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Synthèse

Titre : Exploration de la diversité fonctionnelle des cellules T dans les données de
séquençage d’ARN en cellule unique à l’aide d’outils méthodologiques et biologiques

Résumé : Le séquençage d’ARN en cellule unique (scRNAseq) est une technique jeune.
Elle consiste à faire une photographie instantanée des ARN d’une cellule. Après une
phase timide d’adoption, son usage s’est généralisé. La richesse de ces données permet
de disséquer finement la biologie du vivant, en accédant à des informations telles que
l’hétérogénéité d’une population ou la caractérisation différentielle des cellules saines et
malades.
Cependant, le scRNAseq est à double tranchant. Bien que cela se soit démocratisé, le
travail à la paillasse est encore perfectible, car on ne capture que 5 à 20% des ARN. Quant
au travail à l’ordinateur, il constitue un défi : les données sont bruitées car immergées
dans un espace à grande dimension, et car la capture des ARN est incomplète.
La nouveauté du scRNAseq n’a pas encore permis l’émergence de standards d’analyse
communs. Au contraire, il y a une explosion des algorithmes. Cependant, il y a un
schéma consensuel : importation et nettoyage de la matrice d’expression cellules × gènes,
normalisation et réduction de dimension. Les données en dimensions réduites permettent
de faire de la visualisation, de l’agrégation ou de l’inférence de trajectoire. Enfin les
groupes sont annotés. Cette dernière étape d’interprétation est particulièrement critique
mais souvent biaisée.
Je me suis attachée dans ma thèse à deux aspects de l’analyse des données scRNAseq :
l’aspect méthodologique, et l’interprétation.
J’ai d’abord étudié le bruit dimensionnel, autrement appelé la malédiction de la dimen-
sionnalité. Cette malédiction complique l’analyse en brouillant les différences entre points
proches et lointains. L’analyse scRNAseq, qui repose sur la production de graphes de voisi-
nage, est nécessairement pénalisée par cette malédiction qui déforme les graphes. L’astuce
habituelle consiste donc à réduire la dimension. Il existe un autre effet de la malédiction,
le phénomène de hubness, qui est aussi nocif, car il déforme le graphe des plus proches
voisins. Toutefois ce phénomène peut être corrigé. J’ai évalué l’ampleur du phénomène de
hub dans les données omiques, ainsi que l’effet de la correction de hub sur la performance
de l’analyse scRNAseq. Le phénomène de hub est bien présent, en particulier dans les
matrices caractérisées par une grande dimension intrinsèque, et l’analyse de ces jeux de
données en particulier bénéficie de la réduction de hub, avec une performance optimale
dans l’espace de dimension effective maximale. Bien que cela ne semble être qu’un algo-
rithme de plus dans la jungle déjà existante, c’est surtout le changement de paradigme
qui est singulier, puisqu’on modifie conceptuellement une étape consensuelle, la réduction
de dimension.
Ensuite, je me suis intéressée aux cellules T, d’abord via le prisme des lymphocytes T
régulateurs. Ces cellules, définies initialement par leur fonction, sont difficile à isoler
chez l’homme. En partant de l’hypothèse qu’il y a potentiellement décorrélation entre le
phénotype et la fonction, j’ai ensuite élargi mon cadre d’étude à l’ensemble des cellules
T en questionnant le paradigme actuel de lignée. J’ai adopté une approche supervisée
afin de capturer la fonctionnalité des cellules T avec le scRNAseq. A l’aide de modules
fonctionnels pré-définis, je peux relier chaque cellule à sa/ses fonction/s. J’ai d’abord
prouvé l’apport de cette approche par rapport à un pipeline non supervisé. Ensuite, j’ai
caractérisé les différences fonctionnelles entre cellules T issues d’un tissu sain ou cancéreux.
Nous avons aussi implémenté cette méthode pour l’analyse de cellules dendritiques de
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patients souffrant de la Covid-19, après sélection des modules fonctionnels idoines. Cette
stratégie peut donc être appliquée pour d’autres types de cellules que les cellules T, d’autres
pathologies que le cancer, et même dans un contexte physiologique, afin de cartographier
les fonctions des cellules immunitaires.

Mots clés : séquençage d’ARN en cellule unique, analyse de données omiques, grande
dimension, fonctionnalité, approche supervisée, cancer, immunologie, bioinformatique.
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Synthesis

Title: Exploring human T cells functional diversity using single-cell RNAseq: method-
ological and biological strategies

Abstract: Single-cell ARN sequencing (scRNAseq) is a fairly young technique. It makes
a snapshot of a single-cell transcriptome. After a slow start, its usage became more
systemic. Indeed, the richness of the data enables a fine dissection of a living organism’s
biology. It gives access to an unprecedented amount of information to better understand
cell heterogeneity, or quantify the differences between physiological and pathological states.
However, the single-cell approach is a double-edged sword. In spite of its democratisation,
the wet lab part is still perfectible, as we are currently only able to capture 5 to 20% of
the reads. Regarding the computer process, it is challenging: scRNAseq data is noisy as
its effective dimension is high, and because of the incomplete capture.
Because scRNAseq is still a young technique, not enough time elapsed for analysis stan-
dards to emerge. On the contrary, there is an exponential increase in the number of ana-
lytical tools. However, there is a common pipeline: load the genes × cells count matrix -or
its transpose-, filter out outlier cells and genes, normalise and reduce the dimension. From
the data projected onto a smaller subspace, the next steps can be clustering, trajectory
inference or visualisation. Finally, the different clusters or trajectory nodes are annotated.
This last step, where we interpret the data, is critical but unfortunately often biased.
In this thesis, I focused on two aspects of the analysis of scRNAseq data: a methodological
aspect, and the interpretation step.
First, I studied dimensional noise, alternatively called the curse of dimensionality. The
curse complicates the analysis. It blurs the differences between close and far away data
points. Since analysing scRNAseq relies heavily on the production of neighbor graphs, the
performance will be degraded by the curse, which distorts the graphs. The usual trick is to
reduce the dimension. However, the blurring, or concentration, of distances is not the only
effect of dimensional noise. An additional phenomenon called the hubness phenomenon
is also detrimental to the analysis as it distorts nearest neighbors graphs. While measure
concentration cannot be corrected in high dimensional spaces, hubness can. I quantified
the magnitude of the hubness phenomenon in omics data, and the effect of correcting for
hubness on the performance of scRNAseq analysis. scRNAseq data is indeed "hubby",
especially the datasets with a high intrinsic dimension. The performance when analysing
the latter would be improved upon hubness correction, with the best performance reached
in the space with the highest effective dimension. I reckon that it might be perceived as
just another tool in the already existing jungle, but I believe that the change of paradigm
is really interesting, as we modified conceptually one of the most performed step of the
analysis, the dimension reduction.
Second, I focused more specifically on T cells, through the prism of regulatory T cells.
Those cells have a precise functional definition, while there is no strong consensus on
the population’s markers for humans. I hypothesized that there might be a decorrelation
between function and phenotype and I decided to extend my study to all T cells, since the
lineage paradigm is also questionable here. I did a supervised analysis of scRNAseq data
in order to better unveil T cells’ functionality. After defining functional modules, I can
link each cell to its function/s. First, I assessed the novelty of the approach, by comparing
it to the unsupervised pipeline. Then, I characterized the functional differences between
T cells from a healthy or a cancer tissue. We also implemented this method to analyse
dendritic cells from Covid-19 patients, scoring functions exerted by dendritic cells. This
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strategy can be applied for other immune cells, other diseases, and even in a physiological
setting, so as to functionally map immune cells.

Keywords: scRNAseq, omics data analysis, high dimension, hubness, functionality, su-
pervised approach, cancer, immunology, bioinformatics
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"L’expérience est une lanterne accrochée dans le dos, qui n’éclaire
que le chemin parcouru."

Confucius
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Preamble

Origins of the project

As a wannabe medical student, I have always been fascinated by the human body, its
physiology and its response to diseases. As a wannabe researcher in "hard" sciences, I
have been passionate about studying mathematics and physics. I wanted to combine these
two interests in an interdisciplinary project when it was time for me to start a PhD work.
After my masters I was still a complete novice, and interested by many subjects, but I
wanted to have at least:

❒ an interdisciplinary project,

❒ involving "hard" sciences,

❒ and human health, with possibly a focus on cancer,

❒ and on immunology,

❒ in an hospital environment that would foster interactions with medical doctors.

When I started to interact with Vassili Soumelis in order to start my PhD within his
team at Institut Curie, I had the freedom to write my own subject. I wanted to work on
onco-immunology, and I was in particular intrigued by regulatory T cells. It has been a
bulky field of research, and I had stumbled upon a few interesting articles that attempted
at describing their role in cancer and their therapeutic value. I also remembered working
during one of my master theses in the Nolan Lab in the US on single-cell RNA sequencing
data (scRNAseq), and being fascinated, and overwhelmed, by the wealth of information
that this technique would bring.

The initial project has been to do a fine characterization of regulatory T cells and the
differences between the tumor compartment or the healthy counterpart, the juxtatumor
compartment. I would use scRNAseq data to shed light on those differences. In particular,
I wanted to study the interplay between effector and regulatory T cells. When I started to
work on public data, I quickly realised the challenges inherent to the analysis of scRNAseq
data. One of the main challenges was to cope with the curse of dimensionality, a set of
strange, and usually unwanted phenomena that happen in high-dimensional spaces like
the space of genes used to describe the cells in scRNAseq data.

So I decided I should first tackle this curse, starting with one of its most common
effect: the measure concentration. If you describe objects, for example cats, you can
quantify different features to do so. You can start collecting features such as weight,
height or length of hair, and use them to accurately discriminate for example kittens from
adult cats. But if you accumulate features, for example tail length, breadth and height of
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head or ears, size of the pupils, and so on, an unsupervised approach will usually perform
worse than with a couple of features, even though we have the intuition that the more
information, the better. The reason behind this remarkable observation is the measure
concentration. It relates to the fact that in high-dimensional spaces, the contrast between
similar and dissimilar data points, for example adult cats and kittens, vanishes. It has also
been observed that metrics do not suffer equally from the measure concentration, with
for example the Manhattan metric being less sensitive than the Euclidean one (Figure 1),
even if the difference in sensitivity shrinks with the dimension.

Manhattan

Euclidean

Metric

Figure 1: Unit circle (left) and point norm (right) for the Manhattan and Euclidean metrics.

The first idea that I tested was to do metrics learning in order to propose a metric
better adapted to scRNAseq data than the Euclidean metric. For this task, we need
a cost function with constraints: either we have ground truth labels and we can define
constraints by stating that cells with the same label should be similar, while cells with
different labels should not, or we can use other similarity metrics to write constraints. At
this point, I estimated that it could not work as the constraints would be flawed: ground
truth labels are rare, and their granularity is too coarse, while using existing metrics that
suffer from measure concentration would be like a snake biting its own tail. Additionally,
each trained metric would be optimal for a specific question and a specific dataset, so
that the approach cannot be generalized. Going back to our cat example, and using the
features weight, height, length of hair and number of hair colors, the metric should focus
on height and weight if we want to distinguish babies from adults, but on hair length if we
want to separate a Sphynx from an Angora cat, and on number of hair colors to separate
an albino from a healthy cat.

Instead of tackling the measure concentration that is in fine hardly correctible in
high-dimensional spaces, I studied instead the hubness phenomenon. It is an another
dimension-related effect that distorts k-nearest neighbors (k-NN) graphs. To take another
illustrative example, a neighbor graph is for example the Parisian subway map: each
subway station is connected to other close stations, and we can count the number of
connections, or connectivity degree, for one node. Some stations have a particularly
high connectivity degree like République (degree = 10) or Châtelet (degree = 15), while
others are barely connected like Olympiades (degree= 1) or new unconnected stations like
Sevran-Livry (degree= 0).

In parallel of this methodological work, I would not forget the fact that improving
the raw performance of an analysis is worthwile but does not necessarily improve the
interpretability of the data and the biological conclusions. Furthermore, I was still inter-
ested by working specifically on T cells, and even more on immune cells from the tumor
microenvironment, as I was puzzled by the difficulty of interpreting that kind of data.
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I was also intrigued by the plasticity of the different T cell types. My first focus has
been the regulatory T cell population. I wondered at why this population was so hard to
grasp, and I took the prism of evaluating its impact on cancer prognosis. Indeed, there
is a plethora of articles attempting at characterizing the link between Tregs and cancer
prognosis, while there is no consensus, and even less in a pan-cancer approach. To tackle
this issue, I worked on a meta-analysis in order to see whether I could extract some hints
that would either explain the discrepancy or shed light on Tregs’ role in cancer.

Since I wanted to take advantage of scRNAseq data, because it is both rich and avail-
able, I also worked on the analysis and functional interpretability of T cells from scRNAseq
data and I postulated that we could describe each cell as a collection of functions, in order
to better dissect functional diversity.

Synopsis of the manuscript

I will introduce in the first part notions about immunology, oncology and scRNAseq: why
improving the technique is crucial but also challenging.

Then I will introduce the three research questions I tried to answer during my PhD
thesis and the results I obtained for each of them. I worked hand in hand with Andrei
Zinovyev and Jonathan Bac for the hubness project, and with Antonio Rausell and Akira
Cortal for the functional project. Finally, I will conclude on those results and outline the
prospects opened by the present work.

In the annex, I show additional projects that I did or collaborated on during my
PhD: annotation of dendritic cells from Covid-19 patients, with the functional approach
developed in the second part of the results, that was done in the team with Melissa Saichi
(published), and a scRNAseq database for cancer datasets constructed in collaboration
with European partners from the ImmuCAN project (in preparation).
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Part I

Introduction
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Chapter 1

Cancer and immunity

1.1 T cell biology

In vertebrates in general and in humans in particular, two systems would protect against
pathogenic encounters: the innate immune system and the adaptive one. While innate
immunity triggers an immediate and non-specific response, the adaptive immune system is
able to recognize and target specific patterns, called antigens. Among the cells belonging
to the adaptive immunity are T cells, which will be the focus of this section. A major
source for the upcoming section will be the seminal textbook Janeway’s immunobiology
[1].

1.1.1 Brief historical introduction to immunology

The fact that an encounter with a pathogen confers protection for forthcoming ones has
been known for a long time, although the underlying mechanisms were unveiled many
centuries later. Thucydides (ca 460-400 BC) reported in his History of the Peloponnesian
War that "nobody would be infected for the second time and die from the disease" (II,
51) during the Athenian plague, that has been described either as a typhus or smallpox
epidemic, depending on the hypothesis [2]. Later on, there is the striking example of
smallpox and variolation. Smallpox was a serious disease since it was highly contagious,
deadly and debilitating for survivors, leading to blindness, joint or skin damage, encephali-
tis, etc. In Constantinople, Lady Mary Wortley Montagu (1689-1762) found out about an
old Chinese tradition that consisted in inoculating, either in the nose or through the skin,
the pus of smallpox pustules. Various sources estimate it has existed since somewhere
between the VIth and the XVIth centuries [3]. Montagu brought back this procedure to
England, from where it spread to other European countries, such as France, under the
influence of Voltaire among others [4], as a successful way of protecting against smallpox.

Edward Jenner (1749-1823) is considered as the founder of modern immunology upon
proving in 1796 that the inoculation of cowpox, a mild and bovine version of smallpox,
could protect against smallpox. He named this procedure vaccination, from the Latin
word for cow, vacca, which describes the injection an attenuated form of the pathogen in
order to produce what he called artificial immunity. Thanks to vaccination, the World
Health Organization declared the eradication of smallpox in 19801.

1https://www.who.int/features/2010/smallpox/en/
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Following Jenner’s work, Louis Pasteur (1822-1895) designed a vaccine against other
diseases, namely cholera and rabies [5]. The basis to understand the processes under-
lying the success of vaccination was provided by the work of Robert Koch (1843-1910),
Emil von Behring (1854-1917), Shibasaburo Kitasato (1853-1931) and Jules Bordet (1870-
1961), who discovered respectively the existence of pathogens [6], the "anti-toxic activity"
of the serum (due to antibodies) [7], and the complement. These findings mirror the for-
mer contention between two theories: the cellular theory -supported e.g. by Ilya Ilyich
Mechnikov (1845-1916)- and the humoral theory -supported e.g. by Paul Ehrlich (1854-
1915)-, that culminated in 1908, when the two front runners were awarded the Nobel
Prize in Physiology or Medicine2.

1.1.2 The T cell story

Ehrlich supported the humoral theory, and was the first to hypothesize the existence
of antibodies and side-chains (or cell membrane receptors) in 1900 [8, 9]. He predicted
that antibodies were excess secreted side-chains [10], and thus caught up with Bordet’s
opinion that every secreted active substance is of cellular origin. He is also the first to
make a discrimination between immunological self and non-self, leading to the concept of
auto-immunity (or horror autotoxicus) and immune regulation. In the wake of these sug-
gestions, James B Murphy (1890-1930 ?) claimed that lymphocytes were the cellular basis
of antibodies [11]. It is quite surprising that his discoveries went completely unnoticed3.

Only half a century later, James Gowans (1924-2020) (re)discovered the cells respon-
sible for adaptive immunity by studying the circulation of lymphocytes, after he was told
that "if [he] can find out where they go, [he] can find out what they do" [12]. Only then,
the discovery was widely acknowledged. Upon this result, James Miller (1931-) appre-
hended the existence of two populations, that he later called the T and B lymphocytes,
because of where they are produced: T cells in the thymus and B cells in the bone mar-
row. B cells are the cells that effectively produce antibodies, while T cells interact with
and help them [13]: in that respect, it is obvious that communication and cooperation
between immune cells is of paramount importance in the physiological immune system.
After this paradigm shift, Miller ushered in a new research field, viz. T cell biology.

Focusing on T cells, we can further classify them into different categories, be it acti-
vation status (naive vs. effector vs. memory cells), functional (helper vs. cytotoxic cells)
or phenotypic categories (type 1 vs. type 2 vs. type 9).

Let us go through the different stages in the life of a T cell [1, 14]. The young T
cell is naive: it is small, 5-7 µm in diameter, with low transcriptional activity and few
organelles. The effector T cell is in its prime after the crucial encounter with an antigen
and the recognition of a specific epitope presented by a self cell surface protein, the Major
Histocompatibility Complex (MHC). The conversion to an effector phenotype is elicited
by a set of stimulation cues:

1. Capture and display of an epitope by the MHC of an Antigen Presenting Cell (APC),

2a. Physical interaction between the epitope-MHC complex and the T Cell Receptor
(TCR) specific for this epitope, among a repertoire of 108 TCRs,

2https://www.nobelprize.org/prizes/medicine/1908/summary/
3He does not even have his Wikipedia article!
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2b. Expression of co-stimulatory molecules, both membrane-bound and secreted, by the
APC. In the case of cytotoxic cells, an additional activation step by a so-called helper
cell is usually required.

The effector cell goes through the following steps, after the antigenic encounter: it
stops migrating, its size increases up to 10-20 µm, there is a burst in transcriptional
activity and a high proliferation rate giving rise to thousands of clones. Effector helper
cells stay in the lymphoid tissue to activate other immune cells, such as B cells and CD8+

cytotoxic T cells, while cytotoxic cells migrate towards the site of infection. Finally, after
antigen clearance, some elder T cells retain the memory of the pathogenic encounter, while
most of the effector cells die. The memory T cell is the basis of immunological memory,
as it will be activated faster than naive cells upon reinfection.

Zooming yet further on effector and memory cells, it has been observed that there are
several phenotypes, related to two main classes: the helper class that is CD4+, and the
cytotoxic class that is CD8+. Helper cells exhibit a plethora of subsets that orchestrate
different parts of the immune response, and so do cytotoxic cells. Since cytotoxic subsets
mirror helper subset, we will merely describe the latter. The first discovered subsets were
the TH1 and TH2 populations, shortly followed by other populations though, such as TH9,
TH17, TH22, TFH (for follicular helper) and TREG (for regulatory) [1, 15]. Each of these
subsets arises from a precise set of stimulation cues and is specific to a peculiar class of
pathogens (Figure 1.1). The cytotoxic counterparts are the Tc1, Tc2, Tc9 subsets and
so on [16]. Other T cell populations have been described that we will not discuss in the
scope of this manuscript: CD4+CD8+, CD4-CD8-, γδ T cells, or NK-T cells.

Figure 1.1: Schematic view of human T cell differentiation. A naive T cell differentiates into
different subsets according to the context, in order to yield an appropriate response. Depending
on major stimulatory cytokines (first column), different transcription factors (second column)
are activated, that would lead to a phenotype (third column) specific of a particular context
(forth column), producing appropriate effector cytokines (fifth column).

22



1.1.3 The lineage paradigm

The different populations are linked to specific pathogenic contexts and functions. They
are now classically differentiated according to the expression of phenotypic markers and
cytokine secretion patterns.

1.1.3.1 Cytotoxic cells

While an extracellular pathogen will be targeted by antibodies or the complement sys-
tem, rules are different for intracellular pathogens such as viruses, that are not directly
accessible. In that case, infection can only be cleared by the destruction of the infected
cell itself. The cytotoxic activity is carried on mostly by CD8+ T cells, although CD4+

T cells sometimes acquire cytotoxic properties [17, 18]4. The killing role is exerted via
the immunological synapse through which the cytotoxic cell sends its death signals to
the target. The immune synapse itself is formed upon recognition of the cognate antigen
presented at the surface of an infected cell by the MHC to the TCR.

The first killing method is the extrinsic pathway of apoptosis, in which the killer cell
activates the death receptors of the target by producing the corresponding ligands. The
ligand-receptor binding initiates the deadly signalling cascade. The range of death ligands
includes FasL, TNFα and LTα.

The second killing method is the intrinsic pathway. It initiates in the absence of
survival signals, or as a response to toxic stimuli. The stimulus, either positive (noxious
signal) or negative (no survival signal), triggers the same cascade as the extrinsic pathway.
The cytotoxic cell can produce noxious stimuli such as cytotoxic granules.

The apoptotic cell is then broken down and ingested by phagocytic cells. One achieve-
ment of cytotoxic cells is that they perform quietly: they do not damage nearby cells as
they accurately target the cell of interest, nor do they modify the inflammatory status of
the milieu.

There is a third modus operandi : by secreting various bystander cytokines. IFNγ

directly targets viral replication and inhibits it. It also increases the number of displayed
MHC proteins in order to better flag infected cells. Finally, it recruits macrophages.
TNFα and LTα participate as well in macrophage activation. Macrophages are indeed
important as they can also act as APCs.

1.1.3.2 Helper cells

The helper cells have a supporting role, as indicated by their transparent denomination,
in the sense that they help other cells, such as B cells and CD8+ cells, to mount an
efficient immune response. Let us describe the main helper populations: TH1, TH2,
TH17, and TFH, although other populations were reported, such as TH9 and TH22. These
populations are differentiated according to the class of pathogens that they respond to,
and the cytokines they produce; they arise from different combinations of stimulatory
cytokines (Figure 1.1).

TH1 was discovered along with TH2. It was first observed that helper cells encompass
heterogeneous cells [19] and described in murine clones, as subsets with differentiated cy-
tokine secretion patterns [20]. It was later associated to specific pathogenic contexts [21].

4Incidentally, this is a first hint of a flaw in the current population model that we will challenge later on.
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Naive T cells differentiate into TH1 cells in the presence of IFNγ and IL-12, generally in
the context of intracellular pathogens [22]. These cytokines activate in turn transcription
factors (TF) of the signal transducer and activator of transcription (STAT) family, viz.
STAT1 and STAT4. The two STATs are able to stimulate the expression of T-bet and
IFNγ: the former is the key TF of the TH1 lineage and the latter one of its signature
cytokines [23]. It will also enhance the expression of other genes, such as IL-10, IL-21 or
ICOS. Signature proteins include, but are not restricted to, IFNγ, CXCR3, IL-2 or TNFα
[15, 16].

Usually opposed to TH1, the TH2 population is specialized in eliminating helminths
and is induced from naive T cells by IL-2 and IL-4 [15, 22]. IL-4 triggers the activation
of STAT6, that is the intermediate to more than 80% of IL-4-regulated genes. Among
its targets are GATA3, RUNX1 and BATF, with the first one being the major lineage
TF for the TH2 population [24]. The following cytokines are also produced upon TH2
differentiation: IL-4, IL-5, IL-9, IL-10, IL-13, CCR4, or TNFα [16, 22].

The third helper subset is the TH17 population. It is characterized by the production
of IL-17 upon IL-23 stimulation [25]. These cells fight extracellular bacteria and fungi.
The differentiation into this lineage is triggered by TGFβ together with IL-6, IL-21 and
IL-23 that activate STAT3. The TF binds notably to the Il17 locus, but also to the Rorc,
Irf4, Il23r and Il6ra loci [23]. Its signature cytokines are IL-10, IL-17A, IL-17F, IL-22,
TNFα, CCR4 and CCR6 and the major lineage TF is RORγt [15, 16].

Regarding TFH, it provides help to B cells, locates in the germinal center and is
identified by CXCR5 and PD1 [22]. The precise requirements for its differentiation have
not been fully elucidated yet, but a good candidate is IL-6. The main TF is Bcl6, that
initiates the expression of CXCR5, the receptor for CXCL13 expressed by stromal cells
from the B-cell follicle. Other proteins expressed by TFH are ICOS, whose ligand is
produced by B cells, and IL-21, that stimulates the proliferation and differentiation of B
cells into antibody-producing plasma cells. These three proteins are essential to enable
the co-localization and communication with B cells.

Let us briefly mention the case of TH9 and TH22: TH9 are IL-9-producing cells that
differentiate from naive T cells after stimulation with IL-2, IL-4 and TGFβ. These 3
cytokines activate STAT5 and STAT6, which bind to the Il9 promoter. The role of the
pleiotropic cytokine IL-9 is not yet completely understood and might play a role in both
protective immunity and immunopathological diseases [26]. On the other hand, TH22
produce IL-22, their phenotype is acquired over stimulation of naive T cells with IL-1β,
IL-6 and TNFα and the major TF is AHR. These cells work to enhance innate defences,
mostly in skin where they reside [27].

All these subsets are tightly intertwined by positive and negative feedback loops:
they share stimulation cytokines, TFs, and effector cytokines, and this is a first lead to
explain the volatile commitment of a effector cell to one or the other lineage [23], as well
as the fragility of a monolithic view of effector subsets. They also have mutually exclusive
signalling cascades: for example IFNγ produced by TH1 cells inhibits the proliferation of
TH2 cells, while IL-4 produced by TH2 cells inhibits the proliferation of TH1 cells.

1.1.3.3 Regulatory cells

The existence of TREG was already hypothetized by Ehrlich at the beginning of the XXth
century, when he understood the need for a regulatory mechanism of the immune system
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in order to avoid what he called horror autotoxicus, although TREG would not be the only
safeguard of the immune system, which includes also the innate immunity e.g. [28]. This
intuition was dusted off later in the seventies with a CD8+ suppressor population [29], and
the formal proof of the existence of a regulatory population was exhibited by Sakaguchi
in 1995 [30]. These cells are functionally defined: cells with negative immune regulatory
properties. This definition encompasses highly heterogeneous subpopulations, including
CD8+ TREG , and BREG, that we will not discuss here. Focusing on CD4+ regulatory
cells, we observed several sources of heterogeneity: ontogenic, functional, phenotypic, etc.

The ontogenic diversity originates from the two different modes of production for
TREG cells. The first ontogenic subset is produced in the thymus, and termed natural, or
thymic TREG (nTREG or tTREG respectively). The second subset stems from circulating
naive T cells under specific stimulation cues, and is called peripheral in vivo or induced in
vitro TREG (pTREG or iTREG respectively) [31]. These two subsets have different functions
[31], phenotypes and epigenomes [32], although it is not completely elucidated because of
the scarce existence of differential markers, especially in humans, where Helios has been
suggested as a good candidate to mark nTREG but has not been widely adopted yet.

There is also a major functional diversity. There is for example a plethora of sup-
pressing mechanisms, depending on whether the TREG targets an APC or another T cell,
or whether the suppression is contact-dependant or -independent (cf the introduction of
the article in the results chapter 7). Another source of functional variety is the existence
of TREG populations that remarkably mirror the helper subsets, viz. TH1-, TH2-, TH17-
like TREG and TFR (for follicular regulatory) [33]. These TH-like regulatory cells express
the same TFs as their helper counterparts: TH1-like TREG are Tbet+, TH2-like TREG

GATA3+, and TH17-like TREG RORγt+. They also arise from the same contexts and are
specifically regulating each of the matching helper populations (Figure 1.2) [34].

Figure 1.2: TREG diversity mirrors the diversity of TH. Adapted from [33].
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Despite this heterogeneity, the TREG population shares common traits. In the mouse,
they are CD4+CD25+. In humans, although there are different flavors, the most con-
sensual markers are CD4, CD25, FOXP3 and absence of CD127. These cells are elicited
upon IL-2- and TGFβ-mediated activation of STAT5 that binds to the Foxp3 locus and
increases their survival chances by modulating the anti-apoptotic protein BCL2 and the
receptor for IL-2, namely CD25 (or IL-2RA) [23]. Classical proteins expressed by TREG

include CD25, CTLA4, IL-10 and TGFβ [15, 16]. In the same vein as for helper cells, the
lineage (in)stability depends on positive and negative feedback loops.

This diversity and plasticity led us to the following question: how can we better
describe these phenotypic and functional shifts?

1.1.4 T cells are plastic

1.1.4.1 Fluctuating phenotypes and functions

We can make several statements about the regulatory T cell, while they stand for all T
cells as well:

# TREG is a heterogeneous population,

# TREG commitment to its lineage is unstable [35],

# The commitment strength itself is not determined a priori, but depends on the
dynamic context [32, 36],

# TREG plasticity is undirected, meaning that the regulatory cell can loose its func-
tionality or regain it,

# The role of TREG plasticity and the fraction of stochasticity in the process are not
fully elucidated yet.

Indeed, TREG adapt to the cellular environment, in particular to their different targets,
as well as to the soluble environment, as they are exposed to a range of cytokines. Let us
examine few examples of this plasticity:

# TREG homeostasis relies on the signaling through the IL-2-IL-2R couple. Upon
deprivation of IL-2 from the milieu, the FOXP3+ population contracts and the level
of expression of FOXP3 decreases [36].

# Comparing TREG cultured in the presence or absence of IL-6, the cells loose the
expression of FOXP3 when fed with IL-6 [37].

# Mesenchymal stem cells (or MSCs) induce the conversion of naive T cells into iTREG

and stabilise the expression of FOXP3, transforming the methylation landscape of
the iTREG into an nTREG-like landscape [38].

# TREG are able to convert to TH1- or TH17-like cells, under specific stress-associated
conditions [39].

Similarly, helper cells exhibit evolving phenotypes as well. A first proof of this plas-
ticity is the change of status of cytokines that were considered as unequivocal. Once
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thought to be specific for TH2, IL-10 is in fact secreted by many subsets, while IFNγ

can be produced by TH2 or TH17 cells [40]. A even stronger challenge to the monolithic
helper subsets concept is the co-expression of master TFs, such as Tbet+FOXP3+ or
RORγt+FOXP3+ cells [40], or the fact that one TF can give way to another, enabling
TH17 cells to evolve into TH1 or TH2 cells upon stimulation with IL-12 or IL-4, respec-
tively, or TH2 cells to convert into an IFNγ+Tbet+ TH1-like population [41–43]. In fact,
virtually all switches are possible (Figure 1.3).

Figure 1.3: Graphical model of TH reprogramming. Some subsets in the graph are strong
attractors, such as TH1 and TH2, while others are highly plastic, such as TH9. From [44].

1.1.4.2 Plasticity in disease

In a disease context, the complex local environment implies a multiplication of fate signals
and thus an increased degree of plasticity. In particular in the case of cancer, there is
an additional difficulty due to cancer cells modifying the milieu and rerouting immune
cells towards their interest, i.e. immune escape, as explained in an upcoming section
(section 1.2.2). We have mentioned among others the TH17 switch, that require precise
cytokines. The presence or absence of these cytokines depends from the dynamic context.
The dynamic nature of the milieu is an increasing function from a physiological to a
pathogenic situation. In order to better understand this idea, let us go through the stages
during the course of an infection. It is elicited by a breach in the natural barriers, including
the skin or mucosa, allowing the entrance of a pathogen. The pathogen is detected by
the immune system via pathogen-associated molecular patterns, that are recognized as a
danger signal. Pathogen-activated innate cells start to produce cytokines and chemokines
that will in turn initiate inflammation, activate Innate Lymphoid Cells, and recruit more
innate effector cells as well as APCs. Depending on its entry site, the molecular patterns
detected by the innate immune system and the infection evolution, the pathogen will
trigger a specific response, dominated by one of the helper subset: TH1, TH2, TH9, TH17
or TH22 (Figure 1.4). After clearance of the pathogen, the immune system returns to
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homeostasis, with the help of TREG.

Figure 1.4: Signal integration by innate sensor cells leads to the emergence of different immune
modules. Adapted from [1].

The plasticity is therefore the keystone for appropriate immune responses in disease
and homeostasis in health [45, 46].

1.1.4.3 Questioning the lineage paradigm

We, and other [40], believe that the current lineage paradigm does not represent faithfully
the dynamic relationships between the different poles of functions exerted by T cells.
Attempts have been made in order to describe the complexity of T cells subsets, for
example thanks to computer modelling of intricate molecular networks [44, 47], or to an
extensive characterization and segmentation of the tangible phenotypes [16, 48]. Coming
back to our question of how to better describe phenotypic and functional shifts, we hope
that this doctoral work will help answer it, by attempting to propose a new point of view
in classifying T cells.
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1.2 Cellular cross-talks in the Tumor Microenvironment

1.2.1 Historical perspective on cancer

Cancer has been known for a long time, with a first mention of it in the Edwin Smith
Papyrus, one of the oldest medical treaty, that should be at least 3,500 years old: "If thou
examinest a man having bulging tumours on his breast and thou findest that swelfings
have spread over his breast [...], they have no granulation, they form no fluid [...], and
they are bulging to thy hand [...]. There is no treatment" [49]. Interestingly, (one of)
the Hieratic graphics for "tumor" or is not specific of what we call nowadays
a tumor, but occurs elsewhere in the surgical treatise with the meanings abscess, ulcer
or rash, while the adjective "bulging" clarifies its use at this point of the text. There is
also early physical evidence of tumors in mummies from ancient Egypt, and even traces
of bone damage, depicted by onco-archaeologists, evocative of cancer on the skeleton of
other species as old as dinosaurs or prehistoric men [50]. The name cancer derives from
the ancient greek karkinos : Hippocrates (ca 460-370 BC), who coined the term, thought
that the external ulcerating manifestations of tumors looked like a crab. There is yet
again a notion of severity depicted in one of his aphorisms: "That which medicine does
not heal, the knife frequently heals; and what the knife does not heal, cautery often
heals; but when all these fail, the disease is incurable." The usage of this word was later
clarified by Galen (ca 129-216) who decided to term only malignant tumors as karkinomas
(non-ulcerating) or karkinos (ulcerating), while regrouping all tumors, including benign
ones, under the greek word for swelling, onkoi [51]. Tumoral lumps were described as an
irregular, abnormal growth of tissue strongly irrigated by blood vessels.

After this epiphany of discoveries in the Antiquity, knowledge about cancer did not
significantly increase for 1,500 years. However, the description of the disease started
to improve, backed up by a better understanding of human anatomy and physiology
with the generalization of dissection. For example, Henri-François Le Dran (1685–1770)
hypothetized the mechanism of metastatic spread via the lymphatic system. From the
XVIth century onward, new findings started to accumulate exponentially in parallel with
increased technological possibilities, such as enhanced imaging (Figure 1.5). The first
Nobel prize in medicine related to cancer was awarded in 1926 and is now regularly
dedicated to cancer-related researches, roughly every 20 years.
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Figure 1.5: Amount of cancer-related discoveries, from 1600 BC to the XIXth century (left panel)
and for the last century (right panel).

Regarding the curing panoply, it has been for a long time dominated by the surgical
approach. Depending on the stage and location, it was known early on that a surgical
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excision could be beneficial or detrimental. Other options would include cauterisation
(associated or not to surgery), bloodletting, vegetal or animal ointments, among others.
The current curing arsenal still includes parts of the ancient approaches, such as surgery
or plants that were part of the pharmacopoeia and that have a proven anti-cancer activity,
for example Arisaema tortuosum [52, 53].

1.2.2 Cancer hallmarks

In the seminal articles from Hanahan and Weinberg [54, 55], the authors delineated major
factors as necessary and sufficient conditions to explain tumor behaviour. In particular,
and as depicted by others [50, 56], cancer is understood as an age-related event, and as such
implies an accumulation of rate-limiting probabilistic events. Evidence for this accretion
of events comes from the fact that the genome of cancer cells is altered in multiple sites.
These genomic alterations lead progressively to a phenotype that displays invasive features
identified as major hallmarks. In the first article, the authors outlined six features: self-
sufficiency in growth signals, insensitivity to growth-inhibitory signals, evading apoptosis,
limitless replicative potential, sustained angiogenesis, and tissue invasion & metastasis. In
the revised version of this list, Hanahan and Weinberg added metabolic reprogramming,
immune escape, inflammation and genetic instability as key ingredients to explain the
emergence of the aforementioned characteristics in candidate cancer cells (Figure 1.6).

Figure 1.6: Cancer hallmarks as outlined in [55]5.

The rationale behind this surprising simplification of such a complex disease could
come from the finding that the number of possible phenotypes is restricted by evolutionary
trade-offs, in order for the organisms to be sub-optimal at multiple tasks [57]. For example,
if an organism performs 2 tasks and displays 3 traits, then the possible phenotypes would
stand on a straight line connecting the 2 archetypal phenotypes that are optimal for a
single task, in the three-dimensional space of the 3 traits.

5this image and all images marked with an (*) were made with Biorender
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Nevertheless, the conditions that lead to this supposedly frugal phenotype, combining
these 10 major hallmarks, are complex because a tumor is a collection of heterogeneous
cells. Those heterogeneous cells encompass cancer cells, but also stromal cells, fibroblasts,
immune cells, as well as their cancer-associated flavors, since these cells are plastic and
evolve as a function of the milieu they are exposed to. The mixture of all these cells is
called the Tumor MicroEnvironment (TME). Although the conditions that lead to cancer
are not completely clear yet, we can describe how the TME contributes to the maintenance
of the 10 hallmarks described by Hanahan and Weinberg.

1.2.3 The Tumor Microenvironment

The TME plays a crucial role in the context of cancer, by providing support to cancer cells,
e.g. by favoring tumorigenesis [55]. The first appearance of the term "TME" in 1988 [58]
touched on the potential impact of the local environment on chemo- and radio-therapies
efficiency, although it only evoked the blood component. In a subsequent mention of the
TME, the author explains more carefully the impact of blood perfusion, as influencing the
acidity and the nutrient input, including oxygen input [59]. Later on, more components
were added, progressively drawing a clearer picture of the TME (Figure 1.7):

# blood and lymphatic vasculature,

# stroma: stromal cells forming the connective tissue (fibroblasts, epithelial and en-
dothelial cells) [60], extracellular matrix [61],

# soluble environment [62], e.g. chemokines [63] or angiogenic factors [64],

# immune infiltrate, e.g. lymphocytes [65], natural killer cells, macrophages [63].

Figure 1.7: Raw scheme of the tumor microenvironment(*).
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These components, in particular the immune TME (TIME), are not passive. On
the contrary they have an effect on cancer editing, growth, invasion, immune escape,
angiogenesis, treatment, in all kind of cancers (solid or liquid, primary or metastatic)
and models (in vivo or in vitro) [1]. Contributing to further complexity, the different
components interact not only with tumor cells but also with each other: for example,
the degree of infiltration of murine T cells, defined as CD90+, is smaller in more hypoxic
regions [66]. Considering metastasis, there is also the idea of a favorable environment
that should foster cancer cells, with the "Seed and Soil" hypothesis formulated by Paget
(1855-1926), when he noticed that breast metastases would favor some sites like the liver
over other like the spleen [67].

In the clinic, the TIME is playing an increasing role as it has been discovered to have a
prominent part in classification, prognosis, or treatment choice. E.g., the Immunoscore has
been translated in the clinic as a useful tool to predict relapse in colon cancer patients, thus
helping to orient medical treatment and monitoring [68]. Another example are immune
bio-markers to predict response to immunotherapy: PD-L1 is an (imperfect) marker to
predict response to immunotherapy in melanoma [69] while it has been approved for head
and neck squamous cell carcinomas [70]. Investigate the interplay between the TIME and
cancer cells is a challenging and ongoing field of research. One of multiple reasons is that
the already volatile commitment to a given immune phenotype [44] is potentiated nearby
tumor cells, that are able to manipulate the latter in a highly entangled manner.

1.2.4 Plasticity of immune cells in cancer

The concept of cell plasticity has emerged from and challenged a more traditional linear
view of differentiation, as discussed above (paragraph 1.1.4). It goes along with the
idea that cells can and need to adapt to their environment [71, 72]. This is especially true
when dealing with cancer, because of the tremendous complexity of the local milieu. More
precisely, immune cells are tricked to support or ignore cancer cells [1]. Depending on the
stimulation cues, they adapt to the milieu, leading to a large spectrum of phenotypes and
functions, compared to the juxtatumor, considered as the healthy counterpart [73]. To
embrace further the concept of constrained phenotypes, one could hypothesize that more
tasks to be performed leads to more available phenotypes [57].

It is a reciprocal game though: the immune compartment has also an impact on cancer
cells, on evolution and response to treatment depending on the subtle balance between
inflammation and anti-inflammation, inhibition and activation [74, 75]. The treatment
itself modifies the TIME [76]. A haunting question is therefore: how to accurately describe
this versatile environment?

1.2.5 Focus on the regulatory cells’ example

In the case of TREG, the question of the versatility is of utmost importance. It is ex-
emplified by the attempts at deciphering their role with regard to cancer prognosis. So
far, there is no clear answer, since it would depend on the cancer type, the TME and
the TIME, and the study itself [77]. A first manner to solve this ambivalence could be to
better take into account the context (Chapter 7). Another strategy could be to focus more
on the different functions exerted by T cells instead of the broad phenotypes, although
phenotypes partly reflect functions. This could be achieved thanks to omics technologies,
and in particular thanks to transcriptomic studies.

32



1.3 The ’Why’ and ’How’ of single-cell RNAseq

We mentioned in the previous section that the TME is a highly complex milieu. One tool
that has been thoroughly used to describe this complexity is single-cell RNA sequencing
(scRNAseq).

1.3.1 Why using single-cell RNAseq

There are two main advantages of using scRNAseq over bulk RNAseq or other omics
methods.

Genomic studies allow to characterize DNA sequences and their variations. For ex-
ample, it has been used to map the human genome [78], or in the field of evolutionary
studies [79], drug target identification [80, 81] or virology [82]. But it is not possible to
study cellular phenotype, nor to measure gene expression or RNA editing. Since the func-
tional product of a gene is the protein, the ideal experiment would be to do proteomics.
Unfortunately, current proteomics methods do not allow to detect an extensive number
of proteins as they are not fully mature yet [83]. Instead, a satisfying proxy is to measure
RNA, although its expression dynamic does not fully match the one of the protein.

Compared to bulk, scRNAseq presents several advantages: a first technical aspect is
that it requires less RNA material: 1 ng vs. 1 µg. But the conceptual change is even more
important, as it allows to study cell-level transcriptomic changes. Such changes are of
paramount importance for example in rare cell type identification or developmental studies
[84] (Figure 1.8). The fields that require dramatically a single-cell approach relate indeed
to cellular heterogeneity and include, but are not restricted to, immunology, oncology,
neurology or embryology [85, 86].

Figure 1.8: Comparison of bulk versus single-cell measures(*).

1.3.2 Methodological background

scRNAseq is a fairly new technology, as the latest innovation in a series of sequenc-
ing applications. The first sequencing method was invented by Sanger in the seventies
[87, 88], based on the principle of chain termination: the nucleotide polymerisation mix
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contains deoxynucleotide triphosphates (dNTPs) as well as di-deoxynucleotide triphos-
phates (ddNTPs) that will be randomly incorporated in the newly synthesised DNA
fragment, and interrupt the synthesis. The ddNTPs are labelled, either with fluorescence
or radioactivity. The fragments are then separated by size before reading the labeled
nucleotide (Figure 1.9). Quality of the sequencing can be evaluated with a phred score,
that indicates the confidence for each base [89].

Figure 1.9: Sanger sequencing graphical protocol(*).

After roughly 40 years of Sanger sequencing, Next-Generation Sequencing (NGS),
also called massive parallel sequencing, appeared at the dawn of the new millennium,
unleashing a whole new area in sequence-driven research. Although NGS is constrained
by the small size of read compared to Sanger sequencing (a couple hundreds vs. maximum
1,000 bp), the number of nucleotides it can process is increased by a 106-fold order of
magnitude (couple kb vs. couple Gb) [90]. The second major change is conceptual:
most NGS methods rely on sequencing-by-synthesis [91] instead of the chain termination
method, meaning that the reading is done along with the polymerisation [92]. Finally,
this revolution also enabled to shrink costs drastically (Figure 1.10).
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Figure 1.10: The sequencing cost has diminished exponentially over time (data from genome.gov).

The last step in this evolution, which is the scope of this doctoral work, is the com-
bination of NGS with single-cell technologies, to extract the RNA count information on
a per-cell basis: scRNAseq. Adoption has been really broad, happening in fields such
as neurosciences [93], developmental biology [94], immunology [95] or oncology [96]. The
reasons for this widespread use are the possibility to resolve heterogeneous cell mixtures,
discover new cell types, or get mechanistic insights of physiological and pathological con-
ditions.

34



1.3.3 How to perform single-cell RNAseq. . .

Since the first scRNAseq protocol in 2009 [97, 98], a plethora of tools has been developed
for each step, from the cell isolation, the production of the libraries, to the sequencing,
the alignment, and up to the analysis of the resulting count matrix, although there is no
firm consensus on the best methods to use [99, 100].

1.3.3.1 . . . from the wet experiment. . .

The outlines for the bench experiment are [101] (Figure 1.11):

1. Collection of the sample,

2. Digestion and preparation of a single-cell suspension,

3. Separation of individual cells via a microfluidic device or in wells,

4. RNA extraction,

5. Adjunction of molecular tags and reverse transcription (RT),

6. Amplification of the complementary DNA (cDNA) strand,

7. Fragmentation or tagmentation.

Figure 1.11: Wet part of the single-cell RNA sequencing protocol(*).

The global output of this experiment is a library of cDNA fragments ready for se-
quencing. The steps that are specific of single-cell handling include steps 2 to 5, while
steps 6 and 7 stem from sequencing procedures. Let us discuss briefly these different
steps, though omitting steps 1 and 2, which are out of the scope of this manuscript.

There are currently 2 methods for the high-throughput separation of individual cells
(step 3.): droplet-based or plate-based procedures. In droplet-based methods, the single-
cell suspension is mixed with barcoded beads: a microfluidic device co-encapsulates one
bead with one cell. The nanoliter droplet is the factory where the cell is lysed and its
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mRNAs captured and barcoded by the bead [102]. Then, the RT and the amplification
are carried in parallel after breaking the droplets. In the plate-based method, the single-
cell suspension is poured into a plate, at the rate of one cell per well. The pouring is
performed either by FACS, for example in the Smart-seq2 protocol [103], or by mean of
a microfluidic chip with the C1 platform [104, 105]. Again, the lysis and the binding of
primers is performed in the well, as well as the generation of cDNA. Depending on the
protocol, the next steps are carried on the plate (e.g. Smart-seq2 [103]) or the cDNAs
can be pooled (e.g. CEL-seq2 [106]). For all protocols, the reaction mix lyses the cells
and primes their RNA (step 4. and 5.). Primers contain a tail of poly-T that will bind
to the polyadenylated tail of the mRNA. What is attached to this poly-T tail depends
on the protocol: some include cell or well barcodes in order to do pooled reactions while
retaining the information about the origin of each strand, or Unique Molecular Identifiers
(UMIs) that enable the unique count of each reverse-transcribed mRNA, and a promoter
for the amplification step [107].

The amplification (step 6.), by more than 1 million fold, comes in two flavors: it can
be done with Polymerase Chain Reaction (PCR) or In Vitro Transcription (IVT). The
latter requires a specific promoter, the T7 promoter, to recruit the T7 RNA polymerase
that will synthesize a RNA fragment matching the cDNA template [108]. Thus, it implies
an additional step of RT at the end of the amplification. The amplification is linear:
for one strand of cDNA, we synthesize one strand of RNA at each cycle. On the other
hand, the PCR would synthesize directly cDNA fragments from the template, thanks to
a DNA polymerase and a PCR primer [109, 110]. Contrary to IVT, PCR amplification is
exponential, since we double the number of cDNA strands at each cycle.

The final step for the preparation of cDNA libraries is the fragmentation or tagmen-
tation of the strands, to make the shotgun sequencing itself possible (step 7.). In the
tagmentation process, the cDNA strand is cut into fragments of 100-500 bp after PCR
[111], while RNA fragmentation is done after IVT [106, 112], to make fragments of a
couple of bp.

The different solutions are included in the several protocols available, such as 10 ,
Drop-seq, Mars-seq, CEL-seq, Smart-seq, etc (Figure 1.12), and they are regularly up-
dated and optimized. Constant progress in cell isolation automation, mRNA capture, RT
and amplification has led to ever-increasing sequencing precision and datasets cardinality
[86] (Figure 1.13).

Figure 1.12: scRNAseq protocols. From [113].

The critical parts of the wet protocol lie in dealing with minimal amount of biological
material, exacerbated by the fact that RNA is fragile. Because of the fragility, the conver-
sion to a more stable DNA strand is required but lead to a first source of uncertainty, as
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Figure 1.13: Datasets’ cardinality increases exponentially. From [86].

the capture of mRNA is not fully efficient: according to different estimations, only 5-20%
of the total mRNA is captured [101, 114]. It is unclear whether there is randomness or
not in the capture efficiency of the different genes depending on their features: length, GC
content, etc. A second source of uncertainty comes from the amplification step: depending
on the amplification technique, there is a possibly infinite fold-change in the amplification
rate of the different genes [115–118]. A key point in the downstream analysis of these data
will be to consider that technical and biological noises coexist, especially when integrating
datasets, in order to disentangle the two sources of noise [119–121] (paragraph 2.1.3).

1.3.3.2 . . . to the dry experiment

The dry protocol takes as input the cDNA libraries, while the outputs are diverse: de-
pending on the research question, it can be trajectories, clusters, classes, new cell types,
as well as new markers, etc [84, 85] (Figure 1.14).

Figure 1.14: Dry part of the single-cell RNA sequencing protocol(*).

The sequencing step is mostly preempted by illumina machines, while other devices
exist, such as SOLiD or 454 sequencers among others [122]. The raw sequencing data
comes in the form of so-called BCL files. These files contain the nucleotides sequence,
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and a phred score for each base call. BCL files are then converted, and eventually demulti-
plexed, into a readable format called FASTQ, that contains basically the same information
as the BCL file. Demultiplexing is required whenever different libraries were mixed for
the sequencing step, in order to separate them from each other. Then, FASTQ files un-
dergo quality control (QC) in order to eliminate adapters and low quality bases before
alignment. The alignment step compares the reads to a reference genome in order to map
each read to a given gene, before counting the number of reads assigned to each gene.
The count matrix, where one axis contains the cells or barcodes and the other the genes
or features, is then used for downstream analyses [123, 124].

Although there is no analysis standards yet [99], the classical workflow includes pre-
processing, dimension reduction, visualisation, cell assignment and gene identification.
There is a myriad of tools for each of these steps (about 1,000 as of July 2021), which
makes it difficult to navigate through the analysis and keep up-to-date, although the field
is dominated by two platforms: Seurat [125] in and Scanpy [126] in . The choice
of a platform, or other tools, as well as the programming language, conditions the analysis
itself.

The preprocessing step includes QC, normalisation and batch correction whenever
needed. The QC is meant to spot doublets or multiplets, which happen when two or
more cells co-localize in the same droplet or well, and damaged cells. The basic strategy
to identify multiplets is to remove barcodes with large numbers of counts and detected
genes compared to the rest of the distribution, although more sophisticated strategies
exist, such as Scrublet for example, which simulates doublets and then trains a classifier in
order to detect real doublets [127]. A second QC filters out cells with a comparatively high
percentage of mitochondrial counts, considered as damaged cells. A third QC eliminates
cells with a low number of counts and detected genes, to further remove poor quality cells.

A last (or first) QC focuses on the genes, and is usually done when loading the count
matrices, to remove genes that are present in no or n << N cells, N being the typical
size of a cluster. To help choose n, we can make a quick experiment. Let us assume that
all cells that fall within the same cluster are rigorously identical, and that the capture
efficiency is of c=10%, meaning we capture 10% of the total RNA in each cell. The
estimated fraction of detected mRNA molecules for a cluster of size N will be:

P = (1− (1− c)N) (1.1)

Therefore, in order to observe a reasonable fraction of the reads in each cluster, let us
say 80%, we should collect a minimum of N = 15 cells per cluster (Figure 1.15). Obviously,
this very simple model does not recapitulate the complexity of the data. In particular, the
uniformity assumption is wrong, even if we can reasonably assume that it remains correct
if we consider only the highly expressed genes, which are the genes of interest, while
the remaining genes would contain most of the transcriptional stochasticity (or biological
noise). Also, the genes of interest are expressed at high levels in the corresponding cluster
and therefore suffer less from dropout (or technical noise). Thus, we come up with an
updated description of the capture of marker genes, by updating c with a higher value c̃:

P = (1− (1− c̃)N) (1.2)

Hence, choosing for example c̃ = 0.2, we need a minimum of N = 7 cells per cluster
to collect 80% of the reads (Figure 1.15). Finally, considering the default value to define
marker genes in the Seurat platform, i.e. a gene that is detected in at least 10% of the
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cells in the cluster of interest, and making a last assumption that all k clusters have the
same size, and all cells have the same amount of marker reads M , we refine further our
model:

Pk,N,M,c̃ =
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Figure 1.15: How many cells per cluster do we need in order to have a given amount of informa-
tion? Considering the model from equation 1.1 (left panel) or equation 1.2 (right panel).

Unfortunately, equation 1.3 is computationally intractable, so we would stick to the
value of a minimal cluster size of N = 7. Thus, a reasonable value for n could be around
2-4, while the default value in Seurat and Scanpy is n = 3.

This small experiment illustrates the difficulty of setting user-based parameters in
the analysis: more generally, the QC is based on a manual choice of appropriate data-
dependent thresholds regarding the number of genes and cells, the count depth (or library
size) and the fraction of mitochondrial RNA, and as such should be permissive, in order
to not eliminate cells or genes of interest, even if it means going back to the QC step later
in the analysis [128]. It happens often since the required quality cannot be determined
beforehand, but from the evaluation of downstream performances. Indeed, in some sit-
uations, cells with a large library size might be simply large cells, while quiescent cells
would have a small library size, among other examples. If a significant proportion of cells
is filtered out, let us say above 10%, or above the expected doublet rate for example, it
might indicate an overall poor quality of the data, but also could be due to the biology
of the cells. After the threshold-based QC, one might also compute a Principal Com-
ponent Analysis (PCA), or alternatively an Uniform Manifold Approximation Projection
(UMAP) to remove subsequent outliers [99, 129].

After QC, the next preprocessing step is normalization. The intentions behind nor-
malization are:

# to correct for technical variation,

# to reduce zero-inflation, and eventually make the data look more like normally-
distributed,

# required for dimension reduction.

There are 2 major categories of normalization tools: linear or non-linear. Linear tools
attempt to correct the count depth between cells, assuming that they all have an a pri-
ori similar library size, while non-linear tools attempt at describing the data distribution
over several assumptions. The linear tools derive mostly from bulk, and correct for tech-
nical variation. The second normalization step is a log-transformation of pseudo-counts

39



(counts+1), in order to reduce zero-inflation and the skewness. Finally, there is an op-
tional normalization over the genes, sometimes required for dimension reduction, although
its utility is still disputed.

Briefly, three other optional steps include batch correction, regression of biological
effect such as sex or cell cycle, and imputation. The batch correction is applied in order
to eliminate technical drift between two different batches that would not co-localize oth-
erwise (Figure 1.16). The regression step is meant to eliminated confounding factors that
would blur the downstream analysis by adding unwanted variability. Lastly, imputation
is sometimes performed as a way to correct for the dropout. It usually takes advantage
of neighbor cells to reconstruct missing information.

Figure 1.16: Comparison and matching of two batches for batch correction. From [121].

Once the preprocessing is done, there is the dimension reduction step, generally after
feature selection such as Highly Variable Genes (HVG) extraction. HVG selection is meant
to select interesting genes, remove noise and speed up computation. It is classically done
by choosing the genes with high ratio variance over mean in expression bins. The most
common dimension reduction tool is PCA, or a flavor of PCA adapted to single-cell data
[130]. The reduced data is the basis for most of the further applications : visualisation,
clustering, trajectory inference, while we usually go back to the raw data for Differential
Gene Expression (DGE) analysis.
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Chapter 2

Single-cell RNAseq analytical

challenges

scRNAseq data belongs to the field of big data, as it is characterized by the measure of
thousands of features over thousands of cells. This huge amount of data is a double-edged
sword [131–133]. Bioinformaticians, when dealing with the data, face 3 main challenges:
the noise, the dropout and the high dimension. To tackle these challenges, researchers
came up with a myriad of tools, although there is no consensus on the best strategy [99].
So far, the guideline has been to design one pipeline per research question and dataset,
in order to take into account the high variability of scRNAseq data.

2.1 Modelling noises

2.1.1 Biological noise

We already evoked in the preceding chapter the existence of biological noise, but we shall
now explain what it is. There is an obvious "macroscopic noise" in gene expression,
exemplified by the fact that cells from a same organism, with the same genetic code,
have different fates: an epithelial cell, a muscle cell or a neuron from a unique individual
have the same DNA, but completely different shapes, organelles, protein content and
functions. It has been suggested that the "microscopic" noise [134], i.e. the variability in
gene expression of supposedly identical cells, participate to the "macroscopic noise" [135].
In [136], the authors consider 4 sources of variability:

# the stochastic nature of biochemical reactions governing the process of transcription-
translation-degradation (i),

# the internal state of the cell, e.g. cell cycle (e),

# external stimuli, e.g. homeoprotein gradients (e),

# point genetic mutations (e).

There is a further distinction, viz. between intrinsic and extrinsic noise. Intrinsic noise
will affect co-regulated genes within one cell, while extrinsic noise will affect differently
two cells, either at a global level or at the level of a specific pathway. Each noise can
be related to one of the four sources of variability (indicated by (i) for intrinsic or (e)
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for extrinsic in the list above), and the extrinsic noise usually exceeds the intrinsic one
[135, 137].

This variability in gene expression is readily observed with techniques such as Fluo-
rescence Activated Cell Sorting (FACS): different cells have different levels of expression
as illustrated by the spread of the dot plot (Figure 2.1). Noise can have no or dramatic
effect depending on the magnitude and duration of the fluctuation. For example, it has
been hypothesized that intrinsic noise govern the development of the sense of smell, by
influencing the choice of a single odorant receptor in each olfactory neuron [138]. In this
situation, noise is an advantage, while it can also blur the accuracy of cellular processes,
by perturbing the temporal shape of proteins or mRNAs expression, at the single-cell or
at the population level [139].
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Figure 2.1: Variability in gene expression is observable with FACS.

We mentioned that "microscopic" noise may participate to what we called "macro-
scopic noise", which is merely plasticity and leads to cellular heterogeneity. Although
it is not completely clear how noise is controlled [137], one of the possible mechanisms
is that it depends on the stress [134, 136]: noise increases with stress, as a way to in-
crease the chances of reaching a fit phenotype. This is reconcilable with the rigid map of
Waddington’s landscape [140], by extending it while imagining a flattening of the peaks
under stress, that would create a sea of phenotypes instead of separated flows (Figure 2.2)
[135]. Another putative control mechanism is to duplicate genes in order to smooth the
associated noise [134, 137].

Figure 2.2: Modified Waddington’s landscape to include expression noise by flattening peaks.
Courtesy of J. Amir Tahmasseb.

Regarding scRNAseq, RNA expression is noisy because of its production and degra-
dation rates: RNA is produced during transcriptional bursts, periods of intense tran-
scription, followed by transcriptional inactivity, and degraded during both stochastic and
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deterministic processes. The transcription efficiency depends on the burst frequency (ra-
tio of the duration of transcriptional activity to inactivity) and burst size (number of
transcripts made during the burst) [135].

2.1.2 Technical noise

However, even without considering the fact that the measurand, i.e. the object and the
quantity being measured, is intrinsically noisy, every measure suffers from noise, be it the
measure of the Earth-Sun distance (149,597,870.7 ± 8,000,000 km) or of the radius of a
proton (0.83 ± 0.1 fm). Measure uncertainty has three causes.

The first cause relates to quantum mechanics and was first reported by Heisenberg
(1901-1976) [141]. It states that it is not possible to determine with exactitude simulta-
neously the position and the speed of an wave-like object. More precisely, if one wants
to increase the precision of the position measurement σx, it will be at the expense of the
speed measurement accuracy σs, and vice-versa:

σxσs ≥
~

2
, (2.1)

~ ≈ 1.054× 10−34 J·s,
where ~ is the reduced Planck constant. The so-called Heisenberg’s uncertainty principle
is observed in all wave-like systems, which is not the case of RNA.

The second cause of uncertainty is called the observer effect, and refers to the fact
that performing a measure usually alters the measurand. Famous thought experiments
testing this effect are Schrödinger’s cat and Wigner’s friend [142], while this effect is also
observed in other fields such as social sciences, where the measure depends on the biases
of the observer and the measurand: e.g. the Hawthorne effect (survey participants would
modify their behavior because they know they are observed) or the observer-expectancy
effect (observers would modify unconsciously the behavior of survey participants). In our
case, the observer effect happens mostly at the very first step of the wet lab experiment,
when sampling a tissue and its RNA.

The last cause of uncertainty relates to the finite precision of the measuring instrument
and of the operator [143]. This effect can be systematic and random, and produces a
probability distribution of successive measurements.

In the scRNAseq field, the technical noise is mostly visible via imprecise read count-
ing. It comes from basically all steps of the wet protocol: an inappropriate sampling and
digestion of the tissue of interest (observer effect), the poor capture of RNA fragments
(finite precision of the technique), as well as errors in RT (observer effect) and amplifica-
tion (finite precision of the technique). The critical and most noisy step is probably the
RNA capture, since only a fraction (5-20% depending on the estimations) of all fragments
of a cell are observed, while it is not clear yet whether the capture is random or not
[135]. It is even worse with decreasing amounts of starting biological material [144]: less
RNA material leads to an increased amount of noise. Hence, genes with low read count
exhibit a stronger noise than genes with a high read count, leading to within-cell noise
variability. There is also a between-cell variability in RNA capture, exemplified by the
differences in library size. The second critical step is the amplification, which causes non-
linear distortions, and this is again especially the case for poorly abundant genes [145].
This deformation of the count matrix, as compared to an expected amount of counts,
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severely impacts the downstream analysis, for example the DGE analysis, or the pooling
of different datasets suffering from batch effect.

2.1.3 Discriminating technical from biological noises

We mentioned already that the critical advantage of scRNAseq over bulk lies in the
possibility of exploring differences between seemingly similar cells. Therefore, it is of
paramount importance to be able to distinguish biological from technical noise in order
to take advantage of the single-cell approach [146]. Different approaches have been imple-
mented in order to disentangle meaningful biological variations from detrimental technical
discrepancies, that we classify into three categories.

The first family of strategies considers each cell× gene data point as a random variable
and tries to fit it with parametric statistical models, usually making an assumption over
the technical variability, in order to spot biology-related overdispersion. More precisely,
it is classically observed that there is a quadratic polynomial relation between the mean
µi and the variance σi (or the coefficient of variation CV = σ

µ
) of all d genes G =

{gi; i ∈ J1, . . . , dK}. This polynomial relation is well recapitulated by a Poisson distribution
[135, 144–146], a negative binomial [120, 147] or a log-normal distribution [73] (Figure
2.3).

Figure 2.3: Observed scRNAseq counts can be statistically modelled. Scatter plot for normal-
ized read counts for all genes G from two cells (left panel). CV-Mean scatter plot with HVG
highlighted in magenta, as genes that significantly deviates from a Poisson distribution, i.e. well
above the dashed line (right panel). From [144].

The second family jumps directly to the interpretation by extracting only biologically
meaningful genes: for example, one can extract correlated gene sets, compute a PCA with
the latter genes and select the gene sets associated to overdispersed PCA, i.e. PCA that
would explain a higher percentage of variance with its first PC than would a PCA with a
random gene set [148].

The last family relies on a fairly new possibility: denoising the data using generative
autoencoder neural networks, which are praised as a more universal and flexible approach.
The network learns simultaneously a low-dimensional representation of the data (encoding
or convolution) and how to infer the data back in the original space (decoding or deconvo-
lution) [149–152]. Briefly, it works by minimizing a cost function that measures the drift
between the original count matrix and the low-dimensional representation. Concurrently,
it learns the method used to make the low-dimensional representation and invert it, in

44



order to reconstruct a denoised count matrix in the original space, from the denoised
projection. While it does not explicitly model the technical versus biological noise, this
approach has proven its validity and effectiveness, especially since it is an all-in-one ap-
proach: the encoded matrix is used for clustering, trajectory inference or visualisation,
and the decoded matrix is used for imputation or DGE analysis (Figure 2.4).

Figure 2.4: Autoencoder neural network adapted to scRNAseq data. Adapted from [150].

Except for the autoencoder strategy where all the steps of the analysis are performed
simultaneously, the disentangling of the technical from the biological noise is done during
the preprocessing, most specifically during the normalisation step that would include the
parametric noise models (Figure 1.14). Some normalisation approaches can be straight-
forward, such as taking into account the mere library size of each cell. On a side note,
we did not mention in this section imputation methods, such as MAGIC [153] or SAVER
[154], that also rely on a modelling of the data. Imputation algorithms also aim at cor-
recting technical noise by targeting one specific aspect, the dropout. We will discuss these
methods in the next section, along with the sparsity challenge.
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2.2 Sparsity

Sparsity is a peculiar aspect of technical noise and is a prominent challenge in the analysis
of scRNAseq data [131].

2.2.1 Reminder on the terminology

Let us first echo the remark made in [146] about the fact that there is an imprecise
terminology in the scRNAseq field.

Dropout refers to the zeros in scRNAseq data but means either observed zeros (i.e. all
counts xij that are effectively null in the observed count matrix X), or artificial additional
zeros (i.e. genes that were expressed but not detected at all), or even all underestimated
counts. In this manuscript, I will use the term dropout with the meaning of additional
zeros in the observed count matrix X. Sparsity, coined by the economist Harry Markowitz
(1927-) is the percentage of observed zeros in X. Hence, we cannot distinguish in sparse
counts true zeros from dropouts. Finally, missing data would represent all reads that
were not detected, leading to gene counts below their true levels. Another important
distinction should be clarified regarding scRNAseq models, as it causes more confusion.
Using the classification defined in [146], there are three types of models:

# measurement models p(X|M), connecting X to the true expression matrix M ,

# expression models p(M), modelling M ,

# observation models p(X) = p(X|M) · p(M), combination of an expression and a
measurement model, to model X.

2.2.2 Zero-inflated. . .

scRNAseq count matrices suffer from a high sparsity: a typical count matrix would be
at least 50% sparse (Figure 2.5). The magnitude of sparsity depends on the scRNAseq
platform used and the sequencing depth: high-throughput droplet-based experiments are
sparser than plate-based experiments, with a sparsity that can approach 100%. It also
depends on the true gene expression levels, with a higher chance for poorly expressed
genes to be dropped (Figure 2.5).

From this observation, one could easily jump to the conclusion that there is a zero-
inflation, i.e. a higher proportion of zeros than expected, although an unknown fraction
of the zeros are due to the genuine biology. If this is true, zero-inflation should be taken
into account, either by adding a zero-inflated component in the models, or by imputing
missing data and hence correcting for dropout.

2.2.2.1 Modelling zero-inflation

Many models that attempt at correcting technical noise include a zero-inflated component,
e.g. by using a Bernoulli process that decides whether the real count is observed or
dropped, on top of the technical noise component.

For example, in the Splatter package, their framework includes a zero-producing
component to simulate scRNAseq data [155]. More precisely, dropout is optionally added
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Figure 2.5: scRNAseq count matrices suffer from sparsity at high rates. Example with 8 datasets
(top panel). They have a high sparsity rate, even higher for droplet-based assays, and even
when keeping only 5,000 HVGs (middle panel). The sparsity strongly depends on the average
expression level for each gene (bottom panel).

on top of signal simulation with a logistic regression in order to decide the fraction of
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counts to drop per gene gi, and the counts xij,j∈{J1,...,nK} of gene gi across the n cells are
dropped following a Bernoulli distribution.

On the other hand, ZIFA [156] models the technical noise with a Gaussian component
while dropout is added, s.t. it follows a square exponential decay as a function of the
mean gene expression level:

di = exp(−λµ2
i ), (2.2)

where λ is a parameter to tune and µi the average expression level of gene gi calculated
on log-transformed non-zero pseudocounts (counts+1).

Other examples includes ZINB-WaVE [120], SCDE [145] or MAST [157], among
others.

2.2.2.2 Imputation

Instead of modelling the zero-inflated component, one could also attempt at recovering
missing data by performing imputation. There are currently 3 classes of imputation
methods.

The first class focuses actually only on dropout events and not on the whole spectrum
of missing data. It identifies dropouts to correct them, by modelling the data generation
mechanism and attributing to each count xij a probability of being a dropout. Such
methods include for example SAVER [154], scImpute [158] or Biscuit [73].

The second class smooths the data by averaging cell expression profiles, taking advan-
tage of the information brought by neighbouring, hence supposedly similar, cells. MAGIC
is one example [153]. The main weakness of this approach is the circularity of information
though: using noisy data from other cells to reconstruct an expression profile is indeed
flawed as it can generate false positives or irreproducible differential expression. This can
be avoided by adding external information [159].

Finally, the third class reconstructs a denoised and imputed count matrix from a
latent representation, obtained either via matrix factorisation, or with neural networks:
DCA [150], scVI [149] or ZIFA [156] fall into this category (Figure 2.4).

2.2.3 . . . or not ?

However, and following an intriguing blog post from Valentin Svensson entitled "Droplet
scRNAseq is not zero inflated"1, the fact that scRNAseq is zero-inflated is itself question-
able, especially when considering UMI data [130, 160] (Figure 2.6).

Indeed, while the data exhibits a considerable amount of zeros due to both biological
zeros and dropouts, one could argue that it is also 1-inflated (because of all genes that
had more than 1 count in a cell but for which only 1 read has been detected), 2-inflated,
3-inflated, etc. Additionally, there is nothing in the wet lab protocol that would justify the
existence of an independent zero-producing mechanism [146]. Finally, following the precise
terminology about the different ways of modelling the data mentioned above (section
2.2.1), and referring to measurement models, a non-zero-inflated Poisson distribution or
a negative binomial one would nicely account for the apparent zero-inflation of the data
(but hence also for the 1-inflation, 2-inflation, etc) [146, 161]. Of note, it does not rule
out the validity of zero-inflated models, for example for expression of observation models.

1https://www.nxn.se/valent/2017/11/16/droplet-scrna-seq-is-not-zero-inflated
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Figure 2.6: UMI count data is not zero-inflated, as opposed to read count data: UMI tags allow
to trace back reads to the original mRNA molecule, thus correcting partly for the amplification
bias that artificially widens the gap between zero and non-zero expressed genes. From [160].

While non-zero-inflated measurement models are verified for UMI counts data, non-
UMI count matrices still exhibit zero-inflation: UMI counting deflates the amplification
bias that causes the unexpectedly high proportion of zeros by collapsing all the reads
referring to one RNA molecule, but it is not the case for read count data (Figure 2.6). With
that respect, different measurement models are used for the mean-sparsity relationship
of read counts data, such as the Michaelis-Menten function [162]. As we mentioned in
section 2.1.3, these models are then used to distinguish technical noise from biological
variability.

Besides from sparsity, there is another observation: the data is scarce. The scarcity
comes from the data being high-dimensional: for each measurand, which is a single cell in
our case, we measure thousands of features. While traditional techniques would quantify
a couple of features, technological progress, be it in storage capacities, analysis power or
ever-increasing quantification performances, led to the emergence of a new field called big
data, that we shall discuss in the section below.
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2.3 Dealing with high dimensional data

Big data, along with machine learning (ML) and deep learning (DL) methods, are buzzing
words, and encompass quite broad and fuzzy meanings.

2.3.1 A new type of data

With technological advances, we produce and store more and more data. Because of the
whopping amount of features being collected, such data cannot be analysed manually
but require a computer or even a computing infrastructure. Let us take an illustrative
example with the autonomous vehicle. Such a car needs to be able to analyse what is in
front of it: crossing roads, pedestrians, trees, sidewalks, etc. It will do so by collecting
images from its environment. The collection of consecutive images is a huge matrix, one
row per image and one column per pixel, as each image can be described by its pixels’
sequence. A typical matrix would contain an order of magnitude of 106 pixels times the
number of images in the movie, around 103 images per minute. One quickly grasps that
this huge amount of data is not analysable by a human operator, furthermore in a short
amount of time as to make quick decisions when driving a vehicle. Such datasets belong
to the field of big data, which includes areas such as weather forecast or robotics.

Coming back to biology, even considering longstanding techniques such as FACS,
current FACS apparatuses measure several colors, hence representing tens to hundreds of
features. In the case of omics data, we collect thousands of features, and also the number
of cells per study increases, reaching nowadays a couple of millions of cells2 (Figure 1.13).
The massive size of count matrices, 104 genes ×103 − 106 cells, requires a computational
analysis.

2.3.2 New analytical methods

ML usually refers to all the methods designed to handle big data, in which the computer
learns to recognize striking features that are useful to form groups in the data. DL is a
subsection of ML, grouping algorithms that use neural networks. Supervised methods use
labels, while unsupervised approach try to preserve the original structure.

In the case of scRNAseq, ML and DL algorithms are used for all the steps of the
analysis: dimension reduction, clustering, visualisation, trajectory inference, etc.

When dealing with big data, not only the tremendous size of the datasets poses
challenges, but also the fact that high-dimensional spaces are suffering from a set of
strange and counter-intuitive phenomena that we discuss below. These phenomena are
specific of the high-dimension, and do not happen in the regular 3-dimensional everyday
space.

2.3.3 Curse and blessings of dimensionality

2.3.3.1 Definition

Datasets with thousands of observations and even more features are a double-edged sword.
The obvious interest of big data is the massive resource it represents. Unfortunately, we

2https://www.nxn.se/single-cell-studies/gui
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are currently not able to deal with this amount of information, especially since it is not
only too complex for the human brain, but also noisy. There are in fact two sources of
noise in high-dimensional settings:

# the "classical" noise, that we already discussed before in section 2.1, i.e. the noise
due to the measure as well as the noise intrinsic to the measurand,

# a "dimensional" noise, encompassing all phenomena happening in the big data uni-
verse, but not in low-dimensional spaces.

These blurring dimension-related phenomena are termed as the curse of dimensionality,
which was coined by Richard Bellman (1920-1984). The best known effect is the measure
concentration. This refers to the fact that the range of values for pairwise distances shrinks
with the dimension. In other words, all pairwise distances become similar, making it hard
to distinguish similar from dissimilar data points as their contrast vanishes. Luckily, there
is another side of the coin: as the geometry is simplified in high-dimensional spaces, there
are also positive effects, called blessings of dimensionality [163]. For example, all data
points are linearly separable. Hence, it actually depends on the downstream application
whether the high-dimensional geometry will be a blessing or a curse. In the scRNAseq
situation, since we are trying to group similar cells, the analysis will rather suffer from
the curse of dimensionality (Figure 2.7) [128].

Figure 2.7: Measure concentration in scRNAseq datasets, using pairwise Euclidean distance and
Pearson correlation. Colored bars on top and left of each heatmap indicate the ground truth
labels, showing that the inter-group similarity is not unequivocally higher than the intra-group
one. From [164].

We mentioned measure concentration, but there are other effects of the curse. One
of them is that big data is usually sub-sampled or scarce. To reasonably sample a 1-
dimensional segment, let us say we need ca. 10 points. For a 2-dimensional plane, we
would need 102 data points. To sample a d-dimensional volume, we need 10d data points.
No dataset has such a high cardinality, thus they are all scarce.

Another effect is the hubness phenomenon. While training music recommendations
algorithms, it has been observed that some tracks would be recommended particularly
often, or rather at an abnormally high frequency [165]. It means that in the corresponding
directed neighbors graph, some data points are neighbors of many other points. More
precisely, one can compute in a k-Nearest Neighbors (k-NN) graph the in- and out-degree
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of each node. The distribution of in-degrees gets skewed to the right when the dimension
increases. All the points in this right fat tail have a surprisingly high in-degree, i.e. an in-
degree di >> k, k being the value used to build the k-NN graph, and the expectation for
the in-degree value. This is the manifestation of what is called the hubness phenomenon,
and data points in the right fat tail are called hubs [166]. Since the k-NN graph is
distorted, it is expected that "hubby" k-NN graphs would lead to a worse performance of
k-NN graph-based algorithms.

2.3.3.2 Avoiding effects of the curse of dimensionality

A reasonable strategy, and the one that has been chosen so far in scRNAseq analysis, to
minimize the detrimental effects of the high dimension has been to reduce the dimension.
As depicted in a recent tutorial on scRNAseq analysis [99], feature selection and dimension
reduction is an inevitable step of the analysis. This is especially true for visualisation
where the number of dimensions is reduced to 2 or 3.

There are several recipes for the feature selection (that usually leaves the dimension
of the same order of magnitude), and the dimension reduction (for which we usually keeps
a couple of tens of dimensions). This strategy has the advantage of tackling all noxious
effects of the high dimension, while it poses the risk of loosing information contained in
the dimensions that are removed. This is worrying in our single-cell case, compared to
bulk: while the first few principal components (PCs) of the data explain a consequent
amount of the variability in bulk data, this is not true anymore for single-cell data.

The feature selection has 2 technical purposes: reducing the size of the count matrix,
and speeding up downstream dimension reduction algorithms, and one biological purpose:
selecting biologically relevant genes [128]. To this end, interesting features are selected
according to their mean expression and variance. The user has to choose a threshold,
either on the number of HVGs to retain (e.g. 2,000 in the Seurat pipeline), or on the
authorized interval for mean expression and variance. Selecting more HVGs might result
in a higher noise, but reduces the risk of removing biologically relevant information [128].

A common method for the dimension reduction has been PCA and its flavors such as
GLM-PCA [130], but it is included in a wider field of research, viz. manifold learning. The
manifold assumption hypothesizes that the original data lies onto a significantly lower-
dimensional manifold that would recapitulate it perfectly. This hypothesis is supported by
the intuition that single-cell expression profiles depend on a set of limited and redundant
molecular reactions and coordinated gene modules, a weighted combination of which yields
the different cell states and types [167].

2.3.3.3 Targeting the measure concentration effect

Apart from reducing the dimension, there is another ruse to mitigate the measure con-
centration. It has been observed that some metrics would be less sensitive to this phe-
nomenon: for example the Lp (quasi)norm of the form (Figure 1):

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p (2.3)

x = (x1, x2, . . . , xn) ∈ R
n

is all the more sensitive as p ∈ R
+∗ is high [168].
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A budding field is the area of metrics learning, while it is not conceivable to implement
it for scRNAseq since it is mostly a supervised approach and the majority of the datasets
do not have ground truth labels. Fortunately, there are other options, such as constructing
a corrected affinity matrix by using kernel functions, as done in SIMLR [164, 169], for
which we need to choose the number of clusters though, or by using alternative metrics
[168], although it is still debated whether it would indeed improve the analysis [170].

2.3.3.4 Targeting noise in the data

Under the manifold assumption, noise is considered as a dimension-related perturbation
that is eliminated upon dimension reduction. In the case of PCA, there are a few rules
of thumb to choose the number of PCs that should be retained in order to retain signal
and remove noise: the elbow plot, the jackstraw procedure, or an a priori choice (Figure
2.8). The elbow method relies on spotting an elbow in the plot of the percentage of
variance explained by each PC, assuming that further PCs bring negligible information.
The jackstraw procedure attributes a p-value to each PC, in order to choose significant
PCs. An a priori choice can be e.g. to keep 50 PCs, or to keep the n PCs that explain
more than a tenth of the variance explained by the first PC, n being considered as the
intrinsic dimension, i.e. the dimension of the lower-dimensional manifold. There are
other heuristics for other dimension reduction tools such as the Independent Component
Analysis [171].

Figure 2.8: Choosing the number of principal components to retain. Using the Elbow plot (left
panel) or the Jackstraw plot (right panel). From Seurat website.

There is a last method, that do not relies on heuristics, but on a theory that attempts
at describing the behavior of random matrices, viz. the Random Matrix Theory (RMT).
The rationale is to consider the count matrix as a mixture of a random matrix and a
matrix containing the biological signal. Hence, all PCs, or eigenvectors, that deviate from
the behavior predicted by RMT are considered as a part of the signal-containing matrix,
while the eigenvectors following the Marcenko-Pastur distribution can be discarded: this
approach specifically aims at distinguishing signal from noise in the count matrix [172].

2.3.3.5 Avoiding hubness

Regarding hubness, there are specific techniques aimed at reducing it. The idea behind
these methods are to make each node in the k-NN graph wobble slightly according to
their in-degree: a node that has a high in-degree wobbles towards a less dense region in
order to loosen its links to neighbor nodes, while a node with a small in-degree wobble
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towards a more dense region in order to strengthen its links with other nodes. There is
currently a total of 4 hub reduction graph-correcting methods: Mutual Proximity (MP),
Local Scaling (LS) and a variant LSnicdm and DisSimilarity Local (DSL) [173].

MP models pairwise distances di,j∈{1,...,n}\i of a set of n points with random variables
Xi that depict the distribution of distances between xi and all other points:

MP(di,j) = 1− P (Xi > di,j ∩Xj > di,j) (2.4)

where P is the joint probability density function.

LS takes into account the local neighborhood:

LSk(di,j) = 1− exp(−di,j

rki

di,j

rkj
) (2.5)

where k refers to the size of the local neighborhood, and rki is the distance of xi to its
k-th neighbor.

The variant LSnicdm uses the average distance to the k neighbors instead of the mere
distance to the k-th neighbor:

NICDMk(di,j) =
di,j

√

µk
i µ

k
j

(2.6)

where µk
i is the average distance of xi to its k nearest neighbors.

DSL uses local centroids ck(•) to reduce hubness:

DSLk(xi, xj) = ‖xi − xj‖22 − ‖xi − ck(xi)‖22 − ‖xj − ck(xj)‖22 (2.7)

where the local centroid is estimated as the barycenter of the k nearest neighbors of xi:

ck(xi) =
1

k

∑

xj∈kNN(xi)

xj

MP uses all data points to correct for hubness, while DSL uses local centroids and
LS and its variant LSnicdm local neighborhoods. All these methods output a less "hubby"
k-NN graph that can then be inputed in the various algorithms used in scRNAseq analysis
such as community-detection-based clustering or visualisation tools.
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Chapter 3

Single-cell RNAseq biological

interpretation

3.1 Balancing between technical and biological accuracy

At the dawn of scRNAseq technologies, analytical tools were inspired from bulk pipelines,
but then specific methods have been developed for single-cell studies, especially because
of the aforementioned challenges (chapter 2). With the democratisation of single-cell
measures, there has been a tremendous increase in the number of available algorithms,
making it hard to navigate this sea of tools. We want to point out two particular points
that we deemed of interest:

# A substantial number of tools are never or barely re-used,

# Benchmarking tools is a complicated task, since there are no standards, although
good practices are emerging [174].

3.1.1 A humongous amount of analytical tools. . .

Out of the 982 tools tracked by the website [175] 1 as of June 24, 2021 (1,056
at the end of September 2021), more than 30% were never cited (337 to be precise), while
there is only a small fraction that have been cited more than 100 times, this being related
to the 3,652 occurrences for the search term "single-cell RNA seq" in PubMed (Figure
3.1).

A possible explanation is that there is a disconnection between bioinformatics and
biology teams that stay in their respective ivory towers: some tools are highly technical
and improve theoretical performance but not biological interpretability. At the other end
of the spectrum, some analytical practices are questionable as they do not tune correctly
hyperparameters, while it might have a massive impact on the downstream results [176].
It is also probably because the analytical landscape is dominated by two behemoths that
are easy-to-use integral pipelines: Seurat [125] and Scanpy [126].

1https://www.scrna-tools.org/

55



0

25

50

75

1 10 100 1000 10000

Citations

c
o
u
n
t

F
re
q
u
e
n
c
y

Number of citations

0

250

500

750

1000

2012 2014 2016 2018 2020 2022

N
u

m
b

e
r 

o
f 

to
o

ls

Figure 3.1: Tools for scRNAseq analysis are produced at a fast pace (left panel) but poorly
diffused throughout the community (right panel).

3.1.2 . . . to benchmark

We see two reasons that could possibly explain the difficulty to benchmark new tools.

3.1.2.1 Performance scores

The benchmark of emerging tools has been inspired by the broader field of supervised and
unsupervised ML research. Let us go with the example of evaluating the performance of
the clustering task.

For the unsupervised approach, one can use performance metrics that quantify the
inter-cluster separability versus the intra-cluster coherence. Such scores include the to-
be-maximised silhouette (equation 3.1), the to-be-maximised Calinski-Harabasz (equation
3.2) or to-be-minimised Davies-Bouldin (equation 3.3) indexes. They rely exclusively on
the coordinates of the data points and their cluster labels and characterize the physical
overlap between the different labels.

It is not completely clear yet whether the unsupervised scores make sense, given that
the coordinates in the original or projected spaces are noisy. A supplementary Achilles’
heel is that they are well suited for convex clusters but not anymore if the shape is concave.
A bean-shaped cluster for example would lower the score even if there is no overlap with
other clusters (Figure 3.2). Obviously, since not all clusters are expected to be convex,
therefore unsupervised scores should be used carefully.

For the supervised approach, the rationale is to compare the match between ground
truth labels and clusters. There is a range of supervised scores: the ARI (Adjusted
Rand Index) (equation 3.4), the homogeneity score (equation 3.5), or the Jaccard index
(equation 3.6), among others. These scores evaluate whether two partitions overlap (ARI,
Jaccard index), or whether a query partition looks like a reference one (homogeneity
score), and should usually be maximised.

In this case, the caveat is related to the definition of ground truth. While the definition
itself is shaky as it might be subjective, depending on the markers used to sort the
sequenced populations, there is another mistrust: it is not obvious that transcriptome-
defined populations would mirror cell populations defined with proteins. In other words,
there is a doubt about the fact that the transcriptomic truth should reflect the proteomic
one. In [177], the authors sorted TREG vs TCONV based on the expression of FOXP3
(ground truth labels), but these two populations merged back in the clusters found with

56



Cluster 1 2

Silhouette=0.674

CH=1467

DB=0.451

−5

0

5

10

0.0 2.5 5.0 7.5 10.0

Dimension1

D
im

e
n

s
io

n
2

Silhouette=0.326

CH=81

DB=1.831

−5

0

5

10

0.0 2.5 5.0 7.5 10.0

Dimension1

D
im

e
n

s
io

n
2

Figure 3.2: Unsupervised scores performance relates to cluster shape. Concave-shaped clusters’
scores, such as bean-shaped (right panel), are worse even if the between-clusters separation is
the same as for convex-shaped clusters (left panel).

the analysis of the transcriptome (cluster labels) (Figure 3.3).

3.1.2.2 Good practices in benchmarking analytical tools

Given the aforementioned weaknesses of evaluating an algorithm’s performance, bench-
marks should be carefully conducted. In particular, a proper benchmark study should
have the following minimal characteristics [174]:

# unbiased (for example tuning parameters for some methods and not for others),

# reproducible,

# the choice of methods and parameters should be discussed,

# the benchmark should rely on a collection of well-characterized dataset, real and
simulated,

# the choice of performance metrics should be explained,

# the pros and cons of each method tested have to be mentioned in order to give
recommendations on how to choose one method over the others,

# the benchmark should enable future extensions.

These good practices are for example illustrated by the dynverse platform (Figure
3.4).

There is an additional common flaw in current benchmark studies: optimism [178].
Every single new method claims that it outperforms previous ones. Recurring hints,
even unconscious, are to tune extensively every parameter of the new tool while using
default ones for the others, or choosing particular datasets and performance metrics.
In line with this observation, benchmarks performed by independent teams, or neutral
benchmarks, usually fail to reproduce these claims. For this reason, one should favor
neutral benchmarks to make a proper selection of an analytical tool.
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Unsupervised scores

Let X = {x1, x2, . . . , xN} be a set of N data points, each data point belongs to one of
the K clusters with a label C(i).

Ik = {i ∈ [[1, N ]]|C(i) = k}

ai =
1

|IC(i)| − 1

∑

j∈IC(i),j 6=i

d(xi, xj), bi = min
k′∈[[1,K]],k′ 6=k

1

|Ik′ |
∑

i′∈Ik′

d(xi, xi′)

ssil(i) =
b(i)− a(i)

max(a(i), b(i))

µk =
1

|Ik|
∑

i∈Ik

xi, µ =
1

N

N
∑

i=1

xi, δ̄k =
1

|Ik|
∑

i∈Ik

d(xi, µk)

B =
K
∑

k=1

|Ik|‖µk − µ‖, Wk =
1

|Ik|
∑

i∈Ik

‖xi − µk‖

Ssil =
1

K

K
∑

k=1

1

|Ik|
∑

i∈Ik

ssil(i) (3.1)

SCH =
(N −K)B

(K − 1)

K
∑

k=1

Wk

(3.2)

SDB =
1

K

K
∑

k=1

max
k′ 6=k

(

δ̄k + δ̄k′

d(µk, µk′)

)

(3.3)

3.2 Looping on old knowledge

Interpreting scRNAseq is a highly challenging task, as the data is confounded by nuisance
factors such as variation in capture efficiency and sequencing depth. Once the signal
has been extracted, there is an extra fact to explain the difficulty of the interpretation:
scRNAseq quantifies the transcriptome, while our knowledge mostly relies on the study
of proteins. Assuming that the transcriptomic measure is an accurate proxy for the
quantification of proteins, the interpretation step of the data takes advantage of previous
knowledge to identify clusters or stages in a trajectory. There are three complementary
strategies to annotate the data, be it at the cell- or the cluster-level.

3.2.1 Gene list enrichment

The first strategy is to use signatures for cell types that are assumed to be present in
the data. These signatures come from third-party sources such as the literature, bulk or
single-cell data. To compute an enrichment score of a signature in a given cell or group
of cells, one can perform a hypergeometric test or alternatively a Gene Set Enrichment
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Figure 3.3: Ground truth labels are mixed in transcriptomic cluster labels. From [177].

Supervised scores

Let T = {T1, T2, . . . Tt} be the ground truth partition, C = {C1, C2, . . . CK} the cluster
partition, N the number of data points and M = {mij}i∈[[1,t]],j∈[[1,K]] the contingency
table where mij = |Ti ∩ Cj |.
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ĩ=1mĩj
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h =

{

1 if H(T ) = 0

1− H(T |C)
H(T ) else

(3.5)

J(T,C) =
|T ∩ C|
|T ∪ C| (3.6)

Analysis (GSEA). These two analyses rely on the existence of gene set databases, such as
PanglaoDB2 [179] or MSigDB3 [180].

GSEA enrichment score indicates whether a set of genes S is overrepresented at
the top or bottom of a ranked gene list [180]. The running-sum statistic decreases
monotonously along the gene list except when it encounters a gene belonging to S,
upon which it is incremented by 1 unit. The enrichment score is finally derived by a
Kolmogorov–Smirnov-like statistic, as the maximum deviation to 0 (Figure 3.5). The

2https://panglaodb.se
3https://www.gsea-msigdb.org/gsea/msigdb/
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Figure 3.4: The dynverse platform provides recommendations for selecting a trajectory inference
method.

score is then used to compare cells or groups for a given signature or to compare signa-
tures for a given cell or group.
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Figure 3.5: GSEA enrichment score. The score is depicted by the length of the arrow and
quantifies whether a gene set is enriched at the top (left panel) or bottom (right panel) of a
ranked gene list.

The hypergeometric test compares the ranked gene list to the hypergeometric distri-
bution which is the probability of having s successes -drawing s genes of interest- in n

draws -in n ranked genes- without replacement in a population of size N -in the total
of N genes- containing exactly S objects with the interesting feature -containing exactly
S genes of interest. The probability mass function of a random variable X following a
hypergeometric distribution is:

P (X = s) =

(

S
s

)(

N−S
n−s

)

(

N
n

) (3.7)

In our case, s = |S|, while we consider only a subset of features of size n≪ N . The
output of the hypergeometric test is a p-value that indicates what is the most probable
class or cell type for a given cell or group.

There is a third way to use gene sets to annotate cells: classifiers. Classifiers such as

60



Garnett [181], CaSTLe [182] or Moana [183] use ML tools such as linear Support Vector
Machines to classify cells. Basically, this ML algorithm maximises the separation between
the different classes. Once the boundaries for each class are learnt -training phase, new
cells can easily be projected, and would fall in one or another of the classes.

There is a main drawback to the enrichment method: we need trustworthy signatures
and the corresponding cell types should be present in the data. Hence, it is not possible to
label new cell types with this approach. Even worse, if the choice of the signatures tested
do not correspond to the cell types in the dataset, the annotation will be highly biased,
as there is no rule of thumb to decide whether an enrichment score above a threshold
should be trusted. Also, the quality of the annotation depends strongly on the quality
of the signatures. Finally, we make again the assumption that there is a perfect match
between the signatures that are usually based on bulk samples sorted on the basis of
proteic markers and the transcriptomic truth.

3.2.2 Differential Gene Expression

The second strategy is to do a DGE analysis: this common approach consists in testing
each gene and evaluate whether it is significantly up- or down-regulated in a cluster of
interest versus all the other clusters, for example with a t-test. Genes are then ranked for
each cluster according to the p-value, the log-fold change between the cluster of interest
and the rest of the cells and the level of expression. The last step is a manual sort and
investigation of the marker genes based on the existing corpus of knowledge, in order to
link each gene to a known cell type for the annotation. Interestingly, it is possible to
identify new cell types, as compared to the gene set enrichment strategy.

There are several downsides to performing a DGE analysis. The first one is that the
annotation is hardly automatable, tedious and operator-dependent, although it is partially
facilitated by exploiting gene ontologies [128, 133]. Secondly, the list of marker genes is
highly dataset-dependent as they stem from a comparison between the cluster of interest
and the other cells present in the data. Thus, depending on the cell types that would
be sequenced, marker genes would be different. Lastly, it can only be performed at the
group- and not the cell-level, while one of the advantages -although under-exploited- of
scRNAseq is to work at the single-cell scale.

3.2.3 single-cell RNAseq atlases

The last strategy to annotate cells or groups is by capitalising on previous scRNAseq
datasets that were carefully annotated to use them as a reference. There is a growing body
of these atlases, such as the Human Cell Atlas4 [184] that contains already 13.5 million
cells or the murine Tabula Muris5 [185] with 100,000 cells. Atlases are of paramount
importance to better dissect and understand human -or other species- health and disease.
New data can be projected onto an atlas (Figure 1.16). There are several technical
possibilities to project, including Seurat’s Azimuth6, CelliD [186], or scmap [187]. Most
of these techniques rely on the discovery of the nearest cell in the query dataset for each
cell in the reference dataset. It is also possible to train a classifier on a reference dataset
and use its results to annotate a query dataset.

4https://www.humancellatlas.org/
5https://tabula-muris.ds.czbiohub.org/
6https://azimuth.hubmapconsortium.org/

61



The major disadvantage of this approach is its sensitivity to the non-negligible batch
effect, as well as the risk of loosing new cell types from the query. We face also once again
the issue we have had with gene sets: if the reference does not contain the same cell types
as the query, the projection will fail, and will not necessarily issue a warning flag.

3.2.4 Automated annotation of single-cell RNAseq data

For all the above-mentioned tools, we saw that the critical part of the annotation is to
carefully choose the reference, be it a reference dataset, or reference signatures, or reference
articles to uncover the meaning of marker genes. Because this step relies heavily on prior
knowledge about the content of the data, it is usually poorly replicable, although there is
at least one example of a meta-analysis that has tried to tediously harmonize annotations
across different studies for CD8+ cells in the TME [188]. Another major caveat relates
to cluster-, or cell state-based approaches, as the annotation would also depend on the
quality of the clustering, while it has been reported that clusters could contain more than
one identified cell type [189]. Finally, it is a time-consuming process.

There are tools that claim to overcome some or all of those pitfalls, by annotating
automatically datasets, using references asserted as exhaustive [190]. There are 2 main
categories for such tools: either they do a DGE analysis and compare marker genes to ref-
erence gene sets, or they project new data onto an annotated reference. Let us go through
few examples of reference databases and automated annotation pipelines. CellMatch, used
by the scCATCH tool, contains 353 cell types and 686 subtypes, both murine and human,
and scCATCH works at the cluster-level [189]. It combined previous databases: Cell-
Marker7 made from a manual curation of the literature, MCA8 and CancerSEA9 made
from scRNAseq datasets, and CD Marker Handbook10. Cell types that scored the highest
are used to annotate clusters. For a cell-level analysis, the CellMatch database can be
injected in another tool, cellassign [191], which computes a probability score for each cell
to belong to a given class. cellassign is capable of detecting new cell types by designating
them as unassigned, although it is not able to label them. Similarly, CelliD [186] anno-
tates at the cell-level as well while putting aside unannotated cells. Another extensive
database is PanglaoDB [179] that is a repository of scRNAseq datasets with almost 4.5
million human cells, coupled with an analytical tool for automated annotation of new
datasets, alona [192], and it works at the cluster-level. SingleR11 is another reference
database constructed from pure bulk RNAseq expression profiles, coupled with an anno-
tation pipeline [193]. scANVI [194] is an extension of the scVI pipeline [149] that aims
at projecting unannotated datasets onto reference data by taking advantage of neural
networks in order to merge the two datasets in a latent space used for the construction
of a k-NN classifier. It is also capable of annotating a whole dataset based on available
labels, that would describe only a fraction of the cells.

Large databases are useful to quickly annotate a new dataset but should be used with
caution, and annotations should be double checked, as the caveats mentioned above are
less important but not fully eliminated. The hope is that atlases underway will serve as
a reference.

7http://biocc.hrbmu.edu.cn/CellMarker
8https://figshare.com/articles/MCA_DGE_Data/5435866
9http://biocc.hrbmu.edu.cn/CancerSEA

10http://static.bdbiosciences.com/documents/cd_marker_handbook.pdf
11https://comphealth.ucsf.edu/app/singler
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3.3 Creating single-cell RNAseq-based knowledge

One of the tremendous advantage of scRNAseq is to work at the cell-level scale, thus
offering the possibility of discovering previously unnoticed new cell types or states.

3.3.1 Detection of new cell types

It is expected that new cell types represent rare populations. It is usually implicitly
accepted that rare cell types’ discovery is facilitated by larger datasets with a higher
sequencing depth, in order to increase the raw numbers of rare cells although the precision
plateaus [195] (Figure 3.6).

Figure 3.6: t-SNE granularity increases as a function of sequencing depth and number of cells
up to a plateau. From [195].

Additionally, we need specific tools that are able to detect scarce populations, espe-
cially if bringing back to the mind the small experiment that we did in section 1.3.3.2:
lowly-expressed genes, that are potential markers for rare populations, are usually filtered
out right at the beginning of the analysis. While regular clustering algorithms impose to
choose the number of clusters, either directly, for example with a k-mean approach, or
indirectly, for example with the Louvain [196] or Leiden [197] algorithms which request
the user to choose a resolution parameter that is a monotonous function of the resulting
cluster number, this poses the following problem: it is not obvious that all regions of
the data display the same heterogeneity. Thus, it appears detrimental to use the same
resolution or number of clusters homogeneously across the whole data space. A single
resolution opens the way for over-fitting some regions while under-fitting some others.
To rephrase it, this could lead to some clusters being highly heterogeneous, containing
different cell types and probably rare populations, and other clusters which would not
give a satisfactory DGE analysis, as they would be too similar to other clusters. To over-
come this issue, some methods have been specifically designed for the screening of rare
populations.

There are 3 different methods to solve this issue. The first method is to have a local
cluster-number-related parameter instead of a global one, to decide for the number of
clusters: TooManyCells [198] or PanoView [199] use this strategy. The second method
identifies outlier genes specific for rare populations: RaceID does the identification of
those genes after a regular clustering using a mean-variance negative binomial model
for each cluster [200] (Figure 3.7), GiniClust spots outlier genes at the beginning of the
analysis using the Gini index [201]). A third method is to identify outlier cells: FiRE
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[202] attributes a rareness score to every cell.

Figure 3.7: Outlier genes such as gene A are detected as the ones not following a negative
binomial distribution in the RaceID algorithm. From [200].

On top of those solutions, we can decipher whether a cluster is homogeneous or
not, in which case the clustering should be performed again with a higher resolution.
Such algorithms evaluate a cell or a gene parameter related to the entropy. Entropy is
a measure of disorder, i.e. the higher the entropy, the higher the chaos. A cluster with
a high dispersion of entropies should potentially be considered as being a collection of
meaningful to-be-divided sub-clusters. ROGUE [203] evaluates the gene entropy to assess
whether it yields, in a single cluster, an expected entropy or if it falls outside of the
expectation. Depending on the number of high-entropy genes, the cluster is considered
as pure or not, although it depends on a choice of a threshold. scEntropy [204], on the
other hand, evaluate the cellular entropy, and goes even further by infusing the entropy
information directly to the clustering algorithm.

Upon the clustering of rare, and potentially novel, cell types, one has to conduct
a DGE analysis, in order to identify each cluster. Clusters that cannot be annotated
based on its marker genes to an existing cell type, using existing literature, databases and
annotation tools (see previous section), are considered to be new cell types until proven
otherwise.

3.3.2 Validation of new cell types

As most of the fields in scRNAseq analysis, there is no gold standard on how to proceed
to validate a new cell type. It is strongly recommended though, that new populations
discovered with scRNAseq should go through a compulsory validation step at the bench,
in order to demonstrate their functional specificity [133]. In order to study a new cell type
in the wet lab, one has to (i) identify specific surface markers that would enable to sort,
for example with FACS, the new population. The validity of the sorting should be checked
with a (ii) subsequent scRNAseq experiment, before performing (iii) adequate functional
assays, morphological evaluations, screening of secreted proteins, and assessment of the
anatomical compartment or spacialisation [205, 206].

Additionally, we believe that standardised cell ontologies should help to ascertain the
novelty of a given cluster, by enabling faster comparisons between a scRNAseq result and
existing knowledge.
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Chapter 4

Objectives of the thesis

In the introduction, I have outlined several challenges in the analysis of scRNAseq data,
technical as well as biological. The data is very noisy, because of the technique but also
because of the genuine biology. In order to take advantage of scRNAseq data, we need to
disentangle the two sources of noise.

❊ Regarding the technical noise, I have been especially intrigued by the dimensional
noise, usually termed as the curse of dimensionality, and how to eliminate it or at
least mitigate it. The curse of dimensionality is critical, since the analysis starts
with the noisy high-dimensional count matrix. It is also interesting to tackle it
if we make the hypothesis that noise is mostly dimension-related, as assumed by
imputation methods.

❊❊ But I was also worried by the gap between highly technical and numerous solutions
and their use within biology teams and the biological interpretation. A disturbing
amount of analytical tools are never used, while some analysis are performed without
proper use of the tools. Additionally, the interpretation remains manual, time-
consuming and subjective.

For my thesis, I wanted to challenge current paradigms in the field of scRNAseq and
T cell biology, using a point of view both methodological to confront ❊ and immunologi-
cal/biological to confront ❊❊. A third part of the results focuses on a specific biological
question: why the prognostic role of TREG in cancer is fuzzy? This work stresses the im-
portance of deciphering T cell functions, in order to better encompass T cell complexity.
It has been the basis of questioning the lineage paradigm.

4.1 First focus: tackling the curse of dimensionality in order to

improve the performance of scRNAseq analysis pipelines

The curse of dimensionality has a strong negative impact on the analysis of scRNAseq
data, as it blurs the contrast between small and large pairwise distances. Since pairwise
distances or similarities are the main ingredient to form clusters or draw trajectories, it
is of utmost importance to take it into account. In addition, the curse of dimensionality
happens in high-dimensional spaces, but in fact high dimension could mean already 10.
As a consequence, retaining 20 PCs does not guarantee that the "low-dimensional" data
is exempt from the curse anymore.
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One effect of the curse is the measure concentration, that I discussed in the in-
troduction. Unfortunately, the measure concentration can hardly be corrected in high-
dimensional spaces, while the hubness phenomenon, another curse-related effect is cor-
rectible. Yet, it is interesting to work in the high-dimensional space since:

# it contains all the signal,

# the "low-dimensional" space might still suffers from the curse of dimensionality.

We deemed that it would be interesting to study the hubness phenomenon in scR-
NAseq data, with the golden thread that has been to verifying the interest of working
in higher-dimensional spaces than is usually done. We investigated it to prove whether
hubness affects scRNAseq data and whether correcting it is useful, especially in higher-
dimensional spaces, for the performance of scRNAseq analysis.

While it will be just one out of the thousand tools already existing, I believe that a
major interest lies in the fact that we directly tackle the curse of dimensionality, or at least
one of its effects, instead of avoiding it. This is intellectually satisfying, but also judicious,
as we avoid discarding signal as it would be the case with a drastic dimension reduction.
This is especially valid in the current context, where there are almost no consensual and
valid method to choose the dimensionality of the low-dimensional manifold.

4.2 Second focus: Dissect the functional diversity of single-cell

RNAseq of T cell in cancer with a supervised functional ap-

proach

This second project was triggered by the observation that interpretability of the data is
still puzzling. I started from the hypothesis that there is a potential decorrelation between
functions and the current immune cell classification that is used nowadays to annotate
cells in scRNAseq data. This hypothesis is supported by the fact that the current lineage
paradigm is being questioned by new discoveries, such as the fact that cells can transition
from one lineage to another, or express TFs from two different lineages.

Therefore, we suggest a supervised approach of scRNAseq data to analyse the func-
tionality of T cells, avoiding to go through the annotation step performed with the existing
classification. I carefully designed functional modules in order to score T cell functions in
every cell of the count matrix.

First, I verified the added value of this approach, compared to the unsupervised
pipeline. Then I assessed the functions of T cells from the tumor or the juxtatumor.
The goal of this approach is to be able to determine the functions of T cells, but also of
other immune cells, in order to produce a functional atlas of the different tissues, in a
physiological or pathological condition.

4.3 Third focus: Context-dependant approach enable to unveil T

cell functions: the example of regulatory T cells in cancer

This project started following the intriguing observation that the role of Tregs in cancer
with respect to prognosis was ambiguous. Since there is barely any cohort which would
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evaluate the prognosis with scRNAseq, but rather flow cytometry or immunohistochem-
istry, I thought to take advantage nevertheless of the existing data galore. While the data
differs from single-cell count matrices, it is interesting as well: it emphasizes the impor-
tance of better characterizing T cell functions (Tregs in our case), here via the prism of
the context.

For the meta-analysis, I chose 5 cancer types, I selected relevant experimental articles
and collected all parameters relevant to describe the context: treatment, tissue, markers,
quantification method, etc. I systematically evaluated the effect of 3 context-related
parameters on the evaluation of the prognosis, in order to show that it would improve the
consensus on Treg prognosis role, as well as to extract a clearer picture of Treg role for
cancer prognosis.
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Part II

Results
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Chapter 5

Hubness reduction improves clustering

and trajectory inference in single-cell

transcriptomic data

5.1 Synopsis of the hubness study

In order to study the effect of the hubness phenomenon in scRNAseq data, we first evalu-
ated its magnitude in omics data. We used bulk RNAseq data as well to probe systemat-
ically the effect of sparsity and intrinsic dimension on hubness, to better understand the
mechanisms driving the emergence of hubness. Intrinsic dimension relates to the minimal
number of dimensions needed to accurately describe the data. We observed that omics
data is sensitive to hubness, all the more so given a high sparsity and a high intrinsic
dimension. Since hubness is related to the dimension, it is plausible that hubness follows
the same trend as effective, but also intrinsic dimension.

While we used classical methods to probe the hubness phenomenon, we realised that
no method was reliable to capture correctly hub cells, so we designed one, based on the
size of the hub cells’ neighborhoods.

Using our new method to retrieve hubs, we studied the nature of the latter. My
intuition has been that hub cells would be the archetypical profile of the corresponding
clusters, but it proved wrong. On the contrary, there is no biological nor technical dif-
ferences between hubs and regular cells, or between antihubs and regular cells. The only
trait that we could observe is that hubs stand in dense regions, near cluster centers, while
antihubs are in scarce regions, on the outer margin of clusters. This is useful, as it means
that hubs could serve for centroid initialisation.

To evaluate the usefulness of hubness correction, we infused different k-NN graphs to
clustering, trajectory inference and visualisation algorithms: hub-corrected or not. We ob-
served that "hubby" datasets, corresponding to datasets with a high intrinsic dimension,
would particularly benefit from hubness correction, as seen with higher supervised perfor-
mance metrics for the clustering and trajectory inference tasks, and higher unsupervised
performance metrics for the visualisation task.

5.2 Article
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Abstract

Motivation: Single-cell RNA-seq (scRNAseq) datasets are characterized by large ambient dimensionality, and their

analyses can be affected by various manifestations of the dimensionality curse. One of these manifestations is the

hubness phenomenon, i.e. existence of data points with surprisingly large incoming connectivity degree in the data-

point neighbourhood graph. Conventional approach to dampen the unwanted effects of high dimension consists in

applying drastic dimensionality reduction. It remains unexplored if this step can be avoided thus retaining more in-

formation than contained in the low-dimensional projections, by correcting directly hubness.

Results: We investigated hubness in scRNAseq data. We show that hub cells do not represent any visible technical

or biological bias. The effect of various hubness reduction methods is investigated with respect to the clustering, tra-

jectory inference and visualization tasks in scRNAseq datasets. We show that hubness reduction generates neigh-

bourhood graphs with properties more suitable for applying machine learning methods; and that it outperforms

other state-of-the-art methods for improving neighbourhood graphs. As a consequence, clustering, trajectory infer-

ence and visualization perform better, especially for datasets characterized by large intrinsic dimensionality.

Hubness is an important phenomenon characterizing data point neighbourhood graphs computed for various types

of sequencing datasets. Reducing hubness can be beneficial for the analysis of scRNAseq data with large intrinsic

dimensionality in which case it can be an alternative to drastic dimensionality reduction.

Availability and Implementation: The code used to analyze the datasets and produce the figures of this article is

available from https://github.com/sysbio-curie/schubness.

Contact: andrei.zinovyev@curie.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell omics profiling revolutionized many fields of modern mo-
lecular biology, providing more direct ways to study such biological
phenomena as differentiation (Trapnell, 2015), development
(Blakeley et al., 2015), heterogeneity of cancer cell populations and
related resistance to treatment (Aynaud et al., 2020; Tirosh et al.,
2016). However, the analysis of single-cell RNA sequencing
(scRNAseq) datasets remains challenging, amplifying the difficulties
already encountered in the analysis of bulk omics measurements as
well as introducing new ones, specific to single-cell technologies
(Kiselev et al., 2019; Lähnemann et al., 2020).

RNAseq datasets have large ambient dimensionality close to 104

(number of unique genes) by order of magnitude. The expression pro-
files of individual genes are coupled through networks of linear and
non-linear dependencies. This makes the intrinsic dimensionality (ID)
of the data point cloud much lower. For example, if all genes were lin-
early correlated to one common latent factor, then all cells would be
located on a line segment in the multi-dimensional space, and the ID
would be equal to one. Real gene expression datasets are influenced
by more than one latent factor, and, intuitively, the number of distinct
latent factors corresponds to the global ID (GID) of the data (Kairov
et al., 2017). Previous studies suggest GID estimates for scRNAseq
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data vary from 3–4 to few tens (Albergante et al., 2019; Aynaud
et al., 2020).

The difficulties of dealing with many dimensions in data analysis
are broadly referred to as the ‘curse of dimensionality’. Talking
about the curse becomes relevant when the logarithm of the number
of data points is less than the ID of the data (Bac and Zinovyev,
2019; Gorban and Tyukin, 2018). In practice, it means that certain
manifestations of the dimensionality curse might appear starting
with an ID as low as 10. These manifestations are diverse: among
the most known is the concentration of distances quantified as the
vanishing contrast between ‘close’ and ‘far’ distances. Several
approaches were proposed to compensate for the undesirable effect
of distance concentration (Luecken and Theis, 2019; Wang et al.,
2018). However, in practice, it was demonstrated that it cannot be
avoided by global modifications of the data space metric (Mirkes
et al., 2020).

In most current analysis workflows, scRNAseq datasets are sub-
jected to drastic dimensionality reduction before applying unsuper-
vised machine learning methods (Wolf et al., 2018). This common
practice aims at reducing possible manifestations of the curse of
dimensionality, at the cost of neglecting signals that are potentially
contained in higher dimensions. Moreover, for trajectory inference
(TI), the dimensionality is frequently reduced to 2 or 3 (Saelens
et al., 2019). This is in striking contrast with the observation that in
a typical scRNAseq dataset, the first few tens of principal compo-
nents can explain only a small fraction of total variance (e.g. 5–
10%). Thus, it remains unclear if the practice of reducing the dimen-
sion of scRNAseq data eliminates useful information, and whether it
is the only way to fight the dimensionality curse.

Yet another manifestation of the curse of dimensionality is the
hubness phenomenon. It has been described that in high-
dimensional space some points might be surprisingly popular among
the k-Nearest Neighbours (k-NN) of other points. This observation
was formalized in Radovanovic et al. (2010), coining the term ‘hub-
ness’. The hubness of a point is the in-degree of the corresponding
node in the k-NN graph. The distribution of hubness scores as a
function of the dimension shifts to the right when the dimension
increases, forming a fat Lévy-type power–law tail (Supplementary
Fig. S1), which contains the hubs.

Dealing with hubness is crucial when exploiting k-NN graphs,
which are an essential ingredient of most of current computational
approaches for scRNAseq analysis (Wolf et al., 2018). Presence of
hubs in the k-NN graph impacts their expected properties: e.g. it
can change the structure of geodesic distances along the graph.
Hubs (and antihubs, i.e. points with a null in-degree) make the
structure of k-NN graphs heterogeneous in terms of connectivity,
which can violate required assumptions to apply graph-based algo-
rithms. It is surprising that the hubness properties of scRNAseq
neighbourhood graphs and their impact on downstream analyses
has never been studied so far.

Hubness reduction methods aim at explicitly reducing the hub-
ness of the k-NN graph, usually through specific transformations of
the distance matrix (Feldbauer et al., 2018). Interestingly, hubness
reduction could be used as a replacement for dimensionality reduc-
tion. In this study, we hypothesized that hubness reduction methods
can be beneficial for scRNAseq analyses relying on k-NN or other
neighbourhood graphs. We systematically evaluate the effect of hub-
ness reduction on clustering, TI and visualization tasks in scRNAseq
data, using previously established benchmark datasets. Finally, we
specify the conditions in which hubness reduction is expected to be
beneficial.

2 Materials and methods

2.1 Datasets collection
Bulk datasets were downloaded from the ARCHS4 and TCGA web-
site. The ARCHS4 expression matrix was limited to bulk gene ex-
pression profiles and downsampled to 2000 samples. For TCGA, we
took the breast (BRCA) and renal (KIRC) datasets as the largest
RNASeq datasets in TCGA, containing more than 600 samples. To

evaluate clustering and TI, we gathered scRNAseq datasets with

gold- and silver-standard labels used in previous benchmarks

(Abdelaal et al., 2019; Duò et al., 2018; Gulati et al., 2020; Krzak
et al., 2019; Saelens et al., 2019; Sun et al., 2019; Tian et al., 2019)

(SupplementaryFig. S26 and Supplementary Table S1).

2.2 Hubness quantification and reduction

2.2.1 Evaluating hubness
From the bulk or single-cell datasets, we performed Principal

Component Analysis (PCA) using log-transformed data, while

retaining only the 10 000 most variable genes. The k-NN graph was

computed for a number of PCs ranging from 2 to the number of cells

minus 1 and k ranging from 5 to 100, but most of the results are

shown for k¼10. From the k-NN graph, the in-degree or hubness

score Xi is calculated for each cell i.
Let k be the value used to build the k-NN graph, X the distribu-

tion of hubness scores, l its mean and r its standard deviation.
The 2k estimator counts the number of points with a hub score

above 2k. The Mean estimator counts the number of points with a

hub score larger than three standard deviations above the mean. The

Antihub estimator is the number of points having zero hub score.

The Asymmetry estimator counts the percentage of unidirectional

edges in the k-NN graph. The Skewness estimator is calculated as

Sk ¼ E

�

X�l

r

� �3
�

. The Max estimator is the maximum hub score

observed in the distribution, divided by the cardinality of the

dataset.
Of note, in the case of scRNAseq datasets, large proportions of

cells are antihubs, while the tail of the distribution of in-degree fol-

lows a power law that can lead to variance divergence. As a conse-

quence, the distribution of in-degrees is strongly skewed and the

usual threshold-based methods for defining hubs can be misleading.

We suggest a novel definition of hubs based on the size of the incom-

ing neighbourhood. For m data points with the largest in-degree we

calculate the number of data points n(m) that have at least one of

these m putative hubs in their nearest neighbours. We call these

n(m) cells the reverse-covered cells. We compute the increment
nðmÞ�nðm�1Þ

N and choose such m when the increment drops below a

threshold a, where the threshold value is chosen such that the num-

ber of hubs would equal zero in the projection onto the first two

principal components. Because of redundancy of hubs in terms of

the data points they cover, the a threshold can be crossed several

times, so we select the largest m above the increment threshold, such

that any further increase of m by one does not increase the coverage

by more than a, see Supplementary Figure S6.
We used the Python package scikit-hubness to measure skewness

and to reduce hubness (Feldbauer et al., 2018). This package offers

four methods for reducing hubness, that produce a hub-corrected k-

NN graph: Mutual Proximity (MP), Local Scaling (LS) and its vari-

ant LS-NICDM (Non-Iterative Contextual Dissimilarity Measure)

and DisSimLocal (DSL) (Feldbauer and Flexer, 2019; Schnitzer

et al., 2012) (Supplementary Methods).

2.2.2 Dropout simulation
We simulated dropout in two different ways. First, the dropout rate

is a fixed constant for all samples, and we drop only non-zero gene

counts. Second, we used the tool from R library Splatter (Zappia

et al., 2017) to add dropout in a more realistic way, reproducing the

distribution of scRNAseq data values.

2.2.3 Intrinsic dimensionality
We evaluated ID using PCA with the scikit-dimension package (Bac

et al., 2021). Global ID is defined as the number of eigenvalues of

the covariance matrix exceeding a tenth of the largest eigenvalue.

We consider that datasets with a GID above 25 are high dimensional

(high-ID datasets). Mean local ID is defined as the mean of ID values

computed for the 100-nearest neighbourhood of each point.

2 E.Amblard et al.
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2.3 Clustering
We processed the datasets with Scanpy (Wolf et al., 2018). We sys-
tematically tested two recipes for the preprocessing (Duo or Seurat)
with two different metrics (Euclidean and cosine dissimilarity), using
scaling or not, and four values for the number of PCs to retain (25,
50, 100 and 500). The following k-NN graphs were computed: sim-
ple (base) k-NN graph, four hubness-reduced graphs, using the hub-
ness reduction methods from the scikit-hubness package, and two
methods to compute neighbourhood graphs from the Scanpy pack-
age (Coifman et al., 2005; McInnes et al., 2018).

The Duo recipe consists in log-normalizing the data, keeping the
5000 most variable genes and normalizing again.

The Seurat recipe log-normalizes the data as well and selects the
variable genes according to a set of thresholds: variable genes with a
mean between 0.0125 and 3, and a dispersion above 0.5. The data
are normalized again after the gene filtering step.

The clustering was done on the seven k-NN graphs with the
Leiden algorithm (De Meo et al., 2011). The number of nearest-
neighbours was set to the square root of dataset cardinality. Since
the graph-based clustering methods do not allow choosing the exact
number of clusters, we tuned the resolution parameter to get the
ground truth number of clusters. We started with a resolution of 1.5
and limited the search of the resolution to the interval [0, 3]. We

then performed iterative clustering, with a maximum of 20 itera-

tions and a resolution which would increase or decrease in a dichot-

omous manner (Supplementary Methods).
We used the Adjusted Rand Index (ARI) and the homogeneity

scores to evaluate the quality of clustering (Rosenberg and

Hirschberg, 2007). The best score value is 1 for both measures

(Supplementary Methods).

2.4 Trajectory inference
We used the implementation of PAGA from Scanpy. Same combina-

tions of preprocessing steps, metrics and clustering algorithm have

been used as described in the clustering section.
We used the R toolbox dynverse to compute three quality

metrics on each trajectory: correlation, F1_branches and featur-

eimp_wcor (Supplementary Methods). We also computed an overall

score of the three quality metrics which is the arithmetic mean of the

latter (Saelens et al., 2019).

2.5 Statistics
We carried out paired t-tests to compare the differences in perform-

ance between the different k-NN graph production methods using

the base k-NN graph as a reference. We made randomization tests

Fig. 1. Evaluation of hubness reduction effect on clustering performance. (a) Preprocessing workflow with the different conditions used to construct various k-NN graphs up-

stream of the clustering task. (b) ARI scores for high-ID datasets, as a function of the metric, dimension and k-NN graph production method used; example with the Seurat re-

cipe, scaling and the Leiden algorithm. Relative differences for individual datasets are shown in Supplementary Figure S12. (c) Relationship between GID, ARI and

improvement in the clustering score using the hubness reduction method DSL. (d) Selected example of Leiden clustering on a scRNAseq dataset (GSE60783), using Euclidean

distance, 50 PCs and a 15-NN graph. UMAP k-NN graph does not reduce the skewness of the in-degree distribution as compared with hub-reduced graphs. The modularity is

improved for the UMAP and hubness-reduced graphs compared to the base one. Each colour represents a ground truth class of data points and point size is proportional to the

in-degree in the respective k-NN graph. P-values are indicated following the mapping: ‘þ’ indicates P-value between 0.05 and 0.1, ‘*’ indicates P-value between 0.01 and 0.05,

‘**’ indicates P-value between 0.001 and 0.01 and ‘***’ indicates P-value below 0.001. Each condition is compared with the base k-NN graph
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to compare the estimated hubness level between sequencing data

and other real-life datasets from the openML repository.

3 Results

3.1 RNA-seq data are prone to hubness
As a first step of our analysis, we hypothesized that increased drop-

out rate in scRNASeq datasets as compared with the bulk datasets,

could lead to increasing data hubness. In order to validate this hy-

pothesis, we started with three bulk RNASeq datasets from The

Cancer Genome Atlas (TCGA) and ARCHS4 repositories and simu-

lated increasing dropout (see Section 2). We used previously devel-

oped tools to quantify the magnitude of hubness (Feldbauer and

Flexer, 2019; Low et al., 2013) (see Section 2). The skewness (k-

skewness) and the asymmetry estimators increase with the number

of PCs retained before reaching a plateau, for all datasets

(Supplementary Figs S2A and S3C). Two other hub estimators, the

Maximum and the Mean estimators (see Section 2), behave similarly

with respect to the dimension (Supplementary Fig. S3A and D).

From those observations, we concluded that there are hubs in

RNASeq data, which appear already at intermediate dimensions,

namely 10 PCs.
To investigate the link between sparsity and hubness, we studied

their respective correlation with the global intrinsic dimension

(GID, see Section 2). Since sparsity correlates to GID (R¼0.93,

P <0.0001, Spearman correlation) and GID to hubness, defined

with the asymmetry estimator, at k¼10 and considering 100 dimen-

sions (R¼0.81, P <0.0001, Spearman correlation), we can assume

that the effect of sparsity on hubness is at least partially due to an

increased GID (Supplementary Fig. S4A). This observation confirms
the intuition that hubness is a high dimension-related effect.

We analysed a diverse collection of scRNAseq datasets (Duò
et al., 2018) to measure hubness, using the same hub estimators we
applied to bulk datasets and reproduced their evolution for increas-
ing dimensionality (Supplementary Figs S2B and S3B). We con-
cluded that scRNAseq is prone to hubness as well, starting already
at around 10 PCs. We also showed that the scRNASeq datasets are
characterized by stronger hubness on average than a wide collection
of 500 real-life and synthetic datasets obtained from the OpenML
repository (Bac et al., 2021; Vanschoren et al., 2014)
(Supplementary Fig. S5).

We also investigated the link between sparsity and GID in
scRNAseq, and observed that sparsity is not sufficient to explain the
variations of GID. We uncovered three parameters that influence
GID: sparsity, cardinality of the dataset and the signal-to-noise ratio
(SNR) (see Supplementary Methods). The SNR and the cardinality
are two dependent parameters (R¼0.87, P¼0.0026, Spearman cor-
relation) (Supplementary Fig. S4B), so we computed the correlation
between GID and the composite parameter ratio of sparsity to SNR,
which appeared to be significant (R¼0.77, P¼0.015, Spearman
correlation) (Supplementary Fig. S4C).

3.2 Hubs are not artefact cells
We assessed whether hubs have different properties compared with
other cells by looking at various quality control (QC) metrics: num-
ber of genes, total number of features, dropout rate, entropy (see
Supplementary Methods), position in low-dimensional projections.
We retrieved hubs using our reverse-coverage method (see Section
2). There was no clear difference in the distributions of QC metrics
between hubs, antihubs and other (normal) cells (Supplementary

Fig. 2. Trajectory inference (TI) improvement from application of hubness reduction. (a) Differential TI quality scores (taking as reference the base score) for the three TI qual-

ity metrics and the average score as a function of the dimension and the k-NN graph production method, calculated for the high-ID datasets [8,19]; example with the Seurat re-

cipe, Euclidean metric and Leiden algorithm. (b) Average TI quality score of all datasets, as a function of the dimension and the k-NN graph production method, calculated for

the high-ID datasets [8,19]; example with the Seurat recipe and Leiden algorithm. P-values are indicated following the mapping: ‘þ’ indicates P-value between 0.05 and 0.1,

‘*’ indicates P-value between 0.01 and 0.05, ‘**’ indicates P-value between 0.001 and 0.01 and ‘***’ indicates P-value below 0.001. Each condition is compared with the base

k-NN graph
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Figs S2C and D and S7). Removal of hubs made new hubs emerging

(Supplementary Text, Supplementary Fig. S2F). These observations

suggest that hub or antihub cells do not form a distinct group of

cells: they are not biological or technical artefacts, but merely a con-

sequence of high dimensionality.

3.3 Hubness reduction improves clustering accuracy
We studied the effect of hubness reduction on the clustering of

scRNAseq data using labelled datasets collected from previous clus-

tering benchmark studies. To compare them in an uniform manner,

we processed them using Scanpy (Wolf et al., 2018) according to

standard steps with several combinations of parameters:

normalization, log-transformation, gene selection, scaling, dimen-
sionality reduction (Fig. 1a, see Section 2).

Hubness reduction was applied to generate corrected k-NN
graphs. We compared these with the uncorrected k-NN graph as
well as the neighbourhood graphs provided by two methods from
Scanpy (Gauss and UMAP) (Coifman et al., 2005; McInnes et al.,
2018). Our results show that GID and hubness are important
parameters to consider when clustering scRNAseq data. Datasets
with higher GID, i.e. above 25, had generally lower ARI scores,
whereas low and high scores were possible for lower GID (Fig. 1c).
The two exceptions of high-ID datasets with high scores correspond
to the only two simulated datasets included in our benchmark (Duò
et al., 2018).

High-ID datasets are also the ones prone to hubness in the
Euclidean space: indeed the mean local ID (LID) correlates with k-
skewness. Although there is no direct correlation between k-skew-
ness and ARI, it is clear that high GID and hubness need to be taken
into account when clustering (Supplementary Fig. S9C).

Clustering after hubness reduction was most useful for high-ID
datasets (Supplementary Figs S9B and S11), performing better than
the uncorrected k-NN graphs (Fig. 1b and c, Supplementary Figs
S12 and S13). Interestingly, the highest average ARI and homogen-
eity scores were achieved using hubness reduction and 500 PCs. The
use of cosine dissimilarity to build the k-NN graph resulted both in
lower hubness and higher clustering accuracy than the Euclidean
distance, as expected from previous literature (Schnitzer et al.,
2014) (Supplementary Fig. S9A). This provides a rationale to con-
sider cosine dissimilarity and related metrics (e.g. the angular dis-
tance) as more appropriate to cluster scRNAseq data. It also
indicates that a less stringent dimension reduction can yield better
clustering performance. For the case of low-ID datasets, the benefit
of doing hubness reduction is not obvious anymore but should be
evaluated individually (Supplementary Fig. S17).

Dimension- and hub-reduction both mitigate negative effects of
high GID on downstream analysis. Our study suggests that these
two procedures have complementary effects, with hubness reduc-
tion allowing to reduce the dimension less stringently. We also ob-
serve from Figure 1d and Supplementary Figure S10 that the
improvement in clustering performance is accompanied by more
homogeneous densities and a reduced skewness of the k-NN
graph, while the k-NN graph constructed with UMAP corrects
density inhomogeneity but not high skewness (Supplementary
Text). We also tested this hypothesis on bulk datasets, where hub-
ness reduction improved modularity in the absolute majority of
the datasets (Supplementary Fig. S17).

3.4 Hubness reduction improves trajectory inference
To evaluate the effect of hubness reduction on the performance of
TI in scRNAseq data, we generated various k-NN graphs as input
for the TI task, with or without hubness reduction. We used the
Partition-based Graph Abstraction (PAGA) (Wolf et al., 2019)
method to do TI since it was ranked as the top-performing tool in a
large-scale benchmark (Saelens et al., 2019). It is also appropriate in
our study since it uses a k-NN graph as the input. The following
quality scores have been utilized: correlation to evaluate the relative
position of cells along the trajectory, F1_branches to compare
branch assignment and featureimp_wcor to measure the respective
importance of differentially expressed features while constructing
the trajectory (see Section 2). We also calculated an average score.
We observed that the inferred trajectories were closer to the ground
truth in most high-ID cases when TI was performed on a hub-
reduced k-NN graph rather than using the base or the Scanpy k-NN
graphs, in terms of the overall summary score and regardless of the
combination of preprocessing parameters (Fig. 2b, Supplementary
Text). We display one example of preprocessing parameters combin-
ation (with the Seurat recipe, the Euclidean metric and the Leiden al-
gorithm) in Figure 2a to show the improvement of the various TI
quality scores compared with the base k-NN graph. There are no
clear patterns revealing that the increase in the quality of TI would
be due to a specific increase in one of the three quality metrics: in

Fig. 3. Hubness reduction affecting non-linear embedding algorithm performance

(visualization task) for high-ID datasets. (a) Quality of point neighbourhood preser-

vation (QNP) after applying various hubness reduction methods to the point neigh-

bourhood graph used in various embedding methods (t-SNE, UMAP,

PAGAþUMAP). P-values are indicated following the mapping: ‘þ’ indicates P-value

between 0.05 and 0.1, ‘*’ indicates P-value between 0.01 and 0.05, ‘**’ indicates P-

value between 0.001 and 0.01, ‘***’ indicates P-value below 0.001. Each method is

compared with the base k-NN graph. Complete analysis of QDM and QNP metrics

of various hubness reduction methods in visualization tasks is provided in

Supplementary Figure S24. (b) Examples of visualizations obtained by replacing the

neighbourhood graph in UMAP, corrected or not corrected for hubness, with esti-

mation of the silhouette score for the ground truth labels for the low-dimensional

projection. The neighbourhood graphs were computed in 500-dimensional space,

and embedded using PAGAþUMAP approach with Leiden clustering
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fact, it depends strongly on the preprocessing (Supplementary Figs
S20 and S21).

If we consider all the different preprocessing combinations and
all datasets together, we can study the respective efficacy of each
hubness reduction method. For the TI task and considering the larg-
est GID, we observed that the quality of the TI done after applying
the two LS-based hubness reduction methods is the highest, shortly
followed by DSL then MP. Going back to the datasets characterized
by a low GID, it is not clear anymore what is the best hubness reduc-
tion method to improve TI (Supplementary Figs S18 and S19). As a
consequence, we suggest that one should test hubness reduction,
with a preference for DSL and LS methods, to reach the best per-
formance evaluated by scoring the clustering results with the silhou-
ette score and the biological interpretation, for high-GID datasets
(Fig. 2b, Supplementary Text).

3.5 Low-dimensional embeddings upon hubness

reduction
Since the popular visualization methods t-SNE and UMAP are based
on embedding the data point neighbourhood graph, we evaluated
the impact of hubness reduction on the quality of the resulting visu-
alisation. We verified that in a model distribution that suffer from
hubness, there is a lower quality of the projection in terms of cost
functions and the Quality of Distance Mapping (QDM) and the
Quality of point Neighbourhood Preservation [QNP; see
Supplementary Methods and (Gorban and Zinovyev, 2010)], as
compared with a distribution that suffer less from hubness
(Supplementary Figs S23 and S24, Supplementary Text).

Similarly, we saw a moderate improvement of the visualization
task performed after hubness reduction for high-ID datasets, for at
least one hubness reduction method and especially when using the
Euclidean metric (Fig. 3). There was only one use case for which
hubness reduction was not beneficial: when we projected the data
with UMAP after PAGA initialization and with the cosine dissimi-
larity. For low-ID datasets, the benefit of applying hubness reduc-
tion was not clear with our data (Supplementary Fig. S24).

4 Discussion

We have shown that transcriptomic data, both bulk and single-cell
can suffer from hubness. Using bulk RNASeq data, we observed that
this sensitivity positively correlates with sparsity, probably because
sparsity positively influences the GID. In scRNAseq data, we found

a positive correlation between sparsity and hubness, even if this ef-
fect is mitigated by the cardinality and the signal-to-noise ratio. It
would be interesting to explore other factors explaining differences

in hubness.
To quantify hubness, we used methods previously introduced in

the literature Feldbauer and Flexer (2019); Low et al. (2013), but
found that defining points as hubs in scRNAseq data can be non-
trivial, especially in high dimensions. We introduced a definition of

hubs based on the proportion of points having them as their closest
neighbours.

We studied the nature of hubs, showing that they are not artefact

cells or cells with specific biological properties. However, they have
a topological utility, in the sense that they tend to be located close to
the cluster centres and can be used for initialization of the clustering

Tomasev et al. (2013).
We evaluated existing techniques of hubness reduction that mod-

ify local metrics with respect to their effect on the quality of cluster-
ing, TI and visualization. The summary of this evaluation is
provided in Figure 4. We show that hubness reduction can be bene-

ficial, especially for the datasets characterized by high GID, prob-
ably because they suffer more from hubness. We noticed that cosine
dissimilarity produces k-NN graphs that are less prone to the hub-

ness phenomenon, compared with the more widely used Euclidean
distance. It appears that hubness reduction is complementary to di-
mension reduction, allowing one to retain more principal compo-
nents than is usually done.

However, the available hubness reduction methods differ in effi-
cacy, with mutual proximity (MP) method showing generally poor

improvement. Our hypothesis to explain its poor performance for
the clustering and TI tasks compared with the three other methods is
that MP uses all pairwise distances to correct for hubness. On the

contrary, other methods take advantage of the local neighbourhoods
which may explain their better efficiency (Supplementary Fig. S25).

Besides the known set of hubness reduction methods that we

benchmarked in this article, there exists other approaches also aim-
ing at improving the properties of neighbourhood graphs in high
dimensions. To mention few, UMAP dimensionality reduction

method is built on a modified point neighbourhood graph, and
shared nearest neighbours (SNN) graphs are introduced to compen-
sate asymmetry of neighbourhood relations in high dimensions. We

compared both UMAP (see Figures of this manuscript) and SNN
(data not shown) approaches to the standard set of hubness reduc-
tion methods, and found that their advantages in the standard tasks

Fig. 4. Average across multiple conditions of quality metrics scores for three tasks of single-cell data analysis (clustering, trajectory inference and visualization), as a function

of the type of k-NN graph used, and the data metric (cosine dissimilarity or Euclidean distance), for high-ID and low-ID datasets
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of single-cell data analysis are limited compared with the explicit
hubness reduction approaches benchmarked in this study.
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Supplementary Files for the manuscript Hubness reduction improves

clustering and trajectory inference in single-cell transcriptomic data

Amblard E, Bac. J et al.

1 Supplementary Methods

1.1 Hubness quantification

1.1.1 Hubness of generic data

We compared the sensitivity to hubness for generic data,
by collecting the 501 datasets from the openML reposi-
tory1 that contained more than 1,000 samples and using
the scikit-hubness Python package to measure skewness and
hub occurrence fraction.

1.1.2 Hubness of simple model data distribution

We generated in Python Gaussian and uniformly sampled
from hypercube data distributions with 10,000 samples, in
spaces of dimension 2, 10, 50 and 500. Then we compute
the 10-NN graph to retrieve the in-degree of each point, and
show the distribution of in-degrees with 200 bins, averaged
over 100 i.i.d. iterations for each dimensionality value and
the data distribution.

1.1.3 Signal-to-Noise-Ratio (SNR) evaluation

To quantify the SNR, we assumed that the distribution of
the eigenvalues from the cell-cell covariance matrix follows a
Marcenko-Pastur distribution, except for a few eigenvalues
that contain the signal of the data. As a consequence, we de-
rive that the fraction of eigenvalues following the Marcenko-
Pastur distribution is a good estimation of the noise magni-
tude, while the fraction of eigenvalues outside this distribu-
tion is a proxy for the signal magnitude. Instead of fitting
the Marcenko-Pastur distribution, we designed a simpler
proxy for SNR, that proved to be satisfactory in our exper-
iments(that means it was enough to catch the dependence
of GID to the ratio between thus defined SNR and the spar-
sity):

SNR =
max(X)

median(X)

where X is the distribution of the eigenvalues of the cell-cell
covariance matrix.

1.1.4 QC measurements

We used the Seurat library to compute the UMAP and PCA
projections, as well as the total number of features and the
number of unique genes. The sparsity rate is the percentage
of zeros in the expression matrix. To estimate the transcrip-
tomic single-cell entropy, we used the scEntropy tool.LSL20

To compute the stability of hub identity, we sampled 10
times 90% of the cells and looked at the mean percentage
of hubs from the original data that were recovered in the
resampled data to evaluate the intrinsic nature of hubs.

1.1.5 Hub positions with respect to the center of
model data distributions

To evaluate hubs’ position, we generated in Python Gaus-
sian and uniformly sampled in hypercube distributions with
105 points each, in different spaces of dimension 2, 5, 8, 10
and 20. We used the scikit-hubness library to construct the
10-NN graph and get the hubness score. From those scores
we computed the average distance to the coordinate origin
and its rank for the data points with a hubness score above a
given threshold. To make the average computation more ro-
bust, we considered only the averages calculated over more
than 100 points. For the average distance Mt, we normalize
it by the dimension:

Mt =
1

n

∑

{i;si≥t}

√

ni

D

where t is the threshold on the hubness score, D the dimen-
sion, si the hubness score of point i and ni its norm.

1.2 Hubness reduction

1.2.1 Hubness reduction methods

Mutual Proximity models pairwise distances di,j∈{1,...,n}\i

of a set of n points with random variables Xi that depict
the distribution of distances between xi and all other points,
then:

MP(di,j) = 1− P (Xi > di,j ∩Xj > di,j)

where P is the joint probability density function.
Local Scaling is calculated using the pairwise distance di,j
and takes into account the local neighborhood:

LSk(di,j) = 1− exp(−di,j

rki

di,j

rkj
)

where k refers to the size of the local neighborhood, and rki
is the distance of point xi to its k-th neighbor.
The variant LS-NICDM uses the average distance to the k

neighbors instead of the mere distance to the k-th neighbor:

NICDMk(di,j) =
di,j

√

µk
i µ

k
j

where µk
i is the average distance of point xi to its k nearest

neighbors.
DisSimLocal uses local centroids ck(•) to reduce hubness:

DSLk(xi, xj) = ‖xi−xj‖22−‖xi− ck(xi)‖22−‖xj − ck(xj)‖22
where the local centroid is estimated as the barycenter of
the k nearest neighbors of xi:

ck(xi) =
1

k

∑

xj∈kNN(xi)

xj

1https://www.openml.org/search?type=data
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1.2.2 Hubness and measure concentration

To evaluate the impact of hubness reduction on k-skewness
and measure concentration in a general case, we generated
two types of distributions: one or two Gaussian blobs in 10,
50 and 100 dimensions, with 5,000 points per blob, over 10
iterations. We used the scikit-hubness Python package to
reduce hubness and measure k-skewness. For the measure
concentration, we evaluated it as:

Conc =
1

N

∑

i

Di
max −Di

min

Di
max

where Di
max and Di

min are the maximum, resp. the mini-
mum pairwise distances for point i. These distances were
calculated either considering all points, or only the 50 near-
est neighbors.

1.3 Clustering

1.3.1 Tuning of clustering resolution

Algorithm 1 Resolution tuning

step← 0
min← 0
max← 3
while step < maxstep do

resol← min+ max−min
2

Perform clustering with parameter resol
if cluster > truth then

max← resol

end if
if cluster < truth then

min← resol

end if
if cluster == truth then

return resol

end if
step← step+ 1

end while
return resol

1.3.2 Evaluation of clustering accuracy

ARI and homogeneity (h) scores are calculated as:

ARI =

∑

i,j

(

nij

2

)

−
[

∑

i

(

ai

2

)
∑

j

(

bj
2

)

]/

(

n
2

)

1
2

[

∑

i

(

ai

2

)

+
∑

j

(

bj
2

)

]

−
[

∑

i

(

ai

2

)
∑

j

(

bj
2

)

]/

(

n
2

)

h =

{

1 if H(P2) = 0

1− H(P2|P1)
H(P2)

else,

where

H(P2|P1) = −
|P1|
∑

j=1

|P2|
∑

i=1

nij

N
log(

nij
∑|P2|

i=1 nij

)

H(P2) = −
|P2|
∑

i=1

∑|P1|
j=1 nij

|P2|
log(

∑|P1|
j=1 nij

|P2|
)

where P1 and P2 are the two partitions, nij is the value of
the i-th row and j-th column in the contingency table, and
ai, resp. bj , is the sum of the values sitting on the i-th row,
resp. j-th column, of the contingency table.

1.3.3 Model distribution simulating strongly het-
erogeneous data point density

We generated a 10-dimensional Gaussian distribution con-
taining 10,000 points. The data point cloud was separated
in two parts by a hyperplane of coordinates x=0, x being the
first axis. From the right half hyperball, we randomly pick
100 points and discard the others. We then constructed the
k-NN graphs with the scikit-hubness Python package, with
or without hubness reduction and used the k-NN graph to
estimate the density.LA13 Briefly, it is possible to evaluate
the following quantity from the unweighted k-NN graph:

D = log(p(Xtarget))− log(p(Xsource))

where Xsource and Xtarget are two data points, and p is
the local density. First, we determine the shortest path γ

between Xsource and Xtarget in the k-NN graph using the
Dijkstra algorithm. Then for each intermediate point Xi in
the path, we get from the k-NN graph the quantities:

Leftγ(Xi) = |Out(Xi) ∩ In(Xi−1)|

Rightγ(Xi) = |Out(Xi) ∩ In(Xi+1)|

where In(Xi) and Out(Xi) are the in- and out-
neighborhoods of Xi. From this point, the density estimate
along the path γ is:

D = C
∑

Xi∈γ

[Rightγ(Xi)− Leftγ(Xi)]

where C is a constant depending on k and the number of
dimensions.Li11 In our case we fixed the source at the center
of the Gaussian hyperball and randomly sampled 60 targets
in each half hyperball, to be able to compare the estimates
from the two half hyperballs by calculating the average of
the density estimates for both half hyperballs.

1.3.4 Clustering modularity evaluation in bulk
RNA-seq data

We took the mouse collection of datasets from the ARCHS4

data repository, retaining only those containing more than
300 samples. Without any other filters, it represents a to-
tal of 148 datasets. To compute the modularity for each
dataset, the data was log-transformed then projected or not
in the PCA space with 50 components. From that we com-
pute the k-NN graph with the cosine dissimilarity, with or
without hub reduction done with the LS and MP meth-
ods only to reduce computation time. Finally we applied
Louvain clustering algorithm using different k-NN graphs
and computed the modularity Q using the Python library
igraph:

Q =
1

2m

∑

i,j

(Aij −
kikj

2m
)δ(ci − cj)

where m is the number of edges in the k-NN graph, Aij is
the element of the adjacency matrix on the i-th row and
j-th column, ki is the in-degree of point i, ci its cluster
identity and δ the Dirac function.
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1.4 Trajectory inference

1.4.1 Evaluation of trajectories

Correlation is calculated from the geodesic distance and
quantifies the correlation between the relative distances of
a given cell in the reference and the predicted trajectories:

Correlation =
1

n

∑

i

corr(Xi, Yi)

where Xi is the distribution of relative geodesic distances
to cell i in the reference trajectory and Yi the distribution
of relative geodesic distances to i in the prediction.
F1 branches computes the similarity of branch membership
between two trajectories, by mapping each cell to its closest
branch:

Jaccard(b, b′) = |b ∩ b′

b ∪ b′
|

Recovery =
1

|B|
∑

b∈B

maxb′∈B′Jaccard(b, b′)

Relevance =
1

|B′|
∑

b′∈B′

maxb∈BJaccard(b, b
′)

F1 =
2

1
Recovery + 1

Relevance

where B and B′ are the two branch partitions for the ref-
erence and the predicted trajectories.
For the calculation of featureimp wcor, the geodesic dis-
tances of all cells to all milestones in the trajectory are
computed, then predicted with a Random Forest. From the
Random Forest, we retrieve the importance of each gene for
the prediction in the two trajectories in order to compute a
weighted Pearson correlation, with the weights depending
on the mean importance in the reference trajectory:

mref =

∑

g (R
ref
g )2

∑

g R
ref
g

mpred =

∑

g R
ref
g Rpred

g
∑

g R
ref
g

sref =

∑

g R
ref
g (Rref

g −mref )
2

∑

g R
ref
g

spred =

∑

g R
ref
g (Rpred

g −mpred)
2

∑

g R
ref
g

s =

∑

g R
ref
g (Rref

g −mref )(R
pred
g −mpred)

∑

g R
ref
g

wcorfeat =
s

√
srefspred

where Rg is the importance of gene g in the predicted or
reference trajectory.

1.4.2 Trajectory stability

We used the same methodology described in a previous
benchmarkSCTS19 to evaluate the stability of PAGA. Briefly,
we sample 95% of the cells and genes iteratively and evalu-
ate the differences between two successive trajectories, do-
ing 10 iterations and using the correlation and F1 branches
metrics, but excluding featureimp wcor which is not stable
on the identity. To compare two successive iterations we
compute both metrics using the common cells and genes,
on the n+1 iteration, using the n-th iteration as the ref-
erence. We get a stability score for each metric. To com-
pare the stability across the different datasets and condi-
tions, we normalize the scores, such that the correlation
and F1branches have the same magnitude for each dataset.
Briefly, for each dataset and each metric, we transform the
scores to get σ = 1 and µ = 1, then apply the unit proba-
bility density function of the normal distribution. We then
compute the arithmetic mean of the two metrics. To speed
the computation of the stability, we just ran it on the Sun et
al. datasetsSZMZ19 and we did not compute the two scanpy
k-NN graphs.

1.5 Visualisation task

1.5.1 Generating n-cubes and n-spheres

We generated n-cubes and n-spheres in Python, using the
packages scikit-dimension and numpy. We generated 10 sets
for each distribution, each containing 5,000 points, embed-
ded in spaces of various dimensions in the range [10, 50,
100].

1.5.2 Low dimension projections: t-SNE, UMAP,
PAGA+UMAP

We used the following Python libraries to compute
the projections: sklearn for t-SNE, umap for UMAP,
and scanpy for PAGA + UMAP. For t-SNE, we use
metric=’precomputed’ and perplexity=50.0 for the
single-cell experiment (and the default values for the model
experiment). For PAGA+UMAP, we set init pos=’paga’

when running scanpy.tl.umap. For all projections, we set
n components=2.

1.5.3 Correlation metric QDM and QNP

Quality of Distance Mapping quantifies the correlation of
pairwise distances, only retaining a subset of the latter. We
compute first what is called ”natural PCA”GZ10 on the ref-
erence: the pair of most distant points (i1, j1) represents
the first components. Then, for the n+1 component (in+1,
jn+1), it is such that in+1 is the most distant to the set of
previous components Sn = {i1, . . . , in, j1, . . . , jn} and jn+1

is the point of Sn closest to in+1. We used this set of pair
to compute the QDM:

QDM = corr(di,j d̂i,j)

where di,j is the distance in the reference space, d̂i,j in the
projection and we compute the correlation using the set of
components Sn from the natural PCA. We took n=1000 for
the tests with the hypercube and the hypersphere, and n
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equals to the number of cells for the tests with the single-
cell datasets.
Quality of point Neighborhood Preservation computes the
intersection of the neighborhoods in the reference and pro-
jection:

QNPk =
1

k

N
∑

i=1

|Sk
i ∩ Ŝk

i |
N

where Sk
i , resp. Ŝk

i , is the neighborhood of point i in the
reference, resp. the projection, k is the size of the neigh-
borhood and N the number of points. For the hypercube
and hypersphere test, we took k in the range [10, 50, 100]
and for the single-cell data, k equals the square root of the
cardinality.

1.5.4 Cost function: Kullback-Leibler divergence
and cross-entropy

The KL divergence is the cost function used for the t-SNE
algorithm and is defined as:

DKL(P‖Q) =
∑

i,j

Pij log
Pij

Qij

Pj|i =
exp(−‖xi−xj‖

2

2σi
)

∑

k 6=i exp(−
‖xi−xk‖2

2σi
)
, Pij =

Pj|i + Pi|j

2N

Qij =
(1 + ‖yi − yj‖2)−1

∑

k 6=l (1 + ‖yk − yl‖2)−1)

where xi, resp. yi, is the vector of the i-th point in the
reference, resp. the projected, space, σi is a parameter that
is entirely determined by the choice of the perplexity in the
t-SNE algorithm and N is the number of points.
The cross-entropy is the cost function in UMAP:

CE(P,Q) =
∑

i,j

[Pij log
Pij

Qij

+ (1− Pij) log
1− Pij

1−Qij

]

Qij =
1

1 + a‖yi − yj‖2b

where yi is the vector of the i-th point in the projected
space, a and b are two parameters entirely determined by
the choice of a min dist in UMAP and Pij is the member-
ship strength of the 1-simplex between the i-th and the j-th
points.
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2 Supplementary Results

2.1 Hubs are not artefact cells

In some datasets, hubs and antihubs had more often a
higher dropout rate, a higher number of unique genes de-
tected or a lower number of total features compared to nor-
mal cells but this observation was not reproducible across all
datasets; and there is no observable trend at all for the en-
tropy. Regarding their position, the hubs and antihubs are
scattered across the whole projection in the two-dimensional
UMAP and PCA embeddings, in the sense that they do not
form a distinct cluster or a set of outliers, although hubs
seem to be located in denser regions (Supplementary Fig-
ures 2C and 7B). In order to empirically rationalize the posi-
tion of hubs, we looked at the following model distributions
in various dimensions: Gaussian and uniformly sampled hy-
percube. It was observed that for the Gaussian data, the
distance to the data center decreased when the node degree
increased except for the smallest dimensions which were less
sensitive to hubness as expected. For the uniformly sam-
pled hypercube data, in small dimensions the hubs were far
from the origin (which has been observed beforeLBSN13),
nevertheless for high enough dimensions, hubs concentrated
again near the data space origin (Supplementary Figure 8).
Since the hubness phenomenon is specific to high dimen-
sional data, we can conclude that hubs tend to concentrate
near the cluster centers. We also looked at the stability of
hubs upon resampling of 90% of the cells and proved their
poor stability: there is in most cases less than 25% of hubs in
common between the original data and the resampled one,
whatever the dimension and the metric used to compute the
k-NN graph are (Supplementary Figure 2E). It proves that
being a hub is not an intrinsic property of the cells. Lastly,
we studied the hubness of the data after removing the hubs
identified by the reverse-coverage approach, and observed
that the k-NN graph remains asymmetrical, meaning that
new hubs appeared in the data (Supplementary Figure 2F).
It also serves as a proof that hubness can not be reduced
by merely removing hubs: more elaborated techniques are
needed to correct the skewed k-NN graph.

2.2 Hubness reduction improves clustering

accuracy

We looked at hubness reduction considering only gold-
standard datasets. Even if the improvement in ARI and
homogeneity scores is less strong than if we consider only
high-ID datasets, hubness reduction remains a useful step to
perform, especially for the Euclidean distances, and consid-
ering a number of PCs above 25 (Supplementary Figure 15).
We tested the Louvain clustering algorithm, which yielded
similar results as compared to Leiden (corresponding figures
are available on our Zenodo repository, DOI 10.5281/zen-
odo.4597151). Number of nearest-neighbors was set to the
square root of the dataset cardinality (see Methods). We
also explored the effect of hubness correction on local den-
sity inhomogeneities. We evaluated the strength of the den-
sity correction in a model high-dimensional Gaussian distri-
bution which has been inhomogeneously sampled (see Sup-
plementary Methods). Briefly, we take a Gaussian ball in 10
dimensions and remove 98% of the points in one of the half

hyperball (Supplementary Figure 16A). As a mere conse-
quence, the mean density of each half hyperball is different.
We show that the density evaluated from the unweighted
k-NN graph is more uniform after hub correction (Supple-
mentary Figure 16C,D). The local neighborhood relations
are also better represented after the hubness reduction, in
the sense that close points fall back in the same neighbor-
hood (Supplementary Figure 16B).

2.3 Hubness reduction improves trajectory

inference

Most of the trajectories were improved. Exceptions were
some combinations of preprocessing parameters used with
25 PCs (namely the Duo recipe with the cosine dissimilar-
ity). Some combinations used with 100 PCs were not im-
proved with hubness reduction either (namely the cosine
dissimilarity with the Duo recipe and Leiden algorithm)
(Supplementary Figures 20, 21). In total, only 9 out of
32 combinations of preprocessing parameters failed to yield
better overall performance with hubness reduction. Out
of these 9 combinations, 4 were computed with 25 PCs.
When hub reduction is applied on the datasets embedded
in lower dimensional spaces, e.g. 25 PCs, it is actually not
surprising that hubness reduction has a weaker effect since
the magnitude of hubness itself is smaller. Also, 8 combina-
tions were computed with the cosine dissimilarity, which we
know from previous experiments exhibit less initial hubness
compared to the Euclidean metric (Supplementary Figure
9A). To conclude, we noticed that the benefit of hubness
reduction was much higher when using a high number of
PCs and the Euclidean metric, which is coherent with the
observations of the clustering task. Briefly, we also noticed
a slight improvement in the TI performance if we consider
the low dimensional datasets from Sun et al.SZMZ19 This is
again especially true for the Euclidean metric, except for the
preprocessing done with the Duo recipe and the Leiden al-
gorithm (Supplementary Figures 18, 19). This is interesting
compared to the clustering task, for which the dimension-
ality of the datasets was an important parameter to decide
whether hubness reduction would be beneficial or not.

2.4 Low-dimensional embeddings upon

hub reduction

To evaluate the impact of hubs and hubness reduction on
the visualisation task, we designed two tests. Firstly, we
used two distributions, the n-cube and the n-sphere, to
evaluate the impact of the hubness phenomenon on the
goodness-of-fit between the projection and the original data.
The second test comprises scRNAseq data to quantify the
quality of the projection before or after hubness reduc-
tion, in the same vein as what we did for the clustering
and TI tasks. Here, we evaluated two visualisation algo-
rithms, namely t-SNEvdMH08 and UMAP,MHM18 that are
widely used within the single-cell community. We used ran-
domly sampled n-cubes and n-spheres (see Supplementary
Figure 22A), assuming that the n-cube exhibits hubs, while
the n-sphere does not, or to a lesser extent (see Supplemen-
tary Figure 22B).LBSN13 Thus, we can estimate whether the
presence of hubs impedes projecting the data onto a smaller
(e.g. 2-dimensional) space. We quantify the goodness-of-fit
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by looking at the respective cost functions of the visual-
isation algorithms: Kullback-Leibler (KL) divergence and
cross-entropy (CE) (see Supplementary Methods), as well
as at two metrics measuring correlation: the Quality of
Distance Mapping (QDM) and the Quality of point Neigh-
borhood Preservation (QNP; see Supplementary Methods).
The projection is the best possible whenever it minimizes
the cost function and maximizes correlation. Our hypoth-
esis is that the projection for a n-sphere will be of better
quality than the one for a n-cube, because hubs distort the
pairwise distance matrix used to compute t-SNE or UMAP.
Regarding the cost functions, we note that they are designed
to point towards the direction of the gradient descent for a
given aim, but not as an absolute reference of the goodness-
of-fit. We observed that QNP and QDM correlation metrics
were always higher for the n-sphere than for the n-cube,
both for t-SNE and UMAP, and irrespective of the num-
ber of dimensions or neighbors tested (see Supplementary
Figure 23). For the cost functions, and keeping in mind
the fact that they focus on specific structures in the data,
we see that the KL divergence and the CE are smaller for
the n-sphere than the n-cube, except for the CE computed
after UMAP (see Supplementary Figure 23). We explain it
by the fact that CE attributes a high importance to hubs
and antihubs and thus the existence of these specific points
accelerates the minimization of CE while performing the
gradient descent. We reinforce this explanation with Fig-
ure 1d, where we observe that the UMAP k-NN graph keeps
the hubs at the center and the antihubs at the border, as in
the base projection. Consequently, the k-NN graph struc-
ture with hubs is easier to preserve in the sense of the CE,
even if the projection is overall of worse quality.
Then we switched to single-cell datasets, using the same set
of high-ID data as for the TI task, and tested the various
k-NN graphs (the two Scanpy graphs and the four hub-
reduced ones), but excluding the base one, that were pro-
jected in the UMAP, UMAP initialized with PAGA (PAGA
+ UMAP), or t-SNE spaces. Here, we evaluated the fit
only with QNP and QDM metrics. To reduce the compu-
tation time, we evaluated less preprocessing combinations,
using only the Seurat recipe, the Leiden clustering algo-
rithm, scaling and 25, 50, 100 or 500 PCs.
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3 Supplementary Figures

3.1 Hubness in sequencing data
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Supplementary Figure 1: Distribution of in-degree values. (A)Density of in-degrees for Gaussian (left panel) and uniformly
sampled hypercube (right panel) distributions, with dimensions from 2 to 500; a fat tail appears with higher dimensions in
both distributions. (B) Log-log plot of in-degree distributions for Gaussian (left panel) and uniformly sampled hypercube
(right panel) distributions, with dimensions from 2 to 500; the fat tail can be linearly approximated, in both distributions.
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Supplementary Figure 2: Hubness in sequencing data. We quantify hubness with 4 different estimators: percentage of
hubs in the data defined as cells with an in-degree above 2k, using the same value for k as the one chosen to build the k-NN
graph (first column), percentage of antihubs (second column), asymmetry of the k-NN graph (third column), skewness of
the in-degree distribution (fourth column). The quantification is shown as a function of the dimension after PCA reduction
(A,B). Hubness quantification methods are applied to 3 bulk datasets, with various rates of simulated dropout (A), or to
single-cell datasets (B). (C) Position of antihubs and reverse-coverage hubs in the PCA and UMAP projections; example
with the Zhengmix4eq single-cell dataset. (D) Quality control metrics measured on antihubs, normal cells and hubs
defined by reverse-coverage: dropout rate distribution (first column), number of total features counted (second column),
number of unique genes detected (third column), single-cell entropy (scEntropy) distribution (fourth column); example
with the Zhengmix4eq single-cell dataset. (E) We count the proportion of reverse-coverage hubs that are in common
between the original data and resampled data upon random removal of 10% of the cells, using scRNA-seq datasets (Duo
et al., 2018). (F) Asymmetry of the k-NN graph over dimension upon removal of reverse-coverage hubs, with scRNA-seq
datasets (Duo et al., 2018), in order to evaluate the resulting magnitude of the hubness phenomenon.
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Supplementary Figure 3: Hubness in sequencing data. We quantify hubness with 2 alternative different estimators:
maximum hubness score (first column), percentage of hubs as cells with an in-degree above µ+ 3σ (second column). The
quantification is shown as a function of the dimension after PCA reduction (A,B). Hubness quantification methods are
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Supplementary Figure 4: Emergence of hubness relates to sparsity, SNR and GID. (A) We investigate the link between
hubness and sparsity, by showing the Pearson correlation of sparsity to GID and of GID to hubness, using the bulk datasets
with various rates of simulated dropout. (B) In the first column, we show the correlation between three parameters and
GID: sparsity (first row), SNR (second row) and cardinality (third row). In the second column, we test the independence
of these three parameters: SNR and sparsity are independent (first row) while SNR and cardinality are dependent (second
row). (C) We investigate the link between hubness and the ratio of sparsity to SNR, by showing the Pearson correlation
of the ratio sparsity/SNR to GID and of GID to hubness, using the 9 real single-cell datasets from Sun et al., 2019.
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datasets from the openML repository and sequencing data. p-value¡10−4, randomization test. Right plot: Fraction of
hubs evaluated as data points with an in-degree above 2k. p-value¡10−4, randomization test

Supplementary Figure 6: Reverse-coverage hub-retrieving method. Left: Size of the reverse coverage (or percentage
of reverse-covered data) as a function of the number of putative hubs, i.e. the number of cells with the highest in-
degrees, computed for a single-cell dataset from Sun et al., 2019. Middle: Increment of the size of the reverse coverage
(proportion of new data points covered from adding a new hub). Right: Dependence of the number of identified hubs on
the dimensionality of the dataset reduced by PCA.
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Supplementary Figure 7: Quality control metrics. (A) Quality control metrics distribution for hubs, antihubs and normal
cells on the 12 datasets from Sun et al., 2019: dropout rate (first row), number of total features (second row), number of
unique genes (third row), single-cell entropy (last row). (B) PCA projections showing the positions of hubs, antihubs and
normal cells for the 12 Duo datasets.
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Supplementary Figure 8: Hubs positions. Position of hubs for uniform (A,B) and Gaussian (C,D) data distribution.
(A,C) Average norm of points with an in-degree above the abscissa value. (B,D) Average ranking to the origin of points
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3.2 Hubness reduction improves clustering
4.2. Hubness reduction improves clustering

Supplementary Figure 8: E       .
(A) -   -ID ,     ,   -NN 

  ;       . (B) M    
ID (GID)   ,     -ID . (C) P   

 ( -   )  - , A I    ID (LID)  
,     -NN ,    ,    L
.
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UMAP
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Supplementary Figure 9: Evaluation of hubness reduction effect on clustering performance. (A) k-skewness of high-ID
datasets, as a function of the metric, dimension and k-NN graph production method used; example with the Seurat recipe
and scaling. (B) Measure of the global ID (GID) of all datasets, used to define the high-ID datasets. (C) Pearson
correlation coefficients distribution (p-value in parentheses) between k-skewness, ARI and mean local ID (LID) for all
datasets, calculated with the base k-NN graph, using the Seurat recipe, scaling and the Leiden algorithm.
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Supplementar  Figure 9: A  a   L   a RNA-  a a
 FACS- a      (GSE60783),  E a  a , 50 PC
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Supplementary Figure 10: A selected example of Leiden clustering on a scRNA-seq dataset with FACS-labelled mouse
blood dendritic cells (GSE60783), using Euclidean distance, 50 PCs and 15-NN graph. Clustering with the usual k-NN
graph (Base) or the UMAP k-NN graph (scanpy umap) results in lower ARI while Local Scaling (LS) and DisSimLocal
(DSL) k-NN graphs yield better accuracy. Both hubness-reduced and UMAP k-NN graphs produce more uniform Gaussian
kernel density estimates. However, unlike hubness reduction, UMAP k-NN graph does not reduce the skewness of the
in-degree distribution. The modularity is improved for the UMAP and hubness-reduced graphs compared to the base one,
although the UMAP graph looks more intricate by eye. Point size is proportional to the in-degree in the respective k-NN
graph.
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Supplementary Figure 10: GID (A) a d ea  LID (B) f da a e  e i a ed i h PCA, he
Se a  e ce i g a d ca i g.

Supplementary Figure 11: c e i g c e  d e i h he Se a (A,B,E,F)  D (C,D,G,H)
e ce i g i h (A,C,E,G)  i h (B,D,F,H) ca i g, f  high-ID da a e : ARI c e

(A,B,C,D) a d h ge ei  c e (E,F,G,H).

Supplementary Figure 11: GID (A) and mean LID (B) of datasets estimated with PCA, the Seurat preprocessing and
scaling.

Supplementary Figure 12: Relative difference in ARI, with the base k-NN graph performance as reference, for the Seurat
preprocessing and the Leiden algorithm for the high-ID datasets.
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Supplementary Figure 13: Clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocessing with
(A,C,E,G) or without (B,D,F,H) scaling, for high-ID datasets: ARI scores (A,B,C,D) and homogeneity scores
(E,F,G,H).

Supplementary Figure 14: Clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocessing with
(A,C,E,G) or without (B,D,F,H) scaling, for low-ID datasets: ARI scores (A,B,C,D) and homogeneity scores
(E,F,G,H).
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Supplementary Figure 15: Clustering scores done with the Seurat (A,B,E,F) or Duo (C,D,G,H) preprocessing with
(A,C,E,G) or without (B,D,F,H) scaling, for gold-standards datasets: ARI scores (A,B,C,D) and homogeneity scores
(E,F,G,H).
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Supplementary Figure 16: Correcting heterogeneous densities with hubness reduction. (A) Gaussian ball in 10 dimensions,
with 5000 points in the half hyperball left of the hyperplan x=0 and 100 points in the right half hyperball, projected on
the first two dimensions. (B) Proportion of points of each half hyperball in the neighborhood of the right half hyperball.
(C) Visualization of the density estimate calculated from the unweighted k-NN graph before and after hubness reduction.
The source of the density estimate is at the center of the Gaussian ball and the targets are picked randomly in each half
hyperball. Each line connect the source and a target and its color represents the density estimate. The pale background
colors represent the two half spaces: blue for the left one, pink for the right one. (D) Difference in the density estimates
between the left and right half hyperballs. Each edge of a bar is the mean density estimate in one of the half hyperballs.
If the rectangle is green, the lower border is the estimate from the right half hyperball; if it is red, it is from the left one.
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Supplementary Figure 17: Modularity improvement upon hubness reduction. Per-dataset modularity of the Louvain
clustering with (left panel) or without PCA (right panel). Comparison between the modularity with or without hubness
reduction, performed with the LS (A) or the MP algorithm (B).
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3.3 Hubness reduction improves TI

Supplementary Figure 18: Per-dataset trajectory inference scores on low-ID datasets, using the Seurat recipe and Leiden
clustering. (A) Detailed correlation scores. (B) Detailed F1 branches scores. (C) Detailed featureimp wcor scores. (D)
Detailed overall score.
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Supplementary Figure 19: Per-dataset trajectory inference scores on low-ID datasets, using the Duo recipe and Leiden
clustering. (A) Detailed correlation scores. (B) Detailed F1 branches scores. (C) Detailed featureimp wcor scores. (D)
Detailed overall score.

21



Supplementary Figure 20: Per-dataset trajectory inference scores on high-ID datasets, using the Seurat recipe and Leiden
clustering. (A) Detailed correlation scores. (B) Detailed F1 branches scores. (C) Detailed featureimp wcor scores. (D)
Detailed overall score.
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Supplementary Figure 21: Per-dataset trajectory inference scores on high-ID datasets, using the Duo recipe and Leiden
clustering. (A) Detailed correlation scores. (B) Detailed F1 branches scores. (C) Detailed featureimp wcor scores. (D)
Detailed overall score.
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3.4 Hubness reduction improves visualisation
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Supplementary Figure 22: n-Cube and n-Sphere. (A) 3D plot of a 3-Cube (left) and a 3-Sphere (right). (B) k-Skewness
of a 50-Cube and a 50-Sphere, each containing 5,000 points, and k=50, computed 10 times.
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Supplementary Figure 23: Visualisation quality metrics of the n-Cube and the n-Sphere. We show the n-cube and the
n-sphere after t-SNE (A) or UMAP (B) projections, with different values for the size of the neighborhood k and the
number of dimensions n
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Supplementary Figure 24: QDM and QNP before or after hubness reduction, evaluated after various visualisation algo-
rithms, compared to the PCA with 500 PCs, for low-ID datasets. We project low-ID datasets either with t-SNE (top row),
UMAP (middle row) or PAGA+UMAP (bottom row) and evaluate QDM (left column) and QNP (right column). The
different projections are computed either with the cosine dissimilarity or the Euclidean metric, and using the two Scanpy
k-NN graphs or the four hub-reduced graphs.
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Supplementary Figure 25: Evaluation of the impact of hubness correction on hubness and measure concentration. We
computed Gaussian distributions, either a single blob (A,B,C) or two distinct blobs (D,E,F). Skewness of the data with
or without hubness reduction (A,D). Global measure concentration with or without hubness reduction (B,E). Measure
concentration without hubness reduction, either considering all points, or the 50 nearest neighbors (C,F)
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3.5 Datasets

Dataset names

C
a

rd
in

a
li
ty

Supplementary Figure 26: Benchmark datasets collected from previous studies. Colors represent gold and silver standards,
stars mark high ID. Note that the figure contains less datasets than listed in the supplementary table because there are
overlaps between Gulati et al., 2020 and other benchmark studies
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Dataset name in 
benchmark study

Sequencing 
protocol

Number of 
cells

Number of 
features

Number of 
cluster labels Description Ref. Benchmark study Label type Used to evaluate

Koh SMARTer 531 48981 9 FACS purified H7 human embryonic stem cells in different differention stages GSE85066 Duo et al. PMC6134335 FACS Clustering
KohTCC SMARTer 531 811938 9 FACS purified H7 human embryonic stem cells in different differention stages GSE85066 Duo et al. PMC6134335 FACS Clustering
Kumar SMARTer 246 45159 3 Mouse embryonic stem cells, cultured with different inhibition factors GSE60749 Duo et al. PMC6134335 Culture conditions Clustering

KumarTCC SMARTer 263 803405 3 Mouse embryonic stem cells, cultured with different inhibition factors GSE60749 Duo et al. PMC6134335 Culture conditions Clustering
SimKumar4easy Synthetic dataset 500 43606 4 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering
SimKumar4hard Synthetic dataset 499 43638 4 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering
SimKumar8hard Synthetic dataset 499 43601 8 Simulation using different proportions of differentially expressed genes PMC6134335 Duo et al. PMC6134335 Simulated data Clustering

Trapnell SMARTer 222 41111 3 Human skeletal muscle myoblast cells, differention induced by low-serum 
medium GSE52529 Duo et al. PMC6134335 Culture conditions Clustering

TrapnellTCC SMARTer 227 684953 3 Human skeletal muscle myoblast cells, differention induced by low-serum 
medium GSE52529 Duo et al. PMC6134335 Culture conditions Clustering

Zhengmix4eq 10x 3994 15568 4 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering
Zhengmix4uneq 10x 6498 16443 4 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering
Zhengmix8eq 10x 3994 15716 8 Mixtures of FACS purified peripheral blood mononuclear cells SRP073767 Duo et al. PMC6134335 FACS Clustering

GSE59114 Smart-seq2 1622 7539 3 Mouse Blood Phenotypes Aging HSCs (Smart-seq2) GSE59114 Gulati et al. PMID: 31974247 FACS Clustering
GSE74767 SC3-seq 212 28796 7 Human (SC3-seq) GSE74767 Gulati et al. PMID: 31974247 Cell lines Clustering
GSE74767 SC3-seq 421 28796 13 Macaque Embryo Timepoints Blastocyst timepoints (SC3-seq) GSE74767 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE90860 C1 223 42832 3 Mouse Brain Timepoints Cortical interneurons (C1) GSE90860 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE95753 10x 6000 27933 14 Mouse Brain Phenotypes Dentate gyrus phenotypes (10x) GSE95753 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE95753 10x 6000 27933 8 Mouse Brain Timepoints Dentate gyrus timepoints (10x) GSE95753 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE67123 Tang et al. 143 24028 5 Mouse Embryo Timepoints Embryonic HSCs (Tang et al.) GSE67123 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE98451 CEL-seq 714 12479 5 Mouse Uterus Timepoints Endometrium (CEL-seq) GSE98451 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE99933 Smart-seq2 369 23420 4 Mouse Adrenal medulla Phenotypes Peripheral glia (Smart-seq2) GSE99933 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE94641 Plate-seq 225 33327 4 Mouse Brain Timepoints Medial ganglionic eminence (C1) GSE94641 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE60783 C1 248 15752 3 Mouse Blood Phenotypes Dendritic cells (C1) GSE60783 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation
GSE67602 C1 1422 25932 5 Mouse Skin Phenotypes Hair epidermis (C1) GSE67602 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE70245 C1 394 23955 8 Mouse Blood Phenotypes HSPCs (C1) GSE70245 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation
GSE90047 Smart-seq2 447 40829 7 Mouse Liver Timepoints Hepatoblast (Smart-seq2) GSE90047 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE75748 C1 1018 19095 6 Human Embryo Phenotypes hESC in vitro (C1) GSE75748 Gulati et al. PMID: 31974247 FACS Clustering
GSE52529 C1 170 46077 3 Human Muscle Phenotypes HSMM (C1) GSE52529 Gulati et al. PMID: 31974247 Culture conditions Clustering/TI/Visualisation
GSE85066 C1 498 30670 9 Human Embryo Phenotypes Mesoderm (C1) GSE85066 Gulati et al. PMID: 31974247 FACS Clustering
GSE93421 10x 5000 16957 10 Human Blood Phenotypes Peripheral blood (10x) GSE93421 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE36552 Tang et al. 85 20012 6 Human Embryo Phenotypes Pre-implant human embryo (Tang et al.) GSE36552 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE86146 Smart-seq2 1844 24153 17 Human Embryo Timepoints Germ cells (Smart-seq2) GSE86146 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE98664 RamDA-seq 456 47515 5 Mouse Embryo Timepoints mESC in vitro (RamDA-seq) GSE98664 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE52583 C1 101 23093 4 Mouse Lung Timepoints Lung development (C1) GSE52583 Gulati et al. PMID: 31974247 Timepoints Clustering/TI/Visualisation
GSE97391 inDrop 2684 28205 4 Mouse Brain Phenotypes Direct in vitro neuron (inDrop) GSE97391 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE76408 CEL-seq 480 23460 6 Mouse Intestine Phenotypes Lgr5-CreER intestine (CEL-seq) GSE76408 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering

GSE109774 10x 3652 13526 11 Mouse Blood Phenotypes Bone marrow (10x) GSE109774 Gulati et al. PMID: 31974247 FACS (+clustering) Clustering
GSE109774 Smart-seq2 4897 17479 8 Mouse Blood Phenotypes Bone marrow (Smart-seq2) GSE109774 Gulati et al. PMID: 31974247 FACS (+clustering) Clustering
GSE92332 Smart-seq2 1522 20108 9 Mouse Intestine Phenotypes Intestine (Smart-seq2) GSE92332 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE97391 inDrop 2996 28205 7 Mouse Brain Phenotypes Standard in vitro neuron (inDrop) GSE97391 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE45719 Smart-seq2 286 22431 13 Mouse Embryo Phenotypes Pre-implant mouse embryo (Deng et al.) GSE45719 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE52583 C1 66 23093 3 Mouse Lung Phenotypes AT2/AT1 lineage (C1) GSE52583 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE69761 C1 79 35016 5 Mouse Lung Phenotypes Lung fibroblast (C1) GSE69761 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering/TI/Visualisation
GSE92332 Drop-seq 4581 15971 15 Mouse Intestine Phenotypes Intestine (Drop-seq) GSE92332 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering

GSE107122 Drop-seq 5998 21201 3 Mouse Brain Timepoints Neural stem cells (Drop-seq) GSE107122 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE64447 C1 447 24480 4 Mouse Bone Phenotypes Skeletal stem cells (C1) GSE64447 Gulati et al. PMID: 31974247 FACS Clustering/TI/Visualisation

GSE102066 C1 781 13762 8 Human Brain Timepoints In vitro NPCs (C1) GSE102066 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE75330 C1 5050 23226 12 Mouse Brain Phenotypes Oligodendrocyte phenotypes (C1) GSE75330 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE75330 C1 5050 23226 23 Mouse Brain Timepoints Oligodendrocyte timepoints (C1) GSE75330 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE87375 Smart-seq2 338 40829 6 Mouse Pancreas Timepoints Pancreatic alpha cell (Smart-seq2) GSE87375 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE87375 Smart-seq2 575 40829 7 Mouse Pancreas Timepoints Pancreatic beta cell (Smart-seq2) GSE87375 Gulati et al. PMID: 31974247 Timepoints Clustering

GSE103633 Drop-seq 21612 28065 2 Planaria Organism Phenotypes Whole planaria (Drop-seq) GSE103633 Gulati et al. PMID: 31974247 Markers (+clustering) Clustering
GSE107910 Drop-seq 9307 19530 8 Mouse Thymus Timepoints Thymus (Drop-seq) GSE107910 Gulati et al. PMID: 31974247 Timepoints Clustering
GSE106587 Drop-seq 39505 23974 12 Zebrafish Organism Timepoints Early zebrafish (Drop-seq) GSE106587 Gulati et al. PMID: 31974247 Timepoints Clustering
FreytagGold 10x 925 58302 3 Human lung adenocarcinoma cell lines GSE111108 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering

PBMC3k 10x 3205 58302 11 Human SRP073767 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering
PBMC4k 10x 4292 58302 11 Human SRP073767 Freytag et al. PMC6124389, Sun et al. PMC6902413 FACS Clustering

Baron (Mouse) inDrop 1886 14861 13 Mouse pancreas GSE84133 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering
Baron (Human) inDrop 8569 17499 14 Human pancreas GSE84133 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Muraro CEL-Seq2 2122 18915 9 Human pancreas GSE85241 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering
Segerstolpe SMART-Seq2 2133 22757 13 Human pancreas E-MTAB-5061 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Xin SMARTer 1449 33889 4 Human pancreas GSE81608 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering
CellBench1 10X chromium 3803 11778 5 Mixture of five human lung cancer cell lines GSE118767 Abdelaal et al. PMC6734286 Cell lines Clustering
CellBench2 CEL-Seq2 570 12627 5 Mixture of five human lung cancer cell lines GSE118767 Abdelaal et al. PMC6734286 Cell lines Clustering

TM SMART-Seq2 54865 19791 55 Whole Mus musculus GSE109774 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering
AMB SMART-Seq v4 12832 42625 4/22/110 Primary mouse visual cortex GSE115746 Abdelaal et al. PMC6734286 FACS (+clustering) Clustering

Zheng sorted 10X CHROMIUM 20000 21952 10 FACS-sorted PBMC SRP073767 Abdelaal et al. PMC6734286 FACS Clustering
Zheng 68K 10X CHROMIUM 65943 20387 11 PBMC SRP073767 Abdelaal et al. PMC6734286 Markers (+clustering) Clustering

Baron_m2016 inDrop 1886 14861 13 Mouse pancreas GSE84133 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Klein2015 inDrop 2712 24027 4 Embryonic stem cells GSE65525 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Zeisel2015 STRT-Seq UMI 3005 19972 9 Mouse cortex and hippocampus GSE60361 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Darmanis2015 C1 466 21630 9 Human brain GSE67835 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Deng2014_raw Smart-Seq, Smart-
Seq2 268 21297 6 Mouse embryo GSE45719 Krzak et al. PMC6918801 Timepoints Clustering

Goolam2016 Smart-Seq2 124 28147 4 Mouse embryo E-MTAB-3321 Krzak et al. PMC6918801 Timepoints Clustering
Kolodiejczyk2015 SMARTer 704 32225 3 Mouse embryonic stem cells E-MTAB-2600 Krzak et al. PMC6918801 Culture conditions Clustering

Li2017 SMARTer 561 43055 9 Human colorectal tumors GSE81861 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Romanov2016 C1 2881 21143 7 Mouse hypotalamus GSE74672 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Tasic2016_raw SMARTer 1679 21617 17 Mouse cortical cells GSE71585 Krzak et al. PMC6918801 FACS (+clustering) Clustering

Deng2014_rpkm Smart-Seq, Smart-
Seq2 268 22958 5 Mouse embryo GSE45719 Krzak et al. PMC6918801 Timepoints Clustering

Segerstolpe2016 Smart-Seq2 3514 25525 15 Human pancreatic islet cells E-MTAB-5061 Krzak et al. PMC6918801 Markers (+clustering) Clustering
Tasic2016_rpkm SMARTer 1679 24057 17 Mouse cortical cells GSE71585 Krzak et al. PMC6918801 FACS (+clustering) Clustering

Yan2013 Tang et al. 90 20214 6 Human embryo GSE36552 Krzak et al. PMC6918801 Timepoints Clustering
Biase2014 SMARTer 56 25737 4 Mouse embryo GSE57249 Krzak et al. PMC6918801 Markers (+clustering) Clustering

Treutlein2014 SMARTer 80 23271 5 Mouse lung epithelium GSE52583 Krzak et al. PMC6918801 Markers (+clustering) Clustering
ChuBatch1 SMARTer 350 19097 5 Human GSE75748 Sun et al. PMC6902413 FACS Clustering/TI/Visualisation
ChuBatch2 SMARTer 425 19097 6 Human GSE75748 Sun et al. PMC6902413 FACS Clustering/TI/Visualisation

Schlitzer Fluidigm 238 4480 3 Mouse DCs from the BM GSE60783 Sun et al. PMC6902413 FACS TI/Visualisation

Petropoulos Smart-Seq2 1289 8772 5 Human embryo E-MTAB-3929 Sun et al. PMC6902413 Timepoints TI/Visualisation

LiM Smart-Seq2 649 4777 8 Male fetal gonads GSE86146 Sun et al. PMC6902413 Timepoints TI/Visualisation

LiF Smart-Seq2 666 5319 12 Female fetal gonads GSE86146 Sun et al. PMC6902413 Timepoints TI/Visualisation

ZhangBeta Smart-Seq2 562 6138 7 Mouse pancreatic beta cells GSE87375 Sun et al. PMC6902413 Timepoints TI/Visualisation

ZhangAlpha Smart-Seq2 322 6138 6 Mouse pancreatic alpha cells GSE87375 Sun et al. PMC6902413 Timepoints TI/Visualisation

GuoF Tang et. al. 100 8772 5 Human female primordial germ cells GSE63818 Sun et al. PMC6902413 Timepoints TI/Visualisation

GuoM Tang et. al. 166 8772 5 Human male primordial germ cells GSE63818 Sun et al. PMC6902413 Timepoints TI/Visualisation

KowalczykYoung Smart-Seq 493 2227 3 Mouse stem cells GSE59114 Sun et al. PMC6902413 FACS TI/Visualisation

KowalczykOld Smart-Seq 873 2815 3 Mouse stem cells GSE59114 Sun et al. PMC6902413 FACS TI/Visualisation

Hayashi RamDA-seq 414 23658 5 Mouse ES cells GSE98664 Sun et al. PMC6902413 Timepoints TI/Visualisation

ShalekLPS Smart-seq 504 4158 5 Mouse DCs GSE48968 Sun et al. PMC6902413 Timepoints TI/Visualisation

Trapnell SMARTer 290 8772 4 Human skeletal muscle myoblasts cells GSE52529 Sun et al. PMC6902413 Timepoints TI/Visualisation

Olsson SMARTer 316 3594 3 Mouse stem cells GSE70245 Sun et al. PMC6902413 FACS TI/Visualisation

Supplementary Table 1: Table of all benchmark datasets’ technical characteristics used in our study. Rows in gold are
gold-standard, the rest is silver-standard.
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Supplementary Table 2: Table of the datasets collected from the openML repository.
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Chapter 6

Supervised analysis of single-cell

RNAseq data to functionally classify T

cells in cancer

Selected content of this chapter is a part of a publication in preparation. This project has
been done in close collaboration with the team of Antonio Rausell in Imagine.

6.1 Introduction and statement

The current unsupervised strategy to annotate T cells in scRNAseq is mainly based on
the recognition of markers, either via an enrichment analysis or differentially expressed
genes. Incidentally, it is usually cumbersome to identify classical helper populations in
scRNAseq datasets, such as TH1, TH2, etc. The gene sets or knowledge used to annotate
cells rely on phenotypic markers that were used to isolate cells with classical techniques
such as FACS. Supervised approach, where one takes advantage of previously annotated
scRNAseq datasets, depends also implicitly on unsupervised approaches that have been
used in the first place to annotate reference datasets and/or atlases. We identified 3
technical caveats with this annotation methodology: it is hardly reproducible, subjective,
and time-consuming. In particular, the poor reproducibility stems from the heterogeneity
of signatures or gene sets used for the annotation. This heterogeneity is easily observed:
the intersection of 3 bulk transcriptomic signatures for Treg of respective gene lengths 294
[HDM+20], 136 [BKG+16] and 31 [PWS+16] contains only 10 genes. The second caveat
refers to the fact that different teams would rely on different knowledge to annotate the
data, in the sense that the differential expression relies on the choice of user-dependant
parameters, and that the manual selection of marker genes out of the list of differentially
expressed genes is biased. Lastly, the annotation is time-consuming, because of the manual
review of the literature step.

We believe there is an additional stone in the shoe of the way of biologically analysing
the data: the current annotation of the data is a chimera of phenotype and functions. For
example, some articles decorrelate functions and phenotypes: they would use DGE anal-
ysis and GSEA to manually functionally annotate clusters, while annotating phenotypes
separately [MKCK+21, LXW+21, JASC+18]. It embodies the present confusion about the
lineage paradigm and how to interpret it with the new body of data brought by scRNAseq
experiments. The blurring of lines between the different lineages and the functions they
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would exert is exemplified in [ZZK+18], where regulatory cells, sorted upon the basis of
their regulatory phenotypes, are clustered in different groups. If we make the assumption
that the transcriptome profile mirrors the protein profile and thus is an accurate proxy
for the cell function, it means that different clusters represent different functions: hence
the regulatory population, sorted as an homogeneous group, comprises different functions.
There is a dichotomy between the classical lineages, such as the effector vs. the regulatory
lineages, and their functions.

We want to attempt to resolve this dichotomy by using a supervised approach. Using
carefully-designed functional modules, we believe we could better understand the func-
tionality of T cells in light of scRNAseq data.

Firstly, we need to design those modules, and conceive a scoring method. Secondly,
we should quantify the overlap between our supervised approach and an unsupervised
pipeline, to verify whether it is a redundant or novel approach. Lastly, we should be
able to map T cell functions, and we used cancer datasets, as we believe that it should
be an interesting archetype to test the method. Indeed, our intuition is that the highly
dynamic TME should increase the diversity of functions [ACP+18]. We hope to better
recapitulate the complexity of T cells with this new classification by easing the description
of functional shifts, as well as to increase interpretability of scRNAseq T cell data.

6.2 Functional modules

6.2.1 Construction

We outlined 15 functions, that formed 15 functional modules.

→ 4 functions dedicated to communication and support: B cell, Monocyte-Macrophage
(MM), dendritic cell (DC) and T cell help, termed BC-, MM-, DC- and TC-help,

→ 4 functions towards attracting other immune cells: B cell, Monocyte-Macrophage
(MM), DC and T cell attraction, termed BC-, MM-, DC- and TC-attraction,

→ 1 function for the production of anti-microbial peptides: AMP,

→ 1 function for apoptosis,

→ 1 function for antiviral capacities,

→ 1 function for T cell trafficking: homing,

→ 1 function for cytotoxicity,

→ 1 function for immune suppression,

→ 1 function for proliferation.

I attributed to each module the corresponding relevant genes: each gene that belongs
to a given module is an effector for the function. I parsed the literature to fill up the
modules. I selected mostly experimental articles, with a rigorous proof of the contribution
of a given gene to the function of interest, or few reviews from experts in the field.

I collected 232 effector genes, with 172 unique genes, from 191 articles. I verified that
they were all tabulated with their EntrezID symbol, using an online symbol checker tool.
Each gene has been confirmed on the basis of a mean of 2 articles (Table 6.1).
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Gene Function References

CXCL13 BC-attraction
12093871, 29880013, 16516453, 

31002794

CXCL9 BC-attraction 18561120

CXCL10 BC-attraction 18561120

CXCL11 BC-attraction 18561120

CXCL12 BC-attraction
12093871, 19804625, 18561120, 

15749730

CCL19 BC-attraction
12093871, 19804625, 18561120, 

16516453

CCL21 BC-attraction
12093871, 19804625, 18561120, 

15749730, 16516453

CCL20 BC-attraction
29880013, 31166050, 29375554, 

19804625, 18561120, 15749730

CCL19 DC-attraction
24725321, 29563613, 25753266, 

18379575, 15001175, 11489962

CCL21 DC-attraction
24725321, 29563613, 25753266, 

18379575, 15001175, 11489962

CCL3 DC-attraction 29563613, 11489962

CCL5 DC-attraction 29563613, 11489962

CCL2 DC-attraction 29563613, 11489962

CCL20 DC-attraction 29563613, 25130722

CCL27 DC-attraction 29563613

CXCL12 DC-attraction 29563613

RARRES2 DC-attraction 29563613

C5 DC-attraction 29563613

C1QA DC-attraction 29563613

PLG DC-attraction 29563613

IL18 DC-attraction 29563613

CCL4 DC-attraction 29563613

CCL8 DC-attraction 29563613

CCL7 DC-attraction 29563613

CCL11 DC-attraction
12218106, 9558100, 9269754, 

9561368

CCL23 DC-attraction
9269754, 15978562, 10536111, 

20956349, 10360972

CCL24 DC-attraction
12218106, 9558100, 9269754, 

9561368

CCL28 DC-attraction
12218106, 9558100, 9269754, 

9561368, 21937703

CCL2 MM-attraction 19215821, 26635790

PLEKHO1 MM-attraction 23747421

CCL3 MM-attraction 28499492

CCL4 MM-attraction 28499492

CCL1 MM-attraction 17947648

CXCL12 TC-attraction 20364260, 29894310, 15634883

TNF TC-attraction 23494522, 22138716, 24636534

CCL5 TC-attraction
17177831, 12960247, 11261794, 

22138716

CXCL9 TC-attraction 12960247

CXCL10 TC-attraction 12960247

CXCL11 TC-attraction 12960247

Gene Function References

CD40LG BC-help 26276638, 31002794

CD86 BC-help 31002794

CD84 BC-help 26276638, 31002794

IL21 BC-help 26276638, 31002794

AICDA BC-help 26276638

IL2 BC-help 15450978

IL4 BC-help 26276638, 31002794, 15450978

IL10 BC-help 26276638

SEMA4C BC-help 30150988

EPHB4 BC-help 30150988

EPHB6 BC-help 30150988

IFNG BC-help 30150988, 31002794

ICOS BC-help 30150988, 31002794

TNFSF13 BC-help 16187941

CCL20 BC-help 29375554

SH2D1A BC-help 26276638, 31002794

PRDM1 BC-help 26276638

TNFSF13B BC-help 16187941, 31002794

ITGB2 BC-help 29669250, 28939548

IL1 DC-help 18981105

IL2 DC-help 15450978

IL4 DC-help 15450978, 18981105

IL5 DC-help 15450978

IL10 DC-help 15450978

IFNG DC-help 15450978, 18981105

CD40LG DC-help 18981105, 26781939, 22539281

LAT DC-help 15450978

TNF DC-help 18981105

CSF2 DC-help 18981105

FYB1 DC-help 23918975

ITGB2 DC-help 27501450, 15450978, 26781939

XCL1 DC-help 29563613, 22100876

CTLA4 DC-help 26781939

TNFRSF4 DC-help 10637280, 9378971

TNF MM-help NBK27101, 26635790

IFNG MM-help NBK27101, 26635790

IL4 MM-help 26635790

IL13 MM-help 26635790

IL17A MM-help 26635790

IL10 MM-help 26635790, 15784460

IL15 MM-help 24942581

CSF2 MM-help 24942581

IFNG TC-help 26781939

IL2 TC-help
26781939, 20856822, 22343569, 

22539281

LTA TC-help 11907234, 24698108, 11145686

IL10 TC-help 30423297, 26781939

TGFB1 TC-help 26781939

CD40LG TC-help 26781939

IL21 TC-help 26781939, 22539281

TNFSF14 TC-help 11994431

IL7 TC-help 22539281

IL15 TC-help 22539281



Gene Function References

BAX Apoptosis
8918887, 11163212, 10395708, 

10814794, 11281652, 31324752

BAK1 Apoptosis
11163212, 31324752, 30536008, 

30334018

BCL2 Apoptosis 15110520

BID Apoptosis
9727492, 10982793, 8918887, 

9873064, 23834359

CASP3 Apoptosis
9422506, 9422513, 10814794, 

11281652, 11279545, 23834359

CASP6 Apoptosis
24727569,10438520, 11279545, 

15321985

CASP7 Apoptosis
31687791, 28367243, 23834359, 

14583630

CASP8 Apoptosis
9464839, 9727492, 10982793, 

11281652

CASP9 Apoptosis 11281652, 23834359

TNFRSF1A Apoptosis 11314015, 11752172, 11861282

TNFRSF10

A
Apoptosis 9082980, 9430228, 9430227

TNFRSF10

B
Apoptosis

9311998, 9430228, 9430227, 

8994832, 9285725

TNFRSF21 Apoptosis 9714541

FAS Apoptosis
2787530, 2469768, 1713127, 

10814794, 11752172

FADD Apoptosis 7538907, 7536190

CAD Apoptosis 9422506, 9422513

DFFA-

DFFB
Apoptosis 9108473

PTK2B Apoptosis 7519637

RIPK1 Apoptosis 7538908

TRADD Apoptosis 7758105, 9714541

PRF1 Cytotoxicity

16405653, 12093006, 28499492, 

20536553, NBK27101, 10462738, 

3077301, 19337143, 24394640, 

28166682

GZMB Cytotoxicity

16405653, 28499492, 12093006, 

20536553, NBK27101, 10462738, 

19337143, 20536558, 24394640, 

28166682

GZMA Cytotoxicity
16405653, 12093006, 28499492, 

20536553, NBK27101, 10462738, 

19337143, 28166682

GZMH Cytotoxicity 12093006, 28499492

GZMK Cytotoxicity 12093006, 28499492

TNF Cytotoxicity
12093006, 28499492, NBK27101, 

3077301

IFNG Cytotoxicity
12093006, 28499492, NBK27101, 

3077301

FASLG Cytotoxicity
12093006, 28499492, 20536553, 

NBK27101, 10462738, 19337143, 

24394640, 10415024, 26635790

TNFSF10 Cytotoxicity 27265595, 10415024

ITGB2 Cytotoxicity 28499492

GNLY Cytotoxicity 10462738, 19337143, 24394640

LTA Cytotoxicity 3077301

Gene Function References

IL26 AMP 27337042

GNLY AMP 10462738, 11023496

GZMB AMP 20536558

IFNG AMP 28618267

CCL1 AMP 22837760

CCL2 AMP 22837760

CCL11 AMP 22837760

CCL13 AMP 22837760

CCL14 AMP 22837760

CCL15 AMP 22837760

CCL17 AMP 22837760

CCL18 AMP 22837760

CCL19 AMP 22837760

CCL20 AMP 12149255, 27631019, 22837760

CCL21 AMP 22837760

CCL22 AMP 22837760

CCL25 AMP 22837760

CCL28 AMP 26062132, 22837760

XCL1 AMP 22837760

CXCL1 AMP 22837760

CXCL2 AMP 22837760

CXCL3 AMP 22837760

CXCL6 AMP 18443119, 26062132, 22837760

CXCL7 AMP 26062132, 22837760, 21101183

CXCL9 AMP 26062132, 22837760

CXCL10 AMP 26062132, 22837760

CXCL11 AMP 26062132, 22837760

CXCL12 AMP 22837760

CXCL13 AMP 22837760

CXCL14 AMP 22837760

CAMP AMP
11358975, 24287494, 22429567, 

22837760

IFITM3 Antiviral
30914370, 30662816, 22046135, 

24699674, 23358889, 22328912

IFITM1 Antiviral 23358889, 22328912

IFITM2 Antiviral 23358889, 22328912

EIF2AK2 Antiviral 1382142, 22328912

OAS1 Antiviral 20038200, 22328912

MX1 Antiviral 22328912

APOBEC3

G
Antiviral 22328912

TRIM5 Antiviral 22328912

ISG15 Antiviral 22328912

ADAR Antiviral 22328912

BST2 Antiviral 22328912

RSAD2 Antiviral 22328912, 30684519

DDX58 Antiviral 22328912, 21478870

DDX60 Antiviral 22328912

GBP1 Antiviral 22328912

GBP2 Antiviral 22328912

HPSE Antiviral 22328912, 21478870

IFIH1 Antiviral 22328912, 21478870

IFIT1 Antiviral 22328912

IFIT2 Antiviral 22328912

IFIT3 Antiviral 22328912

IFIT5 Antiviral 22328912

ISG20 Antiviral 22328912, 31600344

MX2 Antiviral 22328912

PML Antiviral 22328912



Gene Function References

ITGB1 Homing 1380034, 12234367, 11261794, 22275188, 14708592

ITGB2 Homing 17624950, 11261794, 22275188, 22138716, 12234367

CXCR3 Homing 14632748, 22138716, 17291292

CCR1 Homing 14632748, 22138716

CCR2 Homing 22138716

CCR5 Homing 22138716, 17291292

CXCR4 Homing 22275188, 17291292

ITGA4 Homing 12234367, 17291292, 11261794, 22275188, 19808049

SELPLG Homing 19808049, 22138716, 14708592, 17181631

CCR8 Homing 17181631

CCR4 Homing 19808049, 16516453

CCR10 Homing 14708592

SELL Homing 20146713, 1705015, 22138716

CCR7 Homing 20146713, 18379575, 15001175, 25753266

S1PR1 Homing 20146713

KLF2 Homing 20146713

CXCR5 Homing 28499492, 12851649

ITGB7 Homing 17291292, 19808049

CCR9 Homing 17291292, 19808049, 14708592

CCR6 Homing 21376174

ITGAE Homing 17291292

TNFRSF1A Homing 24636534

TNFRSF1B Homing 24636534

ENTPD1 Immune suppression 27313580, 27590281, 27851913, 19737784

NT5E Immune suppression 18566595, 27313580, 19737784

CTLA4 Immune suppression 21945485, 17632406, 29141660, 19737784

LGALS9 Immune suppression 25065622, 18566595, 19737784

TIGIT Immune suppression 25994968, 27851914, 24745333

ITGB2 Immune suppression 19737784

MT-CO2 Immune suppression 19900843

EBI3 Immune suppression 27590281, 27851913, 19737784

IL27 Immune suppression 19737784

IL12A Immune suppression 27590281, 27851913, 19737784

LGALS1 Immune suppression 23219401, 19737784

TNFRSF18 Immune suppression 16557261, 30484986

TGFB1 Immune suppression 23219401, 18566595, 11535631, 19737784, 16557261

VEGFA Immune suppression 16557261

IL10 Immune suppression 23219401, 18566595, 19737784, 16557261

LRRC32 Immune suppression 25904740, 30674536, 31357555

LAG3 Immune suppression 26013006

PDCD1 Immune suppression 17304234, 17606980, 19426216

ICOS Immune suppression 24312642

AREG Immune suppression 23333074, 27432879

ITGB8 Immune suppression 25127859, 10.1101/2020.05.14.084913

IL2RA Proliferation 17383196, 10952731

IL2RB Proliferation 17383196, 10952731

IL2 Proliferation 21889323

IL7R Proliferation 29616038, 19637200

KLF2 Proliferation 24874925

LAT Proliferation 29616038

MYC Proliferation 24731854

TNFSF14 Proliferation 19702559

MAPK1 Proliferation 12801802

Table 6.1: Table of the functional modules including references.
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6.2.2 Description

The mean length of a functional module is 15 genes, with the shortest module being
MM-attraction with 5 genes and the longest being AMP with 31 genes (Figure 6.1). We
looked at each function to evaluate its specificity with regard to the other modules, to
answer the question whether the effector genes of a given module are only members of
this module, or if they belong to other functions.

0

1

2

3

10 20 30

Module cardinality

C
o

u
n

t

M
M

-a
tt

ra
c
ti
o

n

T
C

-a
tt

ra
c
ti
o

n B
C

-a
tt

ra
c
ti
o

n
, 

M
M

-h
e
lp

P
ro

lif
e
ra

ti
o

n

T
C

-h
e
lp

C
y
to

to
x
ic

it
y

D
C

-h
e
lp

B
C

-h
e
lp

A
p

o
p

to
s
is

, 
D

C
-a

tt
ra

c
ti
o

n
,


Im
m

u
n

e
 s

u
p

p
re

s
s
io

n

H
o

m
in

g

A
n

ti
v
ir
a
l

A
M

P
Figure 6.1: Histogram for the cardinality of functional modules.

Starting with the genes, the vast majority of them is unmatched: 136 out of 172, i.e.
almost 80%, belong to a unique module (Figure 6.2a). The remaining 36 genes appear
in a mean of almost 3 modules, and the most ubiquitous gene takes part in 6 functions
(Figure 6.2b).
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Figure 6.2: Gene-level specificity. (a) Specificity status of the 172 unique effector genes. (b)
Number of occurrences for each unspecific gene.

At the function level, I designed a specificity score to quantify the singularity of each
module. For a function F , it is calculated as:

SpecF =
1

|F|
∑

g∈F

1

Ωg

,

where Ωg is the number of occurrences of gene g in all functions. A score of 100% means
that all genes are found only in F , while a score of 50% means that all the genes are found
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in another function, or two thirds of them belong to three additional functions, etc. Most
of the functions are reasonably specific, with a score above 60% (Figure 6.3a). In fact, the
less specific functions are the help and the attraction functions that share many cytokines
and chemokines with each other. Moreover, the specificity correlates with the cardinality:
a populated function is more specific than a scarce one, although the correlation is weak
(R2 = 0.46), p-val= 0.003) (Figure 6.3b).
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Figure 6.3: Function-level specificity. (a) Specificity score of the functional modules. (b) Module
cardinality and specificity are weakly correlated (R2 = 0.46, p-val= 0.003).

If we look more carefully at the overlap between functions, we can better understand
the intertwining between functions, especially within the ’help’ group and the ’attraction’
group. I computed the intersection size between two functions F1 and F2 and normalized
it by |F1|. On the heatmap, F1 is the horizontal function and F2 the vertical function
(Figure 6.4). Thus, we observe that 100% of the BC-attraction genes belong to the
AMP module as well, while 25% of the AMP genes are in the BC-attraction function.
Furthermore, we observe that there is a proximity between all ’attraction’ modules and
with the AMP module and between all ’help’ modules.

We chose nonetheless to analyse the functions within the ’help’ meta-module and
the ’attraction’ + AMP meta-module individually, instead of grouping them, in order to
retain as much as granularity as possible, even if we expect similar scoring for those two
meta-modules.
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Figure 6.4: Heatmap of the pairwise overlap between functional modules.

6.2.3 Comparison with previous knowledge

I used the Metascape tool [ZZP+19] to confirm the goodness of fit between effector genes
and the said function. Listing only the two first GO terms enriched in each module, we
observe a match between modules and GO terms, except for the ’help’ meta-module, and
the AMP (but the antimicrobial term is the third most enriched GO term) (Table 6.2).
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Module GO term Description % of genes -log10 p

BC-attraction GO:0030593 neutrophil chemotaxis 87.5 16.25

GO:0072676 lymphocyte migration 87.5 -12.67

DC-attraction GO:0060326 cell chemotaxis 85 30.51

GO:0002686 negative regulation of leukocyte migration 25 7.43

MM-attraction GO:0048245 eosinophil chemotaxis 80 12.13

GO:0008360 regulation of cell shape 60 5.82

TC-attraction GO:0071674 mononuclear cell migration 83.3 7.05

BC-help GO:0031294 lymphocyte costimulation 26.32 6.9

GO:0031341 regulation of cell killing 26.3 5.88

DC-help GO:0002694 regulation of leukocyte activation 80 14.12

GO:0022409 positive regulation of cell-cell adhesion 66.7 13.52

MM-help GO:1902107 positive regulation of leukocyte differentiation 75 9.18

GO:1903706 regulation of hemopoiesis 87.5 8.99

TC-help GO:0051251 positive regulation of lymphocyte activation 90 12.38

GO:0001819 positive regulation of cytokine production 90 11.9

AMP GO:0070098 chemokine-mediated signaling pathway 77.4 50.91

GO:0048247 lymphocyte chemotaxis 58 37.4

Antiviral GO:0051607 defense response to virus 92.6 44.7

GO:0048525 negative regulation of viral process 77.8 36.43

Apoptosis GO:0071214 cellular response to abiotic stimulus 52.6 11.91

GO:0071550 death-inducing signaling complex assembly 26.3 11.53

Cytotoxicity GO:0010942 positive regulation of cell death 66.7 10.03

GO:0019835 cytolysis 33.3 7.12

Homing
 GO:0050900 leukocyte migration 65.2 17.17

GO:0045123 cellular extravasation 30.4 10.21

Proliferation GO:0048872 homeostasis of number of cells 55.6 5.23

Immune suppression GO:0050863 regulation of T cell activation 65 16.04

GO:0007162 negative regulation of cell adhesion 45 9.41

Table 6.2: Modules’ GO terms enrichment.

6.3 Scoring functions in single-cell RNAseq data

6.3.1 Encoding

Together with Antonio Rausell, we tested 7 methods to encode each function in each cell,
ranging from a basic binary encoding to more sophisticated continuous encodings.

→ Binary encoding: the function is either present (1) or absent (0).

→ Seurat-inspired encodings: mean count of the module’s genes, either corrected [SFG+15]
(Seurat1) or left untouched (Seurat2).

→ CelliD-inspired encodings: mean inverse rank of the module’s genes given by the
GetCellGeneRanking function of the CelliD package [CMSR21] (CelliD1), or GSEA
score computed with the RunCellGSEA CelliD function (CelliD2), or distance to the
module barycenter in the space of MCA (Multiple Correspondence Analysis)(MCA).

→ Geometric encoding: geometric mean of the percentages Pij,i∈F of the module’s genes
F . Pij is the fraction of cells that have a smaller count than xij for gene i (xij is the
number of reads of gene i in cell j).
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Binary: For each cell, we removed the null counts, then we sorted the remaining
genes by their level of expression in a decreasing fashion and we discarded the bottom
half. Each function is coded by 1 if one of its genes is detected in the genes retained, and
0 otherwise.

binary_coding <- function(X, module_list, percentage) {
top_gene_expressed <- apply(X, 2, function(x) {

sorted_genes <- order(x, decreasing=T);

keep_nb <-length(x[x!=0])*percentage/100;

retain <- names(x)[sorted_genes][1:keep_nb];

return(retain)})
coded <- matrix(0, nrow=length(module_list), ncol=ncol(X))

rownames(coded) <- names(module_list)

colnames(coded) <- colnames(X)

for (i in names(module_list)) {
features <- module_list[[i]]

coded[i,] <- sapply(top_gene_expressed, function(x)

ifelse(any(features %in% x), 1, 0))

}
return(data.frame(coded))

}

Seurat1: The Seurat AddModuleScore function associates to each gene of a signature
a control set of genes from the same expression bin. The score of a signature is the mean
expression of the signature’s genes minus the mean expression of all the control genes.
The score is normalized so that is varies between 0 and 1.

AddModuleScore1 <- function(X, module_list, ctrl=100) {
features <- module_list

features <- lapply(features, function(x) {
missing.features <- setdiff(x, rownames(X))

return(intersect(x, rownames(X)))

})
cluster.length <- length(features)

pool <- rownames(X)

data.avg <- Matrix::rowMeans(X[pool, ])

data.avg <- data.avg[order(data.avg)]

data.cut <- cut_number(data.avg + rnorm(n = length(data.avg))/1e+30,

n = 24, labels = FALSE, right = FALSE)

names(data.cut) <- names(data.avg)

ctrl.use <- vector(mode = "list", length = cluster.length)

for (i in 1:cluster.length) {
features.use <- module_list[[i]]

for (j in 1:length(features.use)) {
ctrl.use[[i]] <- c(ctrl.use[[i]],

names(sample(data.cut[which(data.cut == data.cut[features.use[j]])],

size = ctrl, replace = FALSE)))

}
}
features.scores <- matrix(data = numeric(length = 1L), nrow = cluster.length, ncol = ncol(X))

for (i in 1:cluster.length) {
features.use1 <- module_list[[i]]

features.use2 <- ctrl.use[[i]]

tmp1 <- X[features.use1,]

tmp2 <- t(sapply(1:length(features.use1),

function(x) Matrix::colMeans(X[features.use2[(ctrl*(x-1)+1):(ctrl*x)],])))

features.scores[i, ] <- Matrix::colMeans(tmp1-tmp2)

}
rownames(features.scores) <- names(module_list)

colnames(features.scores) <- colnames(X)

return(features.scores)

}
seurat1_coding <- function(X, module_list) {

coded <- AddModuleScore1(X, module_list)

coded <- pbapply(coded, 1, function(x) {
tmp<-(x-min(x));

return(tmp/max(tmp))})
return(data.frame(t(coded)))

}
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Seurat2: We simply computed the mean expression level of all genes from each
module. The score is normalized so that it varies between 0 and 1.

AddModuleScore2 <- function(X, module_list) {
features <- module_list

features <- lapply(features,function(x) {
missing.features <- setdiff(x, rownames(X))

if (length(missing.features) > 0) {
warning("The following features are not present in the object: ",

paste(missing.features, collapse = ", "))

}
return(intersect(x, rownames(X)))

})
cluster.length <- length(features)

pool <- rownames(X)

features.scores <- matrix(data = numeric(length = 1L), nrow = cluster.length,

ncol = ncol(X))

for (i in 1:cluster.length) {
features.use <- module_list[[i]]

data.use <- X[features.use, , drop = FALSE]

features.scores[i, ] <- Matrix::colMeans(x = data.use)

}
rownames(features.scores) <- names(module_list)

colnames(features.scores) <- colnames(X)

return(features.scores)

}
seurat2_coding <- function(X, module_list) {

coded <- AddModuleScore2(X, module_list)

coded <- pbapply(coded, 1, function(x) {
tmp<-(x-min(x));

return(tmp/max(tmp))})
return(data.frame(t(coded)))

}

CelliD1: CelliD ranks all genes in each cell according to their distance to the cell in
the MCA space. CelliD1 computes the mean inverse rank, so that a higher score means
a higher expression of the function. The scores are normalized afterwards, to restrict the
range to the interval [0, 1].

cellid1_coding <- function(X, module_list) {
seurat <- Seurat::CreateSeuratObject(X)

ranking <- CellID::GetCellGeneRanking(seurat, dim=seq(30))

max_rank <- length(ranking[[1]])

coded <- pbsapply(module_list, function(y) {sapply(ranking, function(x) {
sum(max_rank+1-which(names(x) %in% y))/length(y)})})

coded <- data.frame(coded)

colnames(coded) <- names(module_list)

return(data.frame(t(coded)))

}

CelliD2: CelliD2 uses the rankings computed in the MCA space to perform GSEA.
The scores are also normalized afterwards to the interval [0, 1].

cellid2_coding <- function(X, module_list) {
seurat <- Seurat::CreateSeuratObject(X)

GSEA <- CellID::RunCellGSEA(seurat, pathways = module_list, minSize=1, dim=seq(30))

ES_matrix <- GetGSEAMatrix(GSEA, metric = "ES")

coded <- data.frame(ES_matrix[,rownames(seurat@meta.data)])

coded <- coded[names(module_list),]

return(coded)

}

MCA: The barycenter for each function is defined in the MCA space as the barycenter
of its genes. The MCA scores represent the distance between each cell and the barycenter
of a given function in the MCA space. Afterwards, the score is normalized and inverted,
in order to be maximal for a high expression of the function.
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distance_to_barycenter <- function(matrix, barycenters) {
dist_mat <- sapply(1:ncol(barycenters), function(y)

sapply(matrix, function(x)

dist(rbind(t(x),t(barycenters[y])))))

return(dist_mat)

}
mca_coding <- function(X, module_list) {
seurat <- Seurat::CreateSeuratObject(X)

seurat <- NormalizeData(seurat)

seurat <- ScaleData(seurat, features = rownames(seurat))

seurat <- RunMCA(Baron)

coordinates <- seurat@reductions$mca

archetypes <- data.frame(pblapply(module_list, function(x) {
genes_common <- x[x %in% rownames(coordinates@feature.loadings)];

return(ifelse(rep(is.null(dim(coordinates@feature.loadings[genes_common,])),

50),

coordinates@feature.loadings[genes_common,],

colMeans(coordinates@feature.loadings[genes_common,])))}))
coordinates <- cbind(t(coordinates@cell.embeddings), archetypes)

df <- data.frame("MCA1"=unname(t(coordinates[1,])),

"MCA2"=unname(t(coordinates[2,])),

"Cell"=sapply(colnames(coordinates), function(x)

ifelse(x %in% gsub("-",".",names(module_list)),x,"normal")),

"Cell2"=sapply(colnames(coordinates),function(x)

ifelse(x %in% gsub("-",".",names(module_list)),

"archetypical",

"normal")))

#ggplot(df, aes(x=MCA1, y=MCA2, color=Cell)) + geom_point()

#ggplot(df, aes(x=MCA1, y=MCA2, color=Cell2)) + geom_point()

# Get distances

coded <- distance_to_barycenter(data[,1:ncol(seurat)],data[,(ncol(seurat)+1):ncol(data)])

colnames(coded) <- names(module_list)

return(t(coded))

}

Geometric: I computed Pij, the fraction of cells that have a smaller count than xij

for gene i, and I took the geometric mean of one module’s percentages Pij,i∈F .

geom_mean <- function(matrix, gene_set) {
filter_matrix <- matrix[gene_set,]

product <- apply(filter_matrix, 2, function(x) prod(x, na.rm = T))

return(nthroot(product, length(gene_set)))

}
percentage_coding <- function(X, module_list, ctrl=20) {
features <- module_list

features <- lapply(features, function(x) {
return(intersect(x, rownames(X)))

})
cluster.length <- length(features)

pool <- rownames(X)

data.avg <- Matrix::rowMeans(X[pool, ])

data.avg <- data.avg[order(data.avg)]

data.cut <- cut_number(data.avg + rnorm(n = length(data.avg))/1e+30,

n = 24, labels = FALSE, right = FALSE)

names(data.cut) <- names(data.avg)

ctrl.use <- vector(mode = "list", length = cluster.length)

for (i in 1:cluster.length) {
features.use <- module_list[[i]]

for (j in 1:length(features.use)) {
ctrl.use[[i]] <- c(ctrl.use[[i]],

names(sample(data.cut[which(data.cut == data.cut[features.use[j]])],

size = ctrl, replace = FALSE)))

}
}
ctrl.use <- unique(unlist(ctrl.use))

pool2 <- unique(c(ctrl.use, unique(unlist(features)))) # Reduce the size to speed the computation

coded1 <- pbapply(X[pool2,], 1, function(x)

sapply(x, function(y) mean(y<x, na.rm = T)))

rownames(coded1) <- colnames(X)

coded2 <- data.frame(t(pbsapply(module_list,function(x) geom_mean(coded1,x))))

return(data.frame(t(coded2)))

}
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I evaluated the proximity between the 7 encodings described above, looking at the
Spearman correlation on the data provided by the SingleR MonacoImmuneData func-
tion. All correlations were reassuringly positive, but below 0.5 except for the 4 encodings
Seurat1, Seurat2, CelliD1 and CelliD2. MCA and binary encodings were the most dissim-
ilar, with mean Spearman correlation to the other encodings of 0.16 and 0.23 respectively,
shortly followed by the geometric encoding (mean correlation of 0.27), Seurat1 (mean cor-
relation of 0.48), Seurat2 (mean correlation of 0.49), CelliD1 (mean correlation of 0.50)
and CelliD2 (mean correlation of 0.51) (Figure 6.5).
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Figure 6.5: Spearman correlation between the 7 encoding methods.

6.3.2 Control with bulk RNAseq data

We performed a positive control of our encoding methods using bulk RNAseq data. I
collected bulk RNAseq data from pure populations, using the data provided with the
MonacoImmuneData function from the SingleR package. I could test BC-help by extract-
ing the scores for Tfh, cytotoxicity by extracting the scores for CD8+ T cells, immune
suppression by extracting the scores for Treg, and homing by extracting the scores for
memory T cells. The positive control proved useful, as it allowed to eliminate meaningless
encoding methods: we could not validate the binary, MCA and geometric methods. Bi-
nary encoding showed no difference between the two cell populations in any of the 4 tests.
MCA encoding could not retrieve the proper trend when testing BC-help and homing.
Geometric encoding showed no difference for the BC-help and the immune suppression
test (Figure 6.6).

For the next steps, I will only continue to test the 2 Seurat and the 2 CelliD encodings.
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Figure 6.6: Testing the functional encoding methods with pure bulk populations. (a) The BC-
help module is expected to score higher in Tfh. (b) The cytotoxic module is expected to score
higher in CD8+ T cells. (c) The immune suppression module is expected to score higher in Treg.
(d) The homing module is expected to score higher in memory T cells.

6.4 Assessing the added value of the functional modules

I used the following datasets for my experiments: GSE99254 [GZZ+18], GSE108989
[ZYZ+18], GSE98638 [ZZY+17]. They are respectively from NSCLC, colorectal cancer
and liver cancer patients, contain the tumor, juxtatumor and blood tissues, and were
sorted before the sequencing into 4 populations: CD8+, CD4+CD25low, CD4+CD5medium

and CD4+CD25high cells. With these datasets, I have been verifying that the functional
modules approach would bring new information, as compared to ground truth or cluster
labels.

First I quantified the fraction of the information in the data brought by the 172
effector genes, by evaluating the variance explained by the functional genes, as opposed
to the variance explained by random genes from the same expression bin in the PCA, the
MCA or the UMAP spaces. The effector genes explain a higher fraction of the information
contained in the first 50 PCs, as compared to the same number of random genes (Figure
6.7). Visually, the projection seems to remain meaningful if calculated from the PCA or
the MCA coordinates obtained using only effector genes as compared to random genes
from the same expression bin (Figure 6.8).

From Figures 6.7 and 6.8, we concluded that the effector genes represent a reasonable
amount of the information contained in the scRNAseq count matrix. Furthermore, intu-
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Figure 6.7: Variance explained by functional genes exceeds variance explained by the same
number of random genes from the same expression bin.

Figure 6.8: UMAP computed from the PCA (first 3 rows) or MCA (second 3 rows) spaces,
using all genes (first column), effector genes (second column) or random genes (third column).
Visually, the UMAP computed from the PCA and with the effector genes is similar to the one
computed with all genes, while the one with random genes is completely different.
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ition based on the UMAP projection, either regular UMAP or MCA-based MCUMAP,
seems promising.

6.4.1 Mutual information between ground truth labels and module scoring

We selected the 3 datasets described above as they contain T cells from the TME and they
display ground truth labels that are suited for our experiments, since they sorted cytotoxic
CD8+ cells and regulatory CD4+CD25high cells, that will help us guide our exploration.

We checked the overlap between ground truth labels and functional encodings by
trying to fit a generalized linear model for binomial data between the latter. We could
not validate any of these models, based on their p-value that were all above 0.05. We
also computed the silhouette score, using ground truth labels and UMAP coordinates
computed using the effector genes, with the caveat that silhouette should work best for
convex clusters. Here again, it is another proof that there is no information shared between
ground truth labels and functional modules, with low silhouette scores (0.043, −0.029 and
0.081 resp. for GSE99254, GSE108989 and GSE98638, Figure 6.9).

Figure 6.9: Ground truth labels are mixed in the effector genes UMAP.

Lastly, we can visualise the encoding directly on the classical UMAP computed with
all genes. We observed that while some functions, such as immune suppression, exhibit
a gradient along a given direction of the 2D UMAP projection, it is not the case for all
functions, such as proliferation (Figure 6.10).

6.4.2 Mutual information between cluster labels and module scoring

We did a second sanity check in order to assess the novelty of the functional encoding
approach: we evaluated the overlap between unsupervised cluster labels and modules
encoding.

The first control that we conducted has been to quantify the mutual information
between PCA coordinates and encodings (and not simply the raw effector genes as done
in section 6.4). I compared encodings to PCA coordinates since the latter are a com-
mon ingredient for clustering, trajectory inference or visualisation algorithms. I used a
straightforward linear model, and assessed its validity:

ScoreF ∼
20
∑

i=1

αiPCi
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Figure 6.10: Some functions do not mix on the classical UMAP projection, while some others
do.

where ScoreF is a cell function encoding, PCi is the cell coordinate vector of the i-th PC
and αi the associated coefficient in the linear model. Again, no model has been validated
on the basis of R2 values above 0.9.

The second control that we did has been to evaluate (i) whether the difference in
functional module scores between clusters was not significant (or less significant than
by chance), which could mean that cells with similar functional patterns would be clus-
tered separately, and (ii) whether the intra-cluster variance is higher than by chance for
each function, which could mean that cells with differential functional patterns would be
regrouped in the same cluster. I used the cluster labels provided by the authors of the
different datasets, that they obtained from an unsupervised analysis of their data. For test
(i), we verified for each encoding method and the 3 datasets (but we show only GSE99254
and a subset of 2 functions for the sake of space) that the scores were on average more
similar across clusters than expected (Figures 6.11, 6.12).

For test (ii), we also verified that the intra-cluster variance is higher than expected
on average (Figure 6.13).

From the results of these tests, it confirms the hypothesis that the functional encoding
approach is innovative as compared to the unsupervised analysis pipeline.
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Figure 6.11: Encoding scores distribution for 2 functions in dataset GSE99254.

Figure 6.12: Inter-cluster differences are smaller for functional encodings than expected on av-
erage.
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Figure 6.13: Intra-cluster differences are higher for functional encodings than expected on aver-
age.

6.5 Mapping tumoral T cells functions

For a first glance of the data and the encodings, we looked at the fraction of cells positive
for each single function, as a function of the tissue of origin. We deemed a cell as positive
if its score for a given function was above 0.5. The first observation that we made is that
cells in the tumor are more functional than in the juxtatumor, in the sense that there
is a higher proportion of cells positive for single functions in the tumor, with an average
surplus of 0.49% of cells in the tumor as compared to the juxtatumor, across encoding
methods and datasets (Figure 6.14).

Regarding reproducible trends across all datasets and encodings, there is a higher
fraction of cells exerting immune suppression, or DC or MM attraction in the tumor than
in the juxtatumor (Figure 6.14).

6.5.1 Barcoding cells

Although it is possible to barcode cells individually, we chose to implement clustering
in the first instance, in order to be able to give an overall picture of the data. For the
clustering, I considered 4 methods using the Seurat [SFG+15] clustering function based
on the Louvain algorithm, except the last one for which I used the CiteFuse package
[KLG+20] and the Louvain algorithm:

→ classical unsupervised clustering (method 1),

→ unsupervised clustering using only functional effector genes (method 2),

→ clustering on the scores for the 15 modules (method 3),
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Figure 6.14: Fraction of cells positive for each function for the 4 encoding methods and 3 datasets.
GSE99254 (a), GSE108989 (b) and GSE98638 (c). "Regulation" stands for immune suppression.
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→ consensus clustering, using the RNA and the encoding information (method 4).

The first method quickly turned out to not be valid, since we already proved that
classically obtained clusters could not overlap with the functional information brought
by the encodings. Hence functionally barcoding these clusters is meaningless. Regarding
the second method, we realised that its labels were quite in agreement with the labels
obtained via the first method, so we assumed it was not a good strategy either (Figure
6.15). The third and forth methods were also in agreement with each other, and differed
from the first 2 methods (Figure 6.15), with the advantage of the third being more scalable,
but the forth probably more informative. We decided to use the forth method, but we
did not rule out the possibility to use later the encoding-based clustering because of the
problematic scalability of the consensus clustering method that we used, especially in a
context where dataset cardinality is increasing fast: the limiting factor is the construction
of the consensus affinity matrix based on the similarity network fusion method [WMD+14].
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Figure 6.15: Similarity, using the ARI, between the 4 clustering methods listed.

6.5.2 Interpretation

To barcode the different clusters obtained with the forth method, we opted for a straight-
forward manner, considering clusters as positive for a function if the median cluster score
for this function is above 0.5 for the Seurat encodings, or 0.6 for the CelliD encodings.
We chose these thresholds based on the scores distribution (Figure 6.16).

Based on these choices, we investigated functional barcodes in order to compare the
juxtatumoral versus the tumoral tissues. We decided to discard the Seurat encodings at
this step because they were not informative: most of the clusters could not be functionally
barcoded, as they were mostly negative for all functions, and the few positive clusters
would be positive only for a single function (cytotoxicity for Seurat1, AMP, homing, or
TC-attraction for Seurat2). We also excluded for now CelliD2 encodings on the basis of
the UMAP projection (Figure 6.17).

For the CelliD1 encoding, we noticed the following trends: a slightly above-average
number of clusters are more enriched in the tumor compared to the juxtatumor (58% in
average, being 64%, 45% and 56% of the clusters in GSE99254, GSE108989 and GSE98638
respectively). Together with the fact that the Gini index is repeatedly higher for the
juxtatumor than the tumor, it is indicative of a higher functional diversity in the tumor
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Figure 6.16: Distribution of the scores for the 4 encoding methods and 3 datasets. GSE99254
(a), GSE108989 (b) and GSE98638 (c).

than in the juxtatumor. This is coherent with previous observations of a higher spread
(termed "phenotypic volume") of the phenotypes in the tumor compared to healthy tissue
[ACP+18]. The mean number of functions exerted in a cluster is of 5 for clusters enriched
in the juxtatumor and 6.2 for clusters enriched in the tumor. Additionally, we observed
that functional patterns are more conserved across tumoral than juxtatumoral tissues:
out of the 14 clusters that were enriched in the juxtatumor compared to the tumor, only
1 was common to GSE99254 and GSE98638, while out of the 14 tumor-related clusters,
3 were common to 2 datasets and 1 to the 3 datasets. This is aligned with the idea that
cancer types share hallmarks [HW00, HW11]. Lastly, we observed 5 cluster types that
would be enriched in the tumor of one dataset and in the juxtatumor of another dataset.
Notably, the conflicts were always with the NSCLC article (GSE99254).

Regarding individual clusters, the tumor was enriched in clusters exerting immune
suppression and homing at the same time, and MM attraction. Furthermore, we can study
the correlations between the functions in the tumor or the juxtatumor. We observed that
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Figure 6.17: UMAP computed on the consensus matrix, with consensus clustering labels (showing
GSE99254).

there is a stronger intertwining of functions in the tumor as compared to the juxtatumor,
especially for the immune suppression, the MM-help and -attraction functions (Figure
6.18).
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Figure 6.18: Functions are differentially correlated according to the tissue of origin.

6.6 Conclusion

We propose a novel supervised approach to analyse scRNAseq datasets of T cells. We
suggest this approach in the conceptual frame of proposing a new classification of T cells
based on their functions, as a way to challenge the current lineage paradigm.

First, we defined T-cell-related functions, outlining 15 of them: 4 help functions to-
ward B cells, dendritic cells, monocytes-macrophages and T cells, 4 attraction functions
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towards the same 4 subsets, anti-microbial peptide production, antiviral, apoptosis, cyto-
toxicity, homing, immune suppression and proliferation. I selected from the literature all
genes that were effector for those functional modules.

Then, I verified that the supervised approach would not overlap with the unsupervised
one, by quantifying the fit between the two approaches. I tested 7 methods to score the
functional modules in each cell. The agreement was negligible between the supervised
and unsupervised strategies. It was evaluated either by linear models between classical
labels and encoding information, or by looking at the inter- and intra-cluster encoding
variance in order to assess the possibility of having cells with similar functional patterns
in different clusters, or cells with different functional patterns in the same cluster.

With our onco-immune datasets, we could explore the differences between the tumor
and juxtatumor. We observed that the tumor exhibited a higher number of functions,
in the sense that more cells exert functions and cells exert also more functions in the
tumor than in the juxtatumor [ACP+18]. Tumoral cells were also more scattered across
a higher diversity of clusters, while tumors are more conservative with regard to their
functional patterns across cancer types [HW00]. However, some functional patterns are
found alternatively enriched in the juxtatumor or in the tumor. Lastly, the tumor is
globally more immune suppressing and attracting other immune cells than the juxtatumor
which looks more like a dormant tissue.

The functional approach offers the following benefits: first of all it is supervised. In
order to establish trust in our signatures, I verified whether it was in agreement with GO
terms, and I did a positive control with bulk RNAseq data. Thus, making the assumption
that the signatures were sufficiently carefully curated, the supervised approach avoids
the tedious exploration step. Secondly, it simplifies the interpretation of the data with
a straightforward reading of the functions and the functional patchworks present in the
data. Thirdly, it simplifies the comparison across datasets, as we did with the 3 datasets
that we tested.

6.7 Perspectives

However, we believe our method could be further improved, especially the last steps. In
particular, we should test alternative ways to barcode clusters. We chose to use a thresh-
old on the median function score, but we could explore other ways: for example, it would
be interesting to use at least a fuzzy threshold or to find a solution to retain quantitative
information regarding the magnitude of the score. Investigate more extensively barcod-
ing methods could enable to explore more in depth Seurat encodings, that we discarded
since they were not informative with our barcoding method. We also chose one clustering
method, the consensus method, as we deemed it as more informative. First, we could
explore why the consensus clustering agrees strongly with the encoding-based clustering,
while it does not with the classical clustering, although we suspect it is due to similarity
networks having a higher weight for encodings than for the RNA information. Second, we
could also try to label the clusters we obtained with the RNA information, notwithstand-
ing the supervised approach we implement here, in order to further characterize the added
value of our novel approach. Third, we did not exploit here the advantage of scRNAseq
which is to work at the single-cell scale. It should be one of the key focus to improve the
method.

We also discussed in the introduction the fact that the RNA information would often
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be used as a proxy for the missing protein information. Our approach relies fully on the
assumption that the presence of the RNA of an effector gene indicates the corresponding
functionality. Hence, all computational findings should be carefully confirmed at the
bench.
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Chapter 7

Meta-analysis of regulatory T cells in

cancer: highlighting their prognostic

role in a context-dependent manner

7.1 Rationale behind the meta-analysis

Since the different experimental articles or the reviews published on the role of regulatory
T cells with respect to cancer prognosis could not reach a consensus, we deemed that
integrating additional parameters could help resolve the inconsistency of the results. In
particular, and echoing with the context-dependant plasticity and heterogeneity of these
cells, we decided to describe the context simultaneously with the effect of Tregs.

We collected several parameters that could be useful to describe the context: the
treatment, the technique used to quantify Tregs, the markers used to delineate the popu-
lation as well as additional proteins detected in Tregs, and the cells associated negatively
or positively to Tregs. We first attempted at drawing a clearer picture of the markers used
to delineate Tregs in cancer studies. We then used 3 parameters to evaluate the impor-
tance of the context interplay with Tregs’ role in cancer prognosis: the markers used to
define Tregs or Tregs subsets, the tissue in which Tregs were quantified and whether the
quantification was raw or a ratio of Tregs to another immune population. We also selected
5 cancer types, according to their consensus on Tregs’ prognostic role: rather positively
linked to prognosis (gastric and colorectal cancers), rather negatively linked (breast and
Non Small Cell Lung cancers) or unclear (ovarian cancer). For each parameter, we evalu-
ated whether taking it into account would improve the consensus, and whether we could
outline precise conclusions regarding specific subsets or tissues for example.

It proved useful as it helped improve the consensus of the different studies included in
the meta-analysis, and provided guidelines on how to better understand Treg prognostic
role. Namely, the activated subset (CD45RO+ Tregs) was consistently negatively linked
with cancer prognosis, for all cancer types. This analytical strategy can be replicated for
other immune cells for which their role is ambiguous, such as Th17 cells.

7.2 Article
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8

Abstract Assessing cancer prognosis is a challenging task, given the heterogeneity of the9

disease. Multiple features (clinical, environmental, genetic) have been used to serve this purpose.10

The Tumor Immune MicroEnvironment (TIME) is one of those key features, and describing the11

impact of TIME numerous components on cancer prognosis is an active field of research. Using12

the human TIME to assess prognosis is difficult, given the complexity of the context within the13

tumor micro-environment, with the example of regulatory T cells (Tregs). Tregs have a seemingly14

ambiguous prognostic role, characterized as negative, positive or neutral across studies.15

Focusing on five different cancer types (breast, colorectal, gastric, lung and ovarian cancers), we16

clarified how to define Tregs and use them to assess cancer prognosis by taking into account the17

context through the following parameters: the Treg subset, their anatomical location, and their18

neighboring cells. With the meta-analysis of these three parameters, we were able to clarify Tregs19

clinical role by recontextualizing them: we could delineate the fact that CD45RA- Tregs had a20

reproducible negative effect on prognosis across cancer types, and also better understand the21

meaning of the anatomical location of Tregs as well as neighboring cells on deciphering their22

prognostic value. Thus, we made a contribution to the question whether Tregs’ role depends on23

the cancer type or not by favoring the pan-cancer answer. Additionally, we set up guidelines to24

improve the design of future studies addressing the physiopathological role of Tregs in cancer.25

26

Introduction27

In the last decades, cancer research has been strongly focusing on immunity in order to disentan-28

gle the links spanning the Tumor Immune MicroEnvironment (TIME), to resolve the mutual inter-29

actions and understand why immune cells fail to eradicate malignant tumors. In particular, the30

field of immunotherapy has been growing fast, with the goal of boosting the immune system in31

fighting cancer cells. There is evidence showing that the TIME plays a key role in predicting clinical32

evolution in humans, from tumorigenesis [Hanahan and Weinberg, 2011, Bissell and Hines, 2011]33

to global prognosis [Hsu et al., 2010, Tosolini et al., 2011], risk of metastasis [Olkhanud et al., 2011,34

Toh et al., 2011], and response to treatment [Binnewies et al., 2018]. Some TIME features, such35

as the Immunoscore, are used in the clinic and at the bench to classify tumors [Galon et al., 2012,36

Thorsson et al., 2018] formany different cancer types: prostate, breast, lung, colorectal, melanoma,37

among others.38

Many reviews are summarizing the prognostic role of immune cells from the TIME or the periph-39

eral circulation in different cancer types [Fridman et al., 2012, 2017, Ahrends and Borst, 2018]. In40
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Fridman et al. [2012], they are summarizing the role of the following immune cell subsets: cyto-41

toxic CD8+ cells, T helper CD4+ cells as well as regulatory T cells (Tregs). For each of the different42

populations, the authors list the articles establishing a link between immune cell type and cancer43

prognosis (positive, negative or neutral) in patients. It appears that Tregs have a very versatile and44

themost ambiguous prognostic role: depending on the cancer type and on the study, Treg is either45

a good or bad prognostic factor, or has no impact.46

The role of Tregs is indeed highly complex: it contributes to the maintenance of peripheral toler-47

ance and suppress auto-immunity and inflammation, but is also preventing anti-tumor immunity.48

It is a population characterized by its strong heterogeneity.49

One source of heterogeneity is their origin. A portion of Tregs originates from the thymus and is50

released into the peripheral circulation: the thymic or natural Tregs (nTregs) [Curotto de Lafaille51

and Lafaille, 2009]. The remaining population of Tregs develops after stimulation of naive periph-52

eral CD4+ T cells under specific conditions of antigen exposure and co-stimulation and is described53

as peripheral or induced Tregs (pTregs or iTregs). In humans, nTregs exhibit a demethylation of54

the Treg-specific demethylated region (TSDR) of the Foxp3 promoter which leads to a very stable55

expression of FOXP3; freshly differentiated iTregs and pTregs, on the other hand, are methylated56

at the TSDR [Mohr et al., 2018], explaining a more plastic phenotype compared to nTreg and a57

more volatile commitment to the regulatory lineage, although chronically stimulated iTregs are58

also demethylated at the TSDR. In the context of cancer, the claim is that the majority of tumor-59

infiltrating Tregs are mostly pTregs, diverted to a regulatory phenotype by the local microenviron-60

ment [Xydia et al., 2021].61

A second source of heterogeneity lies in the variety of suppressing mechanisms: Tregs might ex-62

ert their functions on Antigen Presenting Cells (APCs) or other T cells, in a contact-dependent or63

-independent manner. When targeting APCs, Tregs are able to induce them to be poor antigen64

presenters. This modulation of APC phenotype leads further to CD4+ T cells developing a regu-65

latory phenotype and impaired response of CD8+ T cells. Tregs are also able to interact directly66

with effector T cells, via various mechanisms: they can either kill T cells by releasing perforins or67

granzymes [Grossman et al., 2004], impair their functions by releasing inhibitory cytokines such68

as IL-10, IL-35 [Liu et al., 2011], and TGF-� [Nakamura et al., 2001], or perturb their metabolism.69

Each of these mechanisms is elicited by context-specific cues, thus triggering a myriad of modes70

of action for regulation, and expanding further Tregs’ diversity.71

Tregs can also be dissected into subsets with a higher or smaller potential for suppression, whose72

power is eventually targeted towards specific cell populations such as Th1, Th2, Th17, Th22, etc.73

In the context of cancer, Tregs are key players since they might modulate host response to the74

tumor, as well as host response to therapies: they can either be a crucial target for therapy or75

jeopardize or improve the response to treatments directed toward other cell types.76

In the present meta-analysis, we aimed at clarifying the role for Tregs with regard to human cancer77

prognosis, by adopting a context-dependent approach to the problem. To the best of our knowl-78

edge, the context was never put on center stage in any of the past studies, while the tumor itself79

is usually extensively considered: tumor site, type, or stage for example [Shang et al., 2015]. Also,80

the fact that Tregs are often poorly defined [Frydrychowicz et al., 2017, Whiteside, 2014, 2019] is81

usually overlooked. Most of the articles investigating the prognostic role of Tregs would study ei-82

ther the size of the Treg compartment, comparing its variations at different stages of the disease83

or against healthy controls, or its ratio to another given cell population (immune or not), and ne-84

glect the diversity of Tregs. Here, we wanted to exploit different parameters, which relate to Tregs85

context, to better understand their role in prognosis. Namely, we fetched, whenever possible, the86

following parameters: i. the markers used for Treg definition, ii. the anatomical location, iii. the87

technique used to identify Tregs, iv. the study of cells in the same local environment as Tregs, that88

we called neighboring cells.89

First, we checked if there is a consensus in the cancer literature on which Treg markers to use.90

Then we investigated the link between Tregs, their context and cancer prognosis, to see whether91
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we could improve the consensus on the prognostic role of Tregs and thanks to which parameter.92

Results93

Treg definition is fuzzy in human cancer literature94

While parsing the human Treg literature, we found that there was no strong consensus on the95

markers used to define Tregs. In mouse, FOXP3 is an unequivocal marker for Tregs, whereas hu-96

man FOXP3 is also expressed transiently by effector cells or by ex-Tregs [Allan et al., 2007, Sharma97

et al., 2013, Wang et al., 2007], and some Treg subsets do not express it at all [Otsubo et al., 2011,98

Boldt et al., 2014] or at low levels [Miyara et al., 2009]. Historically, the definition of Tregs is func-99

tional: they were first described as T cells that were regulating immunity by exerting suppression,100

thus even including the possibility of CD8+ Tregs [Endharti et al., 2005, Chaput et al., 2009]. But this101

functional description comprises heterogeneous sub-populations: there is both an ontogenic and102

a phenotypic heterogeneity, linked to a plethoric diversity in functions [Miyara et al., 2009].103

In our analysis, we focused on human studies and in order to span the whole spectrum of Treg104

prognostic values, we decided to study five cancer types: Tregs from breast and lung cancers (Non105

Small Cell Lung Cancer, NSCLC) are negatively associated with the clinical outcome, while it is the106

opposite for gastric and colorectal cancers, and there is seemingly no gain in using Tregs for prog-107

nostic application in ovarian cancer Fridman et al. [2017]. We decided to focus only on CD4+ Tregs,108

since there was not enough material to investigate CD8+ Tregs’ role in cancer: we found only three109

articles about CD8+ Tregs [Arruvito et al., 2014, Waniczek et al., 2017, Chakraborty et al., 2017] and110

one about CD4+CD8+ Tregs [Sarrabayrouse et al., 2014] among the 341 articles that we analyzed111

(second red stage in Figure 1).112

To evaluate the strength of the consensus for Treg definition, we pooled all articles for the five113

cancer types mentioned above, for a total of 129 publications (n=23, 27, 24, 35 and 20 articles for114

breast, colorectal, gastric, lung, and ovarian cancers, respectively, seeMethods for article selection,115

Supplementary Table 1 and Figure 1).116

PubMed search:
"Humans"[Mesh] +

"T-Lymphocytes,Regulatory"[Mesh] +
"Treg"[Title/Abstract] OR "regulatory"[Title/Abstract] +

cancer of interest

n=180, 182, 83, 163, 96

First filter: Impact Factor > 2

n=81, 76, 47, 87, 50

Second filter: exclusion criteria (see Methods)

n=23, 27, 24, 35, 20

Figure 1. Article selection strategy. n represented the numbers of articles retained at each step, listed as
follow: breast, colorectal, gastric, lung and ovarian cancers.

Aiming at outliningmarkers for the regulatory population, we removed the articles that were fo-117

cusing on subsets only, to end up with a total of N=112 articles studying the whole Treg population.118

Regarding Treg detection methods, we distinguished two methods: either Fluorescence-Activated119

Cell Sorting (FACS) for 60% of the publications or ImmunoHistoChemistry (IHC) and whether it was120
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Figure 2. Treg markers used to identify Tregs in the cancer literature. (a) The heatmap draws a better
comprehension of the commonly used markers and combinations of them for Treg definition, based on 112
articles from the cancer literature. Each row stands for a marker and each column for an article. The heatmap
on the left recapitulates markers used in FACS along with a clustering on the markers in order to recapitulate
common co-occurrences. The right heatmap summarizes markers used in IHC. It also displays whether the
suppressing capacities of Tregs were tested in a functional assay, and from which tissue the Tregs come from.
(b) Histogram of number of articles included per cancer type (left), normalized histogram per cancer type,
with the color referring to the technique used for Treg detection and the tissue of origin (right). (c) Lollipop
graphs depicting the magnitude of use of each Treg marker, depending on cancer type, technique for Treg
detection and tissue of origin.

coupled with a working suppression assay (Figure 2a). Respectively 41% and 5% of the studies121

based on FACS and IHC performed a conclusive suppression assay. CD4 and CD25 were routinely122

used markers for FACS studies, as well as CD127 and the transcription factor FOXP3.Furthermore,123

the combination of CD4 and CD25 was very common. Regarding other markers, such as CXCR5 or124

CD69, their use was more anecdotal, and they were always used in combination to one or more of125

the classical markers CD4, CD25 and FOXP3. Some studies applied thresholds on the expression126
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of certain markers: e.g. 29% of the FACS articles in which Tregs were detected with CD25, used127

CD25high instead of CD25+, and 25% used CD127low instead of CD127-. For IHC, the ubiquitous128

marker was FOXP3, with a sparse use of CD4 and CD25. The only study that did not use FOXP3129

to delineate Tregs, but CD4 and CD25, did so as the authors were investigating the expression of130

FOXP3 not only in Tregs but also in cancer cells [Kim et al., 2013]. The use of multiple markers is131

also notably rare for IHC, due to technical challenges.132

We consecutively studied individual cancer types. Keeping in mind that we could not collect the133

same amount of articles for each cancer (Figure 2b, left panel), we first noted that within each can-134

cer type, there was an equal proportion of articles using FACS or IHC for Treg detection. The only135

exception was lung cancer, since a larger fraction of related articles relied on blood samples, i.e.136

using FACS only (Figure 2b, right panel). Across cancer types and for IHC, the consensus was on137

a generalized use of FOXP3 staining. Regarding FACS, the diversity of markers was broader, with138

some studies using a high number of markers: e.g. the lung and colorectal studies, using respec-139

tively 9 and 6 different markers across studies. In fact, there was a strong correlation between the140

number of FACS articles and the number of markers used per cancer type (R2=0.94, p-value=0.005,141

Pearson correlation, Supplementary Figure 1). Interestingly, we observed that FOXP3 was not com-142

monly used to define Tregs with FACS in breast cancer, as compared to the other four cancer types:143

it was used in less than half of the articles. Lastly, there was no strong difference in Treg definition144

between blood and tissue Tregs (Figure 2c).145

To conclude on the phenotypic definition of Treg in cancer studies, the consensus was clear for146

IHC-stained Tregs, while it was more blurred for FACS studies. FOXP3 is a popular marker, as well147

as the combinations of CD4/CD25 or CD4/CD25/FOXP3, with a conclusive use of a threshold, either148

on the expression of CD25 or CD127.149

Context-dependent prognostic role of Tregs150

This meta-analysis focused on the importance of the context, in terms of neighboring cells and151

anatomical location, and aimed at deciphering the contextual prognostic effect of Tregs in can-152

cer. We studied independently 3 context-related parameters: the investigated Treg population,153

the anatomical location, and the Treg quantification method. We first evaluated whether we could154

improve the consensus on the prognostic role of Treg, considering successively the information155

brought by each of these three parameters, and each cancer type separately. Then, we tried to156

establish whether a higher granularity, considering a peculiar parameter, could lead to more re-157

producible conclusions on the link between Tregs and cancer across cancer types. Of note, we158

included in our meta-analysis n=3996, 6040, 2015, 2359, and 1754 patients from the combined159

studies for breast, colorectal, gastric, lung and ovarian cancers respectively.160

Treg prognostic role depends on the Treg population161

The lack of a harmonized combination of markers to delineate Tregs increased the difficulty in162

drawing conclusions about their role in cancer and their prognostic impact. A second pitfall comes163

from the fact that some studies only looked at specific regulatory sub-populations. We decided to164

evaluate how much the study of Treg subsets (Figure 3a) could help in increasing consensus on165

Treg prognostic role, stratifying the data on cancer types. Depending on the cancer type, we did166

not have the same extent of subsets’ studies: for the ovarian cancer, we could not find any article167

focusing on subsets (Figure 3b), so we did not investigate this further. To measure the consensus168

on prognosis between different studies, we used the normalized Shannon entropy, or rather one169

minus the entropy, and the Fleiss’ kappa, in order to quantify the agreement. To do so, we used170

a three-step approach: i. we considered all studies for one cancer type simultaneously, ii. we171

considered only the studies claiming to investigate the whole Treg population and iii. we computed172

the Shannon entropy and the Fleiss’ kappa separately for each Treg subset and calculated the173

weighted mean, the weights being the number of patients. In the calculation of this mean, the174

whole Treg population was counted as a subset. The agreement coefficient ranges between 0 and175
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1, and is close to 1 if there is a consensus, or close to 0 if there is not. Our results show that there176

is no clear trend whether we considered all studies together, or whether we only took the studies177

using the global Treg population. But there is a clear increase of consensus if we consider themean178

of the entropy for each subset (Figure 3c, Supplementary Figure 2). This implies that looking only179

at Treg subsets might explicitly improve the link between Tregs and cancer prognosis.180
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Figure 3. Subset diversity in cancer Tregs. (a) Summary of the various Treg subsets studied in the cancer
literature used in this meta-analysis. (b) Frequency of articles studying either Treg as a whole or a specific
subset. (c) One minus the normalized Shannon entropy for each of the five cancer types, and for each case:
all articles together (dark blue), only the articles looking at the whole Treg population (dark green), mean of
the entropies calculated for each population type (yellow). d) Pie chart of the prognostic impact of Tregs, as a
function of the type of population used in the analysis, for each cancer type. Each numbered portion is an
article and its size reflects the number of patients included in the study. e) Barplot showing the prognostic
evaluation of Tregs from articles using either CD25high (right), CD25+ (middle), or no CD25 (left) to delineate
Tregs.

Interestingly, none of the articles looking at Treg subsets found a neutral role for Tregs in cancer181

prognosis. Also, all subsets with an activated or similar phenotype, aswell as the resting population182
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(Figure 3a) were all negatively linked to the prognosis, independently of the cancer type (Figure183

3d). However, subsets-focused studies represented a small fraction of the global cohort size in184

each cancer type (<1%, 2%, 7%, 23% for breast, colorectal, gastric and lung cancer respectively).185

This negative link was observed even in colorectal cancer, for which the consensual claim is that186

Tregs have a positive impact on the clinical outcome (Figure 3d). On the other end, the terminally187

activated regulatory fraction (Figure 3a) was of good prognosis, but it was studied in only one lung188

cancer publication (Figure 3d).We also explored in this meta-analysis the effect of the widely used189

CD25high marker, considering i. articles using CD25high (n=6), versus ii. articles using the mere190

positivity of CD25 (n=21), or iii. no CD25 (n=49). The rationale behind this exploration comes from191

the hypothesis that CD25high is a reliable marker of regulatory cells, as it eliminates contaminating192

activatedCD4helper cells [Saito et al., 2016]. Out of the six articles using theCD25highmarker, five of193

them negatively linked Tregs to cancer prognosis (Figure 3e). The single article depicting a positive194

link considered terminally activated Tregs from the blood [Kotsakis et al., 2016], that we already195

described above as a sub-population of good prognosis (Figure 3d). An interesting, although less196

striking observation is about the CD25+ population, that displayed a slightly stronger consensus197

(1−Shannon entropy=0.166) than the Tregs not delineated with CD25 (1−Shannon entropy=0.164),198

albeit less than the CD25high fraction (1−Shannon entropy=0.35) (Supplementary Figure 3). This199

strongly suggests that the CD25high fraction is the one of interest, while also being reproducibly200

linked to a negative cancer prognosis.201

Treg prognostic value is context-dependent as observed when analysing ratios to other202

cells of the local environment203

Some articles looked into the correlation between Tregs and other cell populations from the same204

environment. More precisely, this approach represented 36%, 23%, 34%, 19% and 29% of breast,205

colorectal, gastric, lung and ovarian cancer papers respectively. CD8+ T cells were always posi-206

tively associated to Tregs, whatever the cancer type was, and most articles looking at neighboring207

cells looked into this association. The same positive correlation was true for tumor cells, CD3+
208

cells, cancer-associated fibroblasts (CAFs), follicular helper T cells (Tfh) and pre-dendritic cells (DCs)209

across cancer types. Positive correlations with other cell types such as myeloid cells in general,210

myeloid derived suppressor cells (MDSCs) in particular, macrophages and tumor-associatedmacrophages211

(TAMs) were described in just one breast cancer and one ovarian cancer article. Natural killer cells212

(NKs) and Th17 cells were negatively correlated to Tregs in one and three lung cancer studies re-213

spectively, as well as FOXP3+ tumor cells in one colorectal cancer article (Figure 4a).214

To study the role of neighboring cells on the Tregs’ impact on prognosis, we applied the same215

methodology as above, adding the information of whether the authors of each article used the216

absolute Treg quantification information or a ratio of Treg over another cell population. The ratio-217

focused studies encompassed 25% of the total cohort, but with different weights for each cancer218

type: 26%, 6%, 21%, 11% and 41% for breast, colorectal, gastric, lung and ovarian cancer respec-219

tively. Again, the consensus was better if we use ratios whenever evaluating the influence of Tregs220

on the prognosis (Figure 4b). This iss coherent since ratios would partially take into consideration221

other components of the local environment and thus better recapitulate the complexity of the lo-222

cal environment. Strikingly, some ratios always correlated with bad prognosis (Treg/CD8+ T cells),223

while some others always correlated with good prognosis (Treg/Th17 cells), whereas there was no224

trend for the remaining ratios: Treg/CD4+ T cells or Treg/T cells (Supplementary Figure 4).225

Tumor tissue Tregs have a clearer prognostic role than blood Tregs226

Lastly, we also studied the role of Tregs that were detected in patients’ peripheral blood or directly227

in the organ at stake, and even from specific parts of the tumor. Since there was no common base228

to name the different parts of the tumor, we merged the different denominations used by the dif-229

ferent authors: intra-epithelial (or nest) vs stroma, intra-tumoral vs peri-tumoral. Nest designated230

cells surrounded by cancer cells, while stroma designated cells from the tumor stroma, i.e. cellular231
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Figure 4. Interplay between Tregs and neighboring cells. (a) Correlation between Tregs and other cell
populations, depending on each cancer type; number of articles depicting the different correlations. (b)
Treemap of the prognostic value of Tregs depending on the quantification: either the absolute quantification
(top panel) or quantification via a ratio scoring (considering all ratios Treg/neighboring cell) (bottom panel).
The length of each bar represents the proportion of patients for each prognostic type per cancer type and the
height of each rectangle relates to the proportion of patients from each cancer type compared to the patients
from all cancer types (n=14,565 for the absolute quantification, n=3,653 for the ratio quantification).

patches almost free of cancer cells within the tumor. Peri-tumoral transparently meant cells at the232

margin, as opposed to intra-tumoral, referring to cells within the tumor center. We measured the233

consensus as described in the Methods section and we observed that the prognosis agreement234

per anatomical location was better than considering all anatomical locations together or even con-235

sidering the undifferentiated tumor piece (Figure 5a). Overall, we observed that the anatomical236

location is a crucial parameter to better understand the role of the Treg population in each cancer237

type, since there is a strong decrease in entropy when we factored the location in the evaluation of238

the prognostic value (Figure 5a, Supplementary Figure 5). In particular, for lung cancer, the highest239

consensus is reached when taking into account only the tumor piece as a whole. This could be240

partly due to the fact that results based on blood Tregs showed the highest discrepancy in terms241

of prognostic conclusions and the majority of lung cancer studies are based on blood Treg detec-242

tion. We suspect that blood results are particularly ambiguous since Tregs from blood samples243

are all delineated with FACS, for which the consensual markers are more blurred than with IHC.244

Additionally, we suspect that blood samples do not reflect the TIME as well as tissue samples, thus245

it does not recapitulate well the context.246

For breast cancer, Triple Negative Breast Cancer was the only situation for which tissue Tregs were247

of good prognosis, while the neutral case is only met for an article with a very small cohort of pa-248

tients (n=40) [Bailur et al., 2015], or when the authors considered peri-tumoral Tregs [Liu et al.,249

2012]. For the other cancer types, the interpretation was more cumbersome, as Tregs from dif-250

ferent parts of the tissue also exhibited dual conclusions (Figure 5b). Regarding colorectal cancer,251

almost all anatomical locations exhibited simultaneously Tregs with a positive or negative link to252

cancer prognosis, depending on the article, except for the juxtatumoral site and blood Tregs. The253
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same is observed for tumoral or intra-tumoral Tregs fromgastric cancer, and for blood and stromal254

Tregs from lung cancer (Figure 5b). However, all articles except one that concluded to a positive255

link between Tregs and cancer prognosis used IHC, and thus could not distinguish between the256

different Treg fractions that we described above. Furthermore, only one out of the fifteen articles257

used a ratio quantification.258

Colorectal cancer (n=6576) Gastric cancer (n=1622)Breast cancer (n=3506)b

Bad prognostic


Neutral


Good Prognostic

a

Tissues considered to compute the Shannon entropy

All localisations


Tumor site only


All localisations, discriminated per localisation

C
a

n
c

e
r 

ty
p

e
Ovarian


NSCLC


Gastric


Colorectal


Breast

0           0.25          0.50          0.75             1

1 - normalised Shannon entropy

Tumor


Blood


Intratumoral


Peritumoral


Nest


Stroma

Juxtatumor


Pleural Fluid


TNBC


TNBC intratumoral


Lymph node


TLS

Ovarian cancer (n=823)Lung cancer (n=2038)

Figure 5. Interplay between Tregs, their anatomical locations and their prognostic use. (a) Histogram
showing one minus the normalized Shannon entropy for each cancer type and for each group according to
anatomical location: all locations together (dark blue), tumor site (dark green), mean of the entropies
calculated for each anatomical location (yellow). (b) Pie charts of the prognostic value depending on the
anatomical location for each cancer type. Each numbered portion is an article and its size reflects the number
of patients included in the study. (TNBC: Triple Negative Breast Cancer; TLS: Tertiary Lymphoid Structure)

Discussion259

The heterogeneity of regulatory phenotypes is a key parameter to explain, at least partially, the260

apparent discrepancy of the impact of Tregs in cancer prognosis. In this meta-analysis, we showed261

that explicit description of Tregs and their afferent context could help in better understanding their262

clinical role, as compared to considering only tumor characteristics such as site, stage, etc [Blatner263

et al., 2013, Fridman et al., 2012, 2017, Mao et al., 2016, Whiteside, 2014]. We took into account264

three different factors that could interfere with Treg physiopathological role: the different regu-265

latory subsets studied to evaluate the prognosis, their quantification method and the different266

anatomical microenvironment, and we focused on five different cancer types: breast, colorectal,267

gastric, lung and ovarian cancers, collecting a total of 129 articles. The amount of information for268

each of those parameters was substantially different, hence we could not directly compare the269
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respective importance of these parameters, but we saw that considering them separately did in-270

crease the resolution on the link between Tregs and cancer prognosis, in most of the situations271

considered.272

We could also draw reproducible links with respect to the prognosis in some particular cases: re-273

garding the Treg subsets, the activated and resting sub-populationswere always found to be of bad274

prognosis [Saito et al., 2016]. Regarding neighboring cells, we observed that the ratio Treg/CD8+ T275

cells was also of bad prognosis, while Tregs were anti-correlated to CD8+ T cells independently on276

the cancer type. It was interesting to observe that these conclusions proposed a reunited view of277

Tregs role across cancer types. Our methodology might serve for other cell types such as Th2 or278

Th17 cells, for which their role is not completely clear as well [Fridman et al., 2017], although to a279

lesser extent than Tregs.280

We could not examine in this meta-analysis the cohorts’ characteristics, foremostly because the281

details were very scarce and not standardized. Among the 64 articles that were informative for282

the prognosis, only 16 had the following minimal information: timeframe for the cohort’s creation,283

median follow-up, mean (or median) age of the patients, sex balance, and tumor stage. Those284

clinical parameters are of paramount importance to decipher prognostic factors and we therefore285

suggest to improve the generation andmanagement of meta-data, as a way to increase the quality286

of meta-analysis, but also the reproducibility.287

We integrated three parameters in our analysis, but missed others parameters forming alternative288

contexts, such as treatment, because the information was too sparse, but an exciting perspective289

could be to consider this metadata as well [Jiménez-Sánchez et al., 2020, Hamy et al., 2019].290

Another lead of investigation could be to cross-analyze all the information about treatment, cancer291

subtypes, anatomical location, definition of the global regulatory population and its subsets, and292

Treg quantification, to unravel an even clearer picture of Tregs’ role in the TIME. An exciting way293

to answer these questions could be by taking advantage of -omics methods, to gather and cross-294

analyze even more information, for example relate to the inflammatory context. With the advent295

of -omics technologies, there is also hope that we could find core signature genes delineating the296

regulatory population. So far, it is not obvious though, since this signature remains dependent297

on the strategy used to capture the population of interest in the first place. Among three articles298

yielding gene lists of length 294, 136 and 31 respectively, the intersection contains only 10 genes,299

among which FOXP3, and CTLA-4 but not CD25 (IL2RA), that was not in the signature from Pese-300

nacker et al. [2016] although it was defined on CD25high regulatory cells (Supplementary Figure 6).301

Our meta-analysis highlights how cancer Treg studies are designed differently, making a harmonic302

conclusion on Tregs’ role in cancer prognosis very difficult. In light of our results, we suggest the303

following guidelines when studying Tregs in a cancer context: (i) focus on the quantification of304

CD45RO+FOXP3high activated and CD45RO-FOXP3low resting subsets, as well as on the CD25high frac-305

tion, (ii) quantify the Treg/CD8 ratio, (iii) carefully choose which sample to use (nest vs stroma or306

intra- vs peri-tumoral), (iv) comprehensively annotate clinical data. By following those steps, sci-307

entists and clinicians should be able to sketch a more plausible landscape of Tregs’ clinical roles308

for any cancer type. A careful consideration of the same parameters should also be applied when309

using existing literature.310

Methods311

Articles selection312

We searched consistently in PubMed for any article related to our topic, using the search words313

"Humans" [Mesh] AND "T-Lymphocytes, Regulatory" [Mesh] AND ("Treg" [Title/Abstract] OR "Tregs"314

[Title/Abstract] OR "regulatory T" [Title/Abstract]) and adding the neoplasms we were interested in,315

namely the breast, colorectal, gastric, lung and ovarian neoplasms, as a Mesh term. We added a316

second filter, only considering articles published in a journal with an impact factor above 2. We317

found a total of 81, 76, 47, 87 and 50 articles respectively for the breast, colorectal, gastric, lung318
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and ovarian cancers. Finally, we also added the following exclusion criteria: focus on other cells319

than human Tregs (mouse Tregs, regulatory B cells, CD8+ Tregs), focus outside the primary tumor320

(metastasis, relapsed cancer, tumor lines, in-vitro systems), patients treated with immunotherapy321

or with a context of disimmunity, missing information (markers used, anatomical location, number322

of patients), review articles. We ended up with a total of 23, 27, 24, 35 and 20 articles per cancer323

type.324

Agreement evaluation325

We used the normalized Shannon entropy, and the Fleiss’ kappa to evaluate the consensus. The326

Fleiss’ kappa is calculated as:327

� =

∑

i
Ni(Ni − 1)

∑

i
Ni(

∑

i
Ni − 1)

,

whereNi is the number of raters opting for choice i. In our case, the choice is either −1, 0, or 1, for328

bad, neutral or good prognosis, and the number of raters stands for the number of patients. The329

Shannon entropy is calculated as:330

1 − SE = 1 +
1

log10
∑

j 1

∑

i

Ni
∑

j Nj

log10
Ni

∑

j Nj
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Chapter 8

General considerations and prospects

Rien dans la vie n’est à craindre, tout

doit être compris. C’est maintenant le

moment de comprendre davantage,

afin de craindre moins.

Marie Skłodowska-Curie

When I started my thesis, I was fairly new to basically all the fields I worked on,
and as such ready to be challenged and to challenge. I have been curious about many
aspects of the areas I touched on, ranging from single-cell RNAseq data analysis per se
to T cell biology or oncology. Now on the verge of concluding this work, I chose to focus
specifically on some itching questions that I encountered along the past years.

8.1 On technical aspects

8.1.1 The hubness project

Conclusion For the last two years, I have been working on the hubness phenomenon. We
first started to delineate the questions we wanted to explore: evaluate the magnitude of
the phenomenon in sequencing data and the parameters influencing it, the nature of hub
cells, and the effect of hubness on scRNAseq analysis. We used existing metrics to probe
hubness in our data. While the current body of evidence indicates that hubness correlates
to the dimension [166] and the local densities distribution [207], we additionally linked
it to sparsity and intrinsic dimension of the data in sequencing count matrices. We also
proposed a new method to uncover hub cells, since existing methods would not perform
adequately in our data because of a whopping number of anti-hubs. The nature of those
hub cells was seemingly similar to other "normal" cells or anti-hubs, which led us to think
that hub cells were pure dimensional artefacts.

Since "hubby" datasets are those with a high intrinsic dimension, we verified that
they would be the ones more impacted by hubness correction: for the clustering, trajec-
tory inference and visualisation tasks, it was indeed the case, with higher performances
upon hub correction. For low-intrinsic-dimension datasets, hubness correction could be
beneficial or detrimental, with an overall performance improvement.
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Discussion We explored the effects of hubness on scRNAseq data and its analysis. Re-
garding the study of the raw magnitude of hubness, we investigated leads to explain why
there is a difference in magnitude with the sparsity and the intrinsic dimension, but it
is only a partial explanation. We did not explore the local density lead which is chal-
lenging, but it could be worth it. I believe that it would be interesting to characterize
further the nature of hubs. Regarding the study of the effect of hubness on scRNAseq
analysis, we concluded that hubness correction was beneficial for datasets characterized
by high intrinsic dimensions. We should explore further the biological impact of hubness
correction on high-dimensional datasets, as well as the effect of hubness correction on
low-intrinsic-dimension datasets, and why there is no direct correlation between the mag-
nitude of hubness and the clustering performance, while it is the case for the visualisation
task. Finally, we observed that the 4 hub correction methods that we used had dissimilar
effects on the improvement of the clustering, trajectory inference and its stability, and
visualisation. We suggested hypotheses to clarify it that should be tested, regarding the
fact that one method uses all data points to correct for hubness, while the others are local.

Perspectives I believe that the main interest of studying hubness (apart from the fact
that it proved useful in our benchmark) resides in the fact that we propose to tackle
directly hubness instead of avoiding the curse-of-dimensionality related effect by reducing
the dimension. More generally, the dimension reduction step in the analysis is critical and
has been challenged extensively [126, 130, 149, 186, 208, 209]. The most common approach
is to do a PCA, but there is already a question about the choice of the number of PCs to
retain. The concern is to eliminate noise and redundant information while retaining signal.
I feel that the current options are not sound, nor intellectually satisfactory, although
an interesting option to separate the noise from the signal is to implement RMT [172].
Our hubness study is easy to implement, and it increases the possibility of retaining
more signal, by retaining a higher number of dimensions and simultaneously alleviating
dimensional noise. It opens also the way to a set of new strategies, that would directly
target the effects of the curse of dimensionality instead of merely reducing the dimension
[169]. However, it complicates the analysis by adding more steps to the current pipelines
and we could further clarify the biological utility of hubness correction on datasets without
ground truth.

8.1.2 Validity and reproducibility of dry lab experiments

Discussion There is a high emphasis put on the publication of precise methods by wet
lab researchers (for example Cell Press implemented a new section, STAR★Methods, in
order to ease the replication process1). The same effort is now done from the side of
dry lab researchers, with many journals asking for the code. In the same vein as what
is nowadays the norm for wet experiments, dry researchers should give access not only
to the raw code but also to the session information with packages versions and to the
hardware used. While it is necessary in order to reproduce results for all articles, it is
of utmost importance when publishing a new method. Indeed, the aim of publishing
the code is two-fold: it should increase the reproducibility of the experiments, but also
enable to verify and test the code. For the hubness project, although we did not develop
a tool per se, we ought to be as precise as possible in order enforce the validity of the
benchmark. I worked hand in hand with Jonathan Bac, exchanging and proofreading

1https://www.cell.com/star-methods
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bits of code. Since we used published packages (like Scanpy [126] or scikit-hubness [210]),
we did not go through the tedious process of proofreading the functions that we used,
although we got at least one example of a function that would not perform exactly like
what was indicated in its documentation.

Perspectives In the present context of an increasing mistrust in science, and because
there has been an ongoing replication crisis, researchers have a duty to make science
more accessible. One way to achieve it is to be as transparent as possible, and this
applies to the bioinformatic community as well. I think that we should implement a strict
process in order to verify our scripts, since code writing is highly prone to errors. Ideally,
systematic proofreading and tests should be mandatory. The minimal requirement in my
opinion would be at least proofreading by a third party. There is an increasing concern
about false data, or poor quality data in wet labs, but we should also feel concerned by
the phenomenon in dry analyses and results. There are already few examples of research
softwares that contained errors [211], while it could be alleviated with a rigorous process of
code production. This is crucial, as false results might have devastating consequences such
as the suspicion about vaccination due to a fraudulent 1988 Lancet article. Since a famous
science motto is to doubt everything, we should also reasonably doubt our methods. After
all, "the most important thing is to never stop questioning" (A. Einstein).

8.1.3 Accumulate data or create new tools?

Discussion During my thesis, I used mostly public scRNAseq datasets, as well as pub-
lished tools dedicated to the analysis of scRNAseq data such as Seurat [125], scEntropy
[204] or Scanpy [126]. I was stunned by the amount of objects, be it count matrices
or tools, and I thought it was quite paradoxical. Without even discussing the technical
progress leading to ever larger and more qualitative datasets, data is accumulating at a
fast pace, while we are still developing tools in order to analyse the data already produced
and extract as much information as possible from it. The fast production of objects is
embodied by burgeoning databases that try to ease the navigation of users in the sea of
objects: PanglaoDB2, CancerSEA3, scRNASeqDB4, our own ImmuCANscDB5 (see An-
nex 10), the website6, etc. Even with the help of databases, I believe that
it makes the scRNAseq field hard to apprehend.

Perspectives As a bioinformatician, I would favor the option of tool’s instead of data’s
accumulation for two main reasons. First, I think that there is still a lack, maybe not of
tools, but at least of a strong consensus on the best pipeline to analyse the data, although
one clear thing is that it is almost impossible to develop a pipeline that would work best
for all datasets. But we do not even have, in most cases, heuristics to choose the tools
suited to a given analysis, with the exception of platforms such as dynverse7 [212]. In fact,
neutral extensive benchmarks could be a solution to create these heuristics [174]. The
second problem is more ethical: in a world with limited resources, accumulating data has

2https://panglaodb.se/
3http://biocc.hrbmu.edu.cn/CancerSEA/goBrowse
4https://bioinfo.uth.edu/scrnaseqdb/
5https://immucanscdb.vital-it.ch/
6https://www.scrna-tools.org/
7https://dynverse.org/
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a cost, in terms of energy and rare materials, and the community should be aware of this
issue and consider rationalizing the production of data, by checking beforehand whether
the dataset they need is not already available. There is a massive amount of data that is
underexploited, while I praise parsimony in science.

8.1.4 Creating scRNAseq-based knowledge

Discussion I raised above the problem of underexploited data. I faced many times
during my PhD the problem of how to handle the data and extract the most out of it, with,
running through it, the burning question of the utility of scRNAseq. In other words, I was
bewildered, wondering how we could create knowledge while relying on previous one. An
illustrative example of this problem is the benchmark. I discussed in the introduction the
two ways of benchmarking tools, either with supervised or unsupervised scores. Regarding
the unsupervised scoring metrics, I already mentioned their flaws. I am focusing here on
the supervised scoring metrics, using ground truth labels. Ground truth labels make sense
if we make the assumption that their truth matches the transcriptomic truth. If this is the
case, then (i) the benchmark is valid, but (ii) the utility of scRNAseq diminishes because
we already know the truth. If this is not the case, then there is a wealth of information
but we cannot hardly access it, even less translate it into real life, because our benchmarks
would not be validated for this situation. I often had the image of a snake biting its own
tail when I thought about this inconsistency in the method.

This is one of the reasons why we attempted to develop a function-based classification
of T cells that did not creates knowledge per se, but used what is already known to take
advantage of scRNAseq data.

Perspectives Answering the question of the practical utility of scRNAseq is beyond my
reach but I have few hints. The main one is that omics data speed up discoveries, because
of the humongous amount of data that is creates: for example we can uncover new cell
types or states [205], and even question the distinction between cellular states and types
with the continuous approach of trajectory inference [213], discover new markers [72, 73],
access to expression profiles (see Annex 9), etc. However, as I evoked it several times
earlier in this manuscript, every discovery made with scRNAseq should be backed up by
wet experiments [205, 206].

8.2 On biological aspects

8.2.1 The functional project

Discussion As I mentioned above, an answer to puzzling scRNAseq interpretation could
be supervised analyses. While we showed extensively the added value of the functional
modules analysis, we still need to improve technical aspects of the methodology. How-
ever, we could already interpret onco-immune datasets, by showing that the tumor tissue
exhibits a higher number of functions than the dormant juxtatumor, including a higher
expression of immune suppression and attraction functions. The increased functionality
of tumor-resident T cells ties in with the idea that we described in the introduction of
an increasing plasticity of T cells in the TME. Additionally, we observed that functional
patterns were more conserved across different cancer types in the tumor, compared to
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the juxtatumor. This functional approach has been extended to the study of other types
of immune cells and other pathological contexts, such as dendritic cells in the blood of
Covid-19 patients (see Annex 9), validating further the proof of concept.

Perspectives I believe this methodology could help to functionally map human tissues,
in physiological or pathological conditions. Since it is supervised, the interpretation step
can be automatised, speeding up and easing the analysis of scRNAseq data. However,
it implies the following assumption: we consider that the detection of the RNA of an
effector gene stands for the expression of the corresponding protein. This assumption has
been challenged by the fact that there might be a decorrelation between protein and RNA
expression profiles [214]. Again, this stresses the crucial need for a validation step at the
bench [205], or at least for a confirmation of the protein expression. This will probably
be enabled by the emergence of multi-omics techniques, such as CITE-seq [215].

Furthermore, since our tool is also usable at the scale of the cell (although we did
not exploit this possibility in the present manuscript), it will help unlocking the full
potential of scRNAseq. This makes even more sense with regard to the current trend of
personalized medicine: clinicians and researchers are interested, not only in characterizing
the differences between patients, but also within a patient, and this will be doable at the
cell level.

8.2.2 Regulatory T cells in cancer

Discussion I have had a particular focus on regulatory T cells during my doctoral work,
trying to understand their lability in cancer. While I first hypothetized that we could
relate their prognostic value in cancer to whether the cancer was in a localization prone
to inflammation, such as colon, rectum or head & neck, I soon realised that it was more
intricate and decided that I should consider the global picture and take into account the
complexity of the TME, in order to better describe their plastic role. So I tried to decipher
whether taking the context into account would help to understand the prognostic value
of Tregs in cancer. From the meta-analysis that I conducted, I would be tempted to
say that it does. I studied 3 parameters (the localization of Tregs, the markers used to
delineate the population and the quantification method) and showed that the consensus
over the different articles that I included was increased upon considering the diversity in
these parameters. To go even further, I believe that this kind of analysis could be done
for other cells such as Th17 cells.

Perspectives Yet this meta-analysis eludes several questions. First I selected only 3 pa-
rameters, circumventing other sources of plasticity and divergence, such as the treatment.
Second, I focused on CD4+ regulatory cells, although I showed earlier that there is a
blurring between the different lineages, and other cells might exert suppressing functions.
Third, it would be interesting to try to model all cells at the same time in order to better
recapitulate the complexity of the TME, that I described in the introduction. At least, it
could be worth cross-analysing the 3 parameters that I used, although it is a challenging
task given the heterogeneity of the studies that I included in the meta-analysis. In fact, it
raises the issue of data production, storage and transmission. This is particularly critical
in cancer studies, since it is a fast-moving field. We should not add heterogeneity of the
data to the heterogeneity of the disease, of the diagnostic, of the patient care. Treg study
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in cancer is an archetypical example, potentiated by the difficulty of capturing those cells.
I think that firmer conclusions on the role of Tregs, and immune cells in cancer initiation,
progression, metastasis, regression and response to treatment will require more technical
progress, initiated by the advent of multi-omics, proteomics, and spatial sequencing, that
I hope should help to resolve TME heterogeneity [216].

8.2.3 Implementing scRNAseq in onco-immunology, from the bench to the

bedside

Immune therapies have recently been added to the cancer therapeutic arsenal, for exam-
ple to treat melanoma [217]. Yet some patients would respond successfully, some would
relapse on the contrary, and the factors governing success or failure have not been elu-
cidated to this day. It exemplifies the blatant need to personalize treatment, but also
to a better understanding of the tumor biology in order to orient personalized medicine.
Obviously, single-cell omics technologies should help to meet the need of describing the
TIME and cancer cells with a higher granularity [218].

So far, scRNAseq is used for research purposes only, and even bulk RNAseq is anec-
dotal, being used to spot specific mutations in target therapies in a few cancer centers.
New results are gathered regarding the use of scRNAseq data from cancer patients (trials
NCT04352777, NCT0406159), and several hospitals started to accumulate scRNAseq ex-
pression profiles, but it will take more years before it can be used at the bedside, because
it remains an expensive and delicate technique, because biomarkers needs to be further
tailored [69, 218], and because we still lack gold-standard for the analysis of the data.

168



Bibliography

[1] Kenneth Murphy & Casey Weaver. Janeway’s Immunobiology (9th edition) (New
York: Garland Science/Taylor & Francis Group, 2017).

[2] Habs, H. Epidemiologisch verwertbare Einzelangaben bei Thukydides. In Die so-
genannte Pest des Thukydides, vol. 6 of Sitzungsberichte der Heidelberger Akademie
der Wissenschaften, 21–23 (Springer, Berlin, Heidelberg, 1982).

[3] Boylston, A. The origins of inoculation. Journal of the Royal Society of Medicine
105, 309–313 (2012).

[4] Voltaire. Sur l’insertion de la petite vérole (Lettre XI). In Lettres philosophiques
(Paris, 1734).

[5] Pasteur, L. Méthode pour prévenir la rage après morsure. In Comptes rendus heb-
domadaires des séances de l’Académie des sciences (Paris, 1885).

[6] Robert Koch. Die Ätiologie der Tuberkulose. Berliner Klinische Wochenschrift 15

(1882).

[7] Behring, E. v. & Kitasato, S. Über das Zustandekommen der Diphtherie-Immunität
und der Tetanus-Immunität bei Thieren. Deutsche Medizinische Wochenschrift 49

(1890).

[8] Ehrlich, P. On immunity with special reference to cell life, the Croonian lecture. In
Proceedings of the Royal Society, vol. 66 (London : Harrison and Sons, 1900).

[9] Ehrlich, P. Die Schutzstoffe des Blutes. Deutsche Medizinische Wochenschrift 27,
913–916 (1901).

[10] Greenberg, S. A Concise History of Immunology (2003).

[11] Murphy, J. B. The lymphocyte in resistance to tissue grafting, malignant disease, and
tuberculous infection. Monographs of the Rockefeller Institute for Medical Research
21 (1926).

[12] Gowans, J. The recirculation of lymphocytes from blood to lymph in the rat. Journal
of Physiology 146, 54–69 (1959).

[13] Miller, J. F. & Mitchell, G. F. The thymus and the precursors of antigen reactive
cells. Nature 216, 659–663 (1967).

[14] Alberts, B. et al. Helper T Cells and Lymphocyte Activation. Molecular Biology of
the Cell. 4th edition (2002).

169



[15] Gagliani, N. & Huber, S. Basic Aspects of T Helper Cell Differentiation. T-Cell
Differentiation 19–30 (2017).

[16] Mousset, C. M. et al. Comprehensive Phenotyping of T Cells Using Flow Cytometry.
Cytometry. Part A: The Journal of the International Society for Analytical Cytology
95, 647–654 (2019).

[17] Rasoulouniriana, D. et al. A distinct subset of FcγRI-expressing Th1 cells exert
antibody-mediated cytotoxic activity. The Journal of Clinical Investigation 129,
4151–4164 (2019).

[18] Marshall, N. B. & Swain, S. L. Cytotoxic CD4 T Cells in Antiviral Immunity. Journal
of Biomedicine and Biotechnology 2011 (2011).

[19] Tada, T., Takemori, T., Okumura, K., Nonaka, M. & Tokuhisa, T. Two distinct
types of helper T cells involved in the secondary antibody response: independent
and synergistic effects of Ia- and Ia+ helper T cells. The Journal of Experimental
Medicine 147, 446–458 (1978).

[20] Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two
types of murine helper T cell clone. I. Definition according to profiles of lymphokine
activities and secreted proteins. Journal of Immunology 136, 2348–2357 (1986).

[21] Yamamura, M. et al. Defining protective responses to pathogens: cytokine profiles
in leprosy lesions. Science (New York, N.Y.) 254, 277–279 (1991).

[22] Hirahara, K. & Nakayama, T. CD4+ T-cell subsets in inflammatory diseases: beyond
the Th1/Th2 paradigm. International Immunology 28, 163–171 (2016).

[23] O’Shea, J. J., Lahesmaa, R., Vahedi, G., Laurence, A. & Kanno, Y. Genomic views
of STAT function in CD4+ T helper cell differentiation. Nature Reviews Immunology
11, 239–250 (2011).

[24] Elo, L. L. et al. Genome-wide Profiling of Interleukin-4 and STAT6 Transcription
Factor Regulation of Human Th2 Cell Programming. Immunity 32, 852–862 (2010).

[25] Aggarwal, S., Ghilardi, N., Xie, M.-H., de Sauvage, F. J. & Gurney, A. L. Interleukin-
23 promotes a distinct CD4 T cell activation state characterized by the production
of interleukin-17. The Journal of Biological Chemistry 278, 1910–1914 (2003).

[26] Kaplan, M. H., Hufford, M. M. & Olson, M. R. The Development and in vivo function
of TH9 cells. Nature reviews. Immunology 15, 295–307 (2015).

[27] Jia, L. & Wu, C. The biology and functions of Th22 cells. Advances in Experimental
Medicine and Biology 841, 209–230 (2014).

[28] Signorini, V. et al. One year in review 2020: systemic lupus erythematosus. Clinical
and Experimental Rheumatology 38, 592–601 (2020).

[29] Thomas, Y. et al. Functional analysis of human T cell subsets defined by mono-
clonal antibodies. VI. Distinct and opposing immunoregulatory functions within the
OKT8+ population. The Journal of molecular and cellular immunology: JMCI 1,
103–113 (1984).

170



[30] Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-
tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains
(CD25). Breakdown of a single mechanism of self-tolerance causes various autoim-
mune diseases. Journal of Immunology 155, 1151–1164 (1995).

[31] Shevach, E. M. & Thornton, A. M. tTregs, pTregs, and iTregs: similarities and
differences. Immunological Reviews 259, 88–102 (2014).

[32] Mohr, A., Malhotra, R., Mayer, G., Gorochov, G. & Miyara, M. Human FOXP3+
T regulatory cell heterogeneity. Clinical & Translational Immunology 7 (2018).

[33] Cretney, E., Kallies, A. & Nutt, S. L. Differentiation and function of Foxp3+ effector
regulatory T cells. Trends in Immunology 34, 74–80 (2013).

[34] Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. & Campbell, D. J. Functionally
distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th
cells. Blood 119, 4430–4440 (2012).

[35] Bailey-Bucktrout, S. L. & Bluestone, J. A. Regulatory T cells: stability revisited.
Trends in immunology 32, 301–306 (2011).

[36] Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science (New
York, N.Y.) 329, 1667–1671 (2010).

[37] Guo, H. et al. Stability and inhibitory function of Treg cells under inflammatory
conditions in vitro. Experimental and Therapeutic Medicine 18, 2443–2450 (2019).

[38] Khosravi, M. et al. Induction of CD4+CD25+FOXP3+ regulatory T cells by mes-
enchymal stem cells is associated with modulation of ubiquitination factors and
TSDR demethylation. Stem Cell Research & Therapy 9, 273 (2018).

[39] Hua, J. et al. Pathological conversion of regulatory T cells is associated with loss of
allotolerance. Scientific Reports 8, 7059 (2018).

[40] O’Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plas-
ticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

[41] Lee, Y. K. et al. Late Developmental Plasticity in the T Helper 17 Lineage. Immunity
30, 92–107 (2009).

[42] Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity
and plasticity. Current Opinion in Immunology 24, 297–302 (2012).

[43] Lexberg, M. H. et al. Th memory for interleukin-17 expression is stable in vivo.
European Journal of Immunology 38, 2654–2664 (2008).

[44] Abou-Jaoudé, W. et al. Model checking to assess T-helper cell plasticity. Frontiers
in Bioengineering and Biotechnology 2, 86 (2014).

[45] Hirahara, K. et al. Mechanisms underlying helper T-cell plasticity: implications for
immune-mediated disease. The Journal of Allergy and Clinical Immunology 131,
1276–1287 (2013).

[46] Huber, S., Gagliani, N., O’Connor, W., Geginat, J. & Caprioli, F. CD4+ T Helper
Cell Plasticity in Infection, Inflammation, and Autoimmunity. Mediators of Inflam-
mation 2017, 7083153 (2017).

171



[47] Carbo, A. et al. Computational modeling of heterogeneity and function of CD4+ T
cells. Frontiers in Cell and Developmental Biology 2 (2014).

[48] Kunicki, M. A., Hernandez, L. C. A., Davis, K. L., Bacchetta, R. & Roncarolo, M.-G.
Identity and Diversity of Human Peripheral Th and T Regulatory Cells Defined by
Single-Cell Mass Cytometry. The Journal of Immunology 200, 336–346 (2018).

[49] Breasted, J. The Edwin Smith Surgical Papyrus, Volume 1: Hieroglyphic Transliter-
ation, Translation, and Commentary. Oriental Institute Publications (Chicago: The
University of Chicago Press, 1931).

[50] Deeley, T. A brief history of cancer. Clinical Radiology 34, 597–608 (1983).

[51] Faguet, G. B. A brief history of cancer: Age-old milestones underlying our current
knowledge database. International Journal of Cancer 136, 2022–2036 (2015).

[52] Rossier, L. Le cancer dans l’Antiquité. Universitas 2, 16–19 (2011).

[53] André-Julien Fabre. Le cancer dans l’Antiquité: Les enseignements de Celse. Histoire
des sciences médicales 42, 63–70 (2008).

[54] Hanahan, D. & Weinberg, R. A. The Hallmarks of Cancer. Cell 100, 57–70 (2000).

[55] Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell
144, 646–674 (2011).

[56] David, A. R. & Zimmerman, M. R. Cancer: an old disease, a new disease or something
in between? Nature Reviews Cancer 10, 728–733 (2010).

[57] Shoval, O. et al. Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of
Phenotype Space. Science 336, 1157–1160 (2012).

[58] Schwartz, J. L. et al. X-Ray and cis-Diamminedichloroplatinum(II) Cross-Resistance
in Human Tumor Cell Lines. Cancer Research 48, 5133–5135 (1988).

[59] Rofstad, E. K. Influence of Cellular, Microenvironmental, and Growth Parameters on
Thermotolerance Kinetics in Vivo in Human Melanoma Xenografts. Cancer Research
49, 5027–5032 (1989).

[60] Fukumura, D. et al. Tumor Induction of VEGF Promoter Activity in Stromal Cells.
Cell 94, 715–725 (1998).

[61] Applegate, K. G., Balch, C. M. & Pellis, N. R. In Vitro Migration of Lymphocytes
through Collagen Matrix: Arrested Locomotion in Tumor-infiltrating Lymphocytes.
Cancer Research 50, 7153–7158 (1990).

[62] Senger, D. & Perruzzi, C. Cell migration promoted by a potent GRGDS-containing
thrombin-cleavage fragment of osteopontin. Biochimica et Biophysica Acta (BBA) -
Molecular Cell Research 1314, 13–24 (1996).

[63] Negus, R. P. et al. The detection and localization of monocyte chemoattractant
protein-1 (MCP-1) in human ovarian cancer. Journal of Clinical Investigation 95,
2391–2396 (1995).

172



[64] O’Brien, T., Cranston, D., Fuggle, S., Bicknell, R. & Harris, A. L. Two Mechanisms
of Basic Fibroblast Growth Factor-induced Angiogenesis in Bladder Cancer. Cancer
Research 57, 136–140 (1997).

[65] Waller, E. K. et al. Growth of primary T-cell non-Hodgkin’s lymphomata in SCID-hu
mice: requirement for a human lymphoid microenvironment. Blood 78, 2650–2665
(1991).

[66] Lee, J., Fenton, B. M., Koch, C. J., Frelinger, J. G. & Lord, E. M. Interleukin
2 Expression by Tumor Cells Alters Both the Immune Response and the Tumor
Microenvironment. Cancer Research 58, 1478–1485 (1998).

[67] Paget, S. The distribution of secondary growths in cancer of the breast. The Lancet
133, 571–573 (1889).

[68] Argilés, G. et al. Localised colon cancer: ESMO Clinical Practice Guidelines for
diagnosis, treatment and follow-up†. Annals of Oncology 31, 1291–1305 (2020).

[69] Michielin, O., van Akkooi, A. C. J., Ascierto, P. A., Dummer, R. & Keilholz, U.
Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment
and follow-up, Approved by the ESMO Guidelines Committee: February 2002, last
update September 2019. Annals of Oncology 30, 1884–1901 (2019).

[70] Machiels, J.-P. et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx
and hypopharynx: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis,
treatment and follow-up†. Annals of Oncology 31, 1462–1475 (2020).

[71] Campbell, D. J. & Koch, M. A. Phenotypic and functional specialization of FOXP3+
regulatory T cells. Nature Reviews. Immunology 11, 119–130 (2011).

[72] De Simone, M. et al. Transcriptional Landscape of Human Tissue Lymphocytes
Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 45, 1135–
1147 (2016).

[73] Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor
Microenvironment. Cell 174, 1293–1308.e36 (2018).

[74] Chew, V., Toh, H. C. & Abastado, J.-P. Immune Microenvironment in Tumor Pro-
gression: Characteristics and Challenges for Therapy. Journal of Oncology 2012,
1–10 (2012).

[75] Roelands, J. et al. Immunogenomic Classification of Colorectal Cancer and Thera-
peutic Implications. International Journal of Molecular Sciences 18, 2229 (2017).

[76] Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture
in human tumours: impact on clinical outcome. Nature Reviews. Cancer 12, 298–306
(2012).

[77] Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune
contexture in cancer prognosis and treatment. Nature Reviews. Clinical Oncology
14, 717–734 (2017).

[78] International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. Nature 431, 931–945 (2004).

173



[79] Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment
with Escherichia coli. Nature 461, 1243–1247 (2009).

[80] Green, E. D., Guyer, M. S. & National Human Genome Research Institute. Charting
a course for genomic medicine from base pairs to bedside. Nature 470, 204–213
(2011).

[81] Mannocci, L. et al. High-throughput sequencing allows the identification of binding
molecules isolated from DNA-encoded chemical libraries. Proceedings of the National
Academy of Sciences of the United States of America 105, 17670–17675 (2008).

[82] Hawrami, K., Harper, D. & Breuer, J. Typing of varicella zoster virus by amplification
of DNA polymorphisms. Journal of Virological Methods 57, 169–174 (1996).

[83] Slavov, N. Increasing proteomics throughput. Nature Biotechnology 1–2 (2021).

[84] Trapnell, C. Defining cell types and states with single-cell genomics. Genome Re-
search 25, 1491–1498 (2015).

[85] Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell
RNA-sequencing for biomedical research and clinical applications. Genome Medicine
9, 1–12 (2017).

[86] Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell
RNA-seq in the past decade. Nature Protocols 13, 599–604 (2018).

[87] Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by
primed synthesis with DNA polymerase. Journal of Molecular Biology 94, 441–448
(1975).

[88] Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating
inhibitors. Proceedings of the National Academy of Sciences of the United States of
America 74, 5463–5467 (1977).

[89] Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer
traces using phred. I. Accuracy assessment. Genome Research 8, 175–185 (1998).

[90] Morozova, O. & Marra, M. A. Applications of next-generation sequencing technolo-
gies in functional genomics. Genomics 92, 255–264 (2008).

[91] Picelli, S. Single-cell RNA-sequencing: The future of genome biology is now. RNA
biology 14, 637–650 (2017).

[92] Metzker, M. L. Sequencing technologies — the next generation. Nature Reviews
Genetics 11, 31–46 (2010).

[93] Ofengeim, D., Giagtzoglou, N., Huh, D., Zou, C. & Yuan, J. Single-Cell RNA
Sequencing: Unraveling the Brain One Cell at a Time. Trends in Molecular Medicine
23, 563–576 (2017).

[94] Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell tran-
scriptomics of differentiating embryonic stem cells. Nature Communications 8, 1096
(2017).

[95] Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell hetero-
geneity. Nature Reviews. Immunology 18, 35–45 (2018).

174



[96] Zhang, Y. et al. Single-cell RNA sequencing in cancer research. Journal of Experi-
mental & Clinical Cancer Research 40, 1–17 (2021).

[97] Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature
Methods 6, 377–382 (2009).

[98] Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single
cell. Nature Protocols 5, 516–535 (2010).

[99] Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis:
a tutorial. Molecular Systems Biology 15, e8746 (2019).

[100] Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas
projects. Nature Biotechnology 38, 747–755 (2020).

[101] Kolodziejczyk, A., Kim, J. K., Svensson, V., Marioni, J. & Teichmann, S. The
Technology and Biology of Single-Cell RNA Sequencing. Molecular Cell 58, 610–620
(2015).

[102] Macosko, E. et al. Highly Parallel Genome-wide Expression Profiling of Individual
Cells Using Nanoliter Droplets. Cell 161, 1202–1214 (2015).

[103] Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nature
Protocols 9, 171–181 (2014).

[104] Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods.
Nature Methods 11, 41–46 (2014).

[105] Tan, S. J. et al. A microfluidic device for preparing next generation DNA sequencing
libraries and for automating other laboratory protocols that require one or more
column chromatography steps. PloS One 8, e64084 (2013).

[106] Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq.
Genome Biology 17, 77 (2016).

[107] Ziegenhain, C. et al. Comparative Analysis of Single-Cell RNA Sequencing Methods.
Molecular Cell 65, 631–643.e4 (2017).

[108] Cazenave, C. & Uhlenbeck, O. C. RNA template-directed RNA synthesis by T7
RNA polymerase. Proceedings of the National Academy of Sciences of the United
States of America 91, 6972–6976 (1994).

[109] Saiki, R. K. et al. Enzymatic Amplification of β -Globin Genomic Sequences and
Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 230, 1350–1354
(1985).

[110] Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I. & Khorana, H. G. Studies on
polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by
DNA polymerases. Journal of Molecular Biology 56, 341–361 (1971).

[111] Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled
sequencing projects. Genome Research 24, 2033–2040 (2014).

[112] Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decompo-
sition of tissues into cell types. Science 343, 776–779 (2014).

175



[113] Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-
sequencing methods. Nature Biotechnology 38, 737–746 (2020).

[114] Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers.
Nature Methods 11, 163–166 (2014).

[115] Huang, H. et al. Non-biased and efficient global amplification of a single-cell cDNA
library. Nucleic Acids Research 42, e12–e12 (2014).

[116] Baugh, L. R., Hill, A. A., Brown, E. L. & Hunter, C. P. Quantitative analysis of
mRNA amplification by in vitro transcription. Nucleic Acids Research 29, e29–e29
(2001).

[117] Okino, S. T., Kong, M., Sarras, H. & Wang, Y. Evaluation of bias associated
with high-multiplex, target-specific pre-amplification. Biomolecular Detection and
Quantification 6, 13–21 (2016).

[118] Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina se-
quencing libraries. Genome Biology 12, 1–14 (2011).

[119] Gayoso, A. et al. scvi-tools: a library for deep probabilistic analysis of single-cell
omics data. bioRxiv 2021.04.28.441833 (2021).

[120] Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and
flexible method for signal extraction from single-cell RNA-seq data. Nature Commu-
nications 9, 284 (2018).

[121] Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–
1902.e21 (2019).

[122] Shendure, J. & Ji, H. Next-generation DNA sequencing. Nature Biotechnology 26,
1135–1145 (2008).

[123] Kulkarni, A., Anderson, A. G., Merullo, D. P. & Konopka, G. Beyond bulk: a review
of single cell transcriptomics methodologies and applications. Current Opinion in
Biotechnology 58, 129–136 (2019).

[124] Jourdren, L., Bernard, M., Dillies, M.-A. & Le Crom, S. Eoulsan: a cloud
computing-based framework facilitating high throughput sequencing analyses. Bioin-
formatics 28, 1542–1543 (2012).

[125] Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruc-
tion of single-cell gene expression data. Nature Biotechnology 33, 495–502 (2015).

[126] Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY : large-scale single-cell gene
expression data analysis. Genome Biology 19, 1–5 (2018).

[127] Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of
Cell Doublets in Single-Cell Transcriptomic Data. Cell Systems 8, 281–291.e9 (2019).

[128] Nayak, R. & Hasija, Y. A hitchhiker’s guide to single-cell transcriptomics and data
analysis pipelines. Genomics 113, 606–619 (2021).

[129] Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-
level analysis of single-cell RNA-seq data with Bioconductor. F1000Research 5, 2122
(2016).

176



[130] Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature selection and
dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome
Biology 20, 1–16 (2019).

[131] Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome
Biology 21, 31 (2020).

[132] Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical chal-
lenges in single-cell transcriptomics. Nature Reviews. Genetics 16, 133–145 (2015).

[133] Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering
of single-cell RNA-seq data. Nature Reviews Genetics 20, 273–282 (2019).

[134] Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expres-
sion: from theories to phenotypes. Nature Reviews Genetics 6, 451–464 (2005).

[135] Eling, N., Morgan, M. D. & Marioni, J. C. Challenges in measuring and under-
standing biological noise. Nature Reviews. Genetics 20, 536–548 (2019).

[136] Raser, J. M. & O’Shea, E. K. Noise in Gene Expression: Origins, Consequences,
and Control. Science 309, 2010–2013 (2005).

[137] Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression.
Science (New York, N.Y.) 304, 1811–1814 (2004).

[138] Serizawa, S., Miyamichi, K. & Sakano, H. One neuron-one receptor rule in the
mouse olfactory system. Trends in genetics: TIG 20, 648–653 (2004).

[139] Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional
regulators. Nature 403, 335–338 (2000).

[140] Waddington, C. H. Canalization of development and genetic assimilation of acquired
characters. Nature 183, 1654–1655 (1959).

[141] Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik. Zeitschrift für Physik 43, 172–198 (1927).

[142] Bong, K.-W. et al. A strong no-go theorem on the Wigner’s friend paradox. Nature
Physics 16, 1199–1205 (2020).

[143] Bell, S. A. A beginner’s guide to uncertainty of measurement. Measurement Good
Practice Guide 11, 1–30 (2001).

[144] Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experi-
ments. Nature Methods 10, 1093–1095 (2013).

[145] Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell
differential expression analysis. Nature Methods 11, 740–742 (2014).

[146] Sarkar, A. & Stephens, M. Separating measurement and expression models clari-
fies confusion in single-cell RNA sequencing analysis. Nature Genetics 53, 770–777
(2021).

[147] Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-
cell transcriptomics. Nature Methods 11, 637–640 (2014).

177



[148] Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and
gene set overdispersion analysis. Nature Methods 13, 241–244 (2016).

[149] Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative
modeling for single-cell transcriptomics. Nature Methods 15, 1053–1058 (2018).

[150] Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell
RNA-seq denoising using a deep count autoencoder. Nature Communications 10,
390 (2019).

[151] Deng, Y., Bao, F., Dai, Q., Wu, L. F. & Altschuler, S. J. Scalable analysis of
cell-type composition from single-cell transcriptomics using deep recurrent learning.
Nature Methods 16, 311–314 (2019).

[152] Fleming, S. J., Marioni, J. C. & Babadi, M. CellBender remove-background: a
deep generative model for unsupervised removal of background noise from scRNA-
seq datasets. bioRxiv 791699 (2019).

[153] van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data
Diffusion. Cell 174, 716–729.e27 (2018).

[154] Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing.
Nature Methods 15, 539–542 (2018).

[155] Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA
sequencing data. Genome Biology 18, 1–15 (2017).

[156] Pierson, E. & Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell
gene expression analysis. Genome Biology 16, 241 (2015).

[157] Finak, G. et al. MAST: a flexible statistical framework for assessing transcrip-
tional changes and characterizing heterogeneity in single-cell RNA sequencing data.
Genome Biology 16, 278 (2015).

[158] Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for
single-cell RNA-seq data. Nature Communications 9, 997 (2018).

[159] Andrews, T. S. & Hemberg, M. False signals induced by single-cell imputation.
F1000Research 7, 1740 (2019).

[160] Cao, Y., Kitanovski, S., Küppers, R. & Hoffmann, D. UMI or not UMI, that is the
question for scRNA-seq zero-inflation. Nature Biotechnology 39, 158–159 (2021).

[161] Svensson, V. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology 38,
147–150 (2020).

[162] Andrews, T. S. & Hemberg, M. M3Drop: dropout-based feature selection for scR-
NASeq. Bioinformatics 35, 2865–2867 (2019).

[163] Kainen, P. C. Utilizing Geometric Anomalies of High Dimension: When Complexity
Makes Computation Easier. In Kárný, M. & Warwick, K. (eds.) Computer Intensive
Methods in Control and Signal Processing: The Curse of Dimensionality, 283–294
(Birkhäuser, 1997).

178



[164] Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization
and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nature
Methods 14, 414–416 (2017).

[165] Aucouturier, J.-J. & Pachet, F. Improving timbre similarity: How high is the sky.
In Results in Speech and Audio Sciences (2004).

[166] Radovanovic, M., Nanopoulos, A. & Ivanovic, M. Hubs in Space: Popular Nearest
Neighbors in High-Dimensional Data. Journal of Machine Learning Research 11,
2487–2531 (2010).

[167] Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-
sequencing data. Current Opinion in Systems Biology 7, 36–46 (2018).

[168] Aggarwal, C. C., Hinneburg, A. & Keim, D. A. On the Surprising Behavior of
Distance Metrics in High Dimensional Space. In Van den Bussche, J. & Vianu, V.
(eds.) Database Theory — ICDT 2001, Lecture Notes in Computer Science, 420–434
(Springer, Berlin, Heidelberg, 2001).

[169] Wang, B. et al. SIMLR: A Tool for Large-Scale Genomic Analyses by Multi-Kernel
Learning. Proteomics 18 (2018).

[170] Mirkes, E. M., Allohibi, J. & Gorban, A. Fractional Norms and Quasinorms Do
Not Help to Overcome the Curse of Dimensionality. Entropy (Basel, Switzerland) 22

(2020).

[171] Kairov, U. et al. Determining the optimal number of independent components for
reproducible transcriptomic data analysis. BMC Genomics 18 (2017).

[172] Aparicio, L., Bordyuh, M., Blumberg, A. J. & Rabadan, R. A Random Matrix
Theory Approach to Denoise Single-Cell Data. Patterns 1, 100035 (2020).

[173] Feldbauer, R. & Flexer, A. A comprehensive empirical comparison of hubness reduc-
tion in high-dimensional spaces. Knowledge and Information Systems 59, 137–166
(2019).

[174] Weber, L. M. et al. Essential guidelines for computational method benchmarking.
Genome Biology 20, 125 (2019).

[175] Zappia, L., Phipson, B. & Oshlack, A. Exploring the single-cell RNA-seq anal-
ysis landscape with the scRNA-tools database. PLOS Computational Biology 14,
e1006245 (2018).

[176] Schneider, I. et al. Use of “default” parameter settings when analyzing single cell
RNA sequencing data using Seurat: a biologist’s perspective. Journal of Translational
Genetics and Genomics 5, 37–49 (2021).

[177] Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T
cell phenotypes shaped by the TCR. Nature Immunology 19, 291–301 (2018).

[178] Buchka, S., Hapfelmeier, A., Gardner, P. P., Wilson, R. & Boulesteix, A.-L. On
the optimistic performance evaluation of newly introduced bioinformatic methods.
Genome Biology 22, 1–8 (2021).

179



[179] Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for
exploration of mouse and human single-cell RNA sequencing data. Database 2019

(2019).

[180] Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proceedings of the National Academy
of Sciences 102, 15545–15550 (2005).

[181] Pliner, H. A., Shendure, J. & Trapnell, C. Supervised classification enables rapid
annotation of cell atlases. Nature Methods (2019).

[182] Lieberman, Y., Rokach, L. & Shay, T. CaSTLe - Classification of single cells by
transfer learning: Harnessing the power of publicly available single cell RNA sequenc-
ing experiments to annotate new experiments. PloS One 13, e0205499 (2018).

[183] Wagner, F. & Yanai, I. Moana: A robust and scalable cell type classification frame-
work for single-cell RNA-Seq data. bioRxiv 456129 (2018).

[184] Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

[185] Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula
Muris. Nature 562, 367–372 (2018).

[186] Cortal, A., Martignetti, L., Six, E. & Rausell, A. Gene signature extraction and cell
identity recognition at the single-cell level with Cell-ID. Nature Biotechnology 1–8
(2021).

[187] Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq
data across data sets. Nature Methods 15, 359–362 (2018).

[188] van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states
in human cancer: insights from single-cell analysis. Nature Reviews. Cancer 20,
218–232 (2020).

[189] Shao, X. et al. scCATCH: Automatic Annotation on Cell Types of Clusters from
Single-Cell RNA Sequencing Data. iScience 23 (2020).

[190] Abdelaal, T. et al. A comparison of automatic cell identification methods for single-
cell RNA sequencing data. Genome Biology 20, 194 (2019).

[191] Zhang, A. W. et al. Probabilistic cell-type assignment of single-cell RNA-seq for
tumor microenvironment profiling. Nature Methods 16, 1007–1015 (2019).

[192] Franzén, O. & Björkegren, J. L. M. alona: a web server for single-cell RNA-seq
analysis. Bioinformatics 36, 3910–3912 (2020).

[193] Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage. Nature Immunology 20, 163–172 (2019).

[194] Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcrip-
tomics data with deep generative models. Molecular Systems Biology 17, e9620
(2021).

[195] Svensson, V., Beltrame, E. d. V. & Pachter, L. Quantifying the tradeoff between
sequencing depth and cell number in single-cell RNA-seq. bioRxiv 762773 (2019).

180



[196] Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment 2008, P10008 (2008).

[197] Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing
well-connected communities. Scientific Reports 9, 5233 (2019).

[198] Schwartz, G. W. et al. TooManyCells identifies and visualizes relationships of single-
cell clades. Nature Methods 17, 405–413 (2020).

[199] Hu, M.-W. et al. PanoView: An iterative clustering method for single-cell RNA
sequencing data. PLoS computational biology 15, e1007040 (2019).

[200] Grün, D. Revealing dynamics of gene expression variability in cell state space.
Nature Methods 17, 45–49 (2020).

[201] Dong, R. & Yuan, G.-C. GiniClust3: a fast and memory-efficient tool for rare cell
type identification. BMC bioinformatics 21, 158 (2020).

[202] Jindal, A., Gupta, P., Jayadeva & Sengupta, D. Discovery of rare cells from volu-
minous single cell expression data. Nature Communications 9, 4719 (2018).

[203] Liu, B. et al. An entropy-based metric for assessing the purity of single cell popu-
lations. Nature Communications 11, 3155 (2020).

[204] Liu, J., Song, Y. & Lei, J. Single-cell entropy to quantify the cellular transcriptome
from single-cell RNA-seq data. bioRxiv (2019).

[205] Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic
cells, monocytes, and progenitors. Science (New York, N.Y.) 356, eaah4573 (2017).

[206] Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the
CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

[207] Low, T., Borgelt, C., Stober, S. & Nürnberger, A. The Hubness Phenomenon: Fact
or Artifact? In Towards Advanced Data Analysis by Combining Soft Computing and
Statistics, vol. 285, 267–278 (Springer, Berlin, Heidelberg, 2013).

[208] McInnes, L. & Healy, J. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. arXiv:1802.03426 [cs, stat] (2018).

[209] Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data
structure in both t -SNE and UMAP. Nature Biotechnology 39, 156–157 (2021).

[210] Feldbauer, R., Rattei, T. & Flexer, A. scikit-hubness: Hubness Reduction and
Approximate Neighbor Search. Journal of Open Source Software 5, 1957 (2020).

[211] Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: Why fMRI inferences for
spatial extent have inflated false-positive rates. Proceedings of the National Academy
of Sciences 113, 7900–7905 (2016).

[212] Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell
trajectory inference methods. Nature Biotechnology 37, 547–554 (2019).

181



[213] Klimovskaia, A., Lopez-Paz, D., Bottou, L. & Nickel, M. Poincaré maps for an-
alyzing complex hierarchies in single-cell data. Nature Communications 11, 2966
(2020).

[214] Gry, M. et al. Correlations between RNA and protein expression profiles in 23
human cell lines. BMC Genomics 10, 365 (2009).

[215] Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single
cells. Nature Methods 14, 865–868 (2017).

[216] Larsson, L., Frisén, J. & Lundeberg, J. Spatially resolved transcriptomics adds a
new dimension to genomics. Nature Methods 18, 15–18 (2021).

[217] Fridman, W. H. Historique de l’immunothérapie. Changement de paradigme ? Bul-
letin du Cancer 103, S122–S126 (2016).

[218] Kuksin, M. et al. Applications of single-cell and bulk RNA sequencing in onco-
immunology. European Journal of Cancer (Oxford, England: 1990) 149, 193–210
(2021).

182



Part IV

Annexes

183



Chapter 9

Single-cell RNAseq of blood

antigen-presenting cells in severe

COVID-19 reveals multi-process defects

in antiviral immunity

We implemented in this article the use of functional modules, though not the specific
scoring and clustering methods that were developed later. It facilitated the interpretation
of dendritic cells, emphasizing functional differences between different groups of Covid-19
patients and healthy subjects.
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S
evere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
infection is at the origin of coronavirus disease 2019  
(COVID-19), characterized by a first phase of benign flu-like 

symptoms with an efficient control of the infection in most cases. 
In a second phase, disease aggravation may lead to acute respira-
tory failure, sepsis and death1–6. This is due to a multiplicity of fac-
tors: (1) an exacerbated inflammatory reaction, with systemic and 
organ-specific manifestations, (2) persistent viral load and (3) defec-
tive antiviral defence pathways1–7. Identifying the underlying cellular 
and molecular mechanisms is of paramount importance to under-
stand COVID-19 physiopathology and guide the development of  
appropriate therapies.

Studies have characterized the systemic inflammatory response, 
revealing an excess production of inflammatory cytokines such as 
interleukin-6 (IL-6) and IL-1, tumour necrosis factor-α (TNF-α) 
and interferon-γ (IFN-γ)2,8–22, suggesting new therapeutic targets. 
The endothelium may also contribute to the overt inflammatory 
reaction through the production of soluble mediators23,24. Anti-IL-6 
compounds have given promising results in severe COVID-1925–27. 
However, the cellular mechanisms underlying the excessive inflam-
matory response remain mostly unknown.

Another unresolved question relates to the inefficiency of the 
innate and adaptive immune system to control the infection in 
patients with severe COVID-19. It has been suggested that pro-
duction of IFN-α, a major antiviral cytokine, is decreased in these 
patients compared to those with moderate disease6,9,21,28–30. However, 
a recent study argued that increased IFN-α production might  

contribute to the pathogenic inflammatory response17. Other antivi-
ral mechanisms and their cellular source remain to be studied.

Dendritic cells (DCs) form a family of innate antigen 
(Ag)-presenting cells (APCs) that contribute to the control of 
pathogens and subsequent presentation of pathogen-specific Ag 
to T cells31. Their study is challenging for three main reasons: (1) 
they are found in very low numbers in the circulation and in tissue, 
(2) they lack specific lineage-defining markers and (3) they include 
an ever-increasing number of subsets31,32. All DC subsets may 
potentially and variably contribute to modulating the inflamma-
tory response following viral sensing, producing antiviral effector 
molecules and priming an Ag-specific adaptive immune response33. 
Plasmacytoid pre-DCs (pDCs) are a particular subset specialized in 
antiviral immunity through the production of large amounts of type 
I IFN34. Despite their central role in antiviral defence, the contribu-
tion of DCs to severe COVID-19 pathogenesis is not yet known.

In this paper we perform a high-resolution single-cell 
RNA-sequencing (scRNAseq) analysis of all APC subsets from fresh 
peripheral blood of patients with COVID-19. A pre-enrichment 
step enables the characterization of even rare DC subsets that 
were not captured in previous peripheral blood mononuclear cell 
(PBMC) scRNAseq studies12,17,35. We reveal previously unrecog-
nized multi-process defects in patients with severe COVID-1922,36,37.

Results
APC subset distribution in patients with COVID-19. To char-
acterize the molecular profile of circulating APCs, we performed 

Single-cell RNA sequencing of blood 
antigen-presenting cells in severe COVID-19 
reveals multi-process defects in antiviral immunity

Melissa Saichi1,9, Maha Zohra Ladjemi2,3,9, Sarantis Korniotis1,9, Christophe Rousseau2, 

Zakaria Ait Hamou2,3, Lucile Massenet-Regad   1,4, Elise Amblard   1,5, Floriane Noel   1, Yannick Marie6,7, 

Delphine Bouteiller6, Jasna Medvedovic1, Frédéric Pène2,3 and Vassili Soumelis   1,8

COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we per-
form single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with 
moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, 
as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) 
subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: 
(1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the 
innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated 
genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC 
class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may 
explain patient aggravation and suggest strategies to restore the defective immune defence.
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scRNAseq on freshly sampled APC-enriched PBMCs from five 
patients with moderate COVID-19 (non-mechanically ventilated, 
oxygen supply <10 l min−1) and ten patients with severe COVID-19  
(mechanically ventilated or oxygen supply ≥10 l min−1), at day 
1 and day 4 following hospital and/or intensive care unit (ICU) 
admission, as well as four elderly healthy controls (HC) (Fig. 1a 
and Supplementary Tables 1 and 2). To obtain single-cell suspen-
sions and minimize DC–DC and DC–T cell clusters and clumps, 

EDTA-containing medium was used for the enrichment steps in 
the first set of samples, which we further define as the ‘discov-
ery set’. This set is composed of a total of 12 samples from two 
HCs, three patients with moderate COVID-19 and four patients 
with severe COVID-19 from both day 1 and day 4 time points 
(results are presented in the figures and Extended Data Figs. 1 
and 2). However, EDTA is known to decrease reverse transcrip-
tion (RT) efficiency through RT deactivation and ion chelation,  
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Fig. 1 | Circulating APC subset diversity in COVID-19 from the discovery set. a, Schematic of the experimental workflow. APCs were enriched from fresh 

PBMCs of healthy donors and patients with COVID-19 with either moderate or severe clinical symptoms at both day 1 and day 4 post hospital admission. 

The total APCs were sequenced using the 10X Genomics facility. b,c, Cellular maps of APC subsets (n = 42,784 cells) from the discovery set at single-cell 

resolution level displayed on UMAP dimension reduction based either on identified cell types (b) and severity (c). Proportions of the APC subtypes are 

displayed on the doughnut plot. d, UMAP plot of detected APC populations split by severity group (healthy controls and patients with moderate and 

severe COVID-19). The discovery set comprises a total of 12 samples (n = 2 controls, n = 4 moderate and n = 6 severe samples) collected from a total of 

seven patients and two healthy donors.
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resulting in reduced amounts of complementary DNA (cDNA) dur-
ing amplification. We therefore validated the main results derived 
from the discovery set by using RPMI (EDTA-free) medium for 
the enrichment steps in a second set of samples, including a total 
of 15 samples (defined as the ‘validation set’) from two HCs, two 
patients with moderate COVID-19 and six with severe COVID-19 
(Extended Data Figs. 3–7).

For each fresh sample, 25,000 cells (~20,000 monocytes and 5,000 
total DCs) were loaded onto the 10X lane (10X Genomics technol-
ogy) (Fig. 1a). As expected, more cells per sample were effectively 
sequenced in the EDTA (discovery set) than the RPMI (validation 
set) dataset (mean: 3,360 versus 2,528 cells, respectively) (Extended 
Data Fig. 3a), confirming that EDTA optimizes single-cell suspen-
sion efficiency for rare DC types. This retrospectively justified the 
importance of using two complementary experimental protocols, 
split into two independent datasets, to avoid biasing the results. All 
main findings were validated in both datasets, indicating the repro-
ducibility and robustness to experimental procedures. Altogether, 
we analysed a total of 81,643 APCs, split into 42,784 cells in the 
discovery set and 38,859 cells in the validation set. The two sets 
were analysed separately after sample integration using Harmony38. 
Graph-based clustering (SNN-based), community detection and 
nonlinear dimension reduction, using uniform manifold approxi-
mation and projection (UMAP), were independently applied to 
both sets for cell cluster visualization. Manual annotation of the cell 
clusters using canonical gene signature markers for each APC sub-
set established a comprehensive map of APCs in HCs and patients 
with COVID-19 in both sets (Fig. 1b,c and Extended Data Fig. 3b,c). 
In our discovery set, among the 42,784 APCs, we recovered six 
subsets: 22,690 CD14+ monocytes; 866 CD16+ monocytes; 13,252 
CD1c+ DCs; 1,754 CLEC9a+ DCs; 3,538 pDCs; 684 Axl+Siglec6+ 
AS-DCs (Extended Data Fig. 3a). The validation set included 29,409 
CD14+ and 1,021 CD16+ monocytes, 5,754 CD1c+, 197 CLEC9a+ 
DCs, 1,602 pDCs and 876 AS-DCs (Extended Data Fig. 3a). In both 
sets, APC populations were captured across all the collected samples 
(Supplementary Table 3).

The accurate identification of all six APC populations was con-
firmed by the expression of canonical markers defining each sub-
set (Extended Data Fig. 3d). All DC populations expressed higher 
levels of human leukocyte antigen HLA-DR and CD86 compared 
to monocytes (Extended Data Fig. 3d). None of the cells expressed 
CD19 (B-cell marker), GNLY (natural killed (NK) marker) or CD3E 
(T-cell marker), validating the pure APC populations. CD14+ mono-
cytes expressed lineage-defining CD14, whereas CD16+ monocytes 
expressed FCGR3A. AXL expression distinguished AS-DCs from 
pDCs, whereas CD1c and CLEC9a characterized the respective cDC 
subsets39,40. In both sets (discovery and validation), UMAP embed-
dings coloured by severity revealed the heterogeneity of APC distri-
bution between the three groups (Fig. 1c). This was confirmed by 
splitting the UMAP embeddings per severity (Fig. 1d). Overall, our 
enrichment strategy allowed the efficient identification of all APC 
populations including the rare pDCs, AS-DCs and CLEC9A+ DCs, 
enabling further molecular and phenotypic characterization.

Inflammation-related pathways are hallmarks of COVID-19 
APCs. We performed differential expression and pathway enrich-
ment analyses among APC severity groups, revealing 368 differen-
tially expressed genes (DEGs) among the three groups (absolute fold 
change > 1.4). Among them, 101 genes were upregulated in HCs 
(as compared to patients with moderate and severe COVID-19),  
109 in patients with moderate COVID-19 and 134 in patients with 
severe COVID-19 as compared to the two other groups, respec-
tively (Fig. 2a). The top 50 DEGs upregulated in severe APCs as 
compared to HCs and patients with moderate COVID-19 included 
pro-inflammatory molecules (IL1B, CXCR4), surface mark-
ers (CD36, CD83, AREG, ITGAM), enzymes (CTSD, CTSB) and 
secreted molecules (RETN, EREG, ANXA2) (Fig. 2b). Next, we 
sought to identify enriched pathways discriminating each severity 
group from HCs. We found enriched IFN-γ and IFN-α response 
pathways in APCs from patients with moderate COVID-19, whereas 
hypoxia and TNF-α signalling were enriched in patients with severe 
COVID-19 (Fig. 2c).

We next compared the enriched pathways upregulated in severe 
versus moderate COVID-19 and in moderate versus severe, respec-
tively. We found that IFN-γ and IFN-α pathways could be used to 
discriminate moderate from severe APCs at the global level (Fig. 2d).

To allow for an accurate comparison between the two transcrip-
tional signatures, we ranked the DEGs of the pairwise comparison 
according to decreasing fold change. Severe APCs significantly 
upregulated AREG (amphiregulin), IL1R2 (IL-1 receptor), NRGN 
(calmodulin binding protein) and pro-inflammatory molecules 
(S100A12) (Fig. 2e). However, moderate APCs overexpressed 
interferon-stimulated genes (ISGs; IFITM2, ISG15 and IFI27) 
and HLAII molecules (HLA-DRB5 and HLA-DQA2), suggesting 
decreased Ag presentation and antiviral programs in severe as com-
pared to moderate APCs (Fig. 2e). Similar observations were recov-
ered from our validation set (Extended Data Fig. 4a–d). Additional 
upregulated genes in severe as compared to moderate APCs were 
found in the validation set, including CXCL8, NAMPT and G0S2 
(Extended Data Fig. 4e).

Defective IFN responses in COVID-19 APCs. Increases in inflam-
matory cytokines have been reported in COVID-19. We addressed 
the global contribution of APCs to the expression of inflammatory 
cytokines and their receptors. As compared to APCs derived from 
HCs, IL1B, CXCL2, CXCL8 and CCL3 were significantly increased, 
whereas IL18 was decreased in both severity groups (Fig. 3a and 
Extended Data Fig. 1a). TGFB1 and IL10RA expression decreased 
in severe, but not in moderate subsets, as compared to HCs (Fig. 3a 
and Extended Data Fig. 1a), whereas IL6 was not detected in our dis-
covery set (Extended Data Fig. 1a). Despite the low expression lev-
els of most cytokines, we explored downstream biological pathways 
associated with inflammatory cytokine signalling (mainly IL1B, IL6 
and TNF-α). In comparison to APCs from HCs, both moderate and 
severe APCs showed higher score levels for hallmark inflamma-
tory pathways, including ‘IL6_JAK_STAT3’, ‘TGF-β’, ‘P53’, ‘TNFa_
SIGNALLING_VIA_NFKB’ and ‘KRAS_SIGNALLING’ (Fig. 3b). 

Fig. 2 | Global increase in inflammation-associated pathways in COVID-19 APCs (discovery set). a, Barplot of the number of differentially expressed genes 

(DEGs) for each severity group (healthy versus patients with moderate and severe COVID-19; moderate versus healthy and severe; severe versus healthy 

and moderate). Upregulated (log fold change (FC) > 0.25) genes are shown in black, downregulated (log FC < −0.25) genes are shown in grey. b, Heatmap 

representation of the top upregulated genes in severe APCs, as compared to moderate and healthy groups. The z-score values of average expression levels 

of cells per severity group are colour-coded. c,d, Comparative analysis of enriched pathways from the upregulated genes in moderate or severe APCs as 

compared to healthy cells (c), as well as pairwise comparison of upregulated genes in moderate compared to severe (shown in pink) and upregulated 

genes in severe compared to moderate (shown in yellow) (d). Horizontal axes display the adjusted P values (−log10). e, Representation of ranked genes in 

descending order according to their absolute log FC, upregulated in moderate as compared to severe (red plot) and upregulated in severe as compared to 

moderate (blue plot). Top genes, with an absolute value of log FC above 0.5, are shown. In a–e, comparative analyses were performed on the discovery set 

(n = 42,784 cells), composed of n = 2 HC, n = 4 moderate and n = 6 severe samples. The two-sided Wilcoxon rank-sum test was used for comparison,  

P values were adjusted to multiple testing using ‘Bonferroni’ correction, and only genes with adjusted P < 0.05 were considered.
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The IFN family of cytokines is one of the most important for innate 
and adaptive antiviral responses. We showed the expression levels 
of IFNL1, IFNL1R, IFNAR1, IFNAR2, IFNA1, IFNGR1 and IFNGR2 
and further explored their distribution in the three severity groups 
via a scaled heatmap (Fig. 3c). Both IFN receptor types (IFNAR1, 
IFNAR2, IFNGR1 and IFNGR2) were broadly expressed in the 

APC subsets, whereas detection of IFNL1 and IFNLR1 was patchy 
in our discovery dataset (Extended Data Fig. 3b). The heatmap 
representation indicated that severe APCs expressed lower levels 
of IFN molecules, suggesting a potential defect in IFN signalling  
(Fig. 3c). To further validate this hypothesis, we investigated the 
expression levels of ISGs. We observed higher expression levels of 
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ISGs (MX2, ISG15, IRF7, BST2, IFITM2 and ADAR) in moderate 
APCs, but lower levels in severe APCs, supporting the hypothesis of 
defective antiviral programs contributing to the severity of COVID-19  
(Fig. 3c). We further stratified a more exhaustive ISG signature 
according to their respective functions related to ‘antiviral’ and ‘reg-
ulators of IFN signalling’. Moderate APCs displayed higher levels 
of these two ISG families compared to both severe and HC groups 
(Fig. 3d,e). These results suggest a global perturbation of IFN down-
stream functions in severe COVID-19 APCs.

Multi-process effector defects in severe COVID-19 pDCs. After 
having analysed COVID-19 APCs at the global level, we sought 
to decipher alterations occurring in specific APC subsets. To 
depict the alterations occurring in pDC subsets, we isolated and 
sub-clustered pDCs (Fig. 4a) and performed pairwise differential 
expression among the three severity groups. Pathway enrichment 
analysis using MsigDB hallmark signatures was conducted on the 
upregulated genes in each subset. Compared to both moderate and 
HC pDCs, severe pDCs were enriched for the ‘TNFa_SIGNALING’, 
‘IL2_STAT5’ and ‘HYPOXIA’ signalling pathways. In parallel, com-
pared to pDCs from patients with moderate COVID-19, pDCs 
from patients with severe COVID-19 were enriched in the ‘IL6_
JAK_STAT3’, ‘P53’ and ‘MTORC’ signalling pathways (Fig. 4b). 
When comparing pDCs between patients with moderate and severe 
COVID-19, the most notably enriched pathways were related to 
IFN signalling (IFNG and IFNA response), along with MYC tar-
gets signalling pathways (Fig. 4b). We asked whether apoptosis and 
pro-inflammatory signalling signatures would be associated with 
changes in pDC innate sensing receptors, including TLR9, DHX36, 
IFNAR1 and IFNAR2. We imputed the expression values to recover 
the signal from dropped-out features using Nebulosa (https://github.
com/powellgenomicslab/Nebulosa), and plotted the density estima-
tion values on UMAP embeddings (Fig. 4c). We observed zero-value 
density levels for TLR9, along with decreased density levels for 
DHX36, IFNAR1 and IFNAR2, in pDCs from patients with severe 
COVID-19 (Fig. 4c). To explore whether these modulations may 
impact pDC functions, we defined four original functional mod-
ules using a literature-driven manual curation: ‘immune cell attrac-
tion’ (hereafter ‘attraction’) (18 genes), ‘innate sensing’ (12 genes), 
‘antiviral effector molecules’ (23 genes) and ‘cytotoxicity’ (12 genes)  
(Fig. 4d). Each of these modules was crossed with the pDC expres-
sion matrix, and detected genes were depicted for each patient group 
(Fig. 4d). No major differences between groups were detected within 
the ‘attraction’ module. On the contrary, many genes in the ‘innate 
sensing’, ‘antiviral effector molecules’ and ‘cytotoxicity’ modules 
were detected in the three groups, and followed the same pattern: 
baseline in HCs, increased in patients with moderate COVID-19 
and decreased in patients with severe COVID-19 (Fig. 4d,e and 
Extended Data Fig. 5). This was particularly striking for the viral 
sensors TLR7, DHX9 and DHX36, the cytotoxic molecule TNFSF10 
and the antiviral effector IRF7. These results were supported by the 
downregulation of antiviral ISGs and innate sensors in pDCs from 
patients with severe COVID-19, including BST2 and PYCARD  
(Fig. 4e), in both experimental datasets (Extended Data Fig. 5).

Coordinated transcriptional adaptation in monocyte subsets. 
Monocytes have been implicated in the physiopathology of severe 
sepsis and COVID-19. We performed dimensionality reduction 
through independent component analysis (ICA) and highlighted 
cells according to their severity group. We observed that IC1 clearly 
separated moderate from severe and HC CD14+ monocytes, whereas 
IC2 distinguished HC from COVID-19 CD14+ monocytes (Fig. 5a). 
The top 50 genes contributing to either IC1 or IC2 revealed distinct 
transcriptional signatures for the CD14+ monocyte subsets identi-
fied in each severity group: the severe subset expressed higher levels 
of complement (C1GC and C1GB), B7 family (VSIG4) and CD163, 

which may function as an innate immune sensor and inducer of 
local inflammation. The moderate monocyte subset expressed 
increased levels of antiviral ISGs (IFITM1, IFITM3, IFI27, MZB1 
and IFI6) and the HLA-II gene (HLA-DRB5), suggesting an effi-
cient antiviral program (Fig. 5b). Compared to HCs, several tran-
scription factors (TFs) were downregulated in both moderate 
and severe groups, including the AP-1 superfamily (FOS, JUNB 
and ZFP36) and DUSP1, involved in MAPK dephosphorylation  
(Fig. 5b). Pathway enrichment analysis on the top 50 genes con-
tributing to IC1 and IC2 identified key pathways that segregated 
COVID-19 CD14+ monocytes from HCs (Fig. 5c). The ‘complement’, 
‘TNF-α’, ‘KRAS’ and ‘hypoxia’ signalling pathways were upregulated 
in COVID-19 monocytes, whereas ‘IFN-α’ and ‘IFN-γ’ response 
signalling were decreased in the severe subset, as compared to the 
HC and moderate subsets (Fig. 5c). To estimate antiviral effector 
functions, we used our manually curated gene functional module 
across patient groups (Fig. 5d). We observed a decrease of almost 
all antiviral effector molecules in patients with severe COVID-19, 
as compared to either HCs or patients with moderate COVID-19, 
in both experimental datasets (Fig. 5d and Extended Data Fig. 6). 
In parallel, we subclustered CD16+ monocytes and reduced the 
data dimension using UMAP projection to depict the correspond-
ing clusters for each severity group (Fig. 5e). Differential expression 
between the three severity groups of this subset indicated similar 
trends as described in CD14+ monocytes (Fig. 5b,f). This included 
overexpression of ‘complement’-related genes (C1QA, C1QB and 
C1GC) by the severe subset, upregulation of antiviral ISGs (ISG15, 
IFI6 and IFI44L) in the moderate subset, as compared to the HC 
subset (Fig. 5f). Overall, these disease-associated changes in CD16+ 
paralleled those observed in CD14+ monocytes, suggesting com-
mon adaptation mechanisms.

CLEC9A+ DC- and AS-DC-specific transcriptional alterations. 
Thanks to our APC enrichment protocol, we could recover rare 
CLEC9a+ DC and AS-DC subsets. Differential expression of AS-DC 
severity groups revealed significant upregulated genes in severe 
AS-DCs (SEPT7 and AREG), compared to the moderate and HC 
subsets. We could also observe a significant downregulation of the 
HLA-DQA2 gene and antiviral IFI27 gene in severe, compared to 
moderate AS-DCs (Fig. 6a). In the search for upstream regulatory 
mechanisms, we inferred TF activity using the Dorothea algorithm41 
and scored the activity of each regulon using the Viper inference 
tool42. This identified a large number of highly variant TF activity 
scores (Fig. 6b). In moderate AS-DCs, we observed a higher activity 
scored for IRF1, IRF9 and STAT2, reported to be involved in the ISG 
transcription cycle (Fig. 6b). In AS-DCs from patients with severe 
COVID-19, we found increased TF activities for RELA, NFKB1, 
STAT5 and STAT3, indicative of a higher activation of NFKB/STAT 
signalling, potentially induced by the pro-inflammatory cytokines 
described in the ‘APC subset distribution in patients with COVID-19’  
section, along with hypoxia activation, indicated by a higher activity 
of HIF1A (Fig. 6b).

DEGs among the CLEC9a+ DC subclusters included specific 
transcriptional signatures segregating patients with moderate and 
severe COVID-19 from HCs (Fig. 6c). We remarkably observed 
a downregulation of HLA-II genes, including HLA-DQB1 and 
HLA-DPB1, in severe as compared to HCs, along with a significant 
upregulation of a larger subset of ISGs, including IRF1, IFI44L, 
IFI6, IFI27, IFITM2, IFITM3, IFI44L, ISG15 and ISG20, in moder-
ate as compared to both HC and severe subsets (Fig. 6c). Expression 
values representation indicated a significant increase of AREG 
and SEPT7 genes, which were also upregulated by severe AS-DCs  
(Fig. 6a,d). Most importantly, we noted a significant decrease of the 
IFNGR1 CLEC9a+ DC subset in patients with moderate and severe 
COVID-19 as compared to HCs (Fig. 6d), supporting a defective 
antiviral program.
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Downregulation of MHC-II and CIITA activity in CD1C+ DCs. 
We next focused on disease-induced alterations in CD1c+ DCs. We 
first explored the gene expression levels of MHC-II-related genes 

(Fig. 7a). We noted a global decrease of HLA-II genes (mainly 
HLA-DQA2 and HLA-DRB5) in patients with severe COVID-19  
(Fig. 7a). Similar findings were reported for the validation set 
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P values for severe versus control; asterisks above moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not 

significant. b, Heatmap of top 50 highly variable TF activities among the three severity groups; the z-scores of TF activities are colour-coded. c, Heatmap 

representation of top 50 DEGs among the three severity groups isolated from the CLEC9a+ DC subset (a total of 1,754 cells); z-scores of expression level 

values are colour-coded; d, Violin plot distribution of IFNGR1 and HLA-DQA2 genes among the three CLEC9a+ DC severity groups.
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(Extended Data Fig. 7). We then grouped the expression values 
of these MHC-II genes (HLA-DRB1, HLA-DMA, HLA-DQA2, 
HLA-DRB5, HLA-DPB1, HLA-DQB1 and HLA-DMB), constructed 
a signature that we named the ‘HLAII’ module, and scored CD1c+ 
DCs using the ‘AddModuleScore’ Seurat function. The ‘HLAII’ 
signature was significantly reduced in severe as compared to HC 
CD1c+ DCs (Fig. 7b). This was associated with decreased expres-
sion of upstream MHC-II regulators (including RFX5, RFXANK 
and CIITA) in the severe group (Fig. 7b). Comparison of the 
scaled values revealed a reduction of IRF1 and RFX5 TF activities, 
mainly described to be involved in MHC-II gene synthesis, whereas  
C/EBP family member (CEBPB and CEBPD) TF activities, known 
to be involved in myeloid fate differentiation, were increased in 
severe subsets (Fig. 7c). We also noted higher TF activities for RELA 
(NFKB superfamily) and the AP-1 family in patients with severe 
COVID-19, including FOSL1, FOSL2 and JUN, which regulate a 
large range of cellular processes, including cell survival, death and 
proliferation (Fig. 7c).

To further decipher the transcriptional changes occurring in 
DCs when transitioning from healthy to moderate and severe con-
ditions, we conducted pseudo-temporal inference using Monocle3, 
using the UMAP embedding two-dimensional space of the DC 
subsets (Fig. 7d). The pseudotime tree revealed a continuous tra-
jectory from healthy to moderate, and a marked transition to the 
severe subsets. This trajectory was correlated to pseudotime values 
(Fig. 7d, right). To recover the genes contributing to this transition 
tree, we conducted a graph-based test to assess the most significant 
genes. The top genes were associated with Ag presentation, includ-
ing B2M and HLA-DPA1, along with genes related to ISG expres-
sion (GABARAP and IFITM3; Fig. 7e).

Given that MHC-II genes are involved in the DC–T cell interac-
tion, we hypothesized that a more global dysfunction of DC–T cell 
communication may occur in COVID-19 APCs. To test this hypoth-
esis, we applied our cell communication inference computational 
framework ICELLNET43. Using our ‘reference partner cell’ meth-
odology, we inferred potential communication between each of the 
APC subsets and CD4+ T cells in each of the disease groups (Fig. 8a). 
Cell connectivity networks revealed a global decrease in APC–T cell 
communication in patients with severe, as compared to moderate 
COVID-19 and HCs, predominantly in CD1c+ DCs, CLEC9a+ DCs 
and CD14+ monocytes (Fig. 8a,b). We then explored the various 
molecular families that may explain this decrease. This revealed a 
dominant contribution of immune checkpoint molecules and cyto-
kines for CD1c+ DC–T cell communication (Fig. 8b), in particular 
decreased JAG-NOTCH, CD80-CD28 and CD48-CD2 interactions 
(Fig. 8c). Cytokines were mostly underlying the decrease in CD14+ 
monocytes–T cell communication (Fig. 8b). As expected, signal-
ling through HLA-II-related genes (HLA-II/LAG3 pairs) was sig-
nificantly decreased in moderate and severe subsets as compared 
to HCs. Among the cytokines, IL10-, CCL5- and TGFb-mediated 
interactions were predominantly damped in patients with severe 

COVID-19, which may contribute to immunopathology through 
excessive Th1 responses (Fig. 8c).

Persistent defects in severe COVID-19 APCs across samples. We 
also asked whether functional pathway alterations observed across 
APC subtypes were sustained over time. In parallel, we wanted to 
ensure that our main findings were not driven by a single patient 
and/or time point. We compared scRNAseq datasets generated at 
day 1 versus day 4 post hospital admission for each patient, in all 
severity groups. We used a focused approach, by selecting genes 
involved in previously identified altered functions, in APCs from 
patients with severe COVID-19, and systematically compared day 
1 and day 4 expression levels. Most of the day 1 defects were sus-
tained at day 4, in particular the low score of the HLA-II module 
in CD1c+ DCs (Extended Data Fig. 2a) together with the decreased 
expression of the antiviral effector molecules in CD14+ monocytes 
(Extended Data Fig. 2b) and increased ‘apoptosis p53 pathway’ 
in pDCs (Extended Data Fig. 2c). At a patient level, we observed 
that HC samples displayed similar score (or expression) levels for 
these three biological processes, whereas both moderate and severe 
samples displayed slight differences due to inter-individual hetero-
geneity. Overall, we confirmed that our findings were not associated 
with either a specific time point or a dominant single patient effect. 
However, this does not exclude changes in APC molecular profiles 
at later times in the course of moderate and severe COVID-19.

Discussion
Severe COVID-19 harbours a complex physiopathology stemming 
from host–pathogen interactions evolving over time, and involves 
a large number of underlying cellular and molecular mechanisms. 
Hence, detailed studies on various immune cell compartments are 
required to obtain a global view of the process. DCs are central to 
immune responses by linking innate and adaptive immunity, in 
particular during infection31. DCs are rare cell types composed of 
multiple subsets32, justifying dedicated studies to uncover putative 
dysfunctions. So far, very little is known about the role of DC sub-
sets in COVID-1944–46. scRNAseq atlas studies of total PBMCs in 
patients with severe and moderate COVID-19 identified inflamma-
tory monocytes defective for MHC-II molecules12, as was previously 
shown in severe sepsis patients47, and increased apoptosis pathways 
in both NK cells and monocytes27,35,48–50. So far, none of these studies 
were tailored to provide sufficient resolution into the DC compart-
ments. The challenge is even greater knowing that some DC subsets, 
such as pDCs and CD141 (CLEC9A)+ DCs, are depleted from the 
blood in severe COVID-1945,51. A recent study analysed PBMCs by 
scRNAseq, after DC enrichment in EDTA-containing medium, but 
focused only on the IFN pathway and ISGs30. Most of these stud-
ies utilized frozen/thawed PBMCs as a starting biological mate-
rial, potentially inducing loss in some rare DC subsets. Through 
dedicated enrichment steps performed immediately after blood 
sampling (fresh samples), we were able to capture sufficient cell 

Fig. 7 | Downregulation of MHC-II and upstream transcriptional regulators in severe COVID-19 CD1c+ DCs of the discovery set. a, Dot plot distribution 

of HLA-II-related genes at the patient level within the CD1c+ DC subset; expression levels are colour-coded, and the percentage of cells expressing the 

respective gene is size-coded. b, Violin plot distribution of HLA-II and the upstream regulatorsʼ (HLAII_Regulators) module scores among the three severity 

groups within the CD1c+ DC subset; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the mean value of the 

enrichment score of each given pathway. The violin plots were designed using the total CD1c+ DC subsets from the discovery set obtained from n = 2 

HC, n = 4 moderate and n = 6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum test. P values were adjusted 

to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control; asterisks above moderate indicate 

significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant. c, Heatmap representation of top 50 highly variable TF 

activities between CD1c+ DC severity groups; the z-score of activity scores is colour-coded. d, Pseudotime inference tree on UMAP embeddings (left) of the 

CD1c+ DC subset using Monocle3; pseudotime values are colour-coded (right). e, UMAP representation of density scores for the top genes contributing to 

the pseudotime tree initially inferred in d. Density scores were computed using Nebulosa and are colour-coded. All statistical tests displayed in this figure 

were performed using the discovery set, comprising a total of 12 samples (n = 2 controls, n = 4 moderate and n = 6 samples) collected from seven patients 

and two healthy donors.
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numbers to define molecular profiles and identify specific defects 
in all known DC subsets.

As with most immune cells, DCs are not limited to a single func-
tion31. They play a key role in the first line of immune defence by 
sensing microbial pathogens, and also contribute to direct patho-
gen control through the production of antimicrobial peptides and 
antiviral effector molecules52. Other effector functions include 
the secretion of pro- and anti-inflammatory cytokines, and cyto-
toxic molecules31. Finally, they function as APCs to T cells, with 
which they communicate through secreted and surface molecules 

expressed within the immune synapse53. By using scRNAseq, and a 
combination of supervised and unsupervised bioinformatics meth-
ods, we were able to uncover defects in almost all of these processes, 
in specific APC subsets, associated with COVID-19 severity. This 
provides the first detailed molecular map of DC subsets and under-
lying molecular pathways in COVID-19.

Several studies have shown an increase of inflammatory cyto-
kines in severe COVID-19, which may contribute to the sever-
ity of the disease44. Increased circulating levels of IL-1β and IL-6 
were detected in patients with severe COVID-199–22,44. However, 
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the cellular source does not seem to be from circulating cells, but 
rather from inflammatory monocytes attracted to the lung54, as 
well as endothelial cells23,24. Our study corroborates these findings 
for IL-6, with no significant expression detected across APC sub-
sets. However, we did find increased expression of IL-1β, CXCL8 
and CXCL2 in APCs at the global level, and this may contribute 
to systemic inflammation. In parallel, we observed increased TNF 
signalling in pDCs, but decreased in monocytes, suggesting that 

distinct APCs may respond differently to circulating inflamma-
tory mediators.

Type I and III IFNs are critical antiviral cytokines55. APCs  
are a central source of IFN following viral sensing. Studies 
have shown that type I IFN responses are impaired in severe  
COVID-196,9,17,21,28–30,46,48,56, which may contribute to persistent viral 
load. Our data support these findings, as we did not detect any 
expression of IFN-α and IFN-λ1 across all APC subsets. However, 
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Fig. 8 | Perturbation of DC–T cell communication in patients with severe COVID-19 from the discovery set. a, Connectivity maps describing outward 

communication from APCs from the single-cell dataset at day 1 to T lymphocytes (n = 39), according to patient severity (healthy, moderate and severe). 

The T lymphocyte transcriptomic profiles are from the Human Primary Cell Atlas, included in the ICELLNET R package. For APCs, average cluster gene 
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interactions). b, Barplot of each communication score with contribution by families of communication molecules for outward communication from APCs 

to T lymphocytes. c, Focus on CD1c+ DC outward communication to T lymphocytes, representing specific individual interaction scores that differ by at 

least 10 between patients with moderate and severe COVID-19 (cutoff chosen for the purpose of clarity).
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we were also able to detect critical defects in the response to type 
I IFN. First, expression of IFNAR1 and 2 was globally decreased in 
APC subsets from patients with severe COVID-19. Second, most 
downstream ISGs (both antiviral and regulators of IFN signalling) 
were expressed at lower levels in patients with severe COVID-19 
compared to HCs, which themselves are expected to express low lev-
els of ISGs given the absence of innate stimulation. Overall, the IFN 
pathway was defective in severe COVID-19 APCs at several levels: 
IFN production, receptor expression and downstream ISG responses.

pDCs are a cell type that is highly specialized in antiviral immu-
nity, producing large amounts of all type I IFN57. Circulating 
pDCs have been shown to be diminished in COVID-1951, but the 
underlying mechanisms remain unknown. We identified increased 
expression of pro-apoptotic molecules in pDCs from patients 
with severe COVID-19. This suggests that pDCs could be globally 
altered through increased cell death. In a separate study, we have 
shown that in vitro SARS-CoV-2 stimulation of pDCs from healthy 
donors leads to improved pDC survival58, suggesting that the 
increased apoptosis we observed in pDCs from patients with severe 
COVID-19 was not due to direct virus-induced killing. In paral-
lel, we detected several defects in various pDC functions: decreased 
innate sensing, through loss of TLR7 and DHX36, which are key 
viral sensors59, decreased antiviral effector functions and cytotox-
icity. Hence, we report multi-process defects affecting key aspects 
of pDC antiviral functions. Interestingly, a recent study performed 
ex vivo stimulation of PBMCs of a patient with COVID-19 with 
TLR7/9 ligands, and showed decreased type I IFN production30. 
This provides an independent functional validation, while our study 
provides molecular mechanisms, in particular the increased pDC 
apoptosis and the decrease in TLR7 expression.

Transcriptomic data, including scRNAseq, allow for the applica-
tion of methods to infer TF activity, as a way to provide potential 
upstream mechanisms. We found that several important TF activi-
ties were decreased in CD1+ DCs, suggesting defective immune 
effector functions in patients with severe COVID-19. STAT2 activ-
ity downregulation may indicate a deficiency to cross-present to 
CD8+ T cells and license their cytotoxic function60. Subversion of 
DC immunogenicity by targeting STAT2 was observed in other 
viral infections. ZIKV evades type I IFN responses by antagoniz-
ing STAT2 phosphorylation61. The low estimated activity of ESR1, 
CIITA, USF1 and RFX5 in CD1+ DCs may explain the decrease in 
MHC-II molecules we observed in patients with severe COVID-19, 
through decreased trans-activation of the MHC-II promoter62,63. 
Finally, the low activity of EGR1 and RUNX1 TF in CD1+ DCs of 
patients with severe COVID-19 may contribute to an impaired 
function in CD8 T-cell activation and induction of IFN-γ64,65. 
Collectively, our results suggest that several aspects of CD1+ DC 
effector functions may be altered through decreased activity of key 
TFs controlling MHC-II expression and T-cell stimulation.

Our study provides a unique insight into the physiopathology 
of APCs in severe COVID-19, uncovering previously unknown 
defects in multiple functional pathways, related to both innate 
and adaptive immunity. We were able to map molecular pathways 
in rare DC subsets, many of them previously unexplored in the 
context of COVID-19. Combined with studies in other anatomical 
sites44, in particular the lung54, and other disease severity stages, our 
results should contribute to a better understanding of COVID-19  
immunopathology. They also open interesting perspectives for 
clinical applications. Simple molecular markers of defective APC 
subsets may be explored as prognostic and stratification biomark-
ers. This hypothesis echoes the immune pathology of bacterial 
sepsis, for which multiple defects in APCs have already been 
described47,66. A persistent decrease in circulating DCs, as well as 
monocyte deactivation as assessed by decreased HLA-DR expres-
sion or decreased CD74 messenger RNA (mRNA) expression, are 
already known to be predictive of ICU-acquired superinfections  

in patients with bacterial sepsis67,68. It would be interesting to 
explore whether such markers, for example pDC apoptosis or 
CD1c+ DC MHC-II downregulation, appear earlier in the course 
of COVID-19 and may predict aggravation. From a therapeutic 
standpoint, many innate adjuvants have been developed to target 
DC subsets69,70, and could be considered as personalized immuno-
therapies depending on patient-specific DC dysfunction69. Finally, 
DCs are being considered in preventive vaccine development 
(ClinicalTrials.gov: NCT04386252). Ultimately, our study may 
form the ground for novel therapies to restore defective APC func-
tions in patients with COVID-19.
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Methods
Patient characteristics and recruitment into the study. Our study is compliant 
with all relevant ethical regulations regarding research involving human 
participants.!is study was part of the DENDRISEPSIS project, aimed at 
investigating the functional profiles of APCs in patients with sepsis. !e full study 
protocol can be accessed at https://clinicaltrials.gov/ct2/show/NCT03788772?ter
m=dendrisepsis&cond=sepsis&draw=2&rank=1. !e study was approved by the 
appropriate institutional review board and independent ethics committee (Comité 
de Protection des Personnes I (CPP), Rouen, France, ref: #2018-A01934-51). 
We included adult HCs, and patients with PCR-proven COVID-19 pneumonia, 
within 48 h of admission to ICU or to the pulmonology department from an 
urban tertiary care centre. Exclusion criteria were the following: haematological 
malignancy or significant history of bone marrow disease, HIV infection, any 
immunosuppressive drugs, bone marrow or solid organ transplant recipients, 
leucopenia (<1,000 mm−3) except if due to COVID-19 or pregnancy. With respect 
to HCs, exclusion criteria were the following: history of inflammatory disease, 
corticosteroid treatment at any dose and infection symptoms within the previous 
month. Informed consent was obtained from patients or next of kin. Patients were 
classified into moderate pneumonia if requiring oxygen supply of <10 l.min−1 and 
severe pneumonia if requiring invasive mechanical ventilation or oxygen supply 
of ≥10 l.min−1. Patients were sampled at admission (day 1) and at day 4. HCs were 
sampled once. Detailed patient characteristics are provided in Supplementary 
Tables 1 and 2.

Cell purification. Blood samples (20 ml) were collected from each patient at 
days 1 and 4 post hospital admission, and from HCs. PBMCs were isolated by 
centrifugation on a density gradient (Lymphoprep, Proteogenix). After FICOLL 
(GE Healthcare and Lymphoprep StemCell) gradient centrifugation, total 
PBMCs were enriched in CD14+ monocytes using human CD14 microbeads 
(Miltenyi Biotec) for positive magnetic selection according to the manufacturer’s 
instructions. The negative fraction remaining after the positive selection of CD14+ 
cells was used for pan-DC enrichment employing the EasySep human pan-DC 
enrichment kit (StemCell Technologies). Total pan-DCs were resuspended with 
20,000 CD14+ cells and sent for sequencing. Monocyte and pan-DC enrichments 
were performed immediately after sampling. To avoid DC–T cell clusters, which 
often form in DC-enriched preparations, EDTA-containing medium (DPBS 1×, 
0.5% EDTA, 1% human serum) was used for sample enrichment in the first set, the 
‘discovery set’. The latter was composed of a total of 12 samples from two healthy 
donors, three patients with moderate COVID-19 and four with severe COVID-19 
from both day 1 and day 4 time points. The reported results in the main figures 
(Figs. 1–8) along with Supplementary Figs. 1 and 2 were generated based on 
the discovery set. Because EDTA can decrease reverse transcription efficiency, 
we validated the findings derived from the discovery set by using RPMI for all 
enrichment steps (1640 + Glutamax, 2% BSA, 1% penicillin/streptomycin, 1% 
sodium puryvate, 1% minimum essential medium–non-essential amino acids) in 
a second set of samples, including a total of 15 samples, defined as the ‘validation 
set’. The latter included two healthy donors, two patients with moderate COVID-19 
and six with severe COVID-19. The results of the validation set are presented in 
Supplementary Figs. 3–7. All main findings were validated in both datasets.

Preparation and isolation of single-cell suspensions. Cell suspensions were 
subjected to gel bead emulsion using the Chromium 10X Genomics controller 
according to the manufacturer’s guidelines. To perform scRNAseq after cDNA 
amplification, the concentration of each sample was measured using a Tapestation 
2200 system (Agilent). To prepare the cDNA libraries for the 10X Genomics 
Chromium controller, we used the single-cell 3′ v3.1 kit. Quality control libraries 
were performed using the Tapestation 2200 (Agilent). An Illumina Novaseq6000 
system (100-cycle cartridge) with a sequencing depth of at least 50,000 reads per 
cell was used for sequencing. The input number of cells was estimated at 20,000 
cells per sample.

Quality control and pre-processing of expression matrices. The raw scRNAseq 
fastq files were processed using Cell Ranger 3.1.0 from 10X Genomics Technology 
and aligned to the Grch38 reference genome. Bam files and filtered expression 
matrices were generated using ‘cellranger_count’. All expression matrices were 
loaded into R 4.0.0 using the ‘Read10X’ function from the Seurat library (https://
github.com/satijalab/seurat) version 3.1.5. The latter library was used to perform 
the analysis.

Pre-processing steps were applied to remove genes expressed in fewer than 20 
cells, and to remove cells with fewer than 50 genes or displaying more than 50% 
mitochondrial transcripts. To minimize technical confounding factors related to 
the sequencing steps, we evaluated the violin plot distribution of the number of 
unique molecular identifiers (nUMI), along with the total number of detected 
genes (nFeatures) per cell for all samples. Two upper cutoffs of 6,000 and 50,000 
were manually set for the nUMi and nFeatures, respectively, for each sample. These 
quality control metrics filtered out low-quality cells. Normalization to 10,000 
reads, centering and scaling were sequentially applied on the expression matrices 
to correct for the sequencing depth variability. To reduce the computational time 
for sample integration, we filtered out cells from cell types other than APCs. Cell 

type annotation is detailed in the section ‘Manual annotation of cell types’). To 
decipher specific alterations occurring in each specific APC subset, we separately 
subclustered each cell subtype, scaled the data and applied graph-based clustering 
to obtain cell clusters. Genes encoding for immunoglobulins were removed before 
performing the subclustering step for each cell type to get rid of ambient RNA.

Integration of individual cell matrices into a merged expression matrix from 
all the samples. To allow comparison across severity states, we integrated the 
whole expression matrices from all the samples using the Harmony algorithm. 
Integration anchors, retrieved from the first 50 principal components using 
the ‘FindIntegrationAnchors’ Seurat function, were then used to integrate the 
datasets using the ‘IntegrateData’ function. This crucial step added an ‘integrated’ 
assay to the Seurat object. Scaling and principal component analysis dimension 
reduction were performed on the integrated assay with 50 principal components. 
High-resolution (resolution = 0.8) graph-based clustering and UMAP dimension 
reduction were conducted to retrieve and visualize cell clusters. ICA dimension 
reduction was specifically performed for CD14+ monocytes, using 30 dimensions.

Manual annotation of cell types. Cells were manually annotated based on their 
expressing levels of their respective set of cell-type markers, defined as ‘cell-type 
signatures’. For each cell-type signature, enrichment scores were computed using 
the ‘AddModuleScore()’ function per cell with 100 randomly selected control 
genes, split on 25 bins. Each cell cluster was annotated with a particular cell type 
if its signature score median value was >0. Cell-type signatures included the 
following: pDCs, expression of (‘TCF4’, ‘CLEC4C’, ‘IRF7’, ‘IRF8’, ‘LILRA4’, ‘IL3RA’, 
‘TLR9’, ‘SPIB’), cDCs (‘ANPEP’, ‘CD1C’, ‘ITGAX’, ‘CST3’, ‘FCER1A’), monocytes 
(‘CD14’, ‘FCGR1A’, ‘S100A12’, ‘FCGR3A’, ‘MS4A7’, ‘LYZ’, ‘CXCR3’), AS-DCs (‘AXL’, 
‘SIGLEC6’, ‘CD22’), NK cells (‘NCAM1’, ‘FCGR3A’, ‘GNLY’, ‘XCL1’, ‘XCL2’, ‘NCR1’, 
‘NKG7’), T cells (‘CD3D’, ‘CD3E’, ‘CD3G’), B cells (CD19’, ‘MS4A1’, ‘CD79A’, 
‘CD79B’), plasma cells (‘IGHG2’, ‘IGHG1’, ‘IGLC2’, ‘IGHA1’, ‘IGHA2’, ‘IGHA3’, 
‘JCHAIN’, ‘IGHM’, ‘XBP1’, ‘MZB1’, ‘CD38’, ‘IGLL5’), erythrocytes (‘HBB’, ‘HBA1’) 
and platelets (PPBP). Cells that were annotated as non-APC were discarded for 
each sample, before integration, to avoid high computational load during the 
integration step. For monocytes and cDCs, a subsequent classification of cells 
was performed according to their expression levels of monocytes and cDC subset 
markers (CD14 and FCGR3A for monocytes, CD1C and CLEC9A for cDCs).

Statistical analysis. Differential expression analysis between severity groups was 
performed using the ‘FindAllMarkers’ Seurat function, using the MAST test and 
a cutoff set to log FC > 0.3 to filter out false-positive DEGs. We regressed out the 
‘gender’ confounding factor by using the ‘MAST’ test for comparative analysis 
and precising ‘gender’ as a latent variable. This ‘gender’ variable was added in 
the metadata slot for each cell from the discovery and validation sets: a cell is 
annotated as from a ‘female’ sample if the expression level of the XIST gene is 
higher than 0.1, otherwise the gender is annotated as ‘male’. P values were corrected 
using the Bonferroni correction method. We only tested genes that were detected 
in a minimum fraction of 10% of each severity group. Median values of violin plot 
distributions of either gene expression levels or pathway-enrichment scores were 
compared using a Mann–Whitney–Wilcoxon ranked test, taking as a reference the 
HC. Note that the statistical calculations for the violin plot distributions are derived 
from the cell count in expression values/enrichment scores comparisons.

Pathway enrichment analysis. Pathway enrichment analysis was performed to 
seek for the perturbed or enriched pathways in severity groups, as compared to 
the HCs. Human MsigDB hallmark signatures (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) were loaded into the R session using the ‘msigdbr’ library 
version 7.0.1, and the category was set to ‘H’ for ‘human’. The enrichment test was 
performed using the ‘enricher’ function from ‘ClusterProfiler’ version 3.16.0. Msig 
Database hallmark signatures were given as input to the ‘enricher’ function. The 
P values were corrected using the Bonferroni correction method. Encoding genes 
for each enriched pathway were extracted and used as the module to construct a 
‘pathway-score’ signature using ‘AddModuleScore’ from the Seurat library.

TF activity inference. We sought to decipher the variation of TF activity between 
severity groups within particular cell types to avoid capturing differentially active 
TFs related to lineage markers. The Dorothea (https://saezlab.github.io/dorothea/) 
resource was used to infer TF activity. In this context of single-cell-level resolution, 
we constructed regulons based on the mRNA expression levels of each TF from 
a manually curated database, along with the expression level of its direct targets. 
In this context, TF activity is considered as a proxy of the transcriptional state of 
its direct targets. We created TF regulons using the ‘dorothea_regulon_human’ 
wrapper function from ‘dorothea’ library version 0.99.10, and chose ‘A’ and ‘B’ 
high-confidence TF selection. Viper scores were computed on the dorothea 
regulons, scaled and added as the ‘Dorothea’ slot on the integrated Seurat object. 
To allow comparison of TF score activities, mean and standard deviation values 
of the scaled viper scores were computed per severity group. TFs were ranked 
according to the variance of their corresponding viper scores. The top 50 highly 
variable scores per severity group (n = 150 TFs in total) were kept for visualization 
of their corresponding scores.
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Manual construction of functional signatures. To evaluate the dysregulations 
occurring at the functional level for each APC subset from patients with COVID-
19, we established a manually curated list of effector genes involved in specific 
APC functions: ‘attraction’, ‘antiviral effector molecules’ and ‘cytotoxicity’. The 
signature construction relied on a thorough mining of existing literature, using 
a combination of MeSH terms and keywords on the PubMed search tool. Each 
selected molecule was considered an ‘effector’ of the related function if there 
was at least one experimental proof in a human setting. Overall, we outlined 12 
‘cytotoxicity’ effector molecules, 29 ‘antiviral’ effector molecules and 18 ‘attraction’ 
effector molecules. ‘Innate sensing’ effectors included 13 genes (DDX58, DHX58, 
CGAS, IFI16, AIM2, IRF3, TMEM173, NLRP3, PYCARD, TLR7, TLR9, DHX9 and 
DHX36), and were from refs. 71,72. Both ‘regulators of interferon signalling’ and 
‘antiviral ISG’ were implemented by literature mining from ref. 73.

Drop-out correction. To allow drop-out correction and imputation of missing 
values, we used Nebulosa (https://github.com/powellgenomicslab/Nebulosa) to 
represent density-based values on UMAP embeddings. This R package is designed 
to visualize features from single cells, using a kernel density estimation. It recovers 
the signal by incorporating the similarity between cells, allowing a convolution 
of the cell features. For pDCs from the discovery set, we specifically added a 
‘MAGIC_RNA’ slot to the Seurat object using MAGIC74 and specifically plotted the 
violin distribution of imputed values in Fig. 4e.

Pseudotime inference. For the CD1c+ DC subset, we specifically computed 
pseudotime inference using Monocle3 (https://cole-trapnell-lab.github.io/), directly 
available using the Seurat Wrappers R package75.

Analysis of intercellular communication networks. Communication scores 
were generated using the ICELLNET R package (https://github.com/soumelis-lab/
ICELLNET/master). This library allows computation of cell–cell communication 
scores between cell subsets, given their corresponding transcriptomic profiles 
from the same or different datasets. Considering severity groups separately, only 
clusters including more than 15 cells were considered for the analysis. The average 
gene expression profiles of APC subset clusters were provided as input to the 
ICELLNET package, to compute communication scores between APC subsets and 
T lymphocytes for each severity group. As our datasets did not include T cells for 
the analysis, we used as reference the T-lymphocyte transcriptomic profile from 
the Human Primary Cell Atlas included in the ICELLNET package (n = 39). From 
the ICELLNET ligand–receptor interaction database, we only selected the 144 
interactions known to be involved in DC–T communication76. Barplot and dot plot 
representations were generated to compare the proportions of communication type 
scores (checkpoint, cytokines, chemokines) among severity groups.

Statistics and reproducibility. Statistical analysis was performed using R (version 
4.0.0). A two-sided Wilcoxon ranked-sum test was used to perform pairwise 
comparisons. To ensure the reproducibility of our main findings, we split our data 
analysis cohort into a discovery and a validation set. We reported our main findings 
from the discovery set and conducted similar analyses on the validation set.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
scRNAseq data that support the findings of this study have been deposited in the 
Gene Expression Omnibus under accession code GSE169346. Further information 
and requests for resources and reagents should be directed to and will be fulfilled 
by the V.S. This study did not generate new unique reagents.

Code availability
The R codes are publicly available on GitHub at https://github.com/MelissaSaichi/
Covid_scRNAseq. All of the R packages that were used are available online.
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Extended Data Fig. 1 | Pro-inflammatory defects in the discovery set. a, Umap representation of IFN subtypes expression values in the discovery 

set, expression levels are color coded; b, Violin representation of other pro-inflammatory cytokines in the discovery set which included: n=2 HC, n=4 

moderate and n=6 severe samples; each dot represents a cell, horizontal lines display the mean expression value; Comparative analysis was performed 

using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate  

P values for severe versus control; asterisks above moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 2 | Maintenance of dysregulated patterns at time and patient levels. Violin plot representation of a. HLA-II Module Score in 

CD1c+DC, and b. P53 pathway Module Score in pDC, both from the discovery set (composed of: n=2 HC, n=4 moderate and n=6 severe samples); 

asterisks above moderate indicate significance of moderate versus control and asterisks above severe indicate significance of severe versus control. 

Comparative analysis was performed using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using ‘Bonferroni’ 

correction. *P < 0.05, **P < 0.01, ***P < 0.001. c, Dot Plot representation of antiviral effector molecules in CD14+ Monocytes across patients, Percentage of 

cells expressing the respective gene is size-coded.
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Extended Data Fig. 3 | Cellular map of APC subsets from the validation set. Cellular map of APC subsets at the single-cell resolution level from the 

validation set based on either APC subsets (a) or severity (b), c Proportions of APC subsets within the discovery and validation sets; d. Stuck Violin plot 

representation of canonical APC and non-APC markers for both discovery and validation sets. Validation set included: n=2 HC, n= 4 moderate and n=9 

severe samples from a total of 2 healthy donors, 2 moderate and 6 severe patients.
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Extended Data Fig. 4 | Increased inflammatory pathways in APC validation set. a. Barplot of the number of Differentially Expressed Genes (DEG) 

for each severity group (Healthy versus moderate and severe patients; moderate versus healthy and severe; severe versus healthy and moderate). 

Up-regulated (logFoldChange > 0.25) genes are shown in black, down-regulated (logFoldChange < −0.25) genes are shown in grey; b. Heatmap 

representation of top up-regulated genes in severe APC from the validation set, as compared to moderate and healthy groups, z-score values of average 

expression levels of cells per severity group is color coded; Comparative analysis of enriched pathways from the upregulated genes in moderate or severe 

(c) APC as compared to healthy cells, as well as pairwise comparison of upregulated genes in moderate compared to severe (shown in pink), up-regulated 

genes in severe compared to moderate (shown in yellow) (d); horizontal axis displays the adjusted p-values (-log10), e. Representation of ranked genes 

by descendant order according to their absolute log Fold Change (log FC), upregulated in moderate as compared to severe (plot in red), upregulated in 

severe APC as compared to moderate (plot in blue).Top genes, with an absolute value of logFC above 0.5 are shown. Validation set included: n=2 HC, n= 

4 moderate and n=9 severe samples from a total of 2 healthy donors, 2 moderate and 6 severe patients. The two-sided Wilcoxon Rank-Sum test was used 

for comparison, P-values were adjusted to multiple testing using ‘Bonferroni’ correction; and only genes with adjusted-P Values < 0.05 were considered.

NATURE CELL BIOLOGY | www.nature.com/naturecellbiology
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Extended Data Fig. 5 | Global defects in pDC-related functions in the validation set. a. Dot plots of pDC-related functions ‘Attraction’,’Innate sensing’, 

‘Anti-viral effector molecules’, ‘Cytotoxicity’ in pDC from HC, moderate and severe patients in the validation set. Expression levels are color-coded; 

Percentage of cells expressing the respective gene is size-coded, b. Comparative analysis of enriched pathways from the upregulated genes in moderate 

versus severe pDC (in pink),up-regulated genes in severe compared to moderate (shown in yellow); c. Violin plot representation of gene expression for 

IFN receptors (IFNAR1 and 2), IRF7, and anti-viral effector molecules. Asterisks above severe indicate P values for severe versus control; asterisks above 

moderate indicate significance of moderate versus control. Statistical tests were performed using the validation set, including: n=2 HC, n= 4 moderate and 

n=9 severe samples; Comparative analysis was performed using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using 

‘Bonferroni’ correction. *P < 0.05, **P < 0.01, ***P < 0.001.

NATURE CELL BIOLOGY | www.nature.com/naturecellbiology
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Extended Data Fig. 6 | Defective anti-viral properties in CD14+ monocytes and CD1c+DC. Dot plots of ‘antiviral effector molecules’ in CD14+ 

monocytes from HC, moderate and severe patients in the validation set. Expression levels are color-coded; Percentage of cells expressing the respective 

gene is size coded.

NATURE CELL BIOLOGY | www.nature.com/naturecellbiology
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Extended Data Fig. 7 | MHC-II antigen presentation defects in CD1c+DC. Heatmap representation of top 10 DEG (upregulated) for each severity group in 

CD1C+DC from the validation set.

NATURE CELL BIOLOGY | www.nature.com/naturecellbiology



Chapter 10

Meta-analysis of human cancer

single-cell RNAseq datasets using the

fully integrated IMMUcan database

We built a comprehensive single-cell RNAseq database for human cancer datasets. Apart
from the utility of such a database, that groups in a single environment all the datasets
that we could collect as well as the metadata, we show how it can be exploited with 2 use
cases.
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Abstract  

The development of single cell RNA-sequencing (scRNAseq) technologies has greatly 

contributed to deciphering the immune tumor microenvironment (TME) landscape, and a wealth 

of biological data is now publicly accessible. This represents a very valuable resource to 

researchers in the field, offering a reference for comparison of novel results, as well as 

opportunities for original meta-analysis studies. However, the massive amount of biological 

information renders its exploitation difficult in the absence of a well-structured and annotated 

resource. Marked heterogeneity and variability between studies in terms of cancer type, clinical 

context, technological platform, data quality, number and type of cells, create additional 

bottlenecks. We have developed a fully integrated scRNAseq database exclusively dedicated to 

human cancer. It gathers 119 studies on 45 different cancer types, annotated in 43 fields 

containing precise clinical, technological and biological information. We developed an original 

data processing pipeline organized in 4 steps: 1) data collection, 2) data processing (quality 

control, sample integration, cell clustering), 3) cell ontology tree of the TME) built and used to 

annotate the clusters in a supervised and manual manner, and 4) interface to analyze TME in a 

cancer type-specific or global manner. This integrated, accessible and user-friendly resource 

should be of great value to the biomedical community. It represents an unprecedented level of 

detailed annotation, offering vast possibilities for downstream exploitation of human cancer 

scRNAseq data for discovery and validation studies. The database is freely accessible at: https://

immucanscdb.vital-it.ch. 
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Introduction 

Tumor immunology has taken central stage due to the success of immunotherapy in a large 

number of clinical indications. However, deciphering the complexity of the tumor 

microenvironment (TME) remains an important challenge. It could help improve our knowledge 

of the cellular and molecular events taking place across tumor types, stages and anatomical 

location. It is also critical in order to further improve the efficiency and applications of current 

immunotherapies, alone or in combination, as well as developing novel strategies such as 

personalized medicine. 

Single cell RNA sequencing (scRNAseq) technologies appeared as a unique way to explore the 

diversity of cellular phenotypes and underlying molecular pathways in a broad and unbiased 

manner. Their application to cancer studies has progressively increased over the years, from 1 

study published in 2014 to 36 studies in 2020. This was facilitated by the commercial availability 

and standardization of the technology1, as well as the development and validation of a large 

number of data analysis tools dedicated to scRNAseq2,3. Important biological discoveries were 

made through these approaches, including the characterization of the partial epithelial-to-

mesenchymal transition (p-EMT) program in HNSCC4, the identification of the cancer program 

involved in the resistance to checkpoint blockade immunotherapy in melanoma5, and the 

identification of functional T cells states in lung cancer6. 

A large number of human cancers scRNAseq datasets have been published as resource and 

original research articles. This represents a major opportunity for biomedical discoveries, given 

that in most published articles the authors have addressed a limited number of hypotheses using a 

selected array of analysis methods. However, the wealth of datasets that have been generated is 

characterized by very important diversity and heterogeneity at several levels: 1) tumor types and 

clinical context, 2) technology and experimental protocols, 3) data analysis methods, 4) 

biological and clinical interpretation of the results. This creates major difficulties and bottlenecks 

in the exploitation of those datasets by independent teams in order to explore their own 

hypotheses and biomedical questions. As a result, a large amount of information remains 

unexploited and hardly accessible. 

In order to facilitate the accessibility and reanalysis of scRNAseq datasets, institutional and 

collaborative initiatives led to the development of data resource solutions. 

A number of scRNAseq data portals are available, including scRNASeqDB7, SCPortalen8, 

PanglaoDB9, and JingleBells10. Such portals are useful in order to retrieve single cell studies 

according to specific search terms, across species and biological questions, in different types of 

diseases. Limited numbers of cancer-related studies are included, from cancer cell lines to animal 

models and human disease. There is no detailed annotation in relation to the technologies used, 

and most importantly to the large number of clinical features characterizing each dataset. This 

limits the applications and possibilities for meta-analysis in cancer biomedical and translational 

research. 

CancerSEA and TISCH are the only two databases that we know of being cancer-specific. 

CancerSEA has focused on the identification of functional states, associated to specific gene 

signatures, based on 41 900 cancer single cells from 25 cancer types11. It combines datasets from 

human tumors, but also from cell lines and patient-derived xenografts (PDX). Clinical annotation 

is minimal, restricted to tumor type description. TISCH enables to browse through cancer 

scRNAseq datasets, both human (74 datasets) and mouse (5 datasets), in order to characterize the 

various cell types composing the TME and analyzing their gene expression and signatures12. 
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Clinical annotation is limited to tumor type, primary versus metastatic, and treatment. The 

database functionalities allow comparison between the cellularity and gene expression of various 

datasets. 

In this study we propose the first almost exhaustive and fully integrated scRNAseq database 

exclusively dedicated to human cancer, with a detailed clinical annotation, allowing connecting 

cell types and gene expression patterns to specific clinical patterns. The IMMUcan database 

offers a large number of functionalities for the analysis of multiple datasets. We hope it will 

become the gold standard reference tool to support cancer biomedical research, in the early 

discovery, hypothesis-generating, as well as validation settings. 

Results 

Literature-based creation of the IMMUcan scDB 

The IMMUcan scRNAseq database (scDB) was created through 4 main steps: an exhaustive 

literature search for human cancer scRNAseq studies, a manual review and curation of each 

relevant article, the collection of the corresponding datasets through web repositories or by 

contacting the authors, the processing and integration of the datasets and all associated metadata 

to the IMMUcan scDB (Figure 1A). 

Literature search was performed in PubMed and bioRxiv, using general terms such as “patient”, 

“cancer” and “single cell RNA sequencing” (methods), in order to minimize missing of relevant 

articles. This required the manual screening of 468 original articles to focus on human cancer 

datasets of malignant, immune and/or stromal cells, using single-cell RNA-seq technology 

coupled or not with other technologies. This led to a final selection of 131 studies to be further 

curated. Each relevant article was manually curated in order to extract a number of features 

covering bibliographic information, clinical characterization of the patient cohort, experimental 

protocol, scRNAseq methodology, and the description of available data and metadata (Figure 1A 

and table S1). These features were defined by a group of medical and surgical oncologists, 

biologists and bioinformaticians. Clinical features included the cancer type, disease ontology, 

cancer location, tissue type, number of patients, treatment type, representing a total of 9 

annotation fields. Experimental features included tissue dissociation, enrichment markers (when 

relevant), reached cell types (when relevant), and total cell numbers. A number of methodological 

characteristics were also extracted, such as single cell isolation method, library construction, end 

bias, genome reference, alignment method, and expression value. Whenever possible, we used 

standard international vocabulary and technical terms. For example, cancer types and cell types 

were based on the human disease ontology13 and cell ontology14,15 respectively. 

Dataset collection was performed by accessing public repositories such as GEO, SRA, EGA, and 

ArrayExpress. Raw and processed data were available for the majority of datasets. All available 

annotations, data and metadata were integrated into the IMMUcan scDB, and can be searched 

through a user-friendly interface (https://immucanscdb.vital-it.ch). A total of 95 publications were 

successfully integrated into our database, corresponding to 121 datasets, with information for all 

available annotation fields (Figure 1B).  Fifty-one cancer indications were included, with a 

majority of melanoma (MEL) datasets (13 datasets, 192 patients), followed by Glioblastoma 

(GBM) (9 datasets, 81 patients), and colorectal cancer (CRC) (8 datasets, 85 patients) (Figure 

1C). Rare tumor types included acute T cell leukemia, renal cell carcinoma and certain childhood 

tumors like medulloblastoma. The majority of the datasets were generated from single cell 
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suspensions with no prior enrichment (Unbiased) (53 datasets), followed by immune cell 

selection through CD45 enrichment (21 datasets), and T cell enrichment (13 datasets) (Figure 

1C). Importantly, 18 different types of enrichment protocols were applied across different studies, 

making it an important parameter for hypothesis-driven search of appropriate datasets. Patient 

treatment was known and described for only 52,7% of the patients, corresponding to 60,2% of the 

datasets. This information also provides possibilities to test specific hypotheses in connection 

with the clinical setting. Last, the technology used to generate the data was very heterogeneous 

and included eleven technologies, with a dominance in Smart-seq2 and 10X Genomics 

technologies (Figure 1C). 

Overall, our exhaustive literature search coupled to manual curation allowed a detailed annotation 

of each scRNAseq dataset in order to rapidly retrieve datasets of interest using specific search 

criteria, and to account for various levels of heterogeneity that may impact the analysis and 

interpretation of the different datasets. 

Dataset processing and integration 

In order to process the public single-cell datasets efficiently we developed an R-based pipeline 

that performed all necessary processing steps in a semi-automatic manner based on best practices 

in the field16. We called it scProcessor.  

Each dataset was first cleaned and formatted as a count matrix with features as rows and cells as 

columns together with a metadata file that contains as much experimental information as was 

publicly available. These annotations could go from cell annotation and T cell clonotypes to 

patient information and biopsy site. We checked if the data were normalized, if not we applied a 

log-normalization. Cleaned datasets were further processed through quality control steps (Figure 

2A and B), such as number of principal components used. A threshold of 250 was applied for the 

minimum number of detected genes, and a range of 5-20 for the maximum percentage of 

mitochondrial genes depending on the tissue that was analyzed17 (Figure 2B). This led to the 

exclusion of 1% and up to 50% of the cells depending on how well the data was generated and 

cleaned by the data curator. 

Multiple sample integration was then performed using Harmony18. This consisted in specifying a 

batch variable for every dataset, in most cases patient or sample, which gets corrected through 

Harmony. The result was a removal of the main technical effect bias in the datasets (Figure 2C). 

Cell annotation was performed based on a supervised and unsupervised approach. Supervised cell 

labelling was done based on CHETAH19, which is a rapid method that uses hierarchical clustering 

to assign cell scores based on a classification tree from the TME. CHETAH has shown to perform 

well in a benchmarking study on supervised cell annotation methods20. We used the integrated 

human TME scRNA-seq study defined by CHETAH with small adaptations (see methods) to 

assign cell identity labels in our database. In total we specified thirteen different cell types 

including regulatory T cells and plasmacytoid pre-dendritic cells (pDC) (see methods and Figure 

S1A). The added value of CHETAH is that it can also assign an identity to unknown cell types 

that do not fit with any of the pre-specified labels as well as intermediate cell labels, such as for T 

cells and stromal cells, which brings our total of specified cell labels to 21 (see methods).  To 

annotate malignant cells in the relevant datasets, we used CopyKat21 which predicts if each 

cluster is aneuploid or diploid based on copy number aberrations (see methods and Table S2). We 

then introduced a subsequent manual cluster annotation in order to correct mislabeled cell types 

(Table S2). Unsupervised clustering of aggregated datasets was performed using Louvain graph-
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based clustering implemented in the Seurat package22. Cluster annotation was performed 

manually after having defined 3 cell ontology levels: major cell types, minor cell types, and 

immune cell types (Figure S1B). Clusters defined by CHETAH and manually, respectively, were 

associated with each other with the added benefit that we specified a larger number of cell types/

states in our manual annotation which provides a more in-depth view of the TME (Figure 2D).  

Finally, differential expression analysis allowed for the identification of gene expression 

programs specific to a given cell ontology term. In addition, to get a confidence score on how 

important a gene was in a specified cluster, we pre-calculated a Shannon-index to allow for a 

significance ranking of datasets (see Methods). All Seurat objects were converted to h5ad files by 

sceasy23 for easy loading into single-cell visualization platforms such as cellxgene24. Collectively, 

these data processing and analytical steps led to successful integration of 64 high quality datasets: 

43 datasets were processed and 21 datasets were not processed due to the low number of cells or 

the unavailability of the data (not public or licensed). 

The processed datasets can be downloaded as h5ad files and CSV files (average gene expression 

and differential gene expression).  

Cell type-based exploration of the IMMUcan scDB 

The large number of annotation features that we have integrated in the IMMUcan scDB offers 

extensive possibilities for initial filtering and selection of the most relevant studies and datasets to 

test a given hypothesis. Users can filter for relevant studies based on study-specific information 

such as cancer indication, treatment type, or technology. In addition, there is the possibility of 

filtering based on gene or cell type of interest. Gene search will rank datasets based on 

importance of the specified gene using the Shannon index, while for cell search, datasets are 

ranked based on the absolute number of cells from the selected cell type. This provides the user 

with a selection and prioritization of datasets in order to perform meaningful downstream meta-

analysis. 

To demonstrate the usefulness of the IMMUcan scDB we first focused on a cell-type specific use 

case. It is known that the TME can impact response to immune checkpoint blockade25. Therefore, 

we searched for datasets from immunotherapy-treated patient samples. We found thirteen datasets 

from 3 cancer indications: melanoma, basal cell carcinoma, and squamous cell carcinoma. We 

focused on the basal cell carcinoma dataset BCC_BIA_10X_GSE123813 since it contained more 

than 50,000 immune and non-immune cells from patients before and after anti-PD1 therapy. 

Selecting the dataset opens a panel called “UMAP plot”, where one can explore the cell types, 

marker genes and check the expression of genes of interest. In the panel, all cells are projected in 

the Uniform Manifold Approximation and Projection (UMAP) space, and colored following the 

supervised CHETAH annotation as standard (Figure 3A). To improve the responsiveness, a 

subset of 10,000 cells is visualized per dataset. However, this can easily be switched back to the 

original number of cells. The legend shows all groups colored in the UMAP plot by name and 

between brackets the number of cells per group. Cell annotation can be switched to other cell 

hierarchical levels such as immune, major or minor, and also coupled to additional metadata such 

as biopsy, treatment or patient.  

Besides the UMAP plot, a summary stacked bar plot shows the proportion of the cell types in the 

dataset. By selecting a clinical annotation field, multiple stacked bar plots are constructed and 

enable the comparison of the differences in the cell type proportions (Figure 3B). It was 

previously observed that naive and memory B cells are increased in responders in melanoma26 
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and renal cell carcinoma27. Here, we provide evidence that B cells are also increased in anti-PD1 

therapy responders in BCC (Figure 3B). On the contrary, Plasma cells are more abundant in non-

responders. The UMAP and bar plots can be downloaded as png files. Below the plots, two gene 

tables are automatically loaded, one with a matrix of average gene expression per cell type and 

one with the differentially expressed genes based on the selected cell (Figure S2). By default, the 

genes are sorted alphabetically but can also be sorted by cell type to find the highest expressed 

genes for a given cell type. The table columns are gene abbreviation, gene full name, IDs from 

Ensembl, Uniport, NCBI and HGNC, as well as information regarding the differential expression 

such as average log fold change (FC), percentage of positive cells in the selected population 

(pct.1) and the other populations (pct.2), and adjusted p-value. By default, the table is ordered for 

ascending adjusted p-value and descending average log FC, but this can be adapted. The second 

table is available below the UMAP plot in the second tab, and corresponds to the differentially 

expressed genes (DEG) for each cluster, according to the annotation the user selected. 

Each gene from both tables can be visualized as a violin plot by pressing the violin plot icon next 

to the gene name (Figure S2). A violin plot together with a boxplot display the gene expression 

per cell type. To improve the interpretation of these plots, the absolute cell number is represented 

as pie charts at the below the violin plots and the percentage of non-zero expressing cells appears 

in a mouseover (Figure 3C).  

In addition, the expression of a selected gene in each individual cell can be visualized on the 

UMAP plot. This enables to explore the DEG between cell types according to the different 

available annotations. In our BCC_BIA_10X_GSE123813 example dataset, we highlighted the 

expression of the typical naive and memory B cells marker genes MS4A1 and CCR7, and the 

expression of IGHG1 and IGHG4 as plasma cells markers (Figure 3C).  

Another panel references all study metadata information such as publication, cohort, technology 

and study metadata. Here, important links are embedded to other databases like the disease 

ontology, original publication and accession of the original raw and/or processed data. The 

IMMUcan scDB also provides several options to download the analysis performed, all plots that 

are created in the database can be downloaded as high quality png files.  

Gene-based exploration of the IMMUcan scDB  

Recently, a study of multiple bulk transcriptomic cancer datasets has shown that CXCL13 and 

CXCL9 could be used as a predictive biomarker of checkpoint immunotherapy response28. Using 

IMMUcan scDB features, we were interested in finding which cell types could express those 2 

genes in the different cancer types. IMMUcan scDB allows the selection of datasets according to 

the user’s gene of interest. It displays a heatmap of the gene mean expression in each cell type in 

every dataset. We looked for CXCL13 and observed that it is highly expressed in exhausted T 

cells and T follicular helper cells (TFH cells, Tfh) in basal cell carcinoma (BCC), melanoma 

(MEL), non-small cell lung cancer (NSCLC), breast cancer (BC) and colorectal cancer (CRC) 

(Figure 4A). We then focused on the BCC_BIA_10X_GSE123813 dataset. We represented the 

level of expression of CXCL13 as a color gradient on the UMAP plot and we observed that cells 

with the highest expression, in red, corresponded to the Tfh and exhausted T cells subsets (Figure 

4B). 

The IMMUcan scDB also makes it possible to perform gene co-expression comparisons in the 

second panel called “gene X vs gene Y expression”. Here the expression of two genes of interest 

in a given dataset can be queried and a scatter plot is created with one point per individual cell. 
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Cells are colored based on the selected cell type annotation category. The legend shows the 

annotation together with the number of cells that express both genes and a Pearson correlation p 

value in brackets for the given population. Since CXCL13 was expressed by exhausted T cells, 

we looked at PDCD1 (PD1), another marker associated to T cell exhaustion, to see if the 2 genes 

were co-expressed (Figure 4C top panel). Indeed, we observed a strong co-expression between 

CXCL13 and PDCD1 in exhausted CD8+ T cells and Tfh with a Pearson correlation coefficient 

of -0.15 and -0.32 for TFH cells and exhausted CD8+ T cells, respectively (Figure 4C bottom 

panel). Below the scatter plot, Venn diagrams per cell type reflects the overlap of cells expressing 

gene X and gene Y (Figure 4D). For every cell type, the proportion of cells expressing at least 

one of the two genes is displayed as a pie chart, in the bottom-right corner (Figure 4D). The result 

of a hypergeometric test is available to assess the significance of the co-expression results and its 

p-value is visible on top of the pie chart (Figure 4D). 

Litchfield et al. also discussed the role of CCR5 and CXCL9 as biomarkers28. In the 

BCC_BIA_10X_GSE123813 dataset, we observed that CCR5 and CXCL13 were co-expressed in 

TFH cells and exhausted T cells (Figure S3A-B). However, as expected, CXCL9 and CXCL13 

were not co-expressed (Figure S3C-D). CXCL9 was expected to be expressed in dendritic cells 

(DC) and macrophages29. In the BCC_BIA_10X_GSE123813 dataset, macrophages and 2 DC 

subtypes, CLEC9A+ DC and LAMP3+ DC express CXCL9 but not plasmacytoid pre-DCs 

(Figure 4E). 

In other cancer types, such as melanoma, head and neck and lung cancer30, CXCL9 is known to 

be expressed by macrophages. We went back to the gene-filtering feature of IMMUcan scDB to 

find whether there is macrophage or DC specific CXCL9 expression in different cancer types. We 

observed that CXCL9 was expressed by LAMP3+ DC in melanoma, hepatocellular carcinoma 

(HCC), BCC and lung adenocarcinoma (LUAD) (Figure 4F).  

Using a gene-centric approach, IMMUcan scDB allowed us to quickly identify potentially novel 

cellular sources of CXCL9 and CXCL13 across tumor types. 

In conclusion, here we present the IMMUcan scDB, a curated database of scRNA-seq studies of 

the human TME that is easily searchable and explorable. By means of 2 use cases we showed that 

the IMMUcan scDB is an efficient tool to validate observations from literature, to generate new 

hypotheses and to provide new insights. 

Discussion 

The number of scRNAseq studies in human cancer has increased exponentially in recent years. 

The first studies were performed to provide a large-scale description of tumor cells and TME, 

also referred to as an “atlas” view. Such studies extended from the most common tumor types 

(melanoma, breast cancer, non-small cell lung carcinoma) to rare cancers, such as atypical 

teratoid rhabdoid tumor31 or rare molecular subtypes, such as triple negative breast cancer32. We 

can anticipate that scRNAseq “atlas” studies will continue to be published, focusing on an even 

broader diversity of tumor types, and probably including a larger number of patients and samples 

than initially done. Parallel to these descriptive studies, scRNAseq has been applied more 

recently to identify mechanisms of immune resistance5, or a T cell-related signature associated to 

the response to immune checkpoint inhibitors26. Such hypothesis-driven studies should also grow 

in numbers and magnitude, with the diffusion and the increased accessibility to scRNAseq 

technologies. Another type of study design includes the comparison of different anatomical sites, 
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such as primary versus metastatic tumor location4. The number and diversity of past and most 

probably future scRNAseq studies justifies a resource that would be fully dedicated to human 

cancer datasets, in order to provide a detailed annotation, easy and efficient search functions, as 

well as multiple implemented methods for meta-analysis. We believe this to be the only way to 

cope with an anticipated number of several hundred datasets in the coming years. In this respect, 

we will pay particular attention to the prospective integration of newly published data sets 

according to the standardized strategy that we have established. Within the IMMUcan consortium 

we will maintain the database as much as possible with monthly updates. Additionally, we will 

soon add a feature enabling users to suggest new public datasets to add in the database. 

Public data repositories offer access to an increasing number of large-scale (“omics”) datasets, in 

particular genomics and transcriptomics. However, clinical annotation is often missing or reduced 

to a minimal amount of information, such as the tumor type. This greatly limits the possibilities 

for integration of clinical and biological data in the analysis process and interpretation of the 

results. Single cell portals, such as UCSC cell browser33, Broad institute single cell portal (https://

singlecell.broadinstitute.org/single_cell) or single cell expression atlas34, do not include this level 

of annotation. Cancer scRNAseq databases such as CancerSea11 or TISCH12, include minimal 

clinical information, restricted to tumor type, primary or metastatic stage, and treatment type. In 

our study, we have gone through the manual process of extracting and mapping to reference 

ontologies detailed clinical features (9 items) associated to each patient cohort and datasets. This 

should allow biologists and clinicians to focus on datasets corresponding to a particular clinical 

setting, and to compare datasets across different clinical settings. Integrating this information in 

the analysis and interpretation process should also provide important insight into cell types, cell 

states and associated signatures. 

Different from bulk transcriptomics analysis, scRNAseq generates data from a large number of 

cells even in individual samples. Assuming that cell numbers are sufficient, this offers the 

possibility for robust characterization of cellular clusters and associated gene expression 

programs in individual patients. In parallel, the aggregated analysis of several datasets fulfilling 

specific common conditions is also important in order to identify unifying patterns associated to a 

tumor type, a specific anatomical location, or a treatment effect. A recent study has constructed a 

“pan-cancer blueprint” of stromal cell heterogeneity using original scRNAseq data sets from 4 

cancer types35. It revealed shared gene expression programs in infiltrating immune cells. In our 

IMMUcan scDB, we have implemented robust methodologies to integrate several samples in 

order to identify common patterns and increase statistical relevance to a given clinical setting. As 

a result, users may apply focused strategies on individual patient samples. 

The IMMUcan scDB offers large possibilities for applications depending on the biomedical level 

of interest. By using exploratory analysis, users can utilize the database in an early discovery 

process in order to generate hypotheses for further validation. For example, comparison of cell 

type specific signatures from different clinical settings may reveal interesting mechanisms of 

immune activation or immune escape, or novel therapeutic targets. Data exploration can also be 

performed in a hypothesis-driven manner, in order to establish the expression pattern of specific 

genes or signatures according to different annotation terms. Last, our database can also be used to 

validate findings established in an independent study. The large and increasing number of 

scRNAseq datasets offers unique possibilities for cross-validation of results coming from 

different technologies, such as proteomics, genomics, or spatial transcriptomics.  

Integrating such a large number of scRNAseq datasets into a single database has potential risks 

and limitations. As all literature-based resources, the quality of sample and dataset annotation 
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relies on the quality of the information provided in the original publication. In this respect, we 

have found tremendous heterogeneity in the way patient cohorts are described, both in the 

amount and in the quality of the clinical information. An important step forward would be the 

improvement and generalization of standardized terminologies, such as the human disease 

ontology13 and cell ontology14,15, as well as a more systematic and thorough clinical annotation 

within existing genomics data repositories, along with a unified storage procedure. The 

processing of scRNAseq datasets generated in different studies, using various tissue dissociation 

and enrichment protocols, as well as potentially different technological platforms, is certainly 

challenging and subject to technical biases. In our processing pipeline, we have implemented 

robust and validated methodologies at each step. We have selected Harmony as a method to 

reduce experimental bias in the process of multiple datasets integration18. Harmony uses 

reiterative clustering in order to remove batch effects between experiments and patients. From 

recent benchmarks studies on integration of single-cell RNA-sequencing data16,36,37, Harmony 

was among the top performers and is recommended as integration method over methods such as 

CCA38, scanorama39 and MNNcorrect40 for its good integration and short runtime. Users should 

be aware of all these limitations and possible biases and may use their own cross-validation 

methodologies in order to increase the robustness of their findings. Improving the performance of 

our data processing will remain a top priority in the coming years. We will survey the literature 

for any method that could work in synergy with the pipeline that we have established in order to 

control biases and increase data analysis quality. Overall, we believe that the power and 

possibilities offered by integrating such a large number of datasets largely outweighs the 

limitations and weaknesses inherent to any meta-analysis. We hope that our resource will 

facilitate the exploitation of publicly available scRNAseq datasets to address existing and novel 

challenges in human cancer research. 

Material and methods 

Literature search and dataset selection 

We included search of peer-reviewed published dataset using Pubmed (https://

www.ncbi.nlm.nih.gov/pubmed/) as well as non-peer-reviewed studies using bioRxiv (https://

www.biorxiv.org) databases. To include all studies falling into our criteria, we used 

((cancer[Title/Abstract]) AND (patient)) AND (single cell RNA sequencing) key words in 

Pubmed, and “human cancer single-cell rna-sequencing” free-text keywords in bioRxiv. We 

applied a filter to select articles published from 2016-2021. We manually reviewed all the 

resulting article titles and abstracts to check for the relevance of each study to our database. 

According to the objectives of this database we focused on human cancer datasets, using single-

cell RNA-seq technology coupled or not with other technologies such as Whole Exome/Genome 

Sequencing (WES/WGS), TCR-sequencing, Chip-sequencing or proteomic/CyTOF data. After 

selection of manuscripts with an applicable scRNA-seq dataset of human cancer patients, we only 

selected studies with more than 1000 cells for further curation of the data. 

Definition of fields 

We reviewed all available information from every study to select fields of information that would 

be relevant for the database. We then organized them into categories. The first category was 

related to the bibliographic information regrouping several fields like title, abstract and DOI of 
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the article and data accession information. The second category was related to the disease-

specific attributes such as cancer localization, cancer type, number of patients, or treatment type. 

Then, the following fields precised the single-cell technology specific attributes (tissue 

dissociation method, enrichment markers used, enrichment cell types obtained, single cell 

isolation method, single cell entity, “Omic” type, clonal information, genotyping, library 

construction, end bias, library layout, reference genome used, alignment method, counting 

method, expression value format and cell amount). The two last categories are related to 

conclusions and free remarks, as well as metadata information availability. 

We homogenized the terms, especially for disease ontology and treatment. Depending on the 

field, the information can be either free-text, a list from a controlled vocabulary, boolean values, 

or quantitative information. 

Data access 

After selection of 131 publications with an applicable scRNA-seq dataset of human cancer 

patients, we manually curated the processed data as from GEO, ArrayExpress, EGA and 

BioProject.   Sixteen datasets were not available or under license. Every study that contained 

multiple experiments or cancer indications was split in separate datasets and only datasets with 

more than 1000 cells were selected for further curation leading to a total of 65 datasets across 54 

different cancer indications. As means of completion, some datasets from heathy human tissues 

such as bone marrow peripheral blood mononuclear cells (PBMC) or similar were also included 

in order to compare tumor with healthy tissues. Datasets were downloaded in different forms, 

from counts matrices to h5ad files and different raw and normalized expression values. If 

available, raw count values were prioritized over normalized values for two reasons: 1) this 

would increase the comparability between studies and 2) transcripts per million (TPM) and reads 

per kilobase per million mapped reads (RPKM) normalization strategies are not optimal for 

single-cell studies16. A small fraction of datasets only provided TPM values; we choose to not 

convert these into raw counts because essential information like isoform lengths used to 

normalize were missing and would reverse normalizing them incorrect. Instead, we opted to 

document the processed values per study and provide full transparency. Certain metadata fields 

were standardized across studies like patient ID, biopsy, timepoint of treatment, response and if 

available, the original tissue annotation. The source code for processing all the collected datasets 

is available as a repository on github (https://github.com/soumelis-lab/IMMUcan). 

Quality control and batch correction 

To make sure cleaned datasets contained high-quality cells, first a quality control was conducted 

with cut offs for minimum detected genes and percentage of mitochondrial reads. For detected 

genes a standard cut off of 250 was used while for mitochondrial content this would range from 5 

to 20% depending on the tissue17. Further processing was performed with Seurat v319 following 

current best practices14. To make sure batch effects would be removed for the appropriate 

datasets, we included an entropy-based method that quantifies the successfulness of batch 

separation. Batch is in most datasets defined as patient or sample depending on the experimental 

design. The entropy-based method is computed as follows: from a shared nearest neighbor graph 

on the 30 nearest neighbors of every cell j, the distribution q from batch m on the total batches M 

is calculated. Thereafter, the Shannon entropy Hj is calculated for every cell defined as: 
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A set of high entropies resembles a good mixture of batches whereas a low entropy resembles 

that the cells stay in the vicinity of their batch which indicates a batch effect. We decided to 

correct batch effect from an entropy below one. Batch correction was performed by Harmony18 

following standard procedures. 

Supervised annotation and malignant cell prediction 

Cells were annotated in a supervised fashion by CHETAH19 based on a reference dataset 

provided by the authors with small changes to the provided annotation levels. We added an 

annotation group for pDCs changing the total number of cell types from twelve to thirteen. Cells 

were classified based on normalized counts with 500 genes used at every step at a threshold of 

0.05.  

Malignant cells are very heterogeneous and cannot be classified by a reference dataset. For 

datasets containing malignant cells, we called copy number aberrations with CopyKat21. We 

followed the standard procedures described by the authors. Normal cells were provided using 

CHETAH identifier to increase the prediction accuracy. The malignant clusters were then 

assigned as malignant based on the ratio of aneuploid over diploid together with a manual check 

if these clusters also expressed well known cancer genes (Table S2). 

Annotation based on graph-based clustering 

To make sure no erroneous annotation results are processed further, we checked manually for the 

validity of the results. We did this based on results of graph-based clustering that we performed 

through Seurat with a resolution of 1 and following the standard procedure. Plots based on 

marker genes of cell types from the TME were curated through bibliographic search (Table S2) 

were generated. Based on these output files, every cluster was evaluated and if necessary 

reassigned by us. In addition, we specified 3 annotation levels that were linked to the final cell 

annotation. We specified a major annotation based on ten cell types: endothelial, pericyte, 

fibroblast, B, plasma, myeloid, NK, T epithelial, malignant and other cells such as hepatocytes or 

melanocytes. Myeloid and T cells were further specified in the immune annotation level as 

macrophage, monocyte, mast cell, neutrophil, dendritic cell, granulocyte and cycling for myeloid 

cells and CD4+, CD8+ and cycling for T cells. Based on the Seurat clusters some cells were then 

even further annotated in the minor annotation. Macrophages were split in SPP1+ and C1QA+; 

dendritic cells in conventional, plasmacytoid, LAMP3+ and CLEC9C+; CD8+ T cells in naive, 

central memory, effector memory, effector, exhausted and mucosal associated; CD4+ T cells in 

naive, helper, follicular helper, helper 17, regulatory and activated regulatory T cells. 

Gene entropy ranking and differential expression analysis 

We use two techniques to prioritize genes, one is a gene ranking based on entropy, the other is a 

differential expression analysis between annotated cell types. Gene entropy ranking of genes is 

performed using the gene Shannon index as described in Ibrahim & Kramann 201941, performed 

on the most granular annotation which is the Seurat clustering. A specificity score is calculated 

for each gene in each cell cluster which combines the uniqueness of the gene to the cell cluster 

H j = −

M

∑
m=1

qm
j logqm

j
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and its expression level in that cluster using the function sortGenes in the genesorteR package 

setting binarizeMethod to “naive”. The scores range between 0 and 1, with a value of 1 indicating 

that a gene is expressed in all cells of a cluster and in none of the cells of any other cluster41. An 

entropy-like index is calculated on these scores; ranking genes by this index provides a ranking of 

“importance” of a gene in a dataset (ie. whether a gene is a unique marker in a given dataset). 

These gene ranks can then be compared across datasets to rank studies by gene query. Only genes 

with a specificity score adjusted p-value <0.1 as calculated by the function getPValues from the 

genesorteR package are ranked. 

For the differential expression analysis, we subsampled every large dataset to 20,000 cells 

randomly, with a seed so that every operation would be repeatable. Differential testing was done 

on every annotation level, ranging from CHETAH annotation to minor annotation and was based 

on a non-parametric Wilcoxon rank sum test. The test was performed with Seurat for every cell 

type annotation versus the rest of the dataset. Other requirements were an output of only 

upregulated genes, genes had to be expressed in at least 10% of the cells with a log fold change 

of at least 0.25. 

Web Portal 

The web portal enables to query, browse, mine, visualize and download scRNAseq datasets 

normalized (batch corrected) and standardized by the processing pipeline. The front-end has been 

developed with the VueJS framework (https://vuejs.org/), the Bootstrap CSS Library (https://

getbootstrap.com/), the echarts visualization library (http://echarts.apache.org/) and the d3js 

library (https://d3js.org/). The back-end has been developed with PHP and the SLIM framework 

(https://www.slimframework.com/). h5ad files are parsed with a custom Python script using the 

scanpy library (https://scanpy.readthedocs.io/). The web portal is freely accessible at: https://

immucanscdb.vital-it.ch/  
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Figure 1: Single-cell RNA-sequencing database workflow 

A. Strategy used to create the IMMUcan SCdb. B. Overview of the home page of the database 

web interface. C. Statistics of the database content represented as lollipop plot, the information 

(cancer type, cell type enrichment, treatment and technology) is shown on the y-axis while the 

related number of datasets is shown on the x-axis. Point size correspond to the number of patients 

and the color-gradient represents the number of cells per 100000.  

Figure 2: Dataset processing  before integration into IMMUcan scDB 

A.  Dataset processing pipeline. B. Quality control plots for the CLL_IMM_10X_GSE111014 

dataset: PCA standard deviation Elbow plot, the vertical red line indicates the number of principal 

components used for downstream analysis, Violin plot of the number of genes for each cell by 

patient, Violin plot of the number of counts for each cell by patient, Violin plot of the percentage 

of mitochondrial genes for each cell by patient, the horizontal red line indicates the threshold 

used to filter out the cells with a high percentage of mitochondrial genes. C. UMAP, PCA, and 

Harmony plot before and after batch correction by Harmony (colored by patient). D. UMAP plots 

with cells colored according to CHETAH (top-left) or immune annotation (bottom-left). Dotplot 

of matching cell annotations for CHETAH and immune (right panel), the color-gradient and point 

size represent the number of cells. 

Figure 3: Cell-based exploration of IMMUcan scDB looking at B cells involvement in basal 

cell carcinoma response to anti-PD1 treatment  

A. UMAP plot of BCC_BIA_10X_GSE123813 dataset (by cell type, by treatment response),  the 

cells are colored according to their CHETAH annotation. B. Bar plots of the percentage of cells 

per cell types in the whole dataset, and per response to treatment status (Yes or No), the cell types 

are colored according to the CHETAH annotation. C. Violin plot combined with boxplot of  the 

expression of two representative B cell (MS4A1, CCR7) and plasma cells markers (IGHG1, 

IGHG4), Pie chart representing the proportion of expressing cells (“non-zero”) and below the 

absolute number. The colors correspond to CHETAH cell type annotation. 

Figure 4: Gene-based exploration of the IMMUcan scDB using CXCL13, a predictive 

biomarker for immunotherapy response  

A. Heatmap of CXCL13 expression across datasets (y-axis) and cell types (x-axis), cell types are 

defined according to the minor annotation. B. UMAP plot of BCC_BIA_10X_GSE123813 

dataset colored by cell type (minor annotation, top) and CXCL13 expression (bottom). C. Co-

expression plot of CXCL13 and PDCD1(PD1), cells are colored according to the minor 

annotation, top-panel plot displays all cell types, bottom-panel displays only exhausted CD8+ T 

cells (T CD8 ex) and TFH cells, the legend indicates the cell type with the number of expressing 

cells and the Pearson correlation coefficient in brackets. D. Venn diagram showing the co-

expression of  CXCL13 and PDCD1by TFH cells (left) and exhausted CD8+ T cells (T CD8 ex, 

right), the p-value of the hypergeometric test is in the top-right corner of each plot, a pie chart 

representing the proportion of expressing cells for one of the two genes is in the bottom-right 

corner of each plot. E. Violin plot of CXCL9 expression across cell types annotated and colored 

according to the annotation minor in BCC_BIA_10X_GSE123813 dataset. F. Heatmap of 

CXCL9 expression across datasets (y-axis) and cell types (x-axis), cell types are defined 

according to the minor annotation. !
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Supplementary Figure 1: Supervised and non-supervised cell type annotation strategies 

A. t-distributed stochastic neighbor embedding representation of an example dataset colored by 

CHETAH annotation (left panel) and the corresponding CHETAH classification tree (right 

panel). B. Cell ontology classification structure used for the manual annotation. B: B cells, DC 

conv: conventional dendritic cells, DC plas: plasmacytoid dendritic cells, Mast: mast cells, NK: 

natural killer cells, Plasma: plasma cells, T CD4: CD4+ T cells, T CD8: CD8+ T cells, T reg ; 

regulatory T cells, Macro: macrophages, Mono: monocytes, DC: dendritic cells, DC CD1C 

cDC2: conventional type 2 dendritic cells, DC LAMP3: LAMP3+ dendritic cells, DC CLEC9A 

cDC1: conventional type 1 dendritic cells, T8n: naïve CD8+ T cells, T8cm: central memory 

CD8+ T cells, T8em: effector memory CD8+ T cells, T8eff: effector CD8+ T cells, T8ex: 

exhausted CD8+ T cells, T8mait: CD8+ Mucosal-Associated Invariant T Cells, T4n: naïve CD4+ 

T cells, T4h: CD4+ T helper cells, T4fh: CD4+ T follicular helper cells, T4h17: CD4+ T helper 

17 cells, T4reg: CD4+ T regulatory cells. 

Supplementary Figure 2: Preview of IMMUcan scDB interface when selecting a dataset.   

The dataset BCC_BIA_10X_GSE123813 was used as an example. The webpage is set on the 

UMAP tab and displays a UMAP representation of the dataset (top-left), a barplot of the 

distribution of cell types according to the treatment timepoint (top-right), and the differential 

gene expression tab (bottom).   

Supplementary Figure 3: Use of the BCC_BIA_10X_GSE123813 of IMMUcan scDB to 

study the potential role of CCR5 and CXCL9 as biomarkers 

A. Co-expression plot of CXCL13 and CCR5, cells are colored according to the minor 

annotation, the legend indicates the cell type with the number of expressing cells and the Pearson 

correlation coefficient in brackets. B. Venn diagram showing the co-expression of CXCL13 and 

CCR5 in exhausted CD8+ T cells (Tex) and TFH cells (Tfh), the p-value of the hypergeometric 

test is in the top-right corner of each plot, a pie chart representing the proportion of expressing 

cells for one of the two genes is in the bottom-right corner of each plot. C. Co-expression plot of 

CXCL13 and CXCL9, cells are colored according to the minor annotation, the legend indicates 

the cell type with the number of expressing cells and the Pearson correlation coefficient in 

brackets. D. Venn diagram showing the co-expression of CXCL13 and CXCL9 in exhausted 

CD8+ T cells (Tex), TFH cells (Tfh), cDC1, LAMP3+ DC (DC LAMP3) and Malignant cells, the 

p-value of the hypergeometric test is in the top-right corner of each plot, a pie chart representing 

the proportion of expressing cells for one of the two genes is in the bottom-right corner of each 

plot. 
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Supplementary Table 1: Information extracted as metadata for all datasets included in 

IMMUcan scDB  

Categories of fields Extracted metadata

Article information

First Author (name, surname)

Date

DOI

PMID

Journal

Title

Abstract

Sample information

Tissue

Tissue ontology

Cancer type

Cancer type abbreviation

disease ontology id

Number of Patients

Biopsy

Healthy control group

Matched biopsies

Matched treatment

Treatment information Treatment type

Tissue/cell state

Tissue dissociation

Enrichment markers

Enrichment cell types

Enrichment abbreviation

Single cell isolation

Single cell entity

Omic

Clonal information
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Data information
Library construction

Library abbreviation

End bias

Library layout

Genome reference

Alignment method

Counting method

Expression value

gene symbol/ensembl ID

Accession processed data

Accession raw data

	 20



Supplementary Table 2: Example of cluster annotation after CopyKat prediction (dataset 

GBM_UNB_SS2_GSE84465) 

Abbreviations correspond to the manual cell type annotation. Ma: macrophages, mal: malignant 

cells  

Seurat_clusters

annotation_CHETA

H

fraction_CHETA

H

copykat.pre

d abbreviation

0 Macrophage 1 diploid Ma

1 Macrophage 1 diploid Ma

2 Node10 0,97 aneuploid mal

3 Macrophage 1 diploid Ma

4 Node10 0,87 aneuploid mal

5 Macrophage 1 diploid Ma

6 Node10 0,99 aneuploid mal

7 Macrophage 0,94 diploid Ma

8 Node10 0,9 aneuploid mal

9 Node10 0,95 aneuploid mal

10 Macrophage 1 diploid Ma

11 Node10 0,98 aneuploid mal

12 Macrophage 0,99 diploid Ma

13 Macrophage 1 diploid Ma

14 Macrophage 1 diploid Ma

15 Node10 0,99 aneuploid mal

16 Macrophage 1 diploid Ma

17 Node10 0,92 aneuploid mal

18 Node10 0,93 aneuploid mal

19 Macrophage 0,88 diploid Ma

20 Node10 0,95 aneuploid mal

21 Node10 0,82 aneuploid mal

22 Macrophage 0,93 diploid Ma

23 Node10 0,85 aneuploid mal
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24 Macrophage 1 diploid Ma

25 Node10 0,66 aneuploid mal

26 Macrophage 0,44 diploid Ma

27 Macrophage 0,96 diploid Ma

28 Macrophage 1 diploid Ma

29 Node10 0,91 aneuploid mal

30 Node10 0,54 aneuploid mal

31 myofibroblast 0,57 aneuploid mal

32 Node10 1 aneuploid mal

33 Fibroblast 1 aneuploid mal
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IMMUcan scDBLiterature search
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Dataset collectionManual review
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Available data

and Metadata
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Sort

Patient
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Study Unique  id Peer reviewed Remarks
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«single-cell RNA sequencing»
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Titre : Exploration de la diversité fonctionnelle des cellules T dans les données de
séquençage d’ARN en cellule unique à l’aide d’outils méthodologiques et biologiques

Résumé : Le séquençage d’ARN en cellule unique (scRNAseq) est une technique jeune.
Elle consiste à faire une photographie instantanée des molécules d’ARN messager con-
tenues dans une cellule unique. Apparue en 2009, et après une phase timide d’adoption,
son usage s’est généralisé, grâce à une simplification de la technique expérimentale et une
baisse des coûts substantielle. Ces données sont plébiscitées pour leur richesse, qui per-
met de disséquer finement la biologie du vivant, en accédant à des informations telles que
l’hétérogénéité d’une population ou la caractérisation différentielle des cellules saines et
malades. En effet, le scRNAseq combine l’approche en cellule unique avec les techniques
de séquençage de nouvelle génération qui permettent d’accéder, en théorie, à l’intégralité
du matériel ARN de la cellule.

Cependant, le scRNAseq est à double tranchant. Bien que le travail à la paillasse
se soit démocratisé, notamment grâce à l’apparition de kits commerciaux, il reste encore
perfectible. En effet, on n’est capable de capturer, à l’heure actuelle, que 5 à 20% des ARN
par cellule. Quant au travail à l’ordinateur, il constitue lui aussi un défi : les données sont
fortement bruitées: ce bruit est dû non seulement au fait que les données sont immergées
dans un espace à grande dimension, et donc souffrent de la malédiction de la dimensionalité
et des phénomènes afférents, mais aussi au fait que la capture des ARN est incomplète.
Ainsi, une analyse bioinformatique doit être capable de distinguer et séparer au mieux le
bruit biologique intéressant du bruit technique qui parasite l’information.

Concernant la partie analytique, la nouveauté du scRNAseq n’a pas encore laissé
suffisamment de temps aux équipes qui travaillent sur ces données pour élaborer des stan-
dards communs. Au contraire, on assiste à une explosion des algorithmes disponibles,
majoritairement disponibles via R et python. Cependant, on retrouve schéma consensuel
minimal : importation et nettoyage de la matrice d’expression cellules × gènes, normali-
sation et réduction de dimension. Les données en dimensions réduites permettent de faire
de la visualisation, de l’agrégation ou de l’inférence de trajectoire. Enfin les groupes sont
annotés. Cette dernière étape d’interprétation est particulièrement critique mais souvent
biaisée car le plus souvent manuelle et donc biaisée.

Je me suis attachée dans ma thèse à deux aspects en particulier de l’analyse des
données scRNAseq : l’aspect méthodologique, et l’interprétation.

J’ai d’abord étudié le bruit dimensionnel, autrement appelé la malédiction de la di-
mensionalité. Cette malédiction complique l’analyse en brouillant les différences entre
points proches et lointains. Une manifestation classique de la malédiction est la concen-
tration des distances, ce qui signifie que le ratio des distances extrémales tend vers 1.
Autrement dit, la différence entre la distance maximale et la distance minimale observées
dans un nuage de point tend vers 0. Comme l’analyse des données scRNAseq repose sur la
production de graphes de voisinage, elle est nécessairement pénalisée par cette malédiction
qui déforme des distances en atténuant les contrastes entre groupes ou noeuds de cellules.
L’astuce habituelle consiste donc à réduire la dimension. Cependant, cette stratégie, si
elle ne lasse pas d’être simple et efficace, soulève plusieurs questions, dont la principale
est de savoir où tracer la ligne entre "éliminer du bruit" et "perdre de l’information". En
plus de devoir faire un compromis non satisfaisant intellectuellement entre ces deux con-
sidérations, le bioinformaticien ne dispose souvent que de son "doigt mouillé" pour fixer
un nombre de dimensions à garder. En outre, il existe aussi un autre effet, moins connu,
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de la malédiction, qui s’appelle le phénomène de hubness. Il est aussi nocif, car il déforme
le graphe des k plus proches voisins. Toutefois ce phénomène peut être corrigé avec des
méthodes déjà existantes, qui s’attaquent soit à la correction du graphe des plus proches
voisins, soit à la correction des inhomogénéités de densité locale à l’origine de l’émergence
des hubs, soit à la réduction de la centralité spatiale. J’ai d’abord évalué l’ampleur du
phénomène de hubness dans les données de séquençage, ainsi que l’effet de la correction
de hub sur la performance de l’analyse scRNAseq, en appliquant les méthodes de cor-
rection du graphe des plus proches voisins. Le phénomène de hubness est bien présent,
en particulier dans les matrices caractérisées par une grande dimension intrinsèque, et
l’analyse de ces jeux de données en particulier bénéficie de la réduction de hubness, avec
une performance optimale dans l’espace de dimension effective maximale. En particulier,
nous nous sommes intéressés aux tâches de clustering, d’inférence de trajectoire et de
visualisation, à l’aide de jeux de données dont la vérité était connue, c’est-à-dire que les
cellules étaient déjà étiquetées. Bien que cela ne semble être qu’un algorithme de plus
dans la jungle déjà existante, c’est surtout le changement de paradigme qui est singulier,
puisqu’on modifie conceptuellement une étape consensuelle, la réduction de dimension. Il
serait intéressant de regarder en particulier à quel point une réduction de hubness per-
mettrait ou non d’améliorer l’interprétation biologique de données non étiquetées, qui se
fait manuellement à la fin de l’analyse.

Ensuite, je me suis intéressée aux cellules T, d’abord via le prisme des lymphocytes
T régulateurs. Ces cellules, définies initialement par leur fonction, sont difficile à isoler
chez l’homme. J’ai d’abord formé l’hypothèse qu’il y a potentiellement décorrélation
entre le phénotype et la fonction, et me suis donc intéressée au contexte. En prenant
l’exemple des lymphocytes T régulateurs dans les cancers humains, j’ai montré le poids
du contexte dans la détermination du rôle pronostic des lymphocytes T régulateurs dans
cinq cancers: sein, poumon, ovarien, colorectal et gastrique. En effet, en partant d’une
situation intriquée, dans laquelle il est difficile de démêler le rôle pronostic des lymphocytes
T régulateurs dans le cancer humain, avec des articles expérimentaux contradictoires et
des revues qui ne peuvent pas trancher clairement dans un sens ou l’autre, non seulement
on améliore le consensus vis-à-vis de ce rôle pronostic pour chacun de ces cinq cancers pris
individuellement, mais on peut mieux comprendre le rôle pronostic global des lymphocytes
T régulateurs dans les cancers humains. A la lumière de la méta-analyse que j’ai conduite,
je favorise donc l’hypothèse d’un rôle unique des lymphocytes T régulateurs pour le cancer,
plutôt qu’un rôle spécifique en fonction de la localisation de la tumeur. En particulier,
j’ai pu relever que les lymphocytes T régulateurs CD45- étaient systématiquement de
mauvais pronostic, quel que soit le cancer étudié. En outre, j’ai observé que le tissu utilisé
pour extraire et dénombrer les lymphocytes T régulateurs avait aussi une importance :
il semble ainsi que les lymphocytes T régulateurs issus du sang ne soient pas utilisables
pour la définition d’un rôle pronostic, tandis que c’est le cas pour les lymphocytes T
régulateurs issus du tissu malade. De la même manière, quantifier les lymphocytes T
régulateurs via un ratio par rapport à une autre population de cellules immunitaires
permet de clarifier leur rôle pronostic, sans doute parce que la prise en compte d’une autre
population cellulaire permet de rendre en partie la complexité du micro-environnement
tumoral, et notamment du micro-environnement immunitaire. Une perspective de ce
travail serait de prendre en compte d’autres paramètres ayant une influence sur le contexte,
tel que le traitement. Il sera aussi possible d’appliquer cette méthodologie à d’autres types
cellulaires pour lesquels le message pronostic demeure flou, tels que les Th2 et les Th17.

En utilisant toujours cette hypothèse de décorrélation entre le phénotype et la fonc-

240



tion, j’ai ensuite élargi mon cadre d’étude à l’ensemble des cellules T en questionnant
le paradigme actuel de lignée. Le fil directeur a été de supposer qu’une classification,
non plus phénotypique, mais fonctionnelle serait plus pertinente, en particulier dans des
contextes pathologiques, tels que le contexte tumoral. Cette classification fonctionnelle
permettrait en outre de résoudre l’incapacité du paradigme de lignée à prendre en compte
de façon précise de la plasticité cellulaire. J’ai donc adopté une approche supervisée dans
l’analyse des données de séquençage scRNAseq afin de capturer la fonctionnalité des cel-
lules T. Nous avons d’abord défini un ensemble de 15 fonctions réalisées par les cellules
T, telles que la cytotoxicité, la prolifération ou la migration. Chaque fonction, ou module
fonctionnel, a ensuite été peuplé de gènes effecteurs. J’ai considéré un gène comme étant
effecteur si et seulement si il permet de réaliser la fonction considéré. Cela signifie qu’il y
a une preuve expérimentale que la fonction disparaît ou est atténuée (car suppléé poten-
tiellement par d’autres gènes effecteurs) si le gène n’est plus fonctionnel. A l’aide de ces
modules fonctionnels, j’ai pu relier chaque cellule à sa/ses fonction/s, en attribuant un
score pour chacune des quinze fonctions par cellule. Ces scores en question ont été calculés
de sept façons différentes, et j’ai pu valider quatre méthodes d’encodage. Une méthode
a été éliminée car elle n’exhibait aucune différence entre les cellules, tandis que deux
méthodes supplémentaires ont été exclues car elles n’ont pas passés les tests de contrôle
positifs, effectués à l’aide de population pures séquencées en masse. J’ai d’abord prouvé la
valeur ajoutée de cette approche par rapport à une analyse classique non supervisée. Plus
précisément, j’ai évalué la quantité d’information mutuelle entre l’approche classique et
l’approche fonctionnelle, par exemple en comparant les coordonnées des cellules en com-
posantes principales ou en scores fonctionnels. J’ai aussi évalué l’entropie fonctionnelle des
clusters obtenus par une analyse classique. Ensuite, j’ai effectué une étape de clustering
consensuel, en mélangeant l’information de compte ARN et l’information fonctionnelle.
J’ai finalement caractérisé les différences fonctionnelles entre cellules T issues d’un tissu
sain ou cancéreux. On retrouve, par cette approche, que le tissu sain juxtatumoral est
plus dormant et moins hétérogène que le tissu tumoral. L’intérêt de cette approche réside
dans la facilité de l’interprétation des résultats obtenus après analyse. Par rapport à la
méthode classique, on s’épargne l’étape fastidieuse et biaisée d’annotation, et notamment
d’annotation fonctionnelle. En effet, dans un contexte clinique, il m’apparaît comme es-
sentiel de relier les cellules récoltées dans les tissus malades à leur fonction plus qu’à leur
identité cellulaire, car c’est leur fonction qui va guider la décision de savoir si ces cellules
sont bénéfiques ou maléfiques, et donc si elles doivent être éliminées ou enrichies. Par
exemple, les lymphocytes T régulateurs dans le micro-environnement tumoral vont être
bénéfiques ou maléfiques, et devront donc être ciblés pour être éliminés ou enrichis, selon
qu’ils seront ou non immuno-régulateurs. Nous avons aussi implémenté cette méthode
dans un contexte pathologique additionnel, qui nous a servit comme preuve de concept :
l’analyse de cellules dendritiques de patients souffrant de la Covid-19, après sélection des
modules fonctionnels idoines, c’est-à-dire des fonctions effectuées par les cellules dendri-
tiques. En résumé cette stratégie d’analyse fonctionnelle peut donc être appliquée pour
d’autres types de cellules que les cellules T, d’autres pathologies que le cancer, et même
dans un contexte physiologique, afin de cartographier les fonctions des cellules immuni-
taires.

Mots clés : séquençage d’ARN en cellule unique, analyse de données omiques, grande
dimension, fonctionnalité, approche supervisée, cancer, immunologie, bioinformatique,
méta-analyse.
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