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INTRODUCTION

This thesis focuses on the interaction between light and atoms, and how to probe
and enhance it on a very fundamental level. This light-matter interaction forms
the cornerstone of many scientific and technological disciplines, from fundamental
physics to diverse practical applications like laser cutting and quantum computing.
This introduction presents in layman terms the concepts at hand.

Atoms and their energy ladder

Even before the first evidence of single atoms given by Jean Perrin in 1903, it was
clear that matter was made of small neutral particles. J.J. Thompson first described
the atom as a positively charged sphere embedded with negatively charged electrons,
a model which became known as the "plum pudding". Then came Ernst Rutherford,
whose "planetary model", proposed to explain the observed emptiness of matter4,
likened atoms to a miniature solar system, with electrons orbiting a central nucleus
much like planets orbit the Sun. This analogy resonated due to its simplicity, perhaps
explaining its enduring popularity in the depiction of atoms. However, this model
failed to explain the stability of atomic structures and the quantization of their energy
levels. It was known indeed that electron energies could only take some precise values,
like the notes on a guitar, as opposed to the continuous range possible on a violin.

Electron

Nucleus
Thomson

1897
Rutherford

1909
Bohr
1913 Today

Electron

Nucleus

Figure 1: Some representations of the atomic structure. From [Bouscal
and D’Ascoli 2022].

This question was solved with the advent of quantum mechanics which introduced
groundbreaking concepts like wave-particle duality and quantum superposition. One
of its founding fathers, Niels Bohr, proposed a quantized planetary model, where
electrons can hop from one orbit to the next with discrete energy jumps. The last
image of Fig. 1 proposes a more precise depiction of a single electron in an atom5:
each point represents a position where the electron might be, we don’t where until we
measure exactly its position. This cloud of probabilities is called an orbital. When
an electron gains energy, the cloud changes shape and gets further away from the
nucleus.

4If a nucleus was the size of a marble, the electrons would be orbiting kilometers away from it.
5For an online, interactive visualizer see: https://asliceofcuriosity.fr/assets/atom/

orbitalsApp-1M.html
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Light to make the jump

What happens when an electron jumps from one orbital to another? It emits or
absorbs light. But not any light, it has to be a single photon which has an energy
exactly matching the jump. Indeed, photons are elementary particles of light carry-
ing an energy proportional to their frequency. Isaac Newton was the first to think
of light as a particle. Quickly contradicted by Christian Huygens and interference
experiments, it seemed clear at the end of the 19th century, that light was not a
particle but a wave, like sound or tides. Maxwell had even written wave equations
describing it! But Einstein, working at that time as a patent officer in Bern, realized
that this depiction was not sufficient to explain all experimental observations, and
that light had to be made of particles.

Absorption Emission Stimulated 
emission

Higher energy
orbital

Orbital

Figure 2: The three different processes of interaction between photons
and atoms. Two electronic orbital of different energy are shown in blue.

This particle was eventually called photon. Einstein wrote three different processes
under which atoms can climb up or down the orbital ladder, summarized in Fig. 2.
An atom can absorb or emit a particle of light at the right energy, and its electron
subsequently goes up or down one orbital. More subtle, stimulated emission happens
when a photon of the right color is sent on an excited atom: this triggers the emission
of an identical photon. Like sheep, photons have a gregarious instinct. This is the
effect is harnessed in lasers, which emit pure light made of identical photons.

Combining light and matter for quantum information

Bohr eventually reconciled the dual nature of light, stating it was both a wave and
a particle. Like a wave, it is subject to diffraction and cannot be focused to an
infinitesimal point, which makes it a challenge to force light to interact with almost
point-like atoms. The probability of an atom absorbing a photon is reduced when
the light spans a region much larger than the atom itself. This is what we observe,
as it is hard experimentally to make an atom absorb a single photon.

Pioneering experiments have tried to get rid of this limitation by putting a single
atom in between two mirrors, so that the photon would travel back and forth until
being absorbed, with great success. Another idea is to try to focus more the light, or
to make it interact longer with the atom. The platform described in this thesis tries
to do both at once. We use a nanoscale structure that guides the light, confining it a
lot, making it more focused while slowing it down. We then want to approach atoms
so that they can interact more efficiently.

Why design such complicated experiments, one might ask? The aim can be to
observe the light-matter interaction at the most fundamental level and to master the
manipulation of matter’s individual components. The implications of such control
are vast, with the potential to employ atoms as quantum bits for computation or to
delve into the exploration of physical phenomena that defy intuition.
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Goal of this work
Light-matter interaction is at the heart of new technologies from the so-called second
quantum revolution. Quantum computers, simulators and, even more, networks all
rely at some point on the transmission of information from static qubits (atoms, su-
perconducting qubits, molecules, quantum dots..) to flying qubits. For the exchange
of information to be efficient, the interaction between light and matter has to be as
efficient as possible. This is usually limited by both the cross section of the emitter
considered and diffraction. Methods have been pursued to increase this interaction
rate, first with cavities and more recently with nanoscopic waveguides, establishing
the field of Waveguide QED. While cavities ensure a unity interaction probability,
waveguides have other interesting capabilities. They can allow many emitters to be
in the same electromagnetic environment, making them suitable to explore collec-
tive effects, while being able to be directly integrated into a network. Pioneering
experiments in waveguide QED with cold atoms were done with optical nanofibers.
Because of their very small diameter, guided modes have a substantial part of their
energy into the air as an evanescent tail. Atoms can be coupled with 1% efficiency to
this mode. More recently, groundbreaking experimental attempts have started using
slow-mode photonic-crystal waveguides to this end.

The experiment detailed in this PhD work pursues this quest of coupling efficiently
atoms to slow-mode waveguides. It aims at bridging the gap between two communi-
ties: cold atoms and nanophotonics. On the one hand, atoms hate surfaces, as their
proximity makes them fall in the realm of chemistry. On the other hand, nanopho-
tonics are more studied for their light-guiding properties in the infrared range. This
thesis deals with theoretical work to define clearly the figures of merit of the in-
teraction in this regime, numerical simulations to design realistic photonic-crystal
waveguides that can be suited to interface in a cold atom experiment, and experi-
mental work in building such experiment and developing a toolbox to get the atoms
to the waveguide surface.

Context
I started my PhD in the Quantum Networks Team in October 2019, under the su-
pervision of Prof. Julien Laurat, with the task to build a cold atom experiment from
scratch in order to welcome slow-mode waveguides whose guided modes would be
interfaced with cold Rubidium atoms. Groundbreaking work by the group of Jeff
Kimble had shown this was a possible [Goban et al. 2014; Yu et al. 2014; Hood
et al. 2016; Burgers et al. 2019], yet extremely challenging task. There was an
opportunity to join this adventure building from all the knowledge they had accu-
mulated6 and Julien’s connection with their team. In addition, the Paris area had
all necessary partners for this ambitious research. The ANR Nanostrong project was
carried out in collaboration with a theory team at Institut d’Optique for the design
of the waveguides (led by Christophe Sauvan and Jean-Jacques Greffet) and a team
at Centre des Nanosciences et Nanotechnologies (C2N), led by Kamel Bencheikh and
Ariel Levenson, expert at design and fabrication of nanophotonic structures for quan-
tum optics, while LKB had to build the cold atom setup. Instead of Cesium, we chose
Rubidium for its reduced reactivity and the existence of integrated lasers at 780 nm
which can jumpstart the setting up of a cold atoms experiment.

Simultaneously, I joined after Alban Urvoy, who had arrived as a postdoc, and had
the task to supervise this project. Building an experiment from scratch is a challenge,

6The Caltech work had stopped following the retirement of Jeff Kimble.
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and starts very slowly. After some design and the delivery of the integrated laser we
could start building it at the very start of 2020. Then, something happened.

I used the many lockdowns to switch gears and try my hand at more numerical
work. Indeed, there was an idea of the kind of waveguide we wanted to use (a W1
waveguide) from the beginning of the project but it still needed to be designed. I
delved into the simulations (choosing to focus on a half-W1 instead), from dispersion
engineering of photonic crystals, to optical dipole trap simulations, to work on the
Casimir-Polder interactions. The assembly of the vacuum system was delayed to the
end of 2020, and a MOT was obtained by September 2021. Work carried in parallel
concerned setting up of the experimental control, the interfacing of the SLM (thanks
to Anaïs Chochon who joined for a M1 internship in the spring), while continuing the
work on simulations. This latter work led to the release of a Python package with
Jérémy Berroir [Berroir et al. 2022], and later, the proposal for the half-W1 and
comb waveguides [Fayard et al. 2022; Bouscal et al. 2024].

In October 2022, Anaïs Chochon joined as a PhD student to eventually take the
lead on the experiment. She worked very hard to achieve a more stable and optimized
platform, ready to welcome our first tweezers.

Outline of the thesis
This thesis is organized into seven chapters.

• Chapter 1 provides an introduction to the emerging field of Waveguide QED,
highlighting the recent proposals and reviewing the existing experimental im-
plementations combining emitters and guided waveguide modes.

• In Chapter 2 presents a theoretical study of the coupling between emitters and
resonant 1D guided modes with a Green’s function approach. An expression
of the Purcell factor adapted to realistic multilevel atoms (like Rubidium) is
derived.

• Chapter 3 still focuses on atom-light interaction but far-off resonance, used
for optical dipole trapping. We focus on the challenges of trapping atoms close
to structures and introduce a user-friendly Python package nanotrappy, that
we test on different existing evanescent traps.

• Chapter 4 introduces photonic crystals and explain how they can be used as
waveguides. Numerical methods for simulating and designing band structures
are presented, alongside criteria that photonic-crystals waveguides need to verify
to be interfaced with cold atoms.

• Chapter 5 provides the main results obtained in the design of three nanoscopic
waveguides made in GaInP, suitable for our platform and optimized for robust-
ness against fabrication imperfections. Fabrication methods and characteriza-
tion of the obtained samples is detailed.

• Chapter 6 describes the building of the cold atom experimental platform. It
delves into the design of an experiment suited to interface both cold atoms and
photonic-crystal waveguides and shows first results on the obtention of a cold
atomic cloud.

• Finally, Chapter 7 presents an ongoing improvement of the setup to be able
to deliver single atoms to the sample with structured optical tweezers relying
on higher-order Laguerre-Gaussian modes.
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Theory will only take you so far.
Oppenheimer (2023)

Part I:

Atom-light interaction and
Waveguide QED
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CHAPTER 1
WAVEGUIDE QED: A NOVEL APPROACH

FOR ENGINEERING LIGHT-MATTER
INTERACTION

Contents
1.1 The quest for stronger atom-light interaction . . . . . . . . . . . . . . 6
1.2 The emergence of Waveguide QED for quantum non-linear optics . . . 10

1.2.1 An emerging field of research . . . . . . . . . . . . . . . . . . . 10
1.2.2 Single atom coupling enhancement: a single atom in an open

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Physics in the band: Harnessing collective effects for quantum

information processing . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Physics in the band gap: Towards quantum simulation and

computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5 A zoology of pioneering experiments . . . . . . . . . . . . . . . 13

This first chapter aims at introducing the recent field of Waveguide QED, pro-
viding context and motivation for the experimental work described throughout this
dissertation. We first highlight that coupling single emitters to the guided mode of a
waveguide can be a way of enhancing the interaction between light and matter while
suppressing the need for a cavity. More importantly, we introduce unique collective
effects that can be probed and quantum optics protocols that can be implemented
with a chain of emitters coupled to waveguides. A short review on the existing ex-
perimental platforms closes the chapter.

1.1 The quest for stronger atom-light interaction
Decades of outstanding research in atomic physics and quantum optics have allowed
to manipulate and control light and atom-like systems (i.e. atoms and other systems
with discrete transitions) to unprecedented levels. The main challenge to implement
quantum information processing protocols is that most require interfacing these two.
The goal is worth pursuing as exciting features can arise from realizing such atom-light
interfaces.

From a quite fundamental perspective, these interfaces are captivating because
they can induce non-linear interactions between photons — interactions that do not
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exists naturally [Chang et al. 2014b]. This feature may allow for the implementation
of photon-photon gates, single-photon switches and transistors, and the formation of
exotic states of light. On a more applicative side, the interfaces between atoms and
light are critical components for constructing quantum networks. Such networks are
envisioned to facilitate the distribution and manipulation of quantum information at
continental scales, for quantum computing, cryptography and more. As anticipated
by Jeff Kimble [Kimble 2008], quantum networks are expected to be built around the
exchange of quantum states between static nodes (atoms, ions, solid state systems...)
and travelling ones (photons). Atoms are great candidates as a static interface as they
can sometimes be approximated by perfect non-linear two-level systems (TLS) which
naturally produce quantum Fock states of light when decaying from their excited level.

Unfortunately, promoting an atom into an excited state, i.e. implementing coher-
ent atom-photon interaction is fundamentally inefficient. Indeed, the probability of
interaction between an atom and resonant light is given by:

P = σsc
Aeff

(1.1)

where σsc is the resonant scattering cross section of the atom and Aeff the effec-
tive mode area of the incoming light. For an ideal two-level atom with energy gap
∆E = hc/λ, σsc = 3λ2/2π. More generally, the following relation applies:

P ∝ λ2

Aeff
. (1.2)

Even at the focus of a lens with high numerical aperture, the relevant size of the beam
cannot be lower than the wavelength because of diffraction1, which imposes a strong
limit on the maximum probability achievable. A few strategies have been developed
over the years to try to increase this interaction as much as possible.

Strong focusing. The mode area of a laser in free space can be strongly decreased
by using high numerical aperture optics. Using such optics to focus a resonant laser
on a single trapped atom has shown promising results in pioneering experiments
[Darquié et al. 2005; Tey et al. 2008]. With this approach, it was shown that a single
atom could attenuate the transmission of the light by up to P ≃ 10%, without the
need for a cavity. More recently, a probability of 36% has been demonstrated [Chin
et al. 2017] by using two opposing lenses with coinciding focal points illuminated
by two counter-propagating parts of the field simultaneously. In this configuration,
inspired from 4Pi microscopy, the solid angle covered by the input mode is doubled,
increasing the interaction strength by as much. The main limitation of this method
is scaling up, as only the single atom in the focal spot can have his local density of
states increased.

Atomic ensembles. Another approach in free space is to increase the number
of scatterers the light can interact with [Hammerer et al. 2010]. It is possible to
completely attenuate an incident beam impinging on a cold atomic ensemble. Indeed,
by modelling the cloud as a vapour of atoms with a density n, each one acting as

1Sending a plane wave through a lens gives a Airy spot of diameter d = 1.22λ/NA, where the
numerical aperture of the lens NA = n × sin θ, is at maximum of the order of 1. The prefactor 1.22
comes from the first zero of the first order Bessel function J1 which appears when taking the Fourier
transform of a circular aperture (here the lens) [Born and Wolf 1999]. This gives an upper limit
on the effective mode area Aeff ≤ 1.17λ2/NA2 and so P ∝ 1.17 NA2.

7



CHAPTER 1. WAVEGUIDE QED: A NOVEL APPROACH FOR
ENGINEERING LIGHT-MATTER INTERACTION

g
κ

Γ Γ'

Γ1D

OD ∝ N

Figure 1.1: Four ways of enhancing the light-matter interaction proba-
bility. (a) Strong focusing of a laser on an atom with a high numerical aperture
lens. d is the typical diameter of the focused beam. (b) Using multiple emitters. For
an atomic ensemble, the relevant figure of merit is the optical depth, proportional
to the number of atoms interacting with the field. Loss a priori of the non-linear
behaviour of the interaction. (c) Cavity QED system with a single atom. The im-
portant parameters needed to define the cooperativity C are represented (g coherent
coupling to the cavity mode, Γ atom decay outside of the cavity, κ loss of the mode
by the mirror). (d) Waveguide QED system: emission in (Γ1D) and out (Γ′) of the
waveguide mode. The mode transverse size can be very small.

a independent particle with an absorption cross section σsc, the Beer-Lambert law
states that the transmitted light exponentially decays with the optical depth (OD),
which is proportional to the atomic density n and σsc. A drawback of using atomic
ensembles is that the addition of many atoms tends to blur the intrinsic non-linearity
of the absorption process. Atomic ensembles are used in our team to achieve a
high-efficiency quantum memory and for single-photon generation using the non-
linear Duan-Lukin-Cirac-Zoller (DLCZ) protocol [Vernaz-Gris et al. 2018; Cao
et al. 2020]. In clouds with higher density, collective effects can further increase
the coupling to the field. In the multiple excitation regime, reached by inverting a
substantial number of atoms, superradiance can be observed in dense atomic clouds,
smaller than the transition wavelength [Ferioli et al. 2021, 2023]. For a dilute cloud,
the collective mode decays at the rate of a single atom as they are independent. But
in the dense case, the decay is enhanced by the number of atoms. This is due to
interference processes, as the scattered field by one atom will act on the neighboring
ones [Dicke 1954]. In such scenarios, the atomic density that can be reached by cold
atoms experiments is the main limitation.

Cavity QED. The most common approach to enhance the atom-light interaction
consists in placing an atom into a high-finesse optical cavity. The mode area of the
cavity field is given by the cavity design, but the interaction probability is enhanced
by the finesse, proportional to the number of round trips the photon makes before
being lost. In such a configuration, the interaction probability P is not relevant
anymore as it goes to unity. The cooperativity C becomes the new relevant figure of
merit, defined as:

C = 2g
κΓ (1.3)

where g is the coupling to the cavity mode, κ its loss rate and Γ the spontaneous
decay rate of the atom (see Figure 1.1(c)). C is related to the number of exchange
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processes between the cavity field and the atom before loss of the photon or atom
decoherence. A high cooperativity is then given by a lossless cavity with a very
small mode area. The regime of strong coupling (for C ≫ 1) can be achieved, a
hallmark of which is the observation of vacuum Rabi splitting [Thompson et al.
1992]. Of course, these ideas are not platform-dependent and cavity QED (cQED)
systems are not restricted to single atoms in optical cavity, but include Rydberg
atoms in microwave cavities [Gleyzes et al. 2007], Rydberg ensembles in optical
cavities [Vaneecloo et al. 2022], trapped ions in optical cavities [Stute et al. 2012],
superconducting qubits coupled to microwave resonators [Wallraff et al. 2004],
atoms coupled to photonic-crystal cavities [Thompson et al. 2013] or microresonators
[Aoki et al. 2006a] and even optomechanical systems [Aspelmeyer et al. 2014].
From a fundamental goal to control single quantum systems, cavity QED systems
now offers strong promises in the field of quantum networks [Reiserer and Rempe
2015; Welte et al. 2018; Krutyanskiy et al. 2023], as potential quantum nodes,
allowing to convert information encoded on flying qubits into static, material ones,
over a large scale network. However these systems naturally offer limited bandwidth,
suffer from insertion losses and scaling up is a daunting task.

Waveguide QED. An emerging idea for interaction enhancement is to couple the
emitters to the guided mode of a nanoscale waveguide, instead of a cavity. Because of
the sub-wavelength size of the waveguides involved, mode areas close to the diffrac-
tion limit can be achieved. At resonance, the probability of interaction can now be
expressed as:

Γ1D
Γtot

∝ ng
λ2

Aeff
(1.4)

where Γ1D is the decay rate of the atoms in the guided mode, and Γtot the total
spontaneous decay rate of the atoms in the same environment. ng is the group index
of the guided mode the emitters are coupled to. Both Aeff and ng can be tuned by
playing on the waveguide geometrical parameters. This ratio known as the β factor
will be introduced in Chapter 2. Usual Waveguide QED systems do not allow for a
coupling as strong as with cavities, as the photons interact with the emitters only
once. A fundamental difference with cQED is that Waveguide QED systems are
intrinsically open systems. The propagating photons lost at the output of the fiber
are not counted as a loss term (as κ in cQED), but as an open photonic reservoir
the atoms can couple to. Furthermore, we note that this coupling is broadband, as it
arises purely from geometrical considerations as opposed to any resonant features of
the guided modes (unlike for cQED). The main advantage of these systems are that
many emitters can easily be coupled to the same propagating mode [Chang et al.
2018; Türschmann et al. 2019; Sheremet et al. 2023], easing the scaling up process
as they will all experience the same coupling to this mode (i.e. same β factor). This
feature, combined with a high β, allows for engineering of collective modes. This
thesis focuses on this last strategy and we introduce its promises and applications in
the following.
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CHAPTER 1. WAVEGUIDE QED: A NOVEL APPROACH FOR
ENGINEERING LIGHT-MATTER INTERACTION

1.2 The emergence of Waveguide QED for quantum non-
linear optics

1.2.1 An emerging field of research

While cavity QED systems have shown atom-light interaction enhancement since
the early 1980s [Goy et al. 1983], first theoretical proposals to interface emitters
and waveguide modes were only published in the 1990s. [Ol’Shanii et al. 1993]
proposed for example to couple atoms to the mode of a hollow-core optical fiber
by guiding the atoms inside it with a red-detuned mode. While groups successfully
managed to transport cold atoms through photonic-crystal fibers in 2010 [Vorrath
et al. 2010; Bajcsy et al. 2011], the first experimental observation of the coupling
of emitters to a waveguide was achieved in the late 2000s [Sagué et al. 2007] with
cold atoms coupled to optical nanofibers (ONF) [Nieddu et al. 2016]. Indeed ONFs
had become over the years a more popular and realistic platform since a protocol
to get atoms trapped around ONFs was proposed in 2004 [Balykin et al. 2004].
Since then, many experimental platforms have demonstrated successfully coupling of
emitters to guided modes of a waveguide as discussed in the following. Apart from
the promised enhancement of light-matter interaction through low mode areas or high
group indices, Waveguide QED systems offer some specific advantages.

A first interest of Waveguide QED systems in the optical domain using nanopho-
tonics waveguides is their integrability. After interaction with the atoms, the desired
state of light can be collected at the output of a fiber. This state can directly be
brought to anywhere it is useful through the fiber (like to a quantum computer) for
subsequent processing.

A second interesting feature of these systems is that waveguides can have non
trivial dispersion diagrams. Photonic band gaps might exists, impeding the light
propagation in the waveguide in some frequency ranges (as we will see in Chapter
4). This behaviour can be harnessed in order to create exotic states of light. As
such, since the early 2000s an important number of theoretical proposals as well as
pioneering experiments have emerged in order to take advantage of this promising
avenue of Waveguide QED.

In the following we distinguish three regimes for the Waveguide QED proposals
and experimental setups (see Figure 1.3):

• Single-atom coupling enhancement: Only one emitter is coupled to the
waveguide mode, with an interaction probability much larger than in free space.

• Physics in the band: An array of emitters is coupled to a guided mode for
the waveguide at their resonant frequency.

• Physics in the band gap: The resonant frequency of the emitters lies within
the band gap of the waveguide.

1.2.2 Single atom coupling enhancement: a single atom in an open
system

We detail in the following the coupling of a single emitter to a guided mode. We then
show how an enhancement of this coupling can be of significant interest in quantum
optics and quantum information by presenting some theoretical proposals.
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Γ'

Γ1D

Figure 1.2: Coupling of a single atom to a guided mode. The atom is
modeled as a TLS with a ground |g⟩ and excited state |e⟩ separated by ω0. Of the
total decay rate Γtot from |e⟩, some part is emitted into the guided mode Γ1D, the
rest into a continuum of radiative modes Γ′.

The Hamiltonian of a TLS with states |g⟩ and |e⟩ separated by ω0 and strongly
coupled to a set of travelling waveguide modes is given by [Chang et al. 2007]:

H = ℏ(ω0 − iΓ′/2)σee +
∫ +∞

−∞
dkωka

†
kak − ℏ

∫ +∞

−∞
dkgk

(
σegâke

−ikx + h.c.
)

(1.5)

where σjij = |i⟩⟨j| is the atomic coherence operator between the states |i⟩ and |j⟩,
âk is the annihilation operator for the mode with wave vector k and x is the emitter
position along the waveguide. This Hamiltonian differs from the Cavity QED one
in the sense that each atom can couple to a continuum of modes. This system can
be described by a master equation with a Lindblad operator accounting for the loss
of the photons in the environment. Here, the quantum jump due to the decay of
state |e⟩ at a rate Γ′ into the other channels is included as the non-Hermitian term in
H. The last two terms describe the photonic field energy and the coherent exchange
between the atom and the field (summed over the continuum of modes).

For Γ1D/Γtot ≈ 1, a TLS in its ground state coupled to such a mode at resonance
will behave as a nearly perfect mirror for a single photon. But as absorption is a highly
non-linear process, the atom will saturate right above the single photon regime. This
effect can be harnessed in order to realize a single-photon transistor [Chang et al.
2007]. If two photons impinge on the atom at the same time, this will generate time-
frequency entanglement between the scattered two-photon component [Le Jeannic
et al. 2022]. As such, a single atom coupled to a waveguide can strongly modify the
statistics of incoming light and create non classical states of light. As an example, in
the case of an atom coupled to a low intensity mode, the reflected light will show strong
antibunching, while the transmitted one will be bunched. Other theoretical proposals
propose to use this non-linear interaction for stimulating emission [Rephaeli and Fan
2012], generating squeezed states [Kusmierek et al. 2023], Fock states photon sorting
[Yang et al. 2022] or creating photonic bound states [Shen and Fan 2007].

Interestingly, most of these results hold even for weak coupling, and high dissipa-
tion, as long as a sufficient number of atoms is involved [Mahmoodian et al. 2018].
Nanofiber-based platforms fall into this regime as they can trap many atoms but with
a β < 1%. They can be interesting platforms for observing such low-power non-linear
effects even at limited Purcell factor.

11
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Γ1D

Figure 1.3: Two regimes of interaction of a 1D atomic array coupled to
a waveguide. (a) Array of atoms coupled to a guided mode (with evanescent part
in yellow) with individual decay rate Γ1D into this mode. An all-to-all infinite-
range interaction between the trapped atoms is mediated by the light. (b) Array of
atoms in the case where their transition frequency falls within the band gap of a 1D
photonic crystal. Atom-photon bound states form, leading a coupled cavity system
with a finite interaction length L with can be tuned with the detuning to the band
edge.

1.2.3 Physics in the band: Harnessing collective effects for quantum
information processing

As emphasized by Philip W. Anderson, "More is different". This also applies for a
few particles trapped in a 1D array close to a waveguide. Increasing the number of
particles does not only compensates the relatively low coupling achievable in most
platforms with higher atom number but also leads to new, interesting physics of
collective effects.

We review in the following the theoretical proposals set in the situation of array
of atoms coupled to a guided mode of a nanoscale waveguide (Fig. 1.3(a)). We adapt
Hamiltonian (1.5) for the case of a linear chain of ideal TLS coupled to a waveguide
by summing the first and third terms over the atom number N . This Hamiltonian
can be heavily simplified by tracing out the photonic modes and only keeping the
dynamics of the atomic degrees of freedom. This reduces to the so-called spin model
[Asenjo-Garcia et al. 2017b] where the dynamics of the atomic spins are given by:

H = ℏω0

N∑
i

σiee +Heff with Heff =
∑
j,l

f(r, ω)σjegσlge (1.6)

Heff is the spin-flip interaction Hamiltonian between the atoms mediated by the
guided mode. As we will see in the next chapter, this function f(r, ω) is directly
related to the Green’s function of the environment. For a non-absorptive waveguide,
this function is usually constant or periodic in the atom positions and does not decay
with the distance between the atoms. In this case, as the sum in Eq.(1.6) runs over
all atoms, there is then an all-to-all interaction between the spins mediated by the
photonic mode they couple to. We are left with a spin-flip Hamiltonian between the
atoms with infinite range. This interaction can be harnessed for multiple applications.

Theoretical proposals have been put forward in the last 10 years to exploit this
rich all-to-all Hamiltonian, from spin squeezing of the coupled atoms for quantum non
demolition [Qi et al. 2018] to obervation of directional superradiance [Cardenas-
Lopez et al. 2023].

Instead of harnessing this photon-mediated interaction, some older theoretical
proposals suggest to exploit the fact that each coupled atom behaves as an indepen-
dent scatterer that will reflect some part of the light. By tuning their distance, all
the reflected light can interfere constructively, making the chain behave as a perfect
mirror [Artoni et al. 2005].
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1.2.4 Physics in the band gap: Towards quantum simulation and
computing

If the guided mode falls into a band gap, the atoms cannot couple to a propagative
mode and instead act as localized cavity modes (see Fig. 1.3(b)). We can derive the
band gap Hamiltonian from the Jaynes Cummings one [Douglas et al. 2015]:

Heff ∝
N∑
j,l

σjegσ
l
gee

(|zj−zl|/L) (1.7)

where the distance L ∝
√

1/∆, where ∆ is the detuning of the atomic transition
frequency ω0 from the band edge. The closer the frequency is from the band edge,
the closer it is to the propagating regime, hence giving a longer range of interaction.
L can be tuned by changing this detuning. This could be done dynamically through
local modification of the dispersion of the waveguide via heating or electronic tuning
[Panuski et al. 2022].

The main difference with the former case is the exponential decay with the distance
of the interaction between the atoms and its tunability. This makes this Hamiltonian
fall into a whole new class of nearest-neighbors-like, as the atom dressed with this
localized field can be seen as a cavity system. The whole chain can then be mapped to
a coupled cavities system valued by theoreticians. Theoretically predicted since the
1990s [Kurizki 1990], it is only recently that the interest of these atom-photon bound
states in quantum technologies have been highlighted. They could indeed be used for
quantum simulation of such Hamiltonians [Douglas et al. 2015] or to engineering
topological states of the atomic excitation [Bello et al. 2019]. A more recent proposal
shows that using such atom-photon bound states as a variational ansatz could provide
some computational advantage in variational quantum computing over conventional
methods [Tabares et al. 2023].

1.2.5 A zoology of pioneering experiments

While many theoretical proposals exist to harness the capabilities of Waveguide QED,
a polyvalent platform combining arrays of quantum emitters and guided modes in the
strong coupling regime has yet to be demonstrated. Nevertheless, some pioneering
experiments are pursuing these goals, in a wide range of physical systems. We briefly
describe the most notable efforts in the following.

Cold atoms coupled to nanofibers. The first experimental realization of Waveg-
uide QED platforms dates back to the early 2010s in tapered fibers with interfaced
cold atoms. Pioneer experiments created MOTs around such suspended nanofibers,
before being able to trap them in 1D arrays [Vetsch et al. 2010; Goban et al. 2012],
giving more striking results. As the oldest Waveguide QED platform with atoms,
many different collective phenomena have been explored experimentally like Bragg
reflection switched by a few photons [Berroir 2022], collective excitations delocal-
ized over the whole array [Corzo et al. 2019], directional superradiance [Liedl et
al. 2023], quantum memory protocols [Gouraud et al. 2015] or dissipation-assisted
photon bunching [Prasad et al. 2020]. The main limitation of this platform is its
relatively low β factor usually just below 1%. Equation (1.4) tells us this quantity
is given by the group index of the guided mode, close to 1 in a nanofiber, and the
mode area, determined by the diameter of the ONF [Gouraud 2016; Berroir 2022],
leaving no tunable parameter left to increase β in this setup.
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(a) (b)

(c) (d) (e)

Figure 1.4: Existing experimental Waveguide QED platforms. (a) 1D array
of cold atoms trapped along a nanofiber [Corzo et al. 2019]. (b) Superconducting
qubits coupled to a transmission line [Brehm et al. 2022]. (c) Cold atoms coupled
to the "Alligator photonic crystal waveguide" (APCW) [Goban et al. 2015]. (d) Ru-
bidium atoms as a matter-wave emitter trapped in a 1D optical lattice working as a
structured waveguide for atoms [Krinner et al. 2018]. (e) Quantum dot embedded
in a W1 photonic-crystal waveguide [Arcari et al. 2014].

Superconducting qubits coupled to transmission lines. Waveguide QED sys-
tems have been implemented in solid state physics systems early on as it is usually
possible to embed an emitter exactly at the maximum of the field, which can allow for
almost unity β factor. In the field of superconducting (SC) qubits, the superradiant
and subradiant decays of two emitters have been observed [van Loo et al. 2013],
and slow microwave light has been highlighted in a chain of superconducting qubits
coupled to a transmission line, exhibiting the non trivial structure of the waveguide
dispersion relation [Brehm et al. 2022]. The main constraint is here nanofabrication
which limits the indistinguishability between the emitters.

Quantum dots coupled to photonic-crystal waveguides. Almost the same ad-
vantages and limitations apply for quantum dots (QD) systems in optical waveguides.
Near unity coupling as been reported in this system years ago [Arcari et al. 2014],
making it possible to observe two-photon non-linear dynamics like photon-sorting [Le
Jeannic et al. 2022]. It has however been extremely challenging to observe collective
effects between the quantum dots as they are usually quite different and dephase re-
ally fast. Coherent exchange has been observed recently in this platform with states
exhibiting sub- and superradiant behaviors [Tiranov et al. 2023].

Matter waves coupled to a 1D optical lattice. Some experiments have reversed
the paradigm of coupling emitters of light to photonic modes. Instead, in [Krinner
et al. 2018] atomic waves emit atoms in a given k vector. The emitted atoms are
constrained in a 1D optical lattice. This periodic potential changes the dispersion
relation of the atoms (from the quadratic ω = ℏk/2m) and opens a band gap. For
a specific set of parameters, the matter wave will emit atoms in the band gap of
the optical lattice, giving analogues of the atom-photon bound states described in
Sec. 1.2.4. These bound states, characteristic of a emitter-waveguide coupling in the
band gap have been observed for the first time in this matter-wave system.
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Cold atoms coupled to photonic-crystal waveguides (PCW). Finally, the
platform developed in this thesis has had only one previous experimental trial in the
group of Prof. Jeff Kimble at Caltech, and took the form of cold cesium atoms coupled
to a quasi-1D photonic-crystal waveguide nicknamed the Alligator PCW (APCW).
Superradiant decay was observed for atoms in a surrounding MOT [Goban et al.
2014; Yu et al. 2014] or trapped at the vicinity of the crystal by external light fields
[Goban et al. 2015]. They also observed signs of cooperative-only interactions be-
tween atoms just inside the band gap [Hood et al. 2016]. This pioneering work is
the main inspiration of the experiment described throughout this thesis.

Other, even more exotic experiments fall in the range of Waveguide QED. We can
think of a 2D atom array used as a mirror to be coupled to a single propagating mode
that can go either forward (transmission) or backward (reflection) [Rui et al. 2020].
Similarly, cascaded Rydberg superatoms in an optical dipole trap can be described as
emitters strongly coupled to a perfectly chiral waveguide [Stiesdal et al. 2021]. The
Waveguide QED framework can help encovering interesting physics in such cases.

All the experimental platforms detailed previously are shown in Figure 1.4 and
the observed collective effects summarized in Table 1.1.

Platform Experimental results
Emitters Waveguide β Collective effect Reference
Cold atoms Nanofibers 0.01 EIT memory

Delocalized excitation
Superradiance
Few-photon switching

[Gouraud et al. 2015]
[Corzo et al. 2019]
[Liedl et al. 2023]
[Berroir 2022]

QD W1 PCW 0.98 Superradiance [Tiranov et al. 2023]

SC qubits Transmission
line

∼ 1 Slow light
Superradiance

[Brehm et al. 2022]
[van Loo et al. 2013]

Matter waves Optical lattice ∼ 0.5 Atom-photon bound
state

[Krinner et al. 2018]

Cold atoms APCW 0.24 - 0.5 Superradiance
Cooperative interac-
tions in the band gap

[Goban et al. 2015]
[Hood et al. 2016]

Table 1.1: Summary of the different experimental realizations of 1D array
of quantum emitters coupled to the guided mode of a waveguide.

Conclusion
In conclusion, this chapter has provided a comprehensive overview of the emerging
field of Waveguide QED, illustrating its fundamental principles and the possible appli-
cations it promises. The scope of Waveguide QED extends across the entire spectrum
of quantum optics, with exciting uses in non-linear quantum optics, quantum sim-
ulation and quantum computing. Whatever the platform chosen, experiments are
challenging and many technical barriers must be overcome in order to achieve a ro-
bust experimental platform interfacing array of emitters and guided modes. This is
being pursued by many pioneering efforts, with already significant achievements.

More capabilities are unlocked when working with waveguides with a non-trivial
dispersion relation. This, with a potential enhanced coupling, motivates the will to
work with photonic-crystal waveguides in our experiment. We will in the following of
this thesis only focus on the particular Waveguide QED platform that involves atoms
interacting with such PCWs.

15



CHAPTER 2
ATOM-LIGHT INTERACTION CLOSE TO

DIELECTRIC STRUCTURES

Contents
2.1 Interaction between an electromagnetic field and a two-level system . . 17

2.1.1 The interaction Hamiltonian . . . . . . . . . . . . . . . . . . . 17
2.1.2 The Purcell factor, a tool to quantify the interaction strength . 17

2.2 The Green’s function formalism . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 The Green’s function, or the environment response . . . . . . . 18
2.2.2 Expressing the Purcell factor in terms of the Green’s function . 20
2.2.3 Expressing the 1D Purcell factor of emitters coupled to a waveg-

uide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 The case of a multilevel atom . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Waveguide QED with Rubidium 87 . . . . . . . . . . . . . . . . 28
2.3.2 A polarization-dependent Purcell factor . . . . . . . . . . . . . 29

Whether it is for exciting atoms through the guided mode of a waveguide (see
Chapters 5) or for optical trapping (see Chapters 3 and 7), this thesis main focus is
on the interaction between light and matter.

In this chapter we introduce the formalism for describing this interaction at res-
onance, with an emphasis on the case where atoms are close to 1D waveguides,
interacting with a guided mode. We first introduce the textbook atom-field inter-
action Hamiltonian between a classical field and a two-level system (TLS) alongside
the concept of Purcell factor. The Green’s function formalism is then presented in
order to express the 1D Purcell factor, which quantifies the coupling of emitters to
the guided mode of a waveguide, with mostly classical waveguide optics arguments.
Finally, we extend our results to the more realistic case of a multilevel atom (Rubid-
ium 87) in order to have expressions of the 1D Purcell factor that we can use in our
experiment.

The aim is not to derive from scratch expressions that can be found in any text-
book about light-matter interaction but to introduce notations and concepts relevant
in this 1D geometry that we will use throughout the whole manuscript, while giving
some intuition on the concepts.
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2.1. INTERACTION BETWEEN AN ELECTROMAGNETIC FIELD AND A
TWO-LEVEL SYSTEM

2.1 Interaction between an electromagnetic field and a
two-level system

2.1.1 The interaction Hamiltonian

Since this work deals mostly with the interaction of atoms with a radiation field
either in or out of resonance, we start by introducing an usual model for the atom-
light interaction, which can be found in many textbooks. We will follow the derivation
from [Haroche and Raimond 2006]. We use a semi-classical approach, treating the
field here as classical, and the atom as a perfect quantum two-level system.

The Hamiltonian of a free atom with a single valence electron is given by:

H0 = P2

2m + qU(R) (2.1)

where P and R are the momentum and position operators of the electron, and U the
electrostatic potential binding the electron to the nucleus. We now place the atom
in an electromagnetic field defined by its electric and magnetic fields E and B, but
more conveniently by its vector and scalar potentials A(r, t) and V (r, t). By analogy
to the classical Hamiltonian of a charged particle in an electromagnetic field we get:

Htot = 1
2m(P− qA(R, t))2 + qU(R) + qV (R). (2.2)

By performing the dipole approximation (A(R, t) ≃ A(0, t)) and expanding the static
potential to the first order in R, the total Hamiltonian reduces to:

Htot = H0 −
q

m
P ·A(0, t) + D · ∇V (2.3)

where D is the dipole operator D = qR.
As only the fields E and B are physical quantities, we can add extra conditions

on the potentials A and V if they don’t modify the former. A clever gauge choice1

reduces the total Hamiltonian to

Htot = H0 −D ·E(0, t) (2.4)

Written like that, the interaction Hamiltonian between an atom and an electromag-
netic field has the same form as the one between a classical dipole and an electric
field, which aligns with the concept of an atom being a "quantum dipole".

2.1.2 The Purcell factor, a tool to quantify the interaction strength

During the first half of the 20th century, the spontaneous decay rate of an atom Γ,
given by the Einstein’s coefficient, was considered to be an intrinsic property of an
atomic species. Edward M. Purcell established in 1946 that the emission of a magnetic
dipole placed into a resonant cavity could be strongly enhanced [Purcell et al.
1946]. Similarly, it was demonstrated afterwards that this phenomenon also applied
to quantum dipoles, e.g. atomic transitions, first by putting them very close to a
mirror [Drexhage et al. 1968] or in an optical cavity [Kleppner 1981; Goy et al.

1i.e. the Goeppert-Mayer gauge, with χ(r, t) = −r · A(0, t)A′ = A + ∇χ(r, t)

V ′ = V − ∂χ(r, t)
∂t
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1983]. It is now well understood that the spontaneous decay rate of quantum emitters
can be enhanced or suppressed [Asenjo-Garcia et al. 2017a] by engineering the
electromagnetic environment surrounding these systems, on scales of the order of the
wavelength.

With the advent of sophisticated nanofabrication techniques, it is now feasible to
strategically position atoms or other quantum emitters within more complex struc-
tured environments such as photonic-crystal waveguides [Arcari et al. 2014; Goban
et al. 2015] or plasmonic nanostructures [Su et al. 2019] in order to increase their
emission or at the contrary obtain long-lived excited states.

The Purcell factor (PF) quantifies the change of the spontaneous decay rate of an
emitter in the given environment compared to the one in free space:

PF = Γ
Γ0

(2.5)

In the following we will establish a general expression of the Purcell factor in terms
of the impulsional response of a given electromagnetic environment (i.e. the Green’s
function) and then apply it to our specific case: a Rubidium atom coupled to a
waveguide.

2.2 The Green’s function formalism

2.2.1 The Green’s function, or the environment response

The Purcell factor depends on the environment of the dipole. We introduce in this
section the Green’s tensor as it is a very convenient object to describe it. The Green’s
tensor ←→G (r, r′) is essentially defined as the electric field E at the field point r gener-
ated by a radiating electric dipole p located at the source point r′ (see Fig. 2.1). We
will only consider classical dipoles unless specified otherwise. Most derivations come
from Lukas Novotny’s seminal book "Principles of Nano-Optics" [Novotny 2006].

To introduce the Green’s function that describes the electromagnetic environ-
ment, we first need Maxwell’s equations for an isotropic dielectric material. They are
written as: 

∇ ·D(r, t) = ρf (r, t)
∇ ·B(r, t) = 0

∇×E(r, t) = −∂B
∂t

(r, t)

∇×H(r, t) = ∂D
∂t

(r, t) + Jf (r, t)

(2.6)

where D is the electric displacement field, B the magnetic induction field, E the
electric field, H the magnetic field, ρf the free charge density and Jf the free cur-
rent density.

Going to frequency space (but staying in the real position space), we can derive
the following wave equation, by considering propagation in a dielectric medium with
a frequency- and space- dependent dielectric function ϵ(r, ω) = ϵ0ϵr(r, ω), with ϵ0 the
vacuum permittivity:

∇×∇× E(r, ω)− ω2

c2 ϵ(r, ω)E(r, ω) = µ0ω
2P(r, ω) (2.7)
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j(r′)
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G (r, r′)

V
o

x

y

z

Figure 2.1: The Green’s function gives the electric field at position r (in
the coordinate system represented) created by a single point source j at
position r′. Since both E and j are vectors, ←→G must be a second order tensor. To
get the full electric field at r, one needs to know←→G for all r′ in V, the whole volume
where the source density is non-zero.

where the polarization of the medium P(r, ω) is defined as the primitive of the current
density, hence Jf (r, ω) = −iωP(r, ω) in frequency space. If we define the operator
LE := ∇ × ∇ × −ω2

c2 ϵ(r, ω), Eq. (2.7) reduces to finding the response of a linear
differential operator LE :

LEE(r, ω) = µ0ω
2P(r, ω). (2.8)

Mathematically, the Green’s function is defined as the impulse response of any linear
differential operator. More precisely, it is the solution of this operator for a Dirac
inhomogeneity δ(r− r′), equal to 0 everywhere except for r = r′. As the polarization
is a vector field, the impulse Dirac source has to be oriented in a direction. We have
in fact a set of 3 linear independent equations to solve for each independent direction:

LEGi(r, r′, ω) = êiδ(r− r′) (2.9)

where êi is a unit vector in a given basis. Gi(r, r′, ω) is the electric field (vector
of 3 components) generated by a Dirac excitation along êi, at position r′. We can
summarize all three equations by introducing the Green’s tensor ←→G (r, r′, ω)

LE
←→G (r, r′;ω) = 1δ(r− r′) (2.10)

where 1 is the identity tensor. For each couple of positions (r, r′), a 3× 3 symmetric
tensor is associated. The matrix element Gij corresponds to the field component
along êi at r created by a dipole source in r′ oriented along êj .

The main interest of this formalism is that knowing the response to an impulse is
sufficient to reconstruct the response of the system to any source term in Eq. (2.8),
i.e. to any density of polarization (see Fig 2.1). Indeed the solution of Eq. (2.7) for
any P(r, ω) can be written, thanks to linearity, as:

E(r, ω) = E0(r, ω) + µ0ω
2
∫

V
d3r′←→G (r, r′;ω) ·P(r′, ω) (2.11)

with E0(r, ω) a solution to the homogeneous equation, that we will neglect in the
following.
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Let us consider a dipole at position r′, with dipole moment p0. Taking the
derivative of the dipole moment we find the current density ∂p0

∂t = jdV . For a
homogeneous vacuum except for this dipole, the polarization density is given by
P(r, ω) = p0δ(r− r′). In this case, Eq. (2.11) reduces to:

E(r, ω) = µ0ω
2←→G (r, r′;ω) · p0. (2.12)

Knowing the Green’s function, it is trivial to compute the electric field created by
any dipole. The two former expressions have the benefit of offering a practical way of
computing fields numerically for any polarization density. As we will see in Chapter 4,
dipole simulations are usually carried out to compute the Green’s function. With a
single simulation with a dipole at position r′ along êj , we can record the total electric
field produced and compute three components of the Green’s tensor at once:

Gij(r, r′) = Ei(r, ω)
µ0ω2pj

, i ∈ {x, y, z}. (2.13)

2.2.2 Expressing the Purcell factor in terms of the Green’s function

The Purcell factor is strongly dependent on the electromagnetic environment. In the
following, we derive an expression for the Purcell factor involving ←→G (r, r′;ω).

Power emitted by a classical dipole in a given environment

We consider an oscillating dipole p in an arbitrary electromagnetic environment. A
standard result in classical electrodynamics states that in a given volume V (enclosed
by a surface S), the change of the total electromagnetic energy density W of the
system is only caused by the interaction between the electric field and the "matter"
(represented by the current density j). It is also equal to the integrated flux of the
time-averaged Poynting vector ⟨Π⟩ = 1

2 Re{E × H∗} out of this volume, i.e. the
radiated flux by the sources:

dW

dt
= Prad = −1

2

∫
V

Re{j∗ ·E}dV (2.14)

=
∫

S
⟨Π⟩ · dS. (2.15)

Recalling j(r, t) = ∂p(t)
∂t δ(r − r′) for our simple case with a single emitting dipole,

Eq. (2.14) gives the following important expression linking the radiated power and
the field at the position of the dipole:

Prad = ω

2 Im
{
p∗ ·E(r′)

}
. (2.16)

When replacing E with its expression in terms of the Green’s tensor from Eq. (2.12),
we obtain:

Prad = µ0ω
3|p|2

2 Im
[
ê∗
q ·
←→G (r′, r′, ω) · êq

]
(2.17)

where p = |p|êi, êi is the unit vector along the dipole axis. Note that we need here
the expression of the Green’s tensor at the position of the dipole, also known as the
self Green’s tensor.
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Spontaneous decay rate of a quantum emitter

We now want to derive an expression of the spontaneous decay rate Γ of a quantum
emitter with the Green’s tensor. All the former equations are valid for a classical
dipole. An atom is a quantum system, so we would have to derive this expression
from a pure quantum theory. We will not carry out the full derivation here as it
is done in many seminal papers and textbooks [Wylie and Sipe 1984] but we will
give heuristic arguments on why we can adapt Eq. (2.17) in a simple way to get the
Purcell factor in the quantum case [Carminati et al. 2015].

Let us switch from a purely classical dipole, defined by its dipole moment p,
to a perfect two-level system comprised of a ground and excited states |g⟩ and |e⟩,
with a transition frequency ωeg. This transition is characterized by a dipole element
peg = ⟨g|D|e⟩, where D is the electric dipole operator defined in Sec. 2.1.1. The dipole
element direction gives the polarization of the transition, while its magnitude gives
the strength of the interaction due to the distribution of charge within the system.

We can adapt Eq. (2.17) to our quantum dipole by noticing that the total radiated
power in this new scenario is quantized by the energy of the emitted photon ℏωeg.
We can then determine the spontaneous decay rate of such dipole by dividing Prad by
this energy, and obtain the mean number of transitions over time. We also substitute
ω by ωeg and p by peg. This change from p to peg comes with a factor of two, as
we only consider positive frequencies for emission in quantum mechanics [Carminati
et al. 2015]. This contrasts with classical mechanics, where both positive and negative
frequencies are taken into account. These adjustements lead to:

Γ =
2µ0ω

2
eg

ℏ
|peg|2 Im

[
ê∗
q ·
←→G (r, r, ω) · êq

]
(2.18)

It can be shown that we find the same expression by doing the full quantum deriva-
tion. It is usually computed starting from Fermi’s Golden rule (see for example an
uncommon approach in [Steck 2019] Section 11.6.1.), as the atom in a given elec-
tromagnetic field will couple to a continuum of modes.

Equation (2.18) shows that the total decay rate of the atom is proportional to
the imaginary part of the Green’s function, hence is completely determined by the
electromagnetic environment. By shaping this environment we might engineer the
value of this decay rate. This is the main motivation of this work. In order to get
the Purcell factor, we just need to divide Eq. (2.18) by Γ0. This quantity is derived
in the following.

Spontaneous decay rate of an atom in free space

We will derive the spontaneous decay rate of an atom in free space Γ0 with classical
arguments. Let us start with the electric field radiated by an oscillating classical
dipole oriented along êy:

Eθ = µ0ω
2|p| sin θ ω

4πc

[
eikr

( 1
k3r3 −

i

k2r2 −
1
kr

)]
(2.19)

Er = µ0ω
2|p| cos θ ω

4πc

[
eikr

( 2
k3r3 −

2i
k2r2

)]
. (2.20)

Figure 2.2(a) shows the intensity distribution and polarization for such a dipole in
free space (ϵ(r, ω) = 1). As we can see, even though the dipole oscillates along y,
strong components along both x and y axes exist.
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The power transferred to the environment is the one radiated to the far-field.
Keeping only the far-field terms in Eq. (2.20), and computing the magnetic field from
the electric one, we can get the total power radiated by an oscillating dipole in free
space using Eq. (2.15):

Prad = 1
2

∫
S

Re{E(r) × H∗(r)} · dS (2.21)

= |p|2µ0ω
4

12πc (2.22)

where we have left out the mathematical details, as it is a very standard calculation.
Using the same heuristic argument as before we can write:

Γ0 = |peg|2
µ0ω

3
eg

3ℏπc . (2.23)

A full derivation involving the computation of the free-space Green’s function and
plugging it into Eq. (2.18) gives the same result as Im

[←→G 0(r0, r0, ω)
]

= ω
6πc1.

Purcell factor and effect of the environment

With Eq. (2.18) and Eq. (2.23), we can get the expression for the Purcell factor Γ/Γ0.
It reduces to:

Γ
Γ0

= 6πc
ωeg

Im
[
ê∗
q ·
←→G (r, r, ω) · êq

]
(2.24)

This expression is now independent of the dipole moment as it compares the sponta-
neous decay rate of the same dipole in two different settings. We notice that Γ

Γ0
= P

P0
even though the first ratio comes from a quantum theory calculation while the sec-
ond one is purely classical electrodynamics. This is an important result: if classical
electrodynamics cannot predict the absolute value of the decay rate of a quantum
emitter, they can be used to predict its enhancement in a given electromagnetic en-
vironment.

Figure 2.2 shows a first simple example of this decay engineering. Following the
idea by Karl-Heinz Drexhage [Drexhage et al. 1968], we place a classical dipole in
front of a mirror. In this simple setup the self Green’s function at the position of
the dipole can be obtained from the free-space one: ←→G mirror(r′, r′) = ←→G0

2D(r′, r′) −
←→G0

2D(r′ + 2h êx, r′), where ←→G0
2D is the free-space Green’s function in 2D [Frisch

1968]. It is the sum of the Green’s function from the dipole itself and its image dipole
by the mirror. The minus sign comes from the π shift picked up by the beam at
the mirror reflection. The quantities in Fig. 2.2(b-d) are computed from ←→G mirror.
At distances on the order of a few wavelengths, we see that the total emitted power
oscillates with the distance (Fig. 2.2(d)) and that the emission pattern is strongly
position-dependent (Fig. 2.2(b-c)). This can be thought as the dipole interacting
with its own image, producing a well known interference pattern on the overlap zone.
If this effect can explain the shape of the emission pattern, even more interesting is the
oscillation of the radiated power (that can be linked to the decay rate) with distance
from the surface. We then see that in such a simple setup, it is possible to either
enhance or suppress the total decay rate of a dipole just by tuning its position. This
perturbation in the electromagnetic environment can be harnessed to already modify
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Figure 2.2: Classical dipole spontaneous decay and emitted power mod-
ulation in front of a mirror. (a) Normalized electric field produced by an oscil-
lating electric dipole. The colors show the field intensity while the lines and arrows
reveal the polarization direction. We see that even though the dipole is polarized
along y, it creates important components of E along both x and y. (b-c) Electric
field magnitude of a classical dipole along y in front of a perfect mirror at distances
(b) h = 1.25λ and (c) h = 1.5λ. We see the emission pattern is modified at different
distances due to interferences with the reflected field. The electric field has been
computed from the free-space Green’s function in 2D ∝ H

(1)
0 (r)2. (d) Total power

radiated by a dipole in front of a mirror as a function of the distance. At the mirror
interface, the field picks up a π phase shift, causing destructive interference at dis-
tances which are multiples of λ/2. Interestingly, the total emitted power depends
on the distance from the mirror, revealing it is possible to enhance the decay of an
atom even in such a simple setup.

the Purcell factor to some extent. We understand why it took years to observe such
an effect as it becomes proeminent only for distances on the order of the wavelength
of the radiated light [Goy et al. 1983; Bennett et al. 2016].

The Purcell factor introduced up to now measures the enhancement or inhibition
of the total decay rate of the atoms. As our goal is to couple atoms to a single guided
mode of a waveguide, we are more interested in comparing the decay rate of the atoms
inside this guided mode to the free space one. We define in the following the so-called
1D Purcell factor which measures exactly that and show it can be conveniently written
in term of the spatial profile of such guided mode.

2H
(1)
0 is a Hankel function of the first kind defined as H

(1)
0 (x) = J0(x) + Y0(x), with J0 and Y0

the Bessel functions of first and second kind respectively
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2.2.3 Expressing the 1D Purcell factor of emitters coupled to a
waveguide

Derivation of the 1D Green’s tensor through mode expansion

As we want to look at the decay of atoms into the guided mode of a waveguide, we
will distinguish between the contributions of the Green’s function coming from said
mode and all the other other radiative modes the atoms can couple to. Let us assume
we have a non-magnetic (µ = 1) and lossless (Im[ϵ] = 0) environment. It can be
shown that it is possible to decompose the Green’s tensor on a basis of optical modes
of the system [Hood 2017]:

←→G (r, r′, ω) = c2

ω2

∑
l

(
ω2
l

ω2
l − ω2

)
El(r)⊗E∗

l (r′) (2.25)

where the sum is over all possible modes l, and ωl is the frequency of said mode3.

A waveguide can only support a finite number of spatial modes [Snyder and
Love 2012], but we suppose that the atoms couple to only one of them that we will
write as Eg

k(r), where k is the wave vector of the mode and the g superscript stands
for guided. We suppose that the waveguide has a propagation axis along x and is pe-
riodic with period a. Even if it is uniform we can assume this and choose an arbitrary
period. This assumption will ease the calculations. Because of this periodicity we can
write the guided mode as Bloch waves (see Chapter 4) defined as Eg

k(r) = ugk(r)eikx,
ugk(r) periodic in x with period a.

Equation (2.25) allows to separate the Green’s tensor into a component related
to the guided mode contribution and all the other ones as ←→G =←→G 1D +

←→
G′. As

the Purcell factor in Eq. (2.24) is linear in ←→G , it can also be decomposed as PF =
Γ1D/Γ0 + Γ′/Γ0. In the rest of this work the 1D Purcell factor will refer to the
first term of this expression, i.e. the enhancement of the coupling of the atoms to the
specified guided mode of the waveguide.

We derive in the following an analytical expression for Γ1D/Γ0, by expressing←−→G1D
from Eq. (2.25):

←−→G1D(r, r′, ω) = c2

ω2

∑
k

(
ω2
k

ω2
k − (ω + iδ)2

)
Eg
k(r)⊗Eg∗

k (r′) (2.27)

where the sum is now over the possible wave vectors of the guided mode, and δ is an
infinitesimal positive quantity added to ensure to have a causal Green’s function4. We

3The set of solutions of Eq. (2.7) for the electric field is both orthogonal and complete (by taking
P = 0). The completeness condition [Snyder and Love 2012] states:

δ(r − r′)1̂ = ϵ(r)

[∑
l

El(r) ⊗ E∗
l (r′) +

∑
l

E(L)
l (r) ⊗ E(L)∗

l (r′)

]
(2.26)

where the E(L)
l are the longitudinal modes. We obtain the Green’s function decomposition by plugging

this completeness relation into Eq. (2.10) and neglecting the longitudinal terms that can have an effect
only on the real part of the Green’s function.

4Maxwell’s equations connect quantities that are simultaneous in time, but the Green’s function
in time domain connects a source to a point in space and as such, has to respect causality. Causality
has then to be enforced mathematically which is what is done here.
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replace the sum over the k by an integral by setting ∑k → a
2π
∫
dk, and decompose

the fraction into two terms:

←−→G1D(r, r′, ω) = c2

ω2
a

4π

+∞∫
−∞

dk

(
ω(k)

ω(k) + ω + iδ
+ ω(k)
ω(k)− ω − iδ

)
ugk(r)⊗ug∗

k (r′)eik(x−x′)

(2.28)
The two terms in the sum have poles in the complex plane and following [Patter-

son 2009] we can perform the complex integration for the two terms independently.

The first term, with a residue at the pole (k0, ω) 2πiRes|k0 = 2πi ω (∂ω/∂k)−1,
leads to a solution with x ≥ x′:

←−→G1D(x > x′, ω) = i
ac2

2ωvg
ugk0

(r)⊗ ug∗
k0

(r′)eik0(x−x′) (2.29)

where vg is the group velocity at the position of the pole.
A similar solution is found for x ≤ x′. Combining the two solutions together

we find:

←−→G1D(r, r′, ω) = i
c

2ω
c

vg
a
[
uk0(r)⊗ u∗

k0(r′)eik0(x−x′)Θ(x− x′)

+ u∗
k0(r)⊗ uk0(r′)e−ik0(x−x′)Θ(x′ − x)

]
(2.30)

where Θ(x) is the Heaviside function, which is discontinuous at x = 0.
Equation (2.30) expresses that if you have a dipole at position r′ exciting a waveg-

uide mode uk, and that you look at what field you have at position r you have to
compare x and x′ to know what you will get. If x > x′, the only field contributing
is the forward propagating mode and if x < x′, the only field you will pick up at r
is the backward propagating field. In either case, only one mode remains from the
initial infinite sum in Eq. (2.27).

However, in order to compute the 1D Purcell factor we need the self Green’s
function, evaluated at the position of the exciting dipole. What happens then if
x = x′?

If x > x′, and we take the limit x→ x′+, then:

lim
x→x′+

←−→G1D(r, r′, ω) ∝ uk(r′)⊗ u∗
k(r′) (2.31)

while for x < x′:
lim

x→x′−

←−→G1D(r, r′, ω) ∝ u∗
k(r′)⊗ uk(r′). (2.32)

As the tensor product is non commutative here, we have:

lim
x→x′+

←−→G1D ̸= lim
x→x′−

←−→G1D, (2.33)

hence the limit is not defined. It is not obvious to express the self 1D Green’s function←−→G1D(r′, r′, ω) from Eq. (2.30) for any ω. This is at odds to what is usually done (for
example in [Hood 2017]).

This result is not so dramatic as we can see in Eq. (2.24) that only the imaginary
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x

x' x > x'x < x'

p

Pk
+Pk

-

uk(x)uk*(x)

Figure 2.3: Diagram of a dipole p at position x′ oscillating at a fre-
quency ω, exciting a waveguide mode Ej in either forward or backward
propagation. P+

j and P−
j are the powers (surface integral of the flux of the Poynt-

ing vector) carried by mode j along the positive and negative axis respectively, as
defined in the text.

part of the projection of the Green’s function is sufficient to compute it. Fortu-
nately, the quantity Im

[
e∗
q ·G1D(r, r, ω) · eq

]
is defined (this limit exists) and can be

estimated through classical electrodynamics and energy conservation.

Spontaneous decay rate of a dipole coupled to a waveguide through energy
conservation

We consider the case depicted in Fig. 2.3, where we have a single dipole at position
r′, which emits into a given uniform waveguide mode. In general, the total electric
field in a waveguide can be written as a sum of forward and backward propagating
modes, travelling in positive x and negative x directions respectively [Snyder and
Love 2012]:

E(r) =
∑
j

a+jE+
j (r) +

∑
j

a−jE−
j (r) (2.34)

The constants a+j and a−j are the modal amplitudes. An optical waveguide can only
support a finite number of guided modes, hence the sum is finite. The same expansion
can be made for the magnetic field H, with the same modal amplitudes.

Each of these modes will carry power through the waveguide, and parallel to
the waveguide axis x. We can define the power carried by a given mode in a given
direction by the integral of the flux of the Poynting vector across an infinite surface
A perpendicular to the waveguide axis (see Fig. 2.3):

P±
j = ±

∫
A

1
2 |a±j |2 Re

{
Ej × H∗

j

}
dA (2.35)

= ±|a±j |2ϕj (2.36)

where ϕj =
∫

A
1
2 Re

{
Ej × H∗

j

}
dA. We define the power as positive when going from

left to right. From [Snyder and Love 2012], we get the expression of the modal
amplitude for a given excitation density at a position x′, which is the overlap between
the mode shape and the current density of the source over the whole 3D space:

a±j = − 1
4ϕj

∫
V

E±∗
j · J(r) dV. (2.37)
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In our case, the current density is a single dipole at r′, oriented along êq, hence
J(r) = −iω|p|δ(r− r′)êq. The modal amplitudes reduces to:

a±j = iω

4ϕj
E∓
j (r′) · p (2.38)

as E+∗
j = E−

j . Hence, using Eq. (2.36), the power carried by mode j in either forward
or backward direction is:

P±
j = ω2

16ϕj
|p|2|êq ·E∓

j (r′)|2 (2.39)

The total power carried by mode j in the waveguide is the sum of the two propagation
directions:

Ptot = P+
j + P−

j = ω2

16ϕj
|p|2|êq ·E−

j (r′)|2 + ω2

16ϕj
|p|2|êq ·E+

j (r′)|2. (2.40)

This value must be equal to the power radiated by the dipole Prad as we assume that
the mode j constitutes the whole electromagnetic environment accessible and all of
its light couples to the waveguide. Hence Ptot = Prad where the total power radiated
by this dipole into the waveguide, is given as before by Eq. (2.17):

Prad = µ0ω
3

2 |p|2 Im
[
ê∗
q ·G1D(r′, r′, ω) · êq

]
. (2.41)

We finally have an expression for Im
[
ê∗
q ·G1D(r′, r′, ω) · êq

]
by combining Eqs. (2.41)

and (2.40):

Im
[
ê∗
q ·G1D(r′, r′, ω) · êq

]
= 2
µ0ω3

1
|p|2 (P+

j + P−
j ) (2.42)

= 1
8µ0ωϕj

[
|êq ·E+

j (r′)|2 + |êq ·E−
j (r′)|2

]
. (2.43)

Thanks to these classical waveguide optics considerations we get a practical expression
for Im

[
ê∗
q ·G1D(r, r, ω) · êq

]
. Plugging Eq. (2.43) into Eq. (2.24), we get the Purcell

factor for an atom at position r, with a transition dipole element along êq, coupled
to a single waveguide mode:

Γ1D
Γ0

= 3πc2

2ω2
eg

c

vg

[
|êq ·E+(r)|2∫

A dr′ϵ(r′)|E+(r′)|2 + |êq ·E−(r)|2∫
A dr′ϵ(r′)|E+(r′)|2

]
(2.44)

considering that the flux ϕ = 1
2vg

∫
A ϵ(r′)|E+(r′)|2dr′, where vg is the group velocity

and we dropped the j index as we consider a single coupling mode5.
This expression depends only on the transverse spatial profile of the guided mode

and the group velocity of said mode. It is very convenient when computing sponta-
neous decay rates as you only need a classical calculation of the transverse modes of
the waveguide which can be achieved numerically in various ways (see Chapter 4).
This derivation also holds for a periodic waveguide along x of period a, by replacing
the integration over the transverse plane A by an average over a cell volume Vcell of

5This expression comes from [Snyder and Love 2012] Eq. (11.33).
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length a: ∫
A
dr′ϵ(r′)|E+(r′)|2 → 1

a

∫
Vcell

dr′ϵ(r′)|E+(r′)|2.

A more accurate measure of probability than the Purcell factor would be comparing
this decay to the total emission of the atom in the same configuration Γtot. This is
the β factor defined as β = Γ1D/Γtot. We usually prefer the Purcell factor as Γtot
can be very hard to estimate in many cases. We will address this issue in specific
scenarios in Chapter 5.

2.3 The case of a multilevel atom
Until now, we have considered our emitters coupled to waveguide modes as perfect
two-level systems. However, in the experiment described in this thesis we work with
87Rb which has many states and transitions.

2.3.1 Waveguide QED with Rubidium 87

Real life atoms are multilevel

Rubidium is an alkali atom with 37 electrons and a nuclear spin I = 3/2. Alkali
atoms are widely used in quantum optics experiments for many reasons. Even though
they have multiple electrons, all of their electronic shells are filled except the last which
only has one electron (e.g for Rb, [Kr]5s1). As such, they all have an electronic spin
S = 1/2. Their electronic structure is hence quite similar to the one of Hydrogen.
Even if they share similarities with it, they are heavier and less reactive, which are
both advantages when it comes to cooling and trapping. Last but not least, they often
offer accessible electronic transitions at near-infrared or visible wavelengths, which is
the range where lasers are the most widely available.

As alkali atoms are hence very convenient to cool, it is no coincidence if Rubidium
87 was the first atom to be cooled down to degeneracy by Eric Cornell and Carl
Wieman to form the first Bose-Einstein Condensate in Boulder [Anderson et al.
1995].

Electronic fine and hyperfine structures of Rubidium

The spin S of the single valence electron of Rb can couple to its orbital angular
momentum L. This interaction gives rise to the fine structure. The total angular
momentum of the atom is then J = L + S and by following the rules of addition of
angular momentum, J can take the values |L−S| ≤ J ≤ L+S. For the ground state
of Rubidium we have L = 0 and S = 1/2 hence J = 1/2 and there is only a single
fine level 5S1/2. For the first excited state, L = 1, S = 1/2 hence J = 1/2 (5P1/2
state) or 3/2 (5P3/2 state). The transitions between the ground state and these two
excited levels correspond to clearly defined optical transitions called respectively the
D1 (795 nm) and D2 lines (780 nm), see Fig. 2.4(a). These transitions are quite fast
with linewidths of 5.75 and 6.07 MHz respectively, which makes them ideal candidates
for cooling procedures [Steck 2001]. Moreover, very reliable lasers exist today at
these wavelengths, making them even more appealing. These MHz-range D-lines is
a common feature of alkali atoms.

A hyperfine splitting of these states exists as Rubidium 87 has a non zero
nuclear spin. Indeed, the total angular momentum J can couple to the nuclear spin
I. As previously, the total atomic angular momentum F = I + J can take values
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Figure 2.4: Fine and hyperfine structure of Rubidium 87. (a) Main transi-
tions used in Rubidium 87 experiments. (b) Detail of the hyperfine structure of the
D2 line (used for cooling and interaction with the guided mode) [Steck 2001]. We
draw as an example the allowed transitions for an atom in the state |F = 2,mF = 2⟩.
The σ+ transition is favoured because of the Clebsch-Gordan coefficients (see main
text).

|I − J | ≤ F ≤ I + J . While the hyperfine sublevels are shown as degenerate in
Fig. 2.4(b), a magnetic field can split them, with a Zeeman splitting proportional to
mF and |B|.

2.3.2 A polarization-dependent Purcell factor

In the following we adapt Eq. (2.18) of the spontaneous decay rate of a TLS in the
guided mode of a waveguide to the case of a multilevel atom. The main difference
is that in the absence of a magnetic field, an atom in a given state can now couple
to 3 different excited levels with the same frequencies. For example an atom in the
ground state sublevel |F = 2,mF = 2⟩ is coupled to the levels |F ′ = 3,mF = 2 + q⟩
with q ∈ {−1, 0, 1}. Depending on the value of q, the transitions are called σ+, π and
σ− respectively (see Fig. 2.4).

As in Eq. (2.18), we need to compute the dipole element of the transition to get the
spontaneous decay rate. Most of the complexity introduced by considering multilevel
atoms is in this dipole element. As we have many ground states, the dipole element of
a given transition is now defined by ⟨FmF |Dq|F ′mF ′⟩. We want to write this dipole
element in a way that would make explicit its dependence on the polarization of the
transition.

According to the Wigner-Eckart theorem, the dependence of the matrix elements
of tensor component operators Dq on mF , mF ′ and q is entirely included in the
Wigner 3-j symbol [Steck 2019]:

⟨FmF |Dq|F ′mF ′⟩ = |
〈
F
∣∣|D|∣∣F ′〉|2CmF ,q (2.45)
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where the CmF ,q are the Clebsch-Gordan coefficients associated with the transition
from |F,mF ⟩ to |F ′,mF + q⟩ and are given by6:

CmF ,q = (−1)F ′−1+mF
√

2F + 1
(

F ′ 1 F
mF − q q −mF

)
(2.47)

and ⟨F ||D||F ′⟩ is the reduced dipole matrix element for the set of tensor component
operators Dq, with the normalization convention7:

|
〈
F
∣∣|D|∣∣F ′〉|2 =

∑
mF ,mF ′ ,q

|⟨FmF |Dq|F ′mF ′⟩|2 (2.48)

Replacing Eq. (2.45) into Eq. (2.18), we obtain a state- and polarization-dependent
spontaneous decay rate Γ1D,F,F ′,mF ,q, from state |F ′,mF + q⟩ to |F,mF ⟩8:

Γ1D,F,F ′,mF ,q = 2µ0ω
2

ℏ
|
〈
F
∣∣|D|∣∣F ′〉|2|CmF ,q|

2 Im
[
ê∗
q ·
←→G 1D(r, r, ω) · êq

]
(2.49)

Γ1D,F,F ′,mF ,q = πac

ℏ
| ⟨F ||D||F ′⟩|2

λ0vg
|CmF ,q|

2
[

|êq ·E+(r)|2∫
Vcell

dr′ϵ(r′)|E+(r′)|2 + |êq ·E−(r)|2∫
Vcell

dr′ϵ(r′)|E+(r′)|2

]
(2.50)

Equation (2.50) shows that the coupling to the guided mode is transition depen-
dent for two reasons:

• The term in brackets is evaluated by taking the component of the forward and
backward propagating fields in the {π, σ+, σ−} basis. Depending on the chosen
quantization axis and the waveguide design, the electric field can have very
different polarization profiles near the surface. A careful study of polarization
has then to be carried out to understand which transition will be favored for a
given waveguide mode.

• The Clebsch Gordan coefficients intrinsically give weights to the different tran-
sitions between hyperfine sublevels and can favor one or another. For example
values of CmF ,q are given in Table 2.1 for the |F,mF = 2⟩ to |F ′,mF + q⟩ tran-
sition. The σ+ transition is 15 times stronger than the σ− one.

mF ′ 1 2 3

CmF ,q

√
1
21 −

√
5
21

√
5
7

Table 2.1: Clebsch-Gordan coefficients for the transition |F = 2,mF = 2⟩
to |F ′ = 3,mF ′⟩.

6This comes directly from the definition of the Wigner 3-j symbols:(
j1 j2 j3
m1 m2 m3

)
:= (−1)j1−j2−m3

√
2j3 + 1

⟨j1, m1; j2, m2|j3, −m3⟩ (2.46)

7We follow the normalization of the dipole elements from [Steck 2019] p. 335, which differs from
the one used in [Le Kien et al. 2013a] or in the Alkali-Rydberg-Calculator package (ARC) [Šibalić
et al. 2017] by a factor

√
2F + 1.

8Note that we can also define an excitation rate γ±
exc,F,F ′,mF ,q

of an atom initially in |F, mF ⟩ and
promoted to |F ′, mF − q⟩ when sending an input guided mode. Since the excitation comes from a
single direction (+x or −x), only one term from Eq. 2.50 is kept. This figure of merit makes sense
experimentally as we usually start with atoms in the ground state.
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When considering a π transition, the dipole vector is real and since E+(r)∗ = E−(r),
the two terms of the sum in Eq. (2.50) are equal.

Even though the structure of Rubidium differs a lot from a TLS, this approxima-
tion can still be made in some situations as closed transitions exist. We can see in
Fig. 2.4(b) that driving the |F = 2⟩ → |F ′ = 3⟩ transition with a σ+ or σ− polariza-
tion will eventually pump the atoms into one of the extremal mF states. Then only
one transition will be addressed, with no parasitic decay channel. In this situation,
the Purcell factor obtained from Eq. (2.50) reduces to Eq. (2.44). As we will see in
Chapter 5, polarization of nanoscale waveguides modes usually have an important cir-
cular component that can be used to address these closed σ transitions (by choosing
an appropriate quantization axis) and can lead to a strong chiral behaviour [Pucher
et al. 2022; Bouscal et al. 2024].

Conclusion
In this chapter we have introduced all the necessary framework for describing atom-
light interactions at the vicinity of 1D or quasi-1D waveguides. This formalism was
established thanks to the Green’s function approach which is a crucial object for
describing electromagnetic environments. We have found a practical expression for
the 1D Purcell factor in terms of the guided modes transverse shapes, deriving it from
first principles of optical waveguide theory. This expression is very useful as mode
shapes are usually what you get from numerical waveguide simulations. With further
derivations, we obtained a formula better suited to realistic case of multilevel atoms,
which are manipulated experimentally. That way we are able to make predictions on
the coupling of the atoms to a given mode, depending on the transition considered.
The methods developed in this chapter apply to other emitters embedded in 1D
waveguides as quantum dots or superconducting qubits.

While this chapter focused on description and quantification of the atom-light
interaction at resonance, the next will look at the physics of optical trapping that
happen out of resonance.
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There are two independent approaches to achieve strong atom-photon interaction
between a waveguide guided mode and an atom, as can be seen in the expression
of the Purcell factor derived in Chapter 2 (see Eq. (2.44)). One can increase the
group index of the guided mode by designing slow-light waveguides or maximize the
right component of the electric field at the position of the atoms (depending on the
transition that should be addressed). In any scenario, a key ingredient is to be able to
trap the atoms very close to the nanophotonic waveguides, as the guided modes used
for coupling decay exponentially out of the structure. Keeping the atoms at fixed
positions is a requirement in order to create ordered 1D arrays that are the main
resources of many Waveguide QED theoretical proposals [Chin et al. 2017; Tabares
et al. 2023].

The most fruitful idea has been to use out-of-resonance evanescent modes of the
structure in order to trap the atoms with the dipole force. This is a challenging task.
In a nanofiber-based platform, thanks to a featureless dispersion relation, a two-
color evanescent trap [Le Kien et al. 2004; Vetsch et al. 2010; Goban et al. 2012;
Lacroûte et al. 2012] is commonly used (see Fig. 3.1). For more complex structures,
e.g., microtoroids or photonic-crystal waveguides, atom trapping via guided modes
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935.7nm

684.7nm

935.7nm

Figure 3.1: Diagram of evanescent trapping around a nanofiber. Experi-
mental configuration from [Corzo et al. 2019]. In the nanofiber region, a substantial
fraction of the fields is into the air, as shown by the shadings. Trapped Cesium atoms
are shown in green. A red-detuned beam from the D2 transition is sent through both
ports, creating a standing wave. A blue-detuned mode creates a uniform repulsive
potential. The sum of the two potentials can allow to create a stable trap in all
directions.

has been proposed but has remained a roadblock and side illumination was mostly
used heretofore [Thompson et al. 2013; Goban et al. 2014; Will et al. 2021]. A
specific added complexity of such optical microtraps is the strong gradients of electric
fields and polarization, which can introduce spatially varying shift to the atomic en-
ergy levels, leading to inhomogeneous shift and fictitious magnetic fields [Albrecht
et al. 2016]. Hence, finding an adequate trapping scheme can require a long optimiza-
tion process for each structure. It will thus be convenient to have a versatile tool to
optimize and characterize optical dipole traps near nanophotonic devices.

This chapter presents theory, tools and a state of the art on evanescent optical
trapping close to nanostructures. For this purpose, we first introduce the theoretical
basis of out-of-resonance light-matter interaction, main resource for optical trap-
ping. We compute the optical potentials for multilevel alkali atoms, including all the
scalar, vector and tensor light shifts. We then introduce the most common scheme for
trapping atoms close to nanoscopic waveguide: the two-color dipole trap. Finally we
present nanotrappy1, an open-source Python package developed as a way to optimize
the development workflow of dipole traps around various nanostructures. The versa-
tility of the package is demonstrated for three examples of nanophotonic structures.
This chapter is mostly based on the work published in [Berroir, Bouscal, et al.
2022].

3.1 Theory of optical trapping: atom-light interaction
out of resonance

Optical trapping of atoms relies on the conservative potential created by the intensity
distribution of detuned laser beams [Grimm et al. 2000], a technique now widely used
for trapping cold atoms in free space. For trapping atoms optically at subwavelength
distance from a dielectric surface, two specificities arise. First, the evanescent field
leaking out of the dielectric material should be able to provide a stable trapping po-
tential close to the surfaces [Ovchinnikov et al. 1991; Le Kien et al. 2004; Vetsch
et al. 2010; Goban et al. 2012]. Second, the Casimir-Polder interaction becomes
sizeable at such distances and has to be taken into account [Boustimi et al. 2002;
Le Kien et al. 2004].

In this section, we introduce the atom-light interaction concepts at the heart of the
dipole trapping potential, with an emphasis on the influence of the Zeeman hyperfine
levels. We recall the origin of scalar, vector and tensor shifts on the hyperfine manifold

1Website of the project at https://LKB-QuantumNetworks.github.io/nanotrappy.
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and their contributions to the polarizability tensor. Then we discuss the Casimir-
Polder interaction at subwavelength distance from the surface. Finally, all these
contributions are included to compute the total trapping potential.

Note that despite the emphasis on trapping in the evanescent field of modes guided
by dielectric waveguide, the following presentation remains general and valid for any
electric field distribution of the trapping light.

3.1.1 Atom-light interaction: light shifts

We will consider here the case of a multilevel alkali atom interacting with a monochro-
matic optical field. To simplify the notation and describe easily the internal state
of the atoms, we will adopt convenient notations, following the works presented
in [Steck 2019], [Le Kien et al. 2013a] and [Gouraud 2016]. We denote by
|s⟩ = |N, J, F,mF ⟩ the state of interest with energy Es and |ei⟩ = |N ′

i , J
′
i , F

′
i ,m

′
F,i⟩

all the states to which it is coupled with energies Eei . As before, J stands for the
total electronic angular momenta, F for the total atomic angular momenta and mF

for the magnetic quantum number. Here we choose z as the quantization axis.

Interaction Hamiltonian far from resonance

We have seen in Section 2.1.1 how to write the Hamiltonian of such an atom-field
interaction HAF = −D ·E. All the trapping fields are again assumed to be classical
fields, which is well justified experimentally considering the powers that are typically
used.

In order to study the frequency response of an electric dipole interacting with an
optical electric field, we define a polarizability tensor αµν such that the mean induced
dipole moment vector becomes:

⟨D(+)
µ (ω)⟩ = αµν(F,mF ;ω)E(+)

ν , (3.1)

where E(+) (E(−)) denotes the positive (negative) frequency terms of the electric
field. We have used the Einstein summation convention.

Using time-dependent perturbation theory, one can derive the Kramers-Heisenberg
polarizability tensor for a given state |s⟩ and a given angular frequency ω for the elec-
tric field2:

αµν(s;ω) =
∑
i

(⟨s|Dν |ei⟩⟨ei|Dµ|s⟩
ℏ(ωeis − ω) + ⟨ei|Dν |s⟩⟨s|Dµ|ei⟩

ℏ(ωeis + ω)

)
. (3.2)

Here Dq represents the tensor component of the dipole operator D and ωeis = (Eei −
Es)/ℏ.

Once this polarizability tensor has been defined, we can then express the Stark
shift induced by the electric field E written in the {π, σ+, σ−} basis as:

∆E(F,mF ;ω) = −1
2⟨D(ω)⟩ ·E

= −1
2⟨D

(+) + D(−)⟩ · (E(+) + E(−))

= −Re(αµν)E(−)
µ E(+)

ν .

(3.3)

2Note the difference here in the expression of αµν from [Steck 2019]. The two terms allow for
a rank-dependent frequency dependence when reducing the tensor, which seems to correct the error
signaled in p. 373.
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Irreducible parts decomposition

In order to study the effects of each component of the electric field, a usual method is
to split the polarizability tensor into its irreducible parts, which will give us respec-
tively the scalar, vector and tensor polarizabilities. Such decomposition is detailed in
[Steck 2019]. For a rank-2 tensor αµν , the decomposition gives:

αµν = 1
3α

(0)δµν + 1
4α

(1)
σ ϵσµν + α(2)

µν

where: 
α(0) = αµµ

α(1)
σ = ϵσµν(αµν − ανµ)

α(2)
µν = α(µν) −

1
3ασσδµν .

(3.4)

After adding all three contributions in Eq. 3.3, we get:

∆E(F,mF ;ω) = −α(0)(F ;ω)|E(+)|2 − α(1)(iE(−) ×E(+))0
mF

F

− α(2)(F ;ω)(3|E(+)
0 |2 − |E(+)|2)

2

(
3m2

F − F (F + 1)
F (2F − 1)

)
(3.5)

with:



α(0)(F ;ω) =
∑
F ′

2ωFF ′⟨F ||D||F ′⟩2

3ℏ(ω2
FF ′ − ω2)

α(1)(F ;ω) =
∑
F ′

(−1)(F+F ′)
√

3F (2F + 1)
2(F + 1)

{
1 1 1
F F F ′

}
ω⟨F ||D||F ′⟩2

ℏ(ω2
FF ′ − ω2)

α(2)(F ;ω) =
∑
F ′

(−1)(F+F ′)
√

40F (2F + 1)(2F − 1)
3(F + 1)(2F + 3)

{
1 1 1
F F F ′

}
ωFF ′⟨F ||D||F ′⟩2

ℏ(ω2
FF ′ − ω2) .

(3.6)
α(0), α(1) and α(2) stand for the scalar, vector and tensor polarizabilities respectively.

The hyperfine reduced dipole elements ⟨F ||D||F ′⟩ can be written in terms of the
fine ones ⟨J ||D||J ′⟩, whose values can be found in [Steck 2001]:

⟨F ||D||F ′⟩ = ⟨J ||D||J ′⟩ × (−1)1+F ′+J+I

×
√

2F ′ + 1
{
J J ′ 1
F ′ F I

}
. (3.7)

Analysis of the different light shift contributions

We now focus on the effects of the different contributions, as shown in Fig. 3.2.
Fig. 3.2(a) shows the unperturbed structure of the |F = 4⟩ and |F ′ = 5⟩ manifolds

of Cesium. We can see in Fig. 3.2(b) that the scalar shift amounts to an offset of the
hyperfine manifold which depends only on the wavelength and the intensity of the
light. This offset is state-dependent (between ground and excited state manifolds)
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Figure 3.2: Effect of the different shift contributions induced by a π and
σ+ polarized light on the |F = 4⟩ and |F ′ = 5⟩ manifolds of Cesium. As an
example, numerical values for the shifts and broadenings are given for an intensity of
10 mW/µm2 at a wavelength of 1064 nm. Vertical axis not to scale. (a) Unperturbed
hyperfine structure. (b) Effect of the scalar light shift: each hyperfine manifold is
offset depending on its F number but irrespective of the mF number. This amounts
to a change of the resonant transition frequency. This can be compensated using
magic wavelengths, for which the shift becomes independent of F: the levels are still
perturbed but the transition frequency remains the same. (c) Effect of the scalar
and vector light shifts. The linear dependence on mF of the vector shift is clearly
visible, hence the parallel made with a fictitious magnetic field. This shift causes a
broadening of the hyperfine manifold when performing spectroscopic measurements,
and can be cancelled by using only linearly polarized light fields. (d) Total shift.
The tensor shift has a quadratic dependence on mF . In most cases, the unperturbed
Zeemaan states |mF ⟩ are not eigenstates of the complete hamiltonian. Reproduced
from [Berroir, Bouscal, et al. 2022].

and thus leads to a shift of the resonant transition. From an experimental point of
view, this shift can in some cases be suppressed by making use of the so-called magic
wavelengths [McKeever et al. 2003; Ye et al. 2008], which are available for some
alkali atoms like Cesium (but not Rubidium). When the trapping light is at a magic
wavelength, the shift becomes state independent and thus the resonant transition
remains unchanged.

The form of the second term of Eq. (3.5) highlights the different dependencies
of the vector part. The main parameter is the ellipticity of the incident light, and
the effect is a state-dependent shift proportional to the magnetic quantum number,
which is shown in Fig. 3.2(c). This can be seen as the action of a fictitious magnetic
field given by [Le Kien et al. 2013b; Albrecht et al. 2016]:

Bfict = α(1)

µBgnJFF
(i[E(−) ×E(+)]).

This shift can be canceled by using linearly polarized light, for which the cross product
vanishes and thus the fictitious magnetic field as well. In practice around nanopho-
tonic waveguides, or in the tight-focusing regime, this is non trivial because of the
strong longitudinal component of the electric field that typically introduces elliptic-
ity [Van Mechelen and Jacob 2016]. In such settings counterpropagating beams
have been used [Le Kien et al. 2005; Goban et al. 2012; Lacroûte et al. 2012;
Corzo et al. 2019] to cancel out this longitudinal component.

The tensor part indicated by the third term is the most difficult to cancel in
practice. We will not detail the mathematical description of this contribution and
only make practical statements. Most noticeably, it vanishes for J = 0 and J = 1/2
states due to the dependence on J of the tensor polarizability. However, it is not the
case for excited J = 3/2 states, which will then experience a significant tensor shift.
Regarding the electric field dependence, for pure π or σ± polarizations, the tensor
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shift part of the Hamiltonian is diagonal in the unperturbed hyperfine basis. It leaves
the eigenvectors unchanged while adding a mF -dependent shift proportional to m2

F ,
as seen in Fig. 3.2(d). For arbitrary polarizations however, the tensor shift part of the
Hamiltonian is non-diagonal and thus introduces coupling terms between hyperfine
states. This situation is more complex and best solved numerically.

3.1.2 Casimir-Polder interactions

The interaction of the atom with a close surface can lead to an additional light shift,
which can be critical when computing traps close to nanostructures. Indeed, a neutral
atom can have a dipole induced by vacuum fluctuations of the electromagnetic field.
If this atom is at a very short distance from a perfect conductor surface, the radiation
pattern of this induced dipole will be modified by the time-lagged reflected field from
the surface: the dipole interferes with its mirror image. Dispersive QED calculations
show this usually leads to a short-range attractive potential. For a dielectric structure,
its dielectric function over all possible frequencies enters into the game. This so-
called Casimir-Polder (CP) potential [Casimir and Polder 1948] has to be taken
into account in order to have a full description of the potential seen by the atoms.
The CP potential, which is a vacuum-induced force, is usually complex to calculate
as it depends on the atoms, the material and the precise geometry of the structure
(see Appendix A.2), all these factors influencing the exact response of the system to
a vacuum-induced fluctuating dipole.

For simplicity, only the first order of the potential for an infinite plane is usually
considered UCP = C3/d

3 [Johnson et al. 2004], where d is the distance to the surface.
For an optical nanofiber (ONF), it is a sufficiently good approximation especially at
very short distances. Even if the curvature of the surface can lead to a 40% error at
the position of the trap minimum, the effect remains negligible compared to the light-
induced potentials [Le Kien et al. 2004]. For more complex structures like dielectric
slabs that we will encounter in Chapter 5, we use a more detailed approximation based
on pairwise summation that takes into account the overall shape of the structure (see
Appendix A.3).

3.1.3 Total optical trap around a nanostructure

After introducing the formalisms needed to describe both atom-light and atom-surface
interactions, we can combine them to compute the full trapping potential created by
arbitrary optical fields close to a surface. In order to compute this trapping potential
as well as the level mixing induced by the interactions, it is convenient to define an
effective Hamiltonian for the system, which can be eventually diagonalized. For the
Stark shift defined in Eq. (3.5) this effective Hamiltonian is given by:

HStark =− α(0)(F ;ω)|E(+)|2

− α(1)(F ;ω)(iE(−) ×E(+))0
F0
F

− α(2)(F ;ω)(3|E(+)
0 |2 − |E(+)|2)

2

(
3F 2

0 − F2

F (2F − 1)

)
.

(3.8)

As the CP interactions do not mix mF sublevels, we can write the CP Hamiltonian
as HCP = UCP1̂. Using perturbation theory, the total shift for a level |N, J, F,mF ⟩
is then given by:
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∆E|N,J,F,mF ⟩(ω) =
⟨N, J, F,mF |HStark(F ;ω) +HCP|N, J, F,mF ⟩.

(3.9)

It is important to notice that, in general, the Hamiltonian is not diagonal in the
|N, J, F,mF ⟩ basis, because of the vector and tensor terms. Therefore it is necessary
to diagonalize it in order to obtain both the correct eigenvalues and eigenvectors.
Even though for low power, F is still a good quantum number, it is not the case
anymore for mF and the interaction gives rise to level mixing inside the magnetic
Zeeman manifold.

3.2 Trapping atoms around waveguides: the two-color
evanescent trap scheme

In the field of cold atoms, optical trapping with far-off resonance light has a long
history [Chu et al. 1986]. Whether it is for creating optical lattices in order to study
atom hopping [Wintersperger et al. 2020], or for optical tweezers to trap single
atoms [Schlosser et al. 2001], harnessing optical dipole trapping has had prolific
applications. All of these traps are usually done in free space, far from any dielectric
material.

Trapping atoms close to nanostructures, with trap sites at less than λ away from
the surface, has been a withholding challenge for many years. While it is possible
to retro-reflect a trap beam on the surface [Thompson et al. 2013], it became clear
that using guided modes of the structures, with evanescent behaviour in vacuum was
a promising idea.

The first trap around nanoscale waveguides exploiting guided modes to have been
proposed concerned ONFs. It was first suggested to use a red-detuned guided mode to
attract the atoms to the fiber, and repulse them with the centrifugal force that appears
when the fiber diameter is about half the wavelength of the trapping light [Balykin
et al. 2004]. [Le Kien et al. 2004] proposed instead to use a second guided beam,
blue-detuned this time, as a repulsive potential in order to overcome the attractive
red light at short distances.

As the two beams have a different decay length away from the structure, by tuning
the relative powers, it is possible to engineer a stable trap at around 200 nm from
the fiber surface. The main condition for stable trapping is that the decay length
of the red is slower than of the blue, so that a repulsive barrier can exist at short
distances. The first experimental realization of such a trap was achieved in 2010
in [Vetsch et al. 2010] and then in [Goban et al. 2012] in a state-independent,
compensated configuration. Since then, this two-color trap has been proposed in
other nanoscopic waveguides that we will encounter throughout this manuscript [Yu
et al. 2014; Fayard et al. 2022; Bouscal et al. 2024].

After introducing the theoretical framework enabling to calculate trapping poten-
tials and state dependent light shifts as well as the most common trapping scheme,
we will now present its implementation in nanotrappy.

3.3 nanotrappy, a package to compute dipole traps around
nanostructures

nanotrappy is a Python package that computes the trapping potentials induced by
laser beams, with an emphasis on modes guided inside nanostructures. It has been
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Figure 3.3: Workflow of the nanotrappy package for calculating optical
trap potentials. The Python package takes multiple physical parameters as inputs
(atom, trap configuration, material) as well as pre-computed electric field maps,
and returns the trap and its properties. A user-friendly graphical interface enables
also to tune the powers of the trapping beams, making it easy to integrate the
simulation in a structure optimization workflow. Some examples of nanostructures
for which optical trapping of atoms can be simulated in nanotrappy: (a) Optical
nanofiber [Gouraud 2016], (b) Alligator photonic-crystal waveguide [Hood et al.
2016], (c) Microtoroid [Alton 2013], (d) Nanoscale optical cavity [Thompson et al.
2013].

tested on Python 3.7-3.11 distributions. nanotrappy is programmed for being ef-
ficiently included in the optimization workflow of nanophotonic structure design.
We take advantage of the object-oriented programming style of Python in order to
provide the user with a simple and accessible API, and present the simulation re-
sults in a user-friendly manner (see Fig. 3.4). Note that the package is not a field
solver. Instead, based on a pre-computed electric field (done using any third-party
solver), nanotrappy interfaces this electric field distribution with an atomic system
given physical parameters. Figure 3.3 summarizes the capabilities of the package.
Performance-wise, even if the limiting factor of such optimization workflows is often
the actual computation of the fields, an effort has been made to make this package
efficient, and to provide a parallelizable option that allows to split the computation
on multiple CPU cores if needed. In the following, we introduce the structure of the
code through the base classes provided.

Atomic system

The first class defined is the atomicsystem class. It is based on the Alkali-Rydberg-
Calculator (ARC) package [Šibalić et al. 2017]. ARC was created for Rydberg
physics, i.e. computation of Rydberg levels, transitions and interaction potentials for
any alkali atom. Conveniently, it was also populated with the up-to-date spectro-
scopic data such as transition frequencies or dipole matrix elements for non Rydberg
transitions. It is very useful to use as a basis but has to be adapted as it natively
handles J states but does not have as much capabilities regarding hyperfine F states.
Building an atomicsystem amounts to selecting an alkali species, as well as a state
defined by the N,L, J, F quantum numbers.

As nanotrappy is closely linked with current experiments, it incorporates features
that have proven to be crucial for the development of such systems. Among those,
the issues linked with inhomogeneous broadening of an optical transition due to the
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Figure 3.4: Screenshots illustrating the interactivity of nanotrappy. (a) In-
teractive 1D plot with sliders to control the powers of the red-detuned and blue-
detuned trapping lights. The levels can also be selected to see their decomposition
on the unperturbed basis. The same controls are given for 2D plots. (b) Screenshot
of the Graphical User Interface (GUI) provided as an .exe file with the package. It
offers the same functionalities through dropdown menus and allows to optimize the
trapping scheme without having to interact with Python code.

Zeeman dependent nature of the light shifts call for calculations of such light shifts
down to the hyperfine structure level. The polarizability of any given hyperfine state
is thus computed by nanotrappy, as well as C3 coefficient of the Casimir-Polder
atom-surface interaction.

Beams and Trap

Specific classes are used to describe the trapping light. For each trapping light, a
Beam instance is created, based on a wavelength, a power and a folder containing
formatted pre-computed electric fields3. The package will then check if the electric
fields are available at that wavelength in the specified folder and select the relevant
data. Counterprogating beams geometries can also be created with the BeamPair
class, as well as more complex trapping schemes with more that two beams with
BeamSum. Once the beams are created, they are bundled into the TrapBeam class
together with a local propagation axis.

Materials and Surfaces

To handle CP interactions, a Surface class is available, as well as three main sub-
classes Plane, Cylinder and Slab. The first two use the first order approximation
UCP = C3/d

3 which allows to handle most practical cases. The latter uses an expres-
sion derived with the pairwise summation approximation introduced in Appendix A.3.

The Material class comes with pre-implemented subclasses of materials (air,
SiO2, SiN, GaInP...). The C3 coefficient is computed on the fly for the atom-material
combination. This class can be easily extended to add other materials.

Running the simulation

Once all these physical parameters have been defined in the respective classes, they are
bundled together in a Simulation class that realizes the actual computation. Along
the way, the parameters are saved as JSON files and the results as .npy numeric tables.
Conveniently, a check is performed before any simulation whether these particular

3Formatting of the fields should follow a predefined convention, see website of the project at
https://LKB-QuantumNetworks.github.io/nanotrappy.
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Figure 3.5: Automatic optimization of the trap depth with nanotrappy.
The powers of the two beams (P1 and P2) are varied and the trap depth is calculated
to generate a 2D map. The dotted line follows the local trap depth maximum. A
value of 0 means that the configuration chosen does not allow atom trapping.

parameters have already been used, in which case the previously computed data is
used, avoiding thereby unnecessary computation.

Interactivity and optimization

The Vizualizer class is a core class that allows for easy optimization of the struc-
ture. Once the simulation has run, the vizualizer will display the results along with
interactive sliders that allow to control the power of each individual beam, as seen
on Fig. 3.4(a). As mentioned in Section 3.3, it is possible to display the trapping
potential for all Zeeman sublevels inside a given hyperfine state. An interactive tool
allows to select a chosen Zeeman state and display additional information such as
the decomposition of this new eigenstate on the basis of the unperturbed ones. If a
stable trap (i.e. a potential local minimum in all 3 directions) exists, the trapping
position and frequencies are also displayed. This enables to quickly and conveniently
scan the powers of the beams in order to check whether the desired value for these
parameters are accessible or if the structure design needs to be improved. Moreover,
automatic optimization is available: the powers of the red- and blue-detuned beams
can be scanned to optimize a chosen parameter (either the trap depth, trap frequency
or the trap position) given electric field distributions, as displayed in Fig. 3.5.

A standalone GUI application is also made available with the same functionalities,
and shown in Fig. 3.4(b).

3.4 Use of nanotrappy for existing structures
In this section we now show the versatility of nanotrappy by computing the trapping
potentials for atoms around three well-known nanotructures that have been used by
the community. We benchmark nanotrappy’s results against published literature to
demonstrate the accuracy of the package. We also use nanotrappy to introduce a
novel nanofiber trap configuration allowing to trap atoms at distances below 100 nm
from the fiber surface.
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3.4.1 Nanofibers and uniform waveguides

Optical nanofibers have been largely used for atom-nanophotonics interfaces. Rela-
tively simple fabrication technique of subwavelength diameter, low-loss silica nanofibers
[Tong et al. 2003] and their easy integrability with cold atoms makes them a pop-
ular choice. Early works involved an optical nanofiber embedded in an ensemble
of atoms in a magneto-optical trap (MOT) [Nayak et al. 2007, 2009]. Nanofibers
were the platforms where the two-color trap was proposed, but it took a few more
years to have a state insensitive (same light shift for the ground and excited states)
and compensated trap proposed to suppress the inhomogeneous light shifts and later
demonstrated for Cesium atoms [Le Kien et al. 2005; Goban et al. 2012; Lacroûte
et al. 2012].

In nanotrappy, both electric and magnetic fields of the guided modes of a nanofiber
can be analytically computed thanks to the fiber eigenvalue equation [Snyder and
Love 2012], given a radius and a refractive index for the dielectric. This calculation
is implemented in nanotrappy, so that for this simple structure the package can be
used for computing both the electric field distributions and the trapping potentials.

We use nanotrappy to compute the trapping potentials for an uncompensated
trap and a compensated one, and compare them to published literature [Vetsch
et al. 2010; Lacroûte et al. 2012]. The results are shown in Fig. 3.6. In both cases
the goal is to compute the characteristics of the traps for ground and excited state of
Cesium atoms around a SiO2 nanofiber with 250 nm radius. The differences between
the schemes come from the wavelengths, powers, polarization and number of beams
used.

Figure 3.6(a) shows the configuration of the uncompensated trap. The parameters
are chosen as per [Vetsch et al. 2010]. A pair of red-detuned, counterpropagating
beams at 1064 nm and a single, blue-detuned beam at 780 nm are used to create
the trapping potential. The red- and blue-detuned beams have orthogonal linear
polarization. The total powers used are Pred = 2 × 2.2 mW and Pblue = 25 mW
respectively. The obtained results are shown in Fig. 3.6(b-d). A 1D array of evenly
spaced traps along the nanofiber with depth 0.4 mK is achieved at around 195 nm
from the surface. The corresponding trap frequencies are 355 kHz, 71 kHz, 355 kHz
along r, θ and z respectively. We note that, in such a trap only the ground state
Cesium atoms are trapped, the excited 6P3/2 states experience a repulsive potential
as shown in 3.6(d). The results are in excellent agreement with [Vetsch et al. 2010;
Vetsch 2010].

For the compensated trap, as shown in Fig. 3.6(e), the scheme and parameters are
chosen as per [Lacroûte et al. 2012]. In this configuration, a second, counterpropa-
gating blue beam is used in order to reduce the vector shift as much as possible. The
powers are Pblue = 2 × 16 mW and Pred = 2× 0.95mW. The results are shown in
Fig. 3.6(e-h). Stable traps are obtained for both the ground and excited levels. The
computation yields a trap at 190 nm from the surface with depth ∼ 0.5 mK for the
ground state and 0.3 to 0.6 mK for the excited state. The results are also in excellent
agreement with [Lacroûte et al. 2012; Goban 2015].

We now use this well-known example of a trap around a nanofiber to illustrate
step-by-step how to compute dipole traps with nanotrappy. This sample code, only
a few lines long, can be easily adapted to any structure and alkali atom of interest.

1. First, an atomic system has to be specified. This part is built on the ARC
package [Robertson et al. 2021], hence all alkali atoms can be used. The

42



3.4. USE OF nanotrappy FOR EXISTING STRUCTURES

Figure 3.6: Two configurations of optical trapping around a nanofiber.
(a) Non-compensated nanofiber trap configuration with only one blue-detuned beam,
and crossed polarizations. (b) 2D potential in the (x,z) plane, with same parame-
ters as in [Vetsch et al. 2010]. Trapping sites are periodically placed with distance
λred/2 because of the red standing wave. Stable traps with depth of around 0.4 mK
are achieved. (c) 2D potential in the (x,y) plane at the z-position of a trap. (d) Ra-
dial dependence of the trapping potential of the ground (6S1/2) and excited (6P3/2)
states along the x axis. The splitting of the mF states in the ground state is not
visible at this scale. The trap minimum is located at around 195 nm from the surface
but the atoms in the excited state are not trapped. (e-h) Same plots for the state-
insensitive, compensated configuration (see text) with parameters from [Lacroûte
et al. 2012]. (g) Azimuthal trapping is less efficient in this configuration but (h) a
stable trap for excited atoms, with low inhomogeneous broadening is obtained.

other parameters of the atomicsystem define the hyperfine level of the ground
state considered for trapping, here ground state 6S1/2 Cesium with F = 4.
import nanotrappy as nt
# Definition of the atomic system
syst = nt. atomicsystem ( Caesium (), "6S1/2",f = 4)

2. The trapping scheme has then to be defined: Number of beams, wavelengths,
counterpropagating or not... The wavelength is of the utmost importance as
the package will look for the spatial mode corresponding to this wavelength in
the data folder.
# Defining the beams used for trapping
blue_beam = nt.Beam (780e-9,"f" ,25*mW)
red_standing_wave = nt. BeamPair (1064e-9, 2.2*mW , 1064e-9,

↪→2.2* mW)
trap = nt. Trap_beams (blue_beam , red_standing_wave ,

↪→propagation_axis ="Z")

3. (Optional) The structure around which the atoms are trapped can also be de-
fined. This is necessary for including the CP potential UCP (see Sec. 3.1.2).
Infinite planes and cylinders are already implemented in the package using
UCP = C3/d

3, as well as slabs with tunable thickness. Many materials are also
included. If not specified, no surface is added.
# Adding a surface for CP interactions
surface = nt. Cylinder ((0 ,0 ,0) ,250e-9,"Z")
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4. The simulation object that will store the results of the calculations is cre-
ated, taking as arguments all the previous objects, plus the data folder and the
structure material.
# Create the simulation object that will store the results
Simul = nt. Simulation (syst ,Nm.SiO2 (),

↪→trap , datafolder , surface )

5. The geometry (Axis or Plane) on which we want to compute the trap is defined.
Running the simulation then boils down to one line of code.
Simul. geometry = nt. PlaneXZ (y=0)
Simul. compute ()
trap2D = Simul. total_potential ()

For the 500x500 grid of Fig. 3.6 this evaluation takes only a few seconds on a
standard office computer.

6. A vizualizer object has then to be created to display the results and manip-
ulate the optical powers.
viz = nt. Vizualizer (Simul ,"Y")
fig , ax , slider_ax = viz. plot_trap ()

3.4.2 Photonic-crystal waveguides: the APCW

We now consider a second example involving trapping atoms around a slow-mode
photonic-crystal waveguide. Such a platform with atoms trapped by evanescent
modes is still to be experimentally demonstrated, but several theoretical proposals for
trapping have recently emerged. A one-color dipole trap for trapping Cesium atoms
was first proposed around structured nanobeams or slot waveguides [Hung et al.
2013; Yu et al. 2014], using only a single laser blue-detuned from the D2 transition.
But this schemes lead to small trap depths of a few tens of microkelvins.

To overcome this difficulty without increasing the powers of the trapping beams,
generally limited by the power handling of such devices, a two-color dipole trap was
also proposed for the Caltech alligator photonic crystal waveguide (APCW), following
the ideas implemented with nanofibers. As many designs were proposed over the years
for the APCW, we choose the last one that comes with a computation of the optical
trap [Burgers et al. 2019]. We compute the trapping potential for this APCW with
nanotrappy and compare them to [Luan 2020]. The results are presented in Fig. 3.7.

Figure 3.7(a) shows the aforementioned waveguide and Fig. 3.7(b) its band struc-
ture. The parameters of the device are the same as in [Burgers et al. 2019]: the
period is 370 nm, the gap is 240 nm wide, the edge modulation is 140 nm and the
refractive index is 2 (for SiN). With these numbers the air and dielectric bands are
aligned to the D2 and D1 lines of Cesium, respectively.

Figure 3.7(c) shows a trapping potential in two dimensions. The parameters for
the trap are chosen as in [Luan 2020]. A beam red-detuned from the D1 line of Cs
at 895 nm (δ = 2π × 1700 GHz) and a beam blue-detuned from the D2 line at 848.1
nm (δ = 2π ×−130 GHz) are used to create the trapping potential. The total powers
are Pblue = 230 µW and Pred = 3 µW.

As shown in Fig. 3.7(d-e), a stable trap in the x and y directions is obtained.
There is also trapping in the z direction, although with less strength. The trapping
sites are positioned in the center of the gap, with a trap depth of 3 mK. The trapping
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Figure 3.7: Stable trapping of atoms inside the slot of the Caltech alli-
gator photonic-crystal waveguide (APCW). (a) Schematic of the full APCW,
with taper regions, extracted from [Goban et al. 2015]. (b) Optimized band struc-
ture of the APCW with band edges aligned to D1 and D2 lines. Blue- and red-
detuned modes used for trapping are shown with the corresponding color circles.
The light line for a suspended waveguide in vacuum is shown in red. (c) 2D total
trapping potential with superimposed structure. Periodic stable traps with depth
of more than 3 mK are achievable with powers of 230 µW for the blue beam and
3 µW for the red one. (d) Calculated trapping potential along the y axis. The grey
curve corresponds to the total potential Utot = Ured + Ublue + UCP. Blue- and red-
detuned beam contributions are plotted separately for comparison. (e) Trap along
the x axis. The trapping frequency in this direction is large, with ωx = 2π × 3 MHz.

frequencies are ωy = 2π × 1.1 MHz, ωx = 2π × 3 MHz and ωz = 2π × 570 kHz. Con-
finement on the propagation direction is therefore very strong. The values computed
with nanotrappy are in very good agreement with [Luan 2020]. The slight differences
come mostly from electric field simulations which were performed independently here.

In Chapter 5, we will introduce two other photonic-crystal waveguides (the comb
waveguide [Fayard et al. 2022] and the half-W1 waveguide [Bouscal et al. 2024])
for which we have also found stable trapping schemes thanks to nanotrappy.

3.4.3 Microtoroid resonators

nanotrappy is a versatile package as it can also be used for structures that are not
waveguides. We demonstrate this here by studying the trapping of atoms near a
microtoroid resonator.

One of the earliest proposal of trapping atoms with the evanescent field of a
microstructure was to use the whispering gallery mode (WGM) of a microsphere
[Mabuchi and Kimble 1994]. High Q factor and small mode volume of such res-
onator [Vernooy et al. 1998b] can achieve single-atom strong coupling on average
[Vernooy et al. 1998a], even with hot vapor. Later, a toroidal microcavity was pro-
posed as ultrahigh-Q microresonator for cavity QED [Spillane et al. 2005]. It shows
an even smaller mode volume and increased tunability arising from the added degree
of freedom associated with the principal and minor diameters of the microtoroid. Ex-
perimentally, strong interaction with a WGM of a microtoroid was demonstrated with
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Figure 3.8: Two-color scheme for trapping atoms on the symmetry plane
of a microtoroid resonator. (a) SEM image of a fabricated SiO2 microtoroid
extracted from [Spillane et al. 2005]. Inset: 2D intensity profile of the red-detuned
higher-order mode used for trapping at 898 nm. (b) 2D potential on the outer
edge of the structure. The line cuts (c) and (d) are taken along the dashed arrrow.
(c) Trapping potential along y, at z = 0 and with CP potential included. The
inset shows a zoom at the position of the minimum to highlight the splitting of the
mf states due mostly to the vector shift. (d) Trapping potential along x with a
counterpropagating red-detuned beam. The inset shows a reduced splitting than on
the former case due to cancellation of the vector shift thanks to the red-detuned
beam (from 0.19 to 0.05 mK). Residual splitting is caused by the blue beam.

free-falling Cesium atoms [Aoki et al. 2006b; Dayan et al. 2008]. Following these
first demonstrations, schemes for trapping Cesium atoms in the evanescent field of
such microresonators were proposed [Alton et al. 2011; Stern et al. 2011; Alton
2013].

Following [Alton et al. 2011; Stern et al. 2011] we compute with nanotrappy the
trapping potential for Cesium atoms near a SiO2 microtoroid with a 12 µm outer major
radius Rext, and a 1.5 µm minor radius r. Figure 3.8(a) shows the above mentioned
waveguide and the transverse shape of the red-detuned mode used for trapping. The
blue one is composed of only one lobe in this plane. Modes of the electric field in
a microtoroid can be described by their azimuthal number m, corresponding to the
number of cancellations of the field in one turn, and their number p, counting the
number of lobes in the transverse plane. We choose m = 119 and p = 0 for the
blue mode and m = 106 and p = 1 for the red-detuned beam (same modes as in
[Alton 2013]). The latter has a faster decay in the vertical direction than the blue
one, preventing the atoms from approaching the surface out of the symmetry plane
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[Vernooy and Kimble 1997; Alton 2013].
Figure 3.8(b) shows the simulation of a two-color dipole trap in a section of the

microtoroid with beams red- and blue-detuned from the Cs D2 line at 852 nm. Lasers
with powers∼ 50 mW give a trap depth of about 1.5 mK. Field profiles were computed
with COMSOL Wave Optics module2. Using only one beam of each color produces
a strong vector shift at the position of the atoms, manifested by a inhomogeneous
broadening of around 0.2 mK at the trap minimum. Adding a counterpropagating red
beam reduces this effect by a factor 4. This reduction is shown on Figs. 3.8(c) and
(d). As for the previous examples, the numbers are in very good agreement with the
litterature. This validates the accuracy of the package and makes it an efficient tool
to study optical trapping near nanostructures. nanotrappy has proven to be valuable
as it has been used by our partners in a FET-Open European project (DAALI) and
other research groups [Fayard et al. 2022].

3.4.4 Development of a nanofiber near-field trap

We come back to the nanofiber and use nanotrappy this time not to confirm existing
trapping schemes, but to propose a new one that could achieve trapping sites just
50 nm away from the nanofiber surface.

To make faster and more efficient quantum operations with trapped atoms, it is
necessary to have them as close as possible from a given structure or to be able to
have lattice sites closer than the wavelength [González-Tudela et al. 2015]. As
today most of the dipole traps are based on optical lattices or on evanescent waves,
the characteristic lengths in such traps are given by the laser wavelength, even if some
tunability can be achieved (by varying the angles in the lattices [Wintersperger
et al. 2020], or tuning the powers of the guided modes [Goban et al. 2012]). Some
theoretical proposals which use the CP interactions as a resource are pushing the
limits down to few tens of nanometers [Chang et al. 2014a; Bellouvet 2018; Bel-
louvet et al. 2018], but were limited to plasmonic structures. We show that using
nanotrappy to carry out the calculations, we can propose a novel, near-field trapping
scheme for Cesium atoms close to a dielectric ONF.

This trap differs from the usual two-color dipole trap used in all former examples.
In this scheme, the attractive potential is solely caused by the vacuum forces, i.e the
Casimir-Polder potential. This potential is only significant at close distances and has
a power law decay (∝ r−3 at close distances) and not exponential like the evanescent
guided modes used in the two-color dipole traps [Engelen et al. 2009].

We achieve a metastable trap by dressing the electronic transition 6P3/2 → 7S1/2
between two excited states with a guided evanescent mode ("Shift beam" in Fig. 3.9(a),
slightly blue-detuned). This spatially modulates the light shift of state 6P3/2 while
leaving the ground state unaffected (except by the CP). A second guided beam is sent
through the fiber at at frequency ωL, slightly blue-detuned from the 6S1/2 → 6P3/2
bare transition ω0 ("Dressing beam"). Because of the state 6P3/2 energy, ωL becomes
resonant at a single tunable point y = yb. An atom that slowly approaches the
surface will only follow the Casimir-Polder ground state attractive potential UCP.
But moving closer to yb, its 6S1/2 → 6P3/2 transition will become resonant with ωL,
as the energy of the dressed 6P3/2 increases close to the surface. This creates an
atomic-dressed state, with a small excited-state component when the atom is close to

22019 COMSOL Multiphysics simulation software https://www.comsol.fr/
wave-optics-module. The simulation was done in 2D, considering axis symmetry of the sys-
tem.
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Figure 3.9: A double dressed subwalength trap for Cesium around a
nanofiber. (a) Relevant energy levels used for the doubly-dressed subwavelength
trapping scheme. (b) A guided blue-detuned beam from the 6P3/2 → 7S1/2 transi-
tion creates a repulsive spatially dependent shift for the 6P3/2 state. A second weak
guided beam at frequency ωL, slightly blue-detuned beam from the 6S1/2 → 6P3/2
bare transition, is sent through the fiber. It becomes at resonance at a few tens
of nanometers from the fiber surface (at the position of the blue arrow) creating a
very sharp repulsive potential Udressed (see text) for the ground state atoms. The
sum with the CP potential UCP creates a metastable trapping potential Utot. The
grey hatched area corresponds to a region where the potential prediction of our
steady-state simulation are not physical.

yb. This excited component follows the 6P3/2 potential (in green in Fig. 3.9(b)) which
is strongly repulsive. This leads to an average net repulsive force which is represented
by the steady-state potential Udressed for y > yb. The sum with UCP yields Utot with
a trapping position at yt = 52nm > yb and a depth of 200 µK. At this distance, the
β factor is around 0.2 (compared to < 0.04 in actual ONF experiments).

The shift beam is at a wavelength 1469 nm and 25 mW of power. It is detuned
from the transition by 125 GHz. Only 9 nW of dressing beam is needed, it is detuned
by 18 GHz from the 6S1/2 → 6P3/2 bare transition.

The detuning ∆ = ωL−ω0 varies spatially and is very small at the position of the
trap minimum. It is then important to consider the heating of the atoms via photon
scattering, even for such small powers. The scattering rate of a two-level system in a
far-off detuned trap of depth Udip is given by [Steck 2019]:

Γsc = ΓUdip
ℏ∆ (3.10)

In our simulation, ∆ ≃ 1GHz at the trap minimum and Udip = 0.2mK. This gives
Γsc ≃ 1MHz which converts to a heating rate of around 0.05 K.s−1. With these pa-
rameters, it seems unlikely to observe atoms trapped in this near-field trap as they
would be kicked out in a few milliseconds because of strong scattering. We might
however play with the different powers and detunings to limit this effect.

To our knowledge, this is the first theoretical proposal of a near-field trap using
guided modes. Indeed, this scheme has been introduced with plasmons as they also
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permit an evanescent decay that can be used to dress the excited state [Bellouvet
et al. 2018]3. In this case, the in-trap atom heating is less important as the plasmonic
resonance intensity, which modulates the 6P3/2 energy, decays faster than the "Shift
beam" in the nanofiber case These traps can be critical tools to go to regimes of even
stronger interactions, as we will see in the proposal in Chapter 5, going closer to the
waveguide surface enables a very strong enhancement of the Purcell factor.

Conclusion
In this chapter we have introduced thoroughly the theory of interaction of atoms
with a light field out of resonance. We have shown the importance of taking into
account the complex light-shift structure for our realistic traps in experiments and
have introduced a Python package that efficiently simulates these traps for alkali
atoms close to nanostructures. Its main strengths is that it is fast and can give the
trapping potentials and all relevant parameters for all the Zeeman sublevels for the
specified ground and excited states. We provided three example of atom trapping near
nanophotonic structures and demonstrated thereby the accuracy of the calculation
by comparing our results with published literature. We also introduced a realistic
near-field trap with guided evanescent modes of an ONF. nanotrappy has also been
critical for the design of the photonic-crystal waveguides proposed for the hybrid
atom-nanophotonics platform studied throughout this thesis, making the search for
stable traps around these complex structures more efficient.

The application of the package nanotrappy is not limited to the simulation of
dipole trap around nanophotonic structure or in evanescent fields. It can also be used
to simulate optical dipole trap for any given intensity distribution of the trapping
field. It will be used in Chapter 7 for computing optical tweezer traps. This makes the
package appealing to a larger atomic physics community. In addition, the capability
of calculating the shifts of the Zeeman levels in a given light field, can be used for
estimating dephasing and fidelity of a quantum operation and is therefore useful to
the large atom-based quantum information community.

We will now switch gears and introduce the field of photonic crystals to get a
better idea of the waveguides we want to fabricate and around which we want to trap
atoms via evanescent dipole trapping.

3This decay is faster than for the intensity of a nanofiber-guided mode, allowing to have a larger
detuning at the trap minimum therefore reducing the heating rate of the atoms inside the trap.
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- Prepare ship for light speed.
- No, no, no, light speed is too slow.
- Light speed, too slow?
- Yes, we’re gonna have to go right
to... ludicrous speed. [Gasps]

Space Balls (1987)

Part II:

Realistic platforms based on
photonic-crystal waveguides
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This chapter is an introduction to photonic-crystal waveguides and how they can
be designed in order to be interfaced with atoms. As photonic crystals are a wide
field of research, this chapter only aims at introducing some important concepts in
order to understand the dispersion engineering which is one of the main emphasis of
this work. After a general introduction on the theory of bands in photonic crystals,
we look at how a structure guiding light in one direction at a reduced velocity can
be engineered from them. We introduce some relevant methods for the simulation of
these structures and techniques for the optimization of their dispersion curves. We
finally list the design constraints our waveguides must meet in order to be able to
interface them with Rubidium atoms. Some constraints common to all the designed
waveguides are discussed.
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4.1 The promising case of photonic crystals
What is the similarity between the skin of chameleons, peacock feathers and dis-
tributed Bragg reflector lasers? All exhibit a nanoscopic periodic arrangement of
transparent materials that modify the propagation behaviour of the light. The prop-
erties of these arrangements explain the change of color of the mentioned reptiles
[Teyssier et al. 2015], the iridescence of the bird feathers [Yoshioka and Kinoshita
2001; Saranathan et al. 2021] and the light confinement in some diode lasers. More-
over, chameleons can tune the periodicity of these structures depending on whether
they are stressed or relaxed, modifying dynamically those properties. These periodic
arrangements of materials with different refractive indices are common in nature, and
are called photonic crystals.

4.1.1 Photonic crystals and their band gaps

Electrical properties of materials have been studied since the mid-19th century. Semi-
conductors, displaying more exotic behaviors than simple conducting or insulating
materials, were discovered and a theory explaining them was proposed shortly after
that. This theory states that all the non-trivial features in electron transport, char-
acteristic of semiconductors, arise from the periodicity of the potential seen by the
free electrons as they travel through a static lattice of cations.

Photonic crystals (PC) can be seen as an optical equivalent to these semicon-
ductors. Light propagates through a periodic environment created by the dielectric
function of the material ϵ(r). Their most striking feature is the existence of photonic
band gaps at some frequencies, which forbid the propagation of light (as in their elec-
trical counterparts). This feature was predicted by Eli Yablonovitch [Yablonovitch
1987] and Sajeev John [John 1987] in the 1980s. Their theoretical analysis sparked
enthusiasm in the community to fabricate structures showing a complete photonic
band gap.

In the optical regime, the first demonstration of a PC with a photonic band gap
(in 2 dimensions) was made at the University of Glasgow by [Krauss et al. 1996].
Photonic crystals were soon used to control the light in high-index semiconductor
structures, combining light confinement via photonic bandgaps and non-linear elec-
tronic processes. This lead to many optical applications such as efficient four-wave
mixing devices [Chopin et al. 2022], electrically pumped lasers [Crosnier et al. 2017]
or autocorrelators for picosecond pulses [Monat et al. 2014]. More exotic applications
of photonic crystals in the optical regime include gaz spectroscopy with waveguides
[Vlk et al. 2021; Peng et al. 2023] and weighing of living bacteria thanks to hollow
cavities [Therisod et al. 2022]. In all following discussions, we will consider photonic
crystals in the optical regime.

Periodicity in optical materials: a simple example

Works on the propagation of light in periodic materials go back well before the seminal
papers of Yablonovitch and John. As such, Lord Rayleigh was already interested in
multilayer structures as early as 1887 [Rayleigh 1887]. We will in the next paragraph
try to give some intuition on the phenomena causing the appearance of a band gap
in periodic structures by taking the example of a one-dimensional multilayer mirror.

Figure 4.1 shows the most simple case of a 1D photonic crystal, i.e. a stack of
layers of two materials with different dielectric constants. This structure, known

52



4.1. THE PROMISING CASE OF PHOTONIC CRYSTALS

(a)

500 750 1000 1250

Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

|r|
2

(b)

Number
of layers

100

10

5

1

−0.50 −0.25 0.00 0.25 0.50
kx
[
in units of 2π

a

]
0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u

en
cy
[ in

u
n

it
s

of
c a

]

Photonic
bandgap

(c)

Figure 4.1: Photonic band gap opening in a 1D photonic crystal.
(a) Sketch of a 1D Bragg mirror, with layers of different dielectric constants and
widths. The arrows show the splitting of the light at each interface. The π phase
shifts are displayed at the relevant interfaces. (b) Reflectivity as a function of the
number of layers constituting the mirror. A photonic band gap, manifested by high
reflectivity, appears progressively when increasing the number of layers. We note
that only a few layers are enough to see some reflection. Dotted lines show the
extent of the theoretical band gap computed via Plane wave expansion (PWE). As
PWE assumes periodic boundary conditions, it amounts to simulating an infinite
number of layers. (c) Dispersion relation of the infinite 1D Bragg mirror in reduced
units. a = d1 + d2 is a period of the Bragg grating. The reflection spectrum of (b)
was obtained through transfer matrix formalism and the band diagram in (c) via
PWE (see Appendix B).

as a Bragg mirror1, exhibits most of the interesting properties of PCs. At each
interface, some of the light is reflected while some is transmitted. This structure can
be made to work as a mirror. To this end, we want all the reflected waves to interfere
constructively (and the transmitted ones destructively). We recall that a wave going
from a medium with index n1 to a medium with index n2 > n1 acquires a phase of
π upon reflection on the interface, while it is not the case on the opposite case. We
can design the structure so that each reflected beam has a phase that is a multiple
of 2π on the input plane of the Bragg mirror by ensuring the waves pick up a phase
π/2 while propagating in any given layer (as highlighted in Fig. 4.1(a)). This can be
simply written as a condition on the width of the layers:

di = λ

4ni
(4.1)

where λ is the wavelength of interest and ni the refractive index of layer i.
1Main component of the distributed Bragg reflector (DBR) lasers mentioned in the introduction.
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Figure 4.1(b) shows that even for a single layer we already get 70% reflection at
the design wavelength λ. This approaches 100% after only a few layers. We note
that the reflection is high for a wide range of wavelengths around λ. We conclude
that light cannot propagate inside the structure in this range (from about 590 nm
to 980 nm). Figure 4.1(b) hence shows the gradual appearance of a photonic band
gap caused by the periodicity of ϵ. Figure 4.1(c) provides the dispersion relation of
light in a Bragg mirror with infinite layers. The resulting band gap matches the finite
layers predictions.

Even if condition (4.1) is not strictly met, a photonic band gap usually exists.
Any scattering off the interfaces couples the modes travelling in opposite directions
(i.e. separated by 2π/a in k space) which gives rises to an anti-crossing between
optical modes, creating forbidden bands for the light. It can be shown that the gap is
the largest for the Bragg condition. As the band gap opens through an interference
effect, we can anticipate that the electric field enters quite far into the Bragg mirror.
This is in strong contrast with the common process of total reflection at an interface
which creates an evanescent field on the opposite side. Note that these effects will
hold for all the more complex PCs encountered in the following.

From Bloch waves to band gaps

The exotic behaviors of PCs hence come from coherent scattering of the light on
the periodic structure. We here derive a more general framework to study them.
We partially follow the approach described in [Joannopoulos et al. 2008]. We are
mostly interested in photonic crystals periodic in two dimensions but the following
also applies to 3D. To study the propagation of light, one can solve the Maxwell’s
equations with a periodic dielectric function, already encountered in Chapter 2. It is
usually written for the macroscopic magnetic field2 H as:

∇×
( 1
ϵ(r)∇× H(r)

)
=
(
ω

c

)2
H(r). (4.2)

Note that we already removed the temporal dependence of the field assumed to be
of the form eiωt. This expression is known as the master eigenvalue equation as it is
an eigenvalue equation of the linear operator Lϵ = ∇× 1

ϵ(r)∇×, with eigenvectors H
and eigenvalues (ωc )2.

If the structure is not periodic, but defined by a uniform dielectric function
ϵ(r) = ϵ0ϵr, the solutions of Eq. (4.2) are plane waves with wave vector k, such that
Hk(r) = H0eik·r, where the eigenvectors are now indexed by their wave vector. In-
jecting these solutions back into Eq. (4.2) gives a relation between k and ω:

∥k∥2= ϵr

(
ω

c

)
. (4.3)

This expression is known as the dispersion relation of the structure, and gives crucial
information about the propagation of light in this material. We notice that for any
given ω, we can find a solution Hk(r) such that the dispersion relation is satisfied.
The eigenvalue spectrum of Eq. (4.2) is hence continuous in this uniform case.

Let us now assume we have a more general 1D photonic crystal, defined by a
periodic dielectric function of period a, ϵ(r) = ϵ(r + na êx), n ∈ Z. Can we find a

2Expressing the problem in terms of the magnetic field is a convention from the PC community
because of mathematical convenience. Indeed, we could find an equation like Eq. (4.2) on the electric
field E but the obtained operator is no longer Hermitian and many mathematical derivations become
more involved. E can anyway be easily derived from H from the structure relation.
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similar relation between k and ω? Because of the discrete symmetries that exist in
the system, it can be shown that all modes with wave vector along x of the form
k′
x +m(2π/a) are degenerate in frequency [Joannopoulos et al. 2008]. By linearity,

a solution of the Maxwell’s equations can be written as an infinite sum of plane waves
with kx = k′

x +m(2π/a),m ∈ Z. By factorizing by eik′
xx, and seeing the infinite sum

as a Fourier series, we can write the solutions as:

Ek(r) = eik′
xxEp(r) and Hk(r) = eik′

xxHp(r), (4.4)

where k = (kx, ky, kz) and Ep(r) and Hp(r) are periodic functions in x:

Ep(r + na êx) = Ep(r) and Hp(r + na êx) = Hp(r) for n ∈ Z. (4.5)

This is known as the Bloch’s theorem. It means that any mode of the periodic
crystal can be written as a plane wave modulated by a periodic function. Because this
function is an infinite sum of all modes differing in kx by 2π/a, two solutions Hk1 and
Hk2 with k1 − k2 = m2π

a êx, with m an integer, actually represent the same physical
modes. It means they will have the same frequency, and the dispersion diagram of
the crystal is hence periodic of period 2π/a. This allows to restrict kx to the range
[−π/a, π/a]. This range is known as the first Brillouin zone (1BZ).

Physically, this theorem has crucial implications. It means that for a wave prop-
agating in a periodic structure, its wave vector is not unique anymore, but defined
up to a multiple of 2π

a . One could think that adding discrete scatterers in a struc-
ture could just impede the propagation as light would randomly scatter off of them.
Bloch’s theorem shows it is not the case as all the scattering processes are coherent,
forming a periodic Bloch enveloppe uk.

Because of this periodic enveloppe, the Bloch modes are bounded spatially. This
imposes that the spectrum of Eq. (4.2) cannot be continuous anymore3. This means
that instead of having a continuous spectrum of frequencies ω, we have a discrete
ensemble ωn(k) associated to the solution Hk,n. ωn(k) is the dispersion relation of the
structure, also referred to as the band structure, as it is composed of a given number
of bands. Knowing ωn(k) is crucial as it gives enormous amounts of information on
the light propagation. The most important aspect for us in the following is the group
velocity of the light. It is defined as the velocity of a wavepacket inside the structure.
For a given band n, it is given by:

vg,n(k) = ∇kωn(k). (4.6)

We see in Fig. 4.1(c) that the band becomes flat at the edge of the 1BZ. This
means that the group velocity goes to 0 for this mode. This feature is common to all
photonic crystals. Light can propagate very slowly in a PC, and this is exactly what
we will try to harness in our platform.

3While this property is very general, [Joannopoulos et al. 2008] give an intuitive explanation by
using the orthogonality of guided modes. If the spectrum was continuous, two modes of frequency
ω and ω + δω should not be too different and could be written as Hk and Hk + δHk. Taking their
dot product gives (Hk, Hk) + (Hk, δHk) which cannot be zero as the two terms are not of the same
order of magnitude. Hence the spectrum has to be discrete, allowing for important changes of the
spatial mode structure from one band to another, preserving the orthogonality.
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Figure 4.2: Real and reciprocal lattice for a 2D hexagonal photonic crys-
tal. (a) Lattice in real space with the unit vectors that leave the lattice unchanged.
a1 = a

2 êx + a
√

3
2 êy and a2 = a êx. A few unit cells are represented. (b) Reciprocal

lattice in k space. b1 = 4π√
3a

êy and b2 = 2π
a êx − 2π

a
√

3 êy. The dots are spaced by
4π

a
√

3 and have no extension. The orange shaded area is the 1st Brillouin zone around
k = 0. The red triangle is the irreducible part of the 1BZ with the high symmetry
points (Γ,M,K). As the dots are separated by a linear combination of the bi, they
all represent the same physical mode.

4.1.2 How to make waveguides out of photonic crystals

In this section, we show how to guide light with a structure based on a 2D photonic
crystal. We analyze the band structure of a common waveguide made with a linear
defect introduced in a 2D structure.

Photonic crystals in two dimensions

Figure 4.2 generalizes the concept of Brillouin zone in two dimensions. For a 2D lat-
tice, there is a periodicity along 2 unit vectors (a1 and a2) represented in Figure 4.2(a).
Any solution of the eigenvalue equation is hence written:

Hk = eik·ru(r), (4.7)

with k = k1b1+k2b2 where the reciprocal lattice vectors bi are given by ai·bj = 2πδij .
Figure 4.2(b) shows the corresponding reciprocal lattice and the 1st Brillouin zone in
orange. The 1BZ is hence two-dimensional and each band is a surface immersed in a
3D space. Such a full band structure in 3D would be very hard to read. To simplify
the vizualization, we exploit the rotational symmetries of the structure. The full 1BZ
can be reconstructed by rotations and mirror symmetries from the red triangle shown
in Fig. 4.2(b), known as the irreducible 1BZ. Γ, K and M are referred to as high-
symmetry points, and the band structure is usually plotted along the lines joining
them.

A final symmetry has to be noted. Indeed, as it is invariant along z, the 2D PC is
unchanged by a mirror reflection by the (x, y) plane (changing z into −z while leaving
x and y invariant). This property allows Eq. (4.2) to be separated into two indepen-
dent equations, depending on the parity of the mode by this mirror reflection. If the
mode is symmetric, it means the normal component of the electric field has to be zero.
Ek will be tangential to the symmetry plane. Conversely, as Hk is a pseudovector, its
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(a) (b)

Figure 4.3: Band diagram of a 2D PC with hexagonal lattice and its
projection in 1D. The parameters are the same as in Figure 4.2(a). (a) Band
structure for both TE and TM polarizations. A band gap, shaded in red, exists only
for the TE polarization. Insets recall the real and reciprocal lattices. (b) Projection
of the TE-polarization diagram onto the x direction. The discrete modes become
bands as for a given kx we consider all possible extended modes with any ky as
depicted in the inset. The TE band gap is conserved as the highest and lowest
frequencies are usually at the high symmetry points. Both diagrams are computed
with a Guided Mode Expansion (GME) algorithm (see Appendix B).

tangent component will vanish, and only Hz will be non zero. This mode, which can
be described completely by its (Ex, Ey, Hz) components is called transverse-electric
(TE). If the mode is anti-symmetric, the same reasoning gives a mode described only
by its (Hx, Hy, Ez) components, and referred to as transverse-magnetic (TM). These
two polarizations have different behaviors and dispersion relations, so we have to
consider them independently.

Plotting the cut of the band structure of the two polarizations along the edges of
the irreducible 1BZ gives rise to the diagram shown in 4.3(a). A band gap exists for
the TE symmetry, but not for the TM one [Johnson et al. 1999]. It can be shown
that the extrema of a band are usually reached on the edges of the 1BZ4, which makes
the restriction to the irreducible BZ reasonable. Note that the band diagram is given
in terms of the reduced frequency ωa/2πc.

Instead of following the edges of the irreducible BZ, we can choose to represent
the band structure by projecting it along a given axis, for example along x. For every
point k in the 1BZ, we compute its frequency, and display it at the corresponding
position kx, with kx the projection of k along x. Figure 4.3(b) shows such a projection
for the TE modes. We see that the band structure is no longer a set of lines, but is
composed of a discrete set of continuous bands. Indeed, for a given kx, we have the
contribution of an infinite number of modes, spanning a perpendicular line at position
kx (as represented in real space in the inset of Fig. 4.3(b)). The slight variation of ωn
for neighboring k gives rise to wide, continuous bands. We notice, as expected, that
the TE gap is conserved by this projection.

4Consider a 1D photonic crystal (for example the one in Fig. 4.1(c)). The frequency is the lowest
at k = 0 and increases with k. A band gap opens at k = π

a
and the upper band energy keeps

increasing for higher values of k widening the band gap. The band gap is hence the smallest at the
edge of the 1BZ.

57



CHAPTER 4. THE ROAD TO COMBINE PHOTONIC-CRYSTAL
WAVEGUIDES AND COLD ATOMS

0.0 0.1 0.2 0.3 0.4 0.5
kx
[
in units of 2π

a

]
0.0

0.1

0.2

0.3
ω
a
/
2
π
c

kx

−1.0

−0.5

0.0

0.5

1.0

<(
H
z
)

x

y

Figure 4.4: Band structure of a W1 waveguide with a thickness of 150 nm,
and mode profiles of some Hz modes. Left: Band structure of a W1 waveguide.
Blue bands are index guided along y, while purple bands are gap guided. Dashed
bands are y-even while continuous ones are y-odd. Right: 5 maps of the real part
of Hz as indicated by the dots in the band structure. Because the real part of the
magnetic field (pseudovector) is displayed, the even and odd modes are reversed.

Optical waveguiding in the band gap of a 2D PC

In order to create a waveguide out of this photonic-crystal structure, we would want
modes to propagate inside the crystal along a given direction. A common way of
making photonic-crystal waveguides (PCW) consists in adding a defect along a line
into the periodic structure which makes a mode appear inside the band gap of the
2D PC. For the 2D hexagonal PC considered before, this can be done by removing a
line of holes along the x direction. This so-called linear defect creates an effective 1D
waveguide, called a W1 waveguide, out of a 2D structure and adds a few modes
on the projected band structure, as can be seen in Fig. 4.4. These added modes are
guided along the linear defect. Two mechanisms explain this guiding:

• Total internal reflection: the average index of refraction of the 2D PC is smaller
than the one of the linear defect because of the presence of the holes. Hence the
light sees a core of high refractive index, surrounded by an effective cladding.
The guiding happens by total internal reflection as in optical fibers. This mech-
anism explains the two lowest bands in Figure 4.4. These modes are very similar
to uniform ridge waveguide modes of adequate width and index contrast (as we
will see in Figure 4.6).

• Photonic band gap guiding: For frequencies inside the photonic band gap of the
2D PC, the PC behaves as a perfect mirror and as the light cannot enter this
regions, it remains guided into the defect. This is the dominant effect explaining
the bands located inside the band gap in Figure 4.4. Their field maps show a
lot of diversity not achievable with the index guided bands.

W1 waveguides have attracted a lot of interest since the late 1990s [Krauss et
al. 1996]. They have been used already for the creation of correlated photon pairs
through four-wave mixing [Xiong et al. 2011], for gas spectroscopy [Vlk et al. 2021]
or as single-photon sources via integration of quantum dots [Arcari et al. 2014].
They will serve as a basis to introduce important concepts in the following. The
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Figure 4.5: Symmetries and confinements along z. (a) Difference of symme-
tries of the electric field for a TE-like and TM-like modes in the transverse plane.
(b) The guiding in the slab depends on the projection of the total wave vector k
along the z axis. Radiative modes (down) have an intrinsic loss mechanism due to
out-of plane diffraction.

main waveguide studied in this work [Bouscal et al. 2024] is derived from the W1
design.

Photonic-crystal waveguide slabs

Realistic structures do not have translational invariance along the z axis. They have
a limited transverse size, which can be on the order of the wavelength. We call slabs
these structures that are close to a 2D geometry. This limited size along z can be
wanted as it allows for confinement of the light in the third direction. We obtain
waveguides with confinement along y because of the 2D PC and along z by total
internal reflection.

However, this breaking of z-invariance adds constraints on the existence of guided
modes within the slab. We neglected earlier the component of the k vector along
z which cannot be the case here anymore. For a mode to stay guided inside the
structure, one needs to ensure the conditions for total internal reflection guiding on
the top and bottom interfaces are respected. It is the case if kz is an imaginary
number, as this will translate as an evanescent wave in this direction. This can be
written as:

k2
z = ∥k∥2−k2

∥ < 0⇔ ω <
c

n
k∥ (4.8)

with k∥ the component of the wave vector within the slab. If this condition is not
fulfilled, kz is real5 the modes cannot be constrained between the two faces of the
slab and they will just propagate through. We call them radiative modes (see Figure
4.5(b)). In a band diagram this manifests as a zone that we call the light cone. It is
represented by the hatched area in Fig. 4.4(a).

Another modification from the 2D regime concerns the polarization of the modes.
Indeed, the mirror symmetry now only exists only on the plane z = 0. TE and TM

5kz is either real or imaginary and cannot be any complex number. Indeed, as light propagates
in the PCW, k∥ must be real, hence k2

z is a real number, which means kz ∈ R or kz ∈ iR.
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modes cannot be defined as before as z invariance is broken. It is still possible to
define TE-like and TM-like modes, depending on their symmetry upon reflection by
the remaining symmetry plane (x, y) at z = 0. Figure 4.5(a) shows schematically how
these new modes behave.

4.1.3 Slow light in 2D photonic-crystal waveguide slabs

We showed in the previous section that we can use linear defects in 2D PC to create
gap-guided bands inside such defects. We note from Fig. 4.4 that the gap-guided
bands are much flatter than the index-guided ones, meaning light propagates at a
much lower group velocity. This can be interesting for enhancing the interaction with
trapped atoms as we will see later.

Why PCWs have such flat bands?

We try to develop here an intuitive understanding on the origin of these flat bands.
We start by looking at the simplest possible 1D waveguide, a nanobeam of constant
refractive index (taken here to be n = 3.35). Its band diagram is shown in Fig. 4.6(a).
The dispersion has been artificially folded as the waveguide is not periodic. We then
add periodicity, for example by introducing air holes in the center of the structure
with a period a. The diagram is folded at the edge of the 1BZ, and gaps appear at
these positions. Moreover, light scatters coherently on the holes, coupling the modes
travelling in opposite directions. The blue and green bands couple even though they
have opposite group velocities giving rise to an additional avoided crossing in the
band structure (i.e. a band gap of width ∆) and a mixing of the spatial mode profiles
along the band, represented by the green-to-blue shading.

Depending on the strength of the coupling and the position of the crossing in kx,
this can give rise to rather flat bands. Changing the strength of the coupling to tune
the curvature of the slow mode is the main idea of the dispersion engineering that
will be the heart of next section.

We showed that we can have waveguiding and slow light in one-dimensional
PCWs. The 1D strategy has attracted a lot of attention in the quest to enhance
light-matter interactions with PCWs. Indeed, the proposed Alligator [Goban et al.
2014], comb [Fayard et al. 2022] and sawfish [Bopp et al. 2022] waveguides are all
one-dimensional. They can be realized with structures with less tunable geometrical
parameters (hence easier to design) and provide strong confinement in the transverse
directions via total internal reflection. We focus on this work on using linear defects
in 2D PC slabs instead. What are the advantages of such 2D waveguides with respect
to their 1D counterparts?

1D vs 2D photonic-crystal waveguides

2D PCWs offer many advantages regarding fabrication, tunability and available band-
width of guided modes. Indeed, we show in the following that 2D PCWs allow to use
guided modes that are further away from the light line, opening more space for red-
and blue- detuned modes which will be critical to our platform. 2D PCWs also have
some interesting advantages when it comes to dispersion engineering.

As seen before, there are two different kinds of processes to guide the light inside
a waveguide, internal reflection and band gap guiding. The lowest bands in the W1
band diagram are index-guided bands. At these frequencies, the light "sees" a central
uniform slab of dielectric constant 11.2, and external regions on each side of a lower
refractive index. Figure 4.6(b) shows some equivalent uniform waveguide that gives
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(a)

(b)

Figure 4.6: Scheme of the effect of the periodicity on 1D and 2D PCWs.
(a) Left: Artificially folded band diagram of a 1D uniform slab waveguide of thickness
150 nm, width 450 nm and dielectric constant ϵ = n2

GaInP suspended in air. Inset
shows the structure in the (x, y) plane. The blue and green lines are the first two
guided modes (higher orders in grey). Right: Adding the periodicity (via air holes of
radius 70 nm separated by a = 230 nm) opens band gaps at the edges, and enables
coupling between bands which manifests as an avoided crossing (gap of width ∆) and
mixing of the bands as shown by the green to blue shadings. This creates relatively
flat bands. (b) Left: Uniform waveguide of the same refractive index as (a) but with
claddings on each side with ϵ = ϵ̄, the average dielectric constant over the 2D PC.
The lower index contrast drags the modes lower in frequency, represented by the
red continuum of guided modes. Right: When introducing periodicity, a band gap
opens in the continuum, the same as in Fig. 4.3(b), allowing to access the slow mixed
guided mode of Fig. 4.4. The lowest band is not mixed, hence is only index-guided.
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index-guided bands similar to the W1 ones. The dielectric constant in the brighter
regions is given by the average ϵ over a 2D PC with hexagonal lattice (ϵ̄ = 7.88).
The first two modes with the lowest energy are highlighted. They are below the
continuum6 and do not interact, as the folding of the Brillouin zone is again artificial.
Compared to the same nanobeam into the air, we notice that reducing the index
constrast ∆n has shifted the available guided modes down, way further from the
light line.

We turn on the periodicity, this time by replacing the external regions by a periodic
array of holes. The dispersion relation becomes the one of the already encountered W1
waveguide. The blue and green bands couple, giving rise to the slow-mode gap-guided
band of W1 which will populate the band gap, which just opened in the continuum
(see Fig. 4.4). As before the shading represents the mode mixing. This interpretation
is supported by the variation of the modes profiles along a given band. On the insets
showing the gap-guided band profiles of Fig. 4.4, we see that the modes in a band
are drastically different at low k or close to the edge of the 1BZ, which makes sense
as they originate from different bands before coupling through the periodicity.

Figure 4.6(b) shows the main advantage of 2D PCWs over 1D ones. We have
access, with the same materials as in Fig. 4.6(a), to guided modes over a wider range
of frequencies. Most importantly, as these bands have globally lower frequencies, they
are available over a wider range of k vectors, being further away from the light line.

Finally, 2D PCWs are very much suited for dispersion engineering as we can
independently modify the shape of the gap-guided bands by tuning the geometry of
the first rows of holes as we will see later, without affecting much the bulk modes nor
the index-guided bands7, which is not at all the case for 1D PCW where everything
shifts together. This is a very convenient feature as designing such a 2D PCW can
hence be broken down into independent steps.

4.1.4 PCWs for increased interaction with quantum emitters

PCWs provide low effective area and high group index

Equation (2.50) from Chapter 2 tells us there are two main knobs to increase the
interaction of an emitter to a waveguide mode: reducing the effective mode area
Aeff

8, and reducing the group velocity vg of the light in the waveguide.
PCWs can guide light in a slab even for small transverse dimensions. This leads

to a mode that extends into the air (vertically for a W1 waveguide), leading to lower
effective areas, as the intensity is integrated against the dielectric constant in the
expression of Aeff . To have a more quantitative understading we take the example
of a nanowire with square section of width d (also known as nanobeam). We see in
Figure 4.7(a) that, starting from a wide waveguide, Aeff decreases until a minimum
value, reached at around λ/n [Tong et al. 2004], before increasing fast for lower sizes.
In this latter regime the mode field resembles a plane wave, strongly deconfined into
the air. For emitters embedded in a PCW, one has hence to find this minimum,
which still supports guided modes. For atoms trapped outside the structure, we want
both the effective mode area to be small and the field at the atom position to be
important. As shown in Fig. 4.7(b), a trade-off has to be found to have a significant

6The edge of the continuum is linear as it can be though of as a light line in the y direction where
the condition (4.8) ω < c/nclad kx has to be verified, with nclad =

√
ϵ̄ = 2.8 the refractive index of

the cladding. nclad > nair, which explains why it is a stricter constraint than the z light line.
7See for example in Fig. 5.5(b).
8Defined as Aeff =

∫
A

drϵ(r)|E(r)|2

max[ϵ(r)|E(r)|2]
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Figure 4.7: Variation of Aeff and the fraction of intensity in the air with
the waveguide transverse size. (a) Variation of the effective mode area of a
guided mode at λ = 780 nm in a nanobeam suspended in air at varying width d.
The insets show the shape of the intensity of the electric field at each end of the x
axis, revealing the extension of the field into the air for small sizes. The x-axis is d
multiplied by the refractive index of the waveguide. With that normalization we see
the position of the minimum of Aeff is almost constant. (b) Fraction of intensity of
the electric field out of the waveguide. For the high refractive indices that offer the
lowest mode areas, this decays very fast.

fraction of the field into the air, while not increasing Aeff too much when reducing
the transverse size.

We saw before that PCWs usually have slow bands, whose shape can be tuned by
changing the parameters of the waveguide, allowing to design the value of the group
index at which we want to operate. Figure 4.8 shows the difference of the achievable
1D Purcell factors when taking modes at two very different group indices. The highest
coupling factors are obtained inside the structure, accessible for solid-state emitters.

PCWs hence allow to play on both knobs identified earlier thanks to their strong
transverse confinement and tunable slow guided modes.

(a) (b)

Figure 4.8: Comparison of the estimated 1D Purcell factor in the W1
(a) 1D Purcell factor for the mode at k = 0.3 on the W1 slow band (pale red in
Fig. 4.4) (b) 1D Purcell factor for the mode at k = 0.5 on the W1 slow band (dark red
in Fig. 4.4). Edges of the waveguide are highlighted in white. The huge differences
in the values of the Purcell factor are due to the extreme differences in group indexes
in the two cases (5.8 vs > 100) and the effective mode areas. The highest 1D Purcell
is inside the slabs, but significant values can also be reached outside.
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Experiments with emitters and PCWs

Pioneering experiments have already harnessed these strengths and shown near unity
coupling of a solid state emitter in a W1 waveguide, either with quantum dots [Ar-
cari et al. 2014] or with dopants (Erbium ions) [Weiss et al. 2021]. The embedded
quantum dots have even been successfully exploited for quantum operations [Tira-
nov et al. 2023]. As solid state emitters have some limitations, especially regarding
scaling up in numbers, some groups have demonstrated this increased interaction
for either hot [Peng et al. 2023] or cold atoms in the vicinity of slow-mode PCWs
[Goban et al. 2014]. The latter have shown an interaction probability on the order of
30 − 50 % which is remarkable. These experimental achievements have asserted the
interest of such platforms, but a fully integrated platforms with trapped cold atoms
is still to be realized. We will propose some other PCWs in the following in order to
achieve it.

4.2 Methods for simulating photonic crystals

The photonic eigenvalue equation (4.2) has very few analytic solutions (except in
free space or in uniform waveguides). In most cases, numerical methods have to be
used in order to solve it. Different methods exist, each having their own advantages
and drawbacks. Some methods are very versatile, but at the cost of long computa-
tion time, while faster PCW-specific techniques can be tailored, usually with some
approximations.

This section gives a very short overview of the main numerical techniques used
throughout this thesis (Plane Wave Expansion, Guided Mode Expansion and Fi-
nite Difference Time Domain). A more in-depth explanation of each method, of the
simulation parameters used and some considerations on convergence are provided in
Appendix B9.

4.2.1 Plane wave expansion and Guided mode expansion

As the eigenvalue equation (4.2) is linear, it is possible to solve for H by expanding
it on a basis of orthonormal modes. This basis can be chosen to be the set of plane
waves or the set of guided modes of a uniform slab.

Plane Wave Expansion

If we choose the basis of plane waves, we realize the Plane Wave Expansion method
(PWE), introduced in [Johnson and Joannopoulos 2001]. The idea is the follow-
ing: as solutions of the eigenvalue equation (4.2) are Bloch modes, we can write the
Bloch envelope as a Fourier series, i.e. an infinite sum of plane waves. Finding the
Bloch mode boils down to finding the coefficients of the Fourier decomposition. The
dielectric constant can also be expanded as a Fourier series and then inverted. The co-
efficients of the Fourier series can be derived through diagonalization of the obtained
matrix. While the series is theoretically infinite, one has to specify a truncation level
in order to have a finite matrix to diagonalize. This parameter limits the accuracy
of the method and gives rise to the Gibbs phenomenon10 as it means ignoring high

9Other techniques are also introduced, used for design of the comb waveguide [Fayard et al. 2022].
10The dielectric function and the fields are computed as truncated Fourier series. Gibbs phe-

nomenon is a consequence of the fact that you need an extremely high number of harmonics to
approximate a step function. In our case, such a function representing a sharp interface will then
represented as an oscillating function which overshoots the step.
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frequency components of the field. PWE can only be used for 2D PC and not slabs
and cannot be used for dispersive materials.

Guided Mode Expansion

If instead, we choose the basis of guided modes of a uniform slab, we perform the
Guided Mode Expansion (GME), introduced in [Andreani and Gerace 2006]. This
method is by essence approximate: the guided modes of a slab are orthogonal [Sny-
der and Love 2012], but do not form a complete basis. GME also suffers from the
Gibbs phenomenon and is hence not suited for computing fields close to interfaces.
GME is well suited for PC slabs, giving usually more accurate results that PWE, but
is a bit slower. As its PWE counterpart it is limited to non-dispersive materials.

In the following we use the legume Python package11 for performing both PWE
and GME simulations.

4.2.2 Finite Difference Time Domain method

The Finite Difference Time Domain (FDTD) method is the most versatile one. FDTD
simulations are based on the direct resolution of Maxwell’s equations in time domain
and allows to get the full evolution of E and H in time and space. The equations are
solved on a discrete grid in both space and time. Derivatives are approximated by
taking the difference between neighbouring sites on the grid. The mesh is necessarily
rectangular.

Unfortunately, these simulations can be very extensive in terms of computation
time, especially in 3D where the simulation time scale as 1

(∆x)4 where ∆x is the grid
discretization (see Appendix B). For this reason, we usually prefer the expansion
methods (PWE, GME) to carry out systematic optimizations of the PCs over a wide
parameter space, and we then validate the results and perform a finer optimization
with the more time-consuming 3D FDTD software.

In the following, the FDTD simulations are performed with Lumerical12.

4.3 Designing photonic-crystal waveguides to work with
cold atoms

We have seen that photonic-crystal waveguides are interesting devices as they allow
to have guided modes with evanescent decay in vacuum, offering enhanced interaction
with neighboring emitters, while enabling to tune this mode dispersion by structure
engineering. This can be interesting for coupling cold atoms in a Waveguide QED
platform as it amounts to being able to shape their electromagnetic environment
i.e their 1D Purcell factor. But PCWs have historically been developed for telecom
applications and have rarely been interfaced with cold atoms.

As the number of atomic species that can be easily cooled is limited (and share
many similarities), bridging the gap between nanophotonics and atomic physics sets
some strong constraints on the nanophotonics part. This section explores such re-
quirements and how they can be met.

11le GUided Mode Expansion (legume) available freely at https://legume.readthedocs.io/en/
latest/.

122022 Ansys Lumerical simulation software based on the finite-difference time-domain (FDTD)
method. https://www.lumerical.com/
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4.3.1 A stringent bill of specifications

The design of a periodic waveguide aimed at increasing the coupling with cold atoms
should maximize the emission rate into the waveguide mode Γ1D, expressed by Eq. (2.50).
Since the group index diverges at a band edge, a naive approach could be to align
the transition frequency of the atom with any band edge of the photonic dispersion
diagram. Unfortunately, slow light is very sensitive to fabrication imperfections. In a
practical situation, fabrication imperfections set an upper bound to the group index
ng that can be reached with low uncertainty. This effect is discussed in the following
subsection.

A second issue that emerges in such a design process concerns the value of the
effective mode area at the position of the atom Aeff . Indeed, the design is a trade-off
between two opposite trends. On the one hand, we need a mode whose field extends
far into the air cladding so that atoms can interact with it, implying that it weakly
interacts with the periodic pattern. On the other hand, we need to be able to control
carefully the group velocity and the curvature of the dispersion relation, meaning
that we need a mode that strongly interacts with the periodic pattern.

Finally, a third important challenge is to generate a stable optical trap for the
atoms at subwavelength distances of the waveguide and to be able to bring the atoms
inside this trap. A fully integrated trapping scheme can be achieved by using guided
modes at frequencies detuned from the atomic transition. For instance, red- and
blue-detuned modes can be used to create a two-color trap as discussed in Sec. 3.2
with other waveguides. The design of the periodic waveguide should thus ensure the
presence of additional modes with adequate field profiles, which spatially overlap with
each other and with the slow mode.

As a whole, the design of a periodic waveguide with increased atom-photon inter-
actions is a complex task that should meet the following criteria:

1. Slow and single-mode operation at the transition frequency of the atom (large ng),

2. Large fraction of the electric field in air outside the structure (while keeping a
small Aeff),

3. Robustness to fabrication imperfections,

4. Material with high n that is transparent at the alkali wavelengths,

5. Existence of additional modes at frequencies detuned from the atomic transition
for trapping the atoms optically with low powers (few mW),

6. Clear access around the structure to ease the transport of the atoms to the
trapping sites,

7. Efficient coupling of free-space light into and out of the waveguide.
Some general ideas can be put forward for most of these conditions, in the case

of an optical waveguide coupled to Rubidium atoms. They will be discussed in the
following. A case by case design of three PCW-atom hybrid platforms will be the
main focus of Chapter 5.

4.3.2 Dispersion engineering for robustness against fabrication im-
perfections

Fabrication of any nanoscale structure can introduce deviations with regard to the
simulated one because of unavoidable fabrication inaccuracies. As we want these
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deviations to have the smallest possible impact, we have to study how they affect
dispersion of the guided modes and how to tune the waveguide properties to make it
robust to these effects.

The double curse of fabrication imperfections

Two kinds of imperfections can appear when fabricating a structure. The fabrica-
tion can introduce random errors (low precision), for example by having a random
distribution of hole sizes and positions along the structure, or systematic errors (low
accuracy) by having all parameters offset by some value with respect to the settings.
Even if state-of-the-art techniques can limit errors down to a 2 nm accuracy [Asano
et al. 2006], their effect on the dispersion properties of the crystal has to be considered.

Random errors in fabrication are disorder. It is critical as it breaks the transla-
tional symmetry of the crystal and makes Bloch’s theorem not applicable. Simulating
disorder in PCW has to be done by solving Maxwell’s equations over a full waveguide
with many periods, for many realizations of the disorder [García et al. 2017]. This
comes at a prohibitive computational cost. The effect of disorder on the dispersion
can instead to be quantified thanks to proxys or first principles, introducing various
levels of approximations. Even small amounts of disorder will introduce Anderson-
localized states with finite localization length at frequencies close to the guided band.
As this effect is stronger for slow group velocities, e.g. at the band edge, this will
smear out the sharp density of states at k = 0.5 [Huisman et al. 2012; Faggiani
et al. 2016]. This is shown as a blur of the guided band at the edge of the 1BZ in
Fig. 4.9. Finally, disorder can couple guided modes to radiative ones (over the light
line) and introduce losses [Savona 2011].

Systematic errors in the fabrication (for example a period a + δa) introduce a
shift in the guided bands without deformation, to the first order [Soljačić and
Joannopoulos 2004]. This situation is shown in Fig. 4.9 by red lines, shifted up
or down. This shift can cause the atoms to couple to a mode with a very different
group index than expected or even to fall into the band gap and not propagate at
all. This effect can also be computationally costly to estimate as many parameters
can differ from their nominal value, spanning a multidimensional space to explore.
The parameter space can be reduced via machine learning methods (as Gaussian
Processes in [Bopp et al. 2022]), but, as for disorder, finding adequate proxys can
be more convenient. This effect can also be mitigated by fabricating various samples
with different parameters and selecting the good ones after characterization, but it is
also very time consuming.

Proxys and methods for making the structure robust

We saw that getting a quantitative understanding of these effects comes at the cost
of high computational power. Over the years, proxys have been introduced in order
to describe the behaviour of a given dispersion band against imperfections.

For example, [Faggiani et al. 2016] points out the importance of the effective
mass at the band edge meff =

(
∂2ω
∂k2

)−1
to characterize the minimal size of the local-

ized modes. The higher the mass, the smaller number of periods is needed to observe
a localized mode at the band edge. Even for state-of-the-art fabrication, we expect
some localized modes due to randomness, in the high meff PCWs we consider in this
work. At the same time, [Zang et al. 2016] shows that a large effective photon mass
is still interesting as it improves the tolerance of a slow mode to systematic errors.
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Figure 4.9: Effect of fabrication imperfections and two scenarios to mit-
igate them. Left: Imperfections lead to both disorder (broadening of the band at
the edge) and shifts (in red). The shift can cause the guided mode to have a very
different group velocity than the one predicted or even to fall into the band gap of
the 2D PC. Right: Two mitigation techniques discussed in the manuscript: disper-
sion engineering to have a linear band and cancel the group velocity dispersion, or
designing quartic bands that automatically push ∆ω up for a given value of ng

Two strategies emerge to mitigate the effect of fabrication imperfections:

• Against disorder: As randomness smears out the sharpness of the band edge
and introduces modes that undergo Anderson localization in its vicinity, the
simplest idea to reduce its effect is to choose a mode as far as possible from the
band edge. We introduce ∆ω = ωe−ωa, where ωe and ωa denote the frequency
of the band edge and the atomic transition respectively. Choosing a mode far
from the band edge amounts to maximizing ∆ω.

• Against systematic errors: As these errors introduce a shift in frequency (with-
out deformation to 1st order), one has to make sure that such a shift does not put
ωa into the 2D PC band gap and has limited impact on the dispersion properties
at this frequency. The idea can be the same as for disorder: maximize ∆ω.

If both errors seem to be mitigated by setting the working frequency as far as
possible to the band edge, a trade-off has to be found as going away from ωe usually
leads to lower group indices as the bands become steeper, reducing the maximum 1D
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Purcell factor achievable. Some ideas, developed in the following can help to get the
best of both worlds.

One can engineer the slow mode to make it as close as possible to a linear
band, minimizing the group velocity dispersion (GVD)13 over a given range, see
(Fig. 4.9, up). This amounts to obtaining a constant group index over a broad
wavelength range. If this feature allows for the propagation of broadband pulses
without distorsion, it is also a crucial feature when it comes to dealing with fabrication
imperfections. Indeed, a mode at ωa will propagate at the same group velocity, even if
the imperfections introduce a substantial frequency shift of the slow mode band (see
Fig. 4.9(b). This strategy has been applied in-depth to W1 waveguides, by varying
locally the geometrical parameters, either by tuning the position of the first rows
of holes [Li et al. 2008; Wu et al. 2010; Liang et al. 2011; Colman et al. 2012;
Vyas et al. 2022], by chirping the refractive index over the length [Mori and Baba
2005], by changing the width of the line defect [Petrov and Eich 2004] or the size
of the holes [Frandsen et al. 2006; Schulz et al. 2010]. A relevant figure of merit
to maximize in this situation is the group index - bandwidth product (GBP), defined
as GBP = ng

∆ωBW
ωc

, where ωBW is the frequency range for which the group index
is constant around the center value ωc. It has been increased up to 0.32 with these
techniques (leading for example to a 14 nm bandwidth at ng = 32 [Li et al. 2008]). In
Sec. 5.2, we introduce an asymmetric, halved-W1 waveguide and show it can support
a slow linear band over 10 nm [Bouscal et al. 2024].

Another fruitful approach to dispersion engineering for having modes far detuned
from the band edge but still with high ng, is to look for quartic dispersion curves
of the form ω − ωe ∝ −(k − π/a)4. Coupled modes theory shows from first principles
that at the edge of a band gap, the dispersion is usually of quadratic form. Some
waveguides can allow more complex interactions which make the quartic dispersion
possible [Nguyen et al. 2018]. We will see in Sec. 4.3.4 that this is particularly
the case for asymetric waveguides. A band with a quartic dispersion broadens the
useful bandwidth of the slow mode, i.e., the bandwidth over which ng is larger than
a target value. Indeed, a quartic dispersion produces a group index that scales as
∆ω−3/4 while the group index of a quadratic dispersion scales as ∆ω−1/2 [Fayard
et al. 2022]. Therefore, if one wants to work at a given group index, the quartic
dispersion allows an operation at a larger ∆ω, i.e. at a frequency further from the
band edge. This is the optimization realized for the comb waveguide introduced in
Sec. 5.3 [Fayard et al. 2022].

Inverse-design photonics for unlocking the full possible phase space

The methods presented before to achieve any of the two kinds of dispersions, rely on
intuition-based approaches. They are very efficient in many cases, but usually do not
apply directly to other setups. Intuition is also less reliable when the complexity of
the system increases.

The inverse-design approach in nanophotonics, pioneered by Cox and Dobson
[Cox and Dobson 1999], gained momentum in the early 2000s. To implement these
methods, a target value of some parameter has to be set (transmission, Q factor,
emitting wavelength...). Then, an evolutionary or a gradient-based algorithm (both
in the realm of machine learning) updates iteratively the allowed parameters in order
to reach the target. If these parameters can be global geometrical parameters of the
structure, a more drastic approach is to discretize the whole simulation space into

13Defined as the second order derivative of the dispersion curve ω(kx) by kx.
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(a)
(b)

Figure 4.10: Two inverse design methods in nanophotonics. (a) 3D voxel
optimization of a nanobeam-to-PCW converter for the y-odd mode, pioneered in the
group of Jelena Vučković. The blue rectangle indicates the design region. Figure
reproduced from [Vercruysse et al. 2021]. (b) Up: Schematic diagram of the
automatic differentiation optimization algorithm used with PWE. Derivatives of
the cost function are computed with the chain rule, starting by the last one. The
parameters are updated thanks to the gradient. Down: Example of optimization of
a photonic crystal cavity, by setting the position of the holes as parameters. The Q
factor reaches 107 after 100 epochs. The optimized positions are displayed in red.
At odds with the former method, only a small number of structural parameters is
optimized. Picture reproduced from [Minkov et al. 2020].

3D voxels for which the refractive index can be tuned independently by the algo-
rithm. This results in optimized designs with interesting shapes, that could not have
been found with intuition-based approaches (see Fig. 4.10(a)). The latter method is
however computationally extensive and hard to implement.

Applications of these techniques are wide-ranging: from metasurface design for
chiral light emission [Mou et al. 2023], to optimization of solid-state cavities for SHG
efficiency [Molesky et al. 2018], to many types of optimizations on photonic-crystals
waveguides, regarding the shape of their dispersion curves or the direction of light
emission [Vercruysse et al. 2021].

In the case of photonic crystals, [Minkov et al. 2020] have developed a gradient-
descent-based approach for the GME and PWE method, sketched in Fig. 4.10(b).
A set of structural parameters X is given as an input. The PC is simulated and
the cost function evaluated. The gradient of the cost function C(X) is computed by
reverse automatic differentiation. If N steps are needed to evaluate the cost function,
the derivative will be evaluated by differentiating by the last expression available and
then applying the chain rule N times until arriving at the quantity ∂C

∂X . The direction
of the gradient sets the next set of parameters to be tried. A simple optimization
example is shown in Figure 4.10(b) to show its strength and speed. Their framework
is easy to use and is suited for optimization of Q factors in PC cavities or for matching
a specific band shape. It will be used in the following for linear band optimization.

4.3.3 Use of a high-index material for higher interaction

Another criterion from Sec. 4.3.1 is the fact that we need to use a transparent, high-
index material to fabricate the waveguides. Indeed, we saw in Fig. 4.7(a), that for a
given index contrast, reducing the dimensions up to some value reduces the effective
mode area. It also shows that we can reach lower mode areas for higher group indices
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Figure 4.11: Real and imaginary part of the complex refractive index
of GaInP with the wavelength. (a) Refractive index of GaInP. At 780 nm,
n′ = 3.35. (b) Imaginary part of n, i.e. absorption coefficient. The sharp increase
in absorption at 670 nm corresponds to the electronic band gap of the material
(1.85 eV). The data is experimental and taken from [Schubert et al. 1995].

at dimensions which are realistic, while maintaining an important fraction of the field
into the air. For these reasons we choose a high-index material for our waveguides.

Common materials for fabricating waveguides are SiO2 (glass, for nanofibers) or
Silicon Nitride (SiN). They have a refractive index of respectively 1.5 and 2.0 at
780 nm. As we are looking for high-index materials, a promising candidate is Silicon
(n = 3.6) but it has an electronic band gap at an energy lower than the D2 transition
of Rubidium, and is hence absorptive at 780 nm.

The chosen material, GaInP, has been selected for its advantageous optical and
electronic properties. GaInP has a wide electronic band gap below 1.85 eV (see
Fig. 4.11), and as such is transparent for a wide range of wavelengths (from 670 nm
up), meaning it could be used with several alkali. At 780 nm, its refractive index is
n = 3.35, reaching 3.55 at the electronic band edge [Schubert et al. 1995]. This
large index contrast ∆n = 2.35 with the surrounding vacuum gives rise to wide band
gaps, allowing for more flexibility in the design of the trapping modes. This material
has attracted some attention in recent years due its advantageously low two-photon
absorption in the telecom band [Combrié et al. 2009], and growth and fabrication
processes have therefore been developed and well mastered.

Finally, our partner C2N has a solid expertise in working with GaInP. For example,
it has been used recently to fabricate photonic-crystal cavities for time-entangled
photon generation through four-wave mixing [Chopin et al. 2022]. Working with
such high-index materials is also interesting for the longer term prospect of device
integration. Indeed, the high index contrast allows to reduce the size of the integrated
components, which could be an advantage for integration of many such Waveguide
QED systems on a single chip of small scale.

4.3.4 Asymmetry: on the benefits of a hybrid-clad design

Having covered material and dispersion engineering criteria, we now focus on a com-
mon striking characteristic of the two PCW slabs introduced in the next chapter:
they are both asymmetric in their transverse direction. We argue that this feature
allows for complying with a few of the specifications from Sec. 4.3.1 at the same time.
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Asymmetry for finer tuning of the dispersion

The introduction of symmetry breaking in the transverse direction allows for a more
precise control on the dispersion properties of the waveguide since it offers extra
degrees of freedom [Lü et al. 2010]. Transverse asymmetry has been harnessed in
[Nguyen et al. 2018] to create exotic dispersion bands such as Dirac cones, mul-
tivalleys, or flat bands. In a transverse symmetric PCW slab, even for a given
TE-like/TM-like polarization, the modes can be classified according to their sym-
metry about the y = 0 plane. These y-odd and y-even modes were distinguished in
Fig. 4.4(a) by full and dashed lines.

By introducing asymmetry in the transverse direction, these y-odd/y-even modes
are not solutions anymore, but they do not disappear14. Their overlap integral starts
to differ from zero and they couple, leading to an avoided crossing and the opening
of another band gap. The stronger the asymmetry, the stronger the interaction.

We recall that the opening of a band gap at the band edge is caused by the coupling
of forward and backward propagating modes, coupled by the coherent scattering off
of the periodicity. This usually leads to a quadratic dispersion. Here, asymmetry
and periodicity can lead to the coupling of four different waves instead of two (y-
even forward propagating, y-even backward, y-odd forward, y-odd backward), leading
to a more complex behavior which can result in quartic dispersion curves [Dubois
2018; Fayard et al. 2022]. We have two coupling processes which produce each a
band gap with a quadratic band edge either going up or down. Quartic bands are
achieved when two band edges of opposite curvature are close enough with a strong
enough coupling to cancel each other out. The increased control over the dispersion
of asymmetric waveguides comes from the tunable interaction between the TE and
TM band diagrams which were completely separated in symmetric ones.

Asymmetry for increased optical access

Another advantage of asymmetric waveguides for coupling to cold atoms is the in-
creased optical access they offer. Indeed, with a symmetric PCW slab, the evanescent
guided mode is usually in the center, and the atoms have to be brought there from the
top or the bottom. In an asymmetric waveguide, the atoms can be approached from
much more directions, offering a full 2π optical access. The possibility of approaching
the atoms from the side is not only interesting for technical reasons, but also provides
a more feasible route for optical trapping with guided modes.

In a W1 waveguide, the only accessible region to trap the atoms is a line over the
structure. We show in Fig. 4.12(a) the intensity distribution over the waveguide, at
100 nm from the surface. We observe an intricate intensity profile with 3 anti-nodes
on the transverse y direction. We expect this feature to make the search for a stable
trap in y challenging. Moreover, when moving away from the structure, the spatial
mode profile changes quite rapidly.

In the asymmetric half-W1 waveguide introduced in the following, we have now
the option to place the atom chain on the edge of the PCW (as shown in the inset of
Fig. 4.12(b)). The corresponding mode in the (x, z) plane is displayed in Fig. 4.12(b)
and we can see a simpler structure, with, this time a fundamental mode profile along
the transverse z direction. We can also show that this mode has a simpler evolution
when going away from the edge. The two modes are slow bands at similar frequencies.

14Asymmetry can be introduced gradually, hence we expect a mode of the slightly perturbed
asymmetric waveguide to be of the form Hasym

k = Hsym
k + δHk. A small difference in the fields

corresponds to a similar value of the electromagnetic energy functional and hence of the frequency.
Hence the dispersion will change continuously with the asymmetrization.
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Figure 4.12: Field maps at 100 nm from the surface of either W1 or
half-W1. 2D intensity of the electric field at 100 nm from (a) the surface of the
W1 waveguide and (b) the edge of a W1 waveguide cut in half. Insets show the 3D
structures, the theoretical position of the trapped atoms in red and the black planes
on which the intensities are recorded. Field in (a) is computed with GME, field in
(b) with 3D FDTD.

These are all hand-waiving arguments but that seem to indicate that halved
waveguides are more suitable for trapping that their symmetric counterparts, as we
can make use of the fact that the guided modes are fundamental modes of the slab.

4.3.5 Power handling: Coupling efficiently light in and out

All the different beams (probing, trapping) will be coupled into the waveguide from
free space. It is then crucial to have an efficient coupler, that can transmit light at the
relevant frequencies with a good efficiency. If out-of-plane grating couplers are usually
a good method to couple broadband light into such structures, this technique is not
adapted in our situation as everything is suspended into vacuum. For suspended
platforms, simple tip couplers can be sufficient but can offer limited efficiency. [Luan
et al. 2020] introduced a Y-shaped coupler that allows a better power handling, a
notable limitation of their structure. We have fewer constraints in that regard as our
waveguides will be thermally at equilibrium with 2D slabs that act as a heat sink.
Following a design from [Almeida et al. 2003] (see Fig. 4.13(a)), we optimize this
coupler for 780 nm light. We want high efficiency at this wavelength and over a few
tens of nanometers around this value for dipole trapping. The result is displayed in
Fig. 4.13(b), showing a transmission around 95 % at 780 nm. These transmission
simulations are done with 3D FDTD.

Conclusion
We introduced the basic concepts of photonic crystals, and especially how to construct
waveguides out of such periodic structures. As we are bridging the gap between two
different fields, the constraints on the designs are many. If an asymetric, suspended,
high-index waveguide seems to bridge many of the challenges to interface atoms and
PCWs, we understand that it is not enough. The most critical constraints are the
robustness of the structure to fabrication imperfections as this can destroy all the
properties of the designed crystal, and the possibility to find a stable trap. Unfor-
tunately, responses to these constraints are device-dependent and will be explored in
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Figure 4.13: Tapered coupler for free space input and output coupling.
(a) Scheme of the coupler and parameters (b) 3D FDTD computed transmission
spectrum. The relevant wavelengths are displayed as vertical dashed lines

the following for a few different designs. For the robustness, mitigation solutions ex-
ist, relying on precise dispersion engineering of the selected platform. The numerical
methods for doing so have been introduced, one has to find in the toolbox the right
method for the right simulation.

In the following chapter we will present optimizations of three different waveg-
uides. The goal is to optimize them such that atoms can be trapped around the edge,
with the highest possible 1D Purcell factor and with the most robust design possi-
ble. A halved-W1 waveguide [Bouscal et al. 2024] and a so-called comb waveguide
[Fayard et al. 2022] are precisely designed and shown to be a suitable platforms
for trapping cold atoms in their surrounding. While the fabrication of such samples
is still ongoing, all these important experimental constraints have been extensively
studied in the designs.
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In this chapter, we explore the design and fabrication of nanophotonic devices to
interface guided light and trapped cold atoms in the high 1D Purcell factor regime.
We start with the simplest possible waveguide: a uniform slab with a rectangular
transverse profile. We show that this so-called nanobeam offers an order of magni-
tude improvement in the achievable interaction compared to nanofibers, because of
the higher confinement provided by the high refractive index. Trapping atoms around
such structures with sharp edges is a challenge, common to all platforms studied in
the following. Using the strategies developed in Chapter 4, which aim at engineering
bands with a high group index far from the band edge, we introduce two designs
of photonic-crystal waveguides (PCW) robust to fabrication imperfections and sup-
porting stable dipole traps: a "comb" waveguide with quartic bands, and a "half-W1"
waveguide with linear bands. These PCWs are promising as the predicted atom-
photon interaction enhancement is similar to solid-state platforms, the half-W1 even
showing chiral coupling. We finally report on the work carried out by our partners
at Centre de Nanosciences et de Nanotechnologies (C2N) on the fabrication of these
structures and show some first encouraging characterization results. This work was
published in [Fayard et al. 2022] and [Bouscal et al. 2024].
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5.1 Optimization of a uniform waveguide: the nanobeam
We showed in Chapter 4 that a high-index waveguide with small transverse dimensions
can provide a very low mode area, increasing the 1D Purcell factor. We look here
at a straightforward design, a uniform 1D slab of high-index material. What is the
maximum coupling we can achieve in this simple case?

As we are considering semiconductor materials, guides with rectangular transverse
geometries are more easily fabricated than circular ones. Figure 5.1(a) illustrates such
a GaInP waveguide, of thickness t and width w, suspended in air. A typical intensity
distribution of the fundamental mode is depicted with the red contour lines. A similar
mode exists in the vertical direction. Because of fabrication constraints, we fix the
thickness to 150 nm. We are left with a single parameter w to optimize to get the
highest 1D Purcell factor possible for trapped atoms. The simplicity of uniform
waveguides makes them interesting platforms for experiments with atoms [Ritter
et al. 2015; Stern et al. 2017] and theoretical works have shown their strengths, for
example for spin-squeezing of atom chains [Qi et al. 2018].

5.1.1 Optimization of the atom-light interaction

Figure 5.1(b) shows the average 1D Purcell factor for a Rubidium atom at the vicinity
of the waveguide. We recall that the 1D Purcell factor is defined as Γ1D/Γ0, where
Γ1D is the decay rate of a single atom in the waveguide mode and Γ0 the decay rate in
vacuum. For simplicity, it is computed from Eq. (2.44) as an average over the three
linear atomic dipole orientations.

We see that higher values are obtained for widths between 120 and 160 nm. This
matches the intuition developed by Fig. 4.7: reducing the width of the nanobeam
pushes the electric field into the air, reducing the mode area Aeff (as it is an integral
of ϵ×|E|2) until a threshold value where the field is so delocalized that Aeff increases
again. The optimal value for the nanobeam width depends on the distance d of the
trapped atoms to the surface. But as the fields used for trapping are guided modes, a
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Figure 5.1: Optimization of the width of a suspended nanobeam.
(a) Scheme of the transverse plane of a nanobeam, defined by its width w and
thickness t. The contour plot shows the transverse intensity profile of a propagating
TE-like mode. The nanobeam is made of GaInP (n = 3.35) (b) Average 1D Purcell
factor Γ1D/Γ0 depending on the width of the nanobeam and the distance of the
atom. Γ1D/Γ0 around 0.1− 0.2 are expected for nanobeams with w = 140 nm and
realistic atom trap distances (see main text). The thickness t is fixed to t = 150 nm.
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(a)

(b)

(c)

(d)

(e)

Figure 5.2: Trapping atoms around a nanobeam with two polarization
configurations. Left: Same polarization (along y) for the blue- and red- detuned
beams. (a) A stable trap is possible in the 2D (y,z) plane. (b-c) The decay of the
red and blue intensities along (b) y (at z=0) and (c) z (at y = w/2 + dtrap). The
slow decay of the red in both directions causes the weak trapping in the azimuthal
direction. Right: Crossed polarization configuration. (d) The 2D potential shows
a tighter azimuthal trap. (e) Trap along y. Dashed line shows the position of the
nanobeam surface. Both simulations include the Casimir-Polder potential as seen
by the strong attractive potential close to the surface (see Appendix A).

change in the width modifies their shape. There is then a co-dependent optimization
to be realized, which is what we want to emphasize here. For a nanobeam there is
only one optimization parameter and a systematic study can be carried out.

5.1.2 The challenge of trapping atoms around sharp edges

Finding a stable trap around a nanobeam presents similarities with the nanofiber case
as both have a featureless dispersion relation and as such, can guide a fundamental
mode for a very wide range of wavelengths. In theory, the two-color trap can be
implemented with any pair of red- and blue- detuned wavelengths that the nanobeam
can support. As Rubidium has no magic wavelengths, we choose λred = 1064 nm and
λblue = 750 nm, corresponding to easily available lasers. We show a stable trap in
Fig. 5.2(a) with a few milliwatts in each beam, with the trap minimum at a distance
dtrap = 240 nm from the edge1. Because of the shape of the fields, the azimuthal
trapping of the atoms is weak. This is reminiscent to the two-color compensated trap
for the nanofiber from Figs. 3.6(a-d) which also has a weak trap in that direction,
albeit usable.

The low trapping in this direction comes from balancing opposing requirements
needed for trapping. Indeed, a stable trap position with a repulsive barrier in the
y direction, requires the blue evanescent mode to decay faster than the red one, as
discussed in Sec. 3.2. This criterion, once met, also manifests itself in the azimuthal
direction which leads to a predominant attractive trapping almost up to the surface,
and the formation of a relatively flat valley in this direction. Figures 5.2(b-c) show the
intensity decay of the red and blue beams along y and z (at y = ytrap) respectively.
The red beam decays faster in both directions which is a liability in the z direction.

1All the trapping potentials from this chapter are computed with nanotrappy [Berroir et al.
2022], the Python package developed by our group presented in Chapter 3.
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Figure 5.3: A half-W1 slow-mode photonic-crystal waveguide coupled to
cold atoms. Sketch of the waveguide with an array of 87Rb atoms trapped along its
edge. Γ1D and Γ′ correspond to the decay rates into the guided mode and into the
radiation continuum, respectively. The structure is etched in a GaInP membrane
(refractive index n = 3.35) suspended in air, with a slab thickness t of 150 nm. a and
r are the parameters of the 2D hexagonal PC, and L the width of the defect.

This low trapping valley is flatter here than in the nanofiber case because of the
proximity of the surface (stronger CP interactions) and the presence of sharp edges.

A crossed-polarization trap can help, using the vertical blue-detuned lobes to
reduce the extent of the trapping region in the azimuthal direction, as shown in
Fig 5.2(b). A typical trap, 0.4 mK deep, at dtrap = 160 nm from the surface can be
obtained. At this distance, we get from Fig. 5.1(b) that we can achieve a Γ1D/Γ0 on
the order of 0.1 for w = 140 nm. The trap position can be brought down to 120 nm,
while lowering the depth, which increases Γ1D/Γ0 to 0.2.

We showed in this section that the nanobeam platform already enhances the in-
teraction by a factor ≳ 10 compared to a nanofiber-based one [Corzo et al. 2016].
Studying this simple waveguide is interesting as it introduces some concepts we en-
counter in more involved designs: the co-dependence between the 1D Purcell factor
enhancement and its impact on the trapping modes and the challenge of trapping
around sharp edges. All this study was done with a mode having a near unity group
index. We present in the following two asymmetric PCWs which allow higher group
indices and whose slow bands have been engineered to have linear and quartic dis-
persions respectively.

5.2 Linear bands: Optimization of a half-W1 waveguide
We saw in Chapter 4 necessary criteria that have to be met to combine photonic-
crystal waveguides (PCW) with cold atoms. In the following, we design a novel
platform for interfacing trapped cold atoms and a slow-mode asymmetric PCW that
satisfies all these criteria. Building on the promises of W1 waveguides and initial
work from [Zang et al. 2016], we propose a tailored platform for trapping arrays of
Rubidium atoms in its proximity.

The platform, sketched in Fig. 5.3, can be seen as a halved W1 waveguide, with
the horizontal guidance mechanism relying on both photonic band gap and total
internal reflection. As its W1 counterpart, this half-W1 waveguide2 enables dispersion
engineering (cf. Sec. 4.3.2) and offers a 2π solid-angle optical access to the edge of
the structure, allowing for simpler transport of atoms close to it [Zang et al. 2016].

2Also known as the cheese grater waveguide
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Figure 5.4: Band structure of a half-W1 waveguide with a thickness of
150 nm, and mode profiles of some Hz modes. Left: Band structure of a
half-W1 waveguide. The inset recalls the structure of the waveguide. Values of
the geometrical parameters have been set to match as closely as possible the band
diagram of the W1 waveguide from Fig. 4.4. The slow mode band defined in the
text is the lowest one inside the band gap. Right: 5 maps of the real part of Hz

as indicated by the dots in the band structure. Spatial profiles are obtained via 3D
FDTD simulations.

We use a large refractive index GaInP slab that facilitates the design by offering
more flexibility in the engineering of guided modes and band gaps. As emphasized in
Chapter 4, our effort focuses at each step on making the design robust to imperfections
and on assessing the experimental feasibility of the full platform. In the following we
detail the optimization of the slow-mode dispersion curve to achieve a robust linear
band. We quantify the 1D Purcell factor achievable. Finally, using core concepts
from Chapter 3 we show that guided modes can be used to trap atoms in the proximity
of the waveguide via a two-color evanescent dipole trap. Stable traps down to 116 nm
from the surface are obtained with low powers compatible with nanophotonic systems.

5.2.1 Introduction of the half-W1 structure

The structure is reminiscent of a W1 waveguide, but the holes etched in the GaInP
slab do not go up to the edge, leaving a few hundreds of nanometers of unperturbed
slab where the light can propagate [Zang et al. 2016]. The band diagram of this
structure, as displayed in Fig. 5.4, is quite similar to the W1 one. The main dif-
ference is that the asymmetry now forbids to distinguish between y-odd and y-even
modes, which are now coupled. Some spatial features are similar to the W1 ones,
see for example the mode profile of the index guided bands (Fig. 5.4, green). We are
interested here in the lowest gap-guided band (denoted with red dots in Fig 5.4), as
the others have a higher order mode profile which might make coupling into these
modes inefficient.

Being based on a 2D slab rather than a 1D structure, this geometry should be
quite rigid and prevent detrimental effects from low frequency mechanical modes, as
the ones pointed out in [Béguin et al. 2020b].
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Figure 5.5: Effect of some critical parameters on the position of the band
gap and slow mode for the half-W1. (a) TE gap map for a 2D triangular
lattice of air columns in a slab with n = 3.35 as a function of r/a. (b) Influence of
the width L of the defect on the position of the slow mode band of the half-W1 in
the projected band diagram. Calculations are made with the GME method for a
half-W1 of thickness 150 nm.

5.2.2 Manual alignment for operation at the target wavelength

For a given thickness t, chosen here to be t = 150 nm, the first designing step consists
in finding the lattice period a and hole radius r of the bulk 2D photonic crystal that
allow for a band gap around the 87Rb D2 transition. Indeed, the width and position of
the band gap is entirely determined by those values [Joannopoulos et al. 2008]. The
variation of the width of the TE band gap with the ratio r/a is shown in Fig. 5.5(a).
The band gap has to be wide enough to allow for at least two guided modes, one
that supports a mode at 780 nm, and a blue-detuned one for trapping. We settle on
r/a = 0.3. While this setting does not offer the widest gap, larger radii can be hard
to fabricate as they reduce the rigidity of the structure3. We set the value of a so that
we can have a band gap around 780 nm while not being too limited by the light line.
For a = 220 nm, the gap has a width ∆ωgap of around 110 THz (∆λgap ≈ 190 nm)
which is more than enough for fitting two guided bands.

As these bands appear when introducing the defect at the edge, we can align
the band of interest with respect to the D2 line by adjusting the width L, with no
effect of the bulk modes. This is highlighted in Fig. 5.5(b), showing how we bring a
guided mode down from the upper bulk region by increasing the width L of the defect.
Indeed, by increasing the width L, the mode becomes more concentrated in a region
of larger refractive index, lowering the energy of the mode (hence its frequency). The
rate of shifting of the slow-band frequency can be estimated as ∂f

∂L ≈ −570 GHz nm−1.
We choose a ratio L/a around 1.6 to leave space for a higher frequency blue-detuned
band. All these first coarse design steps are done with GME simulations.

Given these constraints, the geometrical parameters of the waveguide are found
to be: a = 220 nm, r = 66 nm = 0.3 a and L = 350 nm for a fixed t = 150 nm. With
these settings, GME simulations find three guided bands inside the band gap of the
photonic crystal slab between 365 and 435 THz.

3As in later design steps, we chose here a very conservative approach, leaving room for future
improvements.
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5.2.3 Systematic optimization to achieve a linear band

We showed in Sec. 4.3.2 that linear bands are a way to mitigate the effect of fabrica-
tion imperfections on the dispersion properties of the real waveguide. In this section
we present the optimizations performed to achieve such bands, which facilitate the
experimental realization of the proposed platform. Inspired by previous strategies
from the research on W1 waveguides [Frandsen et al. 2006; Li et al. 2008; Schulz
et al. 2010; Wu et al. 2010], we optimize the shape of the slow-mode band by tuning
the geometry of the holes close to the line defect.

Optimization via Automatic Differentiation

These seminal papers played on either the radius or the position of the first row of
holes, but this approach did not give as good results for our half-W1 waveguide. In-
stead, and because we are not limited by computational power, we decide to optimize
both the radius and position of the first three rows of holes via a gradient-descent
algorithm, the automatic differentiation algorithm (AD) introduced in Sec. ??. The
AD algorithm is given 6 independent parameters to optimize, depicted in Fig. 5.6(a).
We denote the radius of the first three rows of holes as well as their position along the
y axis by (δri, δyi), i ∈ {1, 2, 3}. As full 3D FDTD simulations are computationally
intensive, we use the approximate method of Guided Mode Expansion (GME) [An-
dreani and Gerace 2006] thanks to the legume solver [Minkov et al. 2020] which
integrates Autograd, a Python package for AD. Automatic differentiation computes
the gradient of a given cost function with respect to the input parameters thanks to
the chain rule and then follows this gradient to minimize the cost, updating the input
parameters at each iteration (see Fig. 4.10(b)).

Definition of the cost functions and convergence

The most critical step to implement this gradient-descent algorithm is the definition
of a suitable cost function to be minimized. We want the slow band to be as linear
as possible, but on which range of wave vector and for what group index? We define
a target linear band ftarget, defined by a target constant index ntarget over a given
range ∆k, sampled on N values of k. The value of the target on the ki is written as
f itarget. We define the following 3-part cost function whose minimization makes the
optimized band match both ftarget and its derivative, while keeping the group velocity
dispersion (GVD) to vanishing values. The cost function reads as follows:

C(X) = α0

N∑
i

(
f iopt − f itarget

)2

︸ ︷︷ ︸
enforces position

+α1

N∑
i

(
∂f iopt
∂k

− c

2πntarget

)2

︸ ︷︷ ︸
enforces ntarget

+α2

N∑
i

(
∂2f iopt
∂k2

)2

︸ ︷︷ ︸
enforces linearity

(5.1)
where f iopt is the value of the band being optimized on the sampled range ∆k, and
the αi are coefficients to be determined empirically.

The most naive approach would be to use only the first part as cost function,
as ftarget is linear. We realized this approach led to oscillating solutions with values
close to the target band with a strongly varying group index and a high GVD. The
second and third terms were then added as regularization terms. We set the values
of the αi via trial and error to increase the convergence speed (α1 = 100, α2 = 10−16,
α3 = 1). Figure 5.6(b) shows the slow mode at different steps of the optimization
for ntarget = 35 and ∆k = 0.10 2π

a . The cost decreases first by setting the right
slope to the band and then shifting it to the right position. After 40 iterations of the
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Figure 5.6: Optimization parameters and convergence of the automatic
differentiation algorithm. (a) 2D photonic crystal geometry. The initial un-
shifted holes are shown as white dashed lines. For the first three rows of holes their
position can be shifted along y and their radius tuned, amounting to 6 parameters
(δyi,δri), i ∈ {1, 2, 3}. For clarity, only two parameters are displayed. (b) Structure
geometry and resulting band (in blue) at different steps of the algorithm. The red
solid line is the target band and the dotted line is the Rubidium D2 frequency. The
optimization is done between the black dashed lines, i.e. for a given ∆k, at some
distance from the edge of the 1st Brillouin zone (1BZ). (c) GBP for many optimiza-
tions over different (ntarget, ∆k). Whatever the obtained ng (marker color), all the
values at a given ∆k collapse at the same GBP, except for ∆k > 0.13 2π

a where the
algorithm does not converge anymore, whatever ntarget. The maximum theoretical
GBP for a given ∆k is represented by the dashed line.

optimization algorithm the slow band matches the target very well. We conducted this
optimization over a variety of parameters (ntarget, ∆k). The resulting group index -
bandwidth product (GBP) of these many optimizations is displayed in Fig. 5.6(c). We
note that we can achieve in theory a GBP higher than for previous optimizations in
W1 waveguides (0.32 in [Li et al. 2008], 0.36 in [Frandsen et al. 2006]). Interestingly,
the GBP is constant for a given ∆k, whatever the target group index. This means
the algorithm has converged to a satisfying fit. Indeed, if the band is linear over the
whole target ∆k the GBP is independent of ng with GBP = ng

∆ωBW
ωc

= ∆k λa . The
algorithm stays close to this line (dashed in Fig. 5.6(c)) when increasing ∆k, until
it cannot find a satisfying solution anymore, for ∆k > 0.13. When increasing too
much ∆k, the upper end of the interval approaches k = π/a where the group velocity

Row Position δy [nm] Radius δr [nm]

1 +42.7 +14.2

2 +53.8 −11.2

3 −3.7 −10.8

Figure 5.7: Optimal changes in row positions and holes radii via auto-
matic differentiation optimization. All the rows after the third one are unper-
turbed.
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Figure 5.8: Optimized half-W1 photonic-crystal waveguide supporting a
large-bandwidth linear slow band. (a) Band structure of the optimized struc-
ture calculated via 3D FDTD simulation. The band gap for the TE-like polarization
sits between 365 and 435 THz. The 87Rb D2 line transition frequency is aligned
with the linear part of the slow band. (b) Calculated ng for the slow band. The
dotted lines delimit the linear region where the group index value is constant up to
15%. (b) Calculated 1D Purcell factor Γ1D/Γ0 over the same range of wavelengths,
for atoms trapped at 116 nm from the structure on the cyclic transition of the D2
line. ng is not the only parameter affecting this ratio (the field structure is also
changing), but it is still critical as Γ1D/Γ0 diverges just outside the plateau of ng.

vanishes, making it impossible to fit a linear dispersion.

An optimized structure with similar performances to its W1 counterpart

We choose an optimized design with a realistic group index and a wide enough band-
width. Only group indices below 50 are considered as experiments have shown that
it is challenging to reach higher values [Mazoyer et al. 2010]. The most concluding
optimization results are obtained for a target around ng = 35. The optimized struc-
ture is simulated in full 3D FDTD to validate the results from the approximate GME
method (see Appendix B). The results given by both methods are usually quite sim-
ilar (except when looking at spatial profiles) but FDTD leads to a shift in frequency
and to a slight decrease in the group index. The discrepancy between the methods
increases with ng, reinforcing our strategy to work at moderate ng. In the case of the
optimization selected GBP = 0.33 for the GME calculation while 3D FDTD simula-
tions led to a GBP of 0.32. The frequency shift can be compensated by playing on a
and L and rescaling all the parameters (dyi and dri included), without affecting much
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the shape of the curves. Some deformation still occurs as we cannot rescale the value
of the thickness which is a fixed experimental parameter. After compensation of the
shift, we have aFDTD = 212 nm rFDTD = 63.6 nm = 0.3 a and LFDTD = 337.7 nm.
The shifts in position and radius after optimization and rescaling are given in the
Table in Fig. 5.7 and the corresponding 3D FDTD band structure is presented in
Fig. 5.8(a). Figure 5.8(b) shows that we engineered a band with a constant group
index ng ≃ 28 over a 9.2 nm range, and hence reach similar performance than pre-
vious optimizations of W1 waveguides [Li et al. 2008]. This feature offers a two-fold
advantage: in addition to making it robust to shifts caused by fabrication imperfec-
tions, the optimization enables to use the half-W1 waveguide in a large bandwidth
regime (≥ 4 THz) with very little dispersion.

Finally, since the 1D Purcell factor is proportional to the group index ng (see
Eq. (2.44)), we obtain with our optimization strategy an almost constant coupling in
this frequency range as seen in Fig. 5.8(c). The residual variation arises from small
changes in the spatial structure of the electric field when moving along the guided
band.

5.2.4 Strong chiral coupling to the guided slow mode

Given the optimized waveguide, we now look at the interaction between the slow
mode and the 87Rb atoms in its vicinity. Even with the conservative optimization
carried out above, we show that the expected coupling (expressed in term of the 1D
Purcell factor Γ1D/Γ0) is significant.

Taking into account the multilevel character of Rubidium, we defined a transition-
dependent 1D Purcell factor in Eq. (2.50) from Chapter 2. The group velocity vg is
evaluated from the simulated band structure, while the other terms are computed
from the field map of the guided mode. Figures 5.9(a-b) show that in order to have
the maximum coupling, the atoms should be trapped where the guided mode intensity
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Figure 5.9: Structure of the forward-propagating slow mode at the 87Rb
D2 line frequency. (a) Normalized intensity, in the (x, y)-plane at z = 0, shows
maxima aligned with the first row of holes. (b) Same in the (y, z)-plane at x = −a/2,
i.e., crossing the hole nearest to the slab edge. The mode is strongly expelled into the
vacuum around the edge of the waveguide. (c) Polarization ellipticity z-component
Cz in the (x,y) plane at z = 0. The other components of the ellipticity vector
are 0. |Cz| = 0 indicates a linear polarization, while we have |Cz|= 1 for a circularly
polarized light. Close to the edge, the polarization has a large circular component
due to the strong longitudinal component that appears when light is confined at
the nanoscale. By taking z as the quantification axis, the polarization will be close
to σ+ for atoms trapped in the proximity (92 to 99% fraction at 116 nm from the
surface).
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is largest, i.e. close to waveguide edge, aligned to the holes of the first row. Trapping
will be detailed in the next section.

Figure 5.9(c) highlights the strong circular polarization of the slow mode along
the whole structure, quantified by the ellipticity vector C = Im

[
(E × E∗)/|E|2

]4.
This is reminiscent of the polarization of the light around nanofibers and comes from
the longitudinal component of the electric field that appears when light is strongly
confined. By choosing a quantization axis perpendicular to our waveguide (along
z), the polarization of the forward propagating mode seen by the atoms is predom-
inantly σ+. The selectivity is further enhanced by the Clebsch-Gordan coefficients
which favor transitions at larger mF . We introduce the excitation rate γ+

exc of an
atom in the state |F = 2,mF = +2⟩ with a resonant guided mode propagating along
increasing x. Decay and excitation rates are distinct as atoms can be excited with a
mode propagating in either direction while decay happens in both. The first (second)
term in Eq. (2.50) corresponds to the emission of the atom into the guided mode
in the forward (backward) direction. By reciprocity, we can define the excitation
rates γ±

exc,F,F ′,mF ,q
of an atom initially in |F,mF ⟩ and promoted to |F ′,mF − q⟩ when

coupled to an input propagating mode E± at the resonance frequency:

γ±
exc,F,F ′,mF,q

= πac

ℏ
| ⟨F ||d̂||F ⟩|2

λ0vg
|CmF ,q|

2 |êq ·E±(r)|2∫
Vcell

dr′ϵ(r′)|E+(r′)|2 . (5.2)

This quantity is visualized in Fig. 5.10(a) for an incoming beam in the +êx direc-
tion. This figure confirms the important dependence of the excitation rate on the
polarization. The σ+ transition is stronger than the σ− transition by two orders
of magnitude, while the π transition is completely suppressed around z = 0 as the
TE-like slow mode does not have any Ez component in the symmetry plane. The
excitation of an atom by a guided mode is thus highly chiral. Once promoted to
|F ′ = 3,mF ′ = +3⟩, guided mode emission will occur preferably in forward propaga-
tion, with a probability given by the polarization fraction of E+ in σ+5, P+ = 92%
at the position of the atoms.

The hybrid half-W1 platform hence exhibits high chiral coupling. This feature is
crucial, as introducing chirality in 1D chains of emitters can modify their properties
and give rise to new physics [Fedorovich et al. 2022]. From a technical point
of view, chirality makes some theoretical models, such as the MPS formalism, more
tractable. This allows for simulating larger systems more accurately, bridging the gap
for better agreements between simulations and experimental data [Mahmoodian et
al. 2020]. Finally, chiral coupling can be a tool for generating non-Gaussian states
of light [Kleinbeck et al. 2023], highly entangled atomic states [Buonaiuto et al.
2019] and to implement original quantum information protocols [Lodahl et al. 2017;
Li et al. 2018].

Besides, Fig. 5.10(a) shows that for atoms in state |F = 2,mF = +2⟩ and trapped
at 116 nm from the edge, the Purcell factor reaches a value of 0.71. As shown in
Figs 5.10(b-c), a small modulation in the x direction exists and the value of the Purcell
factor decays rapidly as a function of the distance to the surface. To quantify the
response of the atoms to the guided mode we can also use the β factor, β = Γ1D/Γtot
with Γtot = Γ1D + Γ′, and Γ′ the decay rate in all radiation modes other than the
guided slow mode.

4The direction of C indicates that the field has some circular component in the normal plane. A
norm of 1 means the field is perfectly circular. Its sign gives the direction of rotation.

5If we write the field polarization as the sum of left and right circular polarizations E ∝ aLêL +
aRêR, P+ = |aL|2. C · êz = |aR|2 − |aL|2 so the polarization fraction becomes P+ = (1 − C · êz)/2.
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Figure 5.10: Excitation rates γ+
exc/Γ0 for 87Rb atoms in the waveguide

proximity. (a) Allowed transitions on the D2 line for an atom in |F = 2,mF = +2⟩.
Because of the large σ+ component (∼ 92% at the position of the atoms) and the
values of the Clebsch-Gordan coefficients, the excitation probability to the |F ′ =
3,mF ′ = +3⟩ is more than 100 times higher than the σ− channel. The inset provides
a zoom. (b) Purcell factor in the (x, y) plane, at z = 0. (c) Purcell factor in the
(y, z) plane, at x = −a/2. The red dots indicate the position of the atoms at 116
nm from the surface, as detailed later.

Equation (2.18) tells us that Γtot is proportional to the total self Green’s tensor
←→G (r0, r0;ω0) at the position r0 of the emitter. The calculation of ←→G for an atom
close to an infinitely long periodic waveguide is not trivial and requires an accurate
calculation of the emission into radiation modes. An approach often used is to assume
that the emission rate into radiation modes is approximately equal to the one in
vacuum, Γ′ ≈ Γ0, see for instance [Zang et al. 2016]6. Here, we calculate rigorously
the Green’s tensor of the periodic waveguide by using a modal method that relies on
an exact Bloch-mode expansion [Lecamp et al. 2007; Fayard et al. 2022]. We find
that Γ′ ≃ 0.8Γ0, at the position of the trap minimum, i.e at 116 nm from the surface.

We thus obtain β = 0.47, very close to the spatially averaged value β̃ = 0.46
for a thermal distribution (at a temperature of one half of the trap depth). This
is at least 50 times better than the current systems involving nanofibers (β = 10−2)
[Corzo et al. 2019] and in the same range of current PCW-based platforms (β = 0.45,
with cavity enhancement) [Goban et al. 2015]. To the best of our knowledge, our
proposed platform is the only one combining chirality and large individual light-
matter coupling.

6Another approach consists in considering a long but finite structure with N cells and recording
the response of a dipole placed at the position where we want to compute Γtot. This can be done
through FDTD simulations but strong oscillations (with a period ∝ 1/N) appear on the Γtot(ω)
spectrum, making the estimation difficult [Hung et al. 2013].
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5.2.5 Trapping Rubidium atoms near a half-W1 waveguide

In the previous section, simulations were performed for atoms at 116 nm from the
edge of the waveguide. Indeed, in the following we show a stable trapping scheme
based on an evanescent two-color dipole trap formed by fast guided modes, allowing
the atoms to be trapped at this distance. As before, this trap has been designed
following the ideas implemented in optical nanofibers [Le Kien et al. 2004; Vetsch
et al. 2010]. Apart from the periodicity of the trapping modes, critical differences with
the ONFs include the presence of sharp edges which can be detrimental for trapping
and call for a more precise estimation of the CP potential.

Two-color dipole trap structure

In contrast with optical nanofibers and nanobeams, the guided modes in the half-
W1 waveguide are structured along the propagation direction due to the Bloch wave
structure of the light field. The intensity of the modes, which is an important quantity
when looking at dipole trapping, is periodic with period a, as shown in Fig. 5.9(a)
for the slow mode. This feature constrains the position of the trapped atoms to the
maxima of intensity of the red-detuned mode. It makes the search for a blue detuned
mode more challenging as this one will also be structured, while a uniform one would
work perfectly well to repel the atoms from the surface [Goban et al. 2012]. A blue-
detuned beam with an intensity pattern out of phase with the red-detuned one is
needed. Fortunately, modes separated by a band gap usually have intensity maxima
shifted by a/2 [Johnson et al. 2004]. For the blue-detuned beam, we use the available
guided band above the slow mode between 400 and 420 THz (see Fig. 5.8(a)).

In order to have a full description of the potential seen by the atoms, we take into
account the Casimir-Polder (CP) interaction [Casimir and Polder 1948] between
the atoms and the surface, introduced in Chapter 3. Vacuum fluctuations can polarize
the atoms, even if they are not charged. When put in proximity to structures, the
vacuum-induced dipole moment creates a mirror charge that acts on the original
dipole, leading to an additional light shift. The CP potential UCP is only significant
at very close distances (≤ 150 nm) but is crucial as it acts as an attractive potential
close to the surface. For these systems, the approximation of an atom in the proximity
of an infinite dielectric half space is often used Uplane

CP = −C3/d
3 [Johnson et al.

2004], where d is the distance to the surface. However, as a slab, our structure
deviates significantly from a half space. Hence, we computed a more realistic, space-
dependent CP potential, based on the pairwise summation technique (PWS) [Bitbol
et al. 2013], as described in Appendix A. This form of potential was already used in
the previous Sec. 5.1 to compute the trapping potential around a nanobeam.

Trapping potential simulation

Figure 5.11 shows the total trapping potential Utot in 3 directions for an atom in the
|F = 2,mF = +2⟩ hyperfine level. Utot is the sum of the contributions of the blue
potential Ublue, the red potential Ured and the CP potential UCP. Figures 5.11(a-
c) show the trap along the x and y axis, in the symmetry plane of the waveguide.
As shown in Fig. 5.11(d), trapping out of the (x, y) plane is less obvious as the
confinement of the atom is low in the azimuthal direction. The curvilinear coordinate
is computed as the total distance the atom can travel in the valley of minimal potential
shown in the inset with the origin corresponding to z = 0. The real depth of the trap
is given by the potential barriers that appear in Fig. 5.11(d), and are physically
around y = 0. The trap in this direction is about 100 µK deep. The limited trapping
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Figure 5.11: Calculated potential of the two-color dipole trap for mF = 0.
(a) 2D total trapping potential Utot in the proximity of the waveguide, in the (x,y)
plane. The trapping potential is given along (b) x, (c) y and (d) the azimuthal
direction out of the symmetry axis. The inset shows the curved trap in the (y,z)
plane. The trap is taken along the dotted white line. A periodic stable trap with
depth of about 2.6 mK is obtained with powers of 3.1 mW for each blue beam
and 93 µW for each red one. The simulations are performed with the nanotrappy
package and can easily be done for the other mF sublevels.

depth in this direction has the same origin as in the nanobeam case (see Sec. 5.1),
the red beam decaying too slowly in the vertical direction. In the case of the half-W1
this effect can often lead to atoms that are not trapped at all and can crash onto the
upper surface of the waveguide. While the atoms can be spread over this valley, the
averaged beta factor β̃ for a thermal cloud in this trap typically remains close to the
peak value, as the slow mode shares similar spatial distribution (see Fig 5.10(c)).

For this trap, a beam red-detuned from the D2 line of 87Rb at λred = 784.45 nm
and a beam blue-detuned at λblue = 735.86 nm are used. For each color, another beam
detuned by respectively 280 and 385 GHz at the same power is counterpropagated for
vector shift cancellation (see Sec. 3.1.1). An absolute trap depth (relative to the atoms
being infinitely far away) of 2.6 mK is obtained with a minimum at 116 nm from the
surface. The total powers are Pblue = 2× 3.1 mW and Pred = 2× 93 µW, but a stable
trap can be obtained over a wide range of powers, with trapping positions ranging
typically from 115 to a few hundreds of nanometers. The trapping frequencies are
large in the x and y directions, with ωx = 2π × 1.75 MHz and ωy = 2π × 2.00 MHz.
Out of the symmetry plane however, there is an important anharmonicity of the trap
in the azimuthal direction. The trap is less constrained in that direction and we
extract ωz = 2π × 83 kHz.
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Figure 5.12: Trapping around the half-W1 for a wide range of powers
and wavelengths. (a) Trap depth (measured as the depth along the curvilinear
coordinate) as a function of the trapping powers for λblue = 735.86 nm and λred =
784.45 nm. "Open trap" means a minimum of potential exists in the y direction but
not along the curvilinear coordinate. "Attractive" that no local minimum exists in
the y direction. The orange star is the setting in Fig. 5.11. (b) Minimum blue power
Pblue needed to achieve a closed trap 100 µK deep at 116 nm from the surface for a
wide range of blue and red of wavelengths (Only Pblue shown as Pblue ≫ Pred for
these ranges). The red star is the set of wavelengths used in (a) and in the main text.

Figure 5.12(a) shows the depth of the two-color dipole trap along the curvilinear
coordinate for a wide range of Pblue and Pred, with the same λblue and λred. Three
regions are identified in the plot. There is an "attractive" region where the blue light
shift cannot compensate the sum of the red light shift and the CP potential, leading
to a monotonous attractive potential along the y direction down to the waveguide
surface. The "open trap" region refers to the case where a trap exists in both the
y and x axis, but the atoms can find their way up to the structure surface via the
azimuthal direction, because the blue beam in this direction cannot compensate the
longer decaying tail of the red-detuned mode. The "closed trap" is the case we are
interested in as it means a barrier exists in this azimuthal direction. The height of the
barrier is represented with the red shading, and the position of the minimum along y
by the black contour lines. The trap presented in Fig. 5.11 is located by the orange
star. It corresponds to a compromise between having a trap position close enough
while not having a trap too deep. Indeed, having a large trap minimum can cause
heating due to any residual vector shift or anti-trapping of the excited state atoms
(no magic wavelengths exist for Rubidium).

As the structure can only handle a given maximum power Pmax before being
damaged by heating, we anticipate the existence of a forbidden region for Pblue +
Pred > Pmax. Pmax still has to be determined experimentally, but in [Combrié et al.
2009], power densities up to 1 GW/cm2 were coupled to similar GaInP PCWs with
group index 8.8. For our structure which has a cross section 10 times smaller and a
group index 3 times bigger, this would be equivalent to coupling ≃ 100 mW into our
waveguide. The proposed powers for the trap fall well below this bound.

Importantly, we also verified that we can achieve a stable trap in the three direc-
tions for a wide range of wavelengths, which is a valuable feature for finding the right
trade-off between heating the atoms with off-resonant scattering and power handling
of the waveguide. Figure 5.12(b) shows the minimum blue power Pblue required to
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achieve a closed trap 100 µK deep, at 116 nm from the surface along y, for a range
of λblue and λred. The white region means no trap satisfying those constraints was
found (it might exist for larger distances). We show here that for powers below 5 mW,
we can find such a trap for blue wavelengths ranging from 728 nm to 738 nm. By
allowing more power we can extend this to the full available blue-detuned air band,
i.e. ∆λblue ≈ 21 nm. The wavelength of the red beam is more constrained, but
still offers an available range from from 781.0 nm up to 785.5 nm. Laser diodes are
easily available at these wavelengths (as they are between the D1 and D2 lines of
Rubidium), reinforcing the feasibility of our platform.

Finally, as briefly noted before, we used counterpropagating beams here instead of
simple ones, albeit standing waves are not needed for periodic intensity modulation.
The strong ellipticity of the guided modes, shown in Fig. 5.9(c), acts as a fictitious
magnetic field on the atoms, splitting the Zeeman levels [Cohen-Tannoudji and
Dupont-Roc 1972]. If we start from atoms evenly distributed in all the mF states,
this effect would lead to a large inhomogeneous broadening up to a few GHz. This
effect can be mitigated by using counterpropagating trapping beams slightly detuned
from each other, as done for the blue-detuned beams in some compensated nanofiber
traps [Goban et al. 2012], see Fig. 3.6(e). Via nanotrappy, we estimated that adding
a red-detuned laser at 280 GHz from the first one and a blue detuned at 385 GHz
from the other reduces this broadening by 90%. Counterpropagation creates a running
wave at a velocity given by δω/k. This pattern propagates but at a speed so large
the atoms only see the average of the potential.

Other possible trapping schemes

The former trapping scheme used blue- and red-detuned beams in the same TE-like
polarization. This is interesting as it creates a stable trap for atoms at the position of
the maximum of 1D Purcell factor in the x direction but leads to low trapping depths
in the azimuthal direction. Figure 5.13 presents alternative trapping schemes which
might be as promising as the former one. The top row of Fig. 5.13 shows a similar
trapping scheme but using different bands of the band structure. The upper part of
the slow band is now used for the blue-detuned beam and the lowest gap-guided band
for the red (λblue = 770.0 nm, λred = 800.0 nm). This shifts the trapping position by
a/2 in the x direction but as seen in Fig. 5.10(b) this is not critical as the 1D Purcell
factor is almost constant along x. A stable trap at d = 114 nm from the surface
with a depth of 2.2 mK is achieved, leading to a comparable 1D Purcell factor of
0.72. This trap is achieved for low powers (Pblue = 135 µW, Pred = 55 µW) as the
detunings of the trapping beam with respect to the D2 line are way smaller than in
the previous case. The barrier along the azimuthal direction can be made higher than
in the previous scheme, 250 µK in this case.

The bottom row of Fig. 5.13 shows another alternative trapping technique which
further increases the azimuthal confinement. As for the nanobeam, one can use
crossed polarizations. The blue beam will have an intensity maximum in the vertical
direction, repelling the atoms from the upper surface. The TM-like band structure of
the half-W1 does not have a band gap, but exposes index-guided bands at frequencies
inside the TE band gap. Figure 5.13(e) shows explicitly the trapping scheme: the
red-detuned mode is the same as in Sec. 5.2.5, while the blue-detuned one is taken
around k = 0.42, just before the TM mode crosses the Rb D2 line (λblue = 771.46 nm,
λred = 784.45 nm). A stable trap is achieved at x = 0, d = 107 nm from the surface
with at a depth of 0.82 mK with Pblue = 5 mW, Pred = 114 µW, leading to a 1D
Purcell factor of 0.83. In this case the trap minimum is the real barrier the atoms
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TM

Figure 5.13: Alternative trapping schemes with the same waveguide:
lower bands and TM modes. Top row: (a) We use the lower band as the red-
detuned mode (λred = 800.0 nm) and the slow one as the blue (λblue = 770.0 nm).
(b) 2D trapping with Pblue = 135 µW and Pred = 55 µW. Notice the traps are shifted
by a/2 with respect to the former scheme. (c) Trap in the azimuthal direction out
of the symmetry axis, taken along the dotted line in the inset. (d) Trap along y.
Bottom row: (e) We use the same red mode as the first scheme (λred = 784.45 nm)
and the blue comes from the lowest TM index-guided band, displayed in orange
(λblue = 771.46 nm). (f-h) Trapping potential for Pblue = 5 mW and Pred = 114 µW
in the (x, y), (y, z) planes and along y. Because of the crossed polarizations, the
blue beam repels the atoms from the upper surface.

are trapped into; as seen in Fig. 5.13(g), there is no weak trapping valley anymore.
The relatively high power in the blue beam comes from the fact that most of the
blue intensity is in the vertical direction, and power is needed to actually get the
modulation in the x axis made by the blue repulsion.

In conclusion, the half-W1 waveguide with linear bands is very promising for the
realization of a hybrid cold atom-PCW platform. Atoms can be trapped between
≈ 110 and a few hundreds of nanometers from the surface with trapping powers
compatible with the nanophotonic device. As some of the trapping schemes use
trapping wavelengths close to the resonant transition, future analysis will have to
quantify the heating of the atoms via scattering. The slow mode couples to the
atoms with β = 0.47− 0.51 for the trapping schemes considered, with a group index
around 28. This index can realistically be increased to give even stronger couplings.
As such, this platform meets all requirements from Sec. 4.3.1. This study also shows
that high GBP (at least as good as for W1 waveguides) can be achieved in such an
asymmetric structure via careful dispersion engineering techniques, and we believe
this systematic optimization can be applied to other structures for improving their
robustness to imperfections.
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Figure 5.14: 3D scheme of the asymmetric comb waveguide with a chain
of atoms on its edge. Like the half-W1, the waveguide is etched in a GaInP
membrane suspended in air. It has a total width H along y and a thickness t in the
vertical z direction. The comb pattern along the propagation direction x is made
of teeth with a width w and a height Hetched, periodically spaced with a period a.
The width of the guiding region is thus H −Hetched.

5.3 Quartic bands: the comb waveguide
We now study the feasability of another cold atom-PCW platform based on a one-
dimensional asymmetric comb waveguide, exhibiting quartic dispersion in its slow-
mode guided band. This waveguide has been introduced in [Nguyen et al. 2018] for
its exotic dispersion engineering capabilites. The structure studied here is depicted in
Fig. 5.14. It consists of a suspended bridge waveguide of width H and thickness t that
has been periodically corrugated with an asymmetric rectangular pattern. Atoms are
interfaced at the flat edge of the waveguide, where they can be trapped. Most of this
section is adapted from [Fayard et al. 2022], and the simulations were realized in
collaboration with our partners from Institut d’Optique, Nikos Fayard and Christophe
Sauvan.

We exploit symmetry breaking to design precisely this comb platform and show
that (i) it supports a slow mode with a quartic dispersion, (ii) it offers the possibil-
ity to trap atoms optically at subwavelength distances, and (iii) it provides very large
β factors for such trapped atoms. As already hinted in Chapter 4, we discuss how the
quartic dispersion makes the slow mode more tolerant to fabrication imperfections
than previous proposals.

5.3.1 An asymmetric waveguide with quartic dispersion

Emergence of the quartic dispersion

We first look at how a quartic dispersion curve can emerge at the band edge of such
an asymmetric waveguide from a quadratic one. We compare in Fig. 5.15(a-c) the
band diagrams of different periodic waveguides with period a. Figure 5.15(a) dis-
plays the case of a comb waveguide whose corrugation is symmetric in the transverse
direction7. As already discussed in Sec. 4.1.3, the corrugation couples forward and
backward propagating modes of the uncorrugated waveguide, resulting in the open-
ing of photonic band gaps at the edge of the 1BZ. Using a standard coupled-mode

7The band diagrams in this section are computed with the algorithm reticolo developed at
Institut d’Optique based on rigorously coupled wave analysis (see Appendix B).
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(a) (b) (c)

(d) (e)

Figure 5.15: Impact of transverse symmetry breaking and increased ro-
bustness of quartic dispersions. (a) TE-like band diagram of a symmetric comb
waveguide. The width of the teeth on both sides is w = 0.5a and their depth is
Hetched = 0.25H. (b) Asymmetric comb waveguide with Hetched = 0.5H only on
one side. We note the resemblance with (a), with the opening of band gaps at k ̸= 0.5
because of the coupling between the former symmetric and antisymmetric modes.
(c) Optimized 3D comb structure supporting a band with a quartic dispersion (in
green). (d) Group index ng and (e) effective photon mass meffc as a function of the
distance to the band edge, ∆λ (log scales). The green curves correspond to the slow
mode of the 3D comb waveguide, the orange curves to the original half-W1 waveg-
uide in [Zang et al. 2016] and the purple one to the linear band of the optimized
half-W1 from Fig. 5.8 and [Bouscal et al. 2024]. Stars show the operating point
chosen for the mode at 780 nm in both optimized waveguides. The dashed curves
indicate the ∆λ−3/4 (green) and ∆λ−1/2 (purple) scaling laws.

93



CHAPTER 5. DESIGN AND FABRICATION OF WAVEGUIDES FOR HYBRID
PLATFORMS

approach with two waves having linear dispersions, one can show that the disper-
sion relation of the Bloch modes varies quadratically in the vicinity of these points:
ω − ωe = ±α2(k − π/a)2 [Dubois 2018], where ωe is the frequency of the band edge
and α2 some proportionality factor. The symmetry of the corrugation forbids cou-
pling between modes of different symmetry with respect to the (x, z) plane. The
Bloch modes are either symmetric (blue curves) or antisymmetric (red curves) with
vanishing overlap integrals at crossing points.

The situation is fundamentally different in the asymmetric waveguide presented
in Fig. 5.15(b). Since the corrugation has no particular y-symmetry, all possible
couplings between modes are allowed. As a result, gaps now open inside the Brillouin
zone (k ̸= π/a) around the points of intersection between the dispersion curves of the
symmetric and antisymmetric modes of the uncorrugated waveguide. The coupling
strengths depend on the size of the teeth, fixed by the width w and the depth Hetched
defined in Fig. 5.14. Stronger corrugations result in larger coupling strengths and
wider band gaps. If the coupling is strong enough, a band gap opening at k ̸= π/a
can have an influence on the curvature of the band edge at k = π/a. Intuitively,
we can change the dispersion at the edge of the 1BZ by playing on the strength of
such couplings. Quantitatively, it can be shown in a mode coupling approach, that
we can cancel the curvature at the band edge to first order at a given value of the
coupling, leading to a quartic dispersion. The process now involves four waves (y-
even forward propagating, y-even backward, y-odd forward, y-odd backward) instead
of two [Nguyen et al. 2018]. The resulting dispersion can be written as ω − ωe =
±α4(k − π/a)4.

An optimized waveguide with a quartic band

Figure 5.15(c) shows the band diagram of a comb waveguide with such a quartic
band (highlighted in green). To achieve this, critical geometrical parameters of the
PCW have been optimized to control the strength of the coupling, namely the width
of the corrugation Hetched and the widths of the teeth w. The resulting structure
parameters are a = 283 nm, H = 2a, Hetched = 0.8H, and w = 0.422a. As for all the
previous PCWs, we considered a GaInP membrane with a thickness t = 150 nm.

This gives a band edge which is aligned to the Rubidium D2 line and a group
index of ng = 50 at 780 nm. This value of the group index is compatible with current
fabrication processes [Mazoyer et al. 2010].

The increased robustness of quartic bands

We explore more precisely why such quartic bands are significant. Sec. 4.3.2 presented
the dependence of the group index ng with ∆ω, the distance to the band edge, for
both quadratic (ng ∝ ∆ω−1/2) and quartic dispersions (ng ∝ ∆ω−3/4). Indeed, the
group index is given in each case by:

ng = c

vg
= c

∂ω/∂k
=


c

2α2∆k = c

2(α2∆ω)−1/2, (quadratic dispersion)
c

4α4∆k3 = c

4α
−1/4
4 ∆ω−3/4, (quartic dispersion)

(5.3)
where ∆k = k − π/a. The relation between frequency and wavelength gives ∆ω =
−2πc∆λ

λ0
. From Eq. 5.3, we obtain that a quartic dispersion produces a group index
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that scales as ∆λ−3/4 while the group index of a quadratic dispersion scales as ∆λ−1/2.
This effectively broadens the useful bandwidth of the slow mode.

Indeed, if one wants to work at a given group index, the quartic dispersion allows
operation at a larger ∆λ, i.e., at a frequency further from the band edge than the
quadratic one. This is made evident in Fig 5.15(d), where the dependence of ng
with the distance to the band edge ∆λ is shown for different waveguides encountered
before: the comb presented here [Fayard et al. 2022], the original half-W1 from
[Zang et al. 2016] and the optimized half-W1 with a linear band from the former
section [Bouscal et al. 2024]. The solid green curve is extracted from the green
band in Fig. 5.15(c). It is parallel to the dashed green straight line with a slope
of −3/4, confirming the quartic dispersion of the comb slow mode. For a given ng,
the corresponding ∆λ is larger than for the original half-W1. As most PCWs, both
half-W1s show a quadratic dispersion up to around ∆λ = 0.5 nm. At higher ∆λ, the
linear band optimization shows its strength as ng stays almost constant, surpassing
even the comb. As detailed in Chapter 4, a larger ∆λ means more robustness to
both disorder and systematic errors in the fabrication. If we plan on working close
to the band edge, the comb is more robust while offering a high ng, which might be
interesting for future work at ng > 50. For ∆λ ≳ 0.5 nm however, linear bands have
the upper hand. Figure 5.15(e) displays the effective mass for the three structures
and confirms these observations, as a high effective mass is also a witness of tolerance
of a slow mode to fabrication imperfections [Faggiani et al. 2016; Zang et al. 2016].

We calculate in the following subsection that, despite the moderate slowdown of
the light in the comb, we can achieve a strong atom-photon interaction.

5.3.2 A strong light-matter interaction

The spontaneous emission rate of an excited atom and the β factor introduced earlier
is computed for atoms trapped around a comb waveguide. The 1D Purcell factor

(a) (b) (c)

Figure 5.16: Decay rates of an atom near the 3D comb waveguide.
Top row: Decay rates Γtot (blue), Γ1D (red) and Γ′ (black) along three different
axes. All decay rates are normalized to Γ0.
Bottom row: Variation of the β factor β = Γ1D/Γtot along the same directions.
The yellow areas represent the trap extension (defined as the volume for which
Utot < Umin + kB × 50 µK). Reproduced from [Fayard et al. 2022].
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(c) (d) (e)

(a) (b)

Figure 5.17: Two-color dipole trap around the comb waveguide. First
row: Intensity profile of (a) the blue-detuned mode Eblue at λblue = 736 nm. (b) and
the red-detuned mode Ered at λred = 837 nm. The intensity is represented in the
(x, y) plane at z = 0 (cross-section through the center of the GaInP membrane). We
can see that the maxima of intensity of the red and blue are shifted by a/2. Second
row: (c) 2D trapping potential Utot in the (x,y) plane (d) and in the (x,z) plane
at d ) 100 nm from the waveguide. We do not show the potential around the teeth
(gray area); it is repulsive and does not exhibit trapping sites. The dashed lines in
(b) remind the position of the GaInP membrane. (e) Potential along y for different
values of the powers (see main text) with and without the CP potential.

Γ1D/Γ0 is computed as before with Eq. (2.44), but in contrast to the previous section
we model the atoms as a simpler two-level system with theD2 line transition frequency
and spontaneous decay in free space. The decay is computed for a linear dipole
transition along y, as the electric field on the edge of the comb has a very dominant Ey
component. In contrast with the nanoscale waveguides encountered before (nanofiber,
nanobeam and half-W1), this feature makes the interaction here not chiral. The value
of the 1D Purcell factor is given by the red curve in Figs. 5.16(a-c).

The decay rates Γtot and Γ′ are computed like for the half-W1 and displayed in
the first row of Fig. 5.16 and the β factor in the second row. Their variation as a
function of the position of the atom along three different axes are plotted. The yellow
areas represent the volume around the minimum of potential where atoms are most
likely to be trapped.

For large distances, d > 400 nm, the emission rate Γ1D into the slow mode is neg-
ligible compared to the emission rate Γ′ into the radiation continuum and the β factor
tends towards zero. As the distance d decreases, the atom enters the region where the
field of the slow mode is intense and Fig. 5.16(a) shows a strong enhancement of Γ1D
that results in an increase of the β factor. For a trapping distance of y = 100 nm,
Γ1D = 10 Γ0,Γ′ = 1.3 Γ0, and β = 0.88. This number is significantly larger than the
value of β ≈ 0.5 that has been experimentally observed for the alligator waveguide
[Goban et al. 2015; Hood et al. 2016] or theoretically predicted for the optimized
half-W1 waveguide.
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5.3.3 Guided trap around the comb waveguide

The last step needed for an atom-PCW platform is to support a stable evanescent
trap. We show that the asymmetric comb allows to trap Rb atoms with a two-color
evanescent dipole trap as close as 100 nm from the waveguide, where β = 0.88. For
accessibility reasons and because of the spatial profile of modes at the comb teeth,
it is not appropriate to create a trap on this side of the comb. Therefore, we aim at
trapping atoms on the side opposite the teeth, as pictured in Fig. 5.14.

Once again, we design a two-color dipole trap with guided modes. We have chosen
to work with λred = 837 nm for the red-detuned field and λblue = 736 nm for the blue-
detuned field. These wavelengths are displayed in Fig. 5.15(c) with red and light blue
dots. The electric field intensities of the corresponding guided modes are shown in
Fig. 5.17(a-b). As expected from its proximity to the light line, the red mode shows
little structure along x. The blue-detuned mode has a more pronounced periodic
modulation, with intensity maxima in front of the comb teeth at x = a/2, the atoms
will hence be attracted to the region in-between the comb teeth, while being repulsed
from the teeth. This configuration is suited for trapping in the x direction. Along y,
the decay lengths of both modes allow the creation a potential well with a minimum
at y = 100 nm, by playing on the relative powers of the beams.

As before, we have computed the total trapping potential Utot for Rb atoms with
nanotrappy, taking into account the same CP potential for a slab of thickness t.
Figures 5.17(c-e) display maps of the trapping potential Utot in the (x, y) and (x,
z) planes and along the y axis, for two different pairs of powers (Pr1, Pb1) = (1.6,
1.3) mW and (Pr2, Pb2) = (1, 1.3) mW. These configurations give a trap at a position
of d = 100 nm (160 nm) from the surface and a depth of 2.2 mK (0.8 mK). We have
hence demonstrated the possibility to trap cold Rb atoms at short distances from
the comb waveguide where the electric field of the slow mode is linearly polarized,
avoiding the need for vector shift cancellation. The weak trapping in the azimuthal
direction has yet to be characterized in this situation. The optimized asymmetric
comb waveguide fulfills all criteria introduced in Chapter 4 in order to achieve a
realistic atom-PCW platform.

5.4 Fabrication and first optical characterization
The three promising waveguides designs have to be fabricated in order to be interfaced
with cold atoms. All the fabrication discussed in the following section is done at
the Centre de Nanosciences et de Nanotechnologies (C2N), by our partners Malik
Kemiche and Sukanya Mahapatra under the supervision of Kamel Bencheikh and
Ariel Levenson. We refer to the PhD Thesis of Sukanya Mahapatra (in preparation)
for a thorough explanation of the fabrication and characterization processes. This
section only aims at giving an understanding of the main challenges and show first
promising results.

5.4.1 The challenge of fabricating suspended transparent waveg-
uides

The fabrication of the designed waveguides is a challenge on several levels.
First, as we want waveguides guiding 780 nm light (instead of telecom, more

common for these kinds of structures), all the geometrical features are reduced. For
example, the radius of the holes in the half-W1 is of 63 nm, compared to 114 nm
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Figure 5.18: Summary of the fabrication process. (a) Deposition of SiN
and SiO2 on the GaInP heterostructure. SiO2 layer is only 20 nm thick, while the
SiN one is around 2 µm. (b) Bonding on a GaP (transparent) substrate thanks to
benzocyclobutene (BCB, 500 nm thick). (c) Removal of the GaAs substrate via wet-
etching. (d) Deposition of a hydrogen silsesquioxane (HSQ) negative resist, selective
illumination with the electron beam of the resist following the chosen design. The
illuminated resist will harden, protecting the underlying GaInP. (e) Dry-etching of
GaInP with plasma and removing of the resist. (f) Dry-etching of underlying SiN
with another plasma.

in [Li et al. 2008]. Extremely high accuracy and precision are hence needed in the
fabrication.

As we will interface them in a cell where many lasers will be used for cooling down
the atoms or trapping, it is preferable to have transparent structures at 780 nm, mean-
ing the fabrication should only involve transparent layers (including the substrate).

Finally, all the structures have to be suspended for an increased optical access,
to remove reflective interfaces, and avoid leakage of the mode into the substrate and
adsorption of the atoms onto it.

A fabrication protocol tackling all these challenges had to be designed through
months of trial and error. It is summarized in Figure 5.18. The GaInP layers used to
fabricate the waveguides come as heterostructures, provided by Isabelle Sagnes and
Grégoire Beaudoin from C2N. They consist of 150 nm thick GaInP layers grown on
a 500 µm thick GaAs substrate, not transparent at 780 nm. The first three steps in
Fig. 5.18 consists in transferring the GaInP layer onto a transparent GaP substrate.
A negative resist is then deposited on the GaInP and patterned via electron beam
lithography. Subsequent plasma etching removes the zones that were not exposed
by the e-beam, revealing the waveguide structure. The SiN is then underetched for
suspension of the guiding region. Finally, the substrate is sawn (or cleaved) at the
edge to allow coupling into the waveguide with a focused free-space laser. A sawn
substrate can be seen in Fig. 5.20(b).

More information on the creation of e-beam masks, optimization of the e-beam
dose, field stitching errors and other hurdles in the development of the fabrication
protocol can be found in Sukanya Mahapatra’s thesis. Some scanning electron mi-
croscope (SEM) pictures of fabricated samples for the three different waveguides are
shown in Fig. 5.19. All three structures have been fabricated with high resolution
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(a)

(d)

(b)

(c)

Figure 5.19: SEM pictures of some fabricated samples. (a) Nanobeam,
(b) comb and (c) half-W1 waveguides. Insets show a wider scale of the structures
with the associated lengths of the waveguide regions displayed. A single chip holds
tens of different waveguides (up to 64) with different lengths and designs. Note the
excellent quality of the fabrication with very sharp edges. We see that waveguides
can be suspended over important lengths without deformation (with the help of
tethers for the comb). (d) Transmission spectrum of a 100 µm long half-W1 waveg-
uide. The dashed lines show the extent of the theoretical band gap between the two
guided modes.

and for different lengths. They now have to be optically characterized to check if they
match the predicted features.

5.4.2 Characterization of the samples

After fabrication, the transmission spectrum of the samples is characterized. The
waveguide chip is mounted on a 3-axis micrometric translation stage and a high-NA
microscope objective is used to couple light from free-space into the input coupler
(see Fig. 5.20(a-b) for a picture of the fabricated couplers that terminate all the sam-
ples). Light propagates first inside a rigid W1 waveguide supporting a fast-guided
mode at 780 nm, which can be seen in Fig. 5.20(b). It then goes through the designed
suspended waveguided and is collected at the output with a similar microscope ob-
jective and sent to an avalanche photodiode. A tunable Littman/Metcalf diode laser
(Sacher Lasertechnik TEC-500-0780-030-M), which can emit light from 770 to
810 nm, allows to probe the transmission of the selected waveguide over a wide range
of wavelengths.

We observe in Fig. 5.19(d) such a transmission spectrum for a 100 µm long half-W1
waveguide. A photonic band gap is apparent (manifesting by vanishing transmission),
although slightly shifted from the design value. As the e-beam dose was slightly too
low for these fabricated samples (leading to etched holes wider than their nominal
value), we expect the optimal samples to match the theoretical band gap more closely.
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Figure 5.20: Fabricated coupler and suspended fast access W1 waveguide.
(a) SEM picture of the trapezoidal coupler with the relevant parameters in inset and
its connection to a suspended fast access W1. (b) Perpendicular view of a similar
structure, where the substrate has been sawn close to the coupler. The different
materials have been outlined. We see clearly the etched SiN layer. The SiO2 and
BCB layers are not visible on this image as they are only a few tens of nanometers
thick.

Two localized transmission bands are present, likely corresponding to the two lowest
gap-guided bands from Fig. 5.8(a).

The observed oscillations in the transmitted bands can give crucial information on
the group velocity of the light inside the waveguide. Indeed, they are usually caused
by reflections either on the output edges of the couplers or at the transition between
the fast W1 and the suspended waveguide, creating a Fabry-Perot cavity with a
limited finesse. The free spectral range of such a cavity is related to the group index
via ∆λFSR = λ2/(ngL), where L the effective cavity length. Further improvements
on the signal-to-noise ratio of these spectra and on the impedance matching between
the fast-access waveguides and the slow-mode ones could allow to estimate ng at the
band position.

Conclusion
Many experimental and technological challenges have yet to be overcome to enable
further neutral-atom waveguide-QED protocols. As such, experimental robustness of
the targeted waveguide platforms is a critical requirement, as is evanescent trapping
of atoms. In our work, we proposed and engineered three bona fide platforms for
trapping cold Rubidium atoms close to nanofabricated waveguides based on high-
index GaInP. Because of the strong mode confinement, atoms can be trapped down
to ≈ 110 nm from the surface at input powers compatible with nanophotonic devices.
For a simple nanobeam, the resonant mode couples to the atoms with a 1D Purcell
factor of 0.1 − 0.2, while this can reach values of 0.83 for the half-W1 or even 10
for the comb waveguide. In terms of β factors, these PCWs proposed platforms
can outperform the Alligator waveguide (only existing atom-PCW platform, where
up to 3 atoms where interfaced but never trapped in the evanescent field). The
performances of these atom/PCW hybrid platforms keep getting closer to their solid-
state counterparts, with the additional strength of a facilitated scale up in terms of
atom numbers. This is summarized in Figure 5.21, which updates the findings of
[Sheremet et al. 2023] with our proposals.

This study has been carried out for conservative parameters and a strong focus on
robustness against fabrication imperfections has been done by engineering the band
structure for a large bandwidth, facilitating first implementations. Our predictions do
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Figure 5.21: Comparison of coupling efficiency β and number of emitters
N for different Waveguide QED platforms. The figure is adapted from
[Sheremet et al. 2023] with the existing platforms displayed as stars and with
addition of the proposals from this chapter as diamonds (comb, half-w1, nanobeam).

not take into account the coupling enhancement coming from the bad cavity formed
by the output edges of the waveguides. Enhancements of 2 to 5 from the theoretical
values have been reported [Goban et al. 2015].

In this challenging endeavor, a multi-step fabrication process has also been devel-
oped in order to fabricate such demanding transparent, suspended, high-index PCWs.
First characterizations results are promising as they show the presence of photonic
band gaps around the expected positions. Further measurements are needed in order
to have a more precise characterization of the samples, including the actual group
index of the guided bands.

Future generations of the PCWs should support higher group index, albeit with
narrower bandwidths [Li et al. 2008]. This novel platform – tailor-designed for atom
integration, chiral coupling, robustness, large optical access – offers unique advantages
for studying coherent and dissipative dynamics in the Waveguide QED framework.
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- To the secret lab! Pull the lever Kronk.
Wrong lever! [Falls into the alligator pit]
- Why do we even *have* that lever?
The Emperor’s New Groove (2000)

Part III:

Experimental realization of a
cold atom platform

102



CHAPTER 6
A VERSATILE COLD ATOM EXPERIMENT
FOR INTERFACING PHOTONIC-CRYSTAL

WAVEGUIDES AND RUBIDIUM ATOMS
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To probe light-matter interaction in a waveguide-QED configuration, we have to
interface the waveguides designed and fabricated in Chapter 5 with cold atoms. To
this end, an experiment allowing cooling of Rubidium 87 atoms in a magneto-optical
trap (MOT), transport and delivery to the structures as well as dipole trapping has
to be built. This experiment was started from an empty room at the very end of
2019, before Covid lockdowns. Learning from the existing experiments interfacing
nanophotonics and cold atoms we chose to realize a versatile, two-chamber system
with cold atoms transport between a MOT chamber and a science chamber. This
chapter delves into the details of the experimental apparatus. It covers both the
building process of the optical and vacuum setup in order to get a Rubidium MOT
as well as all the hardware and software experimental control implemented.
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Figure 6.1: 3D rendering of the vacuum system showing the movable two-
chamber setup. (a) Rubidium dispensers integrated in the glass cell, (b) MOT
glass cell, (c) Science chamber, (d) To turbo pump, (e) Angle valve to seal from
the turbopump or the air (f) Gate valve to keep the MOT chamber under vacuum
when changing the science chamber, (g) Ion-NEG pump, (h) Ion gauge, (i) Precision
translation stage. The upper breadboard supporting the MOT optics is displayed
in transparent grey with white edges. The MOT chamber can slide through the slit
cutout into the MOT breadboard when translating the lower breadboard. Design
made on FreeCAD.

6.1 Presentation of the versatile two-chamber cold atom
experiment: main considerations and design choices

Inspired by previous experiments interfacing photonic crystals and cold atoms (most
notably in the groups of Jeff Kimble [Goban et al. 2014; Luan et al. 2020] and
Mikhail Lukin [Thompson et al. 2013]), we designed a two-chamber experiment. The
top chamber will be used to create a Rubidium 87 magneto-optical trap (MOT) at
microkelvin temperatures. The cloud will then be moved to the lower cell glass called
the science chamber. This chamber will hold the waveguide sample. In there, atoms
will eventually be delivered from a secondary cold atomic cloud to the surface traps
thanks to optical tweezers, which is the subject of Chapter 7. In the science chamber,
light will be coupled from free space into the slow-mode waveguides thanks to high-
NA objectives with long working distances, so that the guided mode can interact with
trapped atoms close to the surface. The main reason to choose a two-chamber design
instead of a single one is to decrease as much as possible the Rb gas pressure in the
science chamber. Indeed, Rubidium is reactive and can deteriorate the waveguides by
adsorption on the GaInP. This design was implemented in Kimble’s group in the last
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generation of the Alligator PCW experiment [Luan et al. 2020] with Cesium and it
has helped increase by a lot the lifetime of the fabricated samples. Another reason is
the difficulty to create a MOT directly around such large waveguide samples as they
would perturb the MOT cooling beams via spurious reflections. The two-chamber
vacuum system is depicted in Figure 6.1.

As we will need to change the waveguide chip from time to time, we have to design
the experiment so that removing the science chamber is made as easy as possible. To
this end, the whole vacuum system is placed on an industry-grade translation stage.
Changing the science chamber boils down to only removing a coil and a mirror for the
MOT optics breadboard and then translating the whole vacuum system to remove the
chamber in a less crowded zone. The vacuum is made safer to break by the presence
of gate valves that can isolate the MOT chamber and the ion pump.

6.2 Building of the vacuum and optical system
In order to set up a cold atom experiment, one has to operate in vacuum as collisions
with background gas molecules will heat up the atoms which might escape from the
trap. To achieve a low enough collision rate, we aim at ultra high vacuum (UHV),
i.e. background gas pressure below 10−9 mbar. As such low pressures are more easily
achievable for small volumes, we design a compact vacuum system making use of
small chambers. As the sample will be coupled from free space lasers, both the MOT
and the science chamber can be made out of glass. The vacuum system consists of
the MOT chamber with in-built Rubidium getters, the science chamber, tubes and
nipples to allow connections to a turbo pump, the ion/NEG pump and an ion gauge
(see Fig. 6.1). The MOT cell and the ion/NEG pump can be isolated from the rest
thanks to gate valves (VAT 01032-CE01, not UHV) and the whole system can
be disconnected from the turbopump via an angle valve (VAT 54132-GE02, UHV
grade).

6.2.1 Glass cell and Rubidium dispensers

We use for the MOT chamber a rectangular glass cell with integrated Rubidium
dispensers manufactured by Precision Glassblowing. The rectangular part is 10 cm
tall, 3 cm wide and made out of 2.5 mm thick (estimated) Pyrex glass, while the
complete glass structure is 30 cm tall. It has external AR-coating for 780 nm light
(but not internal). A common difficulty with glass cells is that they have to be
connected to a metal vacuum system eventually. In this case, we choose to deal with
this issue by using a cell that already has a glass-to-metal transition. The lower end
of the cell is metallic and has a flange that can directly be carefully screwed onto the
vacuum system.

Six SAES alkali metal dispensers for Rubidium are integrated in the chamber,
with electrical feedthroughs into the air. They can release hot Rubidium atoms when
heated via the Joule effect. At first use, the getters need to be activated, which
happens at a given current threshold. We powered them with the turbopump on,
increasing the current every 10 minutes, until the pressure in the chamber ceased to
decreased a few minutes after changing the current setting, signaling that there is no
protective layer on the getter to pump out. In our case this happened for I = 5.2 A.
After activation, we lower the current to drive them at the lowest possible value that
gives a sufficient gas pressure, I = 3.8 A in our setup, in order to maximize their
lifetime. We want the pressure to be as low as possible, as the hot Rb atoms fly
directly to the center of the chamber, potentially reducing the lifetime of the trapped
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Figure 6.2: Baking to UHV. (a) Vacuum system wrapped in aluminium foil
during the baking process. The temperature is monitored at sensitive positions of
the chamber thanks to Ohmmeters. During the baking, the system is pumped by
the turbopump only. (b) Evolution of the pressure after switching on the ion-NEG
pump (post-baking). An important outgassing could explain the very slow decrease,
but a pressure below 10−9 mbar was reached eventually.

cold atoms through collisions. The dispensers are powered with a programmable
current source (elc ALR3203).

6.2.2 Reaching ultrahigh vacuum

Before pumping a chamber to ultrahigh vacuum, one has to inspect and clean its
components very carefully. First, one has to look for any defect in the flanges or seals
as they can lead to leaks that can prevent the system to reach UHV. Then, the parts
are thoroughly cleaned to reduce the outgassing. Indeed, components exposed to high
vacuum can continuously emit gas trapped on their surface. This can manifest as a
leak (virtual leak) and slow down the pumping process. Cleaning all the components
(tubes, flanges, screws and anything made of stainless steel) in consecutive ultrasound
baths of acetone and ethanol can reduce this effect. Ethanol is used second as it leaves
less residue than acetone.

The building stage is critical as the right amount of torque has to be set to the
screws. We use silver-coated screws in order to avoid fusing at the threads, and
deformable copper seals between the flanges. After building, we bake the vacuum
system (without the glass chambers) in order to further drive out water, gases and
other contaminants trapped in the different parts of the chamber. The baking artifi-
cially accelerates the outgassing process. We wrap the chamber with a heating tape
and then isolate it with aluminium foil (see Fig. 6.2(a)). Thermocouples monitor the
temperature at the position of the valves, which are the most sensitives parts as they
can only go up to 250 ◦C. We increase the temperature up to 200 ◦C at a rate of
about 40 ◦C per hour. This rate is very safe, as the chamber is made entirely of the
same stainless steel, it expands altogether at the same rate. We bake the chamber
for a few hours while pumping it with a turbo pump (Pfeiffer Vacuum HiCube
80 Eco).

After baking, we keep the turbopump on until we reach 5×10−7 mbar (which can
take a day or two), and wait for the whole setup to cool down completely. We then
turn on a second pump (Saes Getters NEXTorr Z-100) which is a combination of
a passive non-evaporable getter (NEG) pump and an ion pump, and close the angle
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valve. The NEXTorr has both an active ion pump which ionizes the gas passing
through its getters and absorbing the produced ions, with a pumping speed of 15 L s−1,
and a passive NEG pump which traps gas molecules on its surface by sorption on its
metallic surface, at a rate up to 150 L s−1 for H2. Figure 6.2(b) shows that pressures
below 10−9 mbar are eventually reached after two weeks, probably because of further
outgassing.

6.2.3 Building of the magnetic coils for the MOT

The end goal of the experiment is to deliver atoms into an evanescent dipole trap a few
hundred of microkelvins deep, close to the waveguides. We then need to cool atoms to
a few microkelvins, which can be done with a MOT. A MOT is an essential technique
in atomic physics to create a cold atomic cloud by combining two effects. Hot atoms
are slowed down thanks to the radiation pressure force of lasers sent in all 6 directions,
detuned by a few MHz from the Rb D2 line to address the fast, Doppler-shifted
atoms. Besides that, a strong magnetic field gradient created inside the chamber, in
combination with the lasers, acts as a restoring force, trapping the atoms at the zero
of magnetic field. This confinement happens because of the differential dependence in
the B-field of the different mF magnetic sublevels of the ground state of Rubidium.
These two processes, with a subsequent molasses phase can produce atomic clouds at
temperatures down to 10 µK for Rubidium 87. The theory of the different physical
mechanisms at play in magneto-optical traps can be found in many textbooks, and
is nicely illustrated in [Berroir 2022]. As MOTs have been developed since the late
1980s [Chu et al. 1986], some technology leaps have made them more accessible than
ever.

Two main ingredients are hence needed for a magneto-optical trap: near resonant
lasers for slowing down the atoms and a magnetic field gradient for confinement. This
magnetic field gradient is usually created by a pair of coils (referred to as MOT coils)
in near anti-Helmholtz configuration. We design a pair of circular coils that easily
produce magnetic field gradients over 20 G cm−1 with a current of 10 A, avoiding the
need for water cooling. To be able to use the coils with a small electrical current,
we aim at having the most compact coils possible, while preserving optical access
for the MOT beams. We settle on coils with a mean radius of 35.3 mm, separated
by 4 cm. Because the MOT chamber is 3 cm wide, the coils end up 5 mm away
from the MOT chamber surface, as depicted in the CAD rendering from Fig. 6.3(a).
This explains the x-asymmetry of the coil holders depicted in red. The coils are
made with 1.6 mm diameter copper wire with 45 turns split into 6 staggered layers.
Simulations with realistic coils show this configuration is sufficient to create a gradient
of 25 G cm−1 along the x-axis with a current of 10 A (see Figure 6.3(c)), which is more
than enough. On a daily basis, gradients from 8-15 G cm−1 are used to create a MOT
(meaning currents in the 2.5-5 A range).

To avoid eddy currents as much as possible the coils holders are fabricated in
a plastic polymer (Ertacetal®) instead of metal. The holder has an inner radius of
26 mm and is 5 mm thick. The copper wire is turned in the most homogeneous way
possible thanks to a manual turn (see Fig. 6.3(b)). Epoxy glue is applied after each
layer to make the coil rigid and improve thermal conduction. Each coil holder is
supported by two custom-made metallic feet with adjustable height.

To check if the fabricated coils were producing the expected magnetic field, we
measured it in a test setup mimicking the approximate separation of the coils in
the real system with magnetic field sensors (Texas Instruments DRV425EVM).
The sensor was put along x and moved with a translation stage along the x axis.
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Figure 6.3: Design, fabrication and characterization of the MOT coils.
(a) Scheme of the position of the MOT coils (coil holders in red) around the glass
chamber. (b) Turning of a coil on their Ertacetal holder. Inset: cut of a coil to show
the staggered arrangement of the 6 layers. (c) Simulated value of the B field and
gradient along the x axis produced by the 2 coils in near anti-Helmholtz configuration
for a typical current used in the experiment (3.8 A) and the maximal one (10 A).
Simulations were done for realistic coils with staggered structure and actual wire
diameter. (d) Simulated (red) and measured (blue) magnetic field gradient near the
center of the pair. Measurement done at 0.6 A.

Figure 6.3(d) shows good agreement of this measurement with our design. As these
sensors can only measure fields up to 5 G, this characterization was conducted at a
low current (I = 0.6 A).

Dynamical control of the magnetic field

The current in the coils is produced by a controllable current source which can go up to
30 A (Delta Elektronika SM 52-30). The current can be controlled dynamically
by sending the source an analog signal. As we are mostly interested in switching
off the field very fast, we use an external electrical switch rather than the source
capabilities, which has a response time of around 1 ms. The homemade switch is
composed of an IGBT, a 50V transil diode which allows the passage of high currents
which will dissipate in a 47 Ω resistor on switch off. The magnetic field can be turned
off in about 50 µs with this switch. It is decoupled electronically from the control
pseudoclock (discussed later in 6.3.1) by an optocoupler card which also converts the
trigger signal in the 0-5 V range to a -15/+15 V TTL for optimal gating of the IGBT.

6.2.4 A translation stage for versatility

As discussed in the introduction, we want the setup to offer a simple way to change
the waveguide chip in the science cell. A solution found was to put the whole vacuum
chamber on a translation stage (depicted in Figure 6.4(b)). A wide slit has been cut
out in the MOT breadboard (in white) to allow the vacuum chamber to be removed
by a translation along the x axis. Only a coil and a few MOT optics have to be
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Figure 6.4: Optical cooling of 87Rb. (a) Hyperfine structure of Rubidium 87
and laser frequencies used for the MOT. The trapping beam is on a closed transition,
detuned by δ = −2π×9.5 MHz, while the repump beam brings back the atoms that
fell on the lower groundstate. The repump is a sideband on the cooling beam created
with an EOM. (b) 3D view of the MOT cooling geometry. The beams coming on
the vertical plane allow to keep an important optical access.

removed before proceeding. After closing the gate valves, the vacuum can be broken
and the science cell replaced with a new sample. The translation stage (Rollon
H1420055N07992A) has a useful stroke length of 500 mm and can resist up to 16
tons of load. It is actuated by hand, every turn moving the stage by 20 mm. It has
a bidirectional repeatability of 45 µm. No wobble is detected at any position: as the
movement is performed by two caged linear recirculating ball bearing guides and a
preloaded ball screw, it is very stable.

6.2.5 Optical setup for a first MOT

We now look at the optical setup needed to cool down the Rubidium atoms. 87Rb
has been one of the earliest elements to be cooled down (even being the first one
to be cooled to a Bose-Einstein condensate [Anderson et al. 1995]). As such, a
strong technical knowledge has been developed regarding lasers at the 87Rb transition
wavelengths, based on frequency doubling of telecom ones, especially regarding their
integration, miniaturization and stability. As an example, a gravimeter based on a
cold Rubidium interferometer was successfully deployed on Mt. Etna. The whole
setup was designed by Muquans and measured less than 900 L [Antoni-Micollier
et al. 2022].

Optical cooling scheme

We cool the Rubidium 87 with the usual scheme depicted in Figure 6.4(a). All the
lasers are on the Rubidium D2 line. The two 5S1/2 states are long lived, while the
excited states decay at a rate Γ/2π = 6.07 MHz. The atoms are Doppler cooled with
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(a) (b)

Figure 6.5: Integrated Muquans laser. (a) Front and back picture of the laser
rack. The rack is 24U as both ILS780-193 and ILS780-214 laser systems have been
combined into the same rack (see main text). (b) Simplified system for the ILS780-
193. It has three 780 nm outputs with 500 mW of accessible power each.

laser beams detuned by δ = −2π×9.5 MHz from the |5S1/2, F = 2⟩ → |5P3/2, F
′ = 3⟩

cyclic transition, a value that has been optimized.
Because the other excited hyperfine levels are not so far in frequency, it can happen

that the cooling beams excite a detuned transition |5S1/2, F = 2⟩ → |5P3/2, F
′ = 2⟩.

Because of selection rules (∆F = 0,±1) the atoms can decay into the F = 1 ground
state, which is dark for the cooling laser. We recycle the population in F = 1 to F =
2 via a repumping beam which is resonant on the |5S1/2, F = 1⟩ → |5P3/2, F

′ = 2⟩
transition. As the population being lost into the dark state is small1, the repump
beam does not need to be very strong.

An integrated laser system

All the cooling beams are generated thanks to an integrated turn-key laser based on a
frequency-doubled telecom solution Muquans ILS780 193. The laser, packaged in
a 12U rack (see Fig. 6.5), has a 1550 nm master seed that is locked automatically via
Rb saturated absorption after doubling in frequency. Two other 1550 nm seed lasers
are phase locked to the master, amplified via Erbium-doped fiber amplifiers (EDFA)
and doubled in frequency with a temperature-controlled periodically-poled Lithium-
Niobate (PPLN) waveguide, generating two 780 nm outputs that we call Cooling and
General. We have access to the direct digital synthesizers (DDS) controlling the
phase locks of the two seed lasers, allowing to effectively tune the 780 nm output
frequency over a range of ≃ 600 MHz around the D2 transition. The repump beam
is generated with a fiber electro-optic modulator (EOM) integrated inside the laser
before doubling, with a side band at 6.568 GHz. The Cooling path is split into two
path inside the laser, one has an integrated fiber acousto-optic modulator (AOM)
that we will use later as a switch. As we do not have access directly to the power
of the repump beam, we optimize the power of the EOM in situ by maximizing the
number of atoms in the MOT.

1We estimate with optical Bloch equations that the rate of pumping into F = 1 is more than 30
times lower than into F = 2, due to the large detuning of the cooling beam from the F ′ = 2 excited
state
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MOT configuration

We split the Cooling AOM output into three distinct paths that are then coupled into
polarization-maintaining (PM) fibers. They go to collimators that output beams with
a diameter ≈ 15 mm in three directions shone into the atoms (see Figure 6.4(b) for
the actual 3D geometry). The wide beams provide a large volume where the atoms
are cooled, increasing the MOT loading rate R. Each beam is retro-reflected to have
cooling in the 6 directions. We have in the end ≃ 15 mW in each free-space beam
over which a fraction corresponds to the repump beam.

The homemade collimators use achromatic doublets with a focal length of 75
mm. They are mounted on a cage with an orientable quarter waveplate which is
aligned as to generate a circular polarization on the atoms. This configuration allows
for sub-Doppler polarization gradient cooling [Dalibard and Cohen-Tannoudji
1989], which is done in the molasses phase that follows the MOT loading.

By turning on both the lasers and magnetic field, we can obtain a continuous
MOT. But we might want to make sequences in order to dynamically change param-
eters or just to accumulate a sufficient amount of measurements. To do so, we need
hardware and software control of all the instruments involved in the experiment.

6.3 Building a full experimental control for high resolu-
tion sequences

A couple of cold atoms experiments already exist in our team, but they are running
on old versions of Python or LabView. One of the goals of this new experiment is to
implement a more up-to-date control system and then adapt it to the other setups.
We decided to control the experiment with a master pseudoclock based on a pro-
grammable system on chip (PSoC) for the hardware, while software communication,
monitoring and running will be done thanks to the Python-based labscript suite. A
functional diagram of the experimental control is shown in Figure 6.6, detailing the
communication between the software and hardware parts. This section is a summary
of how each one of these two aspects of experimental control work.

6.3.1 On Hardware control: fabricating a centralized trigger source

A pseudoclock to rule them all

To perform our experiments we need to communicate with a given number of instru-
ments and control them via analog or digital input control signals. We hence need a
dedicated hardware to generate all those control signals and send them to the right
instruments. labscript is designed to be used with a pseudoclock master device.
A pseudoclock is a device which provides a variable frequency clocking signal, which
is used to trigger other instruments (called children) when we want them to update
their output state. A pseudoclock hence only changes value when one of its clocked
devices needs to update an output rather than at a constant rate, eliminating un-
necessary repetitive instructions stored by the instruments and sent by the clock. A
comprehensive introduction on pseudoclocks can be found in [Starkey 2019].

A convenient hardware to make a pseudoclock are field-programmable gate arrays
(FPGA) based controllers. Indeed, they are very fast, allowing operations up to the
GHz level. A FPGA is physically modified by the code compilation which sets up
the links between logical gates needed to realize the computation. This makes the
computation fast and extremely versatile (up until compilation). Moreover, they have
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Figure 6.6: Functional diagram of the experimental control. A computer
controls the whole experiment with labscript, a software written in Python 3.
Instructions regarding the different changes are written in the experiment logic code
in natural language. The instructions are sent through Ethernet connection to the
devices in a device-specific formatting and the timing instructions to jane, the master
pseudoclock. jane then sends the pseudoclocking signals to the connected devices
through BNC cables. Section 6.3 will focus first on the master pseudoclock hardware
and then introduce the labscript suite and its application to our experiment. A
more detailed breakdown of the control system is shown in Figure 6.9.

a limited memory, which can be a hurdle when setting long lists of instructions to be
sent by the pseudoclock.

FPGAs can be coupled to microprocessors to overcome some of their limitations,
run Linux and allow easy communication with a control computer through Ethernet
protocol. This is the concept of Red Pitayas (RP)2, which are programmable systems
on chip (FPGA + microprocessor on a single chip) with digital and analog inputs and
outputs. Red Pitayas have a Linux-based operating system and pre-compiled FPGA
Verilog code which allows to use them as oscilloscopes, lock-in + PID or spectrum
analyzers very easily. We first tried to develop a pseudoclock out of a RP by modifying
its Verilog code. It was possible to make it work as such but because of the complex
RP overlay that includes many capabilities, the number of instructions (i.e changes
of the pseudoclock state) that could be sent to a single digital output was limited
to 16000. When trying to use various independent outputs, this decreased very fast,
reaching only a few tens of instructions for 8 outputs.

jane: a pseudoclock combining the speed of an FPGA and the memory of
a microprocessor

This was clearly not enough to use it as a pseudoclock for our experiment: a 10 ms
long ramp already needs a million output updates if we want a maximum resolution.
We use instead a more customizable platform based on the same PSoC idea. Start-
ing from a bare PSoC is very hard as both the hardware and firmware have to be

2The board can be found at https://redpitaya.com/stemlab-125-14/ and costs around 450€.
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(a) (b)

Figure 6.7: Construction of jane master pseudoclock. (a) Microzed evalu-
ation board on its carrier board. (b) Final pseudoclock box being built with BNC
outputs. Breakout boards are seen connected to the main carrier board with ribbon
connector.

designed. We hence turned to a platform developed by the Joint Quantum Institute
(JQI) in Maryland that had exactly the capabilities needed [Sitaram et al. 2021].
Their platform, called jane, is based on a Microzed evaluation board (Avnet Mi-
crozed Zynq-7020, more or less a RP without analog outputs, see Fig. 6.7(a)) and
designed to work as a pseudoclock. A server initializes on startup, allowing commu-
nication through Ethernet port to a host PC. The communication is made simple via
a specially designed API, which is integrated in a jane labscript driver (see subsec-
tion 6.3.2). The FPGA is configured to work as a pseudoclock with a custom Verilog
code. Another feature of jane is that it comes with an easy-to-build hardware plat-
form, designed around the Microzed chip, comprising a custom carrier board, eight
breakout boards and a power supply. The mounted device is shown in Fig. 6.7(b).
All the details concerning both the hardware platform and the firmware can be found
in [Sitaram et al. 2021]3.

The pseudoclock instructions are designed in the experiment control PC (thanks to
labscript as we will see later) which sends them to jane via the Ethernet connection.
The list of instructions is fed to the FPGA which executes them. To overcome the
memory limitation, jane uses the dynamic RAM (DRAM) of the microprocessor to
store the following instructions while the previous ones are being processed. A so-
called ping-pong memory partitions the FPGA memory in two, updating one half with
the DRAM data while the other half is being read by the FPGA. The instructions
are 128 bit words giving the status of each of the 64 digital outputs (1 bit for each),
the delay before the next instruction in 32 more bits, the rest used to encore more
specific instructions. The use of the DRAM increases the number of instructions sent
from a few thousands (with FPGA alone) to over 8 million.

As the Microzed 7Z020 was not available, we used its lighter 7Z010 version. The
main differences between the two are FPGA memory sizes, which is twice smaller for
the latter. After a few adaptations on the Verilog code and jane API, it could be
used as intended.

3All the original codes for configuring both the Microzed and the host PC, including the labscript
drivers, as well as the technical designs for the carrier and breakout boards can be found at https:
//github.com/JQIamo/jane/tree/main.
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6.3.2 A versatile software suite optimized for cold atom experi-
ments: labscript

The labscript way of thinking

We want to implement into our experiment a control software that is written in
Python 3 as it benefits from a strong knowledge basis and maintenance. Since we
also want the experiment to be controllable by people who are not necessarily fluent
in Python, we would like a control that makes use of graphical user interfaces (GUI).

For these reasons, we chose to use the labscript suite in our cold atoms setup
[Starkey et al. 2013]. The suite is composed of Python-based softwares and is
designed for shot-based experiments, where each shot has a distinct start and end
point, is typically repeated many times but often not identically. For example, a
single shot can mean the production and characterization of an atom cloud. The
labscript softwares run a shot end to end, from its creation with the right parame-
ters, to its execution by sending suitable instructions to the instruments involved in
the sequence, to the post-processing of the results. Most of the following is derived
from the very thorough PhD theses by P. Starkey [Starkey 2019] and C. Billington
[Billington 2018], which contain all the information a reader interested in setting
up the labscript suite in their own experiment needs. We provide a short summary
of the main ideas behind labscript and highlight a few specificities of our experi-
ment not trivial to include into this framework.

labscript assumes the whole experiment is controlled by a master pseudoclock.
We use jane as introduced before. The main idea of labscript is to be able to write
a simple code for the experimental control, called experiment logic, specifying how we
want the actual outputs of the children devices to be modified throughout the shot:
e.g. turning on the magnetic field, ramping the detuning of the lasers, switching the
state of the AOMs...

Each instrument connected to the control computer needs a labscript driver,
which mostly states how to convert an end-user instruction ("ramp up the detuning")
into a language the instrument will understand (for example a dictionary with a
sampled linear ramp with relevant detuning parameters sent via a HTTP request).
Once the experiment logic is written, device-specific lists of instructions are created
thanks to the drivers. A pseudoclock signal is also computed for each pseudoclocked
instrument, indicating to them when they need to read their next instruction and
update their outputs.

This of course is possible only if all the relevant labscript drivers are specified.
Fortunately, some common devices are already implemented in the suite and need
very little tuning4. This is the case of the National Instrument devices and Basler
cameras. Some others had to be written from scratch.

End-to-end tracking of shots with labscript softwares

In practice, only the experiment logic has to be written as a custom Python file,
all the rest of the labscript capabilities (i.e. creating and running shots end-to-
end) is handled by a suite of GUI-based softwares (see Figure 6.8) that we detail in
the following. This allows the end user to use the experiment without needing an
extensive knowledge of Python.

4The labscript suite is open-source and available online. The supported drivers can be found at
https://docs.labscriptsuite.org/projects/labscript-devices/en/latest/devices/.
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runmanager blacs lyselabscript.py

Experiment logic
Sequence definition

Shot/HDF5 creation
Setting parameters values

Continuous control
Shot execution

Result analysis and plot
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Figure 6.8: labscript workflow. A Python file describes the experiment logic
in terms of the end user outputs. Global parameters can be defined in there. Their
value for a given shot is specified in runmanager which creates a HDF5 file for each
shot, i.e. for each set of parameters, which contains the corresponding hardware
instructions to be sent to each instrument. This shot is executed via blacs, which
also allows to continuously monitor the state of the instruments when no shots are
run. The results are analyzed in lyse, either individually or by batches. Figure
adapted from [Starkey et al. 2013], simplified.

• runmanager is for shot preparation. The global parameters defined in the
experiment logic file can be set in a convenient way in runmanager. Once set,
it outputs a HDF5 file, called shot file, with the values of all the parameters.
This file will be updated throughout the whole process, eventually becoming a
self-contained history of an entire shot from initial parameters to plot analysis.
runmanager allows to define sweeps of parameters by just setting up a list for
a given one. It will hence produce many shot files that will be run sequentially.

• blacs is for shot execution. It has two regimes of operation, continuous and
sequential. The continuous mode allows to monitor the state of the instruments
before and after the sequences. It can also be used to turn on and configure
some devices before running the sequences. In our system, we use it to create
a continuous MOT to check if the laser is working well. Custom blacs tabs
have to be set up for every instrument that can be monitored and controlled
in a continuous way. [Starkey 2019] gives an outline on how to write custom
blacs drivers. The sequential mode takes the HDF5 shot file generated before
and sends all the instructions to the relevant devices. It has many in-built
capabilities like a queue that allows to send many shots at the same time (waits
for one to finish before running the following one) or repeated checks that the
connections to the devices are always up and running. Measurements taken
during a sequence (like pictures) are saved into the HDF5 file.

• lyse is for analysis of the results. Any shot file can be uploaded and analyzed
through custom Python files. It can analyze individual files or do multi-shot
analysis in a very simple way (for example to get the temperature after a time-
of-flight imaging).

labscript also includes runviewer to see the theoretical traces of the shots.

Logical diagram of the experiment

A logical diagram showing the connection between the different parts of the exper-
iments is shown in Figure 6.9. We have a jane master pseudoclock with 64 digital
outputs (only 5 displayed). The orange blocks represent physical devices. They are
defined in the code by a labscript device type in bold. One has to define outputs for
each device, shown as the black boxes. Several different outputs can act on a single
physical channel, represented in green. We note that jane has three kinds of outputs:
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Figure 6.9: Experiment connection table. Structure from the labscript
Python file defining the connection table. All are controlled from jane (in blue),
either as a real pseudoclocked device or as a single triggered instrument. The boxes
in orange represent physical devices which are represented as children device of jane
in the experiment control. The ILS780-193 and MOGLabs QRF drivers were written
for this experiment. The names in the black boxes are declared devices or outputs
in the labscript experiment code. The first box of the orange devices (Trigger-
ableDevice, IntermediateDevice, TriggerSequencer) give the main labscript class
the child devices falls into, depending on its capabilities. TriggerSequencer is under-
lined as it is a custom class. Some boxes are grouped in the same column to show
that in the end there are many parameters acting on the same physical channel (in
green).

• Clockline refers to a pseudoclocking signal as described earlier. It has to be
connected to an IntermediateDevice which accept lists of instructions read se-
quentially at each pseudoclock switch. Both the DDS (MOGLabs QRF241,
4 channels), which control the AOMs for switching the cooling beams, and
the NI Card are concerned5.

• Trigger is similar as it is produced when giving instructions to the daughter
TriggerableDevice. The difference is that triggered devices can only do one
action when receiving the trigger (typically turn on or off), they do not accept
instruction lists. A single trigger with a given width is created by jane when
needed. It takes into account the possible delays and compensates for them. It
is the primary resource for cameras and our integrated lasers.

5The DDS can also be used as a TriggerableDevice with a jane Trigger. The trigger signal goes
to a ON/OFF port of the DDS rather than to a configurable one. This allows to turn on and off the
signal way faster but forbids to control its parameters dynamically (shaping the pulse for example).
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• DigitalOut is an independent digital output that can be addressed directly in
the labscript code. This is useful when the end channel is not a device we
can communicate with, for example the MOT magnetic field switch.

More DigitalOut outputs are used for shutters, and more Triggers for cameras but
are not displayed for clarity. The complete connection table and experiment logic for
our experiment is reproduced in Appendix C.

Adding the integrated laser

From the previous discussion we understand that labscript is designed for an exper-
iment running with two kinds of instruments: either instruments that can be clocked
in real time updating their outputs at each change of the pseudoclock or devices that
repeat the same task (usually take data) upon triggering. Unfortunately, this is not
the case of our integrated Muquans laser. The ILS780 has an internal proprietary
sequencer that can be triggered externally. Sequences are normally defined via the
laser API, sent via HTTP requests and run internally, thanks to an internal 100 MHz
clock. The laser updates its outputs at each beating of this internal signal. We were
not able to bypass it in order to send directly a jane pseudoclock signal to clock
the laser sequences in real time. This type of device, triggered once but able to run
sequences does not fall naturally in the default labscript classes.

We write a new class TriggerSequencer, that enables the integration of the laser
in the experiment logic. This class allows a device to be triggered only once, while
permitting to define a sequence for its output channels (which will be translated and
sent to the laser internal sequencer). This is achieved by the use of virtual pseudo-
clocks (called dummy pseudoclocks here). As jane can trigger children pseudoclocks,
we trigger a dummy one, that "clocks" the ILS780. Thanks to this trick, labscript
can keep track of the changes of the ILS780 parameters values during a sequence
while sending physically only a single trigger pulse at t = 0 to trigger the dummy
clock, which in reality goes to the laser sequencer. To avoid unsynchronization of the
jane clock and the laser internal clock, the ILS780 can be fed with a reference signal
at 100 MHz which we can choose to be created from jane. The complete code of the
TriggerSequencer class is given in Appendix C.

We can now control all the needed instruments to create atomic clouds in timed se-
quences. We present our MOT experimental sequences and various characterizations
of the cloud in the following.

6.4 Cooling down the atoms

6.4.1 MOT experimental sequence

A simple experimental sequence is shown in Figure 6.10. We see the three different
stages of the experiment:

• First, the MOT phase is realized by switching on the magnetic gradient and
while both the cooling and repumping beams (i.e. the EOM) are on. The length
of this part can be widely tuned depending on the number of atoms we want to
load (see Figure 6.12(b)).

• Then, the atoms are cooled further in a shorter molasses phase over which the
power of the lasers is reduced with an exponential ramp and the detuning of
the cooling beam increased to 100 MHz. The length of this step, fixed at 1.5 ms,
has been optimized to produce a cloud at the lowest possible temperature.
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Absorption power

Cooling detuning

Camera exposition

B Field gradient

Cooling power

Repump power

MOT loading Molasses Imaging

8 G/cm

40 mW

5 mW

- 10 MHz
- 100 MHz

1 ms 20 us

1.5 ms50 ms - 1s

TOF

Figure 6.10: Typical experimental timing sequence. Depending on the num-
ber of atoms wanted, the MOT loading phase can be adjusted. The molasses phase
for sub-Doppler cooling is achieved by turning off the B-field while putting an ex-
ponential ramp to the cooling and repump powers. The cooling detuning is also
increased linearly. The time-of-flight (TOF) is counted from the end of the molasses
phase. An example of measurement is shown here as the absorption imaging con-
sisting of taking three pictures with the atoms, without and without any light. The
TOF is varied sequence to sequence in order to get a temperature measurement.

• Finally, everything is turned off and the MOT is in free-falling expansion. We
image the MOT with the absorption imaging setup during this phase. A picture
is taken by turning on the absorption beam during 1 ms and exposing the camera
for 20 µs. We take three pictures: one with the atoms (after a tunable time of
flight), one with the absorption light on but after the atoms have fallen down
completely (that we call the reference image) and a last one without any light
to record the camera background (that we call the dark image), corresponding
to the dark counts in each pixel.

The cycle can then restart with the same or another set of experimental param-
eters defined in the following HDF5 file. This is a simple experiment but allowed to
establish the tools for future ones.

6.4.2 Absorption imaging for characterization of the system

We want to eventually load the MOT atoms into a optical conveyor belt to transport
them to the science chamber. As such, it is important to have an appropriate ab-
sorption imaging setup to optimize and monitor relevant parameters the loading of
the conveyor belt may depend on, e.g. the number of atoms and their temperature.

To this end, a resonant pulse (coming from the General output of the ILS780) is
sent on the atoms and the shadow imaged on a CMOS camera (Basler acA2440-
35um). The pulse length and emission is set by a single-pass, free-space, switching
AOM (AA Optoelectronic MT180-B30A1-IR), controlled by a RF signal at
80 MHz and 30 dBm generated by a dedicated channel of the MOGLabs DDS. The
beam is coupled into a PM fiber, which is then recollimated into a 1 inch beam and
sent to the atoms. A 4f, 1:1 setup with two achromatic doublets of focal length
150 mm images the cloud into the camera. A typical free fall of the atoms over
20 ms will correspond to 2 mm, i.e. 570 pixels. The preparation of the beam and
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Figure 6.11: Optical setup for the absorption imaging in the horizontal
plane. An AOM in the preparation part is used as a switch to be able to send
short pulses through the absorption imaging setup. A 1:1 setup is obtained with 4f
imaging. The lenses are achromatic doublets of focal length 150 mm. The angle on
entry of the glass cell is to avoid clipping the horizontal MOT beam. The shadow
of the atoms imaged on the camera is shown in purple. λ

2 : half-wave plate, PBS:
polarizing beamsplitter, AOM: acousto-optic modulator.

the geometry of the setup around the MOT cell is shown in Figure 6.11. A small
angle has to be found on the entry of the glass cell so that the beam fits through the
magnetic coil holders while not blocking the MOT cooling beam in the x-direction.
A typical absorption image obtained with this setup is shown in Figure 6.12(a).

Optical depth

A central figure of merit when working with cold atom experiments is the optical depth
(OD) of the sample. The OD measures the attenuation of the light that propagated
through the cloud. By modelling the cloud as a dense vapour of atoms with a density
n, each one acting as a particle with an absorption cross section σsc = 3λ2

2π , we can
write the Beer-Lambert law which gives the attenuation of the intensity throughout
the propagation along x:

dI

dx
= −n(x)σscI(x). (6.1)

If the atomic density n is constant over x, we can integrate this expression as:

Iout = I0e−nσscL = I0e−OD (6.2)

where L is the extension of the cloud along x. This expression assumes the absorp-
tion cross section is independent of the intensity, which is valid for I0 ≪ Isat, where
Isat = ℏω Γ

2 is the saturation intensity of the cyclic transition. The power of the imag-
ing probe beam is around 200 µW which yields an intensity around I0 ≃ 0.1 × Isat,
to stay in the constant σsc regime. Equation (6.2) also neglects multiple scatterings,
considering the absorbed light is not re-emitted, and other complex processes [Vey-
ron et al. 2022]. This is acceptable for the low densities and powers considered here,
as this approximation typically leads to an underestimation of the atom number.

As we saw in Fig. 6.10, we take three pictures for the absorption imaging: one with
atoms, one without after they fell, one without any probe light. From these pictures
we extract the intensities Iatoms, Ireference and Idark respectively. The constant n
approximation allows to write the OD as the logarithm of these measured intensities.
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Figure 6.12: Loading of the MOT. (a) A typical absorption image of the cloud,
t = 2.9 ms after the molasses phase. The peak OD is around 0.8. (b) Number of
atoms loaded into the MOT with the loading time. An exponential fit (in pink)
gives an estimate of the lifetime of the atoms in the MOT, τ = 3.3 s. The atom
numbers are estimated with Eq. (6.4).

The OD is then expressed as:

OD = − ln Iatoms − Idark
Ireference − Idark

. (6.3)

At then end of the molasses phase, our cloud has a typical peak OD close to 1 (see
Fig. 6.12(a)), meaning 63% of the input light has been absorbed.

Atom number

The number of atoms in the cloud can be estimated from the OD. Indeed, from
Eq. (6.2), we can write the OD simply as OD = nLσsc, with nL = ncol being the
column density i.e. the number of atoms in an infinitesimal thin column of length
L. Integrating ncol over the transverse area of the cloud (i.e of the camera) gives the
total number of atoms [Hinney 2019]:

N =
∫∫
x,y

ncol(x, y)dxdy = 1
σsc

∫∫
x,y

OD(x, y)dxdy ≃ Apixel
σsc

∑
i,j

ODi,j (6.4)

where ODi,j is the OD for the pixel at position (i, j), and Apixel the area of a pixel
on the imaging camera (Apixel = 3.5 µm × 3.5 µm = 11.9 µm2). We can estimate the
atom number with a single shot OD image. We can load up to 10 millions atoms in
the MOT without changing the beam powers or the current in the getters.

MOT loading dynamics

The numberN of atoms loaded in the MOT can be described by the following dynamic
equation [Lindquist et al. 1992]:

dN

dt
= R− ΓN − β

∫
V

nMOTdV (6.5)

where R is the loading rate. The next two terms describe loss of atoms from the
MOT due to collisions with hot background gases (at a rate Γ) and due to two body
intratrap collisions, characterized by a collision factor β and the density of atoms
trapped nMOT, respectively.
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Figure 6.13: MOT temperature measurement. (a) Absorption images of
the cold atomic cloud after different holding times. The clouds are fitted by a 2D
Gaussian ellipse. The blue lines represent the fit contours at 2σ. The lower plots
show the expansion on a 1D cut. (b) Estimation of the temperature by measurement
of cloud expansion. The cloud width is extracted from the line plots in (a) and the
fit done with Equation (6.6). In this case, it yields a cloud temperature of 13.3 µK.
(c) Free fall of the center of mass. This is used to check the calibration of our imaging
setup if the coefficient of the fitted 2nd order polynomial differs from −1/2g.

If we neglect the two-body collisions (which we can usually do for dilute gases,
i.e. n ≲ 1012 cm−1), the solution is an exponential loading curve of the form
N(t) = Neq

(
1− e−Γt

)
, where Neq = R

Γ is the number of trapped atoms at equi-
librium. The loading rate R is proportional to the background atom density nbg, to
U2

trap but also to the beams diameters [Gibble et al. 1992]. It is simple to increase
both of these parameters by either increasing the current of the getters, the intensity
of the cooling beams or their diameter. Figure 6.12(b) shows such a loading curve
in our setup, making possible to estimate the values of R and Γ to be respectively
2.8× 106 s−1 and 0.3 s−1 (i.e. 3.3 s lifetime). [Haw et al. 2012] report loading rates
around 4.7× 106 s−1 for similar intensities and detuning but higher vapor density.

Temperature

We perform time-of-flight imaging in order to get an estimate of the temperature
of the atoms in the cloud. We let the cloud evolve freely after the molasses phase.
The cloud will expand during its free fall. We image the cloud at different stages of
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the expansion, over different shots, and at every step we fit the cloud by a Gaussian
distribution in both the x and y axis. Let σ be the width of the Gaussian distribution
fitted, then the evolution of the cloud size can be related to its temperature by:

σ(t) =
√
σ2

0 + kBT

M
t2 (6.6)

where σ0 is the value of sigma at the first measurement (here at t = 0), M is the mass
of a Rubidium atom. Figure 6.13(b) shows a plot of σ2 with t2, the slope of the fitted
line is the 1D root mean square velocity kBT

M . With this simple and compact setup,
we can reach temperature around 10 µK. As expected his is well below the Doppler
temperature for the Rubidium D2 line TD = ℏΓ

2kB
= 146 µK.

These temperatures should be low enough to load either an optical conveyor belt
for transport or a single optical tweezer, as prepared in Chapter 7.

6.4.3 Next experimental steps: Bringing the atoms to the samples

After getting a cloud of cold atoms in the MOT chamber, we have to transfer them
to the science chamber, 30 cm down in the -z direction. To do so, we plan on using an
optical conveyor belt. It is creating by a red-detuned standing wave, that will act as
a 1D lattice, trapping the atoms in the maxima of intensity. Then, the phase of one
of the lasers is linearly shifted to accelerate the lattice down, transporting the atoms
in the same direction [Cladé 2005]. This conveyor belt will be produced by another
integrated laser (Muquans ILS780 214) which noticeably has two independent
outputs at a frequency f = fD2 − 100 GHz. This laser can be seen in Fig. 6.5, as it
was integrated into the same rack, in the upper section.

Regarding the science chamber, we need to attach the fabricated waveguide chips
characterized in 5.4 on its surface. This was done in [Luan et al. 2020] thanks to
optical bonding with liquid glass. Light can then be coupled inside the waveguide
from free-space with high-NA objectives, as was done during the characterization
process.

Conclusion
Over this PhD work, a two-chamber experiment for cold Rubidium 87 atoms was
constructed from scratch and the apparatus characterized in various aspects. A ver-
satile, Python-based control system was implemented in the experiment, relying on a
master pseudoclock made with a programmable system on chip and interfaced via the
labscript suite. This work provided a reliable solution for experimental control to
be transferred to the group. The measurements show that we can routinely produce
a MOT of over 4 million atoms at temperatures ≃ 10 µK. The atoms have now to be
brought down to the science chamber where they will be interfaced with our custom
waveguides.
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The previous chapter detailed the cold atoms setup built in order to interface the
fabricated photonic-crystal waveguides (PCW). PCWs are made of semiconductor
material, and Rubidium is reactive, likely leading to significant adsorption or reaction
at the surface, which would modify the structure dispersion properties [Yu 2017].
Even if this degradation is mitigated by the two-chamber design, we want to be
able to deliver atoms to the waveguide surface one by one, reducing the background
Rubidium pressure to a minimum. Precise delivery of atoms to nanostuctures is a
daunting task as any dipole trap at the proximity of a surface will be reflected and
show a complex intensity patterns which will impede efficient transport of the atoms.
The presence of Casimir-Polder interactions and the nanometric scales of the designed
structures contribute to make this task extremely challenging.

This chapter delves into the theory and the set up of specific tweezers made
with Laguerre-Gaussian beams as they should allow for tighter traps and reduced
reflections on the surfaces, easing the loading and transport of atoms to the structures,
compared to their Gaussian counterparts.
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7.1 Delivering atoms to structures with optical tweezers

7.1.1 The advent of optical tweezers

Since Arthur Ashkin’s first demonstration of trapping of dielectric spheres thanks to
radiation pressure in 1970 [Ashkin 1970], optical tweezers have come a long way. This
groundbreaking work has laid the foundation for the optical manipulation of individ-
ual systems including nanoparticles [Aspelmeyer et al. 2014], biological material
[Grier 2003] or cold atoms [Schlosser et al. 2001].

Optical tweezers are an ideal tool to trap and manipulate cold atoms. The strong
intensity gradient and spatially-dependent light shift around the focal point allow for
the creation of a very tight dipole trap. For a tight enough trap, loading multiple
atoms ejects them from the trap in pairs. This mechanism, known as "collisional
blockade" ensures all traps are either empty or with a single atom [Schlosser et
al. 2002]. Used for investigating the scattering on a single atom [Masters et al.
2023] or to probe interactions between neighbours by using tweezers arrays [Chen
et al. 2023], there is no doubt that optical tweezers offer an outstanding amount of
control. Tweezer arrays with cold atoms are a very promising platform for simulating
complex Hamiltonians, as is apparent from the number of experiments being built
in laboratories around the world. They also offer many opportunities for quantum
computing and metrology contributing to their popularity [Kaufman and Ni 2021].

7.1.2 The daunting task of delivering atoms to nanostructures

The flexibility of optical tweezers have made them strong candidates for helping with
the daunting task of delivering cold atoms to the vicinity of dielectric structures. This
step is crucial in order to load the evanescent dipole traps presented in Chapters 3
and 5. Outstanding control is required here, as simply sending atoms straight onto
the structure will lead to adsorption, because of Casimir-Polder (CP) interactions
and reactivity of the material, gradually modifying its dispersion properties.

However, optical tweezers can get reflected by the surface of the nanostructure and
the reflected light will interfere with the incoming one creating a standing wave, with
the closest bright spot at z1 ∼ λ/4 from the surface1 and additional trapping sites
farther away spaced in increments of λ/2, as shown in Fig. 7.1(b). This effect, a priori
detrimental, can be used as it offers a z1 trap very close to the surface. This standing
wave can be loaded directly from a continuous MOT surrounding the structure but the
presence of background gas can degrade quickly the PCW, as observed in the case of
Cesium in [Goban et al. 2015]. It is safer to load the tweezer away from the structure
and then approach it, but in this case the loading probability into the closest trap
is small. [Béguin et al. 2020a] have estimated that with a tweezer perpendicular to
the surface, less than 1% of atoms initially trapped in an optical tweezer far from the
structure can be loaded into the z1 trap, by varying the focus position longitudinally.
This is because of the complex modulation of the intensity pattern during transport.
The tweezer axis can otherwise be moved transversally towards the structure which
increases slightly the delivery efficiency [Thompson et al. 2013].

Other protocols to increase control on the delivery of atoms include using a focused
optical conveyor belt going through the transparent structure [Burgers et al. 2019;

1For an imperfect reflective surface, the position of z1 actually depends on the width of the
structure. For a width t and refractive index n, the position of the first trapping site z1 is given by
the smallest integer m such that z1 =

(
m + 1

2

)
λ
2 − n × t ∈ [0, λ/2]. For t = 0, m = 0 and we recover

z1 = λ
4 .
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Figure 7.1: Optical tweezer and interference pattern produced by reflec-
tion on a surface. (a) The tweezer is usually created by a microscope objective
with high numerical aperture. The strong intensity gradient close to the focal point
restores the atom position. (b) When shone on a structure (here a PCW), inter-
ference fringes appear, tightening the trap, with the closest trap site at z1. The
two-color dipole trap used for trapping close to nanostructures is represented by
the red and blue sines. Note that there is more that one trapping site around the
tweezer waist

Kim et al. 2019] or to approach them via an optical guided beam, i.e. a focused beam
diffracted by the structure itself [Zhou et al. 2023].

Here we focus on the situation depicted in Fig. 7.1(b) of a focus-tunable tweezer
reflecting off a dielectric surface. It was proposed in [Béguin et al. 2020a] that using
superpositions of Laguerre-Gaussian modes can reduce the number of fringes away
from the surface. This should increase the loading efficiency into the z1 trap site and
also offer tighter traps in the longitudinal direction.

7.2 A better tweezer for nanostructures with Laguerre-
Gaussian modes

An optical tweezer made by a sum of specific Laguerre-Gaussian (LG) modes has been
proposed in [Béguin et al. 2020a], a theoretical study made in collaboration with our
group. In the following we revisit this work to adapt it to our experimental setup
parameters. We first introduce the LG modes and look at how this superposition
can give tighter optical traps more suited for transport close to structures, in both
paraxial and vectorial regimes.

7.2.1 Laguerre-Gaussian modes: Introduction

Electric field of a Laguerre-Gaussian beam

Laguerre-Gaussian modes are a family of monochromatic solutions of the electromag-
netic wave equation in the paraxial approximation obtained from the Maxwell wave
equation (2.7) assuming a slowly varying envelope:

∆⊥ξ − 2ik ∂ξ
∂z

= 0 (7.1)

where ∆⊥ is the Laplacian on the coordinates transverse to the propagation axis z and
ξ is the electric field amplitude when writing the electric field E as E = ξe−i(kz−ωt)êi.
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Figure 7.2: Normalized intensities of the first Laguerre-Gauss modes for
varying p and l. The modes outlined in orange are the ones used in the coherent
superposition EΣ from [Béguin et al. 2020a].

The total electric field for a Laguerre-Gaussian mode with order p and l is given
by:

Elp(r, θ, z) = Alp(r, z) e−ik r2
2R(z)︸ ︷︷ ︸

curvature
e−ilϕ︸ ︷︷ ︸
polar

eiψ(z)︸ ︷︷ ︸
Gouy

ei(kz−ωt)︸ ︷︷ ︸
propagation

(7.2)

where we decomposed it into an amplitude term Alp(r, z) and phase terms that we
will describe in the following. The amplitude term can be expressed as:

Alp(r, z) =
√

P0
w(z)2

√
2p!

π(p+ |l|)!

(
r
√

2
w(z)

)|l|

× L|l|
p

[
2r2

w(z)2

]
e

−r2
w(z)2 (7.3)

where L
|l|
p
[
2r2/w(z)2] is the generalized Laguerre polynomial2 of orders n and |l|

evaluated at 2r2/w(z)2. As Eq. (7.3) only gives the scalar field amplitude, we can
choose the polarization. We will consider in the following that it is well defined and
linear along êx, El

p = Elpêx. This expression is convenient as it is written in terms of
the total beam power P0.

Figure 7.2 shows 15 intensity profiles of LG modes with orders p = 0 − 4 and
l = 0−2, and with the same input power P0. We note that increasing p leads to more
rings around the center and a narrower central spot. For l ̸= 0, the center becomes
dark (donut beam), with the dark region getting larger with l. For p = 0 and l = 0
(Fig. 7.2, top left), Eq. (7.2) reduces to the well known Gaussian beam expression
(L0

0 = 1). As such, the variation of the waist with the propagation w(z) is the same
2Generalized Laguerre polynomials of order n ∈ N and α ∈ R are defined as

L(α)
n = x−αex

n!
dn

dxn
(e−xxn+a) (7.4)
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Figure 7.3: Phase of a E1
2 mode at z = zr. Total phase and its decomposition

on the curvature and polar components. The phase jumps in φp correspond to a sign
inversion of Al

p due to a zero-crossing of L|l|
p . It is not a phase term from Eq (7.2),

but carries significant information. Both Gouy and propagation phases are uniform.

as for a Gaussian case and reads:

w(z) = w0

√
1 +

(
z

zR

)2
(7.5)

where zR is the Rayleigh range, zR = πw2
0

λ , with w0 the waist at focus.

Discussion of the different phase terms

We will now discuss the different phase terms that appear and are underlined in
Eq. (7.2). Some of these contributions are displayed in Fig. 7.3 for the E1

2 mode, as
an illustrative example.

• Curvature phase: Phase coming from the non-planarity of the wavefront. Adds a
quadratic dependence in r with a curvature radius defined asR(z) = z

[
1 +

( zR
z

)2].
At the focal point, R goes to infinity and this contribution vanishes.

• Polar phase: This phase term only appears for non-zero |l|. It gives a forked
phase profile as seen in Fig. 7.3 with a singularity in the center. This is charac-
teristic of light carrying a non-zero orbital angular momentum, which can be a
valuable resource in quantum information protocols [Nicolas et al. 2014]. In
the following, we will only consider modes with l = 0, hence this phase will
vanish.

• Gouy phase: Phase that a beam acquires gradually when crossing the focal
region. For a Gaussian beam it varies from −π/2 to π/2. It is here modified
with respect to the usual Gaussian beam:

ψ(z) = (2p+ |l|+ 1) arctan
(
z

zR

)
(7.6)

Using higher order modes enhances this phase change, increasing the slope
around z = 0 and the amplitude at infinity.

• Propagation phase: Usual phase of a propagating monochromatic plane wave
along z.

7.2.2 A tighter trap with a coherent superposition of LG modes:
paraxial case

Laguerre-Gauss beams are an interesting tool, already used for the manipulation of
cold atoms, but usually only donut beams (l ̸= 0) are considered as resources. Cold
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Figure 7.4: Reduced reflections and characteristic lengths in EΣ com-
pared to a Gaussian beam, in the paraxial regime. (a) Reflections on a
perfectly reflecting surface (b) Gouy phase along the propagation axis. The Gouy
phase for the superposition is equal to the one for the LG mode E0

2
3. (c) Reduced

waist of the superposition in the transverse (x, y) plane. (d) Shorter longitudinal
extension for EΣ.

atomic clouds have been channeled with such beams [Cabrera Gutiérrez 2014]
and circular Rydberg atoms have been individually trapped thanks to dark optical
tweezers based on l > 0 LG modes [Cortiñas et al. 2020]. However, bright optical
tweezers based on higher p modes have yet to be demonstrated.

As seen in 7.1.2, the spurious reflections on the surface are an important hurdle
impeding optical trapping close to structures. There are a few ideas to reduce these
unwanted reflections [Zhou et al. 2023]. One such idea is to use modes whose intensity
profile is limited in the propagation direction, leading to a smaller region where
interferences can occur.

This can be achieved by combining modes of light which have very different phase
dependence in the z direction. Combining them via coherent superposition can lead

3As we consider l = 0 and we only look on the optical axis (r = 0), all the phase terms vanish
except for the Gouy phase ∝ 2p + 1. We can express the sum simply

EΣ(0, 0, z) =
√

2P0

πw(z)2

(
e−i arctan z

zR + e−i5 arctan z
zR + e−i9 arctan z

zR

)
=
√

2P0

πw(z)2

(
2 cos

(
4 arctan z

zR

)
+ 1
)

e−i5 arctan z
zR

by factoring by e−i5 arctan z
zR . This leads to arg(EΣ) = 4 arctan z

zR
= arg(E2).
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to suppression of the strong intensity regions as they can be out of phase for z > zR.
This can be achieved by using a superposition of Laguerre-Gaussian modes with zero
orbital angular momentum (l = 0) [Béguin et al. 2020a], as they have a p dependent
Gouy phase. Indeed, as seen in Figure 7.4(b), the Gouy phase of such beams becomes
steeper with higher p and saturates to higher values. Summing them also allows to
cancel the outer intensity rings that would be detrimental when using a single E0

p>0.
We denote by EΣ the field resulting from a coherent superposition of modes with

p = 0, 2 and 4:
EΣ = E0

0 + E0
2 + E0

4 (7.7)

All the modes are computed with the same waist w0 fed into Eq. (7.3) even though
for p ̸= 0, the characteristic size of the beam at focus is given by wLG = w0

√
2p+ 1

and not by w0.
We first study this superposition in the paraxial regime, where LG beams are a

solution of the Maxwell’s equations. We use, as in the experiment described in 7.3.2,
a laser of wavelength 1064 nm, and suppose we can create a Gaussian tweezer with
waist w0 = 1 µm and a 1 mK deep trap. All the fields will have a linear polarization
along the x axis.

Figure 7.4(a) shows that making a dipole trap with such a superposition leads to
reduced interference fringes close to the surface while Figs. 7.4(c-d) highlight the nar-
row intensity profiles obtained in both transverse and longitudinal directions. This
leads to an increased confinement, especially along the propagation axis, when com-
pared to a simple Gaussian tweezer. We define the trap volume V as the product of the
full widths at half maxima in each directions, V = ∆x∆y∆z. In the case represented
in Fig. 7.4, V0 = 1.18×1.18×5.9 µm3 = 8.2 µm3 and VΣ = 370×10−3 µm3, i.e a reduc-
tion of the trapping volume by a factor 22. In terms of trapping frequencies, we have
(ωx, ωy, ωz) = 2π× (97, 97, 23) kHz for a Gaussian beam and 2π× (207, 207, 71) kHz
for the EΣ superposition.

However, if the former expressions give a sense that a tighter trap is achievable
with a superposition of LG modes, optical tweezers are by definition strongly focused
beams usually made with objectives with a numerical aperture4 NA ≥ 0.4, where
the paraxial approximation breaks down. The calculations have then to be carried
out taking into account the full vectorial properties of focused light, where the LG
modes are no longer solutions of the Maxwell’s equations. To do so, we introduce the
Debye-Wolf (DW) formalism in the following and show that our superposition still
provides a significant improvement.

7.2.3 LG superposition with tightly focused tweezers: vectorial case

The Debye Wolf formalism for tightly focused beams

When using optics with high numerical aperture, we cannot use the paraxial ap-
proximation anymore as the focused beams will have a strong angle with the optical
axis. We need to use a diffraction theory that takes into account the vector nature
of the electromagnetic fields. The Debye-Wolf (DW) theory provides a theoretical
framework to express those focused beams [Wolf and Gabor 1959]5. We follow
[Novotny 2006] for introducing this framework.

4Defined as NA = n sin θmax, with θmax the half-angle of the maximum cone of light that can
enter or exit the focusing object.

5The DW theory is valid for large Fresnel numbers F := R2/(fλ), where R is the lens radius and
f its focal length. In our case F ≃ 1500.
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êφ

êz
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Ef (x, y, z)

Figure 7.5: Systems of coordinates needed for the computation of the
fields in the focal point with the Debye-Wolf integral. In red is the coordinate
system for expressing the incoming field. The one in blue is used for expressing E∞,
the field on the sphere of radius of curvature f . Finally the beam at the focus is
expressed in terms of the Cartesian coordinates (in green).

We consider a paraxial incoming beam Einc, impinging on a focusing object with
focal length f , as depicted in Figure 7.5. An important concept of the DW theory
is the reference sphere, represented in Fig. 7.5 as a dashed line. An incoming ray
meets its conjugate that intersect the focal point on a sphere of radius f named the
reference sphere. A point on this sphere is denoted by (x∞, y∞, z∞) or in spherical
coordinates (f, θ, ϕ) (blue coordinate system). The distance to the optical axis ρ of
the incoming beam is simply equal to ρ = f sin θ. The maximum distance from the
optical axis we can consider without clipping of the incoming field is equal to the
radius of the lens R, hence R = f sin θmax = f ×NA, by definition of the NA. At the
reference sphere the lens converts the incoming cylindrical beam to a spherical wave,
justifying to switch from a cylindrical coordinate system (in red) to a spherical one
(in blue).

Before the reference sphere, the incoming field Einc can be decomposed into the
red basis where the unit vectors are, in Cartesian coordinates,

êρ =

cosϕ
sinϕ

0

 , êϕ =

− sinϕ
cosϕ

0

 , êz =

0
0
1

 . (7.8)

where ϕ is the azimuthal angle around the z-axis (ϕ = π in Fig. 7.5). As we assumed
the incoming field to be in the paraxial regime, it only has non-zero components
transverse to the propagation (i.e. along êρ and êϕ). After refraction, the unit vector
êϕ is unchanged but êρ is transformed into êθ which can be written in cartesian
coordinates as:

êθ =

cosϕ cos θ
sinϕ cos θ
− sin θ

 . (7.9)

The total refracted electric field, on the reference sphere E∞, is given in this new
basis (in blue) by:

E∞(θ, ϕ) = [ts[Einc · êϕ]êϕ + tp[Einc · êρ]êθ]
√
n1
n2

cos θ (7.10)
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This mapping is obtained by projecting Einc on the basis axes of the red cylindrical
coordinate system (êρ, êϕ) and writing that refraction conserves these components
in the new coordinate system (êθ, êϕ). The

√
n1/n2 cos θ term comes from energy

conservation, and more precisely from the fact that the power transported in a given
area around a ray is conserved.

For an input polarization along the x axis, Einc = Einc êx, we can write:

E∞(θ, ϕ) = Einc(θ, ϕ)[cosϕ êθ − sinϕ êϕ]
√
n1
n2

cos θ (7.11)

= 1
2Einc(θ, ϕ)

(1 + cos θ)− (1− cos θ) cos 2ϕ
−(1− cos θ) sin 2ϕ
−2 cos θ sinϕ

√n1
n2

cos θ (7.12)

Even though E∞(θ, ϕ) is given in terms of the spherical coordinates, it is written as
a Cartesian vector.

In the Debye-Wolf formalism, the electric field Ef (x, y, z) in a region close to the
focus is obtained by integrating propagating plane waves of amplitude E∞(θ, ϕ) from
the reference sphere to the position r = (x, y, z). We say that E∞(θ, ϕ) is the plane
wave spectrum of the focused field Ef (x, y, z),

Ef (r) = C

∫∫
S

E∞(θ, ϕ)eik·rdΩ (7.13)

where dΩ = sin θdθdϕ is the infinitesimal solid angle, S is the surface of the reference
sphere on which the integration is carried out (i.e for ϕ ∈ {0, 2π} and θ ∈ {0, θmax},
because of the finite size of the lens) and k is the wave vector normal to S with
components given by

kx = k sin θ cosϕ, ky = k sin θ sinϕ, kz = k cos θ. (7.14)

This approximation is valid when the point of interest is close enough to the focus
(r0 = 0⃗), as the wave vector k in the integration is close to the real one needed to
reach r. Rewriting Eq. (7.13) with θ and ϕ, and switching to spherical coordinates,
we obtain:

Ef (ρ, ϕ, z) = C

θmax∫
0

2π∫
0

E∞(θ, ϕ) eikz cos θeikρ sin θ cos(ϕ−φ) sin θdθdϕ (7.15)

As we will focus on Laguerre-Gaussian modes with l = 0, we have azimuthal
symmetry. In that case, Einc(θ, ϕ) = Einc(θ) êx and we can plug Eq. (7.12) into
Eq. (7.15) and carry out many simplifications. The total electric field near the focus
for a paraxial and azimuthally symmetric incoming electric field is given by:

Ef (ρ, ϕ, z) = C

2

√
n1/n2

I00 + I02 cos 2ϕ
I02 sin 2ϕ
−2iI01 cosϕ

 (7.16)
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Figure 7.6: Focused Gaussian beam polarized along x focused by an objec-
tive of NA = 0.7 for an overfilled pupil. The (a) x, (b) y and (c) z components
as well as (d) the total intensity are computed with the Debye-Wolf integral. The
intensity is normalized to its maximum. We notice that in this range, an asymmetry
of the focal point appear, as it is extended along the direction of polarization, even
thought the x-component stays predominant.

where Ef is a Cartesian vector and

I00 =
θmax∫
0

Einc(θ)
√

cos θ sin θ (1 + cos θ) J0(kρ sin θ) eikz cos θdθ

I02 =
θmax∫
0

Einc(θ)
√

cos θ sin θ (1− cos θ) J2(kρ sin θ) eikz cos θdθ

I01 =
θmax∫
0

Einc(θ)
√

cos θ (sin θ)2 J1(kρ sin θ) eikz cos θdθ

(7.17)

where the Jn are the Bessel functions of the first kind of order n6.
For computing each point near the focal plane (x, y, z), we need to evaluate a

1D integral on θ. Figure 7.6 shows the intensity profile of a x-polarized Gaussian
beam focused by an objective of NA = 0.7, for z = 0. We notice a non-zero electric
field along z, characteristic of fields focused out of the paraxial approximation and

6The Bessel functions appear naturally in this expression as they can be written as integrals:

Jn(x) =
∫ π

−π

e−i(nτ−x sin τ)dτ (7.18)

Using Bessel functions makes the calculations faster as it allows going from a 2D to a 1D integral
and they are efficiently evaluated in scipy.
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a breaking of the azimuthal asymmetry on the intensity at the focal point. The
intensity profile is elongated along the direction of polarization of the incoming field.

Writing the Debye-Wolf integral as a Fourier transform for fast calculation

Computing the field at the focal point can be long as for every point in the grid
we have to evaluate various integrals (2D integrals if the incoming field does not
have azimuthal symmetry). In order to take advantage of the Python capabilities,
we modify Eq. (7.15) to write it as a Fourier transform (FT) [Leutenegger et al.
2006; Cai et al. 2019]. This will allow us to use the Fast Fourier Transform (FFT)
algorithm, which is well optimized for speed. We start from Eq. (7.13):

Ef (r) = C

∫∫
S

E∞(θ, ϕ)eikzzei(kxx+kyy) sin θdθdϕ (7.19)

where we recall that the integral is carried along the reference sphere surface S =
{ϕ ∈ [0, 2π], θ ∈ [0, θmax]}. In order to replace the spherical integration by a planar
integration over kx and ky we use the relation 1

kz
dkxdky = k sin θdθdϕ [Leutenegger

et al. 2006] which gives:

Ef (r) = C

k

∫∫
D

eikzzE∞(θ, ϕ)ei(kxx+kyy)dkxdky
kz

(7.20)

The integration domain is now D =
{

(kx, ky) : k2
x + k2

y ≤ (k sin θmax)2
}

. This looks
very much like a 2D Fourier transform, apart from the limited domain of integration
(which should be R2 for a 2D FT). We extend the integral in Eq. (7.20) by setting
E∞(θ, ϕ) to 0 outside of D. The extended field is written E∞(θ, ϕ). Eq. (7.20) can now
be written as a 2D Fourier transform on kx and kyof the quantity eikzzE∞(θ, ϕ)/kz:

Ef (x, y, z) = − if

λ0k
F (eikzzE∞(θ, ϕ)/kz) (7.21)

where the constant C has been made explicit. For a low NA system, kz ≃ k and we
recover the Fraunhofer integral for which Ef ∝ F (Einc). The numerical implementa-
tion is done on Python with the FFT algorithm. As we want an equidistant sampling
of the domain in kx and ky, Eqs. (7.14) gives us the discretization of θn,m and ϕn,m

needed to compute the fields.
We then proceed as follows. The 2D array coordinates (kn,mx , kn,my ) are converted

into (θn,m,ϕn,m) which are used to sample E∞(θn,m, ϕn,m). We ensure the electric
field is set to 0 for θ > θmax where θmax = max(arcsin(NA), arcsin(ρmax/f)). We
then add an important zero-padding to increase the resolution of our simulation in
the focal plane. This FFT-based method is at least 50 times faster than the former one
evaluating the integrals subsequently for each point in the plane of interest. Indeed,
a single Fourier transform gives the electric field in the transverse plane (x,y) at any
given z. This technique can be generalized to compute the field in any given plane
going through the focal point by a basis change [Cai et al. 2019].

The LG superposition in the tightly focused regime

Now that we have a theory to compute strongly focused fields with a reasonable
approximation we use it to compare Gaussian and Laguerre-Gaussian superposition
tweezers. Indeed, even if the LG modes are not solution of the Maxwell’s equations
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Figure 7.7: Reduced reflections and narrower traps for the LG superpo-
sition in the Debye-Wolf formalism. The top row corresponds to NA = 0.4
and the bottom one to NA = 0.7. Orange: Focused Gaussian beam E0 at F0 = 0.4,
Blue: Focused LG superposition EΣ for F0 = 0.4, Pink: Gaussian beam overfill-
ing the objective pupil (F0 ≫ 1). Intensity cuts along (a)(d) the x transverse and
(b)(e) z longitudinal axes. (c)(f) Compares the reflections patterns for a perfect
mirror at the waist.

outside of the paraxial approximation, nothing prevents from sending the same su-
perposition onto high-NA objectives and computing the predicted trap.

As seen in Equation (7.15), the integral is limited to a domain that depends on
θmax. This value is given by the geometrical constraint of the transverse size of the
focusing lens. As such, the incoming beams have a finite size which appears in the cal-
culations. To quantify the dependence of the focused field on the size of the incoming
beam, we define the filling factor F0 = w0/R, where w0 is the waist of the incoming
beam and R the clear aperture radius of the lens. Different F0 may produce very
different beam shapes on the focal plane. For small NA7, R = f ×NA = f sin θmax.

Figure 7.7 compares E0 and EΣ focused fields in the Debye-Wolf formalism for
NA = 0.4 and NA = 0.7, both taken at F0 = 0.48. While only NA = 0.7 can produce
focused beams with a waist w0 on the order of 1 µm, NA = 0.4 can be sufficient to
create Gaussian tweezers in the collisional blockade regime. This NA will be kept
in the following as the objectives used in the first version of the experiment have
NA = 0.4. Figs. 7.7(a,b,d,e) confirm the trap tightening along x and z compared to
the Gaussian case with the same F0. They show however that the gain is limited
compared to a plane wave input (in pink, in this case F0 = 10). In this overfilling
case, the field at the focal plane is a diffraction-limited Airy spot. We try to avoid
being in this case as overfilling the objective aperture sends substantial amount of

7NA = sin θmax = sin [arctan(R/f)] ≃ R/f
8Value of F0 = 0.4 chosen as it corresponds to the first local maximum in ωz (see Fig. 7.8(b)).

There is a higher ωz achievable at F0 = 0.737 but its intensity profile has important revival lobes
along z.
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Figure 7.8: Trap frequencies fi and volumes for a tightly focused E0 and
EΣ in the DW formalism. (a) fx and fy, (b) fz, (c) and trap volumes V0 and
VΣ dependence with F0. The subscripts 0 and Σ refer to the Gaussian tweezer and
the LG superposition (7.7) respectively. The calculations are done with NA = 0.4,
and for a trap depth set to 1 mK. For some values of F0 we can have a trap with
a smaller volume and a larger trap frequency along z than with a Gaussian beam
with any filling factor, as shown by the 2 dashed lines in (b) and (c).

power into the air and, more importantly, can introduce important aberrations at the
focus, as discussed in the following.

Figure 7.8 is a more systematic study of these effects as it shows the variation
of the trapping frequencies in all three directions and of the trapping volume of a
Rubidium atom trapped by a 1064 nm laser with respect to the filling factor F0. For
each point the trap depth is set to 1 mK. Note that ωx and ωy are no longer equal as
the polarization of the incoming field introduces an asymmetry in the focal plane.

It shows that increasing the filling factor for a Gaussian beam makes the trap
tighter and with higher trap frequencies. In this regime (F0 ≳ 1) the Gaussian beam is
so large it illuminates the input lens uniformly and looks like a plane wave. This effect
manifests in 7.8(a-c) as a saturation for high F0 as increasing the filling factor more
does not change much the incoming profile. We note that for our LG superposition,
the longitudinal trap frequency ωz is larger than this diffraction limited regime for
F0 ∈ [0.32, 0.9]. The mode volume is also decreased for values of F0 around 0.37 and
0.67. The trapping frequency can be increased by 30% and the trapping volume
reduced by 9% by using a LG tweezer with an adequate filling factor, compared to
the best Gaussian case.

Tighter traps at lower filling factors

If the gains in terms of trap frequencies are substantial in the LG superposition case,
they are only marginal in terms of trap volume (and in ∆z, which determines the
fringes profile, as seen in Figs. 7.7(b)(d)). This raises the question: why should one
implement a more complex superposition if an overfilled Gaussian performs almost
as well?

For a given setup, using a LG superposition allows to work at lower power and
filling factor to produce traps of similar depths and narrower widths. This is true
even compared to an overfilled Gaussian input. This appears in Fig. 7.9 which shows
the power needed to create optical tweezers with an objective of NA = 0.4 for both
a Gaussian or a LG superposition input (Fig. 7.9(a) and (b) respectively). In the
Gaussian case, significant amounts of power are needed to produce traps in the mil-
likelvin regime (P ≈ 20 mW), because of the relatively low NA. The needed power
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Figure 7.9: Tweezer trap depth with the injected power and microscope
objective filling factor. (a) Simulations for a Gaussian tweezer in the vector
regime, NA = 0.4, f = 10 mm. We notice that for this objective with a relatively
small NA, we need substantial power to create a 1 mK trap. At a given power, the
trap becomes weaker when F0 > 0.8 as we are clipping power out. The right axis
gives the full-width half-maximum of the trap for the corresponding filling factor
F0. (b) For a EΣ superposition, we have tighter traps hence less power is needed.

is reduced in the LG superposition case9. But most importantly, F0 is also reduced
for similar trap characteristics. As an example a FWHM of 1.5 µm is achieved in the
LG superposition case for a filling factor ≈ 0.3, more than 3 times lower than in the
Gaussian case. With NA = 0.4 one can hope to reach the collisional blockade regime
with LG sums for F0 < 0.3 and only a few mW of power.

Experimentally, working at low F0 can help reduce aberrations that can be detri-
mental for such high-focused traps. Most experiments using high focusing lenses to
produce single tweezers work with a limited filling factor, as it is difficult to obtain a
perfect point spread function in the overfilled case. F0 is taken around 0.2 in [Mas-
ters et al. 2023] for a NA = 0.55 aspheric lens, and [Bruno et al. 2019] includes a
discussion of why they chose F0 = 0.35−0.55 as a compromise between the reduction
of the waist and the spherical aberrations introduced by their NA = 0.5 aspheric lens.

If the theoretical limits of the trap parameters are close in both cases, LG super-
positions offer an additional experimental capability which gives more versatility in
the possible traps generated by a given setup. Experiments will show if this strategy
increases the loading rate even for NA = 0.4.

7.3 Generating the tweezers experimentally
With these promising simulations at hand, we now delve on how to produce such a
superposition of Laguerre-Gaussian modes experimentally, and more generally, how
to control the spatial profile of a given electric field thanks to spatial light modulators.

7.3.1 Optical holography for shaping the full light field

The immense versatility of spatial light modulators

Measuring and controlling the complex profile of light has been a critical question
since the 1940s. Indeed, by detecting a beam on a camera one can only access its

9The power needed for these traps can be further decreased by using higher-NA objectives. As
an example, for NA = 0.7, 0.5 mW are sufficient to produce a 1 µm wide Gaussian trap, 2 mK deep.
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intensity. Since then, many techniques have been proposed to record both the phase
and amplitude of the light field [Gabor 1948], creating the field known as holography.
Subsequently, this knowledge was applied to engineer either the phase, amplitude or
both properties of the light in order to create custom spatial distributions.

With the emergence of digital holography, this capability became more accessible.
Spatial light modulators (SLM) are phase-only modulators based on liquid crystals,
similar to the ones found in LCD screens. These highly birefringent components are
arranged in an 2D array in SLMs, placed between electrodes. The axis of each liquid
crystal (= 1 pixel) can be set independently by tuning the local applied voltage.
An incoming light beam going through the SLM acquires position-dependent phase
defined by the angle of the liquid crystal. The 2D phase shift can hence be engineered
with a so-called phase mask, with a resolution close to that of the liquid crystal array.

This phase-only modulation can be converted into amplitude modulations on the
Fourier plane of a lens, making SLMs suitable for creating complex intensity pat-
terns. This versatility, combined with their speed and moderate cost, has made them
essential tools in many fields from adaptive optics in astronomy, to microscopy in
biological tissues, to optical communications, and they have become particularly in-
strumental in generating optical tweezer arrays for trapping and manipulating cold
atoms [Pasienski and DeMarco 2008; Barredo et al. 2016; Endres et al. 2016].

Separating the modulated light with an imprinted blazed grating

As SLMs are usually interfaced with computers, these phase masks are displayed on
the SLM with grey-scale images where the value of each pixel (from 0 to 255) encodes
a given physical phase-shift. However, the electric response of the liquid crystals is
not linear, and look-up tables (LUT) given by the manufacturer have to be used to
allow to convert the applied voltage into a phase value.

The modulation efficiency of the SLM falls short of 100% and is dependent of
the phase masks applied. To get rid of the unmodulated part, blazed gratings (BG)
are usually added to the targeted phase mask. This mask imprints a linear phase
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Figure 7.10: Blazed grating on a SLM and pixelation. (a) Blazed-grating
displayed on the SLM with a pitch dBG = 150 pixels. (b) Discretized 1D cut of the
phase pattern with a low spatial frequency (dBG = 100), (c) and for a high spatial
frequency (dBG = 10). In this case, the pixelation is evident. As a result, the SLM
shows a lower diffraction efficiency for high-frequency phase patterns.
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φ(x)10 on the beam, making it analogous to a prism (see Fig. 7.10(a)). Some part
of the light is diffracted with an angle θ related to the slope of the linear phase
while the unmodulated part is simply reflected. This allows to separate these two
components. The diffraction efficiency decreases with the displayed spatial frequency
of the blazed grating (see [Labuhn 2016] for a more thorough discussion), because
a rapidly-varying phase can no longer be well approximated by the one imprinted
of the pixelated SLM (see Fig.7.10(b-c)). A sweet spot has to be found as a high
spatial frequency means a better separation of the spots on the Fourier plane. In our
case, we use dBG = 10, needed for easy filtering of the 1st diffraction order, with an
efficiency around 70%.

In the following we use an electrically-addressed liquid crystal on silicon (LCOS)
SLM (Meadowlark Optics P1920-600-1300) with 1952 pixels in the horizontal
axis and 1152 on the vertical one, and a pixel pitch of 9.2 µm.

7.3.2 Optical setup for holography

The optical setup for the generation of optical tweezers with an SLM is shown in
Fig. 7.11. The tweezers are generated with a 1064 nm fiber laser with external
seeder (Azurlight ALS-IR-1064-20-E), sent through an acousto-optic modulator
(AOM) (AA Opto-electronic MT110-A1-1064) for fast switching. It is coupled
into a high power single-mode photonic-crystal fiber (Alphanov LMA-PM-15 421)
before arriving on the 4f imaging setup presented here. The 1064 nm laser can output
up to a few Watts of power, which can be useful if we want to increase the number of
traps. The output beam of the fiber is collimated to a beam with 6.7 mm waist and
reflected off the surface of the SLM. We make a 1:1 image of the SLM mask on the
input pupil of the objective through a 4f setup. The beam is then focused into the
atoms thanks to a microscope objective (Mitutoyo M Plan Apo NIR B 20x).
Another one can be used to image the structured tweezers.

This 4f setup is convenient for a few reasons. It allows filtering of the unwanted
diffraction orders in the Fourier plane after the first lens. Because it makes a 1:1
image of the SLM plane onto the objective input plane, looking at the phase mask
sent gives a good idea of the field on the objective pupil. Moreover, 4f systems are
less sensitive to misalignment in the propagation axis in comparison to 2f systems
[Fitzpatrick et al. 2020]. It is realised in our setup by using 2 achromatic doublets
of focal length 300mm (Thorlabs AC254-300-C-ML), and putting a diaphragm on
the Fourier plane to filter out the 0th order. A beam sampler (Thorlabs BSF10-C,
asymmetric beam-splitter with T = 90% − R = 10%) picks-up some of the light in
order to monitor the structured beam on a CMOS camera (lower one in Fig. 7.11).

A scientific CMOS camera (Hamamatsu Orca Fusion C14440) has been
interfaced (and included in labscript) to collect the fluorescence of the trapped
atoms. The light at 780 nm is separated from the trapping light by a dichroic mirror
(Thorlabs DMLP950).

There are a few experimental points to keep in mind for the impinging light when
setting up the SLM, in order to use it to its maximum capabilities:

• Shape: The input has to be a plane wave or a Gaussian beam. Either work
as the phase mask can be compensated for the shape of the initial beam. This
is done by using the output of the single mode fiber. Careful alignment of the

10φ(x) = 2πx
dBGdpix

mod[2π], with dBG the pitch in pixels and dpix the pixel width.
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Figure 7.11: 4f setup for generating Gaussian or LG tweezers with a
SLM. A Gaussian beam, coming from a high-power photonic-crystal single-mode
fiber, is reflected off of the SLM, after cleaning of the polarization. A 4f setup
allows for filtering in the Fourier plane, keeping only the 1st diffracted order. The
distance between the SLM and the input plane of the objective is equal to 4 focal
lengths of the achromatic doublets. The SLM mask is imaged with a scale 1:1 on the
objective entrance pupil. DM: dichroic mirror, CMOS: CMOS camera for monitoring
the tweezer shape, sCMOS: scientific CMOS camera for collecting fluorescence of
trapped atoms, BS: beam sampler, PBS: polarizing beam splitting, OBJ: microscope
objective. The insets show (1) the Gaussian intensity profile after the fiber output,
(2) the phase mask sent to the SLM (with a pupil), (3) the simulated intensity on
the Fourier plane, with the interesting order on the right, and (4) the measured
intensity on the objective input plane. All of these images are made for a LG E0

2
mode and with the mask generated with Method 2 described in section 7.3.3.

139



CHAPTER 7. TRAPPING ATOMS IN OPTICAL TWEEZERS WITH
HIGHER-ORDER MODES

Gaussian beam on the center of the SLM has to be carried out with diaphragms
for the compensation to be correct.

• Polarization: As SLMs are made with birefringent liquid crystals, polarization
of the incoming light is critical. To work efficiently, it has to be linear along
the slow (here vertical) axis of the SLM. A half-waveplate (λ/2) and 1 inch
polarizing beam splitter (PBS) are placed after the fiber output to align and
clean the polarization.

• Incidence: The incidence angle has to be as low as possible. Indeed, the phase
accumulates throughout the propagation in the liquid crystal layer and a bigger
angle means a longer layer crossed, which does not match the specifications
given by the software. In our setup, we have an angle of around 5◦ between the
incoming beam and the SLM normal vector.

• Wavelength: The wavelength of the input laser has to be adapted to the SLM.
The phase shifts introduced by the crystals are wavelength-dependent, it is
possible to calibrate the SLM with a Look-Up Table (LUT) in order to correct
the values of voltage to apply for a given wavelength. A common figure of merit
is the the pixel value to achieve a π phase shift compared to a pixel value of 0,
V2π. This value is strongly dependent on the wavelength of the incoming light.
For our 1064 nm laser, V2π = 223, as the SLM was calibrated at 780 nm. The
phase of the output beam can be manipulated with a resolution of 2π/223.

7.3.3 Obtaining high purity SLM masks: amplitude-encoding phase
masks

It is possible to generate Laguerre-Gaussian beams by straight-forwardly imprinting
the radial phase jumps φp (see Fig. 7.3) of the wanted LG beam on the SLM (Method
1). However this leads to modes with a purity that does not go over 80% as shown in
[Arlt et al. 1998]. Instead we follow the proposals from [Arrizón et al. 2007] and
[Bolduc et al. 2013] which show that an exact mapping exists between the phase-
only modulation of the SLM and any complex electric field. It is then possible to find
the phase mask to send to the SLM for a given target field. Note that the solution is
not unique, hence the different proposals.

The idea of these phase masks is to take advantage of the blazed grating that is
added for filtering the 1st diffraction order and modulate its depth. Indeed, the closer
the modulation is to a full 0− 2π range, the more light the SLM can send to the 1st

diffraction order. With this modulation the intensity sent to the atoms [Davis et al.
1999] can be controlled locally, engineering the intensity distribution pixel by pixel.
While this comes at the cost of more loss into the 0th order, it is possible to obtain
modes with higher purity [Clark et al. 2016].

Let us get a feeling of why this amplitude encoding can lead to higher purity.
A linearly-polarized electric field on a plane transverse to the propagation axis z is
described by both a scalar amplitude and a phase as follows:

E(x, y) = a(x, y)eiϕ(x,y). (7.22)

We will call E the target field. On the contrary, the phase mask applied to the SLM
modulates only the phase of the incoming wave. If we assume that we found a phase
modulation of the SLM that allows to reproduce our field E, the transmittance of
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the SLM can be written as:

h(x, y) = eiψ(a(x,y),ϕ(x,y)) (7.23)

where ψ(x, y) is the phase mask applied on the SLM. This function ψ(a, ϕ) depends
on both the amplitude and phase of the target field. We expand the function h(x, y)
as a Fourier series in the domain of ϕ:

h(x, y) =
+∞∑
q=−∞

hq(x, y) where hq(x, y) = caq eiqϕ (7.24)

and where the coefficients caq are given by:

caq = 1
2π

∫ π

−π
eiψ(ϕ,a)e−iqϕdϕ. (7.25)

With this notation, the first order term h1 in the expansion of h is equal to the target
electric field E if ca1 is proportional to a, ca1 = Aa is verified. If we want this condition
to be verified, taking the real and imaginary parts of Eq. (7.25) lead to the following
system: 

π∫
−π

sin[ψ(ϕ, a)− ϕ]dϕ = 0,

π∫
−π

cos[ψ(ϕ, a)− ϕ]dϕ = 2πAa(x, y).

(7.26)

We need to find a family of functions ψ(ϕ, a) that verify the above system of equations.
[Arrizón et al. 2007] proposes to use:

ψ(a, ϕ) = f(a) sinϕ (7.27)

where the function f has still to be determined. In this case we obtain h(x, y) =
eif(a) sinϕ. We use the Jacobi-Angler identity to write this complex exponential as as
sum of Bessel functions:

eif(a) sinϕ =
+∞∑

m=−∞
Jm[f(a)]eimϕ (7.28)

where Jm is the Bessel function of the first kind of order m. By comparing this
expression to Eq. (7.24) we obtain an expression of the caq coefficients in term of the
Bessel functions:

caq = Jq[f(a)] (7.29)

Remembering the condition so that h1 = E, we find that the function f used to
modulate the amplitude of the target field on the phase mask, has to verify the
condition:

J1[f(a)] = Aa (7.30)

We need to invert this expression to obtain the function f . This is done numerically
and gives a function defined in the range [0,1] with values in [0,1.84]. We find that
this function f is linear for small values of a, which is consistent with the simpler
mapping ψ(a, ϕ) = a sinϕ, proposed in [Davis et al. 1999]. We refer to this mapping
as Method 2. Intuitively, this method implements amplitude modulation with the
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Figure 7.12: Comparison of the purity of the LG modes generated by
the three different methods. Masks generated to produce a beam with waist
w0 = 1.4 mm. The simulated intensity profile for the LG E0

2 beam with the same w0
is presented on the left. Each column shows mask, image at the objective input and
1D cut through the maximum. (a) Mask produced by only taking the phase of the
LG beam and adding a BG (Method 1). It has no modulation of the amplitude of
the BG. We see the mode decays too slowly after the 2nd ring. (b) Mask generated
with Method 2 [Arrizón et al. 2007] gives the highest PSNR. (c) Method 3 from
[Bolduc et al. 2013].

SLM by inverting the diffraction efficiency of the blazed grating.

A similar mapping between the phase-only hologram and the phase and intensity
of the target field is derived in [Bolduc et al. 2013], which is based on the inversion
of the expression sin(f(a))/f(a) = Aa. We also use this method (referred to as
Method 3) in the following.

Figure 7.12 shows the phase masks and profiles of a LG E0
2 mode generated

by three different methods. Method 1 corresponds to just applying the phase of the
target LG beam on the SLM, Method 2 is the amplitude and phase encoding technique
detailed in this subsection [Arrizón et al. 2007] and Method 3 is the similar one from
[Bolduc et al. 2013]. The pictures are taken by a camera at the input plane of the
objectives. There are different ways to measure the purity of the generated beams,
relying on image analysis. We choose to use the Peak Signal to Noise Ratio (PSNR)
defined in [Clark et al. 2016] as a figure of merit. We define as Ii,jsim the value of
pixel (i, j) for the simulated date and Ii,jexp for the experimental image, the PSNR per
decibel reads:

PSNR = 10 log10

(
max(Iexp)2

MSE

)
. (7.31)

where MSE is the mean square error between Isim and Iexp, MSE = ∑
i,j

(
Ii,jsim − Ii,jexp

)2
.

The higher the PSNR, the closer the image is to the theoretical one. [Clark et al.
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Figure 7.13: Mask and intensity profile of the EΣ superposition on a
paraxial setup. (a) Mask, computed with Method 2. (b) Normalized intensity
profile recorded on the CMOS camera. The rings are barely visible. (c) 1D cut
of the intensity profile at the center of the camera, in log scale to emphasize the
oscillations around the central spot. The upper plot shows the residuals.

2016] reports values as high as 40. Before calculation of the PSNR, the experimental
picture is centered, normalized, and has its background removed. The masks given
by Methods 2 and 3 give PSNR = 35.3 and 32.3 respectively. It is clear that playing
on the amplitude of the blazed grating increased the purity of the mode, compared
to Method 1. The values are in reasonable agreement with the values reported in
[Clark et al. 2016] for these methods, albeit slightly lower. We expect some better
filtering of the observed vertical fringes might increase them.

Even if Method 2 has a worse diffraction efficiency, we choose to realize our su-
perposition with it, as it gives better results. We show in Fig. 7.13 a result of such
a superposition created with Method 2 mask. This is done for a nominal waist
w0 = 1 mm. The computed PSNR is very high, and the purity of the mode is con-
firmed by the 1D fit in Fig. 7.13(c). The data is shown on a log y-axis to highlight
the oscillations around the central peak and their very precise fit with the theory. We
can hence produce LG superposition in the paraxial regime with very high purity.
From our calculations from Section 7.2.3, we should achieve tight LG-based tweezers
with this experimental setup.

A word on optical aberrations and ongoing work

Since we are using objectives with high numerical apertures, the field in the focal
plane is very sensitive to any aberration introduced by the optical setup. These aber-
rations are kept to a minimum by using achromatic doublets and infinitely-corrected
microscope objectives. We discuss the aberrations that can be introduced in the
different parts of the setup.

During propagation from the PC fiber to the input plane of the objective, aber-
rations can occur because of imperfect alignment into a lens or small deformation of
a mirror. This can be reduced by using larger optics. Work is being carried out to
implement a Gerchberg-Saxton algorithm [Gerchberg and Saxton 1972] in order
to further compensate for them. This iterative algorithm uses the intensity profile of
an input collimated beam and the measured profile of the beam at the focus of a lens
and uses the Fraunhofer approximation to propagate the light fields back and forth
with Fourier and inverse Fourier transforms. At each step, the computed amplitude is
replaced by the experimental one, until it finds the right input phase to apply to the
Gaussian input so that it transforms into the experimental spot on the Fourier plane.
This gives the aberrated phase introduced through propagation up to the objective.
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Subtracting this phase from the SLM phase mask helps correcting for these effects
[Hering et al. 2016].

As discussed in Section 7.2.3, more aberrations (usually spherical) can be intro-
duced when overfilling the entrance pupil of the objective and clipping of the input
Gaussian beam. Indeed, we notice that going to a high filling factor seems to intro-
duce aberrations, as the focal spot becomes asymmetric in the longitudinal direction,
but this has to be characterized more precisely. For a Gaussian beam, we restrict for
now to values of F0 < 0.6, which increase the minimum width of trap achievable. This
minimum waist can be decreased by using objectives with higher NA, or replacing
the Gaussian input by a LG superposition (even with lower F0).

The objectives themselves can be imperfect. They were characterized thanks to
a Gerchberg-Saxton setup, implemented in Collège de France, in the team of Michel
Brune and Clément Sayrin, and found to be very good. Their mask can also be
subtracted from the SLM phase mask.

Conclusion
In this chapter, we have introduced theoretical and experimental tools to produce
single-atom traps with optical tweezers. Following a proposal by [Béguin et al.
2020a], a strong emphasis has been put on the generation of optical tweezers with
higher-order Laguerre-Gaussian modes, as it was showed theoretically they can pro-
vide tighter trapping potentials and easier atom loading close to nanostructures
through reduced reflections. We proved that these results still hold for objectives
with NA = 0.4. Moreover, we showed these improvements are possible in experimen-
tally credible regimes (low F0 and powers). Doing so, we introduced a theoretical
framework and implemented fast algorithms based on FFTs to study the focusing
of arbitrary light beams out of the paraxial approximation. Substantial work has
been conducted to interface a spatial light modulator on the experiment, and on the
creation of specific phase masks to generate high purity individual Laguerre-Gauss
beams and LG superpositions. The methods introduced for generating the phase
masks provide an immense versatility for future experiments.

Ongoing work should soon bear fruit and provide some results on trapping single
Rubidium atoms in our setup. Trapping frequencies have then to be characterized
with precision to compare the Gaussian and LG cases. Further efforts regarding cor-
rection of aberrations should be carried out in order to ensure the traps at the position
of the atoms deviate as little as possible from their theoretical predictions. With this
new experimental tools at hand, the next step is to apply them to loading atoms into
the evanescent dipole traps of our nanofabricated photonic-crystal waveguides.
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Summary
In this thesis, we have introduced numerous tools needed to build a versatile Waveg-
uide QED platform coupling slow-mode photonic-crystal waveguides and cold atoms
trapped close to their surface.

After motivating our work in the context of the exciting pathways opened by
Waveguide QED, with an emphasis on the quantum optics and many-body physics
applications, we introduced the theoretical basis of light-matter interaction close to
nanostructures. The study of such interaction at resonance enabled us to define rel-
evant figures of merit to quantify the coupling of atoms to a guided mode, such as
the 1D Purcell factor. More importantly, it was then expressed for experimentally
realistic multilevel atoms, in a practical, numerically computable way in terms of
the 1D Green’s function of the waveguide mode. This can help making more accu-
rate predictions of what should be observed in experiments. We then introduced the
light-matter interaction formalism out of resonance, for reviewing methods of dipole
trapping around nanostructures, most of them based around the two-color evanescent
dipole trap scheme. We subsequently presented nanotrappy, a Python package op-
timized for the simulation of optical dipole traps for multilevel atoms. Calculations
carried out with nanotrappy allowed us to introduce a novel near-field trap around
nanofibers based on vacuum forces and dressing of excited levels, allowing to trap
atoms as close as 50 nm from the surface.

Chapter 4 provided an introduction to the field of photonic crystals and estab-
lished the requirements photonic-crystals waveguides have to meet in order to be
interfaced in a cold atom experiment. Precise designs of different waveguides were
then presented in Chapter 5, with a strong emphasis on having a slow-mode at the
Rubidium wavelength, having an two-color dipole trap scheme available and making
them robust to fabrication imperfections. The half-W1 waveguide was optimized to
get linear bands which offer a constant group index over a large bandwidth while the
comb waveguide was designed to have a quartic dispersion at the band edge which
allows to work at high group indices even for relatively large detunings from the band
edge. Both strategies provide an increased robustness to fabrication imperfections.
Even with such conservative constraints, the expected coupling of the trapped atoms
to the guided mode is above 50% and even close to 90% for the comb waveguide.
These predicted performances come close to state-of-the-art solid-state platforms.
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The final two chapters provided a deep exploration of the experimental apparatus,
detailing the design and construction of a versatile, two-chamber cold atom experi-
ment tailored to integrate such waveguides. The experimental control was developed
from Python-scipted open-source solutions and conceived to be fast, modular and
user-friendly. Chapter 7 finally presented an additional experimental capability we
want to develop, i.e. delivering atoms to the waveguide surface in a controlled way.
This has been a challenging task in the community because of the perturbations in-
troduced by the structures when approaching a focused beam. A recent proposal
involving higher-order Laguerre-Gauss modes to reduce spurious reflections on the
surfaces was studied in the context of our experiment and started being implemented.

Perspectives and outlooks
As the experiment is still in its development phase, several improvements are expected
in order to make it a versatile Waveguide QED platform for cold atoms and photonic-
crystal waveguides.

Single atom detection in a tweezer As important work has been carried out on
the tweezer setup we hope very soon to detect a single atom trapped in our Gaussian
tweezer. Precise characterization will then be needed to compare this trap with the
one made with the higher-order Laguerre-Gaussian superposition. If successful, these
tweezers with reduced reflections on surfaces could be a significant tool for efficiently
delivering atoms to our waveguides, and for the community in general.

Interfacing of waveguides and transport First generation of optimized waveg-
uides have been fabricated and are being characterized. They now have to be inte-
grated in the science cell. One approach could be through the optical bonding of the
substrate to glass holders with "liquid glass" (silicate bonding), which in turn would
be bonded to the surface of the chamber, as demonstrated in [Luan et al. 2020]. In
the meantime, transport to the science chamber has to be implemented thanks to
an optical conveyor belt. Atoms might have to be cooled again or even retrapped in
the science cell. As of now, the tweezer setup is made in the MOT chamber, it will
eventually have to be moved to the science cell.

Single atom coupling to a waveguide With a nanophotonic chip immersed in
a cold atomic cloud in the science cell, we expect to see some sign of the enhanced
atom-light coupling close to a slow-mode photonic-crystal waveguide, with or without
guided trap. From the efficient coupling of a single atom to the waveguide mode,
which can lead to perfect reflection, our experiment may allow us to unlock the
full potentialities of quantum non-linear optics protocols at the single photon level.
These include implementing single-photon transistors [Chang et al. 2007], Fock state
photon sorting [Yang et al. 2022] or deterministic generation of non-Gaussian states
of light. This regime has been achieved in cavity-based experiments [Magro et al.
2023] and explored in quantum dots coupled to PCWs [Le Jeannic et al. 2022], but
has yet to be demonstrated in Waveguide QED platforms with cold atoms.

From few- to many-body physics in the band gap The interest of atom-
based platforms are their scalability, compared to their solid-state counterparts. In
the longer run, one-by-one arrangement of 1D arrays trapped along the waveguide
edge with Laguerre-Gaussian tweezers should allow our platform to provide a robust
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interface between tens or hundreds of emitters and slow-mode waveguides. In the
propagating regime, this setup can allow to witness collective dissipative dynamics like
superradiance [Cardenas-Lopez et al. 2023] or engineer atomic spin squeezing [Qi
et al. 2018].

With the fabrication process now refined, we can envision the design of PCWs to
position atomic frequencies within the band gap. This shifting of the band gap could
also be achieved via heating of the structure with an additional heating beam. This
unique feature will distinguish our platform as a singular tool for probing atom-photon
bound states or simulating exotic many-body states of matter emerging from nearest-
neighbors-like Hamiltonians [Douglas et al. 2015] or spin models with topological
long-range interactions [Bello et al. 2019], hard to treat classically.

Some further theoretical studies can also be carried out on the impact of the shape
of the dispersion on the mediated spin-spin interaction and could unveil some new
interesting physics, as it is usually assumed to be linear.

This thesis not only consolidates a robust framework for Waveguide QED but
also ignites the spark for a continuum of research that could lead to groundbreaking
advancements in quantum technologies.
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APPENDIX A
CALCULATION OF CASIMIR-POLDER

INTERACTIONS

Casimir-Polder (CP) interactions emerge from correlated fluctuations of the quantum
vacuum between a polarizable particle (like an atom) and a surface. At very short
distances this manifests as a strong attractive potential on the atoms, towards the
surface. These interactions are usually very hard to compute as they depend on the
exact response of the total structure over all frequencies (information contained in
the scattering Green’s tensor). Estimations of the CP potential is still possible by
introducing drastic approximations on the geometries considered. We introduce in
this appendix a more precise approximation that allows to deal with atoms close to
dielectric slabs.

A.1 Casimir-Polder interactions close to a semi-infinite
dielectric slab

Let us consider a semi-infinite dielectric structure, filling the full volume for x < 0.
An atom for any given x > 0 into vacuum, at small enough x will feel a CP poten-
tial. This potential can be though of as the interaction between the atomic vacuum-
induced fluctuating dipole with its own image by the surface. If the atom is close
enough to the surface, we assume the interaction is instantaneous, and using classical
electrodynamics, the CP potential takes the Lennard-Jones form [Lennard-Jones
1932]:

Uplane
CP = −C3

x3 (A.1)

where C3 is a constant that depends on the atomic polarizability and dielectric permit-
tivity of the material. At larger distances, we have to take into account retardation for
the exchanged virtual photons. The interaction potential is modified to U = −C4/x

4

as demonstrated in Casimir and Polder seminal paper [Casimir and Polder 1948].
The simple expression (A.1) is often used even for finite or non planar geometries

(like nanofibers or microtoroids), as it gives an estimation of the value of the potential
at close distances with the good order of magnitude, usually overestimated [Le Kien
et al. 2004; Stern et al. 2011].
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A.2 Computing the C3 coefficient for 87Rb close to GaInP

Even if we use Equation (A.1), it is necessary to compute the C3 coefficient which
depends both on the atom and the surface properties. [Derevianko et al. 1998;
Johnson et al. 2004] gives the procedure to follow in the case of a perfectly conducting
wall. For a Rubidium 87 atom in front of a perfectly conducting half-space, C3 =
3.53 au = 2.28× 10−48J.m3. For a dielectric wall, we expect this value to be smaller
as the interaction with the dipole image must be reduced. In this case the formula
for C3 is adapted [Caride et al. 2005]:

C3 ≈
ℏ

4π

∫ +∞

0
α(iξ)ϵ(iξ)− 1

ϵ(iξ) + 1dξ (A.2)

where α is the atomic scalar polarizability and ϵ the material dielectric function. Both
functions are evaluated in this expression over the imaginary frequency axis.

A.2.1 Computing α(iξ)
We recall that in a varying electric field, an atom exhibits a Stark shift ∆E whose
value is given by the polarizabilty tensor αµν :

∆E(F,mF ;ω) = −Re(αµν)E(−)
µ E(+)

ν . (A.3)

αµν can be decomposed into a scalar, vector and tensor part, as introduced thoroughly
in Chapter 3. Taking into account only the scalar polarizability, ∆E reduces to
∆E = −α(0)(F ;ω)|E(+)|2. The scalar polarizability α(0) is written

α(0)(F ;ω) =
∑
F ′

2ωFF ′⟨F ||D||F ′⟩2

3ℏ(ω2
FF ′ − ω2) (A.4)

where ⟨F ||D||F ′⟩ is the reduced matrix element from state |F ⟩ to |F ′⟩. In the Python
code we used the reduced matrix elements (taken from ARC [Šibalić et al. 2017])
which verify ⟨F ||D||F ′⟩2 = ⟨F |d|F ′⟩2gF (where gF = 2F + 1 is the degeneracy of the
ground state).

These matrix elements are given in ARC in units of a0e where a0 is the Bohr
radius (a0 = 5.29× 10−11) and e the fundamental charge. To get α in atomic units,
we still need to multiply everything by 1/4πϵ0a3

0 (4πϵ0 = 1 in au). In our calculation
of α(0) we took into account the transitions 5S1/2 → nP1/2 and 5S1/2 → nP3/2 for
n going from 5 to 20. Figure A.1(a) shows the obtained dependence of the scalar
polarizability for Rubidium 87 with the wavelength. The sharp dispersive features
are indicators of the presence of electronic transitions. The whole curve matches very
well the one obtained in ARC via their plotPolarizability function.

To compute C3 we can just put imaginary frequencies in our analytical expression,
which yields:

α(0)(F ; iξ) =
∑
F ′

2ωFF ′⟨F ||D||F ′⟩2

3ℏ(ω2
FF ′ + ξ2) (A.5)

The obtained scalar polarizability for Rubidium 87 over the imaginary axis has a
very different shape from the one over the real axis, as shown in Figure A.1(b). We
compare our results, with the calculations from [Derevianko et al. 2010] and find
very good agreement.
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Figure A.1: Dispersive response functions for GaInP and Rubidium
atoms. (a) Scalar polarizability of 5S1/2

87Rb. Arrows show the most important
transitions from the ground state. (b) Scalar polarizability of 5S1/2

87Rb α(iξ) and
dielectric function of GaInP ϵ(iξ) evaluated along the imaginary axis. Our calcula-
tions show good agreement with the data from [Derevianko et al. 2010], displayed
as the orange crosses.

A.2.2 Computing ϵ(iξ)
Materials usually have a frequency-dependent response, leading to a total refractive
index that varies with frequency. We usually write the complex refractive index as
n(ω) = n′(ω) + in′′(ω) where n′ is the real refractive index and n′′ the extinction
coefficient. n(ω) can be evaluated through a range of real frequencies through exper-
imental characterization. Data for GaInP in the 205− 950 nm range can be found in
[Schubert et al. 1995].

The dielectric function can be deduced from the complex refractive index by
squaring it: ϵ(ω) = n2(ω) = ϵ′(ω) + iϵ′′(ω) where ϵ′′(ω) = 2n′(ω)n′′(ω) and ϵ′(ω) =
n′(ω)2 − n′′(ω)2.

We now need to evaluate the dielectric function over the imaginary axis. As this
function has no analytical form, we will use some results from complex analysis in
order to get ϵ(iξ). We first note that ϵ evaluated for imaginary frequencies is real.
Indeed, by construction ϵ∗(ω) = ϵ(−ω∗). For ω = iξ, ϵ∗(iξ) = ϵ(iξ) hence ϵ(iξ) must
be real.

To get the expression of ϵ(iξ), we use the modified Kramers-Kronig relations
[Antezza et al. 2004] (which are applicable because ϵ is regular in the upper half
plane). The common relations give, when integrating along the real axis ω,

ϵ′(ω)− 1 = 1
π
P

∫ +∞

−∞

ϵ′′(x)
x− ω

dx (A.6)

where P is the Cauchy principal value of the integral. Using the fact that ϵ′′(ω) is
odd, we can rewrite ϵ′ as

ϵ′(ω)− 1 = 1
π
P

∫ +∞

0

ϵ′′(x)
x− ω

dx+ 1
π
P

∫ +∞

0

ϵ′′(x)
x+ ω

dx (A.7)

= 2
π
P

∫ +∞

0

xϵ′′(x)
x2 − ω2dx. (A.8)
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Taking ω = iξ along the imaginary axis, the principal value is no longer critical, since
there is no pole here (the integration over x is still on the real axis). Replacing ω by
iξ we recover the equation from [Antezza et al. 2004]

ϵ(iξ) = 1 + 2
π

∫ +∞

0

xϵ′′(ω)
x2 + ξ2dx (A.9)

where x is still a real frequency over which the integration is performed. If n′′ is close
to 0 in a wide range of frequencies (for example for SiO2, SiN or GaInP), we can use
the equivalent expression:

ϵ(iξ) = 1 + 2
π

∫ +∞

0

ω[ϵ′(ω)− 1]
ω2 + ξ2 dω (A.10)

The shape of the dielectric function evaluated along the imaginary axis for GaInP is
shown in Fig. A.1(b) in blue. Its maximum at low frequencies is close to the square
of the maximum refractive index of GaInP.

A.2.3 Numerical results

Now that we know the values of α and ϵ over the imaginary axis, we use Eq. (A.2)
to compute the C3 coefficient for a Rubidium atom close to a infinite dielectric. We
first compare our results with values that already exist in literature. For a Rubidium
atom close to a SiO2 plane, [Solano et al. 2019] give C3 = 4.94 × 10−49 J m3 =
h × 746 Hz µm3. Our calculation gives C3 = 4.85 × 10−49 J m3 when using the SiO2
values from [Philipp 1997], which is only a 2% difference.

To the best of our knowledge, there were no previous computations of the C3
coefficient of the CP interactions between GaInP and Rubidium atoms. We obtain
for this combination: C3 = 1.43 au = 9.25× 10−49J m3 = h× 1.4× 103 Hz µm3 for an
atom in the ground state 5S1/2. We use this value in all the computations of traps
around GaInP nanostructures (as it is the case throughout Chapter 5).

These values give an estimation of the C3 coefficients and hence of the CP poten-
tial. One has to keep in mind the limitations of such an estimation:

• At the distances from the surface we are interested in (100 − 300 nm) we are
in the transition regime from an interaction in C3/z

3 to one in C4/z
4 [Stern

et al. 2011]. C3 is not sufficient to describe the real shape of the CP potential,
and will lead to an overestimation.

• At very low frequencies, the behaviour of the dielectric functions are usually
not known as they become hard to measure. This can be a limitation in the
accuracy of the computation of C3 as α(iξ) is important for low frequencies,
making the value of ϵ(iξ) crucial in the same range.

• Equation (A.2) is approximate and depends strongly on temperature.

The approximations introduced and the values of C3 computed are usually enough
to give an idea of the strength of the CP interaction at short range. But in some
situations, the shape of the structure cannot be neglected anymore. We introduce in
the following an approximate way of dealing with this situation.
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Figure A.2: Calculation of the Casimir-Polder interaction between the
structure and the atom with PWS. (a) Coordinate system used with the simpli-
fied slab of thickness t (b) 2D log plot of the magnitude of the CP in the transverse
plane of the crystal (c) Comparison between the PWS potential and the one for an
semi-infinite dielectric plane at z = 0. As expected, they are comparable at small
distances, as the solid angle under which the atom interacts with the surface be-
comes large. (d) Shape of the vertical dependence of the interactions at different
distances from the surface. At close distances we have a plateau and fast decay on
each side. At 100 nm the shape is very different with a slower decay.

A.3 Pair-wise summation approximation for a z-dependent
potential

The optical traps around the PCW slabs proposed in Chapter 5 all have an important
extension in the azimuthal directions. As discussed in the main text, this is due to the
vertical decay of the guided evanescent fields which forbid to have a tight trapping
in this direction, when using the same polarization. We cannot, in this regime, use
the approximation that our atoms are in front of an infinite dielectric plane, as the
atoms can travel over vertical distances on the order of the slab thickness. Assuming
an infinite surface would create a fake barrier at y = 0 and z > t/2 whereas using the
formula but limiting it to the range −t/2 < z < t/2 would create a discontinuity at
these lines.

A formula based on scattering theory can be used for computing these CP interac-
tions for these more complex geometries [Lambrecht et al. 2006]. While analytical
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solutions have only been found for simple geometries [Antezza et al. 2004], it is pos-
sible to write it in terms of the scattering Green’s tensor and use an electromagnetic
solver to compute the latter [Rodriguez et al. 2009]. As this comes at the expense
of very intensive computations, we turn to an approximated and simpler derivation
of these interactions from first principles. We sum the van der Waals (vdW) inter-
action between the trapped atom and all the "atoms" (i.e. elements of volume with
the material’s polarizability) constituting the structure. This method, referred to as
pairwise summation (PWS), assumes the vdW potentials to be additive, neglecting
collective effects in the material. The magnitude of these collective effects can be sig-
nificant, yet it has been shown that the results are within 30% of the exact calculation
[Sparnaay 1959; Bitbol et al. 2013] which is sufficient for our purposes.

Hence, we write:

UPWS
CP =

∫
V
UvdW (A.11)

where we will consider UvdW as A/r6, the approximation for short range interactions.
A is a constant term that depends on the polarizabilities of the atoms involved in
the integral [Bitbol et al. 2013]. The value of A is not critical here as it will be
determined afterwards by comparing our result to the known one for an infinite
plane. The integral spans the whole volume V of the structure. For simplicity we
assume the waveguide to be a semi-infinite slab of thickness t (see Figure A.2(a)).
This is reasonable as the structures considered correspond to this approximation for
≳ 200 nm. This allows us to write r =

√
x2 + (y′ − ya)2 + (z′ − za)2, where (ya,za)

denote the position of the atom. xa is irrelevant because the structure is infinite in
this direction.

UPWS
CP = A

∫ −∞

0
dy

∫ t/2

−t/2
dz

∫ +∞

−∞
dx

1
(x2 + (y − ya)2 + (z − za)2)3 (A.12)

The integral can be calculated analytically and we obtain

UPWS
CP (ya, za) = −Aπ8

[
2y3
a −

√
1/(y2

a + (t− za)2(2y4
a + y2

a(t− za)2 + 2(t− za)4

3y3(t− za)3

+ 2y3
a −

√
1/(y2

a + (t+ za)2(2y4
a + y2

a(t+ za)2 + 2(t+ za)4

3y3
a(t+ za)3

]
(A.13)

We note that when t → +∞, equation (A.13) reduces to UPWS
CP = Aπ

6y3
a
, and we

recover the usual dependence for an atom in front of a dielectric half-space. Compar-
ing this to Uplane

CP (A.2) we find A = 6C3
π . We take for C3 the values computed in the

previous subsection.
The obtained spatial dependence of the CP interactions is shown in Figure A.2(b).

Figure A.2(c) shows that with this expression we depart significantly from the infinite
plane formula after only 100 nm as the finite thickness of the slab cannot be neglected.
Finally, Figure A.2(d) shows how the transverse shape of the potential changes with
distance, an important feature for our trapping scheme, which is not encapsulated in
Uplane

CP .
This more complex, and more realistic, shape of the CP potential allows to have

a better understanding of the behavior of the atoms trapped in the vicinity of our
proposed PCW and to avoid numerical divergences when simulating such traps.
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SIMULATION METHOD FOR PHOTONIC

CRYSTALS

Maxwell’s equations are not approximations: they are exact for classical fields. How-
ever, only very few analytical solutions of these equations exist, either in free space
(plane waves, Laguerre-Gaussian beams, Hermite-Gauss beams...) or in uniform
waveguides. To obtain solutions in more complex media, one has to rely on numerical
simulations. We introduce a few of them used throughout this manuscript.

B.1 Rigorous coupled-wave analysis (RCWA)

Rigorous coupled-wave analysis (RCWA) is a method usually employed for simulating
gratings, for example for computing the energy going into every diffraction order. It
consists in writing the field inside the grating as coupled propagating plane waves.
The grating is discretized into layers in the propagation direction, and the electric and
magnetic fields in each layer are expanded into a set of plane waves. The boundary
conditions are then used to relate the fields in one layer to the fields in the next layer.
The problem becomes an eigenvalue problem for a given frequency.

With a few tweaks, it can be applied to guided optics problems [Silberstein
et al. 2001]. The idea is to replicate many times the waveguide of interest in space,
creating an artificial periodicity in the transverse direction. The obtained periodic
structure can then be treated as a grating. Because the waveguides should not be
coupled, absorptive layers have to be inserted between them.

This approach is the one which has been developed in Institut d’Optique over the
last years [Lecamp et al. 2007] and used in the comb waveguide proposal [Fayard
et al. 2022].

B.2 Transfer matrix formalism
This approach is widely used to analyze the propagation of light through a stratified
1D medium. It applies to any 1D photonic crystal, as it can be used to model the
scattering off any defect in a material (for example a hole or a pillar). We define the
transmission matrix M of any layer as:(

E+
in

E−
in

)
= M ·

(
E+

out
E−

out

)
(B.1)
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Where the ± superscript denotes respectively forward and backward propagating
fields. For a 1D Bragg mirror shown in the main text, that is constituted of homo-
geneous layers of dielectric material, the transfer matrix for a single layer is given by
[Yeh 2005]:

M =
(

cos(njkdj) i
nj

sin(njkdj)
inj sin(njkdj) cos(njkdj)

)
(B.2)

where nj is the refractive index and dj the width of layer j.
We consider a 1D Bragg mirror which only has 2 kinds of layers with parameters

(n1, d1) and (n2, d2). The total transfer matrix is given by multiplying for each layer

Mtot = M2M1...M2M1︸ ︷︷ ︸
N layers

(B.3)

The reflection and transmission coefficients are obtained directly as
r = M11

tot +M12
tot −M21

tot −M22
tot

M11
tot +M12

tot +M21
tot +M22

tot

t = 2
M11

tot +M12
tot +M21

tot +M22
tot

(B.4)

The energy reflection coefficient |r|2 in Figure 4.1(b) is computed with this method.

B.3 Eigenmode expansion methods for solving Maxwell’s
equations

As the eigenvalue equation defined in Chapter 4 (4.2) is linear, it is possible to solve
for H by expanding it on a basis of orthonormal modes. This basis can be chosen to
be the set of plane waves or a set of guided modes of a uniform slab.

B.3.1 Plane Wave Expansion method (PWE)

Plane wave expansion was introduced by Steven Johnson and John Joannopoulos in
their seminal paper [Johnson and Joannopoulos 2001]. The idea is the following:
as solutions of the eigenvalue equation (4.2) are Bloch modes, we can write the pe-
riodic Bloch envelope as a Fourier series, i.e. an infinite sum of plane waves. This
gives:

Hn,k(r) = un,k(r)eik·r =
∑
j

cn,k,jei(k+gj)·r (B.5)

where the gj are reciprocal lattice vectors (not restricted to the 1BZ).
A similar decomposition is done for the dielectric function and both expansions

are plugged into Eq. (4.2). After some algebra and a Fourier transform, the problem
of finding the coefficients of the Fourier series (B.5) reduces to a matrix diagonaliza-
tion problem. As the Fourier series has an infinite number of coefficients cn,k,j , the
2D matrix to diagonalize has also infinite dimensions. In order to perform the diag-
onalization, we have to set a maximum number of harmonics Nharm to be considered
in the expansion. This is equivalent to setting a maximum length of the reciprocal
lattice vectors included.

The eigenvalues converge pretty fast with the number of harmonics considered.
But if we try to reconstruct the field from this truncated decomposition, this is
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not so much the case. Indeed, truncating the Fourier series gives rise to the Gibbs
phenomenon, as we are dropping long reciprocal lattice vectors (i.e. short range
features in real space). This phenomenon can be very detrimental in case of strong
index contrast. This method is hence not suited for computing the fields at the edge
of waveguides (at the edge of the comb or Half-W1 waveguides or on top of a W1).

Because of the decomposition in Fourier series PWE assumes Bloch periodic con-
ditions in all dimensions. It cannot be employed for a 2D PC slab which has no
periodicity on the z direction. This complexity can be approximated by replacing
the refractive index of the material by an effective refractive index seen by the fun-
damental mode propagating in the slab. This allows to have frequencies closer to the
real values.

B.3.2 Guided Mode Expansion method (GME)

Guided mode expansion is an attempt at a more accurate PWE, by taking into ac-
count the finite width of photonic-crystal slabs. It is reasonable to describe photonic
modes in these systems starting from slab waveguide modes and introducing the effect
of a dielectric modulation in the core and cladding layers [Andreani and Gerace
2006]. This is the central idea of the guided-mode expansion method, in which PCW
modes are expanded in the basis of guided modes of an effective homogeneous waveg-
uide. This approach is suited as guided modes of a uniform slab can be written as a
basis of orthonormal modes1 The solutions of Eq. (B.5) can be written as

Hk(r) =
∑
j,α

cα,k,jHguided
k+gj ,α

(B.6)

where the Hguided
k+gj ,α

are guided modes for a uniform slab of same thickness and with a
constant dielectric function ϵ̄ = 1

Vlayer

∫
Vlayer

ϵ(r)dr, defined as the averaged ϵ over the
whole photonic crystal layer. The α subscript denotes both the order of the mode
and its polarization (TE-like or TM-like). These modes have an analytical expression
involving simple trigonometric functions inside the slab and exponential decay outside
of it. As for the PWE method, the dielectric constant is written as a Fourier series.

The GME method is fundamentally approximate, as the leaky modes of the effec-
tive slab are not included on the expansion. The basis over which the decomposition
is made is hence not complete. Leaky modes can however be used to compute the
loss of a given mode into the upper and lower claddings. Another limitation, shared
with PWE, is the impossibility to handle dispersive materials. Indeed, we solve an
eigenvalue equation where the eigenvalue is ∝ ω, the frequency of the mode. It is
hence not possible to include a dependence in ω in the left hand side of Eq. (4.2) and
keep the same method.

PWE and GME simulations carried out in Chapter 4 and 5 use the open-source
legume package [Minkov et al. 2020]. In this software, we have to set a maximum
reciprocal lattice wave-vector length in units of 2π/a referred to as gmax (for a
PCW, Nharm = 2gmax + 1 as we only consider propagation in 1D). As for PWE,
GME simulations assume periodicity in 2 directions. This can add spurious modes,
especially for asymmetric waveguides. A way of getting rid of them (at the cost
of a bigger simulation domain) is to symmetrize the structures as can be seen in
Figure B.1(a).

1Modes of a waveguide satisfy the orthogonality relation
∫

V H∗
i (r)Hj(r) = δij [Snyder and Love

2012].
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Figure B.1: GME simulation zone and convergence. (a) Actual simulation
domain in legume showing the symmetrization. Two waveguides are actually simu-
lated at y = 10 and y = −10 (in units of a). Boundary conditions in the 2 directions.
(b) While the value of ng does not change much with increasing gmax, there is a
substantial shift in wavelength above gmax = 2, which is the value used for opti-
mization.

B.3.3 Convergence of expansion methods

Truncating the Fourier decomposition to a relatively small number of harmonics
Nharm can still give an accurate result. Indeed, Figure B.1 shows the convergence
of the GME algorithm with gmax. The plot shows the group index of the slow-mode
of the optimized Half-W1 waveguide from Section 5.2 for different values of gmax.

If gmax = 4 has already very well converged, the time needed for the computation
is drastically increased from the gmax = 2 case, as seen in Table B.1. We also notice
that the main error between these two settings is a shift in frequency, the shape of
the curve and the group index value being very close. For this reason, the systematic
optimizations of the waveguides are made with gmax = 2, as going from GME to
FDTD already comes with a shift in frequency.

gmax 2 3 4 5 6
PWE 0.09 0.89 5.24 20.41 52.1
GME 0.84 4.0 13.8 38.8 92.3

Table B.1: Simulation time (in seconds) for each point. Average over a 40
point band structure for different values of the maximum harmonics considered in
the PWE and GME methods

B.3.4 Simulation parameters

The simulation parameters used for most of the Half-W1 simulations are displayed in
Table B.2.
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Parameters Half-W1
Dielectric constant 11.2 for GME, 7.88 for PWE

Number of rows 10 (for each)
Simulation size a× 40a

Boundary conditions Bloch × Bloch
gmax 2 for optimization, 4 for plotting

Table B.2: GME Simulation parameters.

B.4 Finite Difference Time Domain

B.4.1 The FDTD method

Finite Difference Time Domain (FDTD) simulations are based on the direct resolution
of Maxwell’s equations in time domain and allows to get the full evolution of E and
H in time and space. The equations are solved on a discrete grid in both space and
time. Derivative are approximated by taking the difference between neighbouring
sites on the grid. The mesh is necessarily rectangular. The E and H components are
staggered in space, and E and H are never computed at the same point in time.

E(x, t)→ E
((

i+ 1
2

)
∆x,

(
n+ 1

2

)
∆t
)

= En+ 1
2

i+ 1
2

(B.7)

H(x, t)→ H (i∆x, n∆t) = Hn
i (B.8)

Discretizations work as follows

∂En

∂t
= En+ 1

2 −En− 1
2

∆t +O(t2) (B.9)

And the same applies for the space derivatives, and H. This method is very general
(no assumption on the medium nor sources), versatile and accurate (second order
error), but computationally very intensive. This is especially true when going 3D.
Other advantages of FDTD include the fact that it is possible to have a broadband
response in a single simulation and that it is possible to include dispersive materials.

FDTD simulations throughout this thesis have been realized with the Ansys
Lumerical software. Note that other softwares have been tested during this thesis,
including BandSolve (from RSoft) and the open-source Meep (from MIT).

The following provides a more in-depth introduction to the FDTD software, em-
phasizing the main points to keep in mind when simulating PCWs in dispersive ma-
terials.

In FDTD simulations, band diagrams are obtained by randomly distributing a
given number of dipoles inside the structure that will excite it over a range of dis-
cretized frequencies. Monitors are placed in the same area to record the response. A
strong response at a given frequency denotes the presence of a band. Field monitors
can be added to record the spatial profile of the field. A specificity of this method is
that it gives a 2D response map where the bands have to be retrieved through some
post-processing.
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Figure B.2: 3D FDTD simulation cell for a Half-W1 waveguide (a) xy
plane (b) yz plane.

B.4.2 Boundary conditions

As FDTD calculations can be very time consuming, we restrict as much as possible
the simulation domain.

Bloch boundary conditions

We first restrict the simulation to one unit cell of the waveguide. In order to mimic
an infinite length waveguide, we have to implement Bloch boundary conditions on
the x boundaries. They impose:

E(x = 0) = E(x = a)ei∆φ (B.10)

Specifying the value of ∆φ allows choosing the component along x of the k we sim-
ulate2. By performing a sweep over ∆ϕ we can construct the bandstructure of the
waveguide for kx ranging from 0 to π/2.

Symmetry conditions for different polarizations

Another way of reducing the simulation domain is to exploit the symmetries of the
modes sought. In most of the manuscript we look for TE-like modes (symmetry of the
electric field by the xy plane, see Fig. 4.5(a)). We can impose this condition on the
FDTD solver, de facto reducing the simulating region by a factor of 2 (see Fig. B.2)
as it will only simulate the half space z > 0. As the dipoles exciting the modes are
magnetic dipoles, this corresponds to imposing an antisymmetric boundary condition
in the FDTD solver on the xy plane.

Perfectly matched layers

For the 3 remaining boundaries, we use perfectly matched layers (PML). They are
artificial absorbing layers that allow the field to disappear without having to extend
the simulation cell to infinity. They allow to truncate the simulation zone, while
mimicking an open system.

As incident k vectors with very small angles may cause divergence, we use stabi-
lized PML which avoid these issues at the cost of added computational complexity.

2In this sense they are most general than the periodic boundary conditions that are realized only
for ∆φ = 0, i.e. they only compute modes for kx = 0.
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Figure B.3: Dependence of the slow mode with the number of rows in
3D FDTD simulation for a Half-W1 waveguide (a) Dispersion diagram (b)
Group index variation ng with the wavelength.

Moreover, one has to be careful that no sharp interfaces cross the PMLs as this can
easily lead to divergence in the simulation.

B.4.3 How many rows are enough?

A final way to reduce the complexity of the simulation, is to limit the transverse
size of the actual waveguide. Indeed, as seen in Figure 4.1, the photonic band gap
appears after only a few layers. We can look here after how many rows of holes in
the Half-W1, the dispersion curve of the slow mode is not affected anymore by the
addition of new rows.

Figure B.3 show 3D FDTD simulations of the slow band dispersion and group
index for waveguides with different number of rows of holes (the simulation width is
kept constant). It shows that after 6 rows, the light dispersion is basically not affected
by new rows. We choose to settle on 7 rows in both simulation and fabrication.

This is important for limiting the complexity of the meshing with can improve
speed in the simulation. Moreover, as explained in Chapter 5, for the fabrication
masks have to be generated before the e-beam lithography and because a lot of
details have to be drawn over long distances and many waveguides, these can take
a substantial amount of computation time. Making them simpler limits the RAM
bottleneck of this step.

B.4.4 Simulation parameters

Table B.3 summarizes the most relevant parameters for the 3D FDTD simulations in
Lumerical.
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Parameters Half-W1
Number of rows 7

FDTD simulation size a× 2t×Nrows
√

3
2a

Boundary conditions Bloch × PML × PML
PML profiles stabilized

Mesh step size 6 nm × 3 nm × 3 nm
Simulation time 3 ps

Sources Magnetic dipoles
Size of region with dipoles a× 100 nm × 20 nm

Number of dipoles 10
Number of monitors 10

Table B.3: 3D FDTD Simulation parameters in Lumerical.
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APPENDIX C
EXPERIMENT SOFTWARE DETAILS

C.1 Labscript experiment logic
Example of the labscript experiment logic file for our absorption imaging sequence.
We first have to import all the relevant drivers, define the devices and their connec-
tions to jane and then write the sequence in the main function.

1 #Import of all the relevant labscript devices
2 from labscript import ∗
3 from labscript_devices.DummyIntermediateDevice import DummyIntermediateDevice
4 from labscript_devices.Jane import Jane
5 from labscript_devices.SLMframe import SLMframe
6 from labscript_devices.ILS780.labscript_devices import ILS780
7 from labscript_devices.DummyPseudoclock.labscript_devices import DummyPseudoclock
8 from labscript_devices.PylonCamera.labscript_devices import PylonCamera
9 from labscript_devices.MOGLabsQRF_noTable import MOGLabsQRF_noTable

10 from labscript_devices.MOGLabsQRF import MOGLabsQRF
11

12 ’’’Definition of the experiment connection table’’’
13

14 #Definition of the output lines from "jane"
15 Jane(name=’jane_0’, board_number=0, time_based_stop_workaround = True,

↪→time_based_stop_workaround_extra_time=0.5)
16 Trigger(’ILS780_trigger’, parent_device = jane_0.direct_outputs, connection = ’flag 1’)
17 Trigger(’camera_trigger’, parent_device = jane_0.direct_outputs, connection = ’flag 2’)
18 Trigger(’camera2_trigger’, parent_device = jane_0.direct_outputs, connection = ’flag 12’)
19 DigitalOut(’B_switch’, parent_device = jane_0.direct_outputs, connection = ’flag 3’)
20 ClockLine(name=’jane_0_clockline_2’, pseudoclock=jane_0.pseudoclock, connection=’flag

↪→4’)
21 ClockLine(name=’jane_0_clockline_3’, pseudoclock=jane_0.pseudoclock, connection=’flag

↪→5’)
22 ClockLine(name=’jane_0_clockline’, pseudoclock=jane_0.pseudoclock, connection=’flag 9’)
23 DigitalOut(’MOT_shutter’, parent_device = jane_0.direct_outputs, connection = ’flag 10’)
24 DigitalOut(’imaging_shutter’, parent_device = jane_0.direct_outputs, connection = ’flag

↪→11’)
25 DigitalOut(’DDS1_out’, parent_device = jane_0.direct_outputs, connection = ’flag 13’)
26 DigitalOut(’DDS2_out’, parent_device = jane_0.direct_outputs, connection = ’flag 14’)
27

28 #jane triggers what it thinks is an independent pseudoclock that is supposed to create a
↪→pseudoclocking signal for the laser.

29 #Instead, the trigger goes to the laser, and the dummy_clock does not generate any signal.
30 DummyPseudoclock(name=’dummy_clock’, trigger_device=ILS780_trigger,

↪→trigger_connection ="trigger")
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31 ILS780(name = "ILS780_193", parent_device=ILS780_trigger, pseudoclock =
↪→dummy_clock.clockline, BLACS_connection = ’10.80.2.101:222’)

32

33 #Cooler path, can change detuning with phase lock
34 AnalogOut(name = "cool_detuning", parent_device=ILS780_193, connection =

↪→’cool_detuning’, default_value = −10000000 )
35 AnalogOut(name = "gen_detuning", parent_device=ILS780_193, connection =

↪→’gen_detuning’, default_value = 80000000)
36

37 #3 parameters to set EOM in cooling path
38 DigitalOut(name =’cool_EOM_switch’, parent_device=ILS780_193,

↪→connection=’cool_EOM_switch’, default_value = True)
39 AnalogOut(name = ’cool_EOM_power’, parent_device=ILS780_193, connection =

↪→’cool_EOM_power’ , default_value = 0.26)
40 AnalogOut(name = ’cool_EOM_freq’, parent_device=ILS780_193, connection =

↪→’cool_EOM_freq’, default_value= 6568000000)
41

42 #2 parameters to turn on cooling_AOM path and regulate its power
43 DigitalOut(name =’cool_AOM_switch’, parent_device=ILS780_193,

↪→connection=’cool_AOM_switch’, default_value = True)
44 AnalogOut(name = ’cool_AOM_power’, parent_device=ILS780_193, connection =

↪→’cool_AOM_power’, default_value = 5 )
45

46 #Signal sent by the laser for troubleshooting
47 DigitalOut(name = "ext_trigger_0", parent_device=ILS780_193,

↪→connection=’ext_trigger_0’)
48

49 #Configuration of DDS for switching the absorption laser and the tweezer
50 MOGLabsQRF_noTable(name="QRF421",
51 parent_device=jane_0_clockline,
52 addr = ’10.80.2.103’)
53 DDS(name="dds1",parent_device=QRF421,connection="channel 0", default_freq = 80,

↪→default_amp = 30)
54 DDS(name="dds2",parent_device=QRF421,connection="channel 1", default_freq = 110,

↪→default_amp = 33)
55

56 # 24147755 Setting up absorption camera
57 #Attributes are defined for the sequence mode of blacs, manual_mode_camera_attributes

↪→are for its continuous mode. Exposure time in microseconds.
58 #Binning used and pixel encoding downgraded in continuous mode to increase frame rate
59 PylonCamera(’cam1’,camera_trigger,’trigger’,24147755,
60 minimum_recovery_time = 27e−3,
61 camera_attributes={
62 "PixelFormat" : ’Mono12p’, ’GainAuto’:’Off’, ’AcquisitionMode’ : ’Continuous’,

↪→’TriggerSelector’ : ’FrameStart’, ’TriggerMode’:’On’, ’TriggerSource’:’Line1’,
↪→’TriggerActivation’:’RisingEdge’, ’TriggerDelay’: 0, ’ExposureMode’:’Timed’,
↪→’ExposureTime’: 100, ’ExposureAuto’:’Off’, ’BinningHorizontal’ : 1, ’BinningVertical’
↪→: 1},

63 manual_mode_camera_attributes={
64 ’PixelFormat’ : ’Mono8’, ’AcquisitionMode’ : ’Continuous’, ’TriggerMode’:’Off’,

↪→’ExposureMode’:’Timed’, ’ExposureTime’: 100, ’BinningHorizontal’ : 4,
↪→’BinningVertical’ : 4}

65 )
66

67 ’’’ Experiment logic starts here’’’
68 #Before the start of the experiment sequence, the cooling laser is on by default
69 if __name__ == ’__main__’:
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70 start()
71 t = 100e−6
72 #Switch on the magnetic field and hold for the MOT loading time
73 B_switch.go_high(t)
74 t += MOT_loading
75

76 if molasses :
77 # if molasses phase on, detune the cooling and shut it off with exponential ramp
78 B_switch.go_low(t)
79 cool_detuning.ramp(t=t−laser_delay, duration=t_molasses,initial=cooling_detuning,
80 final= det_post_molasses, samplerate = 5000)
81 cool_AOM_power.exp_ramp(t=t−laser_delay, duration=t_molasses,initial =

↪→AOM_power,
82 final = AOM_power_post_molasses, samplerate = 50)
83 ext_trigger_0.go_low(t−laser_delay)
84 t += t_molasses + t_hold
85 cool_AOM_switch.go_low(t−laser_delay)
86 else :
87 cool_AOM_switch.go_low(t−laser_delay)
88 ext_trigger_0.go_low(t−laser_delay)
89 B_switch.go_low(t)
90 cool_detuning.ramp(t=t, duration=0.5e−3, initial=cooling_detuning,
91 final=−100000000, samplerate= 10)
92

93 t+= t_flight
94

95 ’’’Take absorption image after waiting t_flight’’’
96 DDS1_out.go_high(t) #turns on absorption beam
97 cam1.expose(t−cam_delay, ’absorption’, trigger_duration = 1e−3)
98 t += pulse_dur
99 DDS1_out.go_low(t)

100

101 t+= 50e−3
102 ’’’Take reference image’’’
103 imaging_shutter.go_low(t)
104 DDS1_out.go_high(t)
105 cam1.expose(t−cam_delay, ’reference’, trigger_duration = 1e−3)
106 t += pulse_dur
107 DDS1_out.go_low(t)
108

109 t+= 50e−3
110 ’’’Take dark image’’’
111 imaging_shutter.go_low(t)
112 cam1.expose(t−cam_delay, ’dark’, trigger_duration = 1e−3)
113 stop(t+50e−3) #end of sequence

C.2 The TriggerSequencer class
Adapted from the TriggerableDevice class from labscript

1 class TriggerSequencer(Device):
2 trigger_edge_type = ’rising’
3 minimum_recovery_time = 0
4

5 @set_passed_properties(property_names = {})
6 def __init__(self, name, parent_device, pseudoclock, ∗∗kwargs):
7 if isinstance(parent_device, Trigger):
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8 if self.trigger_edge_type != parent_device.trigger_edge_type:
9 raise LabscriptError(

10 ’Trigger edge type for %s is \’%s\’,’ %(name, self.trigger_edge_type)+
11 ’but existing Trigger object %s ’ % parent_device.name +
12 ’has edge type \’%s\’’ % parent_device.trigger_edge_type)
13 self.trigger_device = parent_device
14 elif parent_device is not None:
15 # Instantiate a trigger object to be our parent:
16 self.trigger_device = Trigger(name + ’_trigger’,
17 parent_device, self.trigger_edge_type)
18 parent_device = self.trigger_device
19

20 self._TriggerableDevice__triggers = []
21 self.initial_trigger_time = 0
22 Device.__init__(self, name, pseudoclock, ’internal’, ∗∗kwargs)
23 self.connection = "trigger"
24 self.trigger_device.add_device(self)
25

26 def set_initial_trigger_time(self, t):
27 t = round(t,10)
28 self.initial_trigger_time = t
29

30 def trigger(self, t, duration):
31 """Request parent trigger device to produce a trigger
32 at time t with given duration.
33 Only ask for a trigger if one has not already been requested
34 by another device attached to the same trigger:"""
35 if type(t) in [str, bytes] and t == ’initial’:
36 t = self.initial_trigger_time
37 t = round(t,10)
38 already_requested = False
39 for other_device in self.trigger_device.child_devices:
40 print("sweeping other devices", other_device)
41 if other_device is not self:
42 for other_t, other_duration
43 in other_device._TriggerableDevice__triggers:
44 if t == other_t and duration == other_duration:
45 already_requested = True
46 if not already_requested:
47 print("trigger sent !")
48 self.trigger_device.trigger(t, duration)
49 # Check for triggers too close together (check for overlapping
50 # triggers already performed in Trigger.trigger()):
51 start = t
52 end = t + duration
53 for other_t, other_duration in self._TriggerableDevice__triggers:
54 other_start = other_t
55 other_end = other_t + other_duration
56 if (
57 abs(other_start − end) < self.minimum_recovery_time
58 or abs(other_end − start) < self.minimum_recovery_time
59 ):
60 msg = """%s %s has two triggers closer together than
61 the minimum recovery time: one at t = %fs for %fs, and another
62 at t = %fs for %fs. The minimum recovery time is %fs."""
63 msg = msg % (
64 self.description, self.name, t,
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65 duration, start, duration, self.minimum_recovery_time,
66 )
67 raise ValueError(dedent(msg))
68

69 self._TriggerableDevice__triggers.append([t, duration])
70

71 def do_checks(self):
72 for device in self.trigger_device.child_devices:
73 if device is not self:
74 for trigger in self._TriggerableDevice__triggers:
75 if trigger not in device._TriggerableDevice__triggers:
76 start, duration = trigger
77 raise LabscriptError(
78 ’TriggerableDevices %s and %s share a trigger.’
79 %(self.name, device.name) +
80 ’%s has a trigger at %fs for %fs,’
81 %(self.name, start, duration) +
82 ’but there is no matching trigger for %s.’
83 %device.name +
84 ’Devices sharing a trigger must have identical
85 trigger times and durations.’)
86

87 def generate_code(self, hdf5_file):
88 #Checks if triggers are well defined and transforms the sequence into
89 #code understandable by the device
90 self.do_checks()
91 Device.generate_code(self, hdf5_file)
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Sujet : Guides d’ondes à modes lents et atomes froids : Vers une
plateforme polyvalente d’électrodynamique quantique en guide

d’onde

Résumé : Les récentes plateformes expérimentales qui combinent atomes froids et guides
d’ondes nanométriques offrent une approche prometteuse pour atteindre un régime de couplage
fort entre lumière et atomes en simple passage. Cette thèse porte sur la conception, la fabrication
et la mise en œuvre d’une telle plateforme hybride permettant d’interfacer la lumière lente de
guides d’ondes à cristaux photoniques avec des atomes de Rubidium froids piégés à proximité de
leur surface. Les modes lents de ces guides doivent permettre une interaction lumière-matière
renforcée par rapport aux systèmes existants en espace libre ou avec une nanofibre, ce qui rend
cette nouvelle plateforme propice à la mise en place de protocoles d’électrodynamique quan-
tique en guide d’onde. En portant une attention particulière à la robustesse des structures face
aux imperfections de fabrication, nous proposons trois designs innovants de guides d’ondes à
fort indice de réfraction permettant une interaction lumière-matière efficace ainsi que la mise en
place de pièges dipolaires évanescents pour maintenir les atomes proches de leur surface. Nous
décrivons ensuite le dispositif expérimental construit pour produire un nuage d’atomes froids,
conçu pour intégrer de tels guides nanofabriqués et en approcher les atomes à l’aide de pinces op-
tiques réalisées avec des modes optiques d’ordres supérieurs. Ce travail ouvre la voie à de futures
plateformes d’électrodynamique quantique en guide d’onde avec des atomes froids qui pourraient
constituer des ressources précieuses pour des protocoles d’optique quantique non-linéaire, la sim-
ulation quantique ou le calcul quantique variationnel.

Mots clés : Atomes froids, Nanophotonique, Optique quantique, Interaction lumière-matière,
Cristaux photoniques, Electrodynamique quantique en guide d’onde

Subject: Slow-mode nanophotonics and cold atoms:
Towards a versatile Waveguide QED platform

Abstract: Novel platforms interfacing trapped cold atoms and guided light in nanoscale
waveguides are a promising route to achieve a regime of strong coupling between light and atoms
in single pass, with applications to quantum non-linear optics and quantum simulation. This
thesis focuses on the design, fabrication and implementation of such a hybrid experimental plat-
form interfacing slow light from photonic-crystal waveguides with cold Rubidium atoms trapped
in their vicinity. The slow guided modes from the waveguides should enhance the interaction be-
tween light and matter compared to free space or nanofiber-based existing platforms, making it
conducive for Waveguide quantum electrodynamics (QED) protocols. Emphasizing the need for
resilience against fabrication imperfections, we design three different high-index waveguides that
allow for efficient light-matter interaction and evanescent dipole trapping of atoms close to their
surface. Subsequently, we then detail our versatile cold atom experimental setup, specifically
built for integrating these structures and delivering atoms to their surfaces using higher-order
tweezers, and report initial experimental results. This work paves the way for hybrid Waveguide
QED platforms with cold atoms which could serve as valuable resources for simulating Ising-like
Hamiltonians or variational quantum computing.

Keywords: Cold atoms, Nanophotonics, Quantum optics, Photonic crystals, Light-matter
interaction, Waveguide QED
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