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Summary

Titre: Approches en génétique des populations pour comprendre l’histoire des populations
d’Océanie.

Résumé:

Introduction

Au cours des 125 000 dernières années, l’homme moderne (Homo sapiens) s’est répandu
sur tous les continents et s’est installé dans divers écosystèmes, aussi extrêmes que le
désert du Sahara, le cercle polaire arctique ou l’Himalaya. Les données archéologiques
et linguistiques ont fourni des informations précieuses sur le rythme des dispersions
humaines à travers le monde, cependant de nombreuses questions restent ouvertes :
les populations ont-elles migré avec leurs langues et leurs modes de vie ? Les cultures
humaines définies par l’archéologie reflètent-elles des entités génétiques distinctes ?
Les dispersions humaines se sont-elles accompagnées d’un mélange génétique avec des
groupes locaux d’humains archaïques ou modernes ? Comment les humains se sont-ils
génétiquement adaptés aux environnements nouvellement colonisés ? L’avènement récent
des technologies de séquençage à haut débit permet désormais d’aborder ces questions
dans les moindres détails, à travers la caractérisation complète de la diversité génétique
des populations humaines vivant à di�erentes époques (époque actuelle ou passée). Les
approches de génétiques des populations sont ainsi très complémentaires aux études
archéologiques, anthropologiques et linguistiques. En e�et, elles perme�ent d’expliquer
d’autres face�es de l’histoire complexe des populations humaines.

�atre forces évolutives façonnent la diversité génétique d’une population : la mutation
qui crée la variation génétique, la dérive génétique qui tend à augmenter la di�érenciation
génétique des petites populations, les migrations ou le flux de gènes qui homogénéise
les populations et la sélection naturelle qui permet aux populations de s’adapter à leurs
environnements (c’est-à-dire la sélection naturelle positive) et de purger les mutations
délétères du génomes (c’est-à-dire la sélection négative). Les di�érents évènements
caractérisant l’histoire des peuples humains – les fluctuations au cours du temps de la
taille des populations, les évènements de métissage et d’introgression avec des populations
humaines aujourd’hui éteintes ou les événements d’adaptation génétique à de nouveaux
environnements - façonnent leur diversité génétique. Ainsi, la génétique des populations
peut être utilisé afin de reconstruire le passé démographique des di�èrent peuples et de
me�re en lumière les fonctions biologiques qui ont contribué à leur adaptation pour, in
fine, mieux comprendre leur susceptibilité face aux maladies.

L’Océanie

La région de l’Océanie couvre plus de 8 500 000 km2 de surface terrestre répartie entre
l’Australie/Papouasie-Nouvelle-Guinée et l’île de Pâques (l’île la plus à l’est du triangle
polynésien). Ce�e région du monde est peuplée par un peu plus de 40 000 000 habitants,
représentant uniquement environ 0,5 % de la population mondiale. Cependant, ce�e
région possède une incroyable diversité culturelle et linguistique avec environ 1 750
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langues di�érentes (25 % des langues mondiales, en excluant les langues parlées en
Australie) réparties en deux groupes : les langues austronésiennes et les langues papoues.
En plus de ces langues, les peuples insulaires d’Océanie parlent également le français,
l’anglais et di�érentes langues créoles ou « pidgin » comme le bichlamar qui est l’une des
langues o�icielles du Vanuatu.

�i sont les peuples du Pacific ? D’où viennent-ils ? Ces questions ont suscité
l’intérêt des premiers explorateurs scientifiques européens. En 1852, Dumont d’Urville,
un navigateur botaniste français, divise l’Océanie en trois régions afin de considérer la
diversité phénotypique et culturelle rapportée par les explorateurs européens : Mélanésie,
Polynésie et Micronésie. Cependant, ce�e classification géographique de l’Océanie a été
faite dans le cadre de la théorie raciale et deux de ces régions, la Mélanésie et la Micronésie
ne reflètent aucune réalité culturelle. Pour rendre compte de la richesse culturelle et
linguistique observée en Océanie ainsi que des di�érences d’origines et d’histoire des
peuples, les chercheurs préfèrent aujourd’hui utiliser un autre découpage : l’Océanie
proche, qui regroupe les îles peuplées pendant la période du Pléistocène, entre 50 000 et 25
000 ans et l’Océanie lointaine regroupant les îles peuplées durant la période de l’Holocène,
il y a environ 3 000 ans. Les données archéologiques, anthropologiques et linguistiques
recueillies depuis le XXe siècle ont fourni un éclairage crucial sur l’histoire du peuplement,
la répartition géographique des premiers peuples d’Océanie, leurs sociétés, leurs di�érents
modes de vie ainsi que sur les anciens réseaux d’échanges. L’ensemble de ces données
multidisciplinaires ont surtout permis de proposer des hypothèses et des modèles – encore
actuellement déba�us – sur l’histoire du peuplement de l’Océanie proche et lointaine.

Objectifs de la thèse

L’Océanie est composée de milliers d’îles regroupées en deux grands ensembles,
caractérisés par deux vagues de peuplement distinctes : l’Océanie proche et l’Océanie
lointaine. Le premier ensemble, comprenant la Nouvelle-Guinée, l’archipel Bismarck et
les Îles Salomon, a été peuplé par l’homme moderne (Homo sapiens) il y a environ 40 000
ans. Le deuxième, incluant toutes les autres îles d’Océanie, n’a été peuplé qu’il y a un peu
plus de 3 000 ans et ce par l’expansion de peuples parlant des langues austronésiennes,
probablement originaires de Taiwan (modèle «Out-Of-Taiwan »). Ce projet de thèse vise
à reconstituer l’histoire génétique des populations insulaires d’Océanie, dans le but de
reconstruire leur passé démographique pour à terme, mieux comprendre leur rapport
face aux maladies. Ainsi, nous avons séquencé l’ADN de 317 individus autochtones
répartis en 20 populations et couvrant l’ensemble des régions géographiques à la base de
l’histoire du peuplement de l’Océanie proche et lointaine. Plus précisément, mon projet de
thèse vise à (i) caractériser la diversité génétique des populations d’Océanie, (ii) retracer
tous les di�érents événements constituant leur histoire démographique, et enfin (iii)
évaluer la purge des mutations délétères (c’est-à-dire des mutations pouvant provoquer
des maladies) dans ces populations. Dans sa globalité, ce�e étude nous a permis d’en
apprendre davantage sur l’histoire génétique de l’Océanie, une région du monde qui a été
largement oubliée des études génétiques.
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Résumé des résultats
Histoire démographique des populations du pacifique

Pour reconstruire l’histoire du peuplement et du passé démographique des populations
insulaires du Pacifique, nous avons conjointement inféré les paramètres caractérisant
leur histoire démographique en utilisant des spectres de fréquences alléliques
multidimensionnels et une approche basée sur le maximum de vraisemblance.
Tout d’abord, nous avons exploré di�érentes topologies d’arbres et estimé les
paramètres démographiques des groupes d’Océanie proche (c’est-à-dire les groupes
de Nouvelle-Guinée, de l’archipel Bismarck et des Îles Salomon). Ce�e étude a révélé
que le peuplement de ce�e région avait été accompagné d’un e�et fondateur très fort,
environ 5 fois supérieur à celui observé pour le peuplement de l’Eurasie. Ce�e étude a
aussi permis d’inférer une divergence ancienne des di�érentes populations de ce�e région
remontant à la période du Pléistocène supérieur, il y 20 000 à 45 000 ans. Ces résultats
indiquent un isolement génétique rapide des di�érents groupes de l’Océanie proche, après
le peuplement initial daté d’environ 45 000 ans (données archéologiques, (O’Connell et al.
2018a; O’Connell et Allen 2015)).

Nous avons également testé di�érentes topologies et estimé des paramètres
démographiques pour les peuples de l’Océanie lointaine de l’ouest (Vanuatu). Nous
avons ainsi confirmé l’expansion récente (inférieure à 3 000 ans) de groupes originaires de
l’Archipel Bismarck vers l’Océanie lointaine de l’ouest, notamment en direction des îles
du Vanuatu, en accord avec des études récentes d’ADN ancien (Posth et al. 2018; Lipson
et al. 2018). Ces résultats ont également suggéré des contacts complexes et multiples
entre des groupes d’Asie de l’est et des groupes d’Océanie proche, en désaccord avec
l’hypothèse « Out-of-Taiwan ». En raison d’un manque de continuité entre les premiers
ni-Vanuatu et les ni-Vanuatu actuels, comme le montrent les études d’ADN ancien et
les études craniométriques (Posth et al. 2018 ; Lipson et al. 2018 ; Valentin et al. 2016),
l’interprétation des modèles démographiques utilisant l’ADN moderne est très limitée.

En supposant un modèle d’isolement avec migration, nous avons estimé que les peuples
autochtones taïwanais et les locuteurs malayo-polynésiens ont divergé il y a environ 7
300 ans, en contradiction avec le modèle « Out-of-Taiwan » - hypothèse qui prédit un
évènement de dispersion de Taïwan il y a environ 4 800 ans et qui aurait apporté à la
fois l’agriculture et les langues austronésiennes en Océanie (Bellwood 1997). Nous avons
confirmé ces temps de divergence anciens, même en considérant des flux de gènes dans les
groupes parlant des langues austronésiennes, mais avec des intervalles de confiance plus
larges. Ces résultats suggèrent une structure de population des locuteurs austronésiens
qui prédate l’apparition de l’agriculture à Taïwan. Cependant, en raison de la grande
incertitude dans les estimations, d’autres analyses utilisant des génomes anciens sont
nécessaires.

En somme, ces analyses ont permis d’a�iner notre compréhension de l’histoire
démographique et adaptative des peuples des îles d’Océanie, une région du monde
longtemps absente des études de génétique des populations.
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E�icacité de la sélection naturelle dans les populations du Pacifiques

D’un point de vue théorique, la génétique des populations prédit que, pour des populations
de petite taille, l’e�icacité de la sélection est réduite, conduisant ainsi à une plus forte
accumulation de mutations pouvant causer des maladies rares ou fréquentes (Simons
et al. 2014; Balick et al. 2015). Si certaines études épidémiologiques ont révélé des cas
de pathologies à des fréquences anormalement élevées dans des populations insulaires
(O’Brien et al. 1988; Carr, Morton, and Siegel 1971; Eickho� and Beighton 1985), rares
sont celles qui ont formellement démontré une augmentation du fardeau de mutations
délétères dans les populations humaines ayant connu de forts e�ets fondateurs suivis
d’un isolement. Enfin, des études (Organisation Mondiale de la Santé) ont également mis
en évidence la forte prévalence de maladies métaboliques, notamment la gou�e, le diabète
et l’obésité dans les populations Océaniennes. Toutefois, les forces évolutives en œuvres
sont actuellement déba�ues (Gosling et al. 2015) : hypothèse du phénotype économe (i.e.
sélection naturelle) versus hypothèse du phénotype dérivant (i.e. dérive génétique). Ainsi,
il apparaît essentiel d’analyser la façon dont la démographie et la sélection naturelle ont
façonné la diversité génétique de ces populations afin d’améliorer notre compréhension
des di�érences de susceptibilité aux maladies entre populations de régions du monde
jusqu’à présent très peu étudiées.

Au cours des dix dernières années, plusieurs études ont étudié l’impact de la démographie
sur le fardeau des mutations délétères chez l’homme (Lopez et al. 2018a; Simons and Sella
2016; Simons et al. 2014; Do et al. 2015; Henn et al. 2016b; Henn et al. 2015b; Lohmueller
et al. 2008; Lohmueller 2014; Fu et al. 2013; Pedersen et al. 2017a; Font-Porterias et
al. 2021). Bien qu’il y ait de plus en plus de preuves suggérant un impact négligeable
du goulot d’étranglement associé à la sortie d’Afrique (« Out-of-Africa ») sur le fardeau
des mutations délétères additives (Lopez et al. 2018a; Simons and Sella 2016; Simons et
al. 2014; Do et al. 2015), de fortes réductions de la taille des populations, comme celles
subies par les Inuits du Groenland, peuvent avoir impacté le nombre et la fréquence des
mutations délétères récessives (Pedersen et al. 2017a). Dans ce contexte, compte tenu
de leur histoire de peuplement caractérisée par de forts e�ets fondateurs en série, les
populations des îles du Pacifique Sud o�rent un excellent modèle pour évaluer dans quelle
mesure ces processus démographiques spécifiques ont eu un impact sur l’apparition et la
distribution de mutations délétères dans le génome humain.

Nous avons étudié le fardeau des mutations délétères et l’e�icacité de la sélection chez
les populations insulaires du Pacifique en utilisant des séquences « génome entier ». Par
rapport à d’autres populations non africaines, les polynésiens et les papous portent moins
de mutations délétères - y compris les mutations « perte de fonction » (LoF) - mais qui
ont tendance à ségréger à des fréquences plus élevées, probablement en raison d’une
forte dérive génétique. Nous avons ensuite cherché à savoir si l’histoire démographique
des populations insulaires du Pacifique avait eu un impact sur leur fardeau de mutations
délétères. Pour ce faire, nous avons estimé la distribution des e�ets de fitness des
nouvelles mutations délétères, ainsi que le fardeau génétique des papous, des peuples des
îles Salomon, des ni-Vanuatu et des polynésiens. Nos résultats montrent que, malgré leurs
di�érences marquées de régimes démographiques, seules des di�érences subtiles dans la
capacité de la sélection naturelle à purger les allèles délétères sont observées entre les
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océaniens et les autres populations humaines.

En somme, ces résultats suggèrent que la forte dérive génétique agissant sur certains
groupes océaniens a eu des conséquences limitées sur l’e�icacité de la sélection naturelle.
Cependant, des analyses complémentaires, telles que des simulations, sont nécessaires
pour évaluer la trajectoire du fardeau génétique au cours du temps ainsi que pour
examiner en détail l’impact du récent évènement de métissage asiatique sur le fardeau de
mutations délétères des populations insulaires du Pacifique.

Mots clefs: Océanie ; génomique ; histoire démographique ; sélection naturelle ; fardeau
de mutations délétères

Title: Genomic insight into the history of Oceanian populations: implication for human
evolution and health.

Abstract: Oceania is key to understand human evolution history, as contemporary Pacific
islanders descend from two highly divergent, ancestral groups, who represent the early
out-of-Africa dispersal > 45,000 years ago and the most recent expansion into empty
territories < 1,000 years ago. Ultimately, the region of Oceania is of major importance
for addressing questions related to human dispersal and natural selection processes.
The improvement of DNA sequencing methods, combined with the development of
mathematical and statistical frameworks, can provide insight into both the way natural
selection removes disease-causing mutations from human populations and their potential
to adapt to a broad range of climatic, nutritional, and pathogenic conditions. Oceania,
owing to its insular environment, provides with an excellent model to test important
hypotheses for the study of human genetic diversity and medical research. In this context,
the aims of this thesis are to bring knowledge on the demographic past of Oceanian
islanders and to the question of how population size changes and admixture a�ect the
burden of deleterious mutations in these populations. To do so, we have sequenced the
whole genomes of 317 individuals from 20 populations that cover the geographic transect
at the basis of the peopling history of Near and Remote Oceania. Specifically, this thesis
aims to (i) characterize the genetic diversity of these populations at high-resolution,
(ii) reconstruct their past demographic history in terms of divergence, migration and
population-size changes, and finally (iv) evaluate their burden of deleterious mutations.
All combined, this thesis project increased our understanding of the genomic history of
Oceania, a region of the world that has been largely neglected in genomic studies.

Keywords: Oceania; genomics; demographic history; natural selection; burden of
deleterious mutations
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Introduction

The region of Oceania covers more than 8,500,000 km2 of land surface between

Australia/Papua New Guinea and Easter Island, the easternmost island of the Polynesian

Triangle. More than 40,000,000 inhabitants populate this region, which represents only

around 0.5% of the total world population. However, this region has an incredible cultural

and linguistic diversity with around 1,750 di�erent native languages (25% of the worldwide

languages, excluding Australian languages) divided into two groups: Austronesian and

Papuan languages. In addition, to these native languages, Oceanian islanders speak also

French, English and di�erent creole or pidgin languages such as the Bislama which is one

of the o�icial languages of the Vanuatu.

What are the origins of the Pacific peoples? Who are they? What is their peopling

history? These burning questions generated the interest of the first European scientific

explorers. In 1852 Dumont d’Urville, a French botanist navigator, divided Oceania into

three regions in order to consider the phenotypic and cultural diversity reported by

Europeans explorers: Melanesia, Polynesia and Micronesia. However, this geographical

classification of Oceania was made in the context of the racial theory and two of these

regions, Melanesia and Micronesia do not reflect any cultural reality. To account for the

cultural and linguistic richness observed in Oceania as well as for the di�erences in origins

and in peopling history, scholars today, prefer to use another division of the region: Near

Oceania, which groups islands se�led during the Pleistocene period around 50,000-30,000

years ago and Remote Oceania for islands peopled during the Holocene period, around

3,000 years ago. Archaeological, anthropological and linguistic data collected since the 20th

century undoubtedly provided crucial insight into the time of se�lement, the geographic

distribution of the first Near and Remote Oceanians, their societies, their di�erent lifestyles

and also their dynamic trading networks. Importantly, hypotheses and models – still

currently debated - about the peopling history of Near and Remote Oceania were drawn

from these multidisciplinary data.

Genetic approaches are very complementary to archaeology, anthropology and linguistics

and can explain other facets of the complex history of human populations. However,

Oceanian islanders are underrepresented in genetic databases and very li�le is known

about their current and past genetic diversity. The di�erent events characterizing the past

history of human groups - population size changes over time, admixture, introgression

events with now extinct hominins or events of genetic adaptation to new environment

– shape their genetic diversity. The advance of technologies to access DNA sequences,

together with the development and improvement of mathematical algorithms, now allow

xii



population geneticists to trace back all these di�erent events from both modern and

ancient DNA data. Therefore, evolutionary genetic approaches can be used to reconstruct

the demographic past of Near and Remote Oceanian islanders and to hypothesized on

the biological functions that contributed to their adaptation and, ultimately, to be�er

understand their present-day relation to diseases.
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Chapter 1

Settlement and peoples of Oceania

1.1 Oceania in the Pleistocene . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Sahul: the initial se�lement . . . . . . . . . . . . . . . . . 2

1.1.2 The Bismarck Archipelago: behaviour changes and networks 4

1.1.3 The Solomon Islands: An isolated archipelago? . . . . . . 5

1.2 Oceania in the Holocene . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Lapita: the first Remote Oceanians . . . . . . . . . . . . . 6

1.2.2 Origin of the Lapita and se�lement of Remote Oceania . 9

The current island of New Guinea is politically divided into two regions, the eastern

part belongs to the independent state of Papua New Guinea (Eastern New Guinea, the

Bismarck Archipelago and Bougainville) and the western half (the provinces of Papua and

West Papua) is part of Indonesia. Eastern New Guinea, the Bismarck Archipelago and

the Solomon Islands form the geographical, archaeological, linguistic and anthropological

entity of Near Oceania, the first and only region of Oceania se�led during the Pleistocene

period (Figure 1.1).
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Chapter 1

1.1 Oceania in the Pleistocene

During the Pleistocene period (2,580,000 to 11,700 years ago), the current territories of

New Guinea, Australia and Tasmania were connected into a single landmass named Sahul.

This ancient continent was separated by around 100 km of water (i.e. the Wallace’s Line)

from island Indonesia and mainland Southeast Asia, which were gathered in a single

continent known as Sunda (Figure 1.1). The sea level was 150 meters lower than it is

today, facilitating the se�lement of Sahul through Sunda by Homo sapiens between around

50,000 and 65,000 years ago (O’Connell et al. 2018a; O’Connell and Allen 2015; Clarkson

et al. 2017). Northern and Eastern islands lying o� New Guinea, namely the Bismarck

Archipelago and the Solomon Islands respectively, were never connected to Sahul. When

and how were Sahul, the Bismarck Archipelago and the Solomon Islands se�led? Who

were the first se�lers of these regions?

1.1.1 Sahul: the initial se�lement

Archaeological materials indicate that the peopling of Near Oceania began with the

se�lement of the ancient continent of Sahul. Multiple routes taken by the first se�lers were

hypothesized including the northern and southern routes that are today favoured by the

scientific community but highly debated (Kealy, Louys, and O’Connor 2017, 2018; Bird et al.

2018). The northern route hypothesis assumes a peopling of Sahul via Sulawesi and New

Guinea and the southern route, via Flores Island/Timor and Australia. Paleogeographic

studies propose two advantages of the northern route with respect to the southern route: (i)

distances between islands are shorter and (ii) backward voyages were possible using winds

and water currents. However, the archaeological record is older in northwestern Australia

(southern Sahul) (Clarkson et al. 2017) than New Guinea (northern Sahul) favoring the

southern route (O’Connell et al. 2018a; O’Connell and Allen 2015).

Besides the route(s) taken by the first se�lers, recent works based on mathematical models

and simulations also shed light on the nature of these voyages: it is unlikely that Sahul

was se�led by accident but instead, the voyages were planned and deliberated, involving

a founder population of a least 1,300 individuals (Bird et al. 2019; Bradshaw et al. 2019;

Bradshaw et al. 2021). These first se�lers of the region lived in small structured groups

and were highly mobile. They were likely initially “strand looper” foragers who hunted

and gathered maritime resources along the shore but also rapidly exploited plant resources

such as yams in the Highlands of New Guinea (Summerhayes et al. 2010).

2



Figure 1.1: Sunda and Sahul in the Pleistocene. Map showing Sunda and Sahul
landmasses before (light brown) and a�er (white) Holocene sea level changes. The
distribution of Pleistocene archaeological sites is represented by red dots and blue
triangles. The map is from (Gosling and Matisoo-Smith 2018b)
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1.1.2 The Bismarck Archipelago: behaviour changes and networks

The Bismarck Archipelago - composed of volcanic islands and covered by a dense tropical

rain forest - was se�led around 40,000 years ago shortly a�er northern Sahul (New Guinea)

(Leavesley and Chappell 2004). Three islands of the archipelago were never connected to

each other by land: New Britain, New Ireland and Manus (Figure 1.2). The Pleistocene

archaeology of the Bismarck Archipelago can be divided into two broad periods. The first

period covers the initial se�lement (40,000 years ago) until the Last Glacial Maximum

(LGM) around 22,000 years ago and the second period started a�er the LGM until the

end of the Pleistocene period around 11,700 years ago.

Before 20,000 years ago, the first se�lers of the Bismarck Archipelago, were small, highly

mobile groups of hunter gatherers, similar to those in Sahul. They moved in search of

food resources such as shellfish, rats and reptiles. A�er 20,000 years, the di�erent groups

developed networks where they exchanged food and goods; in other words, resources “were

moved to people” (Gosden 1995; Leavesley 2006). Indeed, there is archaeological evidence

of connectivity from that period between Bismarck islands but also between islands of

the Bismarck Archipelago and Northern Sahul (New Guinea). These connections led, for

example, to the introduction of the cuscus (Phalanger orientalis) to New Ireland from New

Figure 1.2: Map of the Bismarch Archipelago (Specht et al. 2014).
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Guinea via New Britain (Leavesley 2005). The cuscus became the main resource in the

archipelago. Between 20,000 and 18,000 years ago, the first extractions of obsidian stones

occurred in New Britain, with evidence of exchanges to New Ireland (Summerhayes 2009).

Later, around 12,000 years ago, obsidian, together with other animals such as the bandicoot

and another species of cuscus (Spilocuscus kraemeri), were introduced to Manus island from

New Guinea (Spriggs 1997).

1.1.3 The Solomon Islands: An isolated archipelago?

The Solomon Islands encompasses hundreds of inhabited islands covered of tropical

rainforest and mountains. The main islands of this archipelago are Bougainville (politically

part of Papua New Guinea), Vella Lavella, New Georgia, Kolombanga, Choiseul, Santa

Isabel, Guadalcanal, Malaita and Makira (Figure 1.3). Most of these islands were combined

in a single landmass named Greater Bukida or Greater Bougainville until the end of the

Pleistocene period (Walter and Sheppard 2009).

Archaeology for the Pleistocene of the Solomon Islands is only represented by one site

in the island of Buka (Kilu sites, western Solomon Islands) discovered in 1988. This site

revealed an early se�lement of the western Solomon Islands by Homo sapiens from 29,000

year ago, a�er the peopling of Sahul and the Bismarck Archipelago (Wickler and Spriggs

Figure 1.3: Map of the Solomon Islands (h�p://asiapacific.anu.edu.au).
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1988). This se�lement would have involved a sea crossing of less than 200 km from New

Ireland (Bismarck Archipelago). Li�le is known about the first se�lers of the Solomon

Islands and there is no archaeological evidence of the changes in behaviour and networks

observed in the Bismarck Archipelago and New Guinea. The first and only evidence of

connexion with the Bismarck Archipelago is the presence of Canarium charcoals dated

from the end of the Pleistocene (Walter and Sheppard 2009).

1.2 Oceania in the Holocene

While the di�erent islands that compose the region of Near Oceania were peopled during

the Pleistocene period, Remote Oceania remained uninhabited until the late Holocene

period. Who were the first se�lers of the remote islands of Oceania and where did they

come from? Which route(s) did they take? How did they se�le Remote Oceania?

1.2.1 Lapita: the first Remote Oceanians

Remote Oceania comprises the islands of Micronesia, the Reef/Santa Cruz, the Vanuatu

archipelago, New Caledonia, Fiji, and the di�erent Polynesian islands (Figure 1.4). This

region was se�led only from around 3,200 years ago by seafarers, associated with the

spread of the Lapita Cultural Complex (LCC) and Austronesian languages. I will focus

here mainly on the peopling history of the western part of this region, which includes

islands from the Reef/Santa Cruz to Fiji.

The Lapita Cultural Complex

Up to now, 293 Lapita sites have been found across the Pacific region covering a geographic

transect including New Guinea, the Bismarck Archipelago, the Solomon Islands, Vanuatu,

New Caledonia, Fidji, Tonga, Samoa as well as Wallis and Futuna (Bedford and Spriggs

2019). The earliest site is dated to 3500-3200 years ago in the Bismarck Archipelago

(Mussau island), likely the homeland of the Lapita Cultural Complex (Rieth and S. 2017).

This oldest Lapita site coincides with the most massive volcanic eruption that occurred in

New Britain island (Bismarck Archipelago) and named the W-K2 event, around 3,600 years

ago. Novel archaeological artefacts were found above the W-K2 tephra as well as evidence

for a change in se�lement pa�ern, which, altogether reflect a sharp cultural change soon

a�er the volcanic eruption (Kirch 2017).

This new cultural assemblage is mainly characterised by a specific type of decorated

po�eries known as dentate-stamped po�ery with a large spatiotemporal variation in

6



Figure 1.4: Map of Near and Remote Oceania. Brown dashed line indicates the limit
between Near and Remote Oceania

motifs, decorations, style and form (Figure 1.5a). The specificity of this type of po�ery

relies in its production with the use of toothed tools to stamp complex pa�erns into the wet

clay. Besides po�eries, the Lapita culture is also characterized by long-distance transfers

of obsidian (Figure 1.5b), the use of shell-based ornaments and tools such as arm rings,

necklaces, food scrapers, fishhooks and adzes (Figure 1.5c) (Noury and Galipaud 2011).

Archaeological sites were mainly located along the coasts or in small o�shore islands

reflecting a preference of the Lapita people for small and uninhabited areas. There is

evidence that the first Lapita se�lers transported with them domesticated animals and

plants such as taro, yams, coconuts, pigs, dogs and rats, which indicate horticulture and

gardening practices (Kirch 2017). However, isotopic measures of human and pig bone

collagen from archaeological sites in Vanuatu, revealed that initially, Lapita people were

likely “strand loopers”, who mainly lived along the shore and consumed maritime resources

and to a lesser extent wild animals as well as domesticated plants and animals (Kinaston,

Buckley, et al. 2014; Kinaston, Bedford, et al. 2014).

The Austronesian languages

The Austronesian language family comprises around 1,200 languages spoken by more

than 380 million people in the world. Austronesian speakers form the largest expanded

diaspora, which covers territories ranging from Madagascar, Island Southeast Asia, Near

Oceania and Remote Oceania up to the Polynesian Triangle. The world’s largest language

7
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(a) Lapita po�ery from the Bismarck Archipelago

(b) Obsidian from Vanuatu

(c) Adzes from the Solomon Islands

Figure 1.5: Archaeological elements of the Lapita Cultural Complex
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density per capita is located in Vanuatu where 138 Austronesian languages are spoken,

corresponding to about one language for 1,700 speakers (Klamer 2019; Blust 2019, 2009).

The study of the vocabulary, mainly cognates (i.e. words of the same origin) together with

phonology (i.e. sounds), indicates that (i) all Austronesian languages derived from a same

ancestral language named Proto-Austronesian and that (ii) all Austronesian languages

spoken outside Taiwan belong to the same group known as Malayo-Polynesian (Blust

2019). Austronesian languages are categorized into 10 primary subgroups: Atayalic, East

Formosan, Puyama, Paiwan, Rukai, Tsouic, Bunun, western Plains, northwest Formosan

and Malayo Polynesian. The first 9 groups are found in Taiwan and are gathered into a

group named "Formosan".

The Malayo-Polynesian (MP) languages, spoken outside Taiwan, are themselves divided

into western MP and central-eastern MP. Western MP speakers are located in the

Philippines, western Indonesia, mainland Southeast Asia, Madagascar as well as in some

Micronesia islands. Central-eastern MP languages are found in eastern Indonesia as

well as in Near and Remote Oceania. Centre-eastern MP languages are subdivided into

deeper levels as shown in Figure 1.6. It is worth mentioning that although scholars

broadly use this tree of the Austronesian language family, some branches are still currently

debated (Blust 2009). For example, Blust and other linguists suggest that languages

grouped into western MP do not belong to a unique subgroup but instead, correspond

to multiple branches or subgroups that do not fall within the central-eastern MP cluster

(Ross 1995; Blust 1999). Similarly, the catalogue of worldwide languages and dialects,

Glo�olog (h�ps://glo�olog.org/), does not consider the subgroup western MP but instead

distinguishes a total of 25 subgroups of MP including central-eastern MP, Central MP,

eastern MP, S Halmahera W New Guinea and Oceanic.

1.2.2 Origin of the Lapita and se�lement of Remote Oceania

From the “express-train” to the “Out-of-Taiwan” model

In 1988, Jared M. Diamond proposed the hypothesis of the “express-train” to explain the

origin of the Polynesian populations (Diamond 1988). This model stipulates that a group

of people associated with the Lapita culture, spread rapidly over around 4,500 km, from

the Bismarck Archipelago to Samoa, the hypothesized cradle of the ancestral Polynesian

population. These sea travellers brought with them animals, plants and also agriculture.

However, Diamond did not address the question of the origin of the first Lapita people

(“Where west of the Bismarcks did the train start and what were its intermediate stations?”,

(Diamond 1988)).

9
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Figure 1.6: Tree of Austronesian languages (Blust 2009).

The strong correlation between sites where Lapita po�eries were found and the geographic

repartition and structure of the Austronesian languages prompted the archaeologist

Peter Bellwood to hypothesize that the Lapita Cultural Complex derived from the vast

Austronesian expansion in Oceania (Bellwood 1997). In this context, both Peter Bellwood

and the linguist Robert Blust, refined Diamond’s “express-train” model by providing a

Taiwanese origin for the Proto-Austronesians and thus by correlation, for the Proto-Lapita

culture. This refers to the “Out-of-Taiwan” model. More precisely, this model proposes

that the ancestors of Polynesians and their culture expanded through a wave-of-advance

mode. This expansion involved rice farmers who spoke Austronesian languages from

southern China, around 6,000 years ago, and arrived to Taiwan around 4,000 years ago.

The expansion continued into the Philippines, Islands Southeast Asia to reach eventually

Remote Oceania around 3,000 ago and eastern Polynesian islands less than 1,000 years

ago. Through their migrations, Austronesian speakers would have also replaced local

populations who first se�led the islands of Southeast Asia during the Pleistocene period.

Under the “Out-of-Taiwan” hypothesis, the first se�lers of Remote Oceania, originating

from Taiwan, would have brought with them a whole package composed of new

technologies and navigation skills, horticulture and agriculture practices, the Austronesian

language, and also their genes.

The “Slow-boat” and the “Triple-I” models

10



I will present here two alternative models that has been propose to the explain origin(s)

of the Lapita Cultural Complex in the Bismarck Archipelago: the “slow-boat” model

(Oppenheimer and Richards 2001; Kayser et al. 2000) and the “Voyaging Corridor Triple I”

model (Green 2003).

The “slow-boat” model was initially proposed through the study of the genetic diversity

of the Y chromosome, which is male-specific and uniparentally-inherited (Oppenheimer

and Richards 2001; Kayser et al. 2000). This model stipulates that the Lapita

Cultural Complex and the genetic makeup of the first Remote Oceanians would have

emerged through intensive exchanges and gene flow between eastern Indonesians and

non-Austronesian-speaking groups from the Bismarck Archipelago and the Solomon

Islands starting between 6,000 and 3,500 years ago. This long process, which occurred in a

voyaging corridor between Tropical Island Southeast Asia and Near Oceania would have

been followed by a rapid peopling of Remote Oceania islands, around 3,100 years ago.

Kayser and colleagues in 2000 (Kayser et al. 2000) were the first to propose this model, or at

least to give it a name (“[. . . ] we propose a new model of Polynesian origin that we call the

slow-boat model”), and placed the origin of the ancestors of Polynesians in "Asia/Taiwan"

in agreement with the “Out-of-Taiwan” model, but a concomitant study (Su et al. 2000)

also based on Y chromosomes, proposed an origin in Islands Southeast Asia rather than

Taiwan, as also supported by other geneticists (Oppenheimer and Richards 2001) and some

anthropologists and archaeologists (Terrell 2004; Torrence and Swadling 2008).

From 1991, the archaeologist Roger Green proposed another model named “Voyaging

corridor Triple I” (Green 2003), which can be seen as an extension of the “slow-boat”

model. Triple-I stands for intrusion, integration and innovation. With this model, Green

hypothesized a diverse origin for the di�erent components that characterize the Lapita

Cultural Complex: some of them were introduced from Island Southeast Asia to the

Bismarck Archipelago, some were innovations made locally by Lapita people in Near

Oceania, and finally some elements of non-Austronesian speaking communities were

incorporated into early Lapita groups. Consequently, under this model, the Lapita Cultural

Complex, which includes the Austronesian language, horticulture and agriculture practices

as well as genes, was not brought together in a single package, through a single migration

wave.

The post-Lapita period in the Vanuatu

500 years a�er the initial se�lement of the Vanuatu, the dented-stamped po�ery

disappeared and was replaced by other forms of po�ery (Spriggs 1997). For example,

in central Vanuatu, the Lapita po�ery style was replaced by the Mangaasi style, which
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is characterized by its reddish colour and incised and applied relief decorations (Spriggs

1997). In addition to the end of the Lapita po�ery, the long-distance trade of obsidian

also disappeared and the study of Vanuatu burials revealed a change in diet and funerary

practices (Summerhayes 2010; Valentin et al. 2014). Secondary migrations occurring

shortly a�er the initial se�lement have been hypothesized to explain this cultural change

observed in the Vanuatu. In line with this, a craniometric study carried out by Valentin

et al. in 2016 (Valentin et al. 2016) indicates that Ni-Vanuatu from the Lapita period

are morphologically closer to present day East Asians and Polynesians while the latest

post-Lapita Ni-Vanuatu present a stronger a�inity to present-day Australo-Papuans. The

authors suggested that migrations from Papuan-related groups into Ni-Vanuatu can

explain these observations, starting around 200 years a�er the initial se�lement of western

Remote Oceania (i.e. 3,200 years ago for the Vanuatu).

European contacts

When looking at the name of some islands of Vanuatu, it is apparent that Europeans played

a role in the history of the Archipelago. In 1606, with the support of the Castilian Crown

(King Philip III), Pedro Fernández de �irós and his crew anchored at Big Bay on an island

that he named Austrialia del Espiritu Santo (nowadays known as Espiritu Santo in central

Vanuatu) in honour of the Spanish Habsburg monarch’s Royal house of Austria. Despite

limited but violent contacts with Ni-Vanuatu (e.g. kidnappings and beheadings), �irós

claimed this land in the name of the Spanish Crown, as well as the Catholic Church in

order to “take Christianity to the heathens of the unknown Terra australis” (Luque and

Mondragon 2005). Pedro Fernández de �irós’s voyage lasted around a year, including

a month spent in Espiritu Santo. He visited di�erent islands before entering the land of

what is nowadays Espiritu Santo, such as Taumako in the Solomon Islands. Nevertheless,

limited elements of the Oceanian cultures, languages and lifestyles can be drawn from this

voyage. Perhaps because it was not the priority or because the relationship with others

was di�erent at that time: “the convoluted procedures and overall behaviour of the Spanish

men in Big Bay were neither the result of one man’s extravagant religiosity nor simply

of Spanish arrogance, but encompass overlapping medieval, renaissance and (to a lesser

degree) baroque legal and cultural canons which have hitherto been glossed in scholarly

analyses of the earliest European explorations of Oceania.” (Luque and Mondragon 2005).

It was only during the mid-18th century that scientists joined French and British

expeditions to the Pacific. At that time, the Age of Enlightenment, both France and Britain

were powerful expending empires that placed science at the centre of the society. It is

crucial to say that the perception of human societies during the 18th century was stadial.

Indeed, in the mid-18th century French and Sco�ish philosophers developed the stadial
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theory also named the four stages theory, notably influenced by contacts with indigenous

peoples from the Americas. According to this theory, societies go through four di�erent

stages or ages: (i) the age of hunters or savagery, (ii) the age of pastoralism or barbarism,

(iii) the age of agriculture or civilisation and (iv) the age of commercial societies or Europe

(Schorr 2018). In this context, Louis-Antoine de Bougainville from France (1768) and James

Cooks from Britain (1774) undertook their voyage to the Pacific.

For the first time, observing, recording and collecting data were at the centre of the

expedition. Contrary to Pedro Fernández de �irós’s voyage, Bougainville and Cook

brought precious, though subjective, descriptions and information about the fauna and

flora and Oceanian cultures, societies and peoples. They both indisputably contributed

to major scientific breakthroughs (at least from the European point of view), notably in

cartography, with the mapping of Pacific Islands, navigation and naturalism. In 1774,

James Cook explored the islands of what is nowadays Vanuatu and named this archipelago

New Hebrides.

European contacts and influences in the Vanuatu increased from 1839 with the beginning

and intensification of Protestant and Catholic missionaries, first in the South of the

Archipelago, mainly in Tanna, Aneityum and Erromango islands. The first contacts

turned most of the time violent, with the murders of Europeans (e.g. John Williams and

James Harris in 1839) at Dillon’s Bay in Erromango island because Ni-Vanuatu rejected

missionaries (Flexner and Spriggs 2015). Instead of discouraging Europeans, missionaries

reached their height with the idea of bringing “light to the dark isles” (Flexner and Spriggs

2015) in a region of the world peopled by “savages” who used black magic and cannibalistic

rituals (Copeland 1866).

Overall, the process of conversion was long, especially outside the New Hebrides

(Vanuatu) because of the non-acceptance of Europeans missionaries and strengthened by

competition between Catholic and Protestant missionaries. In the New Hebrides, both

coexisted but with di�erent ways of converting Ni-Vanuatu. Anglican missionaries adopted

a strategy that I would personally name “from the inside”: young people were taken

from a location (e.g., a Vanuatu island), placed in schools located in another place (e.g.

in New Zealand), and were then placed back in their original communities, to convert

their relatives. Catholics adopted a strategy “from the outside”, where they preferred

to maintain a permanent presence at di�erent strategic places to convert most of the

communities, involving some recently converted Polynesians in the process (Flexner 2013).

In Melanesian practices, referred also as kastom (pidgin word for custom), spirituality,

the supernatural and thus religion is part of the Melanesian identity and the daily life,
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including politics and economics. This link between religion, identity and daily life

choices is so tight that missionaries failed to deeply change Ni-Vanuatu practices, but local

communities incorporated elements of Christianity into kastom, mainly material things:

traditional dresses were replaced by imported European clothes, po�ery was in part locally

replaced by iron cooking vessels and the most prized item in 1860 in Northern Vanuatu was

empty bo�les. Missionaries also impacted the daily life and societies of local communities

by, for example, se�ing labour tasks and changing the gender role (toward a male authority

versus female domestic tasks) (Flexner 2016; Bedford and Spriggs 2008). This incorporation

of the Christianity into kastom is still visible nowadays, as a�ested by James L. Flexner and

Ma�hew Spriggs: “many Ni-Vanuatu still see supernatural causes at work in instances of

illness or death” (Flexner and Spriggs 2015).

Social structure was also impacted by the arrival of western traders of sandalwood who,

a�er having exhausted sandalwood resources, traded young Ni-Vanuatu men to work in

sugar plantation in Australia, Fiji and New Caledonia, a practice referred as blackbirding

(Docker 1970). One major consequence of this trade was a massive depopulation of

Vanuatu islands, coupled with an increased mortality due to European diseases transmi�ed

to local populations (e.g. measles, influenza and cholera) (Flexner 2016). In the mid-19th

century, ca. 5,000-7,000 individuals peopled the island of Erromango in South Vanuatu

(Gordon 1863) while Colley and Ash estimated a population of ca. 600 inhabitants in 1967

(Colley and Ash 1971).

From the 20th century onwards, the New Hebrides became an Anglo-French condominium

(1906) and played a strategic role during the World War II, notably with the presence

of American soldiers to prevent Japanese army from gaining a foothold a�er the a�ack

of Perl harbour in 1941. The New Hebrides obtained their independence in 1980 and

the archipelago was renamed Vanuatu (Vanua “land” and tu “be independent”) by local

communities (Flexner 2016). Nowadays 86% of Ni-Vanuatu are Christians (Vanuatu

National Statistics O�ice) and a part of them, in southern islands (TAFEA province)

consider missionary sites as being part of their culture, history and heritage (Flexner and

Spriggs 2015): “In our fieldwork experiences, we have found that people will unironically

express their sincere Christian faith, and then invite visitors for a traditionally prepared

shell of kava”.
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Archaeology, anthropology and linguistics have provided valuable insight into the peopling

history of Near and Remote Oceania and the lifestyles of the di�erent populations that

se�led these regions. However, cultural, linguistic and genetic studies do not always tell

the same story and all have their own limitations. For example, because populations

tend to move, genetic continuity between past and present-day groups of a region is

not necessarily observed. Consequently, the di�erent demographic events estimated

with genetic approaches would not reflect the population history of the initial ancestral
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population. Cultural practices and the language can be transmi�ed not only vertically

(from one generation to another), as genes, but can also be transmi�ed horizontally,

through the transmission of ideas (Diamond and Bellwood 2003). Another important

point is the fact that population geneticists study the dynamics of genetic interactions

between populations, while current archaeological research tends to focus on internal

changes rather than the impact of movements of people (Veeramah 2018). Hence, the

information provided by genomic data is complementary to other disciplines and can add

another dimensionality to the history of a population.

For decades, evolutionary genetic approaches, combined with the rapid and dramatic

progress of sequencing technologies and methods, have allowed the detailed

reconstruction of human population history, such as the estimation of populations

size changes over time, divergence time, admixture, introgression events with now extinct

hominins and events of genetic adaptation to new environments (Dannemann and Racimo

2018; Gosling and Matisoo-Smith 2018b; Marchi, Schlichta, and Exco�ier 2021; Patin

and �intana-Murci 2018; Rotival, Cossart, and �intana-Murci 2021). We will see in

this chapter how genomes are used to trace back the demographic history of human

populations and what genomes of Oceanian groups revealed about their past history.
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2.1 Theory and basic principles of population genetics

2.1.1 Variations in the human genome: mutations and
recombination

The DNA (deoxyribonucleic acid) is a macromolecule found within cells and composed of

linked nucleotides that are commonly represented by four le�ers. A nucleotide is composed

of a sugar, a phosphate group and a nitrogenous base. Four canonical nucleotides are

found in the DNA: Adenine (A) and Guanine (G) are the two purines and Cytosine (C) and

Thymine (T), the two pyrimidines. Billions of linked nucleotides form the DNA sequence

(Watson and Crick 1953). In humans, less than 3% of the DNA contains genes that encode

proteins (Dunham et al. 2012).

Genetic mutations, i.e., changes in the DNA nucleotide sequence, result in di�erent

versions of a same genetic position (i.e. a locus), the alleles, that segregate in the

population. A mutation that occurs in a gene and that changes its final product, the protein

amino-acid sequence, is named a non-synonymous mutation. On the contrary, a genic

mutation that does not change the protein sequence is called a synonymous mutation.

From an evolutionary perspective, molecular evolution corresponds to the changes in

frequency through time of the di�erent alleles that constitute the genetic diversity of a

specific population or group. Only mutations located in the DNA of reproductive cells

(germinal mutations) are transmi�ed to the next generation and participate to the genetic

diversity of a population.

Mutations are divided into three classes based on the number or the size of the

modification: substitutions (point mutations), insertions and deletions and chromosomal

rearrangements. I will focus here on point mutations because they are the most frequent

and are broadly used in the population genetics field. A substitution, also named single

nucleotide polymorphism (SNP), corresponds to the modification of a single position

(one nucleotide) of the DNA owing to either an error during the DNA replication or

errors introduced by the DNA maintenance machinery while fixing physical or chemical

alterations (e.g. UV exposure). In the human genome, transitions (i.e., the change of a

purine (pyrimidine) by another purine (pyrimidine)) are observed at least twice as more as

transversions (i.e., the change of a purine (pyrimidine) by another pyrimidine (purine)). The

rate of substitutions per site and per generation is expected to be 10−8, but the mutation

rate can go up to 10−5 substitutions per site and per generation depending on the genomic

region (e.g. CpG sites) (Campbell et al. 2012; Lipson et al. 2015; Walser, Ponger, and Furano
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2008; Seplyarskiy and Sunyaev 2021).

The development and improvement of sequencing technologies allow to obtain the whole

sequence of the individual’s DNA. Among the 3.5 billion positions in the human genome,

around 4 millions are polymorphic between two individuals, i.e., 1 substitution variation

is expected every 1,000 positions between two randomly chosen individuals (Genomes

Project et al. 2015; International HapMap 2003; Karczewski et al. 2020; Bergstrom

et al. 2020). The dbSNP, database of single nucleotide polymorphisms and short

insertions/deletions counts more than 683 million variants detected in world-wide human

populations (2019, build 153, (Sherry et al. 2001)).

Humans have two sets of chromosomes inherited from their two parents (one set per

parent). During the creation of reproductive cells, also named gametes (i.e sperm and

oocyte), homologous chromosomes align and pair with each other through the formation

of DNA junctions that result in the exchange of the genetic information, a process

referred to as meiotic recombination. Recombination generates at each meiosis unique

combinations of alleles, called haplotypes, which are di�erent from the combinations of

alleles inherited from the parents (Figure 2.1). The number of recombination events per

generation between two given positions of a chromosome, i.e., the recombination rate,

increases with increasing chromosomal distance between the two positions. Two SNPs of

the same chromosome are said to be in linkage disequilibrium when the recombination rate

between these SNPs is low. As a result, alleles are not transmi�ed independently to the next

generation but rather in blocks where genetic recombination is low. Hence, the frequency

of a mutation depends on the frequency of other mutations located on the same haplotype.

Recombination tends to dissociate mutations found in a same genetic region (i.e. decrease

of the linkage disequilibrium). In addition to create haplotype diversity, recombination,

through time, also tends to break long haplotypes into smaller ones (Figure 2.1).

The recombination rate, like the mutation rate, varies greatly along the genome,

characterized by “hotspots” and “coldspots” of recombination. This rate depends on

the genomic context, such as the percentage of G and C nucleotides, the number of

transposable elements in the region and the presence of binding sites for PRDM9, a

DNA-binding protein that promotes recombination (Genomes Project et al. 2015; Myers et

al. 2005).

To summarize, the genome is organised in blocks or haplotypes made of alleles in high

linkage disequilibrium. Each haplotype block is separated by hotspots of recombination.

The mutation and recombination are critical events that create genetic variations in a given

population. This variability constitutes a substrate on which other evolutionary forces can
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Figure 2.1: Genetic recombination. Schematic representation of recombination events
and its impact on the size of the haplotypes (coloured bars) through times (two
generations).

2.1.2 Demographic history: genetic dri�, gene flow and isolation

Among all mutations found in a genome, most are neither beneficial nor deleterious for

the carrier, meaning that they do not have any phenotypic consequences. Such mutations

are said to evolve under neutrality, i.e., in absence of natural selection (chapter 3). If the

population size is small, a stochastic process known as genetic dri� drives their frequency

over time (Kimura 1991; Wright 1931). Allele frequencies at generation g+1 are di�erent

from those at generation g, because siblings are a non-representative sample of the adult

population. Under genetic dri�, the probability of a neutral mutation to be fixed in a

population (or to be eliminated) depends on its initial frequency. Considering an isolated

population of e�ective size N e (i.e. number of individuals who contribute genetically to

the next generation), a new neutral mutation that appears in this population has a fixation
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probability equal to 1/(2Ne) and takes an average of 4Ne generations to reach fixation

(Hartl and Clark 2007). Consequently, in a population with large N e, the strength of the

genetic dri� is weak, leading to a stability of allelic frequencies during a long period of

time. On the contrary, in small populations (small N e), the genetic dri� is stronger causing

sharp allele frequency variations from one generation to another.

Under neutrality, levels of genetic diversity of a population, θ, is proportional to the

e�ective population size: θ = 4Neµ, µ being the mutation rate. Changes in population

size that occur over time, i.e., the demographic history, have ultimately an impact on

the genetic diversity of a given population, by a�ecting the strength of genetic dri�.

Hence, human populations that experienced contrasting demographic histories, such as

bo�lenecks, founder e�ects, population expansions and contractions, di�er in their current

levels of genetic diversity.

Human populations can also exchange migrants, resulting in gene flow. Contrary to

genetic dri�, gene flow reduces levels of genetic di�erentiation between populations.

Populations that are geographically closer tend to be less genetically di�erentiated,

because of more recent divergence and/or substantial gene flow between them. The

isolation-by-distance model explains this correlation between genetic di�erentiation and

geographic distance (Wright 1943; Cavalli-Sforza and Feldman 2003).

To sum up, the levels of genetic di�erentiation between human groups depend on their

demographic history a�ecting the strength of genetic dri�, as well as their level of genetic

isolation. The resulting distribution of genetic variation within and between populations

is called the genetic structure of human populations.

2.1.3 Di�erent types of genetic data

Each human cell includes 22 homologous pairs of autosomes, which are inherited from

each parent, one pair of sex chromosomes (i.e., a maternal X and a paternal X or Y

chromosomes), and a mitochondrial genome (mtDNA), a small circular genome of 16,569

base pairs found in mitochondria. Genetic markers on these di�erent chromosomes can

be used to reconstruct di�erent aspects of the demographic past of human populations.

Indeed, because mitochondria are only transmi�ed from the mother to the child, the study

of mtDNA mutations is thus used to trace back the maternal lineages. Similarly, the study

of mutations on the Y chromosome, which is only carried by men trace back the history of

the male lineages. Historically, uniparentally-inherited chromosomes were broadly used

to reconstruct the demographic history of human populations because they are short, thus

easy to sequence and non-recombining.
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The genetic information, can be retrieved using a variety of technologies such as

genotyping or SNP arrays, which capture the information at pre-ascertained SNPs, and

next generation sequencing (NGS), for instance whole genome sequencing (WGS), which

provides the information for the full DNA sequence. Markers found in SNP arrays are

either (i) old variants that segregate at intermediate or high frequency in di�erent human

populations or (ii) SNPs that segregate mainly in well-studied populations (e.g. Europeans).

This ascertainment bias can lead to an underestimation of the genetic diversity, mainly

because of the exclusion of rare and private mutations. The WGS strategy gives access to

mutations that segregate at very low frequencies and thus reduces the ascertainment bias.

However, whole genome sequences are obtained at a higher cost, around $1,000 for one

individual, limiting the sample size of populations to study.

Consequently, the choice of the strategy to access the genetic information depends on

the scientific questions, the methods and the study populations (and the budget): do the

sampled individuals belong to under-studied populations? Are the methods that I want to

apply sensitive to the number of rare variants? Can I correct for the ascertainment bias?

Do I need a large sample size or/and a high variant density?

2.2 Demographic inference

We saw in the previous sections how variations in e�ective population size changes and

gene flow or admixture a�ect pa�erns of neutral genetic diversity in the genome of human

populations. We will see now how to infer the demographic parameters that characterize

their demographic past.

2.2.1 The coalescent theory

A pair of alleles sampled in present-day individuals is made of an ancestral form and a

derived form that appeared in the population some generations ago. All current copies

of the derived allele are thought to descend from the same mutational event in the past,

and to have thus been inherited from the same common ancestor. The coalescent theory

(Kingman 2000) describes how the alleles observed in a sample may have originated

from a common ancestor, called the most recent common ancestor (MRCA). Looking

backward in time, the coalescent model is a random process that merges the two copies

of an allele at a given generation into one ancestral copy inherited from the previous

generation (i.e., a coalescence event). Considering not only a pair of alleles or genes but

a subset of the observed current genetic diversity of a population, the coalescent theory
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can estimate the topology of the gene genealogy. This topology is then used to estimate

demographic parameters such as the divergence time between human populations, or

changes in e�ective population size trough time (Rosenberg and Nordborg 2002).

Assuming a panmictic (i.e. random mating) and isolated population and in absence of

recombination and natural selection, the probability that two lineages coalesce in the

previous generation is 1/(2Ne). The probability that these two lineages did not coalesce in

the previous generation is 1−1/(2Ne). Hence, the probability that two lineages coalesce at

generation t is given by the following geometric distribution: Pc(t) = (1− 1
2Ne

)(t−1)( 1
2Ne

).

Considering k allele copies, the probability that at least two allele copies coalesce in the

previous generation is k(k−1)
4Ne

. The time to first coalescence thus follows a geometric

distribution with E[Tk] =
4Ne

k(k−1)
generations, which indicates that the first coalescence

event in a sample of k allele copies occurs on average 4Ne

k(k−1)
generations ago. The expected

time to the MRCA, meaning the time for which all lineages coalesce into a unique ancestral

allele is equal to E[Ttotal] = 4Ne

∑k
i=2

1
i−1

.

In case of a population collapse, the genetic diversity decreases, thus lineages coalesce

(backward in time) more rapidly in the population, which leads to an acceleration of

the coalescence rate. On the contrary, with a recent population expansion, a large

fraction of the genetic diversity is composed of new variants that are carried by only

few samples (e.g. singletons) and there are more genetic lineages because of a higher

e�ective population size. Therefore, under a recent expansion, the probability that two

alleles coalesce decreases leading to a slowdown of the coalescence rate.

2.2.2 Joint estimation of demographic parameters

Methods implemented in so�ware such as PSMC (Li and Durbin 2011), which estimates

e�ective population size changes in time and divergence times, or GLOBTROTTER

(Hellenthal et al. 2014), which infers the time of admixture events, are used to estimate

simple demographic models. They usually estimate a demographic parameter of interest,

assuming that all other parameters are constant or null. For example, PSMC (Li and

Durbin 2011) estimates the e�ective population size through time, without considering

gene flow between populations. However, an increase in e�ective population size could be

due either to (i) an increase of the census size or (ii) an increase in the rate of new incoming

migrants (admixture). Furthermore, population stratification, meaning a population that

is composed of sub-groups that exchange varying levels of gene flow, can produce a

signal of bo�leneck (Walhund e�ect, (Nielsen and Beaumont 2009; Chikhi et al. 2010)).

Similarly, tools that estimate the time of admixture assume a constant e�ective population
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size of the parental and the admixed populations. These methods work be�er when

admixture occurred less than 5,000 years ago. They are able to estimate older events

but with less accuracy because, with time, ancestry segments are shorter and thus more

di�icult to detect. These methods also estimate admixture times less accurately when

admixture is continuous rather than discrete, especially if the events are recent (Hellenthal

et al. 2014; Pugach et al. 2018b). Indeed, it is usually assumed that genetic interactions

between groups occurred in pulses, meaning very rapid and short contacts that lasted one

generation. However, when working with human populations, we expect to observe more

complex modes of gene flow, such as continuous and repeated genetic interactions between

two or several human groups. Although these algorithms are robust to the violation of some

assumptions, depending on the populations studied and the questions that are addressed,

the interpretation of the results can be convoluted and/or limited.

One way to overcome these issues is to jointly estimate the parameters characterizing

the demographic history of the studied populations using simulations. The parameters

can be inferred using di�erent statistical frameworks such as the maximum likelihood

framework, which searches for the set of parameters that best explain the observed

data via maximization of a likelihood function (Gutenkunst et al. 2009; Exco�ier et al.

2021) or an approximate Bayesian Computation Approach (ABC) (Beaumont, Zhang, and

Balding 2002; Cooke and Nakagome 2018), which relies on the comparison of observed

and simulated genetic data, in the form of summary statistics, to estimate demographic

parameters.

Depending on the scientific questions that are addressed, only a subset of the parameters

that characterized the demographic history of the studied populations can be estimated.

The other parameters are referred to as “nuisance parameters” because they are not

estimated but instead, they are just considered (they are allowed to vary) in order to

not bias the inference of the parameters of interest (e.g., considering gene flow between

two populations to not bias the estimation of their divergence time and their e�ective

population size).

Site frequency spectrum and the maximum likelihood framework

The site frequency spectrum (SFS) or allele frequency spectrum (AFS) corresponds to the

distribution of allele frequencies in a given population. The SFS can be obtained using

frequencies of either the derived allele (“unfolded” SFS) or using the minor allele (“folded”

SFS). It is also possible to compute the SFS for more than one population at the same time

through joint or multidimensional SFS (Exco�ier et al. 2013).

The di�erent demographic events that populations experienced have an impact on the
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shape of the SFS. For example, under a recent expansion, the e�ective population size

increases, which inflates the number of rare mutations segregating in the population.

Under such a scenario the SFS is characterized by an excess of rare mutations and a

deficit of fixed mutations compared to what is expected under a stationary demography.

Conversely, a drop in e�ective population size - due to a population contraction or a

founder event - increases the strength of genetic dri�, which leads to a greater fixation or

elimination of alleles at low and intermediate frequencies, as well as a global loss of genetic

diversity. Under such a scenario, the SFS is characterized by an excess of fixed mutations

and a deficit of rare mutations compared to what is expected under stationary demography.

When investigating the demographic history of human populations, it is paramount to

compute the SFS using only neutral mutations, or the least selected mutations (as neutral

as possible), usually by removing mutations inside genes, since natural selection can mimic

the impact of demography on the shape of the SFS.

The inference of demographic parameters using the SFS can be done, for example,

using the maximum likelihood framework and coalescent simulations implemented in the

Fastsimcoal2 tool (Exco�ier et al. 2021; Exco�ier et al. 2013). This algorithm estimates the

likelihood of the observed SFS (one-dimensional, joint or multidimensional SFSs) given

the expected SFS generated under a set of demographic parameters. These expected SFSs

are approximated from a number of coalescent simulations provided by the user (usually

> 100,000 simulations). The algorithm starts from initial values of the parameters taken

randomly from a distribution. Then, through a series of cycles, the algorithm calculates

the likelihood for di�erent parameter values to finally find the set of parameters that

maximizes the likelihood. This algorithm needs to be repeated several times (i.e. multiple

runs) starting from di�erent initial values to ensure that the likelihood converges toward

the global maximum of the likelihood function and not just to local maxima.

However, depending on the complexity of the model tested (i.e. the number of demographic

parameters to infer), the algorithm may not converge. When inferring demographic

parameters with this method, the user should thus take a step-by-step approach, starting

with very simple models and make them more and more complex. It is also important to

run additional tests to check for the robustness of the inference, e.g., by increasing both

the number of simulations used to approximate SFS or increasing the number of runs and

cycles.

Approximate Bayesian Computation

Approximate Bayesian Computation approaches (Beaumont, Zhang, and Balding 2002;

Cooke and Nakagome 2018), based on the Bayesian statistical framework, are o�en used
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to estimate parameters of models for which the likelihood function is too complex to

be evaluated. This framework relies on the simulation of genetic data under di�erent

demographic models, such as di�erent topologies of the population tree, and values of

the corresponding parameters (prior distributions). Summary statistics are then computed

from the simulations and compared with the observed summary statistics. The comparison

is classically done through the calculation of a distance between observed and simulated

summary statistics. Nowadays, new approaches can be used to compare simulated and

observed data such as machine learning approaches. The closest simulations are then used

to compute posterior distributions of demographic parameters to estimate.

The summary statistics should be tested a priori because not all are informative for

estimating demographic parameters. For example, the SFS and derived summary statistics

(e.g. Tajima’s D, θw, θπ) have been shown to be informative to infer e�ective population

size and divergence times (Cooke and Nakagome 2018; Fagundes et al. 2007; Veeramah et

al. 2012) while the length of haplotypes is informative to date events of admixture (Gravel

2012; Liang and Nielsen 2014). The evaluation of the summary statistics as well as the

accuracy, the sensitivity and the specificity of the ABC are essential but computationally

demanding analyses.

2.3 What did the genomes of Pacific islanders reveal
about their history?

2.3.1 Deep population structure of Near Oceania

The first genetic studies of Near Oceanians were mainly based on a subset of genetic

markers contained in the hypervariable regions of the mitochondrial DNA (mtDNA) (Redd

and Stoneking 1999; Huoponen et al. 2001; Be�y et al. 1996; Stoneking et al. 1990).

These studies unravelled the deep coalescent age of Australian and New Guinean lineages,

which was interpreted as evidence for multiple se�lements of Sahul, followed by a rapid

genetic isolation between groups. However, the complete sequencing of the mitochondrial

DNA showed that northern and southern Sahul, corresponding to current New Guinea

and Australia respectively, were se�led by a common founder population dated back to

50,000 years ago (Hudjashov et al. 2007). More recently, Pedro and colleagues (Pedro et al.

2020), based on 379 whole mtDNA sequences of Australians and Near Oceanians, argued

for at least two concomitant waves of se�lement around 50,000 years ago, through two

di�erent routes (northern and southern routes), followed by a period of 20,000 years of
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genetic isolation. The study of Y chromosome variations also indicated deep population

structure and old divergence times within Near Oceanians (Kayser 2010; Bergstrom et al.

2016).

Wollstein and colleagues in 2010 (Wollstein et al. 2010), followed by Malaspinas et al. in

2016 (Malaspinas et al. 2016a), provided the first genetic demographic models of Oceanians

using an autosomal genotyping and a whole-genome sequencing strategy, respectively. In

the la�er study, the authors co-estimated e�ective population size changes and divergence

time between Oceanians and non-Oceanian groups assuming a model of isolation followed

by migrations. Using coalescent simulations and the maximum-likelihood framework,

they found that present-day Australians and New Guineans derived from the same

Out-of-Africa migration as their Eurasian neighbours, dating back to around 60,000-104,000

years ago. They also estimated that all present-day Australians derived from the same

ancestral population, suggesting a unique wave of se�lement for southern Sahul. Finally,

they dated an old divergence time between Australians and New Guineans, around 20,000

to 45,000 years ago which points toward a deep structure of Sahul populations.

2.3.2 Which model for the peopling of Remote Oceania?

Archaeologists, anthropologists and linguists proposed di�erent scenarios for the origin

of the proto-Lapita and the first Bismarck Lapita societies. Although the archaeological

data point to the Green’s Triple-I model (Green 2003), a Taiwanese versus Island Southeast

Asian origin for the proto-Lapita is debated (Gray, Drummond, and Greenhill 2009; Terrell

2004; Torrence and Swadling 2008). Does genetics also favour Green’s Triple-I model

(Green 2003)? Do genomic studies point to a specific geographic area for the origin of

the proto-Lapita? Are the Lapita people entering Remote Oceania already admixed?

Using animals and plants to trace back population movements in the Pacific

In the 1990s, strengthened by issues in obtaining DNA samples from Oceanian individuals,

Lisa Matisoo-Smith proposed a new approach to trace back the migration routes taken by

Oceanian seafarers: the use of the DNA of animals and plants they transported with them

(Matisoo-Smith 1994; Matisoo-Smith et al. 1999; Matisoo-Smith 2015). This approach is

referred to as the “commensal model”.

The study of mtDNA variation of the Pacific rat (Ra�us exulans) (Matisoo-Smith and

Robins 2004), supports the Triple-I model for the origin of Lapita cultural complex

and discards the “Express-Train” model and the “Bismarck Archipelago Indigenous

Inhabitants” model, which stipulates that the Lapita cultural complex emerged locally
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from the Bismarck Archipelago without any migration wave from East/Southeast Asia.

Similarly, the study of ancient pig bones, using both ancient DNA and morphometry,

placed the origin of Oceanian pigs in mainland Southeast Asia (coast of Vietnam). This

study also revealed that Oceanian pigs are not closely related to present-day pigs from

China, Taiwan and the Philippines, which suggests that the spread of the Austronesian

languages from Taiwan (“Out-of-Taiwan” model) does not correlate with the movement of

pigs in Oceania (Larson et al. 2007). On the other hand, a recent genetic study of the paper

mulberry (Broussonetia papyrifera) used for textile production, indicates an exclusive

Taiwanese origin of this plant (Olivares et al. 2019). Other commensal plants and animals

have been studied such as the dog, the chicken or the taro (Zhang et al. 2020; Thomson

et al. 2014). Altogether, these di�erent studies a�est of a diverse origin of the di�erent

domesticated animals and plants transported by the first se�lers of Remote Oceania and

suggest multiple migrations and complex interactions between East/Southeast Asians and

Oceanians.

Y chromosome and mtDNA tell a di�erent story

Early works based on uniparentally inherited genetic markers shed light on a specific set

of four mutations in the control region of the mtDNA that characterized the haplogroup

“B4a1a1a”, also known as the “Polynesian motif” (Sykes et al. 1995; Melton et al. 1995;

Redd et al. 1995). This mtDNA haplogroup is found at very high frequency in Polynesian

groups and is also present in Micronesia and in Near Oceania, mainly in the Bismarck

Archipelago. Although the Polynesian motif is absent in Taiwan, the Philippines and China,

related B4 lineages are found in these three regions.

The geographic distribution of the Polynesian motif was initially interpreted as in favour

of the “Express-Train” and “Out-of-Taiwan” models, to explain the origin of Polynesians

(Redd et al. 1995). However, Richards et al. in 1998 (Richards, Oppenheimer, and Sykes

1998), combining the geographic distribution with the estimated age of the Polynesian

motif and founder events, proposed an alternative interpretation: the Polynesian motif

originates from Island Southeast Asia between 5,500 years ago and 34,500 years ago, before

the arrival of Taiwanese farmers in Indonesia around 4,000 years ago. Soares et al. (Soares

et al. 2011), through the study of the full mtDNA sequence of 157 Pacific islanders, argued

that the so-called Polynesian motif arose around 6,500 years ago, before the Lapita period

and likely within the Bismarck Archipelago. The motif then spread westward to Islands

Southeast Asia around 5,000 years ago and eastward to Remote Oceania around 3,500

years ago. Although the authors rejected both a Taiwanese and an Island Southeast Asian

origin of the ancestors of Polynesians, they hypothesized a model of non-demic di�usion

of Austronesian languages (here di�usion of the language with very limited population
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movements) from Taiwan to other Pacific islands from around 4,000 years ago.

Y chromosome lineages (NRY) of Remote Oceanian islanders are mainly of Papuan-related

origin (K, M, S and C NRY branches, (Kayser 2010; Mona et al. 2007; Scheinfeldt et

al. 2006)), but also of East Asian-related origin, such as the O lineages (Kayser 2010).

This suggests an appreciable contribution of Papuan-related groups to the ancestors of

Remote Oceanians (“slow-boat” model). The discrepancy between East Asian maternal

markers and Papuan-related paternal markers (mtDNA versus NRY) has been interpreted

as sex-specific migrations: women of East Asian-related ancestry migrated and admixed

with local Papuan-related men. Hage and Marck in 2003 (Hage and Marck 2003), a�ributed

this di�erence between maternal and paternal markers to the e�ect of matrilocal residence

and matrilineal descent structure of Lapita societies (Jordan et al. 2009).

New insight into the se�lement of Remote Oceania using ancient DNA and
autosomal markers

The genetic studies based on autosomal markers (microsatellites and SNPs) of modern

Oceanian individuals confirmed the admixed nature of some Austronesian-speaking

groups from Near and Remote Oceania. They also show that Polynesian groups present the

highest level of East Asian-related ancestry, around 80%, with only 20% of Papuan-related

ancestry supporting an East/Southeast Asian origin of the proto Lapita people (Wollstein

et al. 2010; Friedlaender et al. 2008). The date of this admixture was estimated to occur

around 3,000 years ago, using di�erent methods (Pugach et al. 2018b; Wollstein et al. 2010;

Pugach et al. 2011). Taken together, these studies strengthened the view that the Lapita

people admixed first in Near Oceania before entering and peopling the pristine islands of

Remote Oceania.

However, in 2016, scientists from the Harvard Medical school published for the first time

the ancient DNA sequence of three individuals from the Vanuatu and one from Tonga

dating to the Lapita period (Skoglund et al. 2016). Surprisingly, this study revealed that

the initial se�lers of Remote Oceania were of almost complete East Asian ancestry, as

also suggested by craniometric data (Valentin et al. 2016). Based on these results, the

authors suggested that the first people to migrate to Remote Oceania did not mix with Near

Oceanian Papuan-related groups, as previously thought. The authors suggested that the

Papuan-related ancestry observed in modern individuals reflect more recent or post-Lapita

migrations of Papuan-related groups to Remote Oceania.

This hypothesis was confirmed by two ancient DNA studies (Posth et al. 2018; Lipson

et al. 2018) that generated a time-transect dataset composed of Lapita and post-Lapita

individuals from di�erent islands of Vanuatu. These studies point towards a secondary
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wave of se�lement a�er the initial se�lement of Remote Oceania, albeit Lipson et al.

(Lipson et al. 2018) estimated a non-zero proportion of Papuan-related ancestry in some

Lapita individuals. These two ancient DNA studies also suggest that the second se�lement

occurred before the end of the Lapita period, in the late Lapita period around 2,700 years

ago and that the Papuan-related groups involved in the event are closer to group that live

nowadays in the Bismarck archipelago.

Pugach et al (Pugach et al. 2018b), using a SNP array dataset composed of 823 Pacific

individuals, found that the peopling of Remote Oceania did not follow a simple linear

wave-of-advance scenario as suggested by the “Out-of-Taiwan” model. By comparing the

level of Bismarck-related ancestry between groups, they found that populations from Santa

Cruz Islands were closer to populations from the Bismarck Archipelago than to any other

Solomon islanders, in agreement with previous genetic analyses based on mtDNA (Duggan

et al. 2014). Pugach and colleagues thus suggested that the peopling of Remote Oceania

occurred in a “leapfrog” manner, bypassing most of the Solomon Islands. This “leapfrog”

hypothesis was first proposed by Peter Sheppard in 2011 to explain the absence of Early

Lapita po�ery in the archaeological record of western and central Solomon Islands as well

as the presence of Bismarck obsidian only in Santa Cruz islands (Sheppard 2011).
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In the previous chapter, I briefly described the molecular signatures le� by genetic dri� and

gene flow – and thus the demographic history – on the pa�erns of genetic variation. I also

evoked how we can use the genetic data to infer the di�erent demographic parameters

characterizing the population history of human groups. I will now describe another

evolutionary force, natural selection. Four evolutionary forces shape the genetic diversity

of a population: the mutation that creates the genetic variation, the genetic dri� that

tends to increase genetic di�erentiation of small populations, migrations or gene flow that

homogenises populations (Chapter 2) and natural selection that (i) allows populations

to adapt to their environments (i.e. positive natural selection) or (ii) purges deleterious
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mutations (i.e. negative selection). In this chapter I will focus on both negative and positive

natural selection.

The e�ective population size determines the strength of genetic dri� acting on the genomes

of populations. However, in theory, due to the codon degeneracy (i.e. redundancy of

the genetic code), around 1/3 of new mutations in genes are expected to be synonymous

and around 2/3 non-synonymous. A large fraction of new mutations that arise in human

genes have thus the potential to reduce the fitness (i.e. the survival probability and the

reproductive success) of individuals that carry these mutations and contribute to disease

susceptibility. In small populations, one expects the frequency of such mutations to be

under the control of genetic dri�, and can thus theoretically be found at intermediate

frequency even if they are deleterious. Therefore, understanding the joint e�ects of

demographic history and natural selection on deleterious mutations appears crucial to

be�er understand the between-population di�erences in the susceptibility to common and

rare diseases.
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3.1 The burden of deleterious mutations in humans

Strongly deleterious mutations such as mutations that appear in genes involved in

fundamental developmental processes, but also in functions such as innate immunity,

are under strong purifying selection (�intana-Murci 2019; �intana-Murci and Clark

2013) and are therefore rapidly eliminated from the population. However, a large fraction

of deleterious mutations corresponding to weakly deleterious mutations are eliminated

(also by purifying selection) at a slower rate and can persist for some generations in the

population.

3.1.1 The link between demography and e�icacy of natural
selection

Each individual carries thousands of deleterious mutations, most of them in the

heterozygous state, that have not yet been eliminated by natural selection. The rate at

which deleterious mutations are fixed in the population is named the e�icacy of natural

selection and increases with the product Nes, where Ne is the e�ective population size

and s the selection coe�icient, which measures relative change in fitness conferred by

mutations (Charlesworth 2009). Mutations with a selection coe�icient lower than 1/Ne, are

considered to be “nearly neutral” mutations, meaning that the frequency of such mutations

fluctuates in the population following random genetic dri� expectations. Hence, a same

mutation that would be quickly eliminated by natural selection in large populations (large

Ne) can reach intermediate frequency - although deleterious - in small populations (small

Ne).

To sum up, in theory, deleterious mutations have more chances to increase in frequency

and reach fixation in populations that experienced strong founder events or bo�lenecks,

where the e�icacy of natural selection to remove deleterious mutations is expectedly lower.

On the contrary, populations that experienced a recent expansion would have a higher

e�icacy of natural selection, but more rare, deleterious mutations that recently appeared

in the population.

3.1.2 The genetic load

The genetic load (L) measures the reduction in fitness of an average genotype found

in a population compared to the maximal or optimal fitness, which by convention is

set to 1: L = Wmax−Ŵ
Wmax

where Wmax is the optimal fitness and Ŵ the mean fitness
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of the individual. The main factor contributing to the genetic load is a�ributed to the

reduction in fitness that is due to the accumulation of deleterious mutations in genomes,

also known as mutational load. The genetic load includes other elements such as the

inbreeding load, which corresponds to the increase in the number of recessive mutations

in the homozygous state carried by the children of consanguineous marriages increasing

inbreeding depression (i.e.,increase of genetic load because of parental relatedness)

When fixing Wmax to 1 in the equation above L = 1 − Ŵ . Assuming one deleterious

mutation that segregates at frequency p reducing the fitness of carriers by s in the

homozygous state and by hs in the heterozygous state we obtain L = 2p(1 − p)hs + p2,

with h the dominance coe�icient, i.e., relationships between alleles and their e�ect on the

phenotype (dominant/recessive). Nevertheless, in humans, it is not possible to measure

the fitness of individuals and very li�le is known about the distribution of the dominance

coe�icient h. To circumvent these issues, one can use empirical proxies (i.e. measures

or statistics derived from empirical data), to evaluate the mutational load in di�erent

human populations and consider that all deleterious mutations follow the same model

of dominance. In this thesis, I will refer mainly to two models of dominance: either

all mutations are under a semi-dominant model, also named additive model, where the

heterozygous carriers have an intermediate phenotype (h = 0.5), or under a recessive

model, where the reduction in fitness is only seen when the deleterious allele is in the

homozygous state (h = 0).

3.1.3 Approximation of the mutational load in human populations

Di�erent statistics have been proposed to approximate the mutational load in human

populations (Lohmueller 2014) such as the ratio of non-synonymous/synonymous

mutations (Pn/Ps) (Lohmueller et al. 2008; Henn et al. 2015a) or the number of

heterozygous and derived homozygous genotypes per individual (Lohmueller et al. 2008).

In 2016, Simons and Sella (Simons and Sella 2016) found that under an additive model of

dominance, the number of derived alleles (Nalleles = 2Nhomozygous + Nheterozygous) carried

by individuals is the only statistic that directly correlates with the mutational load and is

not biased by demographic events such as bo�lenecks (Figure 3.1). Based on this statistic,

the same authors found that recent demographic events did not significantly impact the

load in humans, meaning that no di�erences are observed between human groups. For

instance, no di�erences are observed between sub-Saharan Africans and Eurasians, despite

the additional bo�leneck experienced by the la�er (the Out-Of-Africa bo�leneck). One

likely explanation for these results is that under an additive model, the proportion of

segregating mutations, both neutral and weakly deleterious, and the frequency of these
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mutations vary in the opposite directions, maintaining the individual burden of deleterious

mutations almost constant (Simons and Sella 2016; Simons et al. 2014). Similar conclusions

were drawn by Do et al. (Do et al. 2015) using a similar statistic named Rx/y (ratio of the

count of derived alleles between two individuals from population x and y). They concluded

that Africans and Europeans did not present any significant di�erences in the ability of

natural selection to remove deleterious mutations. These results are at odds with previous

studies (Lohmueller et al. 2008; Henn et al. 2016a; Fu et al. 2013) that found, based on other

statistics, that recent demographic events impacted the burden of deleterious mutations

and the e�icacy of natural selection in humans.

During a bo�leneck, heterozygosity decreases due to the loss of mutations, so the number

of homozygous alleles increases. This means that, contrary to additive alleles, the count

of recessive deleterious mutations, thus the recessive load, is more likely to be a�ected

by recent demographic changes. Studies revealed that mutations with a strong impact on

Figure 3.1: Proxies for load (Simons and Sella 2016). Additive load computed from
simulations (green lines) with bo�leneck (population size in gray varies from 10,000 to
1000 at time 0 and recovers a 1000 generations later) compared with di�erent proxies used
to calculate the mutational load using di�erent samples sizes (blue and purple lines): (a)
ratio non-synonymous/synonymous, (b) number of homozygous sites and (c) number of
derived alleles. Only the number of derived alleles directly correlates with the mutational
load and is not biased by the bo�leneck (demographic event).
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the phenotype, such as Loss-of-Function (LoF) mutations, are more likely to be recessive

(Wright 1929; Simmons and Crow 1977; Phadnis and Fry 2005). Populations marked by

strong founder events such as the Finnish or Ashkenazi Jews harbour significantly less LoF

mutations than other populations (Narasimhan et al. 2016). The study of endogamous

groups, e.g. Pakistani populations, also indicates the presence of fewer segregating LoF

mutations highlighting the likely role of recent inbreeding in purging recessive alleles

(Tadmouri et al. 2009; Bi�les and Hamamy 2010; Garcia-Dorado 2008). Finally, Lopez

et al. (Lopez et al. 2018b), found evidence for significant di�erences in the burden of

deleterious mutations under a recessive model of dominance between African Rainforest

hunter-gatherers, African farmers and Europeans. Similarly, Pedersen et al. (Pedersen et al.

2017b) found that Greenlandic Inuit harbour a higher recessive load than some continental

populations because of their prolonged and extreme bo�leneck.

3.2 Genetic adaptation to environments

A small fraction of the human genome, the genes and their regulatory regions, can

harbour mutations that are under positive natural selection because they increase fitness

by a�ecting traits. If a phenotype confers an advantage in a given environment, the

carriers of the mutation(s) involved in such a phenotype would have a higher survival

probability and reproductive success (i.e., higher fitness). Consequently, the mutation(s)

would increase in the population more rapidly than expected under genetic dri� alone.

A large number of population and evolutionary genetic studies have provided new insight

into genomic regions that have been targeted by natural positive selection, ultimately

contributing to the adaptive history of modern human populations (Barreiro et al. 2008;

Barreiro and �intana-Murci 2010; Bersaglieri et al. 2004; Fan et al. 2016; Hamblin and

Di Rienzo 2000; Karlsson, Kwiatkowski, and Sabeti 2014; Lee et al. 2012; Malaspinas et

al. 2016a; �intana-Murci 2016, 2019; �intana-Murci and Clark 2013; Sabeti et al. 2007;

Tishko� et al. 2007; Voight et al. 2006). For instance, genetic variants responsible for

lactase persistence in adulthood present strong signals of positive selection in the genome

of Europeans and East Africans (Bersaglieri et al. 2004; Tishko� et al. 2007). Pathogen

exposure also played a key role in the genetic adaptation of human populations (Barreiro

and �intana-Murci 2010; �intana-Murci 2016, 2019; �intana-Murci and Clark 2013)

such as a genetic mutation at the ACKR1 locus conferring resistance to malaria in Africa

(Barreiro et al. 2008; Hamblin and Di Rienzo 2000; �intana-Murci 2019) or in genes

involved in the NF-κB signaling pathway conferring a resistance to cholera in population

from Bangladesh (Lee et al. 2012; Karlsson, Kwiatkowski, and Sabeti 2014). There is also
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evidence for genetic adaptation to climates, such as desert arid climate as reported for

Aboriginal Australians in this case, mutations in the NET01 and KCNJ2 genes (Malaspinas

et al. 2016a). Other examples of human local genetic adaptations are shown in Figure 3.2.

3.2.1 The classic sweep model

The “classic selective sweep” model, also named the “hard selective sweep” model, refers to

a process in which a new and strongly beneficial mutation appears and increases rapidly

in frequency to ultimately reach fixation in a given population (Pritchard, Pickrell, and

Coop 2010). I have previously mentioned that mutations in the genome are genetically

linked to each other (i.e. linkage disequilibrium) and form haplotypes. Under the “classic

selective sweep” model, the strongly beneficial mutation will appear on a specific genetic

background or haplotype that contains neutral mutations. Due to linkage disequilibrium,

not only the beneficial mutation but the whole haplotype will disproportionately be

transmi�ed to next generations following a mechanism known as “genetic hitch-hiking”.

The haplotype will increase so fast, that the recombination will not have time to break it

into smaller haplotypes. As a result, one would expect to find around the selected locus (i)

Figure 3.2: Human local adaptation to their environments (Fan et al. 2016).
Examples of genes and phenotypes targeted by positive natural selection. Phenotypes
with associated targeted genes are labelled according to the nature of selected traits.
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a drop in genetic diversity, (ii) derived alleles at high frequency and (ii) haplotypes that are

conserved over large genomic distances.

To be adaptive, a new mutation must appear in the right genomic region(s) and at the

right moment. Consequently, “classic sweep” signals are expected to be rare. There is

indeed compelling evidence to suggest that human genetic adaptation over the last 250,000

years involved only a low number of classic sweeps, suggesting that other modes of natural

selection did occur (Pritchard, Pickrell, and Coop 2010; Schrider and Kern 2017).

3.2.2 Selection on standing variation and polygenic adaptation

Under a “selection on standing variation” model of genetic adaptation, the environmental

pressure postdates the occurrence of the mutation(s) (Przeworski, Coop, and Wall 2005).

In a specific environment, only a subset of mutations is beneficial, most of the genetic

variation is neutral. Most of these mutations appeared in human ancestral populations

and segregate under genetic dri� in populations at di�erent frequencies. Following a

change in environmental pressure (e.g. se�lement of a new geographic region) part of

the standing variation can become advantageous, because they confer an advantage in

face of this new environment; the frequency of these specific mutations would no longer

be driven by genetic dri� only but also by natural selection. As these mutations already

exist in the population, the adaptive process will be faster than under the classic sweep

model of natural selection.

There is increasing evidence to suggest that most traits in humans are polygenic, and each

of the associated genes appear to have a small e�ect on the ultimate phenotype. However,

the classic model of positive selection (the “hard sweep” model), assumes that selection

targets de novo mutations that strongly impact adaptive traits (e.g., lactase persistence). A

more realistic model, the polygenic model of selection, predicts that weak positive selection

targets several genomic regions associated with complex traits or diseases (Pritchard,

Pickrell, and Coop 2010). This alternative model of selection, also known as polygenic

adaptation, is a process in which alleles associated with a specific complex trait and used

to segregate only by genetic dri� in a population become advantageous due to a change in

environmental pressures (Pritchard, Pickrell, and Coop 2010; Peter, Huerta-Sanchez, and

Nielsen 2012).

Molecular signatures of positive selection can be detected with a number of statistics based

on several, di�erent aspects of the data; the site frequency spectrum (Nielsen et al. 2005),

genetic di�erentiation among populations (e.g FST or PBS statistics, (Shriver et al. 2004;

Yi et al. 2010)) and haplotype homozygosity (e.g XP-EHH and iHS statstics, (Sabeti et al.
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2007; Voight et al. 2006)). Under the hard sweep model, we expect a selected allele to

be highly frequent in a specific population and be carried by haplotypes conversed over

long genomic distances, due to hitchhiking e�ects (Fig. 3.2). However, for complex traits

or diseases, many genetic variants are involved in the phenotype and each of them has a

small contribution to the variance of the trait. Consequently, under a model of polygenic

adaptation, we expect a subtle shi� in allelic frequency in a specific population and in

this case, the selective event follows a “so�-sweep model” (Pritchard, Pickrell, and Coop

2010)(Fig. 3.2).

3.2.3 Adaptive admixture and adaptive introgression

Adaptive admixture corresponds to another regime of natural selection in which beneficial

mutations are transmi�ed from a population to another via gene flow. In human

populations, admixture events are pervasive and thus have the potential to play a key

role in the rapid genetic adaptation of human populations (Racimo et al. 2015; Gower

et al. 2021; Patin et al. 2017; Hamid et al. 2021; Jeong et al. 2014). I will refer in this

manuscript (Chapter 5, Article) to adaptive admixture when the two populations belong to

the same species (i.e two modern human populations) and to adaptive introgression when

they are from two di�erent species or human lineages, like between archaic hominins (i.e.,

Neanderthal and Denisova) and Homo sapiens.

3.3 Metabolic disorders in the Pacific

According to the World Health Organization (WHO), most of the top 10 countries with

the highest rate of obesity are found in Pacific Islands. In some islands of Polynesia and

Micronesia, more than 70% of the population is obese (e.g Nauru, Samoa, Tonga) and

obesity represents up to 75% of the causes of death (Fig. 3.3). More specifically, metabolic

disorders such as Type 2 diabetes and Gout are highly prevalent in the Oceanian regions

(Gosling et al. 2015).

3.3.1 Population history

The first Europeans who arrived in the Pacific islands described autochthonous people

as “healthy”, “muscular” and “strong” indicating that traditional food and diet were

appropriate for the lifestyle of Pacific islanders (Fisk 1966). Since 1963, the Pacific region

has experienced a sharp nutrition transition owing to the global trade and globalization.
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Imported food has either replaced part of the local food, especially carbohydrate sources

(root crops, fruits and vegetables have been replaced by imported flour, rice, meat, alcohol

and milk) or has been added to local fat sources (e.g. imported vegetable oil or bu�er added

to coconuts). More generally, the consumption of fat increased, for example, in French

Polynesia, by 80% between 1963 and 2000 (Gosling et al. 2015; Hughes and Lawrence 2005;

Fisk 1966).

Over the last 50 years, Pacific islanders migrated from rural to urban regions and nowadays

more than half of the population lives in urban areas where they have a more sedentary

lifestyle and practice less physical activity. As a consequence, the highest rate of obesity

is found in urban centers such as New Zealand and a survey from 1998 in the Vanuatu

islands indicates that although people living in rural areas absorbed more calories than

people from urban areas, they are less obese mainly because they consume five times less

imported fat products (Hughes and Lawrence 2005).

Despite the lower levels of metabolic disorders, they are still present in rural regions

where people maintain a more traditional lifestyle and remain more isolated from

the globalization (Gosling et al. 2015; Gosling, Matisoo-Smith, and Merriman 2014).

Furthermore, bone lesions resembling that of gout arthritis have been also identified in

the first Lapita se�lers of the Vanuatu dated to around 3,000 years ago (Buckley 2007).

Together, these observations suggest that, in addition to environmental factors, Pacific

islanders could also be more biologically susceptible to metabolic disorders because of

their genetic background and specific population history (both demographic and adaptive

history).

3.3.2 A case of “maladaptation”?

The geneticist James Neel in 1962 proposed the hypothesis of the thri�y gene or thri�y

genotype to explain the high prevalence of Type 2 diabetes observed in contemporary

societies (Neel 1962). This hypothesis stipulates that mutations found in genes involved in

fat storage were under positive natural selection because they conferred an advantage in

period of food privation. Because of changes in diet and lifestyle (caloric and food excess),

the genetic variants that were formerly advantageous are nowadays detrimental and are

associated with metabolic disorders.

Focusing on Oceania, studies (Diamond 2003; Bindon and Baker 1997) argued that

the voyages in canoes associated with the se�lement of remote islands as well as

between-island connexions (trade) were accompanied by food privation and a high

mortality rate. In this context, people aboard canoes who carried thri�y alleles would have
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had a higher survival probability. Candidate thri�y alleles have been proposed, such as a

mutation located in the CREBRF gene, which shows a signature of positive selection and is

associated with increased Body Mass Index (BMI) and fat storage in Samoans (Minster et

al. 2016; Loos 2016). However, the same mutation protects against Type 2 diabetes (Minster

et al. 2016; Krishnan et al. 2018) and is also associated with taller stature in Samoans and

Maori (Carlson et al. 2020). Because of these pleiotropic e�ects, it is not possible to know

which of these traits was/were likely targeted by natural selection and, thus, whether the

CREBRF mutation is indeed a thri�y allele.

A�er more than 60 years of research, the thri�y gene hypothesis is still currently highly

debated. For example, Ayub et al. (Ayub et al. 2014) found no evidence of positive selection

at loci associated with Type 2 diabetes in African, European and East Asian groups.

Although the thri�y gene hypothesis is commonly used to explain the high prevalence of

metabolic disorders found in Oceania, very few studies succeeded in formally assessing and

identifying genetic variants associated with metabolic disorders specifically in Oceanian

groups (most of associated variants come from European-based association studies) and

presenting signatures of natural selection.

Figure 3.3: Prevalence of obesity and Type 2 diabetes in Oceania (Gosling et al.
2015).
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Objectives of the thesis

During the last 125,000 years, modern humans (Homo sapiens) spread across all continents

and se�led in diverse ecosystems, as extreme as the Sahara Desert, the Arctic Circle,

or the Himalayas. Archaeological and linguistic data have provided valuable insights

into the tempo of human dispersals across the globe but many questions remain

open: did populations expand together with their languages and lifestyles? Do human

cultures defined by archaeology reflect distinct genetic entities? Were human dispersals

accompanied by genetic admixture with local groups of archaic or modern humans? How

have humans genetically adapted to the newly colonized environments? The recent advent

of high-throughput sequencing technologies now allows tackling these questions in great

detail, through the full characterization of the genetic diversity of human populations

living in current and ancient times.

These massive sequence-based datasets can be interpreted in light of theoretical

frameworks in population genetics, developed from well-known mathematical

frameworks, such as the coalescent theory or the di�usion approximation to the discrete

generational model. Combining whole-genome sequencing data with robust statistical

and mathematical frameworks in population genetics thus allows infer demographic

models that best explain current pa�erns of genetic variation.

The region of Oceania, composed of thousands of scarcely populated islands, provides

with an excellent model system to test important hypotheses in human evolution,

population genetics and evolutionary biology. This project aims to reconstruct the genetic

history of Oceanian Islanders, with the goal of dissecting their demographic past and to

ultimately be�er understand their present-day relation to disease. Specifically, my PhD

project aims to (i) characterize the genetic diversity of Oceanian populations, which are

under-represented in genomic studies, (ii) trace back all the di�erent events constituting
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their demographic history (see Chapter 5), and finally (iii) evaluate the purge of deleterious

mutations (i.e., mutations that could cause diseases) in these populations (see Chapter 6).

To do so, I have first set up the necessary pipeline to process the high-coverage sequencing

of 317 new whole genomes. I combined multiple bioinformatics tools to align sequencing

reads, call genetic variants and genotypes, and check sample and variant quality. Once

high-quality data was obtained, my next steps have been the detailed characterisation

of the genetic diversity and structure of Oceanians, to ultimately jointly infer the

demographic parameters characterizing their population history. Specifically, I inferred

the demographic models of (i) Near Oceanians, (ii) western Remote Oceanians and (iii)

East/Southeast Asian ancestors of Near and Remote Oceanians. I explored and evaluated

a large range of possible demographic scenarios using the maximum likelihood framework

and SFS-based parameter estimations implemented in Fastsimcoal2 (Exco�ier et al. 2013;

Exco�ier et al. 2021). Secondly, I started to evaluate the burden of deleterious mutations

of Pacific islanders. To do so, I estimated and compared the e�icacy of natural selection

and the mutational load between Pacific and reference populations.

42



Chapter 5

Result 1
Demographic history and genetic
adaptation of Pacific islanders

5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 200

43



Chapter 5

5.1 Context

As seen in chapters 1 and 2, the islands of the Pacific are classified into Near Oceania and

Remote Oceania. These two-sub regions of Oceania di�er in their geographic location and

peopling history. The oldest archaeological sites are found in Near Oceania (New Guinea,

the Bismarck Archipelago and the Solomon Islands) and studies indicate a se�lement

of this region between around 45,000 years ago for Northern Sahul and 25,000-30,000

years ago for western Solomon Islands. The descendants of this Pleistocene occupation

are Papuan-speaking communities that live today in New Guinea and islands lying o�

its northeast coast. The peopling of the rest of the Pacific, known as Remote Oceania

and including the Reef/Santa Cruz islands, Vanuatu, New Caledonia, Fiji, Micronesia

and Polynesia, only occurred recently in the Holocene. This dispersal which has been

associated with the expansion of Austronesian languages and the Lapita Cultural Complex,

was proposed to originate around 5,000 years ago from Taiwan and reach western Remote

Oceania by around 3,200 years ago, and the Polynesian Triangle by 1,000–700 years aga

(i.e. the “Out-of-Taiwan” model).

Ancient DNA studies in Remote Oceania, primarily in Vanuatu and Tonga, have reported

virtually no Papuan ancestry in individuals from the Lapita period, and supported a

second movement of Papuan-like people likely from the Bismarck Archipelago, shortly

a�er the initial Lapita se�lement (Lipson et al. 2018; Posth et al. 2018; Skoglund et al.

2016). Genetic studies of modern Oceanians have reported varying levels of Papuan-

and East Asian-related ancestry across islands (Friedlaender et al. 2008; Pugach et al.

2018b; Wollstein et al. 2010). However, the detail characterization of the demographic

history (i.e. e�ective population size, divergence times, mode and tempo of gene flow) of

Near and Remote Oceanians as well as the di�erent biological functions that contributed

to their adaptation remain poorly defined. Additionally, some Oceanian groups have

retained the highest worldwide levels of combined Denisovan and Neanderthal ancestry

(Qin and Stoneking 2015; Reich et al. 2011; Vernot et al. 2016; Sankararaman et al.

2016), but it is still unclear when and how this introgression occurred and whether it

facilitated local adaptation. To date, genetic studies of this region have focused on

geographically-restricted datasets and/or ascertained SNP arrays (Friedlaender et al. 2008;

Pugach et al. 2018b; Wollstein et al. 2010), limiting our ability to unbiasedly study the

genomic history of Near and Remote Oceania and the legacy of archaic admixture across

Oceanians.

In this article I mainly led and performed the processing of the high-coverage whole

genome sequences, the analyses related to the description of the dataset, the population
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structure (see Genomic dataset and population structure and related Supplementary

information) and demographic inference of Pacific islanders (see The se�lement of
Near and Remote Oceania, Insights into the Austronesian expansion and related

Supplementary information).

5.2 Article
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Genomic insights into population history 
and biological adaptation in Oceania

Jeremy Choin1,2,16, Javier Mendoza-Revilla1,16, Lara R. Arauna1,16, Sebastian Cuadros-Espinoza1,3,  
Olivier Cassar4, Maximilian Larena5, Albert Min-Shan Ko6, Christine Harmant1, Romain Laurent7,  
Paul Verdu7, Guillaume Laval1, Anne Boland8, Robert Olaso8, Jean-François Deleuze8, 
Frédérique Valentin9, Ying-Chin Ko10, Mattias Jakobsson5,11, Antoine Gessain4, 
Laurent Excoffier12,13, Mark Stoneking14, Etienne Patin1,17 ✉ & Lluis Quintana-Murci1,15,17 ✉

The Pacific region is of major importance for addressing questions regarding human 
dispersals, interactions with archaic hominins and natural selection processes1. 
However, the demographic and adaptive history of Oceanian populations remains 
largely uncharacterized. Here we report high-coverage genomes of 317 individuals 
from 20 populations from the Pacific region. We find that the ancestors 
of Papuan-related (‘Near Oceanian’) groups underwent a strong bottleneck before the 
settlement of the region, and separated around 20,000–40,000 years ago. We infer 
that the East Asian ancestors of Pacific populations may have diverged from 
Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to 
have started from Taiwan around 5,000 years ago2–4. Additionally, this dispersal was 
not followed by an immediate, single admixture event with Near Oceanian 
populations, but involved recurrent episodes of genetic interactions. Our analyses 
reveal marked differences in the proportion and nature of Denisovan heritage among 
Pacific groups, suggesting that independent interbreeding with highly structured 
archaic populations occurred. Furthermore, whereas introgression of Neanderthal 
genetic information facilitated the adaptation of modern humans related to multiple 
phenotypes (for example, metabolism, pigmentation and neuronal development), 
Denisovan introgression was primarily beneficial for immune-related functions. 
Finally, we report evidence of selective sweeps and polygenic adaptation associated 
with pathogen exposure and lipid metabolism in the Pacific region, increasing our 
understanding of the mechanisms of biological adaptation to island environments.

Archaeological data indicate that Near Oceania, which includes New Guinea, 
the Bismarck archipelago and the Solomon Islands, was peopled around 
45 thousand years ago (ka)5.The rest of the Pacific—known as Remote Oce-
ania, and including Micronesia, Santa Cruz, Vanuatu, New Caledonia, Fiji 
and Polynesia—was not settled until around 35 thousand years later. This 
dispersal, associated with the spread of Austronesian languages and the 
Lapita cultural complex, is thought to have started in Taiwan around 5 ka, 
reaching Remote Oceania by about 0.8–3.2 ka6. Although genetic studies 
of Oceanian populations have revealed admixture with populations of 
East Asian origin7–13, attributed to the Austronesian expansion, questions 
regarding the peopling history of Oceania remain. It is also unknown how 
the settlement of the Pacific was accompanied by genetic adaptation to 

island environments, and whether archaic introgression facilitated this 
process in Oceanian individuals, who present the highest levels of com-
bined Neanderthal and Denisovan ancestry worldwide14–17. We report here 
a whole-genome-based survey that addresses a wide range of questions 
relating to the demographic and adaptive history of Pacific populations.

Genomic dataset and population structure
We sequenced the genomes of 317 individuals from 20 populations 
spanning a geographical transect that is thought to underlie the 
peopling history of Near and Remote Oceania (Fig. 1a and Supple-
mentary Note 1). These high-coverage genomes (around 36×) were 
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analysed with the genomes of selected populations—including Papua 
New Guinean Highlanders and Bismarck Islanders16,18,19—and archaic  
hominins20–22 (Supplementary Note 2 and Supplementary Table 1). The 
final dataset involves 462 unrelated individuals, including 355 individu-
als from the Pacific region, and 35,870,981 single-nucleotide poly-
morphisms (SNPs) (Fig. 1b). Using ADMIXTURE, principal component 
analysis (PCA) and a measure of genetic distance (FST), we found that 
population variation is explained by four components, associated with  
(1) East and Southeast Asian individuals; (2) Papua New Guinean High-
landers; (3) Bismarck Islanders, Solomon Islanders and ni-Vanuatu; 
and (4) Polynesian outliers (here ‘Polynesian individuals’) (Fig. 1c, d, 
Extended Data Fig. 1 and Supplementary Note 3). The largest differ-
ences are between East and Southeast Asian individuals and Papua 
New Guinean Highlanders, the remaining populations show various 
proportions of the two components, supporting the Austronesian 
expansion model8,10,11. Strong similarities are observed between Bis-
marck Islanders and ni-Vanuatu, consistent with an expansion from 
the Bismarck archipelago into Remote Oceania at the end of the Lapita 
period8,10. Levels of heterozygosity differ markedly among Oceanian 
populations (Kruskal–Wallis test, P = 1.4 × 10−12) (Fig. 1e), and correlate 
with individual admixture proportions (ρ = 0.89, P < 2.2 × 10−16). The low-
est heterozygosity and highest linkage disequilibrium were observed 
in Papua New Guinean Highlanders and Polynesian individuals, which 

probably reflect low effective population sizes. Notably, F-statistics 
show a higher genetic affinity of ni-Vanuatu from Emae to Polynesian 
individuals, relative to other ni-Vanuatu, which suggests gene flow 
from Polynesia6,23.

The settlement of Near and Remote Oceania
To explore the peopling history of Oceania, we investigated a set of 
demographic models—driven by several evolutionary hypotheses—with 
a composite likelihood method24 (Supplementary Note 4). We first 
determined the relationship between Papua New Guinean Highland-
ers and other modern and archaic hominins, and replicated previous 
findings18 (Extended Data Fig. 2a and Supplementary Table 2). We 
next investigated the relationship between Near Oceanian groups, 
assuming a three-epoch demography with gene flow. Observed site 
frequency spectra were best explained by a strong bottleneck before 
the settlement of Near Oceania (effective population size (Ne) = 214; 95% 
confidence interval, 186–276). The separation of Papua New Guinean 
Highlanders from Bismarck and Solomon Islanders dated back to 39 ka 
(95% confidence interval, 34–45 ka), and that of Bismarck Islanders from 
Solomon Islanders to 20 ka (95% confidence interval, 16–30 ka) (Fig. 2a, 
Supplementary Tables 3, 4), shortly after the human settlement of the 
region around 30–45 ka5,6.
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et al.19, Vernot et al.16 and Malaspinas et al.18, respectively. b, The number of 
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New variants are SNPs that are absent from available datasets16,18,19 and dbSNP. 
c, ADMIXTURE ancestry proportions at K = 6 (lowest cross-validation error; for 
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respectively. a, c, Maps were generated using the maps R package51.
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We then incorporated western Remote Oceanian populations into 
the model, represented by ni-Vanuatu individuals from Malakula. 
We estimated that the ancestors of ni-Vanuatu individuals received 
migrants from the Bismarck that contributed more than 31% of their 
gene pool (95% confidence interval, 31–48%) less than 3 ka (Extended 
Data Fig. 2b and Supplementary Table 5), which is consistent with 
ancient DNA results8–10. However, the best-fitted model revealed that 
the Papuan-related population who entered Vanuatu less than 3 ka 
was a mixture of other Near Oceanian sources8,23: the Papuan-related 
ancestors of ni-Vanuatu diverged from Papua New Guinean Highland-
ers and later received approximately 24% (95% confidence interval, 
14–41%) of Solomon Islander-related lineages. Interestingly, we found 
a minimal (<3%) direct contribution of Taiwanese Indigenous peoples 
to ni-Vanuatu individuals, dating back to around 2.7 ka (95% confidence 
interval, 1.1–7.5 ka). This suggests that the East-Asian-related ancestry 
of modern western Remote Oceanian populations has mainly been 
inherited from admixed Near Oceanian individuals.

Insights into the Austronesian expansion
We characterized the origin of the East Asian ancestry in Oceanian 
populations by incorporating Philippine and Polynesian Austronesian 
speakers into our models (Supplementary Note 4). Assuming isolation 
with migration, we estimated that Taiwanese Indigenous peoples and 
Malayo-Polynesian speakers (Philippine Kankanaey and Polynesian 

individuals from the Solomon Islands) diverged around 7.3 ka (95% con-
fidence interval, 6.4–11 ka) (Extended Data Fig. 2c), in agreement with a 
recent genetic study of Philippine populations25. Similar estimates were 
obtained when modelling other Austronesian-speaking groups (>8 ka) 
(Supplementary Table 6). These dates are at odds with the out-of-Taiwan 
model—that is, a dispersal event starting from Taiwan around 4.8 ka 
that brought agriculture and Austronesian languages to Oceania2–4. 
However, unmodelled gene flow from northeast Asian populations 
into Austronesian-speaking groups26 could bias parameter estima-
tion. When accounting for such gene flow, we obtained consistently 
older divergence times than expected under the out-of-Taiwan model4, 
but with overlapping confidence intervals (approximately 8.2 ka; 95% 
confidence interval, 4.8–12 ka) (Fig. 2b and Supplementary Tables 7–9). 
Although this suggests that the ancestors of Austronesian speakers 
separated before the Taiwanese Neolithic2, given the uncertainty in 
parameter estimation, further investigation is needed using ancient 
genomes.

We next estimated the time of admixture between Near Oceanian 
individuals and populations of East Asian origin under various admix-
ture models, using an approximate Bayesian computation (ABC) 
approach (Supplementary Notes 5, 6 and Supplementary Table 10). 
We found that a two-pulse model best matched the summary statistics 
for Bismarck and Solomon Islanders. The oldest pulse occurred after 
the Lapita emergence in the region around 3.5 ka27 (2.2 ka (95% credible 
interval, 1.7–3.0) and 2.5 ka (95% credible interval, 2.2–3.4) for Bismarck 

a

39 (34–45)

Time (ka)

25 (20–36)

20 (16–30)

4.1 (3.2–5.5)
35 (31–39)

43 (27–58)

Admixture rate (%)

Present

b
SAR HAN TWN PNG NOC

GST
SLI BKA

c

0

2.0

3.0

4.0

Present

Present

15.0 5.010.0 0

Posterior probability density (×10–4)

58 (53–59)
57 (52–59)

Time (ka)

Time (ka)

0

1.0

2.0

3.0

4.0

Posterior probability density (×10–4)

1.0

Bismarck Archipelago

3.5

2.5

15.0 5.010.0 0

Solomon Islands

3.5

2.5

3.0

3.5

2 5

58 (53–59)
57 (52–59)

18 (14–22)

14 (11–18)

SAR NEA GST HAN TWN POL

8.2 (4.8–12)

PNG

1.8 (1.3–2.2)

NOC GST

3.9 (2.7–9.1)

0.3 (0.0–26)
0.0 (0.0–11)
4.3 (0.0–11)

0.6 (0.2–1.5)
PHP

0.0 (0.0–6.4)

Fig. 2 | Demographic models of the human settlement of the Pacific.  
a, Maximum-likelihood model for Near Oceanian populations. Point estimates 
of parameters and 95% confidence intervals are reported in Supplementary 
Table 4. The grey area indicates the archaeological period for the settlement of 
Near Oceania. b, Maximum-likelihood model for Formosan-speaking (TWN) 
and Malayo-Polynesian-speaking (PHP and POL) populations. Point estimates 
of parameters and 95% confidence intervals are reported in Supplementary 
Table 7 (‘3-pulse model’). a, b, BKA, Bismarck Islanders; HAN, Han Chinese 
individuals; NEA GST, a northeast Asian unsampled population; NOC GST, a 
Near Oceanian meta-population; PHP, Philippine individuals; PNG, Papua New 
Guinean Highlanders; POL, Polynesian individuals from the Solomon Islands; 
SAR, Sardinian individuals; SLI, Solomon Islanders; TWN, Taiwanese 
Indigenous peoples. Rectangle width indicates the estimated effective 
population size. Black rectangles indicate bottlenecks. One- and 

two-directional arrows indicate asymmetric and symmetric gene flow, 
respectively; grey and black arrows indicate continuous and single-pulse gene 
flow, respectively. The 95% confidence intervals are indicated in parentheses. 
We assumed a mutation rate of 1.25 × 10−8 mutations per generation per site and 
a generation time of 29 years. We limited the number of parameter estimations 
by making simplifying assumptions concerning the recent demography of 
East-Asian-related and Near Oceanian populations in a and b, respectively 
(Supplementary Note 4). Sample sizes are reported in Supplementary Note 4.  
c, Posterior (coloured lines) and prior (grey areas) distributions for the times of 
admixture between Near Oceanian and East-Asian-related populations, under 
the double-pulse most-probable model, obtained by ABC (Supplementary 
Notes 5, 6). Point estimates and 95% credible intervals are indicated by 
horizontal lines and rectangles, respectively. The grey rectangle indicates the 
archaeological period of the Lapita cultural complex in Near Oceania27.
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and Solomon Islanders, respectively) (Fig. 2c). This reveals that the 
separation of Malayo-Polynesian peoples from Taiwanese Indigenous 
peoples was not followed by an immediate, single admixture episode 
with Near Oceanian populations, suggesting that Austronesian speak-
ers went through a maturation phase during their dispersal.

Neanderthal and Denisovan heritage
Pacific Islanders have substantial Neanderthal and Denisovan ances-
try, as indicated by PCA, D-statistics and f4-ratio statistics (Supple-
mentary Note 7). Whereas Neanderthal ancestry is homogeneously 
distributed (around 2.2–2.9%), Denisovan ancestry differs markedly 
between groups (approximately 0–3.2%) and is highly correlated with 
Papuan-related ancestry14,15 (R2 = 0.77, P < 2.1 × 10−7) (Fig. 3a–c). A notable 
exception is the Philippine Agta (who self-identify as ‘Negritos’) and, 
to a lesser extent, the Cebuano, who have high Denisovan but little 
Papuan-related ancestry (R2 = 0.99, P < 2.2 × 10−16, after excluding Agta 
and Cebuano).

To explore the sources of archaic ancestry, we inferred high- 
confidence introgressed haplotypes (Fig. 3d and Supplementary 
Note 8) and estimated haplotype match rates to the Vindija Nean-
derthal and Altai Denisovan genomes. Neanderthal match rates were 
unimodal in all groups (Fig. 3e) and Neanderthal segments signifi-
cantly overlapped between population pairs (permutation-based 
P = 1 × 10−4) (Supplementary Notes 9–11), which is consistent with a 
unique introgression event in the ancestors of non-African populations 
from a single Neanderthal population. Conversely, different peaks were 
apparent for Denisovan-introgressed segments (Fig. 3e and Extended 
Data Fig. 3). A two-peak signal was not only detected in East Asian indi-
viduals (around 98.6% and about 99.4% match rate to the Denisovan 

genome) as previously reported28, but was also found in Taiwanese 
Indigenous peoples, Philippine Cebuano and Polynesian individuals. 
Haplotypes with a match of approximately 99.4% were significantly 
longer than those with a match of approximately 98.6% (one-tailed 
Mann–Whitney U-test; P = 5.14 × 10−4), suggesting that—in East Asian 
populations—introgression from a population closely related to the 
Altai Denisovan occurred more recently than introgression from the 
more-distant archaic group.

We also observed two Denisovan peaks in Papuan-related popu-
lations29 (Gaussian mixture model P < 1.68 × 10−4) (Supplementary 
Table 11), with match rates of around 98.2% and 98.6% (Fig. 3e). Con-
sistently, we confirmed using ABC that Papua New Guinean Highlanders 
received two distinct pulses (posterior probability = 99%) (Supplemen-
tary Note 12). Haplotypes with an approximately 98.6% match were of 
similar length in all populations (Kruskal–Wallis test, P > 0.05), whereas 
haplotypes with a match of around 98.2% were significantly longer in 
Papuan-related populations than those with a match of about 98.6% in 
other populations (Supplementary Note 10). ABC parameter inference 
supported a first pulse around 46 ka (95% credible interval, 39–56 ka), 
from a lineage that diverged 222 ka from the Altai Denisovan (95% cred-
ible interval, 174–263 ka) (Supplementary Note 12 and Supplementary 
Table 12) and a second pulse into Papuan-related populations around 
25 ka (95% confidence interval, 15–35 ka) from a lineage that separated 
409 ka from the Altai Denisovan (95% credible interval, 335–497 ka). 
This model was more-supported than a previously reported model in 
which the pulse from distantly related Denisovans occurred around 
46 ka29 (ABC posterior probability = 99%) (Supplementary Note 12). 
Our results document multiple interactions of Denisovans with the 
ancestors of Papuan-related groups and a deep structure of introgress-
ing archaic humans.
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Fig. 3 | Neanderthal and Denisovan introgression across the Pacific.  
a, b, Estimates of Neanderthal (a) and Denisovan (b) ancestry on the basis of 
f4-ratio statistics. Maps were generated using the maps R package51.  
c, Correlation between Papuan ancestry and Denisovan ancestry (as a 
percentage of Papuan ancestry; n = 20 populations). The black line is the 
identity line. Bars denote 2 s.e. of the estimate. d, Cumulative length of the 
high-confidence archaic haplotypes retrieved in Pacific, East Asian and west 
Eurasian populations. e, Match rate to the Vindija Neanderthal (left) and Altai 

Denisovan (right) genomes, based on long (>2,000 sites), high-confidence 
archaic haplotypes, to remove false-positive values attributable to incomplete 
lineage sorting. Fitted density curves for populations with significant bimodal 
match rate distributions are shown. AGT, Philippine Agta; ASN, East Asian 
individuals (Simons Genome Diversity Project samples only19); EUR, western 
Eurasian individuals; SCI, Santa Cruz Islanders; VAN, ni-Vanuatu. The remaining 
acronyms are as in Fig. 2. Population sample sizes are reported in 
Supplementary Table 1.
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For the Philippine Agta, we also observed two Denisovan-related 
peaks, with match rates of around 98.6% and 99.4% (Fig. 3e). We found 
that the 99.4% peak is probably due to gene flow from East Asian popu-
lations (Supplementary Note 10). Introgressed haplotypes in the Agta 
overlap significantly with those in Papuan-related populations (Sup-
plementary Note 11), but their high Papuan-independent Denisovan 
ancestry (Fig. 3c) suggests additional interbreeding. This, together 
with the discovery of Homo luzonensis in the Philippines30, prompted 
us to search for introgression from other archaic hominins. Using the 
S′ method28, and filtering Neanderthal and Denisovan haplotypes, we 
retained 59 archaic haplotypes spanning a total of 4.99 megabases 
(Mb), around 50% of which were common to most groups (Extended 
Data Fig. 4 and Supplementary Note 13). Focusing on the Agta and 
Cebuano, we retained only around 1 Mb of introgressed haplotypes that 
were private to these groups. This suggests that Homo luzonensis made 
little or no contribution to the genetic make-up of modern humans or 
that this hominin was closely related to Neanderthals or Denisovans.

The adaptive nature of archaic introgression
Although evidence of archaic adaptive introgression exists31,32, few 
studies have evaluated its role in Oceanian populations. We first tested 
5,603 biological pathways for enrichment in adaptive introgression 
signals (Supplementary Notes 14, 15). For Neanderthal and Denisovan 
segments, a significant enrichment was observed for 24 and 15 path-
ways, respectively, of which 9 were related to metabolic and immune 
functions (Supplementary Tables 13–18). Focusing on Neanderthal 
adaptive introgression, we replicated genes such as OCA2, CHMP1A or 
LYPD6B31,32 (Fig. 4a). We also identified previously unreported signals 
in genes relating to immunity (CNTN5, IL10RA, TIAM1 and PRSS57), neu-
ronal development (TENM3, UNC13C, SEMA3F and MCPH1), metabolism 
(LIPI, ZNF444, TBC1D1, GPBP1, PASK, SVEP1, OSBPL10 and HDLBP) and 
dermatological or pigmentation phenotypes (LAMB3, TMEM132D, 
PTCH1, SLC36A1, KRT80, FANCA and DBNDD1) (Extended Data Fig. 5), 
further supporting the notion that Neanderthal variants, beneficial or 
not, have influenced numerous human phenotypes31–33.

For Denisovans, we replicated signals for immune-related (TNFAIP3, 
SAMSN1, ROBO2 and PELI2)29,31 and metabolism-related (DLEU1, WARS2 

and SUMF1)29,32 genes. Our most-extreme candidates comprise 14 previ-
ously unreported signals in genes relating to the regulation of innate 
and adaptive immunity, including ARHGEF28, BANK1, CCR10, CD33, 
DCC, DDX60, EPHB2, EVI5, IGLON5, IRF4, JAK1, LRRC8C and LRRC8D, 
and VSIG10L (Fig. 4a and Supplementary Table 15). For example, CD33—
which mediates cell–cell interactions and keeps immune cells in a rest-
ing state34—contains an approximately 30-kb-long haplotype with seven 
high-frequency, introgressed variants, including an Oceanian-specific 
nonsynonymous variant (rs367689451-A; derived allele frequency 
(DAF) > 66%) (Extended Data Fig. 5) predicted to be deleterious (SIFT 
score = 0). Similarly, IRF4—which regulates Toll-like receptor signalling 
and interferon responses to viral infections35—has an around 29-kb-long 
haplotype containing 13 high-frequency (DAF > 64%) variants in the 
Agta. These results suggest that Denisovan introgression has facili-
tated human adaptation by serving as a reservoir of resistance alleles 
against pathogens.

Genetic adaptation to island environments
Finally, we searched for signals of classic sweeps and polygenic adap-
tation in Pacific populations (Supplementary Notes 16–18 and Sup-
plementary Tables 19–25). We found 44 sweep signals common to all 
Papuan-related groups (empirical P < 0.01) (Extended Data Fig. 6), 
including the TNFAIP3 gene, which was identified as adaptively intro-
gressed from Denisovans31 (Extended Data Fig. 7). The strongest hit 
(empirical P < 0.001) included GABRP, which mediates the anticon-
vulsive effects of endogenous pregnanolone during pregnancy36, and 
RANBP17, which is associated with body mass index and high-density 
lipoprotein cholesterol37 (Extended Data Fig. 8a, b). The highest score 
identified a nonsynonymous, probably damaging variant (rs79997355) 
in GABRP at more than 70% frequency in Papua New Guinean High-
landers and ni-Vanuatu, and low frequency (less than 5%) in East and 
Southeast Asian populations. Among population-specific signals, ATG7, 
which regulates cellular responses to nutrient deprivation38 and is 
associated with blood pressure39, presented high selection scores in 
Solomon Islanders.

Among populations with high East Asian ancestry, we identified 29 
shared sweep signals (P < 0.01) (Extended Data Fig. 9). The highest 
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Fig. 4 | Mechanisms of genetic adaptation to Pacific environments.  
a, Genomic regions showing the strongest evidence of adaptive introgression 
from Neanderthals (red) and Denisovans (purple). Each row is a 40-kb window, 
each column is a Pacific population group, and each cell is coloured according 
to whether the window is in the top 0.5%, 1%, 5%, >5% of the empirical 
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Note 14). The starting position and genes of each genomic window are indicated. 
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CCDC109B is also known as MCUB, KIAA1467 is also known as FAM234B, FAM19A1 
is also known as TAFA1, MTERFD2 is also known as MTERF4, RP11-723G8.2 is also 
known as LINC01899. b, Signals of polygenic adaptation. Blue and brown colours 
indicate the −log10(P value) for a significant decrease (trait iHS > 0) or increase 
(trait iHS < 0) in the candidate trait. *P < 0.025; **P < 0.005. BMD, heel-bone 
mineral density; BMI, body mass index; CAD, coronary atherosclerosis;  
HDL high-density lipoprotein levels; LDL, low-density lipoprotein levels.  
a, b, Population acronyms are as in Figs. 2, 3.
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scores (P < 0.001) overlapped with an approximately 1-Mb haplotype 
containing multiple genes, including ALDH2. ALDH2 deficiency results 
in adverse reactions to alcohol and is associated with increased survival 
in Japanese individuals40. The ALDH2 rs3809276 variant occurs in more 
than 60% and less than 15% in East-Asian-related and Papuan-related 
groups, respectively. We also detected a strong signal around OSBPL10, 
associated with dyslipidaemia and triglyceride levels41 and protection 
against dengue42, which we found to have been adaptively introgressed 
from Neanderthals (Extended Data Fig. 7). Population-specific signals 
included LHFPL2 in Polynesian individuals (Extended Data Fig. 8c, d), 
variation in which is associated with eye macula thickness—a highly 
variable trait involved in sharp vision43. LHFPL2 variants reach around 
80% frequency in Polynesian individuals, but are absent from databases, 
highlighting the need to characterize genomic variation in understud-
ied populations.

Because most adaptive traits are expected to be polygenic44, we 
tested for directional selection of 25 complex traits with a well-studied 
genetic architecture45, by comparing the integrated haplotype scores 
(iHS) of trait-associated alleles to those of matched, random SNPs46. 
Focusing on European individuals as a control, we found signals of 
polygenic adaptation for lighter skin and hair pigmentation but not for 
increased height (Fig. 4b), as previously reported46,47. In Pacific popula-
tions, we detected a strong signal for lower levels of high-density lipo-
protein cholesterol in Solomon Islanders and ni-Vanuatu (P = 1 × 10−5).

Implications for human history and health
The peopling of Oceania raises questions about the ability of our species 
to inhabit and adapt to insular environments. Using current estimates 
of the human mutation rate and generation time18 (Supplementary 
Note 4 and Supplementary Tables 2–7), we find that the settlement 
of Near Oceania 30–45 ka5,6 was rapidly followed by genetic isolation 
between archipelagos, suggesting that navigation during the Pleisto-
cene epoch was possible but limited. Furthermore, our study reveals 
that genetic interactions between East Asian and Oceanian populations 
may have been more complex than predicted by the strict out-of-Taiwan 
model4, and suggests that at least two different episodes of admixture 
occurred in Near Oceania after the emergence of the Lapita culture11,27. 
Our analyses also provide insights into the settlement of Remote Oce-
ania. Ancient DNA studies have proposed that Papuan-related peoples 
expanded to Vanuatu shortly after the initial settlement, replacing local 
Lapita groups8,10,23. We suggest that most East-Asian-related ancestry in 
modern ni-Vanuatu individuals results from gene flow from admixed 
Near Oceanian populations, rather than from the early Lapita settlers. 
These results, combined with evidence of back migrations from Poly-
nesia6,10,23, support a scenario of repeated population movements in 
the Vanuatu region. Given that we explored a relatively limited number 
of models, archaeological, morphometric and palaeogenomic studies 
are required to elucidate the complex peopling history of the region.

The recovery of diverse Denisovan-introgressed material in our data-
set, together with previous studies28,29, shows that modern humans 
received multiple pulses from different Denisovan-related groups 
(Extended Data Fig. 10). First, we estimate that the East-Asian-specific 
pulse28, derived from a clade closely related to the Altai Denisovan, 
occurred around 21 ka. The geographical distribution of haplotypes 
from this clade indicates that it probably occurred in mainland East 
Asia. Second, another clade distantly related to Altai Denisovans28,29 
contributed haplotypes of similar length to Near Oceanian populations, 
East Asian populations and Philippine Agta. Because our models do 
not support a recent common origin of Near Oceanian and East Asian 
populations, we suggest that East Asian populations inherited these 
archaic segments indirectly, via gene flow from a population ancestral 
to the Agta and/or Near Oceanian populations. Assuming a pulse into 
the ancestors of Near Oceanian individuals, we date this introgres-
sion to around 46 ka, possibly in Southeast Asia, before migrations to 

Sahul. Third, another pulse28,29—which was specific to Papuan-related 
groups—is derived from a clade more distantly related to Altai Deniso-
vans. We date this introgression to approximately 25 ka, suggesting it 
occurred in Sundaland or further east. Archaic hominins found east 
of the Wallace line include Homo floresiensis and Homo luzonensis30,48, 
suggesting that either these lineages were related to Altai Denisovans, 
or Denisovan-related hominins were also present in the region. The 
recent dates of Denisovan introgression that we detect in East Asian 
and Papuan populations indicate that these archaic humans may have 
persisted as late as around 21–25 ka. Finally, the high Denisovan-related 
ancestry in the Agta14,15 suggests that they experienced a different, 
independent pulse. Collectively, our analyses show that interbreed-
ing between modern humans and highly structured groups of archaic 
hominins was a common phenomenon in the Asia–Pacific region.

This study reports more than 100,000 undescribed genetic variants 
in Pacific Islanders at a frequency of more than 1%, some of which are 
expected to affect phenotype variation. Candidate variants for positive 
selection are observed in genes relating to immunity and metabolism, 
which suggests genetic adaptation to pathogens and food sources that 
are characteristic of Pacific islands. The finding that some of these 
variants were inherited from Denisovans highlights the importance 
of archaic introgression as a source of adaptive variation in modern 
humans29,31,32,49. Finally, the signal of polygenic adaptation related to 
levels of high-density lipoprotein cholesterol suggests that there are 
population differences in lipid metabolism, potentially accounting for 
the contrasting responses to recent dietary changes in the region50. 
Large genomic studies in the Pacific region are required to understand 
the causal links between past genetic adaptation and present-day dis-
ease risk, and to promote the translation of medical genomic research 
in understudied populations.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Sample collection and approvals
Samples were obtained from 317 adult volunteers in Taiwan, the Philip-
pines, the Solomon Islands and Vanuatu from 1998 to 2018. DNA was 
extracted from blood, saliva or cheek swabs (Supplementary Note 1). 
Informed consent was obtained from each participant, including con-
sent for genetics research, after the nature and scope of the research 
was explained in detail. The study received approval from the Institu-
tional Review Board of Institut Pasteur (2016-02/IRB/5), the Ethics Com-
mission of the University of Leipzig Medical Faculty (286-10-04102010), 
the Ethics Committee of Uppsala University ‘Regionala Etikprövn-
ingsnämnden Uppsala’ (Dnr 2016/103) and from the local authori-
ties, including the China Medical University Hospital Ethics Review 
Board, the National Commission for Culture and the Arts (NCCA) of the  
Philippines, the Solomon Islands Ministry of Education and Training 
and the Vanuatu Ministry of Health (Supplementary Note 1). The con-
sent process, sampling and/or subsequent validation in the Philippines 
were performed in coordination with the NCCA and, in Cagayan val-
ley region, with local partners or agencies, including Cagayan State 
University, Quirino State University, Indigenous Cultural Community 
Councils, Local Government Units and/or regional office of National 
Commission on Indigenous Peoples. More details about the sampling 
in the Philippines can be found in ref. 25. Research was conducted in 
accordance with: (i) ethical principles set forth in the Declaration 
of Helsinki (version: Fortaleza October 2013), (ii) European direc-
tives 2001/20/CE and 2005/28/CE, (iii) principles promulgated in 
the UNESCO International Declaration on Human Genetic Data and  
(iv) principles promulgated in the Universal Declaration on the Human 
Genome and Human Rights.

Whole-genome sequencing data
Whole-genome sequencing was performed on the 317 individual sam-
ples (Supplementary Table 1), with the TruSeq DNA PCR-Free or Nano 
Library Preparation kits (Illumina). After quality control, qualified 
libraries were sequenced on a HiSeq X5 Illumina platform to obtain 
paired-end 150-bp reads with an average sequencing depth of 30× per 
sample. FASTQ files were converted to unmapped BAM files (uBAM), 
read groups were added and Illumina adapters were tagged with 
Picard Tools version 2.8.1 (http://broadinstitute.github.io/picard/).  
Read pairs were mapped onto the human reference genome  
(hs37d5), with the ‘mem’ algorithm from Burrows–Wheeler Aligner 
v.0.7.1352 and duplicates were marked with Picard Tools. Base quality 
scores were recalibrated with the Genomic Analysis ToolKit (GATK) 
software v.3.853.

Whole-genome data for Bismarck Islanders16 were processed in the 
same manner as the newly generated genomes, while for Papua New 
Guinean Highlanders18 and other populations of interest19, raw BAM 
files were converted into uBAM files, and processed as described above. 
Variant calling was performed following the GATK best-practice recom-
mendations54. All samples were genotyped individually with ‘Haplo-
typeCaller’ in gvcf mode. The raw multisample VCF was then generated 
with the ‘GenotypeGVCFs’ tool. Using BCFtools v.1.8 (http://www.htslib.
org/), we applied different hard quality filters on invariant and variant 
sites, based on coverage depth, genotype quality, Hardy–Weinberg 
equilibrium and genotype missingness (Supplementary Note 2). The 
sequencing quality was assessed by several statistics (that is, breadth 
of coverage 10×, transition/transversion ratio and per-sample miss-
ingness) computed with GATK54 and BCFtools. Heterozygosity was 
assessed with PLINK v.1.9055,56 and cryptically related samples were 

detected with KING v.2.157. Previously unknown SNPs were identified 
by comparison with available datasets16,18,19 and dbSNP58.

Genetic structure analyses
PCAs were performed with the ‘SmartPCA’ algorithm implemented 
in EIGENSOFT v.6.1.459. The genetic structure was determined with 
the unsupervised model-based clustering algorithm implemented in 
ADMIXTURE60, which was run—assuming K = 1 to K = 12—100 times with 
different random seeds. Linkage disequilibrium (r2) between SNP pairs 
was estimated with Haploview61, which was averaged per bin of genetic 
distance using the 1000 Genomes Project phase 3 genetic map62.  
FST values were estimated by analysis of molecular variance (AMOVA) 
as previously described63 (Supplementary Note 3).

Demographic inference
Demographic parameters were estimated with the simulation-based 
framework implemented in fastsimcoal v.2.624. We filtered out sites  
(1) within CpG islands64; (2) within genes; and (3) outside of Vindija 
Neanderthal and Altai Denisovan accessibility masks. These masks 
exclude sites (1) at which at least 18 out of 35 overlapping 35-mers 
are mapped elsewhere in the genome with zero or one mismatch;  
(2) with coverage of less than 10; (3) with mapping quality less than 25;  
(4) within tandem repeats; (5) within small insertions or deletions; and 
(6) within coverage filters stratified by GC content. For each demo-
graphic model, we performed 600,000 simulations, 65 conditional 
maximization cycles and 100 replicate runs starting from different 
random initial values. We limited overfitting by considering only 
site frequency spectrum (SFS) entries with more than five counts for 
parameter estimation. We optimized the fit between expected and 
observed SFS values following a previously described approach18,65,66. 
Specifically, we first calculated and optimized the likelihood with all of 
the SFS entries for the first 25 cycles. We then used only polymorphic 
sites for the remaining 40 cycles. We obtained maximum-likelihood 
estimates of demographic parameters, by first selecting the 10 runs 
with the highest likelihoods from the 100 replicate runs. To account 
for the stochasticity that is inherent to the approximation of the like-
lihood using coalescent simulations, we re-estimated the likelihood 
of each of the 10 best runs, using 100 expected SFS obtained using 
600,000 simulations. Finally, we re-estimated again the likelihood 
of the three runs with the highest average, this time using 107 simu-
lations, and considered the run with the highest likelihood as the 
maximum-likelihood run. We corrected for the different numbers 
of SNPs in the expected and observed SFS, by rescaling parameters 
by a rescaling factor defined as Sobs/Sexp: the Ne and generation times 
were multiplied by the rescaling factor, whereas migration rates were 
divided by the rescaling factor. For all inferences, we considered a 
mutation rate of 1.25 × 10−8 mutations per generation per site19,67 and 
a generation time of 29 years68. We also provide estimates of diver-
gence and admixture times assuming a mutation rate of 1.4 × 10−8 
mutations per generation per site69 (Supplementary Tables 3–7). 
Model assumptions and parameter search ranges can be found in 
Supplementary Note 4.

We checked the fit of each best-fit model, by comparing all entries 
of the observed SFS against simulated entries, averaged over 100 
expected SFS obtained with fastsimcoal224 (Supplementary Note 4). 
We also compared observed and simulated FST values, computed with 
vcftools v.0.1.1370, for all population pairs. We checked that parameter 
estimates were not affected by background selection and biased gene 
conversion (Supplementary Note 4). We calculated confidence inter-
vals with a nonparametric block bootstrap approach; we generated 100 
bootstrapped datasets by randomly sampling with replacement the same 
number of 1-Mb blocks of concatenated genomic regions as were present  
in the observed data. For each bootstrapped dataset, we obtained 
multi-SFS with Arlequin v.3.5.2.271 and re-estimated parameters with 
the same settings as for the observed dataset, with 20 replicate runs. 



Finally, to obtain the 95% confidence intervals, we calculated the 2.5% 
and 97.5% percentile of the estimate distribution obtained by nonpara-
metric bootstrapping.

For model selection, classical model choice procedures, such as 
the likelihood ratio tests, could not be used because the likelihood 
function used in fastsimcoal224 is a composite likelihood (owing to 
the presence of linked SNPs in the data). Instead, we compared the 
likelihoods of the most likely runs between the alternative models, 
estimated from 600,000 simulations. We also compared the distribu-
tion of the log10(likelihood) of the observed SFS based on 100 expected 
SFS computed with 107 coalescent simulations, using parameters maxi-
mizing the likelihood under each scenario. A model was considered 
the most likely if its mean log10(likelihood) was 50 units larger than 
that of the second most likely model66. We estimated by simulations 
that this criterion results in an 81% probability to select the true model 
(Supplementary Note 4).

We evaluated the accuracy of demographic parameter estimation, 
using a parametric bootstrap approach. We simulated, with fastsim-
coal224, x 1-Mb DNA loci, with x chosen to obtain the same numbers 
of segregating SNPs and monomorphic sites as in the observed data, 
assuming parameters maximizing the likelihood under each model. We 
then generated 20 simulated SFS by random sampling and used boot-
strapped SFS to re-estimate parameters under the same settings as for 
the original dataset (65 expectation conditional maximization cycles, 
600,000 simulations and 100 runs per simulated SFS). We calculated 
the mean, median and the 2.5% and 97.5% percentiles of the distribu-
tion of parameter estimates obtained by parametric bootstrapping, 
and checked that they included the true (simulated) parameter value.

Admixture models
We applied two ABC approaches72 to test for different admixture models 
for Near Oceanian populations and estimated parameters under the 
most probable model. Model choice and posterior parameter estima-
tion by ABC are based on summary statistics73. The first approach, 
developed in the MetHis method74, is based on the moments of the 
distribution of admixture proportions and explicit forward-in-time 
simulations that follow a general mechanistic admixture model75. 
The second approach uses—as summary statistics—the moments of 
the distribution of the length of admixture tracts76,77. We assumed 
three competing models of admixture: a single-pulse, a two-pulse or 
a constant-recurring model (Supplementary Notes 5, 6). We checked 
a priori the goodness-of-fit of simulated and observed statistics with 
the gfit function implemented in the abc R package78. Method perfor-
mance was assessed by estimating the error rates by cross-validation, 
and by checking a posteriori that the statistics simulated under the 
most probable model closely fitted the observed statistics.

For the MetHis approach, we simulated 100,000 independent 
SNPs segregating in the two source populations with fastsimcoal224, 
under the refined demographic model for Near Oceanian populations 
(Fig. 2a). From the foundation of the admixed population to the present 
generation, the forward-in-time evolution of the 100,000 SNPs in the 
admixed population was simulated with MetHis74, under the classical 
Wright–Fisher model. For model choice, we conducted 10,000 inde-
pendent simulations under each of the three competing models. On the 
basis of 30,000 simulations, we used the random-forest ABC approach79 
implemented in the abcrf R package. For the best scenario identified, 
we conducted an additional 20,000 simulations with MetHis. We then 
used all 30,000 simulations computed under the winning scenario for 
joint posterior parameter estimation, with the neural-network ABC 
approach implemented in the abc R package78. The performance of 
the method is described in Supplementary Note 5.

For the approach based on admixture tract length, we performed—
under each alternative admixture model—5,000 simulations of 100 5-Mb 
linked DNA loci with fastsimcoal224, assuming a variable recombination 
rate sampled from the 1000 Genomes Project phase 3 genetic map62. 

We performed 10,000 additional simulations for parameter estimation 
under the winning model. As summary statistics, we used the mean and 
variance, across the 100 5-Mb regions, of the mean, minimum and maxi-
mum of the distribution of the length of admixture tracts across Near 
Oceanian populations. The six resulting summary statistics were com-
puted based on local ancestry inference, with RFMix v.1.5.480, which was 
run with three expectation-maximization steps, a window of 0.03 cM, 
and Taiwanese Indigenous peoples and Papua New Guinean Highlanders 
as source populations. The performance of the method is described in 
Supplementary Note 6. We used the logistic multinomial regression and 
the neural-network ABC methods implemented in the abc R package78 
for model choice and parameter estimation, respectively.

Archaic introgression
Before performing archaic introgression analyses, we masked our 
whole-genome sequencing dataset for regions non-accessible in archaic 
genomes. We merged the masked dataset with the high-coverage 
genomes of Vindija and Altai Neanderthals and the Altai Denisovan20–22. 
We assessed introgression between archaic hominins and modern 
humans with D-statistics81. We computed a D-statistic of the form  
D(X, West Eurasians/East Asians/Africans; Neanderthal Vindija, chim-
panzee) and D(X, West Eurasians/East Asians/Africans; Neanderthal 
Vindija, Denisova Altai) to test for introgression from Neanderthal; 
and D-statistics of the form D(X, West Eurasians/East Asians; Denisova 
Altai, chimpanzee) and D(X, West Eurasians/East Asians; Denisova Altai, 
Neanderthal Vindija) to test introgression from Denisovans. The last 
two D-statistics were used to account for the more-recent common 
ancestor between Neanderthals and Denisovans. We computed f4-ratios 
to estimate the proportion of genome-wide Neanderthal and Den-
isovan introgression in a modern human population (Supplementary 
Note 7). All D- and f4-ratio statistics were computed with ‘qpDstat’ and 
‘qpF4ratio’ implemented in ADMIXTOOLS v.5.1.181. A weighted-block 
jackknife procedure dropping 5-cM blocks of the genome in each run 
was used to compute standard errors.

We used two statistical methods to identify archaic sequences in 
modern human genomes. The first, S-prime (S′), identifies introgressed 
sequences without the use of an archaic reference genome28. For the 
identification of S′ introgressed segments in Pacific genomes, we only 
considered variants with a frequency less than 1% in African individu-
als from the Simons Genome Diversity Project (SGDP) dataset19, and 
segments were detected in each population separately. Genetic dis-
tances between sites were estimated from the 1000 Genomes Project  
phase 3 genetic map62. After retrieving empirical S′ scores, we estimated 
a null distribution of S′ scores by simulating—with fastsimcoal224—2,500 
10-Mb genomic regions under the best-fitted demographic model 
for western Remote Oceanian populations (Supplementary Note 4).  
We fixed all parameters to maximum-likelihood estimates, but  
removed the simulated introgression pulses from Neanderthals 
and Denisovans. On the basis of these null distributions of S′ scores,  
we estimated the threshold giving a false-positive rate of less than 
0.01, to retain significantly introgressed S′ haplotypes (Supplemen-
tary Note 8).

The second method, based on conditional random fields (CRF), 
identifies introgressed archaic haplotypes in phased genomic data, 
using a reference archaic genome17,82. We phased the data with SHA-
PEIT283,84, using 200 conditioning states, 10 burn-in steps and 50 
Markov chain Monte Carlo main steps, for a window length of 0.5 cM 
and an effective population size of 15,000. For the detection of 
Neanderthal-introgressed haplotypes, we used as reference panels 
the Vindija Neanderthal genome and SGDP African individuals19 merged 
with the Altai Denisovan genome. To detect Denisovan-introgressed 
haplotypes, we used as reference panel the Altai Denisovan genome 
and SGDP African individuals19 merged with the Vindija Neanderthal 
genome. Results from the two independent runs were analysed jointly 
to keep those containing alleles with a marginal posterior probability 
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PNeanderthal ≥ 0.9 and PDenisova < 0.5 as Neanderthal-introgressed haplotypes 
and those containing alleles with PDenisova ≥ 0.9 and PNeanderthal < 0.5 as 
Denisovan-introgressed haplotypes.

We computed a match rate between each detected S′ or CRF seg-
ment and the Vindija Neanderthal and Altai Denisovan genomes 
as previously described28 (Supplementary Note 9). We considered 
that a site matches if the putative introgressed allele is observed in 
the archaic genome. The match rate was calculated as the number 
of matches divided by the total number of compared sites. Because 
longer S′ haplotypes carry more information on the archaic ori-
gin of introgressed segments, we computed only match rates for 
S′ haplotypes with more than 40 unmasked sites. For the statisti-
cal assessment and assignment of introgressed haplotypes to dif-
ferent Denisovan components, we fitted single Gaussian versus 
two-component Gaussian mixtures to the Denisovan match rate 
distributions (Supplementary Note 10).

We estimated the sharing of introgressed haplotypes between 
populations by first retaining S′ introgressed haplotypes with a score 
>190,000 and a length of at least 40 kb (Supplementary Note 11). We 
then classified each haplotype as of either Neanderthal or Denisovan 
origin, as previously described28. For each haplotype present in a given 
population, we then estimated the fraction of base-pair overlap with 
the haplotypes present in a second population, with respect to the 
length of the segments in the first. As a test statistic, we computed the 
proportion of segments with a fraction of base-pair overlap greater 
than 0.5. We assessed significance by performing 10,000 bootstrap 
iterations, in which we randomly placed introgressed segments with 
the same number and of the same length as observed along the callable 
genome (around 2.1 Gb). For each population pairwise comparison, we 
reported the highest P value of the two. All P values were adjusted for 
multiple testing with the Benjamini–Hochberg method.

We formally tested for the presence of two distinct Denisovan 
lineages in Papuan-related populations with an ABC approach72, by 
performing 50,000 independent simulations of 64 DNA sequences 
of 10 Mb each with fastsimcoal224. We simulated the demographic 
model for Near Oceanian populations (Fig. 2a), introducing one or two 
Denisovan pulses into the Papua New Guinean branch, and a popula-
tion resize in Papua New Guinea to capture the demographic effect 
of the agricultural transition12 (Supplementary Note 12). As summary 
statistics, we used the moments of the distribution of the S′ scores,  
S′ haplotype length and S′ match rate to the Altai Denisovan genome. 
We determined which of the single- and double-pulse introgression 
models was the most probable, using a logistic multinomial regression 
algorithm with a tolerance rate set to 5%. We estimated the performance 
of our ABC model choice by cross-validation. Parameter estimation 
under the double-pulse winning model was performed on the basis 
of an additional 150,000 independent simulations, using the neural 
network algorithm with a tolerance rate set to 5%. We used the same 
procedure to test whether our two-pulse model, in which the pulse 
from a more-distant Denisovan lineage occurs later than the other 
pulse, fits the data better than a previous model in which the pulse 
from a more-distant Denisovan lineage occurs earlier than the other 
pulse29. Introgression parameter values were sampled from uniform 
priors limited by the previously obtained 95% confidence intervals 
(Supplementary Note 12).

We investigated whether Pacific populations had received gene 
flow from an unknown archaic hominin, by retaining S′ haplotypes 
unlikely to be of Neanderthal or Denisovan origin, through the removal 
of Neanderthal and Denisovan haplotypes inferred by the CRF approach 
(Supplementary Note 13). We characterized these S′ haplotypes fur-
ther by estimating their match rates to the Vindija Neanderthal and 
Altai Denisovan genomes and retaining only those with a match rate 
of less than 1% to either of these archaic hominins. The remaining S′ 
haplotypes represent putatively introgressed material from outside 
the Neanderthal and Denisovan branch.

Adaptive introgression
Candidate regions for adaptive introgression were detected on the 
basis of the number and derived allele frequency of sites common to 
modern and archaic humans (Supplementary Note 14), with Q95 and 
U-statistics32. We computed these statistics in 40-kb non-overlapping 
windows along the genome of all target populations, using SGDP Afri-
can individuals19 as the outgroup. We used the chimpanzee reference 
genome to determine the ancestral or derived states of alleles, removed 
sites with any missing genotypes, and discarded genomic windows 
with fewer than five sites. Candidate genomic windows were defined as 
those with both U and Q95 statistics in the top 0.5% of their respective 
genome-wide distributions.

We assessed the enrichment of introgressed genes in various biologi-
cal pathways, including the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)85, Wikipathways86, the genome-wide association studies 
(GWAS) catalogue87, Gene Ontology88, and manually curated lists of 
innate immunity genes89 and virus-interacting proteins90. We merged 
Pacific populations into three population groups (Supplementary 
Note 15). We assessed statistical significance using a resampling-based 
enrichment test that compares the number of introgressed genes in a 
given gene set to that observed in randomly sampled sets of genes that 
are matched for different genomic features (that is, recombination 
rate, PhastCons91, combined annotation-dependent depletion (CADD) 
scores92, density of DNase I segments93 and number of SNPs). We also 
determined whether a given gene set was enriched in adaptively intro-
gressed genes, by comparing the number of genes overlapping an 
adaptively introgressed segment in the gene set with that observed 
in randomly sampled sets of matched genes. Adaptively introgressed 
segments were defined as those intersecting with genomic windows 
with Q95 and U-statistics in the top 5% of their respective genome-wide 
distributions.

Classic sweeps
For the detection of classic sweep signals, we combined the inter- 
population locus-specific branch lengths (LSBL)94 and cross-population 
extended haplotype homozygosity (XP-EHH)95 statistics into a Fisher’s 
score (FCS). We estimated the FCS as the sum of the −log10(percentile 
rank of the statistic for a given SNP) of all statistics, and defined ‘outlier 
SNPs’ as those with a FCS among the 1% highest genome-wide. Putatively 
selected regions were defined as genomic windows with a proportion 
of outlier SNPs within the 1% highest genome-wide, after partition-
ing all windows into five bins based on the number of SNPs. The test, 
reference and outgroup populations used are described in Supple-
mentary Note 16. LSBL and XP-EHH statistics were computed with the 
optimized, window-based algorithms implemented in selink (https://
github.com/h-e-g/selink).

Polygenic adaptation
We searched for evidence of polygenic adaptation, using an approach 
testing whether the mean integrated haplotype score (iHS) of 
trait-increasing alleles differed significantly from that of random 
SNPs with a similar allele frequency46,96. We obtained GWAS summary 
statistics for 25 candidate complex traits from the UK Biobank data-
base45, including traits relating to morphology, metabolism and immu-
nity, as these phenotypic traits are strong candidates for responses, 
through natural selection, to changes in climatic, nutritional and 
pathogenic environments. We classified SNPs as ‘trait-increasing’ or 
‘trait-decreasing’ based on UK Biobank effect size (β) estimates. We 
computed iHS with selink, for each SNP and population, and standard-
ized scores in 100 bins of DAF. We then polarized the iHS, such that posi-
tive iHS values indicated directional selection of the trait-decreasing 
allele, whereas negative iHS values indicated directional selection of 
the trait-increasing allele. We called the resulting statistic the polar-
ized trait iHS (tiHS).



For each trait, we assessed significance keeping only unlinked 
trait-associated variants (Supplementary Note 18). We then compared 
the mean tiHS of the x independent, trait-associated alleles with the 
mean tiHS of 100,000 random samples of x SNPs with similar DAF, 
genomic evolutionary rate profiling (GERP) score and surrounding 
recombination rate, to account for the effects of background selection. 
We considered that directional selection has increased (or decreased) 
a given trait if less than 2.5% (or 0.5%) of the resampled sets had a mean 
tiHS that is lower (or higher) than that observed. We adjusted P val-
ues for multiple testing with the Benjamini–Hochberg method. The 
false-positive rate of the approach at a P value of 2.5% (or 0.5%) was 
estimated by resampling (Supplementary Note 18).

Because this approach assumes that alleles affecting traits are the 
same in Oceanian and European populations and that they affect traits 
in the same direction, we used another approach, which tests for the 
co-localization of selection signals and trait-associated genomic 
regions. We partitioned the genome into 100-kb non-overlapping 
contiguous windows and considered a window to be associated with 
a trait if at least one SNP within the window was genome-wide significant 
(P < 5 × 10−8). For each window, we estimated the mean tiHS for each 
population. We then tested whether the mean tiHS of trait-associated 
windows was greater than that for a null distribution, obtained from 
100,000 sets of randomly sampled windows, each set being matched to 
trait-associated windows in terms of mean GERP score, recombination 
rate, DAF and number of SNPs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The whole-genome sequencing dataset generated and analysed 
in this study is available from the European Genome-Phenome 
Archive (EGA; https://www.ebi.ac.uk/ega/), under accession code 
EGAS00001004540. Data access and use is restricted to academic 
research in population genetics, including research on population  
origins, ancestry and history. The SGDP genome data were retrieved 
from the EBI European Nucleotide Archive (accession codes PRJEB9586 
and ERP010710). The genome data from Malaspinas et al.18 were 
retrieved from the EGA (accession code EGAS00001001247). The 
genome data from Vernot et al.16 were retrieved from dbGAP (acces-
sion code phs001085.v1.p1).

Code availability
Neutrality statistics were computed with the optimized, window-based 
algorithms implemented in selink (https://github.com/h-e-g/selink). 
All other custom-generated computer codes or algorithms used in this 
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Extended Data Fig. 1 | Genetic structure of Pacific populations. 
ADMIXTURE ancestry components are shown from K = 2 (top) to K = 10 
(bottom) for the 462 unrelated individuals. The lowest cross-validation error 

was obtained at K = 6 (Supplementary Fig. 5). Populations are delimited by 
black borders. Population width is not proportional to population sample size, 
which is indicated in parentheses.
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Extended Data Fig. 2 | Demographic models for Pacific populations.  
a, Maximum-likelihood demographic model for baseline populations. Point 
estimates of parameters and 95% confidence intervals are shown in 
Supplementary Table 2. b, Maximum-likelihood demographic models for 
western Remote Oceanian individuals (VAN). The likelihoods of the two models 
are not considered to be different. Point estimates of parameters and 95% 
confidence intervals are shown in Supplementary Table 5. The (VAN, PNG) 
model (left) assumes that the ni-Vanuatu diverged from Papua New Guinean 
Highlanders and then received gene flow from Solomon Islanders, Bismarck 
Islanders and Austronesian-speaking Taiwanese Indigenous peoples. The 
(VAN, SLI) (right) model assumes that the ni-Vanuatu diverged from the 
Solomon Islanders and then received gene flow from the other three groups. 
For the sake of clarity, only Taiwanese Indigenous, Near Oceanian and western 
Remote Oceanian populations are shown. c, Maximum-likelihood model for 
Austronesian-speaking populations, represented by Taiwanese Indigenous, 
Philippine Kankanaey and Tikopia Polynesian individuals. BKA, Bismarck 
Islanders; HAN, Han Chinese individuals (China); NOC GST, a meta-population 

of Near Oceanian individuals; OoA GST, an unsampled population to represent 
the Out-of-Africa exodus; PHP, Philippine individuals; PNG, Papua New Guinean 
Highlanders; POL, Polynesian individuals from the Solomon Islands; SAR, 
Sardinian individuals (Italy); SLI, Solomon Islanders; TWN, Taiwanese 
Indigenous peoples; VAN, ni-Vanuatu; YRB, Yoruba individuals (Nigeria). We 
assumed a mutation rate of 1.25 × 10−8 mutations per generation per site and a 
generation time of 29 years. Single-pulse introgression rates are reported as a 
percentage. The 95% confidence intervals are shown in square brackets. The 
larger the rectangle width, the larger the estimated effective population size 
(Ne), except for b. Bottlenecks are indicated by black rectangles. Grey and black 
arrows represent continuous and single pulse gene flow, respectively. One- and 
two-directional arrows indicate asymmetric and symmetric gene flow, 
respectively. We limited the number of parameter estimations by making 
simplifying assumptions regarding the recent demography of East-Asian-
related and Near Oceanian populations in a and c, respectively (Supplementary 
Note 4). Sample sizes are described in Supplementary Note 4.
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Extended Data Fig. 3 | Match rate of introgressed S′ haplotypes in Pacific 
populations to the Vindija Neanderthal and Altai Denisovan genomes. The 
match rate is the proportion of putative archaic alleles matching a given 
archaic genome, excluding sites at masked positions. Only S′ haplotypes with 

more than 40 sites outside archaic genome masks were included in the analysis. 
The numbers indicate the height of the density corresponding to each contour 
line. Contour lines are shown for multiples of 1 (solid lines) and multiples of 0.1 
between 0.3 and 0.9 (dashed lines).
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Extended Data Fig. 4 | Detection of introgressed haplotypes from an 
unknown archaic hominin. a, Cumulative length of S′ haplotypes retrieved 
among modern human populations (S′), after removing Neanderthal CRF 
haplotypes (S′NoNeanderthal) or Denisovan CRF haplotypes (S′NoDenisova) or both 
(S′NoArchaic), and removing from the S′NoArchaic haplotypes those with a match rate 
higher than 1% to either the Vindija Neanderthal or Altai Denisovan genomes 
(S′NoArchaicLowMatch). These S′ haplotypes are, therefore, putatively introgressed 
haplotypes from hominins outside of the Neanderthal and Denisovan branch 
(Supplementary Note 13). b, Proportion of S′NoArchaicLowMatch haplotypes common 
or private (that is, unique) to populations. Total numbers of S′NoArchaicLowMatch 
haplotypes are shown above the population labels.
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Extended Data Fig. 5 | Examples of candidate loci for adaptive 
introgression in Pacific populations. a, Adaptive introgression of Denisovan 
origin at the CD33 locus. b, Adaptive introgression of Denisovan origin at the 
IRF4 locus. c, Adaptive introgression of Neanderthal origin at the KRT80 locus. 
d, Adaptive introgression of Neanderthal origin at the TBC1D1 locus.  
e, Adaptive introgression of Denisovan origin at the JAK1 locus. f, Adaptive 
introgression of Denisovan origin at the BANK1 locus. a–f, Left, local Manhattan 
plot showing the derived allele frequency of archaic SNPs (aSNPs), the 

proportion of high-confidence introgressed haplotypes (HC CRF) and the gene 
isoforms at the locus (in Mb, based on hg19 coordinates). Middle, derived allele 
frequencies of the top archaic SNP in 1000 Genomes Project phase 3 
populations (excluding recently admixed populations). Right, derived allele 
frequencies of the top archaic SNP in populations from this study. Colours in 
the left panels indicate populations as in Fig. 1. Pie charts indicate the derived 
allele frequency in purple, and are centred on the approximate geographical 
location of each population. Maps were generated using the maps R package51.



Extended Data Fig. 6 | Classic sweep signals detected in Papuan-related 
populations. a–d, Manhattan plots of classic sweep signals in Papua New 
Guinean Highlanders (a), Solomon Islanders (b), ni-Vanuatu (c) and Philippine 

Agta (d). a–d, The y axis shows the −log10(P value) for the number of outlier 
SNPs per window. Each point is a 100-kb window. The names of genes 
associated with windows with significant sweep signals are shown.
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Extended Data Fig. 7 | Classic sweeps and adaptive archaic introgression.  
a, b, Coloured squares indicate genomic regions displaying signals of both a 
selective sweep and adaptive introgression from Neanderthals (a) or 

Denisovans (b). Yellow and blue frames indicate genomic regions identified in 
East-Asian- and Papuan-related populations, respectively. AGT, Philippine 
Agta; PHP, Philippine individuals.



Extended Data Fig. 8 | Examples of candidate loci for classic sweeps in 
Pacific populations. a, c, Sweep signals detected in Papuan-related 
populations at the GABRP locus (a) and in Polynesian populations at the LHFPL2 
locus (c). Manhattan plots shows the −log10(P value) of the Fisher’s scores for 
each SNP (Supplementary Note 16). b, d, Maps showing the population allele 
frequencies for candidate SNPs rs79997355 (GABRP) (b) and rs117421341 

(LHFPL2) (d). Pie charts indicate the derived allele frequency in purple, in which 
the radius is proportional to the sample size (Supplementary Table 1). The pie 
charts for the populations of Santa Cruz and Vanuatu were moved from their 
sampling locations for convenience. Maps were generated using the maps R 
package51.



Article

Extended Data Fig. 9 | Classic sweep signals detected in East-Asian-related 
populations. Manhattan plots of classic sweep signals in East Asian individuals (a), 
Taiwanese Indigenous peoples (b), Philippine Cebuano (c) and Polynesian 

individuals (d). a–d, The y axis shows the −log10(P value) for the number of outlier 
SNPs per window. Each point is a 100-kb window. The names of genes associated 
with windows with significant sweep signals are shown.



Extended Data Fig. 10 | Schematic model of the history of archaic 
introgression in modern humans. The phylogenetic tree depicts 
relationships among archaic and modern humans. Estimates for the splits 
between archaic, introgressing populations and for introgression episodes are 
shown. Five introgression events are consistent with our data: a Neanderthal 
introgression event into the common ancestors of non-African individuals 
around 61 ka; a Denisovan introgression event into the ancestors of Papuan 
individuals approximately 46 ka, which is shared with the ancestral Indigenous 

Australian individuals and Philippine Agta populations14,15,17,97; a Denisovan 
introgression event that occurred only in the ancestors of Papuan individuals 
around 25 ka; a Denisovan introgression event in the ancestors of East Asian 
individuals around 21 ka, the legacy of which is also observed in Philippine Agta 
and western Eurasian individuals due to subsequent gene flow (solid purple 
arrows); and a Denisovan introgression event into the ancestors of the 
Philippine Agta at an unknown date.
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Supplementary Note 1: Population Sampling 
 
DNA sampling in the Vanuatu 
The Vanuatu archipelago is located in the Southwest Pacific and is part of Remote Oceania. 
Vanuatu contains 83 islands and forms a Y-shaped chain that spans nearly 1,100 km. Its 
current estimated population is 307,815. Indigenous Melanesians, called ni-Vanuatu, 
constitute 98.5% of the population. The sampling survey of ni-Vanuatu was conducted 
between April 2003 and August 2005 by Olivier Cassar and Antoine Gessain (Institut 
Pasteur, Paris) in remote villages located on 18 islands1. To avoid relatedness among 
individuals, couples were identified through ethnographic interviews, in English or 
Melanesian Pijin, and were preferentially sampled. Sex, age and living place, as well as date 
and place of blood collection, were collected through a structured questionnaire. 5-ml blood 
samples were obtained by venepuncture and transferred to the Institut Pasteur of New 
Caledonia, where plasma and buffy coats were isolated, frozen, and stored at –80°C. DNA 
was purified from frozen buffy coats at the Institut Pasteur of Paris, using QIAamp DNA 
Blood Mini Kit protocol, and eluted in AE buffer. DNA concentration was quantified with the 
Invitrogen Qubit 3 Fluorometer using the Qubit dsDNA broad-range assay. Prior to library 
preparation, DNA integrity was checked on agarose gels. 

 
DNA sampling in Taiwan 
Taiwanese indigenous peoples, also called Taiwanese aborigines, are ethnic groups that 
represent 2.4% of the total population of Taiwan, and are thought to have inhabited the 
island for at least 5,000 years ago (5 ka)2,3. Furthermore, archaeological remains suggest 
that Taiwan could have been settled as early as 20–30 ka4. Details about sampling of 
Taiwanese indigenous peoples (i.e., Paiwan and Atayal) and DNA extraction can be found 
elsewhere5. Briefly, samples were collected from 1998 to 2001 in indigenous villages, and 
their ethno-linguistic group was defined based on the group of their parents, using a 
structured questionnaire. Genomic DNA was extracted from peripheral whole blood by 
wizard genomic DNA purification kit (QIAGEN-Gentra Puregene Blood Kit) following standard 
laboratory protocols, and stored at –20°C. DNAs were made available by Ying-Chin Ko 
(Environment-Omics-Disease Research Center, China Medical University and Hospital, 
Taiwan). Prior to library preparation, DNA integrity was checked on agarose gels. 
 
DNA sampling in the Philippines 
The Philippines are an archipelago of 7,641 islands situated in Island Southeast Asia (ISEA), 
at the crossroads of historic human migrations in the Asia-Pacific region. Modern humans 
have inhabited the Philippine islands for ~47 ka6, and it is thought that ancestors of Aeta, 
Ayta and Agta foragers (the so-called Philippine ‘Negritos’) are the archipelago's earliest 
inhabitants7,8. A large–scale sampling campaign was conducted by Maximilian Larena 
(Human Evolution, Department of Organismal Biology, Uppsala University, Sweden) from 
2015 to 2018. Briefly, saliva samples were collected with the Oragene Saliva Collection Kit 
(DNA Genotek Inc, Canada). Only unrelated individuals, or only one individual from sets of 
individuals who self-reported to be up to 2nd-degree relatives, were included in the study. In 
addition, only individuals who self-reported to have all of their 4 grandparents to come from 
the same ethnic group were included in the study. The Philippine Negritos included in the 
study were asked with regards to the acceptability of the term ‘Negrito’; all participants self-
identify as Negritos and accept this term. The saliva samples were processed for DNA 
extraction at the Mattias Jakobsson Laboratory (Department of Organismal Biology, Uppsala 
University, Sweden), using the prepIT DNA isolation kit (DNA Genotek Inc., Canada). Prior to 
library preparation, DNA integrity was checked on agarose gels. 
 
DNA sampling in the Solomon Islands 
The Solomon Islands Archipelago consists of six major islands and >900 smaller islands 
lying to the east of Papua New Guinea and northwest of Vanuatu. It is believed that the 
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archipelago was first settled by modern humans ~30 ka9. The present-day population is 
constituted of 95.3% and 3.1% of peoples of Melanesian and Polynesian origins, 
respectively, the latter most likely originating from back migrations from Polynesia10. Cheek 
swab samples were collected across the Solomon Islands in August and September 2004. 
Details about sampling can be found elsewhere11. Self-described information on the 
birthplace, language, and ethnicity of each donor was obtained. DNA was extracted from the 
cheek swabs as described previously12. Six island populations were included in the current 
study, to represent Austronesian-speaking groups (Malaita and Santa Cruz Islands), 
Papuan-speaking groups (Vella Lavella Island) and Polynesian-speaking groups (so-called 
‘Polynesian outliers’; Bellona, Rennell and Tikopia Islands). Individuals associated to the 
Tikopia Island were recent migrants who traced their ancestry exclusively to Tikopia, but 
were sampled in Tikopian communities from other Solomon Islands. DNAs were made 
available by Mark Stoneking (Max Planck Institute for Evolutionary Anthropology, Leipzig, 
Germany). Prior to library preparation, DNA integrity was checked on agarose gels. 
 
Ethical statements 
All participants were volunteers of at least 18 years of age. Informed consent was obtained 
from each volunteer participant, including consent for genetic research, after the nature and 
scope of the study was explained in detail. The study received approval from the Institutional 
Review Board of Institut Pasteur (n°2016-02/IRB/5), the Ethics Commission of the University 
of Leipzig Medical Faculty (n°286-10-04102010), the Ethics Committee of Uppsala University 
"Regionala Etikprövningsnämnden Uppsala” (Dnr 2016/103) and from the local authorities, 
including the China Medical University Hospital Ethics Review Board, the National 
Commission for Culture and the Arts of the Philippines (in accordance with the provisions of 
Philippine Republic Act 7356, or the Law creating the NCCA), the Solomon Islands Ministry 
of Education and Training, and the Vanuatu Ministry of Health. The consent process, 
sampling, and/or subsequent validation in the Philippines were performed in coordination 
with the NCCA and, in Cagayan valley region, with local partners or agencies, including 
Cagayan State University, Quirino State University, Indigenous Cultural Community Councils, 
Local Government Units, and/or regional office of National Commission on Indigenous 
Peoples. The present study was conducted in full respect of the legal and ethical 
requirements and guidelines for good clinical practice, in accordance with national and 
international rules. Namely, research was conducted in accordance with: (i) ethical principles 
set forth in the Declaration of Helsinki (Version: Fortaleza October 2013), (ii) European 
directives 2001/20/CE and 2005/28/CE, (iii) principles promulgated in the UNESCO 
International Declaration on Human Genetic Data, (iv) principles promulgated in the 
Universal Declaration on the Human Genome and Human Rights, (v) the principle of respect 
for human dignity and the principles of non-exploitation, non-discrimination and non-
instrumentalisation, (vi) the principle of individual autonomy, (vii) the principle of justice, 
namely with regard to the improvement and protection of health and (viii) the principle of 
proportionality. The rights and welfare of the subjects have been respected, and the hazards 
have not outweighed the benefits of the study. 
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Supplementary Note 2: Whole-genome Sequencing 
 
Library preparation 
Whole-genome sequencing (WGS) was performed on a total of 317 individuals from Taiwan 
(i.e., the Paiwan and the Atayal), the Philippines (i.e., the Agta and the Cebuano), the 
Solomon Islands (i.e., populations from Malaita, Vella Lavella, Rennell, Bellona, Tikopia and 
Santa Cruz islands), and 10 islands from the Vanuatu archipelago (Supplementary Table 1). 
WGS was performed at the CNRGH (Centre National de Recherche en Génomique 
Humaine, Institut de Biologie François Jacob, Evry, France). For 298 samples, a PCR-free 
library preparation was obtained with the Illumina TruSeq DNA PCR-free Library Preparation 
Kit from 1µg of genomic DNA. For the remaining 19 samples, a PCR-based library 
preparation was obtained with the Illumina TruSeq DNA Nano Library Preparation Kit from 
100 ng of genomic DNA (Supplementary Table 1). After normalisation and quality control, 
qualified libraries were sequenced on a HiSeqX5 Illumina platform (Illumina Inc., CA, USA) to 
obtain paired-end 150-bp reads. One lane of HiSeqX5 flow cell was produced for each blood-
derived DNA sample. Additional sequencing was produced for saliva-derived DNA samples, 

to reach an average sequencing depth of 30.  
 
Read mapping and variant calling 
Sequence quality parameters were assessed throughout the sequencing run. FASTQ files for 
each sample were generated using the standard Illumina pipeline. FASTQ files were 
converted to unmapped BAM files (uBAM), read groups were added and Illumina adapters 
were tagged with Picard Tools version 2.8.1 (http://broadinstitute.github.io/picard/). Read 
pairs were then mapped onto the human reference genome hs37d5, using the ‘mem’ 
algorithm from Burrows–Wheeler Aligner version 0.7.1313, and duplicates were marked with 
Picard Tools. Base quality scores were recalibrated using GATK version 3.814. WGS data 
from Vernot et al.15 were processed as the newly-generated genomes. WGS data from 
Malaspinas et al.16 and the SGDP17 were first converted to raw BAM files into uBAM files, 
and then processed as previously described.  

Variant calling was performed following the GATK Best Practices recommendations 
(https://software.broadinstitute.org/gatk/best-practices/), and using GATK version 3.818. All 
samples were genotyped individually using ‘HaplotypeCaller’ in gvcf mode. We turned off the 
PCR indel correction of ‘HaplotypeCaller’ (‘-pcr_indel_model NONE’) for the 298 samples 
prepared following a PCR-free protocol, as well as for 122 out of the 133 samples from 
SGDP17 that were prepared following a PCR-free protocol. A final step of joint genotyping 
was performed to create a raw multisample VCF, using the ‘GenotypeGVCFs’ tool with the 
option ‘-allSites’, to include homozygous reference sites.  
 
Ancestral state annotation 
The ancestral state for any given site was defined as the allele present in the chimpanzee 
reference genome (panTro4) aligned against hg19 (ref.19), which was downloaded from the 
UCSC platform20. Sites not present in the chimpanzee genome, or containing alleles that did 
not match either the reference or alternative allele, were discarded. 
 
Quality-control filters 
Methods. We split the dataset into two VCFs: one with only autosomal homozygous 
reference sites (i.e., invariant sites) and a second with only autosomal variant sites. Variant 
sites were first filtered using GATK ‘VQSR’21 with a truth sensitivity cut-off of 99.5 for SNPs (‘-
-ts_filter_level 99.5’) and 99 for INDELs (‘--ts_filter_level 99’). A series of hard filters were 
applied on invariant and variant sites, using BCFtools version 1.8 (http://www.htslib.org/); we 
set as missing all genotypes with (i) a depth (DP) < 10 or (ii) DP > twice the sample 
coverage, and (iii) a genotype quality (GQ/RGQ) < 30. Additional, ad hoc filters were applied 
(Supplementary Fig. 1). At Level 1, we removed sites that were missing in more than 5% of 
the samples and/or were in Hardy–Weinberg disequilibrium (P-value < 10−4) in at least one of 
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the populations. At Level 2, we removed sites that were missing in at least one sample (i.e., 
0% of missingness) and/or were in Hardy–Weinberg disequilibrium (P-value < 10−4) in at 
least one of the populations. At Level 3a, we removed, in addition to Level 2 filters, sites (i) 
within CpG islands, obtained from the UCSC table browser20; (ii) within genes, obtained from 
Ensembl BioMart version 97; and (iii) outside of Vindija Neanderthal and Altai Denisovan 
accessibility masks, downloaded from: http://ftp.eva.mpg.de/neandertal/Vindija/FilterBed/. 
These masks exclude sites (i) where at least 18 of 35 overlapping 35-mers are mapped 
elsewhere in the human genome with zero or one mismatch; (ii) with minimum coverage of 
10; (iii) with mapping quality < 25; (iv) with tandem repeats; (v) with indels; and (vi) with 
coverage filters stratified by GC content. At Level 3b, we only removed, in addition to Level 2 
filters, sites (i) within CpG islands, (ii) within segmental duplications 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ %20genomicSuperDups.txt.gz), 
and (iii) where at least 18 of 35 overlapping 35-mers are mapped elsewhere in the human 
genome with zero or one mismatch. At Level 3b’, in addition to Level 3b, we excluded sites 
outside of Vindija Neanderthal, Altai Neanderthal and Altai Denisova accessibility masks. 

Per sample heterozygosity was computed with PLINK version 1.9022,23 with the ‘--het’ 
argument. We defined as a heterozygosity outlier, a sample presenting a level of 
heterozygosity at least 3 standard deviations (SD) lower or higher than the population mean, 
reflecting high parental relatedness or contamination, respectively. To identify cryptically-
related samples, we used kinship values inferred by KING version 2.124. We considered a 
pair of samples as related if they presented a kinship coefficient > 0.08, a threshold that is 
slightly more stringent than a second-degree of relatedness as defined by KING24. To 
maximise sample size, we excluded related samples using an iterative approach, as 
described elsewhere25.  
 
Results. Out of the 317 whole-genome sequenced samples, we identified 3 samples as 
potentially contaminated (heterozygosity > mean + 3SD), and 4 samples that presented 
evidence for parental relatedness (heterozygosity < mean – 3SD) (Supplementary Fig. 2a,b). 
Among the remaining individuals, and based on kinship coefficients, we inferred 21 pairs of 
samples that were 1st-degree related (0.177 < kinship < 0.354), 19 2nd-degree related (0.0884 
< kinship < 0.177), and 3 ambiguous between 2nd-degree and 3rd-degree related (0.08 < 
kinship < 0.0884) (Supplementary Fig. 2b). In total, we removed 39 samples from our 
collection of 317 newly-generated genomes, including 7 samples with outlier heterozygosity, 
and 32 cryptically related samples. In addition, we removed 6 samples from Vernot et al.15 
that our analysis identified as related, leading to a final dataset of 462 unrelated samples. 
Among these, a total of 36,339,995 bi-allelic SNPs were identified, 35,870,981 of which 
segregate in the sample (i.e., the two alternative alleles are observed in the sample). 
 
Data quality checks 
Methods. Sequencing quality was first assessed by a set of statistics, using ‘GATK 
DepthOfCoverage’ version 3.818 and BCFtools version 1.8 (http://www.htslib.org/) on 
individual BAM files and on VCF files (507 samples, 39,035,215 bi-allelic SNPs, no fixed 
homozygous reference site). Specifically, we evaluated the percentage of the genome 

covered at least at 10 (breadth of coverage 10 on the BAM files) as well as VCF-based 
mean coverage per individual. A second round of quality checks was performed on a dataset 
filtered at Level 1 (Supplementary Fig. 1), after removing heterozygosity outliers and 
individuals presenting signs of cryptic relatedness (i.e., 462 samples). We inspected the 
Transition/Transversion ratio (Ti/Tv), which is insensitive to ancestry and should be ~2.0-2.1 
for whole genome sequencing26, and the per-sample missingness (i.e., the number of sites 
missing over the total number of sites in the VCF). 
 

Results. The mean coverage per sample ranged between 26 and 49, with a median of 

36, and the breadth of coverage at 10 varied between 94.7% and 99.8% (Supplementary 
Fig. 2c,d). The value of the Ti/Tv ratio was homogenous across samples and was ≈2.1 (2.14-
2.16) (Supplementary Fig. 2e). No individual genome presented a missingness >5% 
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(Supplementary Fig. 2f), except the Atayal B00FLGA (missingness = 6.9%). Quality statistics 
indicated that the newly-generated whole genomes were of high quality.  
 

 
 
Supplementary Figure 1. Analysis flowchart of the whole-genome dataset. Salmon and tan boxes 
indicate datasets and analyses, respectively. Blue and green text indicates computer programs and 
filters applied on the whole-genome data, respectively.  
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Supplementary Figure 2. Processing and quality of the whole-genome dataset. a, Individual 
heterozygosity. Red dots indicate outliers relative to the mean heterozygosity of the population. b, 
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Cryptic relatedness between individuals. Dashed lines indicate kinship thresholds for the 1st, 2nd and 
3rd degrees of relatedness, according to KING (ref.56). The solid line indicates the threshold used to 
consider a pair of individuals as cryptically related at either the 1st or 2nd degree. c, Autosomal depth of 

coverage. The dashed line indicates the median coverage (36). d, Breadth of coverage 10 (i.e., 

percentage of the genome covered at >10). e, Transition-Transversion (Ti/Tv) ratio. f, Missingness 
(i.e., percentage of missing genotypes). d, f, To facilitate visualisation, the Atayal sample B00FLGA 

was not plotted (breadth 10=94.7, missingness=6.9%). a-d, Per-population sample size is shown in 
brackets in a. e-f, Per-population sample size is shown in brackets in f. a,c-f, The line, box, whiskers 
and points respectively indicate the median, interquartile range (IQR), 1.5*IQR and outliers. 

 
Novel SNPs relative to other datasets 
We generated 4 different datasets with PLINK version 1.90 (refs.22,23): (i) 25 Papuans from 
Malaspinas et al.16, (ii) 26 individuals from the Bismarck Archipelago from Vernot et al.15, (iii) 
133 samples from the SGDP17, and (iv) 278 unrelated samples sequenced for this study. For 
each dataset, we removed invariant sites and counted the number of variant sites, i.e., all 
remaining bi-allelic SNPs. Using BCFtools ‘isec’ (http://www.htslib.org/), we intersected 
variant sites found in the new genomes with (i) the three other datasets15-17, (ii) SNPs found 
in dbSNP database build 15227 (downloaded from https://www.ncbi.nlm.nih.gov/snp/), and (iii) 
the union of the four. We considered a SNP as novel if its chromosomal position and both its 
reference and alternative alleles were not found in the intersected dataset (‘bcftools isec --
collapse none --complement’). Novel SNPs were then divided into three categories based of 
their minor allele frequency (MAF): (i) rare variants (MAF < 1%), (ii) intermediate variants 
(1% < MAF < 5%), and (iii) common variants (MAF > 5%).  
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Supplementary Note 3: Genetic Structure and Diversity 
 
Principal component analyses 
Methods. PCA were performed on the Level 1 dataset (Supplementary Note 2). A first PCA 
comprised 355 unrelated individuals from the Pacific region, as well as a group of Europeans 
from SGDP17, to detect recent admixture of Oceanians with Europeans. The second PCA 
was performed on the same dataset, excluding Europeans and four Vanuatu samples 
presenting non-negligible proportions of African or European ancestry (Supplementary Table 
1). Additional variant pruning was performed with PLINK version 1.90 (refs.22,23), excluding 
variants with MAF < 5% and pairs of common SNPs in strong linkage disequilibrium (LD) 
using the ‘--indep-pairwise 50 5 0.5’ argument. PCA was performed using the ‘SmartPCA’ 
algorithm implemented in EIGENSOFT version 6.1.4 (ref.28). 
 
Results. In a PCA of populations from the Pacific, East/Southeast Asia and Europe, PC1, 
which explains 6.3% of the variance, separates Papua New Guinean highlanders (PNG) from 
East/Southeast Asians and Europeans, whereas PC2 (2.4% of the variance) separates 
East/Southeast Asians from Europeans (Supplementary Fig. 3). Notably, four individuals 
from Vanuatu show suggestive evidence for European or African ancestry. In a PCA of 
populations from the Pacific and East Asia only, PC1 separates PNG from East/Southeast 
Asians (6.3% of the variance), whereas PC2 (1.8% of the variance) separates 
East/Southeast Asians from Polynesian-speaking populations of the Solomon Islands, i.e., 
Polynesian outliers (Fig. 1d). Populations from the Bismarck Archipelago, the Solomon 
Islands and Vanuatu and Polynesian outliers form a cline between PNG and East/Southeast 
Asians on PC1, suggesting varying levels of East Asian-related ancestry (Fig. 1). PC3 (1.4% 
of variance) separates PNG and Polynesian outliers from all other populations, whereas PC4 
(1.0% of variance) separates the Philippine Agta from East/Southeast Asians 
(Supplementary Fig. 4). PC5 (0.8% of the variance) separates western and eastern Solomon 
islanders from all other groups, suggesting contrasting demographic pasts in western and 
eastern Solomon Islands10,29,30. Finally, PC6 (0.7% of the variance) separates the Philippine 
Agta into two populations (Supplementary Fig. 4). Together, these results indicate that 
population genomic variation in the Pacific is best explained by four genetic clusters, 
associated with (i) East/Southeast Asians including Austronesian speakers, (ii) PNG, (iii) 
Bismarck, Solomon and Vanuatu islanders, and (iv) Polynesian outliers. The largest 
differences are between East/Southeast Asians and PNG, while the remaining populations 
show varying proportions of the two components, in agreement with an expansion of East 
Asian-related Austronesian speakers across the region, followed by admixture30-32. 
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Supplementary Figure 3. PCA of whole genomes of populations from the Pacific, East/Southeast 
Asia and Europe. These include Europeans17, East/Southeast Asians17, indigenous Australians17, 
Papua New Guinea highlanders16,17, Bismarck islanders15, as well as the populations studied here 
(i.e., Taiwanese indigenous peoples, Philippine populations, Solomon islanders and ni-Vanuatu). The 
variance explained by each PC is indicated in brackets. The dashed area indicates samples with non-
negligible proportions of African or European ancestry (Supplementary Table 1). 

 

 
 

Supplementary Figure 4. PCA of whole genomes of Pacific populations. a, PC3 versus PC4, b, PC5 
versus PC6. The variance explained by each PC is given in brackets. 



 14 

Admixture analyses 
Methods. Genetic clustering analysis was performed on the Level 1 dataset (Supplementary 
Note 2). To estimate the proportions of K genetic components for each individual, we used 
the unsupervised model-based clustering algorithm ADMIXTURE33. We ran the algorithm 
with K = 1 to K = 12, 100 times with different random seeds, including the argument ‘cv’ to 
output cross-validation errors. Results were visualised using ‘PONG’ version 1.434 in major-
mode. All f4-statistics were computed with ADMIXTOOLS version 5.1.1. To estimate allele 
sharing of Vanuatu populations with Polynesian outliers, we computed f4-statistics of the form 
f4 (Polynesian outliers, Taiwanese indigenous peoples; ni-Vanuatu, Mbuti) for each Vanuatu 
population. We grouped the Polynesian outliers from the dataset (Tikopia, Rennell and 
Bellona islanders) into a single group, and grouped Atayal and Paiwan as a single 
Taiwanese indigenous group. Given that Polynesian outliers appear to descend from 
admixture between an East Asian-related and a Papuan-related population, as shown by 
previous studies35,36 and here, differences among Vanuatu populations in their affinity to 
Polynesians could be driven by the Papuan-related ancestry proportions of each Vanuatu 
population. To correct for this potential confounder, we computed another f4-statistic of the 
form f4(Papuans, Taiwanese indigenous peoples; ni-Vanuatu, Mbuti), which tests the 
affinities of each Vanuatu population with Papuans and Taiwanese indigenous peoples.  
 
Results. In agreement with PCA results, ADMIXTURE at K = 2 identified two genetic 
components that are maximised in (i) East Asia, the Philippines and Polynesia, and (ii) PNG, 
Bismarck, Solomon and Vanuatu islanders. Varying proportions of the East Asian component 
were estimated across Near and Remote Oceanians (Extended Data Fig. 1), which has been 
attributed to the Holocene expansions of Austronesian speakers likely originating from 
Taiwan30-32. At increasing K values, ADMIXTURE identified new components that are 
maximized in Africans, Europeans and PNG, mirroring human structure at the worldwide 
scale17. At K = 6, for which the cross-validation error was minimal (Supplementary Fig. 5), a 
component specific to Polynesian outliers was apparent, suggesting that genetic drift, 
probably because of serial founder events, has increased genetic differentiation of these 
groups with respect to other Oceanian populations. Of note, four individuals from Vanuatu 
(i.e., from Ureparapara, Maewo and Ambae islands) showed non-negligible proportions of 
African or European ancestry (Supplementary Figs. 3 and 6 and Supplementary Table 1), 
and were discarded from subsequent analyses. At K = 7, ADMIXTURE analyses supported a 
component that is maximized in Solomon islanders, in agreement with PCA (Supplementary 
Fig. 4b). At K = 8, a component specific to the Philippine Agta was found, suggesting a 
history of genetic isolation from other Philippine populations, as previously suggested7. 
Nevertheless, we caution that the low sample size of the Agta in our dataset might result in 
the underestimation, by ADMIXTURE, of their genetic differentiation from other populations. 
Intriguingly, for K > 5, indigenous Australians show a pattern consistent with admixture 
between different components maximized in Near Oceanians. We suggest that this pattern is 
probably due to increased genetic drift in the latter groups37, as previously suggested30, and 
to their low sample size. For all K values explored, we observed strong genetic affinities 
between individuals of the Bismarck archipelago and of Vanuatu and Santa Cruz islands 
(Fig. 1c,d, Extended Data Fig. 1), consistent with a post-Lapita expansion of Bismarck 
islanders into Remote Oceania31,32,38.  

 



 15 

 
Supplementary Figure 5. ADMIXTURE cross-validation error. A hundred independent runs were 
performed with different random seeds, for each K prior value. The red dot indicates the K value with 
the lowest cross validation error (K = 6). 

 
 

 
Supplementary Figure 6. European and African components in Oceanians. ADMIXTURE results at K 
= 6 for the 20 study populations, together with selected populations from Malaspinas et al.16 (Bundi 
PNG), Vernot et al.15 (Nakanai Bileki from the Bismarck Archipelago) and SGDP17 (Africans and 
western Eurasians). Detailed ADMIXTURE results are shown in the bottom, where individuals showing 
non-negligible proportions of African or European components are indicated by an arrow.  

 
At K = 6, we observed various levels of Polynesian ancestry among Vanuatu populations 

(Extended Data Fig. 1). Interestingly, Polynesian outliers – Polynesian-speaking people living 
outside Polynesia – are known to reside in different Vanuatu islands, including Emae, Mele, 
Ifira, Futuna and Aniwa39. To test if some Vanuatu populations show increased Polynesian-
related ancestry, we computed f4-statistics40 that estimate allele sharing of Vanuatu 
populations with either Polynesians or Papuans, to account for the various proportions of 
Papuan-related ancestry in the ni-Vanuatu (Supplementary Fig. 7a). In contrast with other 
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Vanuatu populations, Emae islanders showed higher allele sharing with Polynesians than 
expected, given their Papuan-related ancestry (Supplementary Fig. 7b). This suggests that 
migrations from Polynesia were more frequent in Emae, relative to the other western Remote 
Oceanian islands. This is in agreement with linguistic and genetic evidence suggesting back 
migrations from Polynesia into Vanuatu islands where Polynesian outliers reside39,41.  
 

 

 
 
Supplementary Figure 7. Proportions of Papuan-related and Polynesian-related ancestry in western 
Remote Oceanian populations. a, Various proportions of Papuan-related ancestry among western 
Remote Oceanian populations. Estimates were obtained with a f4-ratio of the form f4(Han, Mbuti; 
Vanuatu, Papuans) / f4(Han, Mbuti; Taiwanese indigenous peoples, Papuans). Bars indicate two 
standard errors. Standard errors were calculated using a weighted-block jackknife procedure dropping 
5-cM blocks of the genome in each run. The sample size (n) of each population is detailed in 
Supplementary Table 1. b, Allele sharing of western Remote Oceanian populations with Polynesian 
outliers, accounting for Papuan-related ancestry. For each western Remote Oceanian population, 
allele sharing with Polynesian outliers, relative to Taiwanese indigenous peoples, is shown against 
allele sharing with Papuans, relative to Taiwanese indigenous peoples. Bars indicate two standard 
errors for all f4-statistic estimates. The black line indicates the regression line of a linear model of all 
populations (n=11 populations). 

 
Linkage disequilibrium decay 
Methods. Linkage disequilibrium (LD) between pairs of SNPs was estimated based on r2 
values with Haploview42. As r2 is sensitive to sample size, we randomly sampled 5 individuals 
per population in the Level 1 dataset (Supplementary Note 2). We then removed bi-allelic 
SNPs with a population MAF < 5%. r2 values were computed for every pair of SNPs using a 
1-Mb sliding window approach, and were averaged per bin of genetic distance using the 
1000 Genomes Project Phase 3 genetic map 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20140404_data_for_phase3_pap
er/shapeit2_scaffolds/)43.  
 
Results. Polynesian outliers, originating from Rennell, Bellona and Tikopia islands, showed 
slower LD decay with genetic distance, relative to other populations (Supplementary Fig. 8). 
As LD decay depends on effective population size44, these results suggest a lower Ne for 
Polynesian outliers, which may be attributed to the serial founder events experienced by 
these populations following the settlement of Polynesia, and/or back migrations from 
Polynesia to Near Oceania10. 
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Supplementary Figure 8. Linkage disequilibrium decay with genetic distance in Pacific populations. 
Each population is composed of 5 samples, which were randomly chosen. RenBell indicates 
Polynesians from Rennell and Bellona.  

 
 
Heterozygosity and admixture proportions 
Methods. We computed heterozygosity, for each population with a sample size > 5 and for 
each sample, as the number of heterozygous sites divided by the total number of callable 
positions (i.e., all variant and invariant sites) using BCFtools version 1.8. Individual admixture 
proportions were obtained from ADMIXTURE at K = 6 (Fig. 1c). 
 
Results. Levels of heterozygosity differed markedly across populations (Kruskal Wallis P-

value = 1.410-12; Fig. 1e and Supplementary Fig. 9a). Pacific populations with the lowest 
heterozygosity were those showing no evidence of admixture (Fig. 1c and Extended Data 
Fig. 1), including PNG and Taiwanese indigenous peoples. The Kundiawa and the Bundi 
showed heterozygosity levels comparable to those of other groups of PNG, suggesting they 
well represent other Papua New Guinean populations. Populations with low heterozygosity 
also include Polynesian outliers (Supplementary Fig. 9a), who likely experienced founder 
events following the settlement of Polynesia, and/or back migrations from Polynesia to Near 
Oceania10. Heterozygosity of Polynesian speakers from Rennell and Bellona Islands was 
substantially lower than that of Polynesian speakers from Tikopia, suggesting increased 
genetic drift in the former, in agreement with their higher levels of LD (Supplementary Fig. 8), 
ADMIXTURE results37 at K = 6 (Fig. 1c and Extended Data Fig. 1), and previous 
observations based on levels of LD, runs of homozygosity and genetic differentiation30. This 
suggests that Polynesian outliers experienced founder effects of various intensities, following 
their back migrations from Polynesia to the Solomon Islands. Finally, we observed a 
significant correlation between heterozygosity and East Asian-related admixture proportions 

in Oceanians (Supplementary Fig. 9b; r2 = 0. 89, P-value < 2.210-16), indicating that 
admixture is a key determinant of heterozygosity levels in the region.  
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Supplementary Figure 9. Heterozygosity and estimated admixture proportions in Pacific populations. 
a, Population levels of heterozygosity. For each population with a sample size ≥ 5, five samples were 
randomly sampled to obtain equal sizes. The line, box, whiskers and points respectively indicate the 
median, interquartile range (IQR), 1.5*IQR and outliers of per-population heterozygosity levels. b, 
Heterozygosity of Oceanians against their estimated proportion of East Asian-related ancestry. c, 
Heterozygosity of East Asian-related Pacific populations, against their estimated proportion of Papuan-
related ancestry. b-c, Each point represents an individual. Colours indicate the population group of 
origin. Individual admixture proportions were obtained from ADMIXTURE at K = 6 (Fig. 1c). 
Spearman’s coefficient ρ and corresponding P-value are shown. The black line indicates the 
regression line of a linear model and the grey zone the 95% CI (n=95 and n=35 individuals for b and c, 
respectively).  

 
AMOVA-based FST 
Methods. FST values were estimated using the Analysis of Molecular Variance (AMOVA) 

method (ST in ref.45). Values were computed with a home-made perl script (available on 
www.github.com/h-e-g/evoceania). 
 
Results. FST values indicated low genetic differentiation among Vanuatu islands and between 
Vanuatu and Bismarck archipelago populations (Supplementary Fig. 10), as shown by the 
PCA (Fig. 1d). The highest genetic differentiation was detected between PNG and 
Taiwanese indigenous peoples.  
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Supplementary Figure 10. AMOVA-based FST among Pacific populations. FST matrix for all possible 
pairs of populations. Colour bars by the population names indicate population affiliations according to 
Fig. 1. Colour scale indicates lower (FST < 0.01; in blue) and higher genetic differentiation (FST > 0.04; 
in red). RenBell indicates Polynesian outliers sampled from Rennell and Bellona Islands. 
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Supplementary Note 4: Demographic Inference 
 
Parameter estimation 
To infer the demographic history of populations from the Pacific, we used datasets filtered at 
Level 3a, and annotated for the ancestral state (Supplementary Note 2). Demographic 
parameter estimation was performed using the simulation-based framework46 implemented in 
fastsimcoal version 2.6 (http://cmpg.unibe.ch/software/fastsimcoal2/). This method estimates 
the multinomial likelihood of the observed multidimensional Site Frequency Spectrum (SFS) 
O, given the expected SFS E approximated from coalescent simulations of a given model 
under specific parameter values θ, following refs.46,47. The multinomial likelihood is computed 
as: 

𝐿𝑓𝑢𝑙𝑙 = 𝑃(𝑂|𝜃) ∝ 𝑃0
𝐿−𝑆(1 − 𝑃𝑜)𝑆 ∏ 𝑒𝑖̂

𝑜𝑖

𝑛−1

𝑖=1

 

where O = {o1, …, on-1} are entries of the observed SFS, E = {e1, …, en-1} are entries of the 
expected SFS, P0 is the probability that no mutation occurred on the expected mean 

coalescent tree, S is the total number of polymorphic sites and L is the total length of the 
surveyed sequence. fastsimcoal2 starts with initial random parameter values sampled from a 
specified distribution and performs a series of expectation conditional maximization (ECM) 
optimization cycles. To avoid local maxima, the same demographic scenario is simulated 
several times with varying starting points of the algorithm (i.e., random seed and initial 
values). We performed 600,000 simulations, 65 ECM cycles, and 100 replicate runs (unless 
specified) starting from different random initial values. To limit overfitting, only SFS entries 
with more than 5 counts were considered for parameter estimations (‘-C 5’).  

To maximize the fit between the expected and observed SFS, we used the approach 
described in refs.16,48,49. Specifically, the likelihood Lfull was first computed and optimized 
using all entries of the SFS (i.e. both invariant and variant sites with entry counts > 5) for the 

first 25 cycles and then 𝐿𝑆𝐹𝑆 ∝ ∏ 𝑒𝑖̂
𝑜𝑖𝑛−1

𝑖=1  was optimized, using only variant sites (with entry 

counts > 5) for the remaining 40 cycles. 
To obtain the maximum-likelihood (ML) estimates of demographic parameters for a given 

model, we first selected the 10 runs, among the 100 replicate runs, with the highest 
likelihood. To account for the stochasticity inherent to the approximation of the likelihood 
using coalescent simulations, we re-estimated the likelihood of each of the 10 best runs, 
using 100 expected SFS obtained using 600,000 simulations. Finally, we refined the 
likelihood of the three runs with the highest average, re-estimated log10(likelihood) using 107 
simulations, and considered the run with the highest likelihood as the ML run. To correct for 
the different number of SNPs in the expected and observed SFS, we rescaled the 
parameters by a rescaling factor (RF) defined as Sobs/Sexp: Ne and generation times were 
multiplied by RF, while migration rates were divided by RF. 

For all time parameter estimates, we assumed a generation time of 29 years50 and a 

constant mutation rate of 1.2510-8 mutation/generation/site, i.e., the rate of de novo 
mutations estimated from deep sequencing of family pedigrees, and used in several recent 
population genomics studies16,17,51. We decided to use this mutation rate because we built a 
demographic model of Oceanian populations by adding newly-studied populations to the 
previous ‘Out-of-Africa’ model obtained by Malaspinas et al.16, where a constant mutation 

rate of 1.2510-8 mutation/generation/site was also assumed. We note that another study has 

estimated a higher mutation rate of 1.3–1.810−8 mutation/generation/site, based on the 
comparison of high-coverage ancient and modern human genomes52. To account for 
uncertainty in mutation rate estimations, we also provide, for all divergence and admixture 

times, estimates assuming a mutation rate of 1.4010-8 mutation/generation/site 
(Supplementary Tables 3-7). 
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Confidence intervals 
We calculated confidence intervals with a non-parametric block bootstrap approach. We first 
generated 100 bootstrapped datasets by randomly sampling with replacement the same 
number of 1-Mb blocks of concatenated genomic regions as in the observed data. Then, for 
each bootstrapped dataset, we obtained multi-SFS with Arlequin version 3.5.2.2 
(http://cmpg.unibe.ch/software/arlequin35/, ref.53), and re-estimated parameters using the 
same settings as for the original dataset, but with 20 replicate runs instead of 100. To obtain 
the 95% confidence intervals, we calculated the 2.5% and 97.5% percentiles of the estimate 
distribution obtained by non-parametric bootstrap.  
 
 
Model selection 
For model selection, because the likelihood function is a composite likelihood (due to the 
presence of linked SNPs in our datasets), we did not use classical model choice procedures 
such as the likelihood ratio tests or Akaike Information Criterion (AIC). Instead, we estimated 
the difference between models in the expected log10(likelihood) of the observed SFS, 
referred as initial likelihood, which is approximated from 600,000 simulations. Furthermore, 
we also re-estimated a hundred times the log10(likelihood LSFS) of the observed SFS, from 100 
expected SFS computed with 107 coalescent simulations, instead of 600,000 simulations, 
and using parameters that maximized the likelihood under each scenario (i.e., run with the 
highest likelihood). These likelihoods are referred as re-estimated likelihoods. Their 
distribution reflects the stochasticity inherent to the approximation of the likelihood using 
coalescent simulations. We considered that a model is the most likely if (i) the initial expected 
log10(likelihood) of the observed SFS under this model is higher than that of the alternative 
models, and (ii) the difference between the mean of the 100 re-estimated log10(likelihoods) of 
this model and that of other models (Δ maximum log10(likelihood); ΔML) is greater than 50 
(see ref.49). Finally, for some of our model comparisons, we also estimated the probability 
that the true model is selected, using simulated SFS as observed SFS (see section “Refining 
the demographic history of Near Oceania”). The true positive rate of the model selection was 

computed as 𝑇𝑃𝑅 =
nΔML ≥ +50

(nΔML ≥ +50 +nΔML ≤ −50) 
, where ΔML = LikelihoodTrue model – LikelihoodAlternative 

model, nΔML ≥ +50 is the number of pseudo-observed SFS for which the true model is favoured, 
and nΔML ≤ −50 is the number of pseudo-observed SFS for which the alternative model is 
favoured. 
 
Model fitting 
To identify entries of the expected SFS that show a poor fit with the observed SFS, we 
compared all entries of the observed multidimensional SFS against simulated entries, 
averaged over 100 SFS expected under the most likely model, obtained with fastsimcoal246. 
Entries with the worst fit were defined as those that exhibit a difference between the 
expected and observed SFS larger than 500 units (i.e., |(mi log10(pi)) – (mi log10(mi/L))| > 500, 
where mi is the observed count at the i-th entry, pi is the expected SFS at the i-th entry and L 
is the total number of polymorphic sites). In addition, we also compared observed vs. 
simulated FST for all pairs of populations, computed with vcftools version 0.1.1354. 
Specifically, we computed Weir and Cockerham’s FST for each 1-Mb block of concatenated 
genomic regions in the observed data, and averaged values across blocks. In parallel, we 
simulated 1,000 times x 1-Mb DNA loci, x being the number of 1-Mb blocks in the observed 
data, using fastsimcoal2 under the best-fitted model. We assumed a mutation rate of 

1.2510-8 mutation/generation/site17,51 and a recombination rate obtained from the 1000 
Genomes Phase 3 genetic map43. We then verified that the observed genomic average of 
FST was included in the distribution of 500 averages of x randomly sampled, simulated 1-Mb 
DNA loci. For the baseline model that includes archaic introgression (see section below), we 
also compared observed vs. simulated f4-ratio statistics. Namely, we simulated with 
fastsimcoal2 500 independent sets of 10-Mb genomic regions and sampled simulated 
individuals from African, East Asian, PNG, Neanderthal and Denisovan populations so that 
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sample sizes were equal to those of the observed data. We then estimated Denisovan 
ancestry in the simulated PNG population using the following f4-ratio statistic: f4(Africans, 
Neanderthal; East Asians, PNG) / f4(Africans, Neanderthal; East Asians, Denisova) 
(Supplementary Note 7), and verified that the observed f4-ratio statistic was included in the 
distribution of simulated values. 
 
Estimation accuracy 
For the most complex models (see sections “Refining the demographic history of Near 
Oceania”, “The demographic history of western Remote Oceania” and “Refining the sources 
of East Asian ancestry among Oceanians”), we evaluated the accuracy of the estimations of 
demographic parameters with fastsimcoal2, with a parametric bootstrap approach. 
Specifically, we simulated, with fastsimcoal2, x 1-Mb DNA loci, x being chosen to obtain the 
same number of segregating SNPs and number of invariant sites as in the observed data, 
assuming parameters that maximized the likelihood under each model. We assumed a 

mutation rate of 1.2510-8 mutation/generation/site17,51 and used a recombination rate 
obtained from the 1000 Genomes Phase 3 genetic map43. Twenty simulated SFS were then 
generated with Arlequin version 3.5.2.2 (http://cmpg.unibe.ch/software/arlequin35/)53. We re-
estimated the parameters using each of the 20 simulated SFS and the same settings as for 
the original dataset (65 ECM cycles, 600,000 simulations and 100 runs per simulated SFS). 
Then, we calculated the mean, median and the 2.5% and 97.5% percentiles of the 
distribution of parameter estimates obtained by parametric bootstrap, and verified that they 
include the true (simulated) parameter value. 
 
Background selection and GC-gene biased conversion 
Rationale. Demographic inference assumes that the genome is mainly evolving under 
neutrality, but this assumption may be violated because of background selection (BGS; i.e., 
loss of neutral mutations linked with deleterious alleles due to negative selection) and GC-
biased gene conversion (gBGC; i.e., increase in frequency of GC alleles due to 
recombination)55. To account for this, we excluded sites within CpG islands and genes (Level 
3a filters) for demographic inference. However, linked selection might affect sites in 
intergenic regions, particularly in low-recombining regions. We thus compared the genetic 
structure of Pacific populations for different sets of variants filtered, or not, for low-
recombining regions and high gBGC sites.  
 
Methods. We compared the PCA of two datasets that include the same individuals (i.e., 
those used for the demographic inference, to the exclusion of archaic hominins) but include 
two different sets of SNPs. The first set is composed of SNPs that passed the Level 3a 
filters, whereas the second, referred to as BGS/gBGC-free, includes SNPs that passed the 
filters described in ref.55. Specifically, we kept (i) sites with no missingness, (ii) sites with a 
local recombination rate > 1.5 cM/Mb using 1000 Genomes Project Phase 3 genetic map43, 
and (iii) sites with mutation types C↔G and A↔T (i.e., unbiased Weak ↔ Weak, Strong ↔ 

Strong alleles)55. As the first set presented ~17 more SNPs than the second set (3,800,502 
vs 218,074 SNPs), we randomly selected 218,074 SNPs in the first set, for comparison 
purposes. The two PCA were then computed using ‘SmartPCA’ algorithm implemented in 
‘EIGENSOFT’ version 6.1.4 (ref.28).  
 
Results. Highly similar results were obtained by PCA using Level 3a and BGS/gBGC-free 
datasets (Supplementary Fig. 11). This suggests that Level 3a filters were sufficiently 
stringent to remove most sites influenced by BGS or gBGC, and that our demographic 
models of Pacific populations should not be strongly affected by these evolutionary forces.  
 



 23 

 
 

Supplementary Figure 11. Impact of background selection (BGS) and GC-gene biased conversion 
(gBGC) on the genetic structure of Pacific populations. First ten PCs of a PCA of two different 
datasets, one including all the Level 3a SNPs used for demographic inference (in blue), the other 
including SNPs that were further filtered for high BGS and gBGC genomic regions (BGS/gBGC-free in 
orange). Both datasets include the 41 samples from 10 populations that were used for demographic 
inference. Papua New Guinea highlanders (PNG) are represented by Kundiawa and Bundi 
populations, the ni-Vanuatu (VAN) by Malakula islanders, the Bismarck islanders (BKA) by the 
Nakanai Bileki, Solomon islanders (SLI) by Vella Lavella islanders, Polynesian outliers (POL) by 
Bellona islanders, East/Southeast Asians (EA/SEA) by Han Chinese, Paiwan Taiwanese and 
Philippine Kankanaey and Europeans by Sardinians (SAR). Proportions of variance explained by PC1 
(PC2) were 8.3% (6.5%) and 8.6% (6.5%) for Level 3a and BGS/gBGC-free datasets, respectively. 
 
 

Baseline demographic model of human populations 
Demographic modelling and hypotheses. To build a demographic model of Oceanian 
populations, we started by confirming the ‘Out-of-Africa’ model and re-estimating the 
parameters obtained by Malaspinas et al.16. This model includes modern populations from 
Africa, Europe, East Asia and Oceania in isolation with migration, as well as archaic 
hominins, to model archaic introgression. This baseline model served as a scaffold on which 
newly-studied populations were subsequently added. We chose to follow this rationale to 
limit the number of parameters to estimate, as we fixed several parameters of the baseline 
model (e.g., those related to demographic events that predate the settlement of Oceania) in 
the subsequent models. 

Our model differs in several aspects from those used by Malaspinas et al.16. We used the 
Vindija Neanderthal instead of the Altai Neanderthal, because the Vindija Neanderthal was 
shown to be more closely related to the Neanderthals who interbred with modern humans56. 
Near and Remote Oceanians are thought to descend from at least two parental populations 
that relate to present-day Papua New Guineans and Austronesian speakers from Taiwan30-32. 
Because our study focuses mainly on the history of Oceania, we replaced the indigenous 
Australians by PNG, and added to the model the Taiwanese indigenous peoples, to 
represent Austronesian speakers31,32,38,57. We assumed that the ancestors of Taiwanese 
indigenous peoples separated from the ancestors of mainland Han Chinese, in agreement 
with archaeological and genetic evidence57,58. Furthermore, to leverage the WGS data 
obtained for several related PNG populations, PNG were modelled following a continent-
island model, where the continent represents a meta-population that sends migrants to 
islands, constituted by the two sampled populations (i.e., the Bundi and Kundiawa). We 
assumed that lineages first coalesced within islands during 100 generations until all 
remaining lineages are transferred to the continent46.  
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To reduce the parameter space, all parameters relating to sub-Saharan Africans were 
fixed to previous ML estimates16 (i.e., Ne, divergence times and migration rates), whereas all 
other parameters were re-estimated. The search ranges of divergence times of Denisovans 
and Neanderthals were set to the confidence intervals estimated in refs.17,56,59. Sampling time 
of the Altai Denisovan and Vindija Neanderthal were fixed to 2,800 and 2,000 generations, 
respectively56. We accounted for archaic introgression in non-African populations, by 
estimating the time and proportion of (i) Neanderthal introgression in the common ancestors 
of all non-African populations, (ii) Neanderthal introgression in the common ancestors of 
Eurasians, and (iii) Denisovan introgression in the ancestors of PNG. Following a hypothesis-
free approach, we tested two tree topologies, to evaluate whether East Asians (Han and 
Taiwanese indigenous peoples) share more recent common ancestors with Europeans 
(PNG, (EUR, ASN)) or with Papuans (EUR, (PNG, ASN)) (Supplementary Fig. 12a,b). We 
note that we did not interpret the divergence time between Han Chinese and Taiwanese 
indigenous peoples in the baseline model, as this was the purpose of a more detailed model 
of populations contributing East Asian-related ancestry to Oceanians (see sections ‘The 
sources of East Asian ancestry among Oceanians’ and ‘Refining the sources of East Asian 
ancestry among Oceanians’). All fastsimcoal2 input files can be found on GitHub 
(www.github.com/h-e-g/evoceania). 
 
Dataset. We used 2 datasets with different populations for replication. Dataset 1 includes 2 
SGDP Sardinians (SAR)17, 2 SGDP Han Chinese (HAN)17, 5 Paiwan (Taiwanese indigenous 
peoples, TWN), and 5 Bundi and 5 Kundiawa from Papua New Guinea (PNG)16. Dataset 2 
includes the same populations, except that the 5 Paiwan were replaced by 2 Philippine 
Kankanaey (PHP)17, representing an Austronesian-speaking community from the Philippines. 
The two datasets were merged with the two high-coverage genomes of Vindija Neanderthal56 
and Altai Denisovan60, filtered at Level 3a and annotated for the ancestral state 
(Supplementary Note 2). Datasets were then decomposed into blocks of 1-Mb concatenated 
genomic regions, and multi-SFS were generated with Arlequin version 3.5.2.2 (ref.53).  
 
Results. We found that the (PNG, (EUR, ASN)) model, where East Asians (ASN) share more 
recent common ancestors with Europeans (EUR) than with Papuans (PNG), was significantly 
more likely than the alternative (EUR, (PNG, ASN)) model (ΔML > 1,000 log10 units for both 
initial and re-estimated likelihoods, see section ‘Model selection’), confirming previous 
results16 (Supplementary Fig. 12c). Under the most likely model, we estimated a strong Out-
of-Africa bottleneck in the ancestral population of all non-Africans (Ne = 411, 95% CI: 364–
7,950; intensity = 24%, 95% CI: 1%–27%). We found a substantial population reduction 
associated with the peopling of Eurasia (Ne = 1,822, 95% CI: 395–2,174; intensity = 5.5%, 
95% CI: 4.6%–25%) and in PNG (Ne = 247, 95% CI: 140–285; intensity = 40%, 95% CI: 
35%–71%). Neanderthal introgression in the ancestral population of non-Africans was 
estimated to occur 61 ka (95% CI: 56–62 ka) with a rate of ~2% (95% CI: 1.5%–2.7%) 
(Extended Data Fig. 2a; Supplementary Table 2). Neanderthal introgression in the ancestral 
Eurasian population was estimated to occur ~52 ka (95% CI: 47–54 ka) with a rate of 
~0.36% (95% CI: 0.36%–1.86%). Finally, Denisovan introgression into the ancestral 
population of PNG occurred ~42 ka (95% CI: 35–44 ka) with a rate of ~3.6% (95% CI: 3.2%–
4.1%) (Extended Data Fig. 2a; Supplementary Table 2). We estimated a divergence time 
between ancestors of Eurasians and PNG ~57 ka (95% CI: 53–60 ka). Remarkably, and 
despite the differences of our model to that of Malaspinas et al.16, most of our point estimates 
fell within the CIs previously reported. Furthermore, point estimates of demographic 
parameters were similar when using, instead of Taiwanese indigenous peoples (TWN), the 
Philippine Kankanaey (PHP) to represent Austronesian speakers (Supplementary Table 2). 
Altogether, our baseline model confirms previous findings, and recapitulates important 
aspects of the demographic history of populations involved in the settlement of Near and 
Remote Oceania, i.e., East Asians and PNG. 
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Model fitting. Overall, we obtained a very good fit of expected and observed marginal SFS, 
indicating that the model and parameter estimates well reproduce the data (Supplementary 
Fig. 13). The entries of the SFS with the poorest fit were those where the derived allele is 
fixed in archaic and most modern human populations (Supplementary Fig. 14). This is most 
probably due to ancestral state misspecification, which is not expected to affect the 
parameters that we aim to estimate, such as divergence times among modern human 
populations. Other entries with a relatively poor fit were those where the derived allele 
segregates, or is fixed, in archaic hominins but is absent from modern humans, probably 
because some parameters were constrained to previously estimated values (i.e., divergence 
times related to Denisovans and Neanderthals17,56,59). We also tested if simulated data under 
the best-fitted model well reproduce the observed data for summary statistics related to 
archaic introgression. Namely, we compared the observed f4-ratio statistic for Denisovan 
introgression (Supplementary Note 7) to that estimated from simulations with fastsimcoal246 
under the best-fitted model. Simulated statistics were very close (mean f4-ratio = 0.029; 
median f4-ratio = 0.024; IQR = 0.042) to the observed value (f4-ratio = 0.032) in PNG, 
confirming the accuracy of our baseline model concerning Denisovan introgression. Finally, 
we checked that genetic differentiation among modern human populations, measured by 
Weir and Cockerham’s FST, was well reproduced by the best-fitted model. We observed a 
very good fit between observed and expected FST (Supplementary Fig. 15), validating further 
our baseline model.  
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Supplementary Figure 12. Alternative topologies for the baseline model. a, The (PNG, (Europe, East 
Asia)) model assumes that East Asians share a more recent common ancestor with Europeans. b, 
The (Europe, (PNG, East Asia)) model assumes that East Asians share a more recent common 
ancestor with Papuans. a,b, OOA GST indicates the unsampled African population who left Africa, 
SAR indicates Sardinians17, HAN indicates Han Chinese17, TWN indicates Taiwanese indigenous 
peoples, and PNG indicates Papua New Guinean highlanders (Bundi and Kundiawa16). In both 
models, the ancestors of the two groups separate independently from Africans, as in ref.16. For 
convenience, only modern human populations are represented. Grey arrows indicate symmetric 
migrations between modern humans. Solid black arrows represent Neanderthal introgression into the 
common ancestors of all non-African populations and a, Eurasians or b, Europeans. The dashed black 
arrow indicates Denisovan introgression into the ancestral population of PNG. Bottlenecks are 
indicated by black rectangles. c, Likelihood distribution of the two alternative topologies in a and b. 
The line, box, whiskers and points respectively indicate the median, interquartile range (IQR), 1.5*IQR 
and outliers of the re-estimated likelihood distributions obtained from 100 expected SFS computed 
with 107 coalescent simulations and using parameters that maximized the likelihood under each 
scenario. 
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Supplementary Figure 13. Fitting of the SFS for the baseline model. The marginal one-dimensional 
SFS of the observed data (in blue) is compared to the averaged expected SFS (in black) obtained 
from 100 SFS approximated with 107 simulations, using parameters that best fit the data under the 
(PNG, (Europe, East Asia)) model. 
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Supplementary Figure 14. SFS entries with the worst fit for the baseline model. Differences in the 
number of counts between the observed (blue) and expected (black) SFS for entries harbouring a 
discrepancy of more than 500 log10 units of likelihood. The plot at the bottom gives the relative fit 
computed as the ratio of the number of counts for the ith entry in the expected and observed SFS. 
Entries are indicated by columns and correspond to the counts of the derived allele in Denisova (2n = 
2), Vindija Neanderthal (2n = 2), Sardinians (SAR, 2n = 4), Han (HAN, 2n = 4), Bundi (PNG, 2n = 10), 
Kundiawa (PNG, 2n = 10) and Paiwan (TWN, 2n = 10) (from bottom to top).  
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Supplementary Figure 15. Observed versus simulated FST for each pair of populations used in the 
baseline model. Simulated pairwise FST (dark blue) were obtained with 500 simulations under the best 
parameters inferred for the baseline model, and were compared with observed FST (light blue) 
obtained from the empirical data used for parameter inference. 
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The demographic history of Near Oceania 
Demographic modelling and hypotheses. A Late Pleistocene occupation by modern humans 
has been documented in Near Oceania (New Guinea, the Bismarck Archipelago and the 
Solomon Islands)61,62, but the early demographic history of Near Oceanians remains largely 
unknown. Archaeological evidence supports the existence of a Holocene expansion from 
East/Southeast Asia associated with the peopling of Remote Oceania. This recent expansion 
is thought to be at the origin of the Lapita cultural complex and the spread of Austronesian 
languages in Near and Remote Oceania2,62. This hypothesis is supported by previous genetic 
studies30-32,36,38 and our analyses (Supplementary Note 3), indicating that Oceanians descend 
from two ancestral populations related to present-day PNG and East/Southeast Asians.  

To gain insight into the peopling history of Near Oceania, we sought to model, in addition 
to baseline populations (see section ‘Baseline demographic model of human populations’), 
two representative populations from Near Oceania, i.e., populations from the Bismarck 
Archipelago (BKA) and Solomon Islands (SLI). Following a hypothesis-free approach, we 
tested different topologies: (i) PNG diverged first, followed by the separation of islanders from 
the two other archipelagos (PNG,(BKA,SLI)), (ii) Solomon islanders diverged first, followed 
by the Bismarck Archipelago islanders and PNG (SLI,(PNG,BKA)), and (iii) Bismarck 
Archipelago islanders diverged first, followed by Solomon islanders and PNG 
(BKA,(PNG,SLI)) (Supplementary Fig. 16a). To account for admixture with populations of 
East Asian origin during the Holocene (i.e., attributed to the Austronesian expansion2,62), we 
modelled pulses of gene flow from Taiwanese indigenous peoples (TWN) to Bismarck and 
Solomon islanders (Supplementary Note 3), as Taiwanese indigenous peoples are 
considered a good proxy of Austronesian-speaking peoples entering Oceania38. Finally, 
archaeological studies suggest an extensive exchange network, notably between Papua 
New Guinea and the Bismarck Archipelago from 20 ka63,64. We therefore considered gene 
flow within Near Oceania by simulating asymmetrical migration following a stepping-stone 
model (i.e., between PNG and BKA, as well as between the BKA and SLI). 

All parameters related to Eurasians and archaic hominins, together with parameters for 
events that predate the divergence between Eurasians and Near Oceanians, were fixed to 
the values obtained in the best-fitted baseline model (Supplementary Table 2). The rate of 
Denisovan introgression into the ancestral population of Near Oceanians was also fixed. To 
obtain parameter estimates for each demographic scenario, we selected the run, among 150 
runs, that yielded the highest likelihood. All fastsimcoal2 input files can be found on GitHub 
(www.github.com/h-e-g/evoceania). 
 
Dataset. We modified our baseline model by adding 5 Nakanai Bileki (Bismarck Archipelago; 
BKA) and 5 individuals from Vella Lavella, or Malaita for replication (Solomon Islands; SLI). 
To decrease the dimensionality of the multi-SFS, we excluded, from the SFS data, the 2 
Sardinians (SAR), the 5 Bundi (keeping 5 Kundiawa samples to represent PNG) and the two 
archaic genomes, although the corresponding populations were simulated in the model by 
fixing their demographic parameters to the values obtained in the best-fitted baseline model. 
The multi-SFS was generated as for the baseline model.  
 
Results. The distributions of re-estimated likelihoods of the three models were largely 
overlapping, indicating no marked differences between the three tested topologies 
(Supplementary Fig. 16b). On average, a difference of 2 and 52 log10 likelihood units was 
observed between the (PNG,(BKA,SLI)) and (SLI,(PNG,BKA)) models, and between 
(PNG,(BKA,SLI)) and (BKA,(PNG,SLI)), respectively. Of note, we found that the set of 
parameters maximizing the likelihood under the (SLI,(PNG,BKA)) topology was compatible 
with a divergence of the three groups at the same time; the likelihood distribution of the 
(SLI,(PNG,BKA)) and (SLI,PNG,BKA) models were similar (ΔML = 7; Supplementary Fig. 
16b). These results suggest that either PNG diverged first or that the three groups diverged 
simultaneously.  

Based on the (PNG,(BKA,SLI)) model, which shows the highest average likelihood, we 
estimated a divergence between PNG and the ancestral population of the Bismarck 
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Archipelago (BKA) and Solomon Islands (SLI) ~34 ka (95% CI: 29.9–37.8 ka), followed by 
the divergence of the populations from the two archipelagos ~16 ka (95% CI: 12.3–29.0 ka, 
Supplementary Fig. 17 and Supplementary Table 3). We estimated that admixture from 
Taiwanese indigenous peoples (TWN) into the two archipelagos occurred ~6 ka (95% CI: 
4.0–6.7 ka) and contributed ~28% (95% CI: 23.6%–31%) to Bismarck Archipelago islanders 
(BKA), and ~40% (95% CI: 34.7%–42.1%) to Solomon islanders (SLI), in agreement with the 
higher East Asian admixture proportion estimated for the latter (Fig 1c and Extended Data 
Fig. 1). Finally, strong migration (2Nm > 1) was observed between PNG and the Bismarck 
archipelago islanders (2NmPNG > BKA = 2.20, 95% CI: 1.88–4.21; 2NmBKA > PNG = 1.00, 95% CI: 
0.0004–1.11) as well as between Bismarck Archipelago and Solomon islanders (2NmSLI > BKA 
= 2.58, 95% CI: 0.14–5.05) (Supplementary Table 3). This suggests substantial gene flow 
between Near Oceanians, in agreement with archaeological data suggesting extensive 
exchange networks in the region starting 20 ka63,64. Importantly, similar estimates of 
demographic parameters were obtained when using population samples from Malaita, 
instead of Vella Lavella, to represent the Solomon Islands (SLI; Supplementary Table 3). 
 

 

 
 
Supplementary Figure 16. Alternative topologies for Near Oceanians. a, Schematic representation of 
the three topologies tested. Model to the left corresponds to (PNG,(BKA,SLI)) and models to the right 
give a simplification of the two other topologies, (BKA,(PNG,SLI)) (top right) and (SLI,(PNG,BKA)) 
(bottom right). For the sake of clarity, only the populations from Eurasia and Near Oceania are shown. 
Grey arrows indicate migrations estimated in these models (one arrow for symmetric and two arrows 
for asymmetric gene flow). Black arrows indicate a single-pulse gene flow from Taiwanese indigenous 
peoples into the Bismarck Archipelago and the Solomon Islands (modelling the Austronesian 
expansion to Near Oceania). Bottlenecks are indicated by black rectangles. SAR indicates Sardinians, 
HAN indicates Han Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck 
islanders, SLI indicates Solomon islanders, and PNG indicates Papua New Guinean highlanders. b, 
Likelihood distribution of the three topologies tested (left) and corresponding nested models where the 
three groups diverged simultaneously (right). The line, box, whiskers and points respectively indicate 
the median, IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100 expected 
SFS computed with 107 coalescent simulations and using parameters that maximized the likelihood 
under each scenario. For the nested models, we used the same set of parameters as for the 
corresponding topology, except that we set the latest split among Near Oceanians at one generation 
apart from the oldest split. 
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Supplementary Figure 17. Best-fitted model for Near Oceanians. SAR indicates Sardinians, TWN 
indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI indicates Solomon 
islanders, and PNG indicates Papua New Guinean highlanders. For the sake of clarity, only the 
populations from Eurasia and Near Oceania are shown. Grey arrows indicate migrations estimated in 
these models (one arrow for symmetrical and two arrows for asymmetrical gene flow). Black arrows 
indicate gene flow pulses from Taiwanese indigenous peoples into the Bismarck and the Solomon 
islanders (modelling the Austronesian expansion to Near Oceania). Bottlenecks are indicated by black 
rectangles. Estimated times are given in ka using a generation time of 29 years. Admixture proportions 
are given in %. 95% CIs are given in square brackets. The larger the rectangle width, the larger the 
effective population size (Ne). Bottlenecks are indicated by black rectangles. Point estimates of 
parameters and corresponding 95% CIs are given in Supplementary Table 3. 

 
 
Model fitting. We obtained a good fit of expected and observed marginal SFS 
(Supplementary Fig. 18). The worst entries were those for high-frequency derived alleles, 
particularly in Near Oceanians. The entries of the joint SFS with the poorest fit were also 
those where the derived allele is fixed in most modern human samples (Supplementary Fig. 
19). As for the baseline model, this is probably due to ancestral state misspecification. We 
observed a very good fit between observed and expected FST values (Supplementary Fig. 
20), indicating that the model and parameter estimates well reproduce this aspect of the 
data.  
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Supplementary Figure 18. Fitting of the SFS for the best-fitted model for Near Oceanians. The 
marginal one-dimensional SFS of the observed data (in blue) is compared to the averaged expected 
SFS (in black) obtained from 100 SFS approximated with 107 simulations using parameters that best fit 
the data under the (PNG,(BKA,SLI)) model. 

 

 
 

Supplementary Figure 19. SFS entries with worst fit for the best-fitted model for Near Oceanians. 
Differences in the number of counts between the observed (in blue) and expected (in black) SFS for 
entries harbouring a discrepancy of more than 500 log10 units of likelihood. The plot at the bottom 
gives the relative fit computed as the ratio of number of counts for the ith entry in the expected and 
observed SFS. Entries are given in column and corresponds to number of counts of the derived allele 
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in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai Bileki 
(BKA, 2n = 10) and Vella Lavella (SLI, 2n = 10) (from bottom to top).  
 

 
 
Supplementary Figure 20. Observed versus simulated FST for each pair of populations used for the 
model for Near Oceanians. Simulated pairwise FST (dark blue) were obtained with 500 simulations 
under the best parameters inferred for the Near Oceanian model and were compared with FST 
obtained from the empirical data used for parameter inference (light blue). 

 
 
Refining the demographic history of Near Oceania 
Demographic modelling and hypotheses. Several studies have documented genetic structure 
among populations from Near Oceania30,65. To account for such population structure, we 
modified our best-fitted model inferred in the section ‘The demographic history of Near 
Oceania’ (Supplementary Fig. 17) to include a ghost population representing a Near 
Oceanian meta-population. We thus simulated a ghost, unsampled population representing a 
Near Oceanian meta-population (NOC Ghost) and assumed that PNG and populations from 
the Bismarck Archipelago (BKA) and the Solomon Islands (SLI) diverged from it. Following a 
hypothesis-free approach, we tested two alternative models: (i) Bismarck islanders diverged 
from the NOC Ghost before Solomon islanders (BKA,(NOC GST, SLI)) or (ii) Solomon 
islanders diverged before Bismarck islanders (SLI,(NOC GST, BKA)) (Supplementary Fig. 
21a). To allow comparison between models without (Supplementary Fig. 17) or with 
(Supplementary Fig. 21a) a NOC Ghost, we modified the parameters in the latter model so 
that the total number of parameters was the same for both models. The dataset used was 
the same multi-SFS as in the model for Near Oceanians (see section ‘The demographic 
history of Near Oceania’). All fastsimcoal2 input files can be found on GitHub 
(www.github.com/h-e-g/evoceania). 
 
Results. We found that the model that best fitted the data was the (BKA,(NOC GST, SLI)) 
model, where Bismarck islanders (BKA) diverged from the NOC Ghost before Solomon 
islanders (SLI) (ΔML ≥ 65 log10 units for both initial and re-estimated likelihoods, 
Supplementary Fig. 21b). We estimated the true positive rate of our model choice procedure 
(ΔML ≥ 50 log10 units, see section ‘Model selection’), by using simulated SFS as pseudo-
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observed SFS. Namely, we obtained SFS under the (BKA,(NOC GST, SLI)) model by 
simulations, and estimated the likelihood of the pseudo-observed SFS under the (BKA,(NOC 
GST, SLI)) model, or the (SLI,(NOC GST, BKA)) alternative model. Out of 40 pseudo-
observed SFS, the true model has ΔML ≥ 50 log10 units in 81% of the cases, suggesting a 
reasonable true positive rate.  

Under the most supported (BKA,(NOC GST, SLI)) model, we found that ancestors of 
Near Oceanians experienced a strong population reduction, which is >5x stronger than in 
Eurasians (Ne = 214, 95% CI: 186–276; intensity = 47%, 95% CI: 36–54, Fig. 2a, 
Supplementary Table 4). We checked whether this bottleneck signal is better explained by 
individual bottlenecks in each Near Oceanian population, by estimating the likelihood of an 
alternative model where each Near Oceanian population independently experiences a 
bottleneck, whose duration is fixed to 100 generations after each split. We found that the 
model without population-specific bottlenecks was the most likely (ΔML = 428 log10 units, 
Supplementary Fig. 22), further supporting the occurrence of a strong bottleneck in the 
ancestors of all Near Oceanians before the settlement of Oceania. We estimated a 
divergence between PNG and the NOC Ghost at ~40 ka (95% CI: 34–45 ka; Fig. 2a, 
Supplementary Table 4), between the NOC Ghost and Bismarck islanders (BKA) at ~25 ka 
(95% CI: 20–36 ka), and between the NOC Ghost and Solomon islanders (SLI) at ~20 ka 
(95% CI: 15.8–29.8 ka). We dated admixture between Taiwanese indigenous peoples (TWN) 
and the populations from the two archipelagos at ~4 ka (95% CI: 3.2–5.5 ka), with a 
contribution of ~43% (95% CI: 27%–58%) to Bismarck Archipelago islanders (BKA), and 
~35% (95% CI: 31.7%–38.7%) to Solomon islanders (SLI). Comparable estimates of 
demographic parameters were obtained when using samples from Malaita instead of Vella 
Lavella, to represent the Solomon Islands (Supplementary Table 4), except for the 
divergence of Solomon islanders from the NOC Ghost and the gene flow pulse rates. This is 
in agreement with the suggested differences in the peopling history of the eastern, relative to 
western, Solomon Islands29,30. Furthermore, we evaluated the accuracy of our parameter 
estimation by parametric bootstrap, and found that the mean and median of the parameter 
estimates are very close to the true values and are all included in the 95%CIs 
(Supplementary Table 8 ‘Near Oceania’), except for one migration rate parameter. Together, 
these results indicate that the settlement of Near Oceania was rapidly followed by genetic 
isolation among archipelagos, and suggest that populations from the Solomon Islands 
diverged more recently or, at least, at the same time than those from the Bismarck 
Archipelago.  
 
Model fitting. We obtained a better fit of expected and observed marginal SFS in this refined 
model, compared to the model without the NOC Ghost (Supplementary Figs. 21b and 23). 
The worst entries were again those for high-frequency derived alleles. The entries of the joint 
SFS with the poorest fit were also those where the derived allele is fixed in most modern 
human samples (Supplementary Fig. 24). As for the baseline model, this is probably due to 
ancestral state misspecification. We observed a very good fit between observed and 
expected FST (Supplementary Fig. 25), indicating that the model and parameter estimates 
well reproduce this aspect of the data.  
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Supplementary Figure 21. Alternative refined models for Near Oceanians. a, Schematic 
representation of the two alternative refined models tested. SAR indicates Sardinians, HAN indicates 
Han Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI 
indicates Solomon islanders, PNG indicates Papua New Guinean highlanders and NOC GST indicates 
an unsampled population from Near Oceania. The model to the left corresponds to the topology where 
the Bismarck Archipelago diverged from the NOC Ghost before the Solomon Islands (BKA,(NOC GST, 
SLI)), while the smaller model to the right presents a simplification of the model where the Solomon 
islands diverged before the Bismarck Archipelago (SLI,(NOC GST,BKA)). For the sake of clarity, only 
the topologies for Eurasia and Near Oceania regions are shown. Grey arrows indicate migrations 
estimated in these models (one arrow for symmetric and two arrows for asymmetric gene flow). Black 
arrows indicate single pulse gene flow from Taiwanese indigenous peoples into the Bismarck 
Archipelago and the Solomon Islands (modelling Austronesian expansions to Near Oceania). 
Bottlenecks are indicated by black rectangles. b, Likelihood distribution of the alternative models. The 
line, box, whiskers and points respectively indicate the median, IQR range, 1.5*IQR and outliers of the 
likelihood distributions obtained from 100 expected SFS computed with 107 coalescent simulations 
and using parameters that maximized the likelihood under each scenario. The (PNG,(BKA,SLI)) model 
does not include a “NOC Ghost” (Supplementary Figs. 16-20, Supplementary Table 3), the (SLI,(NOC 
GST, BKA)) model is that where Solomon islanders diverged from the NOC Ghost before Bismarck 
islanders, and the (BKA,(NOC GST,SLI)) model is that where the Bismarck islanders diverged from 
the NOC Ghost before Solomon islanders.  
 
 

 
 



 37 

Supplementary Figure 22. Likelihood of refined models for Near Oceanians with or without 
population-specific bottlenecks. The line, box, whiskers and points respectively indicate the median, 
IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100 expected SFS 
computed with 107 coalescent simulations and using parameters that maximized the likelihood under 
each scenario. On the x-axis, the “Ancestral” model corresponds to the best-fitted model inferred with 
a bottleneck only in the ancestral population of Near Oceanians ((BKA,(NOC GST,SLI); Fig. 2a and 
Supplementary Fig. 21), and “Ancestral & all Islands” to a model with a bottleneck in the ancestral 
population of all Near Oceanians, as well as independent bottlenecks in each of the Near Oceanian 
populations. 
 

 
 

Supplementary Figure 23. Fitting of the SFS of the refined model for Near Oceanians. We compared 
marginal 1-dimensional SFS of the observed data (in blue) and the averaged expected SFS (in black) 
obtained from 100 SFS approximated with 107 simulations using parameters that best fit the data 
under the (BKA,(NOC GST,SLI)) model. 
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Supplementary Figure 24. SFS entries with worst fit of the refined model for Near Oceanians. 
Differences in the number of counts between the observed (in light blue) and expected (in dark blue) 
SFS for entries harbouring a discrepancy of more than 500 log10 unit of likelihood. The plot at the 
bottom gives the relative fit computed as the ratio of number of counts for the ith entry in the expected 
and observed SFS. Entries are given in column and corresponds to number of counts of the derived 
allele in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai 
Bileki (BKA, 2n = 10) and Vella Lavella (SLI, 2n = 10) (from bottom to top). 
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Supplementary Figure 25. Observed versus simulated FST for each pair of populations used for the 
refined demographic history of Near Oceania. Simulated pairwise FST (dark blue) were obtained with 
500 simulations under the best parameters inferred for the refined model for Near Oceanians and 
were compared with observed FST (light blue) obtained from the empirical data used for parameter 
inference. 

 
The demographic history of western Remote Oceania 
Demographic modelling and hypotheses. Evidence for the first human occupation of western 
Remote Oceania is dated to only ~3.5 ka, and is associated with the Lapita cultural 
complex66. A seminal ancient DNA study of three individuals from Vanuatu from the Lapita 
period reported their high genetic affinity to Austronesian-speaking populations, supporting 
an initial settlement of Vanuatu by Austronesian-related peoples38. Two more recent studies, 
primarily in Vanuatu, showed that such an initial settlement was rapidly followed by a partial 
population replacement by Papuan-related peoples, who share genetic affinities with 
populations from the Bismarck Archipelago31,32. 

To gain insight into the demographic history of western Remote Oceanians, we sought to 
model, in addition to baseline and Near Oceanian populations (see ‘Refining the 
demographic history of Near Oceania’), a representative population of western Remote 
Oceanians, i.e., the ni-Vanuatu from Malakula or Emae Islands (VAN). Following a 
hypothesis-free approach, we modelled western Remote Oceanians as a population that 
diverges from any Near Oceanian population or from Taiwanese indigenous peoples (i.e., a 
proxy of Austronesian-speaking people expanding to Oceania), and subsequently receives 
separate gene flow pulses from any of these populations. Specifically, we tested four 
alternative models for the origins of ni-Vanuatu: (i) the (VAN,BKA) model assumes that the 
ni-Vanuatu (VAN) diverged from Bismarck islanders (BKA) and then received separate gene 
flow pulses from PNG, the Solomon islanders (SLI) and Taiwanese indigenous peoples 
(TWN), (ii) the (VAN,PNG) model assumes that the ni-Vanuatu diverged from PNG and then 
received separate gene flow from the three other populations, (iii) the (VAN,SLI) model 
assumes that the ni-Vanuatu diverged from the Solomon islanders and then received 
separate gene flow from the three other populations and finally, (iv) the (VAN,TWN) model 
assumes that the ni-Vanuatu diverged from Austronesian-speaking Taiwanese indigenous 
peoples (TWN) and then received separate gene flow from the three other populations 
(Supplementary Fig. 26). The intensity of the gene flow pulses was sampled from a log-
uniform, so that low values are more probable than high values, to avoid difficulties of 
interpretation (i.e., a pulse of high intensity is equivalent to a population split in the model). 
Furthermore, we acknowledge that the genetic contribution of these different populations 
may have been inherited by western Remote Oceanians through a single migration event 
from an admixed population. However, we did not test such scenarios, because it would 
require exploring a large number of possible models. In light of this limitation, we interpret 
these results with caution. 

The divergence time between the ni-Vanuatu (VAN) and the other populations was 
constrained to occur after ~700 generations ago (~20 ka, i.e., the divergence between 
Solomon islanders and the NOC Ghost). The time of gene flow from Taiwanese indigenous 
peoples (TWN) to both Near Oceanian populations was constrained to occur after ~300 
generations (~9 ka, i.e., the HAN-TWN divergence). There was no a priori on the chronology 
of the three gene flow pulses into the ni-Vanuatu. All parameters estimated in the best-fitted 
refined model for Near Oceanians were fixed to ML estimates (see section ‘Refining the 
demographic history of Near Oceania’), except migrations between Near Oceanians, as well 
as the time and proportion of admixture with Austronesian-speaking Taiwanese indigenous 
peoples in Bismarck and the Solomon islanders. All fastsimcoal2 input files can be found on 
GitHub (www.github.com/h-e-g/evoceania). 
 
Dataset. We used the same dataset as in ‘The demographic history of Near Oceania’, except 
that we added 5 ni-Vanuatu individuals from Malakula or 5 ni-Vanuatu individuals from 
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Emae, for replication, as populations representative of western Remote Oceanians (VAN), 
and we no longer included Han Chinese (HAN) in the multi-SFS. The multi-SFS were 
generated as for the baseline model. 
 

 

 
 

Supplementary Figure 26. Alternative demographic models for western Remote Oceanians. a, The 
ni-Vanuatu diverged from the Bismarck Archipelago and then received gene flow from PNG, the 
Solomon Islands and Taiwanese indigenous peoples (VAN,BKA). b, The ni-Vanuatu diverged from 
PNG and then received gene flow from the three others groups (VAN,PNG). c, The ni-Vanuatu 
diverged from the Solomon Islands and then received gene flow from the three others groups 
(VAN,SLI). d, The ni-Vanuatu diverged from Taiwanese indigenous peoples and then received gene 
flow from the three other groups (VAN,TWN). a-d, SAR indicates Sardinians, HAN indicates Han 
Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI 
indicates Solomon islanders, PNG indicates Papua New Guinean highlanders, VAN indicates ni-
Vanuatu, and NOC GST indicates an unsampled population from Near Oceania. For the sake of 
clarity, only populations from Eurasia, and Near and western Remote Oceania are shown. Grey 
arrows indicate migrations that are estimated in these models (single and double arrows for 
asymmetric and symmetric gene flow, respectively). Black arrows indicate gene flow pulses into the ni-
Vanuatu.  

Results. Among the four tested models, the re-estimated likelihood distributions of the 
(VAN,PNG) and (VAN,SLI) models were the highest and were largely overlapping, indicating 
no marked differences between these two models (ΔML = 37 log10 units, Supplementary Fig. 
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27). The model with the highest mean re-estimated likelihood was the (VAN,PNG) model, 
which assumes that the ni-Vanuatu (VAN) diverged from PNG and then received gene flow 
from the Solomon islanders (SLI), Taiwanese indigenous peoples (TWN) and Bismarck 
islanders (BKA) (Supplementary Fig. 26b). We estimated that the ancestral population of the 
ni-Vanuatu (VAN) diverged from PNG ~16 ka (95% CI: 12–18 ka, Extended Data Fig. 2b, 
Supplementary Table 5). It later received ~24% (95% CI: 14%–41%) of lineages from 
Solomon islanders (SLI) ~7 ka (95% CI: 4.1–11 ka). Under the second most likely (VAN, SLI) 
model (Supplementary Fig. 26c), the ancestral population of the ni-Vanuatu (VAN) diverged 
from Solomon islanders (SLI) ~12 ka (95% CI: 10–16 ka, Extended Data Fig. 2b, 
Supplementary Table 5), and later received ~44% (95% CI: 27%–57%) of PNG lineages ~9 
ka (95% CI: 6.3–13 ka). This suggests that the Papuan-related population entering Vanuatu 
at the end of the Lapita period was different and more diverse than the Bismarck islanders 
modelled in our study32,41. Importantly, under both the (VAN,PNG) and (VAN,SLI) models, the 
ni-Vanuatu (VAN) received < 3% of lineages from Austronesian-speaking Taiwanese 
indigenous peoples (TWN) ~2–3 ka, and ~34–39% of Bismarck Archipelago (BKA) lineages 
< 2 ka (Extended Data Fig. 2b and Supplementary Table 5). This result was confirmed when 
modelling ni-Vanuatu from Emae, instead of Malakula (Supplementary Table 5). 
Furthermore, we found that the accuracy of parameter estimations in this model was high, 
using parametric bootstrap (Supplementary Table 8 ‘Remote Oceania’). Collectively, our 
findings support a very low, direct genetic contribution of Taiwanese indigenous peoples to 
the ni-Vanuatu, suggesting that the bulk of the East Asian ancestry detected in present-day 
western Remote Oceanians was inherited from already admixed Near Oceanians. 
 

 
 
Supplementary Figure 27. Likelihood distribution of alternative models for western Remote 
Oceanians. The line, box, whiskers and points respectively indicate the median, IQR range, 1.5*IQR 
and outliers of the likelihood distributions obtained from 100 expected SFS computed with 107 
coalescent simulations and using parameters that maximized the likelihood under each scenario. 

 
Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for 
high-frequency derived alleles (Supplementary Fig. 28). The entries of the joint SFS with the 
poorest fit were also those where the derived allele is fixed in most modern human samples 
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(Supplementary Fig. 29). As for the baseline model, this is probably due to ancestral state 
misspecification. We observed a very good fit between observed and expected FST 
(Supplementary Fig. 30), indicating that the model and parameter estimates well reproduce 
this aspect of the data.  
 

 
 

Supplementary Figure 28. Fitting of the SFS of the model for western Remote Oceanians. We 
compared marginal 1-dimensional SFS of the observed data (in blue) and the averaged expected SFS 
(in black) obtained from 100 SFS approximated with 107 simulations using parameters that best fit the 
data under the best model (ni-Vanuatu diverged from PNG and received gene flow from the three 
other groups (VAN,PNG)). 
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Supplementary Figure 29. SFS entries with worst fit for the best-fitted model for western Remote 
Oceanians. Differences in the number of counts between the observed and expected SFS for entries 
harbouring a discrepancy of more than 500 log10 units of likelihood. The plot at the bottom gives the 
relative fit computed as the ratio of number of counts for the ith entry in the expected and observed 
SFS. Entries are given in column and corresponds to number of counts of the derived allele in 
Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai Bileki (BKA, 2n = 10), Vella Lavella (SLI, 
2n = 10) and Malakula islanders (VAN, 2n = 10) (from bottom to top).  
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Supplementary Figure 30. Observed versus simulated FST for each pair of populations used for the 
model for western Remote Oceanians. Simulated pairwise FST (dark blue) were obtained with 500 
simulations under parameters inferred for the model of western Remote Oceania (VAN, PNG), and 
were compared to observed FST (light blue) obtained from the empirical data used for parameter 
inference. 

 
 
The sources of East Asian ancestry among Oceanians 
Demographic modelling and hypotheses. To gain insights into the genetic history of 
populations contributing East Asian-related ancestry to Oceanians, we sought to model, in 
addition to baseline populations from East Asia (Han Chinese, HAN, and Taiwanese 
indigenous peoples, TWN), a Malayo-Polynesian-speaking population from the Philippines 
(PHP). To represent the latter population, we used the Kankanaey because they show little 
Philippine Agta ‘Negrito’ ancestry17, unlike the Cebuano (Extended Data Fig. 1). Although we 
could have modelled gene flow from the Agta to the Cebuano, we decided instead to use the 
Kankanaey, to keep the model as simple as possible and to limit the number of parameters 
to estimate. We first sought to estimate the divergence time between Austronesian-speaking 
populations from Taiwan and the Philippines, i.e., between Taiwanese indigenous peoples 
(i.e., Formosan speakers) and the Philippine Kankanaey (i.e., Malayo-Polynesian speakers). 
To do so, we assumed that Taiwanese indigenous peoples (TWN) and Philippine Kankanaey 
(PHP) are sister groups that have evolved under isolation with asymmetric migration (IM). 
We checked whether our results extend to Austronesian-speaking populations outside of the 
Philippines, by adding to the previous model, two Oceanian populations with high levels of 
East Asian-related ancestry, i.e., Polynesian outliers (POL; Polynesians share high genetic 
affinities with ancient DNA samples from the Lapita period31,32,38), and Solomon islanders 
(SLI) (Fig. 1, Extended data Fig. 1).  

We fixed parameters relating to events that predate the divergence between Eurasians 
and Near Oceanians, as well as parameters specific to Europeans, Kundiawa PNG and 
archaic introgression from Neanderthal and Denisova, to the point estimates obtained in 
previous models (Supplementary Tables 2 and 4). We assumed that Han Chinese (HAN) 
diverged from the ancestors of Austronesian-speaking populations, followed by the 
divergence of Formosan-speaking Taiwanese indigenous peoples (TWN) and Malayo-
Polynesian speakers (PHP and POL). This tree topology is supported by significant D-
statistic results (Z > 2, Supplementary Table 9) and phylo-linguistic analyses of Austronesian 
languages2. For all models, we considered migrations between populations following a 
stepping-stone model. In the models including Polynesian outliers (POL) or Solomon 
islanders (SLI), we accounted for population structure in Near Oceanians by simulating an 
unsampled population representing Near Oceanians (NOC Ghost, see ‘Refining the 
demographic history of Near Oceania’), which diverged from PNG. We simulated a gene flow 
pulse from the NOC Ghost to Polynesian outliers (POL), to account for their Papuan-related 
ancestry (Fig. 1, Extended Data Fig. 1). In the model including Near Oceanians from the 
Solomon Islands, Solomon islanders (SLI) diverged from the NOC Ghost and later received a 
gene flow pulse from another unsampled ghost population, which diverged from 
Austronesian-speaking Taiwanese indigenous peoples. This ‘SEA Ghost’ population 
represents an East Asian-related population that migrated to Near Oceania and admixed with 
autochthonous groups. All fastsimcoal2 input files can be found on GitHub 
(www.github.com/h-e-g/evoceania). 
 
Dataset. SFS data for Malayo-Polynesian speakers included (i) 2 Kankanaey from the 
Philippines (PHP; Supplementary Fig. 31a), (ii) 5 Polynesian outliers from Tikopia Island 
(POL; Extended Data Fig. 2c), (iii) 5 Polynesian outliers from Bellona Island (POL) as a 
replicate, or (iv) 5 Solomon islanders from Vella Lavella (SLI; Supplementary Fig. 31b). For 
the baseline populations, SFS data for 2 Han Chinese (HAN), 5 Paiwan (Taiwanese 
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indigenous peoples, TWN) and 5 Kundiawa (PNG) were used. The multi-SFS was generated 
as for the ‘Baseline demographic model of human populations’. 
 
Results. In all models, we estimated that the ancestors of Han Chinese (HAN) and 
Taiwanese indigenous peoples (TWN) separated >20 ka (Supplementary Table 6), in 
contrast with our baseline model (Supplementary Table 2), where constant population sizes 
and symmetric gene flow were assumed for model simplicity. Our models for East Asian-
related populations therefore suggest a relatively ancient structure among continental East 
Asia and Taiwan, which was first settled 20–30 ka4. Alternatively, these results suggest that 
gene flow from a non-modelled population into Han Chinese and/or Taiwanese indigenous 
peoples artificially inflates divergence time estimates (see ‘Refining the sources of East 
Asian ancestry among Oceanians’). 

We estimated the divergence between Taiwanese indigenous peoples (TWN) and 
Philippine Kankanaey (PHP) at ~15 ka (95% CI: 9.2–18 ka), under an isolation-with-migration 
model (Supplementary Fig. 31a). When modelling Austronesian-speaking populations 
outside the Philippines, we estimated the divergence between Formosan-speaking 
Taiwanese indigenous peoples (TWN) and Malayo-Polynesian-speaking groups (i.e., 
Philippine Kankanaey, PHP, and Polynesian outliers, POL) to ~7.3 ka (95% CI: 6.4–11 ka), 
when using the Tikopia population to represent Polynesians (Extended Data Fig. 2c, 
Supplementary Table 6). When replicating this model using Polynesian outliers from Bellona 
Island, the divergence was dated to ~11 ka (Supplementary Table 6). Collectively, these 
estimations suggest that population differentiation among Austronesian-speaking populations 
predates the emergence of agriculture in Taiwan, which is thought to have started ~4,8 ka2,62. 
To confirm these estimations, we also used another model where a population from the 
Solomon Islands (SLI) receives gene flow from an unsampled East Asian-related source 
(SEA Ghost; Supplementary Fig. 31b). The divergence between Taiwanese indigenous 
peoples (TWN) and the source of the East Asian-related ancestry in Solomon islanders (SEA 
Ghost) was dated to ~11 ka (95% CI: 8.4–14 ka, Supplementary Table 6), reinforcing the 
notion that ancestors of Formosan- and Malayo-Polynesian-speaking populations were 
isolated before the emergence of agriculture in Taiwan2,62.  

We estimated that Polynesian outliers (POL) received a pulse of gene flow from Near 
Oceania ~0.5 ka (95% CI: 0.4–1.1 ka, Extended Data Fig. 2c) that contributed ~35% (95% 
CI: 32%–36%) to their gene pool, in agreement with ADMIXTURE results (Extended Data 
Fig. 1). Conversely, we estimated that Solomon islanders (SLI) received a pulse of gene flow 
from an East Asian-related source ~2.7 ka (95% CI: 1.7–7.0 ka, Supplementary Fig. 31b) 
that contributed ~38% (95% CI: 34%–42%) to their gene pool, which we interpret as the 
signature of the demic diffusion of the Lapita cultural complex to the region66,67. Finally, we 
found that the effective population size of Polynesian outliers (POL) was highly reduced (Ne = 
134, 95% CI: 119–230), suggesting the occurrence of strong bottlenecks during the 
settlement of Polynesia68 and/or the subsequent back migrations to the Solomon Islands10. 
Furthermore, we estimated a stronger founder effect in Polynesian outliers from Bellona, 
relative to Tikopia (Supplementary Table 6), in agreement with our empirical observations 
(Supplementary Note 3). This indicates that Polynesian groups experienced founder effects 
of various intensities following their back migrations to the Solomon Islands.  
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Supplementary Figure 31. Demographic models for East Asian-related populations of the Pacific. a, 
Best-fitted model for Taiwanese indigenous peoples and Philippine Kankanaey. b, Best-fitted model 
for East Asian-related populations contributing to Near Oceanians. a-c, SAR indicates Sardinians, 
HAN indicates Han Chinese, TWN indicates Taiwanese indigenous peoples, PHP indicates the 
Kankanaey from the Philippines, SEA GST indicates an unsampled population that represents a 
Southeast Asian-related population contributing to Near Oceanians, PNG indicates Papua New 
Guinean highlanders, NOC GST indicates a meta-population of Near Oceanians and SLI indicates 
Solomon islanders. Point estimates of all parameters and corresponding 95% CIs are given in 
Supplementary Table 6. Timing of events is given in ka, assuming a generation time of 29 years. 
Single pulse admixture rates are reported in %. 95% CIs are given in square brackets. The larger the 
rectangle width, the larger the effective population size (Ne). Bottlenecks are indicated by black 
rectangles. Grey and black arrows represent continuous and single pulse gene flow, respectively. Uni- 
and bi-directional arrows indicate estimated symmetric and asymmetric migrations.  

 
Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for 
high-frequency derived alleles (Supplementary Figs. 32 and 35). The entries of the joint SFS 
with the poorest fit were also those where the derived allele is fixed most modern human 
samples (Supplementary Figs. 33 and 36). As for the baseline model, this is probably due to 
ancestral state misspecification. We observed a very good fit between observed and 
expected FST (Supplementary Figs. 34 and 37), indicating that the model and parameter 
estimates well reproduce this aspect of the data.  
 



 47 

 

 
 

Supplementary Figure 32. Fitting of the SFS for the model for Taiwanese indigenous peoples and 
Philippine Kankanaey. We compared marginal 1-dimensional SFS of the observed data (in blue) and 
the averaged expected SFS (in black) obtained from 100 SFS approximated with 107 simulations using 
parameters that best fitted the data. 

 

 
 

Supplementary Figure 33. SFS entries with worst fit for the model of Taiwanese indigenous peoples 
and Philippine Kankanaey. Differences in the number of counts between the observed and expected 
SFS for entries harbouring a discrepancy of more than 500 log10 units of likelihood. The plot at the 
bottom gives the relative fit computed as the ratio of number of counts for the ith entry in the expected 
and observed SFS. Entries are given in column and corresponds to number of counts of the derived 
allele in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Kankanaey (PHP, 2n = 4) and Paiwan 
(TWN, 2n = 10) (from bottom to top). 
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Supplementary Figure 34. Observed versus simulated FST for each pair of populations used for the 
model for Taiwanese indigenous peoples and Philippine Kankanaey. Simulated pairwise FST (dark 
blue) were obtained with 500 simulations under parameters inferred for the best-fitted model, and were 
compared to observed FST (light blue) obtained from the empirical data used for parameter inference. 

 
 

 

 
Supplementary Figure 35. Fitting of the SFS of the model for East Asian-related populations 
contributing to Near Oceanians. a, Model with Polynesian outliers (Tikopia (POL)) and b, with Near 
Oceanians (Vella Lavella (SLI)). We compared marginal 1-dimensional SFS of the observed data (in 
blue) and the averaged expected SFS (in black) obtained from 100 SFS approximated with 107 
coalescent simulations using parameters that best fit the data under the best models. 
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Supplementary Figure 36. SFS entries with the worst fit of the model for East Asian-related 
populations contributing to Oceanians. a, Model with Polynesian outliers (Tikopia (POL)) and b, with 
Near Oceanians (Vella Lavella (SLI)). Differences in the number of counts between the observed and 
expected SFS for entries harbouring a discrepancy of more than 500 log10 units of likelihood. The plot 
at the bottom gives the relative fit computed as the ratio of number of counts for the ith entry in the 
expected and observed SFS. Entries are given in column and corresponds to number of counts of the 
derived allele in Han (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Bellona (POL, 2n = 10) or Vella Lavella 
(SLI, 2n = 10), Kankanaey (PHP, 2n = 4) and Paiwan (TWN, 2n = 10) (from bottom to top).  
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Supplementary Figure 37. Observed versus simulated FST for each pair of populations used in the 
model for East Asian-related populations contributing to Oceanians. a, Model with Polynesian outliers 
(Tikopia (POL)) and b, with Near Oceanians (Vella Lavella (SLI)). Simulated pairwise FST (dark blue) 
were obtained with 500 simulations under parameters inferred for the best models and were compared 
to observed FST (light blue) obtained from the empirical data used for parameter inference. 

 
 
Refining the sources of East Asian ancestry among Oceanians 
Demographic modelling and hypotheses. Our models for East Asian-related populations from 
the Pacific suggest a divergence of Taiwanese indigenous peoples and Malayo-Polynesian 
speakers that occurred earlier than 5 ka, at odds with a demic diffusion of agriculture and 
Austronesian languages from Taiwan to Oceania ~4.8 ka2,69,70. A possible caveat of these 
models is that the modelled populations, including Han Chinese, Taiwanese indigenous 
peoples, Philippine Kankanaey and Polynesians may have received gene flow from a non-
modelled, distantly-related population, which could bias upward divergence time estimates. 
In this context, a recent ancient DNA study has found evidence for gene flow from Northeast 
into Costal Southeast Asia after the Neolithic57. Based on this, we modified our model 
(Extended Data Fig. 2c) by adding an unsampled population that represents northeastern 
Asian groups (NEA Ghost; Supplementary Fig. 38). We considered two alternative models of 
gene flow from Northeast to East/Southeast Asians. The first model, referred to as the ‘3-
pulse’ model, includes gene flow from the NEA Ghost to Han Chinese (HAN), to Taiwanese 
indigenous peoples (TWN) and to the ancestral population of Malayo-Polynesian speakers 
(i.e., Philippine Kankanaey, PHP, and Polynesians, POL; Fig. 2b). The second model, 
referred to as the ‘2-pulse’ model, includes gene flow from the NEA Ghost to Han Chinese 
(HAN) and to the ancestral population of Austronesian speakers (here, TWN, PHP and POL; 
Supplementary Fig. 38c). To enable model comparison, we estimated the same number of 
parameters for the ‘2-pulse’ and ‘3-pulse’ models; for the ‘3-pulse’ model (Fig. 2b), we 
assumed that admixture of Northeast Asians with each of the three East/Southeast Asian 
groups occurred at the same time, whereas for the ‘2-pulse’ model (Supplementary Fig. 38c), 
we allowed for different times of admixture.  
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We also reasoned that the well-established introgression event from Denisovans into 
East Asians (Extended Data Fig. 10; ref.71) could affect parameter estimation. We thus 
allowed for gene flow from the Altai Denisovan to the ancestral population of East/Southeast 
Asian groups. We also allowed for gene flow between (i) Europeans (Sardinians, SAR) and 
the NEA Ghost population and (ii) between Taiwanese indigenous peoples (TWN) and the 
ancestors of Malayo-Polynesian-speaking populations, as well as a single pulse admixture 
from Han Chinese (HAN) to Taiwanese indigenous peoples (TWN), to account for the recent 
expansion of Han Chinese to Taiwan72. For both the ‘2-pulse’ and ‘3-pulse’ models, our 
demographic parameters of interest were (i) the divergence times between all 
East/Southeast Asian populations, (ii) the contribution of the NEA Ghost to East/Southeast 
Asian populations, (iii) the migration rate between Taiwanese indigenous peoples (TWN) and 
the ancestors of Malayo-Polynesian-speaking populations, (iv) the time and rate of admixture 
from Han Chinese (HAN) to Taiwanese indigenous peoples (TWN), and (v) the effective 
population sizes of East/Southeast Asians. 

Before estimating these parameters of interest, we used a simplified version of the ‘2-
pulse’ and ‘3-pulse’ models, where we assumed no gene flow from the NEA Ghost to other 
groups, to estimate the time and rate of the Denisovan introgression into the ancestral 
population of East/Southeast Asian groups, as well as the migration between Europeans 
(Sardinians, SAR) and the NEA Ghost population (Supplementary Fig. 38a). To limit the 
number of parameters to estimate, parameters relative to events predating the divergence 
between Eurasians and Near Oceanians, as well as parameters specific to Europeans, 
Papuans (Kundiawa, KUN and NOC Ghost) and archaic introgression from the Altai 
Denisovan (to the ancestor of Papuan groups) and Neanderthal, were fixed to the point 
estimates obtained in previous models (Supplementary Tables 2, 4 and 6). Similarly, to 
account for the Papuan-related ancestry found in Polynesians (POL) (Fig. 1, Extended Data 
Fig. 1), we also fixed the rate and time of admixture from the NOC Ghost into Polynesians 
(POL), based on the point estimate previously obtained (see section ‘The sources of East 
Asian ancestry among Oceanians’; Extended Data Fig. 2c and Supplementary Table 6 ‘PHP-
POL’). All fastsimcoal2 input files can be found on GitHub (www.github.com/h-e-
g/evoceania). 
 
Dataset. SFS data for Malayo-Polynesian speakers included (i) 2 Kankanaey from the 
Philippines (PHP) and (ii) 5 Polynesian outliers from Tikopia (POL). For baseline populations, 
SFS data for 1 Sardinian (SAR), 2 Han Chinese (HAN), 5 Paiwan (Taiwanese indigenous 
peoples, TWN) and 1 Kundiawa (PNG) were used. The multi-SFS was generated as for the 
‘Baseline demographic model of human populations’.  

 
Results. We found stronger support for the ‘3-pulse’ model, relative to the ‘2-pulse’ model 
(ΔML = 53 log10 units, based on the mean re-estimated likelihoods; Supplementary Fig. 38b). 
Under the ‘3-pulse’ model, we estimated that the ancestors of Northeast Asians and 
East/Southeast Asians diverged ~18 ka (95% CI: 14–22 ka), and ancestors of Han Chinese 
(HAN) diverged from the ancestors of Formosan (TWN) and Malayo-Polynesian speakers 
(PHP and POL) ~14 ka (95% CI: 11–18 ka; Fig. 2b and Supplementary Table 7 ‘3-pulse’). 
Similar divergence times were obtained under the ‘2-pulse’ model (Supplementary Fig. 38c 
and Supplementary Table 7 ‘2-pulse’). Taiwanese indigenous peoples (TWN) diverged from 
Malayo-Polynesian speakers (PHP and POL) ~8.2 ka (95% CI: 4.8–12.0 ka) under the ‘3-
pulse’ model, and ~5.7 ka (95% CI: 4.3–11 ka) under the ‘2-pulse’ model. We found that the 
accuracy of parameter estimations in the ‘3-pulse’ model was good, using parametric 
bootstrap (Supplementary Table 8 ‘East Southeast Asia’), except for the admixture rates 
from Northeast Asians to East/southeast Asian groups. These results suggest that modelling 
gene flow from an unsampled population representing Northeast Asians does not largely 
affect the divergence time between Taiwanese indigenous peoples and Malayo-Polynesian 
speakers. Collectively, despite a large confidence interval, our most likely model suggests 
that the ancestors of present-day Austronesian speakers separated before the Taiwanese 
Neolithic69, questioning the strict Out-of-Taiwan model70. However, further investigation will 
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be needed to evaluate whether other models can better explain the patterns of genetic 
diversity observed in the region. These limitations indicate that archaeological and 
paleogenomic studies will be required to better understand the complex peopling history of 
the Pacific. 

Finally, we confirmed that the effective population size of Polynesian outliers (POL) was 
highly reduced, based on both the ‘3-pulse’ and ‘2-pulse’ models (Ne ~130, 95% CIs: [107–
156] and [110–162]; Supplementary Table 7 ‘2-pulse’ and ‘3-pulse’), suggesting strong 
population bottlenecks during the settlement of Polynesia68 and/or the subsequent back 
migrations to the Solomon Islands10.  
 
Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for 
high-frequency derived alleles (Supplementary Fig. 39). The entries of the joint SFS with the 
poorest fit were singletons and doubletons in the Sardinians (SAR), probably because we 
fixed all parameters related to this population, and entries where the derived allele is fixed in 
most modern human samples (Supplementary Fig. 40). As for the baseline model, this is 
probably due to ancestral state misspecification. We observed a very good fit between 
observed and expected FST (Supplementary Fig. 41), indicating that the model and 
parameter estimates well reproduce this aspect of the data, except for the pairwise 
comparison with Sardinians (SAR) and Formosan and Malayo-Polynesian speakers, 
suggesting, again, that fixed parameter values for Sardinians (SAR) reduce fitting.  
 

 
 

Supplementary Figure 38. Alternative refined models of sources of East Asian-related ancestry 
among Oceanians, with or without gene flow from Northeast Asians to East/Southeast Asians. a, 
Schematic representation of alternative models for Formosan- and Malayo-Polynesian-speaking 
populations, with (models to the right) or without (model to the left, “No-pulse”) gene flow from the NEA 
Ghost to the different groups of East/Southeast Asians (HAN, TWN, PHP and POL). Models in the top 
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right and the bottom right corners represent the “2-pulse” and “3-pulse” models, respectively. b, 
Likelihood distribution of the three alternative models. The line, box, whiskers and points respectively 
indicate the median, IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100 
expected SFS computed with 107 coalescent simulations and using parameters that maximized the 
likelihood under each scenario. c, Maximum-likelihood 2-pulse model for Formosan- and Malayo-
Polynesian-speaking populations. Point estimates of all parameters and 95% CIs are given in 
Supplementary Table 7. Formosan speakers are represented by the Paiwan from Taiwan (TWN) and 
Malayo-Polynesian-speaking populations by Philippine Kankanaey (PHP) and Polynesians from 
Tikopia (POL). Point estimates of all parameters and 95% CIs are given in Supplementary Table 7. 
The 95% CIs are given in square brackets. SAR indicates Sardinians, NEA GST indicates a Northeast 
Asian unsampled population, HAN indicates Han Chinese, TWN indicates Taiwanese indigenous 
peoples, PHP indicates the Kankanaey from the Philippines, POL indicates Polynesians from Tikopia, 
NOC GST indicates a Near Oceanian meta-population and PNG indicates Papua New Guinean 
highlanders. The larger the rectangle width, the larger the estimated effective population size (Ne). 
Bottlenecks are indicated by black rectangles. Bi-directional arrows indicate symmetric gene flow, and 
grey and black arrows represent continuous and single pulse gene flow, respectively. We assumed a 
mutation rate of 1.25×10-8 mutation/generation/site and a generation time of 29 years. We limited the 
number of parameters to be estimated, by making simplifying assumptions concerning the recent 
demography of Near Oceanian populations (Supplementary Note 4). Sample sizes are described in 
Supplementary Note 4. The admixture pulses from NEA Ghost were constrained to occur after the 
divergence between Han Chinese (HAN) and the ancestral population of Austronesian speakers 
(Supplementary Table 7). Time axes are not at scale.  

 
 

 
 
Supplementary Figure 39. Fitting of the SFS of the refined model of sources of East Asian-related 
ancestry among Oceanians. We compared marginal 1-dimensional SFS of the observed data (in blue) 
and the averaged expected SFS (in black) obtained from 100 SFS approximated with 107 coalescent 

simulations using parameters that best fit the data under the best models. 
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Supplementary Figure 40. SFS entries with the worst fit of the refined model of sources of East 
Asian-related ancestry among Oceanians. Differences in the number of counts between the observed 
and expected SFS for entries harbouring a discrepancy of more than 500 log10 units of likelihood. The 
plot at the bottom gives the relative fit computed as the ratio of number of counts for the ith entry in the 
expected and observed SFS. Entries are given in column and corresponds to number of counts of the 
derived allele in Sardinians (SAR, 2n = 2), Han (HAN, 2n = 4), Kundiawa (PNG, 2n = 2), Kankanaey 
(PHP, 2n = 4), Tikopia (POL, 2n = 10) and Paiwan (TWN, 2n = 10) (from bottom to top).  
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Supplementary Figure 41. Observed versus simulated FST for each pair of populations used in the 
refined model of sources of East Asian-related ancestry among Oceanians. Simulated pairwise FST 

(dark blue) were obtained with 500 simulations under parameters inferred for the best models and 
were compared to observed FST (light blue) obtained from the empirical data used for parameter 
inference. 

 
 
  



 56 

Supplementary Note 5: East Asian Admixture in Near Oceania 
 
Rationale 
Gene flow from East Asia into Remote Oceania was previously dated to 1.5–2.5 ka, and was 
attributed to the expansions of Austronesian speakers into the Pacific starting from Taiwan 
~5 ka31,32,38. Yet, the methods used in these studies assumed that gene flow was 
instantaneous. Likewise, in our ML model for Near Oceanians (see ‘Refining the 
demographic history of Near Oceania’), we assumed that gene flow occurred as a single, 
instantaneous pulse, to simplify parametrization, and estimated that admixture occurred ~4 
ka (95%CI: 3.2–5.5 ka) (Fig. 2a). We reasoned that this assumption may be unrealistic, and 
could bias the estimation of the time of the gene flow pulse(s). Indeed, a recent study has 
suggested that the discrepancies between admixture time estimates obtained by different 
methods could be explained by the occurrence of several pulses of gene flow in Near and 
Remote Oceanians30. To determine the mode and tempo of admixture in Near Oceanians, 
we applied an approximate Bayesian computation (ABC) approach73, developed in the 
MetHis method74, to estimate the posterior probability of three competing admixture models: 
a single-pulse, a two-pulse or a constant-recurring model of admixture. MetHis relies on 
explicit forward-in-time simulations of complex admixture histories following a general 
mechanistic admixture model75. 
 
Simulation setting 
We considered three competing scenarios for the admixture history of the Bismarck 
Archipelago and the Solomon Islands, respectively (Supplementary Fig. 42). For all three 
models, we considered that (i) the admixed population H (Bismarck or Solomon islanders) is 
founded from an admixture event between source populations S1 (Taiwanese indigenous 
peoples) and S2 (PNG) occurring at time Tfoundation before present, with a proportion 
αS1foundation from S1 and 1 – αS1foundation from S2; (ii) the effective population size Ne of the 
admixed population H is constant from Tfoundation to the present; (iii) for simplicity, both source 
populations are large populations at the drift-mutation equilibrium throughout the admixture 
process; and (iv) mutation is neglected throughout the admixture process. 

Under the single admixture pulse model (Scenario 1; Supplementary Fig. 42), we 
considered that the admixed population H is founded from a single pulse of admixture 
occurring at Tfoundation. No subsequent event of admixture from either S1 or S2 occurs 
between Tfoundation and the present. Under the two admixture pulse models (Scenario 2; 
Supplementary Fig. 42), we considered that the source population S1 can contribute an 
additional pulse of admixture to the gene pool of population H, occurring at time TAdm-S1 with a 
proportion αS1T-Adm. Separately, we considered that source population S2 can also contribute 
an additional pulse of admixture to the gene pool of the admixed population H, occurring at 
time TAdm-S2 with a proportion αS2T-Adm. Finally, under the constant-recurring admixture model 
(Scenario 3, Supplementary Fig. 42), we considered that, from Tfoundation to the present, 
source populations S1 and S2 contribute to the gene pool of population H with proportions 
αS1 and αS2, respectively, at each generation.  

Prior distributions for each parameter are provided in Supplementary Fig. 42, for the three 
competing scenarios considered. Note that, for all three scenarios, following model 
definitions75, at each generation g after Tfoundation, admixture proportions αS1g and αS2g from 
source populations S1 and S2 satisfy αS1g + αS2g = 1 – hg, where hg is the contribution of 
the admixed population H to itself at the following generation, such that hg is in [0,1].  

We simulated 100,000 independent SNPs segregating in the two source populations until 
Tfoundation with fastsimcoal246, under the refined demographic model for Near Oceanians (Fig. 
2a). From Tfoundation to the present, forward-in-time evolution of the 100,000 SNPs in the 
admixed population H was simulated with MetHis74, under the classical Wright-Fisher model. 
Namely, at each generation, the two parents of each individual in the admixed population H 
were randomly drawn from source populations S1 and S2, and the admixed population H, 
with probabilities αS1g, αS2g, and hg = 1 – αS1g – αS2g. At the end of each MetHis 
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simulation, n = 40 individuals were randomly drawn from source populations S1 and S2, 
respectively, n = 15 individuals from the admixed population H for the Bismarck Archipelago 
and n = 17 individuals for the Solomon Islands, as for the observed data (Supplementary 
Table 1). All individuals were sampled to be unrelated, by explicitly flagging individual 
genealogies during the last two generations of the simulations. 

 

 
Supplementary Figure 42. Schematic representation of the three scenarios for the admixture history 
of Near Oceanians. Scenarios include the single-pulse model (Scenario 1), the two-pulse model 
(Scenario 2) and the constant-recurring model (Scenario 3). Prior distributions are indicated on the 
right. 
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Summary Statistics and ABC implementation 
Using MetHis, we computed the following summary statistics for all subsequent ABC 
analyses: pairwise FST

76 between S1 and H and between S2 and H; f3(H;S1,S2)40, the mean 
and variance of the inbreeding coefficient F among individuals in population H, as 
implemented in vcftools54; the mean and variance of SNP-by-SNP heterozygosities in 
population H; the mean Allele-Sharing Dissimilarity (ASD) between S1 and H, S2 and H, and 
within population H, and the mean, variance, kurtosis, skewness, and mode of the 
distribution of the estimated admixture proportions from source population S1 across 
admixed individuals, as well as the minimum, maximum and all 10% percentiles of the 
distribution. Admixture proportions were estimated based on the individual-pairwise ASD 
matrix77 calculated for the 100,000 SNPs. We projected the ASD matrix in two dimensions 
using Multi-Dimensional Scaling74, and considered, as an estimate of the admixture 
proportions for each admixed individual, the relative distance between the individual and the 
centroids of the two source populations.  

We considered the machine-learning ABC pipeline for scenario choice and posterior 
parameter estimation, as described in MetHis74. For ABC scenario choice, we conducted 
10,000 independent simulations under each of the three competing scenarios described 
above (Supplementary Fig. 42). We identified the most probable scenario with the Random-
Forest ABC approach78 implemented in the abcrf R package, based on 30,000 simulations. 
For the best scenario identified, we conducted 20,000 additional simulations with MetHis. 
The total 30,000 simulations were then used for joint posterior parameter estimation, using 
the Neural-Network ABC approach implemented in the abc R package79. 
 
Method performance 
We first plotted each prior distribution of summary statistics, and visually checked that the 
observed summary statistics for Bismarck and the Solomon islanders fell within the simulated 
distributions. We then performed a goodness-of-fit approach using the gfit function from the 
abc R package79, with 100 replicates and tolerance rate set to 0.01.  

To estimate the error rate of our scenario-choice approach, we used the abcrf function of 
the abcrf R package. Specifically, we obtained the cross-validation table and associated prior 
error rate, by using an out-of-bag approach, considering the same prior probability for the 
three competing scenarios. We performed scenario-choice prediction and estimation of 
posterior probabilities of the winning scenario with the predict.abcrf function in the same R 
package, using the complete simulated reference table for training the Random-Forest 
algorithm. We did so for the Bismarck and Solomon admixed populations separately. Both 
analyses were performed considering 1,000 decision trees in the forest, after visually 
checking that error rates converged appropriately, with the err.abcrf function.  

To estimate the error rate of our parameter estimation approach, we first had to determine 
the parameters of the Neural-Network ABC approach. Indeed, there are no absolute rules for 
choosing the tolerance rate and number of neurons in the hidden layer most conservative to 
conduct posterior-parameter estimations in Neural-Network ABC74,79,80. To do so, we used 
the cross-validation procedure implemented with the cv4abc function from the abc package 
for tolerance rates of 10% (3000 closest simulations to the target data) or 1% (300 closest 
simulations to the target data), and a number of neurons in the hidden layer of the neural 
network ranging from 4 to 6 (one minus the number of parameters in the winning scenario) 
considering, in-turn and “out-of-bag”, 100 random simulations as pseudo-observed target 
data and the remaining 29,900 simulations in the reference table under the winning scenario. 
For each analysis, we considered a “logit” transformation of parameters bounded by their 
respective prior ranges. All other neural-network parameters were left to default values. The 
cross-validation parameter prediction error was then calculated across the 100 separate 
posterior estimations for pseudo-observed datasets for each pair of tolerance rate and 

number of neurons, and for each parameter 𝜃𝑖, as ∑ (𝜃𝑖 − 𝜃𝑖)
2100

1 (100 × 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜃𝑖))⁄ , 

using the median point estimate for each parameter and the summary.cv4abc function in the 
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abc package. This allowed to compare errors for scenario parameters across Neural-Network 
tolerance rates and numbers of hidden neurons.  

 

 
 
Supplementary Figure 43. Goodness-of-fit of the simulated vs. observed summary statistics used in 
the ABC approach. P-values were computed from a null distribution obtained by using simulated 
summary statistics as pseudo-observed summary statistics, and 100 replicates. 

 
 
Results 
Independently of the admixture scenario considered (Supplementary Fig. 42), the simulation 
scheme used for our ABC approach was able to produce vectors of summary statistics that 
are consistent with the observed data, for both the Bismarck and the Solomon cases 
(goodness-of-fit P-value > 0.05; Supplementary Fig. 43). 

Although the different admixture models are nested for certain parts of the parameter 
space, the MetHis – RF-ABC framework could distinguish a priori among the three competing 
scenarios substantially more frequently than by chance (Supplementary Fig. 44a). We found 
a cross-validation out-of-bag prior error rate of 46.82%, compared to an expected 66.66%, 
and a substantial majority of votes for the correct true scenario, for every predicted scenario. 
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Supplementary Figure 44. Choice of the admixture scenario for Near Oceanians by MetHis RF-ABC. 
a, Cross-validation prediction votes. b, Prediction votes for admixture scenarios of Near Oceanians 
from the Bismarck Archipelago (BKA) and the Solomon Islands (SLI) by RF-ABC. 

 
Based on this prior analysis, we conducted separate RF-ABC scenario-choice predictions 

for populations of the Bismarck Archipelago and of the Solomon Islands. For both admixed 
populations, Scenario 2 was favoured with a large majority of the Random-Forest votes 
(Supplementary Fig. 44b). Furthermore, the associated posterior probabilities of Scenario 2 
were 50.51% and 53.19%, for Bismarck and Solomon populations, respectively, supporting 
Scenario 2 as the best choice. Under the scenario with the highest posterior probability, we 
next estimated admixture parameters. We first tested different parameters for the Neural-
network ABC approach, and showed that, a priori, 4 neurons in the hidden layer and a 10% 
tolerance rate minimized the average parameter prediction error (Supplementary Table 10). 
Considering these parameters, and logit transformations of all parameters bounded by their 
respective priors, we obtained posterior densities for each parameter, median and mean 
point-estimates, as well as 90% Credibility Intervals (CI), for the Bismarck Archipelago and 
Solomon Island populations (Supplementary Table 10). We found that the cross-validation 
error was relatively large for all admixture parameters, and the 90% CIs covered most of the 
prior distributions, suggesting that our estimations were not accurate. This may stem from the 
limited information contained in the summary statistics used by MetHis74 when sample size is 
low, and calls for other approaches to accurately estimate admixture parameters based on 
other aspects of the data. 
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Supplementary Note 6: Dating East Asian Gene Flow 

 
Rationale 
We found that admixture patterns among Near Oceanians are more compatible with a 
double-pulse than a single-pulse model of admixture, using ABC74 (Supplementary Note 5). 
We estimated admixture times under the double-pulse scenario, but obtained large 90% 
credible intervals that cover most of the parameter prior distributions, when using moments 
of the distribution of admixture proportions as summary statistics (Supplementary Note 5). 
We thus reasoned that other aspects of the genetic data should be used as summary 
statistics. In particular, the mathematical relationship between the length of admixture tracts 
and the time of admixture is well documented, although it is limited to simple admixture 
models81,82. We thus evaluated and tested another ABC approach that estimates admixture 
times under different admixture scenarios, using moments of the distribution of the length of 
admixture tracts as summary statistics.  
 
Simulation setting 
We modified our refined ML demographic model for Near Oceanians (Fig. 2a) to include a 
single-pulse (SP), a double-pulse (DP) or a constant-continuous (CC) gene flow from East 
Asians into Bismarck or Solomon islanders, separately (Supplementary Fig. 45). Specifically, 
we assumed in the SP model that the Taiwanese indigenous peoples contributed a 
proportion 𝛼 to the Near Oceanian population, instantaneously at time Tadm. In the DP model, 

we assumed that Taiwanese indigenous peoples contributed 𝛼1 and 𝛼2 admixture proportions 
to Near Oceanians at two different times Tadm1 and Tadm2, respectively. In the CC model, 
Taiwanese indigenous peoples contributed to Near Oceanians with a constant rate m starting 
at Tstart and stopping at Tstop. In the three models, we set migration rates among Near 
Oceanians and between Near Oceanians and other populations to zero, one generation 
before Tadm (SP model), Tadm1 (DP model), or Tstart. (CC model). 

The prior distributions for each model parameter are described in Supplementary Fig. 45. 
For the DP model, the time of the second pulse Tadm2 was sampled from a uniform 
distribution dependent on the sampled value of the time of the first pulse Tadm1, so that Tadm1 
> Tadm2. Likewise, for the CC model, Tstop was sampled so that Tstart > Tstop. Because our main 
goal was to estimate the time of gene flow, and because we aimed to assess the effect of 
admixture proportions without inferring them, we decided to use the parameters α, α1, α2 and 
m as nuisance parameters for each model. The effective population size of the recipient 
population (Ne) was also considered as a nuisance parameter. For each simulation, we 
simulated 100 5-Mb independent DNA loci with fastsimcoal246, assuming a variable 
recombination rate sampled from the 1000 Genomes Phase 3 genetic map43. 

 
Summary statistics and implementation 
Based on previous work81,82, we used, as ABC summary statistics, moments of the 
distribution of the length of admixture tracts across Near Oceanian individuals. Namely, we 
computed, for each observed or simulated 5-Mb genomic region, the mean, minimum and 
maximum of the length of admixture tracts across individuals. We also computed the mean 
and the variance, across genomic regions, of these three summary statistics. The six 
resulting statistics were obtained from local ancestry inference with RFMix v1.5.483. RFMix 
was run with 3 Expectation-Maximization (EM) steps, a window of 0.03 cM, and Taiwanese 
indigenous peoples and PNG as source populations, as for the observed data 
(Supplementary Note 17). Summary statistics were computed with custom R scripts. All the 
ABC analyses were performed using functions of the abc R package79. For model choice, we 
performed 5,000 simulations under each alternative model, and used the logistic multinomial 
regression method implemented in the postpr function and a 5% tolerance rate. For 
parameter estimation, we performed 10,000 additional simulations under the most probable 
model, and used the Neural network method implemented in the abc function, using default 
numbers of hidden layers and neurons and a 1% tolerance rate. 
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Supplementary Figure 45. Three models of East Asian-related gene flow into Near Oceania, 
considering Solomon islanders (SLI) as the recipient population. The same models were used for a 
Bismarck Archipelago population as the recipient population. Prior parameter distributions for the 
haplotype-based ABC approach are shown on the right. 

 
 
Method performance 
To check a priori if simulations generally reproduced the observed data, we first checked 
whether the summary statistics for the observed data were in the boundaries of those for the 
simulated data. We sampled 100 5-Mb genomic windows in the genomes of individuals from 
the Bismarck Archipelago or the Solomon Islands, and computed the mean and variance of 
the 100 observed summary statistics. We then compared observed means and variances to 
means and variances of summary statistics computed for 100 simulated 5-Mb DNA loci. 
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To estimate the performance of model selection by ABC, we used a “leave-one-out” cross 
validation procedure: for each gene flow model, a simulation was selected as a validation 
simulation, while the rest were used as training simulations, 100 times.  

To estimate the accuracy of parameter estimation by ABC, we performed a “leave-one-
out” cross-validation analysis and an accuracy test, to confirm that simulated parameter 
values were correctly estimated. Accuracy indices were computed as follows: 
 

Prediction error 𝑃𝐸 =  
1

𝑆
∑ (𝜃𝑖̂−𝜃𝑖)

2𝑆
𝑖 = 1

𝑣𝑎𝑟(𝜃𝑖)
 

Relative estimation bias 𝑟𝐸𝐵 =  
1

𝑆
∑

(𝜃𝑖̂−𝜃𝑖)
2

𝜃𝑖

𝑆
𝑖 = 1  

95% credible interval 95%𝐶𝑂𝑉 =  
1

𝑆
∑ 1(𝑞1  <  𝜃𝑖  <  𝑞2)𝑆

𝑖 = 1  

 

where 𝜃𝑖and 𝜃𝑖̂ are the true and ABC estimated values of parameter 𝜃 for the 𝑖𝑡ℎsimulated 
dataset, 𝑆 is the number of simulated data, 1(C) the indicative function (equal to 1 when C is 
true, 0 otherwise) and 𝑞1 and 𝑞2 the respective 0.025 and 0.975 quantiles. These accuracy 
indices were computed using 𝑆 = 300 simulated data. Finally, we performed posterior 
predictive checks by re-simulating 1,000 datasets of 100 5-Mb regions, using parameter 
estimates sampled from the 95% percentile of their approximate posterior distribution. 
Nuisance parameters (i.e., Ne, α) were sampled from uniform prior distributions. We then 
compared simulated to observed summary statistics.  
 
Results 
We first checked whether our simulations generally reproduce the observed data, and found 
that they were in good agreement for the six summary statistics used, based on the length of 
admixture tracts detected in Near Oceanians (Supplementary Fig. 46). We also checked that 
our summary statistics were not sensitive to phasing errors. To do so, we compared statistics 
computed from simulations where the phase was known, to the same statistics computed 
from the same simulations, but where the data was unphased and then phased with 
SHAPEIT284,85, under the same conditions as in the observed data. Summary statistics were 
generally unchanged (Supplementary Fig. 47). 

Based on cross validation, we estimated the probability to correctly choose the SP, DP 
and CC models, and found that the error in model choice was minimal for the DP model and 
maximal for the SP model (Supplementary Fig. 48a,b). Then, to identify the most probable 
gene flow model for Near Oceanians, we compared the observed tract length distributions 
against simulations under the three competing scenarios. In agreement with the MetHis ABC 
approach74, which is based on other aspects of the data (Supplementary Note 5), we found 
that summary statistics for the Bismarck and Solomon islanders were closest to those under 
the DP model (Supplementary Fig. 48c,d). Taken together, these results support two 
separate epochs of gene flow from East Asian-related populations into Near Oceanians, in 
both the Bismarck Archipelago and the Solomon Islands.  

We next estimated the performance of our ABC method to estimate the times of the two 
gene flow pulses in Near Oceanians. We found that the time of gene flow pulses was more 
accurately estimated for recent times (up to ~100 generations) (Supplementary Fig. 49). The 
estimation of the time of the oldest pulse Tadm1 was generally more accurate than Tadm2. 
Nevertheless, we observed a low prediction error and low positive relative biases of Tadm1 
and Tadm2 for both the Bismarck and Solomon Archipelagos.  
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Supplementary Figure 46. A priori check of the summary statistics used to estimate the times of 
admixture in Near Oceanians by ABC. a, PCA of the six ABC summary statistics obtained for the three 
simulated models of gene flow (90% coloured contours) and the observed data (black plus sign). SP, 
DP and CC indicate single-pulse, double-pulse, and constant-continuous models of gene flow. b, 
Goodness-of-fit of the simulated models of gene flow with the observed summary statistics. P-values 
were computed from a null distribution obtained by using simulated summary statistics as pseudo-
observed summary statistics, and 100 replicates. 
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Supplementary Figure 47. Limited effects of haplotype phasing on admixture tract length statistics. 
The mean, maximum and minimum length of admixture tracts were computed on simulations where 
haplotype phase is known (in orange) and on the same simulations, but where haplotypes were 
unphased and reconstructed with SHAPEIT2 (in grey).  

 
 

 
 
Supplementary Figure 48. Choice of the gene flow model for Near Oceanians by ABC based on 
admixture tract length. a, b, Confusion matrix for the choice of gene flow models by ABC for a, 
Bismarck Archipelago and b, Solomon Islands. c, d, Approximate posterior probabilities of the three 
competing gene flow models for c, Bismarck Archipelago (BKA) and d, Solomon Islands (SLI). 
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Supplementary Figure 49. Performance of the ABC estimation of the times of gene flow Tadm1 and 
Tadm2 in the double-pulse gene flow model, for the Bismarck Archipelago and the Solomon Islands. 

 
 
Finally, we estimated the time of the two gene flow pulses in Near Oceanians, under the 

most probable DP model (Supplementary Figs. 44 and 48c,d). Assuming a 29-year 
generation time, the time of the oldest pulse was dated to ~2.3 ka in Near Oceanians (2.2 
[95% CI: 1.7–3.0] and 2.5 [95% CI: 2.2–3.4] ka for Bismarck and Solomon islanders, 
respectively; Fig. 2c), following the emergence of the Lapita cultural complex in the region 
~3.5 ka67. The time of the most recent pulse was estimated to ~1.4 ka (1.4 [95% CI: 0.4-2.0] 
and 1.3 [95% CI: 0.7-2.0] ka for Bismarck and Solomon islanders, respectively). Posterior 
predictive checks further confirmed that the estimates of the times of admixture were in good 
agreement with the observed data (Supplementary Fig. 50). These results collectively 
suggest recurrent genetic interactions between East Asian-related populations and the 
ancestors of present-day Near Oceanians, and support that the admixture events followed 
the Lapita period, in agreement with the Austronesian origin of this cultural complex10. 
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Supplementary Figure 50. Posterior predictive checks of the double-pulse model for populations of 
the Bismarck Archipelago and the Solomon Islands. PCA of summary statistics for the observed data 
(black ‘+’ sign) and simulated data (90%, 50%, and 10% contours), using prior (red) or posterior 
(black) distributions of estimated parameters. 
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Supplementary Note 7: Estimating Levels of Archaic Introgression 
 
For all the analyses presented in this section, we used the dataset merged with the high-
coverage genomes of Vindija and Altai Neanderthals56,59, and that of the Altai Denisovan60, 
filtered at Level 3b’ (Supplementary Note 2). 
 
Projected Principal Component Analysis 
Methods. To assess the relationship between modern humans and archaic hominins, we 
computed a PCA on the chimpanzee, Vindija Neanderthal, Altai Neanderthal and Altai 
Denisovan genomes, and projected modern human samples onto the plane defined by the 
first two principal components. The PCA was carried out using the ‘SmartPCA’ algorithm 
implemented in EINGENSOFT program version 7.2.1 (ref.28). 
 
Results. All modern human samples were located at the centre of the PCA plot 
(Supplementary Fig. 51a). When zooming into the central portion of the projected PCA plot, 
modern human populations separate into different clusters, relative to the chimpanzee and 
archaic hominins. The first PC (explaining 62% of the variance) separated Africans from non-
Africans, and showed that non-Africans have a greater affinity towards Neanderthal and 
Denisovan. The second PC (explaining 32% of the variance) separated the Altai and Vindija 
Neanderthals from the Altai Denisovan. The second PC revealed a clear genetic affinity of 
Eurasians (East Asians and West Eurasians) towards Neanderthals, and Pacific populations 
towards Denisovan. Notably, there is a clear cline of Denisovan-related ancestry in Near and 
Remote Oceanians, as well as the Agta, and to a lesser extent the Cebuano population, from 
the Philippines.  
 
D- and f4-ratio statistics 
Methods. To formally assess introgression between archaic hominins and modern humans, 
we computed D-statistics40. The ancestral state for any given site was defined as the allele 
present in the chimpanzee reference genome19. Sites that were not present in the 
chimpanzee genome, or that contained alleles that did not match either the reference or 
alternative allele in the chimpanzee genome, were discarded, leaving a total of 13,027,305 
bi-allelic SNPs for further analysis.  

To test for introgression between Neanderthal and modern humans, we computed a D-
statistic of the form D(X, West Eurasians/East Asians/Africans; Vindija Neanderthal, 
Chimpanzee). This statistic measures if a target population X shares more derived alleles 
with the Vindija Neanderthal compared to West Eurasians, East Asians or Africans. We 
computed a second D-statistic of the form D(X, West Eurasians/East Asians/Africans; Vindija 
Neanderthal, Denisova) that measures derived allele sharing with the Vindija Neanderthal or 
Altai Denisovan compared to West Eurasians, East Asians, or Africans. 

Likewise, to formally assess introgression between Denisovan and modern humans, we 
computed a D-statistic of the form D(X, West Eurasia/East Asia; Denisova, Chimpanzee). 
Similarly, we computed a second D-statistic of the form D(X, West Eurasia/East Asia; Altai 
Denisovan, Vindija Neanderthal). We considered populations showing significant allele 
sharing (|Z-scores| > 2) as evidence of Neanderthal or Denisovan introgression. 
 
To estimate the genome-wide proportion of Neanderthal ancestry for a target population X, 
we used the following f4-ratio statistic: 
 

𝑃𝑁(𝑋)  =  
𝑓4(𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒, 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 𝐴𝑙𝑡𝑎𝑖, 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝑋)

𝑓4(𝐶ℎ𝑖𝑚𝑝𝑎𝑛𝑧𝑒𝑒, 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 𝐴𝑙𝑡𝑎𝑖; 𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 𝑉𝑖𝑛𝑑𝑖𝑗𝑎)
 

 
However, this statistic can be inflated by unaccounted Denisovan ancestry. To circumvent 
this, we repeated the analysis by focusing only on sites where the Denisovan genome is 
homozygous ancestral as in ref.56. This additional filter removed around 10% of the sites. 
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Similarly, to estimate the genome-wide proportion of Denisovan ancestry for a target 

population X, we used the f4-ratio statistic of the following form: 
 

𝑃𝐷(𝑋)  =  
𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 𝑉𝑖𝑛𝑑𝑖𝑗𝑎;  𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛𝑠, 𝑋)

𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 𝑉𝑖𝑛𝑑𝑖𝑗𝑎; 𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛𝑠, 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎𝑛)
 

 
This f4-ratio statistic can correctly infer genome-wide proportions of Denisovan ancestry in 
Oceanians, using East Asians to correct for the levels of Neanderthal ancestry in Oceanians 
(see ref.86).  
 

It has been previously proposed that the Denisovan ancestry in Oceanians was acquired 
from the ancestors of PNG5,86, given that the amount of Papuan-related ancestry in these 
populations is highly correlated with their Denisovan ancestry. We tested this hypothesis, by 
estimating the amount of Denisovan ancestry as a fraction of Papuan-related ancestry using 
the following f4-ratio statistic: 
 

𝑃𝐷𝑎𝑠𝑃(𝑋)  =  
𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎𝑛;  𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛𝑠, 𝑋)

𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎𝑛; 𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛𝑠, 𝑃𝑎𝑝𝑢𝑎𝑛𝑠)
 

 
To estimate the amount of PNG ancestry, we used the following f4-ratio statistic: 
 

𝑃𝑃(𝑋)  =  1 −  
𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛𝑠;  𝑋, 𝑃𝑎𝑝𝑢𝑎𝑛𝑠)

𝑓4(𝐴𝑓𝑟𝑖𝑐𝑎𝑛𝑠, 𝐴𝑢𝑠𝑡𝑟𝑎𝑙𝑖𝑎𝑛𝑠; 𝐸𝑎𝑠𝑡 𝐴𝑠𝑖𝑎𝑛𝑠, 𝑃𝑎𝑝𝑢𝑎𝑛𝑠)
 

 
For these analyses, we considered all African, West Eurasian, and East Asian individuals 

from the SGDP (see Table S1 in ref.17). All D- and f4-ratio statistics were computed using 
‘qpDstat’ and ‘qpF4ratio’ algorithms implemented in ADMIXTOOLS version 5.1.140, 
respectively. A weighted-block jackknife procedure that drops 5-cM blocks of the genome in 
each run was used to compute standard errors. To assess the correlation between Papuan-
related ancestry and Denisovan ancestry as a fraction of the Papuan-related ancestry, we 
fitted a linear regression model using ordinary least squares using R version 3.4.4. 
 
Results. As expected, D-statistics showed that all Pacific populations share more derived 
alleles with the Vindija Neanderthal, compared to Africans (x-axis Z-score > 15 for all 
comparisons; Supplementary Fig. 51b). Likewise, all populations, with the exception of the 
Atayal population from Taiwan, share more derived alleles with Neanderthals compared to 
West Eurasians (x-axis Z-score > 2), as previously reported87-90. We detected higher derived 
allele sharing with the Vindija Neanderthal in the Agta as well as in Near and Remote 
Oceanians compared to East Asians (x-axis Z-score >2). However, this was driven by higher 
allele sharing with the Denisovan with respect to the Vindija Neanderthal (y-axis Z-score < -
2). For Denisovan ancestry, D-statistics showed that, with the exception of the Taiwanese 
Atayal and Paiwan, all populations share more derived alleles with the Altai Denisovan (x-
axis Z-score > 5), and that this was not driven by higher derived allele sharing with the 
Vindija Neanderthal (y-axis Z-score > 2; Supplementary Fig. 51c). This was most apparent 
when using West Eurasians as reference populations, which have virtually no Denisovan 
ancestry17. 

The estimated genome-wide Neanderthal ancestry levels varied between 2.8% and 3.8% 
across Pacific populations, by using f4-ratio statistics (Supplementary Fig. 52). However, after 
restricting the analysis to Denisovan ancestral homozygous sites, Neanderthal ancestry 
estimates were significantly lower in Near and Remote Oceanian populations (ranging from 
2.2% to 2.8%), but differed minimally (<0.01%) in East Asian-related populations (e.g. Atayal 
and Paiwan Taiwanese indigenous peoples), who are expected to have low levels of 
Denisovan ancestry (Supplementary Fig. 52). Overall, we found that Neanderthal ancestry is 
homogenously distributed across Pacific populations, with values ranging from 2.2% to 2.9% 
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(Fig. 3a). The highest estimates were found in East Asian populations, such as the Atayal 
and Paiwan from Taiwan, in accordance with previous reports87-90. Conversely, Denisovan 
ancestry was heterogeneously distributed, with values ranging from 0% to 3.2% (Fig. 3b, 
Supplementary Fig. 53), and was maximal in Near and Remote Oceanians, and the 
Philippine Agta. The use of the Altai Neanderthal as a sister group to the Altai Denisovan, 
instead of the Vindija Neanderthal, yielded similar f4-ratio estimates (Fig. 3b, Supplementary 
Fig. 53). 

 

 
 
Supplementary Figure 51. Genetic affinities of modern humans to archaic hominins. a, Principal 
Component Analysis (PCA) of modern human populations projected onto the first two PCs defined by 
the chimpanzee, the Altai Neanderthal, the Vindija Neanderthal, and the Altai Denisovan genomes. 
The right panel represents a zoomed-in version of the PCA plot on the left. b, Derived allele sharing of 
Pacific populations to the Vindija Neanderthal. Z-score of a D-statistic of the form D(X, East Asia/West 
Eurasia/Africa; Neanderthal, Chimpanzee) is shown against Z-score of D(X, East Asia/West 
Eurasia/Africa; Neanderthal, Denisova). c, Derived allele sharing of Pacific populations to Altai 
Denisovan. Z-score of a D-statistic of the form D(X, East Asia/West Eurasia; Denisova, Chimpanzee) 
is shown against Z-score of D(X, East Asia/West Eurasia; Denisova, Neanderthal). Dotted lines 
indicate significant derived allele sharing (|Z-score| >2). Population sample sizes are reported in 
Supplementary Table 1. 
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Supplementary Figure 52. Genome-wide levels of Neanderthal ancestry when accounting, or not, for 
Denisovan ancestry. Levels of Neanderthal ancestry were estimated via the f4-ratio statistic. Dark blue 
bars indicate Neanderthal ancestry estimates using all sites, whereas light blue bars, estimates after 
restricting sites to those where the Altai Denisovan is homozygous ancestral. The estimates in 
populations known to carry high levels of Denisovan ancestry (Near and Remote Oceanians) are 
significantly lower after the correction. Error bars represent 2 standard deviations from the point 
estimate computed via a weighted-block jackknife procedure. Population sample sizes can be found in 
Supplementary Table 1. 
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Supplementary Figure 53. Genome-wide levels of Denisovan ancestry. Levels of Denisovan ancestry 
estimated via f4-ratio statistic using a, the Vindija Neanderthal or b, Altai Neanderthal as sister group 
to the Altai Denisovan. Error bars represent 2 standard deviations from the point estimate computed 
via a weighted-block jackknife procedure. Population sample sizes are reported in Supplementary 
Table 1. 
 



 73 

Supplementary Note 8: Detecting Introgressed Archaic Haplotypes 
 
To identify archaic sequences introgressed into modern human genomes, we used two 
statistical methods that have been shown to be powerful in this regard71,87,91.  
 
S’ reference-free method 
Methods. We first used a recently developed method, S-prime (S’), which seeks to identify 
introgressed sequences from archaic hominins without using an archaic reference genome71. 
The S′ method has been shown to have increased power with respect to other archaic 
reference-free methods and is suitable for large-scale genome-wide data. S′ is designed to 
detect divergent haplotypes whose variants are in strong LD and that are absent (or at very 
low frequency) in a population that has not received introgression (i.e., the outgroup). To 
identify S′ introgressed segments in genomes of Pacific populations, we considered only 
variants with allele frequency < 1% in the 35 Africans from the SGDP dataset17. As S′ is an 
archaic reference-free method, we did not apply the merged Vindija Neanderthal, Altai 
Neanderthal, and Altai Denisovan mask filters, but otherwise kept sites that passed all filters 
at Level 3b (Supplementary Note 2). Note, however, that when comparing S′ introgressed 
haplotypes with an archaic genome, we did apply these masks (see section below). To 
estimate genetic distances between sites, we used the 1000 Genomes Phase 3 genetic 
map43. To avoid potential effects of population structure, we performed our analysis 
separately by population. However, due to the small sample size of SGDP populations17, we 
combined all East Asian samples (excluding Taiwanese indigenous peoples) as well as all 
West Eurasian samples, and considered them as two different population groups. As the S′ 
approach does not allow for missing data, we further filtered sites with at least one missing 
genotype, leaving a total of 26,734,553 bi-allelic SNPs. 

After retrieving empirical S′ scores from our modern human genomes, we used 
simulations to estimate our false positive rate (FPR) to detect S′ introgressed haplotypes. We 
estimated a null distribution of S′ scores by simulating genomic sequence data using the 
coalescent-based simulation software fastsimcoal246. We used the demographic model for 
western Remote Oceanians (Extended Data Fig. 2b, Supplementary Table 5) with 
parameters fixed to ML point estimates, except that we removed all archaic introgression 
pulses (i.e. Neanderthal and Denisovan). Using this demographic model, we extracted a 
sample of 20 individuals from each of the populations representing East Asians, Taiwanese 
indigenous peoples, PNG, Bismarck and Vanuatu islanders, and 35 individuals from the 
population representing Africans. We used a sample size of 35 African individuals, as all S′ 
analyses were conducted using 35 Africans from the SGDP as outgroup population. Note 
that this demographic model is a null demographic model (i.e., without archaic introgression) 
for all the analysed populations in this study. The null S′ distribution was obtained from 
simulations of 2500 independent sets of 10-Mb genomic regions.  
 
Results. We observed that the S′ statistic is highly robust to different demographic scenarios, 
as attested by the S′ score distributions that are very similar across populations 
(Supplementary Fig. 54). The highest estimated 99th percentile of the simulated S′ scores 
across populations was 185,742, which was found in the simulated population representing 
Bismarck islanders. We therefore decided to use a conservative S′ score of 190,000 to 
identify significantly introgressed haplotypes, which would be equivalent to a FPR < 0.01.  
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Supplementary Figure 54. S′ score distribution under a demographic model without archaic 
introgression. We computed a null distribution of S′ scores by simulating 2,500 independent sets of 10-
Mb genomic regions for five different populations. Details of the ML demographic model are described 
in Supplementary Note 4 (Extended Data Fig. 2b, Supplementary Table 5). The dotted line indicates 
the 99th percentile of the S′ distribution, with the corresponding value shown in each panel.  

 
 
Conditional Random Fields method 
Methods. We applied a method based on Conditional Random Fields (CRF) to identify 
introgressed archaic haplotypes in our phased genomic data87,91. In contrast to S′, which 
relies on simulations to determine the significance of introgressed segments, the CRF 
method is able to incorporate the parametric assumption directly into a probabilistic 
framework. The CRF method uses information of an outgroup population (i.e. a population 
that did not experience archaic introgression), archaic genomes (Neanderthal or Denisovan), 
and genomes from a population that harbours introgressed sequences. Under this 
framework, each site along the genome is included as a random variable with two states: 
introgressed or non-introgressed (thus of modern human origin). Emission probabilities that 
incorporate different genomic features of a tested haplotype are used to evaluate whether a 
particular site has a higher probability of being of archaic or modern human origin. CRF 
inferences require estimating model parameters, which were fixed for the values previously 
estimated87.  

To estimate the genetic distance between sites, we used the 1000 Genomes Phase 3 
genetic map43, as for S′ analyses. The ancestral state for any given site was defined as the 
allele present in the chimpanzee reference genome19. Sites that were not present in the 
chimpanzee genome, or that contained alleles that did not match either the reference or 
alternative alleles in the chimpanzee genome, were discarded. We phased the data using 
SHAPEIT284,85 with 200 conditioning states, 10 burn-in steps and 50 MCMC main steps, for a 
window length of 0.5 cM and an effective population size of 15,000. Missing sites below the 
5% threshold were imputed during the phasing. We did not allow for missing sites in the 
Neanderthal and Denisovan genomes before phasing. After phasing, a total of 18,949,412 bi-
allelic SNPs were used for further analysis. 
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Following ref.91, we inferred archaic ancestry in two steps: 

1. To infer Neanderthal ancestry, one reference panel consisted of the Vindija 
Neanderthal genome, while the other consisted of 35 Africans from SGDP17 merged 
with the Altai Denisovan genome.  

2. To infer Denisovan ancestry, one reference panel consisted of the Denisovan 
genome, while the other consisted of 35 Africans from SGDP17 merged with the 
Vindija Neanderthal genome.  

 
Note that the CRF method was run independently to infer Denisovan and Neanderthal 
haplotypes. However, given that Denisovans and Neanderthals share a more recent 
common ancestor than with any modern human population, there is a probability of the same 
introgressed segment in a particular modern human haplotype to be assigned to both 
Neanderthal and Denisovan ancestry. To avoid such cases, we decided to use the posterior 
probabilities from both CRF runs to call archaic introgressed sites. Specifically, we 
considered Neanderthal introgressed haplotypes as those containing alleles with (i) 
Neanderthal marginal posterior probability ≥ 0.9 and (ii) Denisovan marginal posterior 
probability < 0.5. Likewise, we considered Denisovan haplotypes as those containing alleles 
with (i) Denisovan marginal posterior probability ≥ 0.9 and (ii) Neanderthal marginal posterior 
probability < 0.5. 
 
Combining S′ and CRF methods 
Methods. It has recently been shown that combining different methods that detect archaic 
introgressed sequences can increase the detection rate of truly introgressed haplotypes (i.e., 
decrease the FPR)92. We therefore sought to assess the specificity of combining the CRF 
and S′ methods by comparing the amount of total retrieved Denisovan haplotypes in PNG 
and West Eurasians, as these populations carry the highest and lowest amount of Denisovan 
ancestry in our dataset, respectively. Namely, we estimated the ratio of the total amount of 
Denisovan haplotypes retrieved in PNG to that found in West Eurasians, as a means to 
explore the amount of truly introgressed archaic segments in a given population92. 
Specifically, for Denisovan-introgressed haplotypes detected by the CRF method, we 
estimated the ratio of remaining haplotypes in PNG and West Eurasians after keeping only 
those haplotypes with a fraction of base-pair overlap higher than 0 (i.e., without considering 
S′ haplotypes), 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (i.e. 
complete overlap) with S′ haplotypes. We also explored our strategy of considering the 
estimated Neanderthal CRF posterior probabilities when calling Denisovan introgressed 
haplotypes (described above).  
 
Results. Our analysis showed that accounting for the estimated posterior probabilities of a 
Neanderthal haplotype reduces the total amount of Denisovan haplotypes retrieved in PNG 
by only ~20% (Supplementary Fig. 55a,b). Conversely, the total amount of Denisovan 
haplotypes in West Eurasians was reduced by up to ~70% (Supplementary Fig. 55c,d). This 
shows that our strategy of considering the posterior probability of Neanderthal haplotypes 
does remove incorrectly inferred archaic and/or ambiguous haplotypes (i.e., haplotypes with 
similar posterior probabilities for Neanderthal and Denisovan introgression). Our analysis 
also showed that using even the most lenient thresholds of overlap between the CRF and S′ 
methods (i.e., a base-pair overlap of only 0.1%) can result in an approximate 60-fold 
increase of Denisovan segments in PNG relative to West Eurasians, while still retaining a 
high amount of introgressed segments (Supplementary Fig. 55e,f). In light of these results, 
we decided to keep for each Denisovan or Neanderthal introgressed haplotype detected by 
the CRF method (using the procedure outlined above), only those that have a fraction of 
base-pair overlap higher than 0.1% with a significant S′ haplotype.  
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Supplementary Figure 55. Effects of analysis settings on the detection rate of Denisovan 
introgressed haplotypes. For all analyses, the total amount of CRF Denisovan haplotypes was 
obtained when filtering (solid line) or not (dashed line) for high-probability Neanderthal haplotypes. a, 
Cumulative length of Denisovan CRF haplotypes in PNG using different overlapping thresholds with S′ 
segments. b, Zoomed-in version of panel a. c, Cumulative length of Denisovan CRF identified 
haplotypes in West Eurasians, using different overlapping thresholds with S′ segments. d, Zoomed-in 
version of panel c. e, Ratio of the cumulative length of Denisovan haplotypes in PNG versus West 
Eurasians using the same parameters as in a and b. f, Zoomed-in version of panel e.  
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Supplementary Note 9: Match Rates of Archaic Haplotypes 
 
Methods 
After retaining introgressed S′ haplotypes (Supplementary Note 8), we sought to compare 
these haplotypes to archaic genomes. Following a previous study71, we computed a match 
rate between each S′ haplotype and the Vindija Neanderthal and Altai Denisovan genomes, 
using putatively introgressed alleles (i.e., absent in Africans). We considered that a site 
matches if the putative introgressed allele is present in the archaic genotype, and 
mismatches otherwise. The match rate was calculated as the number of matches divided by 
the total number of compared sites (i.e., matches and mismatches). To eliminate potentially 
unreliable genomic regions, owing to poor mappability or low coverage, we computed match 
rates using sites that pass all filters at Level 3b’ (Supplementary Note 2). As longer S′ 
haplotypes carry more information on the archaic origin of introgressed segments, we only 
computed match rates for S′ haplotypes with more than 40 (unmasked) sites. To visualize 
match rates to Neanderthal and Denisovan genomes, we computed two-dimensional 
probability densities for the contour density plots, using the kde2d function from the MASS 
package in R version 3.4.4 with default parameters, but restricting the contour lines to the 
range of interest. 
 
Results 
Across all populations, we observed a dense cluster of S′ haplotypes with high match rate to 
the Vindija Neanderthal and low match rate to the Altai Denisovan (Extended Data Fig. 3). 
These haplotypes likely represent Neanderthal introgressed sequences. The mode of the 
match rate to the Vindija Neanderthal is ~0.9, which is higher than the one reported (~0.8) in 
ref.71. This is likely due to our use of a more closely related Neanderthal genome (i.e. the 
Vindija Neanderthal) to the actual Neanderthal population that introgressed with modern 
humans. Accordingly, when using the Altai Neanderthal in our match rate estimations, we 
obtained a mode at ~0.8 (Supplementary Fig. 56). 

We also observed another cluster of S′ haplotypes with very low match rate to the Vindija 
Neanderthal (and Altai Neanderthal), but with a higher match rate to the Altai Denisovan 
(mode of ~0.5), which likely represents Denisovan introgressed haplotypes (Extended Data 
Fig. 3 and Supplementary Fig. 56). This cluster is most apparent in all populations but West 
Eurasians, where we observed only a very small cluster of Denisovan haplotypes. This 
observation is likely due to recent East Eurasian ancestry in some of these individuals, as 
previously observed17,91. The populations that carry this shared signal of Denisovan 
introgression include the Atayal and Paiwan Taiwanese indigenous peoples, the Cebuano 
and Agta from the Philippines, Polynesian outliers, and Near and Remote Oceanians. 
Notably, we also replicated a second signal of Denisovan introgression (mode at ~0.78) in 
East Asians71, which is also present in the Atayal from Taiwan. Lastly, the match rates using 
the Altai Neanderthal and Vindija Neanderthal were, as expected, highly correlated 
(Supplementary Fig. 57). Nevertheless, we observed that introgressed haplotypes in 
Taiwanese indigenous peoples, East Asians, and West Eurasians are slightly more similar to 
the Vindija Neanderthal genome, in agreement with previous observations56.  

 



 78 

 
 
Supplementary Figure 56. Match rate of introgressed S′ haplotypes to the Altai Neanderthal and Altai 
Denisovan genomes. The match rate is the proportion of putative archaic alleles that match a given 
archaic genome, excluding sites at masked positions. Only S′ haplotypes with at least 40 sites not 
masked in the Vindija Neanderthal and Altai Denisovan genomes are included in the match rate 
calculations. Numbers inside the contour plots indicate the height of the density corresponding to each 
contour line. Contour lines are shown for multiples of 1 (solid lines) and multiples of 0.1 between 0.3 
and 0.9 (dashed lines). 
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Supplementary Figure 57. Match rate of introgressed S′ haplotypes to the Altai Neanderthal and 
Vindija Neanderthal genomes. The match rate is the proportion of putative archaic alleles that match a 
given archaic genome, excluding sites at masked positions. Only S′ haplotypes with at least 40 sites 
not masked in the Vindija Neanderthal and Altai Denisovan genomes are included in the match rate 
calculations. Numbers inside the contour plots indicate the height of the density corresponding to each 
contour line. Contour lines are shown for multiples of 1 (solid lines) and multiples of 0.1 between 0.3 
and 0.9 (dashed lines). 

 
 
Match rates using high-confidence introgressed haplotypes 
Methods. Similarly to the analysis above, we compared high-confidence introgressed 
haplotypes (i.e., CRF haplotypes intersecting with those detected by S′; Supplementary Note 
8) to archaic genomes. This analysis was based on match rate estimates using only sites 
that pass all filters at Level 3b’ (Supplementary Note 2). An important difference between the 
CRF and S′ haplotypes is that the latter are composed of putative archaic sites only (i.e., 
absent in Africans) whereas the former do not. The CRF haplotypes are therefore not only 
composed of the introgressed alleles, but also of alleles that are likely to be old and shared 
across modern humans and archaic hominins. The match rates of introgressed CRF 
haplotypes to the Neanderthal and Denisovan genomes, are thus much higher than those of 
S′ haplotypes.  
 
Results. Using haplotypes composed of at least 100, 500, 1000, 1500, 2000 and 2500 sites, 
we observed a single dominant peak of match rate to the Vindija Neanderthal, across all 
populations (Supplementary Fig. 58). This pattern, which is in line with our observations 
based on S′ haplotypes (Extended Data Fig. 3), supports a unique introgression event from a 
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single Neanderthal population that likely occurred in the ancestors of non-Africans, as 
recently documented71,92. Likewise, we plotted the match rate to the Altai Denisovan genome 
(Supplementary Fig. 59). In contrast to the match rate distributions for Vindija Neanderthal, 
we observed several Denisovan peaks across populations, which vary depending on the 
length of the introgressed haplotypes considered. The Denisovan peak that is most similar to 
the Altai Denisovan genome was apparent in East Asians as well as in Pacific populations 
with high East Asian-related ancestry, even when considering haplotypes with 100 sites. The 
two distinct Denisovan peaks recently reported in PNG92 were only apparent when using 
haplotypes with at least 2,000 sites (Fig. 3e and Supplementary Fig. 59). 
 
 

 
 
Supplementary Figure 58. Match rate of high-confidence introgressed haplotypes to the Vindija 
Neanderthal genome. The match proportion is the proportion of alleles that match the Vindija 
Neanderthal genome, excluding sites at masked positions. Each panel is labelled with the minimum 
number of sites in the introgressed haplotypes used to compute the density distributions. 
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Supplementary Figure 59. Match rate of high-confidence introgressed haplotypes to the Altai 
Denisovan genome. The match proportion is the proportion of alleles that match the Vindija 
Neanderthal genome, excluding sites at masked positions. Each panel is labelled with the minimum 
number of sites in the introgressed haplotypes used to compute the density distributions. 
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Supplementary Note 10: Defining Different Denisovan Components 
 
Rationale 
To assign introgressed haplotypes to different Denisovan components, which likely reflect 
population structure among the Denisovan-related groups that contributed ancestry to 
modern humans, we fitted single Gaussian versus two-component Gaussian mixtures to the 
Denisovan match rate distributions.  
 
Denisovan components in East Asians and Taiwanese peoples 
We first focused on the Denisovan match rate distribution observed in East Asians and 
Taiwanese indigenous peoples (Atayal and Paiwan). These populations displayed a strong 
signal of bimodality (Fig. 3e); one mode was observed at <99% match rate to the Altai 
Denisovan genome, which overlaps the distribution observed in most Southwest, Near and 
Remote Oceanian populations, while a second mode was found at ~99.5% match rate, which 
is private to East Asians and Pacific populations with high East Asian-related ancestry. Note 
that, for this analysis, we used introgressed haplotypes with a Denisovan match rate >98% in 
a combined dataset including East Asian, Atayal, and Paiwan introgressed haplotypes that 
contained at least 100 SNPs because (i) the bimodal distribution was apparent and stable 
with this threshold, and (ii) using more SNPs would result in a lower number of Denisovan 
introgressed haplotypes for downstream analyses.  

Fitting single versus two-component Gaussian mixture model strongly supported the 

bimodal distribution (Likelihood ratio [LHR] = 35.4; P-value = 9.8910-8, Supplementary Table 

11). The two Gaussians are distributed according to N(μ = 0.985, σ2 = 7.7310-6) and N(μ = 

0.994, σ2 = 8.0310-6). As expected, we confirmed that a bimodal match rate distribution was 
also strongly supported when using introgressed haplotypes that contain even higher number 
of SNPs, given that longer introgressed haplotypes enable better differentiation of the various 
introgression components (Supplementary Table 11). We used the two-mixture Gaussian 
model to assign introgressed Denisovan haplotypes to the two distinct Denisovan 
components using a probability higher than 0.80. This resulted in a classification of 219 out 
of 246 Denisovan introgressed haplotypes. 

We next tested whether the length of the Denisovan introgressed haplotypes is 
significantly different, which could reflect different pulses of Denisovan introgression 
occurring at different times. Although the length of the Denisovan introgressed haplotypes 
that are most similar to the Altai Denisovan were longer (median = 131.1kb compared with 
median = 93.4kb), the difference was not statistically significant (Two-sided Mann Whitney U-
test, P-value > 0.05). A possible explanation is that the two pulses occurred very closely in 
time; however, it is likely that the low number of high-confidence Denisovan introgressed 
haplotypes detected in East Asian and Taiwanese indigenous populations also limits our 
power to find significant differences. In light of this, we repeated the analysis using 
Denisovan introgressed haplotypes detected only by the CRF method, i.e. without 
intersecting these with the S′ haplotypes. In agreement with our previous analysis, a bimodal 

distribution was strongly supported (LHR = 132.83; P-value = 2.2210-16). The two 

Gaussians were distributed according to N(μ = 0.985,σ2 = 9.6510-6) and N(μ = 0.994,σ2 = 

7.3510-6), similarly to our previous estimates. Assigning Denisovan haplotypes to these 
distributions using a probability higher than 0.80 resulted in a classification of 618 out of 679 
CRF Denisovan haplotypes. Using these segments, we found that the Denisovan haplotypes 
with a match rate of ~99.4% to the Altai Denisovan were significantly longer than those with a 
match rate ~98.5% (median = 99.3kb compared with median = 72.7kb, One-tailed Mann-

Whitney U-test, P-value = 5.1410-4). This supports a scenario in which introgression from an 
archaic population closely related to the Altai Denisovan occurred later in time than that from 
a more distant Denisova-related population. 
 
Denisovan components in the Philippine Agta 
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We next focused on the match rate distribution in the Agta from the Philippines. We used 
introgressed haplotypes with a Denisovan match rate >98% that contained at least 2000 
SNPs, because structure within Denisovan components was only apparent using this 
minimum number of SNPs (Supplementary Fig. 59). Fitting single versus two-component 
Gaussian mixture model strongly supported the bimodal distribution (LHR = 22.2; P-value = 

5.7910-5, Supplementary Table 11). The two Gaussians are distributed according to N(μ = 

0.985, σ2 = 6.3610-6) and N(μ = 0.993, σ2 = 1.0910-6). We note that the two distributions 
are highly similar to those observed in the East Asian and Taiwanese indigenous 
populations. This signal may therefore be attributed to gene flow from Austronesian-speaking 
groups, carrying the high-match Denisovan component, to the Philippine Agta. Interestingly, 
when removing the Denisovan segments that overlapped with those detected in East Asian 
and Taiwanese indigenous populations, the Gaussian mixture model did not support 
bimodality (LHR = 6.93; P-value = 0.07). The single Gaussian is distributed according to N(μ 

= 0.985, σ2 = 7.4710-6), which overlaps with the components found broadly across East and 
Southeast Asians, and Near and Remote Oceanians. If additional interbreeding has occurred 
between the ancestors of the Agta and Denisovan-related archaic groups, it is possible that 
the Austronesian gene flow into the Agta diluted most of this introgression signal. Further 
analysis of additional, multiple Philippine populations, with lower levels of Austronesian-
related ancestry will be needed to support this hypothesis. 
 
Denisovan components in Papuan-related groups 
We then focused on the bimodal Denisovan match rate distribution observed in PNG and 
populations with high Papuan-related ancestry (Fig. 3e). We used introgressed haplotypes 
with a Denisovan match rate >98% and <99% that contained at least 2,000 SNPs, because 
the bimodal distribution of interest was only apparent at this range and using this minimum 
number of SNPs (Supplementary Fig. 59). As for our previous analysis in the Agta, we also 
considered Denisovan introgressed segments originating from recent Austronesian gene flow 
in populations from the Solomon Islands, the Vanuatu archipelago, Santa Cruz and 
Polynesian outliers, by removing Denisovan segments that overlapped with those detected in 
East Asians and Taiwanese indigenous peoples. We then fitted single vs. two-component 
Gaussian mixture models to Denisovan match rate distributions, in each population 
separately. Two-component Gaussian distributions were supported in all populations, except 
in the Polynesian outliers (Supplementary Table 11). The low number of Denisovan 
introgressed segments in Polynesian outliers (N = 50, the lowest among all populations) 
could have reduced the power to detect distinct Denisovan components.  

Notably, the match rate distributions among populations were extremely similar, with the 
first component showing a mean of ~98.2%, and the second component showing a mean of 
~98.6% match rate to the Altai Denisovan. We then classified Denisovan introgressed 
haplotypes using a probability higher than 0.80 and compared their length, in each 
population separately. The length of the haplotypes were significantly different in PNG 
(median = 435kb vs. 363kb, Two-sided Mann-Whitney U-test, P-value = 1.64×10-3), Solomon 
islanders (median = 435kb vs. 373kb, Two-sided Mann-Whitney U-test, P-value = 1.92×10-4), 
ni-Vanuatu and Santa Cruz islanders (median = 435kb vs. 372kb, Two-sided Mann-Whitney 
U-test, P-value = 8.21×10-15), but not in the Bismarck archipelago islanders (Two-sided 
Mann-Whitney U-test, P-value > 0.05). We note that our observation in PNG is different from 
that recently reported92, where the two Denisovan components were found to have the same 
median length. However, we confirmed our observation when varying the number of SNPs 
required to define introgressed haplotypes (Supplementary Table 11). In the populations 
where we could detect a significant difference, the Denisovan haplotypes with less similarity 
to the Altai Denisovan genome are longer, supporting a scenario where the pulse from a 
more distantly related Denisovan group occurred into PNG later in time.  

Finally, we also tested whether the length of the Denisovan introgressed haplotypes from 
the two distinct Denisovan components in Papuans were significantly different to those found 
in East Asians, Taiwanese indigenous peoples, and the Philippine Agta. Given that the 
bimodal distribution in Papuans was only apparent using a minimum number of 2,000 SNPs 
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per haplotype, we used this number when classifying Denisovan haplotypes. While the 
length of the haplotypes in Papuans, East Asians, Taiwanese indigenous peoples, and Agta 
with a Denisovan match rate of ~98.5–98.6% were not significantly different (Kruskal-Wallis 
rank sum test, P-value = 0.176), putatively introgressed haplotypes in Papuans with 
Denisovan match rate ~98.2% were significantly different (Kruskal-Wallis rank sum test, P-
value = 8.93×10-5). Specifically, those with a ~98.2% match rate in Papuans are longer 
compared to those with a match rate of ~98.5-98.6% in East Asians and Taiwanese 
indigenous peoples (median = 435kb compared with median = 370kb, One-tailed Mann-
Whitney U-test, P-value = 7.69×10-3), and the Agta (median = 435kb compared with median 
= 357kb, One-tailed Mann-Whitney U-test, P-value = 2.08×10-5). Collectively, these results 
suggest that the ancestors of modern humans from the Pacific experienced at least three 
independent introgression events from Denisovan-related archaic hominins, one being 
specific to East Asian-related populations, one being specific to Papuan-related populations, 
and one detected among East Asian- and Papuan-related populations, as well as the Agta 
from the Philippines. 
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Supplementary Note 11: Detecting shared archaic introgression 

 
Method 
We evaluated the extent to which Pacific populations share a common history of archaic 
introgression, by computing a statistic measuring the overlap of introgressed haplotypes 
detected in two human populations. Our rationale was that, if two populations inherited their 
archaic ancestry through an introgression event in their common ancestors, the introgressed 
haplotypes would tend to be observed in the same genomic positions. We based this 
analysis on S′ introgressed haplotypes because this method relies on tiling across individuals 
(i.e. detecting introgressed haplotypes at the population level) and is therefore suitable for 
comparing introgressed haplotype between populations. For each population, we first 
retained only S′ introgressed haplotypes with a score >190,000 and a length of at least 40kb 
in order to retain truly introgressed segments (Supplementary Note 8). We then classified 
each haplotype as either of Neanderthal or Denisovan origin, as in ref.71. The Neanderthal 
haplotypes are those with a match rate equal or higher than 0.6 to the Vindija Neanderthal 
and less than 0.4 to the Altai Denisovan. The Denisovan haplotypes are those with a match 
rate equal or higher than 0.4 to the Altai Denisovan and less than 0.4 to the Vindija 
Neanderthal. For each haplotype present in a given population, we then estimated the 
fraction of base-pair overlap with the haplotypes present in a second population. The fraction 
of base-pair overlap is estimated with respect to the length of the segments in the first 
population. For example, for a 100Kb segment identified in the first population that has a 
25Kb overlap with a segment in the second population, the base-pair overlap fraction is 
equal to 0.25. Note that this statistic is not symmetrical as two populations can have different 
numbers of introgressed segments. As a test statistic, we computed the proportion of 
segments that have a fraction of base-pair overlap higher than 0.5. To assess significance, 
we performed 10,000 bootstrap iterations where we randomly placed introgressed segments 
of the same number and length as those observed along the callable genome (~2.1 Gbp). In 
order to report a single P-value for each pairwise comparison, we took the highest P-value 
for each comparison. All P-values were then adjusted for multiple testing by the Benjamini-
Hochberg method. 
 
Results 
Neanderthal-introgressed haplotypes overlapped significantly between all pairs of 
populations (FDR < 0.005 for all comparisons; Supplementary Fig. 60). This indicates that 
there was likely a single Neanderthal introgression event in the common ancestors of all non-
Africans, in line with our observations based on Neanderthal match rate distributions (Fig. 3e 
and Supplementary Fig. 58), as well as previous studies71,92. We note that there is a 
tendency for higher overlap between closely related populations, suggesting that our statistic 
is to some extent affected by population structure. Conversely, Denisovan-introgressed 
haplotypes did not show a significant overlap between all pair of populations, suggesting 
independent introgression events (Supplementary Fig. 61). We found that Denisovan-
introgressed haplotypes in Papuans were not significantly shared with East Asians, 
Taiwanese indigenous peoples, or West Eurasians. This result is not likely explained by a 
lower statistical power due to the lower number of introgressed segments, as we were able 
to detect sharing between some Vanuatu populations (which carry similar number of 
Denisovan introgressed segments as Papuans) and East Asian-related populations. This 
result suggests that Papuans and East Asians inherited at least part of their Denisovan 
ancestry through independent introgression events. This analysis is also in line with our 
previous observation based on match rate distributions (Fig. 3e and Supplementary Fig. 59), 
where East Asian populations show a Denisovan component absent from Papuans, and 
Papuans show a component absent from East Asians. We also found that Denisovan-
introgressed haplotypes in West Eurasians overlap significantly with those present in East 
Asian and Taiwanese indigenous populations. One plausible hypothesis is that the 
Denisovan ancestry in West Eurasians was acquired through recent gene flow from East 
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Eurasians, after Denisovan introgression in East Asians91. Lastly, we also found that 
Denisovan haplotypes in Papuans and the Agta are significantly shared (FDR = 1.42×10-4), 
suggesting an introgression event in their common ancestors, or in the ancestors of the Agta, 
followed by gene flow from the Agta to Papuan groups. As the Agta carry high levels of East 
Asian-related ancestry (Extended Data Fig. 1), we also repeated this analysis by removing 
Denisovan haplotypes in Agta that overlap with those found in East Asians. Interestingly, we 
found that the Denisovan introgressed haplotypes in the Agta were still significantly shared 
with Papuans (FDR = 9.40×10-4). Removing Denisovan introgressed haplotypes in Papuans 
that are shared with East Asians and Taiwanese indigenous peoples also resulted in a 
significant sharing (FDR = 1.42×10-4). Overall, these results suggest that at least some of the 
Denisovan ancestry present in the Agta was acquired through an introgression event shared 
with Papuans, occurring in their common ancestors or in the ancestors of the Agta. Further 
analysis in additional, multiple Philippine populations, with higher levels of Denisovan 
ancestry and a lower degree of East Asian-related ancestry, will be required to test these 
alternative scenarios.  
 

 
Supplementary Figure 60. Sharing of Neanderthal-introgressed haplotypes between Pacific 
populations. Each cell shows the fraction of Neanderthal-introgressed haplotypes that overlap more 
than 50% between populations. Numbers above each population label indicate the total number of 
Neanderthal-introgressed haplotypes. Significance is indicated by stars, with *FDR < 0.001, **FDR < 
0.01, and *FDR < 0.05. 
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Supplementary Figure 61. Sharing of Denisovan-introgressed haplotypes between Pacific 
populations. Each cell shows the fraction of Denisovan-introgressed haplotypes that overlap more 
than 50% between populations. Numbers above each population label indicate the total number of 
Denisovan-introgressed haplotypes. Agta[unique] and Papuans[unique] indicate Denisovan-
introgressed haplotypes in the Agta and Papuans that do not overlap with those found in East Asians 
and Taiwanese indigenous populations. Significance is indicated by stars, with *FDR < 0.001, **FDR < 
0.01, and *FDR < 0.05. 
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Supplementary Note 12: Multiple Denisovan Sources in Papuans 
 
Rationale 
It has been recently proposed that modern Papuans inherited their Denisovan ancestry 
through two Denisovan introgression events92. Our analyses also suggest the presence of 
two Denisovan components, based on the distribution of match rates to the Altai Denisovan 
genome (Fig 3e and Supplementary Fig. 59). However, a recent study did not find evidence 
of two distinct Denisovan lineages in Papuans and argued for a single Denisovan pulse93. 
These conflicting observations prompted us to formally test the two competing models, using 
an ABC approach73 based on summary statistics computed from the S′ statistic.  
 
Simulation setting 
We used the demographic model for western Remote Oceanians (Extended Data Fig. 2b, 
Supplementary Table 5) with parameters fixed to ML point estimates, but adding a single 
(SP) or double (DP) pulse of Denisovan introgression in the Papuan branch. We also 
changed the sampling time of the Altai Denisovan in the model, because the age of the Altai 
Denisovan fossil was recently revised using a Bayesian age modelling approach that 
combines chronometric, stratigraphic and genetic data94. As the study did not provide point 
estimates, we used an age of 63.9 ka, which represents the centre of the reported date 
interval of 51.6–76.2 ka (at 95% probability). We also included a population resize in 
Papuans to capture the effect of the agricultural transition in Papua New Guinea65. Including 
this extra parameter was needed to obtain simulation-based summary statistics that matched 
our observed (empirical) summary statistics (see below). We note that our aim was not to 
infer this parameter and as such, the population resize in Papuans is considered a nuisance 
parameter. Specifically, in the SP model, we assumed a Denisovan introgression that 
occurred TDR2 generations ago (ga), that contributed 𝛼DR2 of Denisovan ancestry, and that 
involved a Denisovan lineage that diverged TDR2-DenisovanAltai ga from the Altai Denisovan. We 
refer to this Denisovan lineage as Denisovan-related lineage 2 (DR2). In the DP model, in 
addition to the parameters presented above, we included a second Denisovan introgression 
that occurred TDR3 ga, that contributed 𝛼DR3 of Denisovan ancestry, and that involved a 
Denisovan lineage that diverged TDR3-DenisovanAltai ga from the Altai Denisovan. We refer to this 
Denisovan lineage as Denisovan-related lineage 3 (DR3). The prior distributions for each 
parameter are shown in Supplementary Table 12. To differentiate between the SP and DP 
models, we simulated a total of 50,000 independent sets of 64 10-Mb genomic sequences 
per model, with fastsimcoal246. For parameter estimation, we further computed 150,000 extra 
independent simulations under the best supported model. 
 
Summary statistics 
As ABC summary statistics, we used moments of the distribution of S′ scores, S′ haplotype 
length, and S′ match rate to the Altai Denisovan genome. As we were interested in the 
Denisovan introgression pulses, we restricted our analysis to Denisovan-introgressed 
haplotypes by retaining only those haplotypes with a match rate to the simulated Altai 
Denisovan genome ≥ 0.2 and < 0.3 to the simulated Vindija Neanderthal genome, as in ref.71. 
Specifically, for each statistic, we computed the minimum, median, mean, first interquantile, 
third interquantile, maximum, and the variance. To capture information occurring from two 
distinct Denisovan populations, we also fitted two Gaussian distributions on the Denisovan 
match rate distribution, and then computed the same summary statistics presented above for 
each of the classified components, using a probability classification threshold of at least 0.8. 
Given that in our empirical data, we only retained S′ haplotypes with an S′ score higher than 
190,000 (to lower the number of false-positives) (Supplementary Note 8), we also filtered the 
simulated introgressed haplotypes based on this criterion before computing summary 
statistics. ABC was then performed using the abc R package79. To differentiate between the 
SP and DP models, we used a logistic multinomial regression. For parameter estimation, we 
used a neural network using default parameters of hidden layers and neurons.  
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Goodness-of-fit and method performance 
Prior to model choice and parameter estimation, we checked whether the SP and DP models 
provided a good fit to the observed data. We performed a goodness-of-fit test using 100 
replicates for each model, and a tolerance set to 5%. As an additional (and graphical) 
procedure, we also performed Principal Component Analysis (PCA) of all summary statistics, 
using the first two PCs, and displayed the 90% envelope of the first two PCs for each model. 
To evaluate the performance of model selection and parameter inference, we used a “leave-
one-out” cross validation approach using 100 replicates.  
 
Results 
Our goodness-of-fit test showed that only the DP model was able to produce S′-based 
summary statistics that are consistent with the observed data (goodness-of-fit SP model, P-
value<0.01; goodness-of-fit DP model, P-value=0.24). Similarly, the 90% envelope of the first 
two PCs, computed from all summary statistics for each model separately, showed that a 
high proportion of summary statistics simulated under the DP model were more similar to the 
observed values (Supplementary Fig. 62a). Cross-validation via 100 independent simulations 
for difference tolerance rates showed that our ABC approach was able to distinguish 
between these two different models with high accuracy (>83%; Supplementary Fig. 62b), the 
highest accuracy being obtained at a tolerance level of 5%. ABC model selection at a 
tolerance level of 5% showed that the DP model was strongly favoured (posterior probability 
= 99%). We also conducted a second ABC analysis, using only the S′-based summary 
statistics computed from Denisovan match rates. We conducted this second analysis in order 
to test whether SP and DP models could produce distinct Denisovan match rate distributions. 
Interestingly, the goodness-of-fit test showed that both models were able to produce 
summary statistics that are consistent with the observed data (goodness-of-fit for the SP 
model, P-value=0.19; goodness-of-fit for the DP model, P-value=0.47). The 90% envelope of 
the first two PCs showed that summary statistics simulated under the DP model were more 
similar to the observed values (Supplementary Fig. 63a), in line with our previous 
observation. Encouragingly, the cross-validation analysis based on this subset of summary 
statistics showed that the ABC approach was still able to distinguish between these two 
models, albeit with slightly lower accuracy (>76%; Supplementary Fig. 63b). By performing 
ABC model selection at a tolerance level of 0.005, 0.01, and 0.05 we found that the DP 
model was strongly favoured, resulting in a posterior probability of 99% for the three 
tolerance rates. Together, our analyses support that the Denisovan ancestry in Papuans 
arose from (at least) two distinct introgression events from two Denisovan-related 
populations.  

We next focused on the DP model to infer the different parameters of the two distinct 
Denisovan introgression pulses. For parameter inference, we relied on the full set of 
summary statistics, as these are likely to be more informative for the parameters of interest. 
For example, the length of the S′ introgressed haplotypes are expected to be highly 
informative for estimating the time of introgression. We estimated the performance of our 
ABC approach using only summary statistics with a correlation coefficient (r) higher than 0.1 
to the parameter of interest (Supplementary Fig. 64). Based on prediction error (PE) as a 
performance measure, we found a high accuracy for the estimation of the divergence time 
between the introgressing Denisovan lineages and the Altai Denisovan, but only relatively 
moderate and low accuracy for the estimation of the time of introgression of these Denisovan 
components into Papuans and the introgression rate, respectively (Supplementary Fig. 65). 
We therefore caution in interpreting these parameter estimates. Assuming a 29-year 
generation time, the divergence times of the two distinct Denisovan lineages to the Altai 
Denisovan were dated to 409 ka (95% CI: 335–497 ka), and 222 ka (95% CI: 174–263 ka), 
respectively (Supplementary Fig. 66). The introgression pulses from these two lineages were 
dated to 25 ka (95% CI: 15–35 ka), and 46 ka (95% CI: 39–56 ka), respectively. Lastly, we 
estimated similar levels of Denisovan introgression rate for these two events, with a point 
estimate of 2.7% (95% CI: 1.1–4.6%) for the more recent pulse, and a point estimate of 3.2% 
(95% CI: 1.2–5.1%) for the more ancient pulse.  
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Our results are in agreement with those previously obtained by Jacobs et al. (2019)92, 
supporting the presence of two deeply divergent Denisovan lineages in Papuans. However, 
we note that in the model proposed in the aforementioned study, the oldest introgression is 
from a Denisovan lineage more distantly related to the Altai Denisovan genome, than the one 
introgressing more recently. Conversely, in our model, the oldest introgression event is from 
a Denisovan lineage more closely related to the Altai Denisovan genome, than the 
Denisovan lineage introgressing more recently. In order to formally choose between these 
two models, we simulated an extra set of 50,000 simulations under each model. We used the 
same set of summary statistics as previously described, but used as limits for the uniform 
parameter priors the 95% CIs reported in this section or those in Jacobs et al. (2019), to 
simulate each model accordingly. A goodness-of-fit test showed that only our model was 
able to reproduce observed S′-based summary statistics (goodness-of-fit for our model: P-
value>0.05, versus goodness-of-fit for Jacobs’ model: P-value<0.01). By performing ABC 
model selection at a tolerance level of 0.005, 0.01, and 0.05, we found that our model was 
strongly favoured, resulting in a posterior probability of 99% for the three tolerance rates.  
 
Interpretation 
Our results support the presence of two deeply divergent Denisovan-related lineages in 
modern Papuans. In contrast to a previously proposed model92, we favour a scenario in 
which the more distantly Denisovan-related lineage introgressed with Papuans more 
recently. Given the geographic location of the Altai Denisovan, we consider this model as 
more parsimonious: it suggests that the ancestors of Papuan-related populations, as they 
migrated from mainland Eurasia to Oceania, introgressed with Denisovan-related groups that 
were increasingly different from the Altai Denisovan. The older Denisovan introgression 
event, dated at 46 ka (95% CI: 39–56 ka) could have occurred before, or very close to, the 
colonization of Sahul. In turn, the more recent Denisovan introgression event occurred likely 
after the initial colonization of Sahul, which fits with our proposed date at 25 ka (95% CI: 15–
35 ka). These results collectively suggest that Papuans received two independent Denisovan 
introgression pulses from two divergent Denisovan lineages, one being probably old and 
potentially representing an introgression event common to populations with Denisovan 
ancestry, followed by another independent pulse specific to Papuan-related populations. 

In Extended Data Figure 10, we show a schematic model recapitulating the history of 
archaic introgression that is consistent with our data. Our results are in agreement with 
previous studies showing that the ancestors of non-Africans experienced a unique 
introgression event from a single Neanderthal population52,56,59,71,92,95. We estimate that 
interbreeding occurred ~61 ka (95%CI: 56–62 ka; Extended Data Fig. 2a, Supplementary 
Table S2), from a Neanderthal lineage that was closely related to the Vindija Neanderthal 
(divergence time at 122 ka [95%CI: 107–128 ka]). 

Conversely, we infer at least three independent introgression events from Denisovans into 
modern humans, and report suggestive evidence for a fourth event. The oldest inferred event 
of interbreeding occurred in the ancestors of Papuan-related groups, who were probably also 
the ancestors of Australian and Philippine Agta5,7,86,91, ~46 ka (95% CI: 39–56 ka) from a 
lineage that diverged 222 ka (95%CI: 174–263 ka) from the Altai Denisovan. A putative 
location would therefore appear to be either in mainland Asia or in the Sunda Shelf, before 
the divergence of these populations. As East Asians carry only trace amounts (<1%) of this 
introgression event, we suggest the Denisovan ancestry in these populations was likely 
acquired through gene flow from Near Oceanians or Philippine ‘Negritos’.  

The second Denisovan introgression event was estimated to occur ~25 ka (95% CI: 15–
35 ka), from a very divergent Denisovan lineage to the Altai Denisovan (divergence 
estimated at 409 ka [95%CI: 335–497 ka]). Evidence for interbreeding is restricted to PNG 
and Papuan-related populations from nearby islands. The estimated date suggests that the 
introgression event may have occurred in Sundaland or even further east of the Wallacea 
line.  

The third Denisovan interbreeding event is inferred in East Asians, from a Denisovan 
lineage closely related to the Altai Denisovan, as recently reported71,92. We date this 
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introgression to ~21 ka (95% CI: 15–26 ka; Supplementary Table 7). Given the strong 
genetic similarity of this Denisovan lineage with the Altai Denisovan, it is possible that the 
introgression event occurred in mainland Asia. The presence of this Denisovan component in 
the Philippine Agta and western Eurasians could have been acquired through gene flow with 
East Asian groups.  

Lastly, although we infer that part of the Denisovan ancestry detected in the Philippine 
Agta was inherited through a common introgression event with PNG (Supplementary Note 
11), the fact that (i) the Denisovan ancestry in Agta is disproportionately high, given their 
Papuan-related ancestry, and (ii) they show a total proportion of Denisovan ancestry 
comparable to that of PNG, despite their high East Asian–related ancestry (Extended Data 
Fig. 1), suggest that an additional, independent introgression event occurred in the ancestors 
of this Philippine group7. 
 

 
 
Supplementary Figure 62. A priori check and performance evaluation of the ABC approach used to 
differentiate between the single-pulse and double-pulse models of Denisovan introgression in PNG. a, 
PCA of the ABC summary statistics obtained for the two simulated introgression models (90% 
coloured contours) and the observed data (black square). b, Confusion matrix showing cross-
validation prediction accuracy at different tolerance rates. SP and DP stand for single-pulse and 
double-pulse models of Denisovan introgression, respectively. 
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Supplementary Figure 63. A priori check and performance evaluation of the ABC approach used to 
differentiate between the single-pulse and double-pulse models of Denisovan introgression in PNG, 
based only on Denisovan match rate summary statistics. a, PCA of the ABC summary statistics 
obtained for the two simulated introgression models (90% coloured contours) and the observed data 
(black square). b, Confusion matrix showing cross-validation prediction accuracy at different tolerance 
rates. SP and DP stand for single-pulse and double-pulse models of Denisovan introgression, 
respectively. 
 
 

 
 
Supplementary Figure 64. Pearson correlation coefficients between parameters and summary 
statistics employed in the ABC approach.  
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Supplementary Figure 65. Performance of the ABC estimation of parameters in the double pulse 
model of Denisova introgression. Prediction errors (PE), as a measure of the ABC performance for 
three different tolerance rates, are shown in the upper-left corner of each panel.  
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Supplementary Figure 66. ABC estimation of the parameters of the double pulse model of Denisovan 
introgression in Papuans. Prior (grey area) and posterior (red and black lines) distributions are shown 
for the split time between Denisovan lineages and the Altai Denisovan (TDR2-Deni Altai and TDR3-Deni Altai), 
the time of introgression (Tintrogression-DR2 and Tintrogression-DR3) and the introgression rate (αDR2 and αDR3) of 
the two distinct Denisovan lineages into PNG. Black and red curves indicate posterior distributions 
obtained with the rejection algorithm and neural networks, respectively.  
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Supplementary Note 13: Exploring Unknown Archaic Introgression 
 
Rationale 
The S′ approach is aimed at detecting introgressed haplotypes without the need of an 
archaic reference genome71. We therefore sought to characterize S′ introgressed haplotypes 
from archaic hominins other than Neanderthals or Denisovans, as they may potentially reveal 
introgression from unknown archaic humans. Notably, given the presence of archaic 
hominins in the Philippines (Homo luzonensis)96 and Indonesia (Homo floresiensis)97, it is of 
interest to study potential unknown archaic ancestry in the Agta and Cebuano from the 
Philippines.  
 
Methods 
To retain only S′ haplotypes introgressed from a potentially unknown hominin, we removed S′ 
haplotypes that are likely to be of either Neanderthal or Denisovan origin, based on their 
overlap with Neanderthal or Denisovan haplotypes detected by the CRF approach 
(Supplementary Note 8). To further characterize these S′ haplotypes, we estimated their 
match rate to the Vindija Neanderthal and Altai Denisovan genomes.  
 
Results 
The total amount of S′ haplotypes retrieved among populations showed that, as expected, 
populations harbouring both Neanderthal and Denisovan ancestry have the highest number 
of S′ haplotypes (Extended Data Fig. 4a). Note that S′ is estimated at the scale of the 
population sample, and we are simply analysing the total number of retrieved S′ haplotypes, 
so the highest numbers of introgressed S′ sequences are found among population samples 
with the largest sizes (Supplementary Table 1). We next removed S′ haplotypes of either 
Neanderthal or Denisovan origin, as determined by the CRF method. As expected, we 
observed a strong reduction in S′ haplotypes in populations with high levels of Neanderthal 
and Denisovan ancestry (Extended Data Fig. 4a), particularly in PNG, Papuan-related and 
Agta populations. 

Characterizing these patterns in west Eurasians can be particularly informative as these 
populations carry minimal levels of Denisovan ancestry, as previously observed92, and all S′ 
haplotypes should mostly be of Neanderthal origin. Accordingly, we observed a strong 
reduction of S′ sequences after removing Neanderthal haplotypes in this population group. 
Nevertheless, we observed a moderate reduction in the amount of S′ haplotypes in west 
Eurasians after removing Denisovan haplotypes (Extended Data Fig. 4a). Two patterns might 
explain this observation. First, in contrast to the CRF approach, the S′ approach detects 
introgressed haplotypes at the population level, and thus detects significantly longer 
haplotypes, as it basically concatenates several distinct introgressed haplotypes across 
chromosomes71. A single S′ haplotype can therefore overlap with several Neanderthal and/or 
Denisovan CRF haplotypes from different individuals. Second, it is also possible that these S′ 
haplotypes are false positives, or that the pattern is due to the low sensitivity of the CRF 
method to detect introgressed haplotypes, together with the stringent posterior probability 
threshold (set as >0.90) used to call CRF introgressed haplotypes (Supplementary Note 8).  

To further characterize the remaining S′ haplotypes, we estimated their match rate to the 
Vindija Neanderthal and Altai Denisovan genomes. Noticeably, we found that several S′ 
haplotypes have high match rates to Vindija Neanderthal or Altai Denisovan (Supplementary 
Fig. 67). These S′ haplotypes are likely archaic segments of Neanderthal or Denisovan origin 
that were not detected by the CRF approach. This is most apparent in the west Eurasian 
population, where the majority of S′ haplotypes are located below the diagonal, and with high 
Neanderthal match rate values, similar to those found in our original S′ analysis 
(Supplementary Note 9). Likewise, in PNG, we observed several S′ haplotypes that are 
located above the diagonal and with a high match rate to the Denisovan genome. We also 
observed several S′ haplotypes that are of clearly ambiguous origin. This is most evident in 
the Agta, Cebuano, and East Asian populations, where many S′ haplotypes show a similar 
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match to the Vindija Neanderthal and Altai Denisovan (i.e. located at the diagonal), which 
resulted in a strong correlation (see R2 values in Supplementary Fig. 67). We therefore 
removed all S′ haplotypes with a match rate higher than 1% to either the Vindija Neanderthal 
or Altai Denisovan genome. The remaining S′ haplotypes, which we termed S′NoArchaicLowMatch, 
do not overlap with CRF Neanderthal or Denisovan haplotypes.  
 

 
Supplementary Figure 67. Match rate of S′ haplotypes to the Vindija Neanderthal and Altai 
Denisovan, after removing those that overlap with CRF haplotypes. The coloured line indicates the 
best fit regression line, and the black, dashed line, the identity line. The number of haplotypes used to 
compute the correlation, as well as the linear equation, the correlation coefficient R² and the 
corresponding P-value, are shown inside each panel.  

 
After removing all haplotypes of potential Neanderthal or Denisovan origin based on the 

CRF method and estimated match rates, we retained a total of 59 S′ haplotypes among all 
populations (Extended Data Fig. 4b). If introgression occurred from an unknown archaic 
hominin and is present in some groups and not others (e.g. a local Homo erectus population 
in Southeast Asia, or Homo luzonensis), we would expect to find that the remaining S′ 
haplotypes are not shared among populations. In contrast with this expectation, we found 
that most of these remaining S′ haplotypes are shared (Extended Data Fig. 4b). For example, 
we observed that all haplotypes in west Eurasians and Polynesian outliers are shared with 
other populations. Across the remaining populations, we also observed that ~50% of these 
haplotypes can be found in other populations. Further characterizing the S′ haplotypes that 
are unique to specific populations, we only retained <2 Mb of introgressed material per 
population group (Supplementary Fig. 68). For example, less than 1Mb of S′ haplotypes were 
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detected in the Agta and Cebuano from the Philippines, our two populations of interest. 
Overall, these results suggest limited evidence of introgression from hominins other than 
Neanderthal and Denisovan in Philippine populations, or, alternatively, that these hominins 
were closely related to Neanderthals or Denisovans. 

 
 

 
Supplementary Figure 68. Total amount of population-specific S′NoArchaicLowMatch haplotypes. For each 
population, the number of haplotypes used to compute the total amount of population-specific 
S′NoArchaicLowMatch haplotypes is shown in brackets, next to the population label.  
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Supplementary Note 14: Adaptively-Introgressed Haplotypes 
 
Methods 
Two recently developed statistics have been used to detect candidate regions for adaptive 
introgression (AI), based on the number and derived allele frequency of sites that are 
uniquely shared between archaic hominins and modern humans98. Briefly, under AI, one 
would expect to find archaic introgressed alleles at high frequency in a population known to 
carry archaic ancestry, but absent (or at very low frequency) in a population without archaic 
ancestry. The 𝑄95(𝑤, 𝑦, 𝑧)98 is defined as the 95th percentile of derived allele frequencies 
within a genomic window in a target population, where the derived allele frequency of these 
sites in an outgroup population (i.e. a population without the archaic ancestry of interest) is 
lower than 𝑤is higher than 𝑦 in an archaic hominin, but lower than 𝑧 in a different archaic 

hominin. Throughout this section, we refer to 𝑤, 𝑦, and 𝑧 as the derived allele frequency in 
Africans, the Vindija Neanderthal genome, and the Altai Denisovan genome. To find 

Neanderthal-specific AI genomic windows, we therefore defined the 𝑄95𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 statistic 
as: 
 
𝑄95𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙(𝑤 =  0.01, 𝑦 =  1, 𝑧 =  0). 
 
For the sake of clarity, this statistic estimates the 95th percentile of the derived allele 
frequencies in a target population that are lower than 1% in Africans, fixed in the Vindija 
Neanderthal genome, but absent in the Altai Denisovan genome. Likewise, we defined the 
𝑄95𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎 statistic as: 
 

𝑄95𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎(𝑤 =  0.01, 𝑦 =  0, 𝑧 =  1). 
 
We also computed a complementary statistic – the 𝑈(𝑤, 𝑥, 𝑦, 𝑧) statistic98. Unlike the 𝑄95 
statistic, this statistic counts the number of sites within a genomic window where a target 

population has a derived allele frequency higher than 𝑥, where the derived allele frequency in 
an outgroup population is lower than 𝑤, and where the derived allele frequency in an archaic 

hominin is higher than 𝑦, but lower than 𝑧 in a different archaic hominin. In the original 
study98, the authors set the derived allele frequency 𝑥 to 20%, 30% or 50%. This is a sensible 
approach as the archaic ancestry between different populations may vary greatly, and setting 
a unique threshold of derived allele frequency 𝑥 for all populations of interest can result in a 
very lenient or conservative statistic. Instead of using several different thresholds, we 

decided to set a single derived allele frequency threshold 𝑥 for each target population 
separately by computing the 𝑄95(𝑤, 𝑦, 𝑧) statistic using all sites across the genome. We term 

this statistic 𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝐴𝑟𝑐ℎ𝑎𝑖𝑐. The 𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 and 𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎 values used 
to compute the U-statistic in each population are reported in Supplementary Table 13. Note 

that for the Atayal and Paiwan populations, the 𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎 threshold is zero, which 
would mean that any site that is fixed in the Altai Denisovan (but absent in the Vindija 
Neanderthal genome) and at lower frequency than 1% in Africans would count towards the 

U-statistic computed in these populations. We defined the 𝑈𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 statistic as follows: 
 

𝑈𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙(𝑤 =  0.01, 𝑥 =  𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙, 𝑦 =  1, 𝑧 =  0). 
 
For the sake of clarity, this statistic estimates the number of sites that have a derived allele 
frequency higher than the population specific 𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝑁𝑒𝑎𝑛𝑑𝑒𝑟𝑡ℎ𝑎𝑙 value, lower than 1% in 
Africans, fixed in the Vindija Neanderthal genome, but absent in the Altai Denisovan 

genome. Analogously, we defined the 𝑈𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎 statistic as: 
 

𝑈𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎(𝑤 =  0.01, 𝑥 =  𝑄95𝐺𝑒𝑛𝑜𝑚𝑒 𝐷𝑒𝑛𝑖𝑠𝑜𝑣𝑎 , 𝑦 =  0, 𝑧 =  1). 
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Given that there is only one archaic genome available for the analysis, a fixed or absent 
allele simply refers to a homozygous state for one allele or the other. We did not include the 
Altai Neanderthal in this analysis, as this individual is thought to be more distantly related to 
the Neanderthal population that introgressed with modern humans56. Our analyses, using D-
statistics, confirmed this observation by showing that our target populations share 
significantly more derived alleles with the Vindija Neanderthal than with the Altai Neanderthal 
(Z-score > 2 for all populations comparisons) (Supplementary Fig. 69). 

 

 
Supplementary Figure 69. Derived allele sharing between Vindija Neanderthal or Altai Neanderthal 
and modern human populations. a, Derived allele sharing using the Chimpanzee or b, Africans as 
outgroup populations. Points show derived allele sharing (D-statistic) and bars show two standard 
errors from the point estimate computed via a weighted-block jackknife procedure. Population sample 
sizes are reported in Supplementary Table 1. 

 
We computed 𝑈 and 𝑄95 statistics in 40-kb non-overlapping windows along the genome 

of all target populations, with the exception of PNG16 and Nakanai Bileki15 individuals, 
because of ethical restrictions in this regard. We decided to use this window size because 
the mean length of introgressed haplotypes in ref.59 was ~44kb. For both statistics, we used 
all 35 Africans from the SGDP dataset17 as the outgroup population. We defined the 
ancestral/derived states of alleles using the chimpanzee reference genome and removed 
sites with any missing genotype, and discarded genomic windows with less than 5 sites, 
leaving a total of ~65,000 non-overlapping genomic windows in each population. Lastly, our 
candidate genomic windows of AI were considered as those with both 𝑈 and 𝑄95 statistics 
values in the top 0.5% of their respective genome-wide distribution (Supplementary Tables 
14 and 15). Custom-generated codes to compute 𝑈 and 𝑄95 statistics are available on 
GitHub (www.github.com/h-e-g/evoceania). 
 
Results 



 100 

We identified a number of novel hits for Neanderthal adaptive introgression in the Pacific 
(Fig. 4a), many of which were shared among populations of the same ancestry 
(Supplementary Fig. 70 and Supplementary Table 14). For example, we detected a 
Neanderthal-introgressed ~18kb-long haplotype at high frequency in Near and Remote 
Oceanians (ranging from ~20% to >60%), which encompasses the 5’-UTR and intronic 
region of the KRT80 gene (Extended Data Fig. 5c; left panel). KRT80 is a protein-coding 
gene that encodes a type II epithelial keratin. Keratins are intermediate filament proteins 
responsible for the structural integrity of epithelial (skin) cells99. In accordance with a 
Neanderthal origin, the derived allele of the top archaic-like SNP (aSNP) (rs2360653-C) is 
found at moderate frequencies in Europeans and South East Asians, at low frequencies in 
East Asians, and is absent in sub-Saharan Africans from the 1000 Genomes Project43 
(Extended Data Fig. 5c; middle panel). Among Oceanian populations, the highest frequency 
is observed in PNG, Remote Oceanians and the Agta (Extended Data Fig. 5c; right panel). 
Notably, this aSNP acts as an expression quantitative trait locus (eQTL) of KRT80 in sun 
exposed skin tissue (P-value = 6.1x10-5; GTEx data100). The putative introgressed C allele is 
associated with a lower expression. This observation is in line with a recent study showing 
that Neanderthal introgressed alleles influence disease risk, including skin lesions resulting 
from sun exposure (i.e., keratosis)101. Our findings provide further support to the notion that 
Neanderthal alleles have been adaptive in different human populations due to their effects on 
skin87,88,102, but it remains unclear how Oceanian populations benefited from Neanderthal 
alleles that reduce the expression of keratinocyte-related genes.  

Another pertinent example of Neanderthal adaptive introgression in Oceanians was 
detected at the metabolism-related TBC1D1 gene (Extended Data Fig. 5d), in line with other 
studies highlighting genes affecting lipid metabolism, type 2 diabetes risk, adipose tissue 
differentiation and body fat distribution103,104. TBC1D1 transcripts have been reported to be 
highly expressed in skeletal muscle and adipose tissue105 and are regulated through muscle 
contraction and energy depletion106,107. Furthermore, mutations at the human and murine 
TBC1D1 have been associated with obesity108-110. In accordance with a Neanderthal origin, 
the derived allele of the top TBC1D1 aSNP (rs2303423-C) is found at low frequencies in 
Europeans, moderate frequencies in South and East Asians, and absent in sub-Saharan 
Africans from the 1000 Genomes Project43 (Extended Data Fig. 5d; middle panel). Among 
Oceanian populations, the top aSNP was found at the highest frequency in PNG (derived 
allele frequency [DAF] = 71%), Papuan-related Remote Oceanians (DAF ranging from ~30 to 
60%), and, notably, in Polynesian outliers from Tikopia, where it is almost fixed (DAF = 90%) 
(Extended Data Fig. 5d; right panel). None of the aSNPs present in the Neanderthal 
introgressed haplotype have been reported to be associated with any trait by GWAS (as of 
March 27, 2020). Future functional studies should help to clarify the effect of this novel 
candidate introgressed variant on metabolic or obesity-related traits, given the growing health 
concern that obesity represents in this region of the world111. 

We also identified a number of novel hits of adaptive introgression from Denisovan (Fig. 
4a), which were often shared among populations of the same ancestry (Supplementary Fig. 
71 and Supplementary Table 15). For example, we found a ~30kb-long introgressed 
haplotype at CD33, which plays a key role in mediating cell-cell interactions and maintaining 
immune cells in a resting state112. This haplotype contains 7 high-frequency variants, 
including a non-synonymous variant predicted to be deleterious (rs367689451-A; SIFT score 
= 0) that is >66% frequency and is restricted to Oceanians (Extended Data Fig. 5a). We 
found that the frequency of Denisovan introgressed alleles at CD33 were significantly higher 
than that of other genome-wide Denisovan-introgressed SNPs, in all groups independently of 
their levels of Papuan-related ancestry (Mann-Whitney U test; P-value<1.5×10-6), indicating 
that high Papuan ancestry is unlikely to explain the Denisovan adaptive signal at this locus. 
We also detected a strong signal at IRF4, which presents a ~29kb-long haplotype with 13 
high-frequency variants at 64% frequency in the Agta (Extended Data Fig. 5b). IRF4 
regulates interferon responses to viral infections and Toll-like-receptor signalling113. 
Furthermore, we identified a ~78kb-long introgressed haplotype at high frequency among 
Near and Remote Oceanian populations (ranging from ~30% to >50%), which encompasses 
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the 5’-UTR and intronic region of the JAK1 gene (Extended Data Fig. 5e), a key mediator of 
cytokine signalling during important developmental, immune, and inflammatory 
responses114,115. The archaic allele with the highest derived frequency (rs368334238-A), 
which is located in the first intron of JAK1, is absent from all Africans and Eurasians, 
consistent with an introgression event from Denisovans into the common ancestors of 
Oceanian populations. 

Another Denisovan adaptively introgressed signal includes a ~37kb-long haplotype, 
encompasses the BANK1 gene, at high frequencies among populations with East Asian-
related ancestry (ranging from ~15% to 37%) (Extended Data Fig. 5f; left panel). BANK1 
encodes a B-cell-specific scaffold protein that functions in B-cell receptor-induced calcium 
mobilization from intracellular stores116. Several variants in the BANK1 gene have been 
associated with systemic lupus erythematosus (SLE), a prototypical autoimmune disease 
characterized by loss of immune tolerance to nuclear and cell surface antigens117. Although 
GWAS of SLE have been conducted in East Asians118-120, none of the associated variants 
reported in the GWAS catalog included any of the high-frequency introgressed variants (as of 
April 1, 2020). In accordance with a Denisovan introgression event, the derived allele of the 
top archaic SNP (aSNP) (rs17031656-T) is absent among Africans and Europeans, and is 
only present in Southeast Asians from the 1000 Genomes Project43 (Extended Data Fig. 5f; 
middle panel). Among Pacific populations, its highest frequency is found in the Cebuano 
(DAF = 37%) and Agta (DAF = 14%) from the Philippines, and the Atayal and Paiwan 
(DAF~15%) from Taiwan. In the remaining populations, its frequency is < 5%, being 
completely absent in PNG (Extended Data Fig. 5f; right panel). This frequency distribution 
suggests that this variant has been acquired through a Denisovan population that 
introgressed exclusively in the ancestors of East Asians. Notably, several other studies have 
shown that archaic introgressed alleles can influence present-day risk of autoimmune 
diseases in humans. Recent examples include signals of Neanderthal introgression in the 
chemokine receptor (CCR) gene family constituting the risk alleles for celiac disease121, in 
the ZNF365D gene that is associated with a higher risk of Crohn’s disease87, and in the 
TLR6-1-10 gene cluster that has been associated with greater susceptibility to allergies122,123. 
In light of this, the introgressed signal of Denisovan origin at BANK1 may represent another 
case of evolutionary mismatch in modern humans, i.e., alleles that were beneficial in the past 
have become detrimental after important environmental changes121-123. 
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Supplementary Figure 70. Genomic regions showing the strongest evidence of adaptive 

introgression from Neanderthal. Each row is a 40-kb window, each column is a Pacific population, and 

each cell is coloured according to whether the window is in the top 0.5%, 1%, 5%, or >5% of the 𝑈 

and 𝑄95 statistics empirical distributions. The 5 most extreme genomic windows detected in 

population groups (Fig. 4a) are shown, and the genes within each window are shown on the right of 

each row.   
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Supplementary Figure 71. Genomic regions showing the strongest evidence of adaptive 
introgression from Denisovan. Each row is a 40-kb window, each column is a Pacific population, and 

each cell is coloured according to whether the window is in the top 0.5%, 1%, 5%, or >5% of the 𝑈 
and 𝑄95 statistics empirical distributions. The 5 most extreme genomic windows detected in 

population groups (Fig. 4a) are shown, and the genes within each window are shown on the right of 
each row.  
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Supplementary Note 15: Gene Enrichment in Archaic Introgression 
 
Introgressed haplotypes of archaic origin 
To conduct enrichment analyses of Neanderthal and Denisovan introgressed haplotypes in 
gene set categories, we merged our Pacific populations into three population groups, based 
on their shared ancestry according to PCA and ADMIXTURE results (Supplementary Note 
3). This included (i) a ‘Papuan group’ that consists of populations with high Papuan-related 
ancestry: PNG (SGDP samples only17), Solomon Islands, Santa Cruz, and the Vanuatu 
archipelago; (ii) an ‘East Asian group’ that consists of populations with high East Asian-
related ancestry: East Asians (SGDP samples only17), Taiwanese indigenous peoples, 
Philippines (Cebuano), and Polynesian outliers; and (iii)  the Philippine Agta. We then 
defined introgressed haplotypes in each population group, as the union of high-confidence 
introgressed haplotypes of Neanderthal or Denisovan origin, identified in each population 
that forms the particular population group (Supplementary Note 8). The union of introgressed 
haplotypes can therefore be thought of as a tiling path of inferred Neanderthal or Denisovan 
haplotypes among each population group. 
 
Controlling for confounding factors 
To establish that archaic introgression, rather than other factors, are driving the enrichment 
at a given gene set category, it is important to define the genomic features that can affect the 
occurrence of introgressed haplotypes across the genome. Based on a recent study124, we 
considered the following genomic features: (i) recombination rate43, (ii) density of conserved 
elements across mammals identified by PhastCons125, (iii) density of regulatory elements 
based on the DNase I segments cumulated across all ENCODE cell types126, (iv) 
deleteriousness based on CADD scores127, and (v) number of SNPs. 

For each autosomal protein-coding gene (Ensembl genes)128, these genomic features 
were measured within 50-kb windows at the genomic centre of each gene, with the exception 
of the recombination rate, which was measured within 200-kb windows centred on genes. 
The reason to use 200-kb windows for the recombination rate estimates is that the sparsity of 
sites within the 1000 Genomes Phase 3 genetic map43 would have resulted in recombination 
rate estimates based on few sites. We only considered genes with a recombination rate 
higher than 0.0005 cM/Mb to distinguish between genes where the recombination rate is 0 
and genes within gaps in the genetic map. Deleteriousness was measured using the mean 
value of CADD scores in each gene. Genes that contained less than 5 sites with a genetic 
map position, less than 5 sites with associated CADD scores, or less than 5 SNPs were 
discarded. 
 
Resampling-based enrichment analysis 
We devised a resampling-based enrichment test for a given gene set (i.e. a set of genes 
composing a particular biological pathway) using a set of ‘control’ genes that were matched 
for all genomic features described above, to obtain empirical null distributions. Specifically, 
we matched each gene for all aforementioned genomic features based on quartiles (i.e. each 
gene was placed into one of four bins for each genomic feature). In doing so, each gene had 
a list of control genes with similar genomic features. As some genes can only have a small 
number of matching control genes (note that, by partitioning five genomic features into 
quartiles, we have 54 = 625 possible bin combinations), we selected for further analysis only 
those genes with at least three matching control genes. The values that defined the quartiles 
for each genomic feature can be found in Supplementary Table 16. For a given gene set, we 
then estimated the number of genes that overlapped introgressed haplotypes. For each gene 
that composed this gene set, we then randomly sampled a control gene to obtain a control 
gene set of the same length. We repeated this resampling 100,000 times to obtain 
resampling P-values. P-values were calculated by counting the proportion of resamples 
where the number of control genes that overlapped with introgressed haplotypes were higher 
than, or equal to, the value observed for the tested gene set. All P-values were then adjusted 
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for multiple testing by the Benjamini-Hochberg method, to account for the number of gene 
sets tested. Gene sets with an adjusted P-value < 0.05 were considered as significantly 
enriched.  
 
Enrichment analysis of adaptively introgressed genes 
To test whether gene set categories are enriched for archaic adaptive introgression, we 

intersected the introgressed haplotypes with significant 𝑈 and 𝑄95 genomic windows 
(Supplementary Note 14). We considered adaptively introgressed haplotypes, in each 
population group, as introgressed haplotypes that significantly overlapped the Neanderthal or 
Denisovan 𝑈 and 𝑄95 genomic windows identified in each population that forms that 

population group. For this analysis, we considered adaptively introgressed 𝑈 and 𝑄95 
genomic windows as those in the top 5% of their respective distribution. Note that this subset 
of introgressed haplotypes is composed of introgressed haplotypes at high frequency, a 
hallmark of positive selection. We then carried out the resampling-based enrichment test 
using only adaptively introgressed haplotypes as described in the section above. 
 
Gene set categories 
We considered the following gene set categories for the resampling-based enrichment 
analysis: (i) KEGG129, (ii) Wikipathways130, (iii) the GWAS catalog131, and (iv) Gene Ontology 
(GO) (including biological process, molecular function, and cellular component)132. For the 
GO enrichment analysis, we restricted the list of GO terms to those between levels 3 and 7, 
to avoid redundancy. Furthermore, we analysed additional gene set categories, including 
1,553 manually-curated genes involved in innate immunity123, and 1,257 genes whose 
products are known to have physical interactions with viruses (VIPs)124. To limit the effect of 
genomic clusters of genes on the enrichment analysis, we only retained genes that were less 
than 200kb apart from the centre of other genes present in a given gene set category. In 
practice, for each gene set category, we calculated the distance between the gene centre for 
all pairs of genes, and removed the gene that had the highest number of genes within 200 kb 
from its genomic centre. Gene set categories with less than 10 genes after this procedure 
were discarded. 
 
Results 
In Papuan-related populations, we detected a significant enrichment in introgressed 
haplotypes at genes associated with BMI and obesity-related traits (FDR P-value < 0.05; 
Supplementary Table 17), suggesting preferential retention of archaic alleles in pathways 
related to lipid metabolism. In line with a role of archaic introgression in immune 
responses123,124, we found that VIPs124 were enriched in Denisovan-introgressed genetic 
material, and genes affecting ‘immune response to measles’ were enriched in signals of 
adaptive Neanderthal introgression (Supplementary Tables 17 and 18). In East Asian-related 
populations, genes affecting ‘apoptotic cellular response to stress’ and ‘cancer’ were 
enriched in Neanderthal ancestry and signals of adaptive introgression. Furthermore, we 
found an enrichment of adaptive Denisovan-introgressed genetic ancestry among genes 
related to ‘sleep duration’, presumably because of adaptation to daytime variation with 
latitude (Supplementary Table 17 and 18). Lastly, in the Philippine Agta, we found an 
enrichment of Neanderthal adaptive introgression at several pathways related to general 
cellular functions, and notably, an enrichment of Denisovan adaptive introgression at genes 
associated to obesity-related phenotypes (Supplementary Table 18).  
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Supplementary Note 16: Genome Scans for Classic Sweeps 
 
Rationale 
We searched for signatures of positive selection under the classic sweep model, by 
considering five different analyses (Supplementary Fig. 72 and Supplementary Table 19), 
which broadly correspond to different branches of the population tree where positive 
selection may have occurred.  
 
- Analysis 1: Detection of positive selection occurring in the ancestral population of 

Oceanians (populations with predominantly Papuan-related ancestry). To identify these 
signals, we searched for classic sweeps that are common to populations from PNG 
(SGDP samples17), the Solomon Islands and Vanuatu (note that populations from the 
Bismarck archipelago alone were not included in the analysis because it was not 
permitted by the informed consent they signed). We computed the inter-population 
statistics described below for each population separately: PNG, Solomon islanders and ni-
Vanuatu. We used a pool of all populations with East Asian ancestry as reference 
population (East Asians, Taiwanese indigenous peoples and Philippine Cebuano, with the 
exception of Polynesian outliers), and sub-Saharan African or European samples as 
outgroups. 
 

- Analysis 2: Detection of positive selection occurring in the ancestral population of East 
Asians (populations with predominantly East Asian-related ancestry). We followed a 
similar strategy as above. We also computed the inter-population neutrality statistics for 
each population separately: East Asians, Taiwanese indigenous peoples, Philippine 
Cebuano and Polynesian outliers. We used a pool of all populations with high Papuan-
related ancestry as reference population (i.e., PNG, Bismarck, Solomon and Vanuatu 
islanders), and sub-Saharan African or European samples as outgroups. 

 
- Analysis 3: Detection of positive selection occurring in each specific population with 

high Papuan-related ancestry. We compared each test population (PNG, Solomon 
Islands and Vanuatu Archipelago) to a reference population composed of a pool of all 
populations with high Papuan-related ancestry (PNG, Bismarck, Solomon and Vanuatu 
islanders), excluding the test population. Sub-Saharan African or European populations 
were used as outgroups.  

 
- Analysis 4: Detection of positive selection occurring in each specific population with 

high East Asian ancestry. We compared each test population (East Asians, Taiwanese, 
Cebuano, and Polynesian outliers) to a reference population composed of a pool of all 
populations with high East Asian-related ancestry (East Asians, Taiwanese indigenous 
peoples, Cebuano, and Polynesian outliers) excluding the test population. Sub-Saharan 
African or European populations were used as outgroups.  

 
- Analysis 5: Detection of positive selection occurring in the Philippine Agta population. 

To identify selection signals in this population, we used inter-population neutrality statistics 
with, as reference populations, either a pool of the Papuan-related or the East Asian-
related populations. Sub-Saharan African or European populations were used as 
outgroups. 
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Supplementary Figure 72. Rationale used for the analyses of classic sweeps.  

 
Methods 
We scanned the genome for candidate loci under positive selection using the inter-population 
LSBL (Locus-specific branch lengths)133 and XP-EHH (cross-population extended haplotype 
homozygosity)134 statistics, combined into a Fisher’s score (FCS). We estimated the FCS as 
the sum of the –log10(percentile rank of the statistic for a given SNP), for all the inter-
population statistics. We defined outlier SNPs as those with an FCS among the 1% highest of 
genome. Putatively selected regions were defined as genomic windows that show a 
proportion of outlier SNPs (i.e., number of outliers SNPs/total number of SNPs in the window) 
among the 1% highest of the genome, after partitioning all windows into five bins based on 
the number of SNPs. The test and reference populations (both for XP-EHH and for LSBL) 
and the outgroup populations (for LSBL) were defined for each analysis as described in 
Supplementary Table 19 and Supplementary Fig. 72. We estimated AMOVA-based FST to 

compute LSBL, and XP-EHH was computed in 100-kb sliding windows with a 50-kb step. 
The derived alleles were determined using the 4-way EPO ancestral sequence from the 1000 
Genomes Project 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/retired_reference/ancestral_alignments/). 
We normalized the XP-EHH scores in 40 separate bins of derived allele frequency. We kept 
only windows with >50 SNPs, and removed 500kb around gaps. Neutrality statistics were 
computed with the optimized, window-based algorithms implemented in selink 
(www.github.com/h-e-g/selink). 
 
Results 
We found 44 candidate genes shared among the three different Papuan-related populations 
from Near and Remote Oceania (i.e., Analysis 1; Extended Data Fig. 6, Supplementary Figs. 
72 and 73 and Supplementary Table 20), among which the strongest hit (P-value < 0.001) 
overlaps the GABRP and RANBP17 genes (Extended Data Fig. 8a,b). We detected 29 
candidate genes that were shared between the four East Asian-related populations (i.e., 
Analysis 2; Extended Data Fig. 9, Supplementary Figs. 72 and 74 and Supplementary Table 
23). The shared region with the highest selection scores (P-value < 0.001) overlaps a ~1Mb-
haplotype encompassing multiple genes (Supplementary Fig. 75), including ALDH2. Among 
ALDH2 variants, the derived allele at rs3809276 is observed at >60% in East Asians, 
Taiwanese indigenous peoples, Philippine Cebuano and Polynesian outliers, while being at < 
15% in Papuan-related groups. ALDH2 deficiency results in adverse reactions to alcohol 
consumption and is associated with increased survival in Japanese135.  
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Supplementary Figure 73. Number of candidate genes for positive selection shared among 

populations of Papuan-related ancestry.  

 

 

 

Supplementary Figure 74. Number of candidate genes for positive selection shared among 
populations of East Asian-related ancestry. 
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Supplementary Figure 75. Top candidate region for a classic sweep shared between four East 
Asian-related populations. a, The genomic region shows significant windows (P-value < 0.001) in the 
four populations tested. Each point in the Manhattan plot represents a SNP. The y axis shows the –
log10(P-value) of the Fisher score for each SNP. b, Population frequencies of the rs3809276 derived 
allele (in purple) in Pacific populations. The map was generated using the maps R package. 



 110 

 
Among population-specific signals, one of the strongest signals was observed in Solomon 

islanders at ATG7 (Supplementary Table 21), which regulates cellular responses to nutrient 
deprivation136, and has been associated with blood pressure137. Putatively selected variants 
at ATG7 reach ~70% frequency in Solomon islanders, 10% in Papuans and < 5% worldwide. 
Another strong population-specific hit was detected at LHFPL2 in Polynesian outliers 
(Extended Data Fig. 8c,d and Supplementary Table 24); variation in LHFPL2 is associated 
with eye macula thickness — a highly variable trait across populations that is responsible for 
sharp vision138. LHFPL2 variants reach ~80% frequency in Polynesian outliers only, in 
particular those from Rennell and Bellona, and are absent from current databases. In the 
Philippine Agta, the second strongest hit was detected at DLEU1 (Extended Data Figs. 6d 
and Supplementary Table 22), which also showed a signal of adaptive Denisovan 
introgression92 (Extended Data Fig. 7). Putatively-selected DLEU1 variants (P-value < 0.002) 
are >83% frequency in the Agta and <50% in other Pacific populations, and include 5 high-
frequency aSNPs likely introgressed from Denisova. Genetic variation at this locus is strongly 
associated with height139 and waist-hip ratio140, suggesting positive selection for introgressed 
archaic variants affecting height in the Agta from the Philippines. 
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Supplementary Note 17: Signals of Adaptive Admixture 
 
Rationale 
Several studies have provided empirical evidence that adaptive introgression – the 
acquisition of adaptive traits through hybridization with closely-related species – is a possible 
source of adaptive variation141-145. We and others have recently showed that, besides 
introgression, gene flow can also promote adaptation by spreading beneficial alleles between 
populations of the same species, a process called ‘adaptive admixture’ or ‘adaptive gene 
flow’25,146-148. Because Oceanian populations globally result from pervasive admixture, to 
different extents, between populations of Papuan-related and East Asian-related ancestry, 
we sought to test if admixed Near and Remote Oceanians (i.e., here populations from the 
Solomon Islands and Vanuatu) have acquired advantageous alleles via gene flow from East 
Asian-related populations (here Taiwanese indigenous peoples and Philippine Cebuano). We 
also tested if Polynesian outliers have acquired advantageous alleles via gene flow from 
Papuan-related groups. We used deviations in local ancestry, combined with signatures of 
positive selection in parental populations, to identify examples of variants under putative 
adaptive admixture, following the procedure described in ref.25. 
 
Local ancestry simulations 
We first used simulations with fastsimcoal246 to estimate the number of standard deviations 
(SD) in local ancestry that is expected under neutrality, and to estimate the window size for 
local ancestry inference with RFMix v.1.5.4 (ref.83). We used the demographic model for 
western Remote Oceanians described in Supplementary Note 4 (Extended Data Fig. 2b and 
Supplementary Table 5) to simulate 20 diploid individuals representing the Paiwan, 20 for the 
Atayal, 40 for PNG and 50 admixed individuals from Vanuatu. We simulated 500 windows of 
100-kb each, concatenated in one chromosome, giving a total of 50Mb per chromosome. We 

set a constant mutation rate of 1.2510-8 mutation/generation/site17,51. The recombination 
rate for each simulated window was estimated by averaging the recombination rate from 
random 100-Kb windows sampled in the 1000 Genomes Phase 3 genetic map43. We kept 
only biallelic sites and alleles with a MAF > 0.01 and ran 100 simulations (Supplementary 
Fig. 76). We estimated local ancestry with RFMix, for 50 admixed, simulated samples from 
the Vanuatu using, as parental sources, a population composed of 40 East Asian (20 Atayal 
and 20 Paiwan) and 40 PNG samples. We used the TrioPhased algorithm implemented in 
RFMix assuming Tadm = 50 generations, 3 EM iterations, a minimum number of 5 reference 
haplotypes per tree node and different runs for window lengths of 0.005, 0.01, 0.02, 0.025, 
0.03, 0.035, 0.04, 0.045, 0.05, 0.1, 0.2 and 0.5 cM, to test for the optimal value 
(Supplementary Fig. 77).  

We selected the window length for which the mean ancestry estimated from RFMix was 
the closest to the admixture proportions estimated by ADMIXTURE33. We reasoned that East 
Asian-related ancestry could be underestimated when using large windows in RFMix, 
because East Asian admixture proportions in western remote Oceanians are low (13% in the 
Malakula population, i.e., the ni-Vanuatu population used to represent western Remote 
Oceanians in the demographic model; Supplementary Note 4). Indeed, a large window in the 
genome of the ni-Vanuatu will typically include few, small East Asian ancestry segments and 
many more Papuan ancestry segments, so RFMix will preferentially assign this window to the 
Papuan major ancestry. To determine the significance threshold of deviations in local 
ancestry, we estimated the number of false positives from the simulated data, according to 
the number of SDs in local ancestry considered. Namely, as the simulations are neutral and 
therefore no selection signals are expected, the proportion of loci with local ancestry higher 

or lower than the genome-wide average  x SD is considered as an estimate of our FPR. We 
calculated the FPR for different x values for each ancestry separately. We estimated a FPR = 

1% at  x = 2.97 or 3.58 SD for Papuan and East Asian ancestries, respectively 

(Supplementary Fig. 78), therefore we set a threshold of x  3 SD for both ancestries. We 
also checked whether our approach was impacted by phasing errors. We estimated our FPR 
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using the same simulations, except that we created unphased diploid individuals from the 
simulated haploid data, and phased simulated samples using SHAPEIT2 (refs.84,85) with the 
same parameters as for the observed data. RFMix was run on the phased simulated data 
using the same parameters as before, except that we used the PopPhased algorithm. Under 

these conditions, we estimated a FPR = 1% at  x = 2.83 or 2.84 SD for Papuan and East 
Asian ancestries, indicating that our approach has low FPR, even in the presence of phasing 
errors. 
 

 

Supplementary Figure 76. Genetic ancestry analyses of a representative simulation of the parental 
and admixed populations. a, ADMIXTURE clustering analysis, b, Distribution and mean (dashed line) 
of the genome-wide ancestry of 50 simulated Vanuatu samples, based on local ancestry inference by 
RFMix performed for 100 simulations, with a window size of 0.03 cM. 
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Supplementary Figure 77. Simulation-based estimation of RFMix parameters. Number of SNPs per 
window considering a window size of 0.03 cM in a, the observed data and b, the simulated data. c, 
Mean ancestry estimated with RFMix for different window sizes (in cM) in the simulated data. The 
window size for which RFMix estimates ancestry proportions closer to the simulated value (dashed 
line) is considered the best (0.03 cM). 
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Supplementary Figure 78. False positive rates (FPR) for a genome scan of adaptive admixture. FPR 
was estimated based on neutral simulations. Results are shown for different significance thresholds, 

based on standard deviations (SD) from the genome-wide average of local ancestry. 
 
Local ancestry inference 
To estimate local ancestry in the genomes of the studied populations, we used RFMix v.1.5.4 
(ref.83), with the same parameters as for the simulations, but allowing for phase correction 
(using the PopPhased algorithm implemented in RFMix) and fixing the window length to the 
optimal value of 0.03 cM (Supplementary Fig. 77). We set two groups of parental 
populations, one for the Papuan-related ancestry and another for the East Asian-related 
ancestry. In the first group, we included all the populations in the dataset from PNG (i.e., 
Bundi, Kundiawa, Marawaka, Mendi, Tari and Papuan_SGDP from refs.16,17). In the second 
group, we included Taiwanese indigenous peoples (Atayal and Paiwan Ami_SGDP, and 
Atayal_SGDP from ref.17) and the Cebuano from Philippines. The admixed populations for 
which we computed local ancestry were those from the Solomon Islands (Vella Lavella and 
Malaita), Vanuatu (Ureparapara, Santo, Malakula, Ambae, Maewo, Pentecost, Ambrym, 
Emae, Efate and Tanna), Polynesian outliers (Rennell, Bellona and Tikopia), and the 
Philippine Agta. Populations in each of the four population groups were analysed together. 
We kept only SNPs with a MAF > 0.01, leaving a total of 7,875,602 SNPs. We removed sites 
with a posterior probability lower than 0.9 from the local ancestry results. We also excluded 
centromeres, based on UCSC annotations149, and 2Mb from the telomeres of each 
chromosome. To identify deviations in local ancestry, we estimated the proportion of 
ancestry in 100-Kb windows.  
 

Results 
No signals of post-admixture selection were detected at genes with classic sweep signals, 
such as RANPB17, GABRP and ALDH2, supporting the ancient nature of these selection 
events (Supplementary Table 25). We observed a unique, significant increase in East Asian 
ancestry among Vanuatu and Solomon islanders at the BROX gene (Supplementary Fig. 
79). This gene includes a Bro1 domain that participates in the virus budding machinery, by 
interacting with the virus nucleocapsid and stimulating the production of virus-like particles150. 
Intriguingly, BROX showed a strong, classic sweep signal only in PNG (Supplementary Fig. 
79). This suggests strong, local adaptation of PNG after their divergence from other 
Oceanians, resulting in PNG being a poor proxy, at the locus, of the Papuan-related source 
population of admixed Oceanians, when performing local ancestry inference. Alternatively, 
this may suggest post-admixture selection for the East Asian haplotype in populations from 
the Solomon and Vanuatu Archipelagos.  
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Supplementary Figure 79. Putative local signal of adaptive admixture in admixed Oceanians. Local 
proportions of East-Asian ancestry at the candidate locus in admixed populations from a, the Vanuatu 
and b, the Solomon Islands. c, Genes of the genomic region that shows an excess of East-Asian 
ancestry (top panel). Local signal of positive selection for Papuans (Analysis 1) and East Asians 
(Analysis 2) at the candidate locus (middle panel). The y axis shows the –log10(P-value) of the 
combined Fisher score (FCS). Each point is a SNP. Derived allele frequency of SNPs at the locus, in 
the admixed Oceanian populations and the parental populations (bottom panel). The SNP with the 
highest FCS is highlighted (rs118050369). 
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Supplementary Note 18: Signals of Polygenic Adaptation 
 
Rationale 
Because the genetic architecture of most adaptive traits is expected to be polygenic151,152, we 
searched for evidence, in Pacific populations, of directional selection on candidate traits 
whose genetic architecture has been well described by genome-wide association studies 
(GWAS). Building upon previous work153,154, we used an approach that tests if the integrated 
haplotype scores (iHS) of trait-increasing alleles are significantly different from those of 
random SNPs with similar allele frequency. This approach does not rely on effect size 
estimates, which can be biased due to partial correction for population stratification, resulting 
in spurious signals of polygenic selection155,156. Instead, it relies on the assumption that 
alleles affecting traits are the same in Oceanians and Europeans, and, moreover, that these 
alleles affect traits in the same direction. In light of these assumptions, which are relatively 
strong, we used in parallel an independent approach that tests for the co-localization of 
selection signals and trait-associated genes; this window-based approach makes the 
assumption that the same genomic regions affect the traits of interest in all human 
populations.  
 
SNP-based approach 
Methods. We obtained GWAS summary statistics for 25 candidate traits from the UK Biobank 
database157 (http://www.nealelab.is/uk-biobank), which are less biased by population 
stratification than previous GWAS155,156. Traits were considered of interest if they are related 
to morphology, metabolism and immunity, as these phenotypes are strong candidates for 
responses, through natural selection, to changes in climatic, nutritional and pathogenic 
environments. We first classified SNPs as increasing or decreasing the candidate trait, based 
on the sign of UK Biobank effect sizes (β), considering a significance threshold of P-value ≤ 

510-8. A negative β indicates that the alternate allele is trait-decreasing, while a positive 
value indicates that it is trait-increasing. We thus changed the sign of β values when the 
alternative allele was ancestral (and the reference was derived), so that the sign of β values 
indicates the effect of the derived allele on the trait of interest. Next, we computed iHS (iHS = 
ln(iHHa/iHHd)) using selink (www.github.com/h-e-g/selink), for each SNP and population, and 
standardized scores in 100 bins of DAF. We then polarized iHS, following previous 
studies153,154, so that positive iHS indicates directional selection of the trait-decreasing allele, 
while negative iHS indicates directional selection of the trait-increasing allele. To do so, we 
simply changed the sign of iHS for the derived alleles with a negative β. We called the 
resulting statistic the polarized trait-iHS (tiHS). 

To test if a trait is under directional selection, we first kept, for each trait, trait-associated 
variants that are unlinked. Specifically, we partitioned the genome into 100-Kb non-
overlapping contiguous windows, and kept for each window the variant with the lowest 
association P-value. We then compared the mean tiHS of the x independent, trait-associated 
alleles to the mean tiHS of 100,000 random samples of x SNPs with similar DAF, Genomic 
Evolutionary Rate Profiling (GERP) score158, and surrounding recombination rate (based on 
1000 Genomes phase 3 genetic map43), to account for the effects of background selection. 
GERP, recombination rate and DAF were grouped into 8 bins. We considered that directional 
selection has increased (or decreased) the trait if less than 2.5% (or 0.05% or 0.005%) of the 
resampled sets have a mean tiHS that is lower (or higher) than the observed tiHS, which we 
considered as empirical P-values. We adjusted P-values for multiple testing with the 
Benjamini-Hochberg method, to account for the number of traits and populations tested. 

To estimate the FPR of our approach, we sampled 1,000 times x random genome-wide 
SNPs, x being the number of independent trait-associated alleles, and used the sampled 
SNPs as pseudo-data. We compared each of the 1,000 tiHS average values to a null 
distribution obtained by random sampling of x SNPs matched to pseudo-data. The FPR was 
estimated as the proportion, out of 1,000 pseudo-data, of tiHS average values that were 
within the 2.5%, 0.05% or 0.005% of the null distributions. We adjusted P-values for multiple 
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testing with the Benjamini-Hochberg method, to account for the number of traits and 
populations tested. 
 
Results. We first estimated the FPR of our approach, based on resampling. The maximum 

FPR was 0.1% at P-value = 510-3 and 0.4% at P-value = 2.510-2 (Supplementary Fig. 80), 
which were thus used as the significance thresholds in subsequent analyses. As a positive 
control, we searched for signals of polygenic adaptation in European populations, where 
such signals have been extensively studied153,155,156. As expected, we found a signal of 
polygenic adaptation for lighter skin and hair pigmentation153 and no signals for increased 
height155,156 (Fig. 4b). We also identified a new signal for decreased cholesterol, which has 
not been previously reported. With respect to Pacific populations, we detected a signal for 
decreased BMI in Taiwanese indigenous peoples, and a unique, strong signal for decreased 
high-density lipoprotein (HDL) cholesterol in the Solomon Islands and the Vanuatu 
archipelago (Fig. 4b).  

Because some of the traits tested for polygenic adaptation are pleiotropic, it is difficult to 
identify the specific trait that is adaptive. For Europeans, 70% of SNPs associated with hair 
colour were also associated with skin colour, suggesting that the two traits are highly 
pleiotropic (Supplementary Fig. 81). For East Asians, 47% of the SNPs associated with hip 
circumference were also associated with waist circumference. However, for Oceanians, <7% 
of variants associated with HDL levels were associated with other candidate traits, 
suggesting that pleiotropy plays a minor role in explaining these signals. Together, these 
findings support the occurrence of polygenic adaptation related to lipid metabolism in 
Oceanians, possibly in response to long-term fish consumption159. 

 
 

 
 
Supplementary Figure 80. Specificity of the SNP-based approach to detect polygenic selection. 
False positive rate (FPR) estimated based on 1,000 random samples of genome-wide SNPs used as 
pseudo-data. The P-value is obtained from the rank of the mean tiHS for resampled SNPs in a null 
distribution obtained by resampling. The FPR was estimated by counting the number of significant 
resamples at three different P-value thresholds: 0.025, 0.005 and 0.0005. 
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Supplementary Figure 81. Genetic architecture of candidate complex traits. a, Number of SNPs 
shared among candidate traits. Each column shows the percentage of SNPs associated with the trait 
that are also associated with other candidate traits (rows). b, Percentage of associated SNPs per 
candidate trait. The total number of SNPs varies across populations (n=9 populations), as it is the 
number of SNPs kept for selection analyses for each population. The boxplots indicate the median 
value, the first and fourth quartiles and the dots the outliers of the distribution. 

 
 
Window-based approach 
Methods. To statistically test if genes associated with a trait are preferential targets of 
positive selection, we first kept, for each trait, trait-associated variants that are unlinked. To 
do so, we partitioned the genome into 100-Kb non-overlapping contiguous windows and 
kept, for each window, only the variant with the lowest association P-value. We considered a 
window to be associated with a trait if at least one SNP within the window shows a P-value < 

510-8. For each window, we estimated the mean tiHS for each population (see previous 
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section) and calculated the mean GERP score158, the mean recombination rate, the mean 
DAF and the number of SNPs per window. We then tested if the mean tiHS of trait-
associated windows is higher than a null distribution, obtained from 100,000 sets of 
randomly-sampled windows, each set being matched to trait-associated windows in terms of 
GERP scores, recombination rate, DAF and number of SNPs. GERP, recombination rate and 
DAF were grouped into 8 bins. We calculated a P-value for each trait as the number of 
resamples, out of 100,000 resamples, where the mean tiHS was lower (or higher) than that 
observed for the trait-associated windows. We adjusted P-values for multiple testing with the 
Benjamini-Hochberg method, to account for the number of traits and populations tested. 
 
Results. To relax the assumption that alleles affecting traits are the same in Oceanians and 
Europeans, we used another approach that tests for the co-localization of selection signals 
and trait-associated genes; this window-based approach assumes that the same genomic 
regions affect the traits of interest in all human populations. At a significance threshold of P-
value < 0.005, we replicated a signal for decreased skin and hair colour in Europeans 
(Supplementary Fig. 82). With respect to the SNP-based approach, the window-based 
approach detected several additional signals, which may suggest either higher power, 
because trait-associated SNPs are actually not portable in Pacific populations, or stronger 
effects of pleiotropy, because genomic windows supposed to be trait-associated have not 
been associated per se with the trait of interest. Conversely, some of the strongest signals 
detected using the SNP-based approach (e.g., HDL in Vanuatu, Santa Cruz and Solomon 
Islands) were not significant when using the window-based approach, suggesting reduced 
power. Importantly, the polygenic adaptation signal for HDL cholesterol in Oceanians was 
replicated when decreasing the size of genomic windows (P-value < 0.05), suggesting that 
local signatures of positive selection are too weak to be detected when using 100-kb 
genomic windows. Among signals that were not detected with the SNP approach, we found 
signals related to blood pressure; specifically, lower systolic blood pressure in PNG, higher 
diastolic blood pressure in East Asians, and lower diastolic blood pressure in the Philippine 
Agta. We also detected a signal for decreased hip and waist circumference, increased hair 
pigmentation, and increased age at last reproduction in East Asian-related groups. GWAS of 
morphological and life-history traits in Pacific populations, which are largely 
underrepresented in genomics research, are required to confirm these results. 
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Supplementary Figure 82. Window-based detection of polygenic adaptation in Pacific populations. 
Colours indicate the -log10(P-value) for a significant decrease (in blue; tiHS > 0) or increase (in brown; 
tiHS < 0) of the candidate trait. P-values were computed for each trait as the number of resamples, out 
of 100,000 resamples, where the mean tiHS was lower (or higher) than that observed for the trait-
associated windows (two-sided test). P-values were adjusted for multiple testing with the Benjamini-
Hochberg method, to account for the number of traits and populations tested. Significance is indicated 
by stars, with *P-value < 0.025 and **P-value < 0.005. 
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Chapter 5

5.3 Summary of results

To obtain insight into the peopling and demographic past of Pacific islanders we jointly

inferred the parameters characterizing their demographic history using multidimensional

site frequency spectra and the maximum likelihood framework. We first explored di�erent

branching topologies and estimated the demographic parameters of Near Oceanians (i.e.

Papuans, Bismark and Solomon islanders). We found that the se�lement of the region was

accompanied by a strong founder event - around five time stronger than that of Eurasians

- and that the di�erent groups diverged in the late Pleistocene, between 40,000 and 25,000

years ago. These results point to a rapid genetic isolation of the di�erent groups of Near

Oceania, a�er the initial se�lement dated to around 45,000 years ago (archaeological data,

(O’Connell et al. 2018a; O’Connell and Allen 2015)).

Similarly, we tested di�erent topologies and estimated demographic parameters for

western Remote Oceanians. We found that Ni-Vanuatu received post-Lapita gene flow

from Bismarck islanders in agreement with ancient DNA (Posth et al. 2018; Lipson et

al. 2018). Furthermore, the best-fi�ed models indicate that the Bismarck archipelago

ancestry alone is not enough to represent the Papuan-related genetic diversity found today

in Vanuatu. Because of a lack of continuity between first and present-day Ni-Vanuatu as

shown by ancient DNA and craniometric studies (Posth et al. 2018; Lipson et al. 2018;

Valentin et al. 2016), interpretation of demographic models using modern DNA is very

limited.

We also reconstructed the demographic history of the East/Southeast Asian ancestors of

Near and Remote Oceanians. Assuming an isolation with migration model, we estimated

that Taiwanese Indigenous peoples and Malayo-Polynesian speakers diverged around 7,300

years ago at odds with the "Out-of-Taiwan" model - hypothesis that predicts a dispersal

event from Taiwan around 4,800 years ago and that brought both the agriculture and

Austronesian languages to Oceania (Bellwood 1997). We obtained consistently older

divergence times, even when considering gene flow into Austronesian-speaking groups,

but with broader confidence intervals. These results suggest a population structure of

Austronesian speakers that predate the appearance of agriculture in Taiwan. However,

because of the large uncertainty in the estimates further analyses using ancient genomes

are needed.

A�er having investigated divergence times, we wanted to obtain insight into the mode

and tempo of gene flow between East/Southeast Asians and Near Oceanians. We used

an Approximate Bayesian Computation (ABC) approach to test for a single-pulse model

versus a two-pulse model or continuous model of gene flow. We found that a two-pulse
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model best matched the summary statistics. We dated a first admixture event in Near

Oceanians (Bismarck and western Solomon islanders) at around 3,000 years ago and a

second at around 1,500 years ago, indicating mutliple contacts between East/Southeast

Asians and Near Oceanians.

We also shed light on the archaic genetic legacy found in the Pacific region. Using allele

frequency-based methods we found that, while the level of Neanderthal ancestry is fairly

homogeneous across the region, the level of Denisovan ancestry is heterogeneous. For

example, the Agta foragers from the Philippines present around 3% of Denisovan ancestry

while neighbour populations have around 0% (e.g. Cebuano Filipinos). The identification

and analysis of Denisovan haplotypes in the genome of present-day Pacific islanders

suggest multiple episodes of interbreeding between Denisovans and Pacific groups. Using

an ABC approach we found that two highly divergent groups of Denisovans introgressed

with Papuan-related groups, around 45,000 and 25,000 years ago, respectively.

Finally, we searched for the occurrence of classic sweeps and other modes of genetic

adaptation such as adaptive admixture/introgression and polygenic adaptation. We found

that unlike Neanderthal introgression which facilitated the adaptation of modern humans

related to a large range of phenotypes (e.g. metabolism, pigmentation and neuronal

development), Denisovan introgression mainly targeted immune-related functions (e.g.

CD33 and IRF4 genes). We identified 44 shared genetic regions targeted by classical

positive natural selection (i.e. classic sweeps) in Papuan-related groups. The strongest hit

includes the RANBP17 gene, which is involved in Body Mass Index and HDL cholesterol.

We identified 29 genetic regions shared between East-Asian related groups (including

Polynesian groups). One of our strongest signal fall within the ALDH2 locus which is

involved in alcohol metabolism.

Collectively, our analyses provide novel insights into the genetic history of Pacific

populations, including various interactions with archaic hominins, early splits during the

late Pleistocene, recent range expansions in the Holocene period and a complex history

of interactions between peoples from East/Southeast Asia and Oceania. Our result also

increased our understanding of the mechanisms of biological adaptation experienced by

Pacific islanders.
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Selection efficacy in insular populations:
the case of Pacific islanders
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I present here the first results obtain for the second part of my thesis, which aims to

evaluate the e�icacy of natural selection in Pacific populations, and ultimately be�er

understand their present-day relation to diseases.
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6.1 Context

Alleles associated with diseases are part of the human genetic diversity and mutation,

genetic dri� and natural selection, thus govern their occurrence, frequency, and population

distribution. At mutation-selection equilibrium and stationary demography, the rate

at which deleterious mutations are removed from the populations, i.e., the e�icacy of

natural selection depends on the product between the e�ective population size (N e)

and the selection coe�icient (s) (Charlesworth 2009). Hence, in theory, the e�icacy of

natural selection to remove deleterious mutation depends on the demographic fluctuations

experienced by populations, i.e., the demographic history. The burden of deleterious

mutations has o�en been quantified through the measure of the mutational load, which

corresponds to the reduction in fitness owing to the accumulation of deleterious mutations

in genomes, compared with the optimal fitness (by convention set to 1) (Knudson 1979;

Lopez et al. 2018a; Paul 1987; Simons and Sella 2016). Theoretically, in small or bo�lenecked

populations - because of a strong genetic dri� - the mutational load is transiently high

(Simons et al. 2014; Balick et al. 2015) due to a drop in the e�icacy of natural selection and

the prevalence of recessive diseases may thus increase. These predictions are strengthened

by epidemiological studies, which reported cases of unusually frequent recessive disorders

in isolated or small-island populations (O’Brien et al. 1988; Carr, Morton, and Siegel 1971;

Eickho� and Beighton 1985).

In an a�empt to validate empirically these predictions in humans, a large number of

genomic studies has compared the pa�ern of deleterious mutations between Sub-Saharan

Africans and non-African groups (Lopez et al. 2018a; Simons and Sella 2016; Simons

et al. 2014; Do et al. 2015; Henn et al. 2016b; Henn et al. 2015b; Lohmueller et al.

2008; Lohmueller 2014; Fu et al. 2013; Pedersen et al. 2017a; Font-Porterias et al. 2021).

Because the individual’s fitness cannot be easily calculated in humans, these studies used

di�erent metrics and definitions of the burden of deleterious mutations and e�icacy of

natural selection, which led to conflicting interpretations. For example, Henn et al. (Henn

et al. 2016b), using simulations and selection coe�icients approximated from sequence

conservation-based score (GERP (Cooper et al. 2005)) categories, predicted significant

di�erences in the additive mutational load between human groups. Conversely, Do et

al. (Do et al. 2015) counted the di�erences in the number of derived deleterious mutations

between African and European individuals and concluded that the Out-of-Africa bo�leneck

did not a�ected the e�icacy of natural selection. Although there is increasing evidence

to suggest that bo�leneck and recent population growth had a negligible impact on the

additive genetic load and the e�icacy of natural selection (Lopez et al. 2018a; Simons and
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Sella 2016; Simons et al. 2014; Do et al. 2015), long-standing and strong bo�lenecks, as

experienced by Greenlandic Inuit, appeared to have impacted the number and frequency

of recessive deleterious mutations (Pedersen et al. 2017a). Likewise, recent studies also

highlighted the role of recent admixture in balancing the e�ect of strong genetic dri� on

the burden of recessive deleterious mutations (Lopez et al. 2018a; Font-Porterias et al.

2021).

The region of Oceania, spanning from Papua New Guinea up to the Polynesian Triangle

includes thousands of scarcely populated islands. Archaeological records suggest that

Near Oceania, which includes New Guinea, the Bismarck Archipelago and the Solomon

Islands, was first inhabited around 45,000 years ago (ya) (O’Connell et al. 2018b; Gosling

and Matisoo-Smith 2018a). Remote Oceania, which includes Micronesia, the Reef/Santa

Cruz, Vanuatu, New Caledonia, Fiji, and Polynesia, remained unoccupied until the recent

arrival of Austronesian-speaking people originating from Taiwan and Islands Southeast

Asia around 3,200 ya (Gosling and Matisoo-Smith 2018a; Kirch 2017). Genomic studies

shed light on a demographic past characterized by a strong founder event associated with

the peopling of the ancient Sahul continent and northeastern islands lying o� (e�ective

population size (Ne)= 153-1,788 diploids) (Choin et al. 2021; Malaspinas et al. 2016b),

low e�ective population sizes notably for Polynesian groups (Choin et al. 2021; Harris et

al. 2020) and recent admixture between Papuan-related and East/Southeast Asian-related

groups (Choin et al. 2021; Pugach et al. 2018a; Posth et al. 2018; Lipson et al. 2018; Lipson et

al. 2020). Moreover, the World Health Organization (WHO) also reports a high prevalence

of metabolic disorders such as Type 2 diabetes, obesity and gout in this region. Yet, li�le is

known about the burden of deleterious mutations and whether the strong genetic dri�

experienced by Pacific islanders (especially Polynesians) resulted in a reduction in the

e�icacy of natural selection. More generally, the region of Oceania, by its almost unique

geographic context and sharp demographic events, provides with an excellent model to

evaluate the extent to which recent demographic events have impacted the occurrence

and distribution of deleterious mutations in the human genome.

6.2 Results

6.2.1 Dataset

We combined a previously generated WGS dataset composed of Pacific islanders (Choin

et al. 2021) with sequences from a number of worldwide groups (Malaspinas et al. 2016b;

Bergstrom et al. 2020). This dataset includes a total of 150 individuals distributed in 15
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Sub-Saharan Africans (Yoruba), 15 Europeans (French), 15 East Asians (Han Chinese),

15 Southeast Asians (Cebuano), 15 Polynesian outliers (Rennell and Bellona), 15 New

Guineans (Highlanders) 15 western Solomon Islanders (Vella Lavella), 15 Eastern Solomon

Islanders (Malaita), 15 Southern Ni-Vanuatu (Tanna) and 15 central Ni-Vanuatu (Malakula).

Focusing on Near and Remote Oceanians (New Guineans, Solomon islanders, Ni-Vanuatu

and Polynesian outliers), we identified 73,219 quality-filtered segregating missense and

636 stop gained loss-of-functions variants (herea�er referred as LoF) within exons of

18,300 genes. Considering only 169 LoF variants absent or at low frequency in gnomAD

(Karczewski et al. 2020)(Supplementary Table 1) we did not find significant enrichments

in LoF genes for any gene ontology (GO) categories, a�er correcting for multiple testing

(Benjamini & Hochberg method, Top 20 GO enrichment results are given in Supplementary

Table 2).

6.2.2 Evaluate the e�icacy of natural selection

We investigated whether the demographic history of Oceanian groups, mainly

characterized by strong founder e�ects, low e�ective population sizes, as well as recent

admixture events, impacted their burden of deleterious mutations. We first assessed the

allele frequency spectra of deleterious variants, using a sequence conservation-based score

(i.e., GERP RS score (Cooper et al. 2005)) that is free from genome reference biases.

We found that the derived frequency spectrum of all populations is enriched in rare

variants, the proportion of which increases with deleteriousness (Figure 1a). We also

observed that rare variants (singletons) are enriched in deleterious variants, mainly for

the “Moderate” and “Strong” deleteriousness categories (Figure 1b). Altogether, these

results are consistent with the e�ect of purifying selection acting on worldwide human

populations. Interestingly, Polynesian outliers (RenBell) harbour an excess of neutral

mutations and a default of deleterious mutations in singletons, compared to other groups

(Figure 1b), but the lowest proportion of rare non-deleterious variants was also observed

in this population (Figure 1c), suggesting that di�erences in the allele distribution of

deleterious variants could be, at least partially, explained by stronger genetic dri� among

Polynesian groups.

We next tested whether the observed population di�erences in the shape of deleterious

SFS could also result from a di�erence among populations in the e�icacy of purifying

selection (which depends on Nes). We thus calculated the ratio of the fixation probability

(u) for a new deleterious mutation versus a neutral mutation, to quantify the e�icacy of

purifying selection to remove mutations, relative to genetic dri� (udel/uneu, the smaller (u)

the greater the e�icacy of natural selection). To calculate the fixation probability of new
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deleterious mutations (udel), we used the parameters of the distribution of fitness e�ects

(DFE) inferred with the algorithm implemented in ∂a∂i/F it∂a∂i. We first estimated a

3-epoch demographic model using one-dimensional synonymous SFS for each of the 10

groups. Then, conditional on the demographic parameters, we inferred the parameters for

the DFE of non-synonymous mutations. We found subtle di�erences in the udel/uneu ratio

between Oceanians and other continental reference populations (Yoruba, Han Chinese

and French). Notably, Oceanians tend to have a higher ratio (Table 1, Supplementary

Figure 1), especially Papuans and Polynesians, suggesting a slightly reduced e�icacy

of natural selection in these groups. However, we caution that the DFE and thus the

udel/uneu ratio of some Oceanian groups, particularly Polynesians, should be interpreted

with caution because of the very poor fit between observed and expected non-synonymous

SFS (Supplementary Figure 1).

6.2.3 Evaluate the mutational load

We compared the empirical mutation load of present-day Pacific and continental reference

groups (Yoruba, Han Chinese and French). Previous studies (Simons et al. 2014; Do

et al. 2015; Lohmueller 2014) have reported that di�erences in genetic load between

groups depend on the functional category of coding variants (e.g. GERP RS score (Cooper

et al. 2005)) and the dominance model. We thus approximated the load under an

additive and a recessive model for di�erent GERP categories (Cooper et al. 2005), using

between-population ratios of the mean number of derived alleles per individual (N alleles) or

between-population ratios of the mean number of homozygous derived genotypes (N hom)

respectively. We found that all Oceanian populations present the same level of genetic

load as continental reference groups (for all GERP categories) under an additive model

(corrected p values > 0.05, Figure 2a, Supplementary Table 3). However, Pacific groups, to

the exclusion of Cebuano, harbour a significant higher recessive load than Africans for the

strongly deleterious mutation category (adjusted p-value = 0.03 for all ratios, Figure 2b,

Supplementary Table 3).

Simons and colleagues (Simons et al. 2014) have suggested that bo�lenecks and

population growth have only a minor impact on the additive genetic load, owing to

(i) the compensation between the number of segregating variants, including deleterious

mutations, and their frequency and (ii) because these demographic events are too recent

or did not last long enough. In line with this, we found that Polynesians and Papuan

highlanders show the lowest number of deleterious variants for all GERP categories and

mutations that segregate on average at higher frequency than in any other Oceanian

and non-Oceanian groups (Figure 3). We obtained similar pa�erns using stop-gained
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Loss-of-Function variants (Supplementary Figure 2).

6.2.4 E�ect of the Papuan-related ancestry and runs of
homozygosity

Runs of homozygosity (ROH) correspond to long genomic regions in which all loci for

an individual are homozygous. These long genomic segments are considered identical by

descent, and are found homozygous in the individual either because the parents of the

individual are related due to cultural endogamy, or because he is part of a population where

relatedness is high. Long ROH can thus be used to measure population size and parental

relatedness. We found that Polynesian outliers (RenBell) and to a lesser extent Papuan

Highlanders (PNG) and Vella Lavella western Solomon islanders presented the highest

levels of cumulative long ROH (cROH, Figure 4, Supplementary Figure 3) suggesting strong

recent bo�leneck, isolation or parental relatedness. We then tested whether mutational

load is correlated with the individual cumulative length of long ROH, controlling for

varying levels of Papuan-related genetic ancestry. We found that both additive and

recessive mutational loads are not associated with Papuan-related ancestry proportions

carried by Pacific islanders (corrected p value > 0.05). However, the number of derived

homozygous genotypes correlated significantly with the cumulative length of long ROH,

for di�erent categories of GERP RS score tested (adjusted p values = 0.02, 0.007, 0.003

and slope = 1.50× 10−7, 1.42× 10−7, 1.63× 10−7 for "Neutral", "Moderate" and "Strong"

categories of GERP RS respectively, Supplementary Table 4 and Supplementary Table 5).
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Figure 1. Allele frequency spectra of deleterious mutations. (a) Derived allele frequency spectra of 
non-synonymous mutations for different bin of GERP score (category of deleteriousness) for different 
world-wide populations including Africans (Yoruba), Europeans (French), East-Asians (Han), Filipinos 
(Cebuano), Polynesians (RenBell), Papuan highlanders (PNG), Solomon islanders (Vella-Lavella and 
Malaita) and Ni-Vanuatu (Malakula and Tanna). (b) Proportion of derived non-synonymous singletons 
assigned to different GERP score categories (deleteriousness categories). (c) First and second bin of 
derived allele frequency spectra of non-synonymous mutations for different bin of GERP score (category 
of deleteriousness) and normalized by the derived allele frequency spectra expected under constant 
effective population size and no natural selection. The sample size is equal to 15 for each group. 
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Table 1. DFE parameters (Beta and E[S]) and fixation probability of a new mutation for each 
group. Nw corresponds to the weighted Ne across the 3-epoch model inferred with ∂a∂i and calculated 
as in (Lopez et al. 2018).  u del corresponds to the fixation probability of a new deleterious mutation, 
uneu to the fixation probability of a new neutral mutation and udel/uneu to the ratio. 95%CI are given in 
brackets and were calculated by bootstrapping by site 100 times. 
 
 

 
 
 
Figure 2. Ratios of the mean per-individual number of (a) derived alleles (Nalleles) and (b) homozygous 
derived genotypes (Nhom) between Pacific islanders and non-Oceanian groups represented by Yoruba 
Africans, Han Chinese and French Europeans. Dots indicate point estimates and lines, the 95% 
confidence intervals obtained by block bootstrap. * indicates a significant adjusted p-value (lower or 

Population Sample size (2n) Nw Beta E[s] Nw.E[s] udel uneu udel/uneu

Yoruba 15 11343.64496 0.171
[0.160-0.184]

0.01
[0.007-0.013]

112.6
[82.5-153.2]

1.42E-05
[1.39e-05-1.45e-05 ] 4.41E-05 0.322

[0.316-0.328]

French 15 8409.283233 0.172
[0.161-0.187]

0.01
[0.007-0.014]

86.7
[61.4-120.7]

2.00E-05
[1.95e-05-2.03e-05 ] 5.95E-05 0.336

[0.328-0.342]

Han 15 7756.813185 0.175
[0.160-0.190]

0.01
[0.007-0.014]

74.3
[54.8-110.1]

2.19E-05
[2.14e-05-2.24e-05] 6.45E-05 0.340

[0.332-0.347]

Cebuano 15 7959.579458 0.122
[0.108-0.134]

0.06
[0.03-0.1]

457.8
[264.5-1019.6]

2.26E-05
[2.21e-05-2.32e-05 ] 6.28E-05 0.360

[0.353-0.370]

PNG 15 6930.722878 0.119
[0.107-0.132]

0.06
[0.03-0.1]

424.6
[237.9-860.4]

2.68E-05
[2.62e-05-2.73e-05 ] 7.21E-05 0.371

[0.364-0.379]

RenBell 15 7149.817662 0.087
[0.099-0.102]

0.98
[0.266-0.287]

7034.7
[1900.6-2055.4]

2.58E-05
[2.51e-05-2.60e-05 ] 6.99E-05 0.369

[0.359-0.372]

Malaita 15 8334.841315 0.148
[0.136-0.163]

0.02
[0.01-0.03]

149.3
[97.1-237.6]

2.12E-05
[2.06e-05-2.16e-05 ] 6.00E-05 0.353

[0.344-0.360]

Vella Lavella 15 8284.849957 0.130
[0.113-0.145]

0.04
[0.02-0.09]

316.4
[165.3-714.7]

2.16E-05
[2.11e-05-2.21e-05] 6.04E-05 0.358

[0.349-0.365]

Tanna 15 7973.785943 0.151
[0.137-0.165]

0.02
[0.01-0.03]

160.0
[110.1-265.6]

2.14E-05
[2.09e-05-2.20e-05 ] 6.27E-05 0.341

[0.334-0.351]

Malakula 15 7948.626794 0.147
[0.135-0.159]

0.02
[0.01-0.03]

142.8
[96.5-224.8]

2.25E-05
[2.20e-05-2.30e-05 ] 6.29E-05 0.358

[0.350-0.366]
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equal than 0.05) computed by comparing the bootstrap distribution for the considered GERP RS 
category to that of the “neutral” category. 
 
 
 

 
 
Figure 3. Number of segregating deleterious mutations per category of GERP RS and their mean 
frequency per group. Dots indicate point estimates and lines give the 95% confidence intervals 
obtained by block bootstrap. 
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Figure 4. Cumulative length of long ROH (class C) per group. 
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Chapter 6

6.3 Conclusion

6.3.1 Summary of results and short-term perspectives

The impact of bo�lenecks, recent expansions and gene flow on the burden of deleterious

mutations in human has been deeply investigated in the last decade (Do et al. 2015;

Font-Porterias et al. 2021; Fu et al. 2013; Henn et al. 2015b; Henn et al. 2016b; Lohmueller

2014; Lohmueller et al. 2008; Lopez et al. 2018a; Pedersen et al. 2017a; Simons and Sella

2016; Simons et al. 2014). Most of these studies focused on the di�erences in the mutational

load and e�icacy of natural selection between continental populations such as African

and European groups. Here, we investigated the burden of deleterious mutations and

e�icacy of natural selection of Oceanian islanders, who experienced strong founder e�ects,

population collapses and recent admixture (Choin et al. 2021; Harris et al. 2020; Malaspinas

et al. 2016b). We find that Oceanians show only subtle di�erences in the e�icacy of natural

selection (Table 1 and Supplementary Figure 1) and the current genetic load (Figure 2 and

Supplementary Table 3), relative to continental reference groups (Yoruba, Han and French).

However, we find that deleterious variants, including Loss-of-Function (LoF) variants tend

to segregate at higher frequency in Polynesian and Papuan highlander groups, likely due

to a stronger genetic dri� (Figure 3 and Supplementary Figure 2). Yet, we need to evaluate

whether these observations are also true for variants associated with metabolic disorders

(e.g. BMI, Type-2-Diabetes) and whether a stronger dri� (as for Polynesians), increases the

genetic variance at metabolic associated genomic regions (Barton and Turelli 2004).

Additional analyses are required to investigate and dissect in greater detail the impact of

(i) the recent Southeast Asian admixture and (ii) the apparent higher cumulative length

of run of homozygosity in some Oceanians, on the current genetic load. Furthermore, we

need to monitor the trajectory of the load through time using forward-in-time simulations.

Similarly, we want also to investigate the role of each demographic event experienced by

Oceanian islanders in shaping the occurrence and the distribution of deleterious mutations

using forward-in-time simulations.

6.3.2 Limitations

As most of our analyses rely on allele frequency-based methods that are sensitive to sample

size (e.g. SFS comparison, DFE), we randomly sampled 15 individuals per population.

However, the number of deleterious mutations and the probability to observe rare variants,

e.g., strongly or extremely deleterious mutations maintained at very low frequency by
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natural selection, depends on the number of samples used. Consequently, our low sample

size can reduce the power to detect di�erences in mutation load between Oceanian and

continental reference groups. Likewise, as we do not have any phenotypic data, we

assessed the deleteriousness of variants using a conservation-based prediction score (here

GERP score (Cooper et al. 2005)) as in (Font-Porterias et al. 2021; Henn et al. 2015b; Henn

et al. 2016b; Lopez et al. 2018a; Pedersen et al. 2017a). Nevertheless, this score is not

always proportional to the deleteriousness of a given variant as recently shown by (Huber,

Kim, and Lohmueller 2020).

Furthermore, because Simons and Sella found that the number of derived alleles

(N alleles) is the only statistic directly correlated with the mutational load and not biased

by demographic events (Simons and Sella 2016), we thus approximated the additive

mutational load using this approach. However, Pedersen et al., based on simulations

suggest that the number of derived alleles is likely underpowered to detect narrow

di�erences in load across human groups.

Our estimates of the fixation probability (u) for a new deleterious mutation versus a

neutral mutation suggest a reduction in the e�icacy of natural selection especially for

Polynesians and Papuan highlanders (PNG) (Table 1). Nevertheless, we also found a very

poor fit between observed and expected non-synonymous SFS for Polynesians and to a

lesser extinct, for Papuan highlanders (Supplementary Figure 1). This poor fit can be

due to the e�ect of a strong genetic dri� or/and a demographic history that is not well

considered when fi�ing the DFE: the exacerbated dri� experienced by Polynesians could

have strongly distorted the synonymous and non-synonymous SFS but led also to fewer

segregating variants (fewer SNP to fit both the 3-epoch demographic model and the DFE

with ∂a∂i/F it∂a∂i (Kim, Huber, and Lohmueller 2017)).

6.4 Material and Methods

Whole-genome sequencing data. HGDP (Bergstrom et al. 2020) FASTQ files were

converted to unmapped BAM files (uBAM), read groups were added and Illumina adapters

were tagged with Picard Tools version 2.8.1 (h�p://broadinstitute.github.io/picard/). Read

pairs were mapped onto the human reference genome (hs37d5), with the ‘mem’ algorithm

from Burrows–Wheeler Aligner v.0.7.13 (Li and Durbin 2009) and duplicates were marked

with Picard Tools. Base quality scores were recalibrated with the Genomic Analysis ToolKit

(GATK) so�ware v.3.8 (DePristo et al. 2011). Variant calling was performed following the

GATK best-practice recommendations (McKenna et al. 2010). All samples were genotyped

individually with ‘HaplotypeCaller’ in gvcf mode. For Malaspinas et al. (Malaspinas et al.
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2016b), and Choin et al. (Choin et al. 2021) sequences we started from gvcf files generated

in Choin et al. (Choin et al. 2021). The raw multisample VCF containing all individuals

was then generated with the ‘GenotypeGVCFs’ tool. Using BCFtools v.1.9, we applied

di�erent hard quality filters on invariant and variant sites, based on coverage depth,

genotype quality, Hardy–Weinberg equilibrium and genotype missingness. Heterozygosity

was assessed with PLINK v.1.90 (Purcell et al. 2007; Chang et al. 2015) and cryptically

related samples were detected with KING v.2.1 (Manichaikul et al. 2010). For all analyses

we allowed 0% of missingness except for the description of Loss-of-Function (LoF) and

missense variants where we allowed up to 10%.

Variant annotation. To investigate the burden of deleterious mutations, we restricted our

analyses on bi-allelic synonymous and non-synonymous single nucleotide polymorphisms

(SNPs). To do so, we first kept SNP within CDS based on a downloaded bed files containing

genomic positions (hg19) of coding sequence regions (CDS) for each canonical transcript

form the UCSC ‘Table browser’ database (h�ps://genome.ucsc.edu/). We then classified

variants into ‘missense’ or ‘synonymous’ using ensembl-vep tool (VEP) version 100.2

(McLaren et al. 2016). Stop gained loss-of-function (LoF) variants were annotated with

LOFTEE (available at h�ps://github.com/konradjk/lo�ee) implemented in VEP (Lipson et

al. 2020).

LoF and missense variants were intersected with gnomAD (Karczewski et al. 2020)

for frequency annotations. Supplementary Table 1 was generated using only Oceanian

samples (without Africans, Han Chinese, French and Cebuano individuals) and including

related samples.

We assessed the deleteriousness of missense variants using a reference-free method

based on the sequence conservation score "GERP RS" (Cooper et al. 2005). We then

classified variants according to bin of GERP score (Lopez et al. 2018a; Henn et al. 2016b;

Font-Porterias et al. 2021): Neutral: −2 ≤ GERP < 2; Moderately deleterious: 2 ≤
GERP < 4; Strongly deleterious: 4 ≤ GERP < 6; Extremely deleterious: GERP ≥ 6.

For each class of deleteriousness, we generated unfolded and folded site frequency spectra

using a custom python script using the Fit∂a∂i library (Kim, Huber, and Lohmueller

2017). We also calculated the number of segregating variants and their mean frequency

per population and per category of GERP RS. 95%CI were obtained by bootstrapping by

blocks of 2Mb.

Gene Ontology enrichment. To test whether LoF variants detected in Oceanians and

absent or at low frequency in gnomAD (Karczewski et al. 2020) database (max frequency

in gnomAD of 0.01%) targeted specific biological functions, we tested for Gene ontology
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enrichment using the R package GOseq (Young et al. 2010) which corrects for gene length.

We corrected p-values (multiple testing) using an FDR approach (Benjamini & Hochberg

method).

DFE of new non-synonymous mutations. We used ∂a∂i/F it∂a∂i (Kim, Huber, and

Lohmueller 2017; Gutenkunst et al. 2009) to infer the DFE of new non-synonymous

mutations. We used the synonymous and missense mutations as neutral and deleterious

classes, respectively. We fi�ed a three-epoch demographic model to synonymous SFS per

population. Fit∂a∂i infers the mean (E(s)) of a gamma distributed DFE model, fi�ed on

the non-synonymous SFS, accounting for demography. Parameters are scaled by 2NAnc,

with NAnc estimated using the following equation θs = 4NAnc µLs with µ the mutation

rate and Ls the length of the sequence where synonymous mutations can arise. We used

here a mutation rate equal to 1.5 × 10−8 (Segurel, Wyman, and Przeworski 2014) and

a ratio LNS/LS = 2.31 (Huber et al. 2017) to estimate LS and LNSfrom LS + LNS . We

calculated a weighted Ne over the inferred demographic changes through time as in (Lopez

et al. 2018a; Font-Porterias et al. 2021). We computed the average fixation probability of a

new mutation (u) by integrating over the DFE inferred for each population separately. We

computed the fixation probability of a new deleterious mutation (udel) and calculated the

ratio of udel over the fixation probability of a neutral mutation (uneu) as a way to quantify the

relative strength of selection versus dri� at removing deleterious mutations. We calculated

confidence intervals for estimated parameters by bootstrapping by site 100 times.

Approximation of the mutational load. We used the Nalleles and Nhom statistics

(Simons et al. 2014; Henn et al. 2016b) to approximate the additive and recessive

mutational load of present-day worldwide human groups: Nalleles = Nhet + 2Nhom with

Nhet and Nhom corresponding to the numbers of heterozygous and derived homozygous

genotypes, respectively. We stratified these summary statistics for di�erent categories

of deleteriousness based on the GERP RS score (Cooper et al. 2005). We computed the

average number ofNalleles andNhom per group using a custom python script and calculated

between-population ratio for each GERP score categories. We used a 2Mb-block paired

bootstrapping approach to obtain the 95% confidence intervals of between-population

ratios (1,000 resamples with replacement). P-values were obtained by comparing the

bootstrap distributions of deleterious categories with that of the neutral category. P-values

were corrected for multiple testing using an FDR (Benjamini & Hochberg) method.

Runs of homozygosity. We call Runs Of Homozygosity (ROH) with GARLIC (Szpiech,

Blant, and Pemberton 2017) v1.1.6 (h�ps://github.com/szpiech/garlic) using the weighted

LOD calculation (–weighted flag) to account for linkage disequilibrium between loci and

recombination events (Blant et al. 2017). We used the –auto-winsize flag to automatically
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guess the best window size based on the SNP density, –gl-type GQ to account for the

quality of th genotypes, –auto-overlap-frac flag and a mutation rate equal to 1.25× 10−8.

ROH were called per population and classified in 3 clusters based on their length using a

Gaussian mixture model implemented in GARLIC. We focused our analyses on the longest

class of ROH, the third class (class C) because it likely represents ROH due to recent

parental relatedness, isolation or recent bo�leneck. Linear regressions between mutational

load (Nalleles and Nhom) and length of long ROH were performed using the lm() function

of R and adjusted by the di�erent levels of PNG ancestry (proportion taken from Choin et

al. (Choin et al. 2021)) and population e�ect:

lm(Load ∼ PNGancestry + cumulativeROH + popPNG + popMalakula + popTanna +

popMalaita + popV L + popPolOut)

popx corresponds to a binary vector that takes the value "1" if the sample belongs to

the population x and "0" otherwise. We performed linear regressions only for the class

"Neutral", "Moderate" and "Strong" of GERP RS, because the range of the values taken by

Nalleles andNhom for the last category "Extreme" was tight (discrete values). P-values were

corrected for multiple testing by using an FDR (Benjamini & Hochberg) method
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Supplementary Figure 1. Fitted non-synonymous SFS with Fit∂a∂i. Observed 
(blue) and expected (salmon) 1 dimensional folded SFS (n=15 for each group). 
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Supplementary Figure 2. Number of segregating Loss-of-Function mutations 
and their mean frequency per group. Dots indicate point estimates and lines give 
the 95% confidence intervals obtained by block bootstrap. 
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Supplementary Figure 3. Cumulative length of ROH for class A and B per group. 
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Supplementary Table 1. LoF variants present in 308 Oceanians (including related 
samples, Papuan highlanders, Solomon Islanders, Reef/Santa Cruz islanders, 
Ni-Vanutu, RenBell and Tikopia Polynesians outliers) absent or at low frequency 
in gnomAD (< 1/1000). Count gives the number of LoF alleles in the 308 Oceanians 
individuals; n(HET), the number of heterozygous genotypes; n(HOM), the number of 
LoF homozygote genotypes; max Freq gnomAD give the maximal frequency observed 
in gnomAD and max Pop gnomAD, the population where the maximal frequency is 
observed.  
 

[provided as a excel file] 
 
 

Supplementary Table 2. Top 20 Gene ontology (GO). P.values provided here are 
uncorrected for multiple testing (adjusted p.value = 1 for all GO categories).  
 

 
 
 
Supplementary Table 3. Adjusted p-values (bootstraping) of ratios of the mean per-
individual number of derived alleles (Nalleles) and derived genotypes (Nhom) between 
Pacific islanders and non-Oceanian groups represented by Yoruba Africans, Han 
Chinese and French Europeans. 
 
 

category p.value term
GO:0062023 0.00021261 collagen-containing extracellular matrix
GO:0004867 0.00068207 serine-type endopeptidase inhibitor activity
GO:0032982 0.00177242 myosin filament
GO:0051015 0.0021489 actin filament binding
GO:0035381 0.00231927 ATP-gated ion channel activity
GO:0032838 0.00261907 plasma membrane bounded cell projection cytoplasm
GO:0045742 0.00285371 positive regulation of epidermal growth factor receptor signaling pathway
GO:0036289 0.00299293 peptidyl-serine autophosphorylation
GO:2001225 0.00308808 regulation of chloride transport
GO:1901186 0.0034293 positive regulation of ERBB signaling pathway
GO:0042491 0.0036445 inner ear auditory receptor cell differentiation
GO:0060401 0.00393939 cytosolic calcium ion transport
GO:0019896 0.00398365 axonal transport of mitochondrion
GO:0019428 0.00413488 allantoin biosynthetic process
GO:0019628 0.00413488 urate catabolic process
GO:0035253 0.00434579 ciliary rootlet
GO:0031012 0.00467057 extracellular matrix
GO:0097014 0.00521012 ciliary plasm
GO:0005770 0.0053969 late endosome
GO:0008092 0.00557218 cytoskeletal protein binding



 
 
Supplementary Table 4. Adjusted p-values of the linear regressions (Nalleles / Nhom ~ 
𝑃𝑁𝐺	𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 + 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑅𝑂𝐻 + 𝑝𝑜𝑝	𝑃𝑁𝐺 + 𝑝𝑜𝑝	𝑀𝑎𝑙𝑎𝑘𝑢𝑙𝑎 + 𝑝𝑜𝑝	𝑇𝑎𝑛𝑛𝑎 +
𝑝𝑜𝑝	𝑀𝑎𝑙𝑎𝑖𝑡𝑎 + 𝑝𝑜𝑝	𝑉𝐿 + 𝑝𝑜𝑝	𝑃𝑜𝑙𝑂𝑢𝑡).  PNG means Papua New Guinea(n) and pop, 
population 
 

 
 
Supplementary Table 5. Slopes of the linear regressions (Nalleles / Nhom ~ 
𝑃𝑁𝐺	𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 + 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑅𝑂𝐻 + 𝑝𝑜𝑝	𝑃𝑁𝐺 + 𝑝𝑜𝑝	𝑀𝑎𝑙𝑎𝑘𝑢𝑙𝑎 + 𝑝𝑜𝑝	𝑇𝑎𝑛𝑛𝑎 +
𝑝𝑜𝑝	𝑀𝑎𝑙𝑎𝑖𝑡𝑎 + 𝑝𝑜𝑝	𝑉𝐿 + 𝑝𝑜𝑝	𝑃𝑜𝑙𝑂𝑢𝑡).  PNG means Papua New Guinea(n) and pop, 
population 
 
 

 

Pop Moderate_Nalleles Strong_Nalleles Extreme_Nalleles Moderate_Nhom Strong_Nhom Extreme_Nhom
Cebuano/Yoruba 0.541745825 0.427097290 0.833013728 0.687717435 0.071992801 0.833013728
Cebuano/French 0.554344566 0.699623788 0.935401197 0.833013728 0.833013728 0.884071593
Cebuano/Han 0.972502750 0.817742226 0.833013728 0.833013728 0.972502750 0.699623788
RenBell/Yoruba 0.173582642 0.474252575 0.928257174 0.341135117 0.025197480 0.687717435
RenBell/French 0.116538346 0.733246675 0.972502750 0.341135117 0.435706429 0.741225877
RenBell/Han 0.427097290 0.833013728 0.960468659 0.525787421 0.452621405 0.554344566
PNG/Yoruba 0.427097290 0.341135117 0.833013728 0.683131687 0.029397060 0.607259274
PNG/French 0.442467753 0.554344566 0.928257174 0.733246675 0.569326851 0.622562134
PNG/Han 0.833013728 0.687717435 0.833013728 0.972502750 0.687717435 0.435706429

Vella_Lavella/Yoruba 0.451616377 0.427097290 0.972502750 0.588162236 0.025197480 0.833013728
Vella_Lavella/French 0.435706429 0.687717435 0.833013728 0.687717435 0.591171652 0.928257174
Vella_Lavella/Han 0.846338896 0.833013728 0.907822425 0.960468659 0.687717435 0.822565112
Malaita/Yoruba 0.435706429 0.427097290 0.928257174 0.687717435 0.025197480 0.736405233
Malaita/French 0.427097290 0.687717435 0.960468659 0.833013728 0.627646326 0.833013728
Malaita/Han 0.833013728 0.789060820 0.960468659 0.867132518 0.699623788 0.627646326
Tanna/Yoruba 0.687717435 0.427097290 0.833013728 0.833013728 0.029397060 0.733246675
Tanna/French 0.733246675 0.687717435 0.935401197 0.972502750 0.627646326 0.833013728
Tanna/Han 0.849375257 0.833013728 0.833013728 0.699623788 0.733246675 0.687717435

Malakula/Yoruba 0.530772729 0.341135117 0.960468659 0.733246675 0.029397060 0.808702913
Malakula/French 0.525787421 0.569326851 0.928257174 0.833013728 0.687717435 0.833013728
Malakula/Han 0.928257174 0.688446410 0.972502750 0.833013728 0.833013728 0.697130287

Nalleles Neutral Nalleles Moderate Nalleles Strong Nhom Neutral Nhom Moderate Nhom Strong
PNG ancestry 8.17E-01 9.30E-01 9.30E-01 3.15E-01 8.27E-01 8.61E-01

cumulative long ROH 1.42E-01 8.61E-01 9.84E-01 2.13E-02 6.66E-03 2.70E-03
pop PNG 5.48E-01 9.30E-01 9.30E-01 3.23E-01 8.17E-01 8.61E-01

pop Malakula 7.44E-01 9.69E-01 9.30E-01 3.24E-01 8.46E-01 8.17E-01
pop Tanna 7.44E-01 9.84E-01 9.30E-01 3.38E-01 8.17E-01 8.17E-01

pop Malaita 7.40E-01 9.30E-01 9.30E-01 1.65E-01 7.44E-01 8.61E-01
pop Vella Lavella 6.22E-01 9.20E-01 9.30E-01 7.64E-02 5.48E-01 9.84E-01

pop Polynesian Outliers 5.80E-02 5.50E-01 9.84E-01 3.86E-01 8.61E-01 9.71E-01

Nalleles Neutral Nalleles Moderate Nalleles Strong Nhom Neutral Nhom Moderate Nhom Strong
PNG ancestry 1.48E+02 -3.29E+01 -5.17E+01 1.81E+02 5.94E+01 -5.08E+01

cumulative long ROH 2.00E-07 -4.15E-08 -1.60E-09 1.50E-07 1.42E-07 1.63E-07
pop PNG -2.38E+02 3.26E+01 4.74E+01 -1.74E+02 -6.15E+01 5.05E+01

pop Malakula -1.52E+02 1.98E+01 4.46E+01 -1.50E+02 -4.82E+01 5.69E+01
pop Tanna -1.54E+02 9.36E+00 4.11E+01 -1.49E+02 -5.51E+01 5.99E+01

pop Malaita -1.02E+02 2.02E+01 2.24E+01 -1.15E+02 -4.37E+01 2.49E+01
pop Vella Lavella -1.18E+02 3.54E+01 3.31E+01 -1.38E+02 -5.97E+01 2.31E+00

pop Polynesian Outliers -1.33E+02 5.09E+01 -1.87E+00 -4.30E+01 -1.23E+01 -3.11E+00
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Chapter 7

7.1 A complex demographic history

7.1.1 Near Oceania: A highly structured region

Previous demographic inferences estimated a deep divergence time between northern and

southern Sahul (New Guineans and Aboriginal Australians) occurring at least 37,000 years

ago (Malaspinas et al. 2016a). Our work on the demographic history of Near Oceanian

populations confirms but also extends these findings to the two other archipelagos that

compose the region of Near Oceania. This population structure is among the oldest

estimated at a scale of a continent, excluding Africa. Indeed, the genetic isolation of the

di�erent Near Oceanian groups is almost as old as between Europeans and East Asians

(Wollstein et al. 2010; Malaspinas et al. 2016a). Similarly, at a finer scale, a study

(Bergstrom et al. 2017) based on SNP-array genotyping data of 381 Papua New Guineans

shed light to a strong intra New Guinea population structure, between lowlanders and

highlanders dated back to around 20,000 years ago. However, the genetic structure within

highlanders is more recent, dated back to around 10,000 years ago (Bergstrom et al. 2017).

Archaeological studies indicate an in situ emergence of agriculture in highland New Guinea

around 10,000 years ago (Golson et al. 2017) and more recently, the associated “Neolithic”

behaviour changes (social and economic changes) between 5,050 and 4,200 years ago (Shaw

et al. 2020). This congruence between archaeology and genetic data suggests that the

spread of agriculture in the highland of New Guinea played a key role in re-shaping a�er

the initial se�lement, the genetic makeup of New Guinean highlanders and could explain

in part, the strong but recent genetic structure observed today in the region (Bergstrom

et al. 2017). Likewise, a recent study also indicates that environmental factors (e.g.

climate, topography) are not enough to explain the current geographic distribution of New

Guinean languages and that other factors such as population movement can also explain

the language diversity observed today in the region (Antunes et al. 2020).

Very li�le is known about the peopling history, population structure and time of divergence

between Solomon islanders. Studies based on SNP array genotyping datasets (Pugach

et al. 2018b; Isshiki et al. 2020) or mtDNA and Y-chromosome datasets (Delfin et

al. 2012) point towards a di�erent demographic history between western and eastern

islands of the archipelago. Western Solomon islands were peopled at least 30,000 years

ago as a�ested by the only Pleistocene archaeological site of the Buka island (Wickler

and Spriggs 1988). Some Solomon islanders carry specific NRY lineages dated back to

around 9,500 years ago (Delfin et al. 2012). Interestingly, we inferred younger divergence

time between Solomon Islanders and other Near Oceanians when replacing Vella Lavella
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western Solomon Islanders by Malaita eastern Solomon Islanders (around 20,000 years ago

versus around 9,500 years ago) supporting a di�erent peopling history of these two parts of

the archipelago. However, this result needs to be confirmed and extended by for example,

reconstructing the joint demographic history of di�erent Solomon Island groups.

Our demographic inference of Near Oceania islanders is based on a limited number of

groups, only one per archipelago, mainly because of the complexity of the demographic

models and the limits of our approach (see 7.2 Inferring demographic models with

SFS-based methods). How well do our models represent the peopling history of Near

Oceania? As previously mentioned, the intra-archipelago genetic structure could be very

high because of an early isolation of the di�erent groups or because of di�erent admixture

histories within islands/archipelagos and/or with East/Southeast Asians. Consequently,

many divergent genetic lineages might not be represented in our models and it is also

possible that unsampled groups have a di�erent population history. In addition, the

di�erent volcanic eruptions that occurred during the Pleistocene and Holocene periods

forced di�erent groups to migrate, to colonize new territories or to replace other groups

(Torrence et al. 2004; Torrence, Neall, and Boyd 2009). It is thus likely that some Pleistocene

groups disappeared and did not contributed to the current gene pool. Ancient DNA would

help to be�er portrait the genetic makeup of the first se�lers and be�er understand the

current genetic diversity of Near Oceania.

7.1.2 Dissociating language, culture and genes?

The study of the Austronesian language phylogeny supports a “pulse-pause” model

of the Pacific se�lement from Taiwan (Gray, Drummond, and Greenhill 2009). The

analyses indicate a first pause between Taiwan and the Philippines around 4,000 years

ago and a second pause in western Polynesia around 2,800 years ago, as predicted by

the “Out-of-Taiwan” model (Bellwood 1997). These results are also in agreement with

ancient DNA studies, which linked the first Lapita se�lers of Remote Oceania to Taiwan

and the Philippines (Posth et al. 2018; Lipson et al. 2020; Lipson et al. 2018). However, a

recent genetic study (Larena et al. 2021) based on 1,028 individuals from the Philippines

and on two ancient individuals dated to around 8,000 year ago from the Liang islands

(between Mainland East Asia and Taiwan) questioned the language-culture package

proposed by the “Out-of-Taiwan” model. The two Liangdao samples form the oldest

link between Mainland East Asians and present-day Austronesian speakers. The analyses

suggest that the Cordilleran Austronesian speakers migrated into the Philippines before

the start of agriculture in the region. Similarly, our demographic models of Formosan

(using Taiwanese aborigines) and Malayo-Polynesian speakers (using Kankanaey Filipinos,
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Solomon islanders and Polynesians) suggest a population structure of Austronesian

speakers that predates the appearance of agriculture in Taiwan and Southeast Asia.

Furthermore, the analysis of Oryza japonica (Gutaker et al. 2020), the main cultivated

subspecies of rice, revealed a very recent di�usion in Island Southeast Asia starting around

2,500 years ago. Altogether, these di�erent studies suggest that the spread of agriculture

in Islands Southeast Asia and later in Oceania is not the consequence of a demic di�usion

but rather a di�usion of ideas involving limited gene flow.

7.1.3 Multiple origins and/or migrations for the Lapita?

The archaeologist Noury, based on the analysis of the motifs found on Lapita po�eries,

hypothesized that multiple founder groups were at the origin of the Bismarck Lapita

societies (Noury and Galipaud 2011; Noury 2005). These multiple migrations would

originate from Island Southeast Asia (Borneo/Sulawesi) and the Philippines through the

Marianna islands in Micronesia. The Marianna archipelago is of great interest since

archaeological and paleoenvironmental evidence suggest the presence of the Lapita culture

as old as in the Bismarck archipelago around 3,500 years ago or even older, up to 4,500 years

ago (Carson 2020; Athens and F. 2004). Recently the study of two skeletons from Guam

island (Marianna islands) dated to around 2,200 years ago revealed that the first se�lers

of the archipelago likely came from the Philippines (Pugach et al. 2021). This study also

highlights the close genetic relationship between the two Guam individuals and the Lapita

individuals from the Vanuatu and Tonga. This suggests an alternative route through the

Marianna islands for the peopling of western Remote Oceania and ultimately Polynesia.

Hence, although not formally tested, this study proposes an alternative hypothesis that

gives to Micronesia a key role in the peopling history of Polynesia (Figure 7.1). This

archipelago and more generally Micronesia should thus receive careful a�ention and be

further investigated.

Our analyses indicate multiple interactions between East/Southeast Asia and Near

Oceania, at least two, with the most recent gene flow dated at around 1,500 years ago. In

1992, from the study of western Pacific rock arts, C. Ballard proposed that the Austronesian

Painting Tradition (APT) did not spread from Taiwan or the Philippines with the initial

Austronesian se�lers but rather more recently from Island Southeast Asia around 2,000

years ago (Ballard 1992). Does the second gene flow that we detected correspond to most

recent Island Southeast Asian influences in Near Oceania? Does it reflect a se�lement of

western Remote Oceania and Polynesia via multiple routes (i.e. through New Guinea and

the Bismarck or through the Marianna Islands)? The mode and tempo of East/Southeast

Asian gene flow should be further evaluated and extended to other Near and Remote
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Figure 7.1: Routes taken by the se�lers of Remote Oceania (Pugach et al. 2021). Red
dots indicate the locations of the Lapita samples from Vanuatu and Tonga. The blue and
red arrows indicate the standard route taken by Austronesian speakers and the route for
the peopling of the Mariana Islands respectively. The dashed red arrow indicates the likely
alternative route for the peopling of Remote Oceania.
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Oceanian groups. Ancient DNA from Near Oceania before 3,500 years ago will also give

insight about the hypothesis of early Holocene (around 6,000 years ago or even before)

connexions between Island Southeast Asia and Near Oceania.

7.2 Inferring demographic models with SFS-based
methods

7.2.1 Obtaining unbiased estimates

One of the main objectives of my thesis was to reconstruct the demographic history

of Near and Remote Oceanians using modern DNA. The aim of the analyses was to

estimate unbiased demographic parameters and particularly, times of divergence between

the di�erent Near and Remote Oceanians groups. The admixed nature of Oceanian

islanders makes inaccurate the use of standard methods such as Relate (Speidel et al.

2019) or MSMC (Schi�els and Durbin 2014) to estimate divergence times between groups

or e�ective population sizes. The joint estimations of the parameters characterizing the

demographic past of Near and Remote Oceanians as well as of the East/Southeast Asian

ancestry of these groups were performed using a multidimensional SFS-based inference

and the maximum likelihood framework implemented in Fastsimcoal2 (Exco�ier et al.

2013; Exco�ier et al. 2021). The SFS is a powerful summary statistic to infer part

of the demographic parameters including e�ective populations size or divergence time

(Gutenkunst et al. 2009; Exco�ier et al. 2013; Exco�ier et al. 2021; Marchi, Schlichta,

and Exco�ier 2021). However, in some cases, the same SFS can be explained by di�erent

demographic scenarios (Terhorst and Song 2015; Myers, Fe�erman, and Pa�erson 2008)

and other, more informative summary statistics can be used to infer the number, the nature,

the time and rate of genetic interactions between populations (Cooke and Nakagome

2018; Gravel 2012; Liang and Nielsen 2014). For these reasons, asymmetric and symmetric

migrations between geographically close groups (migrations following a stepping stone

model) as well as single pulse admixture events should be considered in these analyses

more as nuisance parameters. �estions related to gene flow between Near Oceanians

and East/Southeast Asians as well as archaic introgression with both Neanderthal and

Denisovan archaic hominins, were instead investigated in detail using an ABC approach

with informative summary statistics.

To obtain unbiased estimates (less biased as possible) of the divergence times, we

considered in all our models: (i) Neanderthal and Denisovan introgression events,
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(ii) continuous migrations between neighbour groups (asymmetric or symmetric), (iii)

East/Southeast Asian gene flow and (iv) e�ective population size changes over time

including bo�lenecks, population contractions and expansions. In some of our models,

we included ghost populations to capture gene flow from unsampled groups and also

population structure. The number of parameters increases very rapidly which limits the

number of populations that can be included in the models. For some of them, the parameter

space was very large increasing the risk of overfi�ing and model misspecification (Marchi,

Schlichta, and Exco�i 2021; Terhorst and Song 2015). Although, we assessed the accuracy

and uncertainty of the estimated parameters, it is almost impossible to ensure that the

likelihood converged towards the global maximum.

7.2.2 Obtaining uncertainty of the estimates

Unlike ABC approaches enabling the calculation of the 95% confidence intervals, the

algorithm implemented in Fastsimcoal2 does not. To do so, we calculated the 95%

confidence intervals using a non-parametric block-bootstrap approach as recommended

in the literature (de Manuel et al. 2016; Malaspinas et al. 2016a; Sikora et al. 2019)

and Fastsimcoal2 best practices (h�ps://groups.google.com/g/fastsimcoal). The individuals

used to represent the di�erent sampled populations were selected based on their mean

sequencing coverage but also based on other analyses such as PCA and ADMIXTURE. We

considered through our bootstrapping strategy that all the variability of the demographic

parameter estimation came from the selected independent regions of the genome (each

haplotype has its own history) and not from the individuals. However, the individuals

chosen to represent a population can also be a source of variability, for example in case

of recent admixture there is a variance in the ancestry proportions. This variability could

thus be considered in the resampling strategy when calculating the uncertainty of the

parameters.

For most of the model that we inferred, we replicated the same models replacing groups by

others from the same archipelago, for example Vella Lavella by Malaita Solomon Islanders

or Malakula by Emae Ni-Vanuatu. For some of the parameters the confidence intervals

were overlapping, strengthening the accuracy of these estimates. Nevertheless, what does

it mean for those that did not replicate? It is challenging to know whether it is because

these parameters are not correctly inferred or because it reflects true di�erences in the

demographic past of these groups.
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7.2.3 Model comparison

I would like also to discuss about the model comparison with Fastsimcoal2. The SFS

that we used for model inference were build using all SNP found outside genes and CpG

islands. Because of the presence of linked-SNP, the likelihood computed by Fastsimcoal2 is

a composite likelihood. Composite likelihood provides unbiased parameter estimates but

the likelihood itself is inflated and cannot be used for model comparison using AIC or BIC.

An alternative approach has been proposed which consists in re estimating (100 times) with

more simulations the likelihood of each model included in the comparison (de Manuel et

al. 2016; Malaspinas et al. 2016a; Sikora et al. 2019). We considered that a model was the

most likely if the initial expected log10(likelihood) under this model is higher than that

of the alternative models, and the di�erence between the mean of the 100 re-estimated

log10(likelihoods) of this model and that of other models is higher than 50 as in (Sikora

et al. 2019). We estimated that using these criteria, the true model was selected in 81%

of the cases, but it is likely that this true positive rate depends on the complexity of the

demographic model to estimate. Therefore, the threshold used to consider a model as the

most likely should be a priori evaluated and adapted to each demographic model tested.

7.2.4 "All models are wrong but some are useful"

Finally, it is important to mention that all demographic inferences rely on mathematical

simulations and thus on assumptions that, if violated, can lead to biased estimates. For

example, coalescent simulations and demographic inferences assume neutrality. However,

part on neutral variants found outside genes can also be a�ected by linked selection,

especially background selection which corresponds to the elimination of neutral variants

owing to negative selection acting on linked deleterious mutations. Genomic regions

a�ected by background selection have a lower genetic diversity mimicking a signal of low

e�ective population size and recent expansion (Ewing and Jensen 2016; Marchi, Schlichta,

and Exco�i 2021; Schrider, Shanku, and Kern 2016). Moreover, the dates of events in

absolute time (“years ago”) also rely on two parameters: the mutation rate and the

generation time. Despite the mutation rate varies greatly along the genome (as mentioned

in chapter 2) we assumed in our simulations a constant mutation rate, 1.25× 10−8 per site

and per generation as in (Malaspinas et al. 2016a; Schi�els and Durbin 2014; Sikora et al.

2019).

The space of possible demographic models is very large and it is not possible to explore

all of them. Models presented in chapter 5 correspond to the most likely demographic
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scenarios among a subset of models that we compared. Despite I referred in this thesis to

the “inference of complex demographic models”, all models presented here (and in other

studies) are too simple to represent the real demographic history of Oceanian populations.

However, simple models are sometimes useful to test and rise hypotheses as well as to pave

the way for a be�er understanding of the complex peopling and demographic history of

human populations.

7.3 Future directions

7.3.1 Toward fine-scale and transdisciplinary studies

Our work, combined with other recent genomic studies (Posth et al. 2018; Lipson et al.

2018; Pugach et al. 2018b; Malaspinas et al. 2016a), provide a more detailed picture of the

population history and the genetic diversity observed today in Near and Remote Oceania.

However, the answers provided still remain too general for this region of the world with

the richest cultural and linguistic diversity combined with a very deep continental genetic

structure.

We have seen so far in this thesis (i) the old divergence time and deep population structure

of Near Oceanians, (ii) the role of migrations (Lapita and post-Lapita) in shaping the

biological and cultural makeup of Remote Oceanians and (ii) the heterogeneity in the

admixture history of the di�erent groups. How and when were Central and Eastern

Solomon Islands peopled? Is there a population continuity in this archipelago since initial

se�lement? Who is/are the Lapita people(s)? Did the Lapita societies originate from one

or multiple sources? Who were the first western Remote Oceanians and Polynesians?

What were the consequences of Europeans in the population structure and health of

Oceanians? To my mind, these questions should be addressed by considering the inputs

of di�erent disciplines and by shi�ing toward fine-scale studies: archipelago, island or

even burial-based studies (for ancient DNA) as suggested by K.R Veeramah (Veeramah

2018). Generally, population geneticists try to validate/invalidate hypotheses or models

proposed by archaeologists, anthropologists and linguists. I think, it is time now that new

hypotheses and new models emerge from a common and constructive discussion between

disciplines.

In her review, K.R Veeramah (Veeramah 2018) discussed the issue with the concept

of “migration” that tends to be simplified in genomic and paleogenetic studies. First,

because geneticists typically use only a limited number of samples to represent a likely
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socially heterogenous group and second, because paleogenetic studies do not address the

question of the nature of the migrations (e.g. back migrations, leapfrogging, continuous).

While Valentin et al. (Valentin et al. 2016; Valentin et al. 2014) referred to “Secondary

movement of people”, geneticists referred to “population replacement”. In this context,

transdisciplinary approaches will allow to harmonize the di�erent terms that are used by

both archaeologists and geneticists but that do not have the same definition or precision

(e.g. “Population replacement” vs “Secondary movement of people”). This approach will

also bring to the same level stories, sometimes di�erent, tell by genes, language and culture.

The perception of blood, DNA or other part of the body changes from culture to

another. Similarly, the destruction of bones to extract ancient DNA or the post-mortem

manipulation of the body in sacred lands can sometimes be perceived as unethical by

autochthonous groups (e.g. the study of the Kennewick man and other native American

groups (Wagner et al. 2020; Rasmussen et al. 2015; Bha�acharya et al. 2018)). For

decades, it was very complicated to obtain DNA samples from Pacific groups, and

although some communities recently consented to be part of genetics studies, others

still refuse. For example, from 2017 the customary senate of New Caledonia refuses the

involvement of indigenous Kanak people in population genetic studies. Archaeologists,

anthropologists and linguists, spend a tremendous amount of time in the fieldwork, where

they create stable relationships, communicate with local authorities and engage, when

desired, autochthonous groups. In this regard, I am personally convinced that geneticists

will benefit from this collaborative and transdisciplinary work.

7.3.2 Lack of diversity in databases

As recently as January 2019, around 78% of individuals found in Genome Wide Association

Studies (GWAS) were of European descent while only less than 0.20% were Oceanians

(Figure 7.2) (Sirugo, Williams, and Tishko� 2019). More generally, genomic resources

such as ascertained SNP arrays (Lachance and Tishko� 2013) or databases such as HGDP

(Bergstrom et al. 2020) and gnomAD (Karczewski et al. 2020), epidemiological and clinical

databases, e.g., ClinVar (Landrum et al. 2018) or OMIM (Amberger et al. 2015) are

European-centered. However, many studies point to the low portability, from an ancestry

to another, of SNP e�ect sizes and corresponding polygenic scores, i.e., individual’s genetic

predisposition score for a given tested trait (Peterson et al. 2019; Majara et al. 2021;

Amariuta et al. 2020; Sirugo, Williams, and Tishko� 2019). This is a burning issue since

variants associated with diseases in Oceanians or other underrepresented populations (e.g.,

Native Americans) but rare in Europeans, are still lacking (Kessler et al. 2019; Kessler et al.

2016; Landry et al. 2018).
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Future works need to include phenotypic data of Pacific groups especially

metabolic-related traits in order to identify population specific genetic variants associated

with such disorders. Similarly, future work would also include new whole genome

sequences or whole exome sequences of more Pacific groups such as western and eastern

Polynesians who are almost completely absent from genetic databases. These new data

with a reduced ascertainment bias, combined with phenotypic, time transect ancient

DNA, archaeological, anthropological and linguistic data will allow (i) to be�er portrait

the biological diversity of the region, (ii) to fill in some gaps in the peopling history of Near

and Remote Oceania, (iii) evaluate the impact of Europeans on population structure and

health of Oceanians, (iv) shed light on biological functions that contributed to adaption

to their insular environment and (v) to be�er understand their present-day relation to

diseases.

Figure 7.2: Ancestry distribution in GWAS Catalog studies (January 2019) (Sirugo,
Williams, and Tishko� 2019). Percentage of each ancestry based either on studies (le�)
or on the total number of individuals in GWAS studies (right).
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SUMMARY

African rainforests support exceptionally high biodi-
versity and host the world’s largest number of active
hunter-gatherers [1–3]. The genetic history of African
rainforest hunter-gatherers and neighboring farmers
is characterized by an ancient divergence more than
100,000 years ago, together with recent population
collapses and expansions, respectively [4–12]. While
the demographic past of rainforest hunter-gatherers
has been deeply characterized, important aspects of
their history of genetic adaptation remain unclear.
Here, we investigated how these groups have adapt-
ed—through classic selective sweeps, polygenic
adaptation, and selection since admixture—to the
challenging rainforest environments. To do so, we
analyzed a combined dataset of 566 high-coverage
exomes, including 266 newly generated exomes,
from 14 populations of rainforest hunter-gatherers
and farmers, together with 40 newly generated,
low-coverage genomes. We find evidence for a
strong, shared selective sweep among all hunter-
gatherer groups in the regulatory region of
TRPS1—primarily involved in morphological traits.
We detect strong signals of polygenic adaptation
for height and life history traits such as reproductive
age; however, the latter appear to result from perva-
sive pleiotropy of height-associated genes. Further-
more, polygenic adaptation signals for functions
related to responses of mast cells to allergens
and microbes, the IL-2 signaling pathway, and
host interactions with viruses support a history of
pathogen-driven selection in the rainforest. Finally,

we find that genes involved in heart and bone devel-
opment and immune responses are enriched in both
selection signals and local hunter-gatherer ancestry
in admixed populations, suggesting that selection
has maintained adaptive variation in the face of
recent gene flow from farmers.

RESULTS

Exome Sequencing Dataset and Population Structure
African rainforest hunter-gatherers (RHGs)—historically grouped

under the term ‘‘Pygmies’’—live along the dense tropical rainfor-

ests of central Africa, in the western and eastern part of the

Congo Basin [1–3]. Genetic studies have deeply investigated

the demographic history of these groups, characterized by

long-term isolation since the Upper Paleolithic and substantial

admixture with neighboring Bantu-speaking farmers in the last

1,000 years [4–12]. However, their adaptive history has received

less attention. Natural selection studies in RHGs have primarily

focused on small adult body size as the only trait characterizing

the ‘‘pygmy’’ phenotype [13–20], and used SNP genotyping data

[14, 15, 19–21] or whole-genome/exome sequencing of a few

individuals or populations [4, 6, 18, 22, 23].

To understand human genetic adaptation to the rainforest,

we generated and analyzed whole-exome sequencing data

(�403 coverage) for seven RHG groups from Cameroon,

Gabon, and Uganda, as well as, for comparison purposes, seven

sedentary groups of Bantu-speaking agriculturalists (AGRs) (Fig-

ure 1A; Table S1). After quality filters, we obtained a final dataset

of 566 individuals (298 RHGs and 268 AGRs), consisting of 266

newly generated exomes that were analyzed with 300 previously

reported exomes [4] (Figure S1).

Genetic differentiation among RHG groups was higher than

that between RHGs and AGRs (among-RHG, FST = 0.025;

among-western RHG, FST = 0.021; RHG-AGR, FST = 0.017;
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among-AGR, FST = 0.007; Figure 1B). To increase SNP density,

particularly in the non-coding genome, we combined the exome

data with SNP array data for the same individuals [12, 24, 25],

yielding a total of 1,253,548 SNPs. When using ADMIXTURE

[26] on the dataset pruned for allele frequency (MAF > 5%) and

linkage disequilibrium (r2 < 0.5), RHGs separated into four clus-

ters at K = 5 (Figure 1C), corresponding to Bezan, Baka,

BaBongo and BaKoya, and BaTwa groups. As previously

observed [5, 12, 14, 24], membership proportions to the cluster

assigned to AGRs were non-negligible and similar among RHG

groups (�4%–9%; Table S1), with the exception of the BaBongo

of east and south Gabon, who presented high AGR proportions

(�43% [SD = 11%] and �24% [SD = 17%], respectively).

Membership proportions to the cluster assigned to RHGs were

also non-negligible among AGRs (�10%–30%). Our results

show that RHG populations are highly structured, emphasizing

the importance of considering these groups separately in subse-

quent analyses.

Searching for Signals of Local Genetic Adaptation in
Central Africans
For all natural selection analyses, we increased SNP density to

9,129,103 high-quality variants (MAF > 1%), through genotype

imputation using (1) newly generated whole genomes from

Figure 1. Location, Genetic Differentiation, and Structure of Central African Populations

(A) Geographic location of the populations analyzed. Populations of rainforest hunter-gatherers (diamonds) and neighboring farmers (circles) originating from the

three countries are shown in the map of Africa. Colors indicate the dominant membership in each population, based on ADMIXTURE results (C).

(B) Levels of genetic differentiation between populations measured by pairwise FST calculated on the exome data.

(C) Cluster membership proportions estimated by ADMIXTURE on the merged exome and SNP array data. Cross-validation values were lowest at K = 5 clusters.

(B and C) BaBongoC, BaBongoS, and BaBongoE stand for BaBongo populations from the center, south, and east of Gabon, respectively.

See also Figure S1 and Table S1.
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20 RHG Baka and 20 AGR Nz�ebi from Gabon (5–63 coverage)

and (2) the 1000 Genomes Phase 3 panel [27] (STAR Methods;

Figure S1). We focused on the five RHG populations presenting

the lowest average levels of AGR ancestry and analyzed the

highly admixed RHG groups differently (see Recent Genetic

Adaptation of Admixed Rainforest Hunter-Gatherers). To identify

signals of strong sweeps, we searched for variants with both

high allele frequency and extended haplotype homozygosity in

RHGs, relative to AGRs (STAR Methods). Genome-wide ranks

of PBS [28] and XP-EHH [29] were combined into a Fisher’s

score (FCS), and to reduce false positives, candidate regions

were defined as 100-kb windows with the 1% highest proportion

of outlier SNPs of the genome.

We first scanned the genomes of AGR populations (Figure S2),

the evolutionary history of whom iswell characterized [24, 29–32].

We found 18 candidate regions for positive selection in both

western and eastern AGRs, while only �3.5 were expected to

be shared if candidate loci were false positives (10,000 random

samples; resampling p < 10�4) (Figure 2A; Data S1). Among can-

didates, we replicated, for example, the signal encompassing the

LARGE gene, involved in Lassa virus infectivity [34]. These results

provide evidence that the genomic regions detected by our

approach are enriched in true signals.

A Strong, Shared Selective Sweep at TRPS1 across All
Hunter-Gatherer Groups
Our search for sweeps in RHGs identified candidates that

were shared by RHG groups more than expected by chance (re-

sampling p < 10�4) (Figure 2A; Data S1). Remarkably, we identi-

fied a single genomic region that exhibits sweep signals in all

RHG populations, but not in AGRs (Figures 2A–2C and S3).

This region lies upstream of the 50 UTR of TRPS1, which encodes

a transcription factor (TF) with multiple pleiotropic effects,

including skeletal development and inflammatory TH17 cell dif-

ferentiation [35–37]. The six variants presenting the highest fre-

quency differences between RHGs and AGRs (Data S1) define

a 5,777 bp region that contains a primate-specific THE1B

endogenous retrovirus sequence, known to control the expres-

sion of nearby genes [38]. Given the high expression of TRPS1

in monocytes [39], we analyzed published RNA sequencing

(RNA-seq) data from monocytes of individuals of central African

ancestry to test if candidate variants affect TRPS1 expression

Figure 2. Shared Signals of Classic Sweeps among Rainforest Hunter-Gatherers

(A) Number of candidate windows for classic sweeps (i.e., windows with proportions of outlier SNPs among the 1% highest of the genome) common to western

and eastern AGR populations (wAGR and eAGR), as well as common to RHG populations. p values obtained based on 10,000 resamples are shown: *p < 10�4.

(B) Genome-wide map of classic sweep signals in RHG groups. The autosomes of each of the five RHG populations (from top to bottom: Bezan, Baka, lowly

admixed BaBongo, BaKoya, and BaTwa) are shown. Colored dots indicate genomic regions that are common to at least three RHG populations.

(C) Selective sweep signal at the locus containing the TRPS1 gene (chr8:116702422-116802422) in the Baka RHGs.

(D) Selective sweep signal at the locus containingCISH,MAPKAPK3, andDOCK3 genes (chr3:50610197-50710197 and chr3:50660197-50760197) in the BaTwa

RHGs.

(C and D) Dot colors indicate SNP FCS percentiles, black squares indicate non-synonymous mutations, and black dots indicate eQTLs (q value < 0.005) [33].

eQTLs of MAPKAPK3 (rs107457 and rs9879397) and DOCK3 (rs12629788) are shown as yellow diamonds. Not all genes of the genomic region are shown for

convenience.

See also Figures S2 and S3 and Data S1.
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[40]. A highly differentiated variant that falls within the THE1B

fragment was associated with increased expression of a short,

non-canonical TRPS1 transcript upon immune stimulation

(rs111351287; regression p = 5 3 10�6). These findings suggest

that the most robust signal of adaptation to the African rainforest

can be ascribed to TRPS1, possibly in relation with variation in

morphological and/or immunological traits.

Detection of Other Classic Sweep Signals in Rainforest
Hunter-Gatherers
Other selective sweep signals were specific to a smaller number

of RHG groups (Figure S2; Data S1). These include the known

150-kb region encompassing CISH, MAPKAPK3, and DOCK3

[6, 14], which we show here to be shared among western and

eastern RHGs (Baka, BaKoya, and BaTwa). We searched the

GTEx database [33] for regulatory variation at these genes

(eQTLs) and found two cis-eQTLs for MAPKAPK3 (rs107457

and rs9879397), one for DOCK3 (rs12629788), and none for

CISH (Data S1). Selection scores at these eQTLs were among

the highest of the region, particularly forMAPKAPK3 (Figure 2D),

which affects hepatitis C virus (HCV) infectivity [41].

We also detected two contiguous regions at the IFIH1 locus

[18], which present strong enrichments in selection scores that

are shared by all western RHG groups. Candidate variation at

this locus (rs12479043) controls the expression of the nearby

FAP gene [33], which regulates fibroblast and myofibroblast

growth and wound healing during chronic inflammation [42].

We also identified two windows—shared by Bezan, Baka, and

BaKoya—encompassing RASGEF1B, whose expression is

induced in macrophages by lipopolysaccharide, a membrane

component of Gram-negative bacteria [43]. Finally, we found a

window in the Bezan, BaBongo, and BaKoya that overlaps

PITX1, recently identified as a selection candidate in RHGs

[22]. PITX1modulates the core development of limb [44], is asso-

ciated with height variation [45], acts as an early TF in the devel-

oping pituitary gland [46], and regulates interferon-a virus induc-

tion [47]. These results support the hypothesis that development

and immunity are key traits in local adaptation to the rainforest.

Evidence for Polygenic Selection Favoring the ‘‘Pygmy’’
Phenotype
Given the polygenic nature of most adaptive traits [48, 49], we

searched for evidence of polygenic adaptation focusing on 12

candidate quantitative traits. These include height, body mass

index, skin pigmentation, life history traits, and immune cell

counts, the genetic architectures of which have been extensively

studied [50].We compared the distribution ofmean FCS scores in

non-overlapping, 100-kb genomic windows containing trait-

associated SNPs to that of randomly sampled windows, ac-

counting for SNP density, LD levels, and background selection

(STAR Methods). Stature-related traits showed the most signifi-

cant polygenic selection signals, in all RHG groups (adjusted

p < 0.05) while being non-significant in AGRs (Figure 3A). Life-

history traits related to reproduction also exhibited selection sig-

nals in various RHG groups, consistent with the proposed adap-

tive nature of early reproduction in RHGs [51, 52]. Furthermore,

we replicated selection signals for cardiovascular traits in the

BaTwa (adjusted p < 0.001) [23]. Notably, we found significant

signals in ‘‘Leukocyte count’’ in the Baka and the BaBongo

(adjusted p < 0.05), suggesting polygenic adaptation related to

immunity.

We next examined whether signals of polygenic selection

could result from pleiotropy; e.g., advantageous height-associ-

ated variants affect other correlated traits [49]. Using the UK Bio-

bank dataset [50], we computed the genetic correlations from

LD-score regressions between ‘‘Standing height’’ and the re-

maining traits, and found significant correlations for eight of

them (STARMethods; Data S1). For these, we repeated the anal-

ysis after excluding windows associated with ‘‘Standing height’’

or ‘‘Comparative height at age 10,’’ and the significance of selec-

tion signals was lost or dramatically reduced (Figures 3B and S4).

Conversely, when excluding windows associated with non-

height traits (e.g., reproduction-related traits), we found that

‘‘Standing height’’ was still significant in four RHG populations

(adjusted p < 0.05) (Figure 3C). These results show that height

has been an adaptive trait in RHGs, resulting in spurious poly-

genic selection signals for other correlated traits because of

pleiotropy.

Evidence of Pervasive Pathogen-Driven Selection in the
Equatorial Rainforest
We further investigated genomic signatures of polygenic adapta-

tion, by searching for excesses in mean FCS among windows

related to 5,354 gene ontology (GO) terms [53] (STAR Methods).

We detected 38 terms that were significant in at least three RHG

groups, but not in AGRs (Figure 3D; Data S1). Among these, we

found positive regulation of ‘‘mast cell degranulation’’ and ‘‘the

phosphatidylinositol 3-kinase (PI3K) pathway’’ (false discovery

rate [FDR] p < 5%). Recognition by mast cells of allergens and

antigens induces degranulation, a process mediated by the

PI3K pathway that results in inflammation and allergy [54].

Enrichments were also found in the IL-2 signaling pathway,

which activates the PI3K pathway and regulates immune toler-

ance [55]. All enrichments remained significant after removing

windows associated with height (FDR p < 5%), excluding poten-

tial pleiotropic effects. To gain further insights into pathogen-

driven selection, we next focused on 1,553 innate immunity

genes (IIGs) [56] and 1,257 genes encoding virus-interacting pro-

teins (VIPs) [57]. We found significant enrichments in selection

signals for both gene sets in RHGs, but not in AGRs, in particular

for VIPs interacting with double-stranded DNA (dsDNA) and sin-

gle-stranded RNA (ssRNA) viruses (FDR p < 5%; Table S2;

Data S1). These results collectively support the notion that path-

ogens have been a major driver of local adaptation in the African

rainforest.

Recent Genetic Adaptation of Admixed Rainforest
Hunter-Gatherers
To search for evidence of recent selection in RHG since their

admixture with AGRs, we focused on the highly admixed Ba-

Bongo (Figure 1C) and performed local ancestry inference with

RFMix [58], using as putative parental populations western RHG

and AGR individuals with the lowest AGR and RHG membership

proportions, respectively (STAR Methods). Six contiguous win-

dows on chromosome 1 showed both evidence of selection

(i.e., top 1% of the proportion of outlier SNPs) and an excess of

RHG local ancestry (i.e., higher than the genome-wide average +

2 SD) in admixed RHG (Figures 4A and S2; Data S1). Among the
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Figure 3. Signals of Polygenic Selection in African Rainforest Hunter-Gatherers

(A) Signals of polygenic selection for 12 candidate quantitative traits, based on higher mean FCS of trait-associated windows relative to genome-wide

expectations.

(B) Signals of polygenic selection for the candidate quantitative traits, based on higher mean FCS of trait-associated windows relative to genome-wide expec-

tations, after removing windows associated with ‘‘Standing height’’ and ‘‘Comparative height at age 10.’’ Loss of significance was not explained by the reduced

number of windows tested (Figure S4).

(C) Signals of polygenic selection for ‘‘Standing height,’’ based on higher mean FCS of trait-associated windows relative to genome-wide expectations, after

removing windows associated with each of the remaining quantitative traits.

(A–C) Color gradient and circle sizes are proportional to –log10(adjusted p) with adjusted *p < 0.05, **p < 0.01, and ***p < 0.001. Multiple testing corrections were

performed using the Benjamini-Hochberg method. wAGR and eAGR stand for western and eastern AGR groups. Signals were generally stronger in Baka and

BaTwa RHGs, probably because of their larger sample size.

(D) Gene Ontology (GO) terms enriched in selection scores (FDR p < 5%) in RHG, but not in AGR, populations, considering the window mean FCS as selection

score. Circle color and size indicate the number of RHG populations that show significant evidence of polygenic selection for a given GO term.

See also Figure S4, Table S2, and Data S1.
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strongest candidate variants, we found a non-synonymousmuta-

tion (rs6697388) in ZBED6, which encodes a TF that controls

muscle growth through IGF2 repression [59]. ZBED6 is located

within the intron of the ZC3H11A gene, whose product is required

for the efficient growth of several nuclear-replicating viruses [60].

The rs6697388Gallele (p.Leu391Arg) is present at the highest fre-

quency in admixed BaBongo (51%), with lower frequencies in

parental RHG (42%) and AGR (15%) groups. With respect to

the strong, sharedselective sweepdetectedatTRPS1 (Figure2C),

the locus also presented selection signals in the BaBongo but no

excess of RHG or AGR ancestry (Figures S2 and S3), suggesting

weaker or no positive selection at TRPS1 since admixture.

Finally, we searched for evidence of polygenic selection since

admixture, by testing for excesses in AGR or RHG local ancestry

in genomicwindows related toGO terms in the admixedBaBongo

(STAR Methods). We found 21 GO terms that were enriched in

both RHG local ancestry and selection signals in the parental

RHGs (Figure 4B; Data S1), an overlap that was significantly larger

than expected (7.3% versus 4.7%, c2 test, p = 0.042). These

terms were mostly related to cardiac and skeletal development

and immune functions, and included ‘‘heparin biosynthetic pro-

cess,’’ which participates in mast cell-mediated immune and in-

flammatory responses [61], echoing the signals detected for

‘‘mast cell degranulation’’ in weakly admixed RHGs (Figure 3D).

We also found 16 GO terms that were enriched in both AGR local

ancestry and selection signals in the parental AGRs (Figure 4B;

Data S1), including stem cell proliferation, exocytosis, andmuscle

composition. Together, these results support further the notion

that heart and bone development as well as immune responses

have been an important substrate of selection in RHGs, before

and after their admixture with neighboring farmers.

DISCUSSION

Here we present the first exome-based survey of multiple

geographically dispersed groups of African rainforest hunter-

gatherers, with the aim of investigating how populations have

adapted to the challenging habitats of the equatorial rainforest.

Because positive selection often targets regulatory regions

[62], we combined the exome dataset with SNP array data, to

cover both genic and intergenic regions. In doing so, we found

evidence of a unique, strong sweep that is shared by all RHG

groups, targeting the regulatory region of TRPS1, mutations in

which can cause growth retardation, distinctive craniofacial fea-

tures [63], and hypertrichosis [64]. Furthermore, the transcription

factor TRPS1 regulates STAT3, a mediator of inflammation and

immunity [65], and RUNX2, controlling facial features and viral

clearance [66, 67]. Interestingly, TRPS1 has been recently shown

to carry signals of archaic introgression in western Africans [68].

Functional studies should help determine the adaptive nature—

developmental and/or immune-related—of variation at this

locus, which possibly introgressed from extinct African hominins

[18, 68, 69].

This study also extends previous findings of a sweep targeting

the CISH-MAPKAPK3-DOCK3 region [6, 14], by delineating

MAPKAPK3 as the most likely target. MAPKAPK3 expression

is regulated by two eQTLs that are among the strongest candi-

dates for positive selection at the locus in RHG populations.

MAPKAPK3 directly interacts with HCV and regulates cell infec-

tivity [41]. A lower prevalence of HCV infection has been reported

in RHG, with respect to AGR [70, 71]. Our results strengthen the

evolutionary importance of the CISH-MAPKAPK3-DOCK3

region in both western and eastern RHGs, and pinpoint

Figure 4. Selection Signals in Highly Admixed Rainforest Hunter-Gatherers

(A) Selective sweep signal and average local RHG ancestry at the chr1:203564464-203764464 locus in the highly admixed RHG BaBongo. Dot colors indicate

SNP FCS percentiles, the black square indicates the non-synonymous variant (rs6697388) at ZBED6, and black dots indicate eQTLs (q value < 0.005) [33].

(B) GO terms enriched in both local ancestry in the highly admixed RHG BaBongo, and selection scores in each of the two putative parental populations, with

respect to the rest of the genome (FDR p < 5%). Green (brown) dots indicate GO terms enriched in both western RHG (western AGR) local ancestry and selection

scores in parental western RHG (western AGR) populations (FDR p < 5%). Enrichments were assessed using the Mann-Whitney-Wilcoxon rank-sum test.

See also Data S1.
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MAPKAPK3 variation as a putative, additional risk factor for HCV

infection in Africans.

Our analyses provide robust evidence for polygenic selection

of height, which we replicate in various RHG groups. Importantly,

our results are not affected by biased genome-wide association

study (GWAS) summary statistics due to partial control for popu-

lation stratification, which can result in spurious polygenic selec-

tion signals [72, 73]. Our approach tests for the co-localization of

selection signals and trait-associated genes; thus, it does not

depend on effect size estimates and does not assume that asso-

ciated variants are the same across populations. More generally,

polygenic selection of height is unlikely to result from sexual se-

lection [74] but from genetic adaptation to equatorial forest envi-

ronments [75]. Our study sheds new light onto the debated adap-

tive nature of height, and supports that the early reproductive age

of RHGs is not the cause of their small body size, as previously

suggested [51, 52]. Instead, our results suggest that directional

selection of height has resulted in changes in life-history traits

because of pervasive pleiotropy of height-associated genes.

We also found signals of polygenic selection in RHGs at func-

tions related to the IL-2 pathway, the sensing of allergens and

microbes, and interactions with dsDNA and ssRNA viruses.

Interestingly, higher seropositivity for more than 30 viruses has

been reported in the BaTwa from Uganda, with respect to

AGRs, particularly for dsDNA viruses [76]. That we also found

an excess of RHGancestry related to heparin biosynthesis, inter-

leukin production, and leukocyte chemotaxis in highly admixed

RHGs suggests preferential retention of RHG variation at im-

mune-related functions. This finding supports a long-standing

history of adaptation of RHGs to high pathogen pressures. This

contrasts with a study in southern Africa, which reported a low

exposure and adaptation to pathogens of hunter-gatherers of

the Kalahari Desert, except for those who recently came in

contact with other populations [77].

Collectively, our analyses uncover height, development, and

immune response as iconic adaptive traits of African RHGs. It

is interesting to note that the PI3K signaling pathway—under

polygenic selection in four RHG populations—modulates inflam-

matory responses [78], body energy homeostasis [79, 80], and

insulin secretion [81]. Several studies have highlighted the recip-

rocal relationship between proinflammatory cytokines and the

regulation of the growth hormone through the IGF-1 axis [82]. It

is thus tempting to speculate that pleiotropic effects between

developmental growth and immunity could have further partici-

pated in the ‘‘pygmy’’ phenotype. Epidemiological work on the

infectious disease burden in hunter-gatherers should increase

our understanding of how historical high pathogen-driven selec-

tion has contributed to the reduced stature characterizing popu-

lations of the rainforest.
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45. Rüeger, S., McDaid, A., and Kutalik, Z. (2018). Evaluation and application

of summary statistic imputation to discover new height-associated loci.

PLoS Genet. 14, e1007371.

46. Szeto, D.P., Rodriguez-Esteban, C., Ryan, A.K., O’Connell, S.M., Liu, F.,

Kioussi, C., Gleiberman, A.S., Izpisúa-Belmonte, J.C., and Rosenfeld,

M.G. (1999). Role of the Bicoid-related homeodomain factor Pitx1 in

specifying hindlimb morphogenesis and pituitary development. Genes

Dev. 13, 484–494.

47. Island, M.L., Mesplede, T., Darracq, N., Bandu, M.T., Christeff, N., Djian,

P., Drouin, J., and Navarro, S. (2002). Repression by homeoprotein pitx1

of virus-induced interferon a promoters is mediated by physical interac-

tion and trans repression of IRF3 and IRF7. Mol. Cell. Biol. 22, 7120–

7133.

48. Pritchard, J.K., Pickrell, J.K., and Coop, G. (2010). The genetics of human

adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr.

Biol. 20, R208–R215.

49. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An expanded view of com-

plex traits: from polygenic to omnigenic. Cell 169, 1177–1186.

50. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K.,

Motyer, A., Vukcevic, D., Delaneau, O., O’Connell, J., et al. (2018). The

UK Biobank resource with deep phenotyping and genomic data.

Nature 562, 203–209.

51. Migliano, A.B., Vinicius, L., and Lahr, M.M. (2007). Life history trade-offs

explain the evolution of human pygmies. Proc. Natl. Acad. Sci. USA 104,

20216–20219.

52. Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R.,

Djurovic, G., Hames, R., Hurtado, A.M., Kaplan, H., et al. (2006). Growth

rates and life histories in twenty-two small-scale societies. Am. J. Hum.

Biol. 18, 295–311.

53. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry,

J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.; The

Gene Ontology Consortium (2000). Gene ontology: tool for the unification

of biology. Nat. Genet. 25, 25–29.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources should be directed to and will be

fulfilled by the Lead Contact, Lluı́s Quintana-Murci (quintana@pasteur.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection
Sampling consisted in human saliva or blood from 157 rainforest hunter-gatherers and 120 farmers from western and eastern

central Africa (Figure S1), including 208 males and 69 females. Informed consent was obtained from all participants in this study,

which was overseen by the institutional review board of Institut Pasteur (2011-54/IRB/8), the Comit�e National d’Ethique du Gabon

(0016/2016/SG/CNE), the University of Chicago (IRB 16986A) andMakerere University, Kampala, Uganda (IRB 2009-137). The 277

new samples collected for exome sequencing were analyzed together with 317 exomes of central Africans from Lopez et al. 2018

[4] and 101 Europeans from Quach et al. 2016 [40] (Table S1).

METHOD DETAILS

Exome Sequencing
Sample libraries were prepared with the Nextera Rapid Capture Expanded Exome Kit, which delivers 62Mb of genomic content per

individual, including exons, untranslated regions and microRNAs, and were sequenced on Illumina HiSeq2500 machines. Using

the GATK Best Practices recommendations [93], pairs of 101-bp reads were mapped onto the human reference genome

(GRCh37) with Burrows-Wheeler Aligner (BWA) version 0.7.7 [85], using ‘bwa mem -M -t 4 -R’, and reads duplicating the start po-

sition of another read were marked as duplicates with Picard Tools version 1.94 (http://broadinstitute.github.io/picard/), using

‘MarkDuplicates’. We used GATK version 3.5 [86] for base quality score recalibration (‘Base Recalibrator’), insertion/deletion

(indel) realignment (‘IndelRealigner’), and SNP and indel discovery (‘Haplotype Caller’) for each sample. Individual variant files

were combined with ’GenotypeGVCFs’ and filtered with ‘VariantQualityScoreRecalibration’. We used high confidence variants

from the 1000G Phase 1 and HapMap 3 projects [94, 95] as VQSR training callsets, and applied a tranche sensitivity threshold

of 99.5%. From the 947,523 sites detected, we removed indels as well as SNPs that (i) were located on the sex chromosomes,

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Nextera Rapid Capture Expanded Exome kit Illumina Cat#FC-140-1006

HumanOmniExpress-24 v1.1 DNA Analysis Kit Illumina N/A

Deposited Data

Exome and whole-genome sequencing This paper EGAS00001003722

Software and Algorithms

PLINK v1.9 [83] http://www.cog-genomics.org/plink/1.9/

KING v1.4 [84] http://people.virginia.edu/�wc9c/KING/history.htm

ADMIXTURE [26] http://software.genetics.ucla.edu/admixture/download.html

BWA v.0.7.7 [85] http://bio-bwa.sourceforge.net/

Picard Tools v.1.94 N/A http://broadinstitute.github.io/picard

GATK v3.5 [86] https://software.broadinstitute.org/gatk/download/

SHAPEIT2 [87] http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/

shapeit.html

IMPUTE v.2 [88] http://mathgen.stats.ox.ac.uk/impute/impute_v2.1.0.html

LDSC [89] https://data.broadinstitute.org/alkesgroup/LDSCORE/

GOATOOLS [90] https://github.com/tanghaibao/goatools

RFMIX v1.5.4 [58] https://sites.google.com/site/rfmixlocalancestryinference/

BEAGLE [91] https://faculty.washington.edu/browning/beagle/beagle.html

GERP++ [92] http://mendel.stanford.edu/SidowLab/downloads/gerp/

e1 Current Biology 29, 2926–2935.e1–e4, September 9, 2019



(ii) were not biallelic, (iii) were monomorphic in our total sample, (iv) had a depth of coverage < 53 , (v) had a genotype quality score

(GQ) < 20, (vi) presented missingness > 15%, and (vii) presented a Hardy-Weinberg test p < 10�6 in at least one of population. As

criteria to remove low-quality samples, we required a total genotype missingness < 15% (21 excluded samples). In addition, we

checked for unexpectedly high or low heterozygosity values, suggesting high levels of inbreeding or DNA contamination, and

excluded 3 individuals presenting heterozygosity levels 4 SD higher than their population average. We thus retained exome

data for 671 individuals, with an average depth of coverage after duplicate removal of 38 3 (SD: 9 3 ), ranging from 25 3 to

95 3. The application of these quality-control filters resulted in a final dataset of 682,468 SNPs (Figure S1), of which 107,621

SNPs were polymorphic only in the 268 newly-sequenced individuals.

SNP Array Data
In addition to exome sequencing, we retrieved the genotyping data of the same 671 individuals fromQuach et al. 2016 [40], Patin et al.

2014 [12], Patin et al. 2017 [24] and Fagny et al. 2015 [25] (Figure S1; Table S1). We removed SNPs located on the X and Y chromo-

somes, problematic genotype clustering profiles (i.e., Illumina GenTrain score < 0.35) or with call rate < 95%. We kept 599,559 SNPs

common to different genotyping SNP arrays. We removed a total of 53 C/G or A/T SNPs to prevent misaligned SNPs, and excluded a

total 5 additional SNPs that were under Hardy-Weinberg disequilibrium in at least one of the populations (p < 10�6) using PLINK [96],

leading to a final dataset of 559,501 SNPs.

We applied additional filters on the genotyping dataset of the 671 individuals retained for exome sequencing. We removed two

individuals with heterozygosity levels higher or lower than the population mean ± 4 SD Although related individuals were avoided

during the sampling and for exome sequencing (based on published SNP array data) [5, 12, 17, 24, 25], we sought to exclude possibly

remaining pairs of cryptically related individuals. Indeed, RHG populations are small isolated communities, where individuals can be

related tomany others. We considered that two individuals were strongly (cryptically) related if they presented a first-degree relation-

ship (kinship coefficient > 0.177), as inferred by KING [84]. Following this criterion, only one individual was removed. Additionally, we

removed another individual who did not present any first-degree relatedness but was related in second-degree to many others. After

removing these two individuals, the dataset included 77 and 232 pairs of second-degree (kinship coefficient > 0.0884) and third-de-

gree (kinship coefficient > 0.0442) related RHG individuals, respectively. The application of these quality-control filters resulted in a

final genotyping dataset of 667 individuals and 599,501 SNPs (Figure S1).

Merging Exome and SNP Array Data
Beforemerging the genotyping array and the exome data from the 667 high-quality individuals in common, we flipped alleles for 8,393

SNPs with incompatible allelic states, and removed 9 SNPs with alleles that remained incompatible after allele flipping from the gen-

otyping dataset. The total concordance rate was evaluated on 28,403 SNPs common to both datasets. The concordance rates for

each of the 667 individuals exceeded 98%, confirming an absence of errors during DNA sample processing. The entire genotyping

and exome datasets (599,492 and 682,468 SNPs, respectively) were then merged, yielding a final dataset of 1,253,548 SNPs for 667

individuals, 566 of whom were African farmers or hunter-gatherers (Figure S1).

Whole-Genome Sequencing
We generated whole genomes of 20 RHG Baka and 20 AGR Nz�ebi of Gabon, which were also part of the exome and SNP array data-

sets. All the samples were processed using the paired-end library preparation protocol from Illumina. Libraries were sequenced on

Illumina HiSeq 2000 machines at the Stanford Center for Genomics and Personalized Medicine. 101-pb reads were aligned to the

human reference genome (GRCh37) using BWA [85], followed by base quality recalibration and realignment around known indels

with GATK [86]. Genotyping was carried out across all 40 individuals jointly using GATK ‘UnifiedGenotyper’, and called variants

were stratified into variant quality tranches using ‘VariantQualityScoreRecalibration’ tool (VQSR) from GATK. SNPs with a VQSR

tranche > 99.0 were considered as confidently called. Genotype calls were refined and improved based on LD using BEAGLE

[91], yielding a final dataset of 17,687,206 variants (Figure S1). All individuals presented very low rates of missing values ranging

from 0.5% to 4%, and a mean depth of coverage of 6.5 3 (ranging from 4 3 to 13 3 ).

Imputation of SNP Array and Exome Data
Before imputation, we phased the data with SHAPEIT2 using 100 states, 20 MCMC main steps, 7 burnin and 8 pruning steps [87].

SNPs and allelic states were then aligned with the 1000 Genomes Project imputation reference panel (Phase 3 [27]), referred to as

‘reference panel 1’, as well as the 40 whole genomes of Baka RHG and Nz�ebi AGR of Gabon, referred to as ‘reference panel 2’

(Figure S1). We removed from the reference panels SNPs with MAF < 1%, SNPs with C/G or A/T alleles and 414,679 multiallelic

SNPs in the reference panel 1. We evaluated the allelic concordance between the two reference panels and excluded 9,649 addi-

tional sites from the reference panel 2, yielding to final datasets of 11,501,018 SNPs in the reference panel 1 and 14,252,666

SNPs in the reference panel 2.

Genotype imputation was performed with IMPUTE v.2 [88] considering 1-Mb windows and both reference panels simultaneously,

with the ‘-merge_ref_panels’ option. We used genotype calls instead of genotype probabilities, which are not handled by down-

stream programs, and considered as confident genotype calls genotypes with posterior probability > 0.8. Of the 13,092,258

SNPs obtained after imputation, we removed SNPs that: (i) presented an information metric < 0.8, (ii) had a duplicate, (iii) presented

a call rate < 95%, and (iv) were monomorphic. The final imputed dataset included 10,262,236 SNPs, and 9,129,103 after filtering
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SNPs with MAF < 1%. To evaluate imputation accuracy, we estimated correlation coefficients r2 between true genotypes (i.e., ob-

tained by Illumina genotyping array or exome sequencing) and imputed genotypes for the same SNPs (i.e., obtained by artificially

removing genotyped SNPs from the data before imputation and then imputing them). The average correlation coefficient across

all genotyped SNPs with information metric > 0.8 were 0.86 and 0.85 for reference panels 1 and 2, respectively, showing that our

quality filters ensure to keep accurately imputed SNPs for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome Scans for Selective Sweeps
Genomic regions candidate for positive selection were detected in seven populations of RHG (Bezan, Baka, BaBongo of central

Gabon, BaKoya, BaBongo of south and east Gabon and BaTwa) and two populations of AGR (western and eastern AGR), with an

outlier approach that considers two interpopulation statistics: PBS (Population Branch Score [28]), and XP-EHH [29]. We combined

these scores into a Fisher’s score (FCS) equal to the sum, over the two statistics, of –log10(rank of the statistic for a given SNP/number

of SNPs). Interpopulation statistics require a reference population, and PBS statistics an outgroup population. We performed sepa-

rate scans of classic sweeps for each population, using Europeans as outgroup, and different reference populations: western AGR for

each western RHG population, eastern AGR for eastern RHG, pooled western RHG for western AGR, and eastern RHG for eastern

AGR. PBSwas calculated for each SNP using AMOVA-based FST values computedwith home-made scripts (available upon request).

The derived allele of each SNPwas defined based on the 6-EPO alignment. XP-EHHwas computed in 100-kb sliding windows with a

50-kb pace, with home-made scripts (available upon request). Only SNPs with a derived allele frequency (DAF) between 10% and

90% were analyzed further. XP-EHH scores were normalized in 40 separate bins of DAF. An outlier SNP was defined as a SNP

with an FCS among the 1% highest of the genome. A putatively selected genomic region was defined as a 100-kb window presenting

a proportion of outlier SNPs among the 1% highest of all windows, in five bins of SNP numbers. Windows containing less than 50

SNPs were discarded as well as 500-kb regions around gaps, to avoid biases in the outlier enrichment scores.

Polygenic Selection of Complex Traits
We retrieved the results of theGenomeWide Association studies fromUKBIOBANK (round 2, http://www.nealelab.is/uk-biobank/) of

12 complex traits that we selected as candidates for adaptation of RHG, based on previous hypotheses from biological anthropology

studies [51, 73, 97–101]. Our genomic dataset was split into non-overlapping 100-kb windows. We considered a window as asso-

ciated with a trait if it included a SNP with a genome-wide significant association with this trait (Passoc<5 3 10�8). We computed for

each genomic window, associated or not with the trait, the average FCS, the proportion of conserved SNP positions based on GERP

scores > 2 [92], and the recombination rate using the combined HapMap genetic map [102], to account for the confounding effects of

background selection.

In order to test for polygenic selection, we generated a null distribution by randomly sampling x windows (x being the number of

windows associated with a tested trait) among windows with a similar number of SNPs, proportion of GERP > 2 sites and recombi-

nation rate observed in the trait-associated windows. We then calculated the average of the mean of the FCS across the x resampled

windows. We resampled 100,000 sets of x windows for each trait. To test for significance, we computed a resampling P-value by

calculating the proportion of resampled windows which mean FCS was higher than that observed for the tested trait. All P-values

for polygenic adaptation were then adjusted for multiple testing by the Benjamini-Hochberg method, to account for the number of

traits tested, and traits with an adjusted p < 0.05 were considered as candidates for polygenic selection.

To test if polygenic selection signals are due to pleiotropy of height-associated genes, we first estimated genetic correlations

between candidate traits from LD-score regression using the ldsc tool [89]. We used precomputed European LD-scores

(https://data.broadinstitute.org/alkesgroup/LDSCORE/). P-values were corrected for multiple testing using the Bonferroni correc-

tion, and adjusted P-values < 0.05 were considered as significant.

To correct for pleiotropy for each trait genetically correlated with height, we removed windows significantly associated with

‘Standing Height’ and ‘Comparative height at age 10’ in both windows associated with the candidate trait and resampled win-

dows. Similarly, we re-tested for polygenic adaptation on ‘‘Standing height’’ and ‘‘Comparative height at age 10’’ associated re-

gions using the same approach, but by removing all trait-associated windows, except height-associated windows. To test if loss of

significance was due to a decrease in power, we down-sampled the number of tested trait-associated windows to the same

number as after removing height-associated windows. We down-sampled a 100 times trait-associated windows, and estimated

a hundred P-values as described above. We finally compared the distribution of the 100 obtained P-values with the estimated

P-value (non-adjusted for multiple testing) both before and after removing height-associated windows.

Polygenic Selection of Gene Ontologies
To detect enrichment of FCS scores in sets of genes corresponding to a given biological pathway, we compared the distributions of

FCS between genes that were part of the gene ontology (GO) term tested, relative to the rest of the genes of the genome, using a

Mann-Whitney-Wilcoxon rank-sum test. To limit the effect of clusters of genes on the enrichment calculation, we assigned to

each 100-kb non-overlapping genomic window both a GO term, based on the presence of at least one gene from the corresponding

term, and a mean FCS score. We tested if mean FCS of windows assigned to a given GO term were different from genome-wide ex-

pectations, accounting for multiple testing. We restricted the enrichment analysis to 5,354 GO terms with levels comprised between
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levels 3 and 7 [53], using the python library goatools [90], and that include at least 5 genes. We examined a total of 15,503 windows

and determined P-values corresponding to 5% and 1% of false discoveries, FDR p = 9.243 10�3 and FDR p = 4.033 10�4, respec-

tively, by randomly resampling y genes (y being sampled from the distribution of the number of genes assigned to each GO term). We

also studied additional gene sets, including 1,553manually-curated genes involved in innate immunity [56] and 1,257 genes encoding

proteins known to have physical interactions with multiple families of viruses [57].

Local Ancestry Inference
To perform local ancestry inference in the genomes of the highly-admixed BaBongo RHG from south and east Gabon, we first consti-

tuted putative parental populations that were representative of RHG and AGR ancestry. We considered as the parental AGR popu-

lation, 163 individuals with less than 20% of their ancestry assigned to the RHG component, based on the ADMIXTURE analysis at

K = 5. Likewise, we considered as the parental RHG population, 101 individuals with less than 5%AGR ancestry. The genomes of the

highly-admixed BaBongowere decomposed into segments of RHGor AGR ancestry with RFMix v.1.5.4 [58], including two EMsteps.

We excluded 2-Mb regions from the telomeres of each chromosome. Based on RFMix ancestry estimations, themean AGR ancestry

was 94% [SD = 1.6%] in the parental AGR population, 62% [SD = 5.9%] in the highly-admixed BaBongo, and 27% [SD = 3.7%] in the

parental RHG population. These ancestry proportions were highly correlated with ADMIXTURE membership proportions at K = 2

(Pearson’s correlation coefficient R2 = 0.99). We then searched for excesses in RHG or AGR ancestry in pathways by assigning

ancestry proportions to 100-kb windows across the genome, with the same approach used for GO enrichments.

DATA AND CODE AVAILABILITY

The newly generated exomes (n = 277) and genomes (n = 40) of central African rainforest hunter-gatherers and agriculturalists have

been deposited in the European Genome-phenome Archive (EGA). The accession number for the newly generated data reported

in this paper is EGA: EGAS00001003722. Data accessibility is restricted to academic research on human genetic history and

adaptation. Exome sequencing data for the remaining, previously published samples are available under accession codes

EGA: EGAS00001002457 and EGA: EGAS00001001895.
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Figure S1. Summary of the Data Processing Performed in this Study. Related Figure 1.  
The arrow indicates the correspondence between individuals analyzed in both datasets.  

  



 

 

Figure S2. Genome-Wide Signals of Classic Sweeps in Central African Populations. 
Related to Figure 2. 
Proportions of outlier SNPs (i.e., FCS in the top 1% of the empirical distribution) in 100-kb 
windows along the genome of RHG and AGR populations. Gene names are shown for 
candidate windows with a proportion of FCS outlier SNPs > 30%.  
  



 

 

 
Figure S3. Selective Sweep Signal at the TRPS1 Locus in African Rainforest Hunter-
Gatherers. Related to Figure 2C. 
Local genomic signals of classic sweeps at the candidate windows containing the TRPS1 gene 
(chr8:116702422-116802422) in all RHG populations. Dot colors indicate SNP FCS 
percentiles, black squares indicate non-synonymous mutations and circled crosses indicate 
non-imputed SNPs. Average local RHG ancestry is shown for the admixed BaBongo of south 
and east Gabon.  



 

 

 

 

 

 

 

Figure S4. Significance of Tests for Polygenic Selection when Accounting for Pleiotropy 
or Reduced Number of Genomic Windows. Related to Figure 3A-C. 
Red dots indicate –log10(non-adjusted P) when accounting for pleiotropy (i.e., after excluding 
height-associated windows). Green dots indicate –log10(non-adjusted P) when not accounting 
for pleiotropy. Boxplots correspond to–log10(non-adjusted P) of 100 random samples of x 
trait-associated windows, where x is the number of windows associated to the trait tested, 
when accounting for pleiotropy. The grey dashed line indicates the significance threshold –
log10(0.05). When red points are below both the dashed line and box plots, this indicates that 
the significant signals of polygenic selection are no longer significant, because of our 
correction for pleiotropy, and not because of the reduced number of windows.  

  



 

 

 

Table S1. Population description, sample size, and AGR ancestry proportions of the 
final dataset of 667 individuals. Related to Figure 1. 
Ancestry proportions were estimated in AGR and RHG populations with ADMIXTURE at 
K=5 clusters.  

 

  

Group Population Country N 
Reference for SNP 

array data 
(accession number) 

Reference for exome 
sequencing 

(accession number) 

Mean 
AGR 

ancestry  

SD of 
AGR 

ancestry  

Minimum 
AGR 

ancestry  

Maximum 
AGR 

ancestry  

wAGR Tsogo Gabon 29 [S1] 
(EGAS00001002078) This study 80.7% 1.8% 77.4% 84.3% 

wAGR Galoa Gabon 30 [S1] 
(EGAS00001002078) This study 86.80% 3.2% 78.6% 92.5% 

wAGR Shake Gabon 30 [S1] 
(EGAS00001002078) This study 67% 2.90% 59.6% 71.3% 

wAGR Fang Gabon 31 [S1] 
(EGAS00001002078) This study 85.3% 1.1% 82.3% 87.8% 

wAGR Bapunu Gabon 44 [S1] 
(EGAS00001002078) 

[S2] 
(EGAS00001002457) 82.5% 3.6% 66.4% 88.2% 

wAGR Nzébi Gabon 55 [S1] 
(EGAS00001002078) 

[S2] 
(EGAS00001002457) 82.7% 3.1% 73% 87.7% 

eAGR BaKiga Uganda 49 [S3] 
(EGAS00001000908) 

[S2] 
(EGAS00001002457) 88.6% 1.9% 84.5% 92.8% 

wRHG Bezan Cameroon 38 [S3] 
(EGAS00001000605) This study 9.5% 13.3% 0% 45.5% 

wRHG BaBongo  
(center) Gabon 21 This study This study 9.4% 9.1% 0% 39.8% 

wRHG BaBongo 
(east) Gabon 27 [S4] 

(EGAS00001000605) This study 43.3% 11.2% 31.3% 82.8% 

wRHG BaBongo  
(south) Gabon 33 [S4] 

(EGAS00001000605) This study 24.3% 17.4% 0% 59.1% 

wRHG BaKoya Gabon 26 [S1] 
(EGAS00001002078) This study 4.1% 5.5% 0% 20.8% 

wRHG Baka Cameroon/ 
Gabon 

72/ 
30 

[S5] 
(EGAS00001001066) 

[S4] 
(EGAS00001000605) 

[S2] 
(EGAS00001002457) 

This study 
8.1% 10.7% 0% 51.4% 

eRHG BaTwa Uganda 51 [S3] 
(EGAS00001000908) 

[S2] 
(EGAS00001002457) 8.7% 12.2% 0% 43.5% 

EUR Belgian Belgium 101 [S6] 
(EGAS00001001895) 

[S6] 
(EGAS00001001895) NA NA NA NA 



 

 

Immune traits Bezan Baka BaKoya BaBongoC BaBongoS/E BaTwa wAGR eAGR 

All II genes 2.13×10-2 6.44×10-2 0.324 2.95×10-3 3.51×10-2 0.674 3.33×10-2 0.210 

Adaptors 0.224 2.54×10-3 0.034 9.25×10-3 0.359 0.574 0.752 0.310 

Regulators 0.140 0.497 0.166 1.84×10-2 3.36×10-3 4.81×10-3 0.675 0.731 

Secondary receptors 2.26×10-3 1.42×10-4 0.682 5.05×10-2 0.144 0.697 0.985 0.487 

Signal transducers 0.382 0.074 0.623 1.55×10-3 2.53×10-2 0.925 0.399 0.387 

Sensors 3.89×10-4 0.424 0.338 5.99×10-3 0.507 0.157 8.57×10-3 0.350 

Transcription factors 0.536 0.931 0.930 0.450 0.496 0.362 1.67×10-2 0.758 

Accessory molecules 0.904 0.777 0.946 0.894 0.548 0.991 0.063 0.287 

Effectors 0.250 0.302 0.140 0.410 0.699 0.418 0.387 0.395 

Uncharacterized 0.413 0.154 0.047 0.939 0.678 0.906 0.134 3.09×10-2 

All VIP genes 0.179 0.199 0.083 6.85×10-4 1.17×10-2 0.236 0.193 0.323 

dsDNA 0.268 8.88×10-3 3.93×10-3 2.46×10-2 4.22×10-2 0.073 0.648 0.787 

ssRNA 0.182 0.339 0.084 4.21×10-4 7.98×10-3 0.562 0.336 0.316 

ssDNA 0.919 0.093 2.31×10-3 1.29×10-2 0.429 0.619 0.592 0.736 

dsDNART 0.365 0.985 0.710 0.382 0.152 0.459 0.111 0.569 

ssRNART 0.213 0.496 0.864 0.162 0.258 0.069 0.118 0.135 

 

Table S2. Polygenic Selection Signals for Immune-Related Traits in Central Africans. 
Related to Figure 3D.  
Evidence for polygenic selection across 1,553 innate immunity (II) and 1,257 viral interacting 
protein (VIP) genes, based on their enrichment in high FCS selection scores (FDR P<5%; in 
bold), relative to genome-wide expectations. Families of viral interacting proteins include host 
genes interacting with: double-stranded DNA virus (dsDNA), double-stranded DNA 
retrovirus (dsDNART), single-stranded DNA virus (ssDNA), single-stranded RNA virus 
(ssRNA) and single-stranded RNA retrovirus (ssRNART).  
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