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Contribution to formal foundations of argumentation and case-based reasoning

by Vivien BEUSELINCK

Argumentation, a sub-field of artificial intelligence, is a reasoning approach that jus-
tifies claims by interacting arguments. One of its key steps is evaluation of argument
strength using formal methods, called semantics.

This thesis contributes to the understanding and development of the theoretical
foundations of semantics. It’s contribution are fourfold.

First , we investigated the critical notion of self-attacking arguments, proposed ratio-
nality postulates that describe how to deal wit them and introduces novel semantics
that satisfy them.

Second, we characterized various semantics in terms of series, providing the mathe-
matical counterparts of those semantics.

The third part of the thesis tackled the issue of comparing the plethora of exist-
ing semantics. We have shown that rationality postulates are not sufficient for a fair
comparison of semantics, then we introduced the novel notion of equivalence which
is based on the ranking induced by semantics. We compared most of existing se-
mantics, and characterized a whole class of equivalence.

The last part of the thesis illustrates semantics in the context of the case-based rea-
soning (CBR). We started by laying the foundations of CBR by providing a set of
principles that a model would satisfy, and proposed an argumentation model that
satisfies most of them.
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Chapter 1

Introduction

As a sub-field of Artificial Intelligence, argumentation is a reasoning approach based
on the justification of claims by arguments. It has been used for solving different
problems including inconsistency handling (Besnard and Hunter, 2001; Amgoud
and Cayrol, 2002), decision making (Amgoud and Prade, 2009; Zhong et al., 2019,
case-based reasoning (Cyras, Satoh, and Toni, 2016; Zheng, Grossi, and Verheij,
2020), and negotiation (Dimopoulos, Mailly, and Moraitis, 2019). See (Rahwan and
Simari(eds.), 2009) for more applications.

An argumentation-based system consists of a (flat or weighted) graph and an
evaluation method, called a semantics. The nodes of the graph are arguments and
its edges represent attacks between them. The graph is weighted when arguments
are assigned basic weights and flat otherwise. The semantics is a formal method for
evaluating the strength of every argument in the graph.

A great number of semantics have been proposed in the literature. They can
roughly be classified into three families: extension-based, gradual and ranking. Initi-
ated by Dung, 1995, the former look for sets of arguments that can be jointly ac-
cepted. Then, a dialectical status or strength is assigned to each argument according
to its membership in the extensions. Introduced by Cayrol and Lagasquie-Schiex,
2005a, gradual semantics focus directly on individual arguments, and ascribe to each
of them a value taken from an ordered scale representing its strength.
Ranking semantics have been introduced in (Amgoud and Ben-Naim, 2013), they
rank arguments of a flat or weighted graph according to their strength. They thus
return a preordering on the set of arguments.

1.1 Handling self-attacking arguments

Generally, a conflict occurs between two distinct arguments. However, it may also
happen that an argument conflicts with itself, and such an argument is called self-
attacking. Self-attacking arguments seem anecdotal at first sight;1 however, the dis-
cussion on how to deal with them is subject of debate amongst argumentation schol-
ars. There exist examples in the literature attempting to formally represent certain
aspects with these arguments, such as the representation of the lottery paradox (Pol-
lock, 1991). However, one quickly understands that the problem of representing the
self-attacking arguments is mainly linked to the different choices made to formally
represent an argument and the attacks between the arguments. This distinction can

1Bodanza and Tohmé (Bodanza and Tohmé, 2009) claim that there is a lack of “indisputably sound
examples” concerning this type of arguments
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be seen, for example, when comparing the approaches used in deductive argumen-
tation and in abstract argumentation. As mentioned by Baumann and Woltran (Bau-
mann and Woltran, 2016), in classical logic-based frameworks, self-attacking argu-
ments do not occur at all (Besnard and Hunter, 2001), while other argumentation
systems like ASPIC (Modgil and Prakken, 2014) allow such arguments. Within the
abstract setting, several methods have been defined by proposing to deal with them
directly (Bodanza and Tohmé, 2009; Baumann, Brewka, and Ulbricht, 2020b; Bau-
mann, Brewka, and Ulbricht, 2020a; Dauphin, Rienstra, and Torre, 2020) or indi-
rectly (e.g. when dealing with odd-length cycles because a self-attack is the smallest
odd-length cycle) (Baroni and Giacomin, 2003). These methods essentially concern
extension-based semantics.

In the context of ranking-based and gradual semantics, little research was con-
ducted to find out how self-attacking arguments should be dealt with and what is
the impact they have on the acceptability of other arguments. Existing studies are es-
sentially done through the principle-based studies of these semantics. Indeed, defin-
ing and studying principles drew attention of many scholars in this area. Consider
Equivalence, which is one of the well-known principles, stating that the acceptability
degree of an argument should only depend on acceptability degrees of its direct at-
tackers and observe the argumentation graph from Figure 3.1. Equivalence implies
that a and b should be equally acceptable because a and b are both directly attacked
by the same argument. However, this is debatable, since the intuition behind a self-
attacking argument is that it is inconsistent in one way or another so we would tend
to accept b being attacked by a (which is self-attacking) rather than accepting a.

b a

FIGURE 1.1: An argumentation graph with two arguments (a attacks
itself and b) showing that Equivalence and Self-Contradiction are in-

compatible.

Note that, under all semantics returning conflict-free extensions, a self-attacking
argument is always rejected, i.e. it does not belong to any extension. Also, regard-
ing the ranking-based and gradual semantics, it was pointed out that it would be
natural to attach the worst possible rank to self-attacking arguments (Matt and Toni,
2008). Furthermore, two principles were defined to formalise this intuition. The first
one is called Strong Self-Contradiction, and was introduced by Matt and Toni (Matt
and Toni, 2008). It says that the acceptability degree of an argument must be mini-
mal if and only if that argument is self-attacking. The second principle, called Self-
Contradiction, was introduced by Bonzon et al. (Bonzon et al., 2016) and states that
each self-attacking argument is strictly less acceptable than each non self-attacking
argument. Consider the argumentation graph illustrated in Figure 3.1 again and
note that, under every semantics that satisfies Self-Contradiction, b is strictly more
acceptable than a. This example shows that Equivalence and Self-Contradiction are
not compatible, i.e. there exists no semantics that satisfies both of them.

To the best of our knowledge, there exists only one semantics proposed in (Matt
and Toni, 2008) that satisfies Self-Contradiction and Strong Self-Contradiction. How-
ever, this semantics has a limitation that makes it inapplicable in practice. Namely,
as noted by Matt and Toni themselves, as the space used to calculate the scores grows
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exponentially with the number of arguments, even with the optimisation techniques
they used it did not scale to more than a dozen of arguments.

The research objective of the first chapter of the thesis is to study the under-
explored family of semantics that satisfy Strong Self-Contradiction. Our goals are
thus to identify which principles are (in)compatible with Strong Self-Contradiction
and to define a new argumentation semantics, called nsa (no self-attacks), that satis-
fies Strong Self-Contradiction as well as a maximal number of compatible principles.

After introducing the formal setting and recalling the existing principles from
the literature:

• We prove the incompatibilities between some of the principles, and identify a
maximal set of principles that contains (Strong) Self-Contradiction;

• We introduce an iterative algorithm in order to define a new semantics and
prove that it always converges. The acceptability degree of each argument
with respect to nsa is then defined as the limit of the corresponding sequence;

• We provide a characterisation of nsa, i.e. a declarative (non-iterative) definition
and show that the two are equivalent: each semantics satisfying the declarative
definition coincides with nsa;

• We check which principles are satisfied by nsa and compare it with the M&T
semantics (Matt and Toni, 2008) and the h-categorizer semantics (Besnard and
Hunter, 2001) in terms of principle satisfaction;

• We formally prove that no semantics can satisfy a strict super-set of the set of
principles satisfied by nsa;

• We experimentally show that nsa is computationally efficient and compare it
with the M&T semantics and the h-categorizer semantics. The results confirm
the hypothesis that the M&T semantics does not scale.

1.2 Mathematical Foundations of semantics

There exists a plethora of semantics in the literature. Most of them have been moti-
vated by example, or by adapting existing semantics from others domains like logic
programming. In the last decade, several works have been done for understanding
the foundations of semantics. They introduced formal properties, called principles,
that a reasonable semantics would satisfy. While these principles shed light on the
underpinnings of existing semantics, they do not tell much on the values assigned
by semantics to argument. The second chapter of the thesis tackled this issue, and
characterizes some existing numerical series like Fibonacci and the exponential se-
ries.

1.3 Equivalence of semantics

As said before, comparing existing semantics has been a hot topic in recent years. A
dominant approach consists in identifying properties (called principles) that seman-
tics may satisfy, then analysing every semantics against them. (Baroni and Giacomin,
2007) proposed several principles that (Torre and Vesic, 2017) used for comparing all
the existing extension semantics. (Amgoud and Ben-Naim, 2016) introduced another
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list of principles and used it for comparing some existing gradual/extension seman-
tics. While these studies revealed conceptual differences between the analysed se-
mantics, the messages they convey are not clear. Namely, the following questions
remain unanswered:

• Are semantics satisfying the same principles similar, i.e. they provide the same
evaluation of arguments?

• Are semantics following different principles incompatible, i.e. they may pro-
vide contradictory evaluations?

More generally, when are two semantics similar? We argue that to be similar, two
semantics should agree not only on the evaluation of every individual argument but
also on the ranking of arguments wrt their strengths. The first agreement depends
on the principles followed by the two semantics. For instance, if both semantics
satisfy the maximality principle from ((Amgoud and Ben-Naim, 2016)), then they
would assign the highest strength to a non-attacked argument. However, satisfying
the same principles does not guarantee agreement on the ranking of arguments.
Consider for instance the two gradual semantics Mbs ((Amgoud et al., 2017)) and
EMbs ((Amgoud and Doder, 2019)). They satisfy exactly the same set of principles.
However, as we will see in the chapter, they may provide contradictory rankings
of pairs of arguments when graphs are weighted. They are thus not similar and
decision systems using them may make contradictory recommendations. Consider
for instance the case of a committee which recruits a new researcher, and assume that
the two candidates are supported respectively by the arguments a and b. Assume
also that Mbs declares a as stronger than b and EMbs proposes the opposite ranking.
Note that according to the semantics that is considered, the committee may make
different recruitment’s.

To sum up, the existing comparisons of semantics are incomplete as they focused
only on the first requirement for similarity. This part of the thesis completes them
by investigating the second requirement on rankings. Its contributions are threefold:
First, it introduces three novel relations between semantics based on their rankings
of arguments: weak equivalence, strong equivalence and refinement. They state respec-
tively that two semantics do not disagree on their strict rankings, the rankings of
the semantics coincide, and one semantics agrees with the strict comparisons of the
second, furthermore it breaks some of its ties. Second, it investigates the properties
of the three relations and their links with existing principles of semantics. Third, it
studies the nature of relations between most of the existing semantics when dealing
with flat or weighted graphs.

1.4 Case-base reasoning

Case-based reasoning (CBR) is an experience-based approach to solving problems.
It uses stored cases describing similar prior problem-solving episodes and adapts
their solutions to fit new needs (or new cases). For example, a car dealer would
guess the price of a given car by comparing its characteristics with those of cars that
have been sold. This form of reasoning has been used in the literature for solving
various practical problems including some in the medical (eg. (Perez et al., 2021;
Smiti and Nssibi, 2020; Schnell, 2020)) and legal (eg. (Ashley, 2011; Atkinson and
Bench-Capon, 2005)) domains.
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Several works have been devoted to modeling CBR, and various approaches can
be distinguished including logic-based (Zheng, Grossi, and Verheij, 2020; Dubois
et al., 1997) and argumentation-based (Paulino-Passos and Toni, 2021; Prakken et
al., 2013) approaches (see (Richter and Weber, 2013; Hüllermeier, 2007; Aamodt and
Plaza, 1994) for surveys). However, despite its popularity, there are few works on
foundations, or properties, that may underlie CBR models. Foundations are impor-
tant not only for a better understanding of case-based reasoning in general, but also
for clarifying the basic assumptions underlying models, comparing different mod-
els, and also for comparing case-based reasoning with other kinds of reasoning like
defeasible reasoning.

The last chapter of the thesis bridges this gap. It starts by analysing the basic as-
sumption behind case-based reasoning, namely "the more similar the cases, the more
similar their outcomes". It discusses three independent notions that capture (in differ-
ent ways) the assumption.
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Chapter 2

Argumentation Frameworks

2.1 Introduction

Humans engage in argumentation in almost all communications. They advance ar-
guments and counter-arguments to support or refute claims. Let us consider the
following simple dialogue between a parent and her child :

Parent (a1) : Your grades are too low, your games distract your attention, and they
make you lose time.

Child (a2) : My grades have increased this semester, I am more efficient after playing.

Parent (a3) : They are not increasing fast enough.

Here, the parents justifies the low grades by the fact that the child is distracted
by games. The child disagrees and claims that his grades are better when playing
games.

Argumentation is a reasoning process in which arguments are built and evaluated
in order to increase or decrease the acceptability of a standpoint (Perelman and
Olbrechts-Tyteca, 1958).

The most abstract and general argumentation framework in the literature is the one
proposed by Dung (Dung, 1995). It takes as input a set of arguments and a binary re-
lation encoding attacks between arguments. The framework is abstract since it does
not specify neither the structure nor the origin of the two components. Thus, it can
be instantiated in different ways.

It is general since no particular constraints are imposed on arguments and attacks.In
the literature, arguments may have a basic weight which may represent the certainty
degree of its premises (Benferhat et al., 1993) or the degree of reliability of its source
(Villata et al., 2011) or votes (Leite and Martins, 2011).

Arguments may also be supported by other arguments. In this thesis, we will not
consider this neither, and focus on weighted argumentation frameworks, which we
call also weighted argumentation graphs.

Definition 1 (AG). An argumentation graph (AG) is a tuple G = ⟨A, σ,R⟩, with A
is a finite set of arguments, R ⊆ A×A is a binary relation representing attacks between



8 Chapter 2. Argumentation Frameworks

arguments, σ : A =⇒ [0, 1] is a weighting on A. G is flat if σ ≡ 11 and weighted
otherwise. Let AG denote the set of all argumentation graphs.

for a, b ∈ A, (a, b) ∈ R (or aRb) means that a attacks b, we can abuse notation
and say that a set E of arguments attacks an argument a if and only if it contains
an argument b which attacks a. The argumentation graph corresponding to the di-
alogue between the parent and the child is depicted in the figure below where we
assume that σ(a1) = σ(a2) = σ(a3) Attacks express conflicts between arguments. In

a1a2a3

FIGURE 2.1: Argumentation framework representing the child exem-
ple

some cases, an argument may attack itself.

Definition 2. Let G = ⟨A, σ,R⟩ ∈ AG. An attack (a, b) ∈ R is called self-attack if and
only if a = b.

2.2 Semantics

Whatever the problem to solve, an argumentation process follows generally from
steps: to justify claims by arguments, identify relations between arguments, evalu-
ate the arguments and define outputs.

The last step depends on the results of the evaluation. For example, an inference
system draws formulas that are justified by what is qualified at the evaluation step
as "strong" arguments. Evaluation of arguments is thus crucial as it impacts the
outcomes of argument-based systems. Consequently, a plethora of methods, called
semantics, have been proposed in the literature. They can be organized into three
families according to the type of their outcome : Extension semantics initiated by
(Dung, 1995), Gradual semantics initiated by (Cayrol and Lagasquie-Schiex, 2005b)
and Ranking semantics introduced in (Amgoud and Ben-Naim, 2013). They differ in
the type of outcomes they produce. Extension semantics return sets of arguments,
gradual semantics ascribe a (numerical or qualitative) value to every argument, and
ranking semantics return a total preorder on the set of arguments.

Definition 3 (Semantics). A semantics is a function π that assigns to every G = ⟨A, σ,R⟩,

• a set Extπ
G ⊆ P(A) (Extension semantics)

• a weighting Degπ
G : A → D (Gradual semantics)

• a preorder ⪰π
G ⊆ A×A (Ranking semantics)

where P(A) stands for the powerset of A and D is a totally ordered scale.

In what follows, we recall the main semantics of each family.

1σ ≡ 1 means ∀a ∈ A, σ(a) = 1.
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2.2.1 Extension-based semantics

Initiated in (Dung, 1995), extension semantics identify arguments that are acceptable
for (thus can be accepted by) a rational agent. The following particular definition
was used:

An argument is acceptable for a rational agent if it can be defended
against all attacks on it.

Dung proposed different ways of defining formally this notion of acceptability. They
are all based on the same idea: identifying sets of arguments, called extensions, that
defend their elements against all attacks. Each extension represents an alternative set
of acceptable arguments. Extension semantics are grounded on three crucial notions:
conflict-freeness, defence and extensions. In his paper, Dung considered flat graphes
G = ⟨A,R⟩ ∈ AG ie where σ ≡ 1.

Definition 4. Let G = ⟨A, σ,R⟩ ∈ AG and a subset S ⊆ A.

• We say that S is conflict-free if ∄a, b ∈ S such that (a, b) ∈ R.

• We say that S defends an argument a if ∀b ∈ A such that (b, a) ∈ R, ∃c ∈ S such
that (c, b) ∈ R, and define F (S) = {a ∈ A | S defends a}.

We recall below the extension semantics proposed in (Dung, 1995).Interested
readers can refer to (Torre and Vesic, 2017) for a complete presentation of all three
extensions.

Definition 5. Let G = ⟨A, σ,R⟩ ∈ AG and S ⊆ A is conflict free.

• S is complete iff S is conflict-free and and S = {a ∈ A|S defends a}. S defends all
its elements and contains any argument it defends.

• S is a preferred extension if and only if S is a maximal for set inclusion complete
extension.

• S is a stable extension if and only if ∀a ∈ A|S , ∃b ∈ S such that (b, a) ∈ R ie if
and only if it attacks any arguments in A|S

• S is a grounded extension if it is a minimal for set inclusion complete extension.

• S is an ideal extension if and only if it is a maximal (wrt set inclusion) admissible
set that is subset of every preferred extension.

In (Dung, 1995), the grounded extension if defined using a characteristic function
as follows.

Definition 6. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and S ⊆ A is conflict free. S is the grounded
extension if and only if S is the least (with respect to set inclusion) complete extension. It
is the least fixpoint of the characteristic function F : 2A → 2A where for S ⊆ A,

F (S) = {a ∈ A | S defends a}.

Let Gr denote the grounded extension of G

Property 1. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG such that A is finite. The grounded extension of
G is :

S = ∪F i≥0(∅)
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Example 1.

a b

c

d e f

g

• F 1(∅) = {a}

• F 2(∅) = F (F 1(∅)) = {a, d}

• F 3(∅) = F (F 2(∅)) = {a, d, f }

Notation 1. Throughout the thesis, for any G ∈ AG, GR(G) denotes the grounded extension
of G and Extx

G the set of extensions of G under semantics x where x ∈ {c, p, s, g} and
c, p, s, g stand for complete, preferred, stable and grounded respectively.

Once extension are identified, an acceptability status is assigned to every argu-
ment as follows (Baroni, Giacomin, and Guida, 2005; Cayrol and Lagasquie-Schiex,
2005a; Grossi and Modgil, 2015)) :

Definition 7. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• a is sceptically accepted if it belongs to all extensions,ie a is sceptically accepted if
a ∈ ⋃

Ei∈Extx
G

Ei

• a is credulously accepted it belongs to some but not all extensions. Ie a is credulously
accepted if ∃Ei, Ej, i ̸= j, such that a ∈ Ei, a /∈ Ej.

• a is undecided iff a /∈ ⋃
Ei∈Extx

G

Ei and ∀Ei ∈ Extx
G,Ei does not attack a.

• a is rejected if it does not belong to any extension ie if only if a /∈ ⋃
Ei∈Extx

G

Ei and

∃Ei ∈ Extx
G such that Ei attack a.

with x ∈ {c, p, s, g}.

Example 2. Let G = ⟨A,R⟩ be an argumentation framework withA = {a, b, c, d, e, f , g, h}
and R = {(b, a), (c, b), (a, a), (d, c), (e, f ), ( f , g), (g, e), (e, a), (h, a)}. The graphical rep-
resentation of the framework is shown below.

abcd

ef

g

h

FIGURE 2.2: Argumentation framework representation

This graph contains one self-attack (a, a) ∈ R. Indeed, the three arguments
f , e, g form a cycle. In figure 2.2, {b, d, h} is an example of a complete extension,
as it defends all the arguments in the set {b, d, h}, {b, d, h} is also an example of a
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fcomp(x1, x2) = x1(1− x2) gsum(x1, ..., xn) = ∑n
i=1 xi

fexp(x1, x2) = x1e−x2 gsum,α(x1, ..., xn) = (∑n
i=1(xi)

α)
1
α

f f rac(x1, x2) =
x1

1+x2
gmax(x1, ..., xn) = max {x1, ..., xn}

TABLE 2.1: Examples of functions f and g

preferred extension, an ideal extension and the grounded. There is no example of
a stable extension in Figure 2.2. Indeed, arguments e, f , and g are not attacked by
{b, d, h}. In order for {b, d, h} to be stable, it would be necessary to add, for example,
{(b, e), (b, f ), (b, g)} toR.

2.2.2 Gradual semantics

Introduced for the first time in (Cayrol and Lagasquie-Schiex, 2005a), gradual se-
mantics focus on individual arguments. They assign a value from a ordered scale
to every argument of an argumentation graph. The value represents the strength of
the argument ie, how robust is the argument against attacks on it. For any argumen-
tation graph, G = ⟨A,R⟩ ∈ AG, any argument a ∈ A, the value (or strength) of a
under a gradual semantics π is defined as follows:

Degπ
G(a) = f (g(Degπ

G(b1), ..., Degπ
G(bn)))

where b1 → bn are the attackers of a, ie {x ∈ A|(x, a) ∈ R} = {b1, .., bn}. g is an
aggregation function that evaluates how strongly a is attacked and f is an influence
function that takes into account the strength of attacks. Examples of functions that
are studied in the literature are given in the table below : It is worth mentioning that
gradual semantics do not inform about the acceptability of arguments, ie, which ar-
gument to accept. It identify such arguments a further step is needed. For instance,
one may accept any argument whose strength is greater than a given threshold. Ex-
tension semantics provide as output accepted arguments. However, their extension
of argument strength is quite weak as they use a four-valued scale (sceptically ac-
cepted, credulously accepted, undecided, rejected). Hence, gradual semantics pro-
vide a finer-grained evaluation of individual arguments.

Several gradual semantics have been proposed in the literature. They differ in the
way they consider attackers. Some semantics focus only on the strongest attacker
and get rid of the others, others take into account all attackers, and finally some se-
mantics focus on the number and quality of attackers.

In what follows, we recall the semantics that have been proposed for weighted ar-
gumentation graphs. The thirst two semantics... The first two semantics, Max-based
and Euler-based, consider that the strongest attack is the sole decision-maker.

Definition 8 (Max-based). ((Amgoud et al., 2017)) Let G = ⟨A, σ,R⟩ be an argumenta-
tion graph. The Max-based semantics (Mbs) is a gradual semantics such that ∀a ∈ A:

DegMbsG (a) =
σ(a)

1 + max
bRa

DegMbsG (b)
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Note that if G is flat ie σ ≡ 1:

DegMbsG (a) =
1

1 + max
bRa

DegMbsG (b)

Note that Max-based uses f f rac as influence function and gmax as aggregation
function. Euler-based (Amgoud and Doder, 2019) uses gmax, however its influence
function is fexp.

Example 3. On the example 1, DegMbsG (a) = 1, DegMbsG (b) = 0.5, DegMbsG (c) = 0.5,
DegMbsG (d) = 2

3 , DegMbsG (e) = 0.6, DegMbsG ( f ) = 0.625 and DegMbsG (g) ≈ 0.618

Definition 9 (Euler-based). ((Amgoud and Doder, 2019)) Let G = ⟨A, σ,R⟩ be an ar-
gumentation graph. The Euler-based (EMbs) semantics is a gradual semantics such that
∀a ∈ A:

DegEMbsG (a) = σ(a) · e
−max

bRa
DegEMbsG (b)

Note that if G is flat, ie σ ≡ 1, the strength of a is defined as follows:

DegEMbsG (a) = e
−max

bRa
DegEMbsG (b)

Example 4. On the example 1, DegEMbsG (a) = 1, DegEMbsG (b) ≈ 0.37, DegEMbsG (c) ≈ 0.37,
DegEMbsG (d) ≈ 0.69, DegEMbsG (e) ≈ 0.5, DegEMbsG ( f ) ≈ 0.60 and DegEMbsG (g) ≈ 0.57

The third semantics, called h-categorizer (Hbs)(Besnard and Hunter, 2001), con-
siders that all attacks have an impact on the strength of an argument. It uses for that
purpose the gsum aggregation function.

Definition 10 (h-categorizer semantics). ((Besnard and Hunter, 2001)) Let G = ⟨A, σ,R⟩
be an argumentation graph. The h-categorizer semantics is a gradual semantics such that
∀a ∈ A:

DegHbsG (a) =
σ(a)

1 + ∑
bRa

DegHbsG (b)

Note that if G is flat, ie σ ≡ 1, the strength of a is:

DeghG(x) =
1

1 + ∑y∈AttG(x) Deg
h
G(y)

Example 5. On the example 1, DegHbsG (a) = 1, DegHbsG (b) = 0.5, DegHbsG (c) ≈ 0.41,
DegHbsG (d) = 2

3 , DegHbsG (e) ≈ 0.44, DegHbsG ( f ) ≈ 0.695 and DegHbsG (g) ≈ 0.618

The fourth semantics, Card-based (CBS), considers that the number of attackers
plays a crucial role on argument strength indeed, the more an argument is attacked,
the weaker it is.

Definition 11 (Card-based). ((Amgoud et al., 2017)) Let G = ⟨A, σ,R⟩ be an argumen-
tation graph. The Card-based semantics is a gradual semantics such that

DegCbsG (a) =
σ(a)

1 + |AttFG(a)|+
∑

b∈AttFG(a)
DegCbsG (b)

|AttFG(a)|

where AttFG(a) = {b ∈ AttG(a) | σ(b) > 0}
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a0 a1 a2

a3a4a5

FIGURE 2.3: An argumentation graph example for M&T semantics

Note that if G is flat, the strength of a :

DegCbsG (a) =
1

1 + |AttFG(a)|+
∑

b∈AttFG(a)
DegCbsG (b)

|AttFG(a)|

where AttFG(a) = {b ∈ AttG(a)}

Example 6. On the example 1, DegEMbsG (a) = 1, DegEMbsG (b) ≈ 0.33, DegEMbsG (c) ≈ 0.27,
DegEMbsG (d) ≈ 0.429, DegEMbsG (e) ≈ 0.29, DegEMbsG ( f ) ≈ 0.436 and DegEMbsG (g) ≈ 0.33

We can finally cite the gradual semantics introduced by Matt and Toni (Matt and
Toni, 2008). It computes the acceptability degree of an argument using a two-person
zero-sum strategic game. For an AG F = (A,R) and an argument x ∈ A, the set
of strategies for the proponent is the set of all subsets of arguments that contain x:
SP(x) = {P | P ⊆ A, x ∈ P} and for the opponent it is the set of all subsets of
arguments: SO = {O | O ⊆ A}. Given two strategies X, Y ⊆ A, the set of attacks
from X to Y is defined by Y←X

F = {(x, y) ∈ X × Y | (x, y) ∈ R}. Then, the notion of
degree of acceptability of a set of arguments w.r.t. another one used to compute the
reward of a proponent’s strategy is defined.

Definition 12 (Reward). Let F = (A, σ,R) be an argumentation graph, x ∈ A be an
argument, P ∈ SP(x) be a strategy chosen by the proponent and O ∈ SO be a strategy
chosen by the opponent. The degree of acceptability of P w.r.t. O is :
ϕ(P, O) = 1

2

[
1 + f (|O←P

F |)− f (|P←O
F |)

]
with f (n) = n

n+1 . The reward of P over O,
denoted by rF (P, O), is defined by:

rF (P, O) =


0 iff P is not conflict-free
1 iff P is conflict-free and

|P←O
F | = 0

ϕ(P, O) otherwise

Proponent and opponent have the possibility of using a strategy according to
some probability distributions, respectively p = (p1, p2, . . . , pm) and q = (q1, q2, . . . , qn),
with m = |SP(x)| and n = |SO|. For each argument x ∈ A, the proponent’s expected
payoff E(x, p, q) is then given by E(x, p, q) = ∑n

j=1 ∑m
i=1 piqjri,j with ri,j = rF (Pi, Oj)

where Pi (respectively Oj) represents the ith (respectively jth) strategy of SP(x) (re-
spectively SO). The proponent can expect to get at least minq E(x, p, q), where the
minimum is taken over all the probability distributions q available to the opponent.
Hence the proponent can choose a strategy which will guarantee her a reward of
maxp minq E(x, p, q). The opposite is also true with minq maxp E(x, p, q).



14 Chapter 2. Argumentation Frameworks

Definition 13 (M&T semantics). The semantics M&T is a gradual semantics that assigns
a score to each argument x ∈ A in F as follows:

DegMTG (x) = max
p

min
q

E(x, p, q) = min
q

max
p

E(x, p, q)

Example 7. Let us apply the semantics M&T on the argumentation graph 2.3, we obtain
the following acceptability degrees : DeghG(a0) = 0.618, DeghG(a1) = 0.495, DeghG(a2) =
0.618, DeghG(a3) = 0.398, DeghG(a4) = 0.401 and DeghG(a5) = 1.

Definition 14 (Trust-based). Let F = (A, σ,R) be an argumentation graph. The Trust-
based semantics is a gradual semantics such that ∀a ∈ A:
DegTBG (a) = lim

i→+∞
fi(a), where fi(a) = 1

2 fi−1(a) + 1
2 min[w(a), 1−max

bRa
fi−1(b)]

Example 8. On the example 1, DegTBG (a) = 1, DegTBG (b) = 0, DegTBG (c) = 0, DegTBG (d) = 1,
DegTBG (e) = 0, DegTBG ( f ) = 1 and DegTBG (g) = 0.5

Definition 15 (Iterative Schema). Let F = (A, σ,R) be an argumentation graph. The
Iterative Schema semantics is a gradual semantics such that ∀a ∈ A:
DegISG (a) = lim

i→+∞
fi(a), where fi(a) = (1− fi−1(a))min( 1

2 , 1−max
bRa

fi−1(b))+ fi−1(a)max( 1
2 , 1−

max
bRa

fi−1(b))

Example 9. On the example 1, DegISG (a) = 1, DegISG (b) = 0, DegISG (c) = 0, DegISG (d) = 1,
DegISG (e) = 0, DegISG ( f ) = 1 and DegISG (g) = 0.5

Gradual semantics in a flat graph do not take into account the initial weight of an
argument. Certain arguments may be given more importance initially compared to
others. Therefore, a weighting is introduced, resulting in a weighted argumentation
graph.

Let’s note that it is also possible to enrich the argumentative graph by introducing
weights on attacks or support relationship.

Exactly, one clear corollary of the notion of degree and value is the ability to com-
pare the values assigned to arguments. This allows us to rank the arguments from
the most relevant to the least relevant, which is the idea behind the next section.
By comparing the degrees or values associated with each argument, we can estab-
lish a hierarchy of argument relevance, enabling a more nuanced and informative
representation of the argumentation structure.

2.2.3 Ranking semantics

Ranking semantics were introduced in (Amgoud and Ben-Naim, 2013) with the aim
of introducing graduality in acceptability, and thus to rank order arguments from the
most to the least acceptable ones. The authors started by providing a list of prop-
erties (called principles) that a ranking semantics should satisfy, among which Void
Precedence (VP) and Counter-Transitivity (CT). (VP) states that an argument that
has no attackers is more acceptable than any attacked argument. (CT) states that an
argument a should be at least as acceptable as an argument b if the attackers of b
are at least as numerous and as acceptable as those of a. The authors proposed then
two ranking semantics: Burden and Discussion based. Propagation semantics pro-
posed in (Bonzon et al., 2016) and the one from (Dondio, 2018) are other examples of
ranking semantics. We recall below one semantics proposed in (Bonzon et al., 2016).



2.3. Principles 15

Its basic idea is to give some power to non-attacked arguments by ascribing initial
values to arguments. Before introducing the semantics, let us recall the definition of
lexicographical order.

Let V = ⟨V1, ..., Vn⟩ and V ′ = ⟨V ′1, ..., V ′n⟩ be two vectors of reals numbers. V >lex V ′

iff ∃i ≤ n such that Vi > V ′i and ∀j < i,Vj = V ′j . V ≥lex V ′ means it is not the case
that V ′ >lex V.

Definition 16. Let G = ⟨A, σ,R⟩ ∈ G = ⟨A,R⟩, v : A → {ϵ, 1} where ϵ ∈ [0, 1] and
∀a ∈ A,v(a) = 1 if a is not attacked and v(a) = ϵ else. The value of a ∈ A at step i ∈ N

is Pi(a) such that :

Pi(a) =
{

v(a) iff i = 0
Pi−1(a) + (−1)i ∑(b,a)∈R v(b) else

The propagation vector of a is P(a) = ⟨P0(a), P1(a), ...⟩. For a, b ∈ A, a is at least as
acceptable as b denoted by a ⪰P

G b iff P(a) ≥lex P(b).

Example 10. Consider the graph G1 from figure 2.1 and let ϵ = 0.75. Hence, v(c) = 1 and
v(a) = v(b) = 0.75. It is easy to check that P0(c) = P1(c) = 1, P0(a) = 0.75,P1(a) = 0
and P0(b) = 0.75,P1(b) = −0.25. Thus, c ⪰P

G1
a ⪰P

G1
b

Ranking semantics provide several levels of acceptability. While this allows fine-
grained comparisons of arguments, it may lead to move away from the essence of
acceptability, which is predicting whether an argument can be accepted or not.

We will not delve into ranking semantics in this thesis; therefore, we stop here for
their presentation and proceed directly to the section on principles.

2.3 Principles

Gradual semantics should adhere to a sound behavior. They should satisfy a list of
necessary axioms in order to be considered valid. Similarly, characterization princi-
ples have been introduced to divide gradual semantics into different families. For
instance, the axioms of quality, compensation, and cardinality separate the families
of Max-based, h-categorizer, and Card-based semantics. These principles play a cru-
cial role in distinguishing and categorizing the various types of gradual semantics
based on their behavior and characteristics.

We recall below the list of principles proposed in (Amgoud et al., 2017) for semantics
S ∈ Sem.

The first one, a mandatory principle called Anonymity, states that the name of an
argument should not impact its acceptability degree. We also introduce the notion
of Isomorphism. This notion will helps us to define Anonymity.

Definition 17 (Isomorphism). Let G = ⟨A, σ,R⟩, G′ = ⟨A′, σ,R′⟩ be two argumenta-
tion framework. An isomorphism from G to G′ is is a bijective function f fromA toA′ such
that ∀a, b ∈ A, aRb iff f (a)R′ f (b)

Principle 1 (Anonymity). A semantics S satisfies Anonymity iff, for any AG, ∀G =
⟨A, σ,R⟩, G′ = ⟨A′, σ′,R′⟩ ∈ AG, for any isomorphism f from G to G′, ∀a ∈ A, DegS

G(a) =
DegS

G′( f (a)).
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The second one from (Amgoud and Ben-Naim, 2013) is for ranking semantics.

Example 11. Consider the two argumentation frameworks depicted in the figure below.
Anonymity ensures that the degree (or ranking relation for abstraction) between a and b is

abcd

FIGURE 2.4: Example for Anonymity

the same as the one between c and d.

Independence says that the acceptability degree of an argument should be inde-
pendent of unconnected arguments.

Principle 2 (Independance). A semantics S satisfies independance iff, for any AG, ∀G =
⟨A, σ,R⟩, G′ = ⟨A′, σ′,R′⟩ ∈ AG such that A ∩ A′ = ∅, ∀a ∈ A, DegS

G(a) =
DegS

G⊗G′(a).

Example 12. Assume that the two graphs of Example 11 constitute a single argumentation
framework. Then, independance ensures that the degree between a and b is still the same
after the fusion of the two frameworks.

Directionality states that the acceptability of argument x can depend on y only if
there is a path from y to x.

Principle 3 (Directionality). A semantics S satisfies Directionality iff, for any AG, ∀G =
⟨A, σ,R⟩, G′ = ⟨A, σ,R′⟩ ∈ AG such that a, b ∈ A, R′ = R ∪ {(a, b)} it holds that:
∀x ∈ A, if there is no path from b to x, then DegS

G(x) = DegS
G′(x).

Since an attack always weakens its target, the next postulate states that having
attacked attackers is better than having non-attacked attackers (assuming the num-
ber of attackers is the same). In other words, being defended is better than not being
defended. (Amgoud and Ben-Naim, 2013)

Notation 2. Let A = ⟨A, σ,R⟩ be an argumentation framework and a ∈ A. We denote by
De fA(a) the set of all defenders of a in A, that is, De fA(a) = {b ∈ A|∃c ∈ A, cRa and
bRc}.

Neutrality states that an argument with an acceptability degree of 0 should have
no impact on the arguments it attacks. One should not take into account an argu-
ment without any interest.

Principle 4 (Neutrality). A semantics S satisfies Neutrality iff, for any AG, ∀G = ⟨A, σ,R⟩ ∈
AG, ∀a, b ∈ A, if σ(a) = σ(b), AttG(b) = AttG(a) ∪ {x} with x ∈ A \AttG(a) and
DegS

G(x) = 0, then DegS
G(a) = DegS

G(b).

Equivalence says that if two arguments have the same attackers, or more gener-
ally attackers of the same strength, they should have the same acceptability degree.

Principle 5 (Equivalence). A semantics S satisfies Equivalence iff, for any AG, ∀G =
⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if σ(a) = σ(b) and there exists a bijective function f from
AttG(a) to AttG(b) s.t. ∀x ∈ AttG(a), DegS

G(x) = DegS
G( f (x)), then DegS

G(a) =
DegS

G(b).

Maximality states that a non-attacked argument should have the highest accept-
ability degree.
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Principle 6 (Maximality). A semantics S satisfies Maximality iff, for any AG, ∀G =
⟨A, σ,R⟩ ∈ AG, ∀a ∈ A, if AttG(a) = ∅, then DegS

G(a) = σ(a)

Counting states that a non-zero degree attacker should impact the acceptability
of the attacked argument.

Principle 7 (Counting). A semantics S satisfies Counting iff, for any AG, ∀G = ⟨A, σ,R⟩ ∈
AG, ∀a, b ∈ A, if DegS

G(a) > 0 and AttG(b) = AttG(a) ∪ {x} with x ∈ A\AttG(a) and
DegS

G(x) > 0, then DegS
G(a) > DegS

G(b).

Weakening says that the acceptability of an argument should be strictly lower
than 1 if it has at least one attacker with a non-zero acceptability degree.

Principle 8 (Weakening). A semantics S satisfies Weakening iff, for any AG, ∀G = ⟨A, σ,R⟩ ∈
AG, ∀a ∈ A, if ∃b ∈ AttG(a) s.t. DegS

G(b) > 0 and σ(a) > 0, then DegS
G(a) < σ(a).

Weakening Soundness states that if the acceptability degree of an argument is
not maximal, it must be that it is attacked by at least one non-zero degree attacker.

Principle 9 (Weakening Soundness). A semantics S satisfies Weakening Soundness iff,
for any AG, ∀G = ⟨A, σ,R⟩ ∈ AG, if DegS

G(a) < σ(a), then ∃b ∈ AttG(a) s.t DegS
G(b) > 0.

Reinforcement states that the acceptability degree increases if the acceptability
degrees of attackers decrease. If an attacker becomes weaker, it is reasonable to
expect that its target gains in strength.

Principle 10 (Reinforcement). A semantics S satisfies Reinforcement iff, for any AG,
∀G = ⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if i) σ(a) = σ(b), ii) DegS

G(a) > 0 or DegS
G(b) > 0, iii)

AttG(a)\AttG(b) = {x}, iv) AttG(b)\AttG(a) = {y}, v) DegS
G(y) > DegS

G(x) > 0,
then DegS

G(a) > DegS
G(b).

Resilience states that no argument in an argumentation graph can have an ac-
ceptability degree of 0. It is certainly not a mandatory principle. The concept of re-
silience suggests that every argument, even a very weak one, should be given some
importance; one can never completely eliminate an argument.

Principle 11 (Resilience). A semantics S satisfies Resilience iff, for any AG, ∀G = ⟨A, σ,R⟩ ∈
AG, ∀a ∈ A, if σ(a) > 0 then DegS

G(a) > 0.

The concept of proportionality is relevant in the case of graphs with weights
in argumentation. When two arguments receive the same attackers, but one argu-
ment had a higher initial weight, its degree of final acceptability should be higher.
Proportionality ensures that the weights assigned to arguments play a significant
role in determining their overall acceptability in the argumentation system. Argu-
ments with higher initial weights carry more weight throughout the argumentation
process, which reflects the idea that stronger or more significant arguments should
have a greater impact on the final conclusions drawn from the debate.

Principle 12 (Proportionality). A semantics S satisfies Proportionality iff, for any AG, ∀G
= ⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if σ(a) > σ(b) and AttG(a) = AttG(b), then DegS

G(a) >
DegS

G(b).

When two arguments have the same initial weight, but the set of attacks on one
argument is a subset of the other, it implies that this second argument has a weaker
weight. The additional attackers on the second argument must play a role in de-
termining its final acceptability. The Monotony principle reflects the idea that argu-
ments with more attacks against them should have a reduced acceptability in the
argumentation system, as these additional attackers pose more challenges to their
credibility and strength.
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Principle 13 (Monotony). A semantics S satisfies Monotony iff, for any AG, ∀G =
⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if σ(a) = σ(b) and Att(a) ⊂ Att(b), then DegS

G(a) ≥
DegS

G(b).

The last three principles are incompatible with each other. They exist in both
gradual semantics and Extension-based semantics cases. Quality Precedence states
that the greater the acceptability degree of the strongest attacker of an argument, the
lower its acceptability degree.

Principle 14 (Quality Precedence). A semantics S satisfies Quality Precedence iff, for
any AG, ∀G = ⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if i) DegS

G(a) > 0 and ii) ∃y ∈ AttG(b) s.t.
∀x ∈ AttG(a), DegS

G(y) > DegS
G(x), then DegS

G(a) > DegS
G(b).

The second principle, called Cardinality Precedence states that the greater the
number of direct attackers of an argument, the lower its acceptability degree.

Principle 15 (Cardinality Precedence). A semantics S Cardinality Precedence iff, for
any AG, ∀G = ⟨A, σ,R⟩ ∈ AG, ∀a, b ∈ A, if i) σ(a) = σ(b) ii) DegS

G(b) > 0, and
iii) |{x ∈ AttG(a) s.t. DegS

G(x) > 0}| > |{y ∈ AttG(b) s.t. DegS
G(y) > 0}|, then

DegS
G(a) < DegS

G(b).

Compensation states that several attacks from arguments with a low acceptabil-
ity degree may compensate one attack from an argument with high acceptability
degree. 2

Principle 16 (Compensation). A semantics S satisfies Compensation iff, for any AG, ∃G =
⟨A, σ,R⟩ ∈ AG s.t for two arguments a, b ∈ A, i) σ(a) = σ(b) ii) DegS

G(a) > 0, iii)
|{x ∈ AttG(a)|DegS

G(x) > 0}| > |{y ∈ AttG(b)|DegS
G(y) > 0}|, iv) ∃y ∈ AttG(b) s.t.

∀x ∈ AttG(a), DegS
G(y) > DegS

G(x) and DegS
G(a) = DegS

G(b).

One can note the existence of equivalent principles for ranking semantics, but
they are not the subject of study in this thesis. This thesis is limited to weighted
argumentation frameworks.

Proposition 1 ((Amgoud et al., 2017)). The three following properties hold.

• Cardinality Precedence, Quality Precedence and Compensation are pairwise incom-
patible.

• Independence, Directionality, Equivalence, Resilience, Reinforcement, Maximality and
Quality Precedence are incompatible.

• Cardinality Precedence (respectively Compensation) is compatible with all principles
1–11.

2.4 Comparison of semantics

We can summarize the principles satisfied by the gradual and extension semantics
in a table in order to have an overview of the principles satisfied by the different
semantics.

2There are several version of this principle. We use the version that allows to clearly distinguish
between the three cases (CP, QP, Compensation). Namely, each semantics satisfies exactly one of the
three principles.



2.5. Conclusion 19

Principles M&T h-cat Mbs EMbs Cbs GR Stable Preferred Complete IS TB
Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Independence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Directionality ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓
Neutrality × ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓
Equivalence × ✓ ✓ ✓ ✓ × × × × ✓ ✓
Maximality ✓ ✓ ✓ ✓ ✓ × × × × × ✓
Weakening ✓ ✓ ✓ ✓ ✓ × × × × × ×
Counting × ✓ × × × × × × × × ×
Weakening Soundness × ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓
Reinforcement × ✓ × × ✓ × × × × × ×
Resilience × ✓ ✓ ✓ × × × × × × ×
Cardinality Precedence × × × × ✓ × × × × × ×
Quality Precedence × × ✓ ✓ × × × × × × ×
Compensation ✓ ✓ × × × ✓ ✓ ✓ ✓ × ✓

TABLE 2.2: Principles satisfied by semantics (Amgoud, Doder, and
Vesic, 2022).

2.5 Conclusion

Argumentation is a thriving field with numerous extensions, ranking semantics, and
gradual semantics being introduced, along with principles that allow for their char-
acterization and classification. However, there has been a lack of analysis regarding
the ranking relations between these semantics. One possible research topic is to ana-
lyze the ranking behavior of extensions and gradual semantics. Which ones produce
the same or similar rankings? Which ones complement the ranking of another? And
which ones produce entirely different rankings? Will two semantics that satisfy the
same principles be equivalent in terms of ranking ?

However, to successfully conduct this study, it is essential to ensure that we have
the most comprehensive principles in place. Specifically, the handling of self-attacks
is a potential research area that we will address in the next chapter.
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Chapter 3

Dealing with Self-attacking
Arguments

3.1 Introduction

We have seen previously that arguments may be conflicting, and thus may attack
each other. The conflicts are represented by attacks between the arguments. Al-
though in most cases a conflict occurs between two distinct arguments, sometimes
an argument may conflict with itself. Such an argument is called a self-attacking
argument. Self-attacking arguments seem anecdotal at first sight;1 however, the
discussion on how to deal with them is subject of debate amongst argumentation
scholars. There exist examples in the literature attempting to formally represent cer-
tain aspects with these arguments, such as the representation of the lottery paradox
(Pollock, 1991). However, one quickly understands that the problem of representing
Self-attacking arguments is mainly linked to the different choices made to formally
represent an argument and attacks between arguments. This distinction can be seen,
for example, when comparing the approaches used in deductive argumentation and
in abstract argumentation. As mentioned by Baumann and Woltran (Baumann and
Woltran, 2016), in classical logic-based frameworks, self-attacking arguments do not
occur at all (Besnard and Hunter, 2001), while other argumentation systems like AS-
PIC (Modgil and Prakken, 2014) allow such arguments. Within the abstract setting,
several methods have been defined by proposing to deal with them directly (Bo-
danza and Tohmé, 2009; Baumann, Brewka, and Ulbricht, 2020b; Baumann, Brewka,
and Ulbricht, 2020a; Dauphin, Rienstra, and Torre, 2020) or indirectly (e.g. when
dealing with odd-length cycles because a self-attack is the smallest odd-length cycle)
(Baroni and Giacomin, 2003). These methods essentially concern extension-based se-
mantics.

In the context of ranking-based and gradual argumentation semantics (Amgoud
and Ben-Naim, 2013; Amgoud and Doder, 2019), little research was conducted to
find out how self-attacking arguments should be dealt with and what is the impact
they have on the strength of other arguments. Existing approaches are essentially
principle-based studies of these semantics. Indeed, defining and studying principles
drew attention of many scholars in this area. Consider Equivalence, which is one
of the well-known principles, stating that the degree of an argument should only
depend on degrees of its direct attackers and observe the argumentation graph from
Figure 3.1. Equivalence implies that a and b should be equally strong because a and
b are both directly attacked by the same argument. However, this is debatable, since

1Bodanza and Tohmé (Bodanza and Tohmé, 2009) claim that there is a lack of “indisputably sound
examples” concerning this type of arguments
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the intuition behind a self-attacking argument is that it is inconsistent in one way or
another so we would tend to accept b as stronger than a.

b a

FIGURE 3.1: An argumentation graph with two arguments (a attacks
itself and b) showing that Equivalence and Self-Contradiction are in-

compatible.

The research objective of the present thesis is to study the under-explored family
of semantics that treat differently self-attacking arguments and others. Our goals to
investigate principles and novel semantics that satisfy them.

3.2 Principles

Note that, under all semantics returning conflict-free extensions, a self-attacking ar-
gument is always rejected as it does not belong to any extension. Regarding ranking-
based and gradual semantics, it was pointed out that it would be natural to attach
the worst possible rank to self-attacking arguments. Two principles were defined to
formalise this intuition. The first one is called Strong Self-Contradiction, and was
introduced by (Matt and Toni, 2008). It says that the strength of an argument must
be minimal if and only if that argument is self-attacking.

Principle 17 (Strong Self-Contradiction). A semantics S satisfies Strong Self-Contra-
diction iff, for any AG G = ⟨A, σ,R⟩with a ∈ A, DegS

G(a) = 0 iff (a, a) ∈ R.

The second principle, called Self-Contradiction, was introduced by Bonzon et
al. (Bonzon et al., 2016) and states that each self-attacking argument is strictly less
acceptable than each non self-attacking argument.

Principle 18 (Self-Contradiction). A semantics S satisfies Self-Contradiction iff, for any
AG G = ⟨A, σ,R⟩with two arguments a, b ∈ A, if (a, a) ∈ R and (b, b) /∈ R then
DegS

G(b) > DegS
G(a).

Consider the argumentation graph illustrated in Figure 3.1 again and note that,
under every semantics that satisfies Self-Contradiction, b is strictly more acceptable
than a. This example shows that Equivalence and Self-Contradiction are not com-
patible, i.e. there exists no semantics that satisfies both of them.

To the best of our knowledge, there exists only one semantics (known as M&T)
that satisfies Self-Contradiction and Strong Self-Contradiction. That semantics was
introduced by Matt and Toni (Matt and Toni, 2008). However, this semantics has a
limitation that makes it inapplicable in practice. Namely, as noted by Matt and Toni
themselves, as the space used to calculate the scores grows exponentially with the
number of arguments, even with the optimisation techniques they used it did not
scale to more than a dozen of arguments. Note that Strong Self-contradiction princi-
ple is more demanding than Self-contradiction; it completely destroys the weight of
an argument that attacks itself and nullifies it.

Let us focus on the relationship between the two principles dealing with self-
attacking arguments (both with each other and with the other principles). The first
observation is that Strong Self-Contradiction implies Self-Contradiction. The next
proposition follows directly from the definitions of the respective principles.
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Proposition 2. If a gradual semantics S satisfies Strong Self-Contradiction, it satisfies Self-
Contradiction.

Proof. Let us suppose that Strong Self-Contradiction is satisfied by S . This means
that those and only those arguments that have the minimum score are the self-
attacking arguments (∀a ∈ A, DegSG(a) = 0 iff (a, a) ∈ R). This implies that all
arguments that do not attack themselves have an acceptability degree greater than
0. Formally, ∀b ∈ A, DegSG(b) > 0 iff (b, b) /∈ R. Consequently, for two arguments
a, b ∈ A, if (a, a) ∈ R and (b, b) /∈ R then DegSG(b) > DegSG(a) = 0. □

As discussed in the introduction, the next result shows that Equivalence and
Self-Contradiction are incompatible.

Proposition 3. There exists no gradual semantics S that satisfies both Equivalence and
Self-Contradiction.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics
S satisfies both Equivalence and Self-Contradiction and consider the argumentation
graph from Figure 3.1 on page 22. From Self-Contradiction, we have DegSG(a) <
DegSG(b) because (a, a) ∈ R and (b, b) /∈ R. From Equivalence, we have DegSG(a) =
DegSG(b) because AttG(a) = {a} and AttG(b) = {a} (and by using the identity
function as the bijection from Definition 5).
Contradiction. Hence, S does not satisfy both Equivalence and Self-Contradiction.
Since S was arbitrary, we conclude that there exists no semantics that satisfies both
Equivalence and Self-Contradiction. □

We show next that the Equivalence principle is not the only one that is incom-
patible with Strong Self-Contradiction. Some other incompatibilities exist mainly
because self-attacking arguments are treated differently from other arguments. In-
deed, according to Strong Self-Contradiction, self-attacking arguments are directly
classified as the worst arguments, whereas the other principles like resilience just
consider a self-attack as an attack like any other (i.e. an attack between two distinct
arguments).

Proposition 4. There exists no gradual semantics S that satisfies both Strong Self-Contradiction
and Resilience.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics
S satisfies both Strong Self-Contradiction and Resilience, and consider the argumen-
tation graph G = ⟨A, σ ≡ 1,R⟩ ∈ AG where A = {a} and R = {(a, a)}.
From Strong Self-Contradiction, we have DegSG(a) = 0, while from Resilience, we
have DegSG(a) > 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Re-
silience. Since S was arbitrary, there exists no semantics that satisfies both Resilience
and Strong Self-Contradiction. □

Strong Self-Contradiction is also incompatible with Weakening Soundness.

Proposition 5. There exists no gradual semantics S that satisfies both Strong Self-Contradiction
and Weakening Soundness.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics
S satisfies both Strong Self-Contradiction and Weakening Soundness, and consider
the argumentation graph G = ⟨A, σ ≡ 1,R⟩ ∈ AG where A = {a} and R = {(a, a)}.
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From Strong Self-Contradiction, we have DegSG(a) = 0, while from Weakening Sound-
ness, we have DegSG(a) > 0 because a is the only attacker of a and DegSG(a) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Weak-
ening Soundness. Since S was arbitrary, there exists no semantics that satisfies both
Strong Self-Contradiction and Weakening Soundness. □

Proposition 6. There exists no gradual semantics S that satisfies both Strong Self-Contradiction
and Reinforcement.

Proof. We provide a proof by contradiction. Let us suppose that a gradual seman-
tics S satisfies both Strong Self-Contradiction and Reinforcement, and consider the
argumentation graph G = ⟨A, σ ≡ 1,R⟩ ∈ AG represented in Figure 3.2.

a b

c d

FIGURE 3.2: AG showing that Reinforcement and Strong Self-
Contradiction are incompatible.

From Strong Self-Contradiction, we have 0 = DegSG(a) < DegSG(b). From Reinforce-
ment, we have DegSG(a) > DegSG(b) because i) DegSG(b) > 0, ii) AttG(a)\AttG(b) =
{c}, iii) AttG(b)\AttG(a) = {d}, and iv) DegSG(d) > DegSG(c).
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Rein-
forcement. Since S was arbitrary, there exists no semantics that satisfies both Strong
Self-Contradiction and Reinforcement. □

Proposition 7. There exists no gradual semantics S that satisfies both Strong Self-Contradiction
and Neutrality.

Proof. We provide a proof by contradiction. Let us suppose that a gradual semantics
S satisfies both Strong Self-Contradiction and Neutrality, and consider the argumen-
tation graph G = ⟨A, σ ≡ 1,R⟩ ∈ AG represented in Figure 3.3.

a b x

FIGURE 3.3: AG showing that Neutrality and Strong Self-
Contradiction are incompatible.

From Strong Self-Contradiction, we have 0 = DegSG(b) < DegSG(a). From Neutrality,
we have DegSG(a) = DegSG(b) because AttG(b) = AttG(a) ∪ {x} with DegSG(x) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Neu-
trality. Since S was arbitrary, there exists no semantics that satisfies both Strong
Self-Contradiction and Neutrality. □

Taking these incompatibilities into account, our goal is now to study two maxi-
mal compatible sets of principles we are interested in. A compatible set of principles
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is a set of principles such that two principles belonging to this set are not incompat-
ible. In other words, a compatible set of principles is a set of principles that can be
jointly satisfied by a semantics. In order to capture the idea of a maximal compatible
sets of principles, let us define the notion of dominance.

Definition 18. A semantics S dominates a semantics S′ on the set of principles P if the
subset of principles from P satisfied by S is a strict superset of the subset of principles from
P satisfied by S′.

In the rest of the discussion, we suppose that P is the set of all principles studied
in Section 2.3. Note that if a semantics S satisfies a maximal (for set inclusion) set of
principles, it is not dominated by any semantics.

A first maximal (for set inclusion) compatible set of principles has been identified
by (Amgoud et al., 2017) and is a direct consequence of their Proposition 1. We
define this set of principles as PCREW = {Anonymity, Independence, Directionality,
Neutrality, Equivalence, Maximality, Weakening, Counting, Weakening Soundness,
Reinforcement, Resilience and Compensation}.
Theorem 1 ((Amgoud et al., 2017)). PCREW is a maximal compatible for set inclusion set
of principles.

We can formally show that there is a unique maximal compatible set of principles
that includes Compensation, Resilience, Equivalence and Weakening Soundness.

Theorem 2. Let P be the set of all principles defined in Section 2.3 (Principles 1-17). Let S
be a gradual semantics that satisfies Compensation, Resilience, Equivalence and Weakening
Soundness. If S is not dominated w.r.t. P, then S satisfies exactly the principles from PCREW .

Proof. On one hand, we know from the work by (Amgoud et al., 2017) that h-categorizer
satisfies all the principles from PCREW . On the other hand, it is clear from the incom-
patibility results between the principles that S cannot satisfy Strong Self-Contradiction
which is incompatible with Resilience (see Proposition 4), Self-Contradiction which
is incompatible with Equivalence (see Proposition 3), Cardinality/Quality Prece-
dence which are both incompatible with Compensation (see (Amgoud et al., 2017)).
Thus, in order not to be dominated by h-categorizer, S must satisfy all the princi-
ples from PCREW ; due to the incompatibilities, S cannot satisfy any more principles.
□

In this thesis we choose to explore the space of principles compatible with Strong
Self-Contradiction (which is not in PCREW). One naturally wants to maximise the set
of satisfied principles. Can we satisfy Strong Self-Contradiction and all the other
principles? The answer is negative (see Propositions 3-7). First, one has to choose
between Cardinality Precedence, Quality Precedence and Compensation. In this the-
sis, we explore the possibility of satisfying Compensation. This choice is based on
the fact that this principle is satisfied by virtually all semantics, as showed by Am-
goud et al. (Amgoud et al., 2017). Indeed, Cardinality Precedence and Quality Prece-
dence represent, roughly speaking, drastic or extreme cases and are satisfied only by
the semantics specifically designed to satisfy them, like max-based semantics and
card-based semantics (Amgoud et al., 2017) or by semantics having other specifici-
ties. For instance, iterative schema (Gabbay and Rodrigues, 2015), which satisfies
Quality Precedence, is a discrete semantics (it takes only three possible values). This
yields another maximal compatible set of principles which includes those two prin-
ciples. We define this set of principles as P2S2C = {Anonymity, Independence, Di-
rectionality, Maximality, Weakening, Counting, Compensation, Self-Contradiction,
Strong Self-Contradiction}.
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Theorem 3. P2S2C is a maximal compatible for set inclusion set of principles.

Proof. Note first that in this proof, we mention the nsa semantics, which is formally
introduced in Definition 19 (see below). Firstly, all the principles in P2S2C are com-
patible because nsa satisfies all of them (see Proposition 8 below). Secondly, P2S2C is
maximal because for each remaining principle p ∈ {Equivalence, Weakening Sound-
ness, Neutrality, Reinforcement, Cardinality Precedence, Quality Precedence and
Resilience}, there exists (at least) one principle in P2S2C which is incompatible with
p:

• Equivalence and Self-Contradiction are incompatible (see Proposition 3);

• Neutrality and Strong Self-Contradiction are incompatible (see Proposition 7);

• Reinforcement and Strong Self-Contradiction are incompatible (see Proposi-
tion 6);

• Weakening Soundness and Strong Self-Contradiction are incompatible (see Propo-
sition 5);

• Cardinality Precedence and Compensation are incompatible (see (Amgoud et
al., 2017));

• Quality Precedence and Compensation are incompatible (see (Amgoud et al.,
2017));

• Resilience and Strong Self-Contradiction are incompatible (see Proposition 4).

□

We now show that there is a unique maximal compatible set of principles that
includes Strong Self-Contradiction and Compensation. This follows from the fact
that if a semantics satisfies Strong Self-Contradiction, this semantics cannot satisfy
some existing principles (see the incompatibilities identified in Propositions 3-7).

Theorem 4. Let P be the set of all principles defined in Section 2.3 (Principles 1-17). Let
S be a gradual semantics that satisfies Strong Self-Contradiction and Compensation. If S is
not dominated w.r.t. P, then S satisfies exactly the principles from P2S2C.

Proof. It is clear that from the incompatibility results between different principles,
S cannot satisfy (i) Resilience, Equivalence and Weakening Soundness which are
incompatible with Strong Self-Contradiction (or Self-Contradiction), and (ii) Cardi-
nality Precedence and Quality Precedence which are both incompatible with Com-
pensation.
The set of remaining principles corresponds exactly to P2S2C which is a maximal for
set inclusion set of principles. However, S cannot satisfy exactly a subset of P2S2C
because, in this case, S will be dominated by a semantics that satisfies the principles
of P2S2C. Consequently, when S satisfies Strong Self-Contradiction and Compensa-
tion, the only way to ensure that S is not dominated is when S satisfies exactly the
principles from P2S2C. □

To the best of our knowledge, no semantics that satisfies all the principles from
P2S2C has been presented in the literature. In the next section, we define a semantics
that satisfies this set of principles.

Before doing that, let us comment on the non-satisfaction of some principles.
It is tempting to change the principles in order to treat the self-attacks in another
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way, and consequently make the principles fit some definitions or theorems. We
argue that it is better to start by having a full picture of what happens with existing
principles. Indeed, the principles should be the most stable part of a theory. We are
not against the introduction of new principles (or changing the existing ones). This
might be part of future work.

3.3 Novel gradual semantics (nsa)

In this section, we define a new gradual semantics, called no self-attack h-categorizer
(nsa) semantics, inspired by the h-categorizer semantics. The main difference is that
we assign degree 0 to the self-attacking arguments while the acceptability degrees
of the other arguments, i.e. those that are not self-attacking, are calculated using the
formula from h-categorizer semantics.

Definition 19. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG be an AG. We define f G,i
nsa : A → [0,+∞] as

follows : for every argument a ∈ A for i ∈ {0, 1, 2, ..},

f G,i
nsa(a) =


0 if (a, a) ∈ R
1 if (a, a) /∈ R and i = 0

1

1 + ∑b∈AttG(a) f G,i−1
nsa (b)

if (a, a) /∈ R and i > 0
(3.1)

By convention, if AttG(a) = ∅, ∑b∈AttG(a) f G,i−1
nsa (b) = 0.

Although nsa is inspired by the h-categorizer semantics, the modifications made
change the result obtained requiring the verification that nsa also converges to a
unique result. Thus, in the next result, we show that for every argumentation graph
G = ⟨A, σ ≡ 1,R⟩ ∈ AG , for every argument a ∈ A, f G,i

nsa(a) converges as i ap-
proaches infinity. Roughly speaking, the goal of the next theorem is to formally
check that assigning zero values to self-attacking arguments does not impact the
convergence of the scores. Thus, applying nsa to the original argumentation graph
G provides the same result as when the h-categorizer semantics is applied on a re-
stricted version of G where the self-attacking arguments are deleted.

Theorem 5. For every argumentation graph G = ⟨A, σ ≡ 1,R⟩ ∈ AG , for every a ∈ A,
if (a, a) /∈ R, we have lim

i→∞
f G,i
nsa(a) = DeghG′(a) where G′ = ⟨A′, σ ≡ 1,R′⟩ ∈ AG with the

set of argumentsA′ = {x ∈ A | (x, x) /∈ R} andR′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG be an AG and G′ = ⟨A′, σ ≡ 1,R′⟩ ∈ AG be an
AG such that A′ = {x ∈ A|(x, x) /∈ R} and R′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}.
Without loss of generality, let us denote A = {a0, a1, . . . , an}.

Let us recall the iterative version of h-categorizer, that can be used to calculate
the scores of arguments (Pu et al., 2014): for every a, for i ∈ N

f G,i
h (a) =


1 if i = 0

1

1 + ∑b∈AttG(a) f G,i−1
h (b)

if i > 0 (3.2)

We prove by induction on i that for each a ∈ A′:

f G,i
nsa(a) = f G′,i

h (a)
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Base: Let i = 0. From the formal definition of nsa (Definition 19) and equation
(3.2), we have f G,0

nsa (a) = f G′,0
h (a) = 1. Thus, the inductive base holds.

Step: Let us suppose that the inductive hypothesis is true for every k ∈ {0, 1, . . . i}
and let us show that it is true for i + 1. We need to prove :

f G,i+1
nsa (a) = f G′,i+1

h (a)

From the inductive hypothesis, we know that for each argument a ∈ A′, f G,i
nsa(a) =

f G′,i
h (a). Thus, from equation (3.1), we have:

f G,i+1
nsa (a) =

1

1 + ∑b∈AttG(a) f G,i
nsa(b)

From equation (3.2), we have

f G′,i+1
h (a) =

1

1 + ∑b∈AttG′ (a) f G′,i
h (b)

Let us note AttG(a) = AttG′(a) ∪ {b0, . . . , bm} with m ≥ 0 and remark that ∀b ∈
{b0, . . . , bm}, we have (b, b) ∈ R. According to equation (3.1), ∀b ∈ {b0, . . . , bm},
f G,i
nsa(b) = 0. Consequently, as 0 is the neutral element of the addition, we have
∀a ∈ A′, f G,i+1

nsa (a) = f G′,i+1
h (a).

By induction, we conclude that for every i ∈ N and for every a ∈ A′

f G,i
nsa(a) = f G′,i

h (a)

Since fh converges when i→ ∞ and fnsa coincides with fh for every argument of
A′, we conclude that fnsa converges too. Formally, ∀a ∈ cA′,

lim
i→∞

f G,i
nsa(a) = lim

i→∞
f G,i
h (a) = DeghG′(a)

□

We can now introduce the formal definition of nsa.

Definition 20 (nsa semantics). The no self-attack h-categorizer semantics is a function
nsa which associates to any argumentation framework G = ⟨A, σ ≡ 1,R⟩ ∈ AG a function
DegnsaG (a) : A→ [0, 1] as follows: DegnsaG (a) = lim

i→∞
f G,i
nsa (a).

We can now show that the acceptability degrees attributed to arguments by nsa

satisfy the equation from Definition 19 (naturally, not taking into account the second
line of the equation, since it considers the case i = 0).

Theorem 6. For any G = ⟨A, σ ≡ 1,R⟩ ∈ AG , for any a ∈ A,

DegnsaG (a) =


0 if (a, a) ∈ R

1
1 + ∑b∈AttG(a) Deg

nsa
G (b)

otherwise

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG be an argumentation graph and a ∈ A.
The case where a is a self-attacking argument is trivial.
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In the rest of the proof we consider the case where a is not a self-attacking argument.
Letting lim

i→∞
in the following equality

f i+1
nsa (a) =

1
1 + ∑b∈AttG(a) f i

nsa(b)

and using the fact that arithmetical operations and sum are continuous functions,
we obtain :

lim
i→∞

f i+1
nsa (a) =

1
1 + ∑b∈AttG(a) lim

i→∞
f i
nsa(b)

then
DegnsaG (a) =

1
1 + ∑b∈AttG(a) Deg

nsa
G (a)

□

We now show that the equation from Theorem 6 is not only satisfied by nsa, but
is also its characterization. More precisely, the next result proves that if an arbitrary
semantics D satisfies that equation, it must be that D coincides with nsa.

Theorem 7. Let G = (A, σ ≡ 1,R) be an AG with a ∈ A and D : A → [0, 1] be a
function with the following formula:

D(a) =


0 if (a, a) ∈ R

1
1 + ∑b∈AttG(a) D(b)

otherwise
(3.3)

then D ≡ DegnsaG .

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and suppose that D : A → [0, 1] is the function
from equation (3.3).

Let A = {a1, .., an} and let F : [0, 1]n → [0, 1]n be the function such that F(x1, .., xn) =
(F1(x1, .., xn), ..., Fn(x1, ..., xn)) where the functions Fi are defined by the following
equality:

Fi(x1, . . . , xn) =


0 if (ai, ai) ∈ R

1
1 + ∑

j:aj∈AttG(ai)
xj

otherwise (3.4)

We also define the partial order ≤ onRn in the following way: if x = (x1, . . . , xn)
and y = (y1, . . . , yn) then x ≤ y iff for every i it holds that xi ≤ yi.

Thus, from Equation (3.3), it follows that

F(D(a1), ..., D(an)) = (D(a1), ..., D(an)).

Observe that F is a non-increasing function and that G = F ◦ F is a non-decreasing
function, and that :

( f i+1
nsa (a1), ..., f i+1

nsa (an)) = F(( f i
nsa(a1), ..., f i

nsa(an)))
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for every i ∈ N. Since ( f 0
nsa(a1), ..., f 0

nsa(an)) ∈ [0, 1]n with f 0
nsa(ai) = 0 iff (ai, ai) ∈ R

and f 0
nsa(ai) = 1 otherwise, by the inequalities, we obtain

( f 0
nsa(a1), ..., f 0

nsa(an)) ≥ (D(a1), ..., D(an)) (3.5)

From (3.5), and since F is non-increasing, we have:

( f 1
nsa(a1), ..., f 1

nsa(an)) ≤ (D(a1), ..., D(an)) (3.6)

From (3.6), and since G = F ◦ F is non-decreasing, we have:

( f 2i
nsa(a1), ..., f 2i

nsa(an)) ≥ (D(a1), ..., D(an)) (3.7)

and
( f 2i+1

nsa (a1), ..., f 2i+1
nsa (an)) ≤ (D(a1), ..., D(an)) (3.8)

for every i ∈ N.
Since all f i converge, from (3.7) and (3.8) we obtain

(DegnsaG (a1), . . . , DegnsaG (an)) ≥ (D(a1), ..., D(an))

and
(DegnsaG (a1), . . . , DegnsaG (an)) ≤ (D(a1), ..., D(an))

and thus ∀a ∈ A, DegnsaG (a) = D(a). □

Below is an example of the nsa semantics applied on an argumentation graph.

Example 13. Let us apply the no self-attack h-categorizer semantics (nsa) on the argumen-
tation graph illustrated in Figure 3.4.

a0 a1 a2

a3a4a5

DegSG nsa h MT

a0 0 0.618 0
a1 0.732 0.495 0.25
a2 0 0.618 0
a3 0.477 0.398 0.167
a4 0.399 0.401 0.25
a5 1 1 1

FIGURE 3.4: On the left, an argumentation graph G and, on the right,
the table containing the degrees of acceptability of each argument
of G w.r.t. the no self-attack h-categorizer semantics (nsa), the h-

categorizer semantics (h) and the semantics M&T (MT).

By definition, the self-attacking arguments have an acceptability degree of 0
: DegnsaG (a0) = DegnsaG (a2) = 0. The non-attacked arguments or the arguments
only attacked by self-attacking arguments have, by definition, the maximum score:
DegnsaG (a5) = 1. Applying the formula from Theorem 6, we obtain the following
strength degrees for a1 and a4 : DegnsaG (a1) = 0.732 and DegnsaG (a4) = 0.399. Finally,
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following the same method, here are the details concerning a3 :

DegnsaG (a3) =
1

1 + DegnsaG (a1) + DegnsaG (a2) + DegnsaG (a4)

=
1

1 + 0.732 + 0 + 0.399
= 0.477

In order to have an overview of the difference between nsa and the gradual seman-
tics introduced in Section 2.2, the degrees of acceptability of arguments w.r.t. the
h-categorizer semantics and the M&T semantics have also been added in the table of
Figure 3.4. This comparison clearly shows that nullifying the impact of self-attacking
arguments (i.e. a0 and a2) more or less significantly changes the degree of acceptabil-
ity of other arguments (e.g. a1, a3 and a4).

Proposition 8. The gradual semantics nsa satisfies all the principles from P2S2C. The other
principles are not satisfied.

In order to axiomatically compare nsa with the two other gradual semantics, let
us check for the principles studied in this thesis those that are satisfied by M&T and
recall those satisfied by the h-categorizer semantics.

Proposition 9. The gradual semantics M&T satisfies Anonymity, Independence, Direction-
ality, Maximality, Weakening, Compensation, Self-Contradiction and Strong Self-Contradiction.
The other principles are not satisfied.

We recall below the principles that are satisfied by h-categorizer.

Proposition 10 ((Amgoud and Ben-Naim, 2016)). The gradual semantics h-categorizer
satisfies all the principles from PCREW . The other principles are not satisfied.

3.4 Conclusion

We studied the question of handling self-attacks by gradual semantics following
a principle-based approach. We first showed links and incompatibilities between
existing principles before identifying two maximal compatible sets of principles
(PCREW which includes Equivalence and P2S2C which includes Strong Self-Contradiction).
Then, we defined a new semantics called no self-attack h-categorizer semantics and
proved that it dominates the only existing semantics satisfying the Self-Contradiction
principle. Moreover, we showed that our semantics satisfies a maximal possible
amount of principles (i.e. no semantics satisfying Self-Contradiction can satisfy more
principles) and is usable in practice as it returns results very quickly (on average less
than 1 second) even on large and dense argumentation graphs.

We conclude by noting several considerations for future work on this topic.

Extend the methodology to other gradual semantics. It would be interesting to extend
(if possible) the approach we used for the h-categorizer semantics (i.e. force self-
attacking arguments to have the minimal strength value) to other existing gradual
semantics.
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Principles M&T h-cat nsa
Anonymity ✓ ✓ ✓

Independence ✓ ✓ ✓
Directionality ✓ ✓ ✓

Neutrality × ✓ ×
Equivalence × ✓ ×
Maximality ✓ ✓ ✓
Weakening ✓ ✓ ✓
Counting × ✓ ✓

Weakening Soundness × ✓ ×
Reinforcement × ✓ ×

Resilience × ✓ ×
Cardinality Precedence × × ×

Quality Precedence × × ×
Compensation ✓ ✓ ✓

Self-Contradiction ✓ × ✓
Strong Self-Contradiction ✓ × ✓

TABLE 3.1: Principles satisfied by the M&T, h-categorizer and nsa

semantics. The shaded cells contain the results already proved in the
literature.

Identify all maximal sets of compatible principles. A second line of research would be to
identify all maximal sets of consistent principles from the set of principles defined
in Section 2.3. Indeed, we have chosen to include Compensation in PCREW and P2S2C
but it would be interesting to look at and study the maximum sets which include
Cardinality Precedence or Quality Precedence.

This set of principles is yet to be augmented. Another research direction concerns the
principles dealing with self-attacking arguments. Indeed, Strong Self-Contradiction
can be seen as a rather strong principle in that it expresses both necessary and suffi-
cient conditions for an argument to have minimal degree (i.e. 0 in our case). It would
be interesting to investigate weakened versions like for instance a principle that only
expresses that self-contradiction is a sufficient condition for minimal degree.

Principle 19 (Weak Self-Contradiction). A gradual semantics S satisfies Weak Self-Contradiction
iff, for any AG G = ⟨A, σ ≡ 1,R⟩ ∈ AG with a ∈ A, if (a, a) ∈ R then DegS

G(a) = 0.

In this case, some incompatibilities remain unchanged (e.g. with Resilience or
with Weakening Soundness), whereas whether the same is still the case for all of
them remains to be investigated. We could imagine that this way a new set of
coherent principles appears (where Weak Self-Contradiction replaces Strong Self-
Contradiction). However, it should be checked whether there is at least one gradual
semantics that satisfies all these principles.

Towards an application-oriented axiomatic analysis. Concerning the principles, let us
recall that we do not claim that all of the principles presented in Section 2.3 are
mandatory. However, at this level of abstraction, they allow us to compare and bet-
ter understand the gradual semantics. In line with the work initiated in (Vesic, Yun,
and Teovanovic, 2022), it would be interesting to target the mandatory principles
for some practical aspects of argumentation (persuasion, negotiation, online debate,
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etc.).

Self-attacking arguments and gradual semantics in practical applications. There are sev-
eral discussions about applications where gradual (or ranking-based) semantics can
be used (Leite and Martins, 2011; Delobelle, 2017; Amgoud, 2019). One such ap-
plication is online debates, for example, where participants propose, in the most
basic form, arguments for or against a given topic or other arguments. As the ar-
guments are given in textual format and the relationships between them are, in the
vast majority of cases, given by the participants themselves, the arguments may not
be correct and/or the set of attacks may not be complete. For example, some falla-
cious arguments (e.g. informal fallacies) may be put forward (this is sometimes the
case in social networks or in fake news). These fallacious arguments could for exam-
ple be spotted via argument mining methods (Goffredo et al., 2022) and considered,
for some of them, as self-attacking arguments because of the false reasoning (e.g.
sophism2). It is therefore necessary to be able to have reasoning tools that can deal
with them in order to correctly analyse a given debate.

2A sophism is a confusing or slightly incorrect argument used for deceiving someone. For example,
the following argument is a sophism : “Everything that is rare is expensive. A cheap horse is rare. So
a cheap horse is expensive.”
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Chapter 4

Series-based Semantics

4.1 Introduction

We have seen previously that several gradual semantics have been proposed in the
literature. They assign a numerical value to each argument in an argumentation
framework. In this chapter, we investigate the mathematical counterparts of some
of them. We show that they can be redefined using numerical series that satisfy some
conditions.

4.2 Family of numerical series

Let us start by defining a family a series whose elements belong to the interval [0, 1].
Every series of the family is made of two sub-series: an increasing series and a de-
creasing one. In addition, every subseries admits a limit.

Definition 21 (S∗). We define S∗ to be the set containing any numerical series S =
(Sn)n≥1 which satisfies the following conditions:

• for any n ≥ 1, Sn ∈ [0, 1]

• S contains two sub-series S1 = (Sn
1 )

n≥1 and S2 = (Sn
2 )

n≥1 s.t. for any n ≥ 1:

– Sn
1 is strictly decreasing and Sn

2 is strictly increasing
– lim

n→∞
Sn

1 ≥ lim
n→∞
Sn

2

Lemma 1. Let S ∈ S∗. For all x ∈ S1, y ∈ S2, the following hold:

x > y x > lim
n→∞
Sn

1 y < lim
n→∞
Sn

2

Proof Let S ∈ S∗. Let lim
n→∞
Sn

1 = x and lim
n→∞
Sn

2 = y. Since S1 is strictly decreasing,

then x < Sn
1 , ∀n. Since S2 is strictly increasing, then y > Sn

2 , ∀n. Since lim
n→∞
Sn

1 ≥
lim
n→∞
Sn

2 , then we get for any n > 1, Sn
1 > x ≥ y > Sn

2 , so Sn
1 > Sn

2 .

The following result shows that the set S∗ is not empty.

Notation 3. Let S ∈ S∗. We denote by Si
x the ith element of the sub-sequence Sx where

x ∈ {1, 2}.

Proposition 11. It holds that S∗ ̸= ∅.

To prove this result, we need to introduce a few examples of numerical series
that belong to S∗. We will present three of them initially. We show next that the
well-known series are instances of the family S∗. Let us start with the Fibonacci
series defined as follows:
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Definition 22. From the well known Fibonacci sequence Philippou, 2015 {Fn}n≥0 :

Fn =


0 if n = 0
1 if n = 1

Fn−1 + Fn−2 if n ≥ 2

(4.1)

Example of numbers of this series are 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,... It
is clear that this series tends to infinity and does not contain two sub-series. Hence,
it is not a member of S∗. However, we define another series from {Fn}n≥0 which is
part of S∗.

Definition 23. The series {Sn}n≥1 is defined as follows :

Sn =
Fn

Fn+1 (4.2)

Let S = {1, 1
2 , 2

3 , 3
5 , 5

8 , 8
13 , 13

21 , 21
34 , 34

55 , ...} the numbers of the series {Sn}n≥1. It is
worth noticing that this sequence contains two sub-sequences: The decreasing sub-
sequence

S1 = ⟨1,
2
3

,
5
8

,
13
21

,
34
55

,
89

144
,

233
377

, . . .⟩ (4.3)

made of the numbers that are at odd positions in S , and the increasing sub-sequence

S2 = ⟨1
2

,
3
5

,
8
13

,
21
34

,
55
89

,
144
233

, . . .⟩ (4.4)

which contains the numbers that are at even positions in S .
For instance, S1

1 = 1, S1
2 = 1

2 and S3
2 = 8

13 .

From (Philippou, 2015), it follows that the two sub-sequences converge, furthermore
they have the same limit. Indeed,

lim
n→∞
Sn

1 = lim
n→∞
Sn

2 =
1
φ

.

where φ = 1+
√

5
2 is the so-called gold ratio. Consequently, {Sn}n≥1 is a member of

the family S∗.

Proposition 12. {Sn}n≥1 ∈ S∗.

The second well-known numerical series in the literature is the exponential one
defined as follows:

Definition 24. The exponential sequence is {U n}n≥0 such that

Un =

{
1 if n = 1

e−U
n−1

if n > 1
(4.5)

Let U = {1, 0.3675, 0.6922, 0.5004, 0.6062, 0.5453, 0.5796, ...}. Like the Fibonacci
sequence, {U n}n≥0 contains two sub-sequences: the decreasing sub sequence :

U1 = ⟨1, 0.6922, ...⟩

made of the numbers that are at odd positions in U , and the increasing sub-sequence:

U2 = ⟨0.3678, 0.5004, ...⟩
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which contains the numbers that are at even positions in U . The two sub-sequences
converge to the same limit

lim
n→∞
U n

1 = lim
n→∞
U n

1 = ω

where ω ≈ 0.5671 is the so called Omega constant and U n
2 < ω < U n

1 . Hence, the
series {U n}n≥0 is a member of the family S∗

Proposition 13. {U n}n≥0 ∈ S∗

The third sequence from the literature is the Jacobsthal (A.F., 1988) defined as
follows:

Definition 25. J = (J n)n≥1 where:

Jn =


0 if n = 0
1 if n = 1
Jn−1 + 2Jn−2 if n ≥ 2

(4.6)

We show next that we can define another series from (Jn)n≥1 which belongs to
S∗. From J , we define a novel series which belongs to the set S∗.

Proposition 14. It holds that J = (J
n+1

2n )n≥0 ∈ S∗.

Lemma 2. For any i ∈N, Ji = 1− Ji−1

2 .

Proof . From (A.F., 1996), ∀n ≥ 0, J n = 2n−(−1)n

3 . Then, J n+1 = 2n −J n.

Since Jn = J n+1

2n , we get Jn = 2n−Jn
2n = 1− Jn

2n = 1−
Jn

2n−1
2 = 1− Jn−1

2 .
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4.3 Mathematical counterparts of gradual semantics

This section investigates the mathematical counterparts of the two gradual seman-
tics: Max-based (Mbs) proposed in (Amgoud et al., 2017) and Euler-based (EMbs)
proposed in (Amgoud, 2019). We show that in case of flat graphs, (ie, σ ≡ 1), the
two semantics can be expressed by numerical series. Let us first recall their defini-
tion in case of flat graphs. G = ⟨A, σ ≡ 1,R⟩ ∈ AG . For any, a ∈ ‘A,

DegMbsG (a) = 1
1+max

bRa
DegG(b) DegEMbsG (a) = e

−max
bRa

DegEMbsG (b)

In what follows, we show that the values assigned by Mbs to arguments are not
arbitrary, they are rather the Fibonacci numbers, ie, elements of the series {Sn}n≥0.
Indeed, in case of a flat graph G, the semantics Mbs takes its values from the sequence
S , i.e. DegMbsG (.) ∈ S . It uses the three parts of the sequence S , namely S1,S2, 1

φ , for
distinguishing between three groups of arguments in G:

• The first group is composed of all elements of the set
⋃

i≥1
F i(∅), with F being

the characteristic function defined by (Dung, 1995) and that returns all the ar-
guments defended by a given set of arguments. Hence, this group contains
all arguments that are defended (directly or indirectly) by non attacked argu-
ments in G. Its members are stronger than any argument outside the group,
and their values are taken from the sub-sequence S1.

• The second group contains the arguments that are attacked by at least one
argument of the set

⋃
i≥1 F i(∅). These will be weaker than any argument of

the two other groups, and their values are numbers of the sub-sequence S2.

• The third group contains all the remaining arguments, i.e. those that are nei-
ther in nor attacked by the set

⋃
i≥1
F i(∅). The semantics Mbs ascribes the value

1
φ to every argument of this group.

Unlike the third group, the semantics may assign different values to arguments
of the first group. It is interesting to note that the value of an argument depends
on the iteration at which it appears for the first time in the set

⋃
i≥1
F i(∅). Recall

that
⋃

i≥1
F i(∅) = F 1(∅) ∪ F 2(∅) ∪ . . .F n(∅), with F i(∅) = F (F i−1(∅)) is the set

of arguments defended by F i−1(∅). If an argument a appears for the first time in
F i(∅), then it gets the value of the ith element of S1, namely S i

1. Furthermore, every
argument it attacks receive the value S i

2 meaning that arguments of the second group
do not necessarily have the same strength as well.

Theorem 8. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and i ∈ N. For any a ∈ A, DegMbsG (a) ∈ S .
Furthermore,

• DegMbsG (a) = S i
1 iff a ∈ F i(∅) and a /∈

i−1⋃
j=1
F j(∅).

• DegMbsG (a) = S i
2 iff F i(∅) attacks a and

i−1⋃
j=1
F j(∅) does not attack a.

• DegMbsG (a) = 1
φ iff a /∈ ⋃F i≥1(∅) and

⋃F i≥1(∅) does not attack a.
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Note that according to Mbs, the longer the defence path of an argument, the
weaker the argument.

Example 14. Consider the flat graph depicted below:

a b

c

d e f

g

Note that F 1(∅) = {a}, F 2(∅) = {a, d} and F 3(∅) = {a, d, f }. It can be checked that:
DegMbs(a) = S1

1 = 1, DegMbs(d) = S2
1 = 2

3 , and DegMbs( f ) = S3
1 = 5

8 . Since F 1(∅)

attacks both b, c, then DegMbs(b) = DegMbs(c) = S1
2 = 1

2 , and since F 2(∅) attacks e, then
DegMbs(e) = S2

2 = 3
5 . Finally, DegMbs(g) = 1

φ .

The second semantics EMbs takes its values from the expoential series. Like Mbs,
the semantics EMbs divides the set of arguments into three groups: i) those that be-
long to the set

⋃
i≥1
F i(∅), ii) those attacked by

⋃
i≥1
F i(∅), and iii) the remaining ones.

Theorem 9. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and i ∈ N. For any a ∈ A, DegEMbs(a) ∈ U .
Furthermore,

• DegEMbsG (a) = U i
1 iff a ∈ F i(∅) and a /∈

i−1⋃
j=1
F j(∅).

• DegEMbsG (a) = U i
2 iff F i(∅) attacks a and

i−1⋃
j=1
F j(∅) does not attack a.

• DegEMbsG (a) = Ω iff a /∈ ⋃F i≥1(∅) and
⋃F i≥1(∅) does not attack a.

Example 14 (Cont) It can be checked that DegEMbs(a) = U 1
1 = 1, DegEMbs(d) =

U 2
1 = 0.6922, and DegEMbs( f ) = U 3

1 = 0.6062. Since F 1(∅) attacks both b, c, then
DegEMbs(b) = DegEMbs(c) = U 1

2 = 0.3678, and sinceF 2(∅) attacks e, then DegEMbs(e) =
U 2

2 = 0.5004. Finally, DegEMbs(g) = Ω.

4.4 Conclusion

We provided the mathematical counterparts of the two gradual semantics (Mbs,EMbs)
in the context of flat graphs. We plan to investigate their counterparts in the general
case (ie weighted graph). We also plain to explore the other gradual semantics.
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Chapter 5

Equivalence of Semantics

5.1 Introduction

Comparing semantics has been a hot topic in recent years. A dominant approach
consists in identifying principles that semantics may satisfy, then analysing every se-
mantics against them. Baroni and Giacomin, 2007 proposed several principles that
Torre and Vesic, 2017 used for comparing all the existing extension semantics. Am-
goud and Ben-Naim, 2016 introduced another list of principles and used it for com-
paring some existing gradual/extension semantics. While these studies revealed
conceptual differences between the analysed semantics, the messages they convey
are not clear. Namely, the following questions remain unanswered:

• Are semantics satisfying the same principles similar, i.e. they provide the same
evaluation of arguments?

• Are semantics following different principles incompatible, i.e. they may pro-
vide contradictory evaluations?

More generally, when are two semantics similar? In this thesis, we argue that
to be similar, two semantics should agree not only on the evaluation of every indi-
vidual argument but also on the ranking of arguments wrt their strengths. The first
agreement depends on the principles followed by the two semantics. For instance, if
both semantics satisfy the maximality principle from (Amgoud and Ben-Naim, 2016),
then they would assign the highest strength to a non-attacked argument. However,
satisfying the same principles does not guarantee agreement on the ranking of argu-
ments. Consider for instance the two gradual semantics Mbs (Amgoud et al., 2017)
and EMbs (Amgoud and Doder, 2019). They satisfy exactly the same set of principles.
However, as we will see in the chapter, they may provide contradictory rankings of
pairs of arguments when graphs are weighted. They are thus not similar and deci-
sion systems using them may make contradictory recommendations. Consider for
instance the case of a committee which recruits a new researcher, and assume that
the two candidates are supported respectively by the arguments a and b. Assume
also that Mbs declares a as stronger than b and EMbs proposes the opposite ranking.
Note that according to the semantics that is considered, the committee may make
different recruitment’s.

To sum up, the existing comparisons of semantics are incomplete as they focused
only on the first requirement for similarity. This chapter completes them by investi-
gating the second requirement on rankings. Its contributions are threefold: First, it
introduces three novel relations between semantics based on their rankings of argu-
ments: weak equivalence, strong equivalence and refinement. They state respectively that
two semantics do not disagree on their strict rankings, the rankings of the semantics
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coincide, and one semantics agrees with the strict comparisons of the second, fur-
thermore it breaks some of its ties. Second, it investigates the properties of the three
relations and their links with existing principles of semantics. Third, it studies the
nature of relations between most of the existing semantics when dealing with flat or
weighted graphs.

5.2 Relations between semantics

Before introducing the three novel relations between semantics, let us first recall the
notion of preordering. It is a binary relation that is reflexive and transitive.

Definition 26 (Preordering). A preordering on a set X is a binary relation ⪰ on X such
that:

• For any x ∈ X, x ⪰ x (Reflexivity)

• For all x, y, z ∈ X, if x ⪰ y and y ⪰ z, then x ⪰ z (Transitivity)

A preordering ⪰ is total iff for all x, y ∈ X, x ⪰ y or y ⪰ x.

Notation 4. The notation x ≻ y is a shortcut for x ⪰ y and y ̸⪰ x and x ≈ y is a shortcut
for x ⪰ y and y ⪰ x. The relation ≻ is the strict version of ⪰, i.e. ≻ = {(x, y) ∈ X2 | x ≻
y}, and ≈ is the equivalence relation, i.e. ≈ = {(x, y) ∈ X2 | x ⪰ y and y ⪰ x}.

Property 2. If a binary relation ⪰ is a total preordering, then ⪰ = ≻ ∪ ≈.

We have seen previously that a semantics assigns a numerical value to each argu-
ment in argumentation framework. Those values are used for defining a preference
relation between arguments as follows:

Definition 27 (Ranking). Let S ∈ Sem and G = ⟨A,R⟩ ∈ AG. A ranking induced from
S is a binary relation ⪰G

S on A such that for all a, b ∈ A,

a ⪰G
S b iff DegS

G(a) ≥ DegS
G(b).

The notation a ⪰G
S b expresses that the argument a is at least as strong as the

argument b in the graph G under the semantics S. Hence, a ≻G
S and a ≈G

S b state
respectively that a is stronger than b and a is as strong as b under S.
The relation ⪰G

S is obviously a total preordering, ie, it is reflexive, transitive and
compares every pair or arguments.

Property 3. For any S ∈ Sem, for any G ∈ AG, the ranking ⪰G
S is a total preordering.

In what follows, we study when two semantics S1 and S2 are equivalent by com-
paring the rankings they provide. We introduce three relations between two rank-
ings. The first relation is that of refinement. A semantics refines (or is more discrim-
inating than) another semantics when it agrees with its strict comparisons and may
break some of its ties.

Definition 28 (Refinement). Let S1, S2 ∈ Sem. We say that S1 refines S2 iff ∀G ∈ AG,
≻G

S2
⊆ ≻G

S1
.

Property 4. The following properties hold:

• Let S1, S2 ∈ Sem. If S1 refines S2, then ∀G ∈ AG, the inclusion ≈G
S1
⊆ ≈G

S2
holds.
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• The refinement relation is transitive.

The second notion, weak equivalence, ensures the compatibility of two rankings.
More precisely, two semantics are weakly equivalent if they never provide opposite
rankings. This notion is more general than refinement because neither of the two
semantics should refine the other.

Definition 29 (Weak Equivalence). Let S1, S2 ∈ Sem. We say that S1 and S2 are weakly
equivalent iff ∀G = ⟨A,R⟩ ∈ AG, ∄ a, b ∈ A s.t. a ≻G

S1
b and b ≻G

S2
a. The two semantics

are said to be incompatible otherwise.

Weak equivalence is a binary relation over the set of all possible semantics. It is
reflexive but not transitive. Indeed, for three semantics S1, S2, S3, it is possible that
S1, S2 (resp. S2, S3) are weakly equivalent but S1, S3 are not.

Property 5. The weak equivalence relation is not transitive.

It is worthy to notice that two weakly equivalent semantics may not provide ex-
actly the same ranking of arguments. Consider for instance four arguments a, b, c, d
and two semantics S1 and S2. One may have: a ≻S1 b and a ≈S2 b, while c ≈S1 d
and c ≻S2 d.

The third notion of strong equivalence ensures total agreement of two semantics
regarding their rankings.

Definition 30 (Strong Equivalence). Let S1, S2 ∈ Sem. We say that S1 and S2 are
strongly equivalent iff for any G = ⟨A,R⟩ ∈ AG, the equality ⪰G

S1
= ⪰G

S2
holds.

Since rankings induced by semantics are total preorderings, then two strongly
equivalent semantics agree both on strict rankings and on ties.

Property 6. The following properties hold:

• Two semantics S1, S2 are strongly equivalent iff ≻S1 = ≻S2 and ≈S1 = ≈S2 .

• Strong equivalence is transitive.

The following property summarizes the different links between the above three
relations.

Proposition 15. Let S1, S2, S3 ∈ Sem.

• S1 and S2 are strongly equivalent iff they refine each other.

• If S1 refines S2, then S1 and S2 are weakly equivalent.

• If S1 and S2 are strongly equivalent, then they are weakly equivalent. The converse
does not hold.

• If S1 and S2 are strongly equivalent and S2 and S3 are weakly equivalent, then S1 and
S3 are weakly equivalent.

• If S1 refines S2 and S1 is strongly equivalent to S3, then S3 refines S2.

• If S1 and S2 are strongly equivalent and S2 and S3 are incompatible, then S1 and S3
are incompatible.

• If S1 refines S2 and S2 and S3 are incompatible, then S1 and S3 are incompatible.
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We show next that the principles recalled in the previous section are necessary
but not sufficient for the equivalence of two semantics. Indeed, two semantics may
satisfy the same set of principles without being strongly or weakly equivalent. Con-
versely, two semantics may be strongly equivalent while they do not follow the same
principles. Before introducing the formal result, let us denote by Princ(S) the subset
of principles satisfied by a given semantics S, and by I the set containing the follow-
ing principles: Neutrality, Equivalence, Counting, Reinforcement, Proportionality,
and Monotony.

Proposition 16. The following properties hold:

• Let S1, S2 ∈ Sem and x ∈ I. If S1 satisfies x and S2 violates x, then S1 and S2 are not
strongly equivalent.

• If semantics S1 satisfies Cardinality Precedence and semantics S2 satisfies Quality
Precedence, then S1 and S2 are incompatible.

• ∃S1, S2 ∈ Sem such that S1, S2 are strongly equivalent and Princ(S1) ̸= Princ(S2).

• ∃S1, S2 ∈ Sem such that Princ(S1) = Princ(S2) and S1, S2 are incompatible.

The above results show that for being similar, it is not sufficient that two seman-
tics evaluate in the same way every individual arguments. They should also provide
the same ranking of arguments. Existing comparisons of semantics focused exclu-
sively on the first criterion by relying on the principles followed by semantics. In the
next section, we will compare semantics wrt their rankings.

5.3 Comparison of semantics

In what follows, we compare twelve semantics using the three novel notions (re-
finement, weak equivalence, strong equivalence). We consider the four extension
semantics (grounded, ideal, stable and preferred) given in Definition 5 (Chapter 1),
and the eight gradual semantics recalled in Table 1.

5.3.1 Comparison of extension semantics

The comparison of a pair of semantics amounts to comparing their rankings. The
latter are obtained by comparing the strength degrees ascribed to arguments. In
Definition 7 (chapter 1), the scale that has been used in the literature for extension
semantics is qualitative and contains four values: sceptically accepted, credulously
accepted, undecided and rejected. For the sake of consistency with gradual seman-
tics, we replace this qualitative scale by a numerical one. The idea is to use the scale
T = {1, α, β, 0} with 1 > α > β > 0, and to assign the value 1 to sceptically ac-
cepted arguments, the value α to credulously accepted arguments, β to undecided
arguments, and 0 to rejected ones.

Definition 31. Let S ∈ {i, s, p, g}, G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. If G has no
extensions, then DegS

G(a) = β. Otherwise,

• DegS
G(a) = 1 iff a belongs to all extensions.

• DegS
G(a) = α iff a is in some but not all extensions.

• DegS
G(a) = β iff a does not belong to any extension and is not attacked by any exten-

sion.
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Semantics Definition Graphs
h-Categorizer (hCat) (Besnard and Hunter, 2001) Degh

G (a) = 1
1+ ∑

bRa
Degh

G (b)
Flat

Compensation-based (α−BBS) (Amgoud et al., 2016) Degα−BBS
G (a) = 1 +

(
∑

bRa
1

(s(b))α

)1/α

, α ∈ (0,+∞) Flat
Weighted h-Categorizer (Hbs) (Amgoud et al., 2017) DegHbsG (a) = σ(a)

1+ ∑
bRa

DegHbsG (b)
Weighted

Weighted Card-based (Cbs) (Amgoud et al., 2017) DegCbsG (a) = σ(a)

1+|AttFG (a)|+

∑
b∈AttFG (a)

DegCbsG (b)

|AttFG (a)|

where Weighted

AttFG (a) = {b ∈ AttG (a) | σ(b) > 0}

Weighted Max-based (Mbs) (Amgoud et al., 2017) DegMbsG (a) = σ(a)
1+max

bRa
DegMbsG (b)

Weighted

Euler-Max-based (EMbs) (Amgoud and Doder, 2019) DegEMbsG (a) = σ(a) · e
−max

bRa
DegEMbsG (b) Weighted

Trust-based (TB) DegTBG (a) = lim
i→+∞

fi (a), where Weighted
(Costa Pereira, Tettamanzi, and Villata, 2011) fi (a) = 1

2 fi−1(a) + 1
2 min[w(a), 1−max

bRa
fi−1(b)]

Iterative Schema (IS) (Gabbay and Rodrigues, 2015) DegISG (a) = lim
i→+∞

fi (a), where Weighted
fi (a) = (1− fi−1(a))min( 1

2 , 1−max
bRa

fi−1(b)) +
fi−1(a)max( 1

2 , 1−max
bRa

fi−1(b))

TABLE 5.1: Gradual semantics dealing with cycles.

• DegS
G(a) = 0 iff a does not belong to any extension and is attacked by at least one

extension.

Depending on the semantics some values of the scale T may not be used. Indeed,
under grounded and ideal, an argument can never get the value α. When stable
extensions exist, an argument cannot receive the value β.

Property 7. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• Deg
g
G(a) ∈ T \ {α}

• Degi
G(a) ∈ T \ {α}

• If stable extensions exist, Degs
G(a) ∈ T \ {β}.

From their definitions, the four semantics seem compatible. For instance, grounded
is more sceptical than ideal, which in turn is more sceptical than preferred and sta-
ble. The following result confirms this observation, however it shows that the four
semantics are only weakly equivalent. None of them refines or is strongly equivalent
to the others.

Theorem 10. The four semantics (stable, preferred, grounded, ideal) are pairwise weakly
equivalent.

Consider the following example.

Example 15. Consider the flat argumentation graph depicted below. Its grounded exten-
sion is {e} and its stable extensions are {a, d, e} and {b, d, e}. Note that Degg

G(e) = 1,
Deg

g
G(d) = β, and Degs

G(e) = Degs
G(d) = 1. Hence, e ≻g d while e ≈s d. We have also

Deg
g
G(a) = Deg

g
G(d) = β, Degs

G(a) = α. So, a ≈g d while d ≻s a.

5.3.2 Comparison of gradual semantics

As said above, we focus here on the eight gradual semantics recalled in Table 5.1.
Note that the two first semantics (hCat and α−BBS) deal only with flat graphs.
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ba

c

d e

The first result states that hCat and α−BBS are strongly equivalent. Furthermore,
in case of flat graphs (i.e. graphs with σ ≡ 1), hCat and Weighted h-categorizer
(Hbs) are also strongly equivalent since they coincide. These three semantics are
fully similar since they provide both the same evaluations of individual arguments
and the same rankings.

Theorem 11. In case of flat graphs, hCat, α−BBS (with α = 1) and Hbs are pairwise
strongly equivalent.

The six semantics that deal with weighted graphs are pairwise incompatible, that
is, they may return contradictory rankings for pairs of arguments. They are thus all
different, and the choice of the one to use depends on the application and the nature
of arguments (deductive, analogical, ...).

Theorem 12. The six semantics Hbs, Mbs, Cbs, EMbs, TB and IS are pairwise incompatible.

It is worthy to recall that Mbs and EMbs satisfy exactly the same subset of princi-
ples (see Amgoud and Doder, 2019). However, they may disagree on their ranking
of arguments as shown in the following example.

Example 16. Consider the weighted graph below where σ(a) = 0.6252 , σ(b) = 0.3939
and σ(c) = 0.8107.

acb

It can be checked that DegMbsG (a) = 0.3953, DegMbsG (b) = 0.3939, DegEMbsG (a) = 0.362, and
DegEMbsG (b) = 0.3939. Note that a ≻Mbs b and b ≻EMbs a. This shows that the two semantics
may lead to different results.

Let us now consider only flat argumentation graphs (i.e. graphs of the form G =
⟨A, σ ≡ 1,R⟩), and let us focus on the four gradual semantics (Mbs, EMbs, TB, IS).
These all use the same function, namely max, for aggregating the strengths of an
argument’s attackers. In other words, they consider only the strongest attacker when
computing the strength of any argument.

We show that the two semantics (TB, IS) coincide, i.e. they assign exactly the
same value to an argument. Recall that this property is not true in the general case of
weighted graphs. We show also that the value of an argument depends on whether
the argument is in or is attacked by the grounded extension Gr of the graph. This
means that (TB, IS) are two alternative characterizations of the grounded semantics.

Theorem 13. For any G = ⟨A, σ ≡ 1,R⟩ ∈ AG, it holds that

DegTBG ≡ DegISG .

Moreover, for any x ∈ {TB, IS}, for any a ∈ A,
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• Degx
G(a) = 1 iff a ∈ Gr.

• Degx
G(a) = 0 iff Gr attacks a.

• Degx
G(a) = 1

2 iff a /∈ Gr and Gr does not attack a.

The two semantics (TB, IS) are thus strongly equivalent when dealing with flat
graphs.

Theorem 14. In case of flat argumentation graphs, TB and IS are strongly equivalent.

The two semantics Mbs and EMbs also are strongly equivalent when applied to
flat graphs. Notations: Let G be a flat graph, A, B be two sets of arguments and
x ∈ Sem. The notation A ≻x B stands for ∀a ∈ A, ∀b ∈ B, it holds Degx(a) > Degx(b).
Let A+ denote the set of arguments that are attacked by at least one argument of
A, and Ao be the set of arguments that are neither in nor attacked by the set A. Let

Xi = F i(∅) \
( i−1⋃

j=1
F j(∅)

)
with i > 1 and by convention, X1 = F 1(∅). This means

that X1 = F (∅), X2 = F 2(∅) \ F 1(∅), and so on.

The following result follows from the characterizations of Mbs, EMbs by numerical
series as seen in the previous chapter. It shows how the two semantics refine the
grounded extension of a graph, and how they refine the set of arguments attacked
by the grounded extension.

Theorem 15. Let G be a flat graph and x ∈ {Mbs, EMbs}.

• X1 ≻x X2 ≻x . . . ≻x Xn.

• X+
n ≻x X+

n−1 ≻x . . . ≻x X+
1 .

• Gr ≻x Gro ≻x Gr+.

From the characterizations of Mbs and EMbs, it follows that the two semantics are
strongly equivalent.

Theorem 16. In case of flat argumentation graphs, Mbs and EMbs are strongly equivalent.

The previous results show that TB and IS assign the same value to any argu-
ment that belongs to (or is attacked by) the grounded extension. Mbs and EMbs are
more discriminating and provide finer-grained evaluations and comparisons of ar-
guments. Thus, they both refine TB and IS.

Theorem 17. In case of flat argumentation graphs, Mbs (resp. EMbs) refines TB (resp. IS).

The novel characterizations of the four semantics Mbs, EMbs, TB and IS show that
they are based on the grounded extension of a graph G as Gr =

⋃
i≥1
F i(∅). They

can also be seen as different characterizations of the grounded semantics in terms of
various gradual semantics.

5.3.3 Extension Semantics vs Gradual Semantics

Throughout this section, we focus on flat argumentation graphs. We show that
hCat, α−BBS, Hbs and Cbs are incompatible with any of the recalled extension se-
mantics. This is mainly due to the fact that the first group takes into account all the
attackers of an argument while the second focuses only on the strongest one.
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Semantics hCat α−BBS Hbs Cbs Mbs EMbs TB IS Grounded Ideal Stable Preferred
hCat − s s i i i i i i i i i
α−BBS s − s i i i i i i i i i
Hbs s s − i i i i i i i i i

Cbs i i i − i i i i i i i i

Mbs i i i i − s r r r w w w
EMbs i i i i s − r r r w w w

TB i i i i w w − s s w w w
IS i i i i w w s − s w w w
Grounded i i i i w w s s − w w w

Ideal i i i i w w w w w − w w
Stable i i i i w w w w w w − w
Preferred i i i i w w w w w w w −

TABLE 5.2: Case of Flat Argumentation Graphs. s, w, r, i stand resp.
for strong equivalence, weak equivalence, refinement, incompatibil-

ity.

Theorem 18. hCat (resp. α−BBS, Hbs, Cbs) is incompatible with grounded, ideal, stable
and preferred.

Unsurprisingly, the two semantics TB and IS are strongly equivalent with the
grounded semantics. Furthermore, they are weakly equivalent to the three other
extension semantics.

Theorem 19. In case of flat argumentation graphs, the following properties hold:

• TB, IS and the grounded are pairwise strongly equivalent.

• TB (resp. IS) is weakly equivalent with ideal (resp. stable and preferred).

We show also that Mbs (resp. EMbs) refines the grounded semantics when applied
to flat argumentation graphs. However, the converse does not hold, thus the two
semantics are not strongly equivalent (see Example 14).

Theorem 20. In case of flat argumentation graphs, Mbs (resp. EMbs) refines the grounded
semantics.

Mbs (resp. EMbs) does not refine ideal, stable and preferred semantics. It is thus
not strongly equivalent with any of these three semantics as shown below.

Example 17. Consider the flat graph below. It has a single preferred (respectively stable)
extension which coincides with the ideal and grounded extension {a, c}. Thus, a ≡x c, with
x ∈ {i, s, p}, while a ≻Mbs c and a ≻EMbs c.

a b c

The last result shows that the Mbs (resp. EMbs) semantics is weakly equivalent
with ideal, stable and Preferred semantics. They provide thus compatible rankings
of arguments.
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Theorem 21. In case of flat argumentation graphs, Mbs (resp. EMbs) is weakly equivalent
with ideal, stable and preferred semantics.

Table 5.2 summarizes the relations between the reviewed semantics in case of
flat argumentation graphs. There are 5 groups of semantics. The first group contains
(hCat, Hbs, α−BBS), which are strongly equivalent, provide the same evaluations for
individual arguments, and are incompatible with all the other semantics. The sec-
ond group contains only Cbs, which is incompatible with any other semantics. Like
the semantics of the first group, with Cbs every attacker is harmful to its target.
However, Cbs favors the quantity of attackers while the former promote compen-
sation. The third group is made of Mbs, EMbs, which are strongly equivalent, and
refine some semantics that consider only one attacker, namely TB, IS and grounded.
The fourth group is made of these three semantics, which are strongly equivalent.
The last group contains ideal, stable and preferred, which are incompatible with se-
mantics of the first and second groups, and are weakly equivalent with any of the
remaining semantics.

5.4 An equivalence class of semantics

we have seen previously that in case of flat graph argumentation frameworks, the
two gradual semantics Mbs and EMbs are strongly equivalent, ie, they provide the
same rankings. In what follows, we go further by characterizing the whole equiva-
lence class to which they belong. Recall that the notion of strong equivalence struc-
tures the universe few of semantics into equivalence classes.
Before introducing the class, let us first recall the family S∗ of numerical series.

Definition. We define S∗ to be the set containing any numerical series S = (Sn)n≥1 which
satisfies the following conditions:

• for any n ≥ 1, Sn ∈ [0, 1]

• S contains two sub-series S1 = (Sn
1 )

n≥1 and S2 = (Sn
2 )

n≥1 s.t. for any n ≥ 1:

– Sn
1 is strictly decreasing and Sn

2 is strictly increasing
– lim

n→∞
Sn

1 ≥ lim
n→∞
Sn

2

In what follows, we define a family of gradual semantics that are based on series
of the set S∗. Every instance (i.e., semantics) of the family partitions the set of argu-
ments into three groups. It assigns to arguments of the first group values taken from
the decreasing sub-sequence of the series on which it is based. The exact value of
an argument depends on the iteration at which it appears for the first time in the set
Gr =

⋃
n≥1
F n(∅). The arguments of the second group are assigned values from the

increasing sub-sequence and the value of an argument depends on the first appear-
ance of its strongest attacker in Gr. Finally, the semantics ascribes the same value,
which is between the limits of the two sub-sequences, to all arguments of the third
group.

Definition 32 (Sem∗). Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG. A gradual semantics σ ∈ Sem based
on a series S ∈ S∗ is a mapping from A to S ∪ {δ}, with lim

n→∞
Sn

1 ≥ δ ≥ lim
n→∞
Sn

2 , such
that for any a ∈ A,

• Degσ
G(a) = S i

1 if a ∈ F i(∅) and a /∈
i−1⋃
j=1
F j(∅).
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• Degσ
G(a) = S i

2 if F i(∅) attacks a and
i−1⋃
j=1
F j(∅) does not attack a.

• Degσ
G(a) = δ otherwise.

We denote by Sem∗ the set of all semantics that are based on a series from S∗.

Example 18. Assume σ ∈ Sem∗ and σ is based on S ∈ S∗. It is easy to check that
Degσ

G(g) = δ with lim
n→∞
Sn

1 ≥ δ ≥ lim
n→∞
Sn

2 .

• a ∈ F 1(∅)

• d ∈ F 2(∅) \ F 1(∅)

• f ∈ F 3(∅) \
2⋃

i=1
F i(∅)

• Degσ
G(a) = S1

1

• Degσ
G(d) = S2

1

• Degσ
G( f ) = S3

1

• Degσ
G(b) = S1

2

• Degσ
G(c) = S1

2

• Degσ
G(e) = S2

2

We show next that the set Sem∗ is non-empty as it contains Mbs and EMbs.

Proposition 17. It holds that {Mbs, EMbs} ⊆ Sem∗.

We show below that all semantics in the set Sem∗ are pairwise strongly equiva-
lent.

Theorem 22. For all σ, σ′ ∈ Sem∗, σ and σ′ are strongly equivalent.

We go one step further by showing that Sem∗ is the whole equivalence class as it
contains all semantics that are strongly equivalent to Mbs.

Theorem 23. For any σ ∈ Sem, if σ and Mbs are strongly equivalent, then σ ∈ Sem∗.

We show next that every semantics of the class Sem∗ refines the grounded semantics
from Dung, 1995. Indeed, it keeps all its strict rankings and breaks some ties. Before
presenting the formal result, let us first recall the grounded extension and the rank-
ing it induces. The latter considers arguments of the grounded extension as equally
strong and strictly stronger than all remaining arguments. Arguments that are at-
tacked by the extension are equally strong and strictly weaker than all remaining
arguments.

Definition 33 (⪰g). LetA ∈ AG. The grounded extension of G is the set Gr =
∞⋃

n=1
F n(∅).

It induces a total preordering⪰g such that Gr ≻g Gro ≻g Gr+ and for any x ∈ {Gr, Gr+, Gro},
for all a, b ∈ x, a ≈g b.

Example 19. running The grounded extension of the flat graph is Gr = {a, d, f }. Hence,
a ≈g d ≈g f ≻g g ≻g b ≈g c ≈g e. However, for any σ ∈ Sem∗, we have the following
ranking: a ≻σ d ≻σ f ≻σ g ≻σ e ≻σ b ≈σ c.

Theorem 24. For any σ ∈ Sem∗, σ refines the grounded semantics.

From the definition of the ranking ⪰g and the previous result, it follows that any
semantics σ ∈ Sem∗ preserves the strict ordering of ⪰g.

Theorem 25. For any σ ∈ Sem∗, the strict relations Gr ≻σ Gro ≻σ Gr+ hold.
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5.5 Another Instance of the Equivalence Class

We have seen in the previous section that the equivalence class Sem∗ contains at least
two semantics: Mbs and EMbs. In what follows, we discuss another instance of the
class. It is based on the series J defined from Jacobsthal sequence (see Definition 25
in chapter 4)

We now characterize the gradual semantics which is based on the above series
J. Like Mbs and EMbs, its only considers the strongest attacker of an argument when
computing its strength. Furthermore, it takes half of that attacker’s strength.

Theorem 26. Let G = ⟨A,R⟩ ∈ AG, a ∈ A and Jac a mapping from A to [0, 1] such that

for any a ∈ A, DegJacG (a) = 1−
max
bRa

DegJacG (b)

2 . The following hold:

• Jac is based on the series J

• Jac ∈ Sem∗

• for any a ∈ A, DegJacG (a) ∈ [ 1
2 , 1]

Example 20. running The values of the arguments are summarized in the table below.

a b c d e f g
Mbs 1 0.50 0.50 0.66 0.60 0.62 0.61
EMbs 1 0.36 0.36 0.69 0.50 0.60 0.56
Jac 1 0.5 0.5 0.75 0.625 0.69 0.66

In the example, Jac assigns higher values than Mbs, EMbs. The following result
confirms this property which is valid in general. It also shows that Mbs assigns higher
values than EMbs but only to arguments that are attacked by the grounded extension.

Theorem 27. Let G = ⟨A,R⟩ ∈ AG and a ∈ A. The following properties hold:

• DegJacG (a) ≥ DegMbsG (a)

• DegJacG (a) ≥ DegEMbsG (a)

• If a ∈ Gr+, then DegMbsG (a) > DegEMbsG (a)

5.6 Conclusion

An important question is which semantics to choose in a given application ? (Am-
goud and Ben-Naim, 2013), the authors have argued that the choice of the suitable
semantics depends on the nature of arguments (deductive, analogical, casual,...) and
the specificities of the application. It is worth mentioning that existing principles
provide a good basis for assessing the suitability of a semantics. However, they are
insufficient since two semantics may satisfy the same principles and still return op-
posite rankings. This means the two semantics may lead to different outcomes in
decision making, for instance.

We tackled the question of comparing semantics, be them extension-based or
gradual. We have shown that existing comparisons in the literature are not conclu-
sive, since they were only based on the evaluations of individual arguments. We
argued that comparing rankings is also crucial for the similarity of semantics. Thus
investigated a notion of equivalence which is based on the comparison of rankings,
and we studied several existing semantics. The results have shown compatibilities
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between the classical extension semantics and the gradual semantics that consider
only the stronger attacker of an argument when computing its strength. Some grad-
ual semantics like TB, IS go further by providing characterizations for the grounded
semantics, while Mbs, EMbs refine the latter in a reasoned way. The gradual semantics
that consider all attackers are incompatible with extension semantics. Furthermore,
they are themselves pairwise incompatible in case of weighted graphs. The chapter
has tackled the question of comparing semantics, be them extension-based or grad-
ual. It has shown that existing comparisons in the literature are not conclusive, since
they were only based on the evaluations of individual arguments. It has argued
that comparing rankings is also crucial for the similarity of semantics. The chapter
has thus investigated a notion of equivalence which is based on the comparison of
rankings, and has studied several existing semantics. The results have shown com-
patibilities between the classical extension semantics and the gradual semantics that
consider only the stronger attacker of an argument when computing its strength.
Some gradual semantics like TB, IS go further by providing characterizations for the
grounded semantics, while Mbs, EMbs refine the latter in a reasoned way. The grad-
ual semantics that consider all attackers are incompatible with extension semantics.
Furthermore, they are themselves pairwise incompatible in case of weighted graphs.

Finally, we contributed to setting up the mathematical foundations of computa-
tional argumentation and precisely gradual semantics. We defined a mathematical
counterpart of a large class of semantics. We showed that a number of semantics
including Mbs, EMbs and Jac can be defined with numerical series having specific
characteristics. Furthermore, those semantics provide all the same rankings of ar-
guments of a flat graph while they may assign different values to the same argu-
ment. This show that a ranking is more expressive than the number assigned to
arguments. Finally, the semantics of the class refine the grounded extension and the
value of an argument depends on the iteration at which it appears for the first time
in the grounded extension or is attacked by the grounded extension. This character-
ization allowed us to define a very efficient algorithm which computes strength of
arguments.
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Chapter 6

Case-based Reasoning

6.1 Introduction

Case-based reasoning (CBR) is an experience-based approach to solving problems. It
uses stored cases describing similar prior problem-solving episodes and adapts their
solutions to fit new needs (or new cases). For example, a car dealer would guess the
price of a given car by comparing its characteristics with those of cars that have been
sold. This form of reasoning has been used in the literature for solving various prac-
tical problems. Indeed, several CBR models have been proposed in the medical do-
main including CASSEY (Tsatsoulis and Kashyap, 1993), BOLERO (López and Plaza,
1993), SHRINK (Kolodner and Kolodner, 1987), MNAOMIA (Bichindaritz, 1996),
AUGUST (Marling and Whitehouse, 2001), SOMNUS (Kwiatkowska and Atkins,
2004), CARE PARTNER (Bichindaritz, Kansu, and Sullivan, 1998), KASIMIR (Lieber
and Bresson, 2000), SIDSTOU (Sharaf-El-Deen, Moawad, and Khalifa, 2014) and
MARLING (Marling, Shubrook, and Schwartz, 2008)

Another practical domain where CBR is commonly used is law. Several works have
been done, some of which are based on argumentation eg., a model of legal reason-
ing with cases incorporating theories and values (Bench-Capon and Sartor, 2003), A
formalisation of argumentation schemes for legal case-based reasoning in ASPIC+
(Prakken et al., 2013).

Several works have been devoted to modeling CBR, and various approaches can
be distinguished including logic-based (Zheng, Grossi, and Verheij, 2020; Dubois
et al., 1997) and argumentation-based (Paulino-Passos and Toni, 2021; Prakken et
al., 2013) approaches (see (Richter and Weber, 2013; Hüllermeier, 2007; Aamodt and
Plaza, 1994) for surveys). However, despite its popularity, there are few works on
foundations, or properties, that may underlie CBR models. Foundations are impor-
tant not only for a better understanding of case-based reasoning in general, but also
for clarifying the basic assumptions underlying models, comparing different mod-
els, and also for comparing case-based reasoning with other kinds of reasoning like
defeasible reasoning.

This chapter bridges this gap. It starts by analysing the basic assumption behind
case-based reasoning, namely "the more similar the cases, the more similar their out-
comes". It discusses three independent notions that capture (in different ways) the as-
sumption. Then, the chapter proposes principles that a case-based reasoning model
would satisfy and analyses their properties. Some principles ensure the three forms
of the CBR assumption, and we show that they are incompatible with some axioms
underlying non-monotonic reasoning (NMR) (Kraus, Lehmann, and Magidor, 1990),
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namely cautious monotonicity and cut. This shows that CBR and NMR are different
forms of reasoning, and sheds light on the reasons behind their differences.

6.2 Case-based reasoning models

Before introducing formally the basic notions of a CBR problem, let us introduce the
notion of similarity measure, which plays a key note in CBR. (Dubois et al., 1997).

Definition 34 (Similarity). A similarity measure S on a set X is a function S : X × X →
[0, 1] where:

• ∀x ∈ X, S(x, x) = 1

• ∀x, y ∈ X, S(x, y) = S(y, x)

Let us now illustrate a CBR problem whith a simple example borrowed from
(Dubois et al., 1997)

Example 21. Consider the problem of identifying the price of second-hand cars. A car is
described with five attributes, namely years old, power, mileage, the state of equipment, and
shape. Knowing the characteristics and the prices of four cars (C1, C2, C3, C4) (summarized
in the table below), the problem is to identify the price of the new car (Cn) whose characteris-
tics are also known.

Cases Years old Power Mileage Equipment Shape Price

C1 1 1300 20 000 poor good 8000

C2 2 1600 30 000 excellent poor 7000

C3 2 1600 40 000 good good 5000

C4 3 1500 60 000 excellent poor 5000

Cn 2 1600 50 000 poor good ?

To identify the price of Cn, any CBR model would compare the characteristics of cars as well
as their prices. Hence, it would use two similarity measures: one for comparing prices (So)
and another for comparing attributes-values (Si). In (Dubois et al., 1997), So is for instance
defined as follows:

So(u, v) =


1 if |u− v| ≤ 500
0 if |u− v| ≥ 2000
1− 1

1500 ∗ (|u− v| − 500) if 500 < |u− v| < 2000

It is easy to check that So(x, x) = 1, So(5000, 7000) = So(5000, 8000) = 0 and So(7000, 8000) =
2
3 .

Regarding Si, it combines five measures, each of which compares the values of an at-
tribute. S1 compares years old (respectively mileage) as follows:

S1(u, v) =
min(u, v)
max(u, v)

. For instance, S1(1, 2) = 1
2 and S1(20000, 30000) = 2

3 . The measure that compares the
powers of two cars is defined as follows:

S2(u, v) = 1− (
|u− v|
1000

)
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. For instance, S2(1300, 1600) = 7
10 . Finally, equipment and shape are compared using the

measure S3, which assumes the ordering bad < poor < good < excellent.

S3(v, v′) =


1 if v = v′
2
3 if v and v’ are consecutive
1
3 if there is exactly one element between v and v’
0 otherwise.

The similarity between (the characteristics of) two cars is the minimal similarity of the char-
acteristics. For instance, Si(C1, C2) = min(S1(1, 2), S2(1300, 1600), S1(20000, 30000),
S3(poor, excellent), S3(good, poor)) = min( 1

2 , 7
10 , 2

3 , 1
3 , 2

3 ) = 1
3 . The table below sum-

marises the values returned by Si for each pair of cars.

Cases C1 C2 C3 C4 Cn

C1 1 1
3

1
2

1
3

2
5

C2
1
3 1 2

3
1
2

1
3

C3
1
2

2
3 1 2

3
2
3

C4
1
3

1
2

2
3 1 1

3

Cn
2
5

1
3

2
3

1
3 1

Throughout the thesis, we assume a finite and non-empty set F = { f1, . . . , fn, f}
of features, where f1, . . . , fn describe the cases (eg. Power, Mileage, Shape) and f is
the feature being solved (price in the example). Let dom be a function on F which
returns the domain of every f ∈ F . Hence, dom(f) is the set of possible outcomes
of a CBR problem, which is finite in classification tasks. In addition to this set, we
assume the special symbols ? and Und, which denote respectively that the value of f
is pending and undecided by a CBR model.

Definition 35 (Input space). We call literal every pair ( f , v) such that f ∈ F \ {f} and
v ∈ dom( f ), and instance every set of literals, where each feature f1, . . . , fn appears exactly
once. We denote by Inst the set of all possible instances, and call it input space.

The feature space is endowed with a similarity measure Si, which assesses how
close are instances and the set dom(f) is endowed with a similarity measure So,
which compares outcomes.
We consider two additional parameters 0 < δi ≤ 1 and 0 < δo ≤ 1, which represent
the thresholds for considering respectively two instances and two outcomes as some-
what similar. More precisely, for x, y ∈ Inst, x is dissimilar to y iff Si(x, y) < δi and
for v, v′ ∈ dom(f), v is dissimilar to v′ iff So(v, v′) < δo.

Let us now introduce the backbone of a CBR problem, the notion of case. It is an
instance labelled with an outcome.

Definition 36 (Case). A case is a pair c = ⟨I, v⟩ such that I ∈ Inst and v ∈ dom(f) ∪
{?}. We call c a past case when v ∈ dom(f), and a new case when v =?. A case base is a
sample that consists of n past cases ci = ⟨Ii, vi⟩ (1 ≤ i ≤ n).

Throughout the thesis, we call CBR theory, or theory for short, a tuple containing
a set of attributes, their domains, two similarity measures Si, So and their thresholds.

Definition 37 (Theory). A theory is a tuple T = ⟨F , dom, Si, So, δi, δo⟩.

A CBR model is a function, which takes as input a theory and a new case, and
returns possible outcomes of the latter. Since every instance is assigned exactly one
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label, one expects that a model provides a single solution. However, this is not al-
ways possible since the new case may be close to several differently labelled cases,
and the model cannot discriminate between those labels. So, each of label is con-
sidered as a candidate outcome. It is also possible that the new case is dissimilar to
all past cases of a base. Hence, instead of returning an arbitrary outcome, we as-
sume that a model may rerun the symbol Und (for undecided), meaning no solution
is proposed.

Definition 38 (CBR Model). Let T = ⟨F , dom, Si, So, δi, δo⟩ be a theory. A CBR model is
a function R mapping every case base Σ and new case ⟨I, ?⟩ into a set O ⊆ dom(f) ∪ {Und}
such that O ̸= ∅ and either O = {Und} or O ⊆ dom(f). We write Σ⊕ ⟨I, ?⟩ |∼ T,RO.

Through this chapter, we consider a fixed but arbitrary theory T = ⟨F , dom, Si, So, δi, δo⟩,
and its set Inst of instances.

6.3 CBR assumption

Case-based reasoning is heavily based on similarities between cases. It looks for the
most similar past cases to the new case, then adapts their outcomes following the
key rule below :

The more similar the cases (in the sense of Si), the more similar their outcomes
(in the sense of So).

Formalizing this rule is important for developing reasonable CBR models, and also
for checking whether existing models obey the rule. In what follows, we propose
four alternative ways for formalizing it. The first one is the notion of consistency.

In (Dubois et al., 1997), a case base is said to be consistent if identical cases in the
base have identical outcomes (i.e., for all cases ⟨I, v⟩ and ⟨I′, v′⟩ in a base, if I = I′

then v = v′). In some problems like the one described in the above example, this
constraint may be strong as the same instances may have different but similar out-
comes. It is also possible that similar instances have the same or similar outcomes.
Imagine a second-hand car C∗ which has the same characteristics as C1, but its price
is 8400. Note that So(8000, 8400) = 1, which means that the difference between the
two prices is negligible. In what follows, we generalize this notion of consistency
using similarity measures. The idea is that fully similar instances get fully similar
outcomes.

Definition 39 (Consistency). A case base Σ is consistent iff ∀⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ, if
Si(I, I′) = 1 then So(v, v′) = 1. It is inconsistent otherwise.

It is easy to see that in a consistent case base, identical instances may receive
different but fully similar outcomes.

Property 8. If a case base Σ is consistent, then ∀⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ, if I = I′, then
So(v, v′) = 1.

Proof. Let Σ be a consistent case base. Assume that ⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ such that I = I′.
Since Si is a similarity measure, then Si(I, I′) = 1. From Consistency of Σ, So(v, v′) =
1.

In (Dubois et al., 1997), the rule has been formalized as a fuzzy gradual rule, which
states that the similarity of two instances should be lower or equal to the similarity
of their outcomes. Throughout the thesis, we refer to this notion as strong coherence.
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Definition 40 (Strong Coherence). A case base Σ is strongly coherent iff ∀⟨I, v⟩, ⟨I′, v′⟩ ∈
Σ, Si(I, I′) ≤ So(v, v′).

Example 22. The case base Σ1 = {Ci = ⟨Ii, vi⟩, i = 1, . . . , 4} is not strongly coherent. For
instance, Si(I1, I3) =

1
2 while So(v1, v3) = 0.

Example 23. Consider the case base Σ2 = {C = ⟨I, v⟩, C′ = ⟨I′, v′⟩}. If Si(I, I′) = 0.7
and So(v, v′) ≥ 0.7, then Σ is strongly coherent. Assume now that Si(I, I′) = 0.1 and
So(v, v′) = 1. Again, Σ2 is strongly coherent even if the two cases are dissimilar (let δi =
0.5).

It is easy to show that fully similar cases in a strongly coherent case base have
fully similar outcomes.

Property 9. Let Σ be a strongly coherent case base. For all ⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ, if Si(I, I′) =
1, then So(v, v′) = 1.

Proof. Let Σ be a strongly coherent case base. Let ⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ such that Si(I, I′) =
1. Strong coherence of Σ implies Si(I, I′) ≤ So(v, v′). Since So(v, v′) ∈ [0, 1], then
So(v, v′) = 1.

It is also easy to show that any strongly coherent case base is consistent. The
converse is false as shown in Example 22 (the base Σ1 is consistent but not strongly
coherent).

Property 10. If a case base is strongly coherent, then it is consistent. The converse does not
hold.

Proof. Let Σ be a case base and assume it is strongly coherent. Let ⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ
such that Si(I, I′) = 1. From Property 9, it follows that So(v, v′) = 1.

By directly linking the similarity of outcomes with the similarity of instances, the
property of strong coherence ensures that the former is proportional to the latter.
However, the similarity measures Si and So as well as their corresponding thresh-
olds (δi and δo) may be different and not necessarily commensurate. This makes the
satisfaction of the property difficult in case of such measures. Let us illustrate the
issue with the following example.

Example 24. Suppose we have a case base Σ3 on student grades. There are 4 attributes
corresponding to courses and which take values from the interval [0, 20]; the outcome is a
global appreciation whose range consists of 4 qualitative levels: bad < poor < good < excellent.
Let So be the similarity measure S3 in Example 26. Similarity between any pair of grades
obtained in a course is defined by S(u, v) = 1− ( |u−v|

20 ). The similarity measure Si takes
the minimal value returned by S on the four courses. Assume Σ3 contains two students who
got respectively I = ⟨20, 20, 20, 20⟩ and v = "excellent" as global appreciation, and I′ =
⟨20, 20, 15, 15⟩ with appreciation v′ = "good". Hence, Si(I, I′) = 0.75 and So(v, v′) = 2

3 .
Note that the base is not strongly coherent. In order to be coherent, So(v, v′) should be equal
to 1, which is not reasonable in the example as the two instances are different and deserve
different appreciations. Furthermore, the scale of So does not have an intermediate value
between 2

3 and 1.

In what follows, we introduce a novel notion of weak coherence, which makes use
of the two thresholds for judging similar instances/outcomes. It states that similar
cases should receive similar outcomes.
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Definition 41 (Weak Coherence). A case-base Σ is weakly coherent iff ∀⟨I, v⟩, ⟨I′, v′⟩ ∈
Σ, if Si(I, I′) ≥ δi, then So(v, v′) ≥ δo.

Example 25. If δi ≥ 0.75 and δo ≥ 2
3 , then Σ2 is weakly coherent.

The above example shows that a case base may be weakly but not strongly co-
herent. However, weak coherence follows from the strong version when δi ≥ δo.

Proposition 18. Let Σ be a case base and δi ≥ δo. If Σ is strongly coherent, then Σ is also
weakly coherent.

Proof. Assume δi ≥ δo. Let Σ be a strongly coherent case base, and ⟨I, v⟩, ⟨I′, v′⟩ ∈ Σ.
Assume Si(I, I′) ≥ δi. From strong coherence, δi ≤ Si(I, I′) ≤ So(v, v′). Hence,
So(v, v′) ≥ δo.

It is worth mentioning that consistency does not follow from weak coherence.
Indeed, it is possible to find a weakly coherent case base which contains two cases
such that Si(I, I′) = 1, thus Si(I, I′) ≥ δi, while δo ≤ So(v, v′) < 1.

The two versions of coherence compare pairs of cases of a case base. Our next
notion, called regularity, is defined on the whole set of cases and ensures that the
closest instances receive the closest outcomes. Indeed, if an instance I is closer to I′

than to I′′, then its outcome should be closer to that of I′.

Definition 42 (Regularity). A case-base Σ is regular iff ∀⟨I, v⟩, ⟨I′, v′⟩, ⟨I′′, v′′⟩ ∈ Σ, if
Si(I, I′) ≥ Si(I, I′′) then So(v, v′) ≥ So(v, v′′).

Example 26. The case base Σ1 = {Ci = ⟨Ii, vi⟩, i = 1, . . . , 4} is not regular. For instance,
Si(I1, I3) > Si(I1, I2) while So(v1, v3) < So(v1, v2).

Regularity is different from the two forms of coherence, and thus it does not
imply or follow from them. It is also independent from consistency.
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6.4 Principles for CBR

In what follows, we assume an arbitrary but fixed theory T, a case base Σ, a new
case ⟨I, ?⟩ and a CBR model R. We introduce some principles (or properties) that a
reasonable CBR model would satisfy. The first two principles concern the situation
where the new case is dissimilar to all the past cases of the base. There are two
possibilities. The first consists of proposing outcomes of the closest cases. This may
be undesirable in applications like medical diagnosis, where a CBR model looks for
a diagnosis of patients of the basis of their symptoms.

Principle 20 (Strong Completeness). Σ⊕ ⟨I, ?⟩ |∼ T,RO with O ⊆ dom(f).

The second possibility consists of abstaining from choosing an arbitrary out-
come, and ensures that the model returns the symbol Und.

Principle 21 (Weak Completeness). Σ⊕ ⟨I, ?⟩ |∼ T,R{Und} iff ∀⟨I, v⟩ ∈ Σ, Si(In, I) <
δi.

Note that any model which satisfies weak completeness returns Und when the
case base is empty. This is reasonable as arbitrariness is avoided.

Proposition 19. If a model R satisfies weak completeness, then ∅⊕ ⟨I, ?⟩ |∼ T,R{Und}.

The strong and weak versions of completeness are incompatible, i.e., there is no
CBR model which can satisfies both at the same time. Indeed, they recommend
different outcomes in the above mentioned particular case.

Proposition 20. Strong completeness and weak completeness are incompatible

The third principle ensures that the model preserves the consistency of the case
base. Of course, this therefore assumes that the base is consistent.

Principle 22 (Consistency). Let Σ be consistent and Σ⊕ ⟨I, ?⟩ |∼ T,R O such that O ̸=
{Und}. For any v ∈ O, Σ ∪ {⟨In, v⟩} is consistent.

The three next principles are those that capture the CBR rule discussed previ-
ously. Strong coherence states that adding the new case labelled with any of its
candidate outcomes to a strongly coherent base would preserve coherence.

Principle 23 (Strong Coherence). Let Σ be strongly coherent and Σ⊕ ⟨I, ?⟩ |∼ T,R O such
that O ̸= {Und}. For any v ∈ O, Σ ∪ {⟨In, v⟩} is strongly coherent.

In the same way, weak coherence ensures that a CBR model preserves the weak
coherence of a case base.

Principle 24 (Weak Coherence). Let Σ be weakly coherent and Σ⊕ ⟨I, ?⟩ |∼ T,R O such
that O ̸= {Und}. For any v ∈ O, Σ ∪ {⟨In, v⟩} is weakly coherent.

Proposition 21. Let T = ⟨F , dom, Si, So, δi, δo⟩ be a theory such that δi ≥ δo. If a CBR
model satisfies strong coherence, then it satisfies weak coherent.

Proof. Let δi ≥ δo, ⟨I, ?⟩ a new case, and a CBR model which satisfies strong coher-
ence. Let Σ ⊕ ⟨I, ?⟩ |∼ T,R O. It holds that for any v ∈ O, Σ ∪ {⟨In, v⟩} is strongly
coherent. From Proposition 18, since δi ≥ δo, then Σ ∪ {⟨In, v⟩} is weakly coher-
ent.

Regularity principle ensures that a CBR model preserves the regularity of a case
base.
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Principle 25 (Regularity). Let Σ be regular and Σ⊕ ⟨I, ?⟩ |∼ T,R O such that O ̸= {Und}.
For any v ∈ O, Σ ∪ {⟨In, v⟩} is regular.

In what follows, we show that case-based reasoning is non-monotonic as its con-
clusions can be revised when a base is extended with additional cases. Let us first
define formally the principle of non-monotonicity.

Principle 26 (Monotonicity).
Σ⊕ ⟨I, ?⟩ |∼ T,RO

=⇒ Σ′ ⊕ ⟨I, ?⟩ |∼ T,RO
Σ ⊆ Σ′

The following result shows that non-monotonicity follows from weak complete-
ness.

Proposition 22. If a CBR model satisfies weak completeness, then it violates monotonicity.

Proof. Assume a CBR model R which satisfies weak completeness. Let Σ be a case
base and ⟨I, ?⟩ a new case. Assume Σ = ∅, then ∅ ⊕ ⟨I, ?⟩ |∼ T,R{Und}. Let now
Σ′ = {⟨I, v⟩} such that I = In. Obviously, Si(I, In) = 1 and Si(I, In) ≥ δi (since
0 < δi ≤ 1). So, Σ′ ⊕ ⟨I, ?⟩ |̸∼ T,R{Und}.

6.5 Conclusion

This chapter presented a preliminary contribution on foundations of case-based rea-
soning. It started by formalizing the key rule behind this form of reasoning, then
proposed a set of principles that any model would satisfy. We have shown that CBR
is non-monotonic in that conclusion could be revised in light of additional informa-
tion (cases).

Our plan is to analyze existing CBR models against those principles, and propose
argumentation-based models that satisfy the principles.
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Chapter 7

Conclusion and Future works

In this thesis, we investigated theoretical foundations of semantics in argumentation.
I studied formal approaches for describing semantics and comparing the plethora
of existing (extension, gradual) semantics. Indeed, i proposed various principles
showing how a semantics would deal with self-attacking arguments, investigated
their compatibility with other existing principles, and finally proposed the first se-
mantics which satisfies a maxima set of principles. In another chapter, i proposed
for the first time the mathematical counterpart of two gradual semantics. Indeed, i
redefined them using numerical series.

Another contribution of the thesis consists of showing that principles are not suf-
ficient for comparing pairs of semantics. Their rankings should also be checked. I
thus introduced the novel notion of equivalence, compared a large set of semantics
with this notion, and identified some strong equivalence classes.

The thesis tackled also the topic of case-based reasoning. I introduced some for-
mal properties that a CBR model would satisfy. Some of them formalize the key rule
(or assumption) behind CBR.

Our aim is to continue investigating this part of the thesis by analyzing existing CBR
against the properties, and proposing novel models that satisfy all the properties. We
plan to define argumentation based one that use our novel gradual semantics. The
reason is that argumentation is powerful approach for modeling different types of
reasoning, and is more akine with the way human reasons. Finally, the novel grad-
ual semantics are richer than extension semantics, consequently, they would allow
us to define efficient CBR models.

Another future work consists of pursuing the work on characterizing families of
gradual semantics, especially in the general case of weighted graphs.
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Chapter 8

Appendix of proofs

Proposition 9. The gradual semantics nsa satisfies all the principles from P2S2C. The other
principles are not satisfied.

Proof.

Anonymity. Let F = (A,R) and F ′ = (A′,R′) be two AG. Let γ be an isomorphism
from F to F ′. Recall the iterative version of fF ,i

nsa from Definition 19. Let us prove
Anonymity by induction on i, where i is the step of the iterative algorithm. The
inductive hypothesis is: for every a ∈ A, fF ,i

nsa(a) = fF ,i
nsa(γ(a)).

Base: Let i = 0. From the formal definition of nsa we have that for each a ∈ A,
fF ,0
nsa (a) = 0 if and only if a is self-attacking in F and that fF ,0

nsa (a) = 1, otherwise.
Likewise, fF

′,0
nsa (a′) = 0 if and only if a′ is self-attacking in F ′ and that fF

′,0
nsa (a′) = 1,

otherwise.

Step: Let us suppose that the inductive hypothesis is true for every k ∈ {0, 1, . . . i}
and let us show that it is true for i + 1. Let a ∈ A and let a′ ∈ A such that a′ = γ(a).
Let AttF (a) = {b1, . . . , bn}. From the inductive hypothesis, for each j ∈ {1, . . . , n},
fF ,i
nsa(bj) = fF ,i

nsa(γ(bj)). Hence, fF ,i+1
nsa (a) = fF ,i+1

nsa (γ(a)).
By induction, we conclude that for every i, for every a ∈ A, fF ,i

nsa(a) = fF ,i
nsa(γ(a)).

Hence, for every a ∈ A, DegnsaG (a) = DegnsaF ′ (γ(a)).

Independence. Let F = (A,R) and F ′ = (A′,R′) such that A∩A′ = ∅.
Let us recall that ∀a ∈ A,

DegnsaG (a) =


0 if (a, a) ∈ R

1
1 + ∑b∈AttF (a) Deg

nsa
G (b)

otherwise (8.1)

Let X ⊆ A be a set of arguments. Let us define Att0
F (X) =

⋃
x∈X AttF (x) as the

union of the set of direct attackers of each x ∈ X and Atti+1
F (X) = AttF (Att

i
F (X)).

Let Att⋆F (X) =
⋃

i≥0 Att
i
F (X). Since A∩A′ = ∅ and Att⋆F ({a}) ⊆ A, since the defi-

nition of Degnsa
F (a) depends only on attackers of a and, in view of the recursion, on

Att⋆F ({a}), we have Degnsa
F (a) = Degnsa

F⊕F ′(a).

Directionality. Trivial

Maximality. Let F = (A,R) be an AG and a ∈ A such that AttF (a) = ∅. By
definition, if AttF (a) = ∅ then we have ∑b∈AttF (a) Deg

nsa
G (b) = 0. Consequently,

DegnsaG (a) = 1.
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Weakening. Let F = (A,R) be an AG and let argument a ∈ A such that ∃b ∈
AttF (a), DegnsaG (b) > 0. Clearly, argument b cannot be a self-attacking argument
because DegnsaG (b) > 0.
We have two possibilities for a:

• If a is a self-attacking argument then, by definition, we have DegnsaG (a) = 0 < 1
which satisfies the principle.

• If a is not a self-attacking argument then we have

∑
b′∈AttF (a)

DegnsaG (b′) > 0

1 + ∑
b′∈AttF (a)

DegnsaG (b′) > 1

1
1 + ∑b′∈AttF (a)

DegnsaG (b′)
< 1

DegnsaG (a) < 1

showing that the principle is satisfied.

Counting. Let F = (A,R) be an AG and a, b ∈ A such that i) DegnsaG (a) > 0 and ii)
AttF (b) = AttF (a) ∪ {y} with y ∈ A\AttF (a) and DegnsaG (y) > 0.
Clearly, a cannot be a self-attacking argument because DegnsaG (a) > 0.
In addition, if b is a self-attacking argument then DegnsaG (b) = 0 < DegnsaG (a) which
satisfies the principle.
So, if a and b are not self-attacking arguments, by definition, we have:

∑
b′∈AttF (b)\{y}

DegnsaG (b′) = ∑
a′∈AttF (a)

DegnsaG (a′)

∑
b′∈AttF (b)

DegnsaG (b′) = ∑
a′∈AttF (a)

DegnsaG (a′) + DegnsaG (y)

Since DegnsaG (y) > 0, we have:

∑
b′∈AttF (b)

DegnsaG (b′) > ∑
a′∈AttF (a)

DegnsaG (a′)

1 + ∑
b′∈AttF (b)

DegnsaG (b′) > 1 + ∑
a′∈AttF (a)

DegnsaG (a′)

1
1 + ∑b′∈AttF (b) Deg

nsa
G (b′)

<
1

1 + ∑a′∈AttF (a) Deg
nsa
G (a′)

DegnsaG (b) < DegnsaG (a)

Compensation. Figure 8.1 is an example showing that there exists an AG such that
i) DegnsaG (a) > 0; ii) |AttF (a)| = |{b, c}| = 2 > 1 = |{g}| = |AttF ( f )|; iii)
DegnsaG (g) > DegnsaG (b) and DegnsaG (g) > DegnsaG (c) and DegnsaG (a) = DegnsaG ( f ).

Strong Self-Contradiction. Let F = (A,R) be an AG and a ∈ A.
(⇐) Let us suppose that (a, a) ∈ R. By definition of nsa, DegnsaG (a) = 0.
(⇒) Let us suppose that DegnsaG (a) = 0. Again, by definition, for any AG and any
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ecb

a

g

f d

DegnsaG (d) = DegnsaG (e) = DegnsaG (g) = 1
DegnsaG (b) = DegnsaG (c) = 0.5
DegnsaG ( f ) = 0.5
DegnsaG (a) = 0.5

FIGURE 8.1: nsa satisfies Compensation

non-self-attacking argument a, we have
1

1 + ∑b∈AttF (a) Deg
nsa
G (b)

> 0. Consequently,

the only way to obtain DegnsaG (a) = 0 is when (a, a) ∈ R.
Self-Contradiction. Implied by Strong Self-Contradiction which is satisfied by nsa.

The other principles are not satisfied because of incompatibilities :

• Equivalence and Self-Contradiction are incompatible.

• Neutrality and Strong Self-Contradiction are incompatible.

• Reinforcement and Strong Self-Contradiction are incompatible.

• Weakening Soundness and Strong Self-Contradiction are incompatible.

• Cardinality Precedence and Compensation are incompatible.

• Quality Precedence and Compensation are incompatible.

• Resilience and Strong Self-Contradiction are incompatible.

Proposition 10. The gradual semantics M&T satisfies Anonymity, Independence, Direc-
tionality, Maximality, Weakening, Compensation, Self-Contradiction and Strong Self-Contradiction.
The other principles are not satisfied.

Proof.

Satisfied principles

Anonymity. See (Bonzon et al., 2016).

Independence. See proof of Proposition 9 in (Matt and Toni, 2008).

Directionality. The sets of strategies of the players are the same in the (G, x) and
(G′, x) games because the set of arguments remains unchanged. This implies that
there is no impact on the payoff matrix. Therefore, the acceptability of a given argu-
ment only depends on arguments which have a path to this argument.
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Maximality. See proof of Proposition 4 in (Matt and Toni, 2008).

Weakening. This result is a direct consequence of the result from Proposition 5.b
in (Matt and Toni, 2008) stating that if there exist n attacks against an argument
x, then DegMTG (x) < 1 − 1

2 f (n) where f (n) = n
n+1 . Indeed, one can easily deduce

from this formula that whatever the number of attackers of x and regardless of their
degree of acceptability, the degree of x will always be strictly less than 1 because
∀n > 0, DegMTG (x) < 1− 1

2 f (n) < 1, in accordance with the Weakening principle.

Compensation. Figure 8.2 is an example showing that there exists an AG such that :

i) DegMTG (b1) > 0;

ii) |AttF (b1)| = |{b2, b4}| = 2 > 1 = |{a2}| = |AttF (a1)|;

iii) DegMTG (a2) > DegMTG (b2) and DegMTG (a2) > DegMTG (b4)
and DegMTG (a1) = DegMTG (b1).

a1a2a3a4a5

b1b2b3

b4b5

DegMTG (a5) = DegMTG (b3) = DegMTG (b5) = 1
DegMTG (a4) = DegMTG (b2) = DegMTG (b4) = 0.25
DegMTG (a3) = 0.5
DegMTG (a2) ≃ 0.386
DegMTG (a1) = 0.5
DegMTG (b1) = 0.5

FIGURE 8.2: The gradual semantics M&T satisfies the Compensation
principle

Self-Contradiction. See (Bonzon et al., 2016).

Strong Self-Contradiction. See proof of Proposition 3 in (Matt and Toni, 2008).

Unsatisfied principles

Neutrality. Incompatible with Self-Contradiction which is satisfied

Equivalence. Incompatible with Self-Contradiction which is satisfied

Counting. To show that the semantics M&T does not satisfy the Counting principle,
consider the AG represented in Figure 8.3.

The principle says that DegMTG (a2) > DegMTG (a1) because i) DegMTG (a2) > 0 and ii)
AttF (a1) = AttF (a2) ∪ {a3} where a3 /∈ AttF (a2) and DegMTG (a3) > 0. However,
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a1

a2

a3a4

a5a6 DegMTG (a6) = DegMTG (a4) = 1
DegMTG (a5) = DegMTG (a3) = 0.25
DegMTG (a2) = 0.5
DegMTG (a1) = 0.5

FIGURE 8.3: The gradual semantics M&T falsifies the Counting prin-
ciple

when the semantics is applied on F , we have DegMTG (a2) = DegMTG (a1), contradicting
the principle.

Weakening Soundness. Incompatible with Strong Self-Contradiction which is satis-
fied.

Cardinality Precedence. Incompatible with Compensation which is satisfied.

Quality Precedence. Incompatible with Compensation which is satisfied. □

Lemma 3. Let ⟨A,R⟩ ∈ AG, a, b ∈ A and i ∈N.

• If a ∈
i⋃

j=1
F j(∅) and b /∈

i⋃
j=1
F j(∅), then DegJacG (a) > DegJacG (b).

• If the set
⋃F i≥1(∅) attacks a and does not attack b, then DegJacG (a) < DegJacG (b).

Proof of Proposition 14. From (A.F., 1996), ∀n ≥ 0, J n = 2n−(−1)n

3 (called Binet
formulae). Since J = (J

n+1

2n )n≥0, it follows that Jn = 1
3 (2 + (− 1

2 )
n). Let J1 = (Jn

1)
n≥0

and J2 = (Jn
2)

n≥0 be two sub-series of J such that for any n ≥ 0: Jn
1 = J2n and

Jn
2 = S2n+1.

We show that J1 is strictly decreasing while J2 is strictly increasing. Obviously,
Jn+1

1 − Jn
1 = 1

3 (2 + ( 1
2 )

n+1)− 1
3 (2 + ( 1

2 )
n) = − 1

3 ×
1

2n+1 . Since 1
2n+1 > 0, then Jn+1

1 −
Jn

1 < 0 and so Jn
1 > Jn+1

1 .
In a similar way we have Jn+1

2 − Jn
2 = 1

3 (2− ( 1
2 )

n+1) − 1
3 (2− ( 1

2 )
n) = 1

3 ×
1

2n+1 .
Since 1

2n+1 > 0, then Jn+1
1 − Jn

1 > 0 and so Jn
1 < Jn+1

1 .

Obviously, Jn
1 > Jn

2 because
2n+1+1

3
2n >

2n+1−1
3

2n . Since Jn
1 is strictly decreasing with

J1
1 = 1 then ∀n, Jn ≤ 1. From (A.F., 1988), ∀n ≥ 0, J n ≥ 0 and thus Jn ≥ 0.

Finally, it is easy to check that lim
n→∞

Jn
1 = lim

n→∞
Jn

2 = 2
3 . Then, J ∈ S∗.

Theorem 10. Let G = ⟨A, σ,R⟩, a ∈ A and Jac a mapping from A to [0, 1] such that for

any a ∈ A, DegJacG (a) = 1−
max
bRa

DegJacG (b)

2 . The following hold:

• Jac is based on the series J

• Jac ∈ Sem∗

• for any a ∈ A, DegJacG (a) ∈ [ 1
2 , 1]

Proof of Theorem 10. Let ⟨A,R⟩ ∈ AG, a ∈ A, and i ∈N.
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▶ Let: (P) DegJacG (a) = Ji
1 if a ∈ F i(∅) \

i−1⋃
j=1
F j(∅),

(Q) DegJacG (a) = Ji
2 if F i(∅) attacks a and

i−1⋃
j=1

F j(∅) does not attack a.

We prove by induction that the property P ∧Q is true for any i ∈N.

Case i = 1. F 1(∅) = {x ∈ A | Att(a) = ∅}. Furthermore, DegJac(a) = 1 = J1
1 if

Att(a) = ∅, and so (P) holds for i = 1.

By definition of Jac, for any a ∈ A, DegJac(a) = 1
2 iff ∃b ∈ Att(a) such that

DegJac(b) = 1. Hence, DegJac(a) = 1
2 = J1

2. Thus, (Q) holds for i = 1.

Case i > 1. Assume that the property P&Q is true at step i and let us show that it
holds at step i + 1.

Assume a ∈ F i+1(∅) \
( i⋃

j=1
F j(∅)

)
. Hence, Att(a) ̸= ∅ and a is defended by

F i(∅), i.e., ∀b ∈ Att(a), ∃c ∈ F i(∅) such that cRb. There are two sub-cases:

•
i−1⋃
j=1
F j(∅) does not attack any b ∈ Att(a). Thus, ∀b ∈ Att(a), DegJac(b) =

Ji
2 (by assumption). Then, DegJac(a) = 1− Ji

2
2 = Ji+1

1 . (from Lemma 2).

•
i−1⋃
j=1
F j(∅) attacks some b ∈ Att(a). This means that ∃j < i such that

F j(∅) attacks b and
j−1⋃
k=1
F k(∅) does not attack b. By assumption, DegJac(b) =

J
j
2. But since a /∈

i⋃
k=1
F k(∅), then ∃b′ ∈ Att(a) such that F i(∅) attacks b′

and
i−1⋃
k=1
F k(∅) does not attack b′. Thus, by assumption, DegJac(b′) = Ji

2.

Since the subsequence {J2}n is strictly increasing, then Ji
2 > J

j
2 and so

max
bRa

DegJac(b) = Ji
2 and DegJac(a) = 1− Ji

2
2 = Ji+1

1 (from Lemma 2).

Assume now that F i+1(∅) attacks a and
i⋃

j=1
F j(∅) does not attack a. Thus,

Att(a) = X1 ∪ X2 such that:

• X1 ⊆ F i+1(∅) \
( i⋃

j=1
F j(∅)

)
• X2 ∩

( i+1⋃
j=1
F j(∅)

)
= ∅.

From Property (P) above, ∀b ∈ X1, DegJac(b) = Ji+1
1 . There are two possibili-

ties:

• i) X2 = ∅. Hence, DegJac(a) = 1− Ji+1
1
2 = Ji+1

2 .
• ii) X2 ̸= ∅. From Lemma 3, X1 >m X2. So, max

bRa
DegJac(b) = max

(bRa) and b∈X1

DegJac(b).

So, DegJac(a) = 1− Ji+1
1
2 = Ji+1

2 .
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▶ Let now a ∈ A such that a /∈ ⋃F i≥1(∅) and a is not attacked by
⋃F i≥1(∅).

From Lemma 3, for all b ∈ Gr, DegJac(a) < DegJac(b) and from the first property
of Theorem 10, DegJac(a) < Ji

1 for all i ∈ N. From Lemma 3, for all c ∈ Gr+,
DegJac(a) > DegJac(c) and from the second property of Theorem 10, DegJac(a) > Ji

2
for all i ∈ N. Hence, for all i ∈ N, Ji

1 > DegJac(a) > Ji
2. DegJac(a) = lim

n→∞
Jn

1 =

lim
n→∞

Jn
2 = 2

3 .

Property 6. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• Deg
g
G(a) ∈ T \ {α}

• Degi
G(a) ∈ T \ {α}

• If stable extensions exist, Degs
G(a) ∈ T \ {β}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. Grounded (resp. ideal) extension is
unique, thus α cannot be assigned to an argument. By definition, a stable extension
attacks every argument it does not contain, hence for every argument a, either a is
in all stable extensions or attacked by at least one. Hence, β can never be ascribed to
a.

The following lemma shows links between degrees assigned by stable semantics
and those ascribed by preferred semantics to an argument.

Lemma 4. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degs(a) = 1, then Degp(a) ∈ {α, 1}

• If Degs(a) = α, then Degp(a) = α

• If Degs(a) = β, then Degp(a) ∈ {0, β, α, 1}

• If Degs(a) = 0, then Degp(a) ∈ {0, α}

Proof. Let G = ⟨A,R⟩ be an AF and a ∈ A. Let SE(G) and PE(G) denote respec-
tively the set of stable extensions and preferred extensions of G.

Degs(a) = 1 This means that SE(G) ̸= ∅. Since SE(G) ⊆ PE(G), there exists at least
one preferred extension that contains a. So, Degp(a) ≥ α.

Degs(a) = α Thus, SE(G) ̸= ∅ and SE(G) ⊆ PE(G). By Def. 9, there exists at least
one stable (thus one preferred) extension that contains a, and at least one stable
(thus one preferred) extension that does not contain a. Then, Degp(a) = α.

Degs(a) = β This means SE(G) = ∅, hence Degp(a) ∈ {0, β, α, 1}.

Degs(a) = 0 Thus, SE(G) ̸= ∅. By Def. 9, a does not belong to any stable extension,
then a does not belong to all preferred extensions (i.e. Degp(a) ̸= 1). Fur-
thermore, a is attacked by at least one stable extension, and so a is attacked
by at least one preferred extension (since SE(G) ⊆ PE(G)). This means that
Degp(a) ̸= β. There are two possibilities: i) a belongs to at least one preferred
extension, then Degp(a) = α; ii) otherwise Degp(a) = 0.

The following results show how strengths vary from preferred semantics to sta-
ble.
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Lemma 5. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. If SE(G) = ∅, then for any
Degp(a) ∈ T, it holds Degs(a) = β. Else,

• If Degp(a) = 1, then Degs(a) = 1.

• If Degp(a) = α, then Degs(a) ∈ {0, α, 1}.

• If Degp(a) = β, then Degs(a) = 0.

• If Degp(a) = 0, then Degs(a) = 0.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. Assume that SE(G) = ∅, then by
definition, Degs(a) = β. Assume now that SE(G) ̸= ∅.

Degp(a) = 1 Then, a belongs to every preferred extension. Since SE(G) ⊆ PE(G),
then a belongs to every stable extension, so Degs(a) = 1.

Degp(a) = α Thus, a belongs to at least one preferred extension and does not belong
to another extension. There are two cases: i) a belongs to at least one stable
extension, then Degs(a) ∈ {α, 1}, or it does not belong to any extension, in
which case Degs(a) = 0 (since stable extensions exist, and they attack every
argument they do not contain).

Degp(a) = β By definition, a does not belong to any preferred extension, thus it does
not belong to any stable extension. Since the latter attack every argument left
outside, then Degs(a) = 0.

Degp(a) = 0 By definition, a does not belong to any preferred extension, thus it does
not belong to any stable extension. Since the latter attack every argument left
outside, then Degs(a) = 0.

The following two lemmas establish links between the degrees assigned to argu-
ments by preferred and grounded semantics. Recall that T = {1, α, β, 0}.

Lemma 6. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degg(a) = 1, then Degp(a) = 1.

• If Degg(a) = β, then Degp(a) ∈ T.

• If Degg(a) = 0, then Degp(a) = 0.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

Degg(a) = 1 This means that a belongs to the grounded extension. Since the latter is
included in every preferred extension, then Degg(p) = 1.

Degg(a) = β This means that a is not in the grounded extension and is not attacked
by it. Hence, Degp(a) ∈ {0, β, α, 1}.

Degg(a) = 0 This means that the grounded extension attacks a. Since the latter is
included in every preferred extension, then each preferred extension attacks a,
and so by definition Degp(a) = 0.

Lemma 7. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.
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• If Degp(a) = 1, then Degg(a) ∈ {β, 1}.

• If Degp(a) = α, then Degg(a) = β.

• If Degp(a) = β, then Degg(a) = β.

• If Degp(a) = 0, then Degg(a) ∈ {0, β}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

Degp(a) = 1 There are two possibilities: i) a is in the grounded extension, then Degg(a) =
1, and ii) a is not in the grounded extension, then Degg(a) = β. Indeed, the
grounded extension does not attack a since it is part of every preferred exten-
sion, which are conflict-free.

Degp(a) = α If the grounded extension is empty, then Degg(a) = β. Assume it is not
empty. Since a does not belong to at least one preferred extension, then a is not
in the grounded extension. Furthermore, the latter does not attack a. Indeed, if
the grounded extension attacks a, then every preferred extension attacks a in-
cluding the one that contains a. This contradicts the conflict-freeness property
of extensions. Hence, Degg(a) = β.

Degp(a) = β This means that a does not belong to any preferred extension, thus does
not belong to the grounded extension. Furthermore, a is not attacked by any
preferred extension, then so is for the grounded extension. Then, Degg(a) = β.

Degp(a) = 0 This means that a does not belong to any preferred extension, thus it
does not belong to the grounded extension. Thus, Degg(a) ≤ β.

Lemma 8. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degs(a) = 1, then Degg(a) ∈ {β, 1}.

• If Degs(a) = α, then Degg(a) = β.

• If Degs(a) = 0, then Degg(a) ∈ {0, β}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

Degs(a) = 1 Thus, SE(G) ̸= ∅ and ∀E ∈ SE(G), a ∈ E. Since Gr ⊆ Ei, ∀Ei ∈ SE(G),
then Gr does not attack a. So, Degg(a) ∈ {β, 1}.

Degs(a) = α Hence, ∃E, E′ ∈ SE(G) s.t. a ∈ E and a /∈ E′. Since Gr ⊆ E and Gr ⊆ E′,
then a /∈ Gr. Furthermore, Gr does not attack a since E is conflict-free. Hence,
Degg(a) = β.

Degs(a) = 0 Thus, SE(G) ̸= ∅ and ∀E ∈ SE(G), a /∈ E. Since ∀E ∈ SE(G), Gr ⊆ E,
then a /∈ Gr. Thus, Degg(a) ∈ {0, β}.

Lemma 9. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degg(a) = 1, then Degs(a) ∈ {β, 1}.

• If Degg(a) = β, then Degs(a) ∈ T.
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• If Degg(a) = 0, then Degs(a) ∈ {0, β}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

Degg(a) = 1 Thus, a ∈ Gr. There are two possibilities: i) SE(G) = ∅, hence Degs(a) =
β, ii) SE(G) ̸= ∅. Since ∀E ∈ SE(G), Gr ⊆ E, then Degs(a) = 1.

Degg(a) = β Then Degs(a) ∈ T, i.e., all three values are possible.

Degg(a) = 0 This means that a /∈ Gr and Gr attacks a. There are two possibilities: i)
SE(G) = ∅, hence Degs(a) = β, ii) SE(G) ̸= ∅. Since ∀E ∈ SE(G), Gr ⊆ E, then
Degs(a) = 0 as every extension attacks a.

Lemma 10. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degg(a) = 1, then Degi(a) = 1.

• If Degg(a) = β, then Degi(a) ∈ {0, β, 1}.

• If Degg(a) = 0, then Degi(a) = 0.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. Let Gr and IE(G) denote respectively
the grounded extension and the ideal extension of G.

Degg(a) = 1 This means that a ∈ Gr. Since Gr ⊆ IE(G) then a ∈ IE(G) and so
Degi(a) = 1.

Degg(a) = β This means that a does not belong to the grounded extension. Further-
more, a is not attacked by the grounded extension. Then, Degg(a) ∈ {0, β, 1}.

Degg(a) = 0 This means a /∈ Gr and Gr attacks a. Since Gr ⊆ IE(G) and IE(G) is
conflict-free, then a /∈ IE(G). Thus, Degi(a) = 0.

Lemma 11. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.

• If Degi(a) = 1, then Degg(a) ∈ {β, 1}.

• If Degi(a) = β, then Degg(a) = β.

• If Degi(a) = 0, then Degg(a) ∈ {0, β}.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A. Let Gr and IE(G) denote respectively
the grounded extension and the ideal extension of G.

Degi(a) = 1 Then a ∈ IE(G). There are two possibilities: i) a ∈ Gr in which case
Degg(a) = 1, and ii) a /∈ Gr. Since Gr ⊆ IE(G), Gr does not attack a (due to the
conflict-freeness of IE(G)). Hence, Degg(a) = β.

Degi(a) = β Thus a /∈ IE(G) and IE(G) does not attack a. Since Gr ⊆ IE(G), then
a /∈ Gr and Gr does not attack a. Thus, Degg(a) = β.

Degi(a) = 0 Thus a /∈ IE(G) and so a /∈ Gr. Consequently, Degg(a) ≤ β.
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Theorem 18. The four semantics (stable, preferred, grounded, ideal) are pairwise weakly
equivalent.

Proof. Let G = ⟨A, σ,R⟩ ∈ AG and a, b ∈ A.
Let us show that preferred and stable are weakly equivalent.

• Assume that a ≻s b. Thus, Degs(a) > Degs(b), by definition SE(G) ̸= ∅, and
from Lemma 6, Degs(a) ∈ {α, 1} and Degs(b) ∈ {0, α, 1}.

Degs(a) = 1 From Lemma 4, Degp(a) ≥ α. Furthermore, if Degs(b) = α, then
Degp(b) = α; and if Degs(b) = 0, Degp(b) ≤ α. Hence, Degp(a) ≥ Degp(b)
and a ⪰p b.

Degs
G(a) = α From Lemma 4, Degp(a) = α. Since Degs(a) > Degs(b), then
Degs(b) = 0. From Lemma 4, Degp(b) ≤ α. Thus, Degp(a) ≥ Degp(b) and
a ⪰p b.

• Assume that a ≻p b, i.e., Degp(a) > Degp(b). If SE(G) = ∅, then Degs(a) =
Degs(b) = β (from Lemma 5). Thus, a ≈s b. Assume now that SE(G) ̸= ∅.

Degp(a) = 1 From Lemma 5, Degs(a) = 1. Hence, Degs(a) ≥ Degs(b) and a ⪰s

b.

Degp(a) = α From Lemma 5, Degs(a) ∈ {0, α, 1}. Since Degp(b) < α, then
Degs(b) = 0 (from Lemma 5). So, Degs(a) ≥ Degs(b) and a ⪰s b.

Degp(a) = β This means that Degp(b) = 0. From Lemma 5, Degs(a) = Degs(b) =
0. Thus, a ≈s b.

We show that preferred and grounded are weakly equivalent.

• Assume that a ≻g b, then Degg(a) > Degg(b).

Degg(a) = 1 From Lemma 6, Degp(a) = 1, thus Degp(a) ≥ Degp(b), and so
a ⪰p b.

Degg(a) = β Hence, Degg(b) = 0. From Lemma 6, Degp(b) = 0, thus Degp(a) ≥
Degp(b), and so a ⪰p b.

• Assume that a ≻p b, then Degp(a) > Degp(b).

Degp(a) = 1 From Lemma 7, Degg(a) ≥ β. Besides, Degp(b) ∈ {0, β, α}, and
from Lemma 7, Degg(b) ≤ β. So, Degg(a) ≥ Degg(b) and a ⪰g b.

Degp(a) = α From Lemma 7, Degg(a) = β. Since, Degp(b) ∈ {0, β}, and from
Lemma 7, Degg(b) ≤ β. So, Degg(a) ≥ Degg(b) and a ⪰g b.

Degp(a) = β and Degp(b) = 0. From Lemma 7, Degg(a) = β and Degg(b) ≤ β.
So, Degg(a) ≥ Degg(b) and a ⪰g b.

Let us show that grounded and ideal are weakly equivalent.

• Assume that a ≻g b, then Degg(a) > Degg(b).

Degg(a) = 1 From Lemma 10, Degi(a) = 1, thus Degi(a) ≥ Degi(b), and so
a ⪰i b.

Degg(a) = β Hence, Degg(b) = 0. From Lemma 10, Degi(b) = 0, thus Degi(a) ≥
Degi(b), and so a ⪰i b.

• Assume that a ≻i b, then Degi(a) > Degi(b).
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Degi(a) = 1 From Lemma 11, Degg(a) ≥ β. Besides, Degi(b) ≤ β, and from
Lemma 11, Degg(b) ≤ β. So, Degg(a) ≥ Degg(b) and a ⪰g b.

Degi(a) = β and thus Degi(b) = 0. From Lemma 11, Degg(a) = β and Degg(b) ≤
β. So, Degg(a) ≥ Degg(b) and a ⪰g b.

Let us show that grounded and stable are weakly equivalent.

• Assume that a ≻g b, then Degg(a) > Degg(b).

Degg(a) = 1 and Degg(b) = β. There are two cases: i) SE(G) = ∅, so Degs(a) =
Degs(b) = β and a ⪰s b. ii) SE(G) ̸= ∅. Since ∀E ∈ SE(G), Gr ⊆ E and
a ∈ Gr, then Degs(a) = 1 and consequently, Degs(a) ≥ Degs(b) and a ⪰s b.

Degg(a) = 1 and Degg(b) = 0. From Lemma 9, Degs(a) ≥ β and Degs(b) ≤ β.
Consequently, Degs(a) ≥ Degs(b) and a ⪰s b.

Degg(a) = β and so Degg(b) = 0. There are two cases: i) SE(G) = ∅, so
Degs(a) = Degs(b) = β and a ⪰s b. ii) SE(G) ̸= ∅ and ∀E ∈ SE(G), Gr ⊆
E. Since Degg(b) = 0, then Gr attacks b. Hence, every stable extension
attacks b. Consequently, Degs(b) = 0, Degs(a) ≥ Degs(b) and a ⪰s b.

• Assume that a ≻s b, then Degs(a) > Degs(b).

Degs(a) = 1 From Lemma 8, Degg(a) ≥ β. Besides, Degs(b) ≤ α, and from
Lemma 8, Degg(b) ≤ β. So, Degg(a) ≥ Degg(b) and a ⪰g b.

Degs(a) = α , thus Degg(a) = β from Lemma 8. Furthermore, Degs(b) = 0 and
from the same lemma Degg(b) ≤ β. So, a ⪰g b.

The proofs of weak equivalence of ideal with (preferred, stable) are similar to
those of grounded with the same semantics.

Theorem 21. For any G = ⟨A, σ ≡ 1,R⟩ ∈ AG, it holds that

DegTBG ≡ DegISG .

Moreover, for any x ∈ {TB, IS}, for any a ∈ A,

• Degx
G(a) = 1 iff a ∈ Gr.

• Degx
G(a) = 0 iff Gr attacks a.

• Degx
G(a) = 1

2 iff a /∈ Gr and Gr does not attack a.

Proof. Let ⟨A, σ ≡ 1,R⟩ ∈ AG and a ∈ A.
▶ We show the result for Trust-based semantics.

Let (Oi) and (Qi) be the following two properties:

(Pi) ∀a ∈ F i(∅) \ ∪i−1
j=1F j(∅), DegTB(a) = 1.

(Qi) ∀a ∈ A s.t. a is attacked by F i(∅) \ ∪i−1F j(∅), DegTB(a) = 0.

Let us show that (P1) holds. Let a ∈ F 1(∅), i.e., Att(a) = ∅. By definition
max
bRa

Deg(b) = 0. So, fn(a) = 1
2 fn−1(a) + 1

2 . From ((Costa Pereira, Tettamanzi, and

Villata, 2011)), lim
n→∞

fn(a) = l with l ∈ [0, 1]. Then, l = 1
2 l + 1

2 and so l = 1, which

shows (P1).
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Let’s show that (Q1) holds. Let b ∈ A such that Att(b) = {a1, . . . , ak} with a1 ∈
F 1(∅). DegTB(b) = lim

n→∞
fn(b) = 1

2 lim
n→∞

fn−1(b)− 1
2 max

[
lim
n→∞

fn−1(a1), . . . , lim
n→∞

fn−1(ak)
]
+

1
2 . From ((Costa Pereira, Tettamanzi, and Villata, 2011)), ∀i = 1, k, lim

n→∞
fn−1(ai) = li

with li ∈ [0, 1]. From (P1), lim
n→∞

fn−1(a1) = 1. Hence, lim
n→∞

fn(b) = 1
2 lim

n→∞
fn−1(b). Since

lim
n→∞

fn(b) = lim
n→∞

fn−1(b), then lim
n→∞

fn(b) = 0. Thus, DegTB(b) = 0. This shows (Q1).
Assume now that the property (Pi) holds and let us show that (Pi+1) holds as

well. Let a ∈ F i+1(∅) and a ̸∈
i⋃
1
F j(∅).

DegTB(a) = lim
n→∞

fn(a) =

lim
n→∞

1
2
[ fn−1(a)−max

bRa
fn−1(b) + 1]

=
1
2
[ lim
n→∞

( fn−1(a)−max
bRa

fn−1(b) + 1)]

=
1
2

lim
n→∞

fn−1(a)− 1
2

max
bRa

lim
n→∞

fn−1(b) +
1
2

Since a ∈ F i+1(∅) \
i⋃

j=1
F j′(∅), then F i(∅) defends a. This means, ∀xRa, ∃y ∈

F i(∅) such that yRx and . DegTB(y) = 1 (from (Pi) and DegTB(x) = 0 (from (Qi).
Hence,

max lim
n→∞

fn−1(b) = max
bRa

lim
n→∞

DegTB(b) = 0.

Thus, DegTB(a) = 1
2 lim

n→∞
fn−1(a) + 1

2 . Since the series fn converges and lim
n→∞

fn(a) =

lim
n→∞

fn−1(a) = l, then l = 1
2 l + 1

2 and so l = 1 and DegTB(a) = 1.

Assume now that the property (Qi) holds and let us show that (Qi+1) holds as
well. Let now x ∈ A such that F i+1(∅) attacks x.

DegTB(x) = lim
n→∞

fn(x) =

1
2
[ lim
n→∞

( fn−1(x)−max
yRx

lim
n→∞

fn−1(y) + 1)].

Note that max
yRx

lim
n→∞

fn−1(y) = max
yRx

lim
n→∞

fn(y) = max
yRx

DegTB(y). Since F i+1 attacks x,

then ∃y∗ ∈ F i+1(∅) ∩ Att(x). From (Pi), DegTB(y∗) = 1, thus max
yRx

DegTB(y) = 1 and

consequently, lim
n→∞

fn(x) = 1
2 lim

n→∞
fn−1(x). Since fn converges to some l ∈ [0, 1], thus

l = 1
2 l and so l = 0.

Let us now that DegTB(a) = 1
2 iff a /∈ Gr and Gr does not attack a. Let a ̸∈ Gr and

a not attacked by Gr. From (P), DegTB(a) < 1 and from (Q), DegTB(a) > 0. Hence,
0 < DegTB(a) < 1. Furthermore, Att(a) = {x1, .., xn} ̸= ∅ and ∀xi ∈ Att(a), xi /∈ Gr,
so DegTB(xi) < 1. Since a ̸∈ Gr, it is not defended against all its attacks by Gr. Let
Att(a) = X ∪ Y with X = {x not attacked by Gr} and Y = {x attacked by Gr}.
Obviously, (i) X ̸= ∅ and (ii) ∀x ∈ Y, DegMbs(x) = 0 (from the second property of the
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theorem). Hence, DegMbs(a) = lim
n→∞

fn+1(a) = 1
2 lim

n→∞
fn(a)− 1

2 max
x∈Att(a)

[ lim
n→∞

fn(x)]+ 1
2 .

By definition, lim
n→∞

fn(x) = DegMbs(x). From (ii) it follows that

max
x∈Att(a)

[ lim
n→∞

fn(x)] = max
y∈X

[ lim
n→∞

fn(y)]. (1)

It has been shown in ((Costa Pereira, Tettamanzi, and Villata, 2011)) that the series
fn converges to a value l ∈ [0, 1]. Furthermore, lim

n→∞
fn+1(a) = lim

n→∞
fn(a) = l. Let

l′ = max
y∈X

lim
n→∞

fn(y). Hence l + l′ = 1.

Let us show that l = l′ = 1
2 . Equation (1) shows that DegTB(a) depends only on

its stronger attacker, and the latter is neither in Gr nor attacked by Gr. Let us define
the finite sequence ⟨x1, x2, . . . , xk⟩ such that:

• x1 = a,

• xi is the strongest attacker of xi−1, for i > 1.

• xi appears at most twice in the sequence, and there is no other argument xj that
appears twice and j < i.

Since the number of arguments is finite and ∀xi, Att(xi) ̸= ∅, then ∃j < k such
that xk = xj. This means the sequence contains a cycle C. Let li = lim

n→∞
fn(xi). From

the above reasoning, ∀i = 1, k, li + li+1 = 1. Thus, li = li+2. Indeed, l1 = l3 = l5 = . . .
and l2 = l4 = l6 = . . .. There are thus only two values at most: l = l1 = l3 = l5 = . . .
and l′ = l2 = l4 = l6 = . . .. There are two cases:

• C is an odd-length cycle: Hence, lj = l and lk = l′ or the converse. But xj = xk

and an argument has one value, thus l = l′. Since l + l′ = 1, then l = l′ = 1
2 .

• C is an even-length cycle: Recall that lj = 1
2 lj +

1
2 −

1
2 lj+1. If lj+1 ≥ 1

2 , then
lj ≤ 1

2 and if lj+1 ≤ 1
2 , then lj ≥ 1

2 . Thus, 1
2 ≤ lj ≤ 1

2 and so lj = 1
2 . Since

lj + lj+1 = 1, then lj+1 = 1
2 . Thus, l = l′ = 1

2 .

▶ We show the result for Iterative Schema semantics. Let a ∈ A. From Corol-
lary 2.4 in ((Gabbay and Rodrigues, 2015)), DegIS(a) ∈ {0, 1

2 , 1}. The rest of the proof
is similar to the above one for TB.

Theorem 27. In case of flat argumentation graphs, Mbs (resp. EMbs) is weakly equivalent
with ideal, stable and preferred semantics.

Proof. Let G = ⟨A, σ ≡ 1,R⟩ ∈ AG, and a, b ∈ A.
▶ Let us show that Max-based and stable are weakly equivalent. If SE(G) = ∅,

then a ≈s b for all a, b ∈ A. Assume now that SE(G) ̸= ∅ and a ≻s b. So, Degs(a) >
Degs(b). There are three cases:

Degs(a) = 1. This means that a ∈ ⋂
Ei∈SE(G)

Ei. Since Gr ⊆ ⋂
Ei∈SE(G)

Ei, then there are

two possibilities:

1) a ∈ Gr, in which case DegMbs(a) = S i
1, for some i ∈N from Theorem 8, and

2) a /∈ Gr, and since Gr does not attack a (as stable extensions are conflict-free),
hence from Theorem 8, DegMbs(a) = 1

φ .

Since ∀i ∈N, S i
1 > 1

φ , then DegMbs(a) ≥ 1
φ .
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• Degs(b) = α. Thus, b /∈ Gr and Gr does not attack b (as stable extensions
are conflict-free), hence from Theorem 8, DegMbs(b) = 1

φ . This means that
DegMbs(a) ≥ DegMbs(b).

• Degs(b) = 0. Either b is attacked by Gr, in which case from Theorem 8,
DegMbs(b) = S i

2 for some i ∈ N, or b is not attacked by Gr, in which case
from Theorem 8, DegMbs(b) = 1

φ . Since ∀i ∈ N, S i
2 < 1

φ , then DegMbs(b) ≤
1
φ . Consequently, DegMbs(a) ≥ DegMbs(b).

Degs(a) = α. As seen above, DegMbs(a) = 1
φ . Since Degs(b) = 0, then from above

DegMbs(b) ≤ 1
φ . Consequently, DegMbs(a) ≥ DegMbs(b).

If Gr = ∅, then ∀a, b ∈ A, DegMbs(a) = DegMbs(b) = 1
φ and thus a ≈Mbs b. Assume

now that Gr ̸= ∅ and let a ≻Mbs b, i.e., DegMbs(a) > DegMbs(b).

Case a ∈ Gr. Since Gr ⊆ ⋂
Ei∈SE(G)

Ei, then Degs(a) = 1 and so a ⪰s b.

Case a ∈ Gr+. This means that both a, b are attacked by the grounded extension.
Indeed, Corollary 15 shows that arguments of Gr+ are weaker than those of Gr
and Gro. Hence, Degs(a) = Degs(b) = 0 and so a ≈s b.

Case a ∈ Gro. From Theorem 8, DegMbs(a) = 1
φ and b ∈ Gr+, which means that

Degs(b) = 0. So, Degs(a) ≥ Degs(b) and so a ⪰s b.

▶ Let us show that Max-based and preferred are weakly equivalent. Let a, b ∈ A.
If PE(G) = {∅}, then a ≈p b since Degp(a) = Degp(b) = β. Since Gr ⊆ ⋂

Ei∈PE(G)
Ei,

then Gr = ∅. From Theorem 8, ∀x ∈ A, DegMbs(x) = 1
φ . Consequently, a ≈Mbs b.

Assume that PE(G) ̸= {∅} and a ≻p b. There are three cases:

Degp(a) = 1. This means that a ∈ ⋂
Ei∈PE(G)

Ei. Since Gr ⊆ ⋂
Ei∈PE(G)

Ei, then there are

two possibilities:

1) a ∈ Gr, in which case DegMbs(a) = S i
1, for some i ∈ N (from Theorem 8), or

2) a /∈ Gr, and since Gr does not attack a (as preferred extensions are conflict-
free), hence from Theorem 8, DegMbs(a) = 1

φ . Since ∀i ∈ N, S i
1 > 1

φ , then

DegMbs(a) ≥ 1
φ .

• Degp(b) = α. Thus, b /∈ Gr and Gr does not attack b (as preferred exten-
sions are conflict-free), hence from Theorem 8, DegMbs(b) = 1

φ . This means
that DegMbs(a) ≥ DegMbs(b).

• Degp(b) = β. Thus, b /∈ ⋃
Ei∈PE(G)

Ei and is not attacked by
⋃

Ei∈PE(G)
Ei.

Consequently, b /∈ Gr and b is not attacked by Gr. From Theorem 8,
DegMbs(b) = 1

φ . Hence, DegMbs(a) ≥ DegMbs(b).

• Degp(b) = 0. Either b is attacked by Gr, in which case from Theorem 8,
DegMbs(b) = S i

2 for some i ∈ N, or b is not attacked by Gr, in which case
from Theorem 8, DegMbs(b) = 1

φ . Since ∀i ∈ N, S i
2 < 1

φ , then DegMbs(b) ≤
1
φ . Consequently, DegMbs(a) ≥ DegMbs(b).
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Degp(a) = α. Following the same reasoning as above, DegMbs(a) = 1
φ . From above

also, we have DegMbs(b) ≤ 1
φ . Consequently, DegMbs(a) ≥ DegMbs(b).

Degp(a) = β. Thus, DegMbs(a) = 1
φ . Since a ≻p b, then Degp(b) = 0. From above,

DegMbs(b) ≤ 1
φ . Thus, DegMbs(a) ≥ DegMbs(b).

If Gr = ∅, then ∀a, b ∈ A, DegMbs(a) = DegMbs(b) = 1
φ and thus a ≈Mbs b. Assume

now that Gr ̸= ∅ and let a ≻Mbs b, i.e., DegMbs(a) > DegMbs(b).

Case a ∈ Gr. Since Gr ⊆ ⋂
Ei∈PE(G)

Ei, then Degp(a) = 1 and so a ⪰p b.

Case a ∈ Gr+. This means that both a, b are attacked by the grounded extension.
Indeed, Corollary 15 shows that arguments of Gr+ are weaker than those of Gr
and Gro. Hence, Degp(a) = Degp(b) = 0 and so a ≈p b.

Case a ∈ Gro. From Corollary 15, b ∈ Gr+, which means that Degp(b) = 0. So,
Degp(a) ≥ Degp(b) and so a ⪰p b.

▶ Let us show that Max-based and ideal are weakly equivalent. Let a, b ∈ A.
If IE(G) = ∅, then a ≈p b since Degi(a) = Degi(b) = β. Since Gr ⊆ IE(G), then

Gr = ∅ and so from Theorem 8, DegMbs(a) = DegMbs(b) = 1
φ .

Assume that IE(G) ̸= ∅ and a ≻i b. There are two cases:

Degi(a) = 1. From Lemma 11, Degg(a) ≥ β. From Theorem 8, DegMbs(a) ≥ 1
φ . Since

Degi(a) > Degi(b), then Degi(b) ≤ β. From Lemma 11, Degg(b) ≤ β. From
Theorem 8, DegMbs(b) ≤ 1

φ . Hence, DegMbs(a) ≥ DegMbs(b).

Degi(a) = β. From Lemma 11, Degg(a) = β and from Theorem 8, DegMbs(a) = 1
φ .

Since Degi(a) > Degi(b), then Degi(b) = 0. From Lemma 11, Degg(b) ≤ β.
From Theorem 8, DegMbs(b) ≤ 1

φ . Hence, DegMbs(a) ≥ DegMbs(b).

If Gr = ∅, then ∀a, b ∈ A, DegMbs(a) = DegMbs(b) = 1
φ and thus a ≈Mbs b. Assume

now that Gr ̸= ∅ and let a ≻Mbs b, i.e., DegMbs(a) > DegMbs(b).

Case a ∈ Gr. Since Gr ⊆ IE(G), then Degi(a) = 1 and so a ⪰i b.

Case a ∈ Gr+. This means that both a, b are attacked by the grounded extension.
Indeed, Corollary 15 shows that arguments of Gr+ are weaker than those of Gr
and Gro. Hence, Degi(a) = Degi(b) = 0 and so a ≈i b.

Case a ∈ Gro. From Corollary 15, b ∈ Gr+, which means that Degi(b) = 0. So,
Degi(a) ≥ Degi(b) and so a ⪰i b.



79

Chapter 9

Résumé

L’argumentation, un sous-domaine de l’intelligence artificielle, est une approche du
raisonnement qui justifie les affirmations en interagissant avec des arguments. L’une
de ses étapes clés est l’évaluation de la force des arguments à l’aide de méthodes
formelles, appelées sémantiques.

Cette thèse contribue à la compréhension et au développement des fondements
théoriques des sémantiques. Ses contributions sont quadruples.

Premièrement, nous avons étudié la notion cruciale d’arguments qui s’auto-attaque,
proposé des postulats de rationalité décrivant comment les traiter et introduit de
nouvelles sémantiques qui les satisfont.

Deuxièmement, nous avons caractérisé diverses sémantiques en termes de séries,
fournissant les homologues mathématiques de ces sémantiques.

La troisième partie de la thèse a abordé le problème de la comparaison de la pléthore
de sémantiques existantes. Nous avons montré que les postulats de rationalité ne
sont pas suffisants pour une comparaison équitable des sémantiques, puis nous
avons introduit la nouvelle notion d’équivalence basée sur le classement produit
par les sémantiques. Nous avons comparé la plupart des sémantiques existantes et
caractérisé toute une classe d’équivalence.

La dernière partie de la thèse illustre les sémantiques dans le contexte du raison-
nement par cas (CBR). Nous avons commencé par poser les bases du CBR en four-
nissant un ensemble de principes qu’un modèle devrait satisfaire, et nous avons
proposé un modèle d’argumentation qui en satisfait la plupart.
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