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Titre : Extraction d’information translingue pour l’évaluation et la prévention d’effets indésirablesde médicamentsMots clés :Domaine médical, Traitement automatique des langues, médias sociaux, transfert deconnaissances trans-lingue, extraction d’information, pharmacovigilance
Résumé : Les travaux décrits dans cette thèseportent sur la détection et l’extraction trans- etmultilingue des effets indésirables des médica-ments dans des textes biomédicaux rédigés pardes non-spécialistes.Dans un premier temps, je décris la créationd’un nouveau corpus trilingue (allemand, fran-çais, japonais), centré sur l’allemand et le fran-çais, ainsi que le développement de directives,applicables à toutes les langues, pour l’annota-tion de contenus textuels produits par des uti-lisateurs de médias sociaux. Enfin, je décris leprocessus d’annotation et fournis un aperçu dujeu de données obtenu.Dans un second temps, j’aborde la questionde la confidentialité en matière d’utilisation dedonnées de santé à caractère personnel. Enfin,je présente un prototype d’étude sur la façondont les utilisateurs réagissent lorsqu’ils sontdirectement interrogés sur leurs expériencesen matière d’effets indésirables liés à la prise demédicaments. L’étude révèle que la plupart desutilisateurs ne voient pas d’inconvénient à dé-crire leurs expériences quand demandé, maisque la collecte de données pourrait souffrir dela présence d’un trop grand nombre de ques-tions.Dans un troisième temps, j’analyse les ré-sultats d’une potentielle seconde méthode decollecte de données sur les médias sociaux, àsavoir la génération automatique de pseudo-tweets basés sur des messages Twitter réels.Dans cette analyse, je me concentre sur les dé-fis que cette approche induit. Je conclus que denombreuses erreurs de traduction subsistent,à la fois au niveau du sens du texte et des an-notations. Je résume les leçons apprises et jeprésente des mesures potentielles pour amé-liorer les résultats.Dans un quatrième temps, je présente desrésultats expérimentaux de classification trans-

lingue de documents, en anglais et en alle-mand, en ce qui concerne les effets indési-rables des médicaments. Pour ce faire, j’ajusteles modèles de classification sur différentesconfigurations de jeux de données, d’abordsur des documents anglais, puis sur des do-cuments allemands. Je constate que l’incorpo-ration de données d’entraînement anglaisesaide à la classification de documents pertinentsen allemand, mais qu’elle n’est pas suffisantepour atténuer efficacement le déséquilibre na-turel des classes des documents. Néanmoins,les modèles développés semblent prometteurset pourraient être particulièrement utiles pourcollecter davantage de textes, afin d’étendre lecorpus actuel et d’améliorer la détection de do-cuments pertinents pour d’autres langues.Dans un cinquième temps, je décris ma par-ticipation à la campagne d’évaluation n2c2 2022de détection des médicaments qui est ensuiteétendue de l’anglais à l’allemand, au français età l’espagnol, utilisant des ensembles de don-nées de différents sous-domaines. Je montreque le transfert trans- et multilingue fonctionnebien, mais qu’il dépend aussi fortement destypes d’annotation et des définitions. Ensuite,je réutilise les modèles mentionnés précédem-ment pour mettre en évidence quelques résul-tats préliminaires sur le corpus présenté. J’ob-serve que la détection des médicaments donnedes résultats prometteurs, surtout si l’on consi-dère que les modèles ont été ajustés sur desdonnées d’un autre sous-domaine et appliquéssans réentraînement aux nouvelles données.En ce qui concerne la détection d’autres ex-pressions médicales, je constate que la perfor-mance des modèles dépend fortement du typed’entité et je propose des moyens de gérer ceproblème. Enfin, les travaux présentés sont ré-sumés, et des perspectives sont discutées.



Title : Cross-lingual Information Extraction for the Assessment and Prevention of Adverse DrugReactionsKeywords : medical domain, natural language processing, social media, cross-lingual transferlearning, information extraction, pharmacovigilance
Abstract : The work described in this the-sis deals with the cross- and multi-lingual de-tection and extraction of adverse drug reac-tions in biomedical texts written by laypeople.This includes the design and creation of amulti-lingual corpus, exploring ways to collectdata without harming users’ privacy and in-vestigating whether cross-lingual data can mi-tigate class imbalance in document classifica-tion. It further addresses the question of whe-ther zero- and cross-lingual learning can be suc-cessful in medical entity detection across lan-guages.I describe the creation of a new tri-lingualcorpus (German, French, Japanese) focusingon German and French, including the develop-ment of annotation guidelines applicable to anylanguage and oriented towards user-generatedtexts.I further describe the annotation processand give an overview of the resulting dataset.The data is provided with annotations on fourlevels : document-level, for describing if a textcontains ADRs or not ; entity level for capturingrelevant expressions ; attribute level to furtherspecify these expressions ; The last level anno-tates relations, to extract information on howthe aforementioned entities interact.I then discuss the topic of user privacy indata about health-related issues and the ques-tion of how to collect such data for researchpurposes without harming the person’s pri-vacy. I provide a prototype study of how usersreact when they are directly asked about theirexperiences with ADRs. The study reveals thatmost people do not mind describing their expe-riences if asked, but that data collection mightsuffer from too many questions in the ques-tionnaire.Next, I analyze the results of a potential se-cond way of collecting social media data : thesynthetic generation of pseudo-tweets basedon real Twitter messages. In the analysis, I fo-cus on the challenges this approach entails andfind, despite some preliminary cleaning, thatthere are still problems to be found in the trans-

lations, both with respect to the meaning of thetext and the annotated labels. I therefore giveanecdotal examples of what can go wrong du-ring automatic translation, summarize the les-sons learned, and present potential steps forimprovements.Subsequently, I present experimental re-sults for cross-lingual document classificationwith respect to ADRs in English and German.For this, I fine-tuned classification models ondifferent dataset configurations first on Englishand then on German documents, complicatedby the strong label imbalance of either langua-ge’s dataset. I find that incorporating Englishtraining data helps in the classification of rele-vant documents in German, but that it is notenough to mitigate the natural imbalance ofdocument labels efficiently. Nevertheless, thedeveloped models seem promising and mightbe particularly useful for collecting more textsdescribing experiences about side effects to ex-tend the current corpus and improve the de-tection of relevant documents for other lan-guages.Next, I describe my participation in then2c2 2022 shared task of medication detectionwhich is then extended from English to Ger-man, French and Spanish using datasets fromdifferent sub-domains based on different an-notation guidelines. I show that the multi- andcross-lingual transfer works well but also stron-gly depends on the annotation types and defi-nitions. After that, I re-use the discussed mo-dels to show some preliminary results on thepresented corpus, first only on medication de-tection and then across all the annotated entitytypes. I find that medication detection showspromising results, especially considering thatthe models were fine-tuned on data from ano-ther sub-domain and applied in a zero-shot fa-shion to the new data. Regarding the detectionof other medical expressions, I find that theperformance of the models strongly dependson the entity type and propose ways to handlethis. Lastly, the presented work is summarizedand future steps are discussed.



Titel : Sprachübergreifende Informationsextraktion zur Erkennung und Prävention medizinischerNebenwirkungenSchlüsselwörter :Medizinischer Bereich, maschinelle Sprachverarbeitung, soziale Medien, spra-chübergreifender Wissenstransfer, Informationsextraktion, Pharmakovigilanz
Zusammenfassung : Die in dieser Disserta-tion beschriebene Arbeit befasst sich mit dermehrsprachigen Erkennung und Extraktion vonunerwünschten Arzneimittelwirkungen in bio-medizinischen Texten, die von Laien verfasstwurden.Ich beschreibe die Erstellung eines neuendreisprachigen Korpus (Deutsch, Französisch,Japanisch) mit Schwerpunkt auf Deutsch undFranzösisch, einschließlich der Entwicklung vonAnnotationsrichtlinien, die für alle Sprachengelten und sich an nutzergenerierten Textenorientieren. Weiterhin dokumentiere ich denAnnotationsprozess und gebe einen Überblicküber den resultierenden Datensatz.Anschließend gehe ich auf den Schutz derPrivatsphäre der Nutzer in Bezug auf Datenüber Gesundheitsprobleme ein. Ich präsen-tiere einen Prototyp zu einer Studie darüber,wie Nutzer reagieren, wenn sie direkt nach ih-ren Erfahrungen mit Nebenwirkungen befragtwerden. Die Studie zeigt, dass die meisten Men-schen nichts dagegen haben, ihre Erfahrun-gen zu schildern, wenn sie um Erlaubnis ge-fragt werden. Allerdings kann die Datenerhe-bung darunter leiden, dass der Fragebogen zuviele Fragen enthält.Als nächstes analysiere ich die Ergebnisseeiner zweiten potenziellen Methode zur Da-tenerhebung in sozialen Medien, der synthe-tischen Generierung von Pseudo-Tweets, dieauf echten Twitter-Nachrichten basieren. In derAnalyse konzentriere ich mich auf die Heraus-forderungen, die dieser Ansatz mit sich bringt,und zeige, dass trotz einer vorläufigen Berei-nigung noch Probleme in den Übersetzungenzu finden sind, sowohl was die Bedeutung desTextes als auch die annotierten Tags betrifft.Ich gebe daher anekdotische Beispiele dafür,was bei einer maschinellen Übersetzung schief-gehen kann, fasse die gewonnenen Erkennt-nisse zusammen und stelle potenzielle Verbes-serungsmaßnahmen vor.Weiterhin präsentiere ich experimentelleErgebnisse für die Klassifizierung mehrsprachi-ger Dokumente bezüglich medizinischer Ne-benwirkungen im Englischen und Deutschen.Dazu wurden Klassifikationsmodelle an ver-

schiedenen Datensatzkonfigurationen verfei-nert (fine-tuning), zunächst an englischen unddann an deutschen Dokumenten. Dieser An-satz wurde durch das starke Ungleichgewichtder Labels in den beiden Datensätzen verkom-pliziert. Die Ergebnisse zeigen, dass die Einar-beitung englischer Trainingsdaten bei der Klas-sifizierung relevanter deutscher Dokumentehilft, aber nicht ausreicht, um das natürlicheUngleichgewicht der Dokumentenklassen wirk-sam abzuschwächen. Dennoch scheinen dieentwickelten Modelle vielversprechend zu seinund könnten besonders nützlich sein, um wei-tere Texte zu sammeln. Dieser wiederum kön-nen das aktuelle Korpus erweitern und damitdie Erkennung relevanter Dokumente für an-dere Sprachen verbessern.Nachfolgend beschreibe ich die Teilnahmeam n2c2 2022 Shared Task zur Erkennung vonMedikamenten. Die Ansätze des Shared Taskwerden anschließend vom Englischen auf deu-tsche, französische und spanische Korpora aus-geweitet, indem Datensätze aus verschiedenenTeilbereichen verwendet werden, die auf unter-schiedlichen Annotationsrichtlinien basieren.Ich zeige, dass die mehrsprachige Übertragunggut funktioniert, aber auch stark von den An-notationstypen und Definitionen abhängt. ImAnschluss verwende ich die besprochenen Mo-delle erneut, um einige vorläufige Ergebnissefür das vorgestellte Korpus zu zeigen, zunächstnur für die Erkennung von Medikamenten unddann für alle Arten von annotierten Entitä-ten. Die experimentellen Ergebnisse zeigen,dass die Medikamentenerkennung vielverspre-chende ist, insbesondere wenn man bedenkt,dass die Modelle an Daten aus einem ande-ren Teilbereich verfeinert und mit einem zero-shot Ansatz auf die neuen Daten angewen-det wurden. In Bezug auf die Erkennung an-derer medizinischer Ausdrücke stellt sich he-raus, dass die Leistung der Modelle stark vonder Art der Entität abhängt. Ich schlage de-shalb Möglichkeiten vor, wie man dieses Pro-blem in Zukunft angehen könnte. Abschließendwerden die vorgestellten Arbeiten zusammen-gefasst und zukünftige Schritte diskutiert.
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Chapter 1

Introduction

According to Edwards and Aronson (2000), an Adverse Drug Reaction (ADR) is defined as
follows:

“An appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a
medicinal product, which predicts hazard from future administration and warrants prevention or

specific treatment, or alteration of the dosage regimen, or withdrawal of the product”

These reactions can be harmful and even deadly to the patient taking a medication. According
to the World Health Organization (WHO), ADRs are one of the leading causes of death around
the world1 and, as estimated in a study in Sweden, responsible for 3% of all deaths overall in
the (Swedish) population (Wester et al., 2008). In a recently published study by Beeler et al.
(2023), which ran over eight years in Switzerland, the authors found that 2.3% of about 32,000
hospital admissions per year were caused by ADRs.

Many of these ADRs are caused by e.g., wrong dosages, self-medication, incorrect diag-
noses, or undetected conditions (like allergies) of the patient. Common reactions, as reported
by Beeler et al. (2023) are, for example, hypertension, electrolyte disorders, or renal failure.
Also, in general, no medication is free of side effects, and even though there are clinical trials
for each drug, the pool of patients can never represent an entire population (e.g., with respect to
age, gender, health, or ethnicity) (Hazell and Shakir, 2006). Even post-release surveillance cam-
paigns might fail to reach the people who have issues with the released medication (Hazell and
Shakir, 2006). Therefore, even after conducting these countermeasures, medication use and ef-
fects must be monitored constantly. For this, several public institutions for the official reporting
of ADRs exist, for example spontaneous reporting systems (SRS) like the FDA Adverse Event
Reporting System (FAERS) in the US, the UK Yellow Card Scheme2 or the European Database
on Adverse Drug Reaction Reports3. According to several studies, these reports made by pa-
tients contain more details and more explicit information about the experienced ADRs than
what practitioners tend to report (Medawar et al., 2002; Herxheimer et al., 2010; Vilhelmsson,
2015).

However, even though there are official reporting authorities, ADRs suffer from serious
under-reporting (Hazell and Shakir, 2006; Palleria et al., 2013). This is often due to the volun-
tary nature of the respective systems (Yang et al., 2012; Zolnoori et al., 2019), but even in coun-
tries where reporting serious ADRs is legally obligatory, like in Switzerland, the majority is not
reported (Beeler et al., 2023). Furthermore, patients (or people taking medication) might not
even know they are experiencing side effects. If they knew, they might not be aware of official
places to report them (if there are any in their country) or that their physician can report them
(Yang et al., 2012). Not even the physician might know that there are official contact points, and
if they do, they often only report those ADRs of which they are already certain (Segura-Bedmar

1https://bit.ly/3tcUzoQ
2https://yellowcard.mhra.gov.uk/
3https://www.adrreports.eu/

https://bit.ly/3tcUzoQ
https://yellowcard.mhra.gov.uk/
https://www.adrreports.eu/
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et al., 2014). Also, not everyone likes to talk about medical problems, especially when it comes
to sensitive matters, e.g., related to psychological problems or sexuality. Palleria et al. (2013)
describe several other reasons for the under-reporting of ADRs. For instance, people might
believe that serious ADRs are already well documented, or they are insecure if a drug is really
responsible for a symptom they are experiencing. Further, they might think that their issues are
not important or serious enough to be reported in the first place, they might fear consequences
arising from “going public” or they might mistrust the clinical providers (Yang et al., 2012).
And finally, even if ADRs are reported by professionals, the reports often lack in quality and
information (Palleria et al., 2013) and technical reports often go without the information of how
exactly patients suffer (Arase et al., 2020).

Consequently, other resources need to be considered for monitoring the reactions intro-
duced by newly (and sometimes long-time) released medications. Social media presents them-
selves as a valuable resource since at least two thirds of the world’s population have access
to internet4 and a high number thereof is active on social media5, providing data in different
languages and from different social and ethical backgrounds. Therefore, a different pool of
people can be reached, and at the same time, it allows reversing the perspective to the one of
the patient. This makes a big difference since non-professionals speak and write in their own
voice and with their own words (even in regional dialects) about the issues they experience(d).
With this, health issues that are acutely more relevant to “regular” people are exposed.

Social media, including patient fora, are a more anonymous way of sharing concerns and
doubts, which might be more comfortable for patients, especially when experiencing more
tabooed side effects. Depending on the used platform, users might not need to disclose their
names or any other personal information. They can communicate their concerns openly and
without fear of consequences. Of course, this also makes it more difficult to verify any in-
formation they share, touching the topic of factuality and fake news in times of worldwide
communication.

Another factor for turning to social media is, as already mentioned, the variety of languages
provided on the internet. Most scientific publications are written and distributed in English to
reach a broader research community. However, most (lay) people do not understand these
publications – either because they speak a different language than English, because it is writ-
ten in a very technical language or both. Therefore, they turn to the World Wide Web, often
patient fora, to research and collect information on topics they are concerned with, following
“translations” from technical terminology to layperson language provided by other members
of the respective communities. Sometimes, there are even clinicians involved in these fora. By
now, several initiatives6 in various countries exist with the goal of providing health information
in a way that is understandable for laypeople. This, again, highlights the necessity to extract
relevant information not only from texts written by experts but also to listen to the patients’
voices and process texts written by “normal” people. In the long term, it also might help clin-
icians and other practitioners to understand their patients and the experienced ADRs better,
react more appropriately, and meet the patients’ needs more precisely (Arase et al., 2020), al-
lowing the patients to participate actively in their own treatment (Segura-Bedmar et al., 2014).
Finally, the collected information from “crowd signals” (Scaboro et al., 2022) can be used for
drug re-purposing and the development of new medications7.

Note that when using data from social media, we again commit to a certain sub-group of
people: Those who have access to and actively participate on these platforms. Depending on
the platform, the age range might vary, too.

4https://www.statista.com/topics/1145/internet-usage-worldwide
5https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
6For example, https://www.patienten-information.de/leichte-sprache or https:

//washabich.de/.
7Of course, all detected information should be reviewed by at least one recognized expert in the field.

https://www.statista.com/topics/1145/internet-usage-worldwide
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.patienten-information.de/leichte-sprache
https://washabich.de/
https://washabich.de/


Chapter 1. Introduction 3

The previous paragraph established that multi-lingual user-generated texts (UGTs) col-
lected from social media are a valuable resource that should definitely be used to support
pharmacovigilance. Now we need the means to do this efficiently. No human can possibly
go through the huge amounts of text published every second on the internet. Yet, being able
to process and present data quickly allows to extract information in a concise and structured
way and to react immediately. In the case of pharmacovigilance, it can trigger medical investi-
gations (Scaboro et al., 2022) which might be a matter of life and death in the worst case (Beeler
et al., 2023). However, texts collected online are usually unstructured, not standardized, and
contain much more content than is needed for pharmacovigilance. For demonstration pur-
poses, see Example 1.1, a drug review collected for the corpus PSYTAR (Zolnoori et al., 2019)
from the forum AskAPatient8. Texts like the one displayed need to be processed and filtered,
and the relevant information needs to be extracted.

(1.1) “Wow this stuff is strong, i took the first 10mg today, and can’t focus, i’m totally apathetic. This
lexapro works too much like a neuroleptic. i hate feeling out of control, detached. I would rather
be depressed than totally anihilated ! Never again.”9

This is exactly where methods from Computational Linguistics or Natural Language Process-
ing (NLP) are useful. NLP is the application of computational methods for the analysis and
synthesis of natural text and speech. In particular, the sub-field of Information Extraction (IE), a
type of information retrieval, is of interest in this case. It is dedicated to automatically acquiring
information relevant to a specific task or question by collecting it from texts and presenting it in
a structured way, e.g., in a database (Sarawagi, 2008). For example, commonly known applica-
tions are sentiment analysis, i.e., attributing a product review with a certain sentiment (positive,
negative, neutral), or event extraction, e.g., extracting information relevant to an event (date,
time, location) and the event itself from an e-mail.

In the presented use case, we are interested in drug mentions and medical signs and symp-
toms, and the relationships between those, amongst other things. For example, from a docu-
ment like the one in Example 1.1, we would like to extract the information that the patient took
the medication Lexapro because of a certain diagnosis (I would rather be depressed) and that they
experience side effects like impaired concentration (can’t focus), and apathy (totally ap-
athetic) and a feeling of helplessness and detachment (feeling out of control, feeling de-
tached, being anihilated). Furthermore, the patient gives us information about the drug’s dosage
(10mg) and implicitly says that, although they just started (took the first 10mg today), they will
stop the medication immediately (Never again.), supposedly because of the adverse reactions.

Nowadays, automatically extracting this kind of information is typically done by using
(neural) Machine Learning (ML) approaches. Often, labeled data is used to train a model and
then apply this model to relevant data, e.g., new incoming social media texts, to extract in-
formation similar to the one that was labeled in the training data. Usually, several steps are
required to successfully set up a pipeline that gets as input a plain document collected from the
internet and returns structured information that can be re-used for further tasks. We now as-
sume that we want to build a ML model that does exactly that. The necessary steps are briefly
described as follows:

Data Collection First of all, data for a model to learn and to be evaluated on needs to be col-
lected. The difficulty of that depends very much on the domain and language in which
the data is supposed to be collected and the task it is required to help in. For example,
getting English product reviews might be easier than collecting Italian legal texts. Also,
accessibility, copyrights, and (user) privacy might play a role in the collection procedure.

8https://www.askapatient.com/
9Example from PsyTAR corpus (Zolnoori et al., 2019).

https://www.askapatient.com/
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Data Annotation Labeling or annotating is the process of adding analytical or descriptive notes
to a stream of raw text. For instance, in the text provided in Example 1.1, we would mark
the medication name “lexapro”, which is an entity we are interested in, with a label named
drug and 10mg with the label dosage.

Data (Pre-)processing Pre-processing might happen before and after data annotation. It in-
cludes, for example, cleaning and tokenizing the data. Cleaning often involves removing
noise or other disturbing factors, e.g., hashtags from social media. Tokenization is the
process of separating a stream of data (text) into smaller, meaningful parts, usually para-
graphs, sentences, and single tokens10.

At this point, data de-identification might also be applied, a pre-processing step that is
particularly relevant in the biomedical or clinical domain. This involves methods that
obscure or remove mentions of personally identifying information that might make it
possible to back-trace the text to its original author.

Named Entity Recognition (NER) After data preparation, the extraction of information can
begin. NER is the task of extracting entities or spans from a given text and classifying
them into pre-defined labels. Entities are mostly self-contained expressions, like loca-
tions or drug mentions (e.g., “lexapro” as drug) while spans can comprise longer sentence
fragments, e.g., colloquial disorder descriptions (e.g., “can’t focus” as disorder). Given
a text, we want to receive the entities of interest tagged with their corresponding labels,
but also the position of these entities in the text. In the case of ADRs the syntactic position
of the drug mentioned might be important to help in judging if a symptom is the reason
or outcome of the drug. See Figure 1.1 for an example.

Relation Extraction (REL) This is the task of identifying and classifying relationships between
the aforementioned entities or spans. For instance, in the presented example, there exists
a relationship between the mention lexapro with the label drug and the mention can’t focus
with the label disorder. The relationship might be called caused in this case since the
medication seems to be the reason for the symptom. Again, please refer to Figure 1.1 for
a visualization.

Entity Linking / Entity Normalization This, finally, is the task of associating an entity with
its normalized version, which usually comes from an ontology or taxonomy. It means
to unify, and ground mentions from unstructured documents to a reference concept or
category to be further processed.11

Figure 1.1: An example annotation of a German text from the newly created corpus. En-
tities as well as relations are annotated, additional attributes (duration attached to the

time expression) provide more fine-grained information.

We will re-visit all of the listed tasks in the remainder of this thesis except the step of entity
normalization since this is ongoing and future work. However, it still illustrates how extracted
information can be further processed and made available to physicians or other end-users.

While there exist established and decently working methods for all described steps, these
are not easily transferable to (i) the biomedical domain, (ii) social media data and (iii) lan-
guages other than English. For example, regarding (i), we often are confronted with a skewed

10A token, as defined by Manning et al. (2009), is “an instance of a sequence of characters in some particular
document that are grouped together as a useful semantic unit for processing.”.

11Entity Normalization is not discussed in this thesis; it is added for completeness.
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data distribution in the medical domain. Events or documents relevant to the targeted use case
are not very frequent compared to other occurrences, but they are important nonetheless. In
the case of ADRs, documents containing relevant descriptions of experiences are in the minor-
ity if the forum is not dedicated to this exact topic. Also, the biomedical domain has its own
jargon, including abbreviations which can vary from hospital to hospital.

As for (ii), it is often difficult to deal with social media data in general since people use a
very different language to what is usually considered “correct” in terms of grammar, orthog-
raphy, or lexis. This is particularly applicable when addressing medical topics. Here, patients
might know nothing about their symptoms and simply describe their feelings, i.e., use collo-
quial everyday language. Still, they might also be experts with respect to a certain disease
and therefore use the exact same terminology as practitioners. Additionally, the use of abbre-
viations (medical or colloquial) and emojis can complicate processing. This provides a very
interesting field to study but makes it much harder for ML models to generalize.

Finally, coming to (iii), and summing up the above, these challenges are already difficult
for English but even harder for other languages. This is mostly due to the scarce data available
in this domain and languages other than English, often caused by privacy issues and a smaller
NLP community to support the creation of datasets. It also extends into the lower availabil-
ity of pre-trained language- or domain-specific Language Models (LMs)12, although there has
been improvement in recent years. Nevertheless, even if data are easy to come by in certain
circumstances or for specific languages, they still need to be annotated to be used as training
material. These annotations are based on guidelines and schemes, usually defined for one lan-
guage and an exact purpose. This makes it intricate to transfer them to other, even related,
domains or languages for which, in turn, new datasets, guidelines, and schemes have to be
developed.

Based on the above-mentioned issues in the current research with respect to the cross-
lingual detection of Adverse Drug Reactions, we infer the following research questions, which
are attempted to be answered in the remainder of this thesis.

Research Questions & Contributions

This work describes the following Research Questions (RQs) and contributions to tackle the
tasks of classifying and extracting Adverse Drug Reactions from user-generated texts within
and across languages.

Research Questions

Research Question 1. Can we create annotations with respect to ADRs across languages and how do
annotation guidelines need to be designed such that they are applicable to all targeted languages?

Research Question 2. Is it possible to collect high-quality descriptions of medical side effects by
simply asking patients online to describe their experiences?

Research Question 3. Can few-shot approaches improve classification performance when faced with
a high label imbalance?

Research Question 4. Do multi-lingual transformer models work well enough to reliably extract
drug mentions from texts originating from different genres in different languages?

Research Question 5. How well does the transfer of learned knowledge about ADRs from one
language to the other work in the bio-medical domain?

12Generative (large language) models are not discussed in this thesis.
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Contributions

Many of the following contributions were a joint effort within KEEPHA13, a trilateral project
between Germany, Japan, and France.

• Development of cross-lingual annotation guidelines for user-generated content in the bio-
medical domain. The guidelines are applicable to (at least) four languages: English, Ger-
man, French and Japanese. Note that these languages represent three different language
families and that their speakers come from diverse cultural backgrounds. This contribu-
tion refers to RQ 1 and is discussed in Section 4.1.
The general guidelines were developed in a group effort of team KEEPHA. I was responsible for
developing and validating the guidelines based on German examples, instructing and training an-
notators and supervising the annotation process. Problems and questions or unclear instructions
regarding annotation were discussed between the annotators and me, then brought to monthly
meetings to discuss with the team and consolidate with the other languages. I was further re-
sponsible for consolidating the German data, both the binary and entity/relation annotations. The
French data was prepared by me as well. Similarly to the German data, the annotators’ questions
and problems were discussed in weekly meetings and whenever needed.

• Creation of a corpus of 118 annotated documents in German containing entity, attribute,
and relation-level annotations according to the guidelines, the first of this kind for re-
search on the extraction of ADRs. This contribution refers to RQ 1 and is discussed in
Section 4.1.
I was responsible for aggregating and preparing the data, as well as training the annotators for
both the German and the French datasets based on the above mentioned guidelines. I curated the
German data, calculated inter-annotator agreement and analyzed the results.

• Creation of a corpus of 10,000 documents in German and 864 documents in French with
binary annotations for document-level classification of ADRs. This contribution refers to
RQ 1 and is discussed in Section 4.1.
I collected the data, set up the annotation system, trained the annotators and discussed annotations
with them. I further curated the dataset, calculated inter-annotator agreement and analyzed the
results. I further supervised the annotators when checking the translations into French.

• A prototype study for gathering data relevant to bio-medical text processing so that pa-
tients can consent to the processing. This contribution refers to RQ 2 and is discussed in
Section 4.2.1.
This study was a result of the Usable Privacy seminar at TU Berlin. I proposed the idea, designed
the questionnaire and ran the study. Subsequently, I analyzed the results.

• Experiments on the binary classification of German documents containing ADRs in a
low-resource setting, using zero- and few-shot techniques and cross-lingual knowledge
transfer from English to German. The high label imbalance in both languages is a big
challenge and few-shot approaches, even when using balanced label distributions, are
less helpful than fine-tuning on the highly imbalanced original dataset. This contribution
refers to RQ 3 and is discussed in Chapter 5.
This was published in Raithel et al. (2022); For detailed contributions, see below.

13Participating project partners are TU Berlin, DFKI GmbH Berlin (Germany), Riken, NII, and NAIST (Japan),
and LISN, CNRS, Université Paris-Saclay (France); https://keepha.lisn.upsaclay.fr/wiki/doku.php?
id=start, within the ANR-DFG-JST trilateral call on Artificial Intelligence.

https://keepha.lisn.upsaclay.fr/wiki/doku.php?id=start
https://keepha.lisn.upsaclay.fr/wiki/doku.php?id=start
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• An analysis of the performance of multi-lingual language models for drug detection
across languages (German, French, Spanish, English) and within language sets (Ger-
man/English & French/Spanish). We find that the performance of the multi-lingual mod-
els strongly depends on the underlying annotations; even within languages, knowledge
sometimes fails to be transferred. This contribution refers to RQ 4 and is discussed in
Section 6.2.
This work was done jointly with Johann Frei, Augsburg University, supervised by Philippe Thomas,
Roland Roller, Pierre Zweigenbaum, Sebastian Möller, and Frank Kramer. JF prepared and an-
alyzed the data and both JF and I designed and discussed the experiments. I set up and ran the
experiments, aggregated the results, and analyzed the models’ errors. Both JF and I wrote the
manuscript, supervised and reviewed by PT, RR, PZ, SM, and FK.

• A first NER baseline for the newly created KEEPHA dataset. The baseline already shows
promising results, within and across languages, but a high variation depending on entity
type. This contribution refers to RQ 5 and is discussed in Section 6.3.
I prepared, ran and analyzed the experiments.

• Support in preparing and validating a parallel multi-lingual dataset containing synthet-
ically created tweets in four languages for the NTCIR-17 social media shared task. This
contribution is discussed in Section 4.2.2.
Joint work with the KEEPHA team for NTCIR-17 MedNLP-SC Social Media Adverse Drug
Event Detection Subtask; See detailed contributions below.

Publications

The research of this thesis has so far resulted in the following publications:

1. Lisa Raithel, Philippe Thomas, Roland Roller, Oliver Sapina, Sebastian Möller, and Pierre
Zweigenbaum. 2022. Cross-lingual Approaches for the Detection of Adverse Drug Reac-
tions in German from a Patient’s Perspective. In Proceedings of the Language Resources and
Evaluation Conference, pages 3637–3649, Marseille. European Language Resources Associ-
ation
LR collected and prepared the data, set up the annotation system, and created the (binary) an-
notation guidelines. OS annotated most of the data, supported by LR. Problems and questions
during annotation were discussed between OS and LR. Together with PZ, LR designed the ex-
periments. LR implemented the experiments, evaluated the performance and analyzed the results.
LR wrote the manuscript, which PT, RR, SM, and PZ then reviewed. Note that we only published
approximately half of the binary annotated data in this paper.

2. Lisa Raithel*, Faith W. Mutinda*, Gabriel H. B. Andrade*, Hui-Syuan Yeh*, Tomohiro
Nishiyama*, Mathieu Laï-King, Shuntaro Yada, Roland Roller, Cyril Grouin, Agata Savary,
Aurélie Névéol, Thomas Lavergne, Eiji Aramaki, Sebastian Möller, Yuji Matsumoto, and
Pierre Zweigenbaum: KEEPHA at n2c2 2022: Track 1 Contextualized Medication Event
Extraction, 2022. n2c2 Shared Task and Workshop, 2022 (2022/11/4, Washington, D.C.) (no
proceedings)

HY and LR proposed participating in the shared task. LR implemented and evaluated the exper-
iments on medication extraction (subtask 1), FM and GA implemented and evaluated the experi-
ments on event classification (subtask 2), and HY implemented and evaluated the experiments on
context classification (subtask 3). LR conducted a detailed error analysis for subtask 1. LR coor-
dinated meetings across subtasks and subtask groups and drafted the technical report. LR further
coordinated the preparation for the talk the team was invited to and presented it with TN and FM.
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All other authors contributed to the meetings and reviewed the technical report.
This contribution is discussed in Section 6.1.

Publications that were in preparation or under review when writing this manuscript and will
be referred to in this thesis:

1. Lisa Raithel*, Hui-Syuan Yeh*, Shuntaro Yada, Cyril Grouin, Thomas Lavergne, Aurélie
Névéol, Patrick Paroubek, Philippe Thomas, Sebastian Möller, Tomohiro Nishiyama, Eiji
Aramaki, Yuji Matsumoto, Roland Roller, and Pierre Zweigenbaum. 2024. A Dataset for
Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reac-
tions across Languages. In Proceedings of the Language Resources and Evaluation Conference,
Torino. European Language Resources Association
This paper describes the KEEPHA corpus, also discussed in this thesis, and accompanying exper-
iments. LR was responsible for the French and German parts of the tri-lingual corpus, collected
and prepared the data, and was a main contributor to the annotation guidelines together with SY.
LR supervised the annotation of the data and curated the German part. Problems and specific
phenomena in the annotation process were first discussed between the annotators and LR, and if
necessary, with all authors. HS and LR discussed, designed, and evaluated the experiments, most
of which were conducted by HS. HS and LR wrote the first draft of the manuscript. The final
paper was written with the help of all other authors.

2. Shoko Wakamiya*, Lis Kanashiro Pereira*, Lisa Raithel*, Hui-Syuan Yeh*, Peitao Han*,
Seiji Shimizu*, Tomohiro Nishiyama, Gabriel Herman Bernardim Andrade, Noriki Nishida,
Hiroki Teranishi, Narumi Tokunaga, Philippe Thomas*, Roland Roller*, Pierre Zweigen-
baum*, Yuji Matsumoto, Akiko Aizawa, Sebastian Möller, Cyril Grouin, Thomas Lavergne,
Aurélie Névéol, Patrick Paroubek, Shuntaro Yada†, Eiji Aramaki†. 2023. NTCIR-17 MedNLP-
SC Social Media Adverse Drug Event Detection: Subtask Overview.
EA, SW, and SY proposed this shared task. TN, GA, and SS produced the initial version of the
corpus, including the translations. NN, HT, NT, YM, AA, SM, TL, and PP discussed the corpus
design. PZ and PT developed the label validation methods. LR and HY developed the evaluation
scripts. LR coordinated the exchange across teams and communicated the results of the automatic
translation validation to the Japanese team. LR further reviewed many German and some French
translations and labels. RR, PT, AN, CG, and PZ discussed the corpus and label design and helped
with the multilingual support. PH and LP built the baseline systems and evaluated the results.

Other publications that are not directly referred to in this thesis are as follows:

1. Roland Roller, Ammer Ayach, and Lisa Raithel. 2021. Boosting transformers using back-
ground knowledge, or how to detect drug mentions in social media using limited data.
In Proceedings of the BioCreative VII Challenge Evaluation Workshop
I helped with some experiments and the writing of the manuscript.

Organization of the thesis The thesis is organized in the following chapters: After the in-
troduction and motivation of this work in Chapter 1, Chapter 2 presents the theoretical and
conceptual background of the described work. Next, Chapter 3 sets the content of this thesis
into the context of related work in cross- and multi-lingual information extraction in general
(Section 3.1), information extraction in biomedical natural language processing (Section 3.2)
and the combination of those two, cross- and multi-lingual information extraction in the do-
main of biomedical natural language processing (Section 3.3). The manuscript is then further
divided into four themed chapters: Section 4.1 presents the annotation guideline development

* equal contribution, † equal leadership
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and corpus creation process. A brief detour to data privacy in the biomedical domain follows
in Section 4.2, which is in turn followed by an analysis of the problems introduced when gener-
ating synthetic tweets and translating these, as done for the NTCIR-17 shared task. Chapter 5
describes the next step in detecting ADRs: the classification of documents into those containing
mentions of adverse reactions versus those that do not. Following that, cross- and multi-lingual
entity extraction in the biomedical domain is discussed in Chapter 6, focusing on the detection
of drug names in English data (Section 6.1) and cross-lingual detection of medication mentions
in Section 6.2. The chapter concludes with preliminary experiments on the newly developed
dataset in Section 6.3. Finally, in Chapter 7, the work described in this thesis is concluded and
possible future research directions are outlined. Technical details and additional results and
information can be found in the appendices.
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Chapter 2

Background

Extracting information from natural, unstructured texts is a long and widely studied topic in
NLP. As already mentioned, this includes, for instance, document classification, Named Entity
Recognition, Relation Extraction, part-of-speech tagging, dependency parsing, or anaphora res-
olution. While rule- and regular expression-based approaches were common some years ago
(and are still in use today), the advent of ML and especially Deep Learning (DL) increased the
development of new methods for extracting relevant information by far.

The following will provide the background knowledge for the rest of the thesis. First, the
definitions of the tackled tasks are given in Section 2.1, completed with the respective evalu-
ation methods in Section 2.2. We will then review the needed concepts in Machine Learning
(Section 2.3): Basic algorithms and learning techniques, including the concept of transfer learn-
ing (Section 2.3.4) and models commonly used for the tasks described in this manuscript (Sec-
tion 2.3.5). The techniques of language modeling are addressed in Section 2.4, with a particular
focus on Transformer-based models in Section 2.4.4 and Section 2.4.5.

2.1 Task Definitions

Document Classification Document classification or categorization aims to assign one or
more labels to a given document. Documents can be basically anything, spanning, for instance,
texts, images, and videos. In this thesis, “document” always refers to text that might be repre-
sented as, for instance, a sentence, a paragraph, or an entire user post on social media.

The labels in document classification are usually pre-defined. Common tasks are, for exam-
ple, sentiment classification with the labels positive, negative, neutral, or news classification, i.e.,
categorizing news articles into their main topics, e.g., politics, science, or sports.

Named Entity Recognition (NER) Initially called “Named entity recognition and classifica-
tion (NERC)”, this task is focused on the detection and classification of (mostly) proper nouns,
i.e., words or phrases denoting person names, locations, organizations, or other individual
named entities. Over the years, the term “named entity” in the context of IE was relaxed and
started to include other types, like temporal or numerical expressions. Also, the types became
more fine-grained, e.g., “location” can be split into sub-types such as “country”, “state”, “city”
(Nadeau and Sekine, 2007). Since the expressions that need to be extracted can also span more
than one word, NER is also often referred to as span detection (and classification).

As the name suggests, the task consists of two parts: First, the span of interest has to be
detected and its boundaries need to be found. Second, the extracted span needs to be classified
into one out of a set of pre-defined semantic types. The task is usually modeled as a sequence
labeling task: A sequence of tokens is given to the system, which then returns a sequence of
types in the same length. For this, the problem is converted into the task of token classifica-
tion. That implies that the sequence first needs to be tokenized, i.e., split into lexical units. A
very simple version of this is to split the sequence by spaces. Then, for NER, every token gets
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assigned an entity type (or tag). An often employed tagging scheme is the BIO scheme (also
IOB) (Ramshaw and Marcus, 1995), representing the Beginning, Inside and Outside of an en-
tity. These tags can also have more detailed attributes to distinguish between different entity
types, for instance, B-Country or B-State to mark tokens belonging to a country or state
expression, respectively.

Relation Extraction (REL) This task involves extracting semantic relations between entities
or spans from unstructured texts. Usually, entity spans and types are given (except in joint
NER and REL systems), as well as a pre-defined set of relations. Therefore, given two entities,
the relation between them only needs to be classified. This task is also often called relation
classification.

Note that the direction of the relation also matters, depending on the task. Moreover, the
same entities can stand in different relationships, subject to the context. For example, in Fig-
ure 1.1, the context of the relationship between a medication mention and a disorder decides
if the medication is a TREATMENT for a disorder, or if the disorder was CAUSED by the medi-
cation. Finally, in theory, relations can also have more than two arguments. However, in this
thesis, we are only concerned with binary relation extraction, i.e., each relation has exactly two
arguments, the head and tail. REL can be used, for instance, to classify drug-drug interactions
or relations between persons and companies in financial news.1

2.2 Evaluation of Predictions and Annotations

Both predictions made by systems but also annotations (usually) made by humans need to be
evaluated and validated. Standard methods are discussed in the next two sections.

2.2.1 Task Evaluation

This section briefly explains how the above-described tasks are evaluated. Usually, the sys-
tems’ predictions are evaluated against a gold standard dataset, i.e., a dataset containing curated
annotations, e.g., marked entities and their types (classes). Usually, precision, recall and Fβ score
are used. We use (binary) document classification as a running example to explain these scores.
A positive document is relevant for us and negative documents are all other documents in which
we are not interested. Precision and recall are then defined using the following counts:

TPs: True positives, the number of correct hits with respect to positive documents.

TNs: True negatives, the number of correct hits with respect to negative documents.

FPs: False positives, the number of negative documents incorrectly labeled as positive.

FNs: False negatives, the number of positive documents incorrectly labeled as negative.

Precision, then, is the proportion of true positives out of all documents predicted as positive
(Equation 2.1).

precision =
TPs

TPs + FPs
(2.1)

Recall, on the other hand, is the proportion of the true positives against the sum of all possible
(correct) positives in the dataset (Equation 2.2).

1Although the task of REL is not performed in this thesis, we annotate the later described dataset with relations
as well and therefore mention the task here.
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recall =
TPs

TPs + FNs
(2.2)

There is always a trade-off between those two measures and systems are often optimized
for one or the other, depending on the task. Let’s take document classification as an example
again. If we are interested in a specific type of document but assume that there might not be
that many relevant documents overall, we might be more interested in recall: A high recall tells
us that we retrieved most of the relevant documents, even if some of them might not be actually
positive in the end. A recall of 1.0 would mean that we retrieved all relevant documents (and
maybe other non-relevant ones). In case we are more interested in the documents predicted as
positive to be actually positive and do not mind missing some other relevant ones, we should
optimize for precision. A precision of 1.0 would mean that all the documents we retrieved are
positive. However, there might be other positive documents that were not retrieved.

To combine precision and recall, the commonly used measure in IE is Fβ score, as shown in
Equation 2.3 and originally introduced by Rijsbergen (1979). It is usually used in the form of
the harmonic mean between precision and recall, i.e., with β = 1 (Chinchor, 1992). Setting β to
a lower or higher value emphasizes precision or recall, respectively.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(2.3)

All three measures have a range between 0 and 1; the higher the resulting score, the better
the system’s performance. Calculating Fβ score can also be applied to multi-class and multi-
label settings2, then it depends on how the per-class scores are averaged over the classes.
Mostly used are micro, macro and weighted averages, defined in the sklearn library3 (Pedregosa
et al., 2011) as follows:

micro average: Calculates Fβ by counting TPs, FPs, and FNs globally, no matter the class, and
does therefore not take label imbalance into account.

macro average: Calculates Fβ score per class and returns the unweighted mean, i.e., each class
is treated equally, no matter the number of samples.

weighted average: Calculates Fβ score per class and weighs per-class scores by support, i.e., the
respective number of classes in the test set. This accounts for class imbalance.

Another widely used measure is accuracy (Equation 2.4):

acc =
TPs + TN

TPs + TNs + FPs + FNs
(2.4)

However, this measure can be massively misleading when used on imbalanced data, ob-
scuring the system’s actual performance for document classes with a low representation. Of
course, Fβ score and its different averages have their biases, too, and should not be used in
certain cases (Manning, 2006; Powers, 2020; Harbecke et al., 2022). The above metrics were
all described using the example of (binary) document classification. NER and REL evaluation
measures are also based on them, but some peculiarities need to be considered.

2Multi-class: There are more than two classes available for classification, but a document can only be assigned
one class at a time. Multi-label: There are more than two classes available and every document can be assigned to
more than one class.

3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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Evaluation of Named Entity Recognition & Relation Extraction

For NER, two aspects need to be taken into account for evaluation: First, the predicted span
has to match with the gold standard span. Second, the type predicted for the span has to match
the one given in the gold data. There are also ways to analyze NER in more detail, categorizing
potential errors in different classes, as presented by Chinchor and Sundheim (1993).For the
NER systems presented in this thesis, we always evaluate the BRAT format of the predictions,
where both span offsets and entity types are considered.

The evaluation of REL works similarly. We either assume that the entities are already given
and, therefore, only evaluate the relations between these, like in a multi-class classification
scenario. In case the entities are not given (joint NER and REL), then errors made in offsets or
entity type prediction are propagated to the relation classification. Therefore, we also need to
consider if the relation was classified correctly, adding another “layer” on top of the metrics
described above.

The above approach, only counting exact matches as correct, is also often called strict eval-
uation. However, a more relaxed approach, also denoted lenient matching, is to consider entity
spans as correct matches as long as they overlap to a certain degree. This might depend on a
threshold with respect to the number of characters or a percentage of the tokens that must over-
lap with the gold span. For the evaluation of entity spans in this work, we use the BRAT format
evaluation script4 provided at the CLEF eHealth 2015 Task 1b (Névéol et al., 2015), originally
developed by Verspoor et al. (2013). For calculating the number of lenient matches, we use
the option overlap, which counts matches as correct as long as there is any kind of overlap
between the predicted and gold span.

2.2.2 Annotation Evaluation

Inter-Annotator Agreement (IAA) is a measure to quantify the consensus of different annota-
tors on the same data. As we will see when reviewing the existing datasets for the targeted
domain, several annotation evaluation metrics are possible. Since we annotated our data on
several levels (document-wise binary annotation, entities, attributes, and relations), we are in
need of appropriate measures for each level. In the following, we briefly describe some of the
possible measures and the ones we chose to evaluate our data’s annotation quality.

a2
positive negative

a1 positive a b
negative c d

Table 2.1: A comparison between annotator a1 and annotator a2. a: number of times both
annotators agree on the positive label, d: both annotators agree on the negative label, b:

annotator a1 rates positive, a2 rates negative, c: a1 rates negative, a2 rates positive.

Consider Table 2.1, which shows the number of times each annotator a1 and a2 agreed on
the positive label (a) and the negative label (d), and the number of times a1 chose the positive
label while a2 chose the negative label (b) and a1 chose the negative labels while a2 chose
the positive label (c). The most basic form of an agreement measure is achieved by simply
calculating the percentage of labels that all annotators agreed on (observed agreement Aobserved,
Equation 2.5) (Hripcsak and Heitjan, 2002), equivalent to the accuracy measure in Equation 2.4.

Aobserved =
a + d

a + b + c + d
(2.5)

4https://perso.limsi.fr/pz/blah2015/

https://perso.limsi.fr/pz/blah2015/
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However, for each annotation task, there is also a chance that annotators coincidentally
chose the same label, which is not represented by this score. It further does not account for
different (dis-)agreements of various categories, i.e., annotators might agree on one category
more than on another (Hripcsak and Heitjan, 2002; Hripcsak and Rothschild, 2005). The latter
is resolved by a measure called specific agreement (Cicchetti and Feinstein, 1990), which aims to
calculate agreement for each category, i.e., the positive (Apos) and negative (Aneg) category in
this example.

Apos =
2a

2a + b + c
; Aneg =

2d
b + c + 2d

(2.6)

To account for chance agreement, a further metric was introduced: The κ score, often called
Fleiss’ κ (Fleiss, 1975) or Cohen’s κ (Cohen, 1960), with the difference that the version provided
by Fleiss (1975) allows for more than two raters. In general, κ is based on observed agreement,
as defined in Equation 2.5, and expected agreement Aexpected introduced by chance, as defined in
Equation 2.7.

Aexpected =
E[a] + E[d]

a + b + c + d
, (2.7)

where E[a] = (a+b)(a+c)
a+b+c+d and E[d] = (b+d)(c+d)

a+b+c+d , the expected values for a and d. Equation 2.8,
thus, reduces chance agreement to zero.

κCohen =
Aobserved − Aexpected

1 − Aexpected
(2.8)

For both the observed agreement and the κ score, the number of negative samples (d) needs
to be known, which is not always the case. Moreover, if the number of negative samples is
known to be large, then it is unlikely that annotators will agree on positive samples only by
chance, that is, the probability of agreement by chance on positive samples is close to zero
(Hripcsak and Rothschild, 2005). This is indeed often the case for tasks such as NER or REL:
First of all, the notion of “negative examples“ is ill-defined in some cases (Hripcsak and Roth-
schild, 2005). Second, if all no-entity annotations are considered, i.e., all tokens not marked as
any kind of entity, this might be a huge number. According to Hripcsak and Rothschild (2005),
in case of a very large number of negative samples, Equation 2.8 approaches Equation 2.6, i.e.,
the κ score approaches positive agreement. Although κ is widely used in information retrieval,
there is also no consensus on which score reliably represents a strong agreement between an-
notators, which also depends on the task.

Finally, the F1 score, a metric already discussed for the evaluation of NER and REL system
predictions, can be considered as well for evaluating IAA. Here, the annotations of one anno-
tator are handled as gold standard data, while the annotations of the second rater are treated
as system predictions. Precision and recall can then be calculated as shown in Equation 2.9.

precision =
a

a + b
; recall =

a
a + c

(2.9)

Note that a is equivalent to true positives (TPs), b is equivalent to false positives (FPs),
and c is equivalent to false negative (FN). For neither score, we need to know the number
of true negatives (TNs) (d). F1 score is then formulated as shown in Equation 2.10 (Hripcsak
and Rothschild, 2005), which is equivalent to Equation 2.3. Then, the balanced F1 score is also
equivalent to positive specific agreement as given in Equation 2.6.

F1 =
2a

2a + b + c
(2.10)
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There are also various other metrics, like Scott’s π (Scott, 1955), a correlation statistic that
only differs to Cohen’s κ in the way how the expected values E[a] and E[d] are calculated.
Finally, Krippendorff’s α (Krippendorff, 2004) is a more robust version of Cohen’s κ which can
be calculated with any number of annotators and categories. All these correlation measures
have the problem that they are difficult to interpret (Hripcsak and Rothschild, 2005).

Annotation is a subjective process that can include biases. Therefore, there is no absolute
“truth” to rely on (Grouin et al., 2011), it is even possible that all annotators are correct, even
if they disagree with each other. We can only evaluate to which extent the annotators are
consistent with each other, not if they annotated correctly.

As mentioned, Cohen’s κ is problematic particularly for tasks with an unknown amount of
negative samples, while observed agreement does not take chance into account. We therefore
follow Grouin et al. (2011) and use F1 score for entity, relation and attribute annotation evalu-
ation, where we do not know the number of negative samples, whereas we use Cohen’s κ as
well as F1 score for the evaluation of our binary annotations, where we do know the number of
negative samples, but also observe a high imbalance in the label distribution.

2.3 Machine Learning

In this section, we will briefly explain the foundations of this thesis: Machine Learning (ML)
and Neural Networks (NNs). Most of the theoretical part is taken from the popular Speech and
Language Technology Processing book by Jurafsky and Martin (2023) if not otherwise stated.

An often cited early definition of Machine Learning is attributed to Mitchell (1997):

Definition 1 (Machine Learning). A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.”

In NLP, and specifically in this thesis, the task T is any of the ones presented: document
classification, NER, or REL. P might be one (or all) of the measures described in Section 2.2.
The experience E is, usually, a large collection of data points or observations, i.e., what is called
a corpus in (computational) linguistics. Available datasets are often split into three parts: A
training set (train) which serves as material to learn from (the experience E), a development set
(dev), and a test set. On the development set, the model is evaluated during training; on the test
set, it is evaluated after training to check performance on completely unseen data.

Machine Learning attempts to model data mathematically with the goal of predicting or
generating a certain output for a given input. This procedure is often called learning: A model
learns patterns from a given dataset and then applies these patterns to new, unseen data. The
model itself is a function f that tries to represent the distribution of the underlying data as
accurately as possible5. The data points (examples) are represented as feature vectors to the
model.

Types of models or algorithms used in “traditional” ML are, for example, Naive Bayes or
Support Vector Machines (SVMs). They are mostly based on hand-crafted features, e.g., vectors
representing the occurrence of specific keywords in a given text, the capitalization of tokens,
or the syntactic type of a token. A very common and powerful feature are word or sentence
embeddings, which will be described in Section 2.4.

5Note that if a model fits the data too well, it might be overfitting and will not generalize to other datasets.
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2.3.1 Deep Machine Learning

Deep Machine Learning refers to the use of artificial Neural Networks (NNs) in combination
with ML. An NN consists of many computing units (functions) that take in a vector of input
values and output a single value. See Equation 2.11 for a representation of one computing unit.

z = b + ∑
i

wixi (2.11)

A unit is taking a weighted sum z of its input vector values x1, ..., xn and the associated
(learned) weights w1, ..., wn. The bias term b is added. Finally, instead of using z directly to
propagate further, a neural unit applies a non-linear activation function f to z. Popular activation
functions are, for instance, sigmoid, tanh or the rectified linear unit (ReLU). The result of this is
commonly called the activation value a of z. If this is the model’s final output, it is called y.

y = a = f (z) (2.12)

Because of the combination of many (non-linear) functions, NNs are capable of modeling
more complex representations of data than “traditional” ML approaches. One of the simplest
NNs is a feed-forward network. The name stems from the fact that input information (features)
is propagated iteratively from one layer made of computing units to the next without cycles.
Thus, the output of one layer is the input of the next layer. The more layers a network has, the
deeper it gets. In the case of a feed-forward network, there are three kinds of units called input,
hidden, and output units. In Figure 2.1, an example network is shown. Its most important part
is the hidden layer (blue, with the bubbles representing the units in the layer), where a weighted
sum of the input values is taken, followed by a non-linearity. The results are propagated to the
next layer, in this case, the output layer.

x1

x2

x3

xn

z ŷ

W(1)

b(1)

W(2)

b(2)
...

...
...

hidden
layer
f (2)

input
layer
f (1)

output
layer
f (3)

Figure 2.1: A Feed-Forward Network with three layers. It returns a single value y, for
example, 1 or 0. x1, ..., xn denotes again the input values, W are the weights w1, ..., wn

displayed as a matrix. b is the bias vector for the respective layer.

As mentioned above, each unit has a weight vector and a bias term. These are represented
for the entire layer as the weight matrix W and the bias vector b, as shown in Figure 2.1. Each
element Wji in W represents the weight of the connection between the ith input unit xi to the jth
hidden unit hj. The hidden layer of the feed-forward network of the examples is thus calculated
as shown in Equation 2.13, using the sigmoid (σ) activation function. Note that h is now the
representation of the input. The output layer then takes this representation and calculates the
output.
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For a binary classification task, we might have a single output node yielding the probability
of one class or the other. In the case of, for example, NER, the output layer will have as many
units as there are pre-defined entity types, returning a probability distribution over those types
by means of a softmax function. The type with the highest probability is then the predicted one
for the given input. The calculation for a feed-forward network with only one hidden layer
might therefore look as follows, producing and estimation of the true y, often called ŷ:

h = σ(W(1)x + b) (2.13)

z = W(2)h (2.14)
ŷ = softmax(z) (2.15)

2.3.2 Training

A feed-forward network is trained using supervised machine learning (Section 2.3.3), where
every input example has a correct (gold-standard) output y. The goal of training is to learn the
parameters W(i) and b(i) for each layer i to make the system’s prediction (estimation) ŷ as close
to the true y as possible.

The distance between y and ŷ is usually calculated using a loss function, e.g., cross-entropy
loss. For learning, i.e., for finding the best parameters for minimizing the loss function, the
gradient descent optimization algorithm is used. Since this algorithm needs to know the gra-
dient of the loss function, i.e., a vector containing the partial derivative of the loss function
with respect to each parameter, we also need an algorithm capable of calculating the gradient
across all layers of the neural model. For this, in turn, the backpropagation algorithm (Rumel-
hart et al., 1986) is applied. We do not go into details on this and refer the reader to relevant
literature, e.g., Jurafsky and Martin (2023, Chapter 5) or Goodfellow et al. (2016, Chapter 4).

2.3.3 Learning Techniques

Machine Learning can be conducted using several techniques, depending on the data. In gen-
eral, there are three different approaches to learning: (i) supervised learning (ii) semi-super-
vised learning, and (iii) unsupervised learning.

Supervised learning assumes to have a gold standard label or class for each observation in
the training and development set, i.e., for each input, there is an output. Based on this,
the algorithm then aims to learn how to map from a new observation to a given correct
output. The prerequisite for this setting is a (usually) human-labeled corpus available
for the domain, language, and task of interest. A common supervised learning task is
classification.

Semi-supervised learning can be split up into bootstrapping and distant supervision and is often
applied when there are not enough data for an ML algorithm to learn from. For boot-
strapping, so-called seed patterns (e.g., relevant entity pairs) are created, requiring very
little human effort. With these patterns, documents containing them can be collected
from the web or another corpus. From those and the context surrounding the given pat-
tern, similar patterns can be deduced for collecting more documents. These, in turn, can
be used to find relevant documents on the web or in other existing corpora, resulting in a
new, semi-supervised dataset.

Distant supervision (Mintz et al., 2009) combines bootstrapping and supervised learning,
often taking advantage of knowledge bases. It is, therefore, especially useful for REL.
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Unsupervised learning works without any labeled data. It is used to detect patterns or other
structures in a given dataset. Popular unsupervised methods are, for instance, clustering
and dimensionality reduction. In clustering, similar data points are separated from non-
similar data points, e.g., topic clustering tries to automatically find news articles belong-
ing to the same topic within a set of articles, based on automatically extracted features.
Dimensionality reduction extracts the most essential features from the underlying data
by reducing the overall amount of features represented in the data. Language modeling
(see Section 2.4) can also be seen as an instance of unsupervised learning: The prediction
probability of a word is based on the previous word(s) and usually, models are learning
these probabilities on huge corpora, where no specific labels are provided.6

2.3.4 Transfer Learning

Transfer learning is a method to transfer ML models to data outside their training distribution
(Ruder, 2019). As shown in the taxonomy in Figure 2.2, it is used in many different contexts, not
only in NLP. Usually, as described above, we assume to have data for one task and one domain
and apply it within the same domain. For this, the data points are assumed to be independent
of each other and identically distributed in both train and test sets (i.i.d. assumption).

Transfer
Learning

Transductive
Transfer
Learning

Domain
Adaption

different domains

Cross-
lingual

Learning

different languages

same task, but labeled data
only in source domain

Inductive
Transfer
Learning

Multi-task
Learning

tasks learned simultaneously

Sequential
Transfer
Learning

tasks learned sequentially

different task, but labeled
data only in target domain

Figure 2.2: A taxonomy of transfer learning, borrowed from Ruder (2019) and slightly
modified. The work described in this thesis mostly applies cross-lingual transfer learning,

a sub-category of transductive transfer learning.

Thus, we can train a model on this data and expect it to perform well on unseen data from
the same distribution. If we want to perform the same task in another domain, we, again, need
labeled data for the respective domain. This, however, is not always possible: data annotation
is tedious and costly. This is where transfer learning comes into play: It takes advantage of
a related domain or task, usually called the source domain or task, and applies it to the target
domain and/or task. Definition 2 shows transfer learning as defined by Pan and Yang (2010),
taken over verbatim:

Definition 2 (Transfer Learning). Given a source domain DS and learning task TS, a target domain
DT and learning task TT, transfer learning aims to help improve the learning of the target predictive
function fT(·) in DT using the knowledge in DS and TS, where DS ̸= DT, or TS ̸= TT.

As shown in Figure 2.2, there are different instances of transfer learning. This thesis mostly
deals with cross- and multi-lingual learning referring to both (i) learning cross- or multi-lingual
representations of text data and (ii) transferring knowledge between a source language and a
target language.

6In practice, the words are used as labels to the LM.
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We will also encounter a change in dataset distributions between source and target data
apart from language: Even though we work on user-generated data, these usually do not have
the same distribution, depending on their source. This is why techniques such as zero-shot and
few-shot transfer are relevant to this thesis as well.

Zero-shot Transfer describes the application of a trained model on source data without any
modifications to target data. This essentially reduces the number of needed labels in the
target data to zero7.

Few-Shot Transfer assumes that there are “a few” labeled examples from the target data that
can be used to train a model together with source data. Note, however, that “a few” is
not formally defined, and the number of examples used in the literature can range from
one to several thousand.

For a comprehensive overview of transfer learning and its different manifestations, we refer
the reader to the work of Ruder (2019).

2.3.5 Models and Architectures

We continue with a brief introduction to some of the models used in the literature related to
the work in this thesis. First, we will give a description of a SVM, a model from the non-
deep learning era, which is used as a baseline in some of the later experiments. Next, the
basics of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Long Short-Term Memory Networks (LSTMs) are reviewed, and finally, a short introduction to
language modeling and Language Models is provided.

Support Vector Machines (SVMs) SVMs (Vapnik and Chervonenkis, 1964; Boser et al., 1992)
are often applied to classification and regression tasks. A SVM constructs a hyperplane in
high-dimensional space to separate classes of data points from each other. This is done by
first mapping the data points into a higher dimensional space to also approach non-linearly
separable data points. Second, the model learns a hyperplane that maximizes the distance to
the closest training data point of any class.

SVMs need pre-defined features to learn from. These can be either hand-crafted or auto-
matically generated, or both. Note that SVMs do not output probabilities. For a more detailed
description and the mathematical background of SVMs, we refer the reader to Bishop (2006,
Chapter 7) and the literature indicated in the introduction thereof.

Convolutional Neural Networks (CNNs) CNNs (LeCun et al., 1989, 1998) are most often
applied to visual data like images, but have found their way into NLPs as well. Like feed-
forward NNs, CNNs also contain an input layer, several hidden layers, and an output layer. In
some of their hidden layers, they use a mathematical operation named convolution instead of
the usual matrix multiplications. By sliding so-called convolutional kernels (or filters) across
the input, e.g., a sequence of words, they create feature maps, analyzing the input step by step.
These feature maps are the input to the next layer. The feature maps of the convolutional layers
are commonly fed to pooling layers, which reduce the dimension of their input. The result can
be interpreted as a “summary” of the feature maps, extracting only the most important features
for the task the model is trained on. CNNs return a probability distribution over pre-defined
classes using a final fully-connected layer. We refer the reader to Bishop (2006, Chapter 5.5.6)
for a more detailed description of this architecture.

7Except when using automatic evaluation.
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Recurrent Neural Networks (RNNs) RNNs (Elman, 1990), also called Elman Networks, are
more commonly used in NLP tasks than CNNs because they process language (i.e., in this case
text) in a sequential way, similar to humans. For this, they use recurrent connections to represent
the context of a sequence seen before, allowing the final decision to depend not only on one
word but the entire input sequence.

Simple recurrent networks have the same structure as feed-forward NNs with an input and
output layer and several hidden layers. However, two differences apply. First, sequences are
provided to the network step by step. Second, the recurrent step feeds outputs of a unit in a
hidden layer from a preceding time step back into the same unit, acting as a kind of memory
within the model. As feed-forward NNs and CNNs, RNNs are also trained using the back-
propagation algorithm, but with a modification called backpropagation through time (Werbos,
1974; Rumelhart et al., 1986; Werbos, 1990) to account for the different time steps modeled in
the NN.

Long Short-Term Memory Networks (LSTMs) LSTMs (Hochreiter and Schmidhuber, 1997)
are an improved version of RNNs to account for long-distance relationships within sequences,
especially texts. For this, a mechanism called gates proved to be useful. Gates decide which
information should be kept and which can be forgotten and operate on each current input and
the preceding hidden state. For more details, the reader is again referred to Jurafsky and Martin
(2023), Chapter 9 on RNNs and LSTMs.

Another popular architecture in NLP is a bi-directional Long Short-Term Memory Network,
a slight modification of standard LSTM. Here, a second LSTM layer is added and information
can flow backward and forwards simultaneously.

Encoder-decoder networks Note that there are also encoder-decoder architectures, which are,
for example, applied in Machine Translation (MT). These are also called sequence-to-sequence
models. When using an encoder-decoder model, a sequence is fed to an encoder network, e.g.,
an RNN, which produces a representation of the input, i.e., an encoding or context vector. From
this representation, the decoder generates a new sequence of arbitrary length. The decoder,
too, can be any sequence model.

2.4 Embeddings and Language Models

Having discussed almost all the relevant model types for this thesis, there is now only one
essential part missing: How are words fed to a neural model that can only “understand” num-
bers? And how can we model language in particular?

The answer to that is word vectors or word embeddings. In its very rudimentary form, a word
vector is a mapping from each word wi in the vocabulary V to a vector xi of dimension |V|.
xi is 1 at exactly one dimension xi,j, all other elements of the vector are 0. For the next word
xi+1, its vector is 1 at dimension xi+1,j+1, all other elements are again set to 0. Such an encoding
is called one-hot encoding. Thus, for feeding a sequence of words to a NN, the words are first
mapped to their respective vectors and then given to the network’s input layer.

The above is a very naive approach and does not represent any semantics or relations be-
tween words. Therefore, better methods to create word embeddings were developed, mainly
following the Distributional Hypothesis stating that “words that occur in the same contexts tend
to have similar meanings”8 (Harris, 1954; Firth, 1957), i.e., the meaning of a word is defined by
its distribution in language use (Jurafsky and Martin, 2023).

8https://aclweb.org/aclwiki/Distributional_Hypothesis

https://aclweb.org/aclwiki/Distributional_Hypothesis
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Early work thus represented words as vectors based on matrices containing co-occurrence
counts (Schütze, 1992, inter alia). Two widely used matrices were term-document and term-
term matrices, created, for example, using Latent Semantic Analysis (LSA) (Deerwester et al.,
1990). LSA was later generalized to Latent Dirichlet Allocation (LDA) (Pritchard et al., 2000;
Falush et al., 2003; Blei et al., 2003).

To not only have counts of co-occurring words but more representative numbers, the tf-idf
approach (Luhn, 1957; Jones, 1972) was introduced to NLP, weighing the matrix cells by their
importance with respect to the documents the terms occur in. Another such weighing scheme
is Positive Pointwise Mutual Information (PPMI) (Fano, 1961). It measures the probability of
two events (words) occurring together compared with the probabilities of each of these events
occurring independently of the other.9

2.4.1 word2vec & GloVe

In 2013, a more capable word representation method was introduced by Mikolov et al. (2013a,c),
enabling a plethora of new applications and ideas: word2vec. In contrast to tf-idf or PPMI,
word2vec vectors are short and dense: The length of the vectors does not depend on the vo-
cabulary size anymore (often, 300 is used as the number of vector dimensions) and every value
in the vector is a real-valued scalar that might also be negative.

word2vec is a framework comprising two algorithms to compute embeddings: skip-gram
with negative sampling and CBOW. While skip-gram predicts if certain context words are
likely to occur given the current target word, CBOW predicts if a word is likely to occur between
two given words.

Instead of counting the frequency of neighboring words, word2vec trains a statistical clas-
sifier (logistic regression) to predict if a word wj is likely to occur close to word wi. Then, the
learned weights of the classifier are taken as embeddings. For training, any text corpus of a
decent size can be used: The “correct” answer (yes, wj is likely to be close to wi or no, it is not
likely) is implicitly encoded in natural language sentences, and therefore, no manual labeling
is required.

Word embeddings similar in performance, called GloVe, were provided by Pennington
et al. (2014). GloVe embeddings are trained using matrix factorization and in contrast to
word2vec, they are based on global co-occurrence matrices extracted from an entire corpus,
not on neighboring words, which are rather local.

2.4.2 Language Modeling

Very similar to word embedding models, language modeling has the goal of learning the dis-
tribution of words in a corpus. This is often done by predicting the next word in a sentence,
comparable to word2vec, i.e., modeling the probability of a word given the previous n − 1
word(s):

p(wt|wt−1, ..., wt−n+1) (2.16)

Under the Markov Assumption10 and using the chain rule, the probability of an entire sen-
tence can then be approximated as follows (Ruder, 2016):

9Point-wise mutual information has a range between negative infinity and positive infinity. However, negative
PMI values are rather unreliable if not calculated based on huge corpora. Therefore, they are replaced by zero and
only positive values are taken into account.

10Markov assumption: p(qi = a|q1...qi−1) = p(qi = a|qi−1); Applied to natural language sequences that means
that for predicting the next word, only the current word matters, not the previous ones (Jurafsky and Martin, 2023).
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p(w1, ..., wT) = ∏
i

p(wi|wi−1, ..., wi−n+1) (2.17)

Models assigning probabilities to sequences of words are called Language Models (LMs). For
n-gram based language models, i.e., LMs that are learned from short sequences consisting of
n words, the probability of a word is calculated using the corpus frequencies of the n-grams,
with, for instance, Maximum Likelihood Estimation (MLE).

When using a neural network for language modeling, the input usually consists of (a repre-
sentation of) a sequence of previous words, while the output units are the vocabulary. A final
softmax layer is used to calculate a probability distribution over these units. The unit, that is,
the word, with the highest probability is then the most likely next word.

NNs for language modeling were first introduced by Bengio et al. (2003), who proposed
a simple one-layer feed-forward network for the task. They can handle a longer sequence of
previous words than n-gram-based models, usually generalize better over contexts of similar
words, and are also more accurate when applied in downstream tasks. However, they are not
as efficient and more complex to train and run, and of course, NNs also have the disadvantage
of being not interpretable.

Back in 2003, the computational resources for training neural LMs following Bengio et al.
(2003) were not available to most researchers, with the final softmax layer being the bottleneck
of the training process (Ruder, 2016). On the other hand, the models and embeddings intro-
duced by Mikolov et al. (2013a,c) and Pennington et al. (2014) were very popular because they
were both efficiently trainable and easily applicable.

Nevertheless, one problem with static word embeddings like those is that words with mul-
tiple meanings, e.g., “tape”, are pressed into one vector, although they might describe different
things depending on the context. For instance, “a tape for fixing something” is different from
“a tape for recording music”. Another problem is out of vocabulary words (OOV), i.e., words that
were not seen during training the LM but occur in the test set of a task the embeddings are
used for.

RNNs and LSTMs were, therefore, the next step in the development of language models,
with them being able to capture certain long-range dependencies. However, one disadvan-
tage of RNN-based models is their sequential computation which is difficult to parallelize.
This stimulated further research and resulted (for now) in the invention of Transformer-based
language models, which will be described next after making a short detour to cross- and multi-
lingual language modeling.

2.4.3 Cross- and Multi-Lingual Language Modeling

Although there are more than 7,000 languages spoken all over the world, English continues to
be the language most worked on in NLP (Joshi et al., 2020b; Ruder, 2022). This is due to the
fact that English is spoken as first or second language in a lot of countries, but also because
it was, until recently, the language of the internet, spoken by 14.8% of the Internet popula-
tion, now apparently superseded by Chinese with 18.46% of the Internet population (Pimienta,
2022). In recent years, and particularly with the rise of deep learning, other languages are
moving more towards the focus of attention since researchers are pushing towards a more in-
clusive NLP, not only in terms of languages but also with respect to bias, cultural background,
and ethics. Nevertheless, there is still a considerable gap to bridge, especially when it comes
to under-resourced languages. Even languages that are technically not low-resource, like Ger-
man, French, and Japanese, do not yet reach the same level of performance for the same number
of tasks, domains, and applications (Hu et al., 2020). For the remainder of this thesis, the terms
multi-lingual and cross-lingual are used quite frequently:
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Multi-lingual in the context of information extraction describes approaches that are applied
simultaneously on several (selected) languages. For instance, a model can be both trained and
tested on datasets in multiple languages.

Cross-lingual usually refers to methods that have only seen one or several languages, for
example, during training (often called the source language(s)), and are then applied to other,
non-seen languages (the target language(s)). The latter can be sub-categorized into languages
close to the source language with respect to their language families, e.g., English and German,
or very different, e.g., English and Japanese.

Multi-lingual approaches are relevant in situations where several languages (i.e., datasets in
these languages) are available from the start and in a decent amount, allowing, e.g., to train only
one model instead of building a system for each language separately. Countries with multiple
official languages are, for instance, the Philippines (Filipino and English), Finland (Finnish and
Swedish), or Switzerland (Italian, French, German, and Romansh).

Cross-lingual approaches, on the other side, are relevant in cases where there is not enough
source data for one language. Using a similar (or even distant) source language for, e.g., train-
ing, and then applying the learned system on the desired target language might already be
enough in some cases and, in the best case, drastically reduces the time and money needed to
provide data and annotations. Note that these two approaches can also be mixed, e.g., when
applying multi-lingual models (i.e., models trained on several languages as described in Sec-
tion 2.4.5) on languages not seen during training.

2.4.4 Transformers

The main innovative idea behind Transformers, as introduced by Vaswani et al. (2017), is how
the authors use the (self-) attention mechanism to improve and parallelize training. The fol-
lowing is loosely based on the work of Vaswani et al. (2017) and the explanations of Jurafsky
and Martin (2023, Chapter 10).

The Transformer, as described in Vaswani et al. (2017), is an encoder-decoder model map-
ping input sequences to output sequences of the same length. The authors use attention mech-
anisms in different parts of their architecture. Additionally, they implement a concept called
positional encoding. Both of these mechanisms help to learn relations between words in a given
sequence as well as to represent time within a sequence. To describe them in more detail, we
first need to understand the building blocks of Transformers.

(Self-) Attention According to Jurafsky and Martin (2023), the concept of attention was ini-
tially developed by Graves (2013) for handwriting synthesis. Graves (2013) used “soft win-
dows” to let the network learn where it should focus for the next prediction, additionally con-
ditioned on its previously produced output. With this, the model dynamically determines the
alignment between the input text sequence and, in this case, the pen position.

Alterations of the original concept were since then used for different tasks in NLP. Bah-
danau et al. (2015), for instance, applied attention in the context of machine translation. In
their encoder-decoder network, they implemented a special weight matrix which learned to
focus on certain parts of the input sequence when generating the (translated) output sequence,
similar to the work of Graves (2013). This method is often called self-attention. Basically, the
attention mechanism allows us to model dependencies within and between sequences, regard-
less of their length. Transformers are based on the idea of relying solely on (self-) attention
in order to replace the common complex recurrent and convolutional operations in RNN and
CNN architectures for sequence-to-sequence approaches.
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Transformer Blocks A Transformer is a Neural Network with a new kind of layer whose
instances are stacked on top of each other. These Transformer blocks (see Figure A.1), being
multi-layer NNs themselves, combine four components for the encoder part: multi-head self-
attention, feed-forward layers, normalization layers (Ba et al., 2016) and residual connections
(He et al., 2016). The decoder contains the same blocks but with an additional encoder-decoder
attention layer.

Residual connections are connections between layers that pass information from a lower
layer to a higher one without going through any intermediate layers, accelerating learning.
Normalization layers normalize the inputs such that they are kept in a certain range to make
the computation of the gradient easier.

The self-attention layers allow the network to use information from any part of the context
of the given sequence up until the current word, not only information about the current word.
It also allows to compare items (words) to each other for deciding on which one to focus most
for the current context.

Queries, Keys, and Values Mathematically, this comparison of items is done by using the
dot product of two items, with the resulting scalar representing the similarity score of these
two items. By softmax-normalizing the dot product of several item pairs with respect to the
word currently under consideration, the proportional relevance of each item to the current
word is calculated. As output, a sum over all inputs so far is calculated, weighted by their
respective relevance. Intuitively, this represents how important the other words are for the
“understanding” of the current word from the perspective of the current word. With this,
the model can learn, for instance, which word or phrase in the source language is currently
most relevant for the word or phrase in the target language in the case of translation. All
these operations are performed independently, allowing to parallelize the computation, a big
advantage of the Transformer architecture

In practice, this process is more involved since Transformers represent the relevancy of sin-
gle input words in a more sophisticated way, accelerating computation by using matrix oper-
ations. Each input embedding is therefore represented as the current focus of attention (called
query in Vaswani et al. (2017)), as the preceding input, which is compared to the current word
under consideration (key) and also as a value which is used to compute the current output of the
word under consideration. In the implementation of Transformers, these three perspectives are
represented as learnable weight matrices Q and K of dimension dk and matrix V of dimension
dv, which are multiplied with the input matrix X.

attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.18)

Multiple Heads Having multiple “heads”, i.e., parallel self-attention layers, allows the model
to focus on different aspects of a sequence at the same time, not having to choose one only.

Positional Encodings In natural languages, word order is important. However, in contrast to,
e.g., RNNs, Transformers look at the input sequence without any information about the words’
positions in the sequence – they do not “see” the sequence word by word, but all at once.
Vaswani et al. (2017), therefore, add another kind of embedding, called positional embeddings
to encode the position of the words with respect to the other words in the given sequence.

The Transformer architecture is now used in many different fields, e.g., in computer vi-
sion, audio, and multi-modal processing. However, in the next section, we will focus on its
applications in NLP, more specifically, Transformers as LMs.
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2.4.5 Transformer-based Models

This section describes language modeling using Transformer-based models, with a focus on the
models used and referred to in this thesis. With the era of Transformer-based LMs, the concepts
of pre-training and fine-tuning entered the lingo of researchers and practitioners.

Pre-Training is often utilized in the same sense as training from scratch, meaning that a freshly
initialized architecture without any knowledge is newly trained on some data, learning
new weights 11. In the case of LMs, pre-training is often done using a language modeling
objective, e.g., as we have seen, next-word prediction. This procedure usually needs a
large amount of data to be successful and several days, weeks, or even months to train,
depending on the availability of computing resources.

Fine-Tuning , in contrast, assumes an already trained model, which is then further tuned or
refined on a downstream task. The fine-tuning process can also include a repetition of
the pre-training task or other learning techniques, like self-training. Specific layers of a
model, e.g., the embedding layer, can be frozen so they are not changed again during
fine-tuning.

Language Modeling with Transformers For language modeling, Transformers can be used
similarly to, for instance, RNNs. On a text corpus of decent size, the model is trained auto-
regressively to predict the next word in a sequence. In contrast to other methods, the Trans-
former has access to much more information. For example, the model has information about
the correct previous part of the sequence as well as knowledge about positions and about ev-
ery word up until the one currently under consideration. Thanks to the attention mechanism,
it also knows which words to focus on to generate the next word. Transformers are still limited
in that they only see the previous context and not all of the given sequence. This does not matter
so much in, e.g., summarization or machine translation (Jurafsky and Martin, 2023). However,
for more “fine-grained” tasks in NLP, like sequence labeling (for instance, NER) or sequence
classification, it can be useful to take a look at the rest of the context as well.

BERT Bi-directional encoders improve upon this shortcoming by letting the self-attention mech-
anism attend to all words in the given input sequence, not only the ones up until the current
word. The first work introducing this idea was published by Devlin et al. (2019). This model
produces contextualized representations of words, i.e., depending on its context in a sentence,
the same word can have different representations (embeddings). The main components of the
Transformer architecture underlying BERT are the same as before. This time, however, the part
of the sequence after the current word is also considered, allowing the model to access informa-
tion from two directions. BERT further uses WordPiece tokenization (Schuster and Nakajima,
2012; Wu et al., 2016), exactly as Vaswani et al. (2017), resulting in a sub-word vocabulary of
30,000 subword-tokens12 (Devlin et al., 2019).

Since BERT can see both the left and the right context of the current word, the next-word-
prediction task has become trivial. Therefore, Devlin et al. (2019) use a different training strat-
egy. They train BERT on two unsupervised tasks, (i) Masked Language Modeling (MLM),
and (ii) Next Sentence Prediction (NSP). For MLM, as the name suggests, 15% of the input

11Of course, models can be trained directly on downstream tasks from scratch as well.
12Subword-tokens are tokens that are not necessarily “whole” words. Only frequent words are kept in their

original version, and rare words are split up into more frequent subwords, allowing the creation of a vocabulary of
reasonable size and, at the same time, getting rid of OOV words since these can be constructed from sub-words.
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subword-tokens are masked, and the model has to predict the actual word for the masked posi-
tion, similar to a fill-in-the-blank task13. For predicting the actual token, the authors use again
the cross-entropy loss.

For the second objective, NSP, Devlin et al. (2019) extract consecutive sentences from a
corpus and train the model on a binary task for predicting if the second sentence is the “next”
sentence or not. Both tasks are learned at the same time.

Devlin et al. (2019) first pre-train their model on the described language modeling objec-
tives and then fine-tune it on several down-stream tasks, for instance, natural language under-
standing using the GLUE dataset (Wang et al., 2018a). An overview of the pre-training and
fine-tuning procedure of BERT can be seen in Figure A.2, as well as some more details on BERT.

Note that LMs also introduce potential harms. These are briefly described in Appendix A.2.

13This is also often called a Cloze task (Taylor, 1953).
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Chapter 3

Related Work

This chapter reviews the advances in multi- and cross-lingual Information Extraction (IE) as
well as the current state-of-the-art in biomedical IE. Then, these two fields are combined and
the current state of cross- & multi-lingual IE in biomedical NLP is revisited. All works are
reviewed focusing mainly on document classification and entity extraction since these tasks
are relevant for the rest of this thesis. Finally, since data availability is an essential topic in this
thesis, the currently existing datasets will also be described. For completeness, standard tools
and databases in biomedical NLP are added in Appendix A.4.

3.1 General Cross- & Multi-Lingual Information Extraction

Cross- and multi-lingual IE has been worked on for quite some time. A prominent player
in advancing research in multi-lingual IE is and was the series of “Cross-Language Evaluation
Forum” (CLEF) workshops and shared tasks1. The organizers set the real beginning of research
into multi- and cross-lingual language processing to the 1990s (CLEF, 2016). Already in the
1960s, cross-lingual information retrieval was a topic in library sciences. The rise of the Internet
then accelerated interest and work in multi-lingual IE to improve access to relevant information
from multiple languages (CLEF, 2016). The first widely known workshop on multi-lingual IE
outside of Europe was organized in 1999 by the National Institute for Informatics (NII) in Japan,
focusing on Asian languages, mostly Japanese, Chinese, and Korean. The workshop series was
called “NII Testbeds and Community for Information Access Research”, in short, NTCIR, and
is still active today, holding its 17th version in December 2023 at NII2.

Back then, multi-lingual research was mostly supported by four types of resources: dictio-
naries, parallel corpora, comparable corpora, and machine translation programs (CLEF, 2016).
This has changed in the last years with the introduction of (monolingual) vector representa-
tions of words (Mikolov et al., 2013a,b,c; Pennington et al., 2014), multi-lingual word represen-
tations (Al-Rfou et al., 2013; Grave et al., 2018) and the rise of contextualized language models
(Vaswani et al., 2017; Peters et al., 2018; Devlin et al., 2019), which soon were available for
multiple languages, too (Devlin et al., 2019; Conneau et al., 2020).

3.1.1 Static Embeddings

Embeddings, contextualized or not, are the de facto basis for most tasks in NLP today, and often
the focus of the overall processing pipeline. Before large language models became feasible, var-
ious ways of creating embeddings for several languages were proposed, which will be briefly
discussed below.

Many embedding generation methods rely on parallel or comparable data. Parallel data
refers to direct translations between source and target languages, while comparable corpora

1http://www.clef-initiative.eu/; CLEF was renamed in 2010 into “Conference and Labs of the Evalu-
ation Forum”.

2https://research.nii.ac.jp/ntcir/ntcir-17/index.html

http://www.clef-initiative.eu/
https://research.nii.ac.jp/ntcir/ntcir-17/index.html
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consist of data in different languages that are similar but not exactly the same. An example of
the latter are Wikipedia articles in German and English about the same topic. Often, parallel
corpora (Yu et al., 2018) or dictionaries (Mayhew et al., 2017; Xie et al., 2018) are therefore used
for mapping several languages into a common space by creating fixed-dimensional sentence
embeddings and penalizing those that are too far from each other during a translation task.

Another line of work in this context are approaches that take mono-lingual embeddings
and map them into a common multi-lingual space. This can be, again, achieved using several
methods, e.g., mapping the source language space to the target language space, or mapping
both spaces into a common one, always maximizing the similarity between the single word
vectors. Similarly, other approaches create multi-lingual sentence embeddings by mapping
(sometimes already existing) mono-lingual embeddings, for instance trained with the GloVe or
word2vec algorithms, from different languages into one common embedding space (Schwenk
and Douze, 2017) or by using either CBOW or a bi-directional Long Short-Term Memory Net-
works (bi-LSTMs) for encoding the sentences (Conneau et al., 2018).

Further strategies are based on adversarial learning (Keung et al., 2019), phonological rep-
resentations of characters (Bharadwaj et al., 2016), semantic role labeling Akbik et al. (2016)
or universal schemata (Riedel et al., 2013) to create language-agnostic language embeddings.
Lin et al. (2017) experiment with aligning Wikipedia articles in different languages for better
results in multi-lingual REL. A mapping of bilingual word embeddings from target to source
language using a learned linear mapping as introduced by Mikolov et al. (2013b) is applied by
Ni and Florian (2019). Various other approaches make use of bilingual dictionaries (Ni and Flo-
rian, 2019) or graphs (Kim et al., 2014), extract relation embeddings (Lin et al., 2017) or extract
independent sentence embeddings per language (Wang et al., 2018b).

3.1.2 Neural Models

In terms of models, researchers experimented with different methods as well. Note that these
do not differ much compared to mono-lingual approaches. Schwenk and Li (2018), for instance,
apply both a Multi-Layer Perceptron (MLP) and a CNN for document classification. Conneau
et al. (2018) use a basic one-layer feed-forward neural network on top of their sentence em-
beddings. Keung et al. (2019) as well as Dong and de Melo (2019) and Hu et al. (2020) explore
mBERT (Devlin et al., 2019). mBERT is also used by Eronen et al. (2023), as well as XLM-RoBERTa.
Hu et al. (2020) further experiment with XLM and XLM-RoBERTa (large).

For NER, frequently used models and architectures are, amongst others, Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001), employed, for instance, in work by Ni et al. (2017),
or Maximum Entropy Markov models (MEMM) (McCallum et al., 2000), also explored by Ni
et al. (2017). Equally popular are bi-LSTMs, often in combination with CRFs (Pan et al., 2017;
Xie et al., 2018; Bari et al., 2020) or equipped with an additional linear classifier (Adelani et al.,
2021), or combinations of CRFs, bi-LSTMs and CNNs (Ma and Hovy, 2016; Rijhwani et al.,
2020; Adelani et al., 2021). For the more traditional approaches and also in combination with
more recent architectures, gazetteers are a popular feature (Rijhwani et al., 2020; Adelani et al.,
2021). Recently, mostly BERT or mBERT (Lauscher et al., 2020; Adelani et al., 2021, inter alia) or
XLM-RoBERTa (Lauscher et al., 2020; Ebrahimi and Kann, 2021; Adelani et al., 2021; Kulkarni
et al., 2023; Tan et al., 2023) are used, in one case BERT initialized with mBERT embeddings and
then re-trained from scratch (Arkhipov et al., 2019). The Transformer-based models are further
often topped with a CRF or with a bi-LSTM plus a CRF (Tedeschi et al., 2021).

Especially XLM-RoBERTa is a popular choice for cross- and multi-lingual tasks. The model
is based on BERT but with modifications already established in XLM and RoBERTa models.

XLM The model introduced by Conneau and Lample (2019) slightly modifies the original
MLM objective of BERT. Further, for tokenization, it uses a shared multi-lingual vocabulary
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created with Byte Pair Encoding (BPE) (Sennrich et al., 2016). Conneau and Lample (2019) fur-
ther introduce “translation language modeling” (TLM) for cross-lingual training and combine
it with their adapted version of MLM. Using parallel corpora in different languages, they con-
catenate parallel sentences as input and randomly mask words in the source and the target
sequence. With this, they are able to outperform mBERT on several multi-lingual tasks.

RoBERTa This is a mono-lingual model for English proposed by Liu et al. (2019) and is, again,
based on BERT. The authors remove the NSP pre-training objective and further extend the pre-
training corpus of BERT with more English corpora. With this and longer pre-training than
Devlin et al. (2019), the authors arrive at a more robust version of BERT, for both the base and
large version.

XLM-RoBERTa Conneau et al. (2020) introduced a combination of both RoBERTa and XLM,
with the same implementation as RoBERTa. It is trained on data in 100 languages, but, in con-
trast to XLM, it does not use the TLM technique, but rather original MLM on sentences from
the same language. The authors use the SentencePiece tokenization algorithm3 for language-
agnostic tokenization. XLM-RoBERTa architecture contains 24 Transformer layers, with a hid-
den layer size of 1,024.4 It is trained on 2.5 TB of a cleaned multi-lingual version of Com-
monCrawl, following the work of Wenzek et al. (2020). XLM-RoBERTa outperforms the above-
mentioned models and shows comparably strong performance on low-resource languages.

3.1.3 Approaches

The tasks tackled in this thesis are approached in various ways throughout the literature. Some
of the most prominent ones are described in the following.

Zero-Shot One of the most often employed techniques for cross-lingual IE is zero-shot trans-
fer. This is due to the fact that there are usually very few resources, mostly not enough to train
on, but only for evaluation. For example, Schwenk and Li (2018) apply the zero-shot method by
using multi-lingual word embeddings provided by Ammar et al. (2016) to address document
classification.

Few-Shot Some authors tackle the limitations of “simple” zero-shot transfer and advocate
for more research into few-shot transfer, particularly for under-resourced languages (Lauscher
et al., 2020). Others experiment with various amounts of added target language data (Hennig
et al., 2023) to improve performance and gain insights into the amount of (annotated) target
data needed to achieve a decent performance.

Annotation Projection Another line of work relies on translations (Mishra and Haghighi,
2021) or token alignments to transfer, e.g., entity annotations between languages (Ni et al.,
2017; Xie et al., 2018). Kim et al. (2014), for instance, work with parallel corpora in English and
Korean to project annotations from source to target language. Translations can also be used in
other ways, e.g., by taking translations of the training data, or by taking translations of the test
data (and the monolingual embeddings of those) as done by Conneau et al. (2018, inter alia).

3https://github.com/google/sentencepiece
4The authors do not mention the number of attention heads, but we assume it to be 16, like in BERTlarge.

https://github.com/google/sentencepiece
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Self-learning Dong and de Melo (2019) apply self-learning in multi-lingual text classification
by incorporating mBERT’s predictions on non-English data into training on English data. This
method is similar to an approach proposed by Eisenschlos et al. (2019) and also evaluated by
Hu et al. (2020), who label a “small” set of 1,000 examples of the target language and feed it to
an LM5. Other publications report experiments incorporating specific sample selection strate-
gies (Ni et al., 2017; Pan et al., 2017) to the self-learning scheme, where a model performs a silver
labeling of target data and gets high-confidence samples fed back during the next training iter-
ation. Various works also explore the selection of specific samples to learn from (Prelevikj and
Zitnik, 2021) and integrate self-attention (Xie et al., 2018) or attention over character sequences
(Bharadwaj et al., 2016) in their models.

Adversarial Training Adversarial training is usually done using Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014), where a generator produces “fake” examples, while a
discriminator has to distinguish these examples from the real ones. Dong et al. (2020) use this
approach for document classification. In contrast to the work done by Keung et al. (2019),
this time, the discriminator has to learn to distinguish between original and perturbed exam-
ples, where perturbing means that the embeddings of the non-English word from the target
language replace the embedding of an English word in the document. Adversarial feature
adaption is used in works of Zou et al. (2018) and Wang et al. (2018b), where the authors use a
GAN to generate language-agnostic features that can be transferred between two languages.

Translations Another promising line of work is translation of source or target data (Faruqui
and Kumar, 2015; Nag et al., 2021; Hennig et al., 2023) and back-translation (Faruqui and Ku-
mar, 2015) or translation of prompts (Chen et al., 2022a), as well as using translations based on
similarity (Artetxe and Schwenk, 2019). Kolluru et al. (2022) aim to improve translations and
annotation projections by biasing a sequence-to-sequence model to translate sentences similar
to a reference translation.

Continued or improved pre-training Continued pre-training (Ebrahimi and Kann, 2021; Fan
et al., 2021) or improved pre-training, for instance, by adding more or different pre-training
objectives is another way to improve performance in multi-lingual NER. For instance, Mishra
and Haghighi (2021) add a translation pair prediction objective to the standard mBERT objec-
tive, which helps the model to learn if a sequence is a valid translation of a source sequence or
not.

Adapting model specifics Some works augment Transformer-based models, e.g., by extend-
ing their existing vocabulary (Wang et al., 2020; Ebrahimi and Kann, 2021; Adelani et al., 2021)
or by creating a new, more language group-specific vocabulary via language clusters (Arkhipov
et al., 2019; Chung et al., 2020) to balance the trade-off between sharing sub-tokens across lan-
guages and language-specific tokens.

Apart from different architectures, training strategies, or combinations of models, other
work considers adapting the original attention mechanism (Vaswani et al., 2017). For instance,
both Lin et al. (2017) and Wang et al. (2018b) apply cross-lingual attention between relation em-
beddings, sometimes also in combination with language-specific attention (Wang et al., 2018b).

Adapters A method employed quite often recently is language adaptive fine-tuning, e.g., in
the form of adapters (Pfeiffer et al., 2020), often used for NER (Alabi et al., 2020; Adelani et al.,
2021; Ebrahimi and Kann, 2021; Kulkarni et al., 2023, inter alia).

5This can also be seen as an instance of few-shot learning.
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Multi-Task Learning Another approach gaining more attention in recent years is multi-task
learning (Caruana, 1993) to exploit predictions of one task to help disambiguation in other
tasks. For instance, Sanh et al. (2019b) combine NER, entity mention detection, coreference
resolution, and REL in one model.

Prompting A relatively new idea is pursued by Chen et al. (2022a) who try to extract relations
using prompting in various settings and in different languages.

3.1.4 Summary

Summarized we find that most approaches are carried out in a low-resource setting, since usu-
ally, the target data size is too small to be trained on. Because of this, zero- and few-shot
approaches are common, often in the form of self-learning, where noisily labeled target data
gets fed back into the model.

Before the introduction of multi-lingual encoders like mBERT or XLM-RoBERTa, cross-lingual
transfer was mostly improved by aligning or projecting annotations in different languages, or
by translation, either during training or during testing. These methods might be “older” but
are still relevant. In general, and as also shown by Yarmohammadi et al. (2021), Chen et al.
(2022b) and Eronen et al. (2023) (amongst others), there is no solution that answers all cross- or
multi-lingual questions in IE. Each task, language, and data setting calls for a different setup.
Therefore, available data, encoders, decoders, external knowledge, and domains need to be
carefully investigated and geared to each other to achieve a good performance. Furthermore,
as Yarmohammadi et al. (2021) emphasize in their work, it is important to explore combina-
tions of different methods, introduced both before and after multi-lingual encoders, to get the
best possible results.

3.2 Information Extraction in Biomedical NLP

This section describes (mono-lingual) IE in biomedical and clinical NLP to demonstrate the
challenges researchers are currently facing in this domain and how they try to solve them. The
focus of this section is on Adverse Drug Reactions (ADRs) to set the work presented in this
thesis into context.

Information extraction and, in general, clinical and biomedical text mining methods have
been used for quite some time to distill knowledge from documents related to healthcare. The
methods are usually borrowed from the general domain and adapted to specific vocabulary
and smaller resources. Biomedical and clinical datasets show, similar to general domain data,
a wide variety in style, length, jargon, and other characteristics. There a medical records, e.g.,
Electronic Health Records (EHRs), written differently in every hospital and laboratory, scien-
tific publications about the newest insights into a variety of topics, public health or treatment
guidelines, and finally, social media, e.g., patient fora or Facebook user groups. In each of these
areas, medical information is verbalized in different ways and with different goals (Rodriguez-
Esteban, 2009). See Figure A.3 for an overview of common data sources.

Usually, document classification strategies are used to categorize abstracts, user posts or
paragraphs into specific topics, for instance, health hazards depending on region (Collier et al.,
2008), reports about adverse drug reactions (Alimova et al., 2017), ICD codes (Silvestri et al.,
2020; Ibrahim et al., 2021), or if someones is talking about anxiety issues online (Shen and
Rudzicz, 2017). Named entity recognition or span categorization in biomedical texts is geared
towards the detection and extraction of specific terms, e.g., proteins, cell types, medication
names, devices, chemical compounds, diseases, symptoms, etc. (Rodriguez-Esteban, 2009), but
also social determinants of health (Lybarger et al., 2023) can bring insights on and for patients.
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The relations between these terms are of interest as well. For example, researchers extract
drug-drug (Thomas et al., 2011; Bobic et al., 2012) or protein-protein interactions (Tikk et al.,
2010; Bobic et al., 2012), but also relationships between drug and adverse reactions (Gurulin-
gappa et al., 2012b), just to name a few.

Most work described below concerns itself with texts in English, due to the vast major-
ity of works being on English data, but whenever possible, some pointers to works on non-
English datasets with respect to ADRs are given as well. Multi-lingual approaches will then
be discussed in Section 3.3. See Appendix A.4 for more details on commonly used biomedical
databases and ontologies.

3.2.1 Data

Leaman et al. (2010) were one of the first to apply biomedical NLPs methods to social media
data, in this case, the patient forum DailyStrength6. One year later, Chee et al. (2011) also
worked on the classification of forum posts from Health & Wellness Yahoo! Groups. Data
from DailyStrength was, for example, (re-) used by Patki et al. (2014), Nikfarjam and Gonzalez
(2011), Sarker and Gonzalez (2015) and many others. Similarly, Metke-Jimenez et al. (2014) and
Karimi et al. (2015) work on data from the English patient forum AskAPatient.

Different from that, Harpaz et al. (2010) work with voluntary ADR reports provided by the
U.S. Food and Drug Administration. Similar work was done on EHRs, e.g., by Friedman (2009)
and Aramaki et al. (2010), on MEDLINE abstracts (i.e., medical case reports) (Gurulingappa
et al., 2012b; Huynh et al., 2016) and using PubMed articles (Shetty and Dalal, 2011). The dataset
created by Gurulingappa et al. (2012b) became a widely used benchmark corpus, especially for
relation extraction, see, e.g., the work of Arannil et al. (2023) and others.

Note that the EHRs in the work of Aramaki et al. (2010) were written in Japanese and,
therefore, this work presents one of the first (published) works on non-English data. Ginn
et al. (2014) work with Twitter messages, where they annotate tweets with drug and reaction
mentions and map them to Unified Medical Language System (UMLS) concepts. They are one
of the few who also published their dataset. Sarker and Gonzalez (2015) also mine Twitter
for messages containing ADRs. From these data, they provided a Twitter corpus in the first
SMM4H task in 2016 (Sarker et al., 2016), which was then used by Huynh et al. (2016) and
others. With the work of Sarker et al. (2016), the series of the Social Media Mining for Health
(SMM4H) shared tasks was started and has been held since then every year, reflecting the cur-
rent state-of-the-art in biomedical text processing on user-generated texts, often with a task on
ADRs as well. Alvaro et al. (2017) provide a new corpus called TwiMed which combines En-
glish Twitter messages with PubMed. In 2017, another non-English social media dataset was
published: Alimova et al. (2017) collected Russian drug reviews and labeled sentences with
the classes Indication, Beneficial effect, Adverse drug reaction, Other (see Section 3.4). Combi et al.
(2018) work on Italian reports on ADRs, but unfortunately never released the data. Thompson
et al. (2018) released a new English corpus called PHAEDRA, containing MEDLINE abstracts
annotated with ADRs, drug mentions, and drug interactions, which are further linked to con-
cepts in appropriate databases, such as Medical Subject Headings (MeSH) and SNOMED-CT
(see Appendix A.4).

In the fourth SMM4H shared task in 2019, Weissenbacher et al. (2019) provided the par-
ticipants with tweets for classification, span detection, and linking with respect to ADRs. The
tweets, however, were not newly collected but re-used from previous shared tasks (Sarker et al.,
2018). In contrast, the fifth version of SMM4H was the first one that provided also non-English
tweets for classification, namely in French and Russian (the datasets are described in more
detail in Section 3.4).

6https://www.dailystrength.org/

https://www.dailystrength.org/
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Lee et al. (2020) release the BioBERT model and run it on various datasets, amongst others
on the English EU-ADR corpus (van Mulligen et al., 2012), which contains MEDLINE abstracts
annotated with entities and relations with respect to ADRs. Finally, Scaboro et al. (2022) provide
an English benchmark dataset called SNAX which is intended to serve as a test bed for systems
with respect to speculations and negation in the detection of ADRs. Note that the datasets used
in this thesis are described separately in Section 3.4.

3.2.2 Methods & Models

The algorithms and models very much follow the development in general IE, but are mostly
adapted to the domain. As mentioned, databases and ontologies play an important role in
biomedical text processing, and therefore, they are also extensively used in the methods de-
scribed below.

String Matching The very first approaches to the detection of ADRs were based on string
matching and domain-specific lexicons (Leaman et al., 2010; Chee et al., 2009a,b; Friedman,
2009; Metke-Jimenez et al., 2014). Often, these lexicons were extracted from databases like
Medical Dictionary for Regulatory Activities (MedDRA) or SIDER (Kuhn et al., 2016), but a
common approach also relied on sentiment lexicons since ADRs are usually described with a
more negative sentiment. Jiang and Zheng (2013) use a software called MetaMap (Aronson,
2001; Aronson and Lang, 2010) to detect effects of medication intake. Other approaches were
based on patterns and/or rules (Nikfarjam and Gonzalez, 2011), while Harpaz et al. (2010)
aimed to find drug-drug reactions using the Apriori algorithm (Agrawal, 1994), a method to
detect associations in large databases.

Machine Learning Approaches After being used in general NLP tasks for a while, SVMs and
(Multinomial) Naive Bayes approaches became popular in biomedical NLP, too (Chee et al.,
2011; Gurulingappa et al., 2012b; Yang et al., 2013; Jiang and Zheng, 2013; Patki et al., 2014;
Ginn et al., 2014). These were also based on specialized lexicons and hand-crafted features such
as word frequencies (Chee et al., 2011), Part-of-Speech (POS) tags (Gurulingappa et al., 2012b)
or n-grams (Patki et al., 2014). Cami et al. (2011) trained a logistic regression model on database
entries from 2005 to predict new drug-ADR associations on data from 2010. Gurulingappa et al.
(2012b) further showed that a Maximum Entropy classifier worked well for binary classification
of MEDLINE documents, while the same was shown for Twitter data by Jiang and Zheng
(2013).

Going further than classification, Aramaki et al. (2010) used CRFs to identify symptoms
and drugs in Japanese EHRs and a SVM as well as a pattern-based approach to classify the
relations between drugs and symptoms. Segura-Bedmar et al. (2014) used the tool TextAn-
alytics and created gazetteers to extract both drug mentions and ADRs. For the latter, they
used MedDRA and CIMA7. Instead of CIMA, Metke-Jimenez et al. (2014) used UMLS to find
documents containing relevant terms.

Sarker and Gonzalez (2015) experimented with data from DailyStrength combined with
tweets and the ADRCorpus provided by Gurulingappa et al. (2012a). Using again SVM, Max-
imum Entropy, and Naive Bayes classifiers for binary classification, they experimented with
three datasets, two of which are sources from social media, while the third one is based on
MEDLINE.

Nikfarjam et al. (2015a) also applied CRFs on previously successful features but now in
combination with word embeddings trained with word2vec. Other authors used ensembles
of decision trees, e.g., Rastegar-Mojarad et al. (2016). For the Russian drug review dataset,

7CIMA is a Spanish online medication information platform. http://www.aemps.gob.es/cima/

http://www.aemps.gob.es/cima/
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Alimova et al. (2017) used SVMs based on hand-crafted features and word2vec embeddings
for classification and added class weights to account for the class imbalance.

Combi et al. (2018) aimed to link descriptions of ADRs to their respective MedDRA terms
and apply the tool MagiCoder, which is a system that scans the texts word by word and tries to
detect tokens that belong to known MedDRA entries while performing various pre-processing
tasks such as stemming. The authors of PHAEDRA (Thompson et al., 2018) trained NERSuite8

whose main NER component is a CRF9. Next to SVMs for sentence classification, Zolnoori et al.
(2019) used the clinical Text Analysis and Knowledge Extraction System (cTAKES, Savova et al.
(2010)) for NER, which is again, a dictionary lookup algorithm.

Deep Learning Approaches Huynh et al. (2016) proposed three neural models for the clas-
sification of ADR-related documents: A convolutional RNN, a CNN with attention, and a re-
current CNN. The experiments are conducted on tweets (Sarker et al., 2016) and MEDLINE
(Gurulingappa et al., 2012b). Their methods improved upon previous ML approaches but per-
formed worse on the social media data than on the MEDLINE corpus, while a simple CNN
outperformed the more complex versions. Similar work was done by Lee and Uzuner (2020)
with a standard RNN for concept normalization on the TAC2017 shared task dataset, the FDA
shared task dataset, and the SMM4H 2019 data, all English.

The participants of the SMM4H shared task 2018 mostly used CNNs or RNNs in combi-
nation with word embeddings (Weissenbacher et al., 2018, 2019). Uzuner et al. (2020) summa-
rized the participating systems in the n2c2 shared task from 2018 and reported similar trends as
shown in other related work: RNNs were a popular choice among participating systems, while
also combinations of traditional and deep ML models were successful. They further stated that
ensembling and post-processing helped in increasing the final performances on the test set.

Yang et al. (2020) incorporated knowledge from SIDER into the embeddings of their archi-
tecture for NER, a recurrent CNN, and found that precision improved but recall decreased.
Other combinations of, for example, LSTMs and CRFs were used, e.g., by Sutphin et al. (2020).

Transformer-based Approaches With the rise of BERT and companions, domain-specific mod-
els were published as well. Therefore, some often used biomedical models are described briefly
to highlight the differences between training methods and underlying datasets. Note that all of
these are trained on English data and based on the above described BERT architecture. To the
best of our knowledge, no multi-lingual biomedical model exists so far.

BioBERT (Lee et al., 2020) is a BERT model pre-trained as described above. The model pre-
training is then continued10 using abstracts and full texts from PubMed (4.5 billion words),
a database for scientific papers11.

BioClinicalBERT (Alsentzer et al., 2019) was initialized with BioBERT12 and fine-tuned on
all available data in the MIMIC-III corpus (Johnson et al., 2016), which contains EHRs
from ICU patients.

BioRedditBERT (Basaldella et al., 2020) was initialized with BioBERT and continuously pre-
trained on the COMETA corpus (Basaldella et al., 2020), a text collection containing Red-
dit posts related to medical topics in colloquial language with approximately 300 million
tokens.

8http://nersuite.nlplab.org/
9CRFSuite (Okazaki, 2007), http://www.chokkan.org/software/crfsuite/

10This is called continual pre-training and uses the pre-training objectives, in contrast to fine-tuning, which uses
task-specific objectives for learning.

11https://pubmed.ncbi.nlm.nih.gov/
12Both the BioBERT paper and model were already published online before being accepted for Bioinformatics.

http://nersuite.nlplab.org/
http://www.chokkan.org/software/crfsuite/
https://pubmed.ncbi.nlm.nih.gov/
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PubMedBERT (Gu et al., 2021) is a model trained from scratch on 3.1 billion words from fil-
tered PubMed abstracts, following the assumption that pre-training on domain-specific
data is better in terms of performance than continual pre-training or fine-tuning (Gu et al.,
2021).

The 2019 edition of the SMM4H shared task was characterized by an adoption of BERT-
based models for the classification, extraction, and linking of ADRs (Weissenbacher et al., 2019).
However, the organizers also noted that even with Transformer-based models, the tasks are still
challenging: The best system achieved an F1 score of 0.646 only for the classification of ADR
documents.

With the SMM4H 2020 version, also non-English BERT models came into play. Both Mif-
tahutdinov et al. (2020) and Gusev et al. (2020) used ensembles of Russian BERT models and
additional training data to create the winning systems for the Russian tweets. For the French
data presented at SMM4H 2020, SBERT (Reimers and Gurevych, 2019) and DISTILBERT (Sanh
et al., 2019a) in combination with class weights won the challenge (Gencoglu, 2020). Note,
however, that a logistic regression approach using hand-crafted features (Tanguy et al., 2020)
came very close to the results on the difficult French tweets13, where the best team achieved an
F1 score of 0.17.

(Lee et al., 2020) test their BioBERT model on EU-ADR, where they show a slight improve-
ment over standard BERT with their model trained on PubMed abstracts and PubMed Central
full articles (F1 score for relation extraction is 86.51). Tutubalina et al. (2020) provide a Russian
drug review corpus (details in Section 3.4) and pre-trained models derived from mBERT. They
pre-train a BERT-based model, which they call RuDR-BERT, on unlabeled data and apply it for
classification and NER.

Haq et al. (2021) provided new results on the ADE corpus of Gurulingappa et al. (2012b) by
using BioBERT. However, in a study conducted by Portelli et al. (2021), the authors demon-
strated that the best models for the detection of ADRs mentions are (as of 2021) PubMedBERT
(Gu et al., 2021) and SpanBERT (Joshi et al., 2020a), showing that span-based pre-training has
a big effect on precise detection of ADR mentions and also that in-domain pre-training, even if
it is not on social media texts, can still outperform general domain models.

Raval et al. (2021) introduced a new technique for the classification and extraction of ADRs
by using a generative model, namely T5 (Raffel et al., 2020). They experimented with sev-
eral different datasets created from social media (SMM4H 2018-en, SMM4H 2020-fr (Twitter),
CADEC, ADE-v2, WEB-RADR) and trained the model on all tasks (depending on the dataset)
at the same time. As baselines, they tried several BERT variants (BioBERT (Lee et al., 2020),
BioClinicalBERT (Alsentzer et al., 2019), SciBERT (Beltagy et al., 2019), PubMedBERT (Gu
et al., 2021), SpanBERT (Joshi et al., 2020a)), but also combinations of BERT models with a final
CRF layer. To account for the different dataset sizes, they introduced proportional mixing, i.e.,
sampling in proportion to the size of the corpus. The authors applied this sampling scheme
together with temperature scaling as shown by Raffel et al. (2020) and others to balance the task
and dataset. With this, they improved upon other work in both classification and extraction.

DeepADEMiner is a complete pipeline for extracting and normalizing ADRs in tweets pub-
lished by Magge et al. (2021). It includes RoBERTa for classification, an NER component for
span extraction, and either a fastText or BERT classifier for normalization. The authors
showed, with the best performance of the complete pipeline resulting in an F1 score of 0.34,
that there is a lot of room for improvement even on English Twitter data, which is one of the
domains most worked on.

Zhu and Jiang (2021) investigated semi-supervised techniques for ADR classification, mix-
ing labeled and unlabeled tweets for training a BERT-based model trained from scratch on
tweets. They first generated a silver-annotated training set by applying a classifier trained on

13The data contained only 1.6% positive tweets in both train (2,426 tweets overall) and test set (607 tweets overall).
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labeled data to unseen data. Further, they added what they call “consistency regularization”
to make certain that the model stays consistent in its predictions even when adding new data.
They then showed that their techniques outperform a baseline relying only on labeled data,
i.e., pseudo-labeled data seems to be better than gold-labeled samples, of which there are only
a few.

Huguet Cabot and Navigli (2021) provided a new LM called REBEL which is based on the
sequence-to-sequence model BART. They framed relation extraction similar to a translation task
by feeding a sequence to a model, which then returns a triplet of entities and a relation, i.e., a
translation of text into triplets.

Similarly, Paolini et al. (2021) proposed a method that is based on the idea of translation
as well. On datasets such as the ADE dataset (Gurulingappa et al., 2012b), they demonstrated
joint entity and relation extraction by encoding the given input sequence with the relevant
information with respect to entities and relations, which are then decoded into the desired
structured output using the T5 model.

Scaboro et al. (2021) and Scaboro et al. (2022) investigated the effect of negation in the con-
text of ADRs and showed that adding negated samples and a specific negation detection com-
ponent can help in improving the robustness of BERT-based models for both the classification
and extraction of ADRs.

A question-answer-based approach for the detection of ADRs was proposed by Arannil
et al. (2023), working in a similar way as the approach of Raval et al. (2021). The authors used
the generative model T5 (Raffel et al., 2020) in combination with a Question & Answering (QA)
task in a multi-task scenario to extract entities and relations separately. In a second approach,
they fed questions and context to a model, which then returns the extracted ADRs and drug
mentions in one go. However, they found the separate approach to be more successful.

3.2.3 Challenges

Although the above does not show every technique used for approaching the task of classi-
fication, detection, and relation extraction with respect to ADRs, it still demonstrates the de-
velopment of the methods over time. Some challenges, like reasoning with context, showed
improvement with the introduction of Transformer-based models, but various challenges re-
main.

Label Imbalance One of the challenges faced often in biomedical NLP is the imbalance of
data. This was, for example, reported in the work of Ginn et al. (2014), who collected tweets
based on drug keywords. The data was balanced by drug mention, but not in terms of ADRs,
i.e., only 11% actually contained ADRs. Similarly, in the Japanese EHRs used by Aramaki et al.
(2010), not even 8% contained ADRs. To counteract the imbalance, Ginn et al. (2014) test their
models in different configurations, showing that the more imbalanced the data, the worse the
performance of the models, in this case SVM and Naive Bayes.

Sarker and Gonzalez (2015) combine datasets from different sources to expand the number
of (positive) training examples. The models trained on data from Twitter and DailyStrength
benefit from the combination, but when adding social media data to the MEDLINE dataset, the
performance does not change significantly.

Magge et al. (2021) also emphasize the “natural” label imbalance observed in the data as a
major obstacle to achieving good performance, even when experimenting with undersampling
techniques and lowered thresholds for classification.

Data Collection & Annotation Methods Another issue with respect to generalization is the
collection method. Especially for social media data, researchers usually use keywords to har-
vest Twitter or other social networks as described by Ginn et al. (2014) or Metke-Jimenez et al.
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(2014) who both rely on a restricted set of drugs to find documents on Twitter and AskAPatient,
respectively. This, however, often leads to problems when applying the learned models to new
data – they are too adapted to certain drugs or adverse effects mentioned in the training data.
Alvaro et al. (2017) attempted to mitigate this phenomenon by creating a corpus (TwiMed) of
social media and non-social media sources, annotated with entities based on the same guide-
lines for both genres to counteract the issue of too many different guidelines for different data,
allowing a direct comparison between different genres. Moreover, in cases such as the French
SMM4H data, there might be insufficient data for training the (large) LMs nowadays.

Domain-specific Text Variations Further, when working with social media of all kinds, but
also with, for instance, reports written by professionals, they contain a lot of genre-typical
abbreviations (Segura-Bedmar et al., 2014) and unconventional spellings (Ginn et al., 2014;
Segura-Bedmar et al., 2014), lexical variations (Segura-Bedmar et al., 2014), as well as slang
or jargon (Huynh et al., 2016), making entity detection and normalization unequally more dif-
ficult than when working on scientific texts.

As reported by Sarker and Gonzalez (2015), the short Twitter messages also provide a chal-
lenge. In the authors’ case, this resulted in not being able to generate a lot of features from
these messages, and nowadays, this limits the context Transformer-based models can benefit
from. On the other side, some long sequences, as can be found in patient reports, might be
much longer than the maximum sequence length required by Transformers.

Incorporating Controlled Vocabularies Ontologies sometimes seem to help and sometimes
seem to decrease the performance of the applied methods, depending on how they are used
in the process. Segura-Bedmar et al. (2014), for example, report that they introduced a lot of
false positive ADR mentions by using an unfiltered MedDRA vocabulary. Metke-Jimenez et al.
(2014) show that using Consumer Health Vocabulary (CHV) works better than UMLS for social
media, although UMLS is the more comprehensive collection. In more recent approaches for
the detection of ADRs, lexicons and ontologies are used less frequently, but with knowledge
base integration receiving much attention lately, this might only be a matter of time.

Ambiguities Another factor that makes the detection of drugs and ADRs difficult is the high
frequency of ambiguities. For example, often, drug names are similar to women’s names (e.g.,
“Lyrica”) or just common words (e.g., “alcohol”) also used in other contexts (Segura-Bedmar
et al., 2014).

Generic statements are another factor that complicates the detection of relevant documents
(Sarker and Gonzalez, 2015). On social media platforms in particular, and especially in times
of pandemics, ADRs might rather be rumors and speculations than actual experiences of the
writers.

Further, indications and ADRs are often confused by systems, demonstrating that still more
context “understanding” is necessary. And finally, as pointed out in the context of n2c2 2018,
linking ADRs to their causes is more difficult when several causes are discussed or when long
spans of text are written between the cause and the reaction (Uzuner et al., 2020).

3.2.4 Summary

When reviewing the literature on the mentioned tasks with respect to ADRs, it becomes clear
that most data is still provided in English, and only a few other languages are represented. In
the works described above, this resorts to Japanese, Russian, Spanish, Italian, and French. Some
of the data in these languages, however, were never published or are only available without
labels.
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The methods used do not differ much across languages but often lack the right amount of
data. However, even on English, there is much room for improvement in all tasks related to
ADR detection. Nevertheless, while in earlier years researchers provided detailed error analy-
ses of the performance of their systems, it is not completely clear what the problems nowadays
are, except for the challenges described above, since often, only F1 scores are reported and noth-
ing else – often, the ADR datasets are simply used as a demonstration corpus for the newest
technique and not because the task itself should be improved.

Another problem revealing itself is the fact that datasets from different sub-domains are
rarely mixed, and therefore, even for the exact same task in the same umbrella domain, it is
difficult to transfer performance from one dataset to the other. But, as put by Chapman et al.
already in 2011, the progress in developing NLP techniques for the clinical14 domain still lags
behind the advancements in the general domain. This is, amongst other factors, due to privacy
concerns with respect to clinical data and the hence resulting scarce distribution of datasets.
Shared tasks like the n2c2, SMM4H, BioNLP, BioCreative, and NTCIR series address some of
these problems but still mostly focus on English data. It is, therefore, a task for the international
community to improve the situation.

As mentioned at the beginning, most of the above-described work is focused only on tasks
related to the detection and extraction of ADRs. Since this involves classification, entity de-
tection, and classification as well as relation extraction, most common general extraction tech-
niques can – with slight adaptions to the domain – probably also be applied here.

Other sub-fields in the biomedical and clinical domain are closely related as well. For ex-
ample, there is also a huge effort regarding the extraction of medication mentions, chemicals,
and other biomedical or clinical entities apart from ADRs. Agrawal et al. (2022), for instance,
showed that InstructGPT (Ouyang et al., 2022) works well in few-short scenarios for English
NER in the clinical domain. Verma et al. (2023) combined the predictions of popular NER sys-
tems in the biomedical domain using different strategies and also another model on top and
show that this can improve the performance on several widely used datasets.

3.3 Cross-lingual Information Extraction in Biomedical NLP

Some work on non-English data concerned with ADRs was already described in Section 3.2.
However, none of these works addressed more than one language at the same time. In their
review on “Clinical Natural Language Processing in Languages other than English”, Névéol
et al. (2018) summarize the non-English publications in the clinical and biomedical domain up
until 2017. The majority of these, however, are neither multi- nor cross-lingual.

However, in recent years, thanks to multi-lingual ontologies like UMLS and large multi-
lingual models like XLM-RoBERTa, the interest in multi-lingual biomedical and clinical NLP
increased. Therefore, the below briefly highlights some examples15. Note, however, that only
two of them are concerned with ADRs.

3.3.1 Datasets

According to Névéol et al. (2018), the CLED-ER evaluation lab in 2013 (Rebholz-Schuhmann
et al., 2013) was the first venue that offered a multi-lingual shared task on entity recognition
in parallel corpora. In the course of that, one of the first multi-lingual biomedical corpora was

14(and biomedical)
15The overview is not exhaustive but only emphasizes some works. For publications before 2018, we picked the

multi-lingual approaches referred to in the survey of Névéol et al. (2018), the ones after 2018 are picked to represent
a variety of sub-domains and tasks in the clinical and biomedical domain.
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published: the Mantra corpus (Kors et al., 2015). It contains annotations of entities together
with their Concept Unique Identifiers (CUIs).

Neves et al. (2016) published a parallel corpus of biomedical articles from Scielo16 contain-
ing aligned sentences in English, French, Spanish and Portuguese. Further, in 2018, Neveol
et al. provided a corpus of death certificates in French, Hungarian, and Italian for the CLEF
eHealth 2018 challenge.

3.3.2 Methods & Models

Bodnari et al. (2013) presented a system that can extract biomedical entities in English, French,
and Spanish. It is based on a CRF using manually crafted features per language and word
alignment methods to transfer annotations between languages.

Duque et al. (2016) attempted to disambiguate medical named entities by using a multi-
lingual approach. They showed a 7% improvement over purely mono-lingual approaches by
building a co-occurrence graph from several multi-language datasets that helps to filter candi-
dates for biomedical entities.

For the 2018 CLEF eHealth shared task on ICD-10 coding in death certificates, participants
applied techniques such as classification using statistical ML, e.g., random forests, and NNs,
e.g., CNNs and RNNs with attention, but also dictionary-based approaches or combinations of
both, as well as translations. Seva et al. (2018), for example, built a language-agnostic encoder-
decoder approach using multi-lingual fastText embeddings to tackle the shared task.

Roller et al. (2018) worked on concept normalization for linking concepts in the French
Quaero corpus and the multi-lingual Mantra corpus. The authors show that especially for
medical terms in European languages, a simple cross-lingual search improves normalization,
which they assumed to be due to the common roots of the words in Greek and Latin.

Hakala and Pyysalo (2019) used mBERT combined with a CRF to perform NER in the biomed-
ical domain and show that is works surprisingly well even without being pre-trained on in-
domain data. Similarly, Ding et al. (2020) performed cross-lingual transfer-learning for English
NER by incorporating Chinese medical data. They pre-trained a bi-lingual XLM-RoBERTa
model17, incorporated a medical ontology and further added a transformation matrix that
aligns bi-lingual embedding spaces. The token embeddings retrieved from the aligned space
were concatenated with the XLM-RoBERTa embeddings and fed to a bi-LSTM with a final CRF
layer. The adapted model gains about 3 points in F1 score over the original XLM-RoBERTa on
the English i2b2 2010 dataset. Mutuvi et al. (2020) experimented with the multi-lingual classi-
fication of epidemiological datasets. They showed that mBERT outperforms all baselines using
“traditional” ML and neural architectures.

For the SMM4H 2020 shared task, Miftahutdinov et al. (2020) compared different model
and data setups and showed that a CNN in combination with fastText can outperform
mBERT on Russian ADR texts in binary classification when the fastText embeddings were
trained on Russian health-related data. When using both English and Russian tweets for fine-
tuning an English-Russian BERT model (EnRuDRBERT) and using an ensembling approach,
they achieved the best result (within their experiments), especially when compared to only
fine-tuning on Russian data. However, the authors also note that adding Russian data to the
English data only improved the results on the English test set by one percentage point.

Raval et al. (2021) investigated the performance of mBERT and T5 trained on English when
applied in zero-shot mode to the French SMMM4H 2020 data. They showed that their setup

16https://scielo.org/
17It is not entirely clear if the authors used the XLM or the XLM-RoBERTa model based on their descriptions of the

language modeling objectives.

https://scielo.org/
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using T5 (Raffel et al., 2020) with proportional mixing and temperature scaling allows a zero-
shot transfer to the French imbalanced data which results in an F1 score of 20%, better than
when using mBERT and the same result as the best system in SMM4H 2020 achieved.

Frei and Kramer (2022) took English n2c2 2018 data (Henry et al., 2020) and automatically
translated and aligned it to German using the fairseq (Ott et al., 2019) and fastAlign (Dyer
et al., 2013) frameworks, creating a German n2c2 dataset. They showed that a model trained
and tested on the newly created corpus achieves an F1 score of approximately 81%. A similar
approach was followed by Schäfer et al. (2022) on the German BRONCO corpus (Kittner et al.,
2021) and three English corpora.

For clinical NER, Gaschi et al. (2023) compared, again, translation of training or test set with
cross-lingual transfer. They used the dataset provided by Frei and Kramer (2022) and released
a new French dataset intended as an evaluation dataset. They show that translation-based
approaches can be similarly successful than cross-lingual methods, but require more effort and
careful design.

Finally, Meoni et al. (2023) study multi-lingual medical entity extraction using large LMs,
similar to the work of Agrawal et al. (2022) who also use InstructGPT (Ouyang et al., 2022).
In contrast to them, however, Meoni et al. (2023) use Large Language Models (LLMs) to pre-
annotate EHRs with which local confidential models can be trained in the clinical domain.

3.3.3 Summary

Most approaches in cross- and multi-lingual IE in biomedical NLP are very similar to those
conducted in the general domain on multi-lingual texts. Especially translation approaches and,
nowadays, multi-lingual models are popular means, often also in combination, for compensat-
ing the low amount of target language data and/or annotations. There is not a huge body of
related work right now, but it seems to be growing, since now, researchers have the means
to get more successful results, and institutions recognize the value multi-lingual information
access can provide for patients and medical professionals.

3.4 Existing Datasets

As mentioned before, there are quite a few annotated datasets tackling questions in biomed-
ical and clinical NLP by now, although not multi-lingual ones.18 The number of supported
languages has also been growing in recent years. On the Huggingface data hub19, at least six
languages for health-related datasets are represented: English, Spanish, Chinese, French, Ger-
man, and Japanese. Of course, this is not a lot, but at least a beginning, and also, the list is not
exhaustive since some datasets cannot be easily shared on a hub like this due to data privacy
concerns.

Unfortunately, only a few datasets include annotations for the detection and extraction of
ADRs. Although NLP in the domain of pharmacovigilance has been researched for quite some
time, usable, that is, publicly available annotated data is still scarce, particularly for languages
other than English. Further, only a few of these datasets represent a “reversed” perspective,
namely the one of the patient. Indeed, most data sources are written by experts in the field,
either practitioners or scientists, who write reports or papers about specific cases.

Since approximately 2010, with one of the first publications on the extraction of ADRs by
Leaman et al. (2010), the interest in and the number of social media datasets has been grow-
ing slowly since researchers, health-related industries, and authorities recognize the value of

18At the time of writing, the best dataset overviews are probably given on huggingface spaces, where the
BigScience sub-group for biomedical NLP aims to collect all publicly available datasets, as well as a list of datasets
provided by Fries et al. (2022), which seems to be an intermediate version (https://tinyurl.com/bigbio22).

19https://huggingface.co/bigbio

https://tinyurl.com/bigbio22
https://huggingface.co/bigbio
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patient-generated data with respect to improving medication products and public health moni-
toring (Sarker et al., 2015). For English social media datasets published between 2010 and 2014,
we refer the reader to Table 1 in the review of Sarker et al. (2015). Unfortunately, not all of these
are publicly available.

An overview of publicly available non-English datasets is provided in Table 3.1. The listed
datasets and their annotation process are described in the following to highlight their differ-
ences and emphasize the challenges associated with each corpus, especially in comparison
with the new corpus provided by this work.

lang. #docs neg pos ratio type annotation authors

es 400 235 165 1.4 : 2 forum entities Segura-Bedmar et al. (2014)
fr 3033 2984 49 61 : 1 Twitter binary Klein et al. (2020)

ru - - 279 - drug
reviews multi-label Alimova et al. (2017)

ru *500 - - - drug
reviews

multi-label
+ entities Tutubalina et al. (2020)

ru 9515 8683 842 10 : 1 Twitter binary Klein et al. (2020)

ja 169 - - - forum entities
+normalization Arase et al. (2020)

Table 3.1: Other non-English social media corpora for the detection (and sometimes ex-
traction) of ADRs. fr=French, ru=Russian, ja=Japanese, es=Spanish. The number of doc-
uments (#docs) refers to the definition of documents per corpus, i.e., some are sentence-
based, some are post-based, etc. The annotations were converted to binary classes where
possible. Some test sets are unavailable to the public since they are/were part of a shared

task. *This is only the annotated part of the RUDREC corpus

Spanish (es): The SPANISHADR corpus (Segura-Bedmar et al., 2014) was the first non-English
social media dataset focused on ADRs overall. The data they collected was downloaded from
a Spanish patient forum called “ForumClinic”20. The authors downloaded all available data at
that point and randomly picked 400 forum posts for annotation. Then, two annotators “with
expertise in Pharmacovigilance” (Segura-Bedmar et al., 2014) annotated Adverse Events21 and
drug mentions, where drug mentions refer to “substance[s] used in the treatment, cure, preven-
tion or diagnosis of diseases”, using an annotation tool provided by the open source software
toolkit GATE (Cunningham et al., 2013). Both generic and brand names of medications as well
as medication groups were annotated. Also, mentions with errors (grammatical or spelling
errors) and nominal anaphoric expressions were included. The work of both annotators was
merged with the help of a third annotator to solve disagreements. Segura-Bedmar et al. (2014)
report an IAA based on F1 score of 0.89 for the drug mentions and 0.59 for Adverse Events
(AEs).

Japanese (ja): Similar to the Spanish corpus, Arase et al. published a corpus in 2020 based
on the Japanese patient forum called TOBYO22. The authors crawled all entries related to lung
cancer and containing one to five drugs out of a pre-compiled dictionary. They further filtered

20http://www.forumclinic.org
21An adverse event is “any untoward medical occurrence in a patient to whom a medicinal product is admin-

istered and which does not necessarily have a causal relationship with this treatment” (https://learning.
eupati.eu/mod/book/tool/print/index.php?id=811).

22https://www.tobyo.jp/

http://www.forumclinic.org
https://learning.eupati.eu/mod/book/tool/print/index.php?id=811
https://learning.eupati.eu/mod/book/tool/print/index.php?id=811
https://www.tobyo.jp/
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the data and sampled 500 posts randomly for annotation. The final corpus provides annota-
tions of drug effect spans, related drug mentions, types of reactions, and the ICD-10 codes for
those. The entities were labeled with IOB tags on character level.

The data was annotated with the help of trained annotators, who were, however, no experts
in the fields of medicine or pharmacy. Microsoft Word was used for annotation. The annotators
identified drug names and adverse reactions to those medications and labeled them with the
respective markers, such as ICD-10 codes for symptoms, including both negative and positive
effects of the drug. General expressions for drug names, like “tablet”, were excluded, but brand
names, as well as specific medical substances, were annotated. Drug effects that are described
by patients but not actually experienced by them were not annotated, neither were symptoms
not related to a drug.

The identified effects were further divided into target and adverse reactions using four
different labels. “Target-effect positive” describes the intended effect of the drug that actually
eventuated. In contrast to that, “target-effect negative” is the label for desired effects which did
not occur. “Adverse-effect positive” is an ADR which is known and happened to the patient,
while “adverse-effect negative” is an ADR which should have happened, but did not. Finally,
annotators were asked to assign ICD-10 codes to each effect by querying MANBYO-SEARCH,
a search engine that receives a reaction expression and returns one or more possible codes.

The work of all three annotators was consolidated by taking the label set that at least two
annotators chose. This means the annotators had to agree on the drug name, IDC-10 code, and
effect type. Sets of labels produced by only one of the annotators, and therewith the entire
article, were discarded. Then, the longest provided span was selected. This process resulted
in 169 articles out of 500. Arase et al. (2020) explain that most of the discarded data contained
information irrelevant to ADRs. However, with this, the authors remove all negative exam-
ples of documents containing ADRs. Inter-annotator agreement was calculated using Fleiss’ κ,
resulting in κ = 0.52 for span and type agreement.

Russian (ru): Alimova et al. (2017) provided the first dataset of this kind for the Russian
language. They crawled the drug review forum Otzovik23 and created a corpus based on 580
reviews with respect to specific medication, e.g., antiviral and soporific drugs. The annotators
were “specialists in the field of medicine” (Alimova et al., 2017) and the annotation instructions
were based on the work of Leaman et al. (2010). The reviews were split into sentences using
the Texterra system (Turdakov et al., 2014) and marked with one out of four labels: Indication,
Beneficial effect, Adverse drug reaction, Other. Sentences that could be annotated with more than
one label were removed (69 sentences), and therefore, sentences with the label Indication only
contained the reasons for taking a specific drug, i.e., symptoms and diseases (646 sentences in
total). Beneficial effect, as the name suggests, is the label for sentences describing only recovery
reports of patients (335 sentences). Adverse drug reaction marks sentences as containing a de-
scription of a decline in a patient’s health (279 sentences). Finally, Other describes all cases that
do not fit into the other three labels, resulting in 4,488 sentences. The authors did not state how
many annotators worked on the data and neither reported the IAA.

Tutubalina et al. (2020) created another Russian dataset of drug reviews three years later,
calling it the Russian Drug Reaction Corpus (RUDREC). The data is divided into two parts:
one containing annotations on entity level, the other one without annotations. The annotated
corpus is based on online drug reviews from the same forum that was used by Alimova et al.
(2017) and comprises 500 documents. The second part of the corpus contains, according to the
authors, 1.4 million texts from various online sources focused on health-related user-generated
posts.

23http://otzovik.com

http://otzovik.com
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The labels of the annotated corpus are sentence-based and mark the existence or absence of
health-related issues using five different sentence labels. Those that contain health problems
were further annotated on entity level, distinguishing six different entity types. According to
Tutubalina et al. (2020), the annotation guidelines are in line with those of Karimi et al. (2015)
and Zolnoori et al. (2019).

Annotation was carried out in two steps using INCEpTION (Klie et al., 2018). During the
first step, four annotators – all with a background in pharmaceutical sciences – were asked
to highlight relevant spans of text in 400 test examples. These spans included drug names
and patients’ health conditions at various points in time and related to drug intake. Using the
pre-annotations of the first annotation round and discussions with the annotators, IAA was
determined to be “approximately 70%”, using a relaxed agreement for disease and drug enti-
ties following earlier work (Karimi et al., 2015; Metke-Jimenez et al., 2014). Based on this, the
following sentence and entity labels were selected in the end. For sentence-level annotation,
Tutubalina et al. (2020) decided on DE (drug effectiveness, the sentence contains a report about
an improvement of the patient’s health or about treated symptoms), DIE (drug ineffectiveness,
the health of the patient deteriorated or the medication did not have any effect), DI (the sen-
tence described the reason, e.g., symptoms, of medication intake), ADR (the sentence contains
a report on undesired reactions due to medication intake) and finally, FINDING (events related
to diseases not experienced by the patient, e.g., absence of drug effects). Entities are either la-
beled as DRUGNAME (brand names or product ingredients), DRUGCLASS (general mentions
of drug families), DRUGFORM (routes of medication intake), DI (drug indications and symp-
toms), ADR (negative events occurring as a consequence of medication intake, not associated
with the symptoms), or FINDING (DIs or ADRs not directly experienced by the patient, entities
about which the annotator was not clear).

For the second step, two annotators continued the annotation process with the determined
sentence and entity labels. After finishing, their work was reviewed by the authors. The dataset
contains reviews of four different groups of drugs. It is not entirely clear if those drugs were
targeted in the first place or if they were only emerging after annotation.

Klein et al. (2020) present a Twitter dataset made from Russian tweets with binary anno-
tation. The training set (which is the only one available) contains 7,612 tweets of which 666
describe an ADR. For the test set, Klein et al. (2020) list 1,903 tweets with 166 containing an
ADR. The tweets were first annotated by three annotators from Yandex Toloka24, then consol-
idated into one single label, and finally reviewed by an additional annotator. The authors do
not mention the background of the annotators but report an IAA of 0.49 using Cohen’s κ. The
data was presented for the fifth Social Media Mining for Health Applications (SMM4H) shared
task in 2020.

French (fr): The French corpus (Klein et al., 2020) is based on data collected from Twitter as
well and was also part of the SMM4H 2020 shared task. The training set contains 2,426 tweets
with 39 ADR examples, while the test set (which is not publicly available) comprises 607 tweets,
with only 10 texts describing an ADR. 848 tweets were double annotated by three annotators
(no background given) using binary labels. On these, the authors report an IAA of 0.61 and
0.69 for each annotator pair.

English (en): Since we will make use of two English datasets in Chapter 5 as well, we will
briefly present those, too. Both datasets are based on the patient forum AskAPatient25.

Karimi et al. (2015): The CSIRO Adverse Drug Event Corpus (CADEC) is the most widely
known dataset for the detection of ADRs from social media. In total, it contains 7,398 sentences

24https://toloka.yandex.ru/
25https://www.askapatient.com/

https://toloka.yandex.ru/
https://www.askapatient.com/
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from 1,253 user posts. The posts were provided (and not crawled) by the AskAPatient forum
based on 12 pre-defined drugs, for example, Cataflam or Arthrotec. Each of those drugs belongs
to either the group of Diclofenac or Lipitor. They were annotated in two steps using the annota-
tion tool BRAT by medical students and computer scientists and finally screened by three of the
authors to correct mistakes. During normalization, the annotations were further reviewed by a
clinical terminologist (Karimi et al., 2015).

Annotators were first asked to identify relevant entities, which were then linked to a con-
trolled vocabulary, in this case, SNOMED-CT26, Australian Medicines Terminology (AMT), and
MedDRA, depending on the entity. Also, annotation was executed on the sentence level, while
entities crossing sentence boundaries were omitted. However, entities were allowed to be dis-
continuous but not embedded (an example of a discontinuous entity is shown in Section 4.1.3).
Also, generic mentions, like “side effect”, were not annotated. This is also true for co-references
or anaphoric expressions. Furthermore, spans were limited to not include prepositions, quali-
fiers, or possessive adjectives.

The entities to be annotated were finalized in consultation with annotators and experts
in the field as follows: Drug, ADR, Disease, Symptom, and Finding. Most of these are self-
explanatory, Finding represents, similar to the work of Tutubalina et al. (2020), events not di-
rectly experienced by the patient or other occurrences about which the annotator is not clear.

The actual annotation started after an initial pilot annotation task and adapting the anno-
tation setting accordingly. According to Karimi et al. (2015), the forum posts were given in
equal parts to the annotators, with an overlap of 55 documents for the calculation of IAA. The
authors calculated strict and relaxed agreement, following the work of Schouten (1980); Metke-
Jimenez et al. (2014). In a relaxed setting, annotations for the Diclofenac group achieved an IAA
of 78% (four annotators) while the Lipitor group resulted in an IAA of 95% (two annotators).

In the second stage of annotation, the normalization, only one annotator, a clinical termi-
nologist, was working on the data. All entities except Drug were mapped to Systematized
Nomenclature of Medicine–Clinical Terms (SNOMED-CT), mostly in a one-to-one fashion but
sometimes also in a one-to-many fashion when it seemed necessary.

All entities labeled with Drug were linked to entries in AMT. Here, the authors had a simi-
lar problem as Segura-Bedmar et al. (2014): Since AMT is a collection of medication released in
Australia, but AskAPatient can be used by English-speaking people around the world, some
drug names were not found in the terminology. In those cases, a generic concept or “con-
cept_less” as a dummy was annotated. Finally, ADRs, or rather their concepts inferred from
SNOMED-CT, were mapped to MedDRA, specifically to the Lowest Level Term (LLT) to cope
with the colloquial language.

Zolnoori et al. (2019) created a similar corpus, but with a focus on psychiatric medications.
The Psychiatric Treatment Adverse Reactions (PSYTAR) corpus provides three types of anno-
tation: sentence-level labels, entity annotations and normalization. The forum posts crawled
from AskAPatient all contain one out of four psychiatric medications: Zoloft and Lexapro (from
the class of Selective Serotonin Reuptake Inhibitors) and Cymbalta and Effexor (from the class
of Serotonin Norepinephrine Reuptake Inhibitors). They were pre-processed by using regular
expressions to replace personal information and noisy patterns, for instance, errors in punctu-
ation.

The authors sampled a number of posts from the downloaded data and split them into sen-
tences. They were first annotated on sentence level for the occurrence of ADRs, withdrawal
symptoms, general signs or symptoms, drug indications, drug effectiveness, and drug inef-
fectiveness. If a sentence did not report any of the aforementioned events, it was labeled as
Others.

26See Appendix A.4.
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In a second step, spans describing ADRs, withdrawal symptoms, general signs or symp-
toms, and drug indications were annotated. Also, qualifiers with respect to the entity types
were annotated. The guidelines were based on earlier work of the authors (Zolnoori et al.,
2017). For example, if a patient was not certain about the connection between medication in-
take and an adverse effect, this was not annotated as an ADR. However, subjective complaints,
functional problems due to medication intake, and duplicated mentions were extracted. In
contrast, constructions like metaphors or figures of speech were omitted.

Lastly, the annotators normalized these entities using UMLS and SNOMED-CT and cate-
gorized them into the classes physiological, psychological, cognitive, and functional problems. For
normalization, if the annotators could not find a fitting concept following a flow chart provided
by the authors, in neither UMLS nor SNOMED-CT, the entity was assigned to the dummy con-
cept “no-codes”.

For sentence classification and entity annotation, the authors hired four annotators with ei-
ther a background in pharmaceutics or health sciences. Each review post was double-annotated,
and IAA was calculated based on Cohen’s κ. The IAA for sentence classification resulted in a κ
of 0.78. Sentences on which the annotators disagreed were revisited and resolved by the same
annotators. Disagreement on entities was resolved by one of the authors, and IAA was mea-
sured using pair-wise agreement (Schouten, 1980). It resulted in a score of 0.86 for the entire
dataset, 0.86 for the agreement on ADRs, 0.81 for withdrawal symptoms, 0.91 for signs and
symptoms, and 0.91 for indications.

Differences in the described corpora Additionally to the n-ary format on document-level,
some of the corpora also offer a more fine-grained annotation and, therefore, more detailed in-
formation. This includes the annotation of entities but also normalizing entities to their medical
concepts from various ontologies, for instance, SNOMED-CT and UMLS. All works described
above tackle various aims with the creation of their corpora, resulting in different annotation
schemes for different use cases. This resulted in a different number of document and entity la-
bels per corpus, mostly depending on granularity and focus. More “complicated” documents,
like those associated with more than one label or ambiguous ones, are discarded in some works
(Alimova et al., 2017; Arase et al., 2020).

The pre-selection of medications also plays an important role. Some authors, e.g., Arase
et al. (2020), focused on specific diseases, and the associated medication, some chose a certain
set of drugs (mostly) independent of the disease (Karimi et al., 2015; Zolnoori et al., 2019; Klein
et al., 2020), some just took everything they could get and sampled randomly (Segura-Bedmar
et al., 2014). For example, the two most similar corpora, CADEC and PSYTAR, are different
in that they focus on non-overlapping medication (groups) and have a different granularity of
annotation (e.g., review-level versus sentence-level). Further, entities in CADEC were mapped
to MedDRA, AMT, and SNOMED-CT, while those of PSYTAR were mapped to UMLS. In con-
trast, the Japanese dataset created by Arase et al. (2020), for example, is based on paragraphs,
and diseases, signs, and symptoms are mapped to ICD-10 codes. However, medication names,
although annotated, are not associated with any ontology.

Some of the corpora include annotations of drug ineffectiveness (Zolnoori et al., 2019; Tu-
tubalina et al., 2020; Arase et al., 2020), while the others do not have annotations of these entity
spans. Sometimes, generic expressions like “side effect” or “pill” are included (Segura-Bedmar
et al., 2014) while in other datasets, these are deliberately excluded (Arase et al., 2020; Karimi
et al., 2015). The same applies to anaphoric and other referencing expressions, modifiers, pos-
sessive pronouns, and qualifiers. Some datasets include them (e.g., anaphoric expressions are
annotated by Arase et al. (2020)), others do not (e.g., anaphoric expressions are excluded by
Karimi et al. (2015) by design). Note that some authors do not give information about how
they handle these expressions.
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One noticeable difference of PSYTAR (Zolnoori et al., 2019) compared to all other corpora
is the inclusion of what they call “functional problems”, meaning issues that negatively affect
the patients’ social life, daily functioning and, in general, quality of life. The authors included
these because the psychiatric medications they focused on often have an influence on the afore-
mentioned areas.

The length of examples also varies depending on the underlying source. Twitter messages
are, in general, rather short, while drug reviews and forum posts are longer. However, some
of the authors intentionally shortened (Arase et al., 2020) or split up (Zolnoori et al., 2019;
Tutubalina et al., 2020) the documents. Moreover, depending on document length, some au-
thors (Karimi et al., 2015) allowed cross-sentence annotations as well as discontinuous entities
(Karimi et al., 2015). However, most authors did not comment on these phenomena. Note that
none of the presented corpora, however, has marked any relations between the entities. Karimi
et al. (2015) mentioned being “in the process” of adding relations and more entities, but this
data, if existent, is not available.

Finally, but also importantly, we see that the calculation of IAA is done differently in almost
all corpora or not at all (Alimova et al., 2017). Segura-Bedmar et al. (2014) report using F1 score
for the IAA of entities, where one out of two annotated datasets is used as the gold standard.
Arase et al. (2020) used Fleiss’ κ to calculate agreement on entities. Tutubalina et al. (2020)
follows previous work (Metke-Jimenez et al., 2014; Karimi et al., 2015) and report pairwise
agreement (relaxed) on entity level. Karimi et al. (2015) evaluated the annotated entities using
both strict and relaxed pairwise agreement. Zolnoori et al. (2019) use Cohen’s κ for sentence-
based annotations and pairwise agreement for evaluating the entity-level annotations. Both
datasets of Klein et al. (2020) were evaluated using Cohen’s κ on the sentence labels.

All of this makes it rather difficult to compare datasets and experimental results using these
datasets across languages but even within a language. The IAA, in particular, is an important
means to evaluate and validate the quality of a dataset and should be calculated in a consistent
way or, if possible, from multiple perspectives, i.e., using several measures.

As with other sub-domains in biomedical NLP, common annotation schemes and guide-
lines are important to compare performances and to transfer models and insights. Of course,
if a dataset focuses on a specific domain, then entities specific to this domain have to be anno-
tated. Nevertheless, annotating similar datasets using a similar or even the same annotation
scheme might also provide interesting insights specific to the languages and cultures. Also,
adding some annotations that might be interesting for another task or domain might not pro-
vide too much overhead and can be beneficial in unsuspected ways.

Going back to the presented corpora, in particular the non-English ones, it becomes clear
that there is still a need for more data in both the already tackled languages since the datasets
are rather small, but also in “new” languages, to improve the monitoring of public health. Of
course, under-resourced languages should be represented as well, but in this case, even lan-
guages that usually have enough resources are not covered, for example, French and German.

3.5 User Privacy

When it comes to biomedical text processing on social media, researchers also have to deal with
the privacy appertaining social media users. The ethics of working with (data of) social media
users have been a widely discussed topic for quite some time (Grimmelmann, 2017; Ford et al.,
2021). This does not only concern the written texts of users but, more generally, any personal
information they share, sometimes unwittingly. Information that fall under this category might
contain their gender, age, geo-location, preferences of any kind, and (network) connections to
other persons. Since this work is about text processing, we will focus on the elicitation of tweets,
Facebook posts, and other social media messages that are relevant to works in biomedical NLP
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and the problems that arise when using and distributing these messages. For the latter, we will
summarize the findings of other research regarding social media mining for health. We also
draw heavily on a recently published review by Ford et al. (2021).

3.5.1 Data Types and Collection Methods

With respect to social media platforms, Twitter, in particular, plays an important role. Tweets
used to be easy to collect since they could be downloaded without cost27 using Twitter’s official
streaming API28 (Nikfarjam et al., 2015b; Paul et al., 2016; Sarker, 2017). After downloading,
the collected messages were usually annotated according to the tasks they were collected for,
and the annotations were made publicly available, either via publications or during shared task
challenges (Sarker and Gonzalez, 2015; Klein et al., 2017; Weissenbacher et al., 2018, 2019, and
others). If the data were not shared directly, authors often provided tweet IDs and a down-
loading script such that challenge participants or other researchers could collect the tweets
by themselves (Weissenbacher et al., 2018, 2019). Although this is a good way to circumvent
sharing the tweets and being responsible for keeping them secure (with this strategy, every par-
ticipant is responsible on their own), it often happened that after a while, not all of the tweets
were downloadable anymore, because Twitter users might have deleted them. , This is not
only unfortunate for the annotation work that went into the data since it was now in vain, but
also reduces the dataset size. That, in turn, might impact the performance of ML models that
are supposed to be trained on these data, especially when the data’s labels were imbalanced to
begin with. Also, the comparability and reproducibility of experiments suffer.

However, there is no way to ask Twitter users directly whether they agree with their data
being shared. Especially when thousands of tweets are needed for research, it is simply not
feasible to reach out to the original authors of the messages. Therefore, researchers often add
a statement to their publication, declaring that their work was approved by an official review
board or ethics committee (Weissenbacher et al., 2019; Basaldella et al., 2020), based on the fact
that tweets (and other social media posts) are accessible by everyone on the internet.

Apart from Twitter, another popular choice for getting user-generated texts associated with
health topics is Reddit. Reddit provides so-called “sub-reddits” for users to interact with each
other within a dedicated topic. Sub-reddits can be very general but also very specific, e.g. dis-
cussing a particular medication only. Thus, in contrast to Twitter, it is easier to find relevant
data for a specific research question. Basaldella et al. (2020), for example, used Reddit to build
a corpus for medical entity linking. They argued that Reddit is both anonymous and pub-
licly available. Further, they also de-identified the Reddit posts “as far as possible” to keep
the users’ privacy (Basaldella et al., 2020), meaning that they removed identifying information
such as names, user handles, e-mail addresses, and so on. Another Reddit corpus was created
by Lavertu and Altman (2019). They downloaded the data using an API29 for social media
data dumps. However, it is not clear in which way this API is associated with Reddit. The au-
thors refer to the “pseudo-anonymous nature” of the data they are using (Lavertu and Altman,
2019), but they did not mention any procedures of de-identification. Finally, a third Reddit cor-
pus resulted from the work of Scepanovic et al. (2020). The authors do not describe the exact
procedure they used for collecting the data but only state that they downloaded the data from
Reddit. They further provided the data to Amazon Mechanical Turk workers for annotation
(Scepanovic et al., 2020) and therefore released data to people not even in the research commu-
nity and possibly without any data protection agreement. Note that these three publications
are not the only works that use Reddit data; they serve as examples.

27As of the time of writing this thesis, Twitter is not accessible anymore (and neither is it called Twitter anymore).
28https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
29https://pushshift.io/

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://pushshift.io/
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The third popular choice of biomedical text dataset sources are patient and medication re-
view forums. In contrast to tweets, and more similar to Reddit, forum messages tend to be
much longer and provide more context. On the other side, they also can be too long, covering
a lot of different topics and diverging from the original post, which distinguishes them from
the Reddit posts. Segura-Bedmar et al. (2014), for example, were the first to collect a corpus for
Spanish health-related texts from the forum ForumClinic30, which was discussed in Section 3.4.
They argue that the user posts are publicly available, and so they used a web crawler to collect
as many documents as were needed for their study (Segura-Bedmar et al., 2014).

Two other datasets based on the English “AskaPatient” drug review forum31 were dis-
cussed in Section 3.4 as well. Karimi et al. (2015) reported that the data was provided by Aska-
Patient themselves, and the project was approved by the forum’s ethics committee. It is down-
loadable by agreeing to a CSIRO Data License32. They did not mention any de-identification
process. Zolnoori et al. (2019) used the same forum as data source but a different set of drugs
than Karimi et al. (2015) to filter users’ posts. Regarding the collection process, they argued
that the data is publicly available and used a web crawler to get the drug reviews they were
interested in. They de-identified the data using regular expressions and distributed the corpus
under a CCBY 4.0 Data license. It is, therefore, freely available, too.

There is also the possibility of synthesizing data. This can be done by either (back-)translating
data that was already de-identified (Frei and Kramer, 2022, inter alia) or by generating com-
pletely new data by using generative language models like T5 (Raffel et al., 2020). For example,
generated data like this is provided for the MedNLP-SC shared task in 202333 which will be de-
scribed in Section 4.2.2. However, so far, these generated data are still not the same as original
tweets and lack, for example, the “Twitter style” of writing and sometimes also textual co-
herence. Nevertheless, this might be an exciting new avenue for preserving user privacy in
biomedical NLP.

3.5.2 Ethical Issues

Collecting data from social media for biomedical or clinical NLP, as described above, is ac-
companied by several ethical issues. First of all, users whose data are collected usually do not
know about their messages being used for analysis or as training material. Even though some
users might even think of having “given up” their right to privacy when registering for such a
platform (Ford et al., 2021; Mikal et al., 2016), it still hurts their privacy.

This is followed by the question of ownership: Who does the text belong to after its publi-
cation on a platform? According to Ford et al. (2021), many researchers argue that publishing
social media posts is equivalent to giving consent to the use of the content for any purpose.
Thus, they believe that the content belongs to “the public”, which is, in the very least, a debat-
able proposition, but one that again and again divides the research community (McKee, 2013;
Paul et al., 2016).

Ford et al. (2021) further describe the various data policies executed by different websites:
for some, users can restrict their posts to certain groups of “friends” or topic-dedicated sub-
groups (for instance, Facebook or Reddit), while others do not have any restrictions on the
audience, for example, Twitter, where even people not registered on the platform could read
almost everything.

Another issue arising from the former is that even if something was published in a public
space, it still does not mean that it can be re-used by third parties (Ford et al., 2021). Some

30http://www.forumclinic.org/
31https://www.askapatient.com/
32https://confluence.csiro.au/display/dap/CSIRO+Data+Licence
33https://sociocom.naist.jp/mednlp-sc/
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platforms, however, already integrate third-party use in their data protection agreement, for
example, Twitter34.

As further mentioned by Ford et al. (2021) and others (Moreno et al., 2012; Mikal et al., 2016),
users often lack knowledge when it comes to the privacy settings of social media platforms,
which are often difficult to understand for laypersons (Mikal et al., 2016). Moreover, users
might underestimate the ways in which their data might be re-distributed and used (Ford et al.,
2021), following the notion of being “unimportant” (Mikal et al., 2016). They also often cannot
oversee how far back their data is still accessible (Ford et al., 2021).

In conclusion, Ford et al. (2021) argue that even though social media data might be used
for research if properly de-identified, researchers should still follow ethical guidelines (e.g.,
by mitigating against potential harms) and aim for transparency regarding their methods and
purpose of research.

Similarly, a recent review by Bear Don’t Walk et al. (2022) investigates the state of biomedi-
cal text processing through an “ethic lens” (Bear Don’t Walk et al., 2022), particularly in context
with biases and fairness. They argue that while biomedical text processing might help to ad-
vance population health, it is also prone to either enforcing already existing or introducing new
biases. This is often due to the use of “black-box” machine learning models, but also based on
participant group representation, biases in data collection or documentation practices, and var-
ious other factors (Bear Don’t Walk et al., 2022). Although in their review, the authors describe
the case of applying biomedical text processing methods to clinical text, this is also something
to be kept in mind when handling social media data, maybe even more so, since as mentioned,
social media users often do not even know their data was used.

34https://bit.ly/3rwK5A0
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Chapter 4

Data

The entire foundation of today’s success of neural LMs is data. The common assumption until
recently was “the larger the model, the better the performance” (see Section 2.4.5), but for large
models, huge amounts of data are needed.1 For example, for XLM-RoBERTa, about 2.5 TB
of data were collected. Despite recent efforts in low- or zero-resource learning (Brown et al.,
2020, inter alia), a majority of research in NLP is still driven by labeled data, in particular
when it comes to more specific downstream tasks. Also when setting aside data-hungry LMs,
a representative amount of data is necessary to draw meaningful conclusions from them, for
example for evaluation. Also, the quality and diversity of text and annotations play a key role.

However, both domain-specific texts and annotations are hard to come by. Usually, data
simply crawled from the internet, either from specific sources or in general, are of mixed qual-
ity and can only be filtered heuristically (Raffel et al., 2020, for example).2 Also, with the suc-
cess of generative models like the GPT series (e.g., GPT-3 (Brown et al., 2020)), supposedly
user-generated texts found on the internet might not even be human-created. For specialized
domains in particular, it is therefore still necessary to collect and annotate appropriate data
and ensure that these data are of high quality. Considering this, and the fact that there is
no data available for the detection of ADRs in French, German, or Japanese user-generated
texts, Section 4.1 describes the process of creating a new multi-lingual corpus for the domain
of pharmacovigilance, including data collection and de-identification (Section 4.1.1), guideline
development (Example 4.5 and Section 4.1.3), and subsequent annotation.

Another issue, which arises specifically in the field of health-related NLP, is the privacy of
patients and their data. Although there exist a variety of public fora, online patient associations,
and drug review platforms, and people talk about their health on social media like Reddit and
Twitter, actually accessing and using these data is much more complicated than it seems. Pub-
lishing these data, annotated or not, to provide other researchers with reproducible materials,
is even more complicated. These issues and potential solutions are described in Section 4.2.

Most of the presented work (except for Section 4.2.1) was developed within the tri-lateral
project KEEPHA3 and thus, the three majority languages of the involved countries, German,
French and Japanese, are the focus going forward.

4.1 Development of a Multi-Lingual ADR Corpus

This part of the thesis describes the process of developing a multi-lingual corpus of UGT for
the classification and extraction of ADRs. It is dedicated to answer RQ 1. In the course of
this section, the development of a corpus of texts in French, German, and Japanese with the
following levels of annotations is laid out:

1And of course, also huge amounts of computing power, which we might run out of in the future.
2Note that quality in this context does not refer to typos, bad style or grammar, since these characteristics are

representative of human writing, but rather to e.g., code published on websites, URLs, boilerplate text and code etc.
3Knowledge-Enhanced information Extraction across languages for PHArmacovigilance, https://keepha.

lisn.upsaclay.fr/wiki/doku.php?id=project
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1. Binary annotation: does the document contain an ADR or not?

2. Annotation of entities: adding entity types to mentions of drugs or symptoms and other
relevant expressions.

3. Annotation of relationships between these entities, for example, to express that a drug
caused a symptom.

We will start by describing the first step, the collection of data, in Section 4.1.1, followed by
the development of the cross-lingual guidelines in Example 4.5. Then, the actual annotation
process is presented, including the resulting IAA. Finally, we end with the limitations of the
corpus as of now (Section 4.1.4), the future plans on how to improve it further, and the lessons
learned in Section 4.1.5.

Note that all three languages considered for the now presented corpus descend from dif-
ferent language families, where German belongs to the Germanic languages, French to the
Romance languages, and Japanese to the Japonic (or Japanese-Ryukyuan) language family.

4.1.1 Data Collection

Various data types were already described in the preceding chapter. Since we would like to
change perspective and take a look at the view from the patient’s side, social media presents it-
self as an ideal type of data. In recent years, social media use has increased and more platforms
are used to discuss and share. Currently, popular platforms are, for example, Reddit, Twitter,
or Facebook4.

For our work, we include health-related discussion and review fora into the domain of
“social media”, since they provide the view from a layperson’s perspective where users employ
their own language and descriptions.

User forums generally have a main topic but different sub-discussions (threads). For ex-
ample, the German med2 forum5 is, according to the website, for “discussions about medical
topics, problems in everyday life or health limitations”. Thus, some of the threads are related
to health issues, but some are just about everyday topics or even political or social discussions.
Most of these forums are administrated by volunteers. There are also some professionally ad-
ministrated fora, like AskAPatient6, operated by the Consumer Health Resource Group.

Each team in the KEEPHA project was responsible for acquiring the respective data.7 The
general requirements we set for the data were as follows:

1. The data should be health-related, but not specific to any drug or disease.

2. The data should be de-identifiable or already de-identified.

3. The data should be distributable to other research teams.

Requirement 1 made sure that we did not aggregate user posts related to only one drug or
disease. In contrast, we wanted the data to be as “natural” as possible, representing the true
distribution of ADRs. Also, we wanted to verify whether the amount of ADR mentions in non-
English UGTs is comparable to the percentages provided by the literature. Requirement 2 was
set to make sure that the posts we collected were already from anonymous sources. This makes
it easier to de-identify any remaining Protected Health Information (PHI), i.e., information
which are private to the patient. Requirement 3 was the most challenging one as we discovered.

4www.reddit.com, https://twitter.com, www.facebook.com
5https://med2-forum.de/
6https://www.askapatient.com/
7The author was part of both the German and French teams.

www.reddit.com
https://twitter.com
www.facebook.com
https://med2-forum.de/
https://www.askapatient.com/
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We wanted the data to be shareable (with a data protection agreement) to be able to make our
research reproducible. If a dataset cannot be used by other researchers, they cannot analyze
it themselves, benchmark their models or test their hypotheses in general. Therefore, getting
data that are distributable was a crucial point in the acquisition process.

Japanese

According to the requirements specified above, the Japanese texts were collected from both
Twitter and Yahoo! JAPAN Chiebukuro8, a Japanese health Q&A forum. Note that for Twitter,
we had to relax Requirement 1, since searching for tweets without keywords is not possible.
The Japanese team organized the collection, annotation, and analysis of the Japanese data. If
there were any disagreements or problems with respect to the annotation guidelines (described
below) for one language, we discussed them in the monthly KEEPHA meetings or more often,
if necessary. Since the Japanese team created the Japanese data (but with the same guidelines),
the details of this part of the dataset are not discussed in this thesis.

German

For the German data, we first contacted a multi-lingual drug review forum where users re-
ported their experience with whatever medication they were taking. This forum seemed promis-
ing since it already contained drug reviews in several languages, French, German, and English
among them, and accompanying labels for the existence and strength of ADRs. However, after
several rounds of discussion with the platform owners trying to come up with an acceptable
Non-Disclosure Agreement for both sides, it became clear that the company providing this fo-
rum did not want us to share the data with other researchers, even when de-identified and
protected by a data protection agreement. This detour, which took over one year, demonstrates
the complexity of gathering health-related data for research.

Parallelly, we continued the search and finally got permission from the administrators of the
fora lifeline.de9, henceforth Lifeline, to download and share the data. Lifeline is an indepen-
dent health platform of the FUNKE DIGITAL GmbH10, financed through ad placement on the
website, and provides two sub-fora: the experts’ council and the user forum. It is only available
in German. In the experts’ council, users can ask questions and get responses from medical ex-
perts, depending on the thread in which they choose to post their message. In the user forum,
which is the forum we selected for the project, people discuss their experiences with specific
diseases or medication and help each other in specific life situations. Threads users post in are,
for instance, allergies, primary care, or infections. The forum is moderated to keep conversations
civil, and moderators sometimes point patients to specific threads in the experts’ council sub-
forum to get more detailed or short-termed information. We built a crawler and downloaded
all posts available in the user forum in July 2021, containing posts between 2000 and 2021. All
messages were filtered for Covid-19-related posts to remove potential vaccine-related reactions
and discussions and avoid biasing our dataset towards this topic. We arrived at approximately
69,700 posts from Lifeline without any further pre-processing.

French

For French, we found it very difficult to receive access to any “real” data. For every potential
resource, Requirement 3 would have been hurt. Thus, we resorted to translations of one part
of the German data (for now). We translated a part of the data which was already de-identified

8https://chiebukuro.yahoo.co.jp/
9https://fragen.lifeline.de/forum/

10https://funkedigital.de/wer-wir-sind/

https://chiebukuro.yahoo.co.jp/
https://fragen.lifeline.de/forum/
https://funkedigital.de/wer-wir-sind/
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and annotated with binary labels (see Section 4.1.2), to reduce the annotation and curation
effort.

We used DeepL11, an online neural machine translation service, for translating the German
texts into both English and French. Then, we provided the texts in all three languages to our
French team members and to two French-speaking annotators12. The task of the French speak-
ers was to check if the French texts were usable for our purposes without looking at the German
original or English translation. We defined “usable” as follows:

1. The text is readable and understandable without reading the English or German ver-
sion,13 i.e., the reader can understand without effort what the patient intends to say.

2. The text does not need not be perfectly grammatically correct (the original documents
aren’t either).

3. The text “sounds” like it was written by a patient in an online forum.14

4. The text does not contain more than one word/phrase that does not make sense in this
context, i.e., it only has minor issues that do not impede comprehensibility.

If the texts were mostly well translated, according to the above-described criteria, they would
be marked as checked. As “minor issues,” we regarded wrong or confusing translation chunks,
which were most often based on typos or ambiguities in the original German document, as, for
instance, can be observed in Example 4.1a and its (incorrect) translation in Example 4.2a.

(4.1) German original
a. de: “... ich meine, dass der Stuhl nicht mehr so geformt ist ...”
b. en: “... I mean that the stool is no longer formed in such a way ...”

(4.2) French (incorrect) translation
a. fr: “... je veux dire que la chaise n’a plus la même forme ...”
b. en: “... I mean that the chair is no longer formed in such a way ...”

This mistranslation in French is very clearly due to the ambiguity of the German word “Stuhl”,
which could mean both “chair” and “stool” (in the sense of feces) in English. In case of such
occurrences, we asked our team members to flag these texts as needs improvement and checked.
Texts that were utterly unintelligible, i.e., when significant improvements were needed, the
texts were to be marked as discard and checked. Major improvements were defined as follows:

1. The text is not understandable when reading it for the first time.

2. The words in the original document seem to be translated literally throughout the text.15

3. The text contains more than one German / non-understandable phrase.

Of course, these definitions are rather vague. However, the goal was not to rate the quality
of translations but to quickly find suitable French translations without developing and going
through a checklist of criteria.

After adding these markers, our annotators were asked to go again through the examples
flagged as “needs improvement” and improve the translations with minor flaws. For this, they

11DeepL allows free translation of 5,000 characters per month. URL: https://www.deepl.com/translator
12For more information about our annotators’ backgrounds, please refer to Appendix B.2.
13Note that the English translations had a much worse quality than the French translations.
14We noticed when comparing social media posts in French, German, English and Japanese that they all “sound”

very differently.
15This seemed to be often the case for the English translations.

https://www.deepl.com/translator
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could also check the German original version.16 For instance, since Example 4.2a does not make
much sense in the document context, it can be easily fixed, as shown in Example 4.3.

(4.3) fr: “... je veux dire que les selles n’ont plus la même forme ...”

Another example of an easy improvement was often observed for abbreviations, especially for
greetings at the end of the user’s post. For example, in some cases, the greetings at the end of a
post were not correctly translated: “LG” in German is short for “Liebe Grüße” (en: “Kind regards
/ cheers / best”, used in similar contexts as “bises” (fr, en: “kisses” in the literal translation) and
more colloquial than “amicalement” (en: “amicably” in the literal translation). Those could be
simply fixed using a search-and-replace function. Other abbreviations required more effort for
the translation, e.g., the acronym “HET” in the sentence “Ich habe vor ca 10 Wochen mit meiner
HET angefangen” (“HET” is short for “Hormonersatztherapie”, en: “hormone replacement ther-
apy (HRT)”). DeepL did not translate the acronym, and therefore, our annotators took over the
task, translating the sentence into “J’ai commencé mon traitement hormonal substitutif il y a
environ 10 semaines” (en: “I started hormone replacement therapy about 10 weeks ago.”).

The annotators were asked first to check the positive texts, i.e., those that contained any
ADRs. They then continued with the negative ones. This order was because we wanted to
have relevant documents for entity and relation annotation as soon as possible. Currently, 864
documents have already been checked and, if necessary, manually improved. The annotation
of the French documents then followed the procedure for the German documents.

De-Identification

We de-identified all documents using regular expressions17. Very common occurrences were,
for example, user names. Often, users greet each other, “sign” their posts with their names,
and refer to each other using nicknames (or nicknames of nicknames, for example “Mohnblüm-
chen” for the user name “Mohnblume”, a diminutive of “poppy”), thus they occur quite fre-
quently. We collected the regular expression matches and replaced them with a mask (<user>)
to keep the conversation structure intact. However, since users are very creative in inventing
names, greetings, and goodbyes, not all of them were captured. Therefore, one of the tasks for
the annotators was to add an entity label “user” to all still-existing names during the entity
annotation process. Those were then replaced after annotation.

We proceeded similarly for URLs, (e-mail) addresses, and other personal information, to
remove any trace of the post authors. However, since users sometimes name the city they live
in or even their doctor’s name, we cannot say for sure that each mention was captured. We,
therefore, ask the annotators to mark any remaining PHI and replace it accordingly with the
masks <URL> or <pi> (personal information). We also replace occurrences of exact dates or
years with <date>.

4.1.2 Binary Annotation

First, the binary annotation process is described. The goal is to categorize documents as shown
below into the labels positive (Example 4.4) and negative (Example 4.5). The binary annotation
is only applied to the German corpus since we needed it to find the relevant documents for
the more detailed annotations described further below. The German data is then translated
into French, and the labels are taken over. For Japanese, a binary annotation was not necessary
since the way the data were collected already reduced the number of documents to annotate.

(4.4) Example of a document labeled as positive:

16Both annotators speak German and English as well as French.
17This was done before the translation into French.
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a. de: “Hallo <user>, ich habe mein Sulfasalazin nach 4 Monaten erfolgloser Einnahme we-
gen starker Bauchschmerzen abgesetzt. Entzugsentscheinungen habe ich nicht bekommen.
Liebe Grüße vom <user>”

b. en: “Hello <user>, I stopped my sulfasalazine after 4 months of unsuccessful use due to
severe abdominal pain. I did not experience any withdrawal symptoms. Kind regards from
<user>”

(4.5) Example of a document labeled as negative:
a. de: “Hallo <user>, das Mittel welches Du genommen hattest, war waohl der Vorgänger

von dem Calmvalera. Ich habe Ängste und auch dadurch wohl diese innere Unruhe. LG
<user>”

b. en: “Hello <user>, the medication you took was probably the predecessor of Calmvalera. I
have anxiety and also probably because of this inner restlessness. Cheers <user>”

Guideline Development

We decided first to annotate the posts on the document level to find those relevant to ADRs.
The guidelines for those are straight-forward:

Definition 3 (Binary Annotation). A document is labeled as “contains one or several ADRs” (posi-
tive) if an adverse reaction is clearly stated and experienced by the user themself. In contrast, posts that
do not describe any ADRs or only repeat other users’ side effects are to be labeled as negative. Further,
documents containing negated ADRs are negative as well.

More ambiguous cases are, for example, documents where ADRs are only referred to or
mentioned using expressions like “side effects” or only implicitly, like “could not tolerate”.
These are to be annotated as positive, too. Posts in which the users describe how close relatives,
e.g., spouses or children, experience side effects, are positive examples as well. Documents
where it is unclear which message the user wanted to convey are to be annotated as negative.
Rumors and other speculations are to be labeled as negative. These guidelines can theoretically
be applied to any language.

Annotation Process

We chose PRODIGY18 for the binary annotation task because it is easy to set up and user (anno-
tator) friendly. The binary labeling task can be displayed to the annotators as a simple clicking
task: “accept” (positive document) versus “reject” (negative document), see an example in Fig-
ure B.1. This makes labeling very quick and intuitive. We configured the annotation tool to
have a feed overlap, meaning that every annotator sees (and annotates) every document.
We decided on this procedure because we found that even the binary annotation was some-
times more complex than anticipated.

Initially, only one annotator was available (Annotator 0).19 He was trained with 200 English
examples, which were discussed afterward. He then started on the German data. In weekly
meetings, problems or ambiguities were discussed. As long as we did not have a second anno-
tator, the author of this thesis also took part in annotating parallel examples.

Although the task of categorizing documents into the classes positive and negative does not
seem very complicated at first glance, it turned out that some examples were very ambiguous.
This was especially true for posts related to menopause where people describe symptoms that
might be ADRs as well but are actually “normal” accompanying symptoms of menopause. See
Figure 4.2 for an overview of topics discussed in the data; Documents containing discussions

18https://prodi.gy/
19More details on the annotators are provided in Appendix B.2.

https://prodi.gy/
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related to women’s health are strongly represented. Some other posts were merely repeating
rumors, summarizing other users’ reports to give them advice, or collecting information from
the internet. The annotators also encountered documents in which users reported an ADR
which happened to them in the past, leading the patients to change the medication with which
they are now happy, that is, at the time of writing the text, there is no ADR present anymore.
Many examples also appear to be speculative.

Therefore, in the beginning, much discussion was dedicated to these borderline cases. In
the end, we resorted to always keeping the patient’s perspective in mind, following the rule
to mark documents as positive if the person writing them believed to have experienced an ADR,
even if we did not think so. This is because none of us were experienced medical doctors, and
catching more ADRs in the IE process would be better than missing any. Further, repetitions
and information from somewhere other than the patient’s own experience were labeled as neg-
ative. Speculations and the spread of untrue information related to health were flagged for later
investigation.

After about 2.5 months following the binary annotation’s start, we hired another annotator,
Annotator 1. He was trained similarly to Annotator 1 and started annotation on the parallel
dataset soon after. After Annotator 0 could not work with us any longer, we were able to
employ a third annotator, Annotator 2. We repeated the training process as described above,
and she took over the annotation started by Annotator 0.20 In weekly meetings, we continued
to discuss any emerging difficulties.

Curation was done with the PRODIGY reviewmodule, where all concurrent examples were
automatically merged while both annotators and the annotation instructor reviewed the non-
concurring ones. The final label was a majority vote on the opinions.

Note that sometimes, due to some inner workings of the annotation tool21, some docu-
ments were only annotated by one of the annotators. If these showed up during curation, they
were treated as a regular document and discussed to find a final label. The same was applied
to documents that were flagged or ignored by one of the annotators, which sometimes hap-
pened when the annotators did not understand the texts or were unsure how to label them. We
stopped binary annotations after about 10,000 documents were merged and consolidated.22

In Figure B.2, the annotation progress for the binary annotations is shown. It took between
8 and 9 months in total to annotate and curate approximately 10,000 documents23. After binary
annotation and some pre-processing, e.g., removing documents with a length shorter than four
tokens, we arrived at 10,010 annotated and curated documents. Of those, 9,689 documents
were labeled as negative and 324 as positive as shown in Figure 4.1. Thus, there are only 3.2% of
the documents in our dataset contain ADRs, similar to related work.

Inter-Annotator Agreement

We calculated the IAA comparing annotators’ labels with our final gold standard and against
each other. In the binary case, we can count the number of negative samples and therefore,
we can use the κ statistic as a metric. See Table 4.1 for the achieved scores with respect to the
discussed IAA metrics (Section 2.2.2 provides more details on the respective scores). Unfortu-
nately, they show very low agreement for Cohen’s κ (0.19). The macro average F1 score is in

20From here on, we assume for the sake of clarity that Annotator 0 and Annotator 2 are the same person, even
when calculating IAA.

21Most probably a bug in PRODIGY in how documents are presented to the annotators, which was not detectable
before curation.

22Note that we published some first results, using approximately half of the binary annotated data, in Raithel
et al. (2022). However, we kept annotating the data until we reached 10,000 documents, which will be released in a
follow-up paper.

23The annotators worked for about 10 hours a week.
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the middle range and observed agreement seems quite good with a score higher than 0.90. Ta-
ble 4.1 further demonstrates the variety of resulting IAA scores when considered from different
perspectives.

metric score

Cohen’s κ 0.19
F1 score (macro avg) 0.59
observed agreement 0.96

Table 4.1: The results for the different agreement scores of binary annotation when compar-
ing the annotators with each other. F1 score is shown as macro average over both classes.

The confusion matrices in Figure 4.1 show the number of examples both annotators agreed
upon (top left) as well as a comparison of each annotator with the gold standard data (top right
and bottom left) and the final number of documents per label. Note that some of the documents
were only annotated by one annotator; therefore, the numbers do not add up to 10,013 for
all matrices. Annotator 1 and Annotator 2 agreed on the negative label of 9,057 documents,
while they only agreed on 47 documents to be positive. Furthermore, Annotator 1 labeled 111
documents as positive, while Annotator 2 rejected these. On the other side, Annotator 1 rejected
255 documents that were accepted by Annotator 2.

a1 reject a1 accept

a2 reject

a2 accept

9057 111

255 47

a1 vs. a2

a1 reject a1 accept

gold reject

gold accept

9147 68

207 96

a1 vs. gold

a2 reject a2 accept

gold reject

gold accept

9594 54

56 256

a2 vs. gold

gold reject gold accept

gold reject

gold accept

9689 0

0 324

gold

Figure 4.1: Confusion matrix for the binary annotation of 10,013 documents in total. Up-
per left: annotator 1 (a1) versus annotator 2 (a2) annotation decisions. Upper right: a1’s
annotation decision versus the final gold standard. Bottom left: a2’s annotation decisions
versus the final gold standard. Bottom right: The final gold dataset with 9,689 negative and
324 positive documents. “reject” translates to negative, while “accept” translates to positive.

In the top right and bottom left matrices in Figure 4.1 it can be observed that Annotator 1
agreed on the label of 9,147 negative and 96 positive documents with the gold standard. These
numbers are significantly higher for Annotator 2, who agreed on 9,594 negative and 256 positive
documents. Annotator 1 agreed with the gold standard on 9,244 annotations, while Annotator
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2 agreed on 9,851 annotations. The observed agreement with the gold standard and without
correction for chance is therefore 0.92 for Annotator 1 and 0.98 for Annotator 2. Comparing the
annotators with each other resulted in a observed agreement of 0.96. Finally, we also calculate
classification scores as used in the evaluation of classification systems, to show the agreement
per class. These are shown in Table 4.2.

precision recall F1 support

a1 vs. gold

negative 0.98 0.99 0.99 9178
positive 0.57 0.31 0.40 292
accuracy 0.97 9,470
macro avg 0.77 0.65 0.69 9,470
weighted avg 0.97 0.97 0.97 9,470

a2 vs. gold

negative 1.00 0.99 0.99 9178
positive 0.82 0.85 0.84 292
accuracy 0.99 9,470
macro avg 0.91 0.92 0.92 9,470
weighted avg 0.99 0.99 0.99 9,470

a1 vs. a2

negative 0.97 0.99 0.98 9168
positive 0.30 0.16 0.20 302
accuracy 0.96 9,470
macro avg 0.64 0.57 0.59 9,470
weighted avg 0.95 0.96 0.96 9,470

Table 4.2: Inter-annotator agreement when using F1 score score, i.e., comparing each an-
notator’s (a1 and a2) labeling with the final gold label and comparing the annotators with
each other (bottom). We used only those samples for calculation for the two upper rows
for which both annotators assigned “accept” (positive) or “reject” (negative). The bottom
row shows the agreement of annotators with each other, taking the annotations of Anno-
tator 1 as gold labels. Here, the number of accepted documents is higher than in the two
upper rows. We highlight the scores for the positive documents since these are the most

relevant ones for our work.

Analysis If we take a closer look at the agreement of the positive documents, we see that
Annotator 1 clearly agreed on fewer positive documents with the gold standard (96 in total)
than Annotator 2 (256 documents). This shows the difficulty of annotating the documents with
only a binary label.

Regarding Cohen’s κ, the score used in other works describing the creation of a corpus
containing documents with ADRs, we find that all of them exceed our IAA score (κCohen = 0.19):
Klein et al. (2020) achieved a κCohen of 0.49 for Russian Twitter messages, and a κCohen of 0.61 and
0.69 when comparing three annotators of French Twitter messages, and Zolnoori et al. (2019)
report κCohen = 0.78 for English forum posts. In contrast, the scores we calculated using, for
instance,F1 score are decently high when calculated on the entire corpus (F1(weighted) = 0.96).
This has two reasons: First of all, F1 score does not consider chance agreement, as Cohen’s κ
does, and second, the vast data imbalance basically eradicates the contribution of the scores
on the positive documents. When looking at the agreement between annotators on only the
positive documents, we also see a very low score of F1(positive) = 0.20. The macro average F1
score of 0.59 takes the label imbalance into account (but not agreement by chance), and is still
relatively low.
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These low agreement scores demonstrate that it is very easy to guess a label for a document
and be correct randomly: Most documents are negative, so a random guess of the negative
label does not hurt much. Since Cohen’s κ in Table 4.1 accounts for randomness, they result in
a very low score. Intuitively, however, it is very hard to guess a positive label and be correct
with it randomly.

This shows that neither of the presented scores can accurately measure the agreement on
an imbalanced corpus such as the one presented. Also, in contrast to many other works on
ADRs, we created a dataset of approximately 10,000 documents, where (almost) every docu-
ment was annotated by two annotators. We further curated all documents where no agreement
was reached.

Final Dataset annotated with Binary Labels
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Figure 4.2: The topic distribution of the annotated LIFELINE-DE-ALL documents (de). For
a better visualization, the y-axis is cut off at 450 documents.

The final datasets with binary annotation are summarized in Table 4.3. In total, the LIFELINE-
DE-ALL corpus comprises 10,013 documents, of which 324 documents are positive. This corpus
is divided into LIFELINE-DE-1 and LIFELINE-DE-2. LIFELINE-DE-1 was translated into French
and also used as the dataset for the experiments in Chapter 5. Translations that were not un-
derstandable after translation were removed. Therefore, the new French dataset with binary
annotations consists of 864 documents, with precisely 100 documents being positive.

German We split the single posts into sentences and tokens using spacy24 to gain some in-
sights into the dataset. Stop words were filtered out and all tokens were lower-cased, but not
stemmed25. The dataset contains approximately 47,600 unique tokens (not lemmatized). Some
of the most used words, apart from “hello” and similar expressions used in online fora, are
“Angst” (en: “anxiety, unrest, worry, apprehension” depending on context, 1,115 occurrences),
“Arzt” (en: “doctor”, 1,107), “Beschwerden” (en: “afflictions, discomforts”, 966), “wünsche” (en:

24https://spacy.io/
25Note that the lowercase might merge some tokens that do not have the same meaning.

https://spacy.io/
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name language #documents #positive #negative

LIFELINE-DE-1 de 4,169 101 4,068
LIFELINE-DE-2 de 5,844 223 5,621
LIFELINE-DE-ALL de 10,013 324 9,689
LIFELINE-1-FR fr 864 100 764

Table 4.3: Overview of the binary annotated data. LIFELINE-DE-ALL is the combination of
LIFELINE-DE-1 and LIFELINE-DE-2. LIFELINE-1-FR is the current state of translations of
LIFELINE-DE-1, where unintelligible translations were removed, thus the lower number

of documents in total.

“wish”, 869), “WJ” (an abbreviation of “Wechseljahre”, en: “menopause”, 819), and “Hormone”
(en: “hormones”, 767). This reflects a typical story told by many patients in this forum: Many
people are scared of what might happen if or if they do not take a drug, afraid of receiving
negative results of medical tests or worrying about a person close to them. Further, many
go from one physician to the next without getting any better. Often, this concerns women in
their menopause, which is why “menopause” and “hormones” are also mentioned frequently.
Indeed, this is the most discussed topic, as can be seen in Figure 4.2, where we count 7,600
negative and 261 positive documents, by far the highest number of documents for both labels.
Note that the word “Nebenwirkungen” (en: “side effects”) and its variations occur 390 times. In-
terestingly, only 96 occurrences are allotted to the positive documents, the rest (294 mentions)
occur in the negative documents. These might contain some negated constructions.
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Figure 4.3: The distribution of the number of tokens per document and per label in the
LIFELINE-DE-ALL corpus (de). For a better visualization, we removed the longest docu-

ment containing 3,166 tokens.

An often-seen phenomenon in corpora of documents containing ADRs is that positive doc-
uments are longer than negative ones. This intuitively makes sense, since people who describe
their problems tend to write more than when everything is alright and they just forward some
information to other patients. In both Figure 4.3 and Figure B.3, we can see a slight tendency
towards exactly that, for both the number of tokens and the number of sentences, respectively.
However, there are also some very long negative documents. This might be due to the fo-
rum being more of a general platform rather than Twitter (people not experiencing side effects
are maybe less likely to post about their medication intake) or drug review forums, which are
mostly geared towards detailed reports containing negative experiences with respect to drugs.
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Figure 4.4: The distribution of the number of tokens per document and per label in the
LIFELINE-1-FR corpus (fr).

French The French corpus is much smaller and shows a different label distribution since we
ensured that most positive documents were translated while unintelligible translations of the
negative documents were discarded. Also, since the project is ongoing, not all translations
have been reviewed yet. Table 4.3 shows the current state of the data at the time of writing:
We currently have 100 positive and 864 negative documents that were translated and improved
if necessary. These are used for the following, more detailed annotations. The distribution of
tokens per document across labels is shown in Figure 4.4.

4.1.3 Entity and Relation Annotation

The guidelines for annotating entities and relations are more involved since they are not based
on a yes-no question, which can be asked and answered independently of the language. First,
they need more fine-grained distinctions, e.g., to find the exact span in a text that describes
the ADR or an opinion about a medication. For this, deciding which parts of a document
are relevant to our goal is also necessary. Further, the guidelines need to be applicable to at
least three languages (plus English) and capture all relevant constructions occurring in these
languages. And finally, all project partners had different experiences and foci in mind which
had to be united.

The guidelines were developed by first using random English examples from the CADEC
(Karimi et al., 2015) corpus annotated by all KEEPHA teams to find the first potential entities
of interest. The annotate-then-discuss circle was repeated several times, while each team also
tried to find (or make up) corresponding or complex/exceptional cases in their own language
to test for various expressions. In addition, we used translations of the CADEC documents
as annotation dummies. Note that these were often much simpler than the ones we later en-
countered with our own data. This thesis briefly outlines the major points and difficulties in
developing the guidelines. The document containing the complete annotation guidelines is
available online26.

See an example annotation below, which already shows some differences between the origi-
nal German version (Example 4.6) and the English translation (Example 4.7): While in German,
“Haarausfall” (en: “hair loss”) is a compound, it consists of two nouns in English. Also, in the
English version, we can annotate only the medication mention (“MTX”), but for German, we

26https://cloud.dfki.de/owncloud/index.php/s/NdrN9y9EJQ39b77

https://cloud.dfki.de/owncloud/index.php/s/NdrN9y9EJQ39b77
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have to take the entire span (“MTX-Einnahme”, en: “MTX intake”), since embedded entities are
not allowed, according to our guidelines.

(4.6) de:
... die Erfahrung mit Haarausfalldisorder bei MTX-Einahmedrug erlebe ich ..

caused

(4.7) en:
...also experiencing hair lossdisorder with MTXdrug intake ....

caused

Annotation Guidelines: Entities

The set of entities for the annotation scheme was developed step by step. The final set of entities
is shown in Table 4.4. When one of the teams (i.e., the annotators and annotation instructors)
found that the provided entities did not capture a relevant medical concept in the English and
translated test examples, the examples were discussed in the next KEEPHA meeting. If the
concept seemed to be relevant to the other languages as well, it was investigated with further
examples and, if judged necessary by a majority, incorporated into the annotation scheme and
guidelines. In some cases, it was difficult to transfer the meaning of special cases from one of
the languages to English and convey the meaning to the project partners.

In general, entities are annotated by marking the noun or verb phrases, if present with their
modifying parts, e.g., adjectives that describe the entity of interest in more detail. The annota-
tors were instructed to annotate the smallest phrase possible. However, since some descriptions
are rather long, a common characteristic of user-generated text, we also allowed longer phrases
if necessary. Moreover, metaphoric expressions were to be labeled as well, since these also ac-
count for a big part of the expressions people use to describe their ailments. Determiners and
possessive pronouns were not annotated, and enumerations were to be split up and annotated
separately.

We did not allow nested entities, to make automatic processing easier and avoid confusion.
However, how to handle this mainly depends on the language. For instance, the German word
“Kopfschmerzen” (en: “headache”) is a compound (similar to the English translation) and should
therefore not be split up in “Kopf” (en: “head”) and “Schmerzen” (en: “pain”). For the French
“douleur thoracique” (en: “chest pain”) we proceed exactly the same, although more complex
constructions, like “douleur au thorax” (en: “chest pain”) are annotated separately: “douleur” (en:
“pain”) is marked as a disorder, while “thorax” (en: “chest/thorax”) is labeled as anatomy. In
contrast to nested entities, we did allow discontinuous entities in case there is no other way to
catch a specific expression. An example is shown in Example 4.8 and its English translation in
Example 4.9.

(4.8) de:
3kilodisorder habe ich auch seitdem runterdisorder ...

discontinuous

(4.9) en:
I have also lostdisorder 3 kilosdisorder since then ...

discontinuous

In the English translation, having a discontinuous entity is unnecessary, since “lost 3 kilos”
can be annotated as a whole. However, the syntax is different in the German original, and the
relevant entity parts are split apart.

As in related work, we included spelling mistakes and colloquial language in the annota-
tion but excluded punctuation markers. We did not pre-process the data to correct any noise
or errors. Abbreviations were annotated since they represent another common occurrence in
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the underlying data. In addition, we also assigned attributes to provide more fine-grained
information on the relevant entities. They will be explained with their respective entity labels.

Annotation Scheme: Entities

entity type attributes

drug increase, decrease, stopped, started, unique_dose
change_trigger
disorder negated
function negated
anatomy
test
opinion positive, negative, neutral
measure
time frequency, duration, date, point
route
doctor
user
url
personal_info
other

Table 4.4: Overview of the different entity types and their attributes. Note that user, url,
and personal_info are only annotated for de-identification purposes.

As for the entities themselves, the most important are drug, disorder and function.
Drug represents any mention of a medication name (abbreviated or not), a brand, or an agent.
Also, dietary supplements are included, as well as drug-based treatments and mentions refer-
ring more generally to drugs, for instance “Arthritis medicines”. Drug entities might have one
out of five attributes: increase, decrease, stopped, started, unique_dose (see Exam-
ple 4.11). These describe if the medication was, for instance, just started, or if the dosage was
increased.

Another entity called change_trigger is related to that: Certain expressions in the text
might lead to a change in the status of medication intake, for instance “to start” or “to taper
off”. These are labeled as well, to give more information on the current status of the medication.

Disorder is the label for any sign, symptom, or disease expressed by the patients. These
can be very long and are often expressed via metaphors or implicitly. Very broad and non-
specific phrases, like “I do not feel well”, are also marked as disorder. While disorder usu-
ally describes a malfunction of the patient’s body, function is the label for neutral or positive
processes of the body, including mental functions. Consequently, a negated function is a dis-
order and should be annotated as such. We provide more detailed guidance on how to distin-
guish between disorder and function in the guidelines. Example 4.10 and Example 4.11
also show two text snippets containing these and more entity types.

(4.10) Disorder:

a. fr: “J’ai une maladie de crohndisorder depuis 36 ansduration
time (. . . )”

b. en: “I’ve had crohn’s diseasedisorder for 36 yearsduration
time (. . . )”

(4.11) Function:
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a. de: “ Opripramolstopped
drug hattechange_trigger ich ja nur

zwei Abende langduration
time zum Schlafenfunction je eine halbemeasure

genommen, also nur eine winzige Dosismeasure .”

b. en: “I hadchange_trigger only taken half a dosemeasure of

Opripramolstopped
drug for two eveningsduration

time or sleepingfunction , so only

a tiny dosemeasure .”

Negation is an attribute that is (currently) only applicable to the labels disorder and
function (negated), since these are the most interesting for our use case and it is impor-
tant to know if a disorder does not exist anymore. Note that in contrast to existing corpora,
we annotate all kinds of symptoms (disorders), not only those related to drugs or those that
express an ADR.

The entity label anatomy refers to any part of the body, also, for example, hair and nails.
Anatomical entities are not annotated separately, however, in case they are part of a larger
entity, e.g., in “headache”. Test marks all medical tests or examinations that produce a result
that is used in a medical diagnosis, for example, “blood test”. The entity label opinion provides
a way to mark the writer’s opinion or evaluation of a certain drug, health state, or biological
process. It is used with the attributes positive, negative, and neutral to denote the
sentiment of the opinion (see Example 4.12). Note that we annotate all opinions found in the
texts: those of doctors as well as those of relatives. We found this to be easier for the annotators.
The patient’s opinion is then further expressed by relations. Measure is an entity label that is
used for all occurrences of drug dosages or test results, anything that is clinically relevant. A
complex entity label is time. We use it for mentions of frequencies, durations, relative
points in time or dates (see Example 4.10). Another entity label to give more fine-grained
information on medication intake is route. This label is supposed to be annotated for all
means by which a drug can be consumed, e.g., by injection, or by using pills. Often, these
means are described using verbal phrases, but also nouns. The label doctor is used to add a
marker for profession names, e.g., “cardiologist”. For any other entity that might seem relevant
but where we did not define a concrete label, the annotators are instructed to use the label
other. These expressions are to be investigated after annotation.

Finally, we added some entity labels that are used to further de-identify the corpus. This
concerns mentions of user names (user), URLs (url) and any other personal information, e.g.,
addresses, city names, doctors’ names etc. After the corpus is consolidated, these are replaced
by corresponding masks, and the labels are removed.

Annotation Scheme & Guidelines: Relations

After having developed the final set of entities, we added the relations that associate these
entities. In general, we do not annotate relations if none of the mentioned entities is concerned,
if the document itself is hypothetical or speculative or if the relevant part of the document is
formulated as a question.

The relation which connects the most important entities for our use case is caused. It as-
sociates a head argument, either drug, function or disorder with a tail argument, either
disorder or function. In the guidelines provided above we define all these relations in
more detail. Our approach stands in contrast to other works which often distinguish the symp-
toms/disorders based on their type (for instance, indication versus adverse reaction), while our
annotation scheme describes ADRs only via the relation between a drug and disorder (or
function) since symptoms and signs do not necessarily need to be ADRs.
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relation type head argument tail argument

caused drug, disorder disorder, function
treatment_for drug disorder, function
has_dosage drug measure
experienced_in disorder anatomy
examined_with disorder, anatomy, function test
has_result test measure, disorder, function
refers_to disorder disorder, functionnegated

refers_to drug drug
refers_to anatomy anatomy
refers_to function function
interacted_with drug drug
signals_change_of change_trigger drug
has_time drug, disorder time
has_route drug route
is_opinion_about opinion drug, disorder, function
misc ANY ANY
not tracked URL, personal_info, user

Table 4.5: Overview of available relation types and the entity types they associate.

The opposite of that is the relation called treatment_for, which, again, connects a med-
ication with a disorder or function. This time, however, the medication is meant to treat
the disorder in some way. The relation has_dosage connects a drug with a measure, so
describe the dosage of the medicine, if existent. If a symptom is felt in a certain part of the
body, the mention of the disorder is connected to the anatomy entity using the relation
experienced_in. To connect the test entity with the entity that was tested (disorder,
anatomy or function), we introduce the relation examined_with. The result of this test
might be mentioned as well and can be associated with the test’s result using the relation label
has_result. The test’s result might be a measure, disorder, or function.

The relation refers_to is a means to reduce the number of relations to the same head
or tail argument. Several mentions of the same entity, e.g., a drug can be connected via this
relation and only one of them needs to be associated with the other entities of interest, e.g.,
a disorder. To mark drug-drug interactions, we introduce the label interacted_with.
These can often be the reason for a disorder. Further, for connecting the change_trigger
with the drug, we use the relation signals_change_of. Drug and disorder expressions
can be connected with has_time to timemarkers to express, for example, a frequency of drug
intake. The same is valid for the relation has_route, which connects a drug with its route.
If a patient states a specific opinion with respect to a drug, disorder or function, it can be
related to those entities with the label is_opinion_about, as shown in Example 4.1227 and
its translation in Example 4.13.

(4.12) fr:
... à prendre la mirtazapinestarted

drug , (...), et je me suis sentie beaucoup mieuxpositive
opinion .

is_opinion_about

27This sentence is shortened to allow for better visualization. Originally, it reads fr: “J’ai pris un antidépresseur
pendant un certain temps, la mirtazapine - la plus petite dose. L’année dernière, à Noël, j’ai recommencé à en prendre, même
un demi-comprimé seulement, et je me suis sentie beaucoup mieux.”, en: “I took an antidepressant for a while, mirtazapine -
the lowest dose. Last year, at Christmas, I started taking it again, even just half a tablet, and felt much better.”
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(4.13) en:
... to take mirtazapinestarted

drug , (...), and felt much betterpositive
opinion .

is_opinion_about

Finally, for everything else that seems relevant but for which no relation exists so far, we can
use the relation type misc.

Annotation Process

For annotating the German part of the KEEPHA dataset with entities and relations, we first se-
lected all positive documents within the LIFELINE-DE-2 corpus (see again Table 4.3) and divided
it into two batches of 118 and 105 documents. The annotators started with the batch containing
118 documents.

Since we also want to annotate entities and relations in the French data, which is based on
LIFELINE-DE-1, we want to prevent dataset leakage by annotating the same documents, even
if they are translated. Therefore, the French data for entity and relation annotation was taken
from the translated corpus (Lifeline-v1-fr, see Table 4.3), resulting in 100 positive documents.
We randomly sampled some negative examples as well for a later annotation.

Using PRODIGY, we quickly annotated some (simple) disorders and drug occurrences
using a basic German model with active learning in the background. This so-trained model
was then applied to the data. These data, including the pre-annotations, were then converted
to BRAT format28and given to the annotators with the aim of reducing the annotation burden,
especially for repetitive and frequent mentions.

The same annotators that already worked on the binary annotation were again trained on
English data and on some German samples. The German data was then provided to the two
German native speakers, and the French data was provided to our French-speaking annotators.

Each pair of annotators was provided with the same documents. We gave them the choice
of either annotating first entities and then relations or annotating both at the same time. After
completing the first German batch, we consolidated the data using a script provided in the
BRAT library. It merges agreeing annotations and highlights disagreements. These were re-
solved in a final round of annotations. An overview of the data as of the time of writing is
given in Table 4.6.

name #documents #entities #relations #attributes comment

KEEPHA-de-part1 118 3,487 2,163 1,141 curated
KEEPHA-de-part2 105 - - - in progress
KEEPHA-fr-1 100 1,939 1,129 537 A1 done

Table 4.6: Overview of the data annotated with entities, relations, and attributes. For the
French data, only annotator 1 (A1) has finished annotation, therefore, the statistics refer to

a non-curated version of the dataset. Note that this dataset will grow in the future.

Inter-Annotator Agreement

IAA was calculated for all annotation levels, that is, entities, attributes, and relations. Note that
for each level, we calculated a strict and a relaxed version. The strict measure accounts only
for annotations where the entity span matches between annotators, the relaxed measure also
accepts overlapping spans, that is, spans that do not match perfectly. However, since all three

28We agreed on using BRAT in the KEEPHA consortium since everyone was familiar with it and it was easy to set
up. Further, it allows to annotate attributes.
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levels were annotated at the same time and only curated afterwards, errors made in the first
level (entities) are propagated to the next levels.

At the time of writing, the French annotations were only finished by one annotator, so we do
not calculate agreement for these annotations, but only for the first batch of German data. We
provide the relaxed scores of entity, relation, and attribute annotation agreement in Table 4.7,
Table 4.8 and Table 4.9. The strict scores, together with the counts of TPs, FNs, and FPs are
presented in Appendix B.3.

relaxed

entity type Precision Recall F1

anatomy 0.49 0.66 0.56
change_trigger 0.53 0.51 0.52
disorder 0.80 0.87 0.84
doctor 0.79 0.94 0.86
drug 0.93 0.93 0.93
function 0.51 0.69 0.59
measure 0.66 0.78 0.71
opinion 0.15 0.53 0.23
other 0.24 0.38 0.29
route 0.56 0.47 0.51
test 0.55 0.59 0.57
time 0.85 0.55 0.67

micro average 0.75 0.79 0.77

Table 4.7: The relaxed IAA for entity annotation in the German data with the micro average
scores across all entities in the bottom line. The three best F1 scores are bold-faced.

The agreement in micro average F1 score of the entity annotation is 0.77. The annotation
of drug mentions is the one with the highest agreement (F1 = 0.93), followed by mentions of
doctor’s professions (F1 = 0.86) and disorders (F1 = 0.84), which are rather good scores. The
lowest agreement was found for the opinion and other entity types (0.23 and 0.29).

As mentioned before, we calculate the IAA for relations and attributes not on gold enti-
ties, but directly on the “raw” annotated data. With respect to the IAA on relation annota-
tion, Table 4.8 shows a high fluctuation between relation types but also within relation types
when taking a closer look at the head and tail arguments. The micro average F1 score is 0.38.
The highest agreement can be found for the caused relation when associating a drug with a
disorder (F1 = 0.60), which is our representation of ADRs. The two next best scores fall on
the treatment_for relation between a drug and a disorder (F1 = 0.41) and the caused
relation connecting a drug and a function mention (F1 = 0.39). For some relations, how-
ever, we do not find any agreement at all, e.g., has_result or interacted_with. All other
agreement scores are rather low.

The IAA regarding attributes results in a micro average of 0.41 across all attributes. For
negation and time attributes, Table 4.9 shows an F1 score of 0.53 and 0.47 and almost no agree-
ment on drug and opinion attributes.

Finally, we calculated the agreement between each annotator and the gold standard, that is,
the final curated data. We report the relaxed scores. For entity annotation, the micro F1 score is
0.80 for each annotator. This is 3 percentage points more than when comparing the annotators
with each other. For relation annotation, the comparison with the curated data results in 0.47
and 0.45, respectively, which is an increase of 9 and 7 percentage points. Lastly, the scores for
attribute annotation are 0.59 and 0.46 for each annotator, an increase of 18 and 5 percentage
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relaxed

relation type head argument tail argument Precision Recall F1

caused disorder disorder 0.14 0.29 0.19
caused disorder function 0.00 0.00 0.00
caused drug disorder 0.62 0.57 0.60
caused drug function 0.00 0.00 0.00
caused function disorder 0.62 0.29 0.39
caused function function 0.50 0.25 0.33
experienced_in disorder anatomy 0.38 0.35 0.36
has_dosage drug measure 0.50 0.03 0.05
has_result test disorder 0.00 0.00 0.00
has_result test function 0.50 0.11 0.18
has_route drug route 0.25 0.04 0.07
has_time disorder time 0.75 0.09 0.16
has_time drug time 0.54 0.10 0.16
interacted_with drug drug 0.00 0.00 0.00
is_opinion_about opinion disorder 0.00 0.00 0.00
is_opinion_about opinion drug 0.11 0.11 0.11
is_opinion_about opinion function 0.00 0.00 0.00
signals_change_of change_trigger drug 0.43 0.19 0.27
treatment_for drug disorder 0.51 0.35 0.41
treatment_for drug function 0.00 0.00 0.00

micro average 0.47 0.31 0.38

Table 4.8: The relaxed IAA for relation annotation. The best three scores are highlighted
and the micro average scores are shown in the bottom line. Note that (i) MISC and (ii)
REFERS_TO relations were removed, since these are (i) for later investigation and do not

have specific rules and (ii) subjective

points, respectively. According to these scores, annotator 1 was closer to the gold standard
data than annotator 2, especially for the annotation of attributes. The increase in scores when
compared to the curated data also confirms a phenomenon we observed during curation: The
annotators are not annotating “wrong”, i.e., giving wrong labels to the mentions, but they
are not annotating thoroughly enough. The curation often resulted in a combination of both
annotators’ annotations.

Entities In the related work mentioned in Section 3.4, only Segura-Bedmar et al. (2014) use F1
score for calculating IAA of their annotated entities. They report an F1 score for the drug entity
of 0.89 and 0.59 for ADRs mentions. Since we do not have an entity-specific to ADRs, we can
only compare with the drug mention IAA, which is very close to ours (F1 = 0.93) with only
four percentage points difference. It is good that both disorder and drug receive a relatively
high agreement, since these are our most crucial entities, together with the caused relation:
These are the ones that represent ADRs.

When consolidating the annotations, we found several reasons for the low agreement scores
on the remaining entity types. For instance, anatomy is sometimes hard to spot. Often, a
disorder does not affect exclusively, e.g., the head of a person, but maybe a more specific region,
like “the upper part of both legs”. This, for instance, can lead to span disagreements. We also
found that sometimes the annotators were not consistent in annotating all mentions of anatomy
occurrences. Sometimes, a body part is not relevant to any medication or disorder, but should
still be annotated for consistency, for example as in the sentence in Example 4.14
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relaxed

attribute type Precision Recall F1

negation 0.68 0.43 0.53
drug 0.05 0.27 0.08
opinion 0.63 0.08 0.14
time 0.39 0.61 0.47

micro average 0.36 0.48 0.41

Table 4.9: The relaxed IAA for attribute annotation in the German data.

(4.14) a. de: “Also nicht den Kopfanatomy hängen lassen immer motiviert an die Sache heran
gehen.”

b. en: “So don’t hang your headanatomy (and) always approach the matter with motiva-
tion” (literal translation)

c. en: “So keep your chinanatomy up (and) keep yourself motivated.” (more natural
translation)

change_trigger is another entity where especially the span is often difficult to pinpoint.
Furthermore, potential triggers might be very implicit and therefore often missed by either
annotator. However, on the other hand, we found during curation that if we are able to assign
a change attribute to a drug mention, then there is almost always a trigger close by, so not
annotating them can also come from simply forgetting about them. This might be due to the
high number of entities and relations we have. In addition, the annotation interface can get
slightly overwhelming and confusing as soon as some entities and relations are annotated. An
example is shown in Figure B.5.

function is a difficult mention per se and the rather mediocre F1 score is not entirely
surprising. For example, “Wechseljahresbeschwerden” (en: “menopausal complaints, menopausal
symptoms”) can be both a function or a disorder, which is more clear in the English transla-
tion. “Symptoms” might be normal phenomena of menopause, but “complaints” rather point
in the direction of having negative experiences, which are not “normal” anymore, and there-
fore a disorder. In general, the guidelines state that adverse or non-functioning biologi-
cal processes are annotated as disorder, while neutral or positive processes are labeled as
function. Further, negated functions are usually labeled as disorder, but this is not always
the case, especially not for Japanese, which is why explicitly negated functions are allowed as
well. Thus, the entity type depends strongly on the context and how the patients formulated
their experience, which means that it is also related to the sentiment exuded by the text. How-
ever, this entity type might need a more strict definition and more training examples to make
it easier for the annotators to decide between disorder and function.

In contrast, measure seems to be defined well enough with an F1 score of 0.71, although
we find a variety of expressions that can be seen as measurement. One example is shown
below (Example 4.15). test, on the other hand, is difficult as well, since most patients do not
describe exactly that they did some kind of medical test to investigate a specific symptom and
then report the result, but they directly report the result, implying that they did a test, as in
Example 4.15. Often, these implicit mentions were missed by the annotators.

(4.15) a. de: “In dieser Zeit ist ja der P-Werttest generell niedrig, mein Wert war
eher im unteren Bereich angesiedeltmeasure .”
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b. en: “During this time, the P-valuetest is generally low; my value was
rather in the lower rangemeasure .”

The entity type opinion is a very subjective span to annotate. Some expressions can be inter-
preted as opinions, while others are rather general statements. However, when revising non-
agreeing annotations, we found that many more spans could have been annotated as “personal
assessments” of the patients with respect to a drug or their general health state and assumed
that this is due to some slackness in annotation. During curation, we therefore tried to add
more opinion expressions.

other is a category that collects all mentions that might be relevant to the medical “story”
of the patient. Judging from the annotations, what is relevant is very subjective and differs a
lot between annotators. Spans annotated by both of them include mentions of hospital stays,
surgeries, therapies, and so on.

The type route is another difficult one. In some cases, it is not clear if a person is talking
about the pharmaceutical form of a medication or simply uses the route name, e.g., “pills”, to
refer to a drug mentioned before. However, in most cases, the context determines if a drug
is mentioned or if the patient really means the route. In Example 4.16, an example is shown
that might be confusing at first. If we take the mention of “Tabletten” (en: “pills”) literally,
then the obvious entity type would be route, since pills are some kind of pharmaceutical
form. However, the person actually means in this sentence that they are scared of medication in
general (which often leads to not taking any), and not of pills as a route in particular.

(4.16) drug versus route
a. de: “Hab größten Respekt vor Tablettendrug überhaupt, da ich weiß, was sie aus einem

machen können.”
b. en: “Have the greatest respect for pillsdrug in general, knowing what they can turn you

into.”

The rather low agreement on the time entity is surprising since time expressions are not dif-
ficult to identify. However, it again might be due to the high number of entities, which is
especially noticeable for time expressions.

Relations The relation annotation was not done on gold standard entities. Therefore, the
underlying entities marked by either annotator might not even be the same in some cases, as
is evident by the entity agreement scores. However, the most important relation for our use
case, namely a caused relation between drug and disorder mentions still gets the highest
F1 score among the relation types with a score of 0.60. Note that for this relation, the annotators
have an agreement of 0.63 and 0.72 with the gold standard.

Another interesting relation is the has_dosage relation between a medication and a mea-
sure. There is almost no agreement between the annotators, but when calculating the agree-
ment with the gold standard, we see scores of 0.69 and 0.07, meaning, most probably, that
annotator 2 simply forgot to annotate this relation. Further, the annotation of the relation
has_result between a test and a measure is missing in Table 4.8, that is, the annotators did
not use this relation, although there are relevant constructions in the text and therefore in the
curated annotations.

Another example of incomplete annotations is the has_route relation which results in
a IAA of 0.07. When comparing to the gold standard, the annotators achieve scores of 0.54
and 0.20, showing that they apparently annotated some of the relations existing in the gold
standard, but not the same ones the other annotator did.
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is_opinion_about seems to be another difficult relation where none of the annotators
was successful. Their scores remain low even when compared to the gold data (0.15 and 0.20
for the relation between opinion and drug, respectively).

For the relation signals_change_of between a trigger and a medication mentions, the F1
score is rather low, too. We attribute this to the differences in the trigger annotations, which are
arguably difficult and often allow to choose from several potential triggers. This, in turn, leads
to different entities being connected with the drug mentioned. The scores of the annotators for
this relation when compared to the curated data are 0.45 and 0.29, respectively.

Finally, the relation treatment_for also shows a specific behaviour: The IAA for this
relation between a medication mention and a disorder is 0.41, whereas the scores for the anno-
tators when compared to the gold data result in 0.44 and 0.75, showing a big difference between
annotators. On the other side, the same relation between a medication and function shows no
agreement at all between annotators, but a closer look reveals that annotator 1 barely used this
relation (F1 = 0.070) while annotator 2 used it quite frequently and agrees with the gold data
with a score of 0.53.

With respect to relations, we found that there were some relations completely ignored by
one annotator, while some others were ignored by the other annotator. This leads to the ques-
tion why this is the case. Several possibilities that could be improved come to mind, including
the time spent on training the annotators, the high number of entities, relations, and attributes,
and the annotation process, in which all levels were simultaneously annotated. Further, the
thoroughness of the annotators might have played a role, aggravated by the aforementioned
issues. This again demands a way to validate the thoroughness of annotation while annotating.
For instance, a checklist at the end of each document might help the annotators to be reminded
of every potential relation they could possibly apply.

Attributes Regarding attribute annotation, only the negation attribute shows a at least mediocre
score of agreement. All others are rather low. When looking at the agreement between the an-
notators and the curated data, we find that the overall F1 score for annotator 1 is 0.59 while it is
0.47 for annotator 2. Again, there are strong differences between the annotators. For example,
annotator 1 agrees with the gold standard on the time attribute with an F1 score of 0.71, but
annotator 2 only agrees with a score of 0.53. This is reversed for negation, where annotator 1
reaches an agreement of 0.49 and annotator 2 has an agreement of 0.61.

The low agreement of the opinion attribute is difficult to justify since we found during
curation that it was rather easy to decide on the sentiment of an opinion. However, since there
was already a low agreement on the spans describing an opinion, this also reduces the chance
of two annotations agreeing on the attribute for this opinion. For example, annotator 1 very
rarely used opinion as an entity type and therefore agrees with the gold standard only with
a score of 0.07 while annotator 2 used the opinion type more frequently and agrees with the
curated data with a score of 0.37.

Lastly, we also see an almost non-existent agreement on the drug attribute, although the
drug entity type itself shows a high agreement. Taking a closer look, we find that annotator
1 agrees with the gold data with a score of 0.60, but annotator 2 only agrees with 0.14. When
taking a look at the annotations, we found that these attributes were simply not annotated,
contrary to annotated falsely.

Summary In general, as mentioned above, we found during curation that neither annotator
conducted “wrong” annotations (only very few), but that the combination of both annotators’
annotations resulted in a more complete picture. We further observed high discrepancies be-
tween annotators and specific annotation types, where one annotator performed well on one
type but not on another (i.e., the type was not used at all or very rarely) and vice versa for the
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second annotator. This is unfortunate since it increases the curation effort. It also highlights the
difficulty of annotation and the need for a method that helps the annotators review their own
annotations.

Possible improvements could be supported by a more thorough pre-annotation (we only
provided drug and disorder annotations), but also by a third and maybe fourth annotator sim-
ulated by a large language model like Llama (Touvron et al., 2023). A model like that could be
fine-tuned with a few human-labeled examples and used as a complement to human annota-
tors. Although we should not trust an LM alone, especially not in the medical domain, it could
still provide a consistent annotation, balancing the inconsistency of human annotators. During
curation, its predictions could then help to decide on final labels for, e.g., entities in a majority
vote between human and LM annotators, reducing some of the curation load and also avoiding
the cost of a third or fourth annotator.

Final Dataset annotated with Entities & Relations

In this section, the datasets as of the time of writing are described. Note that we aim to develop
the data further, meaning adding more documents with annotations, but also different annota-
tions, particularly for concept normalization. We show statistics for German and French next
to each other to allow for a better comparison. An overview of the general statistics is provided
in Table 4.10 and the number of annotations is given in Table 4.11.

#tokens #sentences

#docs total mean max min total mean max min

de 118 29,032 246.03 815 55 1,674 14.19 50 1
fr 100 18,184 181.84 463 42 969 9.69 25 1

Table 4.10: An overview of the currently annotated data in German (de) and French (fr).
It shows the number of documents for each language, the total number of tokens and
sentences, as well as the mean, minimum, and maximum number of tokens and sentences

per document. The documents were split into sentences and tokens using spacy.

entities relations attributes

total types mean total types mean total types mean
de 3,487 12 29.55 2,163 12 18.33 1,141 4 9.67
fr 1,939 12 19.39 1,129 12 11.29 537 4 5.37

Table 4.11: Overview of the annotated entities, relations, and attributes for the German (de)
and French (fr) data. It shows the total number of marked spans, the number of different

types, and the average of annotated spans per document.

German We start with the German dataset, describing the first batch containing 118 docu-
ments. The German data contains about 29,000 tokens in total, with an average of 246 tokens
per document. Some documents are rather long, with a maximum of 815 tokens, but most are
between on average 100 and 300 tokens long (Figure 4.6).

Further, this part of the corpus contains annotations of 3,487 entities, distributed across
12 types as presented in Figure B.6. For German, the most frequent entity type is disorder,
followed by drug and time. The maximum number of entity annotations found in a document
is 90, while the smallest is 4. The span lengths of the single entities vary considerably, as
shown in Figure 4.5: opinion and disorder are among the longest spans, with some spans
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drug disorder translation

ads Gelenkschmerzen joint pain
arimidex sehr schlimme Nebenwirkungen very bad side effects
cerazette 3kilo runter 3 kilos down
estreva gel vermehrte, starke Kopfschmerzen increased severe headaches
mtx Haarausfall hair loss
opipramol Watte im Kopf “cotton in my head”
schmerztabletten hauen mir die Schuhe weg “knock my shoes off”
utrogest wilde Träume wild dreams
venaflaxin Unwirklichkeitsgefühle feelings of unreality

Table 4.12: A selection of ADRs as found when extracting the mentions annotated with
drug and disorder and connected by the relation caused. Tokens were lower-cased.
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(b) French data

Figure 4.5: The distribution of entity span length (in characters) per entity type.

being longer than 50 characters. This is understandable, since the personal assessments of the
patients can be very descriptive, and the same is true for descriptions of symptoms or signs.
The latter shows a high number of extreme lengths. Note that function mentions tend to be
shorter than disorder mentions. Mentions of medications can be found in the middle of the
spectrum when sorting the span lengths by median value. Often mentioned drug names are,
for instance “AD” (de: “Antidepressivum”, en: “antidepressant”), or “MTX” (de: “Methotrexat”,
en: “Methotrexate”). The medication names that occur most often are “Utrogest” (29 times),
“AD” (28), and “Progesteron” (22). The three most often mentioned disorders are “Angst” (29
times, en: “anxiety, unrest, worry, apprehension”), “Nebenwirkungen” (25, en: “side effects”) and
“Schmerzen” (19, en: “pain”).

The relation with the highest frequency is, not surprisingly, caused, with 598 annotations
(Figure B.7). It is followed by the has_time relation, which is also no surprise given the 468
mentions annotated with entity type time. Most of them (344) are indeed connected with a
relation. The relation with the lowest frequency is interacted_with, which was only used
once. In Figure B.8 the distribution of head and tail entities per relation type is shown as well.

Finally, for the German data, the entity type with the highest number of attributes is time,
which was assigned more than 600 times. Of this, most values fall into the categories duration
and point in time. The second highest number of values has the entity type opinion,
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Figure 4.6: The distribution of document length of the German and English data. Note the
different scaling on the axes.

which is mostly used for positive assessments of either drugs or (passed) disorders.
Table 4.12 shows some randomly selected ADRs as determined by finding drug mentions

that are connected with a disorder mention via the caused relation. The complete table
containing all 369 ADRs is shown in Table B.7.

French The French corpus currently contains 100 documents with about 18,000 tokens in total
(Table 4.10). On average, each document contains about 181 tokens, much less than the German
data. The majority of the French documents are about 50 to 200 tokens long.

Also, there are fewer annotated entities in the French data compared to the German part
of the corpus, with 1,939 across documents using the same 12 types. As for the German data,
the most frequent type is disorder, again followed by drug and time. Then, the order
changes when compared to the German data, with test being the entity type with the lowest
frequency. The most often mentioned drugs are “progestérone” (31 times), “utrogest” (13),
and “gynokadin” (11). Note that these most likely have different names in French (except for
progesterone, which is a hormone), but we kept the German names for simplicity. The disorder
with the highest frequency are “nausées” (16 times, en: “nausea”), “vertiges” (11, en: “vertigo”),
and “diarrhée” (8, en: “diarrhea”).

Like German, opinion shows the highest median in length compared to the other spans.
This is followed by time and disorder entities. Interestingly, mentions describing trigger
words for drug changes seem much shorter in French than in German. Note that in the French
translations, we did not use abbreviations, but translated the written-out expression, since we
do not know what kind of abbreviations are used in French patient fora. This might explain,
for example, the differences in the span length distributions of drug and doctor mentions. Of
course, these are also due to general differences in the two languages.

Regarding relations, the French data is again similar to the German data, both show the
highest number of annotations for caused (598 versus 342 times) and has_time (344 versus
270). Again, interacted_with only occurs once. However, the use of the is_opinion_about
relation seems to be much less frequent relative to the other relations when compared to the
German data.
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Figure 4.7: The distribution of attribute values for each attribute type: time (duration, fre-
quency, point in time, date), opinion (positive, neutral, negative), drug (stopped, started,

unique dose, increase, decrease) and negation (yes/no).

Similar to the German part of the corpus, the time entity receives the most attributes,
namely 318. Most of these are again duration attributes, with date showing the lowest num-
ber of assignments. The entity type with the second most attributes is drug, where most are set
to stopped. Again, the opinion attribute is dominated by positive assessments. Altogether,
we can extract 313 ADRs, all of which are shown in Table B.8.

4.1.4 Limitations of the Corpus

As with any other corpus, the presented one has limitations as well. First of all, although we
randomly sampled the posts from the Lifeline forum, a huge majority are written by women
in a specific age range, judging from the topics of the posts. In general, it seems more likely
that patient fora attract people of a certain age since younger users tend to be active in other
networks. Therefore, only a small part of the population is represented, similar to corpora
created from Twitter or Reddit posts. Nevertheless, it can still complement other data gathered
for extending the knowledge about ADRs.

The same is true for the data source of the German and French corpus: Currently, all data
originates from only one forum. Having data from multiple sources would make the corpus
more representative and most probably would cover other occurrences of ADRs. This is part of
future work, since we now have the means to train models on the newly provided data, making
it much easier to extend the corpus both in terms of more data and annotations. Further, having
more French data, particularly original texts that are not translated, would improve the quality
and generalizability of the corpus.

Social media data also come with the caveat that the claims, experiences and advise users
post might not necessarily be true – out of a lack of knowledge, ignorance, or purposefully, to
misguide other patients. This needs to be taken into account when using our corpus, although
we removed speculative content and aim to annotate these samples in future work. In general,
the extracted information and annotations should not be used in any medical application before
consulting a pharmacovigilance expert.

Similarly, although we de-identified the data, there might still be remaining traces of users.
It therefore needs to be noted that it might still be possible to identify the users since the fora
are publicly accessible. However, our corpus will be distributed only via a data protection
agreement and only within the research community.
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Another limitation, or rather a challenge, is the high imbalance in document labels for the
data annotated with binary labels. This is normal for this kind of data but makes automatic
processing more intricate as we will see in Chapter 5.

The other levels of annotation, that is, entities, relations, and attributes, can be improved as
well. The annotators were asked to use the wildcard entity type other and relation misc in
case they found relevant information for which a type did not exist yet. Both were frequently
used several times during annotation, demonstrating that our pre-defined set of entities does
not cover some expressions relevant to the health information. This includes, among other
things, entity types describing therapies or other medical terms. With respect to relation types,
we found that some more would have been helpful, e.g., relations connecting drug mentions
and anatomy mentions and relations leading from an opinion to other entity types like route
and anatomy. We also found that some disorders were caused by the route of a medicine,
not by the substance itself, a case we did neither consider nor encounter when testing the
annotation scheme.

Further, expressions often annotated in EHRs are so-called social determinants of health
(SDH) (Lybarger et al., 2023), that is, “non-medical factors that influence health outcomes”29.
SDH might be more frequent in EHRs, but even in the forum texts, we found many factors
patients mentioned which either increased (“Ich mache gerade KG und es bekommt mir sehr
gut.”, en: “I am currently taking physiotherapy and it works very well for me.”) or decreased (“Bruder
hat Gehirntumor, Tod unseres Hundes”, en: “Brother has brain tumor, passing of our dog”) their
health status. Annotating these might give a more complete picture of a patient’s health and
the factors people struggle with when taking medication.

Finally, we also cannot rule out the existence of annotation errors, even after curation. As
shown by the IAA scores, all types of annotation seemed to be rather difficult, resulting in
annotation mistakes. Those could be reduced by better training of annotators and the above-
mentioned “checklists” to help annotators be more thorough. Also, additional annotators
based on LMs could help to improve annotation.

4.1.5 Summary and Conclusion

In summary, with the KEEPHA dataset, we provide a corpus of UGTs with a focus on adverse
drug reactions. It is unique in its combination of domain (social media), language (French,
German, Japanese), and annotation (binary, entities, relations, attributes). We showed that it
is possible to create a multi-lingual dataset where each language’s part is based on the same
guidelines (RQ 1). The part of the corpus presented in this thesis is in German and French
and originates from a patient forum. We double-annotated and consolidated 10,000 documents
with binary annotations including 324 describing ADRs in German. A smaller amount of these
texts were translated into French, comprising (currently) 100 positive and 764 negative docu-
ments.

Out of those, the positive documents were further annotated with entities, relations, and
entity attributes, resulting in 118 German and 100 French documents, with 3,487 and 1,939
entity annotations, respectively. Annotation is ongoing and we are currently also annotating
negative documents that do not contain ADRs but all other entity types. With this, we provide
a new corpus on a topic much needed for pharmacovigilance and public health research in
languages other than English.

In contrast to related work, we developed annotation guidelines with the goal in mind
to make them applicable across languages, even to those from different language families.
We showed this by applying the guidelines to the languages German, French, Japanese, and
English. Different from other non-English corpora on ADRs, our corpus does provide very

29https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1

https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1


80 Chapter 4. Data

fine-grained annotations. Also, we define an ADR by using relations, not entities. All signs,
symptoms, and diseases are marked as disorder and only by relating them to a drug entity
using the caused relation, we label them as ADR. In total, we identified 369 ADRs caused by
different medications for German. In the future, this corpus is going to help in the extraction
of more detailed information from UGTs.

To provide more context and allow relations across sentence boundaries, the documents are
not split into sentences. This results in quite large documents, but also allows a more detailed
perspective on health-related issues. Further, the data are not filtered by drug mentions, as
most other related corpora are. In contrast, we take the label and entity distributions as are,
resulting in a high number of negative documents but also providing the real data distribution
with a wide variety of mentions, also with respect to disorder descriptions.

The scores calculated for IAA clearly reflect the difficulty of the task: Even binary annota-
tion in this domain seems to be very difficult, due to the ambiguity of UGT, medical inconsis-
tencies of patients describing their ailments, and very long documents with implicit mentions
of ADRs. In this, we see parallels to other corpora based on user-generated content but also
room for improvement for both annotation guidelines and annotator training.

Finally, the annotation guidelines are not only applicable to texts containing ADRs but also
to other health-related topics written from a patient’s perspective. Also, they should be appli-
cable to other sub-domains in biomedical texts. Some entity types might be excluded, such as
opinion, but most should be adaptable to any other type of text.

For future work, some directions were already mentioned. Although already extensive, the
number of annotation types could be extended. Social determinants of health might be another
path to follow as well as the (already planned) concept normalization, particularly for disor-
der mentions. So far, not many works exist on the automatic normalization of user-generated
descriptions for languages other than English. The curation process could also be improved,
for example, with an LLM to add a source of consistency as opposed to the inconsistency often
induced by human annotators. A third LLM-annotator could help in deciding on annotations
via a majority vote. On a more application-wise note, it would be interesting to compare the
resulting ADRs with existing databases and/or medical experts, to see if all of the ADRs found
are already known.

4.2 User Privacy in Health-related Data from Social Media

Since a lot of works not only in the biomedical domain but also in many other domains of
NLP collect and analyze user posts from social media platforms, it is clear that data originating
from these networks are important resources. As described in Section 3.5, using these data
comes with several issues that need to be considered, especially to preserve the privacy of the
users but also to avoid infringing copyrights. In the following, two methods with the goal
to circumvent these issues are proposed, i.e., how to use social media data without hurting
people’s privacy and right on data protection. The first method deals with the question if it is
feasible to directly ask patients for their data (Section 4.2.1), while the second one is a teaser
to the NTCIR’17 MedNLP shared task on social media (Section 4.2.2) and the lessons learned
when generating synthetic tweets.

4.2.1 Collecting Sensitive Data with Users’ Consent

Biomedical and clinical NLP is based on very specific data, e.g., texts that contain patient-
relevant information like their medical and social background, their age, or gender. Some
datasets also need to be associated with a certain disease or drug. In Section 3.2 we already
reviewed some examples. However, obtaining these data takes place in a rather grey area:



4.2. User Privacy in Health-related Data from Social Media 81

For most platforms, it is technically allowed to download data from the mentioned websites
and users allow for their data to be downloaded and re-used when they agree to the terms
of service. But since terms of agreement or data protection regulations are not the easiest to
read and understand by non-professionals, users often just click “agree” to be done with it.
Therefore, although users choose to post messages about their health on Twitter and other
platforms, they probably never actively and consciously consent(ed) to these messages being
processed and, maybe more importantly, being published as datasets by researchers.

This poses a problem in NLP: If a dataset cannot be distributed such that other researchers
can use it for their own work, it does not have much value. Therefore, either the data is dis-
tributed anyway (that is, without the users’ explicit consent), or researchers refrain from using
the data, although they would be such a valuable and insightful resource. An obvious option
to circumvent this dilemma is to actually ask the patients for their consent to distribute data.
Note that this mainly concerns social media data like Twitter, Facebook, and other openly ac-
cessible pools of information. For other resources, like EHRs, researchers should have consent
to process the data from the beginning. However, asking users on the mentioned platforms is,
again, very time-intensive and difficult to implement.

In the following, we provide a prototype for a qualitative study to check the feasibility of
gathering descriptions of patients in two languages on the topic of adverse drug reactions. For
this, we designed a survey in which participants are explicitly asked for consent with respect to
sharing their experiences with medications and ADRs. First, the research question and study
design are described. Subsequently, the results of the study are presented and analyzed.

Methodology

The aim of the presented study was to collect written texts describing experiences of medical
side effects from a patient’s perspective, making it possible for users to actually consent to share
their data. The research question we are addressing with this is RQ 2.

For the presented prototype, high quality in this scenario implies textual messages similar
in style to tweets or forum posts and describe medical issues, as opposed to simple answers
to drop-down menus often used in user surveys. To approach this question, we designed a
survey that first enquires about some general circumstances with respect to the user and then
goes deeper into detail by asking specifically about experiences with medication intake and
possibly resulting side effects. In total, there were 15 questions to answer. Most of them were
not mandatory or, if they were, they allowed a “prefer not to say” option, since we wanted
the participants to feel as comfortable as possible while sharing their personal experiences.
Also, we provided examples to show what kind of information we would like to see, mainly
to demonstrate that informal answers using lay terms are allowed (and even preferred), too.
Of course, this might also introduce a bias for the participants to respond similarly, but we
decided to take this risk to get data similar to what we found in online patient fora. The main
parts of the survey are as follows30:

Page 1 The participant is given some information about the project, the data privacy proce-
dure, and a contact person’s e-mail address. They are then asked to consent or not consent
to participate in the questionnaire.

Page 2 After giving their consent, the participant is forwarded to the next page and asked
to create a personal code that can be used for deleting their data if they ask for it after
completing the survey.

30The concrete questionnaire: https://cloud.dfki.de/owncloud/index.php/s/ksaH7sSrDyR867R.

https://cloud.dfki.de/owncloud/index.php/s/ksaH7sSrDyR867R
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Page 3 This page inquires about some general questions. One important aspect is if the partic-
ipant is reporting about their own experiences or about another person’s experience, e.g.,
their partner’s. The other questions concern the participant’s age and gender.

Page 4 With this page, the main part of the survey begins. Participants are asked to enter the
medication they take in their own words via a text box, e.g., by just listing the drug names
(“Ibuprofen, Aspirin” or simply “pain medication”). Following that, they are asked if the
medication was prescribed or not. They can also leave additional comments. At the end
of this page, the participants are asked to enter their diagnosis and medication dosage in
two text boxes.

Page 5 This page is designed to get the information most important for the project. First, par-
ticipants are asked to describe if they felt better or worse after taking the medication they
mentioned on the page before. Then, they are asked to rate (approximately) the number
of side effects they experienced on a Likert scale (Likert, 1932), ranging from “no side
effects at all” to “a great many side effects”. After that, they are required to enter a de-
scription of their side effects into a text box. Finally, they are asked if they will continue
using the medication and if they would recommend it to other patients. A final text box
allows them to enter additional comments relevant to their experience.

Page 6 The last page thanks the participants and repeats the contact information in case of
questions. If desired, participants can enter feedback for the survey.

The questionnaire was prepared in both English and German to allow for a bigger pool
of participants and a comparison of the given responses in future work. We used the survey
provider LimeSurvey31 hosted on servers in France32. It was distributed via the survey plat-
forms SurveyCircle and SurveySwap33, but also via the social media platform Reddit.

Both survey distribution platforms are based on earning credits by responding to other
users’ surveys. The more credits, the higher the survey is ranked among all surveys for a spe-
cific region (SurveyCircle) or the more participants are likely to see the survey (SurveySwap).
Both platforms are free to use but require registration.

For Reddit, we mainly posted the survey URL(s) in so-called subs (as in sub-threads) “Sam-
pleSize” (English and German), “samplesize_DACH” (German-speaking countries, i.e., Ger-
many, Austria, Switzerland), “MenoPause” (mostly English), and “MedicalQuestions” (mostly
English) and as a comment to the poll thread in the sub “Wissenschaft” (mostly German). We
chose these subs since they allowed the posting of surveys in general (in some subs it is for-
bidden completely) and had some medical associations, mostly people talking about specific
medical issues. Since new surveys are posted frequently, we had to re-post the survey several
times, approximately every three days starting from February 13, 2023.

After running the survey for one month, we downloaded the results from LimeSurvey. We
summarized the participant statistics (number of participants, used platforms, languages, age,
etc.) and qualitatively evaluated the responses to the text boxes. The findings are described in
the next section.

Results

In total, the survey was accessed by 66 participants over the course of four weeks. However,
not all of them completed the survey. We define a survey as completed when at least page 5 was

31https://www.limesurvey.org/
32The servers are maintained at the Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CNRS,

Université Paris-Saclay, in Orsay, France.
33https://www.surveycircle.com/en/surveys and https://surveyswap.io

https://www.limesurvey.org/
https://www.surveycircle.com/en/surveys
https://surveyswap.io
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answered since page 6 only contains the “thank you” message and the respective SurveyCircle
or SurveySwap codes. We further excluded “completed” surveys where participants did not
consent to share their data, which was the case for 12 participants. After filtering out non-
consenting participants, we arrived at 54 responses.

In total, 33 participants responded to the German (de) version of the survey, while 21 re-
sponded in English (en). Figure 4.8 shows that out of the 54 participants, 3 left the survey after
page 5 and 27 reached page 6. Therefore, we arrive at 30 final responses of which 16 were
completed in German, while 14 were completed in English. Note the relatively high number of
(German) participants leaving the survey after finishing page 3 in Figure 4.8.

Figure 4.8: The number of participants per last page accessed, separated by language.

With respect to the dissemination platforms we used, we find that SurveyCircle and Sur-
veySwap attracted the most participants (see Figure B.11). For Reddit, we can only see one
occurrence, however, Reddit users could choose between the direct link and the detour via
SurveySwap and SurveyCircle. We further observe a relatively high number of drop-out par-
ticipants on page 3 for the direct link.

When looking at the age of the participants (they were asked to provide their birth year, but
they were not obligated), we can see that most participants were born between 1975 and 2000.
The age distribution is shown in Figure B.12. However, since some provided a birth year after
2020, they might not have been totally truthful.

Another interesting finding is the distribution of the number of adverse drug reactions.
Participants were asked whether they experienced adverse reactions when taking medication
and if yes, how many there were. Eleven participants answered with “a few side effects” (see
Figure 4.9), while only two experienced “a great many side effects”.

Finally, we plot the number of tokens in the given texts from the text boxes in Figure 4.10.
The actual texts written by the participants are the most interesting for further NLP research.
Therefore, we combine the boxes’ content for medications, experiences, diagnoses, dosages, a
more detailed description of the experienced side effects, and recommendations to other pa-
tients and tokenize the texts simply by white space. We find that the German texts tend to be
longer and count, in total, 1,185 tokens for German and 553 tokens for English.

We further split the content of the text boxes into sentences34 to get a closer look at the actual
descriptions. By semi-automatic inspection, we find 45 unique drug mentions in the text boxes
for medications. Some of them are very specific (“retardiertes Amphetamin”, en: “slow-release

34We split strings by full stops and new lines.
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Figure 4.9: The number of ADRs
as described by the participants.

Figure 4.10: The number of to-
kens per language, summarized
from the questions where free

text was required (text boxes).

amphetamine”), while some are more generic (“doctor’s prescriptions for flu (combination of
painkiller)”). This is similar to the medication dosages: In the collected data, we count 33
descriptions of dosage (for both languages). Participants use, for example, expressions like “2
to 3 before bed”, “2-3 Tabletten täglich” (en: “2-3 pills daily”), “20mg a day”, “2500 mg / tag”
(en: “2500 mg / day”).

The participants were also willing to share some of their diagnoses. We gathered 31 de-
scriptions, ranging from headache to depression. Some preventive medicine was mentioned as
well. Here, a change in writing style compared to the other text boxes is evident: Describing
the diagnoses is mostly done by listing the issues, separated by commas, but not formulated in
complete sentences. This applies to both languages.

When the participants were asked about their general experiences with medication intake,
they described in more complete sentences than when asked about their diagnoses. The same
is true for the description of ADRs. The patients seemed to try to describe the side effects as
clearly as possible, exactly what we wanted to achieve. We count approximately 50 description
sentences for general experiences and 40 sentences for adverse reactions.

Discussion

The described survey was designed to be as simple as possible. However, since we wanted to
investigate whether it is feasible to collect natural textual descriptions using a survey, quite a
lot of text boxes were added to the questionnaire. This induces a higher “workload” for par-
ticipants, making it less likely for them to respond. Indeed, one participant even responded by
saying they did “not want to type this much”. Based on the relatively high number of partic-
ipants that responded until pages 3 and 4, we also assume that they might have been demoti-
vated as soon as they saw the text boxes. Nevertheless, the texts were quite long and detailed,
much more so than expected. Also, these texts were (mostly) rather meticulous descriptions
of health issues and their consequences, and not simple lists of drug names etc. To further im-
prove the outcome, the questionnaire could be made more interactive, as in a chat-bot scenario,
or maybe also accessible via voice messages, which many people prefer over typing.

Another critical point in a survey about medication intake is the sharing of very personal
information which might make some patients shy away from participating. However, although
some participants did not consent and left the survey, we still received a good number of re-
sponses, exceeding our expectations.
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A survey takes much longer and returns less data than other data collection methods. Also,
the repeated posting on various platforms took some time. This, however, might be handled
automatically for future work, and data collected like that also comes with some simple anno-
tations attached, based on the text boxes the participants respond to. Note that the survey was
disseminated only via a few platforms which are a significant part used by younger people.
The survey platforms SurveyCircle and SurveySwap are mostly visited by students who also
need participants to respond to their surveys. This restricts the pool of participants and needs
to be kept in mind when interpreting the results.

Although the amount of data collected via the survey (25.9 kB) is not even close to the
number of samples automatically scraped from the web, we found that the texts were of good
quality for our purpose, which is using them in biomedical text processing of user-generated
text. With this, we do not refer to “grammatically correct” texts, but rather to texts that were
written by laypersons to laypersons, using a mixture of languages and a range of expressions for
similar semantic outcomes (see, for instance, the descriptions of dosages). By manual inspec-
tion, the responses seemed to be very similar to texts collected from Twitter and patient forums,
displaying the variety in which people describe the things they care about or worry about. A
more thorough comparison of the commonalities and differences between the different types
of user-generated texts is, therefore, an interesting direction to follow.

Finally, the most important aspect of the presented pilot project was to investigate whether
people would indeed share their personal experiences when asked for it. Contrary to what
we expected, people actively made the decision to consent and provide answers. And even
though we did not gather an enormous amount of responses, it still shows that it can be done.
An approach like this might include more effort on the researcher’s side, but it also supports
the right to be heard from the patient’s side. For (large) language models, some good quality
and expressive examples might already be enough to fine-tune a model into the right direction
(Brown et al., 2020), in this case, the detection of ADRs.

Conclusion

We conducted a prototype study for the feasibility of eliciting data relevant to NLP, and in
particular, automatic ADR detection, by creating a survey and asking participants to describe
their medical side effects in either English or German. One important part of this survey was
that users were actively asked to consent to sharing the data, in contrast to how patient-related
datasets in NLP are usually built.

Contrary to our expectations, quite a few people (30 usable responses in total) responded
during the one month the survey was running. Although the amount of gathered data cannot
keep up with the huge datasets built during the last years, the quality is good enough and
might help in the few-shot transfer of multi-lingual ADR detection. A more thorough inspec-
tion of the collected data and a baseline model is needed to investigate this further.

For future work, the survey would need to be improved, maybe with the help of specialists.
For example, one participant mentioned that it would have been helpful to have lists of drug
names to choose from since they could not remember all medications they were prescribed. We
were thinking about doing this when designing the survey, however, it would have either re-
stricted the number of available medication names or become another burden for participants,
because there would have been too many medication names to choose from.

Another aspect that can be improved is the balance between not explaining too much of
the study’s goal to avoid biases and too much text and explaining enough such that partici-
pants feel safe sharing their experiences. An associated website with more details on the exact
research might help in this regard. Further, the survey should be distributed via more rele-
vant channels and translated into more languages to reach more people. Currently, it is only
representative of a small number of people, mostly students and Reddit users.
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In summary, the prototype worked better than expected and has still potential to be im-
proved in various directions. The actual effect of the collected data still needs to be investi-
gated.

4.2.2 MedNLP-SC-SM Corpus

This section discusses an alternative to collecting and particularly distributing data without ex-
plicit user consent which is based on the creation of synthetic data. For the NTCIR35 challenge
on Medical Natural Language Processing for Social Media and Clinical Texts (MedNLP-SC)36,
organized by the NII in Japan, the Japanese team of the KEEPHA project decided to run a chal-
lenge on the detection of ADRs in social media texts, following their previous involvements in
the NTCIR conference (Aramaki et al., 2014; Wakamiya et al., 2017; Yada et al., 2022). On ac-
count of our trilateral project, the rest of the KEEPHA consortium, i.e., the French and German
team, decided to contribute as well, turning the initial bi-lingual task into a (potentially) multi-
lingual one, covering the languages Japanese, English, French, and German. Since the task is
still running at the time of writing37, the following discusses the overall process for creating
yet another but different multi-lingual dataset and some preliminary insights focusing on the
lessons learned.

Data Generation

Disclaimer: I was not involved in the dataset generation, but report the procedure for completeness.

The main idea underlying the MedNLP-SC-SM data38 is the creation of a synthesized dataset
that is distributable without hurting users’ privacy. For that, Japanese tweets were generated,
annotated, and translated into English, French, and German. The exact procedure was as fol-
lows: First, Japanese tweets were collected from Twitter using the official Twitter API and
68 disease names from a diseases dictionary (Ito et al., 2018) as query terms. Following that,
the tweets were annotated with medical entities, using the NER model provided by Nishiyama
et al. (2022). Tweets for which the model could find no symptom mentions were discarded. The
filtered tweets then served as fine-tuning material for the Japanese version of the T5 model39

(Raffel et al., 2020).
Using a pre-defined set of medications as seed terms, T5was subsequently used to generate

11,000 pseudo-tweets per drug. Post-processing then took care of removing duplicates, pseudo-
tweets without mentions of drugs or symptoms, and pseudo-tweets that were too close to the
original. This resulted in 10,000 tweets overall.

In the next step, all remaining tweets were manually annotated by in-house40 annotators,
who focused on positive and negative mentions of ADRs, drug names and general health-
related complaints. The number of ADR mentions was counted and the most frequent 22 oc-
currences were used as labels for each pseudo-tweet. Thus, in the end, each pseudo-tweet was
tagged with 22 labels which were either set to 0 (ADR symptom does not occur) or 1 (ADR
symptom is present). The labels were furthermore mapped to UMLS CUIs.

35http://research.nii.ac.jp/ntcir/ntcir-17/index.html
36https://sociocom.naist.jp/mednlp-sc/
37The conference will be in December 2023.
38SM is short for social media and distinguishes the task from the MedNLP-SC-RR task about radiology reports.
39https://huggingface.co/sonoisa/t5-base-japanese
40In-house meaning the medical staff in the Social Computing Lab at NAIST; https://sociocom.naist.jp/

index/

http://research.nii.ac.jp/ntcir/ntcir-17/index.html
https://sociocom.naist.jp/mednlp-sc/
https://huggingface.co/sonoisa/t5-base-japanese
https://sociocom.naist.jp/index/
https://sociocom.naist.jp/index/
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As a last step in the generation process, all pseudo-tweets were translated into the afore-
mentioned languages using the translation service DeepL again41. Note that generated emoti-
cons, emoji, and kaomoji42 were removed as well since they were mostly nonsensical and did
not translate well.

A Japanese pseudo-tweet and its translations are shown in Example 4.17. All four texts
are labeled with the symptom rash (both “measles” and “rash” are mapped to the same CUI
C0015230). All other symptoms are set to 0. The participants of the shared task are asked to
submit a system that is able to predict if one or more of the 22 symptoms occur in a given
example.

(4.17) a. ja: “アザチオプリンを服用して2ヶ月経ちました。1週間くらいで全身の発疹は
なくなり、かゆみもほぼ無くなっていたのですが、麻疹が少し残ってて怖かっ
たなぁと思います。”

b. en: “I’ve been on Azathioprine for 2 months now, and after about a week the rash all over
my body was gone and the itching was almost gone, but I still had a bit of measles and I
think it was scary.”

c. fr: “Je prends de l’azathioprine depuis deux mois maintenant, et après environ une se-
maine, l’éruption cutanée sur tout mon corps avait disparu et les démangeaisons avaient
presque disparu, mais j’avais encore un peu de rougeole et je pense que c’était effrayant. ”

d. de: “Ich nehme jetzt seit zwei Monaten Azathioprin, und nach etwa einer Woche war
der Ausschlag am ganzen Körper verschwunden und der Juckreiz fast weg, aber ich hatte
immer noch ein bisschen Masern, und ich glaube, das war beängstigend.”

Data Validation

Disclaimer: I was not involved in applying the different validation measures, only in interpreting their
results, and report the procedure for completeness.

During the generation process, two factors were introduced that had the potential to reduce
the comprehensibility of the pseudo-tweets: (i) generation, and (ii) translation. The latter only
applied to the English, French, and German data. Through the translations, wrong information
could have been inserted, rendering the labels invalid. Further, the pseudo-tweets might not be
understandable anymore. Thus, to improve the dataset’s quality, the team validated the data
to find “suspicious” pseudo-tweets, i.e., those that were noticeably different from the original
Japanese pseudo-tweets or the other translations. For this endeavor, the following metrics were
considered43:

Length ratio (Gale and Church, 1993): This measure counts the number of characters in a
Japanese pseudo-tweet and sets it in proportion with the number of characters in the
translations. For a better comparison, the Japanese pseudo-tweets were transliterated
into Latin script using an open-source library44. The mean and standard deviation from
the underlying normal distribution were calculated for each length ratio. Those pseudo-
tweet pairs whose length ratio was outside the bounds of the respective normal distri-
bution (for each language pair) were flagged as outliers, resulting in 172 (English), 284
(German), and 279 (French) outliers.

41The Social Computing Lab had a subscription for DeepL.
42Constructions from Japanese (and other) characters, e.g.,ヽ(•‿•)ノ .
43For more details, we refer the reader to the NTCIR’17 MedNLP-SC-SM overview paper which will be released

in December 2023.
44https://pypi.org/project/pykakasi/

https://pypi.org/project/pykakasi/
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Semantic Similarity Using LASER embeddings (Schwenk and Douze, 2017) of the given pseudo-
tweets, the cosine similarity between the Japanese source and the translations was calcu-
lated. Pseudo-tweets falling below a pre-defined similarity threshold (per language) were
flagged, resulting in 292 (English), 313 (German), and 306 (French) outliers.

Token Alignment The alignment between tokens of the Japanese source pseudo-tweet and a
translation was calculated using SimAlign (Jalili Sabet et al., 2020). Then, the transla-
tions are flagged if the proportion of aligned tokens is below a pre-defined threshold per
language. This procedure results in 110 (English), 88 (German), and 311 (French) outliers.

Back-translation + Token Alignment This repeats the procedure described before but uses
the back-translated pseudo-tweets in each translation pair, that is, the Japanese source
pseudo-tweets are aligned with the back-translated pseudo-tweets, which are now also
in Japanese.

The resulting number of outliers are again shown in Table B.9 to compare the outliers per
measure. Having found potential outliers, the next steps involved determining those texts
where at least three out of four measures resulted in flags (see bottom row in Table B.9). The
number of flagged samples overlapping across languages was determined to be 19. Then, some
team members with the respective language skills45 checked the flagged outliers.

After the first validation round, the data was used to train baseline models for the multi-
label classification task. Applying the trained models to the data highlighted some inconsis-
tent and difficult pseudo-tweets that were corrected or removed if needed. Finally, each lan-
guage subset contained 9,957 tweets, i.e., 38 tweets were removed. All other tweets were re-
formulated to more accurately fit the original Japanese pseudo-tweet and the annotated labels.

Analysis

Other inconsistencies in data created like that are more difficult to find. Below, we highlight
some examples with respect to translation (in-)consistency across languages and comprehensi-
bility as well as the authenticity of the pseudo-tweets. These pseudo-tweets were encountered
during validating the German tweets.46

Inconsistent translation across languages In Example 4.18, first of all, two symptoms are
described, but only nausea is a side effect the person is actually experiencing. Dizziness is just
stated as a general side effect of, probably, minocycline. Regarding the translation quality and
consistency, compare, for example, the use of tenses in the translations. The English and French
versions are more similar in their meaning than the German version. In English and French,
the meaning of the sentence is “nausea is currently getting better, although I am only taking
gastrointestinal medicine”, while the German version rather states that the person “had nausea
and it only got better using gastrointestinal medicine”. The Japanese pseudo-tweet is more con-
sistent with the English and French reading. This is due to the fact that in Japanese, there is only
one past tense, while there are several ways to describe past events in the European languages.
A similar phenomenon is happening in Example 4.17. Further, the mention of “measles” is con-
fusing in Example 4.17, but this might be due to the generative model producing something
that is similar to the first mention of “skin rash” (ja: “発疹”), referring to it with “measles” (ja:
“麻疹”).

45I was responsible for the English and German tweets and checked some of the French tweets.
46Many thanks to Prof. Ryo Nagata and Tomohiro Nishiyama for helping me verify the Japanese pseudo-tweets

with respect to their translations!
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(4.18) a. ja: “<user_name>そうなんですね副作用でめまいとかあるんですね...。私の場合
は、ミノサイクリンの副作用に嘔気がありましたが、カロナールと胃腸薬だけ
で良くなってきました〜!ありがとうございます!!”

b. en: “<user_name> That’s right, dizziness is a side effect... In my case, I had nausea due
to the side effects of minocycline, but it’s getting better with only caronal and gastroin-
testinal medicine ! Thank you!!”

c. fr: “<user_name> C’est vrai, les étourdissements sont un effet secondaire... Dans mon
cas, j’ai eu des nausées à cause des effets secondaires de la minocycline, mais ça s’améliore
avec juste des médicaments caronaux et gastro-intestinaux! Merci !!”

d. de: “<user_name> Richtig, Schwindel ist eine Nebenwirkung ... In meinem Fall hatte
ich aufgrund der Nebenwirkungen von Minocyclin Übelkeit, aber nur mit Karonal- und
Magen-Darm-Medikamenten wurde es besser ! Vielen Dank!!”

Medical incorrectness Looking again at Example 4.18, we find that a “caronal” medication
does not exist in either of the European languages. However, it seems to be a brand name of
acetaminophen in Japanese. Therefore, while the Japanese tweet might be medically correct,
this is not necessarily true for the translations.

Nonsensical / Self-contradictory tweets Example 4.19 shows self-contradicting texts across
all languages. The person first states that the medication did not seem to work but then says its
effect is very high. Note that this pseudo-tweet could also be read as “the medication did not
seem to work, but in the end it did work”, but at least in the German version that would have
been written in a different way, i.e., it is not very authentic in the way it is written. We encoun-
tered several such examples, demonstrating that the generation process does not necessarily
seem coherent and might contain incorrect medical expression.

(4.19) a. ja: “<user_name>そうなんですね!!私の場合は、ミノサイクリンが効かなかった
みたいで副作用にめまいとかあったりしましたお薬の効果はほんと高いですよ
〜!”

b. en: “<user_name> I see! In my case, the minocycline didn’t seem to work and I had some
side effects like dizziness. The effect of medicine is really high!”

c. fr: “<user_name> Je vois ! Dans mon cas, la minocycline ne semblait pas fonctionner et
j’avais des effets secondaires comme des vertiges, mais le médicament est vraiment efficace
!”

d. de: “<user_name> Ich verstehe! In meinem Fall schien das Minocyclin nicht zu wirken
und ich hatte Nebenwirkungen wie Schwindelgefühl, aber das Medikament ist wirklich
wirksam!”

Incomprehensible pseudo-tweets There are also samples that simply do not make sense. In
Example 4.20, English version, the pseudo-tweet gives the impression that minocycline is a
side-effect and not a medication (en: “... I’ve seen it listed as a side effect of dizziness ...”), it seems
like the drug name and symptom were reversed. In both the French and German versions, this
part is fine. However, the remainder of the translations are difficult to understand: Minocycline
seems to be an antibiotic47, and the patient first says that it has the side effect of dizziness, but
then they say their headache is reduced and that they regret taking the medication. It is not
clear if the minocycline caused the headache and why they regret taking it. The two Japanese
pseudo-tweets in Example 4.19 and 4.20 are also incomprehensible.

47https://www.drugs.com/minocycline.html

https://www.drugs.com/minocycline.html
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(4.20) a. ja: “<user_name>私ミノサイクリン飲んでます♂副作用にめまいって書いてる
のを見たことあるけど、私は飲まなかったなぁ〜と思えるくらいには頭痛も治
まりましたよー”

b. en: “<user_name> I take minocycline♂ and I’ve seen it listed as a side effect of dizziness,
but my headache has gone away enough that I wish I hadn’t taken it!”

c. fr: “<user_name> Je prends de la minocycline♂ et j’ai vu qu’elle avait pour effet sec-
ondaire des vertiges, mais mon mal de tête a disparu au point que je regrette de ne pas
l’avoir prise !”

d. de: “<user_name> Ich nehme Minocyclin♂ und ich habe gesehen, dass es als Neben-
wirkung Schwindel aufgeführt hat, aber meine Kopfschmerzen sind so weit weggegangen,
dass ich mir wünsche, ich hätte es nicht genommen!”

Vocabulary & Naturalness The pseudo-tweets in Example 4.21 can be read as self-contradictory
again: First, the writer says they have no pain, then they describe it. However, it seems like the
“no pain” (fr: “pas de doleur”, de: “keine Schmerzen”) mentions refers to the “tubal angiogram”
(this does not seem to be a correct medical expression, according to UMLS, this procedure is
called hysterosalpingogram) the patient underwent, while the second mention of some kind of
pain (en: “a sickening dull ache”, fr: “un mal sourd et désagréable”, de: “ein unangenehmer dumpfer
Schmerz”) refers to the experience after the treatment.

More interestingly, in the English and French versions, the translation uses two different
words to describe the two experiences of pain, while the German one uses the same vocabulary
for both and is therefore less specific. The English and German translations are unclear about
what took “4 hours”, either the “dull ache” or the “blood draws, IVs” etc. In the German
version, the comprehensibility is even more confused with the relative clause “was etwa 4
Stunden dauerte” (en: “which took about 4 hours”). The relative pronoun “was” refers to a neutral
object; in the presented case, the only object with a neutral gender is “Eileiter-Angiogramm”
(medical term: en: “hysterosalpingography”). However, according to the sentence structure, the
closer object would be “Schmerz” (en: “pain”), albeit a masculine noun. The French version,
on the other side, refers with both descriptions of pain to the diagnostic procedure, while the
sampling of blood, etc. took “about 4 hours”. In the Japanese version, the second mention of
pain is not directly perceived as pain, maybe similar to the English translation of “dull ache”.

(4.21) a. ja: “卵管造影検査、痛みなしただ気持ち悪めの鈍痛は続きましたね採血やら点
滴やらなんやら4時間ほどかかりました <url>”

b. en: “I had a tubal angiogram, no pain, just a sickening dull ache that lasted about 4 hours
of blood draws, IVs, and other things <url>.”

c. fr: “Angiographie des trompes de Fallope, pas de douleur, juste un mal sourd et désagréable...
La prise de sang et la perfusion ont duré environ 4 heures <url>.”

d. de: “Eileiter-Angiogramm, keine Schmerzen, nur ein unangenehmer dumpfer Schmerz,
was etwa 4 Stunden dauerte, einschließlich Blutabnahme und intravenöser Infusion <url>.”

Biases Finally, we also encountered what seemed to be language-specific biases. Japanese
does not use pronouns the way French, German, and English do, but the other way around it is
not possible to express certain things without using pronouns or gender markers in the Euro-
pean languages, with French distinguishing between two (feminine, masculine), and German
and English distinguishing between three grammatical genders (feminine, masculine, neutral).
Example 4.22 shows a bias of the translation system with respect to the language. The English
version translates the “genderless” pseudo-tweet into the experience of a “little boy”, while the
French and German version speaks of a female child without saying “girl”. In German and
French, the gender is only detectable via the pronouns (de: “Sie, ihr, ihr” and fr: “elle”) and in-
definite articles (fr: “une enfant”). Note that the German version first refers to a “child”, which
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has neutral grammatical gender in German, and then changes to “sie” (en: “her”), although this
could have also been solved by using “es” (en: “it”), not referring to any gender whatsoever.
However, this would have rendered the pseudo-tweets sound very unnatural. In Japanese, the
last sentence does not have any subject, and thus, the translator needed to choose one based on
its training data. Furthermore, the English version refers to “you” in the last sentences, while
the French and German versions refer to the (female) “child” getting better.

(4.22) a. ja: “<user_name>そうですね。うちは風邪をこじらせて肺炎になった子がいて、
抗生剤とステロイドの飲み薬だけもらっています早くよくなるように祈ってい
ますね”

b. en: “<user_name> Yes, that’s true. I have a little boy who got pneumonia from a cold,
and he’s only getting antibiotics and steroids to take. I hope you get better soon.”

c. fr: “<user_name> Oui, c’est vrai. Nous avons une enfant qui a attrapé une pneumonie
à cause d’un rhume, et on ne lui a donné que des antibiotiques et des stéroïdes à prendre,
alors croisons les doigts pour qu’elle aille bientôt mieux.”

d. de: “<user_name> Ja, das ist richtig. Wir haben ein Kind, das durch eine Erkältung eine
Lungenentzündung bekommen hat. Sie hat nur Antibiotika und Steroide bekommen, also
drücken wir ihr die Daumen, dass es ihr bald besser geht.”

Another kind of bias can be seen in how the translations imitate the “writing style” of
the Japanese pseudo-tweets, which, in turn, copies the original Japanese tweets the generative
model was trained on. For example, tweets collected for the SMM4H shared tasks in English
and French were much shorter and represented a different style of writing. Two samples are
shown in Example 4.23.

(4.23) a. en: “that nap was on point.... cymbalta did that shit cuz i dont take naps...ever”
b. fr: “depuis que j’ai arrêté deroxat pour effexor j’ai perdu 3 kilos sans rien foutre et en

mangeant peut être mm +”48

Use of Emoji As noted, the emoji and kaomoji in the Japanese pseudo-tweets were removed
before translating because they did not make sense – they were generated randomly. Their
existence nevertheless shows the frequent use of these means of communication in Japanese
tweets. However, apart from their artificiality, even if they were valid emoji, they could and
can not be directly translated into the European languages, since they often mean something
different or are not used at all in those languages.49 This is corroborated by Bai et al. (2019)
(amongst others), who summarize research on emoji in different scientific fields and describe
the influence of different cultures on the use and meaning of emojis.

Sentence Boundaries The pseudo-emoji in the pseudo-tweets could have also served as sen-
tence boundary markers, since all examples except Example 4.17 lack these. Using emoji as sen-
tence markers is very common across many languages (Sakai, 2013; Spina, 2019; Song, 2022).50

We noticed, when using the browser version of DeepL, that the translation changed depend-
ing on how we presented the sentences to the system, i.e., split up as one sentence per line or
the entire text, without sentence boundaries, as one. Sometimes, entire sentences were miss-
ing from the translations, another sign that DeepL might have problems with missing (sen-
tence) boundaries. Conversely, having correct meaningful sentence boundaries in the Japanese
pseudo-tweets might have increased translation performance and consistency.

48en: “since i stopped taking deroxat for effexor i’ve lost 3 kilos without doing a damn thing and eating maybe even more.”
49Take, for example, the folded-hands emoji, which has, for instance, different meanings in Japanese and German

(Western-Eurpean?) culture. https://emojipedia.org/folded-hands#emoji
50See also these slides: http://www.fluxus-editions.fr/grafematik2022-files/SONG-slides.

pdf.

https://emojipedia.org/folded-hands#emoji
http://www.fluxus-editions.fr/grafematik2022-files/SONG-slides.pdf
http://www.fluxus-editions.fr/grafematik2022-files/SONG-slides.pdf
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Summary

All the examples presented above are rather anecdotal. However, they still highlight the po-
tential problems that come with the automatic generation and translation of texts not only but
especially in the biomedical domain. First of all, translation systems might induce very small
alterations that change the semantics of a sentence, making it less fitting for the labels previ-
ously decided on. This problem might be mitigated by only labeling after translating, but this
would increase the annotation effort and make the texts potentially not parallel in their labels
anymore, if, for example, a text in German does not get the same labels as the supposedly same
text in Japanese. Second, the tweets might not be medically correct. Whether this is actually
a problem is debatable since it might even be a good way of augmenting data with rare or
seemingly non-existing associations between drugs and symptoms to make systems trained on
these data more robust by providing more diversity.

Further, some texts can be unintelligible to humans, or, as shown, self-contradictory. Again,
following the same reasoning as above, this might not be an issue. A system might still learn to
recognize a medication and its potential (adverse) reaction even if it is not stated clearly in some
of the texts used for training it. Having ambiguous and diverse examples could, again, allow a
system to be more robust. Similarly, having texts with a varying diversity of vocabulary might
not be a problem, depending on the task the data are used for. In addition, the translations as
seen above make the different language sets rather comparable than parallel, since sometimes,
the automatic translation does not necessarily contain the same content as the original – often,
because the generated tweet itself did not make any sense or the translation misses sentences,
but also because some expressions cannot be easily transferred across cultures and thereby
across languages. What might be a problem, however, is the “correctness” of the pseudo-
tweets in terms of spelling. There is not a single typographical error to be detected in the
examples above, very unlike messages on Twitter and on social media in general. Therefore,
when using the presented data as training material for a system, this might cause a reduction
in performance on real texts in case they contain any errors.

Lastly, but very importantly, the biases introduced through the translation might indeed
create an amplification of stereotypes, a topic much discussed in the context of LLMs like
ChatGPT and similar models (Bender and Friedman, 2018; Talat et al., 2022; Névéol et al., 2022;
Navigli et al., 2023, and others). If, for instance, the English examples always refer to a male
person, while the German examples always refer to a female person, we should first investigate
why this might be the case, and secondly post-process the data further to mitigate a potential
reinforcement, e.g., by replacing pronouns.

In conclusion, the highlighted aspects demonstrate that generated and/or translated data
should be handled critically, and not simply taken as is. Apart from “translationese”, under-
standability and the transfer of labels might suffer, and unwanted artifacts, like biases or med-
ical incorrectness, could be introduced to the data. Nevertheless, for data augmentation, these
data might still be very useful.

Future Steps

Since the shared task is running, the above analysis only provided anecdotal evidence for the
synthetic generation and validation of a multi-lingual comparable corpus. By manually in-
specting samples of this new corpus, we found aspects that could be improved, and new re-
search questions with respect to quality and usability of the presented corpus opened up.

Quality control How can we further evaluate the quality of the presented corpus?
We already described the first steps in validating and analyzing the corpus. However, a more
thorough and systematic data validation is still necessary since even examples not marked as
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outliers show specific characteristics setting them apart from real data. For example, the vali-
dation metrics described at the beginning could be extended with metrics similar to standard
Machine Translation and summarization scores like BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019). However, for those, we would need some kind of
reference to compare with.

The metrics used mainly focused on the translation quality, not on the general quality of
the texts. Regarding the generation part (which also concerns the translated tweets), an au-
tomatic evaluation is complex, since there is, again, no reference tweet with which the gen-
erated pseudo-tweet can be compared. One possibility would be to extend the model-based
approach described earlier to a more difficult task like NER, as, for example, was done by Frei
and Kramer (2022) and Hiebel et al. (2023a). They provided generated and then annotated
data, trained a system on these data, and finally applied this system to a gold standard dataset
which could be automatically evaluated. However, this would require more annotation effort.
Another possibility would be the reverse, reducing the manual effort: Training a system on
gold-standard data, e.g., the KEEPHA dataset, automatic annotation of the NTCIR data, and
finally a manual evaluation of samples by humans.

For a more manual approach, we plan to sub-sample each language subset and manually
rate the samples according to criteria such as naturalness, medical correctness, coherence, and
fluency, independent of the other languages. The single-language approach makes it easier
for the team since no one speaks all four languages well enough, and it helps to concentrate
on the quality of the pseudo-tweets itself and its associated labels, without “distraction” from
the other translations. First, however, the criteria need to be defined clearly to allow a simple
yes/no evaluation51. Furthermore, at least one medical expert per language would be needed
to judge the medical correctness.

Quality improvement How can we further improve the quality of the presented corpus?
First, although the pseudo-tweets are not the most natural regarding language-specific syntax,
vocabulary, and how people generally write on social media, we observe some cross-cultural
differences, also when compared to real tweets. For example, tweets in English, German, and
French are usually written in a different “tone” than, e.g., tweets in Japanese.

It might not make a big difference in translating, for example, clinical guidelines from
Japanese to English, since these follow a specific procedure and are more standardized and
formal. In contrast, translating pseudo-personal messages needs further refinement to make
them more natural in their respective language. Using one generative model per language
would defy the goal of producing a quasi-parallel corpus. A possible option would therefore
be to train a multi-lingual model on both translation and generation, which, given a drug name
as seed, generates one tweet per language. Adding, for example, an additional loss function
that penalizes the messages in the different languages diverging too far from each other with
respect to their content might help keep the data parallel.

On a related note, it is also necessary to check how much of the real data is still preserved in
the generated tweets, i.e., if they still contain any private information. This could be done, for
example, with sentence embeddings (Reimers and Gurevych, 2019), as in Hiebel et al. (2023b).

Finally, finding outliers again, e.g., with respect to medical incorrectness or authenticity,
and manually re-formulating them would create a much higher quality. This, of course, is very
labor-intensive, but maybe newly emerged models like ChatGPT could be prompted in a way
that allows to receive correct and more natural sounding tweets.

Usability How useful is this corpus for (i) multi-lingual research in biomedical NLP and (ii) as a
means to circumvent privacy issues with social media data?

51E.g., “Is this tweet fluent in French? Decide on either yes or no, based on the following characteristics ... ”
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We have not yet conducted experiments using the described data as training material to allow
predictions on other real datasets. However, regarding (i), it is to be expected that at least aug-
menting other corpora with our multi-lingual corpus should improve performance, especially
on the binary detection of ADRs52, since non-English data for ADR detection is scarce and im-
balanced. Also, to the best of our knowledge, except for the KEEPHA dataset, which contains
different data sources, there is no multi-lingual quasi-parallel corpus of that kind, allowing the
community to advance multi-lingual research in the biomedical domain further. With respect
to (ii), the corpus might be used as an exemplary dataset for training and evaluating models
without accessing any real user data. This is especially useful in light of recent developments
of large language models like ChatGPT: Since the generated tweets are not connected to an
actual person, they can serve as intermediate training or fine-tuning material without the risk
of exposing PHI to closed-sourced models.

Note that the presented data are limited because they are based on specific medication and
disease names, as is often the case with Twitter data.

4.3 Summary & Conclusion

In this chapter, we discussed three data-centric topics. First, we demonstrated the development
of the French and German part of a new tri-lingual corpus for detecting ADRs. We provide a
10,000-document-strong German dataset with binary annotations and a smaller French corpus,
containing currently 864 documents translated from German. Both contain documents describ-
ing ADRs and are written from the perspective of laypeople.

The documents with a positive label are further annotated in more detail. These annota-
tions include entity mentions, attributes, and relationships between these mentions. We do not
only annotate ADRs, but provide entity, attribute, and relation types for everything relevant
to the person describing their health issues. This includes, for example, time expressions to
gain information about, e.g., the duration of a disorder, or information about the medication
route. Also, we consider a patient’s opinion or assessment about treatments, doctors, and their
sense of well-being, allowing a unique, patient-centered view of the descriptions. ADRs in
particular are represented by associating relevant entities (drug, disorder) with a caused
relation, allowing also other medical signs or symptoms to be annotated and linked to relevant
information, such as routes or mentions of body parts. The annotation guidelines and scheme
were developed and tested in four languages: German, French, Japanese, and English. They
are expected to be readily applicable to other languages and text collections since the already
tested languages are quite different and we used different types of user-generated texts for
their development. They therefore provide a good starting point for annotation of any health-
related user-generated text and are meant to offer a common basis for more annotations, also
for other teams. Summarized, we provide the first multi-lingual corpus for pharmacovigilance
using user-generated text. This thesis presented the corpus at the time of writing, but note that
more documents and possibly more annotations are to come, for example, the normalization of
disorder mentions to medical ontologies.

In the second part of this chapter, we investigated the possibility of directly asking users
online about their experience with ADRs in a prototype study. With this, we wanted to make
sure that patients are granted the right to consent or not consent to the collection and distribu-
tion of their data, and establish whether people would respond at all. The study was based on
a survey that we distributed on several social media channels and survey platforms, in both
English and German. In fact, over the course of one month, we received about 30 usable re-
sponses, containing detailed descriptions of ADRs, medications, and diagnoses. Although this

52The multiple labels of each sample can be easily converted to a binary label.
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is insufficient to compile an entire corpus, the responses might still be helpful to fine-tune or
prompt large language models.

Finally, we analyzed the parallel data created for the NTCIR’17 Adverse Drug Reaction
shared task. Since these data were generated in Japanese and translated into German, French,
and English, we were interested to see if this corpus could substitute real data collected from
social media. We found several issues highlighting the problems introduced by the generation,
but mainly by the translation process. These issues stretch from unnatural texts over medical
incorrectness to incomprehensibility and possibly invalid labels. But not all is lost with these
data: Although oftentimes not comparable with authentic tweets, they can still be used for,
among other things, data augmentation and few-shot experiments. Further, improving them
partly manually might be worth the effort and would provide another dataset for multi-lingual
detection of ADRs.

In conclusion, we investigated three ways of creating multi-lingual data for the detection
of ADRs, all associated with different amounts of effort and quality. In combination, they
provide a decent body of new data which should help to improve the work in cross-lingual and
therefore cross-country pharmacovigilance using methods of Natural Language Processing.
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Chapter 5

Document Classification

In this chapter, we describe experiments using the first part of the German dataset we created,
LIFELINE-DE-1. The goal of the experiments was to leverage Transformer-based models to
classify the given documents into the classes positive and negative, i.e., containing ADRs versus
not containing ADRs. Since the German dataset was rather small at the time of this work,
English data were used to help in the classification. Thus, in this chapter, we address RQ 3 and
RQ 5.1

5.1 Datasets

The first dataset we use is the German corpus LIFELINE-DE-1, see Table 4.3. It is annotated
with binary labels: The positive documents contain reported ADRs, while the documents cat-
egorized as negative do not contain any mention of ADRs. See Section 4.1.2 for the detailed
annotation process. The major challenges of this dataset are the high imbalance of labels and
the low number of samples overall. The positive class only comprises 101 documents, while the
negative class is 4,068 documents strong, resulting in a positive-negative ratio of 1:40. More-
over, the topic distribution is imbalanced as well. Posts concerning women’s health dominate,
while there are less than 100 posts for topics such as nerves, nutrition, and men’s health. See
Figure 5.1 for the distribution of documents over topics and labels.

Figure 5.1: Distribution of documents over topics and labels in LIFELINE-DE-1. The y-axis
is cut off to a low for a better visualization.

1This work was published in Raithel et al. (2022).
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The second dataset is a combination of the English datasets CADEC (Karimi et al., 2015)
and PSYTAR (Zolnoori et al., 2019), both based on the patient forum AskAPatient and created
with a focus on ADRs. Together, they contain 2,173 documents of which 1,683 are positive
and 454 are negative. Note that the label distributions are reversed compared to the labels of
LIFELINE-DE-1. For a more detailed description of the English data, the reader is referred to
Section 3.4. As a baseline, we use a “traditional” machine learning approach and compare the
results with those of one English and one multi-lingual Transformer-based model fine-tuned in
different settings.

Pre-processing Before feeding the documents into the models, they undergo a simple pre-
processing. If still present, user names, URLs, dates, etc., are replaced by placeholders, e.g.,
<URL>. Then, the documents are tokenized either by white space (for the baseline models) or
using the word-piece tokenizer (Wu et al., 2016) of the respective Transformer model. Based on
preliminary experiments, the data is filtered for documents longer than four tokens and shorter
than 300 tokens.

5.2 Methods

In the following, the tested strategies for document classification are described. As a baseline,
we use a “traditional” machine learning approach and compare the results with those of an
English and a multi-lingual Transformer-based model fine-tuned in different settings.

5.2.1 Baseline

The baseline is an SVM (Boser et al., 1992) classifier trained on the target data. We use an
average of the word vectors created with the fasttext library (Bojanowski et al., 2017) to
represent the input documents. Further, the class weights of the data are calculated to train the
SVMs in “balanced” mode2, otherwise default (hyper-) parameters are used.

5.2.2 Two-Stage Fine-Tuning

Since the presented dataset is small and imbalanced, and at the time of the experiments, there
was no domain-specific Transformer model trained on the German language, we decided on a
two-step approach for classification. First, we fine-tune the respective model on English genre-
specific data (source language) and then add an optional second fine-tuning on German data
(target language). The second fine-tuning is then further divided into three strategies, which
we call per_class, add_neg, and add_source (described below).

Before fine-tuning, however, a Transformer-based model needs to be chosen. The perfect
base model for this use case would have been one pre-trained on multi-lingual, user-generated,
and health-related texts. Since this combination is not available (yet), we experiment with
BioRedditBERT (Basaldella and Collier, 2019), henceforth BRB, a model trained on English
user posts from specific health-related sub-Reddits, and XLM-RoBERTa (Conneau et al., 2020),
henceforth XLM-R, a multi-lingual model trained on crawled text from the general domain,
both equipped with a classification head. See Section 3.1.2 and Section 3.2.2 for a more detailed
description of XLM-R and BRB, respectively. XLM-R was shown to work better than mBERT on
several cross- and multi-lingual tasks (Hu et al., 2020; Adelani et al., 2021).

After conducting a hyper-parameter search optimizing for macro average F1 score, the de-
termined hyper-parameters and ten random seeds are used to fine-tune ten XLM-RoBERTa and

2This mode uses the labels to automatically adjust weights inversely proportional to class frequencies in the
input data.
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ten BRB models on the source language: XLM-R1 – XLM-R10 and BRB1 – BRB10. Using a number
of different initialization seeds mitigates the instability of LMs as described in the work of De-
vlin et al. (2019) since being “lucky” with initialization might have a big impact on the results.
We call these models source language models since they were fine-tuned on the English source
data.

We assume that the high number of negative examples in the LIFELINE-DE-1 data will in-
fluence the model in favor of the negative class, and thus we evaluate several few-shot settings.
In these, we mimic a “true” few-shot scenario (Perez et al., 2021) in that we also limit the num-
ber of examples for the development set. Therefore, our development set always contains the
exact same number of examples per class as the training set. The following data combinations
are explored:

per_class We balance the number of samples per class in the training and development set.
This means that if we use, e.g., ten shots, the model is fine-tuned on five positive and five
negative examples, and evaluated on five (different) positive and five negative examples.

add_neg In this scenario, we take n examples of the positive class (with n being the number
of shots) and add a fixed amount of negative examples to the training and development set.
For example, when using ten positive examples, we add {100, 200, 300, 400} negative examples
to the respective sets.

add_source Similar to the add_neg scenario, we add {100, 200, 300, 400} negative examples
and, in addition, {100, 200, 300, 400} random examples from the source data to both training
and development set. Adding source data might help to counteract the problem of catastrophic
forgetting (McCloskey and Cohen, 1989) often observed in language models.

full All available (training) target data is used for fine-tuning to compare the performance of
the models with those trained on the few-shot datasets. The resulting model is called XLM-R f ull .

At least 20 examples seem necessary to conduct a reasonable evaluation, which leaves us
in practice with 21. Thus, 80 examples are left for the remaining sets and thus, we can only use
up to 40 positive shots for the described scenarios following the approach of a “true” few-shot
scenario. Further, to reduce the number of experiments, we pick n = 10 and n = 40 positive
examples for the implementation. Next, we create five different training and development
sets by sampling with five different seeds from the described target training and development
set. The test set stays the same throughout all experiments. With this data configuration, the
experiments are carried out as follows:

1. The layers of the source language models, except their classifier, are frozen, and the clas-
sifier is fine-tuned again on the five sampled training sets within the few-shot settings
described above. This results in the models XLM-R f ine_1 – XLM-R f ine_10 and BRB f ine1 –
BRB f ine10.

2. For each scenario, each model is applied to the fixed target test set, and the final predicted
classes (per scenario) are decided by majority vote.

3. The performance per scenario is averaged over the five seeds.

The experimental setup is visualized in Appendix C.3. As a last comparison, we apply the
source language models in a zero-shot fashion to the target test set to investigate the impact of
fine-tuning on the source language data versus no second fine-tuning at all.
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Finally, we add some simple rule-based post-processing to the final predictions of the mod-
els by using an extensive German medication list and a self-compiled list of frequent abbrevia-
tions and keywords related to women’s health. The medication list is a copy-pasted collection
of 22,827 medication names from a German information website about health topics3. After de-
termining the majority classification votes of the respective setting’s models, each document’s
predicted class is checked. In case the class is positive but the document does not contain any
of the collected medication names, the document’s class is switched to negative Independently,
we also switch the class to negative if the document is positive and contains a keyword from the
women’s health list since a lot of symptoms related to menopause can be confused with ADRs.
The final scores are calculated for each approach. We are mostly interested in precision, recall
and F1 score of the positive class, but report both the negative and positive class scores and their
macro average and Area Under the ROC Curve (AUC) score.

5.3 Results

The results of the above-described experiments are presented in the following.

5.3.1 Source Data (English)

The results for the first round of fine-tuning, i.e., fine-tuning only on English source data, are
shown in Appendix C.1. We report final scores for each model and each seed (XLM-R in Ta-
ble C.1, BRB in Table C.2) as well as their mean and standard deviation across seeds. Both
models have a tendency towards the majority class, which is, in the source language data, the
positive class, meaning that the documents containing ADRs can be detected by XLM-R with
an average F1 of 91.03 and by BRB with an average F1 of 91.4, with both models being very
close to each other in their performance. Note the low standard deviation of the scores for the
positive class compared to the negative one, especially with respect to recall.

5.3.2 Target Data (German)

The results on the target data for the positive are displayed in Table 5.1, the result for the negative
class are shown in Table C.4. The first block reports the performance of the SVMs, followed by
the zero-shot approach, which is followed by the different settings of both XLM-R and BRB.
Note that we omit the models and settings that scored an F1 score of 0.0.

Baselines Within the SVM models, the best result (F1 = 17.39 for the positive class) is achieved
when training on all available target language data. All other settings for the baseline system
score much lower, however, we can see a high recall for the positive class for both per_class
settings. The per_class scenario with 40 shots even reaches the best overall performance with
respect to recall for the positive class and has a very low standard deviation compared to the
performance of the Transformer-based models.

Zero-shot The zero-shot models perform almost equally badly according to the F1 score of
the positive class. It is striking, however, that the multi-lingual XLM-R model achieves a much
higher recall for the positive class (95.32), in fact, the second-highest recall over all experiments.
The English BRBmodel, in contrast, gets the lowest recall for the positive class overall, showing
a higher bias towards the negative class.

3https://www.apotheken-umschau.de/medikamente/arzneimittellisten/medikamente_a.
html

https://www.apotheken-umschau.de/medikamente/arzneimittellisten/medikamente_a.html
https://www.apotheken-umschau.de/medikamente/arzneimittellisten/medikamente_a.html
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positive class macro average
model method target data P R F1 P R F1 AUC

SVM full all 10.26 57.14 17.39 54.49 72.03 54.92 72.03

SVM per_class 10 3.39
± 0.65

85.71
± 24.28

6.51
± 1.25

51.36
± 0.7

60.62
± 7.64

27.99
± 11.88

60.62
± 7.64

SVM per_class 40 3.23
± 0.17

99.05
± 2.13

6.26
± 0.31

51.57
± 0.14

60.64
± 2.23

21.22
± 3.48

60.64
± 2.23

SVM add_neg 10
+ 200 neg

7.94
± 1.16

40.95
± 7.97

13.16
± 1.3

53.11
± 0.56

64.1
± 2.64

52.78
± 1.38

64.1
± 2.64

SVM add_neg 40
+ 400 neg

6.16
± 0.28

71.43
± 10.1

11.33
± 0.59

52.57
± 0.3

71.53
± 3.68

47.21
± 0.68

71.53
± 3.68

BRB zero-shot - 11.11 4.76 6.67 54.33 51.88 52.47 51.88
XLM-R zero-shot - 5.18 95.23 9.82 52.48 74.83 40.13 74.83

XLM-R full all 57.64
± 7.14

28.57
± 7.53

37.52
± 6.65

77.9
± 3.55

64.00
± 3.68

68.15
± 3.33

64.00
± 3.68

XLM-R per_class 10 5.24
± 1.25

75.24
± 31.66

9.75
± 2.55

52.2
± 1.08

70.84
± 10.88

44.48
± 1.9

70.84
± 10.88

XLM-R per_class 40 6.04
± 0.87

93.33
± 2.61

11.33
± 1.55

52.87
± 0.48

77.34
± 3.65

43.58
± 3.11

77.34
± 3.65

XLM-R add_neg 40
+ 100 neg

26.37
± 15.67

32.38
± 30.38

19.81
± 12.47

62.29
± 7.67

63.44
± 11.33

57.97
± 6.94

63.44
± 11.33

XLM-R add_source
10
+ 100 neg
+ 200 source

8.29
± 0.8

81.9
± 8.52

15.03
± 1.26

53.84
± 0.36

78.95
± 2.67

50.55
± 1.99

78.95
± 2.67

XLM-R add_source
40
+ 300 neg
+ 300 source

15.84
± 6.53

54.29
± 18.01

22.55
± 3.42

57.28
± 3.1

72.6
± 6.7

58.57
± 2.8

72.6
± 6.7

BRB per_class 10 4.38
± 0.7

41.9
± 5.22

7.91
± 1.12

51.21
± 0.39

58.72
± 1.98

46.58
± 2.14

58.72
± 1.98

BRB per_class 40 4.74
± 0.62

80.95
± 6.73

8.94
± 1.11

51.94
± 0.35

68.77
± 3.35

40.33
± 4.2

68.77
± 3.35

BRB add_neg 40
+ 100 neg

21.91
± 20.74

9.52
± 8.69

11.00
± 8.6

59.79
± 10.38

54.26
± 3.86

54.66
± 4.12

54.26
± 3.86

BRB add_source
40
+ 100 neg
+ 200 source

24.21
± 5.6

20.95
± 4.26

22.23
± 4.06

61.07
± 2.83

59.59
± 2.06

60.16
± 2.08

59.59
± 2.06

Table 5.1: Target language (German): results of the best runs for every scenario and for
the positive class. We excluded those that scored an F1 of 0.0 for the positive class. BRB =
BioRedditBERT, XLM-R = XLM-RoBERTa. P is precision, R is recall and F1 is F1 score.
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full The second fine-tuning using all target training data, achieves, despite the high label
imbalance, the best result for the positive class overall: an F1 score of 37.52. It further reaches
the highest precision for the positive class, but also, interestingly, the highest F1 score for the
negative class. This means that the negative examples (since we could not have more positive
examples) helped the model to better distinguish between the two classes and to recognize
positive documents with a higher precision (but lower recall). Note, however, the high variety
in model performance over different seeds, as expressed by the standard deviation.

per_class In the scenario where the model has either 10 or 40 shots to learn from, we can only
see a small difference in the performance. This is somewhat surprising but might be explained
by the very small number of examples in general. In this scenario, the maximum number of
training examples is 40, including both negative and positive examples. Even with a balanced
label distribution, this seems not to be enough for a meaningful result.

add_neg Adding between 100 and 400 examples to either 10 or 40 positive ones does not
help to improve the performance of the models: most result in an F1 score of 0.0, and only the
combination of 40 shots and 100 added negatives results in predictions of the positive class.
Here, XLM-R performs better than BRB, probably drawing from its “knowledge” of German as
a multi-lingual model.

add_source The second best result with respect to F1 score for the positive class is achieved
by the combination of 40 positive shots, 300 negative target examples and 300 random source
examples (F1 = 22.55) with XLM-R, closely followed by BRB fine-tuned on 40 positive shots, 100
negative target examples and 200 random source examples (F1 = 22.23). These two were the
only cases where the above-described post-processing improved the results, e.g., in the case
of XLM-R, the F1 score of the positive class increased from 22.55 to 28.56 and the BRB results
increased from 22.23 to 25.33.

5.4 Error Analysis

Taking the predictions of the best-performing model (XLM-R f ull), we analyzed the errors made
by the model to get a better understanding of its performance and the data. The target test set
(German) contains 824 documents. Of those, XLM-R f ull predicted 8/21 positives and 796/803
negatives correctly. Therefore, only 20 documents overall were predicted incorrectly. However,
most of these documents belong to the positive class (false negatives), of which the model did
not even get 50% right.

One of the falsely predicted positive documents was cut off before the person described
their ADR issues, so the model did not have the correct information to learn from. The remain-
ing documents contain some spelling mistakes and unclear formulations, but the documents
are still perfectly understandable, at least by humans. However, a few documents mention
ADRs only very briefly or implicitly. Conversely, some of the false negatives are very clear
about the issues the reporting person has, and even the expression “side effects” is mentioned.
In one of those, the reactions are described quite positively (weight gain) which might confuse
the model in case it is biased towards documents with a more negative sentiment.

The seven false positives have clearer indications of why they were misclassified. In some
of the documents, the reporting person is talking about side effects they experienced before they
started taking a new medication about which they now report. Further, we find examples of
health issues that can be easily confused with ADRs or where the reaction came from not taking
the drug. Unfortunately, with the small test set, we can only provide anecdotal evidence for
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the described assumptions as to why the model failed in predicting the correct class. A larger
test set would provide more helpful information and might also reveal groups of errors.

5.5 Discussion

Based on the presented results, the classification of documents containing ADRs is still a prob-
lem far from being solved. Even using an English genre-specific model on English data, the
results are not yet good enough to be reliable, mostly because of the strong label imbalance.
Although the results for the English positive class are very good, they are rather low for the
negative (minority) class. Also, there is a high variance across models detectable, especially for
the recall of the negative class. This might be evidence that there are not enough examples for
this class for the model to learn from reliably.

An interesting conclusion from the above experiments is that more, but imbalanced data
works better in the presented use case than balanced data. On the other side, this conclusion
must be investigated further, since the performance of the models might also heavily depend
on the selected shot examples (are they representative of other positive examples?) and the
total number of examples the model is supposed to learn from.

Adding source language data to the target training set seems to be an interesting direction
as well, achieving the second-best performance after the full model. Combining the full source
language dataset with the full target language dataset might therefore improve the results.
With this, however, comes the question of whether adding examples, incorporating another
language, or both is more helpful.

The XLM-R f ull model, although achieving the best F1 score overall for the positive class,
has a quite low recall for the positive class (28.57), compared to all other settings. This makes
the model less useful than the other, overall worse-performing models since it cannot even be
used to pre-filter relevant documents that have no labels yet. In most cases, the multi-lingual
XLM-R model performed better or equally well than the mono-lingual BRB model. However,
even though BRB was not trained on any German data, its performance comes close to the one
of XLM-R in the add_source scenarios.

Another point of interest is the high instability of the models. This is likely due to the
low number of training examples, but even for the full model, recall in particular has a high
variance. A careful selection of “good” examples might help mitigate this issue, but finding
out which examples are useful for learning at which step in the fine-tuning process is another
point of investigation.

There are also issues introduced from the data. For example, with the high number of
posts about menopause, a lot of symptoms described in the documents are not related to med-
ication intake. Counteracting this with the medication list helped a little, but the distinction
between drug-induced symptoms and other symptoms needs to be improved as well. This
might be done by a better medication list which adheres more to the colloquial language used
by laypeople but also by adding annotations of relations between drugs and symptoms as ad-
ditional helpers. The latter, however, might create a vicious cycle: If we have only access to
random, not pre-filtered documents, on which ones should we spend time annotating rela-
tions? We would first need to find the relevant ones, taking up the task of classification again.
Also, related work (Magge et al., 2021) suggests that the classification step is still needed before
extracting entities.
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5.6 Summary & Conclusion

In the experiments described above, we tested several zero- and few-shot strategies in combi-
nation with cross-lingual transfer learning to classify German documents into those contain-
ing ADRs versus those that do not contain ADRs. We used an English Transformer-based
model trained on health-related user posts from Reddit and compared it with a multi-lingual
Transformer-based model trained on general domain data. The multi-lingual model outper-
formed the English model in almost all cases but is still not working well enough to be used as
a reliable classifier.

Although many related works show good results when transferring knowledge from one
language to another using multi-lingual models, this is not the case for the presented corpus.
With respect to the transfer between languages (RQ 5), we can see some improvement when
adding English source data to the German target data. However, the models still perform
poorly overall. Of course, this does not only depend on the data but also on the models used.
In our case, a multi-lingual domain-specific model, which does not exist yet, would most likely
have performed better. Note that in the presented work, many challenges come together: a
small dataset, a cross-lingual approach, non-availability of specific models, high label imbal-
ance, ambiguous documents, and user-generated texts.

Regarding RQ 3, we cannot clearly answer the question. Although the full model (fine-
tuned on all data) performs better than the rest in terms of F1 score (for the positive class),
there seems to be some benefit when combining shots with a certain amount of source and
target data, especially in the direction of a better recall for the positive class, which, in practice,
might be of more use than a mediocre model with a low score for filtering relevant documents.
A careful selection of shots out of the few we have might be more beneficial than giving the
model very complicated examples.

However, the amount of data in general was not enough to reasonably fine-tune and, in
particular, evaluate the model. Therefore, in future experiments, we hope to achieve better
results with the now extended corpus of about 10,000 documents.
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Chapter 6

Medical Entity Extraction

Drug detection in biomedical texts is the task of extracting all drug mentions from the given
text. In Example 6.1, an example from the CMED (Mahajan et al., 2021) data set is displayed,
highlighting three drug mentions to be extracted. Next to it, we show an example from the
newly created KEEPHA dataset in Example 6.2.

(6.1) As a result of this, I think it is reasonable for us in addition to having her on atenolol to stop the
hydrochlorothiazide, put her on ramipril and a nitrate.

(6.2) a. de: “Als ich damals mal Opri probiert habe, stand ich völlig neben mir. So richtig benebelt.
... Wie durch Watte durch den Tag...”

b. en: “When I tried Opri at that time, I was completely beside myself. Really woozy. ... like
through cotton throughout the day...”

The text on Example 6.1 is a very simple case for the state-of-the-art LMs as described below
in Section 6.1. However, since medical records are not only written in English but also in
other languages, Section 6.2 presents preliminary experiments on the transfer of knowledge
with respect to drug mentions between Spanish, French, German, and English. Finally, in
Section 6.3, the perspective is changed to user-generated texts (UGTs), which also can contain
medical entities as can be seen in Example 6.2. Using the KEEPHA dataset, we evaluate a first
baseline on these data, first only on drug mentions, and then for all annotated medical entities.

6.1 n2c2 Shared Task 2022

This section describes our participation in the n2c2 shared task 2022 track 1, Contextualized
Medication Event Extraction on the Contextualized Medication Event Dataset (CMED) dataset1

(Mahajan et al., 2021).
Disclaimer: I was mainly responsible for subtask 1, Medication Extraction.

6.1.1 Dataset

The dataset was built by Mahajan et al. (2021) to help the automatic understanding of medi-
cation events in clinical records. This is important to represent the patient’s clinical history in
context accurately. CMED contains 500 clinical notes overall, with 9,013 medication annota-
tions2 in total. Note that the underlying data was used before as the 2014 i2b2 / UTHealth
Natural Language Processing shared task corpus (Kumar et al., 2015; Stubbs et al., 2015a,b).

1https://n2c2.dbmi.hms.harvard.edu/2022-track-1
2Note that this does not correspond to our counts, we found 7,230 (train/dev) and 1,764 (test) mentions, resulting

in 8,993 mentions in total.

https://n2c2.dbmi.hms.harvard.edu/2022-track-1
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The new annotations3 contain contextual annotations, i.e., the mentions of medications are fur-
ther enriched by information whether a medication change is discussed or not (Disposition,
NoDisposition, Undetermined), and if yes, in what context (Action, Negation, Tempo-
rality, Certainty, Actor). Since this section is only about medication extraction, the
reader is referred to the work of Mahajan et al. (2021) for more details on the annotation.

Pre- & Post-processing

The data were provided in BRAT format and therefore, they first needed to be converted to
a format suitable to the Huggingface transformers library (Wolf et al., 2020). The standard
choice in this case is the BIO annotation. For this, we used the scripts provided by the BRAT

maintainers4. Further, since the documents provided were rather long and did not fit into the
512-token limit of the employed models, they were split into chunks of sentences. The number
of sentences per chunk and other hyper-parameters were determined using hyper-parameter
search provided by the Weights & Biases framework (Biewald, 2020).

After pre-processing, the data was fed to the models. Since Transformer-based models are
trained on sub-tokens, the pre-tokenized sequences were further split into sub-tokens, meaning
that the token labels had to be aligned with the sub-tokens.5 This process, chunking, tokeniza-
tion, and sub-tokenization, had to be reversed in post-processing.

6.1.2 Models & Fine-Tuning

We considered several English pre-trained transformer models. However, after initial experi-
ments, we chose BioBERT and PubMedBERT as our models to continue fine-tuning with6 since
they showed the best performance in terms of F1 score on the provided development set.

All models were finally fine-tuned using early stopping, AdamW for optimization (Kingma
and Ba, 2014), and five different seeds to account for training instabilities. The final submissions
were fine-tuned on both the training and development set. We uploaded the following model
combinations:

BioBERT ensemble: An ensemble of five BioBERT models with the same configuration but
different seeds for initialization. All models used a chunk size of 30 sentences and a batch size
of 8. A decision on a specific tag was reached via majority voting.

BioBERT combined with string matching: The BioBERT model with the best performance
on the development set combined with a very simple string matching approach to find missing
medication names that were longer than five characters7. String matching consisted of a string
match between all drugs collected in the training and development set against the test set.

PubMedBERT ensemble: An ensemble of the best two PubMedBERT models trained on two
different configurations, the main differences being the number of sentences per chunk, the
batch size and five seeds each.

Contrary to the very good performance of the BioBERTmodels on the development set, the
PubMedBERT ensemble achieved superior performance on the test set released by the shared

3120 out of 500 documents were double annotated, however, Mahajan et al. (2021) only report the IAA for the
context information.

4BRAT to BIO: https://github.com/spyysalo/standoff2conll, BIO to BRAT: https://github.com/
nlplab/brat/blob/master/tools/BIOtoStandoff.py

5Each sub-token of a token received the same label as the entire token, i.e., all sub-tokens had the same label.
6The exact model versions we used can be found in Table A.1.
7The string length was determined experimentally.

https://github.com/spyysalo/standoff2conll
https://github.com/nlplab/brat/blob/master/tools/BIOtoStandoff.py
https://github.com/nlplab/brat/blob/master/tools/BIOtoStandoff.py
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task organizers and was our best submission with a strict F1 score of 0.9474 and a lenient F1
score of 0.9704. These results achieved the tenth place out of 32 participating teams overall,
with all teams achieving scores very close to each other8.

PubMedBERT strict lenient

precision recall F1 precision recall F1

model 1 0.9444 0.9444 0.9444 0.9660 0.9660 0.9660
model 2 0.9499 0.9342 0.9420 0.9729 0.9569 0.9648
ensemble 0.9407 0.9541 0.9474 0.9637 0.9773 0.9704

Table 6.1: The results of the best model: the ensemble of the best two PubMedBERTmodels.

Looking at only the scores, which are rather high, gives the impression that extracting the
drugs out of the given texts works well, and ensembling the described models improved the
results even a bit more, especially with respect to recall. However, during the error analysis,
we found some interesting mistakes made by the models during inference, which are described
below.

6.1.3 Error Analysis

In total, there were 45 (strict: 57) false positives, i.e., expressions wrongly labeled as drugs, and
33 (strict: 40) false negatives, i.e., drug mentions not recognized as drugs. Note that 12 out of
57 false positives and 7 out of 40 false negatives were due to boundary issues. In the following,
examples of the found errors are given, highlighting the problems the best model experienced
during prediction. First, examples of false positives are listed and categorized in different error
groups.

Annotation inconsistencies 7 out of 45 false positives were due to annotation inconsistencies,
e.g., “Phenytoin”, “hypertonic saline”, or “pulmozyme”, which were not annotated, i.e., those
mentions are actually not wrong.

Spelling mistakes Words that became more “complicated” due to spelling errors were ex-
tracted as drug mentions, e.g., “probabyl” instead of “probably”, “takien” instead of “taken”.
This also happened for non-standard English doctors’ names and might be a clue for the mod-
els not really “understanding” the context in which the medication mentions occur but rather
learning features of the drug names themselves. For instance, the doctors’ names usually were
written at the very end of the report, in a context where drugs were not mentioned anymore.
Note, however, that, for example, “byl” was not a common ending of drugs in the training
data.

Medical terms which are not drugs Some false positives might have been based on context,
discounting the assumption above: Medical expressions, which were not drugs but used in a
similar context, were extracted as well, e.g., “Tegaderm” or “ace”. This was also the case for
mentions containing the expression “anti”, as in “anti-coagulated”.

The false negatives can be grouped into the following categories:

8The best team won with a strict F1 score of 0.9716 and a lenient F1 score of 0.9846.
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Missed medication names Almost half of the false negatives (16 out of 33) were missed med-
ication names, e.g., “Lisinopril”, “MOM”. We do not have an explanation as to why exactly
those were missed when similar occurrences were detected. It might, however, also interrelate
with the pre- or post-processing of the data.

Medical treatments 6 out of 33 false negatives were medical treatments like “chemo” or di-
etary supplements like “K” (probably for “potassium”) or “Mg”(probably “magnesium”, but
also occurs as “milligram”). Admittedly, these are very difficult to detect correctly, especially
the abbreviations of chemicals.

Spelling mistakes Spelling errors were another source of errors that led to some drug men-
tions not being recognized (e.g., “SSIR” instead of “SSRI”), giving evidence that the model
might have relied on features coming from the medication names themselves.

Abbreviations Short versions of medication names, for instance “tobra” instead of (probably)
“Tobramycin”, were also missed by the model.

Ambiguous mentions Another common mistake observed were mentions that could be both
body substances but also medication, e.g., “insulin” or “oxygen”. There, again, the context
plays a crucial role.

Some mentions also fell into both false positives and false negatives. For instance, men-
tions containing the term “medication(s)” (e.g. “hormone medication” (false positive) or “pul-
monary medications” (false negative)) were sometimes annotated and sometimes not. Simi-
larly, some medications or treatments occurred both as false positives and false negatives, for
example, “nebs” and “methadone”.

6.1.4 Summary & Conclusion

In conclusion, we found that a very simple but domain-specific Transformer-based model with-
out any tweaks already worked very well on the provided data. However, the simple string
matching we added in post-processing was too coarse and only hurt performance. Further-
more, combining the models trained with different seeds for initialization improved overall
performance as well since this mitigated the mis-predictions of single models. Based on the er-
ror analysis, we found that the system identified more entities wrongly as drugs than it missed
true entities. For those that were missed, we highlighted some examples, showing that these
were often more difficult mentions like abbreviations and medical treatments. However, half
of the false negatives were still missed, and for those, we cannot provide an explanation since
most of these were recognized in other notes.

When working on these data, it became clear that they are homogeneous, i.e., one clini-
cal note is very similar to another within this dataset. Further, as Mahajan et al. (2021) note,
the data are not representative since they only contain clinical notes about patients with dia-
betes and heart diseases, leading to the same medication groups occurring in the texts. They
are, moreover, based on only one data warehouse9 (Mahajan et al., 2021), leading to the same
structure of every note.

This homogeneous structure might have been learned by the models trained on the clinical
notes. This will probably result in a degraded performance when applied to datasets from
different providers or hospitals. Furthermore, the dataset is only available in English.

9https://www.medicalrecords.com/mrcbase/emr/partners-healthcare-longitudinal
-medical-record-lmr-511-partners-healthcare-system-inc-4302007

https://www.medicalrecords.com/mrcbase/emr/partners-healthcare-longitudinal
-medical-record-lmr-511-partners-healthcare-system-inc-4302007
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The limitations of the presented work, however, gave rise to a new question: What is the
performance of “simple” models as the ones presented on other languages, as well as across
these languages? This is discussed in the next section.

6.2 Cross-lingual Drug Detection

As demonstrated in the section before, BERT-based models seem to work very well on clinical
records such as the CMED dataset. However, a model working well on English data does
not necessarily mean it works well on data in other languages. This section, thus, discusses
the ability of multi-lingual Transformer models to improve medication detection in languages
other than English. In more detail, the experiments conducted serve to gain first insights into
how well the mentioned models, in combination with the selected datasets, work in general
for the given task, i.e., can a multi-lingual model reliably detect drug mentions in texts coming
from different sources and based on different annotation guidelines (RQ 4)? Furthermore, the
experiments are designed to understand how the different languages, in this case represented
by datasets, contribute to medication detection in another language.

6.2.1 Datasets

The datasets were selected based on availability and annotation. They were required to provide
annotations on the entity level, describing medication names or similar, closely related types,
such as substances. However, there are only a few available medical datasets in languages
other than English to choose from, and in the end, we chose corpora in two Germanic (English
and German) and two Romance (French and Spanish) languages.

All corpora are described in the following; the entity labels relevant to our experiments
are boldfaced. They contain medication names (and sometimes chemicals) used in clinical
texts, e.g., patient records. Usually, there is only one label per dataset dedicated to the desired
expressions; sometimes, however, these labels cover a broader scope than only drug names.

German

BRONCO150 (Kittner et al., 2021) The Berlin-Tübingen Oncology Corpus10 contains 150 dis-
charge summaries of cancer patients who received treatment at either Charité Berlin or Uni-
versitätsklinikum Tübingen in Germany. The summaries were manually anonymized, split
into sentences, and scrambled to avoid the possibility of tracing back discharge reports to in-
dividuals. The sentences in this corpus are annotated with three entity labels (“diagnosis”,
“treatment” and “medication”) and normalized to terminologies. Only complete tokens were
annotated, even if a sub-token was part of a medical entity. The authors define a medication
as “a pharmaceutical substance or a drug that can be related to the Anatomical Therapeutic
Chemical Classification System (ATC11)” (Kittner et al., 2021).

GERNERMED (Frei and Kramer, 2022) This corpus12 originates from the n2c2 2018 ADE
dataset (Henry et al., 2020) which consists of annotated English EHRs covering several clini-
cal entities such as “Drug”, “Dosage”, “Strength” etc. The German data samples are obtained
through automatic machine translation, while annotation information is transferred into Ger-
man using word alignment estimation. Therefore, it is not a gold standard dataset. In this

10https://www2.informatik.hu-berlin.de/~leser/bronco/index.html
11www.dimdi.de/dynamic/de/arzneimittel/atc-klassifikation/
12https://github.com/frankkramer-lab/GERNERMED

https://www2.informatik.hu-berlin.de/~leser/bronco/index.html
www.dimdi.de/dynamic/de/arzneimittel/atc-klassifikation/
https://github.com/frankkramer-lab/GERNERMED
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work, we use an updated dataset iteration available from the authors. According to the re-
spective n2c2 annotation guideline, the drug entity should include all kinds of drugs except for
“illicit” drugs and alcohol.

GGPONC v2.0 (Borchert et al., 2022) This datatset13 is a data collection based on clinical
practice guidelines in German. GGPONC is a collection of curated scientific text documents,
i.e. clinical guidelines that include, for example, instructions for treating breast or lung cancer.
It does not contain any personal data and thus is freely accessible. The entities labeled in this
corpus are “Finding”, “Substance” or “Procedure”. The “Substance” label includes “general
substances, the chemical constituents of pharmaceutical/biological products, body substances,
dietary substances, and diagnostic substances (. . . )”14.

Ex4CDS (Roller et al., 2022) The dataset15 consists of short notes written by physicians in the
context of estimating patient risks. The text data has similarities to clinical text, was annotated
with entities and relations, and comprises entities like “Condition”, “Lab Values”, “Health-
State”, “Measure”, or “Medication”. Medications are defined as generic drug names, groups
of medications, and active substances.

English

CMED (Mahajan et al., 2021) CMED16 was published by the organizers of the n2c2 challenge
in 2022. It contains over 500 clinical notes based on the 2014 i2b2/ UTHealth NLP shared task
corpus (Stubbs et al., 2015a,b; Kumar et al., 2015) and is annotated with medication changes. It
is already described in Section 6.1.1.

French

Quaero (Névéol et al., 2014) The Quaero French Medical Corpus17 was designed for medical
named entity recognition and normalization in Medline titles and EMEA documents. The types
of clinical entities follow the UMLS semantic groups and allow labels such as “Anatomy”,
“Chemical”, or “Disorder”. The label “CHEM” contains chemicals and drugs as defined by
Bodenreider (2004), including, for instance, antibiotics, clinical drugs, elements or enzymes,
amongst others.

DEFT (Grouin et al., 2019) The DEFT corpus18 contains more than 700 documents from freely
available clinical case reports in French and is a subset of the CAS corpus (Grabar et al., 2018).
The data are classified into four general categories (“age”, “gender”, “outcome” and “origin”).
A subset of the reports is then annotated in a more fine-grained way, using, for instance, entity
labels relating to physiology (e.g., “body measurement”) or surgeries (e.g., “surgical approach”
or “medical device”). The entity we are interested in is the one named “substance”, a subset
of the broader category of drug annotations, including labels like “concentration” or “mode”.
“Substance” is defined as “commercial and generic drug names or generic substance” (Grouin
et al., 2019).

13https://www.leitlinienprogramm-onkologie.de/projekte/ggponc-english/
14Annotation guidelines of GGPONC: https://github.com/hpi-dhc/ggponc_annotation/blob/

master/annotation_guide/anno_guide.pdf
15https://github.com/DFKI-NLP/Ex4CDS
16To the best of our knowledge, these data are not (yet) publicly accessible.
17https://quaerofrenchmed.limsi.fr/
18https://deft.limsi.fr/2019/index-en.html

https://www.leitlinienprogramm-onkologie.de/projekte/ggponc-english/
https://github.com/hpi-dhc/ggponc_annotation/blob/master/annotation_guide/anno_guide.pdf
https://github.com/hpi-dhc/ggponc_annotation/blob/master/annotation_guide/anno_guide.pdf
https://github.com/DFKI-NLP/Ex4CDS
https://quaerofrenchmed.limsi.fr/
https://deft.limsi.fr/2019/index-en.html
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Spanish

PharmaCoNER (Gonzalez-Agirre et al., 2019) This corpus19, developed for the PharmaCoNER
shared task, contains approximately 1,000 manually annotated clinical case studies in Spanish.
The annotated entities are “Normalizables” (mentions of chemicals20 that could be manually
normalized to a CUI, “No_Normalizables” (mentions of chemicals that could not be normal-
ized), “Proteinas” and “Unclear”.

CT-EBM-SP (Campillos-Llanos et al., 2022) The Clinical Trials for Evidence-Based Medicine
in Spanish corpus21 is annotated with entities from UMLS. The texts are taken from jour-
nal abstracts about clinical trials (500 documents) and announcements of trial protocols (700
documents), containing entities belonging to categories such as “Anatomy”, “Pathology”, or
“Chemical”. The latter are defined as “pharmacological and chemical substances” (Campillos-
Llanos et al., 2022).

In total, we consider four German, one English, two French, and two Spanish datasets. All
these are based on similar but not identical annotation guidelines and annotate some kind of
medication mention. Note that although the guidelines might be comparable, the data were
created with different goals in mind, by different annotators and in different settings. There-
fore, the scope of the annotated entities might vary or include or exclude particular expressions.
An overview of the datasets and the number of annotated entities is shown in Table D.2. The
number of entities labeled as some variety of drug are detailed per training, development and
test set.

6.2.2 Methods

In this section, pre-processing and fine-tuning strategies are laid out.

Pre-processing

If no pre-defined dataset split was given, the corpora were divided into a training (70%), de-
velopment (15%), and test set (15%) on document level where possible. To re-use the pre-
processing pipeline described in Section 6.1.1, all data not yet in BRAT format were converted
to that effect. Further, all medication-related labels described above are mapped to the label
drug. Again copying the procedure in Section 6.1.1, the texts are split into sentences and ag-
gregated into chunks to fit into the 512 sub-token limitation. Each chunk contains up to 26
sentences, which was determined experimentally.

Models

We again rely on XLM-RoBERTa in its base version. We compared it with the large version and
found that in the case of drug detection, the final performance was very close for both models,
but fine-tuning the larger model took longer. Every model in every setting is fine-tuned using
five different seeds.

Since the datasets have different sizes and each contains a different number of annotated
entities, we apply weighted random sampling22 to the batch generation process. For this, we
calculate the number of samples per language in the entire training set and use the inverse
weights for sampling. This makes sure that the German samples are not preferred over the

19https://temu.bsc.es/pharmaconer/
20For this dataset, the terms “chemical” and “drug” are used interchangeably.
21http://www.lllf.uam.es/ESP/nlpmedterm_en
22https://pytorch.org/docs/stable/data.html#torch.utils.data.WeightedRandomSampler

https://temu.bsc.es/pharmaconer/
http://www.lllf.uam.es/ESP/nlpmedterm_en
https://pytorch.org/docs/stable/data.html#torch.utils.data.WeightedRandomSampler
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samples of the other, smaller datasets when filling the batches, avoiding the models learning
a bias towards one language or entity type. However, due to the small size of some datasets,
it might happen that one sample of a particular language and dataset might be seen several
times during fine-tuning. We did not apply this method based on the dataset but only based
on language. Fine-tuning details are provided in Appendix D.1.3.

The test set predictions of the models based on the different seeds are ensembled and de-
cided via majority voting. The final performance is evaluated using the n2c2 evaluation script,
which returns strict and lenient scores for precision, recall, and F1 score.

Experimental Setup

We run three different experiments to compare models fine-tuned on different data combina-
tions.

Mono-lingual We fine-tune five multi-lingual models for each language separately. These
models are then applied to all test sets, and the predictions are ensembled by majority vote. For
instance, a model fine-tuned on only the German datasets is evaluated on the German, English,
French, and Spanish test sets. Note that we do not take these models in the sense of a “lower
bound” but only as a comparison. We could have also chosen real mono-lingual models but
decided against them to rule out different pre-training strategies or datasets used by language-
specific models. Presumably, the baselines as we chose them might even perform better than
the cross-lingual or multi-lingual models since they are fine-tuned within language. However,
we do not want to create a new state-of-the-art but investigate the current state-of-the-art to see
in which directions to improve cross-lingual medication detection.

Multi-lingual For the multi-lingual experiments, XLM-RoBERTa is fine-tuned on all training
sets in all languages, again using five different seeds. All medication labels are mapped to
one common label drug. The predictions of all models on all test sets are again ensembled.
These models show the current performance of multi-lingual models on different datasets in a
specific domain.

Clusters Finally, we compare the above-mentioned setups with models fine-tuned on lan-
guage clusters. These clusters are similar language groups, i.e., the Romance group (fr, es) and
the Germanic group (de, en). The development data is divided into these clusters, while the
final test data is the same as in the other setups. With this setup, we would like to investigate
whether there is a benefit in using only similar languages, i.e. whether this allows the models
to perform better in medication extraction.

6.2.3 Results

This section provides the results of the above-described experiments using exact and lenient
precision, recall, and F1 score. If not otherwise stated, we refer to the lenient scores since these
are less sensitive to span boundary errors. The strict scores are shown in Appendix D.1.4. We
refer to models fine-tuned on language x and evaluated on language y as mx,y, the same for F1
score (Fx,y).

Mono-lingual The results of the models trained on only one language are shown in Table 6.2.
The table shows the performance on the datasets in the language the model was trained on
as well as on the combined test corpus containing all languages (all). The results are further
partitioned by language.
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lenient

train test precision recall F1 ∆

de

all 73.3 81.3 77.1 +7.7
de 85.6 87.4 86.5 0.0
en 68.7 87.0 76.8 -18.1
fr 57.3 57.5 57.4 -7.1
es 67.3 80.1 73.1 -16.4

en

all 74.0 63.0 68.1 +16.8
de 64.6 59.8 62.1 -24.4
en 96.3 93.4 94.9 0.0
fr 61.0 41.4 49.3 -15.3
es 78.5 59.0 67.4 -22.1

fr

all 75.2 64.4 69.4 +15.5
de 75.6 63.5 69.1 -17.5
en 75.2 67.8 71.3 -23.6
fr 67.1 62.2 64.5 0.0
es 79.1 64.5 71.1 -18.4

es

all 79.2 72.5 75.7 +9.2
de 75.7 68.8 72.1 -14.4
en 80.4 68.4 73.9 -20.9
fr 63.2 55.4 59.1 -5.5
es 90.1 88.9 89.5 0.0

Table 6.2: Results of models trained on the single languages. The evaluation scores are
reported as micro average scores over all test set samples and separated by language. The
best scores on a test language are marked in bold font. The rightmost column shows the
difference (∆) in F1 score between the current model and the (next) best model on this test
set. For example, “+7.7” indicates that the better model is 7.7 percentage points better
than the current model, while “-18.1” indicates that the next best model is 18.1 percentage

points worse than the current model. all refers to the combination of all test datasets.

The best-performing training language as evaluated on the test set is highlighted in bold-
face. Unsurprisingly, this is always the language the model was fine-tuned on. The distance
between the best F1 score and the second best F1 score on the respective dataset is shown in the
rightmost column. For example, Fde,de = 86.5, i.e., the model fine-tuned on German and tested
on German (mde,de). In comparison, the model that comes closest to that is the one fine-tuned
on Spanish: Fes,de = 72.1, performing 14.4 points worse than mde,de.

Note that for all languages except German, precision is always higher than recall. For
the model trained on only German, recall is always higher than precision, no matter the test
dataset. Finally, the model trained on German performs best (within this group) when tested
on the corpus containing all datasets.

Multi-lingual Considering the result of the model fine-tuned on all data in Table 6.3, we find
that its performance on all (mall,all) is higher than when using only a single language for fine-
tuning, which makes sense. Further, the scores per language-specific test set, e.g., those of
mall, f r, are slightly below those fine-tuned only on the language’s respective training set, but
often only by a small margin: 1 percentage point for German, 1.9 for English, 1.5 for French,
and 1.1 for Spanish. For all languages except for French, precision is always lower than recall.
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Note that for English, the recall increases when using all data for fine-tuning, while preci-
sion drops by 5.6 percentage points. For all other languages, both precision and recall decrease
in this setting.

lenient

train test precision recall F1 ∆

all

all 83.8 86.0 84.8 0.0
de 84.2 86.9 85.5 -1.0
en 90.7 95.4 93.0 -1.9
fr 66.7 59.6 63.0 -1.5
es 85.7 91.4 88.4 -1.1

Table 6.3: Results of the multi-lingual model trained and evaluated on all languages. The
∆ column shows the distance in performance to the best model on this test set. The best F1

score on the combination of all datasets across experiments is marked in bold.

The results are partitioned by dataset in Table D.6. Here, it becomes clear that the low per-
formance on French mainly comes from the low performance on the DEFT dataset, mostly due
to a very low precision (18.6%). For German, the lowest performance is on the Ex4CDS 2.0
dataset, mainly because of a low recall. The results on all other datasets seem decent, consider-
ing that the lowest score is achieved on Quaero with F1 = 71.6 using the multi-lingual model
fine-tuned on all languages.

Clusters In Table 6.4, the results when fine-tuning on language clusters are laid out. The
highest scores within this experiment setting are bold-faced: When testing on all data, the
combination of German and English seems to work best, but still shows a difference of 4.4
percentage points to the model fine-tuned on all languages (see Table 6.3). This combination
also works better than the combination of French and Spanish. This is reversed for the French
and Spanish test sets, where the subset of Romance languages achieves higher scores.

Note that the combination of German and English is better on German overall than when
adding French and Spanish, i.e., the cluster model mde+en achieves better results on the German
test set than the model fine-tuned on everything (Fde+en,de = 86.4 versus Fall,de = 85.5). The
model fine-tuned on German only is slightly better: Fde,de = 86.5. Table 6.4 also shows that fine-
tuning on only French and Spanish results in a higher F1 score for the French test set than fine-
tuning on all languages. The only language that does not benefit more from the cluster-based
approach than the multi-lingual approach is Spanish: Using the clusters, the performance is
2.4 percentage points worse while only 1.1 percentage points worse when using the model
fine-tuned on all data.

Discussion

The results are now discussed in more detail and set into context with the data and model
fine-tuning procedure.

Mono-lingual In the mono-lingual cases, the results are not surprising: The models trained
on only one specific language perform best on exactly this language. In this set of experiments,
we cannot find evidence that any other language comes even close to a similar performance.
However, it would still have been possible that adding other languages, e.g., English data to
German, would have improved the results for both English and German. This is not the case
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lenient

train test precision recall F1 ∆

de, en all 81.7 79.1 80.4 -4.4
fr, es all 74.3 77.3 75.8 -9.1

de, en de 86.3 86.6 86.4 -0.1
de, en en 92.6 94.8 93.7 -1.2
de, en fr 60.3 52.2 56.0 -8.6
de, en es 76.6 71.2 73.8 -15.7

fr, es de 74.2 72.8 73.5 -13.0
fr, es en 66.7 77.1 71.5 -23.3
fr, es fr 65.3 62.6 63.9 -0.6
fr, es es 83.3 91.3 87.1 -2.4

Table 6.4: The lenient results of the cluster approaches. The rightmost column shows the
difference in the best score on the respective test set across all experiments.

and might hint that the datasets are too diverse to support each other. Remember the homo-
geneity of the English CMED data described in Section 6.1.1: It might be simply too different
in structure and context to help in the detection of further German medication mentions.

For German, where recall is always higher than precision, no matter the test set language,
this might be due to the high number of German entities provided in the training data: There
are in total 26,849 medication mentions distributed over four corpora. This might allow the
model to learn about many contexts in which the medication mention can occur, but also about
“wrong” contexts, that is, an over-generalization. On the other hand, a low(er) precision means
that many of the detected entities do not appear in the gold data, i.e., there are many false
positives. The difference between precision and recall is particularly striking for the model
evaluated on English and Spanish. See, for example, the results of mde,en: The recall score is 18.3
percentage points higher than the precision score. This might mean that the model identified
a lot of potential entity spans, and many were correct (recall is 87.0%). Still, at the same time,
the model also predicted many spans that were not correct, and therefore, precision is only
68.7%. Therefore, we might assume that when using the large German dataset for fine-tuning,
the model learns many potential positions of drug entities, but not all can be transferred to the
other languages’ datasets. To further investigate this, it would be necessary to identify which
spans were predicted falsely as medication when the model is trained on German data only.

The resulting scores are reversed when considering the other languages: When fine-tuning
on English, French, or Spanish, the model’s ability to find potential drug candidates is reduced,
but those it finds are – in some cases – correct.

Finally, the model fine-tuned on German data only achieves, within this set of experiments,
the best score when applied to the corpus containing all data. This is mostly also due to the
contribution of the German data in the training set (i.e., many different examples), as well as
the fact that a big portion of the test set is German as well. It would therefore be better to
balance the test set based on language and dataset.

Multi-lingual We find that when the model is fine-tuned on all languages, the performance
on the entire dataset ( “all”) is the best when compared across experiment settings, i.e., fine-
tuning on monolingual data or on clusters shows a lower performance. Note that we made sure
that in every batch each language is at least represented once according to their inverse weights.
Therefore, we cannot say that the German data, represented by four datasets and having the
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strongest foundation in terms of entities, is responsible for this, but rather the combination of
all datasets. Separated by language, the German datasets (except for Ex4CDS), the English one,
and also the Spanish ones receive good scores overall (Table D.7).

Clusters The cluster approach was based on the assumption that closer languages might ben-
efit more on the performance than languages that are more distant to each other. In the ex-
periments, this was true for all languages but Spanish: Fine-tuning on English and German
improved the performance on both the English and German test sets compared to the multi-
lingual approach. The same is true for the cluster of Spanish and French, which improved the
performance on French when compared to the model fine-tuned on everything. For Spanish,
the model fine-tuned on all data is still better than the one fine-tuned on the Romance cluster,
leading to the assumption that either the French data introduces errors or the English and Ger-
man data provide some information that is also useful for the Spanish corpora. However, it
might also be the reverse: Removing “distracting” datasets from the data configuration makes
it easier for the model to adapt to the closer languages, achieving better results but probably
reducing the robustness of the system.

We also assumed that this approach might improve over the mono-lingual models, adding
a more diverse context and more examples in close languages. However, this did not happen,
the mono-lingual models consistently achieved the best scores across all experiments.

Summary

We find that the mono-lingual models achieve the best performance for each individual lan-
guage, but the model fine-tuned on data in all languages achieves very close scores. When
dividing the datasets based on their language family, they achieve better results than the mod-
els fine-tuned on all languages except for Spanish.

Several variables need to be considered and controlled for: First of all, there are four dif-
ferent languages distributed over several datasets. Second, those datasets come from differ-
ent sub-domains, i.e., discharge summaries (BRONCO150), clinical notes and EHRs (GERN-
ERMED, Ex4CDS, CMED), guidelines (GGPONC v2.0), and scientific documents (Quaero, DEFT,
PharmaCoNER, CT-EBM-SP). They further annotated slightly different entity types. Although
these are all related, they might exclude or include mentions that are included or excluded
in the other datasets, making it difficult for a model to learn consistently. Therefore, it is no
surprise that the mono-lingual models perform well on each language separately: There is
less distraction and they can quickly adapt to the specific language. This is also true for the
cluster-based approach. However, this can come at the cost of a lower robustness, making it
more difficult to apply the models reliably on other languages, which is our main interest. We
therefore conduct an error analysis on the predictions of the multi-lingual models to investigate
where the problems lie.

6.2.4 Error Analysis

Since we are interested in a model that is reliably applicable to several languages, we conducted
an error analysis on the multi-lingual model that was fine-tuned on all available data. The
error analysis is qualitative, focusing on the lenient predictions of the model. In Table 6.5 the
numbers of false positives (FPs) and false negatives (FNs) are shown.

False Positives

The false positives are discussed first. These mentions were predicted as (part of) a drug name
but are incorrect according to the respective dataset’s gold annotation.
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language FPs FNs

de 376 382
en 113 63
fr 298 175
es 287 142
total 1074 762
total (unique) 977 755

Table 6.5: False positives (FP) and false negatives (FN) for the multi-lingual model.

Annotation Errors Out of the collected false positive samples, several can be considered as
true positives – however, not according to the ground truth of the underlying dataset. For ex-
ample, on the DEFT dataset, the model predicted, among other things, “Rivotril” and “parox-
étine”, both of which are, indeed, names of medications. However, they were not evaluated
as correct for the respective dataset.23 Investigating the occurrences of the entities, we find
that “Rivotril” only occurs in the Spanish training data and in no other dataset. “Paroxe-
tine”, however, can be found in the training data of GGPONC and GERNERMED (“Parox-
etin”), CMED (“Paroxetine”), PharmaCoNER and CT-EBM-S (“paroxetina”) and even in DEFT
(“paroxétine”). Similar examples for German would be “Dopamin” (GGPONC) or “Metami-
zol” (BRONCO150, GGPONC); both were not labeled in the ground truth in some cases. How-
ever, we could verify them to be present in the training sets of GGPONC, PharmaCoNER,
BRONCO150, and CT-EBM-SP. Consequently, we assume these to be annotation errors or enti-
ties that were not relevant for the respective corpus for some reason. Also, this speaks for the
model since it recognized these entities, even if they were not “officially” correct. It also makes
the model a good instrument for validating annotations since it can highlight those that are
missing.

Groups of other medical terms In the FPs across all languages and datasets, we can find
terms that belong to specific groups. These groups and their members often have medical
associations but are not medications themselves, similar to what we saw in the error analysis
in Section 6.1. However, their medical “context” might be a reason for their prediction. Some of
the most visible groups, i.e., those where we find more than one representative per language,
are shown in Table D.9. They contain proteins, chemical compounds, abbreviations, general
medical expressions, medical terms and tools that are not drugs, and dietary supplements.

A reason for these predictions might be the label definitions of the different datasets. Some
of them, e.g., Quaero and PharmaCoNER, include enzymes or chemical substances in their
respective entity definitions. Also, the mentioned expressions are all used in very similar or
even the same context as drugs, and therefore, the model might not be able to distinguish them
semantically from medications.

Summary Summarizing the analysis of false positives, we observe that most of the incorrectly
detected expressions can be categorized into a particular group. Most of these classes can be
associated with medicine, medical treatments, or other things related to a clinical setting. Some
FPs are simply based on annotation errors or on minor differences in the dataset guidelines
(e.g., “CHEM” versus “Medication”). Only very few can not be explained at all and might
be just a coincidence based on the context in which they occur. In those cases, it would be
interesting to check the certainty of the model for its prediction.

23Note that some of the DEFT examples were only annotated partially.
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False Negatives

Next, we consider medication mentions missed by the system.

Groups of medications and other medical terms Some FNs can be, similar to the FPs, cat-
egorized into several groups. We find examples of therapies, general medication expressions,
brand names, mixtures of medication names and their routes, and ambiguous or very short
mentions. See Table D.10 for some examples.

Finally, most FNs seem to be actual medication names (e.g., de: “Avelumab”, en: “LISINO-
PRIL”, fr: “Atripla”, es: “folato”) which were not detected by the system. The reason might be
that these drugs were never seen in any training examples, or that the context in the test exam-
ple did not match the one the system was trained on. Regarding the former, this is not the case
for the examples provided above, only “Atripla” occurs merely twice in the training data, all
the others are quite frequent, with “Lisinopril” being mentioned at least 188 times in both Ger-
man and English data. “Brennnesselsaft” (de, en: “nettle juice”), by contrast, was indeed never
seen during training, it only occurs in the test data. In fact, 440 of the 755 FNs were absent in
the training data.

Nevertheless, in any case, a model should be capable of generalizing to unseen mentions,
as long as the context in which they occur is similar. However, since we merged the datasets,
context might exactly be the problem: substances, for instance, might occur in medication
contexts and other situations. Among the mentions not in the training data, we find expressions
such as “lokale Strahlenträger” (de, en: “local radiation carriers”24), “Zigarettenrauch” (de, en:
“cigarette smoke”) or “tabanidés” (es, en: “tabanidae”, some kind of fly).

This expression “Brennnesselsaft” is another good example of the differences in the annota-
tion: It is certainly debatable whether “nettle juice” can be really seen as a medication, and in-
deed, in the GGPONC v2.0 corpus, it is annotated as Substance, which might be more correct
than drug. As mentioned before, about 50% of the false negatives are from the German data,
where GGPONC v2.0 represents the biggest part. In contrast to the other German datasets,
GGPONC v2.0 also provides a broader scope for medication expressions, using substance
for annotation.

General Observations

We conclude the error analysis with general observations on the predicted entities.

Span Length The system seems to have difficulties in deciding the span length of an entity. In
terms of scores, this is ignored in lenient mode (since a match does not have the exact offsets as
in the ground truth document), but some lenient true positives are conspicuously longer than
they need to be from the perspective of annotating medication names. This might be due to the
strikingly different span lengths across the training datasets: In GGPONC, PharmaCoNER, CT-
EBM-SP, Quaero, and DEFT we have at least four medication names that are longer than four
tokens, in the case of GGPONC 812 medications are longer than four tokens. Also in GGPONC,
DEFT, and CT-EBM-SP, we can still find several entities with a span longer than ten tokens.
Examples from the German data are “fettlöslichen Vitaminen” (en: “fat-soluble vitamins”) or
“orale Medikation” (en: “oral medication”). They were both predicted correctly, however, in
other cases, e.g. “schwere Beruhigungsmittel” (en: “heavy sedatives”), this is not the case, here,
simply “Beruhigungsmittel” (en: “sedative”) would have been correct.

24As context, the following sentence is given: de: “Bei der HDR-Brachytherapie werden temporär lokale Strahlenträger
im Sinne einer Afterloadingtechnik in die Prostata eingebracht.”; en: “In HDR brachytherapy, local radiation carriers are
temporarily introduced into the prostate in the sense of an afterloading technique.”.
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Treatment versus medication Often, there seems to be a disagreement between the terms of
treatment (or other entity labels) and medication. Therapies, for example, like “chemo therapy”
are dependent on the dataset, categorized in either of these categories, and therefore predicted
inconsistently.

Inconsistent annotations within datasets We often encounter occurrences within datasets
where the annotation might be misleading. For example, in one of the German datasets our
system predicts both “Substanzen” (en: “substance”) and “Einzelsubstanzen” (en: “single sub-
stances”), but only the first one is a correct match.

Overlap between False Positives and False Negatives There are overall 59 expressions across
all languages and datasets that are included in the FPs, but also in the FNs. Often, these men-
tions are from certain groups as specified above, e.g., general medication names (e.g., es: “med-
icación”), dietary supplements (e.g., de: “Magnesium”), or abbreviations (“ARV”). All of them,
however, have a clear medical association. Their occurrence in both FPs and FNs may be a
result of the different underlying guidelines or contexts, and there may be some annotation
errors involved as well. However, it also demonstrates the difficulty of annotating clinical texts
and creating guidelines for the annotation.

Unseen medications We take up the point of unseen mentions again. To ensure the model is
not simply learning medication names by heart, we checked whether they occur in any train-
ing set. Indeed, we observe that there are several correctly predicted drugs that the model did
not see during training. Examples are “Quixidar” (Quaero) and “rifampine” (DEFT). “Dexam-
ethasone” is an interesting case: here, we can see that it was correctly predicted in both GERN-
ERMED and GGPONC, but it never occurred like that in the training data. Instead, it was
included in much longer spans, e.g., “für 3 Tage 5mg Dexamethasone” (en: “for 3 days 5mg Dex-
amethasone”). Finally, examples for Spanish are “biperideno” (PharmaCoNER) or “tirofibán”
(CT-EBM-SP). From this, we can conclude that context indeed plays a role when detecting
medication names.

6.2.5 Summary & Conclusion

In this section, we investigated the ability of the cross- and multi-lingual transfer-learning capa-
bilities of the XLM-R model in the context of medication detection in different languages and
datasets. We fine-tuned XLM-RoBERTa models on monolingual, language cluster-based and
multi-lingual datasets and evaluated their drug detection performance across all languages.
Based on the results, we conclude that a multi-lingual model fine-tuned on all available data
does not outperform a multi-lingual model fine-tuned on only one language when applied in
the medical domain. This is not surprising and correlates with findings in the general domain.

What we find interesting, however, is that fine-tuning on clusters of similar languages with
language-weighted sampling contributes more than fine-tuning on all available languages, except
for Spanish. Further, we learned which datasets might not be helpful in this kind of experi-
ment. For example, Ex4CDS 2.0 is probably too small to make any difference and DEFT seems
to be a challenging dataset on its own. Moreover, the exact annotation of the mentions also
plays an important role. We found many prediction errors to be (most likely) due to the differ-
ent definitions the various corpora are based upon. This resulted in more false positives than
false negatives, except for the German data, i.e., the model over-generalized on the other lan-
guages. This phenomenon needs to be investigated further since it is not yet clear how much
performance is lost or gained when adding data with similar but not exact label definitions. An
interesting experiment for this research direction might be monitoring the model’s prediction
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(un)certainty during fine-tuning and increasing or decreasing the decision boundary, similar to
the approach proposed by Swayamdipta et al. (2020).

We further acknowledge the many confounding factors that still need to be investigated: In
the case of English and German, for instance, it is not clear if adding only English or removing
Spanish and French helped increase the performance. The Romance language cluster might
be more confusing during fine-tuning for German, but the English data is very homogeneous
and might not contribute much. Therefore, balanced datasets of each language with the same
size could reduce this issue. On the other hand, having diverse data at hand might make the
models more robust.

Also, for the next iteration of experiments, the test set should be more balanced to allow for
a more fair evaluation. Currently, the analysis is dominated by the German (GGPONC v2.0)
data, accounting for half of the false negatives.

In summary, apart from an entirely multi-lingual model, language-family-based models
(pre-trained on more than two languages) might be an interesting alley for future fine-tuning
(or pre-training) of models. They need less data than multi-lingual models, are not too special-
ized on only one language, and might be able to transfer knowledge more easily, particularly
for specialized domains.

6.3 Detecting medical entities in the KEEPHA dataset

In this section, preliminary experiments for detecting medical entities are conducted to provide
baselines for the KEEPHA dataset as described in Section 4.1. We first apply the models intro-
duced in Section 6.2 for detecting only medication mentions. After that, we provide a simple
baseline for all entities together which is also supposed to serve as annotation verification, to
highlight inconsistencies in the annotations or show entities we missed.

6.3.1 Drug-only Detection

This section reports the results of the models described in Section 6.2, which were fine-tuned on
medication detection only, but on datasets in four languages. Recall that we investigated multi-
lingual models (XLM-RoBERTa) fine-tuned on three types of dataset combinations: One setup
was fine-tuning on all available data in the languages German, English, French and Spanish
(multi-lingual), one was fine-tuning on a single language only (mono-lingual) and one was fine-
tuning on language clusters, i.e., German-English and French-Spanish (clusters).

We report the results of each dataset combination for the French and German data. Note
that as before, all scores result from a majority voting of five models, each fine-tuned with a
different seed. Furthermore, we used all available data in the KEEPHA datasets for testing the
zero-shot models.

Results & Discussion

The results are displayed in Table 6.6. The best results for the German part of the KEEPHA
dataset are achieved when using the model fine-tuned only on German, with an F1 score of
0.77. Note that the precision of all three models is the same, but the recall changes.

For French, the best F1 score is achieved by the model fine-tuned on all datasets in all lan-
guages, with an increase of 4 percentage points compared to the other models. These scores are
better than the ones achieved on the original test sets of the model and specifically better than
on the Quaero dataset (F1 = 64.5 when fine-tuned on only French data and evaluated on both
French test sets, F1 = 71.6 when trained on all languages and evaluated only on the Quaero
test set). In this context, it is interesting that the model fine-tuned on all data achieves a better
score than the other combinations, implying that the other languages somehow helped detect
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lenient

train test precision recall F1

de KEEPHA-de 0.85 0.71 0.77
de, en KEEPHA-de 0.85 0.68 0.75
all KEEPHA-de 0.85 0.69 0.76

fr KEEPHA-fr 0.77 0.65 0.70
fr, es KEEPHA-fr 0.79 0.63 0.70
all KEEPHA-fr 0.81 0.69 0.74

Table 6.6: The zero-shot results (lenient) on the newly created KEEPHA corpus, but only
with respect to the drug mentions. The first column describes the language of the data
the model was previously trained on, all refers to German (de), English (en), French (fr),
and Spanish (es). The test column describes the part of the KEEPHA data the models were

tested on.

the medications. However, first of all, the French KEEPHA data is translated from German,
and might still contain some rather German medication names, abbreviations, or formulations.
Secondly, as observed in the previous chapter, the results on the French data were strongly in-
fluenced by the different annotation schemes with which both French corpora were annotated.
This might have been balanced by including the other languages.

We do not report the results on the Japanese part of the KEEPHA dataset, since for Japanese,
a different pre- and post-processing would be necessary, in particular, the way we are currently
converting between BRAT and BIO needs to be modified. This is future work.

Considering that the models were fine-tuned on data from a different domain and applied
without any further fine-tuning on the KEEPHA data, the results are quite good. When look-
ing at the predictions, we again find some over-generalizations, particularly for German. For
instance, “Harndrang” (en: “desire to void one’s bladder”) (which could either be a disorder or
function, depending on the context) or “Speichelprobe” (en: “saliva sample”), which would
be a test, were both predicted as drug. More complicated constructions, like “Ö-Creme” (en:
“estrogen creme”), also get predicted correctly. Sometimes, route and drug entity types get
confused, those depend strongly on the context. However, for French, these confusions do not
seem to happen very often at first glance. Of course, the above results need to be investigated
further but they already demonstrate a successful transfer across both domains and languages.

6.3.2 Baseline Models for KEEPHA

For building a first baseline model for medical Named Entity Recognition on the KEEPHA
dataset, we again take XLM-RoBERTa (large) and run a hyper-parameter search for two exper-
iments: First, we aim to find the best model for fine-tuning on a training set of French and
German KEEPHA data, and then we would like to find the best model for the transfer between
German (for fine-tuning) and French (for evaluation). The determined hyper-parameters are
summarized in Appendix D.3.1. With this, we investigate the general usability of our new
dataset and further test the cross-lingual transfer of annotations across languages (German to
French). Furthermore, it will help us find inconsistent or missing annotations.

Using the determined hyper-parameters, the models are fine-tuned using five different
seeds for initialization. The resulting models’ predictions are, exactly as in Section 6.1 and
Section 6.2, combined via majority vote and converted back to BRAT format, to be evaluated
with the same evaluation script that was used for the preceding NER experiments.
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Results & Discussion

The performance of the described modes is presented in Table 6.7 and Table 6.8 for the models
fine-tuned on French and German and only German, respectively. The results separated by
languages and the strict scores are shown in Appendix D.3.2 and Appendix D.3.3.

train set: de + fr lenient

test set: de + fr precision recall F1

drug 0.88 0.77 0.82
disorder 0.80 0.80 0.80
function 0.56 0.53 0.55
doctor 0.87 0.96 0.91
other 0.29 0.22 0.25
change_trigger 0.78 0.54 0.64
anatomy 0.65 0.85 0.73
test 0.59 0.63 0.61
opinion 0.67 0.26 0.38
measure 0.97 0.71 0.82
time 0.88 0.85 0.87
route 0.62 0.50 0.55

micro average 0.80 0.73 0.76
macro average 0.71 0.63 0.66

Table 6.7: Lenient results of the NER
model fine-tuned on both French and
German and evaluated on both French

and German.

train set: de lenient

test set: de + fr precision recall F1

drug 0.87 0.85 0.86
disorder 0.80 0.84 0.82
function 0.67 0.35 0.46
doctor 0.90 0.96 0.93
other 0.31 0.28 0.29
change_trigger 0.75 0.35 0.47
anatomy 0.57 0.77 0.66
test 0.47 0.56 0.51
opinion 0.59 0.42 0.49
measure 0.91 0.71 0.79
time 0.86 0.83 0.85
route 0.67 0.25 0.36

micro average 0.79 0.74 0.77
macro average 0.70 0.60 0.63

Table 6.8: Lenient results of the NER
model fine-tuned only on German
and evaluated on both German and

French.

The micro and macro average scores are comparable for both fine-tuning configurations.
When fine-tuning on both German and French, the macro average F1 score is 3 points better
than when fine-tuning only on German, expressing a better result across entity types without
taking the number of occurrences per type into account. However, the results per entity type
differ when comparing both strategies. For example, the drug and disorder types get better
results when fine-tuned on both languages, while function is 9 points worse.

These differences need to be investigated further by analyzing the systems’ performance on
each language separately. The analysis is out of the scope of this thesis, but the above exper-
iments and their results serve as a starting point to further improve both the dataset and the
models. While decent, there is still much room for improvement in detecting medical entities
in user-generated texts.

6.4 Summary & Conclusion

In this chapter, different settings of medical entity extraction were explored. It started with the
n2c2 shared task data, CMED, which resulted in very high scores with respect to the detec-
tion of drug mentions. However, these experiments were conducted within the same dataset,
which is very uniform. Also, we could use different language- and domain-specific models to
approach the task.

To investigate how the same approach works for data in different languages and also differ-
ent datasets, we then presented experiments using a multi-lingual model fine-tuned on either
one language, clusters based on language families, or all languages together. Models trained
within language achieved the best results on the respective language’s test set but were closely
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followed by the cluster-based models. The multi-lingual model, in which we were mainly in-
terested, achieved mixed results, depending on the dataset and language. Since a multi-lingual,
robust model is of interest for further work, the results were analyzed in more detail. The er-
ror analysis showed that the model could highlight annotation inconsistencies and differences
in annotation guidelines, that is, in the definition of what a medication mention is. However,
it is not clear which of the many variables in the presented experiments are responsible for
the outcomes and further investigation is necessary, to be able to improve upon the current
performance. For this, a focus on one language family might help.

The same models described in the multi-lingual experiments were then used to perform
a zero-shot prediction on the newly created KEEPHA data, again only for predicting drug
mentions. We observed that for the German data, the in-language fine-tuning worked best,
while for the French part of the data, fine-tuning on all datasets, that is, all languages, achieved
the highest score.

Finally, in another round of experiments, we provided baseline models for medical entity
detection on the KEEPHA dataset. Once fine-tuned on German and French and once fine-tuned
on only German, to investigate the cross-lingual transfer capability of the multi-lingual model,
this time between datasets annotated based on the same guidelines. The results are, even with
a simple model like that, already promising, but further analysis is needed to see in which
way the models should be improved, to achieve good results not only on drug or disorder
detection, but also on entity types with fewer training examples.
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Chapter 7

Conclusion & Future Work

7.1 Summary & Conclusion

This thesis investigated the cross- and multi-lingual transfer of knowledge with respect to Ad-
verse Drug Reaction detection from user-generated texts. The heart of this work lies in creating
a new multi-lingual corpus with several levels of annotations based on guidelines developed
for at least three languages from different language families: German, French, and Japanese.
We focused on the German and French data and described guidelines, annotation process, and
the resulting dataset, which is annotated with binary labels, to distinguish between documents
containing ADRs or not, entities to catch all relevant medical mentions, attributes, to define
these mentions, and relations, to associate medical mentions with each other. The corpus is
unique in its combination of languages and in that it defines ADRs via relations across sen-
tences. In addition, the same guidelines were used for all data.

Since privacy is a significant concern when dealing with UGT, two approaches to gather-
ing data without hurting peoples’ privacy and their pitfalls are discussed. First, we present a
prototype study to collect online users’ descriptions of ADRs. This is done with the help of a
questionnaire in which the participants can actively consent to sharing their data and get infor-
mation about the research their data is used for. We find that users are not against sharing their
data, but that an engaging survey design is important to gather responses of interest.

Second, the results of generating and translating pseudo-tweets are analyzed, highlighting
potential problems this approach introduces. We further present ways in which these data are
helpful and in which ways they could be improved.

The thesis then presents experiments for classifying documents containing ADRs in Ger-
man. We introduce a two-step fine-tuning approach incorporating English data to counter-act
the high label imbalance inherent to documents in this domain. We show that different strate-
gies fail in the supposedly simple task of document classification and that the model with the
best overall performance might not be reliable enough to identify documents describing ADRs.
However, systems with lower overall scores but higher recall can still be applied to gather more
relevant documents from unlabeled resources, which in turn can improve the current models.

We then conduct experiments on drug and general medical entity detection, starting with
experiments on English data and our participation in the n2c2 2022 shared task. These are
then extended to investigate the cross-lingual and cross-dataset performance of multi-lingual
models, showing mixed results. We analyze the issues when performing entity detection across
these datasets.

Using the same models as before, we then show the first zero-shot results on the newly
created dataset. Finally, we provide a baseline for medical entity detection on the same dataset,
which already shows promising results.

In summary, the thesis presents a further step in the direction of supporting pharmacovig-
ilance across languages using methods from Natural Language Processing. Given the devel-
oped data and models, further data collection and cross-lingual transfer can be improved.
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7.2 Outlook

During the work of this thesis, many new questions and research directions evolved. First of
all, based on the insights from annotating user-generated text and the other discussed possibili-
ties of generating data with users’ consent or without private data, we would like to investigate
de-identification more thoroughly, especially focusing on colloquial texts. We found that these
texts, because of their inconsistent structure and creative language, are difficult to automatically
de-identify. However, de-identification is of utmost importance and should be reliably appli-
cable, and there should also be means to evaluate the completeness of the de-identification. We
find both aspects to be an interesting direction of research.

Further, with respect to the published KEEPHA dataset, we plan to update the corpus fre-
quently. First, we would like to apply the presented models for document and entity detection
to new, unlabeled data from unknown distributions, e.g., different social media platforms, to
find out how many relevant documents can be drawn from them. These can then be used to
extend the corpus for all levels of annotations. Using the current models, the annotation time
could be reduced significantly. It would moreover be interesting to apply this strategy to lan-
guages not yet included in the corpus to retrieve candidate documents, which could then be
filtered further and subsequently annotated.

Gathering more positive documents would first improve the classification performance of
the models and second, provide a more diverse overview of ADRs as described by laypeople.
On the other side, it is also interesting to further investigate how to approach the strong label
imbalance in the data. Here, methods like self-learning or adversarial training as described in
Section 3.1 could be tested. Extending the pre-training of a model on unlabeled user-generated
data could also be an option for improvement. From a reversed perspective, it would also be
interesting to see how models trained on the KEEPHA data would do on the related datasets
in Spanish, Japanese, Russian, and French.

Furthermore, as already mentioned, we would like to normalize the concepts in the KEEPHA
data to one of the standard multi-lingual ontologies, e.g., UMLS. This could be an essential step
to improve and facilitate communication and mutual comprehensibility between patients and
physicians and to compile ADRs related to the same drug and original patient diagnosis.

Another aspect that became visible during the work on the presented data is the entangle-
ment between mentions that describe disorders (i.e., medical signs or symptoms) and functions
of the body, which, when not working properly, also often result in disorders. This is frequently
the case for the descriptions of women in their menopause. We therefore would like to lay a
new focus on descriptions of health issues in this phase of life, to find out more about what
exactly the women are struggling with.

Related to that, we also encountered many user posts giving—at the very least—suspicious
medical advice. Identifying (and maybe marking) posts that might not refer to correct medical
facts is another avenue worth exploring.

Moreover, negation also plays a crucial role in detecting ADRs. We observed, for example,
that many mentions of the expression “side effect” were found in the negative documents,
meaning that these are either negated or happened in the past (and therefore also negated),
while the patient presently feels well. This induces questions about handling these syntactic
structures and, furthermore, how to model the timeline of diagnoses, medication intake, and
experiences of positive and negative reactions to the medication.

Finally, another point of interest that became visible during the work with the NTCIR data
is how people deal with health issues online across cultures and languages. Do they express
their issues the same way or are there any differences in what is said and not said, depending
on the language?
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Appendix A

Additional Background Information

A.1 Language Modeling & Transformers

Figure A.1: A transformer block as depicted by (Jurafsky and Martin, 2023, Chapter 10, p.
216)

Figure A.2: The pre-training and fine-tuning procedures for BERT. Fine-tuning is done for
MNLI, NER, and SQuAD. Between pre-training and fine-tuning, only the output layers

differ. Image borrowed from Devlin et al. (2019).

A.1.1 Data Sizes

The phrase “a large enough corpus” for (pre-) training has been mentioned several times. But
what does “large enough” mean in the context of LMs? The answer to that question depends
on the task the model is trained for and the type of the model itself. For example, for training a
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1000-dimensions version of the skip-gram model of word2vec, the authors used the Google
News dataset1 containing approximately 6 billion tokens, letting the model train for 2.5 days
on 125 CPU cores (Mikolov et al., 2013a). Note, however, that this is not an NN.

BERT, on the other hand, was pre-trained on the BookCorpus (Zhu et al., 2015) and an
English Wikipedia dump, containing 800 million and 2,500 million words, respectively. Pre-
training of the BERTbase model was done on 4 Cloud TPUs and took 4 days. Devlin et al. (2019)
experimented with different numbers of Transformer blocks and self-attention heads, as well
as with different hidden layer sizes. BERTbase contains 12 Transformer layers, 12 heads, and a
hidden layer size of 768, resulting in 110 million parameters for training. BERTlarge contains 24
Transformer layers, 16 heads, and a hidden layer size of 1,024 and therefore has a total of 340
million parameters. In general, for LMs and especially for (generative) LLMs, the more data are
used, the better the performance (Baevski et al., 2019). The same goes for fine-tuning: The more
(diverse) examples a model sees, the better it will be in most cases. According to Conneau et al.
(2020), “a few hundred MiB of text data” are necessary as a minimum to train a BERT model.

BERT, and especially BERT in its large version outperformed many previously published
models on the task, always using the same pre-trained model. Later, Devlin et al. (2019) also
published a multi-lingual version of BERT, mBERT, trained on Wikipedia dumps in 104 lan-
guages. mBERT contains 12 Transformer layers, 12 heads, a hidden layer size of 768, and has
110 million parameters, i.e., the same configuration as BERTbase. Unfortunately, the authors do
not provide the exact sizes of the Wikipedia dumps they used, but Wu and Dredze (2020) give
an approximation in terms of gigabytes.

A.2 Potential Harms resulting from Language Models

With all the amazing improvements resulting from the continued improvement of Language
Model one should not forget that these models can also cause harm. Pre-training on any text
collection will result in models adapted to that text collection, including all stereotypes, biases
and other misconceptions represented in these texts. ML models in general can replicate these
factors and even reinforce them when used without care (Jurafsky and Martin, 2023).

Therefore, it is of crucial to document the architectures and training procedures of models,
but also, maybe even more crucially, the datasets they are trained on. An example of how
this can be done was proposed by Mitchell et al. (2019) by using model cards, with which each
model is attached to a summary of its most important parameters. The cards should contain,
for example, the training algorithms, data sources, annotation and pre-processing processes,
evaluation methods, the intended use and users, and the environmental footprint. Similar
approaches, i.e., giving detailed information about the data and algorithms a ML model is
based on, were also proposed by Bender and Friedman (2018) and Gebru et al. (2021) for ML
in general, not only NLP.

1Which is nowhere to be found anymore, to the best of my knowledge.
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A.3 Data Sources in Biomedical NLP

EHRs

Social
Media

Chemical;
Biological

Product
Labels

Med.
Guidelines

Clinical
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Scientific
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Spontaneous
Reports

Figure A.3: The data sources that are currently used for research. The presented work fo-
cuses on data that can be summarized under “social media”. Image borrowed and adapted

from (Harpaz et al., 2014).

A.4 Other Resources for Biomedical NLP

There are several databases, ontologies, and concepts commonly used in different biomedical
language processing which will be mentioned in the remainder of this work. For completeness,
they are now briefly described.

Unified Medical Language System (UMLS) (Lindberg et al., 1993; Bodenreider, 2004) is a con-
trolled vocabulary used in biomedical sciences, containing various terminology systems2.
UMLS is a “Metathesaurus” mapping these different systems to each other, to provide
consistency and “translations” among terms. For example, UMLS incorporates SNOMED-
CT, ICD-10, and MeSH vocabularies. Often, these terms are provided in several lan-
guages as well. For many of the vocabularies, LLTs and Preferred Terms (PTs) are pro-
vided, i.e., layperson descriptions and terminology used by professionals.

SNOMED-CT was introduced as the Systematized Nomenclature of Pathology (SNOP) but
later extended to the general medical field, and Clinical Terms. It provides codes, terms,
synonyms, and definitions as used in clinical settings for reporting3. It also represents the
core terminology used in EHRs in various languages.

ICD-10 represents the International Statistical Classification of Diseases and Related Health
Problems in its 10th revision. It is focused on, amongst other things, codes for diseases,
signs and symptoms, and abnormal findings, and is managed by World Health Organi-
zation (WHO).

MeSH is used for indexing publications in the life sciences to facilitate searching. For exam-
ple, it is used by PubMed to add keywords to the listed publications. Again, MeSH is
organized in a hierarchy.

2https://www.nlm.nih.gov/research/umls/index.html
3https://www.nlm.nih.gov/healthit/snomedct/index.html

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
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MedDRA (Brown et al., 1999) is a thesaurus used by the pharmaceutical industry and regula-
tory agencies during the process of developing, releasing, and monitoring new medica-
tions. It also contains Adverse Drug Reactions (ADRs) terminology.

CHV is a complement to UMLS, and allows the translation of complex medical terms into
user-friendly language. CHV is only available in English.

SIDER (Side Effect Resource) (Kuhn et al., 2016) is a database of released medication and their
ADRs, extracted from reports and medication leaflets4 . It is only available in English.

4http://sideeffects.embl.de/

http://sideeffects.embl.de/
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A.5 General Experiment Details

For all experiments, we used the Huggingface library (Wolf et al., 2020). For “traditional” ma-
chine learning models, i.e., the SVM in Chapter 5, we used the sklearn library (Pedregosa et al.,
2011). Monitoring experiments was conducted with the help of Weights & Biases (Biewald,
2020) and all experiments were run on the DFKI GPU cluster. All code was written in Python
3.9.

model name mention url

XLM-RoBERTa (base) Chapter 5, Section 6.1, Section 6.2, Section 6.3.1 https://bit.ly/3t7A3Ga
BRB Chapter 5 https://bit.ly/3t5bVDP
BioBERT Section 6.1 https://bit.ly/3PT2yPF
PubMedBERT Section 6.1 https://bit.ly/3LFKHKG
XLM-RoBERTa (large) Section 6.3.2 https://bit.ly/3t2cVIU

Table A.1: The models used in the different experiments, with their Hugginface URL.

https://bit.ly/3t7A3Ga
https://bit.ly/3t5bVDP
https://bit.ly/3PT2yPF
https://bit.ly/3LFKHKG
https://bit.ly/3t2cVIU
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Appendix B

Additional Information about the
KEEPHA Corpus

B.1 Binary Annotation

B.1.1 German

Figure B.1: The annotation interface of PRODIGY for the binary classification task. The
annotators had to click the green button to mark the document as positive and the red

button to mark it as negative.
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B.1.2 French
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Figure B.4: The distribution of the number of sentences per document and label in the
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B.2 Annotators
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B.3 Inter-Annotator Scores

B.3.1 Entity Annotation

relaxed

entity type TP FP FN Precision Recall F1

anatomy 53 55 27 0.49 0.66 0.56
change_trigger 29 26 28 0.53 0.51 0.52
disorder 817 200 119 0.80 0.87 0.84
doctor 90 24 6 0.79 0.94 0.86
drug 553 43 39 0.93 0.93 0.93
function 125 119 57 0.51 0.69 0.59
measure 61 32 17 0.66 0.78 0.71
opinion 9 53 8 0.15 0.53 0.23
other 17 55 28 0.24 0.38 0.29
route 27 21 30 0.56 0.47 0.51
test 22 18 15 0.55 0.59 0.57
time 215 39 176 0.85 0.55 0.67

micro average 2018 685 550 0.75 0.79 0.77

Table B.2: The relaxed IAA for entity annotation in the German data.

strict

entity type TP FP FN Precision Recall F1

anatomy 45 63 34 0.42 0.57 0.48
change_trigger 21 34 36 0.38 0.37 0.38
disorder 633 384 302 0.62 0.68 0.65
doctor 89 25 7 0.78 0.93 0.85
drug 527 69 66 0.88 0.89 0.89
function 101 143 80 0.41 0.56 0.48
measure 50 43 29 0.54 0.63 0.58
opinion 4 58 13 0.06 0.24 0.10
other 17 55 28 0.24 0.38 0.29
route 25 23 32 0.52 0.44 0.48
test 19 21 18 0.48 0.51 0.49
time 167 87 227 0.66 0.42 0.52

micro average 1698 1005 872 0.63 0.66 0.64

Table B.3: The strict IAA for entity annotation in the German data.
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B.3.2 Relation Annotation

relaxed

relation type head tail TP FP FN Precision Recall F1

caused disorder disorder 9 57 22 0.14 0.29 0.19
caused disorder function 0 5 1 0.00 0.00 0.00
caused drug disorder 174 105 129 0.62 0.57 0.60
caused drug function 0 9 8 0.00 0.00 0.00
caused function disorder 24 15 59 0.62 0.29 0.39
caused function function 1 1 3 0.50 0.25 0.33
experienced_in disorder anatomy 17 28 32 0.38 0.35 0.36
has_dosage drug measure 2 2 67 0.50 0.03 0.05
has_result test disorder 0 2 11 0.00 0.00 0.00
has_result test function 1 1 8 0.50 0.11 0.18
has_route drug route 2 6 44 0.25 0.04 0.07
has_time disorder time 6 2 63 0.75 0.09 0.16
has_time drug time 7 6 66 0.54 0.10 0.16
interacted_with drug drug 0 2 1 0.00 0.00 0.00
is_opinion_about opinion disorder 0 4 0 0.00 0.00 0.00
is_opinion_about opinion drug 2 16 16 0.11 0.11 0.11
is_opinion_about opinion function 0 1 0 0.00 0.00 0.00
signals_change_of change_trigger drug 12 16 50 0.43 0.19 0.27
treatment_for drug disorder 49 48 91 0.51 0.35 0.41
treatment_for drug function 0 14 5 0.00 0.00 0.00

micro average 306 340 676 0.47 0.31 0.38

Table B.4: The relaxed IAA for relation annotation
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strict

relation type head argument tail argument TP FP FN Precision Recall F1
caused disorder disorder 5 61 22 0.08 0.19 0.11
caused disorder function 0 5 1 0.00 0.00 0.00
caused drug disorder 117 162 129 0.42 0.48 0.45
caused drug function 0 9 8 0.00 0.00 0.00
caused function disorder 12 27 59 0.31 0.17 0.22
caused function function 0 2 3 0.00 0.00 0.00
experienced_in disorder anatomy 11 34 32 0.24 0.26 0.25
has_dosage drug measure 1 3 67 0.25 0.01 0.03
has_result test disorder 0 2 11 0.00 0.00 0.00
has_result test function 1 1 8 0.50 0.11 0.18
has_route drug route 2 6 44 0.25 0.04 0.07
has_time disorder time 3 5 63 0.38 0.05 0.08
has_time drug time 6 7 66 0.46 0.08 0.14
interacted_with drug drug 0 2 1 0.00 0.00 0.00
is_opinion_about opinion disorder 0 4 0 0.00 0.00 0.00
is_opinion_about opinion drug 0 18 16 0.00 0.00 0.00
is_opinion_about opinion function 0 1 0 0.00 0.00 0.00
signals_change_of change_trigger drug 10 18 50 0.36 0.17 0.23
treatment_for drug disorder 38 59 91 0.39 0.29 0.34
treatment_for drug function 0 14 5 0.00 0.00 0.00

micro average 206 440 676 0.32 0.23 0.27

Table B.5: The strict IAA score for relation annotation.
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B.3.3 Attribute Annotation

strict

attribute type Precision Recall F1
Negation 0.61 0.39 0.47
Drug_Attribute 0.05 0.27 0.08
Opinion_Attribute 0.38 0.05 0.08
Time_Attribute 0.30 0.47 0.36
micro average 0.28 0.38 0.32

Table B.6: The strict IAA for attribute annotation in the German data.
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B.4 brat Example
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B.5 Dataset Statistics
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(b) French data

Figure B.6: The distribution of entity types across all documents. Note the difference in
scale when comparing the two languages.
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Figure B.7: The distribution of relation types. Note the difference in scale when comparing
the two languages.
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Figure B.8: The distribution of head and tail entities per relation type for the German data.
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Figure B.9: The distribution of head and tail entities per relation type for the French data.
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Figure B.10: The number of attribute values for each attribute type across all documents.
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B.6 ADRs in German Data

drug disorder

ad schlecht vertragen
ad Gewichtszunahme
ad Libidoverlust
ads Agressivitaet
ads Qual
ads eher beunruhigt
ads Schlafentzug
ads Gelenkschmerzen
ads Uebelkeit
agnucaston Zunehmen
alle bisherigen maßnahmen Symptome verschlechtert.
antibiotikum Hautauschlag
antibiotikum Zittern
antibiotikum Herzrasen
antibiotikum hohen Blutdruck
antidepressiva Fühle mich nicht mehr attraktiv und schön
antidepressiva finde mich einfach wie vom anderen Stern
antidepressiva Lust auf Sex ist einfach komplett weg
antidepressivum Unruhe
arava Magen-Darm Störungen
arava starke Schmerzen
arava blaue Flecken
arava Entzündung
arava Übelkeit
arimidex Schmerzen
arimidex Nebenwirkungen
arimidex sehr schlimme Nebenwirkungen
asthmasprays Nebenwirkungen
beta blocker Müdigkeit
beta-blocker starken Schwindel
beta-blocker Luftnot
beta-blockers Herzprobleme verschlimmerten sich
betablocker Blutdruck davon so in den Keller gegangen
betablocker Fatique Symptome
betablockern Nebenwirkungen
bioident. Müdigkeitsgefühl
bioident. Benommenheit
bioident. Dauerblutungen
bioident. tagesmüde
bioidente hormone enorme Magenprobleme
bioidente hormone mir geht es eher schlechter damit, auch psychisch.
bisoprolol Bradykard
blutdrucktabletten Blutdruck dadurch plötzlich zu nieder wurde
calciumblocker Schwindel
calciumblocker Herzrasen
calciumblocker Ruhepuls zwischen 120-160
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calciumblocker Atemnot
calciumblocker extrem geworden
cerazette Flecken im Gesicht
cerazette schmerzen
cerazette leichte Blutungen
cerazette Stimmungsschwankungen
cerazette 3kilo runter
cerazette esse
cerazette essen tu ich auch net viel
cerazette ziehen in der brust
cerazette leichte blutungen
cerazette vergössern sich
cerazette Hitzewallungen
chemo rote Wangen
chemo unglaubliche Energie
chemo leichten Ödemen
chemo Nebenwirkungen
chemos Nebenwirkungen
chlormadinon alles durcheinander brachte
chlormadinon Brustschmerzen
chlormadinon Zyklus nicht richtig erholt
cipralex fast alle Nebenwirkungen
ciprofloxacin Darmflora geschrottet
cit wahnsinnig gemacht
citalopram frieren
citalopram massive Nervosität
citalopram Panik
citalopram Angst
citalopram geschwizt wie verrückt
citalopram schreckliche Überdrehtheit
citalopram nächtliches schwitzen
citalopram vibrierte
citalopram heftigen Ängsten
cliogest vermehrten Haarwuchs
clopidogrel sehr schlimme Nebenwirkungen
concor cor Erektionsstörungen
concor cor erektile Dysfunktion
cortison Halsschmerzen
cortison Herzrasen
cortison sehr unwohl gefühlt
cortison massives Verlangen nach Milch
cortison Mir ging es nicht so gut
creme starkes Unwohlgefühl
creme migräneartige Kopfschmerzen
cremen erhöhte Unruhe
cyclo progynova nicht vertragen
doxepin Magenbeschwerden
doxepin Mundtrockenheit
doxepin Panikattacke
doxepin ganz schlimmes Brennen
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doxepin total nervos
doxepin agressiv
escitalopram Nebenwirkungen
escitalopram Blutdruckkrise
escitalopram deutlich schlechter (psychisch und körperlich)
estreva -gel Psyche uns solche Streiche spielt
estreva -gel alles wird nur noch schlimmer
estreva gel vermehrte, starke Kopfschmerzen
estreva gel Müdigkeit
estreviagel fühlt sich wirklich schrecklich an
estreviagel Gefühl, gleich einen Schlaganfall zu bekommen
famenita Verdauungsprobleme
famenita schwächer
famenita Puddingbeine
famenita tun weh
famenita Schmerzen
famenita trockenen Mund
famenita Marathongefühl
famentinakapsel Unruhe
famentinakapsel viel Luft
famentinakapsel geschlafen hab ich vorher fast besser
famentinakapsel vom Kopf her entwas komisch
femeston conti Blutungen
femeston conti depressiver
fluconazol Übelkeit
fluconazol Erbrechen
fluconazol nicht fähig zu arbeiten
fluconazol nicht fähig Auto zu fahren
fluconazol totkrank
fluconazol Ein Gefühl wie nach Vollnarkose
fluoxetin NW
fluoxetin manchmal nervös
gyno Müdigkeitsgefühl
gyno megamüde
gyno Benommenheit
gynokadin Atemnot
gynokadin niedrigen Blutdruck
gynokadin muss mir die gesamte Haut vom Körper kratzen
gynokadin gehen verstärkt die Haare aus
gynokadin Haut leidet
gynokadin unausstehlich
gynokadin aggressiv
gynokadin weinen
gynokadin Schwindel
gynokadin Dauerpinkelreiz
gynokadin Östrogendominanz
gynokadin nervlich dann so am Ende
gynokadin Hitzewallungen
gynokadin Wassereinlagerunge
gynokadingel Beschwerden
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gynokadingel fühlt sich wirklich schrecklich an
gynokadingel Gefühl, gleich einen Schlaganfall zu bekommen
het überhaupt nicht mehr damit klar kam
het Gleichgewicht unter den Hormonen fehlte
het nicht mehr vertragen
het Psychische Probleme
het ganz star- ke Muskelschmerzen
het heftigste Kopfschmerzen
het Östrogendominanz
hormon immer stärkeres Herzrasen
hormone schlimme Symptome
hormone Schwitzen
hormone Scheidentrockenheit
hormonen total aufgeblasen
hormonen Spannungsgefühl
hormonen dicke und schwere Beine
hormonpflaster estragest tts total nervös
hormonpflaster estragest tts benommen
hormonpflaster estragest tts gereizt
hormonpflaster estragest tts austrocknen
hormonpräparat Schlimmes
hormonspirale Myom
hormonspirale Schmierblutungen
ibu starkes Darmbluten
ibuprofen 600 rumpeln
immuntherapi allergie
isoflavon-kapseln noch mehr geschwitzt
johanneskraut übelste Magen Darm probleme
johanneskraut appetitosigkeit
johanniskraut Gefühl hatte, mein allgemeiner Zustand hängt nach
johanniskraut leicht überdreht
kalium-phosphoricum schlimmen Nervenkrise
kalium-phosphoricum hochtourig lief
kalium-phosphoricum hyperaktiv lustig
kalium-phosphoricum habe das Gefühl, es höhlt mich aus
kalium-phosphoricum total überreizt
kalium-phosphoricum fast luzide Träume
kalziumantagonisten Herzrasen
kapsel von zein pharms Kopfschmerzen
kapsel von zein pharms Durchfall
laif 900 Weinkrämpfe
laif 900 stand irgendwie neben mir
letroblock Hitzewellen
letroblock ganz fürchterliche Schmerzen
lyrica Müdigkeit
lyrica NW
lyrica Gewichtszunahme
lyrica Schwitzen
lyrica Schmerzen
magnesium Durchfall
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medikamente voll wirre
medikamente Nebenwirkung- en
medikamenten Angst
medis Bauchschmerzen
mirena verstärkte Blutungen
mirtazapin nahm zu sehr zu
mirtazapin wollte nur essen
mirtazapin dauer hungrig
mirtazepin wie benommen
mirtazepin steh immer noch ziemlich neben mir
mirtazepin als sei ich nicht wirklich ’da’ bzw. ich selbst
mpa gyn periode nicht gekommen
mtx Entzündung
mtx Blutdruck schnellt in die Höhe
mtx Bluthochdruck
mtx mein Zustand hat sich auch verschlechtert
mtx Haarausfall
mtx Übelkeit
mtx Nebenwirkungen sind aber geblieben
mtx heftige Kopfschmerzen
mtx Halsschmerzen
mtx gerötet
mtx Panickattacken
mtx Angstzustände
mtx Nebenwirkungen
mtx Kopfschmerzen
mtx massives Verlangen nach Milch
mönchspfeffer heftigere Beschwerden
narkose völlig verrückt gespielt
nat. progesteron Dellen
nat. progesteron bläht sich auf
nat. progesteron Gewicht zu zunehmen
np delliger
np Wasser angesammelt
oekolp ovula vermehrten Harndrang
opipramol Benommenheit
opipramol total neben der Spur
opipramol Einkaufen war der pure Horror
opipramol Benommenheitsgefühl
opipramol müde
opipramol brainfog
opipramol Gefühl verrückt zu werden
opipramol fühlte mich einfach nicht gut
opipramol Schlaf komisch
opipramol nicht mehr richtig wach gefühlt
opipramol auf den Magen geschlagen
opipramol sedierend
opipramol Herz reagierte komisch
opipramol mude
opipramol Stimmungsschwankungen
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opipramol Watte im Kopf
opipramol schnell aus der Bahn zu werfen
opipramol seltsame Zucken
opipramol null vertragen
opipramol Panikattacke
opipramol Auf und Ab
opri stand ich völlig neben mir
opri richtig benebelt
opri Wie durch Watte durch den Tag
opri Blutdruck bisschen runter
opri noch trauriger
opripramol innere Anspannung
opripramol macht müde
opripramol schwindelig
opripramol Müdigkeit
opripramol Stimmungseinbrüche
ovestin vermehrten Harndrang
p dauernd Blutungen
p-creme Mega- blutung
pantoprazol Blutdruck in die Höhe gegangen
pg trockene Scheide
pille nie vertragen
pille dachte ich, ich drehe ab
pille könnte ich nicht mehr schlafen
pille Hirnarterienverschluss
pille Problem
pille Schlafstörungen
pille Schwindel
pille psychischen Nebenwirkungen
plantina Nebenwirkungen
prog schlimme Albträume
prog schlimmen Träume
prog viel Schade angerichtet
prog chronische Müdigkeit
prog Schwitzen
prog Müdigkeit
prog klatschnass geschwitzt
progesteron Magen
progesteron Gefühl erbrechen zu müssen
progesteron regelrechte Übelkeit
progesteron Druckschmerz
progesteron Schwitzen
progesteron Gefühl von ’aufgebläht’ sein
progesteron massive Magenprobleme
progesteron alles wird nur noch schlimmer
progesteron noch mehr Panik
progesteron fing fürchterlich zu Spannen an
progesteron aufstoßen zu müssen aber nicht zu können
progesteron Psyche uns solche Streiche spielt
progesteron (starke) Blutung
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progesteron Übelkeit
progesteron extreme Brustschmerzen
progesteron starke Kopfschmerzen
progesteroncreme Schwindel
progesteroncreme ganz unregelmäßigen Zyklus
progesteroncreme Kopfschmerzen
progesteroncreme starken Schwindel, der immer schlimmer wurde
progesteroncreme Dauerkopfschmerzen
progesteroncreme Schmierblutungen
progesteroncreme Übelkeit
psorcutab beta sehr rissig
remifemin plus Erhöhung der Leberwerte
remifemin plus sehr schnell schlapp
remifemin plus ziemliche stimmungsschwankungen
reparil dauernd übel
sanol starken Blutungen
sanol Schmierblutungen
schmerztabletten hauen mir die Schuhe weg
sertralin ewig aufgepusht
sie Heißhungerattacken
sie Blutdruck absackte
sie konnte ich nicht schlafen
sie Nebenwirkungen
sie Ausschläge
sie absackte Blutzucker
spirale stärkere Blutungen
spirale Schmierblutungen
spirale Zwischenblutungen
tabletten Schmerzen
tabletten Blutungen
tamoxifen Hitzewellen
tamoxifen ca. 9 kg in zwei Jahren zugenommen
trigoa Pigmentstörung
utrogest niedrigen Blutdruck
utrogest müde
utrogest mischt es sich zu sehr in die Blutungen ein
utrogest busschen matschig
utrogest Östrogendominanz
utrogest Wassereinlagerunge
utrogest sehr schlecht gelaunt
utrogest wilde Träume
utrogest Schwindel
utrogest Halluzinationen
utrogest megamüde
utrogest bleierne müde gemacht
utrogest erwachte und fand gar keinen Schlaf mehr
utrogest Ausschläge
utrogest so- fortige Müdigkeit
utrogest Müdigkeitsgefühl
utrogest nicht vertragen
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utrogest schlafe ich schlechter
utrogest Atemnot
utrogest Blutdruckabfall
utrogest nicht mehr vertrug
utrogest Benommenheit
utrogest nicht schlafen konnte
valium hauen mir die Schuhe weg
venaflaxin Unwirklichkeitsgefühle
venaflaxin noch mehr Angst
venaflaxin Gleichgewichtsstörungen
venaflaxin Herzrasen
verdauungsenzyme so schlecht
ö Mega- blutung
östradiol extreme Brustschmerzen
östrogen Thrombosen
östrogen furchtbar nervös
östrogen geringfügige BlutdruckErhöhung
östrogen Brustspannen
östrogen gel Angst vor Nebenwirkungen
östrogen haltige cremes bekomme es sofort mit der Psyche
östrogen haltige cremes vaginal vertragen nicht
östrogene fühlte mich damit nicht sonderlich gut
östrogene schlafen konnte ich auch nicht vernünftig

Table B.7: The drug and disorder mentions connected by the caused relation in the German
data, that is, all collected ADRs. Duplicate disorders caused by the same medication were

filtered out. The table contains 368 ADRs.
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B.7 ADRs in French Data

drug disorder

ab eu raison de moi
ad TSH est montée en flèche
amiodarone pique comme avec de fines aiguilles
amiodarone je ressemble la plupart du temps à une écrevisse
analgésiques gastro-entérite
anastrozole une prise de poids 1,5 kg
anastrozole enceinte de 5 mois
anastrozole douleurs articulaires
anastrozole syndrome du tunnel capillaire
anastrozole maux de tête
anastrozole ma qualité de vie en souffre
antiallergiques somnolence
antibiotique diarrhée
antibiotiques problèmes de digestion
antiémétiques somnolence
arcoxia transpiration très forte
arimidex douleurs articulaires
ass brûlant
ass rouge
ass brûle
ass irritée
ass rouges
bisphosphonates effet négatif
bisphosphonates pas supporté
bisphosphonates ostéonécrose
bloqueur d’acide gastrique éruptions cutanées
bloqueur d’acide gastrique plus marcher
bloqueur d’acide gastrique intoxiquée
bloqueur d’acide gastrique pas supporté
bloqueur d’acide gastrique paralysie des muscles
bloqueur d’acide gastrique troubles de la vue
bloqueur d’acide gastrique brûlures
bloqueur d’acide gastrique démangeaisons
capsule saignements
celles-ci saignements permanents
chimio m’étouffe
chimio gonflé
chimios vagues de chaleu
chimios prise de poids
chimios douleurs articulaires
chlormadinone me sentir mal
chlormadinone augmentation de la taille
chlormadinone mes seins ont fait exploser tous les soutiens-gorge
chlormadinone devenue de plus en plus grosse
cimicifuga gonflements
cimicifuga taches rouges



156 Appendix B. Additional Information about the KEEPHA Corpus

cimicifuga démangeaisons
cimicifuga rougeurs
cimicifuga éruptions cutanées
ciprofloxacine terribles crises de panique
ciprofloxacine intoxiquée
ciprofloxacine problème
ciprofloxacine bourdonnements
citalopram effets secondaires
citalopram sensation de brûlure
clopidogrel même résultat Encore pire
comprimé perdu du poids très rapidement
comprimé diarrhée sévère
comprimé vomissais
comprimé effets secondaires importants
comprimés grosse diarrhée
comprimés ne supporte pas
corti crises de transpiration
crème je marche comme un somnifère
crème n’arrive plus à me lever
d’aromasin douleurs articulaires
diltiazem me sens pas très bien
diltiazem forte pression
diltiazem bourdonnements devenus beaucoup plus forts
doxépine petite sécheresse
doxépine pression
doxépine problème de vision de près
doxépine prends du poids
dystologes chuter ma tension
esomeprazol nausées
esomeprazol vomir
estradiol taux d’œstrogènes descendu en dessous de 30 pg/nl
estradiol violents vertiges
estradiol 6 pertes d’audition consécutives
estreva me sens pas bien
estreva fatigue de plomb
estreva maux de tête fulgurants
famenita complètement à côté de mes pompes
famenita nausées
famenita malaise total
famenita vertiges
faminita pertes de sang
faminita migraines ophtalmiques
faminita diarrhée
faminita sensation verse un seau d’eau chaude
faminita vertiges
faminita maux de tête
faminita t’abandonnaient toute molle
faminita nausées
faminita irrités
faminita mal de tête fou
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faminita même problème
faminita vomissements
fec sensibles
fec saignements
femoston conti maux de tête
femoston conti nausées
femoston conti mauvais sommeil
fluoxétine perdu immédiatement 3 kg
fumaderm poussée de chaleur
gel sensation rugueuse
gel salive s’accumulait
gyno pression artérielle
gyno maux de tête
gynocadin nausées
gynocadin complètement à côté de mes pompes
gynocadin vertiges
gynokadin mal de tête fou
gynokadin crampes d’estomac
gynokadin perte d’appétit
gynokadin ne supporte pas
gynokadin vertiges
gynokadin agitation intérieure s’aggrave
gynokadin migraines ophtalmiques
gynokadin me sentais déjà bizarre
gynokadin irrités
gynokadin pertes de sang
gynokadin pression cardiaque
gynokadin syndrome prémenstruel
gynokadin nausées
gynokadin picotements
gynokadin surdosage
gynokadin peur
gynokadin maux de tête
gynokadin t’abandonnaient toute molle
gynokadin sensation verse un seau d’eau chaude
gynokadin malaise total
gélule tellement fatiguée
hormones symptômes aggravés
insidon un peu à côté de la plaque
iscador i démangeaisons
iscador i démange
kalinor Rythme cardiaque
kliogest saignements abondants
kyleena long spotting
kyleena Cycle long
kyleena saignements
kyleena règles beaucoup changé
kyleena problème psychologique
l problèmes gastro-intestinaux
l symptômes s’aggravaient
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l nausées
laif pleurer
laif fortes angoisses
laif sentais déjà pas bien
laif pas dormi
laif 900 encore plus déprimée
lamisil valeurs du foie légèrement plus élevées
lamisil forte sensation de ballonnement
lanzetto diarrhée
lanzetto vomissements
lanzetto nausées
lenzetto oestrogène me sentais tellement mal
magnésium effet
metropolol Vertiges
metropolol difficultés à respirer
metropolol me sens mal
metropolol pas d’appétit
millepertuis très mauvaises expériences
millepertuis me font perdre la tête
millepertuis me tire encore plus vers le bas
millepertuis marchais comme un zombie
millepertuis problèmes de circulation
millepertuis laiff 900 éruptions cutanées
mirena saignements réguliers
mirena symptômes de la non-tolérance
mirena saignements
mirena muqueuses sèches
mirena pas supportée
mirena inflammations
mirena nausées
mirtazapine accumuler de l’eau capitonnées
mirtazapine grosse somnolence
mirtazapine troubles sont revenus
mirtazapine prendre un peu de poids
mirtazapine on devient blasé
molsidomin bourdonnements devenus beaucoup plus forts
molsidomin forte pression
molsidomin me sens pas très bien
monuril irritation
monuril vulvovaginite
mtx intolérance
mtx transpiration
mtx crises de transpiration
médicament crises de panique
médicament problèmes
médicament hyperventilation
médicament perdu le contrôle de ma respiration
médicaments épuisement
médicaments m’épuisent
médicaments mauvais état général
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métoprolol pris plus de 10kg
nébivolol perdu 5kg
nébivolol légères nausées
opipramol très secs
opipramol pleuré
opipramol fatiguait
opipramol palpitations
opipramol dans le brouillard
opipramol respiration rapide
opipramol dormi 11 heures de plus
opipramol passé la moitié de la nuit debout
opipramol trembler
opripramol beaucoup plus de bouffées de chaleur
pansement allergie
pansement réaction d’hypersensibilité
pansement cloques
pansement brûlure
pilule normale troubles de la vue
pilule normale hypertension
pilule normale saignements permanents
pilule normale effet dévastateur
predni effets secondaires
predni sens à nouveau
predni pris 7 kg
prog nausée
prog maux de ventre
progestérone troubles du sommeil
progestérone fait mal
progestérone nausées
progestérone ne supportes pas
progestérone forts maux de tête
progestérone douloureux
progestérone douleurs mammaires s’aggravent
progestérone taux beaucoup trop élevé
progestérone Douleurs
progestérone durs
progestérone fatigue
progestérone fatiguée
progestérone saignements
progestérone ne tolère pas
progestérone syndrome prémenstruel
progestérone tension désagréable
progestérone tellement mal
progestérone pique
progestérone bio-identique me sentais très mal
progestérone bio-identique pleurais
progésterone dépressive
progésterone fatiguée
progésterone syndrome prémenstruel
prométhazine extrêmement sèche
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prométhazine énorme somnolence
préparation problèmes typiques
regaine palpitations cardiaques
remifimin plus saigner à nouveau
rimkus fatigue
rimkus vertiges
sepia c200 Douleurs musculaires
sepia c200 maux de tête
sepia c200 fortes douleurs abdominales
sepia c200 fortes nausées
sepia c200 douleurs
sepia c200 qui tombe
sepia c200 vertiges
sepia c200 forte transpiration avec frissons
sepia c200 forte anxiété
sulfasalazine augmentation extrême de mes valeurs hépatiques
sulfasalazine faire des rots
sulfasalazine fatigue extrême
suppositoires gonflés
suppositoires plus d’énergie
suppositoires gros myome
suppositoires pris beaucoup de poids 20 kilos de trop
suppositoires beaucoup d’appetit
tamoxifène l’impression de rouiller
terbinafine effets secondaires
thyrex me sens parfois plus mal qu’avant
thyrex pincements
thyrex symptômes d’hyperfonctionnement
thyroxine me sentais tellement mal
thyroxine Pouls rapide
thyroxine tension artérielle élevée
thyroxine agitation
thyroxine augmenté l’agitation
traitement hormonal substitutif règles extrêmes
traitement hormonal substitutif me sens pas vraiment bien non plus
trevelor pas supporté
trevelor encore plus fébrile
trevelor pouls plus en plus élevé
trevilor bouffées de chaleur
trimpramine énorme somnolence
trimpramine extrêmement sèche
tromcardin complex diarrhée
utrogest Etourdissements
utrogest me sens pas bien
utrogest douleurs abdominales
utrogest ne supporte pas
utrogest pertes de sang constantes
utrogest douleurs musculaires extrêmes
utrogest nausées
utrogest très nerveuse
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utrogest contractent
utrogest dormi que deux heures
utrogest nausées massives
utrogest me sens toute gonflée
utrogest fatigue
utrogest diarrhée terrible
valériane très mauvaises expériences
valériane problèmes de circulation
valériane me font perdre la tête
valériane me réveille
vaseline pustules et les brûlures sont plus présentes
vaseline supporte pas
œstrogène douloureux
œstrogène tellement mal
œstrogène pique
œstrogène durs
œstrogène fait mal

Table B.8: The drug and disorder mentions connected by the caused relation in the French
data, that is, all collected ADRs. Duplicate disorders caused by the same medication were

filtered out. The table contains 313 ADRs.
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B.8 User Study – Results

Figure B.11: The distribution of responses per platform. “original” refers to the original
URL directly going to LimeSurvey.

Figure B.12: The birth year distribution as provided by the participants.
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B.9 NTCIR Data Validation Measures

measure en de fr total

length ratio 172 284 279 735
semantic similarity 292 313 306 911
token alignment 110 88 311 509
back-translation + token alignment 178 180 168 526
across metrics 38 64 55 157

Table B.9: The resulting numbers of found outliers per metric and language used, as well
as the overall number per metric. The bottom row shows the number of samples flagged

by at least three of the four measures. en: English, de: German, fr: French.
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Appendix C

Additional Document Classification
Results

C.1 Source Language Model Results

negative positive macro average

model seed P R F1 P R F1 P R F1 AUC

XLM-R1 78 66.67 71.26 68.89 92.42 90.77 91.59 79.55 81.02 80.24 81.02
XLM-R2 99 68.57 55.17 61.15 88.95 93.45 91.15 78.76 74.31 76.15 74.31
XLM-R3 227 62.77 67.82 65.19 91.49 89.58 90.53 77.13 78.70 77.86 78.70
XLM-R4 409 66.25 60.92 63.47 90.09 91.96 91.02 78.17 76.44 77.24 76.44
XLM-R5 422 70.77 52.87 60.53 88.55 94.35 91.35 79.66 73.61 75.94 73.61
XLM-R6 482 64.89 70.11 67.40 92.10 90.18 91.13 78.50 80.15 79.27 80.15
XLM-R7 485 59.48 79.31 67.98 94.14 86.01 89.89 76.81 82.66 78.94 82.66
XLM-R8 841 61.22 68.97 64.86 91.69 88.69 90.17 76.46 78.83 77.52 78.83
XLM-R9 857 67.90 63.22 65.48 90.64 92.26 91.45 79.27 77.74 78.46 77.74
XLM-R10 910 71.43 63.22 67.07 90.75 93.45 92.08 81.09 78.34 79.58 78.34

mean 66.00 65.29 65.20 91.08 91.07 91.03 78.54 78.18 78.12 78.18
std 3.94 7.89 2.81 1.67 2.55 0.67 1.45 2.82 1.44 2.82

Table C.1: Source language data (English): results for XLM-RoBERTa in precision (P), recall
(R) and F1 score per class (negative and positive) and macro-averaged. The models have the
same configuration and are trained and tested on the exact same data, but have a different
seed for initialization. Support for the negative class: 87, support for the positive class: 336
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negative positive macro average

model seed P R F1 P R F1 P R F1 AUC

BRB1 78 75.41 52.87 62.16 88.67 95.54 91.98 82.04 74.20 77.07 74.20
BRB2 99 68.82 73.56 71.11 93.03 91.37 92.19 80.92 82.47 81.65 82.47
BRB3 227 66.67 73.56 69.95 92.97 90.48 91.70 79.82 82.02 80.82 82.02
BRB4 409 60.16 85.06 70.48 95.67 85.42 90.25 77.91 85.24 80.36 85.24
BRB5 422 64.36 74.71 69.15 93.17 89.29 91.19 78.76 82.00 80.17 82.00
BRB6 482 73.26 72.41 72.83 92.88 93.15 93.02 83.07 82.78 82.92 82.78
BRB7 485 62.50 63.22 62.86 90.45 90.18 90.31 76.47 76.70 76.59 76.70
BRB8 841 61.22 68.97 64.86 91.69 88.69 90.17 76.46 78.83 77.52 78.83
BRB9 857 63.54 70.11 66.67 92.05 89.58 90.80 77.80 79.85 78.73 79.85
BRB10 910 78.33 54.02 63.95 88.98 96.13 92.42 83.66 75.08 78.18 75.08

mean 67.43 68.85 67.40 91.96 90.98 91.40 79.69 79.92 79.40 79.92
std dev 6.32 9.79 3.79 2.11 3.23 1.01 2.64 3.64 2.10 3.64

Table C.2: Source language data (English): results for BioRedditBERT in precision (P),
recall (R) and F1 score per class (negative and positive) and macro-averaged. The models
have the same configuration and are trained and tested on the exact same data, but have a
different seed for initialization. Support for the negative class: 87, support for the positive

class: 336

model data learning rate batch size freeze train sampler

XLM-R English 0.00001056 7 1 random
BRB English 0.00001584 8 1 random
XLM-R German (full) 0.00001056 7 0 weighted

Table C.3: Specifications of the best models. The first and second lines correspond to the
basis for the few-shot experiments where we trained 10 versions, the bottom one is XLM-
RoBERTa again fine-tuned on the full German dataset. For the first two, a random sampler
and freezing all layers except the classifier worked best, while not freezing any layers and

using a weighted training sampler achieved the best performance for the third model.
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C.2 Results on Negative Class
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negative class macro average
model method target data P R F1 P R F1 AUC

SVM full all 98.73 86.92 92.5 54.49 72.03 54.92 72.03

SVM per_class 10 99.34
± 1.01

35.52
± 20.03

49.48
± 23.39

51.36
± 0.7

60.62
± 7.64

27.99
± 11.88

60.62
± 7.64

SVM per_class 40 99.90
± 0.22

22.24
± 4.73

36.17
± 6.67

51.57
± 0.14

60.64
± 2.23

21.22
± 3.48

60.64
± 2.23

SVM add_neg 10
+ 200 neg

98.27
± 0.17

87.25
± 3.33

92.4
± 1.77

53.11
± 0.56

64.1
± 2.64

52.78
± 1.38

64.1
± 2.64

SVM add_neg 40
+ 400 neg

98.98
± 0.33

71.63
± 2.82

83.08
± 1.8

52.57
± 0.3

71.53
± 3.68

47.21
± 0.68

71.53
± 3.68

BRB zero-shot - 97.55 99.00 98.27 54.33 51.88 52.47 51.88

XLM-R zero-shot - 99.77 54.42 70.42 52.48 74.83 40.13 74.83

XLM-R full all 98.16
± 0.19

99.43
± 0.23

98.79
± 0.07

77.9
± 3.55

64.00
± 3.68

68.15
± 3.33

64.00
± 3.68

XLM-R per_class 10 99.15
± 0.91

66.45
± 9.91

79.21
± 6.27

52.2
± 1.08

70.84
± 10.88

44.48
± 1.9

70.84
± 10.88

XLM-R per_class 40 99.71
± 0.13

61.34
± 5.95

75.82
± 4.69

52.87
± 0.48

77.34
± 3.65

43.58
± 3.11

77.34
± 3.65

XLM-R add_neg 40
+ 100 neg

98.22
± 0.73

94.5
± 8.62

96.12
± 4.46

62.29
± 7.67

63.44
± 11.33

57.97
± 6.94

63.44
± 11.33

XLM-R add_source
10
+ 100 neg
+ 200 source

99.39
± 0.27

75.99
± 4.5

86.07
± 2.84

53.84
± 0.36

78.95
± 2.67

50.55
± 1.99

78.95
± 2.67

XLM-R add_source
40
+ 300 neg
+ 300 source

98.72
± 0.43

90.91
± 4.82

94.59
± 2.4

57.28
± 3.1

72.6
± 6.7

58.57
± 2.8

72.6
± 6.7

BRB per_class 10 98.03
± 0.12

75.54
± 5.29

85.25
± 3.35

51.21
± 0.39

58.72
± 1.98

46.58
± 2.14

58.72
± 1.98

BRB per_class 40 99.14
± 0.23

56.59
± 8.68

71.72
± 7.39

51.94
± 0.35

68.77
± 3.35

40.33
± 4.2

68.77
± 3.35

BRB add_neg 40
+ 100 neg

97.67
± 0.2

99.00
± 1.01

98.33
± 0.4

59.79
± 10.38

54.26
± 3.86

54.66
± 4.12

54.26
± 3.86

BRB add_source
40
+ 100 neg
+ 200 source

97.94
± 0.11

98.23
± 0.48

98.08
± 0.23

61.07
± 2.83

59.59
± 2.06

60.16
± 2.08

59.59
± 2.06

Table C.4: Target language (German): results of the best runs for every scenario and for
the negative class. We excluded those with an F1 of 0.0 for the positive class. BRB =
BioRedditBERT, XLM-R = XLM-RoBERTa. P is precision, R is recall and F1 is F1 score.



C.3. Experimental Setup 169

C.3 Experimental Setup
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Appendix D

Additional Information on
Cross-Lingual NER

D.1 Cross-lingual Drug Detection

D.1.1 Original Labels in the Datasets

language dataset label

de

BRONCO150 MEDICATION
GERNERMED Drug
GGPONC 2.0 Substance
Ex4CDS 2.0 Medication

en CMED Dispostion/NoDisposition/Undetermined/Drug

fr
Quaero CHEM
DEFT substance

es
PharmaCoNER NORMALIZABLES/NO_NORMALIZABLES
CT-EBM-SP CHEM

Table D.1: The original labels per dataset.
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D.1.2 Dataset Statistics

Medication entities
Language Dataset # entities # train # dev # test # total

de

BRONCO150 8,760 959 338 333 1,630
GERNERMED 4,722 572 423 455 1,450
GGPONC 2.0 219,711 16,473 3,832 3,366 23,671
Ex4CDS 2.0 2,284 62 19 17 98

26,849

en CMED 8,993 6,196 1,033 1,764 8,993

8,993

fr
Quaero 16,233 1,075 1,238 1,227 3,540
DEFT 16,331 918 297 131 1,346

4,886

es
PharmaCoNER 7,624 2,328 1,137 983 4,448
CT-EBM-SP 46,699 5,577 1,840 1,807 9,224

13,673

Total 331,357 34,160 10,157 10,083 54,400

Table D.2: The columns show the language, dataset name, number of annotated entity
mentions overall, and the number of medication mentions in training, development, and

test sets.

D.1.3 Model Fine-tuning Parameters

All models were trained using batches of size 8, 5,000 warm-up steps, and a weight decay of
0.002. The seeds used for the different runs were 42, 712, 9721, 26747, and 424881. Hyper-
parameters were determined using the Weights & Biases1 framework. Each chunk of data con-
tained a maximum of 26 sentences. The sentence split was done using the original BRAT scripts
as described in the pre-processing section. The used learning rates for each model (ensemble)
is shown below in Table D.3

model learning rate

de 9.98e-6
en 9.98e-5
fr 9.98e-5
es 9.98e-5
de, en 9.98e-6
fr, es 9.98e-6
all 9.98e-6

Table D.3: The learning rates of the different models

1https://wandb.ai/

https://wandb.ai/
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D.1.4 Complete Results for Cross-lingual Drug Detection

strict lenient

train test precision recall F1 precision recall F1

de

all 58.9 65.3 61.9 73.3 81.3 77.1
de 65.6 67.0 66.3 85.6 87.4 86.5
en 61.6 78.0 68.8 68.7 87.0 76.8
fr 47.9 48.1 48.0 57.3 57.5 57.4
es 52.9 63.0 57.5 67.3 80.1 73.1

en

all 61.7 52.5 56.7 74.0 63.0 68.1
de 44.9 41.5 43.1 64.6 59.8 62.1
en 93.4 90.6 92.0 96.3 93.4 94.9
fr 52.9 35.9 42.8 61.0 41.4 49.3
es 70.4 52.9 60.4 78.5 59.0 67.4

fr

all 59.8 51.2 55.2 75.2 64.4 69.4
de 49.0 41.2 44.7 75.6 63.5 69.1
en 68.8 62.0 65.2 75.2 67.8 71.3
fr 58.9 54.7 56.7 67.1 62.2 64.5
es 70.7 57.6 63.5 79.1 64.5 71.1

es

all 65.7 60.2 62.8 79.2 72.5 75.7
de 50.8 46.1 48.3 75.7 68.8 72.1
en 74.0 62.9 68.0 80.4 68.4 73.9
fr 54.4 47.6 50.8 63.2 55.4 59.1
es 86.5 85.3 85.9 90.1 88.9 89.5

Table D.4: Results of models trained on the single languages. The evaluation scores are
reported as micro scores over all test set samples and separated by language. Best scores
are marked in bold font. The best score when training on one language and evaluating on

all languages is underlined.
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strict lenient

train test precision recall F1 precision recall F1

all

all 73.1 75.0 74.0 83.8 86.0 84.8
de 64.2 66.2 65.2 84.2 86.9 85.5
en 87.7 92.2 89.9 90.7 95.4 93.0
fr 58.9 52.7 55.6 66.7 59.6 63.0
es 82.4 87.9 85.1 85.7 91.4 88.4

Table D.5: Results of the multi-lingual model trained and evaluated on all languages.

lenient

train language test precision recall F1

all

de

BRONCO150 84.5 88.8 86.6
GERNERMED 94.4 88.6 91.4
GGPONC 2.0 83.0 86.8 84.8
Ex4CDS 2.0 71.4 29.4 41.7

en CMED 90.7 95.4 93.0

fr
DEFT 18.6 56.8 28.1
Quaero 88.9 59.9 71.6

es
CT-EBM-SP 92.1 92.9 92.5
PharmaCoNER 75.5 88.5 81.5

Table D.6: Results separated by dataset. The model was trained on all languages (all).

strict lenient

train language test precision recall F1 precision recall F1

all

de

BRONCO150 79.3 83.4 81.3 84.5 88.8 86.6
GERNERMED 85.9 80.6 83.2 94.4 88.6 91.4
GGPONC 2.0 60.2 63.0 61.6 83.0 86.8 84.8
Ex4CDS 2.0 42.9 17.7 25.0 71.4 29.4 41.7

en CMED 87.7 92.2 89.9 90.7 95.4 93.0

fr
DEFT 16.3 49.6 24.5 18.6 56.8 28.1
QUAERO 78.6 53.0 63.3 88.9 59.9 71.6

es
CT-EBM-SP 88.3 89.0 88.7 92.1 92.9 92.5
PharmaCoNER 73.1 85.8 78.9 75.5 88.5 81.5

Table D.7: Result of the multi-lingual model separated by dataset, showing both strict and
lenient scores.
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strict lenient

train test precision recall F1 precision recall F1

de, en all 68.5 66.3 67.4 81.7 79.1 80.4
fr, es all 61.5 63.9 62.7 74.3 77.3 75.8

de, en de 66.3 66.6 66.5 86.3 86.6 86.4
de, en en 89.5 91.6 90.5 92.6 94.8 93.7
de, en fr 51.8 44.9 48.1 60.3 52.2 56.0
de, en es 65.0 60.4 62.6 76.6 71.2 73.8

fr, es de 49.8 48.8 49.3 74.2 72.8 73.5
fr, es en 60.3 69.7 64.7 66.7 77.1 71.5
fr, es fr 57.8 55.3 56.5 65.3 62.6 63.9
fr, es es 79.4 87.0 83.0 83.3 91.3 87.1

Table D.8: Results using language clusters for fine-tuning, showing both strict and lenient
results.
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D.1.5 Error Groups

group de en fr es

proteins Cyclin E Creatine Kinase PHOSPHOMONOESTÉRASE proteína C
chemical compounds Dinitrotoluol phosphate D-glycosylamines fósforo
abbreviations HLA ASA STH PTH
generic drug names Medikation pain medication narcóticos
medical terms/tools Gewebsflüssigkeit Tegaderm solution concentrado
dietary supplements Vitamin C B12 calcio

Table D.9: The most noticeable error groups in the false positives with examples from each
language.

group de en fr es

therapies Sorafenibtherapie lipid-lowering therapy traitement antidotique
generic drug names Herzentlastungsmedikamente BP meds ANTICOAGULANTS antitrombótica
brand names Sab Simplex IONSYS McGhan
medication + route Irinotecan (60 mg/m²) Comprimé
ambiguous/short mentions B6 Mg CE P

Table D.10: The most noticeable error groups with examples from each language for in the
analysis of false negatives.
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D.2 Strict results on the KEEPHA corpus for entity type drug

only drug strict

train test precision recall F1

de KEEPHA-de 0.78 0.66 0.72
de, en KEEPHA-de 0.79 0.63 0.70
all KEEPHA-de 0.78 0.64 0.70

fr KEEPHA-fr 0.69 0.59 0.63
fr, es KEEPHA-fr 0.71 0.56 0.63
all KEEPHA-fr 0.72 0.61 0.66

all KEEPHA-ja 0.43 0.02 0.04

Table D.11: The zero-shot results (strict) on the newly created KEEPHA corpus, but only
with respect to the drug mention. The first columns describes the language of the data
the model was previously trained on, all refers to German (de), English (en), French (fr)
and Spanish (es). The test column describes the part of the KEEPHA data the models
were tested on. Note that the low scores for Japanese are mostly due to tokenization mis-

matches.
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D.3 Medical Named Entity Recognition on the KEEPHA data

D.3.1 Model Fine-tuning Parameters

For NER on the KEEPHA data, we used XLM-RoBERTa (large). All models were trained us-
ing batches of size 16, 5,000 warm-up steps, and a weight decay of 0.002 on one NVIDIA RTX
A6000. The seeds used for the different runs were 42, 712, 9721, 26747, and 424881. Hyper-
parameters were determined using the Weights & Biases2 framework. The sentence split was
done using the original BRAT scripts as described in the pre-processing section. The used learn-
ing rates for each model (ensemble) is shown below in Table D.3

model learning rate #sentences

de + fr 9.98e-5 5
de 9.98e-4 3

Table D.12: The learning rates and number of sentences per chunk for the two experiment
settings.

D.3.2 Result of the multi-lingually fine-tuned model

train set: de + fr lenient

test set: fr precision recall F1

drug 0.88 0.69 0.77
disorder 0.85 0.90 0.88
function 1.00 0.75 0.86
doctor 0.78 1.00 0.88
other 0.00 0.00 0.00
change_trigger 0.88 0.54 0.67
anatomy 0.88 1.00 0.93
test 0.33 1.00 0.50
opinion 0.75 0.25 0.38
measure 1.00 0.67 0.80
time 0.91 0.84 0.88
route 0.63 0.71 0.67

micro average 0.86 0.77 0.81
macro average 0.74 0.70 0.68

Table D.13: The lenient results of the NER model trained on both French and German. The
table shows the results on only the French part of the test set.

2https://wandb.ai/

https://wandb.ai/
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train set: de + fr lenient

test set: de precision recall F1

drug 0.88 0.83 0.85
disorder 0.77 0.75 0.76
function 0.46 0.46 0.46
doctor 0.90 0.95 0.93
other 0.31 0.24 0.27
change_trigger 0.70 0.54 0.61
anatomy 0.44 0.67 0.53
test 0.64 0.60 0.62
opinion 0.64 0.27 0.38
measure 0.93 0.76 0.84
time 0.86 0.86 0.86
route 0.60 0.33 0.43

micro average 0.76 0.70 0.73
macro average 0.68 0.60 0.63

Table D.14: The lenient results of the NER model trained on both French and German. The
table shows the results on only the German part of the test set.

train set: de + fr strict

test set: de + fr precision recall F1

drug 0.85 0.74 0.79
disorder 0.57 0.58 0.57
function 0.50 0.47 0.48
doctor 0.87 0.96 0.91
other 0.21 0.17 0.19
change_trigger 0.72 0.50 0.59
anatomy 0.59 0.77 0.67
test 0.41 0.44 0.42
opinion 0.20 0.08 0.11
measure 0.73 0.54 0.62
time 0.72 0.69 0.70
route 0.46 0.38 0.41

micro average 0.65 0.60 0.62
macro average 0.57 0.53 0.54

Table D.15: The strict results of the NER model trained on both French and German and
tested on both French and German. The table shows the resulting scores independent of

language.
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train set: de + fr strict

test set: fr precision recall F1

drug 0.83 0.66 0.73
disorder 0.66 0.70 0.68
function 1.00 0.75 0.86
doctor 0.78 1.00 0.88
other 0.00 0.00 0.00
change_trigger 0.75 0.46 0.57
anatomy 0.81 0.93 0.87
test 0.33 1.00 0.50
opinion 0.00 0.00 0.00
measure 0.88 0.58 0.70
time 0.78 0.72 0.75
route 0.63 0.71 0.67

micro average 0.74 0.66 0.70
macro average 0.62 0.63 0.60

Table D.16: The strict results of the NER model trained on both French and German and
tested on French. The table shows the results of only the French part of the test set.

train set: de + fr strict

test set: de precision recall F1

drug 0.86 0.82 0.84
disorder 0.52 0.50 0.51
function 0.38 0.38 0.38
doctor 0.90 0.95 0.93
other 0.23 0.18 0.20
change_trigger 0.70 0.54 0.61
anatomy 0.39 0.58 0.47
test 0.43 0.40 0.41
opinion 0.27 0.12 0.16
measure 0.57 0.47 0.52
time 0.67 0.67 0.67
route 0.20 0.11 0.14

micro average 0.60 0.56 0.58
macro average 0.51 0.48 0.49

Table D.17: The strict results of the NER model trained on both French and German and
tested on German. The table shows the results of only the German part of the test set.



D.3. Medical Named Entity Recognition on the KEEPHA data 181

D.3.3 Result of the mono-lingually fine-tuned model

train set: de strict

test set: de + fr precision recall F1

drug 0.82 0.80 0.81
disorder 0.61 0.64 0.63
function 0.67 0.35 0.46
doctor 0.90 0.96 0.93
other 0.25 0.22 0.24
change_trigger 0.75 0.35 0.47
anatomy 0.49 0.65 0.56
test 0.32 0.38 0.34
opinion 0.30 0.21 0.25
measure 0.53 0.41 0.47
time 0.67 0.64 0.66
route 0.17 0.06 0.09

micro average 0.64 0.60 0.62
macro average 0.54 0.47 0.49

Table D.18: Strict results of the NER model fine-tuned only on German and averaged over
both languages.
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train set: de strict

test set: fr precision recall F1

drug 0.74 0.75 0.75
disorder 0.63 0.64 0.63
function 0.67 0.50 0.57
doctor 0.88 1.00 0.93
other 0.00 0.00 0.00
change_trigger 0.80 0.31 0.44
anatomy 0.67 0.71 0.69
test 0.00 0.00 0.00
opinion 0.17 0.17 0.17
measure 0.65 0.46 0.54
time 0.70 0.62 0.66
route 0.00 0.00 0.00

micro average 0.64 0.60 0.62
macro average 0.49 0.43 0.45

Table D.19: Strict results of the NER model fine-tuned only on German and tested on only
the French part of the corpus.

train set: de strict

test set: de precision recall F1

drug 0.89 0.84 0.86
disorder 0.60 0.64 0.62
function 0.67 0.31 0.42
doctor 0.90 0.95 0.93
other 0.27 0.24 0.25
change_trigger 0.71 0.38 0.50
anatomy 0.35 0.58 0.44
test 0.40 0.40 0.40
opinion 0.40 0.23 0.29
measure 0.40 0.35 0.38
time 0.64 0.67 0.66
route 0.33 0.11 0.17

micro average 0.63 0.60 0.62
macro average 0.55 0.48 0.49

Table D.20: Strict results of the NER model fine-tuned only on German and tested on only
the German part of the corpus.
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train set: de lenient

test set: fr precision recall F1

drug 0.84 0.85 0.85
disorder 0.86 0.89 0.87
function 0.67 0.50 0.57
doctor 0.88 1.00 0.93
other 0.00 0.00 0.00
change_trigger 0.80 0.31 0.44
anatomy 0.80 0.86 0.83
test 0.25 1.00 0.40
opinion 0.50 0.50 0.50
measure 0.94 0.67 0.78
time 0.91 0.80 0.85
route 0.33 0.14 0.20

micro average 0.83 0.77 0.80
macro average 0.65 0.63 0.60

Table D.21: Lenient results of the NER model fine-tuned only on German and tested on
only the French part of the corpus.

train set: de lenient

test set: de precision recall F1

drug 0.90 0.86 0.88
disorder 0.77 0.82 0.80
function 0.67 0.31 0.42
doctor 0.90 0.95 0.93
other 0.33 0.29 0.31
change_trigger 0.71 0.38 0.50
anatomy 0.40 0.67 0.50
test 0.53 0.53 0.53
opinion 0.67 0.38 0.49
measure 0.87 0.76 0.81
time 0.83 0.86 0.84
route 1.00 0.33 0.50

micro average 0.77 0.73 0.75
macro average 0.72 0.60 0.63

Table D.22: Lenient results of the NER model fine-tuned only on German and tested on
only the German part of the corpus.
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Résumé

Le travail décrit dans cette thèse porte sur la détection et l’extraction d’effets indésirables de
médicaments dans des textes biomédicaux rédigés par le grand public, c’est-à-dire par des
personnes qui ne sont pas des professionnels de santé, à travers les barrières linguistiques et
multilingues.

Les effets indésirables de médicaments sont des réactions nuisibles ou désagréables résul-
tant de l’utilisation d’un produit médical et peuvent parfois être mortelles. Des erreurs de
dosage, l’automédication, des diagnostics incorrects, des allergies ou d’autres conditions non
détectées du patient, des abus, ainsi que des interactions avec d’autres médicaments ou sub-
stances peuvent provoquer ces réactions. De fait, les effets indésirables de médicaments con-
stituent un problème de santé majeur dans le monde entier principalement en raison du grand
nombre d’effets indésirables qui passent inaperçus.

En premier lieu, cela est dû aux essais cliniques, qui ne sont généralement pas menés sur des
groupes vulnérables spécifiques (comme les personnes âgées ou enceintes). Deuxièmement, il
est tout simplement impossible de représenter toute une population. Bien qu’il existe divers
mécanismes de signalement et de post-surveillance, ces derniers sont souvent méconnus des
patients et des professionnels de santé, le signalement est chronophage et il manque de détails.
De plus, même s’ils sont signalés, les rapports ne reflètent généralement que la perspective
du médecin, et rarement celle du patient. Enfin, la langue joue également un rôle important
dans les soins de santé au quotidien. Les personnes qui ne parlent pas parfaitement la ou
les langues officielles d’un pays sont souvent désavantagées lorsqu’elles communiquent avec
leur médecin. Cela réduit encore davantage les chances de signaler des effets indésirables de
médicaments.

De ce fait, les médias sociaux constituent une ressource précieuse pour rassembler des con-
naissances concernant les effets secondaires indésirables. De nos jours, de nombreuses person-
nes ont accès à Internet et utilisent les médias sociaux. Elles fournissent ainsi des informations
dans différentes langues et avec différents contextes sociaux et éthiques. Cela nous permet
d’observer des gens qui s’expriment « à leur manière » et, surtout, de manière anonyme. Ce
dernier point est crucial lorsque des effets indésirables surviennent, par exemple, en lien avec
la sexualité. De plus, la langue dans laquelle le grand public parle de problèmes médicaux nous
permet de comprendre ces problèmes de santé différemment de si l’on se fiait uniquement aux
rapports des médecins, qui utilisent généralement une langue plus technique. Cela rend par
ailleurs ces expériences plus accessibles et susceptibles d’être partagées avec d’autres patients.

Les sources souvent utilisées en ce qui concerne les médias sociaux sont Twitter, Reddit ou
des groupes Facebook. Les forums de patients offrent une alternative, souvent déjà axée sur
des discussions orientées vers la santé, parfois même administrées par des experts. En tenant
compte de tout ce qui précède, ce travail vise à améliorer la manière dont les connaissances
sur les effets indésirables des médicaments peuvent être rassemblées et traitées, à travers les
langues et du point de vue des patients, en utilisant des messages sur les médias sociaux dans
différentes langues, principalement issus de forums de patients. Ce travail est principalement
réalisé pour les langues allemande, française et anglaise, mais comprend également quelques
expérimentations utilisant des textes en japonais et en espagnol.

Tout d’abord, j’aborde le contexte technique nécessaire pour comprendre les concepts ap-
pliqués par la suite. Cela inclut la définition des tâches d’extraction d’informations qui sont
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prises en compte, à savoir la classification binaire, l’extraction d’entités et de relations, ainsi
que leur évaluation. Je donne également un aperçu des méthodes d’évaluation de l’annotation
de corpus. Ensuite, je passe en revue les concepts sous-jacents à l’apprentissage automatique
et discute brièvement du transfert d’apprentissage. Ceci est suivi d’un résumé des systèmes et
des modèles couramment utilisés pour les tâches mentionnées ci-dessus, ainsi que d’une brève
introduction à la modélisation de la langue multilingue et translingue, en mettant un accent
particulier sur les modèles basés sur les Transformers.

Dans le chapitre suivant, je passe en revue les travaux connexes dans le domaine de l’extraction
d’informations (multilingue). Je commence par me concentrer sur l’extraction d’informations
translingue et multilingue en général, mettant en évidence les façons courantes de définir la
tâche d’extraction et les modèles sous-jacents pour aborder ces tâches.

Le chapitre se poursuit ensuite avec un aperçu de l’extraction d’informations spécifique-
ment dans le domaine biomédical. Les modèles et les jeux de données sont examinés, et les
méthodes standard sont présentées, divisées en celles de la période pré-apprentissage automa-
tique, de l’apprentissage automatique traditionnel et de l’apprentissage profond, y compris les
approches basées sur les Transformers. La section se termine sur un aperçu des défis souvent
rencontrés dans le domaine biomédical.

La troisième section de ce chapitre traite de l’extraction d’informations translingues dans
le domaine biomédical. Encore une fois, les jeux de données, les modèles et les méthodes sont
présentés.

Ensuite, je donne un aperçu détaillé des ensembles de données pour la détection des effets
secondaires médicaux dans des langues autres que l’anglais, ainsi que des différences dans
leurs annotations. Deux ensembles de données en anglais, qui sont utilisés dans ce travail, sont
également discutés.

Enfin, le chapitre se conclut par un bref aperçu des problématiques de respect de la vie
privée des utilisateurs lors de la collecte de données. La section aborde les différentes méthodes
de collecte de données et les types de données souvent utilisés dans le traitement de textes
biomédicaux, et résume les problèmes éthiques qui les accompagnent.

La partie la plus significative de cette thèse est consacrée aux données, c’est-à-dire à leur
collecte, annotation et analyse. Je commence le quatrième chapitre en décrivant le nouveau
corpus fourni dans cette thèse. Le corpus est disponible en allemand et en français et fait
partie d’un ensemble de données trilingue, qui comprend également des données japonaises.
Je discute de l’élaboration de directives d’annotation applicables à n’importe quelle langue
et axées sur les textes créés par les utilisateurs de médias sociaux. En outre, je présente le
processus de collecte de données, ainsi que les critères pour traduire une partie des données
allemandes en français. Cela est suivi par la description de l’annotation binaire du corpus
allemand. Ce corpus se compose d’environ 10 000 documents avec des étiquettes binaires, où
l’étiquette positive représente la présence d’un effet indésirable médical, tandis que l’étiquette
négative marque les documents sans mention d’effet indésirable. Les scores d’accord inter-
annotateurs et les statistiques de l’ensemble de données sont présentés. Je fournis également
l’accord des annotateurs avec les données adjudiquées, montrant des détails intéressants du
processus d’annotation. En conclusion, je constate que le corpus créé est très exigeant, tant en
termes d’annotation que pour les modèles d’apprentissage automatique, car les données sont
souvent ambiguës, les documents peuvent être très longs et il y a un déséquilibre très élevé des
étiquettes, avec seulement 324 documents positifs au total.

L’annotation se poursuit sur une partie plus petite du corpus mentionné précédemment,
c’est-à-dire uniquement les documents positifs (pour le moment). Ici, les entités, attributs et
relations sont annotés pour les données françaises et allemandes. Je décris les directives et le
schéma d’annotation pour 12 types d’entités, quatre types d’attributs et 12 types de relations
(plus quelques autres pour une analyse interne). Pour capturer les expressions médicales, des
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marqueurs pour les médicaments, les signes, les examens médicaux, les mentions anatomiques,
les expressions temporelles et les opinions personnelles des patients sont fournis, entre autres.
Les mentions de médicaments peuvent être complétées par des attributs d’état de médicament,
indiquant si un médicament vient d’être démarré, arrêté, augmenté ou diminué. Les opinions
peuvent avoir un sentiment positif, négatif ou neutre, et les signes et fonctions peuvent être
niés. De plus, les expressions temporelles peuvent être marquées avec des balises plus spé-
cifiques indiquant si la mention fait référence à une durée ou à un moment précis. Enfin, les
types d’entités peuvent être associés par l’utilisation de relations. Elles indiquent, par exemple,
quel résultat a eu un examen médical ou quelle forme pharmaceutique a été utilisée pour un
médicament spécifique. La relation la plus importante est celle de « cause » entre un médica-
ment et un signe, qui marque les effets indésirables potentiels des médicaments, la combinaison
qui nous intéresse le plus. En tout, pour l’allemand, 118 documents sont soigneusement an-
notés et vérifiés. Pour le français, un annotateur a actuellement annoté 100 documents. Les
deux corpus comprennent respectivement 3 487 et 1 939 entités, 1 141 et 537 attributs, et 2 163
et 1 129 relations. Les annotations continuent.

Ensuite, je discute de la question de la vie privée des utilisateurs en ce qui concerne les
données liées à la santé, ainsi que de la manière de collecter de telles données à des fins de
recherche sans nuire à la vie privée de la personne. Je présente une étude prototype sur la
réaction des utilisateurs lorsqu’on leur demande directement leurs expériences de réactions
indésirables aux médicaments. Elle est basée sur une enquête que j’ai diffusée sur plusieurs
plateformes, notamment Reddit et deux plates-formes d’enquête. Dans le but de recueillir des
descriptions écrites d’expériences avec les effets indésirables, les participants sont d’abord in-
vités à consentir à partager leurs expériences personnelles à des fins de recherche. Ensuite,
on leur pose plusieurs questions démographiques auxquelles ils peuvent choisir de ne pas
répondre. On leur demande ensuite d’indiquer leurs médicaments et leur diagnostic (s’ils ex-
istent) sous la forme qui leur convient, et enfin, s’ils ont connu des effets secondaires. Pour ces
derniers, on leur demande de les décrire aussi en détail que possible, sans utiliser de puces. Le
questionnaire a été distribué en allemand et en anglais. Au final, 54 participants ont répondu
aux questions, mais seuls 27 ont terminé. Leurs réponses montrent une grande variété de
descriptions concernant les médicaments, les dosages et les effets secondaires. En effet, les par-
ticipants se sont montrés assez ouverts avec leurs textes, fournissant des documents pas très
longs, mais néanmoins complets, similaires aux avis en ligne sur les médicaments. En résumé,
l’étude révèle que la plupart des gens n’ont pas d’objection à décrire leurs expériences s’ils en
sont directement sollicités. Cependant, la collecte de données peut souffrir d’un questionnaire
comportant trop de questions.

Dans la section suivante, j’analyse une deuxième façon potentielle de collecter des données,
à savoir la génération synthétique de données basée sur de vrais messages Twitter, et les dé-
fis que cela pose. Ce travail visait spécifiquement la diffusion potentielle de données, ce qui
est plus compliqué pour les tweets originaux en raison des préoccupations susmentionnées
concernant la vie privée. Les tweets ont été générés en japonais, annotés pour les signes et
symptômes médicaux, puis automatiquement traduits en anglais, en français et en allemand.
Les étiquettes annotées sont reprises. Malgré les tentatives de filtrer et d’améliorer les valeurs
aberrantes dans les pseudo-tweets traduits, je constate encore des problèmes dans les traduc-
tions, tant en ce qui concerne le sens du texte que les étiquettes annotées. Ces pseudo-tweets
sont ensuite analysés plus en détail dans cette thèse, et je donne des exemples anecdotiques
de ce qui peut mal tourner lors de la traduction automatique. Par exemple, les traductions ne
sont pas toujours cohérentes d’une langue à l’autre et de légères variations changent le sens.
De plus, elles affichent souvent des inexactitudes médicales, ce qui n’est pas nécessairement un
problème pour les besoins de ce travail, mais doit être pris en compte. Elles montrent également
souvent des biais de différents types qui pourraient influencer la performance et la généralis-
abilité d’un modèle lorsqu’il est affiné sur ces données. À la fin de la section, je résume les



216 Résumé

enseignements tirés et présente les étapes potentielles pour améliorer davantage le corpus.

Ensuite, je résume les expériences réalisées sur le transfert translingue de connaissances
concernant les effets indésirables de médicaments en anglais et en allemand, c’est-à-dire la
classification binaire de documents contenant (ou non) des mentions de réactions indésirables.
Une partie du corpus allemand annoté de manière binaire est utilisée pour évaluer les per-
formances interlingues, ce qui est compliqué par le déséquilibre important des ensembles de
données des deux langues. Les expériences sont menées en tenant compte d’une configura-
tion à ressources limitées, ce qui était en effet le cas pour les données allemandes. Bien qu’il
y ait environ 4 000 documents à traiter, seuls 101 d’entre eux étaient positifs et ils devaient
également être répartis entre les ensembles d’entraînement, de développement et de test. J’ai
donc mené les expériences en deux étapes. La première étape consistait en un affinage sur les
données anglaises uniquement, sur des données contenant des effets indésirables de médica-
ments mais avec une distribution d’étiquettes inversée, c’est-à-dire plus de documents posi-
tifs que négatifs. Ensuite, j’ai appliqué, dans la deuxième étape, plusieurs scénarios avec des
tailles de jeux de données et des ratios d’étiquettes variables. Cela incluait l’équilibrage des
documents par étiquette de classe, l’ajout d’une certaine quantité d’échantillons négatifs aux
positifs (c’est-à-dire le contrôle des négatifs, mais en utilisant tous les positifs), et l’ajout d’une
quantité spécifique d’échantillons anglais aux données d’affinage. Enfin, j’ai utilisé toutes les
données d’entraînement allemandes disponibles pour l’affinage, c’est-à-dire un grand nombre
d’exemples négatifs et un très faible nombre d’exemples positifs. J’ai comparé les résultats de
ces expériences à un modèle de base utilisant un séparateur à vaste marge et à l’application
d’un modèle sans entraînement spécifique à l’allemand.

Les résultats de ces différentes approches ont démontré qu’incorporer des données d’en-
traînement anglaises aide à détecter des documents pertinents en allemand. Cependant, cela
ne suffit pas à compenser le déséquilibre naturel des étiquettes des documents allemands. Le
meilleur modèle était en effet celui qui n’avait été affiné qu’avec toutes les données d’entraî-
nement allemandes, en utilisant les données telles quelles, sans sur-échantillonnage ni sous-
échantillonnage. Cependant, bien que le score F1 global pour la classe positive de la plupart
des modèles soit très faible, les scores de rappel étaient souvent suffisamment élevés pour que
l’on puisse envisager d’utiliser ces modèles comme filtres pour rassembler plus de données
pertinentes, ce qui, à son tour, conduirait très probablement à de meilleures performances pour
la classe positive.

Dans le sixième chapitre, je décris d’abord ma participation à la campagne d’évaluation
n2c2 2022 concernant la détection de médicaments. À cette fin, les organisateurs ont fourni
un jeu de données constitué de textes de dossiers de patients en anglais, annotés avec des
mentions de médicaments (et d’autres annotations). Pour les expériences sur la détection de
médicaments, j’ai utilisé plusieurs modèles basés sur les Transformers cliniques/biomédicaux,
affiné plusieurs modèles de chaque type, et combiné les prédictions résultantes. Les résultats
obtenus avec cette approche étaient plutôt bons, mais présentaient encore certaines faiblesses.
Tout d’abord, le nombre de faux positifs surpassait le nombre de faux négatifs, c’est-à-dire
que le modèle généralisait trop, en particulier sur les termes médicaux qui n’étaient pas des
mentions de médicaments, mais étaient utilisés dans des contextes similaires. De plus, nous
avons trouvé des incohérences dans les annotations et des expressions devenant (en apparence)
similaires à des noms de médicaments en raison de fautes de frappe. Les mentions que les
modèles ont manquées étaient principalement des abréviations et des traitements ambigus.

Sur la base des conclusions de la campagne d’évaluation, les expériences ont ensuite été
étendues à d’autres langues, à savoir le français, l’allemand et l’espagnol, en utilisant des jeux
de données appartenant à différents sous-domaines et basés sur des directives d’annotation
différentes. Pour ces langues, trois jeux de données en allemand, deux en français, deux en
espagnol et le jeu de données déjà utilisé en anglais ont été collectés et préparés. J’ai ensuite
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affiné un modèle multilingue du domaine général sur différents sous-ensembles de langues
pour voir quelle combinaison est la plus bénéfique pour chaque langue. J’ai comparé cela à un
modèle affiné sur toutes les langues. Les expériences menées montrent que le transfert mul-
tilingue et interlingue fonctionne, mais qu’aucune méthode ne donne des scores aussi élevés
que ceux pour les données en anglais. J’ai constaté que les performances du modèle dépendent
fortement des types d’annotations et de leurs définitions ainsi que de la structure du texte,
qui est très variable d’un jeu de données à l’autre. Dans l’analyse des erreurs, j’ai de nouveau
trouvé plus de faux positifs que de faux négatifs. Comme précédemment, il s’agit souvent
d’incohérences dans les annotations ou de médicaments spécifiques qui ne sont pas annotés
dans un corpus, mais annotés dans un autre. Cela concerne souvent les noms de médicaments
qui sont très similaires d’une langue à l’autre.

Sur la base du corpus précédemment annoté de messages de patients annotés avec des men-
tions de médicaments et d’autres entités, j’ai appliqué les modèles entraînés décrits ci-dessus
aux nouvelles données sans réentraînement (en mode zero-shot) afin d’obtenir quelques résul-
tats préliminaires. Le modèle affiné uniquement en allemand (et non dans les autres langues)
a obtenu les meilleurs résultats sur la partie allemande du corpus. En revanche, le modèle
entraîné dans toutes les langues a obtenu les meilleurs scores sur les données françaises. Les
modèles sont améliorables, mais ils fournissent déjà une première base prometteuse, surtout
compte tenu du fait que les modèles ont été affinés sur des données d’un autre sous-domaine
et appliqués sans réentraînement aux nouvelles données qui contiennent de nombreuses ex-
pressions courantes non standard.

Je conclus le chapitre sur quelques expériences préliminaires pour la détection générale
d’entités dans le nouveau corpus en français et en allemand. J’ai constaté que les résultats
varient considérablement entre les types d’entités, ce qui n’est pas surprenant étant donné les
différentes exigences de chaque type d’entité.

Dans le dernier chapitre, je résume le travail présenté et le replace dans le contexte d’autres
travaux dans ce domaine. De plus, en m’appuyant sur les résultats et les questions sub-
séquentes qui émergent des différents chapitres, je propose des idées pour étendre davantage
les recherches sur la détection et la prévention des effets indésirables de médicaments à travers
différentes langues.
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