend of Eq. 3.3.2 is then just computed as the average over the mini-batch:

Rend =
1

M

∑
i

Rend
i (3.3.6)

To visualize the effect of Rend as expressed in Eq. 3.3.5, consider a simple classi-
fication problem with three target classes and three different bias as illustrated in
Figure 3.3.1. Training a model without explicitly addressing the presence of biases
in the data, will most likely results in representations aligned by the bias attributes
rather then the actual target class (Figure 3.3.1). The goal of Rend is to encourage
the alignment of representations based on the correct features by i.) disentangling
representations of the same bias (R⊥) and ii.) entangling representations of the
same target in order to introduce invariance to the bias features (R∥).

3.4 Experiments

In the experiments we present in this section, we aim to remove different types of
biases such as color, age, gender which can have a high impact on classification per-
formance when recognizing, for example, attributes such as hair color and presence
of makeup on facial images. In all the results tables, the best results are denoted
as boldface, the second best results are underlined. “Vanilla” denotes the baseline
model performance for the learning problem, with no debiasing technique applied.
All the EnD’s results are averaged over three different runs. In our experiments,
EnD is always applied after the network’s encoder (γ ◦ f), which is typically a bot-
tleneck: this is a reasonable choice in order to exploit the whole encoder to extract
unbiased features1.

1The source code for the EnD techinque, including the Biased MNIST example, is publicly
available and can be found at https://github.com/EIDOSlab/entangling-disentangling-bias.
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Method ρ values
0.999 0.997 0.995 0.990

Vanilla (Bahng et al., 2020) 10.40±0.50 33.40±12.21 72.10±1.90 89.10±0.10

LearnedMixin (Clark et al., 2019) 12.10±0.80 50.20±4.50 78.20±0.70 88.30±0.70

HEX (Wang et al., 2019a) 10.80±0.40 16.60±0.80 19.70±1.90 24.70±1.60

RUBi (Cadene et al., 2019) 13.70±0.70 43.00±1.10 90.40±0.40 93.60±0.40

ReBias (Bahng et al., 2020) 22.70±0.40 64.20±0.80 76.00±0.60 88.10±0.60

EnD 52.30±2.39 83.70±1.03 93.92±0.35 96.02±0.08

Table 3.4.1: Biased-MNIST accuracy on the unbiased test set. Reference results
from Bahng et al. (2020). The best results are highlighted in bold, the second best
results are underlined.

(a) (b)

Figure 3.4.1: Grad-CAM (Selvaraju et al., 2017) on Colored MNIST: vanilla model
(a) and EnD-regularized model (b). Images were processed with an edge detection
filter in order to improve the readability of the activation map.

3.4.1 Controlled experiments

In this section we describe the controlled experiments that we performed in order
to assess the performance of EnD. Full control over the amount and type of bias
allows to correctly analyze EnD’s behavior, excluding noise and uncertainty given
by real-world data.

We test our method on the Biased-MNIST dataset, where we can control the bias
in the training data. To vary the level of difficulty in the dataset, we select ρ ∈
{0.990, 0.995, 0.997, 0.999}, as done in Bahng et al. (2020).
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Figure 3.4.2: EnD learning curves on Colored MNIST for ρ= 0.995. Biased accu-
racy (a), unbiased accuracy (b), L value on the training set (c) and R value on the
training set (d).
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Experimental Setup

We use the network architecture proposed by Bahng et al. (2020), consisting of four
convolutional layers with 7 × 7 kernels. The EnD regularization term is applied
on the average pooling layer, before the fully connected classifier of the network.
Following Bahng et al. (2020), we use the Adam optimizer with a learning rate of
0.0001, a weight decay of 10−4 and a batch size of 256. We train for 80 epochs. We do
not use any data augmentation scheme. We use 30% of the training set as validation
set, and we colorize it using a ρ value of 0.1. The EnD hyperparameters α and β
are searched using the Bayesian optimization (Snoek et al., 2012) implementation
provided by Weights and Biases (Biewald, 2020) on the validation set. For ρ ∈
{0.990, 0.995, 0.997}, α and β are searched in the interval [0; 1], for ρ = 0.999 in
[0; 50]. To provide a mean performance along with the standard deviation, we select
the top 3 models based on the best validation accuracy obtained, and we report the
average accuracy on the final test set.

Results

Results are shown in Table 3.4.1. EnD’s results are averaged across three different
runs for each value of ρ. For all values of ρ we report the accuracy obtained by EnD
on the unbiased evaluation set, compared with other debiasing algorithms.

EnD successfully mitigates bias propagation. The improvement obtained
with EnD with respect to the baseline model is noticeable, especially in the higher
levels of difficulty. We observe an increase of accuracy across all values of ρ. No-
tably, for ρ = 0.999 the vanilla model reaches 10.4% accuracy, meaning that the
background color is used as the only cue for classifying the digits, whereas employ-
ing EnD yields an accuracy of 52.30%. Figure 3.4.1 shows the effect of EnD, using
Grad-CAM (Selvaraju et al., 2017) to highlight the important regions of the input
image for the model prediction. We observe that the vanilla model (Figure 3.4.1a)
focuses on the background, while the EnD-regularized model (Figure 3.4.1b) cor-
rectly learns to focus on the digit shape.

Comparison with other techniques. We observe that EnD yields the highest
results among all of the compared debiasing algorithms. Such gap is especially
higher in the most difficult settings for ρ ∈ {0.999, 0.997} where many algorithms
are unable to generalize to the unbiased set, especially HEX (Wang et al., 2019a)
and LearnedMixin (Clark et al., 2019). Some of the compared algorithms even show
a collapse in accuracy compared to the vanilla baseline in certain cases (HEX for
most values of ρ, LearnedMixin and ReBias for ρ = 0.990).

Ablation study. We also perform an ablation study of EnD to analyze how each of
the EnD’s terms affect the performance of the trained model. For a fixed ρ = 0.997,
we evaluate only the contribution of the disentangling term R⊥ and disable the
entangling term R∥ by setting β = 0. We then perform the opposite evaluation by
setting α = 0, to only take into account the entangling term. The results are shown
in Table 3.4.2. We observe that both the regularization terms contribute to boost the
model’s generalization capability. As expected, the best results are achieved when
both of them are jointly applied. The entangling term yields a higher increase in
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Setting α β
Unbiased
accuracy

Vanilla 0 0 33.4
Disentangling only [0; 1] 0 45.67±0.67

Entangling only 0 [0; 1] 75.36±0.94

EnD [0; 1] [0; 1] 83.70±1.03

Table 3.4.2: Ablation study of EnD on the Biased MNIST dataset, ρ = 0.997.

performance compared to the disentangling one, however it is in general not always
applicable. Given some i-th sample in a mini-batch, the entangling term can be
applied if and only if:

∃j, j ̸= i | ti = tj ∧ bi ̸= bjd (3.4.1)

The bias’s distribution over the training set and the batch size play an important
role in the possibility of applying the entangling term on every update step. If there
are dominant biases for specific target classes, this can be accounted for by clever
batching (i.e. applying a weighted sampler). This would maximize the chances
of satisfying the condition in equation 3.4.1. In our experiments, we applied the
entangling term when the condition is satisfied. The disentangling term provides
a smaller benefit in this case, but, on the other hand, it can always be applied.
We find that the ideal case for EnD is when both of the terms can be used in
the learning process, leading to better generalization capabilities. Furthermore,
we observe a similar pattern in the learning process when employing the full EnD
regularization for different values of ρ. Figure 3.4.2 shows the learning curves for
ρ = 0.995. We notice how models tend to quickly learn the color bias in the first
few epochs, as the accuracy on the biased test set is close to 100% (Figure 3.4.2a).
However, once the value of the loss (in this case, we have used the cross-entropy loss,
Figure 3.4.2c) falls below a certain threshold, the contribution R of the EnD term
becomes predominant (Figure 3.4.2d). In this phase, which we call kick-in region,
the optimization process begin to rapidly minimize R, stopping the model from
relying on the bias-related features. This can be observed in the rapid increase of
the accuracy on the unbiased test set (Figure 3.4.2b), whereas the biased accuracy
momentarily drops as the models shift their focus from the background color to the
digit shape.

3.4.2 Real world datasets

After benchmarking EnD in a controlled scenario on synthetic data, we move to real
world datasets where biases might be subtle and harder to handle. In this section
we aim at removing age and gender bias in different datasets. We also apply EnD
on a computer-aided diagnosis task, where hidden biases might lead to sub-optimal
generalization of the model.
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Target Method Unbiased Bias-conflicting

Hair Color

Vanilla 70.25±0.35 52.52±0.19

Group DRO (Sagawa et al., 2019) 85.43±0.53 83.40±0.67

LfF (Nam et al., 2020) 84.24±0.37 81.24±1.38

EnD 91.21±0.22 87.45±1.06

Heavy Makeup

Vanilla 62.00±0.02 33.75±0.28

Group DRO (Sagawa et al., 2019) 64.88±0.42 50.24±0.68

LfF (Nam et al., 2020) 66.20±1.21 45.48±4.33

EnD 75.93±1.31 53.70±5.24

Table 3.4.3: Performance on CelebA. Reference results from Nam et al. (2020). The
best results are highlighted in bold, the second best results are underlined.

CelebA

CelebA (Liu et al., 2015) is a dataset of for face-recognition tasks, providing 40
attributes for every image. Following Nam et al. (2020), we select BlondHair and
HeavyMakeup as target attributes t and Male as bias attribute b. This choice is
dictated by the fact that there is a high correlation between these attributes (i.e.
most women have blond hair or wear heavy makeup in this dataset). The dataset
contains a total of 202,599 images, and following the official train-validation split we
obtain 162,770 images for training and 19,867 images for testing our models. Nam
et al. (2020) build two types of testing dataset: unbiased, by selecting the same
number of samples for every possible value of the pair (t, b), and bias-conflicting, by
removing from the unbiased set all of the samples where b and t are equal.

Experimental Setup Following Nam et al. (2020), we use the Adam optimizer
with a learning rate of 0.001, a batch size of 256, and a weight decay of 10−4. We train
for 50 epochs. Images are resized to 224×224 and augmented with random horizontal
flip. To construct the validation set, we sample N images from each pair (t, b) of
the training set, where N is 20% the size of the least populated group (t, b). The
EnD hyperparameters α and β are searched using the Bayesian optimization (Snoek
et al., 2012) implementation provided by Weights and Biases (Biewald, 2020) on the
validation set, in the interval [0; 50]. To provide a mean performance along with the
standard deviation, we select the top 3 models based on the best validation accuracy
obtained, and we report the average accuracy on the final test sets.

Results. As in Nam et al. (2020), the accuracy is computed as average accuracy
over all the (t, b) pairs. Table 3.4.3 shows the results obtained on the CelebA dataset.
We observe how the vanilla model heavily relies on the bias attribute, scoring a low
accuracy especially on the bias-conflicting sets. EnD, on the other hand, outperforms
the baseline in both the tasks. We report reference results (Nam et al., 2020) of other
debiasing algorithms, specifically Group DRO (Sagawa et al., 2019) and LfF (Nam
et al., 2020), for comparison with EnD. The results we obtain are significantly higher
across most of the evaluation sets, and comparable with Group DRO and LfF on
the bias-conflicting set when the target attribute is HeavyMakeup.
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IMDB Face

(a)

(b)

Figure 3.4.3: IMDB train splits: EB1
(a) and EB2 (b).

The IMDB Face dataset (Rothe et al.,
2018) contains 460,723 face images anno-
tated with age and gender information.
To filter out the misannotated labels of
this dataset (Rothe et al., 2018; Torralba
et al., 2011), Kim et al. (2019) use a model
trained on the Audience benchmark (Ei-
dinger et al., 2014), keeping the images
where the prediction matches the provided
label. Following Kim et al.’s proposed data
split, 20% of the IMDB is used as test set,
containing samples with age 0-29 or 40+.
The remaining data is then split into two
extreme-bias subset: EB1 contains women in the age range 0-29 and men with age
40+, while EB2 contains men aged 0-29 and women 40+. Thus, when learning to
predict the gender attribute, the bias is given by the age and vice-versa. An example
of the EB1 and EB2 training sets is shown in Figure 3.4.3.

Experimental Setup We use the Adam optimizer with a learning rate of 0.001,
a batch size of 256 and a weight decay of 10−4. We train for 50 epochs. As with
CelebA, images are resized to 224 × 224 and randomly flipped at training time for
augmentation. In this case, it is not possible to construct a validation set including
samples from both EB1 and EB2, without altering the test set composition. Hence,
we perform a 4-fold cross validation for every experiment. For example, when train-
ing on EB1, we use one fold of EB2 as validation set and the remaining three folds
as EB2 test set. We repeat this process until each EB2 fold is used both as val-
idation and as test set. The same process is repeated when training on EB2, by
splitting EB1 in validation and test folds. When training for age prediction, we fol-
low Kim et al. (2019), by binning the age values in the intervals 0-19, 20-24, 25-29,
30-34, 34-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-100, proposed by Alvi et al.
(2018). For every fold, the EnD hyperparameters α and β are searched using the
Bayesian optimization (Snoek et al., 2012) implementation provided by Weights and
Biases (Biewald, 2020) on the validation set, in the interval [0; 50], as in the previous
experiments. To provide a mean performance along with the standard deviation, we
select the top model for each fold, based on the best validation accuracy obtained.
We report the accuracy obtained on the final test sets, as average accuracy among
the different folds.

Results. Table 3.4.4 shows the results obtained on the IMDB Face dataset. We
performed two main experiments: gender and age prediction. Besides the perfo-
mance evaluation on the test set, when training on EB1 we also tested the model’s
performance on EB2, and viceversa. This allows us to better evaluate the bias
features’ influence on the model prediction. We notice how the baseline model is
heavily biased towards age when predicting gender, and towards gender when pre-
dicting age. This can be observed on the performance achieved on the EB2 and
EB1 sets, both for gender and age prediction. When employing our regularization
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Target Method Trained on EB1 Trained on EB2
EB2 Test EB1 Test

Gender

Vanilla 59.86 84.42 57.84 69.75
BlindEye (Alvi et al., 2018) 63.74 85.56 57.33 69.90
LfF (Kim et al., 2019) 68.00 86.66 64.18 74.50
EnD 65.49±0.81 87.15±0.31 69.40±2.01 78.19±1.18

Age

Vanilla 54.30 77.17 48.91 61.97
BlindEye (Alvi et al., 2018) 66.80 75.13 64.16 62.40
LfF (Kim et al., 2019) 65.27 77.43 62.18 63.04
EnD 76.04±0.25 80.15±0.96 74.25±2.26 78.80±1.48

Table 3.4.4: Performance on IMDB Face. When gender is learned, age is the bias,
and when age is learned the gender is the bias. Reference results from Kim et al.
(2019). The best results are highlighted in bold, the second best results are under-
lined.

term, we observe an increase across all of the obtained results: in particular, when
training on EB2 for age prediction, we notice an increase from 48.91% to 74.25% on
the EB1 set. We also report reference results of other debiasing algorithms, specif-
ically BlindEye (Alvi et al., 2018) and the adversarial approach proposed by Kim
et al. (2019). In general, EnD obtains the best results among all the other debiasing
algorithms we compared to.

3.5 Conclusions and Limitations
In this Chapter, we aimed to discourage the selection of biased features in deep
models trained on biased datasets. We proposed the EnD regularization, whose
task is to both disentangle representations of bias-aligned samples and to entangle
representations of positive bias-conflicting ones. Differently from other debiasing
techniques, we do not introduce any additional parameters to be learned and we do
not modify the input data: the model is naturally driven into choosing unbiased
deep features, without introducing additional priors to the data. Our experiments
show the effectiveness of EnD when compared to other state-of-the-art techniques,
excelling in the cases of heavily biased data.

The results shown so far by EnD seem promising and have represented state-of-the-
art performance for some time. However, subsequent works (Hong and Yang, 2021;
Lee et al., 2021; Zhao et al., 2021) achieved better results, and highlighted some of
the limitations of EnD:

• Ideally, on datasets such as Biased-MNIST, it should be possible to achieve
higher test accuracy (e.g. in the upper range of 90%), as the task is quite easy
once the bias is removed;

• Being a supervised debiasing technique, it requires complete annotation of the
bias labels, which sometimes is not trivial to achieve;

• A major disadvantage of EnD is the hyperparameters tuning, and the require-
ment of an unbiased validation set. Fulfilling this requirement is not always
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possible, for example with benchmarks such as Corrupted-CIFAR10 (Hendrycks
and Dietterich, 2019), bFFHQ (Lee et al., 2021) and ImageNet-A (Hendrycks
et al., 2021). The absence of such tuning may lead to suboptimal results.
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Chapter 4

Unbiased Representation Learning
with FairKL

In this Chapter, we present a unified framework to analyze and compare existing
formulations of contrastive losses1 such as the InfoNCE loss (Chen et al., 2020; Oord
et al., 2019), the InfoL1O loss (Poole et al., 2019) and the SupCon loss (Khosla et al.,
2020). Furthermore, we also propose a new supervised contrastive loss that can be
seen as the simplest extension of the InfoNCE loss (Chen et al., 2020; Oord et al.,
2019) to a supervised setting with multiple positives.

Using the proposed metric learning approach, we can reformulate each loss as a
set of contrastive, and surprisingly sometimes even non-contrastive, conditions. We
show that the widely used SupCon loss is not a “straightforward” extension of the
InfoNCE loss since it actually contains a set of “latent” non-contrastive constraints.
Our analysis results in an in-depth understanding of the different loss functions, fully
explaining their behavior from a metric point of view. Furthermore, by leveraging
the proposed metric learning approach, we explore the issue of biased learning. We
outline the limitations of the studied contrastive loss functions when dealing with
biased data, even if the loss on the training set is apparently minimized. By analyz-
ing such cases, we provide a more formal characterization of bias. This eventually
allows us to derive a new set of regularization constraints for debiasing that is gen-
eral and can be added to any contrastive or non-contrastive loss. Our contributions
are summarized below:

1. We introduce a simple but powerful theoretical framework for supervised rep-
resentation learning, from which we derive different contrastive loss functions.
We show how existing contrastive losses can be expressed within our frame-
work, providing a uniform understanding of the different formulations. We
derive a generalized form of the SupCon loss (ϵ-SupCon), propose a novel loss
ϵ-SupInfoNCE, and demonstrate empirically its effectiveness;

2. We provide a more formal definition of bias, thanks to the proposed metric
learning approach, which is based on the distances among representations.
This allows us to derive a new set of effective debiasing regularization con-
straints, which we call FairKL. We also analyze, theoretically and empiri-

1We refer to any contrastive loss and not necessarily to losses based on pairs of samples as in
(Sohn, 2016).
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cally, the debiasing power of the different contrastive losses, comparing ϵ-
SupInfoNCE and SupCon.

4.1 A metric framework for contrastive learning

(a) (b) (c)

Figure 4.1.1: With ϵ-SupInfoNCE (a) we aim at increasing the minimal margin ϵ,
between the distance d+ of a positive sample x+ (+ symbol inside) from an anchor
x and the distance d− of the closest negative sample x− (− symbol inside). By
increasing the margin, we can achieve a better separation between positive and
negative samples. We show two different scenarios without margin (b) and with
margin (c). Filling colors of datapoints represent different biases. We observe that,
without imposing a margin, biased clusters might appear containing both positive
and negative samples (b). This issue can be mitigated by increasing the ϵ margin
(c).

Let x ∈ X be an original sample (i.e., anchor), x+
i a similar (positive) sample, x−

j

a dissimilar (negative) sample and P and N the number of positive and negative
samples respectively. Contrastive learning methods look for a parametric mapping
function f : X → Sd−1 that maps “semantically” similar samples close together
in the representation space (a (d-1)-sphere) and dissimilar samples far away from
each other. Once pre-trained, f is fixed and its representation is evaluated on a
downstream task, such as classification, through linear evaluation on a test set.
In general, positive samples x+

i can be defined in different ways depending on the
problem: using transformations of x (unsupervised setting), samples belonging to
the same class as x (supervised) or with similar image attributes of x (weakly-
supervised). The definition of negative samples x−

j varies accordingly. Here, we
focus on the supervised case, thus samples belonging to the same/different class,
but the proposed framework could be easily applied to the other cases. We define
s(f(a), f(b)) as a similarity measure (e.g., cosine similarity) between the representa-
tion of two samples a and b. Please note that since ||f(a)||2 = ||f(b)||2 = 1, using a
cosine similarity is equivalent to using a L2-distance (d(f(a), f(b)) = ||f(a)−f(b)||22).

Similarly to Chopra et al. (2005); Hadsell et al. (2006); Schroff et al. (2015); Sohn
(2016); Wang et al. (2014, 2019c); Weinberger et al. (2006); Yu and Tao (2019),
we propose to use a metric learning approach which allows us to better formalize
recent contrastive losses, such as InfoNCE (Chen et al., 2020; Oord et al., 2019),

66



InfoL1O (Poole et al., 2019) and SupCon (Khosla et al., 2020), and derive new losses
that better approximate the mutual information and can take into account data bi-
ases.

Using an ϵ-margin metric learning point of view, probably the simplest contrastive
learning formulation is looking for a mapping function f such that the following
ϵ-condition is always satisfied:

d(f(x), f(x+))︸ ︷︷ ︸
d+

− d(f(x), f(x−
j ))︸ ︷︷ ︸

d−j

< −ϵ ⇐⇒ s(f(x), f(x−
j ))︸ ︷︷ ︸

s−j

− s(f(x), f(x+)︸ ︷︷ ︸
s+

≤ −ϵ ∀j

(4.1.1)
where ϵ ≥ 0 is a margin between positive and negative samples and we consider, for
now, a single positive sample.

4.1.1 Derivation of InfoNCE

The constraint of Eq. 4.1.1 can be transformed in an optimization problem using, as
it is common in contrastive learning, the max operator and its smooth approximation
LogSumExp (full derivation in the Appendix A.1.1):

s−j − s+ ≤ −ϵ ∀j

argmin
f

max(−ϵ, {s−j − s+}j=1,...,N) ≈ argmin
f
− log

(
exp(s+)

exp(s+ − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−InfoNCE

(4.1.2)
Here, we can notice that when ϵ = 0, we retrieve the InfoNCE loss, also known as
N-Pair loss (Sohn, 2016), whereas when ϵ→∞ we obtain the InfoL1O loss. It has
been shown in Poole et al. (2019) that these two losses are lower and upper bound
of the Mutual Information I(X+, X) respectively:

E
(x,x+)∼p(x,x+)

x−
j ∼p(x−)

log exp s+

exp s+ +
∑

j exp s
−
j︸ ︷︷ ︸

InfoNCE

 ≤ I(X+, X) ≤ E
(x,x+)∼p(x,x+)

x−
j ∼p(x−)

log exp s+∑
j exp s

−
j︸ ︷︷ ︸

InfoL1O


(4.1.3)

where p(x, x+) is the joint (positive) distribution and p(x−) is the marginal (nega-
tive) distribution. By using a value of ϵ ∈ [0,∞), one might find a tighter approx-
imation of I(X+, X) since the exponential function at the denominator exp(−ϵ)
monotonically decreases as ϵ increases.

4.1.2 Proposed supervised loss (ϵ-SupInfoNCE)

The inclusion of multiple positive samples (s+i ) can lead to different formulations.
Some of them can be found in the Appendix A.1.2. Here, considering a supervised
setting, we propose to use the following one, that we call ϵ-SupInfoNCE:
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s−j − s+i ≤ −ϵ ∀i, j∑
i

max(−ϵ, {s−j − s+i }j=1,...,N) ≈ −
∑
i

log

(
exp(s+i )

exp(s+i − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−SupInfoNCE

(4.1.4)

Please note that this loss could also be used in other settings, like in an unsuper-
vised one, where positive samples could be defined as transformations of the anchor.
Furthermore, even here, the ϵ value can be adjusted in the loss function, in order
to increase the ϵ-margin. This time, contrarily to what happens with Eq. 4.1.2 and
InfoNCE, if we consider ϵ = 0, we do not obtain the SupCon loss.

4.1.3 Derivation of ϵ-SupCon (generalized SupCon)

It’s interesting to notice that Eq. 4.1.4 is similar to Lsup
out , which is one of the two

SupCon losses proposed in Khosla et al. (2020), but they differ for a sum over
the positive samples at the denominator. The Lsup

out loss, presented as the “most
straightforward way to generalize” the InfoNCE loss, actually contains another non-
contrastive constraint on the positive samples: s+t − s+i ≤ 0 ∀i, t. Fulfilling this
condition alone would force all positive samples to collapse to a single point in the
representation space. However, it does not take into account negative samples. That
is why we define it as a non-contrastive condition. Considering both contrastive and
non-contrastive conditions, we obtain:

s−j − s+i ≤ −ϵ ∀i, j and s+t − s+i ≤ 0 ∀i, t ̸= i

1

P

∑
i

max(0, {s−j − s+i + ϵ}j, {s+t − s+i }t̸=i) ≈ ϵ− 1

P

∑
i

log

(
exp(s+i )∑

t exp(s
+
t − ϵ) +

∑
j exp(s

−
j )

)
︸ ︷︷ ︸

ϵ−SupCon

(4.1.5)
when ϵ = 0 we retrieve exactly Lsup

out . The second loss proposed in Khosla et al.
(2020), called Lsup

in , minimizes a different contrastive problem, which is a less strict
condition and probably explains the fact that this loss did not work well in practice
(Khosla et al., 2020):

max(s−j ) < max(s+i ) ≈ log(
∑
j

exp(s−j ))− log(
∑
i

exp(s+i )) < 0 (4.1.6)

argmin
f

max(0,max(s−j )−max(s+i )) ≈ − log

(∑
i

exp(s+i )∑
t exp(s

+
t ) +

∑
j exp(s

−
j )

)
︸ ︷︷ ︸

Lsup
in

(4.1.7)
It’s easy to see that, differently from Eq. 4.1.4 and Lsup

out , this condition is ful-
filled when just one positive sample is more similar to the anchor than all neg-
ative samples. Similarly, another contrastive condition that should be avoided is∑

j s(f(x), f(x
−
j )) −

∑
i s(f(x), f(x

+
i )) < −ϵ since one would need only one (or

few) negative samples far away from the anchor in the representation space (i.e.,
orthogonal) to fulfill the condition.
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4.2 Failure case of InfoNCE: the issue of biases

Satisfying the ϵ-condition (4.1.1) can generally guarantee good downstream perfor-
mance, however, it does not take into account the presence of biases (e.g. selection
biases). A model could therefore take its decision based on certain visual features,
i.e. the bias, that are correlated with the target downstream task but don’t actu-
ally characterize it. This means that the same bias features would probably have
a worse performance if transferred to a different dataset (e.g. different acquisition
settings or image quality). Specifically, in contrastive learning, this can lead to set-
tings where we are still able to minimize any InfoNCE-based loss (e.g. SupCon or
ϵ-SupInfoNCE), but with degraded classification performance (Figure 4.1.1b). To
tackle this issue, in this work, we propose the FairKL regularization technique, a
set of debiasing constraints that prevent the use of the bias features within the pro-
posed metric learning approach. In order to give a more in-depth explanation of the
ϵ-InfoNCE failure case, we employ the notion of bias-aligned and bias-conflicting
samples as in Nam et al. (2020). In our context, a bias-aligned sample shares the
same bias attribute of the anchor, while a bias-conflicting sample does not. In this
work, we assume that the bias attributes are either known a priori or that they can
be estimated using a bias-capturing model, such as in Hong and Yang (2021).

4.2.1 Characterization of bias

We denote bias-aligned samples with x·,b and bias-conflicting samples with x·,b′ .
Given an anchor x, if the bias is “strong” and easy-to-learn, a positive bias-aligned
sample x+,b will probably be closer to the anchor x in the representation space than
a positive bias-conflicting sample (of course, the same reasoning can be applied for
the negative samples). This is why even in the case in which the ϵ-condition is
satisfied and the ϵ-SupInfoNCE is minimized, we could still be able to distinguish
between bias-aligned and bias-conflicting samples. Hence, we say that there is a bias
if we can identify an ordering on the learned representations, such as:

d(f(x), f(x+,b
i ))︸ ︷︷ ︸

d+,b
i

< d(f(x), f(x+,b′

k )︸ ︷︷ ︸
d+,b′
k

≤ d(f(x), f(x−,b
t ))︸ ︷︷ ︸

d−,b
t

−ϵ < d(f(x), f(x−,b′

j ))︸ ︷︷ ︸
d−,b′
j

−ϵ ∀i, k, t, j

(4.2.1)

This represents the worst-case scenario, where the ordering is total (i.e., ∀i, k, t, j).
Of course, there can also be cases in which the bias is not as strong, and the ordering
may be partial.

4.2.2 FairKL regularization for debiasing

Ideally, we would enforce the conditions d+,b′

k − d+,b
i = 0 ∀i, k and d−,b′

t − d−,b
j =

0 ∀t, j, meaning that every positive (resp. negative) bias-conflicting sample should
have the same distance from the anchor as any other positive (resp. negative) bias-
aligned sample. However, in practice, this condition is very strict, as it would enforce
uniform distance among all positive (resp. negative) samples. A more relaxed
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(a)

d=1
d=2
d=3

(b)

d=2

(c)

Figure 4.2.1: When considering only Eq. 4.2.2 (average of distances or similarities)),
we may obtain a sub-optimal configuration such as (a), where we can still (partially)
order the distances of positive samples from the anchor based on the bias features.
We can see that the conditions in Eq. 4.2.2 are fulfilled, namely the average of the
distances of bias-aligned and bias-conflicting samples from the anchor are the same
(µ+,b = µ+,b′ = 2). This is only partially mitigated when using a margin ϵ > 0
(b). However, the standard deviations of the distances of bias-aligned and bias-
conflicting samples in (a) and (b) are different (σ+,b = 0, while σ+,b′ = 1). This
can be computed using the distances d reported in the figure. If we also consider
the conditions on the standard deviations of the distances, as proposed in FairKL
(Eq. 4.2.3), the ordering is removed and thus also the effect of the bias (c). In (c), we
show the case in which both mean and standard deviation of the distributions match
(in a simplified case with σ=0). A simulated example is shown in Figure 4.2.2.

aligned

conflicting

Figure 4.2.2: Toy example with simulated data to better explain the suboptimal
solution of Figure 4.2.1. We make the hypothesis that the distributions of the
distances do follow a Gaussian distribution. In blue and in orange are shown the bias-
aligned and the bias-conflicting samples respectively. The green sample represents
the anchor. On the left, data points are sampled from two normal distributions
with the same mean but different std. We can see that the two distributions do not
match. This shows that, even if the first order constraints of Eq. 4.2.2 are fulfilled,
there might still be an effect of the bias. On the contrary, on the right, the two
distributions have almost the same statistics (both average and std) and the KL
divergence is almost 0. In that case, the bias effect is basically removed.
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condition would instead force the distributions of distances, {d·,b′k } and {d·,bi }, to
be similar. Here, we propose two new debiasing constraints for both positive and
negative samples using either the first moment (mean) of the distributions or the
first two moments (mean and variance). Using only the average of the distributions,
we obtain:

1

Pa

∑
i

d+,b
i −

1

Pc

∑
k

d+,b′

k = 0 ⇐⇒ 1

Pc

∑
k

s+,b′

k − 1

Pa

∑
i

s+,b
i = 0 (4.2.2)

where Pa and Pc are the numbers of positive bias-aligned and bias-conflicting sam-
ples, respectively2. Doing so, on average, the bias-aligned and bias-conflicting sam-
ples would have the same distance (or similarity) to the anchor. However, even if
this constraint is fulfilled there might still be an effect of the bias features on the
ordering of the positive samples, due to difference in the second moments of the
distributions, as illustrated visually in Figure 4.2.1. From the figure, we can also see
how increasing the epsilon margin can help in mitigate this issue but does not solve
it completely. In order to avoid this sub-optimal case, we extend the constraint of
Eq. 4.2.2 to also include the second moments of the distance/similarity distributions.

Denoting the first moments with µ+,b = 1
Pa

∑
i d

+,b
i , µ+,b′ = 1

Pc

∑
k d

+,b′

k , and the
second moments of the distance distributions with σ2

+,b =
1
Pa

∑
i(d

+,b
i −µ+,b)

2, σ2
+,b′ =

1
Pc

∑
k(d

+,b′

k − µ+,b−)
2, and making the hypothesis that the distance distributions

follow a normal distribution, we propose a new regularization term RFairKL which
employs the Kullback–Leibler divergence:

RFairKL = DKL(B+,b||B+,b′) =
1

2

(
σ2
+,b + (µ+,b − µ+,b′)

2

σ2
+,b′

− log
σ2
+,b

σ2
+,b′
− 1

)
(4.2.3)

where B+,b ∼ N (µ+,b, σ
2
+,b) and B+,b′ ∼ N (µ+,b′ , σ

2
+,b′) are the positive bias-aligned

and positive bias-conflicting distance distributions respectively. In practice, one
could also use another distribution such as the log-normal, the Jeffreys divergence
(DKL(B+,b||B+,b′)+DKL(B+,b′||B+,b)), or a simplified version, such as the difference
of the two statistics (e.g., (µ+,b − µ+,b′)

2 + (σ+,b − σ+,b′)
2).

The proposed debiasing constraints can be easily added to any contrastive (or non-
contrastive) as a regularization term RFairKL. In this work, the final loss function
that we propose to minimize is the combination of ϵ-SupInfoNCE and FairKL:

L = −α
∑
i

log

(
exp(s+i )

exp(s+i − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−SupInfoNCE

+λRFairKL (4.2.4)

where α and λ are positive two hyperparameters weighting the contribution of each
term.

2The same reasoning can be applied to negative samples (omitted for brevity.)

71



Analysis of other losses and debiasing methods

Leveraging the metric framework we described in the previous sections, we are able to
study more in-depth some related methods and provide an interpretable explanation
of their behavior.

SupCon It is interesting to notice that the non-contrastive conditions in Eq. 4.1.5:
s+t − s+i ≤ 0 ∀i, t ̸= i are actually all fulfilled only when s+i = s+t ∀i, t ̸= i. This
means that one tries to align all positive samples, regardless of their bias b, to a
single point in the representation space. In other terms, at the optimal solution, one
would also fulfill the following conditions:

s+,b
i = s+,b

t , s+,b′

i = s+,b′

t , s+,b
i = s+,b′

t , s+,b′

i = s+,b
t ∀i, t ̸= i (4.2.5)

Realistically, this could lead to suboptimal solutions: we argue that the optimization
process would mainly focus on the easier task, namely aligning bias-aligned samples,
and neglecting the bias-conflicting ones. In highly biased settings, this could lead
to worse performance than ϵ-SupInfoNCE. More empirical results supporting this
hypothesis are presented in Appendix C.2.

EnD The constraint in Eq. 4.2.2 is very similar to the EnD method that we pre-
sented in Section 3.3. In fact, EnD lacks the additional constraint on the standard
deviation of the distances, which is given by Eq. 4.2.3. We can show analytically that
the EnD regularization term can be, under certain conditions, equivalent to Eq. 4.2.2.
Using the notation introduced in this chapter, we can rewrite EnD (Eq. 3.3.5) as:

Rend = α
1

Pa +Na

∑
a∈B(i)

|s.,ba | − β
1

Pc

∑
k

s+,b′

k (4.2.6)

where Na is the number of negative bias-aligned samples. Assuming, for simplicity,
α = β = 1, we can split the EnD orthogonal term R⊥ into a positive (R⊥

pos) and a
negative (R⊥

neg) term:

Rend =
1

Pa +Na

∑
i

|s+,b
i |︸ ︷︷ ︸

R⊥
pos

+
1

Pa +Na

∑
n

|s−,b
n |︸ ︷︷ ︸

R⊥
neg

− 1

Pc

∑
k

s+,b′

k︸ ︷︷ ︸
R∥

. (4.2.7)

In order to reach the equivalence between EnD and Eq. 4.2.2, we can make a few
realistic assumptions:

• The term R⊥
neg can be safely ignored, as long as the target loss function (e.g.

CE or ϵ-SupInfoNCE) seeks to maximize the similarity between positive sam-
ples and minimize it for negative samples (this is, of course, trivial);

• We can assume a non-negative similarity for positive and bias-aligned samples,
such that the absolute value can be dropped fromR⊥

pos (which is also reasonable
if the previous assumption holds);

• In terms of minimization, min 1
Pa+Na

(..) = min 1
Pa
(..), given that Pa, Na > 0.
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Thus, we finally obtain:

Rend =
1

Pa

∑
i

s+,b
i −

1

Pc

∑
k

s+,b′

k (4.2.8)

which can be obtained by turning the condition of Eq. 4.2.2 into a minimization
term Rmean, using the method of Lagrange multipliers:

Rmean = −λ
(

1

Pc

∑
k

s+,b′

k − 1

Pa

∑
i

s+,b
i

)
(4.2.9)

with λ = 1. Of course, in practice, some differences between the formulations remain
as, for example, the terms are weighted differently.

BiasCon In Hong and Yang (2021), authors propose a BiasCon loss, which is
similar to SupCon but only aligns positive bias-conflicting samples. It looks for an
encoder f that fulfills:

s−j − s+,b′

i ≤ −ϵ ∀i, j and s+,b
p − s+,b′

i ≤ 0 ∀i, p and s+,b′

t − s+,b′

i ≤ 0 ∀i, t ̸= i

(4.2.10)

The problem here is that we try to separate the negative samples from only the
positive bias-conflicting samples, ignoring the positive bias-aligned samples. This
is probably why the authors proposed to combine this loss with a standard Cross
Entropy.

4.3 Experiments
In this section, we describe the experiments we perform to validate our proposed
losses. We perform two sets of experiments. First, we benchmark our framework,
presented in Section 4.1, on standard vision datasets such as: CIFAR-10 (Krizhevsky
et al., a), CIFAR-100 (Krizhevsky et al., b) and ImageNet-100 (Deng et al., 2009).
Then, we analyze biased settings with FairKL, employing BiasedMNIST (Bahng
et al., 2020), Corrupted-CIFAR10 (Hendrycks and Dietterich, 2019) and bFFHQ (Lee
et al., 2021).

Experiments on generic vision datasets

We conduct an empirical analysis of the ϵ-SupCon and ϵ-SupInfoNCE losses on
standard vision datasets to evaluate the different formulations and to assess the
impact of the ϵ parameter. We compare our results with baseline implementations
including Cross Entropy (CE) and SupCon.

Experimental details We use the original setup from SupCon (Khosla et al.,
2020), employing a ResNet-50, a large batch size (1024), a learning rate of 0.5, a
temperature of 0.1, and multiview augmentation, for CIFAR-10 and CIFAR-100.
Additional experimental details (including ImageNet-100) and the different hyper-
parameters configurations are provided in Section B of the Appendix.
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Loss Acc@1

ϵ-SupInfoNCE 83.3±0.06

ϵ-SupCon 82.83±0.11

Table 4.3.1: Comparison of ϵ-SupInfoNCE and ϵ-SupCon on ImageNet-100.

Results First, we compare our proposed ϵ-SupInfoNCE loss with the ϵ-SupCon
loss derived in Section 4.1. As reported in Table 4.3.1, ϵ-SupInfoNCE performs
better than ϵ-SupCon: we conjecture that the lack of the non-contrastive term of
Eq. 4.1.5 leads to increased robustness, as it will also be shown in Section 4.3. For
this reason, we focus on ϵ-SupInfoNCE. Further comparison with different values of
ϵ can be found in Section C.1, showing that SupCon ≤ ϵ-SupCon ≤ ϵ-SupInfoNCE
in terms of accuracy.
Results on general computer vision datasets are presented in Table 4.3.2, in terms
of top-1 accuracy. We report the performance for the best value of ϵ; the complete
results can be found in Section C.1. The results are averaged across 3 independent
trials for every configuration, and we also report the standard deviation. We obtain
significant improvement with respect to all baselines and, most importantly, Sup-
Con, on all benchmarks: on CIFAR-10 (+0.5%), on CIFAR-100 (+0.63%), and on
ImageNet-100 (+1.31%).

Dataset Network SimCLR Max-Margin SimCLR* CE* SupCon* ϵ-SupInfoNCE*

CIFAR-10 ResNet-50 93.6 92.4 91.74±0.05 94.73±0.18 95.64±0.02 96.14±0.01

CIFAR-100 ResNet-50 70.7 70.5 68.94±0.12 73.43±0.08 75.41±0.19 76.04±0.01

ImageNet-100 ResNet-50 - - 66.14±0.08 82.1±0.59 81.99±0.08 83.3±0.06

Table 4.3.2: Accuracy on standard vision datasets. SimCLR and Max-Margin results
from Khosla et al. (2020). Results denoted with * were (re)implemented with mixed
precision due to memory constraints. The best results are highlighted in bold, the
second best results are underlined.

Experiments on biased datasets

Next, we move on to analyzing how our proposed loss performs on biased learn-
ing settings. We employ five datasets, ranging from synthetic data to real facial
images: Biased-MNIST, Corrupted-CIFAR10, and bFFHQ. The detailed setup and
experimental details are provided in the Appendix B.

Biased-MNIST

We compare with cross entropy baseline and with other debiasing techniques, namely
EnD, LNL (Nam et al., 2020) and BiasCon (BC) and BiasBal (BB) (Hong and Yang,
2021).

Analysis of ϵ-SupInfoNCE and ϵ-SupCon First, we perform an evaluation of
the ϵ-SupCon and ϵ-SupInfoNCE losses alone, without our debiasing regularization
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term. Figure 4.3.1 shows the accuracy on the unbiased test set, with the different val-
ues of ρ. Baseline results of a cross-entropy model (CE) are reported in Table 4.3.3.
Both losses result in higher accuracy compared to the cross entropy. The generally
higher robustness of contrastive-based formulations is also confirmed by the related
literature (Khosla et al., 2020). Interestingly, in the most biased setting (ρ = 0.999),
we observe that ϵ-SupInfoNCE obtains higher accuracy than ϵ-SupCon. Our conjec-
ture is that the non-contrastive term of SupCon in Eq. 4.1.5 (s+t −s+i ≤ 0 ∀i, t) can
lead, in highly biased settings, to more biased representations as the bias-aligned
samples will be especially predominant among the positives. For this reason, we
focus on ϵ-SupInfoNCE in the remaining of this work.

Debiasing with FairKL Next, we apply our regularization technique FairKL
jointly with ϵ-SupInfoNCE, and compare it with the other debiasing methods. The
results are shown in Table 4.3.3. Our technique achieves the best results in all
experiments, with high gaps in accuracy, especially in the most difficult settings
(lower ρ). For completeness, we also evaluate the debiasing power of FairKL with
different losses, i.e. CE and ϵ-SupCon. With FairKL we obtain better results than
most of the other baselines with either CE, ϵ-SupCon or ϵ-SupInfoNCE; the latter
achieves the best performance, confirming the results observed in Sec 4.3. For this
reason, in the rest of the work, we focus on ϵ-SupInfoNCE.

Method 0.999 0.997 0.995 0.99

CE (Hong and Yang, 2021) 11.8±0.7 62.5±2.9 79.5±0.1 90.8±0.3

LNL (Kim et al., 2019) 18.2±1.2 57.2±2.2 72.5±0.9 86.0±0.2

ϵ-SupCon 24.36±3.23 74.35±0.09 84.13±1.31 91.12±0.35

ϵ-SupInfoNCE 33.16±3.57 73.86±0.81 83.65±0.36 91.18±0.49

EnD (Section 3.3) 59.5±2.3 82.70±0.3 94.0±0.6 94.8±0.3

BiasCon+BiasBal* (Hong and Yang, 2021) 30.26±11.08 82.83±4.17 88.20±2.27 95.04±0.86

BiasBal (Hong and Yang, 2021) 76.8±1.6 91.2±0.2 93.9±0.1 96.3±0.2

BiasCon+CE* (Hong and Yang, 2021) 15.06±2.22 90.48±5.26 95.95±0.11 97.67±0.09

CE + FairKL 79.9±4.29 93.86±1.13 94.85±0.55 95.92±0.17

ϵ-SupCon + FairKL 89.45±1.82 95.75±0.16 96.31±0.81 96.72±0.2

ϵ-SupInfoNCE + FairKL 90.51±1.55 96.19±0.23 97.00±0.06 97.86±0.02

Table 4.3.3: Top-1 accuracy (%) on Biased-MNIST. Reference results from Hong
and Yang (2021). Results denoted with * are re-implemented without color-jittering
and bias-conflicting oversampling, for fairness of comparison. The best results are
highlighted in bold, the second best results are underlined.

Corrupted CIFAR-10

Corrupted CIFAR-10 is built from the CIFAR-10 dataset, by correlating each class
with a certain texture (brightness, frost, etc.) following the protocol proposed
in Hendrycks and Dietterich (2019). Similarly to Biased-MNIST, the dataset is
provided with five different levels of ratio between bias-conflicting and bias-aligned
samples, where lower values indicate more biased versions of the dataset. The results
are shown in Table 4.3.4. Notably, we obtain the best results in the most difficult
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Figure 4.3.1: Comparison of ϵ-SupCon and ϵ-SupInfoNCE on Biased-MNIST. It is
noticeable that for ρ ≤ 0.997, ϵ-SupInfoNCE and ϵ-SupCon are comparable, while
for ρ = 0.999 the gap is significantly larger: this could be due to the additional
non-contrastive condition of SupCon.

scenario, when the amount of bias-conflicting samples is the lowest. Again, for the
other settings, we obtain comparable results with the state of the art.

bFFHQ

bFFHQ is a dataset proposed by Lee et al. (2021), and contains facial images. They
construct the dataset in such a way that most of the females are young (age range
10-29), while most of the males are older (age range 40-59). The ratio between bias-
conflicting and bias-aligned provided for this dataset is 0.5. The results are shown
in Table 4.3.4, where our technique outperforms all other methods.

Corrupted CIFAR-10 bFFHQ
Ratio Ratio

Method 0.5 1.0 2.0 5.0 0.5
Vanilla (Lee et al., 2021) 23.08±1.25 25.82±0.33 30.06±0.71 39.42±0.64 56.87±2.69

EnD (Tartaglione et al., 2021) 19.38±1.36 23.12±1.07 34.07±4.81 36.57±3.98 56.87±1.42

HEX (Wang et al., 2019a) 13.87±0.06 14.81±0.42 15.20±0.54 16.04±0.63 52.83±0.90

ReBias (Bahng et al., 2020) 22.27±0.41 25.72±0.20 31.66±0.43 43.43±0.41 59.46±0.64

LfF (Nam et al., 2020) 28.57±1.30 33.07±0.77 39.91±0.30 50.27±1.56 62.2±1.0

DFA (Lee et al., 2021) 29.95±0.71 36.49±1.79 41.78±2.29 51.13±1.28 63.87±0.31

ϵ-SupInfoNCE + FairKL 33.33±0.38 36.53±0.38 41.45±0.42 50.73±0.90 64.8±0.43

Table 4.3.4: Top-1 accuracy (%) on Corrupted CIFAR-10 with different corruption
ratio (%) and on bFFHQ. Reference results are taken from Lee et al. (2021). The
best results are highlighted in bold, the second best results are underlined.

4.4 Conclusions
In this chapter, we introduced a novel contrastive loss ϵ-SupInfoNCE which is able
to achieve state-of-the-art performance on standard vision datasets, compared to
previously existing losses such as SupCon. Furthermore, the loss is formally derived
thanks to the metric learning framework we described, which makes it very easy to
formalize what the different loss formulations aim at optimizing, thanks to simple
metric conditions. Notably, the representations learning by ϵ-SupInfoNCE seem to
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be partially more robust to the collateral learning issue, for example on biased data,
when compared with SupCon. This is probably due to the difference in the starting
metric conditions of the two losses.

One limitation of ϵ-SupInfoNCE, with respect to SupCon, is that a new hyperpa-
rameter ϵ is introduced, which has to be manually chosen, slightly adding to the
complexity of the training. Future works may focus on proposing an automatic way
for optimizing ϵ during training. Also, in this work, we did not perform an analy-
sis on ϵ-SupInfoNCE when used for self-supervised learning (i.e. defining positives
based on data augmentation). We leave this as future work.

Focusing on the issue of biases, with our framework, we were able to analyze the
failure case of contrastive learning losses when dealing with biased data (the reason-
ing can be applied to InfoNCE-based losses). This has prompted us to formulate the
FairKL regularization term, which aims at avoiding the ordering of the representa-
tions based on bias. We have shown that, with FairKL, it is possible to successfully
mitigate this issue, achieving the best results in the most biased settings and improv-
ing our previously proposed method EnD. However, our proposed method FairKL
is still affected by some limitations:

• Like EnD, it still requires bias annotation in the data, preventing its usage
in certain applications and datasets such as ImageNet-A (Hendrycks et al.,
2021);

• On the harder dataset Corrupted CIFAR-10, the best results are achieved in
the most biased settings (e.g. ratio of 0.5 and 1.0). While still a notable result,
one may argue that in realistic scenarios biases might be more subtle. From
the point of view of Collateral Learning, those cases are especially relevant for
fighting hidden and potentially more harmful biases;

• Additionally, as FairKL is based on computing the distribution of different
groups, the “goodness” of the statistics is heavily dependent on the sample
size (i.e. mini-batch size). Although we did not perform such analysis in this
work, it is possible that FairKL performance might degrade significantly with
smaller batch sizes.

In the rest of this work, we will attempt to resolve some of the highlighted limitations
of FairKL and EnD, for example by focusing on unsupervised debiasing techniques.
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Chapter 5

Extending To The Unknowns

In this section, we present the work we are carrying on for the development of
unsupervised debiasing methods. Based on the limitations of the previous methods,
discussed in Section 3.5 and 4.4, we formulate some different approaches for adapting
such techniques to the unsupervised case. The methods that we propose are based
on the assumption that the strength of the bias is such that, if no precaution is
taken, a vanilla model will be heavily affected. From this assumption, we show that
it is possible to leverage a biased model to obtain either pseudo-labels or a bias score
that can be employed in supervised methods such as EnD or FairKL to make up for
the missing ground-truth annotations.

5.1 Unsupervised debiasing via subgroup discovery
In this section, we present our proposed unsupervised end-to-end debiasing ap-
proach, showing how an explicitly supervised technique such as EnD1 can be ex-
tended to the unsupervised case, where the bias labels are unavailable. We do this
by showing how the bias information can be partially, and sometimes fully, recovered
in a completely unsupervised manner.

To achieve that, our proposed algorithm consists of three sequential steps, as illus-
trated in Figure 5.1.1. First, we train a bias-capturing classifier, employing standard
optimization techniques (e.g. SGD or Adam); then, we recover bias-related informa-
tion from the latent space of the biased classifier via clustering, in order to obtain a
bias predictor, which we employ to categorize all of the training samples into differ-
ent bias classes. Lastly, we apply the EnD debiasing technique using the predicted
bias labels, in order to obtain a debiased classifier. A general scheme of the entire
pipeline can be found in Algorithm 1. Throughout this section, we make the as-
sumption that an unbiased validation set is available: this is needed for searching
the optimal EnD hyper-parameters.

5.1.1 Training a bias-capturing model

The first step of our proposed algorithm is to train a bias-capturing model, which
in our case is represented by a biased encoder. To achieve this, we perform a vanilla

1In this section, we mainly focus on EnD. Extending the proposed method also to FairKL, and
also to existing supervised techniques, is the subject of ongoing and future research.
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Algorithm 1: General scheme of U-EnD

Input:
Training and validation data X t = {(xi, yi)}, Xv = {(x̂i, ŷi)};
Randomly initialized parameters θB = {θf , θg} and θD =
{θDf , θDg } of the biased and unbiased classifiers.

Output: Trained parameters θD of the unbiased classifier.

Train bias-capturing model
Train the biased classifier using vanilla SGD: θB ← SGD(θB, X

t)
Compute the biased representations: Zt = {f(x; θf )} ∀x ∈ X t and
Zv = {f(x; θf )} ∀x ∈ Xv

end
Train bias predictor

Compute the PCA projections P t, P v of Zt, Zv

Fit k clusters on P v choosing the optimal k based on silhoutte and
compute the cluster centroids: {µ1, ..., µk} ← KMeans(P v, k)

Assign the pseudo-labels b̂i ← argmin
b≤k

(P t
i , µb)

Update the training set X t ← {(xi, yi, b̂i)}
end
Train unbiased classifier

Learn the parameters θD on X t searching the optimal α and β on Xv:
θD ← SGD(θD, X

t) +R(θDf , X
t, α, β)

end

training of a CNN classifier on the available training data. Here, we do not employ
any technique aimed at dealing with the presence of biases in the data. The intuition
of this approach is that if bias features are easier to learn than the desired target
attributed, then the resulting model will also be biased, as shown in the beginning
of this section.

Figure 5.1.1 shows a visualization of the embeddings obtained with a biased encoder
on the Biased-MNIST dataset, where the background color correlates very well with
the target digit class, as shown in Figure 3.1.1. It is clear how the different clusters
emerging in the latent space correspond to the different background color, rather
than to the actual digit. This first step is summarized in Algorithm 1, and we now
provide a more formal description. Let θB = {θf , θg} be the set of parameters of
the bias-capturing model p(x; θ) = g(f(x; θf ); θg) where f and g are the encoder
and the classifier, respectively. The objective function we aim to minimize is the
cross-entropy loss (CE):

LCE(p(x; θB), q(x)) = −
∑
t∈T

q(t|x) log p(t|x; θB) (5.1.1)

where q(x) represents the ground truth class distribution. We say that there is a
benign bias in the dataset, if we can identify some distribution r(x), related to some
other confounding factor in the data, such that there exists a set of parameters θ′

which is a local minimizer of equation 5.1.1 and θ′ = argminθB LCE(p(x; θB), r(x)).
If, additionally, r(x) is also easier to approximate than q(x), then the bias is malig-
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Figure 5.1.1: Overview of our unsupervised debiasing approach: first we train a
bias-capturing encoder, then we determine bias pseudo-labels with a bias predictor.
Finally, we employ the predicted labels for training a final debiased classifier. In
this figure we use Biased-MNIST (Bahng et al., 2020) as example.

nant and by applying the optimization process we obtain a bias-capturing model.
Once the biased model is trained, we only consider the encoder f(x; θf ), as we are
interested in analyzing its latent space in order to retrieve bias-related information.

5.1.2 Fitting a bias predictor

The second step consists in obtaining a predictor which can identify the bias in
the data. Based on the observations made in Section 5.1.1, we employ a clustering
algorithm to categorize the extracted representations into different classes. As shown
in Figure 5.1.1, the identified clusters correspond to the biases in the dataset. In this
work, we choose KMeans (Lloyd, 1982) as it is one of the most well-known clustering
algorithms. Given a set of representation z = {z1, z2, . . . , zn} extracted by f(x; θB)
we aim to partition z into k sets C = {C1, C2, . . . , Ck} in order to minimize the
within-clusters sum of squares (WCSS), which can be interpreted as the distance of
each sample from its corresponding cluster centroid, by finding:

argmin
C

k∑
i=1

∑
z∈Ci

||z − µi||2 (5.1.2)

where µi is the centroid (average) of Ci. Furthermore, once the clusters have been
determined, it is very easy to use the determined centroids for classifying a new
sample ẑ based on its distance, simply by finding

bi = argmin
j≤k
||zi − µj||2 (5.1.3)

where b̂ denotes the resulting pseudo-label. The KMeans algorithm requires a pre-
specified number of clusters k: in this work, we automatically tune this parameter
based on the best silhouette score (Rousseeuw, 1987), obtained by performing a grid
search in the range [2, 15]. Considering that the representations obtained on the
training set might be over-fitted, we choose to minimize Eq. 5.1.3 on the validation
set. Then, once the centroids of the clusters have been found, we use them for
pseudo-labelling the training set. Additionally, as KMeans is based on euclidean
distance, which can yield poor results in highly dimensional spaces, we perform a
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PCA projection of the latent space before solving Eq. 5.1.2 and Eq. 5.1.3. For the
same reasons as above, the PCA transformation matrix is also computed on the
validation set. We refer to the ensemble of the PCA+KMeans as bias predictor
model. The cluster information is then used as a bias pseudo-label, as explained in
Section 5.1.3.

5.1.3 Training an unbiased classifier

The third and final step of our proposed framework consists in training an unbiased
classifier. For this purpose, we use the clusters discovered in the previous phase
as pseudo-labels for the bias classes, as shown in Figure 5.1.1. This allows us to
employ the fully supervised EnD regularization term for debiasing. Here we follow
the approach described in Section 3.3. Denoting with θD = {θDf , θDg } the parameters
of the encoder and the classifier of the debiased model p′(x; θD) = g(γ(f(x; θDf )); θ

D
g ).

The objective function that we aim to minimize in this phase is:

LCE(p
′(x; θD), q(x)) +R(γ(f(x; θDf )), q(x), b(x)) (5.1.4)

where b(x) is the distribution corresponding to the pseudo-labels computed in the
clustering step of Section 5.1.2. The closer b(x) is to the real distribution r(x),
the more minimizing equation 5.1.4 will lead to minimizing R with respect to the
unknown ground-truth bias labels.

5.1.4 Experiments

For testing the unsupervised extension U-EnD, we perform the same experiments
described in Section 3.4.1 and 3.4.2. We also run some preliminary tests on FairKL,
which we indicate with U-FairKL; this is the subject of ongoing and future work.

Biased-MNIST

The results for Biased-MNIST are presented in Table 5.1.1. We report the accuracy
on the unbiased test set, obtained with the supervised EnD technique and the un-
supervised extension. We also report reference results (Bahng et al., 2020) of other
debiasing algorithms, both supervised and unsupervised. For U-EnD, we evaluate
the results employing pseudo-labels computed at different training iterations (T ) of
the biased encoder: at an early stage after 10 epochs, and at a late stage at the end
of training (80 epochs). In this section, when possible, we perform the experiments
with different values of T . Using the unsupervised method we are able to match
the original performance of EnD and FairKL with the ground-truth bias labels in
most settings: this is true especially when the bias is stronger (higher ρ values).
This is because in these cases, the bias-capturing models will produce representa-
tions strongly biased towards the color, and the pseudo-labels obtained with the
bias predictor model will be accurate. On the other hand, a slightly larger gap is
observed when there is less correlation between target and bias features. This is the
most difficult setting for the unsupervised clustering of the bias features: however,
a significant improvement with respect to the baseline is always achieved.
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Method ρ values
0.999 0.997 0.995 0.990

Vanilla (Bahng et al., 2020) 10.40±0.50 33.40±12.21 72.10±1.90 89.10±0.10

LearnedMixin (Clark et al., 2019) 12.10±0.80 50.20±4.50 78.20±0.70 88.30±0.70

BiasCon+BiasBal* (Hong and Yang, 2021) 30.26±11.08 82.83±4.17 88.20±2.27 95.04±0.86

BiasCon+CE* (Hong and Yang, 2021) 15.06±2.22 90.48±5.26 95.95±0.11 97.67±0.09

EnD (Chapter 3) 52.30±2.39 83.70±1.03 93.92±0.35 96.02±0.08

FairKL+CE (Section 4.3) 79.9±4.29 93.86±1.13 94.85±0.55 95.92±0.17

HEX† (Wang et al., 2019a) 10.80±0.40 16.60±0.80 19.70±1.90 24.70±1.60

RUBi† (Cadene et al., 2019) 13.70±0.70 43.00±1.10 90.40±0.40 93.60±0.40

ReBias† (Bahng et al., 2020) 22.70±0.40 64.20±0.80 76.00±0.60 88.10±0.60

BiasBal† (Hong and Yang, 2021) 76.8±1.6 91.2±0.2 93.9±0.1 96.3±0.2

U-EnD† (T=80) 53.90±4.03 82.16±0.63 74.39±0.43 88.05±0.16

U-EnD† (T=10) 55.29±1.27 85.94±0.33 92.92±0.35 93.48±0.06

U-FairKL+CE† (T=10) 79.85±1.14 94.11±0.76 95.36±1.04 89.24±0.05

Table 5.1.1: Biased-MNIST accuracy on the unbiased test set, with unsupervised
extension. Techniques which can be used in an unsupervised way are denoted with
†. The best results are highlighted in bold, the second best results are underlined.

It may be argued that in such cases of weaker bias (or even absence of it), the
representations extracted by the biased encoder will be more aligned with the target
class rather the the bias features. In this case, the resulting pseudo-labels will be less
representative of the actual bias, leading to the disentangling, instead, of the target
labels. We identify two worst-case scenarios that might lead to inaccurate pseudo-
labels: i.) the training set is already unbiased, ii.) the pseudo-labels we identify
correspond to the target rather than to the bias labels. In these cases, applying a
debiasing technique might lead to worse performance with respect to the baseline,
however, we are able to avoid this issue thanks to the hyper-parameters optimization
policy that we employ. A more detailed analysis of the worst-case settings can be
found in Appendix D.

Quantifying the model bias We can quantify how much bias has been learned
by the bias-capturing model, by computing the conditional distribution of the pre-
diction and the biases over an unbiased set. We call this quantity unfairness and
indicate it with ϕ:

ϕ =
1

|B|
∑
b∈B

[pT (Y = y|b) + (1− pT (Y ̸= y|b))] (5.1.5)

where B is the set of different bias labels and y in this case is the target label that
correlates with b in the training set. If a model is perfectly unbiased, ϕ will be
at its minimum, while higher values of ϕ indicate that the model is more affected
by the bias. In fact, for an unbiased model pT (Y = y|b) = 1/T and 1 − pT (Y ̸=
y|b) = 1 − (T − 1)/T thus ϕ = 1/T − 1 − (1 − 1/T ) = 2/T . For a biased model,
if we quantify with ρ̂ the actual conditional probability of the model pT (y|b) = ρ̂,
we obtain ϕ = 2ρ̂. If we consider a completely biased model, that is ρ̂ = 1, then we
have ϕ = 2. We can use this unfairness quantity to study the trained bias-capturing
models.
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Figure 5.1.2: Unfairness (ϕ), or tendency towards learning bias features, as a func-
tion of the training epoch (T ), in terms of mean and std computed across three
independent runs for different values of ρ, normalized in the range [0; 1] for compar-
ison with the target accuracy.

Easier patterns are learned first Besides being easier to learn than the target
task, as explained in Section 1.2.1, we also find that biases tend to be learned in the
first epochs. This is also evident when looking at the results in Table 3.4.1, with
T = 10: using an early bias predictor results in more precise pseudo-labels, especially
when ρ is lower. In Figure 5.1.2 we show the value of the unfairness ϕ measured
at different training iterations. As expected, the models tend to show stronger
tendency towards bias when ρ is higher. Interestingly, looking at the dynamics it
is also clear that this behavior is exhibited predominantly in earlier epochs. Under
certain conditions, i.e. when the correlation between target and bias is not as strong,
it is possible for the optimization process to escape the local minimum corresponding
to a biased model. These findings are also confirmed by the related literature (Arpit
et al., 2017; Nam et al., 2020). Especially in Arpit et al. (2017), the authors suggest
that “the networks learn gradually more complex hypotheses during training for all
the datasets” that they used. Of course, this phenomenon is clearly evident on
simpler datasets. On more difficult and realistic datasets, measuring the unfairness
and determining at which stage of the training the bias is most predominant would
probably be less trivial (especially in the unsupervised case).

CelebA We report the results in Table 5.1.2. Results are reported for both the
target attributes hair color and makeup. Techniques which can be used in an un-
supervised manner are denoted with †. We report baseline results (vanilla) and we
observe how vanilla models suffer significantly from the presence of the bias, scoring
a quite low accuracy (especially since this is a binary task). This is evident on the
bias-conflicting set, where the performance is close random-guess on hair color pre-
diction, and even lower on the makeup detection. We report reference results (Nam
et al., 2020) of other debiasing algorithms, specifically Group DRO (Sagawa et al.,
2019), LfF (Nam et al., 2020) and EnD. Focusing on supervised techniques (Group
DRO and EnD) we observe a significant increase in performance, in both the tasks
and test sets combinations. For the unsupervised methods, we report results of our
U-EnD at different T of the biased encoder, as done in Table 3.4.1, and compare to
LfF. We achieve better performance than the vanilla baseline in all settings, even
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Target Method Unbiased Bias-conflicting

Hair Color

Vanilla (Nam et al., 2020) 70.25±0.35 52.52±0.19

Group DRO (Sagawa et al., 2019) 85.43±0.53 83.40 ±0.67

EnD (Chapter 3) 91.21±0.22 87.45±1.06

LfF† (Nam et al., 2020) 84.24±0.37 81.24±1.38

U-EnD† (T=50) 83.97±2.90 74.18±6.07

U-EnD† (T=30) 84.39±2.38 72.53±4.47

Heavy Makeup

Vanilla (Nam et al., 2020) 62.00±0.02 33.75±0.28

Group DRO (Sagawa et al., 2019) 64.88±0.42 50.24±0.68

EnD (Chapter 3) 75.93±1.31 53.70±5.24

LfF† (Nam et al., 2020) 66.20±1.21 45.48±4.33

U-EnD† (T=50) 72.22±0.00 44.44±0.00

U-EnD† (T=30) 67.59±3.46 35.19±6.93

Table 5.1.2: Performance on CelebA. with the unsupervised extension. Techniques
which can be used in an unsupervised way are denoted with †. The best results are
highlighted in bold, the second best results are underlined.

though we still observe a gap with respect to the fully supervised techniques. The
same observation can be made for LfF, which in general performs better on the
harder cases in the bias-conflicting set, while U-EnD provides better performance in
the more general case of the unbiased test set. The observed results are similar to
the lower ρ settings of BiasedMNIST: the amount of biased information is sufficient
for it to be considered as a malignant bias, although it becomes slightly harder to
perform pseudo-labeling in the biased encoder latent space. However, the assump-
tions we make in Section 5.1.3 about the pseudo-labeling accuracy hold, resulting
in better results with respect to the baseline models.

IMDB Face We report the results on the IMDB Face dataset in Table 5.1.3, with
regards to both gender and age prediction. Besides the test set, every model is also
tested on the opposite EB set, to better evaluate the debiasing performance. As in
the previous experiments, we use † to denote the techniques which can be used in an
unsupervised way. Focusing on the supervised techniques, we observe a significant
improvement with respect to the baselines, especially with EnD and LNL, across the
different combinations of test sets and task. Interestingly, in this case we are able to
achieve even better results when employing the U-EnD approach, contrarily to the
CelebA results. Especially for learning gender, we notice the the performance are
noticeable higher than the best supervised results. This might be due to the noisy
age labels in the dataset, and even if the described cleaning procedure is applied
some labels could still be incorrect. With pseudo-labeling, on the other hand, we do
not make use of the provided labels. This might be confirmed by the performances
obtained when training for age prediction. As the gender label is of course far
less noisy than the age, the performance gap between EnD and U-EnD is far less
noticeable. We believe these results are very important, as they show that it is
sometimes possible to achieve better results with unsupervised approaches.
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Target Method Trained on EB1 Trained on EB2
EB2 Test EB1 Test

Gender

Vanilla (Kim et al., 2019) 59.86 84.42 57.84 69.75
BlindEye (Alvi et al., 2018) 63.74 85.56 57.33 69.90
LNL (Kim et al., 2019) 68.00 86.66 64.18 74.50
EnD (Chapter 3) 65.49±0.81 87.15±0.31 69.40±2.01 78.19±1.18

U-EnD† (T=50) 81.32±2.17 90.98±0.46 78.10±0.70 83.03±0.45

Age

Vanilla (Kim et al., 2019) 54.30 77.17 48.91 61.97
BlindEye (Alvi et al., 2018) 66.80 75.13 64.16 62.40
LNL (Kim et al., 2019) 65.27 77.43 62.18 63.04
EnD (Chapter 3) 76.04±0.25 80.15±0.96 74.25±2.26 78.80±1.48

U-EnD† (T=50) 80.41±2.96 83.43±2.49 70.82±1.04 76.09±0.91

Table 5.1.3: Performance on IMDB Face with the unsupervised extension. When
gender is learned, age is the bias, and when age is learned the gender is the bias.
Techniques which can be used in an unsupervised way are denoted with †. The best
results are highlighted in bold, the second best results are underlined

5.2 Debiasing without clusters: auxiliary models as
prior

We have seen that clustering the biased latent space is a suitable approach for
obtaining bias pseudo-labels. In this section, we show, with some preliminary ex-
periments, that the clustering step might be avoided and that the biased encoder
can be directly used as a bias similarity function, similarly to other works (Hong
and Yang, 2021; Nam et al., 2020).

Avoiding the pseudo-labeling step can significantly reduce the training complexity,
by removing the choice of a clustering algorithm and the related hyperparameters.
Furthermore, employing a continuous score rather than a hard label might help in
exploiting richer information and in being more robust against clustering errors.

5.2.1 FairKL with bias-capturing model

To use a continuous score, rather than a discrete bias label, we compute the similarity
of the bias features b̃+i = s(g(x), g(x+

i )), where g(·) is the bias-capturing model. The
bias similarity b̃i is used to obtain a weighted sample similarity: s̃+,b

i = s+i b̃
+
i for bias-

aligned samples, and ŝ+,b′

i = s+i (1−b̃+i ) for bias-conflicting. By doing so, for example,
the terms µ+,b =

1
Pa

∑
i d

+,b
i and µ+,b′ =

1
Pc

∑
k d

+,b′

k become µ̂+,b =
1
N

∑
i d

+
i b̂

+
i and

µ̂+,b′ =
1
N

∑
i d

+
i (1−b̂+i ), where N is the batch size. By plugging these new definitions

into Eq. 4.2.3, we obtain a new regularization term that can work with a continuous
score2.

2As in Section 5.1, the work presented in this section is the subject of ongoing research. We
plan to include additional experiments and loss formulations in the future.
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5.2.2 Experiments

9-Class ImageNet and ImageNet-A

We test our method on the more complex and realistic 9-Class ImageNet (Ilyas et al.,
2019) dataset. This dataset is a subset of ImageNet, which is known to contain
textural biases (Geirhos et al., 2019). It aggregates 42 of the original classes into 9
macro categories. Following Hong and Yang (2021), we train a BagNet18 (Brendel
and Bethge, 2019) as the bias-capturing model, which we then use to compute a
bias score for the training samples, to apply within our regularization term.

Setup We pretrain the bias-capturing model BagNet18 (Brendel and Bethge,
2019) for 120 epochs. For the main model ResNet18, we use the Adam optimizer,
with learning rate 0.001, β1 = 0.9 and β2 = 0.999, weight decay of 0.0001 and a
cosine decay of the learning rate. We use a batch size of 256 and train for 200
epochs. We employ as augmentation: random resized crop, random flip, and, as
done in Hong and Yang (2021) random color jitter and random gray scale (p = 0.2).
We use ϵ = 0.5 and λ = 1. Given the higher complexity of this dataset, we employ
α = 0.5.

We evaluate the accuracy on the test set (biased) along with the unbiased accuracy
(UNB), computed with the texture labels assigned in Brendel and Bethge (2019).
We also report accuracy results on ImageNet-A (IN-A) dataset, which contains bias-
conflicting samples (Hendrycks et al., 2021). Results are shown in Table 5.2.1. On
the biased test set, the results are comparable with SoftCon, while on the harder
sets unbiased and ImageNet-A we achieve SOTA results.

Vanilla SIN LM RUBi ReBias LfF SoftCon ϵ-SupInfoNCE
+ FairKL

Biased 94.0±0.1 88.4±0.9 79.2±1.1 93.9±0.2 94.0±0.2 91.2±0.1 95.3±0.2 95.1±0.1

UNB 92.7±0.2 86.6±1.0 76.6±1.2 92.5±0.2 92.7±0.2 89.6±0.3 94.1±0.3 94.8±0.3

IN-A 30.5±0.5 24.6±2.4 19.0±1.2 31.0±0.2 30.5±0.2 29.4±0.8 34.1±0.6 35.7±0.5

Table 5.2.1: Top-1 accuracy (%) on 9-Class ImageNet biased and unbiased (UNB)
sets, and ImageNet-A (IN-A). Reference results from Hong and Yang (2021). The
best results are highlighted in bold, the second best results are underlined.

5.3 Conclusions
In this Chapter, we have proposed a method for extending supervised debiasing
techniques to unsupervised debiasing. We did that by leveraging our findings that

• neural networks tend to prefer simpler patterns (e.g. bias)

• biases tend to be learned early in the training.

Based on these observations, we proposed a way to recover the unknown bias labels
by clustering the latent space of a biased model. The cluster labels were then used
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as bias pseudo-labels for employing techniques such as EnD and FairKL. We have
also shown that, instead of clustering, it is possible to directly integrate information
from the bias-capturing model into the regularization term, thus reducing the overall
training complexity.

We aim to improve this approach by:

• Using specific loss functions for training the bias-capturing model, such as gen-
eralized cross-entropy (GCE) (Zhang and Sabuncu, 2018) as also done in Nam
et al. (2020). With GCE, more weight can be given to bias-aligned samples,
achieving a stronger bias-capturing model;

• Training the bias-capturing model with self-supervised methods. In fact, it
may be possible that training using CE on the target classes put some unnec-
essary constraints in the bias-capturing latent space, especially with regard to
the number of clusters.
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Part III

Collateral Learning in Medical
Imaging
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Chapter 6

Neuroimaging

In this Part, we turn our attention towards collateral learning in medical imaging.
In Part II, we have developed methods aimed at fighting collateral learning in the
general case of natural images. In this chapter, we focus on one specific instance of
collateral learning in medical images: brain age prediction from multi-site imaging
datasets.

As illustrated in the Introduction (1), medical datasets are often affected by the
site-effect problem. Dealing with multi-center medical datasets has become one of
the most predominant issues in the machine learning community (Dewey et al.,
2019; Fortin et al., 2017; Glocker et al., 2019). Towards this aim, in this section, we
leverage the results and methods obtained in the previous sections, building upon
them to propose novel techniques, such as contrastive learning regression for brain
age prediction. Having an accurate estimate of brain age has proved to be highly
beneficial for detecting abnormal acceleration with respect to the chronological age,
a phenomenon which is usually linked with cognitive decline and neurodegenera-
tion (Cumplido-Mayoral et al., 2023; Elliott et al., 2021; Franke et al., 2010; Gaser
et al., 2013; Koutsouleris et al., 2014; Millar et al., 2023).
Brain aging involves complex biological processes, such as cortical thinning, that
are highly heterogeneous across individuals, suggesting that people do not age in
the same manner. Accurately modeling brain aging at the subject level is a long-
standing goal in neuroscience as it could enhance our understanding of age-related
diseases such as neurodegenerative disorders. To this end, brain-age predictors link-
ing neuroanatomy to chronological age have been proposed using Deep Learning
(DL) (Peng et al., 2021).
Brain age is a relatively novel measure, originated from neuroimaging, and is usually
obtained by training machine learning algorithms on structural magnetic resonance
images (MRI) with the aim of predicting the patient age (Elliott et al., 2021). The
difference between the predicted value based on a patient’s MRI and their true
chronological age is referred to as brain age delta.

In order to build accurate biomarkers of aging, DL models need large-scale neu-
roimaging datasets for training, which often involves multi-site studies, partly be-
cause of the high cost per patient in each study.
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6.1 Building a robust brain age prediction model
Recent works have shown that DL models, and in particular Deep Neural Networks
(DNN), largely over-fit site-related noise when trained on such multi-site datasets,
notably due to the difference in acquisition protocols, scanner constructors, physical
properties such as permanent magnetic field (Glocker et al., 2019; Wachinger et al.,
2021). This also implies poor generalization performance on data from new incom-
ing sites, highly limiting the applicability of these models to real-life scenarios. In
order to build more robust and accurate brain age models insensitive to site, the
OpenBHB challenge (Dufumier et al., 2022) has been recently released.

While most DNN used to derive brain age gap are usually trained as standard re-
gressors with the optimization of mean absolute error (Cole et al., 2017; Jonsson
et al.), Ridge or cross-entropy loss (Peng et al., 2021) (if age is binarized), these
frameworks do not pay particular care about site-related information during train-
ing to produce robust representations of brain imaging data. On the other hand,
contrastive learning paradigms for DNN training have been recently proposed in
various contexts such as supervised (Khosla et al., 2020), weakly-supervised (Dufu-
mier et al., 2021a, 2023; Tsai et al., 2022) and unsupervised representation learning
(Chen et al., 2020). More importantly, as we have demonstrated in Chapter 4,
contrastive learning has been shown to be more robust than traditional end-to-end
approaches, such as cross-entropy, against noise in the data or the labels, resulting in
better generalizing models (Graf et al., 2021; Khosla et al., 2020). For this reason, in
this work, we propose a novel contrastive learning loss for regression in the context
of the OpenBHB challenge, where chronological age must be learned without being
affected by site-related noise. With our method, we obtain the best results in the
official leaderboard.

Our contributions are twofold:

• We propose a novel contrastive learning regression loss for brain age prediction;

• We achieve state-of-the-art performance in brain age prediction on the OpenBHB
challenge.

It is worth noting that, at the time of writing and to the best of our knowledge, the
loss that we propose is one of the first attempts at employing contrastive learning
for regression tasks.

6.1.1 The OpenBHB challenge

The OpenBHB challenge was launched with the goal of building robust brain-age
prediction models. The core of the challenge lies in accurately predicting the age
of patients from different acquisition sources, and in being robust to the problem of
the site-effect, which affects many similar multi-site neuroimaging datasets.
The challenge is hosted on the RAMP platform1, and provides a ranking for the
submitted algorithms that take into account both the prediction accuracy and the
robustness to site-effect. To achieve this, models are tested on a private internal

1https://ramp.studio/events/brain_age_with_site_removal_open_2022
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Figure 6.1.1: Comparison between different contrastive learning regression losses and
their effect on the representations. Samples are aligned (≫ ≪) and repelled (≪≫)
with varying strength (line thickness) based on the continuous label y, through the
application of a kernel function w. Compared to the other losses, the behavior
of our proposed loss Lexp is more desirable for regression, as the alignment in the
representation space more closely reflects the one in the kernel space.

test set, which contains the same acquisition sites as the public training set, and
on a private external test set, which contains independent sites from the training
ones. The performance is measured in terms of Mean Absolute Error (MAE) for age
prediction; furthermore, a Balanced Accuracy (BAcc) for classifying the different
acquisition sites is computed on the challenge platform, with a logistic regression on
the output representation. This metric helps in quantifying how much the learned
representations are affected by the site noise (the lower the better). To provide a
final ranking for the submitted algorithms, a challenge score Lc is computed as:

Lc = BAcc0.3 ·MAEext (6.1.1)

where MAEext is the MAE computed on the external private test set.

The OpenBHB challenge provides a large dataset, which is a comprehensive collec-
tion that aggregates 10 publicly available datasets: ABIDE 1 (Di Martino et al.,
2013), ABIDE 2 (Di Martino et al., 2017), CoRR (Zuo et al., 2014), GSP (Holmes
et al., 2015), LOCALIZER (Orfanos et al., 2017), MPI-Leipzig (?), NAR (Nastase
et al., 2021), NPC (Sunavsky and Poppenk, 2020) and RBP (Follmer et al., 2018).

The dataset focuses on healthy control (HC) cases to model normal brain develop-
ment and build a robust brain age predictor. It includes 5330 3D T1 brain MRI scans
from HC acquired on 71 different acquisition sites with multiple acquisition proto-
cols per site. The subjects come from European-American, European, and Asian
genetic backgrounds, achieving demographic diversity in the dataset. The dataset
provides participants’ phenotype information, including age, sex, acquisition site,
diagnosis, MRI scanner magnetic field, and MRI scanner settings identifier. Some
common confounds are also included, such as Total Intracranial Volume (TIV), Cere-
broSpinal Fluid Volume (CSFV), Gray Matter Volume (GMV), and White Matter
Volume (WMV). OpenBHB shows a well-balanced sex distribution for all age bins,
with two main modes centered around 10 years old and 25 years old, and a long tail
above 40 until 88 years.
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6.1.2 A novel contrastive loss for regression

Supervised contrastive learning, as presented in Section 2.1.3 and Chapter 4, lever-
ages discrete labels (i.e., classes) to define positive and negative samples. Starting
from a sample xi, called the anchor, and its latent representation zi = f(xi), con-
trastive losses such as SupCon or ϵ-SupInfoNCE align the representations of all
positive samples (i.e. sharing the same class as xi) to zi, while repelling the rep-
resentations of the negative ones (i.e., different class). The notion of “negative”
(dissimilar from the anchor) and “positive” (similar to the anchor) samples is thus
rooted in the contrastive learning framework.

These losses are thus not adapted for regression, where the target is a continuous
variable, as it is not possible to determine a hard boundary between positive and
negative samples. All samples are somehow positive and negative at the same time.
Given the continuous label yi for the anchor and yk for a sample k, one could thresh-
old the distance d between yi and yk at a certain value τ in order to create positive
and negative samples (i.e., k is positive if d(yi, yk) < τ), as done in Xue et al. (2022).
The problem would then be how to choose τ .

Differently, we propose to define a degree of “positiveness” between samples using a
kernel function wk = K(yi − yk), where 0 ≤ wk ≤ 1, for example a Gaussian kernel
or a Radial Basis Function (RBF) kernel. Our goal is thus to learn a parametric
function f : X → Sd that maps samples with a high degree of positiveness (wk ∼ 1)
close in the latent space and samples with a low degree (wk ∼ 0) far away from each
other. To derive our proposed loss, we employ the same metric learning approach
that we presented in Chapter 4, which allows us to easily add conditioning and reg-
ularisation. Thanks to it, we are able to develop multiple formulations, which are
illustrated in Figure 6.1.1.

Recalling the basics of our metric framework, we aim at satisfying the following
condition on the representation space (Eq. 4.1.4):

s−t − s+k ≤ 0 ∀t, k (6.1.2)

where s+j = sim(f(xi), f(x
+
j )) and, for simplicity, we impose ϵ = 0. In the regression

case, however, we no longer distinguish between positive and negative samples. A
first possible approach would be to consider as “positive” only the samples yk that
have a degree of positiveness wk greater than 0, and align them with a strength
proportional to the degree, namely:

wk∑
j wj

(st − sk) ≤ 0 ∀j, k, t ̸= k ∈ A(i) (6.1.3)

where we have normalized the kernel so that the sum over all samples is equal to
1 and we denote with A(i) the indices of samples in the minibatch distinct from
xi. Following the same steps that we showed in Section 4.1, the starting metric
condition in Eq. 6.1.3 can be transformed in an optimization problem using, the
max operator and its smooth approximation LogSumExp:
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argmin
f

∑
k

max(0,
wk∑
twt

{st − sk}t=1,...,N
t̸=k

) =

argmin
f

∑
k

wk∑
twt

max(0, {st − sk}t=1,...,N
t̸=k

)

≈ Ly−aware = −
∑
k

wk∑
twt

log

(
exp(sk)∑N
t=1 exp(st)

) (6.1.4)

Interestingly, this is exactly the y-aware loss proposed in Dufumier et al. (2021b)
for classification with weak continuous attributes. Due to the non-hard boundary
between positive and negative samples, both st and sk are defined over the entire
minibatch. The kernel wk is used to avoid aligning samples not similar to the anchor
(i.e. wk ≈ 0). It can be noted that, while the numerator aligns xk, in the denomi-
nator, the uniformity term (as defined in Wang and Isola (2020) and in Eq. 2.1.13)
focuses more on the closest samples in the representation space, due to the ex-
ponential term (which gives more importance to higher st values). This could be
undesirable, as the samples for which st is higher, might have a greater degree of
positiveness than the considered xk. This phenomenon is illustrated in Figure 6.1.1a.
Of course, this goes against the goal of obtaining a semantic mapping between the
kernel space and the learned representation space.

To avoid that, we formulate a first extension (Lthr) of equation 6.1.3, which lim-
its the uniformity term (i.e., denominator) to the samples that are at least more
distant from the anchor than the considered xk in the kernel space (omitting the
normalization in the starting condition):

wk(st − sk) ≤ 0 if wt − wk ≤ 0 ∀k, t ̸= k ∈ A(i) (6.1.5)

Using an indicator function δwt<wk
to express the “if” condition, we can obtain the

following loss function:

Lthr = −
∑
k

wk∑
t δwt<wk

wt

log

(
exp(sk)∑

t̸=k δwt<wk
exp(st)

)
(6.1.6)

Ideally, Lthr avoids repelling samples more similar than xk, by using the value wk

as threshold (hence the name). However, it still focuses more on the closest sample
“less positive” than xk, i.e. xt s.t wt > wx and wt ≤ wj ∀j ̸= k. This is shown in
Figure 6.1.1b, in which the highest repulsion strength is focused on y = 10. The
idea of limiting the uniformity term based on the label distance can be found also
in Zha et al. (2022) (in this work, however, the alignment term is not weighted).
Compared to y-aware, which repels more y = 4, Lthr is better, however, it is still not
optimal. As noted in Section 4.1 and in Khosla et al. (2020), increasing the margin
with respect to the closest “negative” sample works well for classification, however,
it might not be best suited for regression.

For this reason, we propose a second formulation (Lexp) that takes an opposite
approach. Instead of focusing on repelling the closest “less positive” sample, we
increase the repulsion strength for samples proportionally to their distance from the
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Loss Behavior

Ly−aware Align samples based on the kernel distance
repel all

Lthr Align samples based on kernel distance ,
repel only samples more distant than k

Lexp Align samples based on kernel distance,
repel more samples with greater distance

Table 6.1.1: Summary of the proposed contrastive losses with kernel weighting.

anchor in the kernel space. This is achieved by weighting not only the alignment
term, but also the uniformity term:

wk[st(1− wt)− sk] ≤ 0 ∀k, t ̸= k ∈ A(i) (6.1.7)

which yields the following loss function:

Lexp = − 1∑
t wt

∑
k

wk log
exp(sk)∑

t̸=k exp(st(1− wt))
. (6.1.8)

In the resulting Lexp formulation, the weighting factor 1 − wt acts like a (varying)
temperature value, by giving more weight to the samples that are farther away from
the anchor in the kernel space. Figure 6.1.1c shows the behavior of Lexp: the re-
pulsion strength is proportional to the difference of the y values. Taking a closer
look, we might see that also closer samples are repelled; however, for a proper kernel
choice, samples closer than xk will be repelled with very low strength (∼0). We
argue that this approach is more suited for continuous attributes (i.e., regression
task), as it enforces that samples close in the kernel space will be close in the rep-
resentation space, thus achieving the semantic mapping between the kernel and the
representation space.

All of the losses that we introduced are summarized in Table 6.1.1, with a short
description characterizing each one of them.

6.1.3 Experiments and Results

As network architecture, we employ the 3D implementations of ResNet-18 (33.2M
parameters), AlexNet (2.5M parameters), and DenseNet-121 (11.3M parameters).
For comparison with Dufumier et al. (2022), we use the Adam optimizer, with an
initial learning rate of 10−4 decayed by a factor of 0.9 every 10 epochs, and a weight
decay of 5 ∗ 10−5. We use a batch size of 32, and train for a total of 300 epochs.
Our trainings are implemented in PyTorch, and run on the Jean Zay cluster2 and
on a cluster of 8 NVIDIA A40 GPU, with a single training taking 24h. For every
model, we report the mean absolute error (MAE) on both the internal and external
test sets, along with the balanced accuracy for site classification (BAcc). We also
report the final challenge score Lc (the lower the better).

2http://www.idris.fr/jean-zay/

96



−10 −5 5 10

−0.5

0.5

1 KCauchy

KRBF

Figure 6.1.2: Employed kernel functions.

In
t.

M
AE

BAcc

Ext
. M

AE
Sco

re
0

2

4

6

8

10
cauchy (γ=1)

In
t.

M
AE

BAcc

Ext
. M

AE
Sco

re
0

2

4

6

8

10
cauchy (γ=2)

In
t.

M
AE

BAcc

Ext
. M

AE
Sco

re
0

2

4

6

8

10
rbf (σ=1)

In
t.

M
AE

BAcc

Ext
. M

AE
Sco

re
0

2

4

6

8

10
rbf (σ=2)

expw

threshold

yaware

Figure 6.1.3: Ablation study of the kernel functions. The Gaussian kernel (rbf)
with σ = 2 yields the best generalization results (Ext. MAE) and final score across
all three loss functions. We also notice an overall slight improvement in the site
balanced accuracy.

Experimental data We conduct our experiments on the OpenBHB dataset, de-
scribed in Section 6.1.1. We focus this study on gray matter volumes (VBM).

Kernel function ablation study We test two different kernels: a Gaussian ker-
nel Kg(u) = exp (−||u||2/2σ2) and Cauchy kernel Kc(u) = 1/(γ||u||2+1), illustrated
in Figure 6.1.2. We perform an ablation study for the two different kernels and hyper-
parameters, employing a ResNet-18 model. Figure 6.1.3 shows the ablation results.
For each kernel choice and value, we report the metrics on the test set along with
the final challenge score, for the three loss functions. Focusing on the final score,
it’s easy to see that a Gaussian kernel with σ = 2 produces the best results for all
losses (for readability, the final score is also reported in Table 6.1.2). This can be
attributed to the overall lower error on the external set (Ext. MAE), showing that,
with this setting, the models can generalize better. Furthermore, we also notice an
overall lower balanced accuracy for site prediction, showing that this configuration
is somewhat more robust to site noise.

Comparison of contrastive regression losses In Table 6.1.3 we compare the
results obtained with the different losses. Focusing on the aggregate score, the best
results are obtained with Lexp (1.54). Furthermore, Lexp also outperforms the other
losses in every evaluated metric. Most significantly, it shows the best generalization
capability in the external test set, which, undoubtedly, is the most relevant result
from a practical clinical perspective. On the internal test, we score a MAE of 2.55,
which is also slightly better than the related literature on a similarly sized dataset
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Kernel σ / γ Ly−aware Lthreshold Lexp

Cauchy 1 2.15 2.28 1.82
2 2.48 3.03 1.83

RBF 1 2.43 2.63 1.58
2 1.82 1.74 1.54

Table 6.1.2: Ablation study of kernel functions, in terms of challenge’s score. Best
results are highlighted in bold.

Method Int. MAE BAcc Ext. MAE Lc

Ly−aware 2.66±0.00 6.60±0.17 4.10±0.01 1.82
Lthr 2.95±0.01 5.73±0.15 4.10±0.01 1.74
Lexp 2.55±0.00 5.1±0.1 3.76±0.01 1.54

Table 6.1.3: Comparison of contrastive losses on the OpenBHB challenge dataset.
The best results are highlighted in bold.

with UKB (Peng et al., 2021). Interestingly, Lexp also shows the best robustness
to site-related noise (with a BAcc of 5.1), which indicates that the learned space
preserves the neuroanatomical features very well while also removing site noise.

Final results on the OpenBHB challenge Finally, we report the ranking of
Lexp of the OpenBHB leaderboard, testing also AlexNet and DenseNet-121. Ta-
ble 6.1.4 shows the results. We compare with baseline models (Dufumier et al.,
2022) trained with the L1 loss, and with ComBat (Fortin et al., 2017), a site harmo-
nization algorithm developed for MRIs. Our proposed Lexp achieves state-of-the-art
performance on the final leaderboard, scoring the best final score and metrics on
both the internal and external test set, with ResNet-18. The improvement observed
in the external test is also reflected for both AlexNet and DenseNet compared to all
baselines. For these models, the internal MAE reached by the L1 baseline is slightly

Method Model Int. MAE BAcc Ext. MAE Lc

Baseline (ℓ1)
DenseNet 2.55±0.01 8.0±0.9 7.13±0.05 3.34
ResNet-18 2.67±0.05 6.7±0.1 4.18±0.01 1.86
AlexNet 2.72±0.01 8.3±0.2 4.66±0.05 2.21

ComBat
DenseNet 5.92±0.01 2.23±0.06 10.48±0.17 3.38
ResNet-18 4.15±0.01 4.5±0.0 4.76±0.03 1.88
AlexNet 3.37±0.01 6.8±0.3 5.23±0.12 2.33

Lexp

DenseNet 2.85±0.00 5.34±0.06 4.43±0.00 1.84
ResNet-18 2.55±0.00 5.1±0.1 3.76±0.01 1.54
AlexNet 2.77±0.01 5.8±0.1 4.01±0.01 1.71

Table 6.1.4: Final scores on the OpenBHB leaderboard. Reference results from Du-
fumier et al. (2022). The best results are highlighted in bold.
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Figure 6.1.4: Visualization of the learned representation space by a baseline L1
model (a), a model trained with y-aware (b) and one trained with Lexp (c). The
color represents the age. Compared to the L1 baseline, it is easy to see how the
learned representations are more smoothly aligned. Furthermore, going from left
to right, it appears that progressively less additional information (e.g. site noise) is
encoded in the latent space: for L1, we observe that the latent space, compared to the
contrastive losses, tends to form larger and disconnected clusters; while for Ly−aware

it is possible to observe that samples with a similar age more loosely arranged
compared to Lexp. The t-SNE was run for 5000 iterations in order to guarantee
convergence, with a perplexity value of 15 in order to balance local and global
similarities in the data.

lower than Lexp. However, when looking at the other metrics, it is easy to see that
this is due to more overfitting on the internal sites for the baseline. Lastly, regarding
the balanced accuracy, we observe a significant improvement with respect to the L1
baseline, showing that Lexp possesses some debiasing capability towards site noise.
Besides AlexNet, however, ComBat still achieves a lower accuracy, showing that
there is room for improvement.

Why Lexp is more invariant to site-effect As we observed from the results, Lexp

exhibits the lowest balance accuracy among all losses, meaning that it is somehow
more robust towards the site effect of the data. We hypothesize that this is due
to the difference in the formulation of Lexp with respect to the other losses, such
as y-aware. As explained in Section 6.1.2, the presence of the exponential in the
uniformity term of y-aware, may force some samples to be pushed apart from the
anchor more than they should (i.e. when st > sk). This could result in a less
“compact” latent space, that might capture more variance in the input data such
as noise from the site effect. On the other hand, Lexp may avoid this phenomenon
as the samples are repelled according to the kernel value, as shown in Figure 6.1.1,
achieving latent representations that are more invariant to such noise. To illustrate
this concept, in Figure 6.1.4 we visualize the learned latent space of the models with
t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Van der Maaten
and Hinton, 2008), obtained on the local validation set of the OpenBHB dataset.
Altough the visual difference between Ly−aware and Lexp is marginal, it appears that
the result of the visualization agrees with our guess. This explanation is however
still just a conjecture and a more in-depth analysis of such behavior should be the
focus of future work.
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6.1.4 Addressing site effect with regularization

As we have seen in the previous section, in the context of the OpenBHB challenge,
in addition to learning meaningful representation for age prediction, biases related
to the acquisition sites must be taken into account. We showed how Lexp improves
in this regard with respect to the other losses, however its debiasing performance is
still limited when compared to specialized method such as ComBat.

For this purpose, we propose to extend the FairKL regularization presented in Sec-
tion 4.2 and extend it to the regression case.
As a brief reminder, FairKL aims at minimizing the Kullback-Leibler divergence of
the distance distributions of positive bias-aligned B+,b ∼ N (µ+,b, σ

2
+,b) and positive

bias-conflicting and B+,b′ ∼ N (µ+,b′ , σ
2
+,b′):

RFairKL =
1

2

(
σ2
+,b + (µ+,b − µ+,b′)

2

σ2
+,b′

− log
σ2
+,b

σ2
+,b′
− 1

)
(6.1.9)

where µ+,b = 1
Pa

∑
i s

+,b
i and σ2

+,b = 1
Pa

∑
i(s

+,b
i − µ+,b)

2 are the first and second
moments of the distance distribution for the positive bias-aligned samples (µ+,b′ and
σ+,b′ are defined in the same way on positive bias-conflicting), and Pa is the number
of positive bias-aligned samples. Similarly to Section 6.1.2, given that we cannot
discretely identify positive samples, we propose to extend FairKL to the continuous
target label by employing a kernel, obtaining:

µ+,b =
1∑

b∈B(i) wb

∑
b∈B(i)

wbsb

σ2
+,b =

1∑
b∈B(i) wb

∑
b∈B(i)

(wbsb − µ+,b)
2

(6.1.10)

where, denoting with bj the bias of the j-th sample, B(i) ≡ {k ∈ A(i) | bj = bi}
is the set of indices of all bias-aligned samples. The same reasoning can be applied
for positive bias-conflicting samples. With this approach, we expect to be able to
achieve better results towards mitigating the site-effect3.

6.2 Detecting Alzheimer’s Disease and Cognitive Im-
pairment

In this section, we turn our attention towards detecting neurodegeneration from
brain MRIs. Linking brain age with the insurgence of neurodegenerative diseases,
such as Alzheimer’s Disease, and cognitive decline has been proposed by related
literature (Elliott et al., 2021; Gaser et al., 2013) and shows promising results in this
direction. Leveraging the methods and models proposed in the previous section, we
aim to improve the detection of such conditions. For this purpose, we perform a set
of experiments to assess whether our proposed contrastive learning framework for
brain age regression might help in achieving more accurate results4.

3Ongoing work.
4This section is part of ongoing work. The results are preliminary.
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Figure 6.2.1: Performance of age regression on ADNI HC group: (a) raw adjusted
predictions (b) finetuned predictions. Age predicted by each model (y axis) is plotted
against true age (x axis). Colored lines and shaded areas represent regression lines
and 95% confidence regions. Dashed black lines represent perfect prediction.

Experimental data We leverage the data from the Alzheimer’s Disease Neu-
roimaging Initiative (Petersen et al., 2010) (from the ADNI-GO collection)5. We
use 716 co-registered T1-weighted MRI images divided in 199 Healthy Control (HC)
cases, 329 Mild Cognitive Impairment cases (MCI) and 188 Alzheimer’s Disease
(AD) patients. We only included one scan per patient at the first session (baseline).
All images have been pre-processed in the same way with a non-linear registration
to the MNI template and a gray matter extraction step. The final spatial resolution
is 1.5mm isotropic and the images are of size 121 × 145 × 121. To conduct our
experiments, we adopt a 80%-20% train-test split at the patient level, obtaining 572
patients for training and 144 for testing.

6.2.1 Finetuning age prediction

First of all, we assess the generalization capability of the age prediction models
trained on OpenBHB on the ADNI dataset. For this purpose, we only consider the
HC group, as the brain age should (approximately) match the chronological one. In
order to evaluate the prediction, we consider two approaches:

• using the raw predictions from the models, adjusted just by a bias corrective
term δage in order to take into account the possible dataset shift;

• finetuning a linear regression layer on top of the frozen encoder.

For the first approach, we compute δage as E[ytrainHC ]−E[ŷtrainHC ], where y is the ground
truth label and ŷ is the model prediction. For the second approach, for compar-

5http://adni.loni.usc.edu/about/adni-go
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OpenBHB ADNI
Method BAcc Int. MAE Ext. MAE HC MAE (ft) Avg. MAE

L1 6.7±0.1 2.67±0.05 4.18±0.01 3.15 3.34
Ly−aware 6.60±0.17 2.66±0.00 4.10±0.01 3.01 3.26
Lthr 5.73±0.15 2.95±0.01 4.10±0.01 3.34 3.46
Lexp 5.1±0.1 2.55±0.00 3.76±0.01 2.99 3.10

Table 6.2.1: Summary of age regression results on OpenBHB and ADNI HC (ft
stands for finetuned). The best results are highlighted in bold, the second best
results are underlined.

ison with how the results are computed on the OpenBHB leaderboard (Dufumier
et al., 2022), we employ the Ridge regression (Hoerl and Kennard, 2000) implemen-
tation provided by sklearn (Pedregosa et al., 2011). Figure 6.2.1 shows the result
of age regression on ADNI. Using raw-adjusted predictions, we achieve a minimum
MAE of 4.39 with Ly−aware, which is better than related literature on similarly-sized
datasets (Cumplido-Mayoral et al., 2023; Millar et al., 2023). Finetuning the predic-
tion layers on the ADNI HC group improves the results notably, lowering the MAE
to 2.99 for Lexp. It is important to keep in mind that the whole encoder is frozen,
thus the representation space is the same as learned on the OpenBHB dataset.
The only purpose of finetuning the regression layer is to minimize the dataset shift.
The results of age regression for both OpenBHB and ADNI are summarized in Ta-
ble 6.2.1. Our proposed loss Lexp consistently outperforms the other losses in each
test set; this is probably due to the increased robustness to the site-effect (lower
BAcc).

6.2.2 Using brain-age delta for detecting neurodegeneration

Based on the age prediction models that we obtained in the previous section, we
now compute the age prediction for the rest of the ADNI dataset, including MCI
and AD cases. We are interested in computing the brain-age delta, given by the
difference between the predicted brain age value and the true chronological age of
the patient. As shown in Cumplido-Mayoral et al. (2023); Elliott et al. (2021); Gaser
et al. (2013); Millar et al. (2023), brain-age delta can be a useful proxy for detecting
neurodegeneration.

In Figure 6.2.2 we report the accuracy for detecting MCI and AD against HC cases
at different values of brain-age delta. To compute the accuracy, we consider the
patient as AD (or MCI) if the brain-age delta for that patient is higher than a cer-
tain threshold (x axis). We compare the different contrastive losses and the baseline
model (L1). As expected, we found the lowest accuracy (∼50%) with very small age
deltas (e.g. 1 or 2) in most cases, meaning that with such a small delta it is impos-
sible to discriminate MCI or AD cases from healthy ones. For all models, except for
Lexp, we can clearly see that the peak accuracy for AD is found at a higher age delta
than for MCI. Focusing on Lexp, the peak for AD is less noticeable, however, the
accuracy achieved is the highest. We do not have a clear explanation on the reason
for such behavior. The highest accuracy of Lexp is also confirmed by the ROC curve,
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Figure 6.2.2: Accuracy of MCI and AD detection at increasing brain-age delta
thresholds.
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Figure 6.2.3: ROC curve for AD and MCI detection with brain-age delta.
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Figure 6.2.4: Age delta distribution for HC, MCI and AD classes. The shaded areas
represent the age delta distribution (histogram) for each class. The horizontal black
line in the middle highlights the mean value (explicitly annotated for readability).

shown in Figure 6.2.3, which reaches the highest AUC value for both classification
tasks.

To conclude the analysis on the correlation between brain-age delta and neurodegen-
eration, in Figure 6.2.4 shows the mean brain-age delta for each of the three classes.
Again, Lexp seems to work better as there is a larger gap between the different
groups, and the average age delta on HC patients is the lowest. From these results,
we observe that we most of the healthy patients exhibit a difference in chronological
and brain age of 0.89 years, while patients affected by MCI and AD show a delta on
average of 2.65 years and 4.29 years respectively. Of course, these are the results of
a preliminary analysis, and they should be improved in future works, for example
by including sex stratification, which was not taken into account in this work.

6.2.3 Transfer learning for AD and MCI detection

Finally, similarly to what we did in Section 6.2.1 in order to achieve better results,
we trained a classification layer on top of the frozen encoders in order to discrim-
inate among HC, MCI and AD classes. For this purpose, we employed a Logistic
Regression classifier with a 5-fold cross-validation on the training set in order to find
the best regularization hyperparameters. The results are reported in Table 6.2.2 in
terms of accuracy. For each class combination, we train a separate classifier and
test it on the corresponding test set. We report the accuracy of a model trained
from scratch on the ADNI dataset with “target”. Also in this case, by employing the
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Method All HC vs AD HC vs MCI MCI vs AD Avg.

Baseline (L1) 0.60 0.83 0.68 0.76 0.72
Ly−aware 0.61 0.88 0.69 0.76 0.73
Lthr 0.64 0.86 0.73 0.73 0.74
Lexp 0.62 0.90 0.71 0.80 0.76

Target 0.62 0.90 0.64 0.82 0.74

Bäckström et al. (2018) - 0.90 - -
Cheng and Liu (2017) - 0.85 - -
Korolev et al. (2017) - 0.80 - -
Li et al. (2017) - 0.90 0.74 -
Senanayake et al. (2018) - 0.76 0.75 0.76
Valliani and Soni (2017)† 0.57 0.81 - -

Table 6.2.2: Transfer learning results on ADNI in terms of accuracy. “Target” means
a model trained on ADNI from scratch. † the results in Valliani and Soni (2017) are
on 2D slices rather then 3D volumes; however it was included for comparison with
the "all" classification. The best results are highlighted in bold, the second best
results are underlined

Method Backbone HC vs AD

Lexp ResNet-18 0.95
Dufumier et al. (2021b) DenseNet-121 0.96

Table 6.2.3: Transfer-learning results for ADNI HC vs AD in terms of AUC.

contrastive losses we are able to consistently improve upon the L1 baseline. Lexp

achieves the best results on average and obtains an improvement with respect to
the target performance. This means that the pre-training has provided a better ini-
tialization for the transfer-learning task. We also report some reference results from
the literature, taken from Wen et al. (2020). The results we achieve are competitive
with the other works, however it should be noted that many of these works use
larger datasets, which in neuroimaging has been shown to correlate with a decrease
in prediction accuracy (Varoquaux and Cheplygina, 2021). Finally, for additional
comparison on the same dataset, we report in Figure 6.2.3 the AUC score for the HC
vs AD task, compared with Dufumier et al. (2021b) where they finetune the whole
model on the ADNI dataset. Notably, we achieve a competitive result by using a
smaller backbone, compared to the DenseNet-121 employed in their study.

6.3 Limitations and Conclusions

In this chapter, we have made the following contributions:

1. We have proposed a novel loss for contrastive learning suited for regression,
which leverages a “degree of positiveness” by employing a kernel function to
measure the similarity of the target variable;

105



2. We have shown that our proposed loss achieves state-of-the-art performance
for brain age prediction on the OpenBHB challenge, and is inherently more
robust to collateral learning (e.g. site effect) than other losses

3. We have performed some preliminary experiments hinting the proposed method
is promising with regard to a more accurate detection of neurodegenerative
conditions.

The results that we presented show how a formal analysis of representation learning
through a theoretical framework, such as the one we proposed, can help in deriving
more effective loss functions for a specific task. Our simple, yet effective, metric
approach, has allowed us to propose tackle the issues of existing contrastive losses.
We have also shown how collateral learning can effectively cripple the model predic-
tion accuracy, making it less reliable and subject to issues such as site-effect. This
is an important step towards building robust and reliable deep-learning models and
is especially relevant in the neuroimaging area. Our results further confirm the link
between brain age acceleration and cognitive decline, and we aim to improve our
results in future work.

Nonetheless, our analysis still presents some limitations. The most important ones
are:

• Even if less than the other methods, our brain age prediction approach is still
affected by the site noise to some extent. This can be observed when com-
paring the debiasing effect with methods such as ComBat. There is still room
for improvement, and one possible direction is represented by the proposed
extension of the FairKL regularization to regression tasks;

• Similarly, while promising, the results for MCI and AD detection should be
improved. Also, in our analysis we did not make distinctions between different
classes of MCIs such as sMCI (patients who will remain stable) and pMCI
(those who will progress to AD). This is a very relevant task from a clinical
perspective;

• Some factors such as the patient’s sex have not been taken into account in this
study; however it has been shown in the related literature that anatomical
differences in the brain aging process exist between males and females. A
detailed analysis on how to better include this information in the models should
be performed (e.g. using multiple models based on sex);

• The considered sample size for MCI and AD detection is not very large, and the
population sample should be extended to include the latest ADNI iterations
and other publicly available datasets. In fact, as highlighted in Varoquaux
and Cheplygina (2021), using smaller datasets can result in more optimistic
performance estimates;

• Related to the latter point, the analysis should also be extended to include
other kinds of conditions such as Schizophrenia, Bipolar disorder, and Autism
spectrum disorder. Furthermore, it could be relevant to assess whether the
models are focusing on
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• Also, longitudinal studies should be included in the analysis, as done e.g.
in Franke and Gaser (2019), as they provide a way to assess an individual’s
aging process over time, and can provide useful information about the different
conditions.

We aim to focus on these limitations in our future research.

107



108



Chapter 7

The COVID-19 Experience

Among all the events that recently affected the world, the most remarkable can
be probably identified with the Covid-19 pandemic. During the beginning of 2020,
Covid-19 virus has rapidly spread in China and out into multiple countriess world-
wide (Zu et al., 2020). As of September 2023, there were more than 770 million
confirmed cases worldwide, with almost 7 million deaths1.

As the pandemic spread and lockdown measures were adopted by most countries,
the attention of the deep learning community turned towards aiding the detection
of early symptoms of Covid-19 infections. To this end, Chest X-Ray (CXR) imaging
was regarded as the most favorable imaging methodology, as it is quicker, and, most
importantly, cheaper to perform than other kinds of exams, such as Computer To-
mography (CT), easier to sanitize after each usage, and it can be deployed directly
on patient’s bed if needed, limiting possible exposure in health care workers and
other patients. All of these reasons make CXR a useful tool in emergency settings:
even if less sensitive compared to CT, it can allow a first rough evaluation of the
extent of lungs involvement. Furthermore, CXR can be repeated over time to mon-
itor the evolution of lung disease.

In order to train machine learning models for detecting Covid-19, datasets needed to
be built. However, this was not an easy challenge, and, especially at the beginning
of the pandemic, datasets were scarce and built from different sources, including
pre-existing datasets collected from publicly available sources. However, in doing
so, the resulting dataset were heavily impacted by the diversity of the gathered data
as they contained biases and confounding information from the different sites. For
this reason, many of the published work scored good performance only apparently,
and were in fact affected by the Collateral Learning problem.

In this Chapter, we describe the research work that we have been carrying out in
the last three years, starting from early efforts to provide a methodological contri-
bution for correctly assessing the models’ performance, to the ongoing efforts that
have resulted in Co.R.S.A2, a funded project for assessing the impact and usefulness
of AI-based Covid-19 detection tools in everyday clinical practice. As with Neu-
roimaging in Chapter 6, in this Chapter we will deal with the Collateral Learning

1https://covid19.who.int/
2https://corsa.di.unito.it/
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issue. Differently from the previous Chapters, however, we will show that Collateral
Learning can be mitigated not only with novel losses or regularization techniques
but also with other methods such as transfer learning. This Chapter is meant to be
a practical example of how Collateral Learning can especially affect the medical field.

Thanks to the collaboration with the radiology units of Città della Salute e della
Scienza di Torino (CDSS) and San Luigi Hospital in Turin (SLG) in the last days of
March 2020 (at the peak of epidemic in Italy), we managed to start the collection of
the COvid Radiographic images DAta-set for AI (CORDA). The collection has now
extended to other hospitals and institutions; this will be explained in Section 7.4.

Our contributions include two different approaches for COVID detection: a first
deep learning pipeline targeting direct diagnosis from the CXR images (as typically
done by most of the deep learning-based works) and a second method comprising an
intermediate step, in which first radiological findings are highlighted and then diag-
nosis is formulated. We will show that the latter approach is the most effective; in
particular, attempting to directly elaborate a diagnosis from CXRs is prone biases or
site effects. Mimicking the radiologist decision process turns out to be more robust
to such issues since it focuses on detecting objective radiological findings (as defined
by Hansell et al. (2008)), which help in building a more robust representation space.

7.1 Collateral Learning in Chest X-Ray datasets

In this section, we describe the first attempt that we pursued for Covid-19 detec-
tion. The experiments presented in this section are based on the first iteration of
the CORDA dataset, coming from a single institution (CDSS) and containing a to-
tal of 447 CXRs (297 Covid-19 positive images and 150 negatives). This dataset
is referred to as CORDA-CDSS. Due to the imbalance in the dataset, we sampled
data from publicly available CXRs datasets, in order to increase the number of
COVID-negative samples in CORDA-CDSS. Table 7.1.1 shows the different com-
binations of datasets we benchmarked. For this purpose, we employed two popu-
lar datasets, Kermany/Guangzhou (Kermany, 2017) and RSNA Pneumonia (Stein,
2018). The Kermany dataset contains 5857 CXR images of normal cases (1583),
bacterial pneumonia (2780) and viral pneumonia (1493). The RSNA dataset con-
tains 20,672 normal CXR scans and 6012 pneumonia cases, for a total of 26,684
images. We also performed experiments on COVID datasets only, CORDA-CDSS
and COVID-ChestXRay (Cohen et al., 2020)3. In this case the positive class has
been undersampled in order to obtain a more balanced training set.

The first method that we studied consists of a binary classifier based on a deep
convolutional neural network architecture. We used the popular ResNet-18 archi-
tecture as backbone for the classifier. We also experimented with pretraining, using
both Kermany and RSNA datasets. Each resulting model has been tested on all
of the different combinations of test sets, to provide more meaningful insights on
the obtained results and determine which configuration is less likely to suffer from

3The dataset size is referred to the version as of April, 2020
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potential biases and issues we previously discussed.

COMPOSED DATASET
ORIGINAL DATASETS

A C B D TOTAL
+ - + - + - + - + -

A train 126 105 - - - - - - 126 105
test 90 45 - - - - - - 90 45

AB train 207 105 - - - 102 - - 207 207
test 90 45 - - - 45 - - 90 90

AC train 207 105 - 102 - - - - 207 207
test 90 45 - 45 - - - - 90 90

AD train 116 105 - - - - 49 24 165 129
test 90 45 - - - - 10 5 100 50

D train - - - - - - 98 24 98 24
test - - - - - - 10 5 10 5

Table 7.1.1: Datasets composition. The datasets used at training and test time are
in the rows, and the total size is in the last two columns. For easier readability, each
dataset has been assigned to a letter: CORDA-CDSS (A), Kermany (B), RSNA (C)
and COVID-ChestXRay (D). The COVID-positive samples are indicated as “+”
while the negative ones with “-”.

7.1.1 Experiments

For all of the experiments we adopted a 70%-30% train-test split. We used SGD
as optimization technique, with a starting learning rate of 0.01 and a weight decay
of 10−5. Part of the training set (20%) was then used as validation set, to tune
hyper-parameters such as learning rate. We adopted the same learning rate decay
policy (on plateau), across all of the experiments, with a patience of 15 epochs and a
decay factor of 0.1: whenever the loss on the validation set reached a plateau lasting
for at least 15 epochs, the learning rate was multiplied by 0.1. The training was
stopped when the learning rate dropped to 10−5. All of the experiments were run
on NVIDIA Tesla T4 GPUs using PyTorch 1.44.

Results

First, we evaluate different choices of pre-training and network architectures, then
we discuss the different options for augmenting COVID data. We also provide a
comparison with the results obtained by similar works, specifically with COVID-
Net (Wang and Wong, 2020). In the following subsections, CORDA will be used
for brevity when referring to CORDA-CDSS. We also experimented with lung seg-
mentation, which can help in removing bias sources, such as the presence of medical
devices (typically correlated to sick patients), and various text that might be em-
bedded in the scan (like annotations for the detected pathology). However, no
significant difference was observed with respect to using full images, probably due
to the dataset size and the strength of the site effect.

4Source code available at https://github.com/EIDOSlab/unveiling-covid19-from-cxr
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Pre-training Architecture Sensitivity Specificity B. Accuracy AUC

- ResNet-18 0.56 0.58 0.57 0.59
Kermany ResNet-18 0.54 0.58 0.56 0.67
RSNA ResNet-18 0.54 0.80 0.67 0.72

Kermany ResNet-50 0.64 0.56 0.60 0.65
RSNA ResNet-50 0.61 0.71 0.66 0.67

Kermany DenseNet-121 0.63 0.52 0.63 0.70
RSNA DenseNet-121 0.77 0.38 0.57 0.63

Table 7.1.2: Comparison of different pretraining and architectures for finetuning
on CORDA-CDSS. The best results are highlighted in bold, in terms of balanced
accuracy and AUC score.

Comparisons of different pre-trainings and network architectures The re-
sults are summarized in Table 7.1.2. To evaluate the impact of pretraining compared
to training from scratch, we focus on ResNet-18. It is clear that the choice of pre-
training dataset is very important for the final accuracy. Even though the Kermany
dataset also contains information about the type of pneumonia (bacterial or viral)
and so, at first glance, it might seem a better fit for the pre-training, we observe a
clear improvement when employing RSNA rather than Kermany. This is probably
due to the larger size of the dataset. Moreover, Kermany contains CXRs coming
from child patients. On the other hand, RSNA is closer to the CORDA dataset
(where the average age is 61 years). In fact, the higher specificity obtained with
RSNA seems to suggest that the pretraining is able to better capture discriminative
features of control cases, compared to Kermany. From the results we achieved, we
conclude that pretraining is a favorable choice.
Focusing on deeper architecture (ResNet-50 and DenseNet-121) we observe that the
overall results are lower than with ResNet-18. This is probably due to overfitting, as
these models may be too large for the dataset sizes. For this reason, we also tested
an opposite approach, by training a smaller neural network made of 8 convolutional
layers and a final fully-connected layer, which takes inspiration from the ALL-CNN-
C architecture (Springenberg et al., 2014). However, with this smaller architecture,
we did not achieve higher results than ResNet-18, obtaining a balanced accuracy of
0.61. Even with the best results achieved, however, we did not obtain satisfactory
performance, considering that the goal is a binary classification task. In the next
sections, we will discuss whether augmenting the CORDA-CDSS dataset with public
datasets can lead to better results.

Augmenting Covid-19 data with public datasets: biases and site-effect
As stated in the introduction of the Chapter, augmenting the training set by lever-
aging public datasets was a common practice, especially for gathering negative pa-
tients. Hence, instead of achieving class balance in CORDA-CDSS by undersampling
the positive class, we did that by including negative samples from the Kermany and
RSNA datasets. This allowed us to leverage the full potential of our CORDA-CDSS
dataset. The explored dataset combinations are summarized in Table 7.1.1. To ob-
tain insights on possible biases, for every dataset combination, we tested the models
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Training dataset Test Dataset Sensitivity Specificity B. Accuracy AUC

CORDA 0.68 0.44 0.56 0.61
CORDA + RSNA CORDA + Kermany 0.68 0.22 0.45 0.49

CORDA + RSNA 0.68 0.90 0.79 0.90

CORDA 0.82 0.38 0.60 0.63
CORDA + Kermany CORDA + Kermany 0.82 0.95 0.89 0.97

CORDA + RSNA 0.82 0.30 0.56 0.59

Table 7.1.3: Comparison of different training dataset combinations. The model is
a ResNet-18 pretrained on RSNA. The highlighted rows represent the apparently
good results, while the values in bold are the true Covid-19 detection accuracy. The
complete results for all training and test combinations can be found in Appendix E.1.

on both the merged and on the CORDA-CDSS test set separately. Additionally we
also tested on the opposite combination of datasets. Table 7.1.3 summarizes the
best results that we achieved with combined training sets. The complete results for
all datasets, pretraining and architectures can be found in Appendix E.1.

If we consider the results obtained on the same combinations of test and training
sets (highlighted in the table), we apparently achieve very good results (0.79 and
0.89 balanced accuracy for using RSNA and Kermany respectively, with a highest
AUC of 0.97). However there results are just the effect of Collateral Learning. In
fact, when testing on only CORDA and the opposite combination, the specificity
drops noticeably while the sensitivity remains exactly the same. What this essen-
tially means is that the models is discriminating the data sources (i.e. RSNA vs
others or Kermany vs others). In Figure 7.1.1, we visualize the extracted features
from an encoder trained on CORDA+Kermany using t-SNE (blue and orange dots
represent Kermany/RSNA and CORDA data samples respectively, regardless of the
COVID label). We can notice how CORDA samples are clearly distinguished from
Kermany data (7.1.1a), but not from RSNA (7.1.1b) even if they are all negative.
This observation is confirmed by the fact that the apparently best performance is
achieved on the CORDA+Kermany combination: as Kermany exhibits the largest
difference with CORDA, it is easier to discriminate than RSNA.

A more reliable classification accuracy can be found by looking at the result on the
CORDA test set (marked as bold in the table). However, we find that the accuracy is
worse that Table 7.1.2, meaning that merging different datasets is actually harming
the performance. This prime example of Collateral Learning is actually determined
by a combination of factors:

• Strong selection biases in the datasets, with respect to either the illness and
population sample (e.g. age), such as for Kermany;

• Almost a certain presence of site effect in the images, which makes the domain
gap between datasets even larger;

• Strong correlation between dataset and target label.
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(a) (b)

Figure 7.1.1: Visualization of features extracted from a model trained on
CORDA+Kermany on different test set combinations: (a) Kermany vs CORDA
(b) RSNA vs CORDA. Due to the large gap between the training datasets, the
model has learned to classify based on the data source (Kermany vs other). A true
Covid-19 classifier would be able to also correctly separate RSNA.

In the context of this thesis, after all the previously presented work on Collateral
Learning, these results might seem trivial. However, this issue affected most of the
published works during the peak of the pandemic (Apostolopoulos and Mpesiana,
2020; Narin et al., 2020; Sethy and Behera, 2020; Wang and Wong, 2020), and our
contribution was one of the first highlighting it. This was also later confirmed by a
number of other works (Garcia Santa Cruz et al., 2021; López-Cabrera et al., 2021;
Roberts et al., 2021).

Comparison of networks trained on COVID-ChestXRay One very promis-
ing approach for Covid-19 detection, was represented by COVID-Net (Wang and
Wong, 2020). The authors report very high performance on the COVID-ChestXRay
dataset, achieving 0.90 accuracy. They also share the source code and the trained
model5, which allowed us to validate the generalization performance of their method,
and compare it to our work.
Table 7.1.4 shows the classification metrics obtained with COVID-Net and our
ResNet-18 model: both models were trained on the COVID-ChestXRay dataset,
and tested on both CORDA (A) and COVID-ChestXRay (D). We also provide a
comparison with DenseNet-121 as its architecture is very similar to COVID-Net.
In line with the discussion above we can notice that both COVID-Net and ResNet-18
yield surprising results when the same dataset is used for training and testing. The
performance of COVID-Net on the COVID-ChestXRay (D) test set is very but it
drops significantly when tested on CORDA. This drop can be explained by looking
at sensitivity and specificity values: it is clear that the model classifies as COVID-
almost all of the unseen data coming from CORDA. We observed similar behaviors
with ResNet-18 and DenseNet-121: the results we obtained on COVID-ChestXRay

5https://github.com/lindawangg/COVID-Net
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Architecture Test dataset Sensitivity Specificity BA AUC

COVID-Net A 0.12 0.98 0.55 0.55
COVID-Net D 0.90 0.80 0.85 0.85

ResNet-18 A 0.91 0.20 0.56 0.61
ResNet-18 D 1.00 1.00 1.00 1.00

DenseNet-121 A 0.99 0.07 0.53 0.61
DenseNet-121 D 1.00 0.80 0.90 0.98

Table 7.1.4: Comparison of COVID-Net, Resnet-18 and Densenet-121 trained on
COVID-ChestXRay. Dataset naming follows Table. 7.1.1

are comparable to COVID-Net, and, in fact, similar numbers are also claimed in
other works on ResNet-like architectures (Apostolopoulos and Mpesiana, 2020; Narin
et al., 2020; Sethy and Behera, 2020). However, testing on CORDA revealed that
the models have likely learned some hidden biases in COVID-ChestXRay and hence
misclassified COVID- samples as COVID+ (given that the specificity is here 0.20).

7.2 Transfer Learning avoids Collateral Learning

In this section, we describe the second method that we developed for Covid-19 clas-
sification, aiming at mitigating some of the issues related to Collateral Learning
highlighted in the previous section. Differently from Chapters 3, 4, 5 and 6, here we
do not propose a regularization technique or a loss function, but rather, we consider
how transfer learning can, in some instances, help in fighting Collateral Learning.

The method that we propose consists of two steps: first, a deep model is trained to
detect different types of objective radiological findings (including, most importantly,
non-specific radiological findings), then a classifier is trained to predict the target
disease (COVID-19 in our case) from the extracted features.
Detecting and classifying these kinds of objective findings, without taking into con-
sideration the clinical diagnosis, can help in reducing biases given by hidden strati-
fication in medical data, and provide an optimal initialization for transfer-learning
tasks which can then shift the focus on predicting specific diseases, such as COVID-
19, on smaller datasets. In fact, hidden stratification is a very important issue as
recently highlighted by Oakden-Rayner et al. (2020). Another important factor to
keep in mind is that the same non-specific radiological findings can be the results
of different diseases, including previously new ones like COVID-19, and thus this
method might also adapt well to different or future diseases. Finally, this approach
has the advantage of mimicking the radiologists’ workflow, in which the detected
lung anomalies are employed when making a final diagnosis.

7.2.1 Detection of objective radiological findings

For this task, we leveraged a large scale dataset, CheXpert, which contains anno-
tation for different kinds of common radiological findings that can be observed in
CXR images (like opacity, pleural effusion, cardiomegaly, etc.). This large dataset is
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Figure 7.2.1: Hierarchy of CheXpert labels: levels are identified by color coding.

Method Atelectasis Cardiomegaly Consolidation Edema Pleural Eff.

Baseline (Irvin et al., 2019) 0.79 0.81 0.90 0.91 0.92
Ours 0.83 0.79 0.93 0.93 0.93

Table 7.2.1: Performance (AUC) for a DenseNet-121 trained on CheXpert.

well suited for multi-label classification tasks; in fact more than one finding can be
commonly observed in ill patients’ lungs at the same time. CheXpert provides 14 dif-
ferent types of observations for each image in the dataset. For each class, the labels
were generated from radiology reports associated with the studies with NLP tech-
niques, conforming to the Fleischner Society’s recommended glossary Hansell et al.
(2008), and marked as: negative, positive, uncertain or blank (when not mentioned
in the report). Following the relationship among labels illustrated in Figure 7.2.1,
as proposed by Irvin et al. (2019), we can identify 8 top-level pathologies and 6 child
ones.

We test two neural network architectures as backbone for our models, ResNet-18
and DenseNet-121. The complete experimental detail and results on CheXpert can
be found in Appendix E.2. Given the scale of the dataset, we obtain the best results
with DenseNet-121, which are summarized in Table 7.2.1 in terms of AUC for the
CheXpert selected test classes6.

7.2.2 COVID diagnosis

The second step of the proposed approach training the final Covid-19 classifier. We
perform a transfer learning step, freezing the model obtained in the previous section
and using it to train a new binary classifier on the CORDA dataset.
We tested two different types of classifiers, namely: i) a decision tree trained on
the output probability for each radiological finding ii) a fully connected classifier
trained on the extracted features. As it will be later discussed these two possible

6Defined in https://stanfordmlgroup.github.io/competitions/chexpert/
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choices represent a trade-off between easiness of interpretability and discriminative
power.

7.2.3 Experiments

We report the final results on Covid-19 detection on the CORDA-CDSS dataset
in Table 7.2.2, comparing with the simple direct method of Section 7.1. The best
score using the direct approach is obtained by pre-training the encoder on the RSNA
dataset.

Method Backbone Pretrain dataset Sensitivity Specificity BA AUC

ResNet-18 - 0.56 0.58 0.57 0.59
Direct ResNet-18 RSNA 0.54 0.80 0.67 0.72

ResNet-18 Kermany 0.54 0.58 0.56 0.67

Two-step
ResNet-18 CheXpert 0.69 0.73 0.71 0.76
DenseNet-121 CheXpert 0.72 0.78 0.75 0.81
DenseNet-121† CheXpert 0.77 0.60 0.68 0.70

Table 7.2.2: Comparison of direct diagnosis method and with two-step on the
CORDA-CDSS dataset. We denote the classification tree with †.

Transfer learning can help mitigate Collateral Learning We can clearly
see how the two-step method outperforms the direct diagnosis: using the same
network architecture (ResNet-18 as backbone and a fully-connected classifier), we
obtain a significant increase in all of the assessed metrics. Even better results are
achieved by using a DenseNet-121 as backbone. For the decision tree (denoted by
the † symbol in the Table), in our experiments, we found that a maximum depth
of 4 gave the best results in terms of model complexity and generalization ability.
From Table 7.2.2 we can see that the performance of the tree model is not far from
radiologists expectation (Wong et al., 2020), and compared to the fully-connected
classifier provides better explainability. More details about this can be found in
Appendix E.3.
The fully-connected classifier was instead trained on the raw features extracted by
the encoder: this choice was justified by the fact that training this classifier on
the output probabilities yields results similar to the decision tree, with the added
downside of loosing a lot of its interpretability. Using the raw extracted features,
on the other hand, also provided a boost in generalizing Covid-19 classification.

Link with Concept Learning The particular kind of transfer learning approach
that we employed is resemblant to Concept Learning, in particular to Concept Bot-
tleneck Models (Koh et al., 2020). In Concept Bottleneck Models (CBM), the train-
ing happens in two separate phases: first the model is trained to map the input
image to a set of predefined concept, such as radiological findings, as in our case,
then these concepts are used to predict the final label. Compared to traditional
end-to-end approaches where models are trained to directly predict the label from
the image, CBMs can achieve a higher degree of interpretability while maintaining
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Method Backbone Dataset BA

Two-Step DenseNet-121 CORDA-CDSS 0.75
Two-Step DenseNet-121 CORDA-SLG 0.81

Two-Step DenseNet-121 All 0.69

Table 7.2.3: The accuracy drops when combining the datasets, probably due to site-
effect

competitive performance. Our results show that a particular choice of training con-
cepts can help mitigate the Collateral Learning problem, by providing a more robust
representation space.

More data might mean more site effect During the time of these experiments,
we were able to collect more data within the CORDA dataset, coming from another
institution (SLG). This new dataset, CORDA-SLG, contains 451 CXR images, with
129 Covid-19 positive cases and 322 negative ones. Hence, we performed additional
benchmarks of the best-performing architecture (DenseNet121 with a fully connected
classifier). First, we applied the whole pipeline using only CORDA-SLG in the
second step, then we merged both datasets. The results are presented in Table 7.2.3.
We observe that, while we achieve quite high balanced accuracy of 0.81 on CORDA-
SLG alone, the result noticeably decreases when using both datasets. Despite the
robust pretraining employed, it is possible that the introduction of additional data
still results in issues such as site effect, thus lowering the final performance. This
once again confirms that adding more data does not always improve the model
accuracy, as also explained in Varoquaux and Cheplygina (2021).

7.3 Limiting site-effect with regularization

In order to exploit the full dataset at our disposal, and still achieve competitive
results, we employed our proposed debiasing method EnD (explained in Chapter 3)
using the acquisition site as bias label.

Results are shown in Table 7.3.1. Looking at the results obtained without regular-
ization, we can notice that the predictions are skewed towards the negative class,
given the lower sensitivity and higher specificity. This can be the effect of var-
ious differences between the collecting institution such as acquisition techniques,
the composition of the dataset (i.e. building the COVID- class by collecting older
CXRs of previous patients) and other unknown reasons which can lead to hidden
stratification and biases in the data. When applied, EnD shows in fact a sensible
improvement in the achieved performance. The balanced accuracy (BA) increased
across all test sets, notably merged (All) set from 0.69 to 0.76. Also the sensitivity
and specificity show more balanced values on the two CORDA subsets.

At the time of writing of this manuscript, the CORDA dataset has grown to include
more institutions, as will be explained in Section 7.4. To exploit the full dataset, we
leveraged our most recent debiasing technique FairKL (explained in Chapter 4). The
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CORDA-CDSS CORDA-SLG ALL
Sens Spec BA Sens Spec BA Sens Spec BA

Baseline 0.44 0.89 0.67 0.38 0.98 0.68 0.43 0.95 0.69
EnD 0.79 0.62 0.71 0.62 0.87 0.74 0.74 0.79 0.76

Table 7.3.1: CORDA results with EnD applied on the DenseNet-121 classifier.

results are reported in Table 7.3.2. By employing FairKL we achieve a consistent
improvement with respect to the baseline. The research on the topic is still ongoing,
and we expect to further improve the results.

Inst. 1 (CDSS) Inst. 2 (SLG) Inst. 3 Inst. 4 Avg.

Baseline 0.68 0.83 0.74 0.87 0.78
FairKL 0.70 0.85 0.77 0.88 0.80

Table 7.3.2: Results of site effect debiasing with FairKL on the up-to-date CORDA
dataset, in terms of balanced accuracy.

7.4 The CORDA data collection
As explained in the previous section, being able to leverage a greater amount of
data turned out to be crucial, as other institutions have joined the CORDA data
collection, which now comprises four different Italian hospitals:

1. A.O.U Città della Salute e delle Scienza (Molinette), Torino (previously la-
belled as CDSS);

2. A.O.U San Luigi Gonzata, Orbassano, Torino (previously labelled as SLG);

3. A.O. Mauriziano, Torino

4. Centro Cardiologico Monzino, Milano

CORDA contains a total of 3852 images of different modalities, with 1604 CXR and
2242 CT images. The dataset was made publicly available in January 20237. The
aim of this dataset is to provide a multi-center collection of radiographic images for
Covid-19 detection, in order to build more robust machine learning algorithms and
models. The curation of the dataset is part of the ongoing project Co.R.S.A8, which
received funding from the Piedmont Region, and aims at deploying and validating
computer-aided Covid-19 diagnostic tools in a clinical setting. Although the emer-
gency setting of the Covid-19 pandemic peak is fortunately over, the groundwork
built by this project should serve as a solid foundation for quick-starting future re-
sponses to epidemics, should the need arise.

7https://zenodo.org/record/7821611
8https://corsa.di.unito.it/
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Part IV

Other Instances of Collateral
Learning
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Chapter 8

A Few Hints About Collateral
Learning and Privacy

In this Chapter, we briefly analyze another threat posed by Collateral Learning,
which is related to learning potentially sensitive information of the data. As ex-
plained in the Introduction (Section 1.2), neural networks can learn more features
than intended. For example, a model trained for age prediction on facial images
might additionally learn gender features. This could also happen in medical images.
As we will show in this chapter, it might be trivial to retrieve this information from
the model’s output or latent space. This can of course represent a real-world issue
when deploying DL-based systems to production, as they might cause leakage of pri-
vate or sensitive information. In this Chapter, we analyze whether the techniques
that we proposed for debiasing can also help prevent this from happening. The
rationale behind this approach is that we might be able to treat private information
in the same way that we treat biases.

Privacy-preserving approaches ideally aim at hiding some information, making it
un-recoverable (or difficult to recover) from a potential attacker (Gentry, 2009; Lin-
dell, 2005; Sweeney, 2002). The concept of privacy-aware learning is not novel in
machine learning and deep learning (Abadi et al., 2016; Iyengar et al., 2019; Kana-
gavelu et al., 2020; Phan et al., 2016; Shokri and Shmatikov, 2015; Xie et al., 2018;
Yu et al., 2019). One of the very first works in such an area can be found in Warner
(1965). Specifically, this work suggested privacy-preserving methods for survey sam-
pling. Following this path, in the 70s many works were proposed in different areas,
like census taking and analysis of tabular data by Fellegi (1972).

Overall, we can say that while privacy-preserving approaches erase or hide some
information to prevent an attacker from recovering it, debiasing approaches do not
necessarily do so. For example, just re-weighting the bias features could be enough
for debiasing purposes. The question we aim to answer in this Chapter is whether
there are there debiasing techniques that can be used to completely remove private
information. To assess this, we have selected four of the most common debiasing
techniques, which we employed in Chapter 3: LearnedMixin (Clark et al., 2019),
RUBi (Cadene et al., 2019), ReBias (Bahng et al., 2020), and our proposed method
EnD. Given the similarities between EnD and FairKL (Section 4.2), in this Chapter
we only report results for the former method; the same conclusions can be reached
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for both techniques.

8.1 Background

Recently, thanks to the increase in computational capabilities, many works have
been proposed on privacy-preserving in computational frameworks. We can divide
these into the following categories.

Data anonymization. These approaches address the problem of collecting data
from many different sources making it impossible to back-trace their source. To
these approaches, the most common approach, especially in the medical domain,
we find vanilla data anonymization: this simple approach consists in simply hiding
the sensitive metadata information containing the information to be kept private,
according to the most recent GDPR1. Such data cleaning procedure is standard
for releasing medical imaging, where the original DICOM file format, by standard,
contains sensitive information for the patients, like name, birth date and gender
of the patient. However, this is certainly not sufficient to prevent back-tracing
information: Narayanan and Shmatikov (2008), for example, were able to recover
sensitive anonymized information from the Netflix prize dataset.

K-anonymization. More advanced and safe data aggregation approaches consist,
for example, in guaranteeing the so-called k-anonimity. Sweeney proposed a frame-
work for which anonymity of data is guaranteed when compared to k−1 others, and
it is mainly thought to fight re-identification, guaranteeing the redundancy of sim-
ilar features (Sweeney, 2002). An important limitation of this technique, however,
is determined in its low performance on high-dimensional data, which is a common
setup in DL scenarios.

Homomorphic encryption. This is a special category of encryption that al-
lows users to perform computation directly on encrypted data, without the need of
decrypting it (Gentry, 2009). Despite this approach, by definition, being able to
discourage the mining of private information from the attackers, its computational
complexity is also very high, limiting its deployment in real-life scenarios (Riazi
et al., 2019).

Multi-party computation. A current challenge for deep learning, especially in
the medical field, lies in the impossibility of publicly sharing data. Due to physical,
ethical, and legal constraints, it might happen that data is not allowed to be shared
outside the infrastructure where it was acquired (Lindell, 2005). Towards this end,
federated learning-based approaches are uprising: they consist of having the dataset
distributed across many infrastructures. Each of these peers trains independently a
DL model and occasionally exchanges information about the trained model, which
might involve quantities like the model’s parameters or the gradients (Kanagavelu
et al., 2020). This approach, if achieved in a round-robin fashion, averages naturally
the information related to the private features. A major drawback of this approach,

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
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however, lies in the need for intensive communication between the infrastructures,
which significantly slows the training process (Makri et al., 2019).

Differential privacy. Differential privacy is a very general approach to withhold-
ing private information from individuals in a set of data. In general, we can say
that if data belonging to different individuals (or in our context, belonging to dif-
ferent private classes) are sufficiently close to be each other indistinguishable, the
private information can not be retrieved. Behind this very simple yet effective idea,
a number of approaches have been proposed and can be categorized in four groups.

• Perturbing the input data. Introducing a proper perturbation to the data
themselves can hide the private target information. To this class belong cen-
tralized approaches (Dwork and Lei, 2009) and recently, decentralized alter-
natives have been proposed as well (Erlingsson et al., 2014; Kairouz et al.,
2014).

• Perturbing the output of the trained model. This approach consists of applying
a sufficiently large noise to the output of the model such that the samples
belonging to different private classes are each other indistinguishable (Iyengar
et al., 2019). However, efficiently computing the noise to be applied in a high-
dimensional scenario is not straightforward due to the non-convexity of the
objective function: to this end, convex proxies have been recently proposed to
overcome this obstacle (Phan et al., 2016, 2017).

• Perturbing the gradient update. Applying a specific noise to the update signal
for the model is possible to enhance differential privacy in the model. Towards
this approach, many proposals, ranging from the deployment of a distributed
framework (Shokri and Shmatikov, 2015) to the design of momentum-based
optimizers accounting for the private class membership (Abadi et al., 2016)
have been proposed. The main drawback of these strategies lies in the low
convergence and high computation complexity required.

• Perturbing the target labels. Finally, deploying noise to the target labels for the
learning task can also be deployed to hide the private information, despite such
an approach is mainly meant to boost gradient perturbation approaches (Xie
et al., 2018; Yu et al., 2019).

8.2 Testing framework
In order to assess the presence/absence of private information on the trained DL
models, we design a model inversion-like and membership inference strategy. In such
a frame, the attacker attempts to infer some attributes or private class membership
from the output of a DL model or to reconstruct the input (Wu et al., 2016). We
indicate with P(xi) the private class label associated with xi. This can represent
any private attribute (e.g. identity, gender, etc.). Our general framework consists
of two main steps.

1. Train the model. In this step, we train the DL model (Figure 8.2.1a). In this
phase, standard learning strategy is used, and eventually a debiasing strategy
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Figure 8.2.1: Standard training on some target features, like hair color recognition
(a), gender membership recovery (b), and input reconstruction (c). In the image,
in green are the layers deployed at training time (where parallelograms are convo-
lutional layers while the rectangular box is a fully-connected layer), in red the layer
trained by the attacker to obtain the private information from the bottleneck layer
and in blue a plain reshaping layer.

can be deployed besides training, attempting to hide the information related
to P(xi). In this work, we name the accuracy measured on the target classes
Target Accuracy.

2. Attack. After train is completed, an attacker attempts to recover the infor-
mation of P(xi) from the extracted representation of xi. For this purpose, we
train a classifier to retrieve P(xi) (Figure 8.2.1b). We indicate the accuracy
measured on the private classes with Private Class Accuracy. Besides the pri-
vate class membership, we can also attempt to recover the original input xi

itself, using a decoder network, with a similar result as in Fredrikson et al.
(2015) (Figure 8.2.1c).

We perform our experiments on four datasets: Biased-MNIST, CelebA, IMDB Face
dataset, SIIM-FISABIO-RSNA2.

The experimental setup is similar to Section 3.4. For SIIM-FISABIO-RSNA we split
the dataset in a training set comprising the 85% of the scans, a validation set of 5%
scans and a test set of the remaining 10%. We train a DenseNet-121 model (Huang
et al., 2017) to classify between two classes: “Negative for Pneumonia” and “Typical
Appearance”. The training has been performed using SGD, with an initial learning
rate of 0.1, decayed by a factor 10 after no improvement over the validation set loss
has been detected for 5 consecutive epochs. The training stops when the learning
rate drops below 10−3. We use batch size 16 with momentum of 0.9 and weight
decay of 10−4.
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Figure 8.3.1: (a) Biased-MNIST private class accuracy. The closer a curve is to
the origin of the polar plot, the better the corresponding technique is at preventing
private information leakage. (b) Private class accuracy vs target accuracy. Larger
markers indicate higher values of ρ.

8.3 Color leakage in Biased-MNIST

As a base benchmark, we employ the synthetic dataset Biased-MNIST. Looking at
the results presented in Table 3.4.1 we expect an attack to be trivial on a vanilla
model, and we also hypothesize that it could be prevented by some of the debiasing
techniques. Figure 8.3.1a shows the private class accuracy obtained by the linear
classifier at the different values of ρ. The vanilla model shows in fact a significant
leakage of color-related information, as the attack reaches almost 100% accuracy in
the higher range of ρ. Surprisingly, not even RUBi manages to prevent an attack,
obtaining performances even worse than vanilla. Considering all of the difficulty
settings, the techniques that better prevent privacy leakages are LearnedMixin and
EnD. In order to rank the different techniques, in Figure 8.3.1b we compare the
private class accuracy and the target accuracy. Debiasing algorithms that are able
to avoid leakages while retaining (or improving) the target accuracy are found in
the top left portion of the plot. From this analysis, we find EnD to be the best-
performing technique, followed by LearnedMixin and Rebias.

We now concentrate on the best technique (EnD), and we further assess the ab-
sence of a privacy leakage by conducting a model inversion attack, as pictured in
Figure 8.2.1c. Figure 8.3.2 shows the reconstructed images. When using a vanilla
encoder, the color is fully preserved (and the digit is transformed into the corre-
sponding training class). On the other hand, with an EnD-regularized encoder,
the digit information is preserved while the color information is almost completely
removed, as it seems to be randomly guessed by the decoder.

2https://www.kaggle.com/competitions/siim-covid19-detection/data
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(a) (b) (c)

Figure 8.3.2: attack on Biased-MNIST: (a) ground truth images (b) decoder trained
from a privacy leaking encoder (c) decoder trained with an EnD-regularized encoder.
From (c) it can be clearly seen that the decoder has to guess a random color.

Task Method Target Private Class

Hair Color Vanilla 70.25 59.20
EnD 91.21 50.00

Makeup Vanilla 62.00 80.56
EnD 75.93 63.89

Table 8.4.1: CelebA target accuracy (higher is better) and private class accuracy
(lower is better).

8.4 Gender leakage from face images

Next, we focus on gender information leakage on real facial images on two different
tasks: face attribute classification and age prediction. For the first task, we employ
CelebA. For age prediction, instead, we use the IMDB Face dataset.

Results for the CelebA dataset are presented in Table 8.4.1. As for the Biased-
MNIST experiments, we observe an increase in the target accuracy when employing
EnD for both of the classification tasks. Compared to the baseline, we also observed
a significant decrease in the accuracy of the attack. Considering that the provided
gender attribute is binary, an accuracy of 50% represents a random guess by the
attacker, meaning that there is no private information leakage. The same consider-
ations apply to the age regression task on the IMDB dataset. Table 8.4.2 shows the
results. Here, we obtain an accuracy of around 50% on both training sets.

We further investigate the effect of the debiasing technique on the model, by analyz-
ing the distribution of the latent space of a vanilla model compared to a regularized
model. We fit a gaussian distribution on the principal component of the embed-
dings computed on the IMDB dataset. Figure 1.2.2 shows the distributions. We
observe that, while in the vanilla model, the two distributions Nm (−0.42, 0.27),
Nf (0.42, 0.47) are clearly separate, they are almost overlapping in the regularized
model (Nm (−0.09, 0.93), Nf (−0.09, 0.91)).
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Split Method Target Private Class

EB1 Vanilla 77.17 82.36
EnD 80.15 49.95

EB2 Vanilla 61.97 63.74
EnD 78.80 50.05

Table 8.4.2: IMDB target accuracy (higher is better) and private class accuracy
(lower is better). On age detection, gender is guessed correctly 50% of the time,
which is equal to random guessing.

Method Target Private Class

Vanilla 78.12 87.1
EnD (low) 78.21 63.4
EnD (high) 78.02 55.3

Table 8.5.1: SIIM-FISABIO-RSNA target accuracy (higher is better) and private
class accuracy (lower is better).

8.5 Gender leakage in medical data

We also test the capability of removing sensitive information on a medical dataset.
SIIM-FISABIO-RSNA is a dataset comprising more than 6k chest X-ray (CXR)
scans in DICOM format, anonymized according to the current GDPR guidelines.
For study purposes, however, the metadata associated with these scans comprises
information about the gender, which will be used as private class. The scans are
converted using the meta-information contained in the DICOM files, and rescaled
to 448× 448 resolution.

Results are provided in Table 8.5.1. In this case, for EnD, we provide two differ-
ent results: one is achieved with a small weight for the regularization (specifically,
it weights over the 1% on the total objective function minimized - low) while an-
other has a higher weight (10% - high). Also in this case we observe that from
a vanilla approach, we are able to recover the information about the gender with
a good accuracy (above 87%) while the effect of EnD drops as the weight of the
regularization term increases. Differently from the previous scenarios, the perfor-
mance, in this case, is not significantly affected: this is explained by the natural
disentanglement between gender and the given medical task (presence of pneumonia
and typical COVID presence). However, the gender information is still naturally
forwarded to the bottleneck layer, which is postulated as plausible by some works
in the literature (Arpit et al., 2017; Shmatikov and Song).

8.6 Conclusions

In this Chapter, we have shed some light on the possibility of bridging debiasing
and privacy-preserving approaches for deep learning. To address our investigation,
we have considered the special case in which debiasing algorithms consider private
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information as the bias for the learning problem. We have conducted some empirical
evaluations from which we evidenced that, under our constraint, there exists a non-
empty class of debiasing algorithms that can be deployed for both purposes. In
particular, if the given debiasing algorithm is also able to hide private information
rather than simply re-weighting it, then it can be successfully deployed for privacy
preservation. The investigation on whether the sufficient condition also holds is left
as future work.
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Closing Remarks
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Chapter 9

Additional Works

In this Chapter, we present some additional works that are connected to the topic
of learning robust representations. We did not include them in the main part of
this thesis, as they do not directly deal with Collateral Learning; however, the
methodologies developed could be also useful in that regard.

9.1 Leveraging prior knowledge for better represen-
tations

In some parts of this thesis, we have already dealt with the idea of leveraging prior
knowledge for training a model. For example, in Chapter 5, we used the informa-
tion from a bias-capturing model in order to guide the debiasing process. Also, in
Chapter 6 we were able to integrate age information into the loss function with the
use of a kernel. While, in this context, age itself is the target we are interested in
predicting, this approach can also be used in weakly-supervised contexts, where we
only have access to some metadata about our samples (Dufumier et al., 2021b).

In these instances, being able to include additional or prior information enabled us
to achieve better results. In this Chapter, we present some other approaches that we
propose for achieving better representations by leveraging available prior knowledge.

9.1.1 Integrating prior knowledge in CL

As mentioned in Section 2.1.3, one of the key elements of self-supervised contrastive
learning is represented by the data augmentation scheme. Data augmentation de-
termines how positive samples are defined and, ultimately, the quality of the learned
representation. The most-used augmentations for visual representations involve ag-
gressive crop and color distortion. Cropping induces representations with high oc-
clusion invariance (Purushwalkam and Gupta, 2020) whereas color distortion may
avoid the encoder f from taking a shortcut (Chen et al., 2020) while aligning posi-
tive samples and therefore fall into the simplicity bias (Shah et al., 2020) (e.g. color
distortion would efficiently mitigate the bias in Biased-MNIST).

Nevertheless, learning a representation that mainly relies on augmentations comes
at a cost: both crop and color distortion induce strong biases in the final repre-
sentation (Purushwalkam and Gupta, 2020). Specifically, dominant objects inside

133



images can prevent the model from learning features of smaller objects (Chen et al.,
2021) (which is not apparent in object-centric datasets such as ImageNet) and few,
irrelevant and easy-to-learn features, that are shared among views, are sufficient to
collapse the representation (Chen et al., 2021) (a.k.a feature suppression). Finding
the right augmentations in other visual domains, such as medical imaging, remains
an open challenge Dufumier et al. (2021b) since we need to find transformations that
preserve semantic anatomical structures (e.g. discriminative between pathological
and healthy) while removing unwanted noise. If the augmentations are too weak or
inadequate to remove irrelevant signal w.r.t. a discrimination task, then how can
we define positive and negative samples?

In Dufumier et al. (2023), we propose to integrate prior information, learnt from
generative models (viewed as features extractor or prior representation) or given
as auxiliary weak attributes (e.g. phenotypes of participants for medical images),
into contrastive learning, to make it less dependent on data augmentation. Using
the theoretical understanding of CL through the augmentation graph, we make the
connection with kernel theory and introduce a novel loss with theoretical guaran-
tees on downstream performance. This loss additionally solves the Negative-Positive
Coupling (NPC) problem that affects InfoNCE-based frameworks (Yeh et al., 2021).
Prior information is integrated into the proposed decoupled contrastive loss using
a kernel. In the unsupervised setting, we leverage pre-trained generative models,
such as GAN (Goodfellow et al., 2014) and VAE (Kingma and Welling, 2013), to
learn a prior representation of the data. We provide a solution to the feature sup-
pression issue in CL (Chen et al., 2021) and also demonstrate SOTA results with
weaker augmentations on visual benchmarks (both on natural and medical images).
In the weakly supervised setting, we use instead auxiliary image attributes as prior
knowledge (e.g. birds color or size) and we show better performance than previous
conditional formulations based on these attributes (Tsai et al., 2022).

In summary, we make the following contributions:

1. We propose a new decoupled contrastive loss that allows the integration of
prior information, given as auxiliary attributes or learned from generative
models, into the positive and negative sampling.

2. We derive general guarantees, relying on weaker assumptions than existing
theories, on the downstream classification task, especially in the finite-samples
case.

3. We empirically show that our framework performs competitively with small
batch sizes and benefits from the latest advances in generative models to learn
a better representation than existing CL methods.

4. We show that we achieve SOTA results in the unsupervised and weakly super-
vised setting.

In this work, we show that we can integrate prior information into CL to improve the
final representation. Empirically, we show that generative models provide a good
prior when augmentations are too weak or insufficient to remove easy-to-learn noisy
features. We also show applications in medical imaging in both unsupervised and
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weakly supervised settings where our method outperforms all other models. Thanks
to our theoretical framework, we hope that CL will benefit from the future progress
in generative modeling and it will widen its field of application to challenging tasks,
such as computer-aided-diagnosis.

9.1.2 Synthetic data augmentation in histopathology

In this Section, we present our work in the field of histopathology for the detection
and characterization of colorectal polyps. First, we introduce our contributions in
the area, then we present how we aim to include prior medical knowledge into gen-
erative models for the creation of synthetic data. The goal of this approach is to
increase the accuracy in detecting high-risk adenomas.

Histopathological characterization of colorectal polyps allows the tailoring of pa-
tients’ management and follow-up, with the ultimate aim of avoiding or promptly
detecting an invasive carcinoma. Colorectal polyps characterization relies on the
histological analysis of tissue samples to determine the polyp’s malignancy and dys-
plasia grade.

Background

The demand for gastrointestinal histopathology is on the rise (Gonzalez, 2020), fos-
tered by the wide-spreading of cancer screening programs. Gastrointestinal histo-
pathologists inspect tissue samples, collected during colonoscopies, looking for hints
that can predict the insurgence of invasive carcinoma (Bevan and Rutter, 2018). Col-
orectal polyps are pre-malignant lesions found in the intestinal mucosa that pathol-
ogists analyze to i) ascertain the polyp type (hyperplastic, adenoma) and ii) assess
the dysplasia grade in the case of adenomas. Examination of colorectal polyps rep-
resents a large share of histopathologists’ workload, thus methods for automating
these tasks are highly sought. Despite such clinical relevance, the concordance rate
even among expert pathologists, in the diagnostic assessment of colorectal polyps,
is far from optimal (Denis et al., 2009; Mollasharifi et al., 2020). Although the dis-
tinction between non-adenomatous and adenomatous tissue is usually reliable, the
inter-observer agreement between different histological types and dysplasia grades
is sub-optimal. For instance, the concordance in assessing a tubulo-villous polyp or
low-grade dysplasia ranged around 70% (Denis et al., 2009).

Deep learning-based methods have shown promising results in assisting the patholo-
gists’ work (Janowczyk A, 2016). Korbar et al. (2017) present a patch-based frame-
work using ResNet, to classify different types of colorectal polyps from whole-slide
images. Their work provides empirical suggestions that residual architectures are
better suited to this task. Wei et al. (2020) propose an analysis model for annotated
tissue samples and perform a study on the generalization of neural models with
external medical institutions. Their work describes a hierarchical evaluation mech-
anism to extend the classification of tissue fragments to the entire slide. Song et al.
(2020) propose a patch-based fully convolutional approach for the classification and
grading of adenomas, with a strong focus on model interpretability. They also high-
light how different patch sizes should be used for adenoma classification and grading.
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(a) NORM (b) TA.LG (c) TA.HG (d) HP (e) TVA.LG (f) TVA.HG

Figure 9.1.1: Example of 800×800µm patches for the six UniToPatho colorectal
polyps classes.

However, the scarcity of datasets large enough and suitably labeled represents a
major hurdle for training deep-learning-based algorithms to predict polyp type and
adenoma dysplasia grade.

Our contributions

During this PhD, we made a number of contributions (Barbano et al., 2021) to-
wards automatic colorectal polyps characterization, in the context of the DeepHealth
(2019) project:

• First, we make available UniToPatho1, a high-resolution annotated dataset of
Hematoxylin and Eosin (H&E)-stained colorectal images. UniToPatho enables
training deep neural networks to classify different colorectal polyps types and
adenomas grading. We make available our annotated dataset as a collection
of high-resolution patches extracted at different scales.

• Second, we show that the direct application of a deep neural network fails to
classify both the tissue type and adenoma dysplasia grade.

• Lastly, we propose a multi-resolution deep learning approach solving the pre-
vious issues, that achieves promising accuracy in the characterization of col-
orectal polyps and in the dysplasia grading.

UniToPatho comprises different histological samples of colorectal polyps, collected
from patients undergoing cancer screening. The dataset is a collection of the most
relevant patch images extracted from 292 Whole-Slide Images (WSI), in accordance
with UniTo pathologists’ evaluation. The slides are acquired through a Hamamatsu
Nanozoomer S210 scanner at 20x magnification (0.4415µm/px), as exemplified in
Fig. 9.1.1. Each slide belongs to a different patient and is annotated by expert
UniTo pathologists, according to six classes as follows:

NORM - Normal tissue
HP - Hyperplastic Polyp
TA.HG - Tubular Adenoma, High-Grade dysplasia
TA.LG - Tubular Adenoma, Low-Grade dysplasia
TVA.HG - Tubulo-Villous Adenoma, High-Grade dysplasia
TVA.LG - Tubulo-Villous Adenoma, Low-Grade dysplasia

1https://ieee-dataport.org/open-access/unitopatho
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Hyperplastic polyps usually exhibit no malignant potential (Tseung, 2005), while
adenomas are more likely to progress into invasive carcinomas. Tubular and tubulo-
villous are common colorectal adenomas, with villous adenomas generally presenting
higher malignant potential given the larger surface (Tseung, 2005). Adenomas are
associated with a grade of dysplasia, low grade (LG) or high grade (HG), which mea-
sures the abnormality in cellular growth and differentiation2. Higher grade dysplasia
indicates higher malignant potential. Arguably, correctly recognizing the dysplasia
grade is the most relevant task from a clinical point of view. However, HG samples
are also harder to acquire and label.

Improving grading with prior-based augmentation

To tackle this issue, we are exploiting generative models to augment the collected
datasets and improve the final classification accuracy. The aim of this research is to
include medical prior knowledge related to the morphological structure of HG tissue
into the generative process, in order to address the lack of HG data. At first, the prior
knowledge will be provided in the form of hand-crafted tissue mask by the patholo-
gists, to overlay onto normal or LG tissue. Future research will focus on removing
the need for hand-crafted features, by exploiting diagnostic guidelines (Gibson and
Odze, 2016).

Also in this case, leveraging prior knowledge can finally lead to obtaining more
robust models for the detection of relevant conditions.

9.2 Conclusions
By incorporating prior knowledge into DNNs, especially in the medical field, we
can guide the learning process towards the selection of relevant input features, and
constraining it to align with established medical principles. Merging explicit knowl-
edge (e.g. using symbolic reasoning) and machine learning is referred to as Hybrid
AI, and has recently received interest in the deep learning community (Mao et al.,
2019). The potential impact of this proposal extend to different important issue in
the field:

• Interpretability and Explainability: DNNs are black-box models and the ex-
isting techniques which try to explain their behaviour often provides limited
insights. The integration of prior knowledge into DNNs can introduce bet-
ter interpretability, enabling healthcare professionals to trust and validate the
model’s output (Delmonte et al., 2019)

• Data Efficiency: acquiring labeled data can be time-consuming and expensive.
Human prior knowledge can help overcome data limitations by guiding the
learning process with domain-specific insights. By incorporating this knowl-
edge, DNNs can make more accurate predictions even with smaller datasets,
leading to improved diagnostics and treatment strategies. Furthermore, human

2https://www.cancer.gov/publications/dictionaries/cancer-terms/def/dysplasia
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expertise can aid in the identification of crucial data features and provide valu-
able insights for data augmentation techniques, further enhancing the model’s
generalizability

• Dealing with Collateral Learning Integrating human prior knowledge into DNNs
also allows for the incorporation of ethical considerations. Bias and fairness are
critical concerns in healthcare, as decisions based on biased models can lead to
disparities in patient outcomes. Human expertise can help identify potential
biases in the data, guide the model’s training process to account for diverse
patient populations, and ensure that the predictions align with established
ethical guidelines.
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Chapter 10

Conclusions

This thesis introduced the concept of Collateral Learning in deep learning, which
refers to the instances where DL models learn more information than expected. Col-
lateral Learning is a fundamental aspect to be considered in the area of deep learn-
ing, and it has significant implications across various research domains, including
robustness, debiasing, generalization in medical imaging, and privacy preservation.
By proposing this concept, we seek to unify and advance these often distinct research
fields. In Part I we introduced Collateral Learning, and presented some of its most
common instances.

In Part II we have laid the foundations of our work, by developing techniques for
robust representation learning on natural images. We focused on one of the most
important instances of Collateral Learning, namely biased data. Our first contribu-
tion, presented in Chapter 3, consists of a regularization term named EnD, that aims
at reducing the impact of spurious correlations in the input data through feature
entanglement and disentanglement, by leveraging bias annotations.
To better study this problem, in Chapter 4, we presented a metric framework for
representation learning. This framework allowed us to derive a novel supervised
contrastive loss function (ϵ-SupInfoNCE), which obtained superior performance than
the current state-of-the-art. Most importantly, thanks to this framework, we were
able to provide a formal characterization of the effect of the bias in the network’s
latent space. This enabled us to formulate a novel debiasing regularization term,
FairKL, which obtained the best performance compared to both EnD and other
existing methods, on a number of benchmarks.
In Chapter 5, we proposed a way to overcome one of the major limitations of our
debiasing methods, which is requiring bias labels. We showed that it is possible
to leverage the natural tendency of the networks to prefer simpler features in the
latent space, in order to retrieve the unknown biases with clustering. This approach
enabled us to apply both EnD and FairKL in unsupervised debiasing settings. Fur-
thermore, we also showed that the clustering step may be avoided and that it is
possible to leverage a biased model to obtain an unbiased one, by integrating a ker-
nel function into the regularization term.

We then dealt with the Collateral Learning problem in real-world cases, focusing on
medical imaging, in Part III.
In Chapter 6, we proposed a novel contrastive learning method for the regression of
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brain age. This method aims at obtaining a semantic mapping between the learned
latent space and the target regression variable (age), by employing a kernel. To the
best of our knowledge, our method is one of the first attempts at solving regression
problems with contrastive learning (while some works exist, they generally leverage
existing contrastive loss functions for pretraining). Our approach showed state-of-
the-art performance for brain age prediction on OpenBHB, a large multi-site brain
MRI dataset. Besides reaching lower test error than other existing methods such
as BrainAGE, our approach also showed increased robustness to the site noise, a
common Collateral Learning phenomenon in multi-site medical datasets. We also
proposed a possible extension of the FairKL regularization for regression; with it
we expect to achieve even higher robustness. Based on our brain age model, we
were also able to obtain promising preliminary results for the detection and classi-
fication of neurodegenerative diseases and brain conditions, such as Mild Cognitive
Impairment (MCI) and Alzheimer’s Disease (AD). With our method, it is possible
to observe a separation in brain age gap (the difference between an individual’s brain
age and their chronological age) across healthy, MCI and AD patients; confirming
that accurate brain age prediction can be an invaluable tool for detecting unhealthy
aging patterns in the brain.

In Chapter 7 we showed another practical and relevant instance of Collateral Learn-
ing in medical imaging, related to the Covid-19 detection from chest X-ray images.
This task posed a great challenge, especially in the early phases of the pandemics,
as the available dataset were limited and highly biased. Our methodological contri-
bution highlighted the issues in some of the most commonly used datasets at the
time, as their use could introduce strong biases and spurious information such as
site noise. Based on these findings, we then proposed a two-step transfer learning
approach for mitigating such Collateral Learning issues. This approach, based on
the detection of objective radiological findings, which shares some similarities with
Concept Learning, has achieved better results for Covid-19 prediction. Addition-
ally, we presented our latest (and ongoing) efforts, within the CoR.S.A. project, for
building CORDA, a publicly available multi-site CXRs dataset for Covid-19, and
we have obtain promising results towards removing the site effect with FairKL.

Finally, in Part IV we focused on another instance of Collateral Learning, related to
privacy preservation in deep learning applications. After showing that even features
not related to the primary learning task can be picked up by DL models, we have
empirically demonstrated that this issue can be mitigated by also employing debi-
asing techniques such as EnD. In fact, by doing so, it becomes almost impossible
to recover potentially sensitive information from the model’s output or latent space
(e.g. gender). We have provided practical examples of such occurrence on facial
images and CXR images.

In summary, this thesis dealt with the more general and relevant topic of reliability
in deep learning. In fact, collateral-free learning could be seen as one of the re-
quirements for achieving trustworthy, and perhaps more explainable, deep learning
models. Overall, we argue that proposing a common context for referring to differ-
ent instances of the same core phenomenon (e.g. biases, site noise, etc.) can help
advance the scientific progress in this regards; as Collateral Learning still presents
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many challenges to study and overcome in the future (e.g. subtler biases, multiple
biases at once, privacy concerns in federated learning, etc.). We will present some
of these aspects in the following chapter.
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Chapter 11

Future Perspectives

In this Chapter, we present some potentially relevant future research directions, on
the topic of Collateral Learning. First of all, while in this thesis we proposed a first
definition of this phenomenon, there may be other instances of Collateral Learning
that have not been identified or explored. Future research should focus on discover-
ing and characterizing these instances and developing strategies for addressing them.
Here is a brief list of relevant topics that could be the focus of future research:

• Developing more effective debiasing methods: While the debiasing methods
proposed in this thesis have shown promising results, there is still room for
improvement. Future research could focus on developing more effective debi-
asing methods that can handle a wider range of Collateral Learning scenarios,
especially when biases are subtler and not so easy to detect.

• Addressing Collateral Learning in other domains: The impact of Collateral
Learning is not limited to medical imaging and natural images. Future research
could explore how Collateral Learning manifests in other domains, such as text,
speech, or robotics, and develop strategies for addressing it in these domains.

• Studying the transfer learning aspect of Collateral Learning: Transfer learning
is a common technique used in deep learning that involves using pre-trained
models as a starting point for new tasks. Future research could explore how
transfer learning affects Collateral Learning and develop strategies for miti-
gating its impact.

• Exploring the relationship between Collateral Learning and Adversarial at-
tacks: Adversarial attacks are designed to manipulate the predictions made
by deep learning models. Future research could explore the relationship be-
tween Collateral Learning and adversarial attacks and develop strategies for
mitigating their impact.

• Studying more in-depth the relationship between Collateral Learning and pri-
vacy preservation: in this thesis, we have shown how Collateral Learning may
lead to the leakage of private information, and we have proposed some solu-
tions. Future work should focus also on this area, in relevant contexts such as
federated learning.

In the following sections, we will present some of these aspects in more detail.
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11.1 Collateral Learning and PCA

The framework that we presented in Chapter 4 is developed for supervised learning.
We aim to extend it to the self-supervised case, where learning unbiased and robust
representation is still an open issue to tackle. In fact, dealing with Collateral Learn-
ing in a self-supervised scenario is a topic of relevance and, currently, there are very
few works dealing with this issue.

As we defined in Section 1.2.1, we can view a sample x as the composition of differ-
ent components coming from some signal sources S. Based on this formulation, we
gave a definition of diversity or correlation shift. Looking at this formulation with
another goal, e.g. classification, we might say that some of the components Sc ⊂ S
will be more important than others for determining the target class. For the sake
of simplicity, we can assume that the target class can be determined by one single
component Si ∈ S, while all of the other components encode additional informa-
tion that is not necessary for correct classification. For example, these additional
components might encode collateral information (bias, noise, etc.). Being able to
discriminate the principal components in the data is at the core of methods such
as Principal Component Analysis (PCA). However, such analysis can be difficult in
instances of strong correlation among the components, such as in biased data. Fur-
thermore, in complex data, it can become hard to provide an interpretable meaning
to the principal components. For this reason, methods to determine and disen-
tangle the contribution of each component independently can be highly relevant.
The idea of determining disentangled representations of data is often found in the
generative modeling literature (Karras et al., 2019; Kingma and Welling, 2013; Tran
et al., 2017), and perhaps it could be leveraged to also deal with Collateral Learning.

Some approaches based on contrastive learning could be useful for this purpose. For
example, Hinton (2022) proposes a forward learning method that aims at maximizing
the model activation on positive samples and minimizing it on negative ones. It
can be shown that the proposed objective function is similar to PCA. Another
work (Abid et al., 2017) proposes Contrastive PCA with the goal of discovering
common and distinctive patterns across different datasets. Generally speaking, being
able to separate the different components in the data may allow us to better mitigate
the Collateral Learning problem.

11.2 Robust self-supervised learning

In all of this thesis, we dealt with supervised learning. While it is relevant in several
contexts, self-supervised approaches are also useful for obtaining good represen-
tations of the data when labels are not available. In fact, although much of the
debiasing and fairness literature deals with supervised learning, in many real-world
cases we want to leverage large unlabelled datasets. Dealing with biases and noise
in such cases, however, is inherently more difficult, and very few works have pro-
posed methods for tackling this scenario. A possible approach is proposed in the
work by Chai and Wang (2022), where authors aim to study how to achieve fair
classification without bias labels and target labels. Toward that aim, they employ a
reweighing-based contrastive learning method. However, their approach still needs
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a small set annotated with labels.

Developing ways to achieve robustness to biases, or in general to Collateral Learning,
in self-supervised scenarios can potentially have a high relevance in several appli-
cations. The direction suggested in the previous Section could be relevant to this
goal.

11.3 Removing multiple biases
Another relevant research direction on the topic of debiasing is dealing with multiple
biases in the data. All of the methods presented in this thesis, and also almost all
related literature (Kim et al., 2023; Wu et al., 2020), deal with the case in which
only one spurious correlation exists in the data (e.g. color, gender, age, etc.). In
real-world scenarios, however, it may happen that the data present multiple spurious
correlations, each one having a contribution in the way the model is biased.

A simple example, which we already encountered in this thesis in Chapter 3, is
given by the CelebA dataset. In the experiments that we presented, we considered
separately the bias caused by the correlation of gender and hair color, or gender and
facial makeup. Considering the contribution of both attributes towards the bias,
and also the other attributes present in the dataset should be the focus of future
research. Doing so could be as simple as applying the same regularization to all the
possible bias attributes, e.g.:

L = LCE + Eb∈{hair,makeup,... }
[
Rdebias

b

]
(11.3.1)

However, this trivial extension might result in suboptimal results, as different biases
may have different strengths (Wu et al., 2020). For this reason, developing novel
debiasing methods specifically for dealing with multiple biases should be the focus
of future research, for example by leveraging the metric framework of Chapter 4 and
extending the characterization of bias (4.2.1) to this case. Dealing with multiple
biases can also be relevant for medical imaging, where usually data can be stratified
with respect to multiple factors.

11.4 Federated learning and privacy concerns
Federated Learning (FL) is an area of research that has gained significant attention
in recent years due to its ability to enable distributed machine learning training
on private data. FL is an approach that enables different participants, each one
holding some private data, to train machine learning models in a collaborative way,
without having to centralize the data. FL is highly relevant for various applications,
including healthcare, finance, and industry. In the context of FL, there are several
instances of Collateral Learning that are relevant to the theme of this thesis, specif-
ically privacy of the data and bias and fairness.

In the context of FL, we can identify a few relevant instances of Collateral Learning:

• privacy of the data
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• bias and fairness

While FL is already developed for protecting data privacy, it would be interesting
to study whether methods such as the ones proposed in this thesis could also be
applied in FL for privacy preservation purposes, similarly to what we presented in
Chapter 8. In fact, research about potential issues, attacks, and defensive strategies
in FL is highly relevant to the field (Enthoven and Al-Ars, 2021; Liu et al., 2022;
Lyu et al., 2022).

Regarding biases and fairness in FL context, recent works have highlighted this
issue (Abay et al., 2020; Chang and Shokri, 2023; Djebrouni, 2022) and some solu-
tions was proposed (Chu et al., 2021; Du et al., 2021; Zeng et al., 2021; Zhang et al.,
2020). An interesting research direction would be extending our proposed debiasing
methods to the FL context. Focusing on medical data, also issues such as site effects
should be carefully considered. Toward this end, recently proposed FL datasets and
benchmarks such as FLamby (Terrail et al., 2022) could be leveraged. Specifically,
the FLamby dataset is built to simulate a realistic scenario of cross-silo FL, with up
to 50 participating clients.

In summary, FL presents an excellent opportunity to apply the concepts of Collateral
Learning discussed in this thesis. Investigating the application of these methods
in FL would not only contribute to the development of more robust and reliable
machine learning models but also help address critical challenges related to data
privacy and bias in distributed learning settings.
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Appendix A

Additional Theoretical Results for
Chapter 4

A.1 Complete derivations for Section 4.1

In this section, we present the complete analytical derivation for the equations found
in Sec. 4.1. All of the presented derivations are based on the smooth max approxi-
mation with the LogSumExp (LSE) operator:

max(x1, x2, ..., x3) ≈ log(
∑
i

exp(xi)) (A.1.1)

A.1.1 Full derivation of ϵ-InfoNCE (4.1.2)

We consider Eq. 4.1.2 and we obtain:

argmin
f

max(−ϵ, {s−j −s+}j=1,...,N) ≈ argmin
f

[
− log

(
exp(s+)

exp(s+ − ϵ) +
∑

j exp(s
−
j )

)]
︸ ︷︷ ︸

ϵ−InfoNCE

(A.1.2)

Starting from the left-hand side, we have:
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max(−ϵ, {s−j − s+}j=1,...,N) ≈ log

(
exp(−ϵ) +

∑
j

exp(s−j − s+)

)

= log

(
exp(−ϵ) + exp(−s+)

∑
j

exp(s−j )

)

= log

(
exp(−s+)

(
exp(s+ − ϵ) +

∑
j

exp(s−j )

))

= log exp(−s+) + log

(
exp(s+ − ϵ) +

∑
j

exp(s−j )

)

= − log

(
exp(s+)

exp(s+ − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−InfoNCE

(A.1.3)

A.1.2 Multiple positive extension

Extending Eq. 4.1.2 to multiple positives can be done in different ways. Here, we list
four possible choices. Empirically, we found that solution c) gave the best results
and is the most convenient to implement for efficiency reasons.

a)max(−ϵ, {s−j − s+i } i=1,..,P
j=1,...,N

) = − log

(
exp(

∑
i s

+
i )

exp(
∑

i s
+
i − ϵ) + (

∑
j exp(s

−
j ))(

∑
i exp(

∑
t̸=i s

+
t ))

)

b)
∑
j

max(−ϵ, {s−j − s+i }i=1,...,P ) = −
∑
j

log

(
exp(

∑
i s

+
i )

exp(
∑

i s
+
i − ϵ) + exp(s−j )(

∑
i exp(

∑
t̸=i s

+
t ))

)

c)
∑
i

max(−ϵ, {s−j − s+i }j=1,...,N) = −
∑
i

log

(
exp(s+)

exp(s+ − ϵ) +
∑

j exp(s
−
j )

)

d)
∑
i

∑
j

max(−ϵ, s−j − s+i ) = −
∑
i

∑
j

log

(
exp(s+)

exp(s+ − ϵ) + exp(s−j )

)
(A.1.4)

A.1.3 Full derivation of ϵ-SupInfoNCE (4.1.4)

The computations are very similar to Eq. A.1.3. We obtain:

argmin
f

∑
i

max(−ϵ, {s−j −s+i }j=1,...,N) ≈ argmin
f

[∑
i

log

(
exp(−ϵ) +

∑
j

exp(s−j − s+i )

)]
(A.1.5)

Starting from the left-hand side, we have:
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∑
i

max(−ϵ, {s−j − s+i }j=1,...,N) ≈
∑
i

log

(
exp(−ϵ) +

∑
j

exp(s−j − s+i )
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∑
i

log
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∑
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−
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∑
i

log
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∑
j exp(s

−
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exp(s+i )
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= −
∑
i

log

(
exp(s+i )

exp(s+i − ϵ) +
∑

j exp(s
−
j )

)
︸ ︷︷ ︸

ϵ−SupInfoNCE

(A.1.6)

A.1.4 Full derivation of ϵ-SupCon (4.1.5)

We extend Eq. 4.1.4 by adding the non contrastive conditions:

s−j − s+i ≤ −ϵ ∀i, j and s+t − s+i ≤ 0 ∀i, t ̸= i (A.1.7)

and we show

1

P

∑
i

max(0, {s−j −s+i +ϵ}j, {s+t −s+i }t̸=i) ≈ ϵ− 1

P

∑
i

log

(
exp(s+i )∑

t exp(s
+
i − ϵ) +

∑
j exp(s

−
j )

)
︸ ︷︷ ︸

ϵ−SupCon

(A.1.8)

Starting from the left-hand side, we have:
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log
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)
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ϵ−SupCon

(A.1.9)

A.1.5 Full derivation of Lsup
in (4.1.7)

Here we show that:

max(s−j ) < max(s+i ) ≈ − log

(∑
i

exp(s+i )∑
t exp(s

+
t ) +

∑
j exp(s

−
j ))

)
︸ ︷︷ ︸

Lsup
in

(A.1.10)

Starting from the left-hand side, and given that:

max(s−j ) < max(s+i ) ≈ log(
∑
j

exp(s−j ))− log(
∑
i

exp(s+i )) < 0

we have:
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(A.1.11)

A.1.6 Full derivation of Eq.A.1.4-a

argmin
f

max(−ϵ, {s−j −s+i } i=1,..,P
j=1,...,N

) ≈ argmin
f

log

(
exp(−ϵ) +

∑
i

∑
j

exp(s−j − s+i )

)
(A.1.12)

We have:

L = log
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A.2 Boundness of the ϵ-margin
In this section, we give insights on how an optimal value of ϵ can be estimated. First
of all, it is easy to show that ϵ is bounded and cannot grow to infinity. This is the
case in which the two samples are aligned at opposite poles of the hypersphere. We
can conclude that, in general, ϵ will be less than 2. If we also take into account
the temperature τ , when ϵ ≤ 2/τ . This is always true, however, a stricter upper
bound can be found if we consider the geometric properties of the latent space.
For example, Graf et al. (2021) show that when the SupCon loss converges to its
minimum value, then the representations of the different classes are aligned on a
regular simplex. This property could be used to compute a precise upper bound of
the ϵ margin, depending on the number of classes in the dataset. We leave further
analysis on this matter as future work.
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Appendix B

Experimental Setup for Chapter 4

All of our experiments were run using PyTorch 1.10.0. We used a cluster with 4
NVIDIA V100 GPUs and a cluster of 8 NVIDIA A40 GPUs. For consistency, when
training with constrastive losses we use a temperature value τ = 0.1 across all of
our experiments.

B.1 Generic vision datasets

B.1.1 CIFAR-10 and CIFAR-100

We use the original setup from SupCon (Khosla et al., 2020), employing a ResNet-
50, large batch size (1024), learning rate of 0.5, temperature of 0.1 and multiview
augmentation, for CIFAR-10 and CIFAR-100. We use SGD as optimizer with a
momentum of 0.9, and train for 1000 epochs. Learning rate is decayed with a cosine
policy with warmup from 0.01, with 10 warmup epochs.

B.1.2 ImageNet-100

For ImageNet-100 we employ the ResNet50 architecture (He et al., 2016). We use
SGD as optimizer, with a weight decay of 10−4 and momentum of 0.9, with an initial
learning rate of 0.1 and a cosine decay policy. We train for 500 epochs. We train
for 100 epochs, and we decay the learning rate by a factor of 0.1 every 30 epochs.

B.2 Biased Datasets

When employing our debiasing term, we find that scaling the ϵ-SupInfoNCE loss
by a small factor α (≤ 1) and using λ closer to 1, is stabler than using values of
λ >> 1 (as done for EnD) and tends to produce better results. For biased datasets,
we do not make use of the projection head used in Chen et al. (2020); Khosla
et al. (2020). For this reason, we also avoid the aggressive augmentation usually
employed by contrastive methods (more on this in Sec. C.3). Furthermore, as also
done by Hong and Yang (2021), we also experimented with a small contribution of
the cross entropy loss for training the model end-to-end; however, we did not find
any benefit in doing so, compared to training a linear classifier separately.
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B.2.1 Biased-MNIST

We emply the network architecture SimpleConvNet proposed by Bahng et al. (2020),
consisting of four convolutional layers with 7×7 kernels. We use the Adam optimizer
with a learning rate of 0.001, a weight decay of 10−4 and a batch size of 256. We
decay the learning rate by a factor of 0.1 at 1/3 and 2/3 of the epochs (26 and 53).
We train for 80 epochs.

Hyperparameters configuration The hyperparameters are reported in Tab. B.2.1.

Table B.2.1: Biased-MNIST hyperparameters

Corr (ρ)
0.999 0.997 0.995 0.990

α 0.01 0.01 0.03 0.03
λ 0.5 0.5 0.75 0.5
ϵ 0 0 0.5 0.5

B.2.2 Corrupted CIFAR-10

For this dataset we employ the ResNet-18 architecture. We use the Adam optimizer,
with an initial learning rate of 0.001, a weight decay of 0.0001. The other Adam
parameters are the pytorch default ones (β1 = 0.9, β2 = 0.999, ϵ = 10−8). We train
for 200 epochs with a batch size of 256. We decay the learning rate using a cosine
annealing policy.

Hyperparameters configuration: Table B.2.2 shows the hyperparameters for
the results reported in Tab. 4.3.4 of the main paper.

Table B.2.2: Corrupted CIFAR-10 hyperparameters

Ratio (%)
0.5 1.0 2.0 5.0

α 0.1 0.1 0.1 0.1
λ 1.0 1.0 1.0 1.0
ϵ 0.1 0.25 0.5 0.25

B.2.3 bFFHQ

Following Lee et al. (2021),we use the ResNet-18 architecture. We use the Adam
optimizer, with an initial learning rate of 0.0001, and train for 100 epochs. For
this experiment, we set α = 0.1, ϵ = 0.25 and λ = 1.5. Differently from Lee et al.
(2021) we use a batch size of 256 (vs 64) as contrastive losses benefit more from
larger batch sizes (Chen et al., 2020; Khosla et al., 2020). Additionally, we also use
a weight decay of 10−4, rather than 0. These changes do not provide advantages to
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the debiasing task: we obtain an accuracy of 54.8% without FairKL, which is in line
with the 56.87% reported for the vanilla model.
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Appendix C

Additional Empirical Results for
Chapter 4

In this section, we present some additional experiments we conducted, for a more in
depth analysis of our proposed framework.

C.1 Complete results for common vision datasets
In Table C.1.1 we report the results on CIFAR-10, CIFAR-100 and ImageNet-100
for different values of ϵ. In Table C.1.2 the full comparison between ϵ-SupCon
and ϵ-SupInfoNCE on ImageNet-100 is presented. Our proposed ϵ-SupInfoNCE
outperforms SupCon in all datasets for all the ϵ values, reaching the best results.
Furthermore, on ImageNet-100, we observe that the lowest accuracy obtained by
ϵ-SupInfoNCE (83.02%) is still higher than the best accuracy obtained by ϵ-SupCon
(82.83%) on the same dataset, even though ϵ-SupCon is always higher than SupCon.
In terms of accuracy, the results in Tab. C.1.2 show that SupCon ≤ ϵ− SupCon ≤
ϵ− SupInfoNCE.

Table C.1.1: Complete results for common vision datasets, for different values of ϵ,
in terms of top-1 accuracy (%). With every value of ϵ we obtain better results than
SupCon (and CE) on the same dataset.

Dataset CE SupCon ϵ-SupInfoNCE
ϵ = 0.1 ϵ = 0.25 ϵ = 0.5

CIFAR-10 94.73±0.18 95.64±0.02 95.93±0.02 96.14±0.01 95.95±0.12

CIFAR-100 73.43±0.08 75.41±0.19 75.85±0.07 76.04±0.01 75.99±0.06

ImageNet-100 82.1±0.59 81.99±0.08 83.25±0.39 83.02±0.41 83.3±0.06

C.2 Analysis of ϵ-SupCon for debiasing
We perform a more in-depth analysis of the debiasing capabilities of ϵ-SupInfoNCE
and ϵ-SupCon. In Sec. 4.3 of the main text, we hypothesize that the non-constrastive
condition of Eq. 4.1.5

s+i − s+j ≤ 0 ∀i, t ̸= i
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Table C.1.2: Complete comparison of ϵ-SupInfoNCE and ϵ-SupCon on ImageNet-
100 in terms of top-1 accuracy (%). The results of ϵ-SupInfoNCE are higher than
any results of ϵ-SupCon.

Loss ϵ = 0.1 ϵ = 0.25 ϵ = 0.5

ϵ-SupInfoNCE 83.25±0.39 83.02±0.41 83.3±0.06

ϵ-SupCon 82.83±0.11 82.54±0.09 82.77±0.14

might actually be the reason for the loss of accuracy in ϵ-SupCon when compared
to ϵ-InfoNCE, as shown on the analysis on Biased-MNIST in Fig. 4.3.1 of the main
text.
In this section, we provide more empirical insights supporting this hypothesis. We
plot the similarity of bias-aligned samples (s+,b) and bias-conflicting samples (s+,b′)
during training, to understand how they are affected. Fig. C.2.1 shows the bivariate
histogram of the similarities obtained with the two loss functions, at different train-
ing epochs and values of ϵ, on Biased-MNIST, with a training ρ of 0.999. Focusing
on the bias-aligned samples (first two columns), we observe that, in both cases,
most values are close to 1. However, while this is true for most of the shown his-
tograms, the presence of the non-contrastive condition of Eq. 4.1.5 produces a much
tighter distribution for ϵ-SupCon, when compared to ϵ-SupInfoNCE. In fact, with
ϵ-SupInfoNCE we obtain significantly more bias-aligned samples with a similarity
smaller than 1. This is especially evident if we focus on the last training epochs.
More interestingly, if we focus on the bias-conflicting similarities (last two columns),
we can also notice how, on average, the distribution of similarities of bias-conflicting
samples for ϵ-SupCon tends to be more concentrated around the value of 0. This
means that bias-conflicting samples have dissimilar representations even if they are
both positives and should be mapped to the same point in the representation space.
The effect of the bias is thus still quite important and it has not been discarded. On
the other hand, with ϵ-SupInfoNCE, we obtain a much more spread distribution,
especially as the number of training epochs increases. This means that a higher
number of bias-conflicting samples have a greater similarity (in the representation
space), leading to more robust representations.
Clearly, ϵ-SupCon focuses more on bias-aligned samples as most of them have a
similarity close to 1, whereas most of the bias-conflicting samples have a similarity
close to 0. With our proposed loss ϵ-SupInfoNCE, this behavior is less pronounced,
as the lack of the non-contrastive condition leads the model to be less focused on
bias-aligned samples. This could explain why ϵ-SupInfoNCE can perform better
than ϵ-SupCon in highly biased settings.

C.3 Training with a projection head
In Tab. C.3.1 we show the results on Corrupted CIFAR-10 with and without using
a projection head. When employing a projection head, the loss term and the regu-
larization are applied on the projected and original space respectively, and the final
classification is performed in the original latent space before the projection head. We
conjecture that the loss in accuracy is likely due i.) to the absence of the aggressive
augmentation typically used for generating multiviews in contrastive setups, which
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Figure C.2.1: (first and second columns) Distribution of positive bias-aligned similar-
ities s+,b. Here ϵ-SupCon tends to produce a much tighter distribution, with similar-
ities close to 1; (third and fourth columns) Distribution of positive bias-conflicting
similarities s+,b′ . Here ϵ-SupInfoNCE, even if marginally, is able to increase the
number of similar bias-conflicting samples. ϵ-SupCon focuses more on bias-aligned
samples, resulting in more biased representations. With ϵ-SupInfoNCE, this behav-
ior is less pronounced, as the lack of the non-contrastive condition leads to be less
focused on bias-aligned samples and more focused on the bias-conflicting ones. We
hypothesize that this is the reason ϵ-SupInfoNCE appears to obtain better results
than ϵ-SupCon in more biased datasets.
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are probably attenuated by the projection head ii.) minimizing ϵ-SupInfoNCE and
the FairKL term on the same latent space rather than two different ones, could be
more beneficial for the optimization process.

Table C.3.1: Accuracy on Corrupted CIFAR-10 with and without projection head

Ratio (%)
0.5 1.0 2.0 5.0

With Head 30.85±0.19 32.75±0.57 37.95±0.14 45.67±0.66

Without Head 33.33±0.38 36.53±0.38 41.45±0.42 50.73±0.90

C.4 Ablation study of debiasing regularization
We perform an ablation study of our debiasing regularization on Corrupted CIFAR-
10 and on bFFHQ. We test two variants of the regularization term:

1. Only with the conditions on the mean of the representations µ+ and µ−
(Eq. 4.2.2), similarly to EnD, but with the differences in formulations of
Sec. 4.2.2;

2. Full FairKL debiasing term of Eq. 4.2.3.

The results are shown in Tab. C.4.1. As it can be easily observed, employing the
full regularization constraint consistently results in better accuracy.

Table C.4.1: Ablation study of RFairKL on Corrupted CIFAR-10 and bFFHQ

Corrupted CIFAR-10 bFFHQ
Ratio (%) Ratio (%)

0.5 1.0 2.0 5.0 0.5

FairKL (mean) 32.37±1.72 35.65±0.75 39.94±0.50 50.25±0.16 60.55±1.05

FairKL (full) 33.33±0.38 36.53±0.38 41.45±0.42 50.73±0.90 63.70±0.90

C.5 Importance of the regularization weight
We conduct an analysis on the importance and stability of the weights α and λ
of Eq. 4.2.4. We perform multiple experiments selecting α ∈ {0.01, 0.1, 1.0}. For
simplicity, we fix ϵ = 0, and we report the accuracy scored on the Biased-MNIST
test. The results are show in Tab. C.5.1. There seems to be a correlation between
the value of α and the strength of the bias: for stronger biases it is better to give
more importance to the regularization term rather than the target loss function.
Additionaly, we also find that α depends on the complexity of the dataset: for
example on Corrupted-CIFAR10 and bFFHQ we use α = 0.1, for 9-Class ImageNet
we use α = 0.5.
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Table C.5.1: Importance of the weights α and λ.

λ = 0.5 λ = 1
Corr.\ α 0.01 0.1 1.0 0.01 0.1 1.0

0.999 89.55±1.43 31.63±2.30 38.38±1.26 84.98±2.29 43.21±10.08 31.84±4.31

0.997 94.08±0.10 82.11±2.48 78.91±2.48 91.08±0.82 84.98±10.23 79.03±3.15

0.995 92.42±3.76 90.60±3.35 86.63±2.26 88.39±5.00 93.97±1.83 88.27±1.72

0.99 95.00±0.21 96.60±0.17 93.75±0.25 90.72±0.51 97.13±0.38 94.74±0.40
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Appendix D

Additional Empirical Results for
Chapter 5

In this section we provide some additional results about our debiasing technique,
mainly focusing on the worst-case scenarios described in Section 5.1.4.

D.1 Debiasing on an unbiased dataset
Here we show that the supervised EnD regularization does not deteriorate the final
results if applied to a training set that is not biased. Table D.1.1 shows the results
of training with EnD on Biased-MNIST with ρ = 0.1. In this setting, applying
the regularization term is not harmful toward obtaining good generalization: this is
because in a supervised setting we still have access to the correct color labels, thus
we do not perform disentanglement over any useful features for the network. This is
a trivial result, however, with this demonstrated we can now focus on an unbiased
training set in the unsupervised case.

ρ Vanilla EnD

0.1 99.21 99.24±0.05

Table D.1.1: Debiasing on an unbiased training set (ρ = 0.1)

D.2 Debiasing with wrong pseudo-labels
We now assume that the pseudo-labels we compute are not representative of the true
bias attributes. Using Biased-MNIST as case study, we identify that the worst-case

ρ Vanilla EnD (target) EnD (random)

0.995 72.10±1.90 72.25±0.56 66.68±0.35

Table D.2.1: Debiasing on incorrect bias labels. Target means that target labels are
also used as bias label (i.e. ti = bi, worst case), random means that bias labels are
assigned randomly.
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Figure D.2.1: Evolution of (a) α and (b) β versus the number of searched configs
during the hyperparameters optimization with incorrect pseudo-labels. We can ob-
serve how the optimization process drives α towards 0, while β does not seem to be
relevant. The point color indicates the accuracy on the unbiased test set, while the
line shows the trend as an exponentially weighted moving average computed with a
smoothing factor of 0.1.

scenario for the pseudo-labeling step corresponds to using a completely unbiased
dataset (i.e. ρ = 0.1) for training the biased encoder. Taking into account the re-
sults shown in Section D.1, performing the pseudo-labeling step in this setting will
most likely result in pseudo-labels corresponding to the actual target class rather
than the background color. We emulate this event by setting the bias label bi equal
to the target label ti for every sample in the dataset, and then we the apply EnD
algorithm. To test this worst-case with EnD, we choose ρ = 0.995 as it provides
a way for the final accuracy to both decrease or increase with respect to a vanilla
model. The results are reported in Table D.2.1 and noted as target. Even in this
case, we are able to retain the baseline performances, although we do not obtain any
significant improvement. This is thanks to the hyperparameter optimization policy
that we employ (recall that we assume an unbiased validation set - even if small -
is available).

Figure D.2.1 visualizes the evolution of the hyperparameters α and β while searching
for possible configurations. In this setting, α represents the most dangerous term,
as it enforces decorrelation among samples with the same class, conflicting with the
cross-entropy term. However, the optimization process drives α towards 0, making
it effectively non-influent on the loss term. On the other hand, the entangling term
β does not bring any contribution to the learning process: it is, in fact, useless as
there is full alignment between target and bias labels, hence there are no positive
bias-conflicting samples.

A possible scenario in which β would not have null influence is if we do not impose
ti = bi. We explore this extreme setting by assigning a random value to bi for every
sample i. The results are reported as random in Table D.2.1. In this case, it is
possible to observe a drop in performance with respect to the baseline. However, we
argue that random pseudo-labels would be the result of poor representations due to
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possibly underfitting models or lack of sufficient training data - which, in a practical
setting, would be a more pressing issue.
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Appendix E

Appendix for Covid-19 Detection

E.1 Complete results for direct diagnosis
Here we report the complete results of all the experiments with performed for direct
classification of Covid-19 on the CORDA-CDSS dataset. With respect to Sec. 7.1,
we report additional evaluation metrics. They are summarized in Tab. E.1.1.
Tables E.1.2 and E.1.3 shows the results for ResNet-18; Tables E.1.4 and E.1.5 show
the result for ResNet-50 and DenseNet-121.

Table E.1.1: Evaluated metrics.

Metric Definition Meaning

TP True positives
TN True negatives
FP False positives
FN False negatives
TPR same as Sensitivity
FPR same as Specificity
AUC Aggregate measure of performance across all pos-

sible classification thresholds
Accuracy TP+TN

TP+TN+FP+FN Fraction of correct predictions made by the model
Sensitivity TP

TP+FN How many positive samples were correctly identi-
fied (also called recall)

Specificity TN
TN+FP How many true negatives were correctly identified

BA TPR+TNR
2

Balanced accuracy, accounts for imbalanced sets
F-Score 2TP

2TP+FP+FN Harmonic mean between precision and recall,
where precision is defined as TP

TP+FP . A value of
1 means perfect precision and recall

DOR TPR·TNR
(1−TPR)(1−TNR)

Effectiveness of a diagnostic test (Glas et al., 2003)
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Pre-trained Training Test Sensitivity Specificity F-Score Accuracy BA AUC DORencoder dataset dataset

none

AC

A 0.56 0.42 0.60 0.51 0.49 0.52 0.91
AB 0.56 0.22 0.15 0.26 0.39 0.33 0.36
AC 0.56 0.96 0.49 0.95 0.76 0.95 34.23
AD 0.52 0.48 0.58 0.51 0.50 0.53 1.00

A

A 0.56 0.58 0.63 0.56 0.57 0.59 1.71
AB 0.56 0.37 0.18 0.39 0.46 0.43 0.74
AC 0.56 0.38 0.08 0.39 0.47 0.46 0.76
AD 0.56 0.58 0.63 0.57 0.57 0.59 1.76

AD

A 0.58 0.64 0.66 0.60 0.61 0.63 2.48
AB 0.58 0.63 0.27 0.63 0.61 0.63 2.37
AC 0.58 0.54 0.11 0.54 0.56 0.58 1.62
AD 0.57 0.66 0.66 0.60 0.61 0.64 2.57

D

A 0.91 0.11 0.77 0.64 0.51 0.54 1.28
AB 0.91 0.66 0.41 0.69 0.78 0.87 19.56
AC 0.91 0.11 0.09 0.14 0.51 0.45 1.22
AD 0.91 0.18 0.78 0.67 0.55 0.58 2.22

AB

A 0.88 0.18 0.77 0.64 0.53 0.58 1.55
AB 0.88 0.94 0.76 0.93 0.91 0.97 112.93
AC 0.88 0.14 0.09 0.17 0.51 0.42 1.14
AD 0.87 0.20 0.77 0.65 0.54 0.60 1.67

Table E.1.2: Results obtained training a ResNet-18 with no pre-train. Dataset
naming follows Table 7.1.1
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Pre-trained Training Test Sensitivity Specificity F-Score Accuracy BA AUC DORencoder dataset dataset

C

AC

A 0.68 0.44 0.69 0.60 0.56 0.61 1.68
AB 0.68 0.22 0.18 0.27 0.45 0.49 0.59
AC 0.68 0.90 0.37 0.89 0.79 0.90 19.82
AD 0.67 0.50 0.70 0.61 0.58 0.63 2.03

A

A 0.54 0.80 0.66 0.63 0.67 0.72 4.78
AB 0.54 0.31 0.16 0.34 0.43 0.48 0.54
AC 0.54 0.55 0.10 0.55 0.55 0.61 1.48
AD 0.57 0.76 0.67 0.63 0.67 0.72 4.20

AD

A 0.70 0.49 0.72 0.63 0.59 0.67 2.23
AB 0.70 0.30 0.20 0.34 0.50 0.59 0.98
AC 0.70 0.37 0.10 0.39 0.53 0.61 1.37
AD 0.71 0.52 0.73 0.65 0.61 0.70 2.65

D

A 0.94 0.09 0.79 0.66 0.52 0.57 1.66
AB 0.94 0.61 0.39 0.65 0.78 0.92 26.24
AC 0.94 0.08 0.09 0.12 0.51 0.58 1.50
AD 0.95 0.14 0.80 0.68 0.54 0.62 3.09

AB

A 0.82 0.38 0.77 0.67 0.60 0.63 2.81
AB 0.82 0.95 0.75 0.94 0.89 0.97 89.14
AC 0.82 0.30 0.10 0.32 0.56 0.59 1.98
AD 0.83 0.38 0.78 0.68 0.60 0.64 2.99

B

AC

A 0.86 0.31 0.78 0.67 0.58 0.60 2.67
AB 0.86 0.29 0.24 0.36 0.58 0.48 2.47
AC 0.86 0.95 0.61 0.95 0.90 0.97 122.64
AD 0.82 0.38 0.77 0.67 0.60 0.61 2.79

A

A 0.54 0.58 0.62 0.56 0.56 0.67 1.64
AB 0.54 0.37 0.17 0.39 0.46 0.49 0.70
AC 0.54 0.73 0.15 0.72 0.64 0.72 3.21
AD 0.56 0.62 0.64 0.58 0.59 0.70 2.08

AD

A 0.71 0.49 0.72 0.64 0.60 0.67 2.35
AB 0.71 0.25 0.20 0.31 0.48 0.51 0.83
AC 0.71 0.47 0.11 0.48 0.59 0.64 2.16
AD 0.73 0.52 0.74 0.66 0.62 0.70 2.93

D

A 0.91 0.20 0.79 0.67 0.56 0.61 2.56
AB 0.91 0.70 0.44 0.73 0.81 0.89 24.38
AC 0.91 0.15 0.09 0.19 0.53 0.55 1.83
AD 0.92 0.28 0.81 0.71 0.60 0.66 4.47

AB

A 0.88 0.24 0.78 0.67 0.56 0.66 2.32
AB 0.88 0.94 0.77 0.94 0.91 0.97 122.67
AC 0.88 0.24 0.10 0.27 0.56 0.67 2.26
AD 0.88 0.26 0.78 0.67 0.57 0.68 2.58

Table E.1.3: Results obtained training a ResNet-18 with a pre-trained encoder.
Dataset naming follows Table 7.1.1
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Pre-trained Training Test Sensitivity Specificity F-Score Accuracy BA AUC DORencoder dataset dataset

C

AC

A 0.74 0.49 0.74 0.66 0.62 0.65 2.79
AB 0.74 0.40 0.24 0.44 0.57 0.64 1.92
AC 0.74 0.92 0.43 0.91 0.83 0.93 31.76
AD 0.70 0.54 0.73 0.65 0.62 0.66 2.74

A

A 0.61 0.71 0.70 0.64 0.66 0.67 3.87
AB 0.61 0.40 0.20 0.43 0.51 0.53 1.06
AC 0.61 0.58 0.12 0.58 0.60 0.63 2.20
AD 0.62 0.74 0.71 0.66 0.68 0.69 4.64

AD

A 0.53 0.64 0.62 0.57 0.59 0.64 2.07
AB 0.53 0.56 0.22 0.56 0.55 0.58 1.47
AC 0.53 0.57 0.10 0.57 0.55 0.58 1.53
AD 0.55 0.68 0.64 0.59 0.61 0.66 2.60

D

A 0.97 0.04 0.79 0.66 0.51 0.57 1.35
AB 0.97 0.45 0.32 0.51 0.71 0.89 23.29
AC 0.97 0.09 0.09 0.13 0.53 0.56 2.91
AD 0.97 0.10 0.80 0.68 0.54 0.62 3.59

AB

A 0.76 0.33 0.72 0.61 0.54 0.65 1.55
AB 0.76 0.95 0.72 0.93 0.85 0.97 63.61
AC 0.76 0.36 0.10 0.38 0.56 0.63 1.75
AD 0.76 0.32 0.72 0.61 0.54 0.64 1.49

B

AC

A 0.73 0.40 0.72 0.62 0.57 0.58 1.83
AB 0.73 0.25 0.20 0.31 0.49 0.44 0.92
AC 0.73 0.96 0.58 0.95 0.85 0.97 68.71
AD 0.70 0.46 0.71 0.62 0.58 0.60 1.99

A

A 0.64 0.56 0.69 0.61 0.60 0.65 2.27
AB 0.64 0.49 0.24 0.51 0.57 0.61 1.72
AC 0.64 0.63 0.14 0.63 0.64 0.69 3.06
AD 0.67 0.60 0.72 0.65 0.64 0.69 3.05

AD

A 0.63 0.38 0.65 0.55 0.51 0.63 1.05
AB 0.63 0.46 0.22 0.48 0.55 0.61 1.46
AC 0.63 0.62 0.14 0.62 0.63 0.70 2.86
AD 0.65 0.44 0.67 0.58 0.55 0.66 1.46

D

A 0.98 0.13 0.81 0.70 0.56 0.61 6.77
AB 0.98 0.72 0.48 0.75 0.85 0.90 112.57
AC 0.98 0.11 0.10 0.15 0.55 0.61 5.59
AD 0.98 0.20 0.82 0.72 0.59 0.65 12.25

AB

A 0.81 0.29 0.75 0.64 0.55 0.64 1.74
AB 0.81 0.94 0.73 0.93 0.88 0.97 73.35
AC 0.81 0.25 0.09 0.28 0.53 0.57 1.43
AD 0.80 0.30 0.74 0.63 0.55 0.64 1.71

Table E.1.4: Results obtained training a ResNet-50 model. Dataset naming follows
Table 7.1.1
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Pre-trained Training Test Sensitivity Specificity F-Score Accuracy BA AUC DORencoder dataset dataset

C

AC

A 0.68 0.51 0.71 0.62 0.59 0.64 2.20
AB 0.68 0.22 0.18 0.27 0.45 0.43 0.58
AC 0.68 0.93 0.44 0.92 0.80 0.93 27.98
AD 0.67 0.54 0.71 0.63 0.60 0.65 2.38

A

A 0.77 0.38 0.74 0.64 0.57 0.63 1.99
AB 0.77 0.08 0.18 0.16 0.42 0.31 0.29
AC 0.77 0.37 0.11 0.39 0.57 0.62 1.97
AD 0.77 0.42 0.75 0.65 0.59 0.66 2.42

AD

A 0.60 0.64 0.68 0.61 0.62 0.68 2.72
AB 0.60 0.36 0.19 0.39 0.48 0.51 0.84
AC 0.60 0.54 0.11 0.54 0.57 0.63 1.73
AD 0.61 0.68 0.69 0.63 0.65 0.71 3.32

D

A 0.87 0.11 0.75 0.61 0.49 0.62 0.81
AB 0.87 0.37 0.26 0.43 0.62 0.70 3.80
AC 0.87 0.11 0.09 0.14 0.49 0.49 0.79
AD 0.88 0.18 0.77 0.65 0.53 0.66 1.61

AB

A 0.81 0.31 0.75 0.64 0.56 0.67 1.94
AB 0.81 0.93 0.71 0.92 0.87 0.97 61.00
AC 0.81 0.13 0.08 0.16 0.47 0.47 0.62
AD 0.82 0.30 0.76 0.65 0.56 0.67 1.95

B

AC

A 0.67 0.56 0.71 0.63 0.61 0.66 2.50
AB 0.67 0.36 0.21 0.39 0.51 0.48 1.11
AC 0.67 0.98 0.63 0.96 0.82 0.98 90.25
AD 0.62 0.60 0.68 0.61 0.61 0.66 2.45

A

A 0.63 0.62 0.70 0.63 0.63 0.70 2.84
AB 0.63 0.34 0.19 0.37 0.49 0.52 0.88
AC 0.63 0.45 0.10 0.46 0.54 0.59 1.42
AD 0.66 0.64 0.72 0.65 0.65 0.73 3.45

AD

A 0.63 0.62 0.70 0.63 0.63 0.68 2.84
AB 0.63 0.47 0.23 0.49 0.55 0.63 1.56
AC 0.63 0.61 0.13 0.61 0.62 0.70 2.74
AD 0.65 0.66 0.71 0.65 0.66 0.71 3.61

D

A 0.99 0.07 0.81 0.68 0.53 0.61 6.36
AB 0.99 0.62 0.41 0.66 0.80 0.91 142.68
AC 0.99 0.04 0.09 0.08 0.51 0.53 3.41
AD 0.99 0.14 0.82 0.71 0.56 0.65 16.12

AB

A 0.78 0.44 0.76 0.67 0.61 0.69 2.80
AB 0.78 0.96 0.75 0.94 0.87 0.97 86.56
AC 0.78 0.37 0.11 0.39 0.57 0.66 2.02
AD 0.80 0.50 0.78 0.70 0.65 0.72 4.00

Table E.1.5: Results obtained training a DenseNet-121 model. Dataset naming
follows Table 7.1.1
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E.2 Details on CheXpert pretraining

E.2.1 Network Architecture

As the backbone of our model, we used state-of-the-art convolutional neural net-
works such as ResNet (He et al., 2016) and DenseNet (Huang et al., 2017). Specif-
ically, we first tested a smaller ResNet-18 in order to assess the benefits of this
approach compared to the method explained in Sec. 7.1. Then, we switched to a
larger DenseNet-121, as the much larger dataset allowed us to exploit larger models.

The encoder is then followed by a two-layer fully connected classifier. The classifier
architecture we designed reflects the hierarchy of the different lung pathologies pre-
sented in Fig. 7.2.1. As shown in Fig. E.2.1, the classifier is constructed by stacking
two fully-connected layers, and makes use of connectivity patterns similar to “dense
connections” as proposed by Huang et al. (2017). The first fully-connected layer
(FC1 ) is used to classify the 8 top-level classes from the extracted features. Out-
put logits are then concatenated with the extracted image features, and the second
fully-connected layer (FC2 ) is used to predict the remaining 6 children pathologies.
A sigmoid layer is used to obtain the probability for each class. We call this archi-
tecture Hierarchical Classifier (HC).

Figure E.2.1: Complete trained framework. After the encoder extracts deep features
from the CXR, the Hierarchical Classifier provides outcome on the found pathologies.

The models have been trained using the standard weighted binary cross entropy loss
(BCE)

Ln = −wn · [yn log(xn) + (1− yn) log(1− xn)] (E.2.1)

where, for a given sample, yn is the ground truth label for the n-th class, xn is
the model probability prediction and wn is the weight associated to the n-th class.
Weights can be used to address imbalances in the labels distribution, by giving more
importance to minority classes.
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Dealing with uncertainty To address the uncertain labels, multiple approaches
have been suggested by Irvin et al. (2019): for example, ignoring all the uncer-
tain labels, or considering them as either positive or negative are two main-stream
solutions. The approach we followed consists in mapping the uncertain labels to
maximum uncertainty (0.5). Through loss weighting, we can not only address the
class unbalance issue (as discussed in Sec. E.2.1), but we can also control the in-
fluence of uncertain labels to the learning process. The following weighting schema
has been used:

wn =


1 + S+

n /S
−
n if yn = 0

1 + S−
n /S

+
n if yn = 1

1 if yn = 0.5

(E.2.2)

where S−
n and S+

n respectively represent the cardinality of negative and positive
samples for the n-th class. Hence, uncertain samples will have a lower influence
during the training process, while being pushed either towards 0 or 1 by the higher
weight certain samples in the same class. All of the remaining blank labels are
ignored when computing the BCE loss, considering them as missing labels.

E.2.2 Results

For the following discussion about radiological findings detection, we present the
results obtained with DenseNet-121, as, obviously, it outperformed ResNet-18 given
the greater size of the CheXpert dataset. In Sec. 7.2, however, we also review the fi-
nal results achieved with ResNet-18, in order to provide a more in-depth comparison
with the direct approach.
Tab. 7.2.1 of the main text shows the results of the HC model presented in the
previous section, evaluated on the chosen CheXpert test classes1 of the validation
set, in terms of AUC. The results we obtained are in line with those proposed by
the Stanford team: 0.83 AUC for Atelectasis, 0.79 for Cardiomegaly, 0.93 for Con-
solidation, 0.93 for Edema and 0.93 for Pleural Effusion.

To further test the reliability of the lung pathologies detection step, we computed
a prediction for all of the lung pathologies on the CORDA-CDSS dataset. We
also employed a manually annotated label “RX” for CORDA-CDSS, which indicates
whether the patient is completely healthy (0) or presents any kind of radiological
finding (1). This label is non-specific to Covid-19. Figure E.2.2 shows the correlation
between the predicted pathologies and the COVID and RX labels. As expected, the
“No Finding” and the RX labels show a quite strong negative correlation, meaning
that the model is generalizing well on unseen data.
Figure E.2.3 shows the confusion matrix obtained by predicting the RX label using
the probability score obtained for the “No Finding” class (RX- when “No Finding”
presented the highest probability and RX+ otherwise), reaching a sensitivity of 0.75
and a specificity of 0.79.
It also interesting to notice how both the RX and COVID labels exhibit the high-
est correlation values with “Lung Opacity”, “Edema”, “Consolidation”, “Pneumonia”,

1https://stanfordmlgroup.github.io/competitions/chexpert/
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Figure E.2.2: Correlation between predicted lung pathologies and labels from
CORDA dataset on the CORDA-CDSS dataset

Figure E.2.3: Confusion matrix using the “No Finding” CheXpert class to predict
the CORDA-CDSS RX label.
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“Atelectasis” and “Pleural Effusion”, which is coherent with what mentioned in Sec-
tion E.3.

E.3 Analysis of classification trees for Covid-19 pre-
diction

As said in Sec. 7.2, training the tree model on the probability outputs results in
a very good interpretability. Fig. E.3.1 graphically shows the decision tree: this
provides a very clear interpretation for the decision process. Each box in the tree
represents a splitting criterion based on a certain radiological finding: the Gini in-
dex, that has been used in the CART algorithm, indicates the impurity of a split,
value represents the obtained partition between COVID negative (first element of
the vector) and positive samples respectively. A path from the root to a leaf node
represents a number of sequential decisions taken on a given sample, in order to
make a final prediction. From the clinical and radiological perspective, these data
are consistent with the Covid-19 CXR semeiotics that radiologists are used to deal
with.

The edema feature, although unspecific, is strictly related to the interstitial in-
volvement that is typical of Covid-19 infections and it has been largely reported in
the recent literature (Guan et al., 2020). Indeed, in recent Covid-19 radiological
papers, interstitial involvement has been reported as ground glass opacity (GGO)
appearance (Wong et al., 2020). However this definition is more pertinent to the CT
imaging setting rather than CXR; the “edema” feature (according to the CheXpert
definition) can be compatible, from the radiological perspective, to the interstitial
opacity of Covid-19 patients.

Furthermore, the not irrelevant role of cardiomegaly (or more in general enlarged
cardiomediastinum) in the decision tree can be interesting from the clinical perspec-
tive. In fact, this can be read as an additional proof that established cardiovascular
disease can be a relevant risk factor to develop Covid-19.2

E.4 Analysis of Covid-19 detection on pathological
patients

In addition to the results presented in Sec. 7.2, we could determine whether the
model was able to discriminate between COVID-19 positives and negatives or whether
it was just exploiting stratification in the data (e.g. healthy vs non-healthy) thanks
to the RX label present in CORDA-CDSS (see Sec. E.2.2).

By inspecting the subset of RX-positive images in the test set, we were able to assess
spurious correlations between ill patients and COVID-19 positive ones. Results for
the RX+ test subset are shown in Table E.4.1. We can notice how the tree model

2https://www.escardio.org/Education/Covid-19-and-Cardiology/ESC-Covid-19-
Guidance
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Figure E.3.1: Decision Tree obtained for Covid-19 classification based on the prob-
abilities for the 14 classes of findings.
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Table E.4.1: Stratified analysis of the two-step method on CORDA-CDSS RX+.

Model Sensitivity Specificity BA AUC

DenseNet-121+Tree 0.89 0.27 0.58 0.62
DenseNet-121+FC 0.82 0.73 0,78 0.86

lacks of specificity among ill patients. This is however expected, as making a diag-
nosis solely based on the presence of certain lung pathologies might increase false
positives rate. In order to discriminate between COVID-19 and any other disease,
it is useful to exploit the richer features extracted by the encoder, which also con-
tain information about the appearance of the findings. Promising results are in fact
obtained by the fully-connected classifier trained on top of the encoder, reaching a
quite high sensitivity of 0.82 while retaining a good specificity of 0.73.

Again, this is the result of a trade-off between interpretability and discriminative
power: while existing techniques like Grad-CAM (Selvaraju et al., 2017) might help
in explaining deep model predictions, the insights they provide are limited when
compared to simpler models like decision trees. Grad-CAM highlights the region of
the input image which is more relevant to the final prediction.

It is worth mentioning that with DenseNet-121+FC we also achieved a sensitivity
of 0.50 (specificity 0.79) on the RX-negative images, which did not show apparent
lung pathologies according to the radiologists. This is an obviously harder task,
and, while the sensitivity of our model is certainly not high, these images would
have been completely discarded by a first radiological examination. This approach
might aid radiologists in better identifying COVID-positive patients.
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Titre : Apprentissage sans collatéral des représentations profondes: Des images naturelles aux applications
biomédicales

Mots clés : Apprentissage par représentation, représentations robustes, Débiaisage, imagerie médicale

Résumé : L’apprentissage profond est devenu l’un
des outils prédominants pour résoudre une variété de
tâches, souvent avec des performances supérieures
à celles des méthodes précédentes. Les modèles
d’apprentissage profond sont souvent capables d’ap-
prendre des représentations significatives et abs-
traites des données sous-jacentes. Toutefois, il a été
démontré qu’ils pouvaient également apprendre des
caractéristiques supplémentaires, qui ne sont pas
nécessairement pertinentes ou nécessaires pour la
tâche souhaitée. Cela peut poser un certain nombre
de problèmes, car ces informations supplémentaires
peuvent contenir des biais, du bruit ou des informa-
tions sensibles qui ne devraient pas être prises en
compte par le modèle (comme le sexe, l’apparte-
nance ethnique, l’âge, etc.). Nous appelons ces in-
formations ”collatérales”. La présence d’informations
collatérales se traduit par des problèmes pratiques,
en particulier lorsqu’il s’agit de données d’utilisa-
teurs privés. L’apprentissage de représentations ro-
bustes exemptes d’informations collatérales peut être
utile dans divers domaines, tels que les applications
médicales et les systèmes d’aide à la décision.
Dans cette thèse, nous introduisons le concept d’ap-
prentissage collatéral, qui se réfère à tous les cas
où un modèle apprend plus d’informations que prévu.
L’objectif de l’apprentissage collatéral est de com-
bler le fossé entre différents domaines, tels que la
robustesse, le débiaisage, la généralisation en ima-
gerie médicale et la préservation de la vie privée.
Nous proposons différentes méthodes pour obtenir
des représentations robustes exemptes d’informa-
tions collatérales. Certaines de nos contributions sont
basées sur des techniques de régularisation, tandis
que d’autres sont représentées par de nouvelles fonc-
tions de coût.
Dans la première partie de la thèse, nous posons
les bases de notre travail, en développant des tech-
niques pour l’apprentissage de représentations ro-
bustes sur des images naturelles, en se concentrant
sur les données biaisées. Plus précisément, nous

nous concentrons sur l’apprentissage contrastif (CL)
et nous proposons un cadre d’apprentissage métrique
unifié qui nous permet à la fois d’analyser facilement
les fonctions de coût existantes et d’en dériver de
nouvelles. Nous proposons ici une nouvelle fonction
de coût contrastive supervisée, -SupInfoNCE, et deux
techniques de régularisation de débiaisage, EnD et
FairKL, qui atteignent des performances de pointe sur
plusieurs benchmarks classiques de classification et
de débiaisage en vision par ordinateur.
Dans la deuxième partie de la thèse, nous nous
concentrons sur l’apprentissage collatéral sur des
images de neuro-imagerie et de radiographie thora-
cique. Pour la neuro-imagerie, nous présentons une
nouvelle approche d’apprentissage contrastif pour
l’estimation de l’âge du cerveau. Notre approche
atteint des résultats de pointe sur l’ensemble de
données OpenBHB pour la régression de l’âge et
montre une robustesse accrue à l’effet de site. Nous
tirons également parti de cette méthode pour détecter
des modèles de vieillissement cérébral pathologique,
ce qui donne des résultats prometteurs dans la clas-
sification des troubles cognitifs légers (MCI) et de la
maladie d’Alzheimer (AD). Pour les images de ra-
diographie thoracique (CXR), nous ciblons la clas-
sification Covid-19, en montrant comment l’appren-
tissage collatéral peut effectivement nuire à la fia-
bilité de ces modèles. Pour résoudre ce problème,
nous proposons une approche d’apprentissage par
transfert qui, combinée aux techniques proposées de
régularisation, donne des résultats prometteurs sur
un ensemble de données CXR multi-sites.
Enfin, nous donnons quelques indications sur l’ap-
prentissage collatéral et la préservation de la
vie privée dans les modèles d’apprentissage pro-
fond. Nous montrons que certaines des méthodes
que nous proposons peuvent être efficaces pour
empêcher que certaines informations soient apprises
par le modèle, évitant ainsi une fuite potentielle de
données.



Title : Collateral-Free Learning of Deep Representations: From Natural Images to Biomedical Applications

Keywords : Representation Learning, Robust Representations, Debiasing, Medical Imaging

Abstract : Deep Learning (DL) has become one of
the predominant tools for solving a variety of tasks, of-
ten with superior performance compared to previous
state-of-the-art methods. DL models are often able to
learn meaningful and abstract representations of the
underlying data. However, it has been shown that they
might also learn additional features, which are not ne-
cessarily relevant or required for the desired task. This
could pose a number of issues, as this additional in-
formation can contain bias, noise, or sensitive infor-
mation, that should not be taken into account (e.g.
gender, race, age, etc.) by the model. We refer to this
information as collateral. The presence of collateral
information translates into practical issues when de-
ploying DL-based pipelines, especially if they involve
private users’ data. Learning robust representations
that are free of collateral information can be highly re-
levant for a variety of fields and applications, like me-
dical applications and decision support systems.
In this thesis, we introduce the concept of Collateral
Learning, which refers to all those instances in which
a model learns more information than intended. The
aim of Collateral Learning is to bridge the gap bet-
ween different fields in DL, such as robustness, de-
biasing, generalization in medical imaging, and pri-
vacy preservation. We propose different methods for
achieving robust representations free of collateral in-
formation. Some of our contributions are based on re-
gularization techniques, while others are represented
by novel loss functions.
In the first part of the thesis, we lay the foundations
of our work, by developing techniques for robust re-
presentation learning on natural images. We focus
on one of the most important instances of Collate-

ral Learning, namely biased data. Specifically, we fo-
cus on Contrastive Learning (CL), and we propose a
unified metric learning framework that allows us to
both easily analyze existing loss functions, and de-
rive novel ones. Here, we propose a novel supervi-
sed contrastive loss function, ϵ-SupInfoNCE, and two
debiasing regularization techniques, EnD and FairKL,
that achieve state-of-the-art performance on a num-
ber of standard vision classification and debiasing
benchmarks.
In the second part of the thesis, we focus on Colla-
teral Learning in medical imaging, specifically on neu-
roimaging and chest X-ray images. For neuroimaging,
we present a novel contrastive learning approach for
brain age estimation. Our approach achieves state-
of-the-art results on the OpenBHB dataset for age re-
gression and shows increased robustness to the site
effect. We also leverage this method to detect un-
healthy brain aging patterns, showing promising re-
sults in the classification of brain conditions such as
Mild Cognitive Impairment (MCI) and Alzheimer’s Di-
sease (AD). For chest X-ray images (CXR), we will
target Covid-19 classification, showing how Collateral
Learning can effectively hinder the reliability of such
models. To tackle such issue, we propose a transfer
learning approach that, combined with our regulariza-
tion techniques, shows promising results on an origi-
nal multi-site CXRs dataset.
Finally, we provide some hints about Collateral Lear-
ning and privacy preservation in DL models. We show
that some of our proposed methods can be effective
in preventing certain information from being learned
by the model, thus avoiding potential data leakage.

Institut Polytechnique de Paris
91120 Palaiseau, France
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