
HAL Id: tel-04513167
https://theses.hal.science/tel-04513167v1

Submitted on 20 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side Channels in Web Browsers : applications to
Security and Privacy

Thomas Rokicki

To cite this version:
Thomas Rokicki. Side Channels in Web Browsers : applications to Security and Privacy. Web. INSA
de Rennes, 2022. English. �NNT : 2022ISAR0026�. �tel-04513167�

https://theses.hal.science/tel-04513167v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES
SCIENCES APPLIQUÉES RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Thomas ROKICKI
Side Channels in Web Browsers :
Applications to Security and Privacy

Thèse présentée et soutenue à IRISA, Rennes, le 29 Novembre 2022
Unité de recherche : UMR 6074

Rapporteurs avant soutenance :

Jan REINEKE Professeur, Saarland University
Billy Bob BRUMLEY Maître de Conférence, Tampere University

Composition du Jury :
Président : Lilian BOSSUET Professeur, Université Jean Monnet
Examinateur·rice·s : Jan REINEKE Professeur, Saarland University

Billy Bob BRUMLEY Maître de Conférence, Tampere University
Veelasha MOONSAMY Chargée de Recherche, Ruhr University Bochum
Walter RUDAMETKIN Professeur, Université de Rennes 1

Dir. de thèse : Gildas AVOINE Professeur, INSA Rennes, CNRS, IRISA, France
Encadrante de thèse : Clémentine MAURICE Chargée de Recherche, Univ Lille, CNRS, Inria , France

Invité(s) :

Thèse de doctorat de Thomas ROKICKI

Thomas ROKICKI

Supervisor: Clémentine MAURICE

Co-supervisor: Gildas AVOINE

29/11/2022

Résumé en Français

Les processeurs modernes sont des objets technologiques remarquablement optimisés. La
vitesse de traitement étant le principal argument de vente des microprocesseurs, les fabricants
se sont attachés à augmenter les performances des processeurs lors de leur développement,
chaque année proposant de nouvelles générations dotées de meilleures caractéristiques que les
précédentes.

Comme les progrès en matière de taille et de performances des semi-conducteurs ont ralenti
dans l’ensemble de l’industrie au cours des dernières décennies, le simple fait d’ajouter des
transistors à une puce est devenu insuffisant pour continuer l’augmentation régulière des
performances. En réaction, les fabricants de processeurs se sont concentrés sur les optimisations
microarchitecturales pour améliorer davantage les performances de génération en génération.
Ces optimisations visent à augmenter la vitesse de traitement en proposant plus de parallélisme
et en réduisant les temps de latence du matériel. Les processeurs multicœurs, les caches, ou
l’exécution spéculative sont quelques exemples d’optimisations microarchitecturales. Chaque
génération apporte des modifications à la microarchitecture, avec de plus en plus de caches
ou d’unités d’exécutions dans un pipeline complexe. Par conception, ces optimisations visent
à apporter plus de performance en accélérant l’exécution. Dans cette course à la performance,
la sécurité de la microarchitecture tend à être négligée. En particulier, les effets secondaires
de ces optimisations sur l’execution des calculs peuvent entraîner des fuites d’informations
sur les valeurs secrètes utilisées par le système dans ce qu’on appelle des canaux auxiliaires.

En 1996, Paul Kocher [Koc96] a révélé que l’accélération dynamique apportée par les caches
introduit des différences de temps d’exécution dans les implémentations à temps constant
des algorithmes cryptographiques. Un utilisateur malveillant peut utiliser ces différences de
temps microscopiques pour extraire des secrets telles que des clés privées. Cette découverte
de la première attaque par minutage a ouvert la voie à un champ de recherche plus large sur
les canaux auxiliaires.

Les canaux auxiliaires physiques ont fait l’objet de nombreuses recherches. Ils exploitent les
effets secondaires physiques du processeur pendant le calcul pour en extraire les secrets des
calculs délicats. Le premier canal auxiliaire physique exploitait la consommation d’énergie de
la puce [KJJ99] pour attaquer les implémentations cryptographiques, mais de nombreuses
sources de fuites physiques ont été étudiées, notamment les émissions acoustiques [ST04,
GST14], les émissions électromagnétiques [RR01], les émissions optiques [SNK+12] ou encore
la température [HS13]. Cependant, sauf exception notable [LKO+21], ces attaques nécessitent
un accès physique au dispositif cible afin de mesurer les effets secondaires du calcul.
Par opposition, les canaux auxiliaires microarchitecturaux sont purement logiciels. Ils ex-

ploitent les optimisations basées sur les données des processeurs modernes pour déduire des
informations privées. Depuis la première attaque temporelle de Kocher [Koc96], les caches

iv

ont été la source la plus étudiée de canaux auxiliaires microarchitecturaux, mais la recherche
a prouvé que d’autres composants peuvent également être exploités pour monter des at-
taques par canal auxiliaire. Au cours de la dernière décennie, les chercheurs ont ciblés de
nombreux composants microarchitecturaux, en ont compris le fonctionnement, et ont utilisé
leur comportement pour en extraire des secrets. Les canaux auxiliaires ont été exploités,
entre autres, à partir des prédicteurs de branchement [AKS07], de la DRAM [PGM+16],
ou de la traduction d’adresses [GRBG18]. Les canaux auxiliaires microarchitecturaux ont
été initialement mis en place pour faire fuir les données des implémentations cryptogra-
phiques, mais leur portée s’est considérablement élargie, avec notamment des attaques contre
l’ASLR [HWH13], la communication entre machines virtuelles [MWS+17], la détection des
frappes au clavier [GSM15] et la surveillance des utilisateurs [SKH+19]. Plus inquiétant encore,
les canaux auxiliaires microarchitecturaux constituent une brique essentielle d’une nouvelle
classe d’attaques microarchitecturales : les attaques par exécution transiente. Introduites
en 2018 avec Spectre [KHF+19] et Meltdown [LSG+20], ces attaques utilisent les effets se-
condaires des instructions transientes, i.e., des instructions exécutées mais jamais engagées
dans l’architecture, pour faire fuir des données à travers les barrières de sécurité logicielles et
matérielles.

Les canaux auxiliaires microarchitecturaux exploitent le partage des composants matériels
entre l’attaquant et la victime pour divulguer des informations. Par conséquent, ils ont un
prérequis commun : l’attaquant doit exécuter du code sur la machine de la victime. Cette
condition préalable essentielle restreint considérablement la surface d’attaque des canaux
auxiliaires microarchitecturaux, car les utilisateurs se méfient de plus en plus des logiciels
inconnus et ont tendance à ne télécharger des logiciels qu’à partir de sources fiables. Le risque
de télécharger des logiciels malicieux est même réduit sur les plateformes mobiles, où les
applications sont téléchargées à partir d’un magasin d’applications contrôlé par un éditeur,
où chaque morceau de code est soigneusement analysé avant d’être publié. Les chercheurs ont
étudié d’autres modèles d’attaques, où l’exécution du code sur le matériel de la victime est
plus facile. Un attaquant peut attaquer la victime à distance, souvent via le web, et monter
des attaques sur le cache à travers le réseau [BB05, KGA+20]. Schwarz et collab. [SSL+19]
ont montré qu’il est possible de monter une attaque Spectre via le web. Les environnements
d’informatique en nuage sont également une cible idéale pour les attaques microarchitecturales.
Avec le développement de l’infrastructure en tant que service, les utilisateurs peuvent acheter
des machines virtuelles ou des conteneurs fonctionnant sur des services comme Amazon EC2
ou OVHCloud. Toutefois, l’informatique en nuage n’est qu’une couche d’abstraction pour des
serveurs colossaux. Bien qu’isolées d’un point de vue purement logiciel, les machines virtuelles
contrôlées par différents utilisateurs peuvent être co-résidentes de processeur, c’est-à-dire
partager un ou plusieurs processeurs. Un attaquant peut donc acheter de l’espace dans le
nuage et monter des attaques sur toutes les machines co-résidentes. Ce scénario a été exploité
pour détecter la co-résidence [ZJOR11], attaquer l’ASLR [BRPG15] ou monter des canaux à
large bande passante entre deux machines virtuelles isolées [MWS+17].
En 2015, Oren et collab. [OKSK15] ont présenté une attaque sur le cache s’exécutant

entièrement dans le navigateur. Ce modèle de menace augmente considérablement la surface
d’attaque des canaux auxiliaires microarchitecturaux. Comme le web moderne est construit
autour de pages web dynamiques et interactives, l’architecture des sites web est séparée en
deux composants majeurs. Le côté serveur gère tous les calculs concernant le serveur, la base
de données, l’authentification et l’envoi des informations de la page web aux utilisateurs.
Le côté client gère la page web telle qu’elle s’affiche dans le navigateur de l’utilisateur. Les

v

langages de script côté client, tels que JavaScript, sont responsables des composants interactifs
des sites. Le code côté client est envoyé à l’utilisateur par le serveur et est exécuté dans le
navigateur de l’utilisateur, et donc est exécuté sur la machine de l’utilisateur. Cela permet
à un attaquant d’exécuter un script sur de nombreuses victimes différentes sans effort. Un
utilisateur visitant un site web contrôlé par un attaquant téléchargera du code JavaScript
et l’exécutera dans son navigateur sans s’en rendre compte, devenant ainsi potentiellement
victime d’attaques microarchitecturales. Plus inquiétant encore, un attaquant peut acheter
de l’espace publicitaire sur un site web légitime et exécuter le code JavaScript sur tous les
utilisateurs qui voient la publicité.

Pour des raisons de sécurité, le code JavaScript s’exécute dans un environnement virtualisé
sécurisé de type bac à sable. Ce bac à sable empêche l’accès aux adresses mémoire, aux instruc-
tions natives ou au système de fichiers. En outre, JavaScript est un langage abstrait de haut
niveau, et il est difficile de quantifier son impact microarchitectural. Ces couches de sécurité
et d’abstraction rendent difficile la mise en place de canaux auxiliaires microarchitecturaux à
partir du bac à sable. Avec son attaque sur le cache en JavaScript, Oren et collab. [OKSK15]
ont démontré la possibilité de provoquer et de mesurer des fuites de données microarchitectu-
rales depuis le navigateur. Les caches ne sont pas le seul composant microarchitectural visé,
et des chercheurs ont monté des attaques sur la DRAM [SMGM17] ou les unités à virgule
flottante [AKM+15]. Bien qu’en général, les canaux auxiliaires JavaScript aient tendance à
offrir moins de résolution aux attaquants, ils représentent une menace inquiétante pour la
sécurité et la vie privée des utilisateurs. Les canaux auxiliaires microarchitecturaux ont été
exploités dans le navigateur pour extraire des clés cryptographiques [GPTY18], surveiller les
sites parcourus par un utilisateur [OKSK15, SKH+19], identifier les utilisateurs [LMD+22]
ou communiquer en dehors du bac à sable [SMGM17].
Bien que les canaux auxiliaires basés sur le JavaScript aient été grandement étudiés,

l’ensemble de leurs implications en matière de sécurité et de confidentialité n’est pas clair. En
particulier, plusieurs zones grises subsistent :

Q1 Depuis les premières attaques sur le cache basées sur le JavaScript, les navigateurs ont
évolué, notamment en réaction aux attaques par minutage. Quel est l’état actuel des
attaques par minutage dans sur les navigateurs et leurs contre-mesures ? En particulier,
les contre-mesures basées sur les minuteurs sont une approche populaire. Cependant,
ces mesures ont souvent été adoptées dans l’urgence. Quel est leur impact sur la sécurité
et la confidentialité des navigateurs ?

Q2 Quels autres composants sont vulnérables aux canaux auxiliaires depuis la sandbox
JavaScript ?

Q3 Quelles informations un attaquant peut-iel extraire de ces canaux auxiliaires ?

Contributions

Cette thèse se concentre sur l’exploration partielle des réponses à ces questions. Les contribu-
tions de ce manuscrit sont divisées en deux catégories. La première direction de recherche
consistait à redéfinir la portée des attaques par minutage en JavaScript. En particulier, nous
avons étudié l’impact de contre-mesures répandues aux attaques par minutage : la suppression
de l’accès aux minuteurs à haute résolution. La deuxième catégorie de contributions concerne
un type spécifique de canal auxiliaire : la contention des ports du microprocesseur. Dans une

vi

première contribution, nous montrons comment, pour la première fois, nous avons implémenté
la contention de port dans le bac à sable du navigateur. Dans une deuxième contribution,
nous étendons le champ d’application de la contention de port pour changer complètement
son modèle de menace. Nous montrons également comment cette nouvelle version du canal
auxiliaire peut être utilisée à des fins d’identifications des navigateurs.

Évaluation méthodique des minuteurs JavaScript (Q1) En réaction à la menace
croissante que représentent les attaques par minutage basées sur JavaScript, les développeurs
de navigateurs ont proposé diverses contre-mesures. Au milieu de tous ces changements, il
peut être difficile de suivre les différentes évolutions des navigateurs. En particulier, l’impact
des contre-mesures actuelles sur les attaques décrites dans la littérature n’est pas clair.

Nous présentons l’évolution des attaques par minutage dans les navigateurs, et fournissons
des outils statistiques pour caractériser les minuteurs disponibles. Notre objectif est de
présenter une vue claire de la surface d’attaque et de comprendre quelles sont les principales
conditions préalables et classes d’attaques par minutage dans les navigateurs et quelles sont
les principales contre-mesures. Nous fournissons une classification des attaques par minutage
dans les navigateurs, en soulignant leurs conditions préalables communes. Nous proposons
ensuite une taxonomie des contre-mesures en fonction des ressources qu’elles ciblent. Ces
classifications permettent de déterminer dans quelle mesure les changements récents dans les
contre-mesures ont un impact sur la sécurité des navigateurs.

Nous nous intéressons particulièrement à une contre-mesure très répandue : la suppression
des minuteurs à haute résolution. L’idée est simple : si les attaquants ne peuvent pas mesurer
les différences de temps qui créent les fuites des données, ils ne peuvent pas monter leur attaque
par minutage. Nous avons créé des outils analytiques pour évaluer la menace que représente
un minuteur. Nous avons développé un système automatique pour évaluer la sécurité des
minuteurs dans différentes versions des navigateurs les plus populaires. En particulier, nous
montrons que l’évolution de la protection contre les attaques par exécution transientes a rendu
possible d’autres attaques, telles que les attaques par canal auxiliaire microarchitectural avec
une bande passante plus importante que ce qui était possible il y a seulement quelques années.

Ce travail est le résultat d’une collaboration avec Clémentine Maurice (Univ Lille, CNRS,
Inria) et Pierre Laperdrix (Univ Lille, CNRS, Inria). Il a été publié à EuroS&P 2021 [RML21].

Contention de port dans les navigateur web (Q2,Q3) La contention des ports du
processeur est un canal auxiliaire microarchitectural introduit par Aldaya et collab. [ABuH+19]
en 2019. Il utilise les ports du CPU, un composant du pipeline d’exécution, comme goulot
d’étranglement pour créer des différences d’exécution et faire fuir des données confidentielles.

Dans cet article, nous présentons le premier canal auxiliaire de contention de port s’exécutant
entièrement dans un navigateur web, malgré un environnement très restreint :

C1 Les minuteurs JavaScript ont une résolution inférieure à celle des minuteurs matérielles
natives, ce qui augmente le bruit de mesure de l’attaquant.

C2 L’attaquant n’a aucun contrôle sur le coeur physique sélectionné par l’ordonnanceur pour
exécuter le code d’attaque.

C3 Dans ce contexte, le code de l’attaquant est écrit dans un langage hautement abstrait
qui est converti en code machine par un compilateur.

vii

Alors que C1 a été étudié par des travaux antérieurs [SMGM17, RML21], C2 et C3 néces-
sitent de nouvelles approches. Pour résoudre C2, nous proposons une heuristique entièrement
basée sur JavaScript pour permettre la co-résidence de coeur entre l’attaquant et la victime.C3
est probablement le plus grand défi : nous ne savons pas comment notre code de haut niveau
sera traduit en code machine, donc son impact sur la microarchitecture et plus spécifiquement
sur les ports du processeur n’est pas clair. Dans ce contexte, nous fournissons un système pour
évaluer la contention de port causée par les instructions WebAssembly sur les processeurs
Intel, permettant d’augmenter la portabilité des canaux auxiliaires de contention de port.
Nous avons trouvé plus de 100 instructions créant de la contention sur 4 ports différents sur
des microprocesseurs x86.
Notre attaque peut être utilisée pour construire un canal caché inter-navigateurs avec

un débit de 200 bit/s, un ordre de grandeur au-dessus de l’état de l’art. Ce canal caché est
inquiétant car il brise le modèle de sécurité d’isolation fondamental des navigateurs, permettant
à deux onglets d’échanger des informations de cookies ou de communiquer avec un processus
natif pour extraire des données privées. La contention de port web a une résolution spatiale
de 1024 instructions natives dans une attaque par canal auxiliaire, ce qui est comparable aux
meilleures attaques par cache dans le navigateur.

Nous concluons de notre travail que les attaques par contention de port sont non seulement
rapides, mais sont aussi moins sensibles au bruit que les attaques par cache, et sont immunisés
contre les contre-mesures implémentées dans les navigateurs ainsi que la plupart des contre-
mesures par canal auxiliaire, qui ciblent le cache dans leur grande majorité.

Ce travail est le résultat d’une collaboration avec Clémentine Maurice (Univ Lille, CNRS,
Inria), Marina Botvinnik (Ben-Gurion University of the Negev), et Yossi Oren (Ben-Gurion
University of the Negev). Il a été publié à AsiaCCS 2022 [RMBO22].

Port Contention sans SMT (Q3) L’un des principaux prérequis de Port Contention est
qu’il exploite un composant dépendant du coeur qui doit être partagé entre l’attaquant et la
victime. De ce fait, elle s’appuie fortement sur SMT, une technologie permettant de partager
un cœur physique entre plusieurs threads. Cependant, certains microprocesseurs n’utilisent
pas le SMT, ou certains systèmes d’exploitations le désactivent pour des raisons de sécurité, à
l’instar de ChromeOS [Goob] ou RedHat [Lar].
Dans cet article, nous présentons la contention séquentielle de port, qui ne nécessite pas

de SMT. Au lieu d’exploiter le parallélisme au niveau du fil d’exécution, nous exploitons le
parallélisme au niveau de l’instruction. Il exploite l’ordonnancement sous-optimal des ports
d’exécution pour la parallélisation au niveau des instructions. Par conséquent, des séquences
d’instructions spécifiquement conçues sur un seul thread souffrent d’une latence accrue. Nous
démontrons une mise en œuvre de la contention de port séquentielle native sur les processeurs
x86.

Nous montrons que la contention de port séquentielle peut être exploitée à partir des
navigateurs web en WebAssembly, y compris sur les navigateurs orientés vers la confidentialité
tels que Tor Browser ou Brave. Nous présentons un système automatisé pour rechercher les
séquences d’instructions menant à la contention de port séquentielle pour des générations
de microprocesseurs spécifiques, que nous avons évalué sur 50 microprocesseurs différents,
y compris x86 et AMD. Un attaquant peut utiliser ces séquences à partir du navigateur
pour déterminer la génération de processeur dans les 12 s avec une précision de 92%. Cette
empreinte digitale est très stable dans le temps et résistante au bruit du système, ce qui la

viii

rend très précieuse pour compléter les empreintes digitales basées sur des attributs logiciels
plus volatiles. En outre, nous montrons que les mesures de protection sont soit coûteuses, soit
uniquement probabilistes.

Ce travail est le résultat d’une collaboration avec Clémentine Maurice (Univ Lille, CNRS,
Inria) et Michael Schwarz (CISPA Helmholtz Center for Information Security). Il a été publié
à ESORICS 2022 [RMS22].

Contents

1. Introduction 1

List of Productions 9

2. Background 11
2.1. CPU Overview . 12
2.2. Web Browsers . 20
2.3. High-Resolution Timers . 24
2.4. Microarchitectural Attacks . 26
2.5. Side-Channel Attacks on Software and Browser Resources 42
2.6. Countermeasures to Side Channels . 44
2.7. Browser Fingerprinting . 51

3. High Resolution Timers in the Browser 53
3.1. Timing attacks in browsers . 54
3.2. Countermeasures in browsers . 57
3.3. Evaluation tools . 58
3.4. Results . 62
3.5. Discussion . 69
3.6. Conclusion . 71
3.7. Evolution of Timer Security Since The Publication of the Results 71

4. Port Contention in the Browser 73
4.1. Web-Assembly-Based Port Contention . 74
4.2. PC-detector . 77
4.3. Side-channel Attack on Artificial Applications 79
4.4. Covert Channel . 81
4.5. Discussion . 87
4.6. Conclusion . 88

5. Port Contention Without SMT and its Privacy Implications 89
5.1. Threat Model . 90
5.2. Port Contention Without SMT . 90
5.3. Fingerprinting CPU Generations . 94
5.4. Discussion . 98

x Contents

5.5. Conclusion . 100

6. Conclusion and Perspectives 101

A. Appendices 105
A.1. Custom RDTSC implementation . 105
A.2. Port Contention on Other WebAssembly Instructions 107
A.3. Training set . 108

Bibliography 109

Introduction 1
Modern processors are remarkably optimized pieces of technology. As processing speed is
probably the major selling point of CPUs, vendors have focused on increasing processors’
performances in their development, each year bringing new generations with better features
than the last.
As the progress in semiconductors’ size and performances slowed industry-wide over the

last decades, simply adding more transistors to a chip became insufficient to follow a steady
performance rise. In reaction, CPU vendors focused on microarchitectural optimizations
to further improve performance from generation to generation. These optimizations aim
at increasing processing speed by proposing more parallelism and reducing stall times of
the hardware. Examples of microarchitectural optimizations include multi-core processors,
caches, hyperthreading, or speculative execution. Each generation sees changes to the
microarchitecture, bringing more and more buffers or units in a complex pipeline. By design,
these optimizations aim to bring more performance by speeding the execution. The security
aspect of the microarchitecture tends to be secondary. In particular, side effects of these
optimizations on computation may leak information about secret values used by the system
in what are called side channels.
In 1996, Paul Kocher [Koc96] discovered that the dynamic speedup brought by caches

introduces runtime differences in constant-time implementations of cryptographic algorithms.
A malicious user can use these subtle timing differences to extract private information such
as decryption keys on Diffie-Hellman. This discovery of the first timing attack paved the way
for the broader research field on side channels.

Physical side channels have been heavily investigated. They exploit the physical side effects
of the processor during the computation to detect sensible computation. The first physical
side channel leveraged the power consumption of the chip [KJJ99] to attack cryptographic
implementations, but many sources of physical leakage have been studied, including acoustic
emissions [ST04, GST14], electromagnetic emissions [RR01], optical emissions [SNK+12] or
temperature [HS13]. However, except for notable exceptions [LKO+21], these attacks require
physical access to the target device to measure the side effects of computation.
In constrast, microarchitectural side channels are purely software-based. They exploit

the data-based optimizations of modern processors to infer private information. Since
Kocher’s first timing attack [Koc96], caches have probably been the most studied source of
microarchitectural side channels, but research has proven that other components can also
be exploited to mount side-channel attacks. Over the last decade, researchers have picked
many microarchitectural components, reversed them, and used their behavior to extract
secrets. Side channels have been leveraged, among others, out of branch predictors [AKS07],
DRAM [PGM+16], or address translation [GRBG18]. Microarchitectural side channels were
initially mounted to leak data from constant-time cryptographic implementations, but their

2 Chapter 1. Introduction

scope has vastly broadened, including attacks against kernel-space ASLR [EPA16], cross-VM
communication [MWS+17], keystroke detection [SLG+18b] and user monitoring [SKH+19].
Even more worrisome, microarchitectural side channels are an essential building block of
a new class of microarchitectural attacks: transient execution attacks. Introduced in 2018
with Spectre and Meltdown, these attacks use the side effects of transient instructions, i.e.,
instruction executed but never committed to the architecture, to leak data through software
and hardware security barriers.

Microarchitectural side channels exploit the sharing of hardware components between the
attacker and the victim to leak information. Consequently, they have one common prerequisite:
the attacker must run code on the victim’s machine. This essential precondition brings severe
restrictions to the attack surface of microarchitectural side channels, as system users grow
increasingly wary of running unknown code on their personal machines. Awareness campaigns
about the risk of unknown code have reached the ears of personal computer users, who tend to
only download software from trusted sources. The risk of downloading attacker code is even
reduced on mobile platforms, where applications are downloaded from an editor-controlled
marketplace, each piece of code being carefully analyzed before release. Researchers have
studied other threat models, where running code on the victim’s hardware is elementary. An
attacker can attack the victim remotely, often through the web, and mount network cache
attacks [BB05, KGA+20]. Schwarz et al. [SSL+19] showed that it is possible to mount a
Spectre attack over the web. Cloud environments are also an ideal target for microarchitectural
attacks. With the development of Infrastructure as a Service (IaaS), users can buy Virtual
Machines (VM) or containers running in the cloud on services like Amazon EC2 or OVHCloud.
However, the cloud is just an abstraction layer for colossal servers. Although isolated from
a purely software point of view, VMs controlled by different users can achieve processor
co-residency, i.e., share one or more processors. This means an attacker can buy space in
the cloud and mount attacks on all co-resident machines. This scenario has been exploited
to detect co-residency [ZJOR11], reversing ASLR [BRPG15] or mounting high-bandwidth
channels between two isolated virtual machines [MWS+17].
In 2015, Oren et al. [OKSK15] presented a cache attack running entirely in the browser.

This threat model considerably enhances the attack surface of microarchitectural side channels.
As the modern web is built around dynamic and interactive web pages, the architecture of
websites is separated into two major components. The server side, or back-end, handles all
computations regarding the server, the database, authentication, and sending the webpage
information to the users. The client side, or front-end, handles the webpage as displayed
in the user’s browser. Client-side scripting languages such as JavaScript are responsible for
the interactive components of sites. Client-side code is sent to the user by the server and is
executed in the user’s browser, and therefore is executed on the user’s machine. This allows
an attacker to run arbitrary code on many different victims effortlessly. A user visiting an
attacker-controlled website will download JavaScript code and run it in his browser without
noticing, potentially falling victim to microarchitectural attacks. Even more worrisome, an
attacker can buy advertisement space on a legitimate website and run JavaScript code on all
users seeing the ad.
For security reasons, JavaScript code runs in a secured virtualized environment called a

sandbox. This sandbox prevents access to memory addresses, native instructions, or file system
accesses. Furthermore, JavaScript is a high-level abstracted language, and it is hard to quantify
its microarchitectural impact. These layers of security and abstraction make it hard to mount
microarchitectural side channels from the sandbox. With their JavaScript cache attack, Oren

3

et al. [OKSK15] demonstrated the possibility of causing and measuring microarchitectural
data leakage from the browser. Caches are not the only microarchitectural component targeted,
and researchers have mounted attacks on DRAM [SMGM17] or floating-point units [AKM+15].
Although in general, JavaScript side channels tend to offer less resolution to the attackers, they
represent a worrying threat to users’ security and privacy. Microarchitectural side channels
have been leveraged in the browser to extract cryptographic keys [GPTY18], monitor sites
browsed by a user [OKSK15, SKH+19], fingerprint users [LMD+22] or communicate outside
of the sandbox [SMGM17].
Although JavaScript-based side channels have been studied by academia, the entire land-

scape of their security and privacy implications is unclear. In particular, several gray areas
remain:

Q1 Since the first JavaScript-based cache attacks, browsers have evolved, including in
reaction to timing attacks. What is the current landscape of browser-based attacks and
countermeasures?

Q2 Are other components vulnerable to side channels from the JavaScript sandbox?

Q3 What can an attacker extract from these side channels?

Contributions

This thesis is focused on partially exploring the answers to these questions. The following
contributions of this manuscript are split into two categories. The first research direction
was to reframe the scope of JavaScript-based timing attacks. In particular, we studied the
impact of widespread countermeasures to timing attacks: removing access to high-resolution
timers. The second class of contributions concerns a specific type of side-channel: CPU port
contention. In a first contribution, we show how, for the first time, we implemented port
contention in the browser sandbox. In a second contribution, we extend the scope of port
contention to change its threat model completely. We also show how this new version of the
side channel can be used in browser fingerprinting.

Systematic evaluation of JavaScript timers (Q1) In reaction to the developing threat
posed by JavaScript-based timing attacks, browser vendors have proposed various counter-
measures. However, as the attack multiplied in the last years, so did the countermeasures, in
a cat-and-mouse game fashion. Amid all these changes, it can be hard to keep track of all the
different evolutions browsers underwent. Notably, it is unclear how current countermeasures
impact the attacks described in the literature.
We present the evolution of timing attacks in browsers, and provide statistical tools to

characterize available timers. Our goal is to present a clear view of the attack surface and
understand what are the main prerequisites and classes of browser-based timing attacks
and what are the main countermeasures. We provide a classification of browser-based
timing attacks, highlighting their common prerequisites. We then propose a taxonomy of
countermeasures based on the resources they target. These classifications focus on determining
to what extent the recent changes in countermeasures impact browser security.
We take a particular interest in a widespread countermeasure: removing high-resolution

timers. The idea is simple: if attackers cannot measure data-leaking timing differences, they

4 Chapter 1. Introduction

cannot mount their timing attack. We created analytical tools to evaluate the threat posed
by a timer. We developed an automatic framework to evaluate timer security in different
versions of the most popular browsers. In particular, we show that the shift in protecting
against transient execution attacks has re-enabled other attacks such as microarchitectural
side-channel attacks with a higher bandwidth than what was possible just a few years ago.
This work is the outcome of a collaboration with Clémentine Maurice (Univ Lille, CNRS,

Inria) and Pierre Laperdrix (Univ Lille, CNRS, Inria). It has been published in the proceedings
of EuroS&P 2021 [RML21].

Port Contention in the Web Browser (Q2,Q3) CPU Port contention is a microarchi-
tectural side-channel introduced by Aldaya et al. [ABuH+19] in 2019. It uses CPU ports, a
component of the execution pipeline, as a bottleneck to create runtime differences and leak
confidential data.

In this contribution, we present the first port contention side channel running entirely in a
web browser, despite a highly challenging environment:

C1 Web-based timers have a lower resolution than native hardware-based timers, increasing
the attacker’s measurement noise.

C2 The attacker has no control over the physical core selected by the browser to execute the
attack code.

C3 In this setting, the attacker’s code is written in a highly-abstracted language which is
translated into machine code by a just-in-time compiler.

Whereas C1 has been studied by previous work [SMGM17, RML21], C2 and C3 require
new approaches. To solve C2, we propose a fully JavaScript-based heuristic to allow core
co-residency between the attacker and the victim. C3 is probably the biggest challenge: we
do not know how our high-level code will be translated into machine code, thus its impact on
the microarchitecture and more specifically on the CPU ports is unclear. To that extent, we
provide a framework to evaluate the port contention caused by WebAssembly instructions
on Intel processors, allowing to increase the portability of port contention side channels. We
found over 100 instructions creating contention on 4 different ports on x86 CPUs.

Our attack can be used to build a cross-browser covert channel with a bit rate of 200 bit/s,
one order of magnitude above state of the art. This covert channel is worrisome as it breaks
the fundamental isolation security model of browsers, allowing two tabs to exchange cookie
information or communicate with a native process to extract private data. Web port contention
has a spatial resolution of 1024 native instructions in a side-channel attack, performing on-par
with the best cache attacks in the browser.

We conclude from our work that port contention attacks are not only fast, but are also less
susceptible to noise than cache attacks, and are immune to countermeasures implemented in
browsers as well as most side-channel countermeasures, which target the cache in their vast
majority.
This work is the outcome of a collaboration with Clémentine Maurice (Univ Lille, CNRS,

Inria), Marina Botvinnik (Ben-Gurion University of the Negev), and Yossi Oren (Ben-Gurion
University of the Negev). It has been published in the proceedings of AsiaCCS 2022 [RMBO22].

5

Port Contentiont Without SMT (Q3) A major prerequisite of Port Contention is that
it exploits an on-core component that must be shared between the attacker and the victim.
To that extent, it heavily relies on simultaneous multi-threading (SMT), a technology allowing
to share a physical core between several threads. However, certain CPUs do not implement
SMT, or operating systems disable it for security purposes, such as ChromeOS [Goob] or
RedHat [Lar].
In this contribution, we present sequential port contention, which does not require SMT.

Instead of exploiting thread-level parallelism, we exploit instruction-level parallelism. It
leverages sub-optimal scheduling to execution ports for instruction-level parallelization. As a
result, specifically-crafted instruction sequences on a single thread suffer from an increased
latency. We demonstrate an implementation of native sequential port contention on x86
processors.
We show that sequential port contention can be exploited from web browsers in Web-

Assembly, including on privacy-oriented browsers such as Tor Browser or Brave. We present
an automated framework to search for instruction sequences leading to sequential port con-
tention for specific CPU generations, which we evaluated on 50 different CPUs, including
x86 and AMD. An attacker can use these sequences from the browser to determine the CPU
generation within 12 s with a 92% accuracy. This fingerprint is highly stable in time and
resistant to system noise, making it highly valuable to complement more volatile software-
attribute fingerprinting. Furthermore, we show that mitigations are either expensive or only
probabilistic.
This work is the outcome of a collaboration with Clémentine Maurice (Univ Lille, CNRS,

Inria) and Michael Schwarz (CISPA Helmholtz Center for Information Security). It has been
published in the proceedings of ESORICS 2022 [RMS22].

Terminology

The terminology of classes of attacks explored in this manuscript can be confusing, as classes
intertwine and denominations can be orthogonal. This manuscript is generally focusing on
three major classes of attacks:

Timing Attacks: They exploit timing differences caused by the execution to infer private
data. They can be microarchitectural timing attacks, e.g., cache attacks, but also purely
based on timing differences created by software execution.

Side Channels: They exploit the side effects of execution to infer information about the
victim. Timing attacks typically are side-channel attacks, but side channels may
exploit other side effects than time differences. They can be physical side channels,
e.g., electromagnetic side channels, microarchitectural, e.g., cache attacks, or purely
software-based.

Microarchitectural attacks: Microarchitectural attacks exploit the microarchitectural inse-
cure implementation to break security rings. They comprehend microarchitectural side
channels, microarchitectural fault attacks, and transient execution attacks.

Figure 1.1 illustrates the relations between these classes of attacks. This manuscript takes a
particular interest in microarchitectural side channels with port contention [RMBO22, RMS22]
and timing attacks in the browser [RML21].

6 Chapter 1. Introduction

Software
attacks

Microarchitectural
attacks

Hardware
attacks

Side
channels

Fault
attacks

Transient execution attacks

Timing
attacks

in
browsers

Port
Contention

Figure 1.1. – Visualisation of various attack classes mentioned in this manuscript, and scope
of our publications

Artifacts

Reproducible research is an essential value of this thesis. To that extent, we released all
source code and evaluation data for our works. In particular, JavaScript exploits are highly
portable by nature, and all client-side attacks can be run in the latest versions of browsers as
of 2022. We also provide the various frameworks proposed in that work, hoping it can bring a
more systematic approach to web-based side channel research. The artifacts are separated
into three repositories:

• Framework, modified browsers, and evaluation data on our survey of timer secu-
rity [RML21] are available on https://github.com/thomasrokicki/in-search-of-lost-time.

• PoCs and framework of our web-based port contention implementation [RMBO22] are
available on https://github.com/MIAOUS-group/web-port-contention.

• PoCs, framework, and classification models for sequential port contention [RMS22] are
available on https://github.com/MIAOUS-group/port-contention-without-smt.

Thesis Outline

The rest of this manuscript is divided into 5 chapters:

• Chapter 2 introduces some fundamental notions to understand the contributions of
this manuscript. In particular, Section 2.1 introduces hardware notions about modern

https://github.com/thomasrokicki/in-search-of-lost-time
https://github.com/MIAOUS-group/web-port-contention
https://github.com/MIAOUS-group/port-contention-without-smt

7

processors, especially Intel CPUs. Section 2.2 describes the architecture of web browsers.
Section 2.3 provides a formalization of timers, and examples of timers in native and web
environments. Section 2.4 introduces state of the art on microarchitectural attacks while
Section 2.5 presents a short overview of other timing attacks with a strong focus on the
browser. Section 2.6 presents the different classes of countermeasures proposed by the
industry and academia. Finally, Section 2.7 briefly introduces browser fingerprint.

• Chapter 3 details our work on a systematic approach to timing attacks and timers in
web browsers. It provides a taxonomy of browser timing attacks and countermeasures,
and statistical tools to evaluate timer security in recent versions of browsers.

• Chapter 4 describes our implementation of port contention in the browser’s sandbox. It
also provides several applications of this side channel: a high-bandwidth covert channel
and a side-channel artificial example.

• Chapter 5 introduces sequential port contention, a new development of port contention
with fewer prerequisites. We show how sequential port contention can be used in web
environments and its implication on the user’s privacy via an application on browser
fingerprinting.

• Chapter 6 concludes this thesis and opens perspectives to future work.

List of Productions 1
[RML21] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of

lost time: A review of javascript timers in browsers. In EuroS&P, pages 472–486.
IEEE, 2021. Artifacts: https://github.com/thomasrokicki/in-search-of-lost-time

[RMBO22] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. Port
contention goes portable: Port contention side channels in web browsers. In Asi-
aCCS, pages 1182–1194. ACM, 2022. Artifacts: https://github.com/MIAOUS-group/

web-port-contention

[RMS22] Thomas Rokicki, Clémentine Maurice, and Michael Schwarz. CPU port con-
tention without SMT. In ESORICS, 2022. Artifacts: https://github.com/

MIAOUS-group/port-contention-without-smt

https://github.com/thomasrokicki/in-search-of-lost-time
https://github.com/MIAOUS-group/web-port-contention
https://github.com/MIAOUS-group/web-port-contention
https://github.com/MIAOUS-group/port-contention-without-smt
https://github.com/MIAOUS-group/port-contention-without-smt

Background 2
In this chapter, we provide the necessary background to appreciate and discuss the contribu-
tions of this manuscript on microarchitectural attacks, especially in the web browser.
It is decomposed in 7 sections:

• Section 2.1 provides an overview of the execution pipeline and memory subsystem of
modern Intel processors.

• Section 2.2 presents the architecture of a web browser.

• Section 2.3 introduces an important notion for this manuscript: high-resolution timers.
In particular, it explains several techniques to build high-resolution timers in web
browsers.

• Section 2.4 explores the state of the art on microarchitectural attacks. In particular, we
present microarchitectural side channels, fault attacks and transient attacks. For each
class, we present native attacks and attacks running in the browser.

• Section 2.5 presents other timing attacks exploiting software resources, with a strong
emphasis on browser-based attacks.

• Section 2.6 explores state of the art countermeasures to side channels.

• Finally, Section 2.7 briefly introduces browser fingerprinting.

12 Chapter 2. Background

2.1. CPU Overview

This section presents a high-level overview of a modern Intel processor. CPUs are typically
built in a multi-core architecture. These physical cores are highly independent and can process
data in parallel, effectively multiplying performances. Each core contains its own execution
pipeline, able to fetch instructions and execute them, as well as an on-core memory subsystem.
Cores communicate with other cores through a ring interconnect. Some components, e.g., the
RAM are shared by all physical cores.

2.1.1. Execution Pipeline

Pipelining is an essential model of modern processor architecture. A simplified RISC architec-
tural pipeline can be decomposed into 5 stages:

Instruction Fetch: fetches, i.e., loads, an instruction in the pipeline.

Instruction Decode: translates this instruction and address registers.

Execute: sends the instruction to execution units and executes it.

Memory: read from memory to a register, or write a register to memory.

Writeback: store the results in a register, committing changes to the architecture.

The main idea of the pipeline is that to retrieve maximal performances, all stages of the
pipeline must function at all times. At the first clock cycle, the pipeline fetches instruction
i0. Then, at the next cycle, i0 is decoded while the pipeline fetches instruction i1. On
standard execution, each pipeline stage handles an instruction per cycle. If a stage does
not handle an instruction in a cycle, this cycle is effectively lost in terms of performance.
This stall propagates to the rest of the pipeline, and is designated as a bubble. Bubbles can
be introduced by unavailable resource or by waiting for dependencies. Modern processor
implement several mechanism to reduce this stalling times, such as out of order execution or
branch prediction.
The microarchitectural pipeline is the implementation of this architectural pipeline. Fig-

ure 2.1 illustrates Intel’s Skylake CPUs execution pipeline. It is separated into a front end,
handling fetch and decode stages, as well as a back end, handling the execute, memory, and
writeback stages. Each stage is highly parallelized, meaning several instructions are fetched,
decoded, and executed every cycle.

2.1. CPU Overview 13

L1 Instruction Cache
iTLB

Branch
Predictor

µop cache

Instruction Fetch

Instruction Queue

Decoder

Mux

Allocation Queue (IDQ)

ReOrder Buffer

Scheduler

Execution Engine

P0 P1 P5 P6P2 P3 P4 P7

int alu

int div

vect alu

vect mul

aes

int alu

int mul

vect alu

vect mul

agu

load

agu

load

store int alu

vect alu

lea

shuffle

alu

branch

agu

Load Buffer Store Buffer

L1 Data Cache

Data TLB

Unified STLB

L2 Cache

LFB

Figure 2.1. – Simplification of the execution pipeline and memory subsystem for a single
core in the Skylake microarchitecture.

14 Chapter 2. Background

2.1.1.1. Front End

The front end is responsible for fetching and decoding instructions and forwarding them to the
execution engine or back end. The Instruction Fetch Unit fetches data from the L1 instruction
cache, reading packets of 16 bytes. These packets are then split into x86 instructions by the
predecoder. These macro-operations are then forwarded to the FIFO Instruction Queue (IQ).
The IQ implements macro-op fusion. Certain combinations of x86 instructions, e.g., a compare
test and a subsequent jump, are merged into a single x86 instruction, saving bandwidth in the
rest of the pipeline. At this point, instructions vary greatly in size and can have inconsistent
encoding. The decoder decomposes instructions in atomic, fixed-length operations, called
micro-operations or µops. This decomposition is deterministic, i.e., a given instruction is
decomposed in the same µops regardless of the context. Abel and Reineke [AR19] have
characterized the decomposition of x86 instructions1. They propose a benchmarking tool
empirically measuring the number of µops decomposed from the instruction, the instruction’s
latency, i.e., the number of cycles required to execute all the instruction’s µops [Intc] or
the instruction’s throughput, i.e., the average number of cycles per instruction when the
instruction is repeatedly called [F+11]. The µops are then sent to the Instruction Decode
Queue (IDQ).

Data or control dependencies can introduce pipeline stalls, reducing the processor’s overall
performance. For instance, when executing a conditional branch, e.g., if/else instructions,
the pipeline has to wait for the conditional instruction to be executed and committed to the
architecture before knowing which branch to take. To reduce control-dependencies-based delay,
modern CPUs implemented branch prediction. Intel processors handle it with the Branch
Prediction Unit (BPU). The BPU predicts, among others, the branch taken in a conditional
branch. It implements a Pattern History Table (PHT) recording if a specific branch was taken
or not in previous executions. The PHT is indexed according to virtual address bits and
a Branch History Buffer (BHB), which stores branch decisions for all branches on the core.
The advantage of the PHT is to remember which branch was taken on multiple sequential
executions, allowing the identification of this pattern to increase the accuracy of predictions.
For instance, if a branch is taken once every two executions, simply choosing the same branch
as the last execution is insufficient. However, remembering two or more executions in the
PHT allows to identify that pattern. The processor also predicts branch targets of direct
or indirect branches before they are actually computed. The Branch Target Buffer (BTB)
stores branch targets of previous branch executions. The BTB indexation scheme is not
documented, but reverse-engineering [Hor] has shown that it uses a mixture of virtual-address
bits of the branch instruction’s address as well as previous, core-wide branches stored in the
BHB. Return targets have a specific prediction component called the Return Stack Buffer
(RSB). Similarly to the BTB, it dynamically stores the latest targets of RET instructions for
a function and uses them for prediction. Mispredictions are only detected when the actual
dependency is resolved. In that case, the pipeline is flushed, and the architecture is reset to
its previous state, then executes the accurate branch.
Due to the inconsistent sizes and forms of x86 instructions, the fetching and decoding

steps can be costly in performance and power. To optimize the front end, Intel introduced
the Decode Stream Buffer (DSB) or µop cache. The µop cache dynamically stores the
decomposition of the most frequent instructions in µops. It allows bypassing the costly
decoding phase, and delivering µops to the IDQ faster. On Skylake architecture, the µop

1All the results can be found at uops.info

https://uops.info

2.1. CPU Overview 15

cache has an 80% hit rate [Intc], significantly boosting performances. Similarly to the standard
decode queue, the µops are then pushed to the IDQ.
The IDQ implements an optimization known as Loop Stream Detector (LSD). It detects

tight loops with many iterations and automatically fits all µops directly in the IDQ without
fetching and decoding them. Such small-body-size2 and high-iterations loops are often found
in modern software, e.g., searches or string moves. It allows the prior stages of the front-end
to serve on other threads, thus improving overall performances. The IDQ delivers its µops
orderly to the back end.

2.1.1.2. Back End

At this point, µops from all threads are orderly stored in the IDQ and enter the back end.
The goal of the back end is to execute the µops in the most optimized fashion possible. To
take advantage of available resources, the backend promotes parallelism through Out of Order
exeuction (or OoO). µops are not executed in their emission order, but rather as soon as all
necessary resources are free.
µops are stored in the Re-Order Buffer (or ROB) until they are retired. The µops are sent

to the scheduler to be executed. It queues the µops and forwards them to the scheduler. At
the same level, the Branch Order Buffer (BOB) keeps track of the previous architectural
states before speculation allowing for a fast roll-back in case of mispeculation. The ROB
features many optimizations. Move Eliminations eliminates the µops of register-to-register
moves, preventing latency in the back end. Zeroing Idioms, e.g., computing XOR over the
same registers, are also eliminated from the ROB. Similarly, One Idioms, i.e., µops setting all
bits of a register to 1 are removed from the ROB, effectively causing zero latency.
The instructions are then forwarded to the scheduler. The scheduler stores µops until all

necessary resources are available e.g., the execution unit is ready, or all operands have been
loaded. The scheduler then forwards µops to the execution units.

The execution engine is composed of several execution units, each specialized in a specific
type of operations, e.g., algebraic operations for the ALUs. The number and types of execution
units vary between microarchitectures. Execution units are grouped by execution ports. Each
port leads to several specialized execution units; therefore, ports are also specialized. Figure 2.2
illustrates the 8-port structure for a Skylake processor. If possible, one µop is forwarded
to each available port per cycle. As the decomposition of an x86 instruction in µops is
deterministic, and each µop can only be executed by a specific type of execution unit, we can
determine the port usage of an instruction, i.e., the ports used by this instruction. For instance,
on Skylake processors, the imul r32 m32 instruction has a port usage of 1*p1+1*p23, i.e.,
emits a µop on P1 and a µop either on P2 or P3, as both ports can handle memory loads.

After their execution, µops are retired in an orderly fashion, and changes are committed to
the architecture. All the pipeline resources are freed during retirement, including ROB and
BOB entries or execution units. Skylake processors can commit up to 6 µops per cycle.

2.1.2. Hyperthreading

Modern CPUs are often separated into several physical cores. This boosts performance and
grants more parallelism during computation, as each core has its own execution pipeline
and low-level caches. However, most standard computation does not exploit all hardware

2typically 64 µops for Skylake

16 Chapter 2. Background

Scheduler

P0

Int/Vect ALU

I/V Mul

I/V Shift

I/V Strings

I/V Logic

FP Add, Mul

Div

AES

Branch

P1

Int/Vect ALU

I/V Mul

I/V Shift

I/V Strings

I/V Logic

FP Add, Mul

LEA

P5

Int/Vect ALU

Vect Perm

P6

Int ALU

Int Shift
Int Logic

Branch

P2

Load

AGU

P3

Load

AGU

P4

Store

P7

AGU

Figure 2.2. – Illustration of the execution unit distribution on ports for a Skylake micropro-
cessor.

resources of a physical core at the same time. To exploit the hardware resources in the most
optimized way possible, processor vendors have introduced Simultaneous MultiThreading
(SMT). SMT allows multiple independent threads to use the physical resources of a physical
core at the same time. The front end fetches instructions from all threads and execute them
independently of their origin. All threads on the physical core share their execution pipeline,
L1 and L2 caches, and bus. In addition, they have independent interruption systems and
data and instruction registers. Sharing physical components between threads can be achieved
in two settings:

Static Sharing: The component is definitively split, and a part of a component is only used
by a single thread

Dynamic Sharing: The whole component is accessible by all threads competitively

This separation of physical cores is abstracted at the OS and software level. The OS
considers each of these threads as a logical core, independent from the other logical cores.
Hyperthreading is the name of Intel’s implementation of SMT. It splits each physical core
into two logical cores. On Skylake processors, the BPU or execution units are dynamically
shared, whereas the IDQ, ROB, or µop cache are statically shared between threads.

2.1.3. Memory

During the execution, the CPU requires access to many values stored in the memory. On
a single core, the system can handle 2 (P23) memory loads and 1 (P4) memory write per
cycle for a Skylake processor. Access time to the memory is crucial as it can be one of the
execution bottlenecks. The memory subsystem is highly optimized to reduce latency. This
section presents an overview of the different components of the memory subsystem and shared
memory focusing on caches as they are an essential component of microarchitectural attacks.

2.1. CPU Overview 17

2.1.3.1. Virtual Memory

At the lowest level, RAM is indexed with physical addresses. However, processors introduced
virtual memory to bring more isolation between different processes. Processes do not directly
use the physical addresses but access them with a level of abstraction through virtual addresses.
Modern virtual memory is implemented through pages, i.e., fixed-size memory blocks. The
physical memory, respectively virtual memory, is split into physical pages, respectively virtual
pages. Intel’s processors typically use 4 kB pages, but larger pages can be requested by
processes. Both physical and virtual pages are indexed through page numbers. Virtual and
physical pages are aligned, i.e., the start of a virtual page is always the size of a physical page.
This also means that, for 4 kB pages, the 12 least significant bits of a virtual address are equal
to those of the physical address. The translation from virtual to physical address is handled
by the Memory Management Unit (MMU). The virtual-physical mapping is decomposed in
Page Tables (PT), and follows a 4 or 5-level hierarchical structure. When a processor wants
to access a virtual address, the processor looks for the appropriate Page Table Entry (PTE)
in Page Tables. This process is called a page walk. As almost any memory operation requires
a translation, the translation latency is a significant bottleneck in modern systems. Intel
implemented on-core Translation Lookaside Buffers (TLB) to lower this latency, dynamically
caching the most frequent translations. A translation served from the TLB is significantly
faster than from the standard PT structure. The TLB is often separated into an instruction
TLB (iTLB) and a data TLB (dTLB).

Virtual pages are also the base unit for Address-Space Layout Randomization (ASLR), a
standard security measure to prevent code-injection attacks. When a process starts or requires
new stack allocation, ASLR randomizes the address blocks. This implies that other processes
cannot know which virtual memory pages are used by a specific process, thus preventing
an attacker from modifying them. ASLR is also implemented on kernel-space addresses
(KASLR).

Sharing memory between processes is a critical optimization of the memory space. At the
system level, the OS implements memory deduplication. It is implemented on a content-based
approach: if several memory pages are identical, the OS frees all pages except one. This page
is set as copy-on-write, i.e., shared by all processes generating this page before the duplication.
When a process tries to write on the page, a page fault is thrown. The page is then duplicated,
keeping the original page and the modified copy for the writing process.

2.1.3.2. Caches

Caches are small memories that sit close to the CPU core. They are relatively small, typically
in the order of 1 to 10MB. As they sit close to the execution pipeline, the access latency is
significantly smaller than an access to the DRAM. The goal of caches is to dynamically store
the most used values to serve most calls from the cache and not the DRAM, thus significantly
improving performances.

Modern Intel CPUs often have three levels of caches of different sizes. The L1 cache is the
smallest and fastest, while the L3, or last-level Cache, is the biggest and slowest. Both L1
and L2 are private to each physical core, whereas the last-level cache is shared by all cores.
The last-level cache is inclusive to L1 and L2, meaning that all values in the L1 or L2 are
also stored in the last-level cache.
Modern caches follow a set-associative organization illustrated in Figure 2.3. They are

18 Chapter 2. Background

n index bits b offset bits way 1 tag way 1 data way 2 tag way 2 data

. . . 2n sets

set index

= read

= read

tag

To the execution core To the execution core

Figure 2.3. – Illustration of a 2-way set associative cache with 2n cache sets

composed of 2n cache sets, each composed of m ways. Such a cache is called an m-way
associative cache. Each way consists of a tag and 2b bytes of data. Most modern Intel caches
use b = 6 and have 64-bytes lines. The tag is computed from the memory address stored in
the cache line. The 6 least significant bits of the address are used as an offset in the data
section of the line. The n middle bits of the addresses are used as a set index, indicating in
which cache set the data must be stored. Two different addresses with the same set index are
stored in the same cache set and are called congruent addresses. When the processor fetches
an address from the cache, it first computes the set index to find the associated cache set.
Then, it checks the tags from all the m lines present in the set and compare them with the
tag computed from the wanted address. If one line has the sought tag, the data is served from
the cache, causing a cache hit. If no line in the set has the wanted tag, the data is served
from the DRAM, causing a cache miss.
The computation for the set index and the tag can be executed on the virtual address

or the physical address. In a Virtually-Indexed Virtually-Tagged (VIVT) cache, both the
tag and the set index are computed from the virtual address. This is interesting regarding
latency, as the processor does not need to translate the virtual address into a physical one.
However, this comes at a space cost, as shared memory is not shared in virtual addresses,
meaning that some data could occupy several different cache lines. The opposite solution is
to use a Physically-Indexed Physically-Tagged (PIPT) cache, where both the tag and the
set are computed from the physical address. This grants a physically-unique tag, resulting
in optimized use of cache space for shared memory but comes at a latency cost due to
address translation. This is the most commonly used addressing mode, particularly in L2
and last-level caches for modern Intel processors. Finally, some vendors proposed a hybrid
approach: Virtually-Indexed Physically-Tagged (VIPT) caches. This allows the processor to
immediately compute the cache set index to remove the latency. The tag is then computed
from the physical address while the set is looked up, thus reducing the latency. This mode is
particularly interesting when the index does not use bits from a different page. This means,
for a 4 kB page structure, the page offset is 12 bits long. As the line offset is computed of the
6 least significant bits, it leaves 6 bits to calculate the tag and stay on the same page offset,
resulting in an optimal cache size of 28 cache sets. The L1 of most Intel processors follows
this optimized structure and is composed of 2 32 kB, 8-way associative VIPT caches, one for

2.1. CPU Overview 19

the data and one for the instructions.
The design goal of the cache is to dynamically store values to reduce latency by preventing

DRAM calls. To do so, it must store new data constantly and evict previously stored data.
When new data is loaded in the cache, the cache uses a replacement policy to determine which
line must be evicted. An intuitive replacement policy is Least Recently Used (LRU), where
the data with the oldest last usage is evicted to store the new data. In practice, as this policy
requires the hardware implementation of a timestamp for each cache load, processors used
a pseudo-LRU policy with an approximation of last-used timestamps. However, this policy
is suboptimal in some instances. For instance, when the user is browsing a congruent set of
addresses larger than the cache associativity, all calls will result in a cache miss. Modern
processors use more complex and hybrid solutions to adapt to various situations.

2.1.3.3. DRAM

Rank

row buffer

row buffer

Rank

row buffer

row buffer

DIMM

column

row

Figure 2.4. – Organization of a DRAM DIMM. It is composed of two ranks, each handling
two banks. Each bank is composed of 3 columns and 2 rows.

Dynamic Random Access Memory (DRAM) is the main memory component in modern
computer systems. Its access time is significantly higher than the cache’s, but it can store
more data. When loading an address, the processor first checks if the address is cached. If
not, it then loads it from the DRAM. The processor handles DRAM with an on-chip memory
controller. The memory controller communicates with the DRAM through one or more
parallel channels. The DRAM is organized in Dual Inline Memory Modules (DIMMs). One or
more DIMMs can be connected to the same channel. Figure 2.4 illustrates the organization
of a DIMM. DIMMs are separated into one or two ranks, corresponding to the physical sides
of the module. Each rank handles 16 banks on DDR4 and 32 on DDR5. The bank manages
the actual memory, typically decomposed in 217 rows and 213 columns. The mapping of
an address to channel, DIMMs, rank, and bank is not documented for Intel but has been

20 Chapter 2. Background

reversed by Seaborn et al. [Sea] on a Sandy Bridge processor and by Pessl et al. [PGM+16] in
2016 by exploiting a timing side channel. More recently, Wang et al. [WZCN20] introduced
DRAMDig, a generic tool to reverse the address mapping of documented Intel processors.

When the processor wants to load a value from the DRAM, it looks for the corresponding
channel, DIMM, rank, bank, and row. It then opens the row, i.e., copies the whole row to
the bank’s row buffer. The processor then reads the sought-after column from the row buffer.
Repeatedly reading data from the same column always loads data from the row buffer without
reloading it. However, reading data from the same bank but another row flushes the row
buffer and loads the new row.
The DRAM’s cells hold a volatile charge that decreases over time. When this charge gets

under a threshold, the bit held switches from 1 to 0. Therefore, all the data in a cell is
regularly refreshed to prevent data loss. This refresh interval is 32ms in DDR4.

2.1.3.4. In-Flight Data

In-Flight Data are pieces of data temporarily stored in special buffers outside of the standard
memory subsystem.

Store Buffers (SBs) are small buffers, connected to the store port and the L1 Data Cache.
They aim at tracking pending stores. They implement the store-to-load optimization: the
processor speculates if a load and a store have the same physical address before their translation
from virtual address. If so, it will send data from the store buffer to the load buffer.
The Line-Fill Buffer (LFB) is a small buffer (typically 10 entries) handling outstanding

memory accesses. CPU can speculatively load data from the LFB when it is not found in the
L1 cache.

2.1.4. Hardware Performance Counters

Hardware Performance Counters (HPC) are special registers built in the micro-architecture of
modern CPUs. They collect information about microarchitectural events at runtime, and are
accessible from the software [Wikb]. They monitor various events, e.g., cache hits, misses,
µops dispatched by ports. Initially used for debugging purposes, they can be used to evaluate
the behavior of the microarchitecture at runtime.

2.2. Web Browsers

This section provides the necessary background on modern browsers’ architecture to understand
the attacks described in this manuscript. This thesis mainly focuses on two different browsers:
Google Chrome and Mozilla Firefox. To that extent, we will provide more depth about these
two browsers, but some generic aspects of browser architecture or microarchitectural attacks
may be implementable on more browsers with some fine tuning. Furthemore, many browsers
are forks of Chrome (e.g., Brave, Opera, or Microsoft Edge) or Firefox (e.g., ToR Browser)
and architectural design or components remain the same. Firefox and Chrome represent 75%
of the market share of dekstop browser. If we count all Firefox-based and Chrome-based
browsers, this marker share reaches 91%.

2.2. Web Browsers 21

JavaScript Engine XML Parser

Renderer

Browser Process

Network Stack

Plugins

Display

User Interface

Figure 2.5. – Simplification of the structure of a modern web browser

2.2.1. Browser Architecture

Browsers are complex software composed of many different processes. Although Chrome and
Firefox vary significantly in architecture, they have a similar high-level architecture illustrated
in Figure 2.5.

Browser process: The browser process, or browser engine, is the central component of the
web browser. Its main task is to allow communication between all components and
synchronization and handle privileged options such as local file accesses. It is directly
communicating with the User Interface (UI).

User Interface: The UI encompasses all the browser’s components presented to the user, e.g.,
the URL bar, previous and next buttons, or the settings menu.

Network stack: The network stack is responsible for fetching the URLs provided by the user
and forwarding the result to the browser process.

Rendering engine: The rendering engine, or renderer, controls the actual webpage in the
browser. It is responsible for parsing the HTML/CSS code sent by the server and
displaying it. The rendering engine parses all HTML code with the XML parser into
a tree-like interface called Document Object Model (DOM). The Document node is
the top node of the tree, and each element displayed on the page is a node below in
the tree. In the meantime, the rendering engine parses the CSS attributes of the site,

22 Chapter 2. Background

essentially controlling the layout of the displayed page. Both the UI and the rendering
engine are responsible for the display component of the browser, i.e., what the users see
on their screen. The rendering engine is also responsible for parsing scripts in the page
and sending them to the JavaScript engine. Chrome uses the Blink rendering engine,
except on iOS versions where it uses WebKit. Firefox’s rendering engine is called Gecko
and is developed internally by Mozilla.

JavaScript engine: The JavaScript engine is the main component of client-side scripting
on the web. It inputs client-side scripting code and compiles it to native machine
code at runtime. Client-side code handles all interactions between the user and the
webpage without communicating with the server. It typically handles forms, animations,
modifications to the DOM, and generally makes the page dynamic. We will provide
more details on client-side computing in Section 2.2.2.

As the webpage is an interactive environment, the renderer process is highly event-oriented.
The browser must react to users’ inputs. To handle asynchronicity, the renderer implements
an event loop. The event loop is a FIFO queue, where each asynchronous event is registered.
When browser resources are available, it will pop the first ready asynchronous event and
execute the callback function. Modern renderer processes contain several event loops with
different priorities, handling DOM events, network requests, or page repaints.

This multi-process architecture is also parallelized in the browsers. Each tab or origin runs
its own renderer process, along with JavaScript engine, XML parser, or event loops. This
allows more performant browsers, as processes cannot block each other’s execution through
the event loop. For instance, if a tab goes unresponsive because of heavy computations, the
other tabs are not affected by the slowdown. It also grants more isolation between contexts.
However, as some common infrastructure, e.g., JavaScript engine, are duplicated, having
several processes can result in higher memory usage.

2.2.2. Client Side Languages

To enhance user experience with more dynamic pages, most websites encompass scripts aimed
at being executed locally in the users’ browsers. This provides faster computation, without
the delay introduced by network computation, and reduces the servers’ workload. JavaScript
is the most used client-side scripting language, but other languages are used to fill specific
needs. This section presents the necessary background on the principle and execution of
JavaScript and WebAssembly, as they are the languages used in our attacks.

2.2.2.1. JavaScript

JavaScript is a lightweight, high-level scripting language. It is used as the client-side scripting
language for most websites [w3t], but is also used in back-end programming with Node.js, man-
aging databases, or as a framework to develop webpages. This section focuses on JavaScript’s
use as a web client-side language. JavaScript is defined by the ECMA standards [ECMc]
as a single-threaded scripting language. However, due to its usage in web browsers, it has
been enriched with APIs to manage multi-threading, DOM manipulation, animations, and
many browser-specific features. Most of these applications are also standardized by the
ECMA [ECMd]. For security reasons, JavaScript is executed in a secured environment, also

2.2. Web Browsers 23

Renderer

JavaScript
code Parser

AST
Interpreter

Bytecode
JIT Compiler

Machine
Code Native execution

Figure 2.6. – JavaScript execution in the engine.

called a sandbox. JavaScript scripts have no access to virtual or physical addresses, native
instructions, reads or writes on the filesystem, or to system information.
JavaScript engines use Just-In-Time compilation, i.e., they compile the code directly at

runtime and not beforehand. The translation from JavaScript to machine code in the browser
is handled by the JavaScript engine, e.g., v8 [Gooe] for Chrome and SpiderMonkey [Mozb]
for Firefox. The translation from JavaScript to executable machine code is decomposed in
several stages illustrated in Figure 2.6. The JavaScript is first parsed into an Abstract Syntax
Tree (AST), i.e., a formal tree representation of the code. This AST is then used to generate
bytecode, i.e., intermediary abstract code. At this point, the code is still portable, but the
bytecode is loaded in memory and specific to a JavaScript engine. Both v8 and SpiderMonkey
use a stack-like register machine [Mozc, Goof] to be as close to actual machine code as possible.
Chrome’s v8 use a parser and interpreter called Ignition [vba].

This bytecode is then compiled just-in-time to executable machine code. The JIT compiler
introduces many different optimizations to the code, e.g., redundancy elimination, inlining,
caching, or speculating on operand types. Firefox’s JIT compiler is known as Warpmon-
key [Mozb], and Chrome’s is known as TurboFan [vbc].

2.2.2.2. WebAssembly

WebAssembly is a portable binary-code language standardized by the W3C [W3C]. It is
designed to be used as a client-side language of the web, in addition to JavaScript. It is a
bytecode-like language aimed at being run in a portable stack virtual machine to offer better
performance than JavaScript. WebAssembly can be compiled directly from other languages,
e.g., C or Rust, or written in the wat text format, an assembly-like S-expression representation
of the binary code. It is built as a stack machine and has its own memory pages. To this
day, WebAssembly supports more than 200 standardized instructions, including algebraic
operations, memory management, and SIMD operations. WebAssembly is executed in the
JavaScript sandbox and suffers from the same security restrictions.

WebAssembly is also compiled by the browser’s JavaScript engine. However, WebAssembly
being a binary language, the source files are already bytecodes. Thus, instead of being
interpreted, they are directly compiled. Chrome’s v8 implements a two-tiered compiler for
WebAssembly illustrated in Figure 2.7. It is composed of Liftoff [vbb], a simple one-pass
compiler. Liftoff has the advantage of swiftly compiling the WebAssembly bytecodes to reduce
pages’ startup time. TurboFan is also used to compile WebAssembly to machine code. It is
a slower compiler but brings significant performance optimizations. When a WebAssembly
script is loaded on a page, it is first quickly compiled by Liftoff, while the slower TurboFan
compiles a more optimized version of the code. When the second compilation is done, the
browser executes the optimized version. Firefox’s SpiderMonkey uses a similar two-tiered
compilation for WebAssembly, using a fast, one-pass compiler called RabaldrMonkey [Moza]
and an optimized compiler, BaldrMonkey.

24 Chapter 2. Background

Startup

Time

Optimized compilation

One-pass compilation Unoptimized execution Optimized execution

Figure 2.7. – Illustration of WebAssembly two-tiered compilation: the one-pass compiler
compiles WebAssembly swiftly to reduce startup time, then when the optimized
compilation has finished, the execution switches to the optimized compiled
code.

2.3. High-Resolution Timers

Side-channel attacks often rely on small timing differences to infer sensitive data. A common
prerequisite for these attacks is to be able to distinguish events in the order of the nanosecond.
To do so, the attacker needs to have access to high-resolution timers. This section provides
an overview of high-resolution timers, particularly in the restricted JavaScript sandbox.

2.3.1. Definition

In this manuscript, we call a timer, or a clock, a tool that differentiates two events based on
their respective timings. To do so, a timer relies on an operation that needs to:

• Be constant over time to provide a reliable non-varying unit of time.

• Be free running to allow the computation of time differences without blocking the
program execution.

We call clock edge the moment where a constant time operation ends and the next starts.
A timer can differentiate two events if each crosses a different number of clock edges. The
duration of the constant time operation is the smallest amount of time this timer can measure,
i.e., its resolution.

2.3.2. High-resolution Timers in Native Environments

Intel x86 processors propose the time stamp counter, a 64-bit register counting the number
of cycles since its last reset. The x86 rdtsc [Intd] instruction allows an unprivileged user to
read and return the value of the time stamp counter.
This timer is cycle accurate, meaning it has a resolution of a single CPU cycle. It is the

smallest time unit available for the processor. However, cycles are, by design, dependent on
the CPU frequency. For instance, power-saving policies can reduce the processor frequency
when the workload is low, reducing rdtsc resolution.

Out-of-order execution can also introduce significant overhead or randomness to the mea-
surement. In particular, to measure a specific operation, we call rdtsc before and after

2.3. High-Resolution Timers 25

executing the operation. The difference between the two timestamps will correspond to the
execution time of our operation in cycles. However, because of out-of-order execution, the
processor will often execute both calls to rdtsc one after the other to boost performances. In
that case, the difference in the timestamps is not the execution time of our operation. Adding
mfence before and after each call to rdtsc prevents re-ordering [Intb].

2.3.3. High-resolution Timers in Web Browsers

Client-side languages of the web are executed in a heavily-restricted sandbox. This sandbox
prevents access to native x86 instructions. Thus, attackers sitting inside of the JavaScript
sandbox do not have access to rdtsc or other native cycle-accurate timers. JavaScript offers
access to built-in timing sources, but academics have also leveraged other functionalities to
create auxiliary timers.

performance.now() The JavaScript High-Resolution Time API [Gri] offers access to the
performance.now() method, which returns a high-resolution timestamp. The timestamp value
represents the time elapsed since the beginning of the current document lifetime in ms, initially
with a resolution in the order of 1 ns.

For security reasons, performance.now()’s resolution has evolved over time. However, in
2017, Schwarz et al. [SMGM17] demonstrated that it is still possible to recover high-resolution
timers regardless of the base resolution by using clock interpolation. The idea behind it is
straightforward: one counts the number of times a shorter non-free running operation can be
executed. We refer to such an operation as a tick. This tick can simply be writing repeatedly
some data to memory or increasing a custom counter by one. In this manuscript, we use a
simple JavaScript variable increment.

Time

Clock period

Event 1 TickTick TickTick TickTick TickTick

(a) The interpolated time is 4 ticks.

Time

Clock period

Event 2 TickTick TickTick TickTick

(b) The interpolated time is 3 ticks.

Figure 2.8. – Clock interpolation: Counting the number of ticks between the end of the
event and the end of the clock period. Even if both events are shorter than
the clock period, we can distinguish them by their interpolated time: event 1
has an interpolated time of 4 ticks, whereas event 2 has only 3 ticks.

Figure 2.8 provides an example of how timer interpolation works. Events 1 and 2 have a
shorter execution time than the clock period i.e., the resolution. Interpolation is then needed
to differentiate them based on their timing. By running events at the beginning of a clock
period and counting ticks when they are finished, we can conclude how fast each of them is
when the next clock edge is reached. The more ticks are counted, the faster the event is. In
Figure 2.8, Event 1 is faster than Event 2 as it has 4 ticks against 3. It should be noted that
the interpolated timer is equivalent to a timer with a resolution equal to the duration of a
tick.

26 Chapter 2. Background

SharedArrayBuffer Initially a single-threaded language, JavaScript has evolved into a
multi-threaded paradigm. ECMA2017 introduced the SharedArrayBuffer API [ECMb] to
accelerate computations between threads. It allows creating an array shared between the
main thread and a sub-thread, or web worker. First implemented in Firefox 46 and Chrome
60, Schwarz et al. [SMGM17] used them to build a high-resolution timer. The generic idea
of using shared array to build clocks has also been exploited natively when high-resolution
timers were not available [LGS+16, LHS+20].

Time

Main Thread

Clock thread

SharedArrayBufferInit Clock

Init Sab Tick Tick Tick Tick Tick

Timestamp Timestamp

Figure 2.9. – Simple SharedArrayBuffer based clock: To time an event, the main thread
evaluates the shared value before and after its event.

Figure 2.9 illustrates a simple SharedArrayBuffer-based clock. The attacker creates a clock
web worker and shares a SharedArrayBuffer between the threads. The clock thread is an
infinite loop, perpetually incrementing a value in the SharedArrayBuffer. This value can be
consulted at any time by the attacker and represents a timestamp. The resolution of this
timer is very high as it is of the order of the computation time of a shared operation, such as
incrementing or reading a shared variable.

Other sources of timing The W3C standards describe other API timers accessible in
JavaScript, such as Date.now() [Cond], Window.requestAnimationFrame() [Coni] or Window.
setTimeout() [Conj], but they offer a resolution lower than the one of performance.now().
Schwarz et al. [SMGM17] also designed other auxiliary timers. They presented clocks based
on CSS animations. An attacker can run JavaScript code at each screen refresh, i.e., every
16.66ms for a typical refresh rate of 60Hz, thus this can be used for interpolation as well.
This is equivalent to using Window.requestAnimationFrame() directly in JavaScript.

2.4. Microarchitectural Attacks

In this section, we present an overview of microarchitectural attacks. They exploit the
microarchitecture’s optimizations to pass through software security barriers. We present three
types of attacks:

Side Channels: the attacker exploits timing differences caused by the microarchitectural
state.

Fault Attacks: the attacker actively injects faulty values in the microarchitecture.

Transient Execution Attacks: the attacker exploits instructions that are computed but never
actually committed to the architecture.

2.4. Microarchitectural Attacks 27

Most of these attacks share a common threat model, where the attacker is running code on
the victim’s hardware. This can be an unprivileged native process or an attacker sitting in the
JavaScript sandbox. Microarchitectural attacks exploit shared resources between legitimate
and malicious processes.

2.4.1. Microarchitectural Side Channels

This subsection describes microarchitectural side channels. They leverage differences in
hardware behavior caused by microarchitectural optimizations to leak sensitive information.
They can be modeled as channels between two entities, similarly to network communication.
An attacker can exploit these microarchitectural channels to communicate between two
attacker-controlled entities with a covert channel. If an attacker creates a channel with a
victim-controlled entity, leaking data unknowingly, this channel is a side channel attack.

Co-residency between the attacker and the victim is a significant part of the threat model.
An attacker sitting on the same core as the victim can exploit on-core resources, e.g., CPU
ports, to mount attacks, whereas an attacker sitting on a different core is restricted to
cross-core components, e.g., the ring interconnect. Microarchitectural attacks can also be
mounted cross-CPU, targeting components shared between processors, i.e., DRAM for large
cloud environment.

2.4.1.1. Cache attacks

Cache attacks are a group of timing attacks exploiting the internal state of the CPU caches
to leak information. The attacker modifies and monitors the cache state to spy on the victim
process or create a covert channel. Cache attacks have been greatly explored, and several
different attack primitives exist. As L1 and L2 caches are split between cores and the last-level
cache is shared between all cores, cache attacks include on-core, cross-core and even cross-CPU
attacks.

In native environments Hu [Hu92] mentioned for the first time the possibility of exploiting
the cache state to mount attacks. They built a covert channel, allowing internal communication
in the VAX security kernel. Cache attacks have largely been used to attack cryptographic
implementations. The idea of exploiting timing differences resulting from the cache state
was mentioned by Kocher [Koc96] and Kelsey et al. [KSWH00]. They analyzed various
side-channel techniques on S-Box cryptography and highlighted the potential of attacks based
on the cache hit ratio. This attack scenario was applied by Bernstein [Ber05] on AES. By
exploiting how secrets were used as indexes in arrays, they recovered secret keys based on AES
design and not exploiting a specific implementation. Osvik et al. [OST06] standardized the
approach of cache attacks. Their attacks were mounted on real-world implementations of AES,
such as OpenSSL or Linux’s dm-crypt. By defining attack primitives, such as Prime+Probe
or Evict+Time, they paved the way for a systematized approach to cache timing attacks. We
will now describe the most common cache-attack primitives.

In Evict+Time [OST06], the attacker evicts a specific cache set s and then times the
execution of the attacked function. If this execution time is longer than usual, then the
function accessed data stored in s. This attack has a major prerequisite: the attacker must be
able to repeatedly trigger the attacked function. It has a resolution of a single cache set. Osvik
et al. [OST06] have been the first to exploit Evict+Time in an attack against OpenSSL’s

28 Chapter 2. Background

AES device encryption in 500 000 samples, running in half a minute. Hund et al. [HWH13]
leveraged Evict+Time to circumvent kernel space ASLR. By setting privileged code portions in
the cache using system calls, accessing a set of user-space designated addresses, then rerunning
the system calls, they can gather timing differences created by the cache state. If the second
execution of the system calls is longer than the first, then the user-space addresses have evicted
the privileged addresses. Due to cache indexation being based on addresses, this difference
in timing leaks information on the physical or virtual addresses of the system-call addresses.
Evict+Time has also been proven applicable to other microarchitectures. In particular,
Spreitzer and Plos [SP13] mounted an attack on unaligned AES T-tables, managing to recover
the private key in the first AES round. This attack was applied to ARM microarchitectures,
particularly on mobile devices. It was mounted from an unrooted user on a Google Nexus S
smartphone.

1: Flush

3: Reload
2: possible victim activity

Attacker addresses Cache Victim addresses

Figure 2.10. – Flush+Reload attack.

In Flush+Reload [YF14], an attacker can monitor a single cache line. Figure 2.10 illustrates
the workflow of the attack. The attacker regularly flushes data from a specific cache line with
the native clflush instruction and measures the time it takes to reload the same data after a
short time. As Intel’s caches are inclusive, the data is also flushed from the L2 and L1 caches.
If the reload time is short, i.e., a cache hit, the data has been reloaded in the cache by the
victim. If it is long, i.e., a cache miss, the data is not in the cache, thus, the victim process
did not access it. This attack offers a single cache line spatial resolution and shows the best
accuracy of existing cache attack primitives. It, however, has three major prerequisites:

• Access to the native instruction clflush.

• Inclusive caches.

2.4. Microarchitectural Attacks 29

• Shared data between the attacker and the victim.

The first attack in the Flush+Reload category was proposed by Gullash et al. [GBK11] in
2011. They recovered OpenSSL’s AES secret keys in under 100 encryptions. Yarom and
Falkner [YF14] standardized Flush+Reload and used it to mount an attack against RSA.
Flush+Reload has been leveraged on attacks against AES implementations [GBK11, IIES14,
AIES15, AES15, GIA+15, GSM15, AAG17, SS20], DSA [YB14, BvdPSY14, vdPSY15, ANT+20]
or PAKE [BFS20, BFS21]. Flush+Reload attacks have also been applied to other microar-
chitectures, most notably ARM smartphones [LGS+16] in a variant named Evict+Reload.
In this attack, the Flush phase is replaced by a cache eviction. By filling a cache set with
its own value, the attack can remove other addresses in the cache, effectively equivalent to
using clflush when the instruction is not available. Flush+Flush [GMWM16] is a variant of
Flush+Reload where the Reload phase is replaced by another call to clflush. By measuring
the execution time of flushes, the attacker can determine whether new addresses have been
set in the cache.

Attacker addresses Cache Victim addresses

2: possible victim activity

1: Prime
3: Probe

Figure 2.11. – Prime+Probe attack.

In Prime+Probe [OST06], the attacker first fills a cache set s with its own data (Prime).
Then after a short time, it times the load of its data (Probe). If the reload time is short, i.e.,
only cache hits, it means that all the attacker data are still standing in the cache, thus the
victim process has not loaded data stored in s. If the reload time is long, some attacker data
have been evicted from s, i.e., the victim has loaded data stored in the monitored cache set.
This attack offers a spatial resolution of a cache set, lower than Flush+Reload. However, the
requirements are less constraining as the attack does not require access to native instructions
or shared memory, allowing its usage in systems where an attacker cannot mount Flush+
Reload. The main prerequisite for this attack is to build an eviction set, i.e., a set of data
congruent to the victim, able to fill a specific cache set. Prime+Probe initially focused on the
L1 cache, as building an L1 eviction set is trivial. As the L1 is virtually indexed, the attacker
just selects addresses with the same index bits in the virtual address. Percival [Per05] was

30 Chapter 2. Background

the first to leverage it in an attack against RSA. L1 cache has been target by attacks against
AES [OST06, NS06, OST06, BEPW10] or digital signatures [BH09, ABG10].

Creating an eviction set for the last-level cache is not a trivial task. As the last-level cache
is indexed on the physical address, the attacker cannot determine the index bits of addresses.
Liu et al. [LYG+15] proposed an algorithm to empirically create a minimal eviction set for
an arbitrary cache set that is oblivious to memory addresses, thus usable in the JavaScript
sandbox. For a cache with w-way associativity, we need at least w congruent addresses to
evict a cache set. The algorithm is detailed in algorithm 1.

Algorithm 1: Naive algorithm to find an eviction set for
a specific address.

1 Let A be a buffer in virtual memory, covering all the cache
lines;

2 Let x be the address we want to evict;
3 Let τ be the threshold to distinguish a cache hit from a

cache miss;
4 while | A |> w do
5 Access all the values in A to evict the whole cache;
6 Access x to set it in the cache;
7 Let y be a value selected at random in A. Access A\y ;
8 Let t be the access latency for x;
9 if t < τ then

10 The call was a cache hit and x was not evicted from
the cache → y was a part of x eviction set;

11 else
12 The call was a cache miss, x was evicted → y was

not a part of x eviction set;
13 Let A = A\y ;
14 end
15 end
16 Return A;

This algorithm creates a minimal eviction set for an address x by reducing a large, cache-
filling buffer A. It removes a randomly selected address y at each step, then tries to evict x
by browsing the set. If x is evicted, y is not necessary to build a minimal eviction set and
can be safely removed. If x is not evicted, y is necessary to build a minimal eviction set. It
is added back to A. We repeat this process until we reach | A |= w. It has a complexity of
O(| A |2) memory accesses and O(| A |) time measurements.

Vila et al. [VKM19] proposed an enhancement illustrated in algorithm 2. Based on group
tests [Dam06], it separates the initial set A in w + 1 subsets. Instead of testing a single
address at a time, it tests one of the subsets. At each set separation, there are w values in
the final eviction set and w + 1 subsets, so at least one of the subsets does not contain a
significant value. At every cache miss, 1

w+1 of A is removed. This algorithm has a complexity
of O(w2 | A |2) memory accesses and O(w2) time measurements.

2.4. Microarchitectural Attacks 31

Algorithm 2: Group testing reduction for finding eviction
sets on a cache with w-way associativity.

1 Let A be a buffer in virtual memory, covering all the cache
lines;

2 Let x be the address we want to evict;
3 Let τ be the threshold to distinguish a cache hit from a

cache miss;
4 while | A |> w do
5 Divide A in w + 1 size-equivalent subsets;
6 let C be one of the subset;
7 Evict the whole cache;
8 Access x to set it in the cache;
9 Access A\C ;

10 Let t be the access latency for x;
11 if t > τ then
12 The call was a cache miss, x was evicted from the

cache. C did not contain any of the addresses in
the eviction set;

13 Let A = A\C ;
14 else
15 The call was a cache hit, x was not evicted: C

contains at least one address of the eviction set;
16 end
17 end
18 Return A;

With the introduction of an algorithm to build an eviction set for the last-level cache, new
attacks exploiting Prime+Probe appeared, targeting the last-level cache. It allows to mount
cross-core attacks in environments where Flush+Reload is not implementable, e.g., cloud
environments. Zhang et al. [ZJOR11] exploited Prime+Probe in the cloud to monitor other
containers running on the same hardware. Maurice et al. [MWS+17] used Prime+Probe to
mount a 45 kB/s covert channel on Amazon EC2 cloud. It also has applications in secured
enclaves such as Intel SGX [SWG+17, BMD+17].
Another critical factor of eviction-based cache attacks in the browser is the need to evict

the set reliably, i.e., to evict the whole set rapidly and with a high probability. To do so, the
attacker needs to consider the cache replacement policy. For a w-way associative cache, we
have an eviction set A = {a1, . . . , an}. In a simple LRU policy, linear access a1, a2, . . . , an
with n = w is sufficient to reliably evict the whole set as each access to an address of A
evicts a single address in the cache set. However, modern caches use more complex hybrid
replacement policies, and a simple linear access pattern may not be sufficient. The attacker
needs to access the eviction set in an optimized way for a specific replacement policy. We
refer to this access pattern as an eviction strategy. Optimal eviction strategies vary with
processor generation, cache associativity, or size. Gruss et al. [GMM16] propose a heuristic
to find fast and reliable eviction strategies in JavaScript. They propose three parameters
to modelize eviction strategies. The first is the number of repetitions for each address. For
instance, accessing a1, a1, a2, a2, . . . , an, an is on average 33% faster than a simple linear access
on a Haswell processor. The second parameter represents a sliding window on the eviction

32 Chapter 2. Background

set to repeatedly access subsequences of the eviction set, e.g., a1, a2, a1, a2, a3, a4, . . . , an.
Finally, the last parameter represents the step/overlap of the sliding window. By varying
these parameters, Gruss et al. were able to get a 99.9% eviction rate with a faster eviction
time than simple linear access on a Haswell i7-4790. An attacker can find the best eviction
strategy to mount Prime+Probe attacks by empirically determining the best set of parameters
for a particular system. However, this computation can be time-consuming, and Gruss
et al. [GMM16] decompose it into an offline phase, where the best strategies for most systems
are determined, and an online phase where the attacker tests previously computed strategies
to isolate the most suitable.
Other cache attacks variants have been proposed to fit different threat models. Irazoqui

et al. [IES16] propose Invalidate+Transfer, a new cache attack primitive working in a cross-
CPU setting. It targets the coherency directory protocol of CPU interconnects. The attacker
and victim sit on two different CPUs with different cache hierarchies but share a memory block.
In the Invalidate phase, the attacker invalidates a block in their hierarchy, e.g., by flushing it.
The directory protocol of the interconnect sends a message to other CPU’s caches sharing
this block to uncache it. Then, in the Transfer step, the attacker reaccesses the memory
block. If another processor cached this block between the two steps, the directory is updated,
resulting in a fast direct transfer access. If no other processors have accessed the block, the
access is served from the DRAM, resulting in a longer access. This attack was leveraged to
extract ElGamal keys on a shared AMD Opteron server. Prime+Abort is a variant of Prime+
Probe introduced by Disselkoen et al. [DKPT17]. It replaces the timing phase of Prime+
Probe by leveraging aborts from Intel hardware transactional memory implementation TSX,
allowing to mount this attack on systems without access to high-resolution timers. Purnal
et al. [PTV21] introduced Prime+Scope, a variant of Prime+Probe offering a higher time
precision while having a similarly general threat model. The Prime phase is similar to Prime+
Probe. Instead of probing the whole cache set for results, the attacker accesses the eviction
candidate in the L1 cache. This prevents the observer effect, where the measurement of the
attacker modifies the state of the victim’s cache. For the attack to work, the attacker and the
victim must share a last-level cache but not a L1 cache, i.e., sit on different cores.

In web environments Restrictions introduced by the JavaScript sandbox mitigate the
implementations of some cache-attack primitives. In particular, the lack of access to native
instructions and shared memory prevents the implementation of side channels based on Flush+
Reload or Flush+Flush. Oren et al. [OKSK15] introduced the first cache-based side channel
in the JavaScript sandbox. This attack is based on Prime+Probe and has been used to track
the victim’s browsing behavior. In particular, an attacker could monitor the cache state using
Prime+Probe to determine which websites were browsed by the user in real-time.
Oren et al.’s attack uses Liu et al.’s algorithm [LYG+15], described in Algorithm 1 to

build an eviction set for a target JavaScript variable. They proposed optimizations for this
algorithm by considering the page structure. The addresses of the consecutive elements of the
page are consecutive. Most modern processors have a cache line size of 64 bytes, meaning the
offset requires bitoffset = 6 bits to encode. Knowing our array is composed of 4 kB, we can
compare the last bitpage = 12 bits of addresses on a same page. This means we can guess the
bitpage − bitoffset = 6 least significant bits of the cache index. Two addresses are congruent if
they share the same index bits, so we can assume only one in 26 can be congruent with a
particular set. Using this in the algorithm, we can only check the subset of possibly congruent

2.4. Microarchitectural Attacks 33

addresses, i.e., 1 in 64, speeding up considerably the algorithm.
Gras et al. [GRB+17] leveraged a JavaScript-based Evict+Time to fully break ASLR from

a virtual environment. Genkin et al. [GPTY18] used a WebAssembly-based Prime+Probe to
extract ElGamal, ECDH and RSA decryption keys from Google’s End-to-End [Gooa] and
OpenPGP.js [Ope] JavaScript cryptographic libraries. Shusterman et al. [SKH+19] define
cache occupancy, a last-level-cache-wide Prime+Probe. By monitoring the usage of the whole
last-level cache, they create memorygrams to identify which sites are being browsed by the
user without building an eviction set. Shusterman et al. [SAO+21] mounted a Prime+Probe
side channel entirely running in CSS and HTML, working in browser environments without
JavaScript. They show how current browser restrictions, mainly based on JavaScript, can be
circumvented to still fingerprint the website browsed by the users.

2.4.1.2. Cross-CPU attacks

Cross-CPU attacks target components that can be shared between different CPUs on the
same system, e.g., DRAM. They mainly target multi-CPU environments, e.g., the cloud or
portable Systems on a Chip (SoC), but can also be used in single-CPU environments in a
cross-core setting.
DRAMA [PGM+16] is a side channel based on DRAM bank row buffer collisions. By

exploiting the timing difference caused by row conflicts, the authors created a low-noise covert
channel with a bandwidth of 2MB/s. The receiver times the access to a specific address in
the DRAM. To send a 1-bit, the sender accesses a different address in the same bank but in a
different row. This causes a row conflict, thus a slower access time for the receiver. To send a
0-bit, the sender simply idles for a fixed time. DRAMA also proposed a side-channel attack.
By identifying rows used by the victim in secret-dependent computations, the attacker can
infer sensitive data. First, the attacker accesses an address in the targeted bank but in a
different row than the victim’s address. Then, it waits a short time for the victim to compute.
Finally, it times the reaccess to its address. If the access is longer, it means a row conflict
happened, i.e., the victim accessed an address in the targeted bank. This attack allows the
attacker to monitor in real-time the victim’s keystrokes.

The DRAM covert channels have also been exploited from the JavaScript sandbox. Schwarz
et al. [SMGM17] implemented a covert channel based on DRAM row conflicts running from a
native component to a JavaScript process. This sandboxed implemation brought challenges on
fast cache eviction, as values served from the cache do not reach the DRAM and cannot cause
conflict. Schwarz et al. also proposed a heuristic for address selection. JavaScript does not
offer access to virtual or phyisical addresses. They exploited the on-demand heap allocation of
JavaScript. These pages are backed by 2MB Transparent Huge Pages. By browsing through
a large array, the JavaScript receiver can detect a delay caused by a page change, indicating
that the accessed address is at the start of a new page, i.e., the 21 least significant bits of the
addresses are 0, granting information on the associated DRAM bank.

2.4.1.3. Cross-core attacks

Cross-core attacks target microarchitectural components shared between all cores, e.g., last-
level cache, ring interconnect, or the DRAM. A cross-core attacker can target processes that
do not achieve core co-residency.
Evtyushkin and Ponomarev [EP16] proposed a covert channel based on Random Number

34 Chapter 2. Background

Generation in Intel ISAs. It transmits information by creating contention on the Conditioner
Buffer, which holds 4 64-bits random values. If values in this buffer are exhausted, it introduces
a delay to regenerate them. The receiver times the rdseed execution. To send a 1, the sender
exhausts values of the Conditioner Buffer, thus slowing down the receiver’s rdseed. This
cross-core covert channel shows a resolution of 100 kbit/s.
Paccagnella et al. [PLF21] proposed to mount side-channel attacks on the On-Chip Ring

Interconnect. The attacker can create ring contention by "bombarding" specific ring regions
with traffic. This contention causes differences in timing that can be used to mount a side
channel attack against RSA implementations or to monitor keystrokes.
In the browser sandbox, Schwarz et al. [SLG19] automatically inferred microarchitectural

information in JavaScript, such as the instruction-set architecture or the used memory allocator.
Sanchez-Rola et al. [SSB18] exploited a timing side-channel based on the imperfections of
processors’ internal clocks. In particular, minor differences in the clock’s quartz crystal can
result in subtle timing differences for the same computations. By gathering execution times
of cryptographic operations, they create unique hardware fingerprints for a machine.

2.4.1.4. On-core attacks

On-core attacks target core-dependent microarchitectural optimizations, i.e., resources ex-
ploited only by processes running on a single physical core. On-core resources include the
execution pipeline and its memory subsystem, including L1 and L2 caches. These attacks
require the attacker and the victim to sit on the same physical core and thus are highly
dependent on SMT.

Port contention side channels Aldaya et al. [ABuH+19] introduced PortSmash, the
first port contention side-channel attack. Figure 2.12 illustrates how port contention can be
leveraged in a side-channel attack. As a CPU port can handle a single µop per cycle, it can act
as a bottleneck in the flow of operations. Thus, by repeatedly calling and timing instructions
with a specific port usage, a spy process can monitor µops from other threads on the same
physical core. For instance, an attacker can repeatedly call the crc32 instruction, which is
decomposed into a single P1 µop. This creates a bottleneck on P1. Next, by measuring
the instruction’s execution time, the attacker knows if instructions from other processes
co-located on the same physical core are distributed on the same port. As illustrated in
Figure 2.12a, if the attacker is the only source of µops on P1, all of its µops are executed in a
row, resulting in a fast execution time. On the contrary, if the attacker’s instruction has a
longer execution time than usual, it means that another process has issued one or more µops
to P1, as illustrated in Figure 2.12b. This difference in execution time allows an attacker to
monitor other processes’ port usage in real-time. Aldaya et al. were capable of creating and
measuring contention on P1, P5 and P0156. Their side channel offers a spatial resolution of a
single instruction. The attack is SMT-dependent, as the attacker and the victim must sit
on the same physical core and share CPU ports. Aldaya et al. exploited this vulnerability
to mount an end-to-end attack on OpenSSL’s TLS implementation and recover private keys.
In particular, they targeted the scalar multiplication code of OpenSSL 1.1.0h, in which port
usage depends on the secret. Port contention was also leveraged by Aldaya et al. to leak data
from an Intel SGX enclave.

2.4. Microarchitectural Attacks 35

Attacker

Victim

Attacker
instr

Scheduler

Port 1

A
µop

A
µop

Execution
engine

(a) Victim has not used port 1: all attacker instructions are executed in a row.

Attacker

Victim

Attacker
instr

Victim
instr

Scheduler

Port 1

A
µop

V
µop

A
µop

Execution
engine

(b) Victim emitted one µop on port 1: attacker instruction will be delayed.

Figure 2.12. – Illustration of port contention.

Other on-core sources of contention Other on-core resources have also been proven
vulnerable to side channels. The Branch Target Buffer (BTB) has been exploited to leak
cryptographical secrets [AKS07]. BTB mispredictions create a delay of a few cycles compared
to an accurate prediction. This delay can be detected in the context of a cryptographic
side-channel attack. Aciiçmez et al. propose several attack models. If the attacker and the
victim achieve core co-residency, they share a common BTB. The attacker can then constantly
clear the BTB, and cause a BTB miss during the execution of the target branch. Therefore,
there will be a misprediction in the victim process when it takes the target branch. The
attacker can then detect the delay caused by the misprediction to detect the branch taken and
infer secret data. The BTB can also be exploited in a trace-driven approach. The attacker
regularly executes branches BTB-congruent with the targeted branch. When the victim
takes the targeted branch, one of the attacker branches is evicted from the BTB set resulting
in a misprediction. By creating a trace with the execution times of all its branches, the
attacker can detect mispredictions and create a real-time trace of the victim branch accesses.
Evtyushkin et al. [EPA16] exploited a BTB side-channel to de-randomize virtual addresses
in ASLR. By creating BTB set collisions between the attacker process and user-controlled
kernel calls, the attacker creates timing differences, then can infer information about the
kernel-space addresses.
Still in the Branch Prediction Unit, Evtyushkin et al. [ERAP18] showed that even a

protected BPU implementation with a hardened BTB can fall victim to microarchitectural

36 Chapter 2. Background

side channels. In a new attack called BranchScope, they force a directional branch predictor
to switch to a simple 1-level mode, letting an attacker communicate across user space or even
from an SGX enclave. In concept, the attack is similar to a Prime+Probe but targeting the
Pattern History Table (PHT). In a first step, the attacker sets the PHT in a desired state
by executing a handpicked set of instruction. Then, after a short stalling time, they execute
more branches targeting the same PHT entry. Based on the prediction outcome, the attacker
is able to determine if another process has accessed the PHT entry between the two phases.
Translation Lookaside Buffers were also exploitable in side-channel attacks. In particular,

Gras et al. [GRBG18] showed how, despite recent countermeasures on cache attacks, cryp-
tographic implementations could be targeted by leakage caused by the TLB. The attack is
similar to a Prime+Probe cache attack. The attacker creates an eviction set for a specific
TLB set. By iterating through it, the attacker fills the TLB set with its own values, effectively
evicting other addresses in the set. Then, after a short waiting time, the attacker measures
the access time to addresses in the eviction set. If it is slower, then some addresses have been
evicted, meaning the victim has accessed addresses stored in the targeted TLB set. Using
this attack, Gras et al. leaked EdDSA and RSA secret keys in a single-trace setting.

The DSB, or µop cache, has also been exploited to mount covert channels [RMT+21]. By
filling specific rows in the µop cache, the attacker can communicate and create a 900 kbit/s
covert channel through different logical cores on the same physical core.
Attacks based on on-core contention have also been implemented inside the JavaScript

sandbox. In particular, Andrysco et al. [AKM+15] leveraged a side channel based on floating-
point operations to leak values of pixels rendered in the browser. By applying SVG filters
with subnormal values and timing the rendering time, they were able to extract pixel values
from the victim’s browser. Stolen pixels could lead to monitoring or history sniffing.

2.4.1.5. Automated discovery of side channels

Finding target components for microarchitectural attacks requires heavy reverse-engineering
and fine tuning to detect the vulnerabilities. Academics have proposed directions for more
systematic and automatic approaches.

In a blog post [Fog], Fogh presented Covert Shotgun. Its goal is to detect possible on-core
contention between pairs of instructions of an ISA. The framework executes each instruction
of the pair on two logical cores sitting on the same physical core and measures their execution
time. Instruction pairs presenting a longer execution time than usual reveal contention. The
source of this contention is not precisely identified by the method but can be leveraged to
create side-channel attacks or covert channels. Covert Shotgun was only tested on a limited
subset of the whole x86 ISA but automatically found hundreds of possible instruction pairs
creating contention, i.e., as many potential covert channels.
ABSynthe [GGK+20] follows a similar blackbox approach. It also aims at identifying

potential on-core contention but targets the whole x86_64 ISA. For a pair of instruction
(ix, iy), they automatically evaluate the impact of iy on ix’s execution time. If ix’s execution
time is longer when iy is running on the same physical core, this reveals on-core contention.
By repeating this experiment on all possible pairs of instructions, they create leakage maps
of a specific microarchitecture, i.e., an exhaustive representation of contention caused by
instruction interferences. Each pair of instructions creating contention represents a possible
side channel, but the congested component is not identified. The authors then present
ABSynthe, an automated side-channel synthesis. Given a specific microarchitecture (and its

2.4. Microarchitectural Attacks 37

leakage map) and a target process, it automatically creates a spy process that can, after a
synchronized preprocessing phase, leak the target process’s secrets without synchronization.
ABSynthe is illustrated on an EdDSA implementation, effectively recovering 256-bit private
keys in a single trace.

Osiris [WIN+21] expands side-channel synthesis to a larger scope than resource contention.
They model side channels as a triplet of sequences:

Reset sequence: The attacker brings the targeted microarchitectural component into a known
state, e.g., Prime of Prime+Probe or Flush from Flush+Reload.

Trigger sequence: The victim changes the microarchitectural state, e.g., modifying the cache
state based on a secret.

Measurement sequence: With a timing measurement, the attacker determines if the target
component is still in the reset state or has been modified in the trigger sequence. This
is where the information leaks. Probe from Prime+Probe is an example of this phase.

For each triplet of instructions from a specific ISA, they determine if the measurements are
similar with or without the trigger phase. Such triplets are potential side channels. Osiris
rediscovered previously existing side channels, e.g., Flush+Reload, and also discovered 4 new
side channels, enabling powerful attacks.

2.4.2. Microarchitectural Fault Attacks

Attackers can actively induce faults in the microarchitecture and exploit their effects to
mount attacks. Hardware fault attacks have been largely studied, where faults are induced by
changing the physical conditions, e.g., high or low temperature, laser, or radiation. Errors
can also be entirely induced by software. In this subsection, we present an overview of
software-based microarchitectural fault attacks.

2.4.2.1. RowHammer

In 2014, Kim et al. [KDK+14] proposed RowHammer, the first software-based microarchitec-
tural fault attack. This attack exploits bugs in the DRAM. Reading values in the DRAM
have side effects on physically adjacent rows. In particular, when a DRAM row is hammered,
i.e., repeatedly accessed within a DRAM refresh window, the charge of physically adjacent
rows may drop under a threshold, causing a bitflip from 1 to 0. This means an attacker can
potentially modify bits in unauthorized memory areas. The rate of bitflip can increase if both
rows adjacent to the victim are hammered.

Seaborn and Dullien [SD15] presented two different exploits leveraging RowHammer. The
first is a sandbox escape from the Native Client (NaCl) sandbox. By causing bit flips in
dynamically generated indirect jumps, the attacker can gain control over these jumps and
access addresses outside of the sandbox. The second allows an unprivileged user to escalate to
kernel privileges. Leveraging RowHammer, the attacker induces a specific bit in the Page Table
Entry (PTE) to flip, making the PTE point to an attacker-controlled page. The attacker now
has read/write access to its own page table, which effectively grants them control over the whole
physical memory. Since these exploits, many RowHammer-based attacks have been developed,
against cryptographic implementations [BM18, PSS+18], attacking or gaining access to cloud
co-resident VMs [RGB+16, XZZT16], or triggering bitflips remotely [LAS+18, TKA+18].

38 Chapter 2. Background

row buffer

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1: copy row

2: copy row

3: Bits may shift
from 1 to 0

Figure 2.13. – Illustration of the RowHammer fault attack

Gruss et al. [GMM16] presented a RowHammer implementation running entirely in the
JavaScript sandbox, allowing to remotely mount attacks from the victim’s browser. Imple-
menting RowHammer in JavaScript came with significant challenges. First, JavaScript is
oblivious to virtual or physical addresses. The attacker does not know which address it is
reading and thus does not know which DRAM row it is hammering. However, the attacker
can exploit the 2MB memory pages used by the browser. By iterating through a large
array and measuring access latency, the attacker can detect page faults when the access
time is significantly longer. This leaks information about the first address of the page. The
attacker now knows that the following 2MB represent 16 DRAM rows. It can cause bit flips
by hammering rows at the edge of this page to cause bit flips in an adjacent, potentially
sensitive page. Second, the attacker has no access to the clflush instruction. If the attacker
repeatedly accesses the hammered address, it is served from the cache, not from the DRAM,
thus preventing bit flips. The attacker has to ensure that the address does not sit in the cache
without clflush. The authors propose eviction-based RowHammer. Similarly to Prime+
Probe, the attacker composes an eviction set for the targeted address. By iterating through
this set, they can ensure the eviction of the targeted address, which is then served from the
DRAM. However, this eviction and DRAM load must have a high frequency to cause bit
flips. The author proposed strategies to empirically determine optimal eviction strategies to
maximize the eviction rate and minimize the eviction time.

2.4.2.2. DVFS-based fault attacks

Dynamic Voltage and Frequency Scaling (DVFS) is the energy management system of
processors. It allows to dynamically lower processing speed to save energy. For instance,
when the workload on a core is low, the DVFS reduces the core’s frequency to reduce its
energy consumption. When the workload increases, DVFS can raise the frequency to boost
performances. DVFS can be controlled from the software, for instance with Linux’s CPUfreq
scaling governor.

2.4. Microarchitectural Attacks 39

Setup Trigger Transient
load

Covert
channel

Pipeline
flush

Safe architectural state
Transient execution

Figure 2.14. – Illustration of the workflow of transient execution attacks.

CLKscrew [TSS17] is a software-based microarchitectural fault attack exploiting DVFS.
Flip-flops are memory components that change their value on the rising edge of the core
clock. To locally propagate their output to adjacent flip-flops, the duration of the interval
between two rising clock edges must be greater than a time interval defined by flip-flops’
hardware properties. By overclocking i.e., over-extending the frequency at a specific time, a
software-based attacker can induce bitflips by exploiting flip-flops’ minimal timing constraint.
The authors leveraged CLKscrew to extract secret keys or privilege-escalate in Trustzone in
ARM/Android smartphones.

Plundervolt [MOG+20] is another software-based fault attack leveraging DVFS. They
exploit the side effects of briefly lowering the voltage on the transistors, possibly creating
faults. As opposed to CLKscrew, their attack focuses on x86 microarchitectures. They show
the first occurrence of fault attacks on an Intel SGX enclave. Notably, an attacker leveraging
Plundervolt can cause faults in the execution of hardware AES-NI computations in SGX,
effectively allowing them to extract secret keys from the enclave in a few minutes.

2.4.3. Transient Execution Attacks

Transient instructions are instructions that often result from unauthorized computations,
e.g., mispredictions or page faults. When detected, these faults cause a full pipeline flush
and a roll-back of all operations. This flush resets the architecture at the previous state.
However, the microarchitectural state may be modified by transient instructions’ side effects.
Mispredictions in speculative execution are a source of transient instructions. For instance,
when the dependency is finally resolved and the wrong branch was taken, all µops from the
mispredicted branch are purged from the ROB. Nevertheless, speculative execution is not the
only source of transient instructions. Faults can also cause transient execution. When a page
fault occurs, subsequent operations can still be processed in transient execution. They are
later flushed but may also impact the microarchitectural state.
Transient execution attacks follow an execution pattern illustrated in Figure 2.14:

1. The attacker sets the microarchitecture in a specific state to prepare the transient
execution and data extraction.

2. The attacker triggers transient execution, for instance by forcing a misprediction or
forcing an instruction fault.

3. The transient instructions access the victim’s sensitive data.

40 Chapter 2. Background

4. The attacker needs to extract the private data. As the data is flushed from the
microarchitecture, the attacker cannot simply read it. Most transient execution attacks
use a microarchitectural covert channel, where the transient instructions are the sending
component.

5. Finally, transient instructions are flushed and the architectural state is reset, but the
attacker can read the sensitive data from the microarchitectural covert channel.

Although the workflow is similar, transient execution attacks vary by the trigger phase, e.g.,
speculative execution or fault, on which address space the read happens, or the covert channel
to extract data. Canella et al. [CBS+19] propose a classification of transient execution into
two major classes: Spectre-type and Meltdown-type.

2.4.3.1. Spectre attack class

Spectre-type attacks exploit the transient window created by a control or data flow mispredic-
tion in speculative execution. Since the initial Spectre attack [KHF+19], many variants have
been proposed, targeting different predictive components, poisoning strategies, or extraction
covert channels. Canella et al. [CBS+19] propose a first classification based on the exploited
victim component:

Spectre-PHT [KW18, KHF+19] targets the Pattern History Table (PHT), which predicts
the results of conditional branches.

Spectre-BTB [KHF+19] exploits the Branch Target Buffer, which predicts the branch target
for indirect branches.

Spectre-RSB [KKSA18, MR18] exploits the Return Stack Buffer responsible for return
address predictions.

Spectre-STL [Hor18] exploits Store To Load data dependencies, where the memory dis-
ambiguator speculates on loads before all store operations on the same location have
completed.

Another essential property of Spectre-like attacks is the poisoning method, or how the
attacker "trains" the branch predictor to induce the misprediction in a particular branch in
the victim execution. In particular, an attacker can exploit the virtual address indexation
of branch prediction units to poison a branch predictor on a different address space in a
cross-process setting, or directly train the branch predictor in the victim address space in a
same-process setting. In native code on Intel processors, Spectre-PHT, Spectre-BTB, and
Spectre-RSB all work both in same-process and cross-process settings, whereas Spectre-STL
is only executable in same-process settings [CBS+19].
As cache side channels are the most studied in the literature, most Spectre-like attacks

use cache-based covert channels to extract stolen data. In particular, the original Spectre
and most of the following attacks leveraged Flush+Reload as their covert channel. However,
Bhattacharya et al. [BSN+19] presented a Spectre-like attack exploiting port contention as
a covert channel. By achieving core co-residency with the victim, the attacker can monitor
its port usage with a high spatial resolution. This variant broadens the scope of potentially
vulnerable code gadgets, as a single instruction can be leveraged to create detectable port
contention.

2.4. Microarchitectural Attacks 41

Spectre attacks can be implemented in the JavaScript sandbox. In the original Spectre
paper [KHF+19], Kocher et al. propose a JavaScript implementation of Spectre-PHT in the
same-process setting. It allowed an attacker in Chrome 62 to read private memory in the
browser’s process by training the Pattern History Table to always predict a particular branch
by passing it in-bound values. Then, on the last conditional branch, the attacker passes
an out-of-bound value, resulting in a transient read to private data. The main difference
with native Spectre attacks is the covert channel. As Flush+Reload is not implementable
in the JavaScript sandbox, the authors leveraged Prime+Probe to extract sensitive values.
Maisuradze and Rossow [MR18] presented ret2spec, a Spectre-RSB type attack that can also
be implemented in WebAssembly, entirely running in the browser’s sandbox. It also allows an
attacker to arbitrarily read memory in the same-process setting. In 2021, Google’s security
team released a proof of concept of a same-process Spectre-PHT [Teab] in recent versions of
Chrome, supposedly hardened against Spectre attacks.

2.4.3.2. Meltdown attack class

Meltdown-type attacks rely on the transient execution window after a CPU exception. These
exceptions are handled by the architecture when the faulting instruction is retired, i.e., all
of its µops are executed and previous instructions have been retired. When the faulting
instruction is retired, the pipeline is flushed and the architectural state is set in a safe setting.
However, between the faulting instruction emission and its retirement, an attacker can exploit
the transient window where instructions following the faulting instructions are transiently
executed on unauthorized data. These instructions will never be committed to the architecture,
but an attacker can retrieve the information from the side-effects left on the microarchitecture
by these transient instructions with a covert channel.
The Meltdown class has a wide variety of exploits and variants. Canella et al. [CBS+19]

introduced a classification of Meltdown-like attacks based on the type of fault creating the
transient execution. Many Meltdown variants exploit page faults [LSG+20, KW18, BMW+18]
where the attacker tries to read unauthorized memory. In that setting, the system throws a
page fault, but the data from the read is transiently forwarded to the following instructions
in the pipeline, letting an attacker extract them. Applications to Meltdown-PF include
leaking the entire kernel memory or reading values out of Intel SGX and generic hypervisors.
Canella et al. [CSH+20] presented a page-fault-based Meltdown attacks running entirely in
the JavaScript sandbox on 32-bits x86 Linux. Other exceptions were leveraged to mount
Meltdown attacks, such as bound-range-exceed, where the attacker triggers the fault by
accessing out-of-bound array indexes [CBS+19], general protection faults for unauthorized
reads to privileged registers [Teaa], or lazy context switches in the FPU [SP18].
Van Schaik et al. [vSMÖ+19] presented RIDL, a Meltdown-type attack allowing to leak

in-flight data from the Line Fill Buffer (LFB). The attacker first sets private values in the LFB,
for instance with kernel calls. Then, by loading a new page, it forces the CPU to speculatively
load a value from memory, which can be uncached in-flight private values loaded from the Line
Fill Buffer. This incorrect load causes a fault, but the transient load is forwarded to transient
instructions as in other Meltdown-type attacks. As the attack does not leverage physical
or virtual addresses, it allows an address-oblivious attacker to leak privileged information.
Such attacks are often referred to as Microarchitectural Data Sampling (MDS). RIDL attacks
can leverage different faults to create the transient window, but always exploit the LFB as
a source of leakage. RIDL was also implemented entirely in the JavaScript sandbox, where

42 Chapter 2. Background

the attacker is completely oblivious to physical or virtual memory addresses. It allowed an
attacker in WebAssembly to leak victim data from a process running on the same physical
core.
Schwarz et al. [SLM+19] presented ZombieLoad, another MDS attack targeting in-flight

data, allowing to leak data from the LFB even if it is cached in the L1. ZombieLoad works on
systems hardened against Meltdown attacks, such as Intel’s CascadeLake generation, which
is not affected by RIDL. The authors present various application scenarios for ZombieLoad.
Notably, they showed how an unprivileged user can steal 128-bits AES-NI keys in under 10 s
in a cross-process attack.

2.5. Side-Channel Attacks on Software and Browser Resources

This section presents an overview of side-channels attacks targeting software resources. These
resources include system-level resources, managed by the operating system, and application-
level resources, managed by the various programs. In particular, we take a strong interest in
browser resources, as they are a core component of the contributions of this manuscript.

2.5.1. Attacks on system resources

Suzaki et al. [SIYA11] introduced an attack targetting memory deduplication. By creating
a page in their address space with the exact same content as a victim memory page, the
attacker possibly triggers the OS’s memory deduplication. Then, the attacker writes on their
own page. If the page was deduplicated, this triggers a page fault, resulting in a slower
write. If the page was not deduplicated, the write access is fast. This difference in timing
lets the attacker know whether or not their page was duplicated, i.e., that another process
had a memory page with the exact same content. Suzaki leveraged this exploit to detect
the presence of sshd or apache2 on the machine from inside a KVM virtualized environment.
They also apply memory-deduplication attacks on images, showing how the same attacker,
inside a virtual machine, can detect a file downloaded by a browser. Owens and Wang [OW11]
showed how a virtualized attacker could exploit memory deduplication to fingerprint the OS.
By reproducing OS specific memory pages, the attacker can detect when deduplication occurs,
leaking information on which OS is installed from the virtual machine. Xiao et al. [XXHW13]
used deduplication as a physical layer to create a 90 bit/s covert channel between two virtual
machines running in the same system. Barresi et al. [BRPG15] introduced an exploit to
fully reverse ASLR directly from a virtual machine. Schwarzl et al. [SKLG21] mounted fully
remote memory-deduplication attacks based on HTTP requests, allowing to fingerprint server
information or reverse KASLR over the internet.
Memory-deduplication attacks were also implemented in the JavaScript sandbox. Gruss

et al. [GBM15] showed how a JavaScript attacker could detect running applications as well
as monitor websites opened in other tabs in the same browser. The main challenge of a
JavaScript-based memory-deduplication attack is to create exact copies of the victim’s memory
pages. To do so, they leverage JavaScript engine’s implementations of malloc, creating page-
aligned arrays. This allows an attacker to target page-aligned elements, e.g., CSS style sheets
or images in browsers. Bosman et al. [BRBG16] showed how a JavaScript-based attacker
could leverage page deduplication and the RowHammer bug to gain arbitrary read and write
access in Microsoft Edge in a same-address-space setting.

2.5. Side-Channel Attacks on Software and Browser Resources 43

Jana and Shmatikov [JS12] described a new memory-based side channel. By identifying
processes’ footprints on memory, an attacker, here a malicious application on a Android phone,
can infer private information. Their attacker can infer which websites are being browsed by
the victim in real-time, as well as the state of the browsing session. The authors also show
how context switch timings can leak information on the user’s keystrokes. A Linux-based
attacker can monitor the /proc/<pid>/schedstat system file to retrieve the timing between
two keystrokes. Even on Android systems, where this file is not accessible by unprivileged
applications, the attacker can leak context switch information from the /proc/<pid>/status
file instead.

Schwarz et al. [SLG+18b] showed how even an unprivileged sandboxed attacker can mount
keystroke timing attacks by exploiting timing differences caused by system interrupts. The
attacker repeatedly calls a high-resolution timer, e.g., rdtsc. If the OS throws an interrupt,
the measurement process is interrupted, resulting in a significant cycle difference between two
subsequent timestamps. As I/O operations, including keystrokes, cause system interruptions,
an attacker can measure the time between these peaks to retrieve timing information on
the user’s keystrokes. This information can then be used, along with machine-learning
algorithms, to reconstruct typed information such as a PIN codes or URLs [SWT01, ZW09].
Lipp et al. [LGS+17] implemented this attack entirely in the JavaScript sandbox. The main
challenge of porting this particular attack to JavaScript is the lack of high-resolution timers.
Instead of repeatedly calling a timestamp, the attacker measures the number of increments
between two clock edges, similarly to clock interpolation. A drop in the increment count
indicates the measurement has been interrupted. The attacker can use these drops to extract
timing information about the victim’s keystrokes.

2.5.2. Attacks on browser resources

Modern browsers are considerably large software that include many optimizations. In par-
ticular, components may be shared between origins, tabs, or contexts for optimization and
browsing performance reasons. Sharing a component between the victim and the attacker can
leak information about the victim’s secrets or behavior.

Mowery et al. [MBYS11] showed how a JavaScript attacker can retrieve useful fingerprinting
information about the browser vendor, version, or JIT engine by measuring the execution
time of specific computations. They also show how an attacker can take advantage of the
NoScript extension. NoScript is a browser extension that lets users block JavaScript from
unknown origins. It is based on a whitelist system, i.e., the user defines which domains can
run JavaScript code in the browser. By including many sources of codes from different origins
on its own website, the attacker can identify which are whitelisted and which are not. This
information can be used as a fingerprint of the user as the whitelist is custom.

Sanchez-Rola et al. [SSB17a] presented how differences in timings caused by access-control
policies leak information about which extensions are installed. Browsers keep an access-control
list to prevent third-parties, e.g., a JavaScript attacker, from accessing unauthorized extension
resources. When a JavaScript attacker tries to access an extension resource, the browser
typically first checks if the extension is installed, then checks the access-control list to see if
the third party can access the extension. When they cannot access an extension’s resource, a
JavaScript attacker can measure this access request time to determine whether or not it was
declined because of access control or because the extension is not installed. An attacker can
then create a browser fingerprint by inferring which extensions are installed, even with no

44 Chapter 2. Background

permissions.
Van Goethem et al. [vGJN15] introduced several timing attacks against shared browser

resources. In particular, they target the loading time of external resources, the parsing time
of multimedia resources, the application cache, or the Service Worker Cache API to leak
personal information in a cross-origin setting.

Vila and Köpf [VK17] exploited Chrome’s shared event loop to monitor users, infer browsed
websites, or create a covert channel. By creating contention on JavaScript’s main event
loop, the attacker can measure delay introduced by other processes using performance-heavy
JavaScript computation. If the attacker fingerprints the impact of a specific website on the
event loop, they can use it to recognize that website in an online setting. Similarly, monitoring
the event loop lets the attacker infer the user’s actions and idle times.

2.6. Countermeasures to Side Channels

This section presents an overview of side-channel countermeasures. Researchers have proposed
a wide array of countermeasures, either specific to a particular vulnerability or more generic
approaches. We present three primary paradigms of countermeasures: preventing the leak,
preventing the measurement, and detecting the attack. As microarchitectural vulnerabilities
are at the frontier of software and hardware, mitigations can be implemented at several levels:
hardware, system, or application level, particularly in the browser.

2.6.1. Preventing the data leak

The most naive approach to preventing side channels is probably to fix the source of the data
leakage. In particular, most side channels exploit the sharing of a component between the
victim and the attacker to leak information.

2.6.1.1. Hardware Level

Architecture researchers have proposed several hardware-level mitigations to microarchitectural
data leaks. Most of these solutions rely on resource partitioning, i.e., that the resources are
not shared between the attacker and the victim.
Cache partitioning has been a widely studied mitigation to cache side channels. Static

sharing [Pag05] is probably the most straightforward cache partition: the cache is split into
multiple partitions, each assigned to a specific process. That way, data in a set cannot
be evicted or flushed by malicious processes. Similar static sharing has been proposed at
the logical thread level [OST06]. However, statically sharing the cache comes at a dramatic
performance cost, as it reduces the cache capacity for each process and loses the shared memory
optimizations brought by VIPT addressing. Dynamic partitioning introduces less performance
overhead than static partitioning. Wang and Lee [WL07] proposed a Partition-Locked Cache,
where users could activate a protection bit on cache lines, preventing them from being evicted
by other processes. Vanguard [SLCO18] uses a different approach to cache partitioning:
instead of assigning lines to a specific process, processes can only replace their own data
in a cache set. This replacement policy modification prevents an attacker from evicting or
flushing victim data while keeping the advantages of a shared cache. Other approaches have
been proposed, e.g., partitioning at the set level [DJL+12], or runtime approaches based on
hit/miss rates [WC14, WFZ+16].

2.6. Countermeasures to Side Channels 45

Table 2.1. – Overview of side channels countermeasures.
Preventing leakage Preventing

measurement
Detecting attack

Browser

• Same-Origin Policy
[Cong]

• Site Isolation [RMO19]

• COOP/COEP [AJ]

• Removing
high-resolution
timers

• Deterministic
browsers
[CCLW17]

Application

• Secret-independent
Code

• Blinding

System

• Memory partitioning
[KPM12, Inte]

• Thread partitioning

• Temporal partitioning
[GZ13, VRS14, ZR13]

• Fuzzy Timers
[VDS11]

Hardware

• Cache partitionning
[Pag05, OST06, WL07,
DJL+12, WC14,
WFZ+16]

• Dynamic SMT
[TP19, TRVT22]

• Randomized
Cache
[WL07, LL14,
Qur18, THAC18]

• HPC-based
detection
[CSY16, AYQ+16,
PIO19, LG18,
For18, WSS+20]

Sharing components is also at the root of SMT-based attacks such as port contention. The
most naive mitigation to these attacks is to simply disable SMT. However, this proposition
represents a considerable performance degradation of up to 15% [BSN+19], as SMT allows
for a highly efficient use of hardware resources. Townley and Ponomarev [TP19] proposed
SMT-COP, a hybrid approach based on statically partitioning the use of resources between
threads. This partitioning could be either temporal, with each thread accessing the resource
after the other, or spatial, with each thread having its execution units. Their approach must
be supported by the hardware and introduces a performance overhead of 8% compared to
standard SMT, while preventing most contention-based side channels on the execution units
or ports. More recently, Taram et al. proposed SecSMT [TRVT22], focusing on more secured
shared resources against contention-based side channels. Their approach introduces, at the
hardware level, different ways to share resources. In static partitioning, the resources are
statically shared between logical cores. In dynamic partitioning, the partition of resources
evolves according to the workload of logical cores to enhance parallelization. However, the

46 Chapter 2. Background

resources are never used by both cores simultaneously. More interestingly, asymmetric
partitioning relies on different levels of trust. This model gains even more performance
by letting a low-level security thread leak information to a high-security thread, but not
letting high-security information leak to other threads. This is particularly interesting in
a browser-based scenario. It is unsafe to leak information to the sandbox, whereas leaking
sandboxed information to other threads presents fewer threats. Their asymmetric partitioning
presents almost no overhead compared to traditional SMT.
Spectre-specific countermeasures were also proposed. Intel proposed to use logic fences

in sensitive computations to prevent speculation [Inta]. The instruction sequence Return
Trampoline (retpoline) was proposed by Google [Tur18] to mitigate Spectre-RSB. Placed
into a source code, it forces mispeculation in a specific branch containing a fence, preventing
speculation.

2.6.1.2. System Level

The OS can enforce partitioning at the memory level. Such approaches have been proposed
against cache attacks in a cloud scenario. Kim et al. [KPM12] proposed to create stealth
memory, i.e., areas of memory that are not set congruent with data from other processes. As
the mapping of addresses to cache sets is deterministic, the system has to ensure that all pages
congruent to a specific set are either locked or assigned to a single process. Processes can then
set sensible data in stealth memory and ensure no data leak from the cache. Cache Allocation
Technology [Inte], is an Intel software interface controlling the cache space allocation. It can
operate at several granularities, restricting the cache space allowed to a thread, process, or
VM.

The OS can use the scheduler to enforce spatial partitioning of resources with a thread
granularity. For instance, allowing highly sensitive operations, such as computations depending
on a secret, to run on a different physical core than other applications could reduce the
risk of leaking private information in a side-channel attack depending on SMT such as port
contention. Similarly, only sharing hardware resources between processes owned by the same
user could provide more isolation, especially in cloud environments.
Temporal partitioning can also be enforced by the operating system. For instance, by

flushing the cache [GZ13, VRS14] or internal buffers, e.g., the BTB [ZR13] at each context
switch reduces the sharing of private data, thus reducing the risks of microarchitectural side
channels.

2.6.1.3. Application Level

A generic application-level mitigation to microarchitectural attack is to ensure that the
microarchitecture state is not dependent on secrets. In particular, cryptographic libraries try
to ensure constant-time and cache-independent execution of computations using the secret
key. Port-independent code has also been suggested [ABuH+19]. If the port usage does not
vary according to the secret information, then port-contention-based side-channel attacks are
ineffective. However, such a solution requires detecting and correcting all sensitive code in
existing sensible implementations, and for all vulnerable microarchitectural components, and
is not effective against covert channels.

2.6. Countermeasures to Side Channels 47

2.6.1.4. Browser Level

Isolation is a staple of browser security. Separating resources and communication between
contexts drastically reduces the threat surface of timing side channels.

The same-origin policy [Cong] is a central security feature of the web. An origin is defined
by the tuple (Protocol, Port, Host). The same-origin policy restricts read access to resources
loaded from a different origin. This means that data from one website, e.g., authentication
cookies, are not accessible from another website loaded in another tab. This countermeasure
aims at mitigating, among others, timing attacks using browser resources. However, the
same-origin policy has no impact on other types of timing attacks. In particular, Spectre
[KHF+19] was also implemented in JavaScript, therefore demonstrating the limitations of the
same-origin policy.

In response to transient execution attacks, Chrome developed a new security measure called
site isolation [RMO19], which forces each website, defined by the tuple (Protocol, Host),
to run in a specific process, not shared with other websites. This prevents an attacker to
access the mapped memory space of another website and mitigates the effect of process-space
JavaScript-based transient execution attacks by preventing the access—including transient—to
out-of-bound information. This feature was deployed in Chrome 67, and was deployed in
Firefox 95 [Wika].

Site isolation was extended with the introduction of Cross-Origin Embedder Policy (COEP)
and Cross-Origin Opener Policy (COOP) [AJ]. COOP ensures that a top-level window is
isolated from other documents by putting them in a different browsing context group. For
instance, if a website opens a pop-up whose origin is different from the website, the browser
under COOP puts the pop-up in a separate process, similarly to site isolation, and prevents
direct interaction with the main document. COEP complements COOP by forcing the browser
to only load trusted resources. If a resource has no explicit permission to be loaded, the
browser does nothing if COEP is enabled. Both COOP and COEP rely on policies defined
through HTTP headers and they were both added in Firefox 79 and Chrome 83 [Conb, Cona].
When they are enabled on a document, they guarantee a unique context group for the site
and a safe loading of trusted resources.

2.6.2. Preventing the measurement

Instead of fixing the data leakage at the source, academics have proposed to obfuscate the
leakage by preventing attackers from detecting or measuring it. This can be either by removing
access to measurement tools or randomizing execution to prevent monitoring.

2.6.2.1. Hardware Level

Many cache attacks exploit the deterministic nature of cache indexing, e.g., the usage of
an eviction set in Prime+Probe. To prevent attacks, researchers have proposed randomized
caches, obfuscating the leakage by randomizing the mapping from memory addresses to
cache sets. Wang and Lee [WL07] proposed to use a dynamic random permutation table
for each process, rendering other processes’ cache access unpredictable. Liu and Lee [LL14]
proposed random-fill caches, where cache misses fill the cache with randomized values in
addresses next to the accessed address. However, both approaches require hardware-based
lookup tables and are not scalable to large last-level caches. Computation-based approaches
have been developed for large randomized caches. CEASER [Qur18] is a secured cache using

48 Chapter 2. Background

low-latency block ciphers as an indexation function. This address-set mapping is frequently
refreshed by changing the cipher key. Trilla et al. [THAC18] propose another approach to
cache randomization. Instead of randomizing the address-to-set mapping, they inject random
timings to the cache behavior, lowering the risk of timing leakage. Purnal et al. [PGGV21]
proposed a systematic approach to randomized caches, listing most major contributions.

2.6.2.2. System Level

The operating system can prevent data leakage by preventing the timing measurement.
For cache attacks, if an attacker cannot distinguish cache hits from misses, the attack is
not possible. Vattikonda et al. [VDS11] modify the native rdtsc instruction on virtualized
systems. They reduce the timer by adding significant jitter, i.e., a random component to
timing measurement. Similarly, StopWatch [LGR14] is a cloud-based architecture aiming at
preventing co-residency timing side channels. Each VM is replicated, and I/O timings are
computed on the median of all replicated VMs’ timings.

2.6.2.3. Application Level

Applications can enforce randomization in their execution to prevent attackers from retrieving
the full secrets. In particular, applications using sensitive secrets, e.g., keys in cryptographic
computation, use blinding techniques to prevent timing information from being directly
related to the key. Instead of using the key for operations such as scalar multiplication, the
application modifies the key, generally with a xor operation, with a random factor. Then,
after the computation, the result is returned to its original value. If the attacker retrieves
information with a side-channel attack, they obtain information about the xorred key and
not the actual key. This random component is computed at runtime and changes for each
computation, preventing the attacker from reverting the changes.

2.6.2.4. Browser Level

After the publication of microarchitectural side-channel attacks in the JavaScript sand-
box [OKSK15], browser vendors have enforced timing-based countermeasures in client-side
scripting languages. By removing access to high-resolution timers, browser vendors aim at
reducing data leakage in generic JavaScript applications.

Mitigations on performance.now() Such changes have been applied to performance.now(),
JavaScript high-resolution timer implementation. After the first JavaScript timing attack
[OKSK15] in 2015, the W3C advised that the resolution should be reduced to 5 µs to mitigate
timing attacks, and browsers followed [Ore15, K15].
However, in 2017 Schwarz et al. [SMGM17] demonstrated that it was still possible to

recover high-resolution timers with the clamped resolution by using interpolation. This
allowed an attacker to reimplement most timing attacks. In particular, they presented a clock
interpolation-based timer with a resolution of 500 ns.
After the disclosure of Spectre [KHF+19], browser vendors went to greater lengths to

mitigate timing attacks. Mozilla first clamped performance.now() to a resolution of 20µs in
Firefox 57.0.4 [Wag18] then furthermore to 2ms in Firefox 59 [Bug18a].

2.6. Countermeasures to Side Channels 49

Browser vendors then introduced jitter to performance.now(): Firefox 60 set the resolution
to 1ms and added a jitter of 1ms range [Bug18b, Con20b], while Chrome 64 set the resolution
to 100 µs with a jitter of 100 µs [Kyö18].

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 9 ticks

(a) The time between two clock edges is longer:
the interpolated time is 9 ticks.

Time

Tick Tick Tick Tick TickEvent 1

Interpolated time: 5 ticks

(b) The time between two clock edges is shorter:
the interpolated time is 5 ticks.

Figure 2.15. – Impact of performance.now()’s jitter on clock interpolation: for the same
event, the interpolated time changes between two measurements

The goal of this jitter is to prevent clock interpolation as presented by Schwarz et al. [SMGM17]
and described in Section 2.3.3. Figure 2.15 presents the impact of jitter on interpolation.
Clock interpolation does not measure the duration of an event per se, but rather the duration
between the end of the event and the next clock edge. If the duration of a clock period is
constant, this is equivalent to measuring the duration of the event. However, if the duration
of a clock period is not constant, measuring twice the same event can yield different timings,
rendering the measurement non-deterministic. If the jitter is higher than the needed resolution
for timing attacks, i.e., sufficient to distinguish the two leaking timings, attackers cannot
mount their attack.

However, such drastic countermeasures also impacted web development [Bug18c]. JavaScript-
based animation or video games often require sub-millisecond timers, which were no longer
available. These countermeasures were however temporary, until other countermeasures
were developed. Indeed, because of the security added by site isolation, most browsers have
re-allowed high-resolution timers under certain conditions.
Since Chrome 91, performance.now() has a resolution of 5µs with a jitter of 5 µs under

COOP/COEP [Sta], whereas, since version 79, Firefox has a resolution of 20 ± 20µs without
jitter, only when COOP/COEP is activated [Moz20b, Bug20].

The implementation of jitter differs across browsers. On Firefox 81, the jitter is computed
using the SHA-256 hash function as follows [Moz20b]: the high-resolution timestamp is
clamped to the lowest millisecond. The browser then uses SHA-256 on a tuple composed of
the clamped time, a context-dependent seed, and a secret seed. It returns a random midpoint
between the clamped time and the next millisecond. Depending on whether the precise
timestamp is under or above this midpoint, the returned timestamp will be the lowest or
highest millisecond, uniformly distributing clock edges between 0 and 2ms. On Chromium,
the jittered value is computed similarly, using murmur3 as the hash function [Good].

Mitigations on SharedArrayBuffer Due to the powerful threat this SharedArrayBuffer-
based clock create, SharedArrayBuffer were disabled by default after the publication of Spectre
[KHF+19] in Firefox 57.0.4 and all Chrome versions from 60. Once again, this measure is very
restrictive for web developers and was only meant to be temporary. With the introduction
of COOP/COEP and site isolation, browsers have re-enabled SharedArrayBuffer, claiming
that access to a high-resolution timer is not a major threat in a strict isolation context. Both
Chrome and Firefox current versions support SharedArrayBuffer only when COOP/COEP is

50 Chapter 2. Background

enabled [Gooc, Conf].

Other approaches Due to the complexity of completely removing timers in the browser,
researchers have proposed more systematic solutions. One approach is to try and make the
browser deterministic as prototyped by Cao et al. with DeterFox [CCLW17]. By transforming
a physical clock into a logical one, they change the behavior of known timers so that they
do not return the time a request takes but return the number of operations that are being
executed. However, a deterministic browser would require significant architectural changes
and would represent a significative performance overhead. Some programs need to access
the actual physical clock of the system to function properly and having a deterministic clock
would present a lot of hurdles for developers. Schwarz et al. [SLG18a] propose a fine-grained
permission system to prevent JavaScript side-channel attacks. It allow to control the fuzziness
of timers, as well as other software-based mitigations such as array index randomization,
slower SharedArrayBuffer or disabling them, or removing JavaScript multithreading.

2.6.3. Detecting the attacks

Additionally to preventing the attack at its source, researchers have proposed methods to
detect – and stop attacks at runtime.

2.6.3.1. Hardware and System Level

Initially a debugging and optimization tool, Hardware Performance Counters can be used
to detect side-channel attacks during execution. While performance counters are purely
microarchitectural features, the detection is generally handled by system handles on HPCs.
Foreman [For18] classify performance-counter-based detection in three categories.
Signature-based detection focuses on detecting well-known threats in an unadaptative

scenario. Chiappetta et al. [CSY16] proposed to detect Flush+Reload attacks based on the
L3 cache usage. In a standard execution, a process should benefit from the cache with cache
hits. However, when they fall victim to Flush+Reload-based attacks, due to the constant
flushes, processes emit significantly more L3 cache misses than usual. Chiappetta et al.
use this difference to detect attacks in real-time by comparing the evolution of L3 misses
with performance counters between a signature of a standard, unattacked execution and the
signature of the runtime execution. If the current execution presents more cache misses, it
means that the process is under attack. In their paper presenting Flush+Flush [GMWM16],
Gruss et al. show how these performance-counters-based detection methods are ineffective
against Flush+Flush, as this attack primitive does not cause cache misses. This signature-
based approach has the advantage of being simple to implement as only standard signatures
are needed, but is not highly adaptative to new attacks or attacks on new implementations.
Heuristic-based approaches try to provide a more generalistic approach. They monitor

malicious behaviors by setting thresholds on specific performance counters. When one or
several thresholds are crossed, they detect possible attack threats. CacheShield is a heuristic-
based approach, monitoring the quantity of cache misses with performance counters. When a
threshold is crossed, the tool reports it as a possible attack. Aweke et al. [AYQ+16] proposed
a HPC-based protection leveraging last-level cache latest misses, Load Latency, and Precise
Store counters to detect when a DRAM row is being hammered. When this detection occurs,
the adjacent rows are refreshed. HexPADS [Pay16a] is an automated framework to detect

2.7. Browser Fingerprinting 51

outstanding behavior and classify them as potential attacks. It is able to detect RowHammer
attacks or cache side channels. Heuristic-based approaches allow for more genericity in the
detection, but may yield a higher rate of false positives than other approaches as standard
execution may accidentally cross thresholds.
Machine-learning-based detection is emerging as a compromise between the two previous

approaches. It has been used by Chiappetta et al. [CSY16] to enhance detection using
their signature-based approach. Prada et al. [PIO19] trains a model using L3 cache misses
performance counters to detect Flush+Reload side channels against AES. By monitoring
last-level cache events as well as branch mispredictions, Li and Gaudiot [LG18] propose a
machine-learning-based approach to detect Spectre-PHT type attacks. Wang et al. [WSS+20]
systematize the approach of machine learning on HPC-based detection to compare the
efficiency, accuracy, and performance overhead of various sampling methods, training datasets,
or models.

2.7. Browser Fingerprinting

A browser fingerprint is a collection of information allowing to identify, uniquely or not, an
instance of a browser. Browser fingerprinting is closely related to side channels: an agent
extracts legit information, e.g., the browser version or language for browser fingerprinting,
to distort them into another usage. While side channels often aim at stealing secrets or
monitoring a user, browser fingerprinting aim at circumventing the web’s anonymity. This
section provides a brief introduction to browser fingerprinting, necessary to comprehend the
privacy implications of Chapter 5.

2.7.1. Usages of Browser Fingerprinting

The browser’s profile created by browser fingerprinting allows agents to break the anonymity
of the web. This fingerprint can be used for different purposes, legitimate or malicious:

Web tracking: Tracking is probably the most widespread fingerprint application. An agent
can create a fingerprint for a user and recognize it on various websites, thus monitoring
its activity. It allows, for instance, to provide targeted advertisement. This tracking
fingerprinting is particularly interesting on the modern web, where other tracking
methods, e.g., cookies, are regulated by laws.

Authentication: For more legitimate purposes, fingerprints can be used as a method to
enhance authentication. In addition to a classic authentication, e.g., with a password, a
website can retrieve the user’s fingerprint and compare it with previous authentications.
If the fingerprint changed, the website can ask for a more secure mean of authentication.

Bot identification: Users’ fingerprints result from a set of parameters emerging from a normal
utilization of a computer and browser. A computer-controlled browser can lack a coherent
human-like fingerprint, and sites can use this difference to detect bots and reduce risks
of denial of service attacks or web crawling.

Vulnerability discovery: Browser fingerprinting can reveal information about the system that
is supposed to be hidden, e.g., the version number of software or OS. A malicious user
can use this information to find specific exploits against that system, thus reinforcing
the threat posed by attackers.

52 Chapter 2. Background

2.7.2. Attributes of Fingerprints

A fingerprint is often a set of various attributes ranging from browser values to hardware
information. A fingerprint, or more precisely an attribute, can be more interesting than others
with certain properties:

Uniqueness: The end goal of fingerprinting is uniquely identifying a user. To that extent,
a unique fingerprint is necessary. Unique attributes are rare, and this uniqueness is
generally obtained by collecting multiple attributes. However, an attribute can provide
more uniqueness if it allows to reduce the scope of users on its own.

Stability: Any change in an attribute value changes the fingerprint and therefore breaks
user identification. However, relying on software fingerprinting means that attributes
are constantly changing (e.g., the browser version in the User Agent). Vastel et al.
[VLRR18] showed that it is possible to link two fingerprints that are slightly different
from each other through heuristics. Therefore, uniqueness is less critical than stability
to link fingerprints for a single attribute.

2.7.3. Software Fingerprinting Techniques

Software attributes are by far the most studied in the literature. In 2009, Mayer [May09]
demonstrated that information sent by the browser to the server for configuration purposes,
e.g., screen size, could lead to the deanonymization of users. This finding was extended
in 2010 [Eck10] in a larger-scale approach, considering HTTP headers, JavaScript active
fingerprinting, and plugins such as Flash. This study showed that 95% of collected fingerprints
were unique.

Since the publication of these original papers, the variety of software-based fingerprint
attributes only grew. Fingerprints used various features such as the Canvas API [Sto13,
AEE+14], fonts [FE15], battery status information [OACD15], WebGL [Sto13] or installed
browser extensions [SVS17, SSB17b, SLKN19].

2.7.4. Hardware Fingerprinting Techniques

Instead of exploiting software-based information, an attacker can leverage side channels to
infer hardware-related attributes. This fingerprinting method is typically active, i.e., the
attributes are not directly given by the browser but rather inferred from computation, e.g., a
JavaScript code. Nakibly et al. [NSY15] proposed various ideas to identify a user based on
fingerprints of their audio system or GPU. Sanchez-Rola et al. [SSB18] leveraged imperfections
in the crystal of processor clocks to identify users. More recently, Laor et al. [LMD+22]
showed that the difference in execution time between different execution units in individual
GPUs can serve as a unique and robust fingerprint.
As they are not static, hardware fingerprints can be harder to obtain than software

fingerprints but are more stable as users rarely change hardware components and are less
likely to be spoofed as a user cannot modify them as easily as an HTTP header.

High Resolution Timers in the
Browser 3

JavaScript-based timing attacks have been greatly explored over the last few years. They
rely on subtle timing differences to infer information that should not be available inside of
the JavaScript sandbox. In reaction to these attacks, the W3C and browser vendors have
implemented several countermeasures, with an important focus on JavaScript timers. In
2015, Oren et al. [OKSK15] implemented a fully JavaScript-based cache attack, running
entirely in the browser. Based on Prime+Probe [LYG+15], it allows an attacker to track user
behavior and recover information belonging to other processes running on the same system.
This contribution opened the scope for more critical attacks, exploiting hardware components
from the restricted JavaScript sandbox. To try and mitigate JavaScript-based timing attacks,
browser vendors have developed countermeasures specifically targeting timers. Notably, they
decreased timers’ resolution to make them less precise and introduced jitter to add noise to
measurements. Other security features like site isolation [RMO19] were added to reinforce the
browser’s security and act as a novel line of defense against timing attacks. Amid all these
changes, it can be hard to keep track of all the different evolutions that browsers underwent:
each browser vendor implements different countermeasures, and decisions can be taken in a
hurry after the publication of critical vulnerabilities. For instance, in 2018, drastic timer-based
countermeasures were taken only a few days after the publication of Spectre [KHF+19]. These
patches can be hard to track, and the quantitative aspect of such countermeasures has not
been appropriately studied.
In this chapter, we aim to provide a clear view of the vulnerability of browsers to timing

attacks. In the first part, we take a broad look at the research done in the area to systematize
it. We provide a taxonomy of attacks with their prerequisites and classify the countermeasures
based on their target resources. In the second part, our goal is to assess the actual efficiency
of timing-based countermeasures after seeing how much they changed over the years. In order
to gain proper insight, we implemented our own performance.rdtsc() high-precision timer
into Chromium and Firefox so that we can deconstruct studied timers into their most basic
blocks. With its help, we identified that recent countermeasures present significant advances
against timing attacks, but they also present noticeable steps back. For example, with the
introduction of COOP/COEP, Firefox 79 gained a robust resource isolation mechanism but
lost a lot with regard to timing attacks. Before, an attacker needed several minutes to build
an eviction set to conduct an attack. Now, with the resolution changed from 1ms to 20µs, we
show that it can be set up in just a single second. Another problem is the recent reintroduction
of SharedArrayBuffer after it was deactivated due to the disclosure of Spectre [KHF+19]. Its
presence introduces a real security risk because a malicious script can abuse it by creating
a very powerful timer that has an incredibly high resolution with very low overhead. By
lowering timing-based countermeasures, all the prerequisites for large classes of timing attacks
are met, meaning that these attacks can theoretically be implemented.

54 Chapter 3. High Resolution Timers in the Browser

Contributions This chapter makes the following contributions:

• We provide a classification of prerequisites for timing attacks and present the most
notable classes of timing attacks (Section 3.1).

• We classify countermeasures based on the resources they target (Section 3.2).

• We present tools to analyze timers and the threat they pose for timing attacks. Notably,
we detail our custom timers and automatic tests that measure the resolution and
measurement overhead of several built-in timers, which can easily be reproduced for
other systems and future browser versions (Section 3.3).

• We present a longitudinal study of browsers’ timing-based countermeasures. (Sec-
tion 3.4).

Update to the results of this contribution This contribution, including the results
and the conclusion and discussion, stem from an article written in 2020. Due to the rapid
development of browsers and research in security, several results may have changed since.
Although these changes do not drastically impact the conclusions of this article, Section 3.7
presents the latest changes and discusses their consequences.

3.1. Timing attacks in browsers

Timing attacks in browsers are a large class of attacks exploiting timing differences in
computations in order to infer private information. As they are mainly based on JavaScript,
the attacker code will, by design, always be executed on the victim’s hardware. In this section,
we aim at systematizing timing attacks in browsers, by classifying prerequisites for different
classes of attacks.

3.1.1. Attack prerequisites

We systematize the major timing attacks prerequisites in order to classify them and better
understand the outline of attacks. We have identified the following prerequisites:

P1 High-resolution timers,

P2 Shared hardware resources,

P3 Transient execution,

P4 Shared system resources,

P5 Shared browser features.

P1: High-resolution timers To mount timing attacks, an attacker must be able to
distinguish between data-leaking events with their timings. To do so, they need access to
high-resolution timers. JavaScript offer several timers presented in Section 2.3, but this
chapter focus on the two timers with the best resolution: performance.now() interpolation
and SharedArrayBuffer.

3.1. Timing attacks in browsers 55

Table 3.1. – Comparison of attacks prerequisites. All attacks require P1, but with different
ranges of resolutions.

Required
resolution

(P1)
P2 P3 P4 P5

Spy in the sandbox [OKSK15] 100 ns
Rowhammer.js [GMM16] 100 ns
Website fingerprinting [SKH+19] 10−100ms
DRAM covert channel [SMGM17] 10 ns
Breaking ASLR [GRB+17] 100 ns
Spectre [KHF+19] 100 ns
ret2spec [MR18]1 100 ns
RIDL [vSMÖ+19] 100 ns
Store-to-Leak [CGG+19] 100 ns
Memory deduplication [GBM15] 1µs
Loophole [VK17]2 100µs
Extension side channel [vGJ17] 100 ns

P2: Shared hardware resources Modern CPUs present major microarchitectural opti-
mizations in order to compute rapidly and efficiently, often solely created with performance
in mind. Since hardware is situated below software security rings and components are often
shared between processes, contention at the microarchitectural level can be the root cause
of software-based side-channel attacks. By design, these attacks are also less fixable than
software.

P3: Transient execution Transient instructions are instructions that are executed but
never committed to the architecture. They can be produced by several factors, such as
speculative execution or faulting memory accesses.

P4: Shared system resources In a browser, system resources are often shared between
contexts. Memory in particular can be shared between all code running in the same browser
process.

P5: Shared browser features A lot of purely software features are shared between
contexts or tabs in browsers. This is the case for history, cookies, event loops, or renderers, for
example. The difference in timings of such features’ operation can leak information between
tabs and inform about a user’s behavior.

3.1.2. Attack classes

We now give an overview of the major classes of timing attacks in browsers, along with their
major characteristics and prerequisites. Table 3.1 illustrates the prerequisites for a sample of
state-of-the-art timing attacks in browsers.

56 Chapter 3. High Resolution Timers in the Browser

Hardware-based side-channel attacks Hardware-based side-channel attacks exploit
hardware components shared by all processes in the system. By measuring the compu-
tation time of specific operations, an attacker can infer the state of certain components. These
attacks share two major prerequisites:

P1 High-resolution timers,

P2 Shared hardware components, e.g., cache, DRAM.

The resolution of required timers varies in function of the attacked hardware, but typically
spans from 10−100 ns in order to potentially distinguish different states in the hardware.

Transient execution attacks With Spectre [KHF+19], Kocher et al. paved the way for
a new class of attacks, exploiting transient execution to leak protected data. Some of these
attacks can be implemented in browsers in JavaScript, including Spectre-PHT [CBS+19].
This class of attacks is very wide, but shares some prerequisites:

P1+P2 A hardware covert channel to extract leaked data,

P3 Transient execution,

P4 Shared system resources—finding secrets to leak.

P3 is a wide prerequisite: the Spectre attack alone possesses many variants, each targeting
different optimizations [CBS+19]. Most crucially, different attacks target different secrets to
leak (P4), i.e., in the same address space, or across address spaces.

Attacks based on system resources By exploiting shared system resources, an attacker
can also retrieve information using a side-channel attack. These attacks share the following
prerequisites:

P1 High-resolution timers,

P4 Shared system resources.

Attacks based on browser resources In order to have a uniform and efficient browsing
experience, most browsers share information between tabs or processes. This includes,
among others, browsing history, browser extensions, or event loops. However, this sharing of
information, even if not directly reachable in JavaScript, can leak private information to a
malicious site. This class of attacks shares two prerequisites:

P1 High-resolution timers,

P5 Shared browser resources.
1ret2spec can still break ASLR with site isolation.
2Since each process has its own event loop, the attack is not implementable on recent Chrome versions.

3.2. Countermeasures in browsers 57

3.2. Countermeasures in browsers

In this section, we systematize the different countermeasures proposed by academics or browser
vendors. We have categorized such countermeasures into three classes:

C1 Isolation-based countermeasures,

C2 Timing-based countermeasures,

C3 Browser resources based.

3.2.1. C1: Isolation

Isolation has been established as a staple of browser security with measures such as site
isolation or COOP/COEP, presented in Section 2.6.1.4.
While these countermeasures were mostly implemented to prevent transient execution

attacks, especially Spectre-PHT [KHF+19], they do not prevent other timing attacks, e.g.,
microarchitectural side channels or attacks exploiting browser features as, by design, they are
not meant to mitigate P1, P2, or P3. As site isolation isolates the process’ attack space, they
also do not mitigate P4 for transient execution attacks targeting cross-address-space data,
such as RIDL [vSMÖ+19].

3.2.2. C2: Timers

The common prerequisite for timing attacks is access to timers. By removing timers, or
lowering their resolution, most timing attacks would theoretically be mitigated. While the
needed resolution depends on the attack, most hardware and transient attacks require high-
resolution timers (P1), around 10 to 100 ns. Removing such high-resolution timers would
theoretically mitigate these attacks.
However, even by reducing timers’ resolution, interpolation is still possible as long as

attackers have access to timers with a constant time free-running operation. To mitigate clock
interpolation in browsers, adding a random jitter to API timers was proposed [SMGM17, KS16].
Adding jitter to a measurement is equivalent to having clock periods of different times (with
an average around the real clock period). This means that the interpolated time would vary
significantly between clock periods for the same event, hence reducing the precision of clock
interpolation.
Another widely-adopted countermeasure was to disable SharedArrayBuffer to prevent

attackers from using them as high-resolution clocks.
Firefox 81’s performance.now() has a resolution of 20µs without jitter, only when COOP/

COEP is activated [Moz20b, Bug20], and a resolution of 1ms when COOP/COEP is not
activated. It offers access to SharedArrayBuffer only when COOP/COEP is enabled. Since
Chrome 72, SharedArrayBuffer is enabled and performance.now() has a resolution of 5 µs
with a jitter of 5µs under site isolation (which is present by default)3.

3Since the original publication of this contribution, newer Chrome versions changed the policy about timer
security, and now these changes require COOP/COEP to be activated to recover SharedArrayBuffer and
high-resolution timers. See Section 3.7 for a short update on later changes.

58 Chapter 3. High Resolution Timers in the Browser

3.2.3. C3: Browser resources

When some timing leakages in the browser are not fixed by a more general approach like
C1, there is a need to issue patches that specifically target them. For example, the history
sniffing attack detailed by Paul Stone in 2013 [Sto13] was only fixed in Firefox in 2020 by
issuing repaints on both visited and unvisited elements [Moz20a, Moz19]. Regarding extension
fingerprinting, the timing attacks detailed by Sanchez-Rola et al. [SSB17c] and Van Goethem
and Joosen [vGJ17] were fixed by the Chromium team by changing how the checks for
web-accessible resources were made to prevent early-out exits [Chr17a, Chr17b].

3.2.4. State of browser countermeasures

Figure 3.1 illustrates the evolution of browsers’ main countermeasures and significant state-
of-the-art attacks. P2 and P3 are not mitigated in browsers. Site isolation and COOP/
COEP are important security updates on browsers, but do not mitigate hardware side-channel
attacks and transient execution attacks other than Spectre-PHT. Furthermore, V8 developers
claim that software fixes for transient execution attacks are “an unsustainable path" [TS] as
fixes on P3 are too performance consuming, and fixes on P4 only apply to specific attacks.
Mitigation for P3 must be implemented at least at the OS level, if not at the hardware level.

The common prerequisite of timing attacks is P1, i.e., access to high-resolution timers. This
means that C2, timing-based countermeasures, are the only generic defense for timing attacks,
including future timing attacks.

Changes in timer-based countermeasures were motivated by a compromise between security—
less effective timers mean less threatening attacks—and usability. Indeed, countermeasures
had major implications on web development and were meant to be temporary. SharedArray
Buffer are a powerful tool to build more complex websites, and access to high-resolution timers
is necessary for some fields of web design, such as animation or monitoring performances.
There is a clear trade-off between strengthening the timers for security, and weakening them
for easier development. However, we have found no quantitative study of the impact of the
changes in values, especially regarding API timers’ resolution and jitter. Finding when and
why each countermeasure was deployed often requires a deep dive into browser bug trackers.

With all the changes brought to countermeasures, especially timing-based, it is not clear
to what extent P1 is mitigated, i.e., to what extent browsers are vulnerable to most timing
attacks, and whether an optimal value for resolution and jitter exists. In the following sections,
we evaluate the efficiency of timing-based countermeasures.

3.3. Evaluation tools

In this section, we present our threat model, and the properties of timers we are interested
in: their resolution and measurement overhead. We focus on three timers or variants:
performance.now() interpolated, performance.now() interpolated and amplified, and Shared
ArrayBuffer.

3.3.1. Threat model

We evaluate two popular browsers that are Mozilla Firefox and Google Chrome, letting aside
Safari, Edge, or Tor Browser. It should be noted that we study the desktop version of these
browsers, as all timing attacks we look at were not performed on mobile devices.

3.3. Evaluation tools 59

2015 2016 2018 2019 2020

Spectre [KHF+19]

The spy
in the sandbox
[OKSK15]

[C2] Firefox 41
resolution:

5 µs

[C1,C2] Firefox 79
& COOP/COEP:

resolution:
20 µs

[C2] Firefox 60
resolution + jitter:

1ms

[C2] Firefox 59
resolution: 2ms

[C2] Firefox 57.0.4
resolution: 20 µs

[C2] Chrome 44
resolution:

5 µs

[C2] Chrome 64
resolution + jitter:

100µs

[C1] Chrome 67
Site isolation

[C2] Chrome 72
resolution + jitter:

5µs

Figure 3.1. – Timeline of timing attacks and browser countermeasures. Items in italics
are significant attacks that caused the changes. Items preceded by [C1] are
isolation-based countermeasures, and [C2] are timing-based countermeasures

JavaScript-based timing attacks can be used in several threat models, each offering a
different range of possibilities. First-party attacks, where a user visits a malicious website,
offer the most possibilities to the attacker. As the attacker can setup COOP/COEP as
she wishes, she can freely use the unrestricted timers, based either on performance.now() or
SharedArrayBuffer. In this model with Firefox 81, an attacker has access to performance.
now() with 20µs resolution and no jitter and to SharedArrayBuffer. However, the attacker
has to redirect users to her malicious website.
With third-party attacks, a user visits a legitimate website that has, e.g., a malicious

advertisement controlled by the attacker. This allows the JavaScript code of the ad to be run
on the user’s machine. As opposed to the first-party model, the attacker does not control
the top-level page. The attacker therefore cannot set up COOP/COEP. Without these flags,
an attacker on Firefox 81 only has access to performance.now() clamped and jittered at 1ms
and no access to SharedArrayBuffer. This model presents a major threat surface, as it can
be implemented on massively visited websites, e.g., Twitter or Facebook.

On Chrome 84, timer-based countermeasures are independent of COOP/COEP. This means
that the first and third-party models offer the same timing possibilities, i.e., access to Shared
ArrayBuffer and performance.now() with a 5 µs resolution and jitter. However, Chrome 84
implements site isolation, which prevents certain transient execution attacks.

3.3.2. Measurement tools

One challenge is that measuring properties of high-resolution timers requires timers with an
even higher resolution and precision, which are not available in standard browser releases.
To solve this issue, we built a custom version of Firefox and Chromium that adds a new
JavaScript method we call performance.rdtsc(), which executes the rdtsc instruction. The
rdtsc instruction reads a CPU timestamp counter and returns it. As rdtsc is a cycle-accurate
timer, we can use it to evaluate real-world auxiliary timers. Specifically, we use it to measure

60 Chapter 3. High Resolution Timers in the Browser

the resolution of both performance.now() interpolation and SharedArrayBuffer, as well as
their measurement overhead.

We implemented our custom rdtsc builds in Firefox 81 and Chromium 84, built from sources
on the same system. We disabled debug flags to get a version as close to the release version
as possible. We modified files of the performance API [Con20a] to add a new public method,
performance.rdtsc(), which executes the native rdtsc and returns its value. However, rdtsc
can be reordered by the out-of-order execution, therefore two calls to performance.rdtsc()
would often be executed together, hence not timing an event. For instance, two calls to
performance.rdtsc() with a call to performance.now() between would return the same timing
difference as two subsequent calls to performance.rdtsc(). We fixed this by adding memory
fences (mfence instructions) in our performance.rdtsc() method, before and after the call to
rdtsc. Memory fences force the CPU to compute all operations preceding the fence before
executing operations succeeding the fence. This prevents out-of-order execution of parts of
code where the order of execution is critical. Appendix A.1 illustrates our implementation of
performance.rdtsc() for Firefox 81.

The mfence instructions add a constant overhead to the returned timestamp. Overhead is
also added by the browser handling of the native code. On our system, the total overhead
is around 1000 cycles. In all our following measurements, we measured the cycle difference
between two events, and then the cycle difference between two subsequent performance.
rdtsc(). This allows us to estimate the overhead for the current state of the CPU, depending
on noise or core frequency. By removing this overhead, we retrieve a more reliable estimation
of the event time in cycles.

3.3.3. Resolution

The resolution of a timer is the smallest value that it can measure. The smaller the resolution,
the more precise the timer is. However, precisely evaluating the resolution of a JavaScript
timer is a challenge as this requires an already precise timer.

performance.now() interpolation To evaluate the resolution of performance.now(), we
evaluate the maximum number of times we can increment a variable between two clock edges.
By dividing the clock edge duration by this number of ticks, or measuring the time it takes to
increment, we learn the shortest event that we can measure. However, because of the jitter,
this value alone is not representative. It can vary significantly between measurements. Hence
the importance of the standard deviation of the resolution.
It is also important to note that the duration of a "tick", an increment, can vary from

one browser version to another. The main factor of this varying duration is due to the
implementation of clock interpolation: after every increment, we check if performance.now()
timestamp has changed. As the computation of the pseudo-random jitter often uses a hash
function, it significantly increases the performance.now() computation time. Logically, the
number of possible increments during the same duration changes according to this computation
time.

performance.now() amplification As the resolution is downgraded by pseudo-random val-
ues, we also study the impact of amplification. By repeating the measurement, an attacker can
average the results and reduce the impact of the jitter. This amplification allows an attacker
to recover a higher resolution. As each repetition can increase the resolution, granting an

3.3. Evaluation tools 61

absolute resolution for an amplification clock is illogical. The attacker has to compromise
between the resolution and the number of repetitions she can afford.
In the following sections, we call error rate for cache hit/miss discrimination, the ratio of

false hits, i.e., misses computed as hits, and false misses, i.e., hits computed as misses over the
total number of experiments. This error rate allows to evaluate the efficiency of a timer in a
real-world cache timing attack. We assume that a timer with a 5% error rate has a resolution
sufficient to implement cache timing attacks, hence a resolution of around 10−100 ns. This
rate will be used as a standard for amplification in the following sections. We compute this
rate by causing ourselves cache hits by calling a variable repeatedly and cache misses by
calling a variable after evicting it from the cache by browsing through a large array.

Amplifying the results by repeating measurements is, however, not adapted to all attacks.
Specifically, it only works when the attacker controls the event that creates the timing
difference. For instance, in the case of a covert channel, the attacker can recreate the
conditions for the same measurement several times. Some monitoring attacks do not tolerate
repetitions, as the attacker cannot recreate the same conditions for the measurement. For
instance, RIDL [vSMÖ+19] steals in-flight data, and cannot select which data is in flight.

SharedArrayBuffer For SharedArrayBuffer, the resolution is the time of a shared increment.
The faster the increment, the higher the resolution. Other factors can impact the resolution
of the timer, such as the computation time of reading a value from the array or potential
concurrent accesses. Multithreading is handled differently in different browsers and this can
be a potential source of randomness on the timestamp.

3.3.4. Measurement overhead

While the resolution indicates how precise a timer can be, an overhead is always incurred
during a time measurement. In our study, we consider the following ones:

• Setting up a timer and handling it (starting it, stopping it, retrieving the results) always
adds an overhead. For performance.now(), it is very low as we rely on a built-in API in
the browser. For SharedArrayBuffer, it is also comparatively low as starting a worker
is very fast and communication with it is immediate.

• The repetition of ticks in timer interpolation (see Figure 2.8) is an overhead. Indeed,
even if we measure the time of a short event, we still need to wait for the next clock
edge of the timer that we rely on to retrieve the results. This is why, for performance.
now() interpolation, the resolution can be very low but the overhead can be large as we
are bound by performance.now() resolution.

To evaluate the measurement overhead of a given method, we use our custom performance.
rdtsc() to measure the time difference between the start and the end of the measurement,
without any event in between. A high measurement overhead does not necessarily prevent
the attack but it plays a major role in the attack severity.

Ideal bit rate A covert channel created with a high measurement overhead will yield a
lower bit rate than one with a low measurement overhead, i.e., the time to receive one bit will
be higher with a high measurement overhead. Assuming each measure of time corresponds to
a bit of information, and that the time the operation takes top is insignificant with respect to
the overhead toh, we can define the ideal bit rate of such a timer to 1

toh
bit/s.

62 Chapter 3. High Resolution Timers in the Browser

Table 3.2. – Comparison of timers’ resolution, measurement overhead and ideal bit rate for
an error rate of 5%. We used a frequency of 1.60GHz and the resolution is
displayed in ns. We can observe that the SharedArrayBuffer-based timer is by
far the most efficient, as it offers a better resolution and a lower measurement
overhead than timers based on performance.now() on all browsers. Timers
based on performance.now() clocks are still highly effective in Chrome 84 and
Firefox 81 with COOP/COEP.

Browser Timer
Resolu-
tion

[cycles]

Con-
verted
resolu-
tion

Measure-
ment

overhead
[cycles]

Ideal bit
rate
[bit/s]

Chrome 84 SharedArrayBuffer 20 10 ns 40 1× 108

performance.now() interpolation 4 100-
1000 100 ns 7.2× 104 22× 104

Firefox 81
SharedArrayBuffer 20 10 ns 42 1× 108

performance.now() interpolation 100-
1000 100 ns 2.9× 107 60

Interpolation with COOP/COEP 100-
1000 100 ns 7× 104 22× 104

Eviction set Measurement time, and therefore measurement overhead, also impacts other
attacks. For instance, building an eviction set in JavaScript [VKM19], has a complexity in
time measurements of O(C) where C is the size of the cache. Standard L3 caches have a size
of several megabytes. In practice, on our system, an attacker must measure latency around
100 000 times in order to build an eviction set. We use the computation of an eviction set as
a standard as it is a critical step of attacks based on Prime+Probe. A high measurement
time therefore leads to huge eviction set computation times, which may not be available to
an attacker in a real-world scenario where a user only spends a few seconds or minutes on a
web page.

3.4. Results

In this section, we present the results of our longitudinal studies of performance.now() and
SharedArrayBuffer timers over many browser versions, as well as the impact of changes in
countermeasures on state-of-the-art attacks. Table 3.2 presents the results of our comparative
study.

3.4.1. Experimental setup

We ran measurements on a machine with an Intel CPU i5-8365U (Whiskey Lake generation)
with 1.60GHz frequency, under Fedora 31.

We performed experiments using every major release versions of Firefox from 53 (2017)

4COOP/COEP has no impact on timers in Chrome 84.

3.4. Results 63

Table 3.3. – Duration of a tick, using performance.rdtsc().

Browser
Average tick
duration
[cycles]

Standard
Deviation
[cycles]

Firefox 81 200 10
Unjittered Firefox 81 100 9
Chrome 84 150 9

to 80 (2020) and Chrome 48 (2016) to 84 (2020)5. We used Selenium WebDriver [sel20] and
Python to automate tests. New versions of said browsers can easily be included in the test
routine to see the evolution of timers without a deep dive in documentation and source code.
Our scripts access test pages hosted on a local server, each page containing our JavaScript
benchmark code. Our scripts also handle browser evolution, e.g., the different flags required
by the use of SharedArrayBuffer, or the eventual activation of COOP/COEP.

3.4.2. Longitudinal study of performance.now() interpolation

3.4.2.1. Simple interpolation

Resolution We seek to measure the resolution of the performance.now() method when
interpolated. Two factors influence this resolution: (1) the duration of a tick, and (2) the
jitter.
The shorter the duration of a tick, the higher the resolution. Table 3.3 illustrates the

duration of a tick on different browsers and versions. It is important to note that while the
increment part of the tick has a relatively steady computation time through browser versions,
the computation time of the call to performance.now() varies a lot depending on the version.
For instance, on Firefox 81, a call lasts around 200 performance.rdtsc() cycles, while it only
takes 100 cycles on an unjittered version. At this scale, the jitter is indeed a time-consuming
operation as the browser uses a hash function to compute a random midpoint.

To understand the impact of resolution and jitter on measurements, we measure the number
of ticks between two clock edges. This is equivalent to measuring no event with a performance.
now() interpolation-based clock. Without any jitter, the number of ticks is always the same.
Since the standard deviation is low, an accurate timing can be retrieved [SMGM17]. With
jitter, the story is obviously different. If the resolution of performance.now() is low, the time
between two clock edges increases, so the number of ticks increases. If the jitter is high, the
number of ticks will be spread on a wide range of values between measurements, and therefore
the standard deviation increases. Table 3.4 illustrates this evolution by showing statistics
about the average number of ticks between two clock edges. As a reminder, a tick is composed
of an increment as well as a call to performance.now(). The results were computed using
100 000 samples. We see that jittered versions often have a high variance to average ratio,
e.g., on Firefox 81 without COOP/COEP, the standard deviation is half of the average.

5Some releases of Chrome (versions 65 to 6) were unavailable on our system. We replaced them with the
equivalent Chromium version. To our knowledge, the timer implementations are the same on both browsers.

6Without COOP/COEP for Firefox 81 and later.
7Versions 58 and 59 experienced many timer changes and do not appear here.

64 Chapter 3. High Resolution Timers in the Browser

Table 3.4. – Comparison of the average number of ticks per browser. The duration of a tick
can vary according to the browser or the presence of jitter.

Browser
Average

number of
ticks

Standard
Deviation

Announced
resolution Jitter

Firefox 81-latest + COOP/COEP 300 40 20 µs
Firefox 60-latest6 3310 1510 1ms
Firefox 41-577 70 10 5 µs
Chrome 72 and later 12 7 5µs
Chrome 64-71 400 200 100 µs
Chrome 64 and former 10 2.5 20µs

Figure 3.2a and Figure 3.2b illustrate the variation of the number of ticks in a single clock
period for Firefox 81 and Chrome 84 respectively. The data follows a triangle distribution,
with the top value at around 3300 and 12 ticks respectively. A precise timestamp can be
clamped to a certain value if the timestamp is smaller than the clamped value but higher
than the random midpoint, or if the timestamp is higher than the clamped value but lower
than the random midpoint. As both midpoints are computed following a uniform distribution,
the result of the sum of these two distributions is a triangle distribution. On the contrary,
as can be seen on Figure 3.2c, the behavior of an unjittered Firefox is very different. The
distribution of ticks in a clock period is grouped between 280 and 320 and does not follow
a triangle distribution. The difference in the number of ticks stems from the different base
resolutions and jitters. Knowing the distribution of the number of ticks in a single clock
period means that an attacker can gather more information from a single measurement.

The resolution for the different versions varies drastically between browsers. Figure 3.3
illustrates the timings for cache misses and cache hits by using performance.now() interpolation
on Firefox 81 with COOP/COEP and Chrome 84. Distributions must be differentiated in order
to implement cache attacks. Note that, contrary to what we expect, hit timings are higher to
miss timings on this graph. This is because performance.now() interpolation measures the
time between the end of the event and the end of the clock edge. This means that a long
event will yield a short interpolated time, whereas a quick event will yield a long interpolated
time. The lack of jitter on Firefox has an impact on the histogram, where the difference
between cache hits and cache misses is clearer.

On Firefox 81 without COOP/COEP, an attacker has a 30% error rate on distinguishing
cache hits from cache misses when targeting a sub-100 ns resolution. On Chrome 84, regardless
of COOP/COEP, the error rate stands at 20%. This makes for a highly unreliable clock, and
drastically hinders the development of attacks. On Firefox 81 with COOP/COEP, the lack of
jitter drops this error rate to only 11%.

The lower the error rate, the more threatening timing attacks with this timer are. This
means that, with interpolation alone, timers based on performance.now() on Firefox 81 with
COOP/COEP offer the best timer in terms of resolution, as they allow to implement cache-
based timing attacks with a relatively low error rate. Error rates of Chrome 84 and Firefox 81
without COOP/COEP are too error-prone to implement attacks that require high precision.

3.4. Results 65

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

1

2

3

4

Clock edge duration [incrementations and clock check]

P
er
ce
nt
ag
e
of

ca
se
s

(a) Firefox 81 without COOP/COEP (jitter).

0 5 10 15 20 25 30 35
0

5

10

15

20

Clock edge duration [incrementations and clock check]

P
er
ce
nt
ag
e
of

ca
se
s

(b) Chrome 84 (jitter).

0 50 100 150 200 250 300
0

20

40

60

80

100

Clock edge duration [incrementations and clock check]

P
er
ce
nt
ag
e
of

ca
se
s

(c) Firefox 81 with COOP/COEP (no jitter).

Figure 3.2. – Distribution of the number of ticks in a single clock edge.

Measurement overhead We now evaluate the measurement overhead on Firefox 81 and
Chrome 84. We use our custom performance.rdtsc() to retrieve the timestamp before and
after the measurement of an empty event with performance.now() interpolated. We found
that, on Firefox 81 without COOP/COEP, the measurement overhead averages around
1.8 million cycles. On our 1.60GHz CPU, this represents around 1.1ms. This is coherent
with the announced resolution, 1ms, as the measurement always takes at least this time
between two clock edges. On Chrome 84, a measurement using interpolation takes 9,000
cycles, corresponding to 5.5µs with our average frequency. On Firefox 81 with COOP/COEP,
a measurement using interpolation takes 35,000 cycles, averaging to 21µs on our system.
The slight difference may come from the potential change in CPU frequency under a lot of
calculations and noise.

With interpolation alone, Chrome 84 has the shorter measurement overhead, which allows
implementing attacks that run faster. Namely, a cache covert channel built with this timer
could ideally retrieve a resolution of 180 kbit/s, against 50 kbit/s for Firefox with COOP/
COEP and 900 bit/s for Firefox without COOP/COEP. However, the ideal bit rate does not

66 Chapter 3. High Resolution Timers in the Browser

0 50 100 150 200 250

10

20

Interpolated time [performance.now()]

P
er
ce
nt
ag
e
of

oc
cu
rr
en
ce

cache miss
cache hit

(a) Firefox 81 with COOP/COEP.

0 5 10 15 20 25 30 35

2

4

6

8

10

Interpolated time [performance.now()]

P
er
ce
nt
ag
e
of

oc
cu
rr
en
ce

cache miss
cache hit

(b) Chrome 84.

Figure 3.3. – Histogram for cache hits and cache misses.

take into account the different error rates between browsers.

Conclusion Although Chrome 84 offers the best base resolution with performance.now()
interpolation, the jitter causes a high error rate for high-resolution attacks. This error rate
would slow, if not prevent, the implementation of attacks using interpolation alone. Due to
the lack of jitter, Firefox 81, with COOP/COEP enabled, offers the lowest error rate with
interpolation. It could be used to build error-tolerant cache attacks, such as a covert channel.
Firefox 81 without COOP/COEP has a high error rate (30%) and a high measurement time,
rendering it inefficient for timing attacks.
With interpolation alone, Firefox 81 with COOP/COEP is the only browser where an

attacker can build clocks based on performance.now() that can efficiently run timing attacks.

3.4.2.2. Interpolation and amplification

The jitter being longer than most of the events we wish to time, it is not possible to simply
use clock interpolation to retrieve a high resolution. To get a more accurate timer, an attacker
therefore needs to reduce the impact of the pseudo-random jitter. On both Chrome and
Firefox, the jitter is deterministically defined by computing a random midpoint between
the highest and lowest clamped values. However, the time of a jittered clock edge follows a
triangle distribution around the precise timing value. This means that each measurement has
a slight tendency towards the real value. By repeating the measurement several times, an
attacker can, therefore, achieve a higher precision.

3.4. Results 67

−10 0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Number of repetitions

E
rr
or

ra
te

(%
) Firefox 81

Chrome 84
5% error rate

Figure 3.4. – Hit / miss error rate in function of repetitions, using performance.now()
interpolation on Firefox 81 without COOP/COEP and Chrome 84.

Resolution To evaluate the impact of amplification on the resolution, we repeated the
measurements and computed each time the average error rate on cache hit/miss discrimination.
Figure 3.4 illustrates the results for Firefox 81 without COOP/COEP and Chrome 84. The
error rate follows a logarithmic decrease with repetitions for both browsers. An attacker can
reach a 5% error rate by repeating the measurements 15 times on Firefox 81 without COOP/
COEP and 8 times for Chrome 84. On Firefox 81 with COOP, a mere 2 repetitions grant a
4% error rate. Comparatively, on an older version of Chrome, namely version 71, an attacker
needed 12 repetitions in order to reach the 5% error rate.

Measurement overhead A single measurement without amplification takes at least the
duration of a clock edge. That is, on average, 1ms for Firefox 81 and 5 µs for Chrome 84. In
the best scenario, repeating the measurement n times will increase the measurement time
by n.
Specifically, repeating the measurement 15 times on Firefox 81 without COOP/COEP

takes 29 million cycles on average. This represents a measurement overhead of 18ms on our
1.60GHz CPU. This means that building a covert channel using this timer as a receiver yields,
at best, an ideal bit rate of 60 bit/s.

On Chrome 84, repeating the measurement 8 times grant a measurement overhead of 72 000
custom performance.rdtsc() cycles, or around 45 µs. This would grant an ideal bit rate of
22 kbit/s.

On Firefox 81 with COOP/COEP, with amplification, the measurement time would be
70 000 custom performance.rdtsc() cycles, granting as well an ideal bit rate of 22 kbit/s.

Conclusion The introduction of non-timer-based countermeasures, specifically site isolation
for Chrome and COOP/COEP for Firefox have led browser vendors to take a step backward
on timer-based countermeasures. Lowering the resolution and the jitter has an impact on
the measurement overhead, hence on real-world attack time. Starting from Chrome 72, the
resolution of performance.now() has been set to 5 µs with jitter. Starting from Firefox 79,
when COOP/COEP are set, the resolution of performance.now() is set to 20 µs without jitter.

A cache covert channel based on performance.now() amplification on Firefox 81 with COOP/
COEP has an ideal bit rate 360 times higher than without COOP/COEP. Similarly, an
attacker with COOP/COEP can build an eviction set in around a few seconds, where an
attacker without COOP/COEP would need several minutes. The same goes with Chrome:

68 Chapter 3. High Resolution Timers in the Browser

on version 71, with a resolution of 100µs, we obtain, with amplification, an ideal bit rate
of 800 bit/s, 30 times lower than with the new Chrome 84 timer values. An attacker using
Chrome 84 can build an eviction set in a matter of seconds, as opposed to several hundred
seconds for Chrome 71.
The efficiency of the jitter is also highlighted by these results: between Chrome 84, with

jitter, and Firefox 81 with COOP/COEP, without jitter, the measurement overhead is similar,
when Chrome offers a better base resolution.

These changes have a massive impact on a browser-based threat model, where a script
running with high performance for several minutes is highly suspicious, and can be detected
by browsers. In a first-party scenario, an attacker can easily setup COOP/COEP and use
a powerful timer granted by this change of resolution and timer. For both browsers, the
impact of this change in resolution is a massive increase in the threat of timing attacks, as it
means that P1 is less mitigated than on older versions. Changing the timer resolution does
not prevent attacks, but impacts massively the time needed to execute them, which is an
important factor in web security, as the user has to stay on the malicious web page for the
duration of the attack. Setting a lower resolution and lower jitter has a double impact on
the measurement overhead: as each clock edge is shorter, each measurement is faster. The
attacker therefore needs fewer repetitions to eliminate the jitter, furthermore accelerating
attacks.

3.4.3. Longitudinal study of SharedArrayBuffer-based clocks

Resolution The resolution of SharedArrayBuffer only depends on the computation time of
an increment of the shared value. The smaller the value, the higher the resolution. We used
performance.rdtsc() before and after incrementing the array buffer and tested two different
types of increments: a simple increment (value++) and the built-in method Atomics.add
[ECMa]. The Atomics API offers methods to safely use shared memory and handle conflicts.

We observed that a simple increment takes in the order of 20 custom cycles on both Chrome
84 and Firefox 81 whereas using Atomics takes 100. Logically, handling concurrent accesses
introduces an overhead. We also noted that the first increment is slower, by an order of
magnitude, probably from a cache impact. As the sub-thread systematically increases the
same value, we excluded it and focused on the following values. SharedArrayBuffer offers a
resolution in the order of 20 CPU cycles, or 10 ns on our CPU.

Measurement overhead The measurement overhead for SharedArrayBuffer is roughly
the time it takes to read a value in the shared array twice: before and after the event. We
again used our custom performance.rdtsc() to measure this time, and we tested two methods:
standard array access and Atomics.load. On Firefox 81, a standard access lasts in the order
of 42 custom cycles, opposed to 160 with Atomics API. As the lowest measurement overhead
is preferable, we used the standard access. The measurement overhead on Chrome 84 with the
standard access is 40 performance.rdtsc() cycles, or 20 ns on a 1.60GHz CPU. It is similar
on Firefox 81.

Conclusions SharedArrayBuffer have been disabled by default in Chrome 60 and Firefox
57.0.4 to mitigate Spectre. With the introduction of mitigations to transient execution attacks,
they have been reimplemented. They are available by default in Firefox 79 with COOP/
COEP, and by default in Chrome 68.

3.5. Discussion 69

SharedArrayBuffer based timers are, by far, the most powerful timer available in browsers.
Table 3.2 illustrates the resolution and measurement time for SharedArrayBuffer-based clocks.
They offer a resolution of 20 cycles and a measurement overhead of 40 cycles, equivalent
to 10 ns and 20 ns respectively on a 1.60GHz CPU. The offered resolution is sufficient to
implement all known timing attacks. In addition, they have a very low measurement overhead
and do not need amplification. An attacker using SharedArrayBuffer to build a covert channel
can achieve an ideal bit rate of 50Mbit/s on both browsers. This is 800 000 times higher than
with performance.now() on Firefox 81 without COOP/COEP, and 2000 times higher than
Chrome 84 and Firefox 81 with COOP/COEP.
An attacker could theoretically create an eviction set in less than a tenth of a millisecond

by using this method. However, the algorithm required to create an eviction set has other
sources of heavy computation, and still run within a few hundred milliseconds on our system.

Free access to such a powerful timer shows that P1 is not mitigated. Excluding Spectre-PHT,
most of state-of-the-art attacks are theoretically possible under the current state of Chrome
and Firefox, as P1, P2 and P3 are not mitigated, and P4 only partially mitigated. Other
transient execution attacks, such as RIDL [vSMÖ+19] or ret2spec [MR18] are not prevented
by COOP/COEP or site isolation, and are still implementable under certain conditions as
the shared system resources are still accessible. In Firefox, where SharedArrayBuffer are
restricted to sites with COOP/COEP, an attacker can still use them in a first-party scenario.
Logically, countermeasures on performance.now() or other timers are secondary when Shared
ArrayBuffer are available, because they allow the creation of way more potent timers.

3.5. Discussion

In this section, we discuss the current state of timers in browsers and the challenges surrounding
them.

Usability vs security and the lack of proper mitigations In Section 3.2, we have
seen that the behavior of API timers like performance.now() has varied over the years in
response to newly discovered attacks. Timing-based countermeasures (C2) have been widely
implemented, but to various degrees of strength. On one hand, browser vendors decreased
timer’s resolution and added jitter to provide a more secure environment for their users. But
on the other hand, their decisions appear arbitrary in retrospect as changes to timers were
made without any concrete evidence of their effectiveness. For example, despite the study of
Oren et al. in 2015 [OKSK15], it was not until 2018 that we saw the first implementation of
jitter in web browsers. In that time frame, the decrease in timer resolution could simply be
bypassed through interpolation [SMGM17]. Moreover, since some genuine applications are
directly impacted by the lack of real-time precision provided by the affected timers [Bug18c],
each browser vendor has tried to balance security with usability: Chrome never went above
100µs, Firefox hovered around the 1ms mark and got down recently to 20 µs while the Tor
Browser has kept a 100ms resolution since April 2015. The same goes for SharedArrayBuffer:
they are enabled by default on Chrome, Edge and Opera, enabled under COOP/COEP for
Firefox, and disabled on Safari and Tor.
This lack of consensus between vendors highlights how uncertain the industry is with

the provided fixes. The results provided in this chapter show that the current timer-based
countermeasures (C2) are a good first step towards protecting users but they still fall short of

70 Chapter 3. High Resolution Timers in the Browser

fully protecting them against a large range of timing attacks, as P1 is a shared prerequisite
between most of the timing attacks, and allegedly future timing attacks.
An alternative that could be considered by vendors is to put access to a high-resolution

timer, based on performance.now() or SharedArrayBuffer, behind a permission. This way,
when a developer needs it for an application or a game, she would need to ask the user for an
explicit permission. This would prevent stealthy usage of API timers for timing attacks and
all vendors could adopt the exact same very low resolution by default as it would not break
pages not needing it.

The false sense of security created by resource isolation Recent trends on the
development of the web as a platform have focused a lot on controlling what is running
on a web page. Isolation-based countermeasures (C1) are at the core of browser security.
Mechanisms like SRI [Conh], CORP [Conc], COOP/COEP [AJ], site isolation [RMO19] or
even a proposal for better cookies [Wes] are all pushing the web forward in strengthening
security. Yet, when it comes to timing attacks, all these new barriers create a false sense of
security even though some attacks are definitely now much harder to pull off than before. By
design, these countermeasures are not meant to mitigate P2 nor P3, and only a subset of P4.
They are a great step forward in terms of security, but are not sufficient alone to mitigate
the vast majority of timing attacks. While they greatly limit the possibility of a third-party
attack when everything is set up properly on a web page, an attacker can still host her own
malicious domain and conduct the attack from there. Moreover, the recent increase of timer
resolution coupled with the reactivation of SharedArrayBuffer represents a massive step back
in security where some attacks can be run in similar conditions to the ones in 2015. Our
study highlights the dangers of coming back to such a state, and we hope browser vendors
will recognize their mistakes by considering stronger mitigations to P1.

The need to mitigate timing attacks at the OS or hardware level Since timers can
represent such an important threat to the security in a web browser, one can wonder if it
would be possible to have a browser without timers. One approach is to try and make the
browser deterministic as prototyped by Cao et al. with DeterFox [CCLW17]. By transforming
a physical clock into a logical one, they change the behavior of known timers so that they
do not return the time a request takes but return the number of operations that are being
executed. While promising, this approach presents several shortcomings. First, they have to
patch each known clock individually to instill this new behavior. A deep re-engineering of
the browser would have to be made to possibly cover all implicit clocks. The second problem
is that a logical clock loses all its meaning in the context of a real-time application. Some
programs need to access the actual physical clock of the system to function properly and
having a deterministic clock would present a lot of hurdles for developers.
In the end, we believe that everything running in a web browser has the potential to be

a timer. This means that fully mitigating P1 seems out of reach. While browsers in 1995
mainly rendered static pages, the web has kept growing since then and it is now this rich
and dynamic platform that can not only render pages but it is also the home of real-time
communications and virtual reality, to name but a few. While some alternatives like putting
access to high-resolution timers behind a permission can improve security, we simply have to
learn to live with timers as they are such an intricate but integral part of the web.
As a consequence, mitigating timing attacks at the browser level is not the only solution

3.6. Conclusion 71

as we can develop solutions at both the OS and hardware level to provide stronger security
against such threats, particularly mitigating P2 and P3. Software mitigations to transient
execution still have, at this point in time, a high cost in performance. Browser vendors claim
that mitigation must come from a lower level than software [TS] as hardware and transient
execution attacks originate from microarchitectural optimizations.

3.6. Conclusion

We have studied the evolution in the last years and the current state of JavaScript-based
timers and timing attacks for Chrome and Firefox, evaluating the resolution and measure-
ment overhead for the two most efficient timers: performance.now() and SharedArrayBuffer.
Timer-based countermeasures like clamping the resolution and adding jitter do not prevent
attacks, but increase the time needed to exploit these attacks. Unlike in native environments,
exploitation time is an important factor in web-based attacks, where the victim may not stay
on the same web page for more than a few seconds or minutes. Unfortunately, the current
trend of browser vendors undermining previous timer-based countermeasures by re-enabling
SharedArrayBuffer and increasing the resolution to improve usability re-opens the door to
many practical timing attacks, that were thought to be mitigated years ago. For example,
the reintroduction of SharedArrayBuffer on Chrome brought a 2 000-fold increase in covert
channel capacity, compared to performance.now() alone. This is even more dramatic on
Firefox, where the increase is 800 000-fold. Powerful countermeasures such as site isolation
and COOP/COEP only prevent a sub-class of transient execution attacks, thus browsers are
currently vulnerable to other transient execution attacks, as well as a large range of timing
attacks, with a large threat surface.

3.7. Evolution of Timer Security Since The Publication of the
Results

The original work from this contribution dates from November 2020. Since its publication,
the state of the art on timing attacks and their countermeasures has evolved. In particular,
starting from Chrome 92 [Gooc], site isolation is no longer sufficient to retrieve performance.
now()’s 5µs and SharedArrayBuffer, but rather requires COOP/COEP to be enabled, using
the same system as Firefox. When COOP/COEP is not enabled, SharedArrayBuffer are
disabled and performance.now() has a resolution of 100µs with jitter. This decision allows
to reduce the threat models of timing attacks, as COOP/COEP introduces more security
against, for instance, third-party attacks. However, the debate on security against usability is
still present. In particular, the adoption of COOP/COEP is long and can be complicated
to implement for websites with a large number of origins. To that extent, changes to the
origin policy brought by COOP/COEP are currently being discussed [Vah], such as easing
the policy regarding loaded resources, or allowing SharedArrayBuffer and a higher resolution
on performance.now() without COOP/COEP when site isolation is deployed, i.e., in latest
versions of Chrome and Firefox.

Port Contention in the
Browser 4

In 2018, port contention attacks have been shown to be a potential attack vector in a technique
introduced by Aldaya et al. [ABuH+19], named PortSmash. This attack on Intel CPUs is
based on port contention, where CPU ports act as a bottleneck in the execution pipeline.
By sharing ports with the victim, the attacker can exploit timing differences caused by the
contention of different instructions. PortSmash has a high temporal resolution and can be
used, like its counterparts on the cache, to perform side-channel attacks on cryptographic
libraries. While port contention attacks restrict the attacker by requiring that it shares the
core it executes on with its victim, they are inherently stealthier than attacks on the memory
subsystem. They are also immune to most hardware and system countermeasures which, in
their vast majority, target the cache [PGGV21, DFS20, LL14, KASZ09, ZR13, SQ21].

When compared to cache attacks such as Prime+Probe, native port contention attacks offer
better speed and spatial accuracy, do not require a complex cache profiling step, are more
resistant to noise, and, most significantly, can bypass cache-centric countermeasures. Mounting
a port contention attack in a browser setting would therefore deliver a real advantage to
attackers. Performing such an attack, however, is far from trivial. The basic step of a Prime+
Probe cache attack is sequential access to user-controlled memory. It has been shown that
even high-level primitives, such as substring searches, can provide this functionality [SAO+21].
Port contention, on the other hand, requires an attacker process that is co-located with the
victim on the same processor core and executes assembly language instructions carefully
chosen to conflict with the victim’s instructions. This is highly challenging in a web browser
environment:

C1 In this setting, the attacker’s code is written in a highly-abstracted language which is
translated into machine code by a just-in-time compiler;

C2 The attacker has no control over the physical core selected by the browser to execute the
attack code;

C3 Finally, web-based timers have a lower resolution than native hardware-based timers,
increasing the attacker’s measurement noise.

This chapter tackles these challenges, and asks the following questions: Can port contention
attacks be mounted from within the browser? What are the implications of this new attack
vector?

Contributions This chapter makes the following contributions:
1This work was presented before heavy countermeasures against timing attacks. The covert channel is
theoretically still implementable, but with a heavily degraded bandwidth.

74 Chapter 4. Port Contention in the Browser

Table 4.1. – Comparison of covert channels in web browsers.

Covert channel Bandwidth
Runs with
current

mitigations
Setup

CPU throttling [RRR16] 0.2 bit/s -
Disk contention [vGJ17] 5 bit/s -
RIDL (Evict+Reload) [vSMÖ+19] 8 bit/s -
DRAM [SMGM17] 11 bit/s -
Hardware interrupts [LGS+17] 25 bit/s cross-browser
Event loop [VK17] 200 bit/s cross-browser
Prime+Probe [OKSK15] 320 kbit/s1

Prime+Probe [OKSK15] 8 kbit/s1 cross-VM
Port contention [our work] 200 bit/s cross-browser
Port contention [our work] 80 bit/s cross-VM

• We show that port contention can be ported to web browsers via WebAssembly, despite
the strong requirements of this attack and the abstraction of the WebAssembly language.
This greatly increases the attack surface that is due to port contention (Section 4.1).

• We propose an automated framework to find which WebAssembly instructions can cause
port contention on a given Intel processor (Section 4.2).

• We demonstrate a side-channel attack on a synthetic example, to evaluate the resolution
of our port contention attack. We show that our attack has a spatial resolution of
1024 instructions with a single trace, of the same order of magnitude as the best
microarchitectural attacks in the browser (Section 4.3).

• We build a covert channel using port contention. With a sender running unprivileged
native code and a receiver inside the browser, we obtain a throughput of 200 bit/s, i.e.,
one order of magnitude higher than modern covert channels in the browser. Table 4.1
compares the results of our covert channel with the state of the art. In a virtualized
setting where the sender is running inside a virtual machine, we reach a throughput of
80 bit/s. We also build a cross-browser covert channel with an estimated throughput of
200 bit/s. (Section 4.4).

4.1. Web-Assembly-Based Port Contention

We introduce, to the best of our knowledge, the first implementation of port contention inside
a browser. We can create and measure port contention from the JavaScript sandbox, on both
Mozilla Firefox and Google Chrome. We found instructions that create contention on both
P1 and P5, allowing diverse potential victims.

Experimental setup and threat model Unless stated otherwise, we run all experiments
on an Intel i5-8365U CPU with a maximal frequency of 1.60GHz running Ubuntu 20.10, with

4.1. Web-Assembly-Based Port Contention 75

Mozilla Firefox 90 and Google Chrome 95 desktop version, both using WebAssembly 1.12.
As Safari and Edge support WebAssembly, the attack can theoretically be carried on these
browsers, but they remain outside of the scope of this chapter. The threat model is similar to
a user visiting a malicious website with his browser. The browser scripts run in a cross-origin
isolated browser [Conb, Cona], granting more context isolation and allowing access to Shared
ArrayBuffer and higher resolution timers.

Description In principle, our web-based attack follows a similar attack flow than Aldaya
et al.’s [ABuH+19] described in Section 2.4.1.4, but in the more restrictive JavaScript sandbox.
The attacker is situated inside of the browser sandbox. During the attack, they repeat specific
WebAssembly instructions that cause contention on a specific port. Section 4.2 explains
how we find these instructions on different systems. For instance, on our processor, the
WebAssembly ctz (Count Trailing Zeros) instruction creates contention on P1. Similarly,
instructions that truncate floats to integers, e.g., trunc_f32_u, create contention on P5. The
attacker then times the execution of these instructions. If no other processes use the same
port at the same time, these instructions will all be executed in a row, resulting in a fast
execution time. However, if another process emits µops on the same port, these µops will be
queued with the attacker-generated µops, resulting in a slower execution time for the attacker.
By measuring these differences in timings, the attacker process can monitor the port usage on
a specific port, and thus monitor other processes.

Challenges We face three challenges when implementing port contention in the browser.
First, as browser-based scripts run in a controlled sandbox, we have no access to native
instructions, and must instead use higher-level language constructs (C1). Furthermore, as
browser-based scripts are meant to be portable, the instructions are translated to different
assembly language instructions by the browser’s engine on different systems. This means that
the same script generates different native instructions depending on the CPU architecture,
each with a different port usage, varying from vendors and generations. The code is also
highly optimized by the engines, and execution can vary even on the same system, based
on the variables or structure of the code. To gain more control over the port usage of our
attacks, we mounted our attack with WebAssembly. This grants us access to smaller, more
atomic instructions. However, these instructions are still executed through the browser’s JIT
engine, and their translation to machine language can vary from one system to another. For
instance, the WebAssembly instruction ctz is translated into the native Intel instruction TZCNT
on our system, as we describe in more detail in Section 4.2. The TZCNT instruction, in turn, is
implemented using a single µop which is executed on P1 [AR]. Thus, repeatedly executing the
WebAssembly instruction ctz can cause contention on P1. The Intel instruction TZCNT is only
available, however, on CPUs starting from the Broadwell generation. Thus, the WebAssembly
ctz instruction may generate contention on another port in older CPU generations. Directly
compiling native code using x86 assembly instructions to create contention is not possible.
Since WebAssembly is designed as a portable language, the compilers cannot emit instructions
that are directly architecture-dependent, as they could not run on non-Intel CPUs.
Secondly, the high level of abstraction provided by the browser means that an attacker

can neither know nor control on which core the attack is executed (C2). Furthermore,

2We used the latest version available in November 2021. This version did not support vectorial types and
SIMD instructions.

76 Chapter 4. Port Contention in the Browser

4.7 4.75 4.8 4.85 4.9 4.95 5
0

20

40

60

Execution time (ms)

P
er
ce
nt
ag
e
of

oc
cu
rr
en
ce
s

Control experiment
P1 contention

Figure 4.1. – Port 1 contention experiment on i64.ctz for 1 000 000 instructions.

the operating system’s scheduler dynamically moves processes between cores to optimize
computing and save energy. We address this challenge by performing our attack on multiple
cores simultaneously by using Web Workers, JavaScript multi-threading implementation,
which creates a sub-thread running in a different process. This lets the attacker create as
many attacker processes as physical cores, and as they all have a high workload, they are
spread on different physical cores. Then, one of the attacker processes runs on the same core
as the victim process, able to monitor it.
Finally, our attack requires high-resolution timers to monitor processes at the µop level

(C3). Native implementations of port contention attacks all use the cycle-accurate rdtsc
instruction. As explained in Section 2.6.2 and Chapter 3, browser vendors have restricted
access to such timers inside of the sandbox to prevent timing attacks, but auxiliary timers can
still be built, letting attackers recover a high-resolution timer. In our attack, unless stated
otherwise, we use SharedArrayBuffer-based timers, which offer a resolution and measurement
time in the order of 20 ns [SMGM17, RML21].

Proof-of-concept Figure 4.1 shows a proof-of-concept illustrating the contention on P1
caused by the WebAssembly i64.ctz instruction.

In this experiment, we time the execution of 1 000 000 WebAssembly i64.ctz instructions
using the low-resolution JavaScript function performance.now. We run the experiment on
Firefox 90, where this timer offers a resolution of 20µs without jitter. In parallel with the
Firefox code, we also run a sender program written in native code and pinned to the same
processor. In the P1 contention experiment, the native sender runs the Intel instruction
crc32 in a loop. This assembly language instruction is known to cause contention on P1.
In the control experiment, the native sender runs a simple loop designed not to cause port
contention. We run this program, instead of simply not executing the sender at all, to ensure
that the difference stems from port contention, and not from other sources. As the figure
shows, the timings measured during the P1 contention experiment are on average 5% higher
than the control experiment, allowing the browser to efficiently distinguish between the two
distributions. We observe similar results on Chrome 95.
In the following sections, we describe how to convert this proof-of-concept into practical

attacks. In particular we obtain a higher spatial resolution and evaluate 100 WebAssembly
instructions (C1), we ensure the attacker does not have to pin processes (C2), and we use a
higher resolution timer (C3).

4.2. PC-detector 77

4.2. PC-detector

The translation of WebAssembly instructions into µops is variable on different systems: it
can depend on the microarchitecture, instruction extension sets or JavaScript engine. In this
context, it can be hard to findWebAssembly instructions that reliably cause port contention. In
this section, we propose PC-detector, a Selenium-based framework to dynamically detect and
characterize the port usage of WebAssembly instructions. Using the methodology described
in Section 4.1, PC-detector automatically tests multiple WebAssembly instructions and checks
if they cause contention on P1 or P5.

4.2.1. Description

Framework Our framework is composed of two components. The first component is a
native C script that either runs an empty loop, creates contention on P1, or creates contention
on P5. The second component is a Selenium-controlled browser which runs automatically
generated WebAssembly code. For each WebAssembly instruction instr , we create a binary
file with 1 000 000 calls. This file is then executed in the browser, and its runtime is measured
using performance.now()3. We run three experiments:

1. Repeatedly executing and timing the WebAssembly file, used as a control.

2. Creating contention on P1 with native code and timing the WebAssembly file.

3. Creating contention on P5 with native code and timing the WebAssembly file.

By evaluating the timing distributions of these three experiments, we can evaluate the port
usage of instr . If the three distributions are mixed, instr is not affected by the port contention
(thus it cannot cause it). If the P1 timings (respectively P5) are, on average, higher than
both the control and P5 (respectively P1), this means instr can detect, and cause, contention
on P1 (respectively P5).
We evaluate all standardized single and double operand operations [Gro], including arith-

metic operations and memory operations. Due to the stack machine structure of WebAssembly,
each experiment includes a load operation to add values to the stack between each operation.
We discovered that due to JIT optimizations, it is not possible to load many values on
the stack before running double operand operations in a row, as the compiler reorders the
instructions to alternate between loads and the tested operation. Therefore, we could not
run all double operand operations one after the other. We evaluate single instructions when
instructions have an output of the same type as their input, and pairs of complementary
instructions in the other case (e.g., convert a 32 bit integer into a 64 bit float). We do not
evaluate control flow operations, e.g., loops or jumps.

Metrics We propose two main metrics to automatically evaluate if a WebAssembly instruc-
tion can create contention on P1 or P5. The first one is based on the error rate between
timings from the P1 and P5 experiments. For this metric, we compare P1 to P5 instead of
P1 to control, as the control experiment does not run calculations on the native side. This

3Here, we use performance.now() instead of a SharedArrayBuffer-based clock as we control the number of
calls to instr . This allows us to artificially augment the duration of the timed event to be measurable with
performance.now(). This ensures us that contention is caused by our experiment, and not by noise created
by SharedArrayBuffer’s increments.

78 Chapter 4. Port Contention in the Browser

means that the timing differences could originate from other sources than port contention,
e.g., variation in frequency or contention on another shared hardware component. P1 and P5
have two timing distributions, and one distribution (Xlow) has lower timings than the other
distribution (Xhigh) when there is contention. Given a temporal threshold τ , we define the
error rate as the proportion of values of Xlow > τ and values of Xhigh < τ over all experiments.
We define the error rate for a given threshold as

erτ =
|Xlow > τ |+ |Xhigh < τ |
|Xlow|+ |Xhigh|

.

Then, by computing erτ for [min(Xlow) < τ < max(Xhigh)], we can retrieve the lowest error
rate possible, giving us the probability for a program to blindly distinguish between port
contention and standard usage from experiment timings. By inverting Xlow and Xhigh and
computing the best error rate, we can see if an instruction creates contention on P1, P5 or
none. In PC-detector, we infer that if erτ < 5%, an instruction creates contention.

The error rate calculation lets us identify whether an instruction creates contention. It does
not, however, illustrate the efficiency of this contention, i.e., how separated both distributions
are or how spread they are. This parameter is important in our attacks, as the more distance
between the distributions, the easier it is to distinguish between contention and standard
usage. In order to measure the distance between P1 and P5, we compute the effect size, also
known as Cohen’s d. In our case, Cohen’s d between P1 and P5 is defined as

d =
|mean(P1)−mean(P5)|√
(stdev(P1) + stdev(P5))/2

,

with stdev() the standard deviation of the distribution. A high Cohen’s d means that
distributions are highly separated and concentrated, and that we can more easily distinguish
contention from standard usage.

4.2.2. Results

We have tested 100 different instructions, including numerical, memory, bit-wise, and type
conversion operations.

Table 4.2 lists which instructions cause contention on the i5-8365U. The results are identical
between Chrome and Firefox, although the distance varies because of the different browser
architectures. In total, we found 21 instructions causing contention. As most instructions
have 32- and 64-bit variants, some instructions are doubled. Generally, we observe that 64-bit
variants have a greater Cohen’s d than their 32-bit counterparts. Similarly, the unsigned
variants of integer operations often grant better results than the signed variants.

P1 contention seems to be caused by arithmetic instructions, whereas conversion/truncation
operations create contention on P5. This result is coherent with the specialization of ports
and execution units. i64.rem_u shows the highest effect size of all detected instructions.

To demonstrate the portability of port contention and PC-detector, we have run the same
benchmark on different Intel CPUs. In total, we have tested 4 recent CPUs: i5-8365U, i7-8650,
i7-10510 and i7-10610. The instructions creating contention remain constant, but Cohen’s
d can vary based on the CPU frequency. This is logical, as all tested cores have the same
instruction set extensions, meaning that the WebAssembly instructions are translated to the
same native instructions.

4.3. Side-channel Attack on Artificial Applications 79

Table 4.2. – WebAssembly instructions causing port contention. For clarity, we group
together the 32- and 64- bits versions of instructions under one line marked
i32/i64.

Instruction P1 contention P5 contention Cohen’s d

i32/i64.ctz 1.2
i32/i64.clz 1
i32/i64.popcnt 1
i32/i64.div_s 10
i32/i64.div_u 10
i32/i64.rem_u 34
i32/i64.rem_s 5
f32.convert_i32_s and i32.trunc_f64_s 1
f32.convert_i32_s and i32.trunc_f32_s 2
f32.convert_i64_s and i64.trunc_f32_s 8
f32.convert_i32_u and i32.trunc_f32_u 2
f32.demote_f64 and f64.promote_f32 3
i32.wrap_i64 and i64.extend_i32_u 16
i32.wrap_i64 and i64.extend_i32_s 11

4.3. Side-channel Attack on Artificial Applications

In this section, we present an artificial gadget, illustrating the side-channel threat of web-based
port contention. We built a synthetic and generic example showing how a program, which
execution depends on secret information, is vulnerable to WebAssembly port contention.
Indeed, if a program has branches depending on secret bits, an attacker can use a side-channel
attack to infer the secret. The victim process is an unprivileged native process. The attacker is
a JavaScript and WebAssembly script, running inside of the browser’s sandbox. The attacker
has no access to addresses, native instructions, and no control or knowledge of physical or
logical cores.
In our implementation, an attacker, running code inside the browser’s sandbox, monitors

the victim’s execution with a spatial resolution of 1024 native instructions, i.e., 3072 bytes.
This spatial resolution is of the same order of magnitude as other microarchitectural attacks
in the browser, e.g., Prime+Probe, which has a resolution of a cache set (typically 12 to 20
cache lines), i.e., 1280 bytes on our system.

4.3.1. Description

The victim is a native unprivileged program, running different code sections based on the
bits of secret information. As port usage differs between branches, an attacker monitoring
port contention could infer parts of the secret. Figure 4.2 illustrates our gadget, implemented
in native assembly code. Depending on a secret bit, the code will execute either instruction
creating contention on P1 or P5. To detect from within the browser which path is taken by
the victim, we time the execution of nbinstr WebAssembly rem_u instructions, which creates
contention on P1 (Section 4.2). If the execution time is high, then we know that the native
code also creates contention on P1, whereas if it is standard, we know that the native code

80 Chapter 4. Port Contention in the Browser

Victim

secret == 0

POPCNT %r8,%r8

POPCNT %r8,%r8

...

POPCNT %r8,%r8

POPCNT %r8,%r8

Contention on Port 1

secret == 1

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

...

VPBROADCASTD %xmm0, %ymm0

VPBROADCASTD %xmm0, %ymm0

Contention on Port 5

Figure 4.2. – Side channel artificial example. Depending on the key bit passed in parameter,
the code will have different port usage.

does not create contention. By repeating this process, we detect the branch that was executed
by the native script, and hence the value of the secret bit.
After resolving C1 with PC-detector and C3 with SharedArrayBuffers, we still face the

inability to pin the attack code to the same physical core as the victim (C2). Most schedulers
try to balance the workload between physical cores. By creating a number of listening Web
Workers equal to the number of physical cores, we maximize our chances that one of them
listens on the victim’s physical core, thus circumventing C2. Information about the system’s
core count is available through the navigator.hardwareConcurrency JavaScript API [Cone],
available by default on both Chrome and Firefox.

4.3.2. Results

An important metric for our evaluation is the spatial resolution, i.e., the smallest number of
instructions we can detect in a branch. To detect contention, we measure the execution time
of nbinstr WebAssembly rem_u instructions. This parameter is important: a high number of
instructions lowers our spatial resolution, but a lower number yields noisier time measurements.
Furthermore, for values of nbinstr ranging from 1 to 10, the execution time of the instruction is
slower than the read access to the shared array and other overhead introduced by JavaScript.
This means that contention is measured at only specific times in the measurement. To reduce
the measurement time of SharedArrayBuffer, we access the array directly, without using
concurrent access libraries. This grants a better resolution to the timer but creates more
noise and outliers. On our system, we were able to create a web listener running in the
same physical core as the victim in 95% of our experiments. We infer that the remaining
errors stem from the scheduler moving our process to different cores because of other threads
creating noise.
On our system, we found nbinstr = 10 to be the best compromise between noise and

resolution. To reduce the noise, we process the data with a median sliding window with a
width of 10 measurements. Figure 4.3 illustrates the resulting values when the victim runs
the code with the secret 1101001, for a single trace of the victim. The high values represents

4.4. Covert Channel 81

0 10 20 30 40
0

200

400

Measurements (nbinstr = 10)

E
xe
cu
ti
on

ti
m
e

(S
ha
re
dA
rr
ay
Bu
ff
er

in
cr
em

en
ts
)

Figure 4.3. – Single-trace execution with secret information 1101001, on Chrome 95.

the execution of the victim branch creating contention on P1 i.e., a bit set to 1. The width of
a peak or a pit is proportional to the number of bits inside the sequence.

Our implementation is able to detect the executed branch with a resolution of 1024 native
instructions on both Google Chrome and Mozilla Firefox. To obtain this result, we first
implement Figure 4.2 with a very high number of POPCNT and VPBROADCASTD instructions, that
we progressively lower. The resolution is the lowest number of instructions where we can
clearly retrieve the secret bits without error on a single victim trace.
This experimental limit of 1024 instructions is mainly due to the lack of access to high-

resolution timers. Note that we observe two peaks per secret bit with a single trace. We have
found that a higher resolution of 512 instructions could introduce errors with a single-trace
attack. One solution to increase the resolution would be to revert to multiple-trace attacks.
Moreover, by using a custom browser implementing rdtsc, based on the native cycle accurate
timer, we observed that our implementation has a resolution of 256 instructions, i.e., a better
spatial resolution than Prime+Probe. This means that our experimental limit could be
lowered with better auxiliary timers or noise filters, which could offer a more fine-grained
attack vector than existing microarchitectural side channels in the browser.

4.4. Covert Channel

In this section, we present a port contention-based covert channel with a throughput of
200 bit/s for a 1% error rate. This covert channel is composed of a sender running unprivileged
native code, and a receiver running completely inside the browser (similarly as Schwarz et al.
[SMGM17]). We also show that our covert channel runs with a sender located inside a VM,
and can even be used in a cross-browser fashion (similarly as Lipp et al. [LGS+17]).
The sender runs unprivileged C code on the victim’s hardware. The sender can therefore

freely use most native instructions, and has access to cycle-accurate timers. It can also pin
itself to a certain physical or logical core. The receiver, on the other hand, runs fully inside
a cross-origin isolated web page. As it runs inside the browser’s sandbox, the receiver has
no access to native instructions. Port contention must be created and measured by using
WebAssembly (C1). Moreover, the web script must share a physical core with the sender,
but cannot control or know on which physical core it is running (C2). Finally, the receiver
does not have access to high-resolution timers (C3). Instead, we use SharedArrayBuffers to
get the best resolution available.

82 Chapter 4. Port Contention in the Browser

4.4.1. Description

We implemented a half-duplex asynchronous channel based on port contention, between a
native sender and a web-based receiver. In addition to data, the sender and receiver exchange
control messages to handle acknowledgments and synchronization. Both parties must therefore
be able to send and receive bits. Our side channel can be decomposed into two layers. The
lower layer, sending and receiving bits, is equivalent to the physical layer of the TCP/IP
model. This layer uses CPU ports as its transmitting channel, and must be able to distinguish
between 0 and 1 bits. The upper layer is equivalent to the data-link layer. This layer handles
the synchronization between the parties, as well as error management.

Physical layer The two parties send 1-bits by creating contention on P1 for a fixed duration
(tbit), and send 0-bits by idling for tbit. tbit is an important factor, as a high duration lowers
the channel’s bandwidth but allows the receiver to tolerate more noise when attempting to
distinguish bits. In our covert channel implementation, we have fixed tbit = 1ms. To create
contention, the sender and receiver repeatedly call an instruction, respectively the native Intel
instruction crc32 and the WebAssembly instruction rem_u. To receive a bit, the sender or
receiver repeatedly calls these instructions while timing them. A high execution time means
the emitting party is sending a 1, while a standard time means a 0. As both instructions are
handled by the CPU port P1, both the sender and receiver cannot emit at the same time,
making our channel a half-duplex channel. Besides their high resolution, another advantage
of a SharedArrayBuffer-based timer is that it is based on a Web Worker, and therefore runs
on a different core. This lowers potential noise on the covert channel.

We also need to ensure both the sender and receiver are running on the same core (C2). As
the browser cannot control which core it is running on, the sender creates as many sub-senders
as physical cores. The sender runs unprivileged native code, so it knows the number of
physical and logical cores, and can pin each of its sub-threads to a specific core. This ensures
that at least one sender thread is running on the same physical core as the receiver.
Although SharedArrayBuffers offer a high resolution, they can introduce errors at the

physical layer level. In particular, concurrent accesses between the thread incrementing a
value and the main thread reading the timestamp can cause insertion or deletion errors. We
have determined two error-prone scenarios at the physical level. In the first scenario, the
main thread reads the shared value too frequently. This prevents the clock thread from
incrementing the value, and as a result the measured time is much lower than the real-time
value. The other scenario stems from particularly high measurement outliers when contention
is created. We assume it also comes from concurrent accesses. As this access is longer than
usual, it means that we can get less measurements during tbit, thus creating bit deletion errors
on higher layers.

Protocol and frame format To ensure synchronization and correct potential errors, we
implemented a simple protocol above our physical layer, similarly as Maurice et al. [MWS+17].
Figure 4.4 illustrates a typical exchange, as well as packet loss management. It is based on a
simple request-to-send scheme: the receiver sends a request frame (described in Figure 4.5a),
containing a 4-bit sequence number. Upon reception, the sender sends a data frame (described
in Figure 4.5b), containing the sequence number as well as the associated data (1 byte). If
the data frame is received correctly, the receiver requests the next sequence number. Both

4.4. Covert Channel 83

Sender Receiver
Request

SEQN 0

Data

SEQN 0
Request

SEQN 1

Request

SEQN 1
Data

SEQN 1

Request

SEQN 1

Data

SEQN 1

×

×

Figure 4.4. – Illustration of the protocol’s synchronization in case of lost or incorrect packet.

frames start with a 4-bit preamble consisting of an initial sequence which is always set to
1010. This initial sequence serves as calibration for the receiver.

To handle possible insertion or deletion errors, we added an error detection code. More
specifically, the sequence number is encoded with (8,4) Hamming code [Ham50] in request
frames, and the last 4 bits of the data frame contain a Berger code [Ber61], counting the
number of zeros in the data and sequence number fields. As the type of errors we face are
mainly bit insertion or deletion, we do not use the error correcting properties of Hamming
code, and instead use it as an error-detection code.
Our protocol encodes 8 bits of payload into a 31-bit message, including the preamble,

sequence numbers and error detecting code. This means that, with tbit =1ms, we can reach a
maximal raw throughput of 1 kbit/s, i.e., a theoretical maximum of data bit rate of 260 bit/s.
Our protocol also manages packet loss and desynchronization. This is handled by the

sequence number and the request-to-send scheme. As illustrated in Figure 4.4, after sending
a request, the receiver waits for a fixed timeout value. If it has not received an answer at the
end of this time period, it simply re-sends the request. This lets the covert channel recover
from packet loss from the sender to the receiver, and from the receiver to the sender.

Receiving frames The sender and receiver do not share a common clock. Hence, the
party receiving bits does not know in advance the demarcations between successive bits,
nor when the frame starts. It is processing execution time of instructions as a real-time
stream of information, not in post-processing. In order to automatically detect the start of
the frame, as well as the actual bits, both sender and receiver run DenStream [CEQZ06], a
density-based data-stream clustering algorithm. It dynamically creates clusters of data, based
on the execution time and their time of arrival. The listening party then detects the start
of the frame when it detects 4 consequent small clusters with variation in execution time,
corresponding to the initial sequence of 1010. The initial sequence is used to calibrate two

84 Chapter 4. Port Contention in the Browser

0 1 2 3 4 5 6 7

Init sequence Encoded -

-Sequence number

(a) Request frame.
0 1 2 3 4 5 6 7

Init sequence Sequence Number

Data

Berger code

(b) Data frame.

Figure 4.5. – Format of the request and data frames.

major values: the temporal threshold between 0-bits and 1-bits, as well as the average number
of instructions in a single bit. The average number of points lets the algorithm detect the
number of bits in a sequence. As DenStream computation can be slow when we reach a high
bit rate, we only use it to detect the preamble. For the rest of the frame, we use a simple
stream-based threshold detection: timings above the calibration threshold are identified as
1-bits, and others as 0-bits.

To infer the actual number of bits in such a sequence, we use the average number of
instructions calibrated from the initialization sequence. Then, by dividing the number of
instructions in our same bit sequence, we can infer how many bits it contains. This step is
prone to insertion or deletion errors.

When the stream algorithm has detected a number of bits corresponding to the frame size,
it stops listening. If the frame is invalid because of insertion and deletion errors, we try to
reinterpret it with slightly modified calibration values. Indeed, variation in frequency can
cause slight changes on the number of measurements in a bit, e.g., a frequency raise means
we measure more instructions in a bit, thus potential insertion errors.

4.4.2. Evaluation

We evaluated our covert channel in two different scenarios. The first scenario is the baseline
implementation, where both the native sender and web-based receiver run in a standard
OS. In the second scenario, the native sender now runs in a virtual machine running on
the victim’s physical hardware, while the browser runs in the standard OS. This scenario is
common, as malware analysis is often conducted in sandboxed environments such as VMs.
We also evaluate the impact of noise on our covert channel.

Native sender This threat model represents the most common scenario, where both the
browser and the native sender run as unprivileged processes in the OS. We evaluated our
covert channel by transmitting 10 kB of data from the native sender to the web-based receiver.
To compute the error rate, we compare the original and received bit sequences bit-by-bit.

Table 4.3 illustrates the bit rate and error rate of our channel in different noise conditions.
The transmission takes, on average, slightly less than 7min. During the transmission, on

4.4. Covert Channel 85

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender

(a) Standard native-to-web scenario

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
Virtual machine

(b) VM-to-Host scenario

Hardware:
CPU Ports

OS

User applications Receiver
JS sandbox

browser

Sender
JS sandbox

browser

(c) Cross-Browser scenario

average 600 frames arrive incorrectly or are lost from the sender to the receiver, over a total
of 10 600 frames. This represents a total frame loss rate of 5.5%. Most of the incorrect frames
were the result of insertion or deletion errors. The lost frame rate from the receiver to the
sender is negligible. We achieve a bit rate of 200 bit/s. This is 80% of the maximal bandwidth
possible when using tbit =1ms. The difference between the bit rate upper bound and our
implementation stems from the loss of frames, which requires the sender to wait for some
time before requesting the data again, as well as from the short computation time required to
handle the protocol.

In this setup, our covert channel presents a better bit rate than previous web-based covert
channels [SMGM17, LGS+17, RRR16, VK17, vGJ17]. The only covert channel with a better
resolution is Prime+Probe by Oren et al. [OKSK15]. However, recent countermeasures had a
substantial negative impact on the bit rate. To the best of our knowledge, no other Prime+
Probe covert channel has been implemented since that allows us to compare between the two
approaches. The closest cache covert channel is the one presented by van Schaik et al. in
RIDL [vSMÖ+19], with a bit rate of 8 bit/s.

We now evaluate our covert channel in the presence of noise. Noise can impact both the bit
transmission through port contention, and the SharedArrayBuffer clock. Indeed, we observe
that when stressing the physical core used by the SharedArrayBuffer clock, the number of
ticks we measure in each time period decreases, in turn decreasing our resolution. However,
our covert channel shows strong resilience to sources of noise with a low thread count. That is

86 Chapter 4. Port Contention in the Browser

Table 4.3. – Evaluation of the port-contention covert channel in different conditions.

Experimental setup Bit rate Packet Loss rate Error rate

Noiseless 200 bit/s 5.5% 1%
stress -c 2 170 bit/s 8% 3%
stress -m 2 120 bit/s 15% 3%
stress -c/-m 3 25 bit/s 80% 5%
stress -c/-m 8 <1 bit/s 99% 5%

because port contention depends on the physical core. As our sender and receiver already use
a major part of the core computing capacities, the OS scheduler tends to move other noisy
processes to different physical cores, thus lowering their impact on our covert channel. For
instance, when running stress with square root (-s) or malloc (-m) on two threads, the bit
rate remains on the same order of magnitude. The loss of performance stems from a higher
rate of lost frames due to clock outliers. Our channel also shows better resilience to sources
of noise with a low thread count than cache covert channels, as the LLC is shared between
cores [MWS+17]. However, if a noisy thread runs on a physical core shared either by the
clock or the receiver, the performance significantly drops, as illustrated in the stress -c 3
case. In that case, the lost frame rate increases drastically because of lower resolution from
our timer. Introducing specific error-correcting codes to correct insertion or deletion errors
could greatly improve the performance of the channel in noisy conditions.

Virtualized sender We also evaluate our channel in a virtualized setup. In this scenario,
the native sender runs inside of a virtual machine running Ubuntu. The browser runs in the
standard OS. The main change in the threat model is that the native sender has no control or
knowledge of cores, physical or logical. However, by creating multiple sender threads and not
pinning them, we managed to force at least one sender thread to run on a physical core shared
with a receiver. In this setup, our covert channel has a bit rate of 80 bit/s. This bit rate is still
higher than that of many browser covert channels [VK17, SMGM17, LGS+17, vGJ17, RRR16],
and even equivalent to some native covert channels in the same setup [SMAK20].

4.4.3. Cross-Browser Covert Channel Bandwidth Estimation

Our covert channel can be extended to a cross-browser setup. As we can create and detect
contention on the browser, we can replace the native sender with a JavaScript sender. This
has two major impacts on the effectiveness of the attack. First off, the web-based sender
loses access to powerful native timers, potentially creating new errors on the request frames.
Most importantly, the browser has no knowledge of physical or logical cores. It cannot know
nor control on which core it is running. To circumvent this difficulty, the web-based sender
creates a number of Web Workers equal to the number of physical cores of the machine. By
doing so, the scheduler will spread these senders on different physical cores. When launching
the receiver, however, the senders are not the only processes using a high workload, and we
have noticed that launching the receiver and the SharedArrayBuffer clock after the sender
results in a physical core running both the clock and the receiver, and the senders sharing the
remaining core. We overcome this limitation by initializing the clock and receiver before the

4.5. Discussion 87

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190
80

90

100

110

120

Time

E
xe
cu
ti
on

ti
m
e

(S
ha
re
dA
rr
ay
Bu
ff
er

in
cr
em

en
ts
)

Figure 4.7. – Transmitted square signal from Firefox 90 to Chrome 94 with tbit =1ms

sender. As a result, the scheduler assigns a physical core shared by a receiver and a sender,
effectively allowing the implementation of our covert channel.

Using this technique, we were able to transmit bits of information across browsers through
port contention with tbit = 1ms. i.e., conditions equivalent to the native-to-web covert
channel. We were able to demonstrate data transfer at the physical layer from Chrome to
Firefox, from Firefox to Chrome, and between two instances of the same browser. Figure 4.7
shows the transmitted square signal from Firefox to Chrome. We did not re-implement the
data-link layer to this threat model, as it represents significant engineering work, and leave it
to future work. However, this proof of concept solves all scientific and technical challenges,
including the most difficult, i.e., core management (C2), by its ability to transmit bits. As the
physical layer offers similar bit and error rates to the native sender, even for a long duration
of transmission, it is safe to estimate that this cross-browser covert channel can reach a final
bandwidth on-par with the native-to-web covert channel, i.e., in the order of 200 bit/s.

4.5. Discussion

In this section, we discuss the limitations of our approach, potential countermeasures, as well
as future work.

4.5.1. Limitations

The WebAssembly implementation of port contention offers a lower spatial resolution than
the native PortSmash attack proposed by Aldaya et al. [ABuH+19]. Most of this performance
loss originates from the challenges introduced by the JavaScript sandbox. In particular, C3 is
the most challenging aspect. Although auxiliary timers offer a very high resolution, they are
still inaccurate compared to native cycle-accurate timers. This difference particularly impacts
the attack’s spatial resolution, as timer imprecision prevents us from measuring small time
differences.

Another limitation, inherent to port contention and SMT attacks, is that this attack cannot
run in a cross-core setting. We can effectively circumvent C2 by creating more threads to
share a core with the victim, but the attack still depends on the OS scheduler. If the attacker
cannot run code on the victim’s physical core, the attack does not succeed.

88 Chapter 4. Port Contention in the Browser

4.5.2. Countermeasures

Many countermeasures have been proposed to mitigate microarchitectural attacks based on
SMT. In particular, countermeasures to port contention can effectively apply to web-based
port contention. These countermeasures, described more thoroughly in Section 2.6, can stem
from several different levels. On the hardware level, SMT could be disabled or propose a
more secure way of partitioning resources [TP19, TRVT22]. On the system level, standard
approaches, such as port-independent code or static analysis, have been proposed [ABuH+19].
More original approaches, such as an SMT-attacks-aware scheduler, could prevent this side
channel. Web-based port contention could also be prevented at the browser level. However,
except for timing-based countermeasures (see Chapter 3), browser countermeasures focus on
cache side channels or Spectre-like attacks, and have no effect on web port contention.

4.6. Conclusion

We presented the first implementation of port contention in the browser (Q2). We showed
that port contention side channels have a performance on par or better than previous
microarchitectural side channels in the browser, and a more generic threat model. We
demonstrated the genericity of this attack by building several types of exploits, including a
200 bit/s covert channel, as well as a concrete example illustrating a side-channel attack with
a spatial resolution of 1024 instructions (Q3). We further demonstrated the portability of
web-based port contention by testing instructions on different Intel CPUs, and we showed that
our attack also works in cross-browser and Host-to-VM settings, while being more resilient to
noise than cache attacks. We consider port contention side channels, and hardware contention
side channels in general, to be a generic class of attacks that can be used as a building
block for future microarchitectural attacks in the browser. This work illustrates the difficulty
of isolating the JavaScript sandbox from microarchitectural attacks, as currently deployed
countermeasures fail to mitigate contention-based side channels.

Port Contention Without
SMT and its Privacy

Implications 5
Port contention, as described by Aldaya et al. [ABuH+19] and in Chapter 4, requires SMT.
Both the attacker and the victim need to run on the same physical core for the attack to
work, as CPU ports are on-core resources. If the attacker cannot fill the victim’s CPU ports,
it cannot detect timing differences caused by the victim’s actions, thus cannot mount attacks.
This is also valid for the covert channel presented in Section 4.4: if both the sender and
receiver cannot use the CPU ports at the same time, they cannot use port contention as the
physical layer of the covert channel.

This prerequisite represents a challenge in some settings, as some systems do not have SMT
or disable it [Hat], and it may become increasingly hard to fulfill as countermeasures to SMT
attacks are being explored [TP19, TRVT22]. It also has severe implications in a web setting,
where the attacker script, situated inside the JavaScript sandbox, cannot know nor control
which core it is running on. Although we introduced core-control heuristics in Chapter 4,
they may not function with a different scheduler, or an SMT-attack aware scheduler.

Contributions This chapter makes the following contributions:

• We present sequential port contention, a novel form of contention on the CPU execution
ports. It relies on instruction-level parallelism instead of thread-level parallelism, hence
does not rely on SMT. We show that such sequences work in native code but also work
reliably in WebAssembly. Our side channel works in unmodified off-the-shelf browsers,
including the privacy-focused browsers Tor and Brave (Section 5.2).

• We build a framework to automatically find WebAssembly instructions creating sequen-
tial port contention. We use differences in port contention behavior to fingerprint the
CPU generations in WebAssembly in web browsers without any browser API. We evalu-
ate our new fingerprinting method on 50 CPUs from 12 generations with an accuracy
of 95% with a runtime of only 12 s. We show that our fingerprint is highly stable over
major releases of browsers and is robust against system noise (Section 5.3).

• We discuss the security and privacy implications of our new side channel. In partic-
ular, we discuss the advantages and limitations of our side channel for fingerprinting
applications. We show that sequential port contention is also possible in a virtualized
environment but stops working in emulated environments. These results also indicate
that the side channel is valuable for malware as an anti-emulation measure (Section 5.4).

90 Chapter 5. Port Contention Without SMT and its Privacy Implications

instr1 instr1 instr1 instr2 instr2 instr2

Port

contention

Port

contention

(a) Grouped. Instructions are executed in
batch, creating port contention and reduc-
ing parallelism. This results in a slower
execution time.

instr1 instr1 instr1instr2 instr2 instr2

Parallelized

execution

Parallelized

execution

Parallelized

execution

(b) Interleaved. Instructions are executed al-
ternatively, allowing them to be executed
at the same time, resulting in a faster
execution time.

Figure 5.1. – Illustration of the differences in execution time based on the order of instruc-
tions, with a look-ahead window of size 1.

5.1. Threat Model

Sequential port contention, as most microarchitectural attacks, requires code execution on the
victim machine. We assume that the attacker either has native unprivileged code execution
(native side channel) or can run WebAssembly in the victim’s browser (browser-based side
channel). The attacker does not rely on software vulnerabilities, does not require any
permissions that have to be granted by the victim, or any particular setup such as SMT or a
specific core assignment. We assume that the victim spends at least 15 s on the attacker’s
website, based on the average time of 20 s users spend on an unknown website [LWD10].

5.2. Port Contention Without SMT

In this section, we show port contention without requiring SMT, both in a native setting and
in a browser sandbox.

5.2.1. Main Idea

The main idea of sequential port contention is to exploit the limited look-ahead window of the
µop scheduler, leading to contention for well-chosen instruction pairs (instr1, instr2). Both
instructions use different execution ports on the CPU. If the instructions are grouped, i.e., if
the instruction stream consists of n instructions instr1, followed by n instructions instr2,
with n larger than the look-ahead window of the scheduler, parallelization is not possible
(cf. Figure 5.1a). The scheduler cannot detect that some instructions later in the instruction
stream could already be executed in parallel. However, if interleaved in an instruction stream
of 2n instructions, they can be executed in parallel (cf. Figure 5.1b). As a result, the overall
execution time of an instruction stream of the same length depends on the order of the two
repeated instructions instr1 and instr2 if these instructions do not use the same ports.

Similar to port contention with SMT [ABuH+19], the contending instructions instr1 and
instr2 depend on the underlying microarchitecture. However, as this information is publicly
available [AR19], sequential port contention is applicable to a wide range of microarchitectures.
We show sequential port contention in native environments (Section 5.2.2) and demonstrate
that it is also exploitable from off-the-shelf unmodified browsers (Section 5.2.3).

5.2. Port Contention Without SMT 91

Listing 5.1 – Grouped. Always creates con-
tention.

1 grouped :
2 l f e n c e
3 rd t s c # Timestamp
4 l f e n c e
5 . r e p t $n # F i r s t loop
6 i n s t r 1 %reg , %reg
7 . endr
8 . r e p t $n # Second loop
9 i n s t r 2 %reg , %reg

10 . endr
11 l f e n c e # Timestamp
12 rd t s c

Listing 5.2 – Interleaved. Creates contention
if the two instructions share a
CPU port.

13 i n t e r l e a v ed :
14 l f e n c e
15 rd t s c # Timestamp
16 l f e n c e
17
18 . r e p t $n # S ing l e loop
19 i n s t r 1 %reg , %reg
20 i n s t r 2 %reg , %reg
21 . endr
22
23 l f e n c e # Timestamp
24 rd t s c

5.2.2. Native Environment

5.2.2.1. Proof of Concept

Our proof of concept of sequential port contention is based on two experiments, illustrated in
Listings 5.1 and 5.2. In these experiments, we evaluate two native x86 instructions, instr1
and instr2.

The first experiment is a control experiment, grouped, which is composed of two loops, each
calling an instruction n times. As the decomposition of instructions in µops is deterministic,
the various calls to the same instructions have the same port usage. This means that during
loop 1 (respectively loop 2), instr1 (respectively instr2) always creates contention on its
ports. The second experiment, interleaved is composed of a single loop with the same number
of iterations. Instead of calling the same instructions in a row, it alternatively calls instr1
and instr2. If instr1 and instr2 emit µops to the same port, it creates contention, resulting
in a slower overall execution time. However, if they do not emit µops on the same port, the
execution is parallelized due to instruction-level parallelization, resulting in a faster execution
time.

By computing ρ = time(grouped)
time(interleaved) , we know if interleaved creates contention. If ρ ≈ 1, both

experiments have a similar execution time, i.e., the instructions share at least one port. If
ρ > 1, interleaved has a shorter execution time than grouped, i.e., the instructions do not
share a common port.

5.2.2.2. Experiments

We ran this experiment on an Intel i5-8365U (Whiskey Lake), with TurboBoost enabled and
without fixing the CPU frequency. First, we run it with instr1 = crc32, which emits a single
µop on execution port 1 (P1), and instr2 = aesdec, which emits a single µop on execution
port 0 (P0). Both instructions have the same throughput and latency.
Figure 5.2 illustrates the results of this experiment when we vary the number of loop

iterations n. Figure 5.2a shows how the grouped execution time is systematically higher than
the interleaved one. The gap between the two curves increases with the number of loops.
Figure 5.2b shows that ρ quickly converges to 1.8 at n = 1000. It then remains constant
when increasing the number of loop iterations. The inflection point situated around n = 64
is caused by the size of the look-ahead window of the scheduler. When instructions from

92 Chapter 5. Port Contention Without SMT and its Privacy Implications

100 101 102 103 104 105
0
1
2
3
4 ·10

6

Loop interations nE
xe
cu

ti
on

ti
m
e
(C

yc
le
s)

grouped
interleaved

(a) Execution time of the experiments depending on the number of loop iterations n.

100 101 102 103 104 105

1

1.5

2

Loop iterations n

R
at
io
ρ

(b) Ratio ρ depending on the number of loop iterations n.

Figure 5.2. – Sequential port contention experiments for instructions (crc32, aesdec).

100 101 102 103 104 105
0.8
0.9
1

1.1
1.2

Loop iterations n

R
at
io
ρ

Figure 5.3. – Ratio ρ for (crc32, popcnt) depending on the loop iterations n.

both loops fit inside this window, the scheduler can rearrange instructions to execute them in
the most optimized order, prioritizing parallelism and thus reducing port contention. When
an mfence is added between the two loops (Lines 7-8 of Listing 5.1), this inflection point
disappears, and the curve rises smoothly to 1.8.

We run the same experiment with instr1 = crc32 and instr2 = popcnt. Both instructions
emit a single P1 µop, and have the same throughput and latency. Figure 5.3 shows that
ρ stays constant around 1. That is expected, as the contention is always the same on P1,
independently of instruction order.

5.2.3. Web Browsers

5.2.3.1. Challenges

Porting these experiments to a browser sandbox introduces challenges similar to those met in
Chapter 4 First, neither JavaScript nor WebAssembly provides high-resolution timers. In this
chapter, we use a SharedArrayBuffer-based clock. Second, both JavaScript and WebAssembly
are high-level languages running inside a sandbox. Moreover, WebAssembly instructions are

5.2. Port Contention Without SMT 93

Listing 5.3 – Grouped in WebAssembly.
Always creates contention.

25 (module
26 (func $grouped
27 (param $p type) (r e s u l t type)
28 (l o c a l . get $p)
29 (type . instr_1)
30 . . . # Repeat $n
31 (type . instr_1)
32 (type . instr_2)
33 . . . # Repeat $n
34 (type . instr_2)
35)
36 (export "grouped" (func $grouped))
37)

Listing 5.4 – Interleaved in Web-
Assembly. Creates
contention if the two
instructions share a CPU
port.

38 (module
39 (func $ i n t e r l e av ed
40 (param $p type) (r e s u l t type)
41 (l o c a l . get $p)
42 (type . instr_1)
43 . . . # Repeat $n
44 (type . instr_1)
45 (type . instr_2)
46 . . . # Repeat $n
47 (type . instr_2)
48)
49 (export " i n t e r l e a v ed " (func $ i n t e r l e av ed))
50)

100 101 102 103 104 105 106
0.8
1

1.2
1.4

Loop iterations n

R
at
io
ρ

Figure 5.4. – Ratio ρ for the WebAssembly instructions (i64.popcnt, i64.or) depending on
the number of loop iterations n.

an abstraction of native instructions and thus do not directly map to execution ports. As
WebAssembly is aimed at being portable, the translation of WebAssembly to native code
depends on the browser’s WebAssembly compiler and the targeted CPU. We can, however,
empirically determine the port usage of these instructions for a system with PC-detector
presented in Section 4.2.

5.2.3.2. Proof of Concept

Similar to native experiments, the sequential port contention in WebAssembly is composed of
two different functions. Listing 5.3 shows the code for the grouped experiment, which results
in a slow execution time as instructions are delayed by contention. Listing 5.4 shows the
interleaved experiment. A low execution time indicates that the experiments were not slowed
down by contention, whereas a high execution time means both instructions share at least
one port.

5.2.3.3. Experiments

We run this experiment on the same Intel i5-8365U CPU, with instr1 = i64.popcnt and
instr2 = i64.or. Figure 5.4 illustrates how ρ also increases with the number of loops. On
both Chrome 101 and Firefox 99, ρ stabilizes around 1.1 starting from n = 100 000 loop

94 Chapter 5. Port Contention Without SMT and its Privacy Implications

iterations. This ratio is significantly lower than the native one. This stems from lower precision
timers, as well as the stack structure of WebAssembly, where we need to add a value to the
stack between instructions. Running the same experiment with instr1 = i64.popcnt and
instr2 = i64.ctz, ρ remains constant around 1 when varying the number of loops. We devise
a framework to isolate pairs of instructions that exhibit sequential contention in Section 5.3.2.

Privacy-oriented browsers are also vulnerable to sequential port contention. With 100 000
loop iterations in Brave 1.38, we obtain ρ = 1.1. In Tor Browser 11.0.11, SharedArrayBuffer
is disabled by default to prevent timing attacks. However, we can still reproduce sequential
port contention with the lower-resolution timer performance.now() by increasing the number
of loop iterations n to 100 000 000. In that case, we obtain ρ = 1.2, but each experiment takes
up to 1 s, i.e., 1000 times more than for other browsers.

5.3. Fingerprinting CPU Generations

In this section, we show how sequential port contention can be used to determine the CPU
generation of the victim, even from inside the JavaScript sandbox.

5.3.1. Core Idea

The port usage of native instructions varies across generations of microarchitecture. As the
number of execution units and CPU ports vary, the same instruction can emit P1 µops on a
given generation and P0 on another generation. For instance, VPBROADCASTD emits one µop
on P5 on both Haswell and Whiskey Lake microarchitectures, and AESDEC emits one µop on
P1 on Haswell and one µop on P5 on Whiskey Lake. We computed ρ on an Intel i5-8365U
(Whiskey Lake) and an Intel i3-4160T (Haswell). The frequency of these CPUs can vary.
However, the base frequency does not impact our experiment as we compute a ratio. We
found ρWhiskeyLake = 1 and ρHaswell = 1.8. This correlates with the documented port usage.
Indeed, on Whiskey Lake, both instructions emit a µop on P5. Thus, both experiments are
slowed down by contention. On Haswell, the two instructions do not share a common port.
Thus, the interleaved experiment is not slowed down by port contention, resulting in a faster
execution time and a ratio ρ > 1.
In summary, by finding pairs of instructions that create contention for some generations

but not others, we can detect on which CPU generation the code is executed. As sequential
contention is visible from a browser (cf. Section 5.2.3), we also aim to discover pairs of
WebAssembly instructions that exhibit sequential port contention to fingerprint the CPU
generation from a web page.

5.3.2. Framework

The port usage of the CPU-independent WebAssembly instructions cannot be determined
from the WebAssembly source code. Thus, we build a framework based on PC-detector (see
Section 4.2) to automatically evaluate 458 pairs of WebAssembly instructions for contention
on a specific CPU generation. Due to the nature of WebAssembly, it is highly portable and
can be executed on any microarchitecture. This framework aims at isolating instruction pairs
that can act as distinguishers. Such distinguishers have two major properties: 1) they exhibit
different contention for different generations, and 2) they always exhibit the same contention
for different CPUs of the same generation. The second property is essential, as other sources

5.3. Fingerprinting CPU Generations 95

of contention that do not depend on the generation could yield false results. Changes in the
microarchitecture, e.g., floating-point units, inside a CPU generation can cause changes in
behaviors, thus preventing stable fingerprinting.

Using this framework, we collect the best distinguishers to create traces for each generation.
To fingerprint generations, we create a k-NN-based classifier and train it with results from the
framework. It represents traces as points in an l-dimensional space, where l is the length of the
trace, i.e., the number of distinguishers. Given a distance for each unknown execution trace,
the classifier computes the k-nearest traces from our training dataset. A trace is classified in
the most frequent class, i.e., CPU generation, in the k-nearest-neighbors.
To collect evaluation traces for the two sequential port contention experiments, we use a

simple web page (https://fp-cpu-gen.github.io/fp-cpu-gen). It works on the latest versions of
Firefox and Chrome, on Linux, macOS and Windows.

5.3.3. Evaluation

This section presents the results of our classifier and the different parameters used. Our
classifier presents a 95% accuracy in a real-world threat model (cf. Section 5.1): a user visits
a malicious website for a few seconds.
The training set is composed of 26 different CPUs spanning 13 different generations. It

is composed of both AMD and Intel CPUs, including server and standard desktop CPUs.
Table A.1 in Appendix A.3 presents the training set. The test set is composed of a subset of
traces from the training set. It contains 13 different CPUs. The evaluation set is composed
of traces from our website. These traces come from an uncontrolled environment since the
web script cannot control or quantify the system noise. It contains 50 CPUs from 12 different
generations.

5.3.3.1. Training and Testing

We train our model using data from our training set. The CPUs used in our training set are
not balanced in terms of CPU generations, some being more represented than others. We
therefore include the same number of traces for each generation to compensate for this. Our
framework finds 36 pairs of instructions acting as distinguishers between the CPU generations.
We use the traces from these distinguishers to train our k-NN classifier. Our model shows a
96% accuracy on the test set, using k = 5 neighbors and majority voting.

5.3.3.2. Accuracy

Figure 5.5 illustrates the results of our classifier on the evaluation set. It has a balanced
accuracy of 95%. We use k = 5 as the number of neighbors. We gathered 10 traces and
classified each one independently. The class for the experiment is determined using majority
voting on the 10 classified traces. Due to the lack of microarchitectural changes between
closely-related generations, some generations have the same assignment of execution ports for
all instructions. As a consequence, some generations are indistinguishable using sequential
port contention. We grouped such generations in the classes of our classifier. This includes
the Bridge (Ivy Bridge, Sandy Bridge), Well (Haswell, Broadwell), Skylake (Skylake, Cascade
Lake), and Coffee-Lake group (Coffee Lake, Whiskey Lake, Comet Lake). AMD CPUs are
distinguishable from Intel ones, but the generations are grouped in the Zen group (Zen 1,
Zen 2, and Zen 3).

https://fp-cpu-gen.github.io/fp-cpu-gen

96 Chapter 5. Port Contention Without SMT and its Privacy Implications

Cas
cad

e L
ake

/Sk
yla

ke

Coff
ee/

Whisk
ey/

Com
et L

ake

Has
wel

l an
d Bro

adw
ell

Ivy
and

San
dy

Bri
dge

Tig
er L

ake Zen

Cascade Lake/Skylake

Coffee/Whiskey/Comet Lake

Haswell and Broadwell

Ivy and Sandy Bridge

Tiger Lake

Zen

1 0 0 0 0 0

0.056 0.94 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0.17 0 0 0.83 0

0 0 0 0 0 1

Predicted label

T
ru
e
la
be

l

0

0.2

0.4

0.6

0.8

1

Figure 5.5. – Confusion matrix for the evaluation of the k-NN classifier with grouped
generations, k = 5 and majority voting on 10 traces.

5.3.3.3. Execution Time

The total execution time is composed of the offline and the online execution time. The
one-time offline execution time is composed of the framework execution time and k-NN
training time. On average, testing all pairs of instructions in the framework takes 4 h, with
a standard deviation of 1 hour and 7 minutes. Training the k-NN model takes 5 s on an
i5-8365U. The online execution time is composed of the data collection time, i.e., the time
taken on the website to gather the 10 traces, plus the prediction time, i.e., the execution
time of predicting the class of the trace. The data collection time is the most critical factor,
as it represents the duration the victim has to remain on the web page. The client sends
the traces to the server that then computes the prediction, so the victim can then close the
web page. Data collection takes 12 s on average, with a standard deviation of 6 s. The data
collection time is faster on average on Google Chrome (10 s) compared to Firefox (13 s). On
both browsers, the data collection time is in the range of the average visit time on a website.
The prediction time is on average of 40ms for 10 traces on an i5-8365U, which is negligible
compared to the data collection time.

5.3.3.4. Impact of Majority Voting

System noise can decrease the accuracy of a single trace. In particular, the first traces
gathered when launching the script are the most prone to these misclassifications. On our
evaluation set, the first trace for each experiment has a 30% chance of being mispredicted,
the second 12%, and then the misclassification rate goes down with repetitions to 6%. There

5.3. Fingerprinting CPU Generations 97

are multiple reasons, including the power saving policy of the system, where by default, the
CPU does not use its maximum frequency to save energy, and cold caches. The first traces
act as a “warm-up” of the CPU, before reaching maximum frequency. To compensate for this
phenomenon, we implement majority voting. With majority voting, we gather data on v
traces and classify the experiment based on the most common classification of these traces.
This improves accuracy at the cost of a higher execution time. Without majority voting, our
evaluation set shows an accuracy of 70% with a data collection time of 5 s. With v = 5, the
accuracy increases to 86% and a data collection time of 9 s on average. Starting from v = 10,
the accuracy peaks at 95% with a data collection time of 12 s.

5.3.3.5. Impact of the Number of Neighbors

The number of neighbors k is a significant factor in the classifier’s efficiency. A small number
renders the classification vulnerable to noise, as a single noisy trace in the training set can
lead to mispredicting many evaluation traces. A higher number tends to increase the impact
of densely grouped traces, as well as increase the computation costs.

For instance, when using k = 1 on the evaluation dataset, the classifier accuracy is reduced
to 85%. We found that k = 5 grants a higher accuracy for our testing and evaluation sets.
Higher values of k tend to yield a lower accuracy. This comes from the similarity of traces
between closely-related generation groups, e.g., Skylake and Coffee-Lake groups.

5.3.3.6. Time Stability

Time stability is an essential feature, as hardware is seldomly changed by users, compared
to software that has regular updates. We evaluate the stability of the classifier on an Intel
i5-8365U on each major version of Firefox and Chrome, covering about a year. The generation
is correctly classified from Chrome 91 (released in May 2021) to 101 and Firefox 89 (released in
June 2021) to 100. Prior versions did not support WebAssembly SIMD instructions, which are
part of the distinguishers in our traces. Our CPU-generation fingerprints have been stable for a
year. This represents a high time stability for a browser fingerprint compared to ever-changing
browser APIs and other hardware-based approaches, such as DrawnApart [LMD+22], where
the fingerprint may change with browsers’ major releases, resulting in a median tracking time
of 28 days.

5.3.3.7. Impact of Noise on Classification

As the attacker resides inside a sandbox, they cannot know nor control noise created by other
processes or tabs. Such noise could deteriorate the performance of our classifier by creating
wrong results in the data collection process. We run the data collection process in the website
on Firefox 100 and Chrome 101 on a quadcore i5-8365U, while artificially creating noise with
the stress command. The stress threads create noise, disturbing either the sequential port
contention or the clock thread. Fewer noise sources, i.e., stress -c {1..4}, result in 93%
accuracy. That is because the OS’s scheduler balances the workload, and the attack physical
core is not affected by the noise. A higher count of stress threads, i.e., 5 to 8, still yields an
accuracy of 75%.

98 Chapter 5. Port Contention Without SMT and its Privacy Implications

5.4. Discussion

In this section, we discuss the practical use of CPU generation fingerprinting (Section 5.4.1),
its limitations (Section 5.4.2), the effects of virtualization and emulation (Section 5.4.3) as
well as possible mitigations (Section 5.4.4).

5.4.1. Practical Use of CPU-Generation Fingerprinting

The CPU-generation attribute does not have a high uniqueness, as even with a bigger training
set, there are a limited number of CPU generations. The relevant feature here is its stability.
We envision using this new fingerprinting attribute in combination with existing attributes.
Its stability can be used as a linking factor to better link fingerprints to enhance tracking
time [VLRR18] or use fingerprinting as a second authentication factor [LABN19]. Hardware-
based fingerprinting attributes are ideal candidates, as hardware is updated less often than
software, and software updates usually lead to changes in fingerprints. However, even robust
hardware-based methods can break with browser internal changes [LMD+22]. We have shown
that our method is robust to major version changes of browsers over a year.

5.4.2. Limitations

For CPU generations with major changes, sequential port contention is a highly reliable
method to fingerprint the CPU generation. Such changes are found on Intel CPUs between
the Bridge (e.g., Sandy Bridge, Ivy Bridge), the Well (e.g., Haswell, Broadwell), and the
Lake (e.g., Skylake, Coffee Lake, Whiskey Lake, Comet Lake) microarchitectures. However,
starting with the Lake microarchitecture, changes between new versions are smaller, making it
harder to detect the specific microarchitecture. For example, Coffee Lake, Whiskey Lake, and
Comet Lake are based on the nearly identical designs of the execution units. Only Ice Lake
introduced changes again, specifically with an additional store unit [Wikc] which subsequently
led to changes in the port assignment for several instructions. Hence, the detection of the
CPU generation cannot differentiate names for essentially the same generation.

Due to lack of access, some generations are not included in the training set, e.g., Nehalem
or Ice Lake. Thus, they cannot be correctly predicted by our proof-of-concept model and are
not included in the evaluation set. This could be easily corrected by extending our study and
running the framework on a larger range of CPUs. CPUs with significant microarchitectural
changes are potentially highly identifiable, e.g., Ice Lake with its addition of new store units.

5.4.3. Virtualization and Emulation

Sequential port contention is not limited to bare-metal code execution but also works from
inside virtual machines if the guest is virtualized and not emulated.

5.4.3.1. Virtualization

As all involved instructions are unprivileged and not emulated by the hypervisor, there is no
difference in the execution stream to a bare-metal execution. Hence, the measured effects are
also the same. Moreover, as only a single CPU core is required, the scheduler of the hypervisor
does not affect the contention. We verify on Ubuntu 20.04 (kernel 5.13) with QEMU KVM

5.4. Discussion 99

4.2.1 that we measure the same effect of sequential port contention within a virtual machine
(Ubuntu 20.04, kernel 5.4).

5.4.3.2. Emulation

Sequential port contention requires that the specifically-crafted instruction stream is executed
without modifications on the CPU. For emulation, this is not the case if instructions are
interpreted or translated just in time with potential additional instructions in the instruction
stream. For example, when running the guest operating system (Ubuntu 20.04, kernel 5.4)
in QEMU 4.2.1 with full system emulation (TCG), we are unable to measure the effect of
sequential port contention. In this setup, the instruction stream with and without contention
have the same execution time.
Based on this observation, sequential port contention can detect emulation, e.g., if the

code is analyzed via a malware-analysis emulator [Kru14, BBR16]. Hence, sequential port
contention provides malware with another trick to detect such environments. As discussed
in Section 5.4.4, mitigating sequential port contention is difficult. Likewise, sequential port
contention is likely infeasible to emulate, making it difficult to prevent malware from detecting
the presence of an emulator.

5.4.4. Mitigation

Sequential port contention does not require any operating-system interface or particular
setup, such as SMT (cf. Section 5.1). Hence, this side channel cannot be prevented on the
operating-system level but potentially on the browser level. Similar to previous work on
microarchitectural attack detection [GMWM16, Pay16b, IES18, SBK+21], we show that this
side channel can also be detected using hardware performance counters.

5.4.4.1. Browser Mitigation

Existing browser mitigations against side-channel attacks are only effective against sequential
port contention if they block access to timing sources [KS16, MCS+16, SLG18a] or entirely
prevent the execution of active content [Gio17, Ray17]. However, while effective, these
methods also impact the usability of all websites.
The browser can interleave the generated instruction stream with memory fences, effec-

tively preventing out-of-order execution. Theoretically, to fully mitigate the side channel, a
browser has to emit a memory fence after every assembly instruction. However, this leads to
unacceptable performance penalties, as it effectively prevents out-of-order execution while
additionally adding the overhead of the fence (multiple cycles) after every instruction. A
trade-off between the number of inserted fences and signal strength might be feasible, though.
We leave an evaluation to future work.

Alternatively, the browser can reorder the instruction stream while keeping its functionality.
Such reordering can be part of existing compiler optimizations, such as loop optimizations.
Software-diversification approaches have also been shown as mitigation against side-channel
attacks [CHB+15, RLT15]. As the code required for sequential port contention requires
precise control over the instruction sequence, any diversification likely breaks the side channel.
We leave the evaluation of software-diversification methods applied by the browser to future
work.

100 Chapter 5. Port Contention Without SMT and its Privacy Implications

50 100 150 200 250 300 350 400 450 500 550 600
0

50

100 JetStream Idle SPC

Time [s]

R
at
io

[%
]

Figure 5.6. – Ratio of backend-bound to misprediction-bound execution when running the
JetStream JavaScript and WebAssembly benchmark (left), nothing (middle),
and our website for generating the browser fingerprint (right) in Firefox 100.0.2.

5.4.4.2. Detection via Performance Counters

To detect sequential port contention, we propose a metric based on the topdown bottleneck
decomposition [Yas14]. Previous work focused mostly on cache-based performance counters
for detecting microarchitectural attacks [GMWM16, Pay16b, IES18, SBK+21]. However, for
sequential port contention, the cache activity is indistinguishable from typical workloads. The
bottleneck exploited in sequential port contention is the execution unit in the backend. As
the instruction stream is entirely linear, we use the ratio of backend-bound execution divided
by misprediction-bound execution. Hence, the more often the bottleneck is in the backend,
combined with next to no mispredictions, the higher the likelihood that the monitored snippet
uses sequential port contention.

Figure 5.6 shows the evaluation of this metric in Firefox while running the JetStream Java-
Script and WebAssembly benchmark (left), nothing (middle), and our website for generating
the browser fingerprint (right). Our tests do not show any workload where this metric is as
high as for sequential port contention, allowing detection of this side channel using a simple
threshold (dashed line).

5.5. Conclusion

We introduced sequential port contention, a new side channel based on port contention
that does not require SMT. This extends the threat surface of this side channel to new
systems, and circumvents popular countermeasures. We proposed a WebAssembly framework
to automatically determine instruction sequences creating sequential port contention on
different systems and CPU vendors. We demonstrated that an attacker can exploit sequential
port contention to determine the CPU generation of a victim from the browser within
12 s. This information is highly stable, and the attack works correctly even under heavy
system noise. This new side-channel is privacy-threatening, as it is hard to mitigate and can
be used for improving the stability of fingerprints. This fingerprint shows how web-based
microarchitectural side channels can have an impact on the privacy of the users by reducing
the anonymity of the web (Q3).

Conclusion and Perspectives 6
This thesis aimed to explore in more depth the threat surface of web-based microarchitectural
side channels. To this end, we proposed three major contributions:

1. A systematic study of JavaScript timers and timing attacks (Chapter 3).

2. The implementation of port contention in the browser (Chapter 4).

3. A new evolution of this side channel, and the study of its impact on privacy (Chapter 5).

With these contributions, we aimed to explore the research questions Q1, Q2, and Q3.

Q1: What is the current landscape of browser-based attacks and countermea-
sures? Browsers are constantly evolving pieces of software, and the security countermeasures
change with every release. This makes it particularly hard to evaluate the state of browsers’
security to microarchitectural side channels. Chapter 3 was primarily focused on this question,
as it proposes a classification of timing attacks, countermeasures, as well as tools to evaluate
timers in JavaScript automatically.
Furthermore, we also believe that a single, fixed-in-time study is insufficient to make

durable contributions to browser security, as attacker code can be executed on different
browsers of different versions, on different OSs sitting on different hardware. To that extent,
we provided automated evaluation frameworks for our proofs-of-concepts, in order to make
them as portable and durable as possible. PC-detector (Chapter 4) allows detecting the
contention caused by WebAssembly instructions regardless of the browser versions (as long
as WebAssembly is supported). Our sequential port contention framework (Chapter 5) can
evaluate instructions even on non-x86 processors, and use it to automatically detect the
generation of the processor.

Q2: Are other components vulnerable to side channels from the JavaScript sand-
box? Cache attacks have probably been the literature’s most explored microarchitectural
side channels. However, new components are exploited from the JavaScript sandbox to
widen the threat surface of web-based side channels. Generally, these side channels are first
implemented in native code, as it offers a more fine-grained control over the microarchitecture.

This is the case with web-based port contention. Aldaya et al. [ABuH+19] theorized native
CPU port contention, and in Chapter 4 we extended it to the JavaScript sandbox. This
contribution shows that there are still threatening side channels than could be implemented
in JavaScript. In particular, JavaScript port contention shows that SMT side channels can be
implemented in JavaScript as an attacker can achieve core co-residency with a victim, even
without core control.

102 Chapter 6. Conclusion and Perspectives

Sequential port contention, defined in Chapter 5, was directly designed to run in the
JavaScript sandbox. It allows to extend port contention to new systems, where SMT attacks
are unavailable. With it, we show how a change in the paradigm of a side channel, here
from thread-level parallelism to instruction-level parallelism, can offer a new threat surface to
already discovered side channels.

Q3: What can an attacker extract from these side channels? This is probably the
most pragmatic of this manuscript’s research questions, as it aims to quantify the impact of
microarchitectural side channels in browsers. With this thesis, we tried to exemplify how
flexible these attacks are, and that they can apply to many different security fields.

Microarchitectural side channels have often been applied to attacks against cryptographic
algorithms, even in the JavaScript sandbox [GPTY18]. We developed the threat of web port
contention on this type of attack in our artificial example in Section 4.3.
However, we believe that side channels, and in particular port contention, can also have

heavy implications on web users’ privacy. This is first the case with the port-contention covert
channel explored in Section 4.4. This channel completely breaks the isolation barriers brought
by the sandbox and site isolation, as it allows an attacker in the sandbox to communicate
with the outside. It could be used to extract native information to the sandbox, to leak Tor
Browser users’ IP addresses, or to exchange authentication cookies between two different tabs.
We also explored port contention’s impact on another privacy aspect: browser fingerprinting.
In Chapter 5, we showed how an attacker could leverage sequential port contention to identify
the CPU generation of the victim, allowing to complement software-based fingerprints and
grant more extended time stability.

Perspectives and Future Work

This manuscript has provided partial answers to the research questions introduced in the
introduction. However, if these contributions have not provided definitive answers to the open
questions, they have brought even more perspectives for future work.

Of new side channels and new threats The first lead for future work would be to
explore the implementation of new side channels to web browsers. This research is critical
as each microarchitectural component can be exploited differently, bringing different threats
and ways to circumvent already existing mitigations. Efficient countermeasures cannot be
implemented without a clear view of the attack surface.

With the resolution of JavaScript-specific challenges, e.g., lack of high-resolution timers or
core-control, the exploitation of new microarchitectural components is more accessible. In
particular, on-core resources already exploited natively, e.g., the TLB or µop cache, could be
exploited from the browser to widen the attack surface.

Hardware fingerprinting We briefly explored how microarchitectural side channels could
be used for fingerprinting. This direction is highly interesting as fingerprinting can be seen as
a specific type of side channel, where the attacker collects hardware information instead of
secrets.

Hardware fingerprints are currently starting to be explored [LMD+22] as it offers different
properties than software attributes. In particular, hardware attributes are more stable, as

103

users do not change their CPU monthly. This stability permits to link less stable software
fingerprints in time. Hardware attributes are also less spoofable because they depend on
active fingerprinting: instead of reading an attribute that the user can modify, the information
results from actual computations in the browser. Although a user can still modify these values
to prevent fingerprinting, it is harder to set the specific fingerprint of another system, thus
preventing spoofing.
Hardware fingerprints can be decomposed in two different directions based on the type of

attributes. The first direction would be to use precise information about the hardware to
complement software fingerprinting. This is the same direction we explored with sequential
port contention by finding the generation of the processor. Using microarchitectural side
channels, an attacker could detect the CPU or GPU model, vendor, or attributes about
microarchitectural properties, e.g., cache size or associativity, or the number of CPU cores. All
this information does not create a unique fingerprint as many users have the same processors,
but is stable information about a set of discrete attributes. The second direction would be
to create more unique fingerprints based on hardware imperfections. This is already the
direction explored by Sánchez-Rola et al. [SSB18] and Laor et al. [LMD+22]. By leveraging
minor differences in execution time or results of non-deterministic computations, a tracker
could gather unique information about a user. This type of fingerprint is often less stable
than discrete attributes, as other phenomena, such as software or system noise, can impact
the fingerprint.
This new paradigm in fingerprinting broadens the scope of applications for fingerprinting.

In particular, its stability and relative resistance to spoofing could help develop fingerprint as
a multi-factor authentication token. However, its implications on tracking applications are
also heavy, as it eases long-lasting fingerprints, allowing a third party to track anonymous
users over the web.

Browser-based countermeasures: a deadend? Web-based microarchitectural attacks
stand at a paradoxical crossroads: they are low-level attacks exploited from a very high-level
sandbox. Logically, they can be mitigated at several levels. Whereas microarchitectural
countermeasures are currently the most studied as they also apply to native attacks, they are
hard to implement as it is not possible to patch hardware.
Browser-based countermeasures can be deployed rapidly after the discovery of attacks.

However, the current state of browser-based countermeasures is unclear. Timing-based
countermeasures were a popular paradigm after the discovery of the first microarchitectural
side channels in the browser, but are now abandoned as they are often too penalizing for web
developers. The current paradigm for browser-based countermeasures is based on isolation,
specifically targetting same address-space attacks, such as Spectre-PHT. As presented in
Chapter 3, this new direction is insufficient, as it does not prevent most timing attacks.
However, browser vendors seem to consider microarchitectural countermeasures as a dead-end,
as implementing hardware-level countermeasures at an application level is often too costly.
A new approach we would like to explore in future work is based on detecting attacks

instead of preventing them. In particular, approaches similar to performance-counters-based
approaches [CSY16, AYQ+16, PIO19, LG18, For18, WSS+20] could be efficient to protect
the web. In a third-party attack, the browser could detect untrusted processes and monitor
their behavior to detect suspicious patterns before the attack is over. This approach could
be based on reading performance counters in the browser process, or implementing new

104 Chapter 6. Conclusion and Perspectives

policies on suspicious array accesses. Although this type of detection is based on heuristics,
machine-learning approaches could provide the genericity needed to detect the wide variety of
web-based microarchitectural side channels, and could be trained and deployed rapidly.

Automation and systematization Security research resembles a cat-and-mouse game:
new attacks motivate new countermeasures, which in turn force the creation of newer attacks.
The field of web-based microarchitectural channels is not an exception and is rapidly evolving.

In particular, each new side channel requires reverse-engineering the behavior of a microar-
chitectural component, finding a vulnerability, exploiting it natively then modifying it so it
can be exploited from the JavaScript sandbox. This workflow requires extensive engineering
work, often highly repetitive from one attack to another. We believe that at least some side
channels could be detected automatically by an automated framework, comparable to the
native ABSynthe [GGK+20] or Osiris [WIN+21]. These frameworks rely on a theoretical
systematization of side channels to evaluate random pairs of instructions for data leakage.
The same idea could be done on JavaScript and WebAssembly instructions. PC-detector
is a preliminary implementation of this idea, but is limited to detecting on-core contention
between pairs of instructions. A more complex implementation of a black-box side-channel
detector could provide the literature with a more complete picture of sources of leakages in the
sandbox. Another future work on automated discovery of side channels would be implement-
ing the detector at the application level. Instead of evaluating WebAssembly or JavaScript
instructions, evaluating the output bytecode produced by JavaScript engines could bring a
more deterministic understanding of how the sandbox interacts with the microarchitecture.

We believe this systematic approach is necessary to produce effective and generic counter-
measures instead of specific patches for a particular type of attack.

Appendices A
A.1. Custom RDTSC implementation

We modified the following files in order to implement rdtsc:

A.1.1. Firefox 81

mozilla-central/dom/performance/Performance.cpp

std : : uint64_t Performance : : Rdtsc () {
unsigned int lo , h i ;
__asm__ __volatile__ ("mfence") ;
__asm__ __volatile__ (" rd t s c " : "=a" (l o) , "=d" (h i)) ;
__asm__ __volatile__ ("mfence") ;
return ((std : : uint64_t) h i << 32) | l o ;

}

mozilla-central/dom/performance/Performance.h

std : : uint64_t Rdtsc () ;

mozilla-central/dom/webidl/Performance.webidl

typedef double uint64_t ;
uint64_t rd t s c () ;

A.1.2. Chromium 84

chromium/src/third_party/blink/renderer/core/timing/performance.cc

std : : uint64_t Performance : : r d t s c () {
unsigned int lo , h i ;
__asm__ __volatile__ ("mfence") ;
__asm__ __volatile__ (" rd t s c " : "=a" (l o) , "=d" (h i)) ;
__asm__ __volatile__ ("mfence") ;
return ((std : : uint64_t) h i << 32) | l o ;

}

chromium/src/third_party/blink/renderer/core/timing/performance.h

std : : uint64_t rd t s c () ;

106 Appendix A. Appendices

chromium/src/third_party/blink/renderer/core/timing/dom_high_res_time_-
stamp.idl

typedef double uint64_t ;

chromium/src/third_party/blink/renderer/core/timing/performance.idl

uint64_t rd t s c () ;

A.2. Port Contention on Other WebAssembly Instructions 107

A.2. Port Contention on Other WebAssembly Instructions

Figures A.1a to A.1c show port contention on the following WebAssembly instructions:
f64.floor, the pair f32.convert_i32_u and i32.trunc_f32_u, and i64.rem_u. We can clearly
distinguish the three outcomes of a PC-detector usage:

• Figure A.1a illustrates an instruction that do not cause contention. The P1 and P5
distributions have a similar mean and standard deviation, making them difficult to
distinguish. However, they are still distinguishable from the control experiment.

• Figure A.1c illustrates a pair of instructions causing contention on P5. The distribution
P5 has a higher mean than P1 and the control experiment.

• Figure A.1b illustrates an instruction causing contention on P1. The distribution P1
has a higher mean than P5 and the control experiment.

8 8.2 8.4 8.6 8.8 9 9.2
0

20

40

60

80

100

Execution time (ms)P
er
ce
nt
ag
e
of

oc
cu
rr
en
ce
s

Control experiment
P1 contention
P5 contention

(a) P1 contention experiment on f64.floor for
1 000 000 instructions.

20 25 30 35
0

20

40

60

80

100

Execution time (ms)P
er
ce
nt
ag

e
of

oc
cu
rr
en

ce
s

Control experiment
P1 contention
P5 contention

(b) P1 contention experiment on i64.rem_u for
1 000 000 instructions.

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5
0

20

40

60

80

100

Execution time (ms)P
er
ce
nt
ag

e
of

oc
cu
rr
en
ce
s

Control experiment
P1 contention
P5 contention

(c) P5 contention experiment on paired
f32.convert_i32_u and i32.trunc_f32_u for
1 000 000 instructions.

108 Appendix A. Appendices

A.3. Training set

Table A.1 presents the different processors used to train the model presented in Section 5.3.2.

Table A.1. – CPUs used in our training set

CPU Vendor Generation

Xeon X5670 Intel Westmere
Xeon E5-2620 Intel Sandy Bridge
Xeon E5-2630 Intel Sandy Bridge
Xeon E5-2630L Intel Sandy Bridge
Xeon E5-2650 0 Intel Sandy Bridge
Xeon E5-2660 0 Intel Sandy Bridge
Core i5-2520M Intel Sandy Bridge
Xeon E5-2660 v2 Intel Ivy Bridge
Xeon E5-2630 v3 Intel Haswell
Core i3-4160T Intel Haswell
Xeon E5-2620 v4 Intel Broadwell
Xeon E5-2630 v4 Intel Broadwell
Xeon E5-2680 v4 Intel Broadwell
Core i3-5010U Intel Broadwell
Xeon Gold 6126 Intel Skylake
Xeon Gold 6130 Intel Skylake
Core i9-9980HK Intel Coffee Lake
Core i5-8365U Intel Whiskey Lake
Xeon Gold 5218 Intel Cascade Lake SP
Xeon Gold 5220 Intel Cascade Lake SP
Core i7-10510U Intel Comet Lake
Core i7-10710U Intel Comet Lake
Core i5-1135G7 Intel Tiger Lake
EPYC 7301 AMD Zen
Ryzen 5 2500U AMD Zen
Ryzen 9 5900HX AMD Zen 3

Bibliography A
[AAG17] Zirak Allaf, Mo Adda, and Alexander Gegov. A comparison study on flush+

reload and prime+ probe attacks on aes using machine learning approaches. In
UK Workshop on Computational Intelligence, pages 203–213. Springer, 2017.

[ABG10] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New results on
instruction cache attacks. In CHES, volume 6225 of Lecture Notes in Computer
Science, pages 110–124. Springer, 2010.

[ABuH+19] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. Port contention for fun and profit. In S&P, 2019.

[AEE+14] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind
Narayanan, and Claudia Díaz. The web never forgets: Persistent tracking
mechanisms in the wild. In CCS, 2014.

[AES15] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$a: A
shared cache attack that works across cores and defies VM sandboxing - and
its application to AES. In IEEE Symposium on Security and Privacy, pages
591–604. IEEE Computer Society, 2015.

[AIES15] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Lucky 13 strikes back. In AsiaCCS, pages 85–96. ACM, 2015.

[AJ] Anne van Kesteren Artur Janc, Charlie Reis. Coop and coep explained. https://
docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k/edit.
Accessed: 2022-10-05.

[AKM+15] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. On subnormal floating point and abnormal timing. In
S&P, 2015.

[AKS07] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys
via branch prediction. In CT-RSA, volume 4377 of Lecture Notes in Computer
Science, pages 225–242. Springer, 2007.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. Ladderleak: Breaking ECDSA with less than one bit of nonce
leakage. In CCS, pages 225–242. ACM, 2020.

[AR] Andreas Abel and Jan Reineke. Tzcnt uops.info page. https://uops.info/

html-instr/TZCNT_R16_R16.html. Accessed: 2021-11-11.

https://docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k/edit
https://docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k/edit
https://uops.info/html-instr/TZCNT_R16_R16.html
https://uops.info/html-instr/TZCNT_R16_R16.html

110 Bibliography

[AR19] Andreas Abel and Jan Reineke. uops.info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures. In ASPLOS, pages
673–686. ACM, 2019.

[AYQ+16] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna Das,
Matthew Hicks, Yossi Oren, and Todd M. Austin. ANVIL: software-based
protection against next-generation rowhammer attacks. In ASPLOS, pages
743–755. ACM, 2016.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 2005.

[BBR16] Michael Brengel, Michael Backes, and Christian Rossow. Detecting hardware-
assisted virtualization. In DIMVA, volume 9721 of Lecture Notes in Computer
Science, pages 207–227. Springer, 2016.

[BEPW10] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke.
Differential cache-collision timing attacks on AES with applications to embedded
cpus. In CT-RSA, volume 5985 of Lecture Notes in Computer Science, pages
235–251. Springer, 2010.

[Ber61] Jay M. Berger. A note on error detection codes for asymmetric channels. Inf.
Control., 4(1):68–73, 1961.

[Ber05] Daniel Bernstein. Cache-timing attacks on aes. 2005.

[BFS20] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. Drag-
onblood is still leaking: Practical cache-based side-channel in the wild. In
ACSAC, pages 291–303. ACM, 2020.

[BFS21] Daniel De Almeida Braga, Pierre-Alain Fouque, and Mohamed Sabt. PARASITE:
password recovery attack against srp implementations in the wild. In CCS,
pages 2497–2512. ACM, 2021.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 667–684.
Springer, 2009.

[BM18] Sarani Bhattacharya and Debdeep Mukhopadhyay. Advanced Fault Attacks in
Software: Exploiting the Rowhammer Bug, pages 111–135. 2018.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache
attacks are practical. CoRR, abs/1702.07521, 2017.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-
of-order execution. In USENIX Security Symposium, pages 991–1008. USENIX
Association, 2018.

Bibliography 111

[BRBG16] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est
machina: Memory deduplication as an advanced exploitation vector. In IEEE
Symposium on Security and Privacy, pages 987–1004. IEEE Computer Society,
2016.

[BRPG15] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross. CAIN:
silently breaking ASLR in the cloud. In WOOT. USENIX Association, 2015.

[BSN+19] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre:
Exploiting speculative execution through port contention. In CCS, 2019.

[Bug18a] Bugzilla. Reduce timer resolution to 2ms. https://bugzilla.mozilla.org/show_

bug.cgi?id=1435296, feb 2018.

[Bug18b] Bugzilla. Set timer resolution to 1ms with jitter. https://bugzilla.mozilla.org/

show_bug.cgi?id=1451790, apr 2018.

[Bug18c] Bugzilla. Unanticipated security/usability degradation from precision-lowering
of performance.now() to 2ms. https://bugzilla.mozilla.org/show_bug.cgi?id=

1440863, feb 2018.

[Bug20] Bugzilla. Check crossoriginisolated for all nsrfpservice::reducetimeprecision*
callers. https://bugzilla.mozilla.org/show_bug.cgi?id=1586761, 02 2020.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. "ooh aah...
just a little bit" : A small amount of side channel can go a long way. In CHES,
volume 8731 of Lecture Notes in Computer Science, pages 75–92. Springer, 2014.

[CBS+19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A
systematic evaluation of transient execution attacks and defenses. In USENIX
Security Symposium, pages 249–266. USENIX Association, 2019.

[CCLW17] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. Deterministic browser.
In CCS, pages 163–178. ACM, 2017.

[CEQZ06] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based
clustering over an evolving data stream with noise. In SDM, pages 328–339.
SIAM, 2006.

[CGG+19] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. Fallout: Leaking Data on Meltdown-resistant CPUs.
In CCS, 2019.

[CHB+15] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. Thwarting cache side-channel attacks through dynamic software diversity.
In NDSS, 2015.

https://bugzilla.mozilla.org/show_bug.cgi?id=1435296
https://bugzilla.mozilla.org/show_bug.cgi?id=1435296
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
https://bugzilla.mozilla.org/show_bug.cgi?id=1451790
https://bugzilla.mozilla.org/show_bug.cgi?id=1440863
https://bugzilla.mozilla.org/show_bug.cgi?id=1440863
https://bugzilla.mozilla.org/show_bug.cgi?id=1586761

112 Bibliography

[Chr17a] Chromium. Issue 611420: WebAccessibleResources take too long to make a
decision about loading if the extension is installed. https://bugs.chromium.org/p/

chromium/issues/detail?id=611420, 2017.

[Chr17b] Chromium. Issue 709464: Detecting the presence of extensions through timing
attacks (including Incognito) - Chromium bug tracker. https://bugs.chromium.

org/p/chromium/issues/detail?id=709464, 2017.

[Cona] MDN Contributors. Cross-origin-embedder-policy. https://developer.mozilla.

org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy. Accessed: 2021-
19-11.

[Conb] MDN Contributors. Cross-origin-opener-policy. https://developer.mozilla.org/

en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy. Accessed: 2021-19-11.

[Conc] MDN Contributors. Cross-origin resource policy. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP).

[Cond] MDN Contributors. Date.now() api. https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Reference/Global_Objects/Date/now. Accessed: 2022-06-30.

[Cone] MDN Contributors. Navigator.hardwareconcurrency. https://developer.mozilla.

org/en-US/docs/Web/API/Navigator/hardwareConcurrency. Accessed: 2021-19-11.

[Conf] MDN Contributors. Planned changes to shared memory. https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

SharedArrayBuffer/Planned_changes. Accessed: 2022-07-26.

[Cong] MDN Contributors. Same-origin-policy. https://developer.mozilla.org/en-US/

docs/Web/Security/Same-origin_policy. Accessed: 2020-10-06.

[Conh] MDN Contributors. Subresource integrity. https://developer.mozilla.org/en-US/

docs/Web/Security/Subresource_Integrity.

[Coni] MDN Contributors. Window.requestanimationframe() api. https://developer.

mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame. Accessed: 2022-
06-30.

[Conj] MDN Contributors. Window.settimeout() api. https://developer.mozilla.org/

en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout. Accessed: 2022-06-30.

[Con20a] MDN Contributors. Performance api. https://developer.mozilla.org/en-US/docs/
Web/API/Performance_API, October 2020.

[Con20b] MDN Contributors. Performance.now() api. https://developer.mozilla.org/fr/

docs/Web/API/Performance/now, Sept 2020.

[CSH+20] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. KASLR: break it, fix it, repeat. In AsiaCCS, pages 481–493.
ACM, 2020.

https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=611420
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://bugs.chromium.org/p/chromium/issues/detail?id=709464
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Embedder-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/hardwareConcurrency
https://developer.mozilla.org/en-US/docs/Web/API/Navigator/hardwareConcurrency
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer/Planned_changes
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API
https://developer.mozilla.org/en-US/docs/Web/API/Performance_API
https://developer.mozilla.org/fr/docs/Web/API/Performance/now
https://developer.mozilla.org/fr/docs/Web/API/Performance/now

Bibliography 113

[CSY16] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of
cache-based side-channel attacks using hardware performance counters. Appl.
Soft Comput., 2016.

[Dam06] Peter Damaschke. Threshold group testing. In GTIT-C, volume 4123 of Lecture
Notes in Computer Science, pages 707–718. Springer, 2006.

[DFS20] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hybcache:
Hybrid side-channel-resilient caches for trusted execution environments. In
USENIX Security Symposium, 2020.

[DJL+12] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh, and
Dmitry Ponomarev. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Trans. Archit. Code Optim., 8(4):35:1–35:21,
2012.

[DKPT17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen.
Prime+abort: A timer-free high-precision L3 cache attack using intel TSX.
In USENIX Security Symposium, pages 51–67. USENIX Association, 2017.

[Eck10] Peter Eckersley. How unique is your web browser? In Privacy Enhancing
Technologies, 2010.

[ECMa] ECMA. Atomics.add - standard. https://www.ecma-international.org/ecma-262/

#sec-atomics.add. Accessed: 2020-09-30.

[ECMb] ECMA. Sharedarraybuffer objects. https://tc39.es/ecma262/

#sec-sharedarraybuffer-objects. Accessed: 2022-06-30.

[ECMc] ECMA. Standard ecma-262. https://tc39.es/ecma262/. Accessed: 2022-07-21.

[ECMd] ECMA. Standard ecma-262. https://tc39.es/ecma402/. Accessed: 2022-07-21.

[EP16] Dmitry Evtyushkin and Dmitry V. Ponomarev. Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations. In CCS,
pages 843–857. ACM, 2016.

[EPA16] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-Ghazaleh. Jump
over ASLR: attacking branch predictors to bypass ASLR. In MICRO, pages
40:1–40:13. IEEE Computer Society, 2016.

[ERAP18] Dmitry Evtyushkin, Ryan Riley, Nael B. Abu-Ghazaleh, and Dmitry Ponomarev.
Branchscope: A new side-channel attack on directional branch predictor. In
ASPLOS, pages 693–707. ACM, 2018.

[F+11] Agner Fog et al. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus. Copenhagen
University College of Engineering, 93:110, 2011.

[FE15] David Fifield and Serge Egelman. Fingerprinting web users through font metrics.
In Financial Cryptography, volume 8975 of Lecture Notes in Computer Science,
pages 107–124. Springer, 2015.

https://www.ecma-international.org/ecma-262/#sec-atomics.add
https://www.ecma-international.org/ecma-262/#sec-atomics.add
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/#sec-sharedarraybuffer-objects
https://tc39.es/ecma262/
https://tc39.es/ecma402/

114 Bibliography

[Fog] Andreas Fogh. Covert shotgun. https://cyber.wtf/2016/09/27/covert-shotgun/.
Accessed: 2022-07-04.

[For18] James Christopher Foreman. A survey of cyber security countermeasures using
hardware performance counters. CoRR, abs/1807.10868, 2018.

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–bringing
access-based cache attacks on aes to practice. In 2011 IEEE Symposium on
Security and Privacy, pages 490–505. IEEE, 2011.

[GBM15] Daniel Gruss, David Bidner, and Stefan Mangard. Practical memory deduplica-
tion attacks in sandboxed javascript. In ESORICS (1), volume 9326 of Lecture
Notes in Computer Science, pages 108–122. Springer, 2015.

[GGK+20] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
Absynthe: Automatic blackbox side-channel synthesis on commodity microar-
chitectures. In NDSS, 2020.

[GIA+15] Berk Gülmezoglu, Mehmet Sinan Inci, Gorka Irazoqui Apecechea, Thomas
Eisenbarth, and Berk Sunar. A faster and more realistic flush+reload attack on
AES. In COSADE, volume 9064 of Lecture Notes in Computer Science, pages
111–126. Springer, 2015.

[Gio17] Giorgio Maone. NoScript - JavaScript/Java/Flash blocker for a safer Firefox
experience!, July 2017.

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in javascript. In DIMVA, volume 9721 of
Lecture Notes in Computer Science, pages 300–321. Springer, 2016.

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: A fast and stealthy cache attack. In DIMVA, volume 9721 of
Lecture Notes in Computer Science, pages 279–299. Springer, 2016.

[Gooa] Google. Google end to end library. https://github.com/google/end-to-end/. Ac-
cessed: 2022-07-26.

[Goob] Google. Product status: Microarchitectural data sampling (mds). https://

support.google.com/faqs/answer/9330250?hl=en. Accessed: 2021-19-11.

[Gooc] Google. Sharedarraybuffer updates in android chrome 88 and desk-
top chrome 92 - chrome developers. https://developer.chrome.com/blog/

enabling-shared-array-buffer/. Accessed: 2022-07-26.

[Good] Google. time_clamper.cpp. https://source.chromium.org/chromium/chromium/

src/+/master:third_party/blink/renderer/core/timing/time_clamper.cc. Accessed:
2020-10-12.

[Gooe] Google. V8 javascript engine. https://v8.dev/. Accessed: 2022-07-21.

[Goof] Google. v8/bytecodes.h. https://github.com/v8/v8/blob/master/src/interpreter/

bytecodes.h. Accessed: 2022-07-26.

https://cyber.wtf/2016/09/27/covert-shotgun/
https://github.com/google/end-to-end/
https://support.google.com/faqs/answer/9330250?hl=en
https://support.google.com/faqs/answer/9330250?hl=en
https://developer.chrome.com/blog/enabling-shared-array-buffer/
https://developer.chrome.com/blog/enabling-shared-array-buffer/
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/timing/time_clamper.cc
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/core/timing/time_clamper.cc
https://v8.dev/
https://github.com/v8/v8/blob/master/src/interpreter/bytecodes.h
https://github.com/v8/v8/blob/master/src/interpreter/bytecodes.h

Bibliography 115

[GPTY18] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-by
key-extraction cache attacks from portable code. In ACNS, 2018.

[GRB+17] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
ASLR on the line: Practical cache attacks on the MMU. In NDSS. The Internet
Society, 2017.

[GRBG18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks.
In USENIX, 2018.

[Gri] Ilya Grigorik. High resolution time level 2. https://www.w3.org/TR/hr-time-2/.
Accessed: 2022-06-30.

[Gro] W3C Community Group. Index of instructions webassembly 2.0. https:

//webassembly.github.io/spec/core/appendix/index-instructions.html. Accessed:
2022-05-20.

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template at-
tacks: Automating attacks on inclusive last-level caches. In USENIX Security
Symposium, pages 897–912. USENIX Association, 2015.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In CRYPTO (1), volume 8616 of Lecture
Notes in Computer Science, pages 444–461. Springer, 2014.

[GZ13] Michael Misiu Godfrey and Mohammad Zulkernine. A server-side solution to
cache-based side-channel attacks in the cloud. In IEEE CLOUD, pages 163–170.
IEEE Computer Society, 2013.

[Ham50] Richard W Hamming. Error detecting and error correcting codes. The Bell
system technical journal, 29(2):147–160, 1950.

[Hat] Red Hat. Disabling smt to prevent cpu security issues using the web con-
sole. https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/

8/topic/f1d65124-781b-4543-a51a-d2bf9fa794ac. Accessed: 2022-05-10.

[Hor] Jan Horn. Project zero: Reading privileged memory with a side channel. https:

//googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.

html. Accessed: 2022-07-04.

[Hor18] Jann Horn. speculative execution, variant 4: speculative store bypass, 2018.

[HS13] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and
heating fault attacks. In CARDIS, volume 8419 of Lecture Notes in Computer
Science, pages 219–235. Springer, 2013.

[Hu92] Wei-Ming Hu. Lattice scheduling and covert channels. In IEEE Symposium on
Security and Privacy, pages 52–61. IEEE Computer Society, 1992.

[HWH13] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel
attacks against kernel space ASLR. In IEEE Symposium on Security and Privacy,
pages 191–205. IEEE Computer Society, 2013.

https://www.w3.org/TR/hr-time-2/
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/topic/f1d65124-781b-4543-a51a-d2bf9fa794ac
https://access.redhat.com/documentation/en-us/red-hat-enterprise-linux/8/topic/f1d65124-781b-4543-a51a-d2bf9fa794ac
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

116 Bibliography

[IES16] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor cache
attacks. In AsiaCCS, pages 353–364. ACM, 2016.

[IES18] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: preventing
microarchitectural attacks before distribution. In CODASPY, pages 377–388.
ACM, 2018.

[IIES14] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait
a minute! a fast, cross-vm attack on aes. In International Workshop on Recent
Advances in Intrusion Detection, pages 299–319. Springer, 2014.

[Inta] Intel. Affected processors: Transient execution at-
tacks & related security. https://www.intel.com/content/

www/us/en/developer/topic-technology/software-security-guidance/

processors-affected-consolidated-product-cpu-model.html. Accessed: 2022-
07-26.

[Intb] Intel. How to benchmark code execution times on intel ia-32 and
ia-64 instruction set architectures white paper - ia-32-ia-64-benchmark-
code-execution-paper.pdf. https://www.intel.com/content/dam/www/public/us/

en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf. Ac-
cessed: 2022-07-26.

[Intc] Intel. Intel® 64 and ia-32 architectures optimization reference man-
ual. https://www.intel.com/content/www/us/en/developer/articles/technical/

intel-sdm.html. Accessed: 2022-06-30.

[Intd] Intel. Intel® 64 and ia-32 architectures software developer’s manual. https://www.
intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.

pdf. Accessed: 2022-07-20.

[Inte] Intel. Introduction to cache allocation technology. https:

//www.intel.com/content/www/us/en/developer/articles/technical/

introduction-to-cache-allocation-technology.html. Accessed: 2022-07-26.

[JS12] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from process
footprints. In IEEE Symposium on Security and Privacy, pages 143–157. IEEE
Computer Society, 2012.

[K15] Sakamoto K. Reduce resolution of performance.now to prevent timing attacks.
https://bugs.chromium.org/p/chromium/issues/detail?id=506723, Jul 2015.

[KASZ09] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou. Hardware-
software integrated approaches to defend against software cache-based side
channel attacks. In HPCA, 2009.

[KDK+14] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ISCA, pages 361–372. IEEE Computer Society, 2014.

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://bugs.chromium.org/p/chromium/issues/detail?id=506723

Bibliography 117

[KGA+20] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Netcat: Practical cache attacks from the network. In 2020
IEEE Symposium on Security and Privacy (SP), pages 20–38. IEEE, 2020.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In IEEE Symposium on Security and Privacy, pages 1–19. IEEE, 2019.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[KKSA18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks using the return
stack buffer. In WOOT @ USENIX Security Symposium. USENIX Association,
2018.

[Koc96] Paul Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

[KPM12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM: system-
level protection against cache-based side channel attacks in the cloud. In USENIX
Security Symposium, pages 189–204. USENIX Association, 2012.

[Kru14] Christopher Kruegel. Full system emulation: Achieving successful automated
dynamic analysis of evasive malware. In BlackHat USA, 2014.

[KS16] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain times.
In USENIX Security Symposium, pages 463–480. USENIX Association, 2016.

[KSWH00] John Kelsey, Bruce Schneier, David A. Wagner, and Chris Hall. Side channel
cryptanalysis of product ciphers. J. Comput. Secur., 8(2/3):141–158, 2000.

[KW18] Vladimir Kiriansky and Carl A. Waldspurger. Speculative buffer overflows:
Attacks and defenses. CoRR, abs/1807.03757, 2018.

[Kyö18] Sami Kyöstilä. Clamp performance.now() to 100us. https://chromium-review.

googlesource.com/c/chromium/src/+/849993, Jan 2018.

[LABN19] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. Morel-
lian analysis for browsers: Making web authentication stronger with canvas
fingerprinting. In DIMVA, 2019.

[Lar] Michael Larabel. Openbsd disabling smt / hyper threading due
to security concerns. https://www.phoronix.com/scan.php?page=news_item&px=

OpenBSD-Disabling-SMT. Accessed: 2021-19-11.

[LAS+18] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss, Clémentine
Maurice, Lukas Raab, and Lukas Lamster. Nethammer: Inducing rowhammer
faults through network requests. CoRR, abs/1805.04956, 2018.

https://chromium-review.googlesource.com/c/chromium/src/+/849993
https://chromium-review.googlesource.com/c/chromium/src/+/849993
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT
https://www.phoronix.com/scan.php?page=news_item&px=OpenBSD-Disabling-SMT

118 Bibliography

[LG18] Congmiao Li and Jean-Luc Gaudiot. Online detection of spectre attacks using
microarchitectural traces from performance counters. In SBAC-PAD, pages
25–28. IEEE, 2018.

[LGR14] Peng Li, Debin Gao, and Michael K. Reiter. Stopwatch: A cloud architecture
for timing channel mitigation. ACM Trans. Inf. Syst. Secur., 17(2):8:1–8:28,
2014.

[LGS+16] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. Armageddon: Cache attacks on mobile devices. In USENIX Security
Symposium, pages 549–564. USENIX Association, 2016.

[LGS+17] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,
and Stefan Mangard. Practical keystroke timing attacks in sandboxed javascript.
In ESORICS (2), volume 10493 of Lecture Notes in Computer Science, pages
191–209. Springer, 2017.

[LHS+20] Moritz Lipp, Vedad Hadzic, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. Take A way: Exploring the security implications of amd’s
cache way predictors. In AsiaCCS, pages 813–825. ACM, 2020.

[LKO+21] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: software-based power
side-channel attacks on x86. In IEEE Symposium on Security and Privacy, pages
355–371. IEEE, 2021.

[LL14] Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In MICRO, 2014.

[LMD+22] Tomer Laor, Naif Mehanna, Antonin Durey, Vitaly Dyadyuk, Pierre Laperdrix,
Clémentine Maurice, Yossi Oren, Romain Rouvoy, Walter Rudametkin, and
Yuval Yarom. DRAWNAPART: A device identification technique based on
remote GPU fingerprinting. In NDSS, 2022.

[LSG+20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike
Hamburg, and Raoul Strackx. Meltdown: reading kernel memory from user
space. Commun. ACM, 63(6):46–56, 2020.

[LWD10] Chao Liu, Ryen W. White, and Susan T. Dumais. Understanding web browsing
behaviors through weibull analysis of dwell time. In SIGIR, 2010.

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level
cache side-channel attacks are practical. In IEEE Symposium on Security and
Privacy, pages 605–622. IEEE Computer Society, 2015.

[May09] Jonathan R Mayer. Any person... a pamphleteer”: Internet anonymity in the
age of web 2.0. Undergraduate Senior Thesis, Princeton University, 85, 2009.

[MBYS11] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Finger-
printing information in JavaScript implementations. In Helen Wang, editor,
Proceedings of W2SP 2011. IEEE Computer Society, May 2011.

Bibliography 119

[MCS+16] Jian Mao, Yue Chen, Futian Shi, Yaoqi Jia, and Zhenkai Liang. Toward exposing
timing-based probing attacks in web applications. In WASA, volume 9798 of
Lecture Notes in Computer Science, pages 499–510. Springer, 2016.

[MOG+20] Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based fault injection attacks against
intel SGX. In IEEE Symposium on Security and Privacy, pages 1466–1482.
IEEE, 2020.

[Moza] Mozilla. Rabaldrmonkey baseline compile. https://hg.mozilla.org/

mozilla-central/file/tip/js/src/wasm/WasmBaselineCompile.cpp. Accessed: 2022-
07-26.

[Mozb] Mozilla. Spidermonkey javascript engine. https://spidermofnkey.dev/. Accessed:
2022-07-21.

[Mozc] Mozilla. v8/bytecodes.h. https://searchfox.org/mozilla-central/source/js/src/

vm/Opcodes.h. Accessed: 2022-07-26.

[Moz19] Mozilla. Always restyle / repaint when a visited query fin-
ishes – Mozilla Central. https://hg.mozilla.org/mozilla-central/rev/

89fad029456188f03a670ef5f08a5d0856a728b1, 2019.

[Moz20a] Mozilla. Bug 884270: Link Visitedness can be detected by redraw timing –
Bugzilla. https://bugzilla.mozilla.org/show_bug.cgi?id=884270, 2020.

[Moz20b] Mozilla. nsrfpservice.cpp, firefox sourcecode. https://hg.mozilla.org/

mozilla-central/file/tip/toolkit/components/resistfingerprinting/nsRFPService.

cpp, October 2020.

[MR18] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execution using
return stack buffers. In CCS, pages 2109–2122. ACM, 2018.

[MWS+17] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the
other side: SSH over robust cache covert channels in the cloud. In NDSS, 2017.

[NS06] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache attacks
on AES. In Selected Areas in Cryptography, volume 4356 of Lecture Notes in
Computer Science, pages 147–162. Springer, 2006.

[NSY15] Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich. Hardware fingerprinting
using HTML5. CoRR, abs/1503.01408, 2015.

[OACD15] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Díaz. The
leaking battery - A privacy analysis of the HTML5 battery status API. In
DPM/QASA@ESORICS, volume 9481 of Lecture Notes in Computer Science,
pages 254–263. Springer, 2015.

[OKSK15] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox: Practical cache attacks in javascript and
their implications. In CCS, pages 1406–1418. ACM, 2015.

https://hg.mozilla.org/mozilla-central/file/tip/js/src/wasm/WasmBaselineCompile.cpp
https://hg.mozilla.org/mozilla-central/file/tip/js/src/wasm/WasmBaselineCompile.cpp
https://spidermofnkey.dev/
https://searchfox.org/mozilla-central/source/js/src/vm/Opcodes.h
https://searchfox.org/mozilla-central/source/js/src/vm/Opcodes.h
https://hg.mozilla.org/mozilla-central/rev/89fad029456188f03a670ef5f08a5d0856a728b1
https://hg.mozilla.org/mozilla-central/rev/89fad029456188f03a670ef5f08a5d0856a728b1
https://bugzilla.mozilla.org/show_bug.cgi?id=884270
https://hg.mozilla.org/mozilla-central/file/tip/toolkit/components/resistfingerprinting/nsRFPService.cpp
https://hg.mozilla.org/mozilla-central/file/tip/toolkit/components/resistfingerprinting/nsRFPService.cpp
https://hg.mozilla.org/mozilla-central/file/tip/toolkit/components/resistfingerprinting/nsRFPService.cpp

120 Bibliography

[Ope] OpenPGP.js. Openpgp.js | openpgp javascript implementation. https://

openpgpjs.org/. Accessed: 2022-07-26.

[Ore15] Yossi Oren. "spy in the sandbox" - security issue related to high resolution time
api. https://bugzilla.mozilla.org/show_bug.cgi?id=1167489, may 2015.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: the case of aes. In CT-RSA, pages 1–20. Springer, 2006.

[OW11] Rodney Owens and Weichao Wang. Non-interactive OS fingerprinting through
memory de-duplication technique in virtual machines. In IPCCC, pages 1–8.
IEEE Computer Society, 2011.

[Pag05] Dan Page. Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptol. ePrint Arch., page 280, 2005.

[Pay16a] Mathias Payer. Hexpads: A platform to detect "stealth" attacks. In ESSoS,
volume 9639 of Lecture Notes in Computer Science, pages 138–154. Springer,
2016.

[Pay16b] Mathias Payer. Hexpads: A platform to detect "stealth" attacks. In ESSoS,
volume 9639 of Lecture Notes in Computer Science, pages 138–154. Springer,
2016.

[Per05] Colin Percival. Cache missing for fun and profit. In In Proc. of BSDCan 2005,
2005.

[PGGV21] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede. Systematic
analysis of randomization-based protected cache architectures. In S&P, 2021.

[PGM+16] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. DRAMA: exploiting DRAM addressing for cross-cpu attacks. In
USENIX Security Symposium, pages 565–581. USENIX Association, 2016.

[PIO19] Iván Prada, Francisco D Igual, and Katzalin Olcoz. Detecting time-fragmented
cache attacks against aes using performance monitoring counters. In Conference
on Cloud Computing and Big Data, pages 3–15. Springer, 2019.

[PLF21] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. Lord of the
ring(s): Side channel attacks on the CPU on-chip ring interconnect are practical.
In USENIX Security Symposium, pages 645–662. USENIX Association, 2021.

[PSS+18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault attacks.
In EuroS&P, pages 338–352. IEEE, 2018.

[PTV21] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+scope: Over-
coming the observer effect for high-precision cache contention attacks. In CCS,
pages 2906–2920. ACM, 2021.

[Qur18] Moinuddin K. Qureshi. CEASER: mitigating conflict-based cache attacks via
encrypted-address and remapping. In MICRO, pages 775–787. IEEE Computer
Society, 2018.

https://openpgpjs.org/
https://openpgpjs.org/
https://bugzilla.mozilla.org/show_bug.cgi?id=1167489

Bibliography 121

[Ray17] Raymond Hill. uBlock Origin - An efficient blocker for Chromium and Firefox.
Fast and lean., July 2017.

[RGB+16] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. Flip feng shui: Hammering a needle in the software stack. In
USENIX Security Symposium, pages 1–18. USENIX Association, 2016.

[RLT15] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital {Side-
Channels} through obfuscated execution. In USENIX Security Symposium,
2015.

[RMBO22] Thomas Rokicki, Clémentine Maurice, Marina Botvinnik, and Yossi Oren. Port
contention goes portable: Port contention side channels in web browsers. In
AsiaCCS, pages 1182–1194. ACM, 2022.

[RML21] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. Sok: In search of
lost time: A review of javascript timers in browsers. In EuroS&P, pages 472–486.
IEEE, 2021.

[RMO19] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process
separation for web sites within the browser. In USENIX Security Symposium,
2019.

[RMS22] Thomas Rokicki, Clémentine Maurice, and Michael Schwarz. Cpu port contention
without SMT. In ESORICS, 2022.

[RMT+21] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M.
Tullsen, and Ashish Venkat. I see dead µops: Leaking secrets via intel/amd
micro-op caches. In ISCA, 2021.

[RR01] Josyula R. Rao and Pankaj Rohatgi. Empowering side-channel attacks. IACR
Cryptol. ePrint Arch., page 37, 2001.

[RRR16] Michael Rushanan, David Russell, and Aviel D. Rubin. Malloryworker: Stealthy
computation and covert channels using web workers. In STM, volume 9871 of
Lecture Notes in Computer Science, pages 196–211. Springer, 2016.

[SAO+21] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin, Yossi
Oren, and Yuval Yarom. Prime+probe 1, javascript 0: Overcoming browser-
based side-channel defenses. In USENIX Security Symposium, 2021.

[SBK+21] Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas
Schuster, Daniel Gruss, and Michael Schwarz. Dynamic process isolation. CoRR,
abs/2110.04751, 2021.

[SD15] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to
gain kernel privileges. Black Hat, 15:71, 2015.

[Sea] M. Seaborn. How physical addresses map to rows and
banks in dram. http://lackingrhoticity.blogspot.com/2015/05/

how-physical-addresses-map-to-rows-and-banks.html. Accessed: 2022-07-04.

http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com/2015/05/how-physical-addresses-map-to-rows-and-banks.html

122 Bibliography

[sel20] SeleniumHQ browser automation. https://www.selenium.dev/, oct 2020.

[SIYA11] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. Memory
deduplication as a threat to the guest OS. In EUROSEC, page 1. ACM, 2011.

[SKH+19] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek
Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprinting through
the cache occupancy channel. In USENIX Security Symposium, 2019.

[SKLG21] Martin Schwarzl, Erik Kraft, Moritz Lipp, and Daniel Gruss. Remote memory-
deduplication attacks. NDSS, 2021.

[SLCO18] Bin Shi, Bo Li, Lei Cui, and Liu Ouyang. Vanguard: A cache-level sensitive
file integrity monitoring system in virtual machine environment. IEEE Access,
6:38567–38577, 2018.

[SLG18a] Michael Schwarz, Moritz Lipp, and Daniel Gruss. Javascript zero: Real javascript
and zero side-channel attacks. In NDSS. The Internet Society, 2018.

[SLG+18b] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine Maurice,
Raphael Spreitzer, and Stefan Mangard. Keydrown: Eliminating software-based
keystroke timing side-channel attacks. In NDSS. The Internet Society, 2018.

[SLG19] Michael Schwarz, Florian Lackner, and Daniel Gruss. Javascript template
attacks: Automatically inferring host information for targeted exploits. In
NDSS, 2019.

[SLKN19] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
Unnecessarily identifiable: Quantifying the fingerprintability of browser exten-
sions due to bloat. In WWW, 2019.

[SLM+19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In CCS, pages 753–768. ACM, 2019.

[SMAK20] Benjamin Semal, Konstantinos Markantonakis, Raja Naeem Akram, and Jan
Kalbantner. Leaky controller: Cross-vm memory controller covert channel on
multi-core systems. In SEC, volume 580 of IFIP Advances in Information and
Communication Technology, pages 3–16. Springer, 2020.

[SMGM17] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard.
Fantastic timers and where to find them: High-resolution microarchitectural
attacks in javascript. In Financial Cryptography, volume 10322 of Lecture Notes
in Computer Science, pages 247–267. Springer, 2017.

[SNK+12] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Orlic, and
Jean-Pierre Seifert. Simple photonic emission analysis of AES - photonic side
channel analysis for the rest of us. In CHES, volume 7428 of Lecture Notes in
Computer Science, pages 41–57. Springer, 2012.

https://www.selenium.dev/

Bibliography 123

[SP13] Raphael Spreitzer and Thomas Plos. Cache-access pattern attack on disaligned
AES t-tables. In COSADE, volume 7864 of Lecture Notes in Computer Science,
pages 200–214. Springer, 2013.

[SP18] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking FPU register state
using microarchitectural side-channels. CoRR, abs/1806.07480, 2018.

[SQ21] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: mitigating conflict-
based cache attacks with a practical fully-associative design. In USENIX Security
Symposium, 2021.

[SS20] Milad Seddigh and Hadi Soleimany. Enhanced flush+reload attack on AES. ISC
Int. J. Inf. Secur., 12(2):81–89, 2020.

[SSB17a] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Extension break-
down: Security analysis of browsers extension resources control policies. In
USENIX Security Symposium, pages 679–694. USENIX Association, 2017.

[SSB17b] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Extension break-
down: Security analysis of browsers extension resources control policies. In
USENIX Security Symposium, pages 679–694. USENIX Association, 2017.

[SSB17c] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Extension break-
down: Security analysis of browsers extension resources control policies. In
USENIX Security Symposium, 2017.

[SSB18] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Clock around the
clock: Time-based device fingerprinting. In CCS, 2018.

[SSL+19] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
Netspectre: Read arbitrary memory over network. In European Symposium on
Research in Computer Security, pages 279–299. Springer, 2019.

[ST04] Adi Shamir and Eran Tromer. Acoustic cryptanalysis, 2004.

[Sta] Chrome Platform Status. Align performance api timer resolution to cross-origin
isolated capability. https://chromestatus.com/feature/6497206758539264.

[Sto13] Paul Stone. Pixel perfect timing attacks with HTML5, 2013.

[SVS17] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering browser
extensions via web accessible resources. In CODASPY, pages 329–336. ACM,
2017.

[SWG+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware guard extension: Using SGX to conceal cache attacks. CoRR,
abs/1702.08719, 2017.

[SWT01] Dawn Xiaodong Song, David A. Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In USENIX Security Symposium.
USENIX, 2001.

https://chromestatus.com/feature/6497206758539264

124 Bibliography

[Teaa] ARM Security Team. Speculative processor vulnerability. https://developer.arm.

com/Arm%20Security%20Center/Speculative%20Processor%20Vulnerability. Accessed:
2022-07-04.

[Teab] Google Security Team. Leaky page. https://security.googleblog.com/2021/03/

a-spectre-proof-of-concept-for-spectre.html. Accessed: 2022-07-04.

[THAC18] David Trilla, Carles Hernández, Jaume Abella, and Francisco J. Cazorla. Cache
side-channel attacks and time-predictability in high-performance critical real-
time systems. In DAC, pages 98:1–98:6. ACM, 2018.

[TKA+18] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer attacks
over the network and defenses. In USENIX Annual Technical Conference, pages
213–226. USENIX Association, 2018.

[TP19] Daniel Townley and Dmitry Ponomarev. SMT-COP: defeating side-channel
attacks on execution units in SMT processors. In PACT, 2019.

[TRVT22] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. Secsmt:
Securing SMT processors against contention-based covert channels. In USENIX
Security Symposium, 2022.

[TS] Ben L. Titzer and Jaroslav Sevcik. A year with spectre: a v8 perspective.
https://v8.dev/blog/spectre. Accessed: 2021-02-12.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. CLKSCREW:
exposing the perils of security-oblivious energy management. In USENIX
Security Symposium, pages 1057–1074. USENIX Association, 2017.

[Tur18] Paul Turner. Retpoline: a software construct for preventing branch-target-
injection. URL https://support.google.com/faqs/answer/7625886, 2018.

[Vah] Lutz Vahl. Intent to extend origin trial: Trial for sharedarray-
buffers in non-isolated pages on desktop platforms. https://mikewest.

github.io/cookie-incrementalism/draft-west-cookie-incrementalism.htmlhttps:

//groups.google.com/a/chromium.org/g/blink-dev/c/OLbI-axDyH0/m/qYYz7LvEAgAJ.
Accessed: 2022-08-05.

[vba] v8 blog. Ignition - v8. https://v8.dev/docs/ignition. Accessed: 2022-07-26.

[vbb] v8 blog. Liftoff - v8. https://v8.dev/blog/liftoff. Accessed: 2022-07-26.

[vbc] v8 blog. Turbofan - v8. https://v8.dev/docs/turbofan. Accessed: 2022-07-26.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more.
In CT-RSA, volume 9048 of Lecture Notes in Computer Science, pages 3–21.
Springer, 2015.

[VDS11] Bhanu Chandra Vattikonda, Sambit Das, and Hovav Shacham. Eliminating fine
grained timers in xen. In CCSW, pages 41–46. ACM, 2011.

https://developer.arm.com/Arm%20Security%20Center/Speculative%20Processor%20Vulnerability
https://developer.arm.com/Arm%20Security%20Center/Speculative%20Processor%20Vulnerability
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://v8.dev/blog/spectre
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.htmlhttps://groups.google.com/a/chromium.org/g/blink-dev/c/OLbI-axDyH0/m/qYYz7LvEAgAJ
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.htmlhttps://groups.google.com/a/chromium.org/g/blink-dev/c/OLbI-axDyH0/m/qYYz7LvEAgAJ
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.htmlhttps://groups.google.com/a/chromium.org/g/blink-dev/c/OLbI-axDyH0/m/qYYz7LvEAgAJ
https://v8.dev/docs/ignition
https://v8.dev/blog/liftoff
https://v8.dev/docs/turbofan

Bibliography 125

[vGJ17] Tom van Goethem and Wouter Joosen. One side-channel to bring them all and
in the darkness bind them: Associating isolated browsing sessions. In WOOT.
USENIX Association, 2017.

[vGJN15] Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still
ticking: Timing attacks in the modern web. In CCS, pages 1382–1393. ACM,
2015.

[VK17] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event loops in
chrome. In USENIX Security Symposium, 2017.

[VKM19] Pepe Vila, Boris Köpf, and José F. Morales. Theory and practice of finding
eviction sets. In IEEE Symposium on Security and Privacy, pages 39–54. IEEE,
2019.

[VLRR18] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy.
FP-STALKER: tracking browser fingerprint evolutions. In S&P, 2018.

[VRS14] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael M. Swift.
Scheduler-based defenses against cross-vm side-channels. In USENIX Secu-
rity Symposium, 2014.

[vSMÖ+19] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: rogue
in-flight data load. In S&P, 2019.

[W3C] W3C. Webassembly core specification. https://webassembly.github.io/spec/core/
bikeshed/. Accessed: 2022-07-26.

[w3t] w3techs. Usage statistics of javascript as client-side programming language
on websites. https://w3techs.com/technologies/details/cp-javascript/. Accessed:
2022-07-26.

[Wag18] Luke Wagner. Mitigations landing for new class of timing attack. https://blog.

mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/,
jan 2018.

[WC14] Ruisheng Wang and Lizhong Chen. Futility scaling: High-associativity cache
partitioning. In MICRO, pages 356–367. IEEE Computer Society, 2014.

[Wes] Mike West. Incrementally better cookies. https://mikewest.github.io/

cookie-incrementalism/draft-west-cookie-incrementalism.html. Accessed: 2020-
11-05.

[WFZ+16] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and G. Ed-
ward Suh. Secdcp: secure dynamic cache partitioning for efficient timing channel
protection. In DAC, pages 74:1–74:6. ACM, 2016.

[Wika] Mozilla Wiki. https://www.mozilla.org/en-US/firefox/95.0/releasenotes/.

[Wikb] Perf Wiki. Perf. https://perf.wiki.kernel.org/index.php/Main_Page. Accessed:
2022-07-26.

https://webassembly.github.io/spec/core/bikeshed/
https://webassembly.github.io/spec/core/bikeshed/
https://w3techs.com/technologies/details/cp-javascript/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.html
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.html
https://www.mozilla.org/en-US/firefox/95.0/releasenotes/
https://perf.wiki.kernel.org/index.php/Main_Page

126 Bibliography

[Wikc] WikiChip. Sunny cove - microarchitectures - intel - wikichip. https://en.wikichip.
org/wiki/intel/microarchitectures/sunny_cove. Accessed: 2022-05-20.

[WIN+21] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. Osiris: Automated discovery of microarchitectural side channels. In
USENIX Security Symposium, pages 1415–1432. USENIX Association, 2021.

[WL07] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In ISCA, pages 494–505. ACM, 2007.

[WSS+20] Han Wang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, Tinoosh Mohs-
enin, and Houman Homayoun. Comprehensive evaluation of machine learning
countermeasures for detecting microarchitectural side-channel attacks. In ACM
Great Lakes Symposium on VLSI, pages 181–186. ACM, 2020.

[WZCN20] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. Dramdig: A
knowledge-assisted tool to uncover DRAM address mapping. In DAC, pages
1–6. IEEE, 2020.

[XXHW13] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security implications of
memory deduplication in a virtualized environment. In DSN, pages 1–12. IEEE
Computer Society, 2013.

[XZZT16] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit
flips, one cloud flops: Cross-vm row hammer attacks and privilege escalation.
In USENIX Security Symposium, pages 19–35. USENIX Association, 2016.

[Yas14] Ahmad Yasin. A top-down method for performance analysis and counters
architecture. In ISPASS, pages 35–44. IEEE Computer Society, 2014.

[YB14] Yuval Yarom and Naomi Benger. Recovering openssl ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. IACR Cryptol. ePrint Arch., page
140, 2014.

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack. In USENIX Security Symposium, 2014.

[ZJOR11] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Homealone: Co-
residency detection in the cloud via side-channel analysis. In IEEE Symposium
on Security and Privacy, pages 313–328. IEEE Computer Society, 2011.

[ZR13] Yinqian Zhang and Michael K. Reiter. Düppel: retrofitting commodity operating
systems to mitigate cache side channels in the cloud. In CCS, 2013.

[ZW09] Kehuan Zhang and XiaoFengWang. Peeping tom in the neighborhood: Keystroke
eavesdropping on multi-user systems. In USENIX Security Symposium, pages
17–32. USENIX Association, 2009.

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

Titre : Canaux Auxiliaires dans les Navigateurs : Applications à la Sécurité et la Vie Privée

Mot clés : Canaux auxiliaires, Microarchitecture, Sécurité du Web, Contention de port, At-

taques par minutage

Résumé :
Les attaques par canal auxiliaire exploitent

les effets secondaires d’un calcul sensible
pour divulguer des secrets. Leur implémen-
tation dans les navigateurs web représente
une augmentation considérable de la surface
d’attaque, mais s’accompagne de défis dus à
l’environnement restrictif et aux mises à jour
constantes des navigateurs. Cette thèse éva-
lue la menace que représentent les canaux
auxiliaires microarchitecturaux dans les navi-
gateurs.

Nous fournissons une systématisation des
attaques par minutage et des contre-mesures
dans les navigateurs. En particulier, nous
montrons que l’évolution de la sécurité basée

sur le timing rend les navigateurs plus vulné-
rables aux attaques par minutage.

Nous présentons également la contention
de port du processeur dans l’environnement
restreint de JavaScript . Notre canal auxiliaire
a une résolution spatiale comparable à celle
des meilleurs canaux auxiliaires dans les na-
vigateurs et permet la création d’un canal ca-
ché à large bande passante. En outre, nous
montrons que la contention de port peut éga-
lement être exploitée sans SMT. Les implica-
tions de ce nouveau canal auxiliaire sur la
vie privée sont inquiétantes, car un attaquant
peut l’utiliser pour récupérer les générations
de processeurs.

Title: Side Channels in Web Browsers: Applications to Security and Privacy

Keywords: Side channels; Microarchitecture, Web Security, Port Contention, Timing attacks

Abstract: Side channel attacks exploit
the side effects of sensitive computation to
leak secrets. Their implementation in web
browsers represents a considerable increase
in threat surface, but comes with challenges
due to the restrictive environment and the con-
stant browser updates. This thesis evaluates
the threat posed by microarchitectural side
channels in browsers.

We provide a systematization of timing
attacks and countermeasures in browsers.
With automatic frameworks, we show that the

shift in timing-based security makes browsers
more vulnerable to timing attacks.

We also introduce CPU port contention to
the JavaScript Sandbox. Our side channel has
a spatial resolution on par with the best side
channels in the browsers and allows the cre-
ation of a high-bandwidth covert channel. Fur-
thermore, we show that port contention can
also be leveraged without SMT. The implica-
tions of this new side channel on privacy are
worrying, as an attacker can leverage it to re-
trieve CPU generations.

	Table of Contents
	Introduction
	List of Productions
	Background
	CPU Overview
	Execution Pipeline
	Front End
	Back End

	Hyperthreading
	Memory
	Virtual Memory
	Caches
	DRAM
	In-Flight Data

	Hardware Performance Counters

	Web Browsers
	Browser Architecture
	Client Side Languages
	JavaScript
	WebAssembly

	High-Resolution Timers
	Definition
	High-resolution Timers in Native Environments
	High-resolution Timers in Web Browsers

	Microarchitectural Attacks
	Microarchitectural Side Channels
	Cache attacks
	Cross-CPU attacks
	Cross-core attacks
	On-core attacks
	Automated discovery of side channels

	Microarchitectural Fault Attacks
	RowHammer
	DVFS-based fault attacks

	Transient Execution Attacks
	Spectre attack class
	Meltdown attack class

	Side-Channel Attacks on Software and Browser Resources
	Attacks on system resources
	Attacks on browser resources

	Countermeasures to Side Channels
	Preventing the data leak
	Hardware Level
	System Level
	Application Level
	Browser Level

	Preventing the measurement
	Hardware Level
	System Level
	Application Level
	Browser Level

	Detecting the attacks
	Hardware and System Level

	Browser Fingerprinting
	Usages of Browser Fingerprinting
	Attributes of Fingerprints
	Software Fingerprinting Techniques
	Hardware Fingerprinting Techniques

	High Resolution Timers in the Browser
	Timing attacks in browsers
	Attack prerequisites
	Attack classes

	Countermeasures in browsers
	C1: Isolation
	C2: Timers
	C3: Browser resources
	State of browser countermeasures

	Evaluation tools
	Threat model
	Measurement tools
	Resolution
	Measurement overhead

	Results
	Experimental setup
	Longitudinal study of performance.now() interpolation
	Simple interpolation
	Interpolation and amplification

	Longitudinal study of SharedArrayBuffer-based clocks

	Discussion
	Conclusion
	Evolution of Timer Security Since The Publication of the Results

	Port Contention in the Browser
	Web-Assembly-Based Port Contention
	PC-detector
	Description
	Results

	Side-channel Attack on Artificial Applications
	Description
	Results

	Covert Channel
	Description
	Evaluation
	Cross-Browser Covert Channel Bandwidth Estimation

	Discussion
	Limitations
	Countermeasures

	Conclusion

	Port Contention Without SMT and its Privacy Implications
	Threat Model
	Port Contention Without SMT
	Main Idea
	Native Environment
	Proof of Concept
	Experiments

	Web Browsers
	Challenges
	Proof of Concept
	Experiments

	Fingerprinting CPU Generations
	Core Idea
	Framework
	Evaluation
	Training and Testing
	Accuracy
	Execution Time
	Impact of Majority Voting
	Impact of the Number of Neighbors
	Time Stability
	Impact of Noise on Classification

	Discussion
	Practical Use of CPU-Generation Fingerprinting
	Limitations
	Virtualization and Emulation
	Virtualization
	Emulation

	Mitigation
	Browser Mitigation
	Detection via Performance Counters

	Conclusion

	Conclusion and Perspectives
	Appendices
	Custom RDTSC implementation
	Firefox 81
	Chromium 84

	Port Contention on Other WebAssembly Instructions
	Training set

	Bibliography

