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SUMMARY

Titre: Approches en génétique des populations pour comprendre 'histoire des populations
d’Océanie.

Résumaé:

Introduction

Au cours des 125 000 derniéres années, ’lhomme moderne (Homo sapiens) s’est répandu
sur tous les continents et s’est installé dans divers écosystemes, aussi extrémes que le
désert du Sahara, le cercle polaire arctique ou I’Himalaya. Les données archéologiques
et linguistiques ont fourni des informations précieuses sur le rythme des dispersions
humaines a travers le monde, cependant de nombreuses questions restent ouvertes :
les populations ont-elles migré avec leurs langues et leurs modes de vie ? Les cultures
humaines définies par P'archéologie refletent-elles des entités génétiques distinctes ?
Les dispersions humaines se sont-elles accompagnées d’un mélange génétique avec des
groupes locaux d’humains archaiques ou modernes ? Comment les humains se sont-ils
génétiquement adaptés aux environnements nouvellement colonisés ? L’avénement récent
des technologies de séquencage a haut débit permet désormais d’aborder ces questions
dans les moindres détails, a travers la caractérisation compléte de la diversité génétique
des populations humaines vivant a differentes époques (époque actuelle ou passée). Les
approches de génétiques des populations sont ainsi trées complémentaires aux études
archéologiques, anthropologiques et linguistiques. En effet, elles permettent d’expliquer
d’autres facettes de I’histoire complexe des populations humaines.

Quatre forces évolutives fagonnent la diversité génétique d’une population : la mutation
qui crée la variation génétique, la dérive génétique qui tend a augmenter la différenciation
génétique des petites populations, les migrations ou le flux de genes qui homogénéise
les populations et la sélection naturelle qui permet aux populations de s’adapter a leurs
environnements (c’est-a-dire la sélection naturelle positive) et de purger les mutations
délétéres du génomes (c’est-a-dire la sélection négative). Les différents événements
caractérisant I’histoire des peuples humains — les fluctuations au cours du temps de la
taille des populations, les événements de métissage et d’introgression avec des populations
humaines aujourd’hui éteintes ou les événements d’adaptation génétique a de nouveaux
environnements - faconnent leur diversité génétique. Ainsi, la génétique des populations
peut étre utilisé afin de reconstruire le passé démographique des différent peuples et de
mettre en lumiére les fonctions biologiques qui ont contribué a leur adaptation pour, in
fine, mieux comprendre leur susceptibilité face aux maladies.

L’Océanie

La région de I’Océanie couvre plus de 8 500 000 km? de surface terrestre répartie entre
I’Australie/Papouasie-Nouvelle-Guinée et Iile de Paques (I’ile la plus a I’est du triangle
polynésien). Cette région du monde est peuplée par un peu plus de 40 000 000 habitants,
représentant uniquement environ 0,5 % de la population mondiale. Cependant, cette
région posséde une incroyable diversité culturelle et linguistique avec environ 1 750



langues différentes (25 % des langues mondiales, en excluant les langues parlées en
Australie) réparties en deux groupes : les langues austronésiennes et les langues papoues.
En plus de ces langues, les peuples insulaires d’Océanie parlent également le francais,
I’anglais et différentes langues créoles ou « pidgin » comme le bichlamar qui est 'une des
langues officielles du Vanuatu.

Qui sont les peuples du Pacific ? D’ou viennent-ils ? Ces questions ont suscité
Iintérét des premiers explorateurs scientifiques européens. En 1852, Dumont d’Urville,
un navigateur botaniste francais, divise ’Océanie en trois régions afin de considérer la
diversité phénotypique et culturelle rapportée par les explorateurs européens : Mélanésie,
Polynésie et Micronésie. Cependant, cette classification géographique de ’Océanie a été
faite dans le cadre de la théorie raciale et deux de ces régions, la Mélanésie et la Micronésie
ne refletent aucune réalité culturelle. Pour rendre compte de la richesse culturelle et
linguistique observée en Océanie ainsi que des différences d’origines et d’histoire des
peuples, les chercheurs préferent aujourd’hui utiliser un autre découpage : I'Océanie
proche, qui regroupe les iles peuplées pendant la période du Pléistocéne, entre 50 000 et 25
000 ans et I’Océanie lointaine regroupant les iles peuplées durant la période de I’'Holocéne,
il y a environ 3 000 ans. Les données archéologiques, anthropologiques et linguistiques
recueillies depuis le XXe siecle ont fourni un éclairage crucial sur I’histoire du peuplement,
la répartition géographique des premiers peuples d’Océanie, leurs sociétés, leurs différents
modes de vie ainsi que sur les anciens réseaux d’échanges. L’ensemble de ces données
multidisciplinaires ont surtout permis de proposer des hypothéses et des modeles — encore
actuellement débattus — sur I'histoire du peuplement de I’Océanie proche et lointaine.

Objectifs de la these

L’Océanie est composée de milliers d’iles regroupées en deux grands ensembles,
caractérisés par deux vagues de peuplement distinctes : I’Océanie proche et I’Océanie
lointaine. Le premier ensemble, comprenant la Nouvelle-Guinée, I’archipel Bismarck et
les Iles Salomon, a été peuplé par I’'homme moderne (Homo sapiens) il y a environ 40 000
ans. Le deuxiéme, incluant toutes les autres iles d’Océanie, n’a été peuplé qu’il y a un peu
plus de 3 000 ans et ce par 'expansion de peuples parlant des langues austronésiennes,
probablement originaires de Taiwan (modéle «Out-Of-Taiwan »). Ce projet de thése vise
a reconstituer I’histoire génétique des populations insulaires d’Océanie, dans le but de
reconstruire leur passé démographique pour a terme, mieux comprendre leur rapport
face aux maladies. Ainsi, nous avons séquencé 'ADN de 317 individus autochtones
répartis en 20 populations et couvrant I’ensemble des régions géographiques a la base de
I’histoire du peuplement de I’Océanie proche et lointaine. Plus précisément, mon projet de
theése vise a (i) caractériser la diversité génétique des populations d’Océanie, (ii) retracer
tous les différents événements constituant leur histoire démographique, et enfin (iii)
évaluer la purge des mutations délétéeres (c’est-a-dire des mutations pouvant provoquer
des maladies) dans ces populations. Dans sa globalité, cette étude nous a permis d’en
apprendre davantage sur I’histoire génétique de I’Océanie, une région du monde qui a été
largement oubliée des études génétiques.
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Résumeé des résultats

Histoire démographique des populations du pacifique

Pour reconstruire I'histoire du peuplement et du passé démographique des populations
insulaires du Pacifique, nous avons conjointement inféré les parametres caractérisant
leur histoire démographique en utilisant des spectres de fréquences alléliques
multidimensionnels et une approche basée sur le maximum de vraisemblance.
Tout d’abord, nous avons exploré différentes topologies d’arbres et estimé les
parametres démographiques des groupes d’Océanie proche (c’est-a-dire les groupes
de Nouvelle-Guinée, de I'archipel Bismarck et des lles Salomon). Cette étude a révélé
que le peuplement de cette région avait été accompagné d’un effet fondateur tres fort,
environ 5 fois supérieur a celui observé pour le peuplement de I’Eurasie. Cette étude a
aussi permis d’inférer une divergence ancienne des différentes populations de cette région
remontant a la période du Pléistocéne supérieur, il y 20 000 a 45 000 ans. Ces résultats
indiquent un isolement génétique rapide des différents groupes de I’Océanie proche, aprés
le peuplement initial daté d’environ 45 000 ans (données archéologiques, (O’Connell et al.
2018a; O’Connell et Allen 2015)).

Nous avons également testé différentes topologies et estimé des paramétres
démographiques pour les peuples de I’Océanie lointaine de I'ouest (Vanuatu). Nous
avons ainsi confirmé I'expansion récente (inférieure a 3 000 ans) de groupes originaires de
’Archipel Bismarck vers I’Océanie lointaine de 'ouest, notamment en direction des iles
du Vanuatu, en accord avec des études récentes d’ADN ancien (Posth et al. 2018; Lipson
et al. 2018). Ces résultats ont également suggéré des contacts complexes et multiples
entre des groupes d’Asie de l'est et des groupes d’Océanie proche, en désaccord avec
I’hypothése « Out-of-Taiwan ». En raison d’un manque de continuité entre les premiers
ni-Vanuatu et les ni-Vanuatu actuels, comme le montrent les études d’ADN ancien et
les études craniométriques (Posth et al. 2018 ; Lipson et al. 2018 ; Valentin et al. 2016),
I’interprétation des modéles démographiques utilisant TADN moderne est tres limitée.

En supposant un modeéle d’isolement avec migration, nous avons estimé que les peuples
autochtones taiwanais et les locuteurs malayo-polynésiens ont divergé il y a environ 7
300 ans, en contradiction avec le modele « Out-of-Taiwan » - hypothése qui prédit un
événement de dispersion de Taiwan il y a environ 4 800 ans et qui aurait apporté a la
fois I'agriculture et les langues austronésiennes en Océanie (Bellwood 1997). Nous avons
confirmé ces temps de divergence anciens, méme en considérant des flux de génes dans les
groupes parlant des langues austronésiennes, mais avec des intervalles de confiance plus
larges. Ces résultats suggerent une structure de population des locuteurs austronésiens
qui prédate I’apparition de P'agriculture a Taiwan. Cependant, en raison de la grande
incertitude dans les estimations, d’autres analyses utilisant des génomes anciens sont
nécessaires.

En somme, ces analyses ont permis d’affiner notre compréhension de [histoire
démographique et adaptative des peuples des iles d’Océanie, une région du monde
longtemps absente des études de génétique des populations.



Efficacité de la sélection naturelle dans les populations du Pacifiques

D’un point de vue théorique, la génétique des populations prédit que, pour des populations
de petite taille, I'efficacité de la sélection est réduite, conduisant ainsi a une plus forte
accumulation de mutations pouvant causer des maladies rares ou fréquentes (Simons
et al. 2014; Balick et al. 2015). Si certaines études épidémiologiques ont révélé des cas
de pathologies a des fréquences anormalement élevées dans des populations insulaires
(O’Brien et al. 1988; Carr, Morton, and Siegel 1971; Eickhoff and Beighton 1985), rares
sont celles qui ont formellement démontré une augmentation du fardeau de mutations
délétéres dans les populations humaines ayant connu de forts effets fondateurs suivis
d’un isolement. Enfin, des études (Organisation Mondiale de la Santé) ont également mis
en évidence la forte prévalence de maladies métaboliques, notamment la goutte, le diabéte
et 'obésité dans les populations Océaniennes. Toutefois, les forces évolutives en ceuvres
sont actuellement débattues (Gosling et al. 2015) : hypothése du phénotype économe (i.e.
sélection naturelle) versus hypothése du phénotype dérivant (i.e. dérive génétique). Ainsi,
il apparait essentiel d’analyser la facon dont la démographie et la sélection naturelle ont
faconné la diversité génétique de ces populations afin d’améliorer notre compréhension
des différences de susceptibilité aux maladies entre populations de régions du monde
jusqu’a présent trés peu étudiées.

Au cours des dix derniéres années, plusieurs études ont étudié I'impact de la démographie
sur le fardeau des mutations délétéres chez I’homme (Lopez et al. 2018a; Simons and Sella
2016; Simons et al. 2014; Do et al. 2015; Henn et al. 2016b; Henn et al. 2015b; Lohmueller
et al. 2008; Lohmueller 2014; Fu et al. 2013; Pedersen et al. 2017a; Font-Porterias et
al. 2021). Bien qu’il y ait de plus en plus de preuves suggérant un impact négligeable
du goulot d’étranglement associé a la sortie d’Afrique (« Out-of-Africa ») sur le fardeau
des mutations délétéres additives (Lopez et al. 2018a; Simons and Sella 2016; Simons et
al. 2014; Do et al. 2015), de fortes réductions de la taille des populations, comme celles
subies par les Inuits du Groenland, peuvent avoir impacté le nombre et la fréquence des
mutations délétéres récessives (Pedersen et al. 2017a). Dans ce contexte, compte tenu
de leur histoire de peuplement caractérisée par de forts effets fondateurs en série, les
populations des iles du Pacifique Sud offrent un excellent modéle pour évaluer dans quelle
mesure ces processus démographiques spécifiques ont eu un impact sur 'apparition et la
distribution de mutations délétéres dans le génome humain.

Nous avons étudié le fardeau des mutations délétéres et I'efficacité de la sélection chez
les populations insulaires du Pacifique en utilisant des séquences « génome entier ». Par
rapport a d’autres populations non africaines, les polynésiens et les papous portent moins
de mutations délétéres - y compris les mutations « perte de fonction » (LoF) - mais qui
ont tendance a ségréger a des fréquences plus élevées, probablement en raison d’une
forte dérive génétique. Nous avons ensuite cherché a savoir si I’histoire démographique
des populations insulaires du Pacifique avait eu un impact sur leur fardeau de mutations
délétéres. Pour ce faire, nous avons estimé la distribution des effets de fitness des
nouvelles mutations déléteres, ainsi que le fardeau génétique des papous, des peuples des
iles Salomon, des ni-Vanuatu et des polynésiens. Nos résultats montrent que, malgré leurs
différences marquées de régimes démographiques, seules des différences subtiles dans la
capacité de la sélection naturelle a purger les alléles délétéres sont observées entre les
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océaniens et les autres populations humaines.

En somme, ces résultats suggerent que la forte dérive génétique agissant sur certains
groupes océaniens a eu des conséquences limitées sur Pefficacité de la sélection naturelle.
Cependant, des analyses complémentaires, telles que des simulations, sont nécessaires
pour évaluer la trajectoire du fardeau génétique au cours du temps ainsi que pour
examiner en détail 'impact du récent événement de métissage asiatique sur le fardeau de
mutations délétéeres des populations insulaires du Pacifique.

Mots clefs: Océanie ; génomique ; histoire démographique ; sélection naturelle ; fardeau
de mutations déléteres

Title: Genomic insight into the history of Oceanian populations: implication for human
evolution and health.

Abstract: Oceania is key to understand human evolution history, as contemporary Pacific
islanders descend from two highly divergent, ancestral groups, who represent the early
out-of-Africa dispersal > 45,000 years ago and the most recent expansion into empty
territories < 1,000 years ago. Ultimately, the region of Oceania is of major importance
for addressing questions related to human dispersal and natural selection processes.
The improvement of DNA sequencing methods, combined with the development of
mathematical and statistical frameworks, can provide insight into both the way natural
selection removes disease-causing mutations from human populations and their potential
to adapt to a broad range of climatic, nutritional, and pathogenic conditions. Oceania,
owing to its insular environment, provides with an excellent model to test important
hypotheses for the study of human genetic diversity and medical research. In this context,
the aims of this thesis are to bring knowledge on the demographic past of Oceanian
islanders and to the question of how population size changes and admixture affect the
burden of deleterious mutations in these populations. To do so, we have sequenced the
whole genomes of 317 individuals from 20 populations that cover the geographic transect
at the basis of the peopling history of Near and Remote Oceania. Specifically, this thesis
aims to (i) characterize the genetic diversity of these populations at high-resolution,
(ii) reconstruct their past demographic history in terms of divergence, migration and
population-size changes, and finally (iv) evaluate their burden of deleterious mutations.
All combined, this thesis project increased our understanding of the genomic history of
Oceania, a region of the world that has been largely neglected in genomic studies.

Keywords: Oceania; genomics; demographic history; natural selection; burden of
deleterious mutations
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INTRODUCTION

The region of Oceania covers more than 8,500,000 km? of land surface between
Australia/Papua New Guinea and Easter Island, the easternmost island of the Polynesian
Triangle. More than 40,000,000 inhabitants populate this region, which represents only
around 0.5% of the total world population. However, this region has an incredible cultural
and linguistic diversity with around 1,750 different native languages (25% of the worldwide
languages, excluding Australian languages) divided into two groups: Austronesian and
Papuan languages. In addition, to these native languages, Oceanian islanders speak also
French, English and different creole or pidgin languages such as the Bislama which is one

of the official languages of the Vanuatu.

What are the origins of the Pacific peoples? Who are they? What is their peopling
history? These burning questions generated the interest of the first European scientific
explorers. In 1852 Dumont d’Urville, a French botanist navigator, divided Oceania into
three regions in order to consider the phenotypic and cultural diversity reported by
Europeans explorers: Melanesia, Polynesia and Micronesia. However, this geographical
classification of Oceania was made in the context of the racial theory and two of these
regions, Melanesia and Micronesia do not reflect any cultural reality. To account for the
cultural and linguistic richness observed in Oceania as well as for the differences in origins
and in peopling history, scholars today, prefer to use another division of the region: Near
Oceania, which groups islands settled during the Pleistocene period around 50,000-30,000
years ago and Remote Oceania for islands peopled during the Holocene period, around
3,000 years ago. Archaeological, anthropological and linguistic data collected since the 20™
century undoubtedly provided crucial insight into the time of settlement, the geographic
distribution of the first Near and Remote Oceanians, their societies, their different lifestyles
and also their dynamic trading networks. Importantly, hypotheses and models — still
currently debated - about the peopling history of Near and Remote Oceania were drawn

from these multidisciplinary data.

Genetic approaches are very complementary to archaeology, anthropology and linguistics
and can explain other facets of the complex history of human populations. However,
Oceanian islanders are underrepresented in genetic databases and very little is known
about their current and past genetic diversity. The different events characterizing the past
history of human groups - population size changes over time, admixture, introgression
events with now extinct hominins or events of genetic adaptation to new environment
— shape their genetic diversity. The advance of technologies to access DNA sequences,

together with the development and improvement of mathematical algorithms, now allow

xii



population geneticists to trace back all these different events from both modern and
ancient DNA data. Therefore, evolutionary genetic approaches can be used to reconstruct
the demographic past of Near and Remote Oceanian islanders and to hypothesized on
the biological functions that contributed to their adaptation and, ultimately, to better

understand their present-day relation to diseases.
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1.2.2  Origin of the Lapita and settlement of Remote Oceania

The current island of New Guinea is politically divided into two regions, the eastern
part belongs to the independent state of Papua New Guinea (Eastern New Guinea, the
Bismarck Archipelago and Bougainville) and the western half (the provinces of Papua and
West Papua) is part of Indonesia. Eastern New Guinea, the Bismarck Archipelago and
the Solomon Islands form the geographical, archaeological, linguistic and anthropological
entity of Near Oceania, the first and only region of Oceania settled during the Pleistocene

period (Figure 1.1).
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1.1 Oceania in the Pleistocene

During the Pleistocene period (2,580,000 to 11,700 years ago), the current territories of
New Guinea, Australia and Tasmania were connected into a single landmass named Sahul.
This ancient continent was separated by around 100 km of water (i.e. the Wallace’s Line)
from island Indonesia and mainland Southeast Asia, which were gathered in a single
continent known as Sunda (Figure 1.1). The sea level was 150 meters lower than it is
today, facilitating the settlement of Sahul through Sunda by Homo sapiens between around
50,000 and 65,000 years ago (O’Connell et al. 2018a; O’Connell and Allen 2015; Clarkson
et al. 2017). Northern and Eastern islands lying off New Guinea, namely the Bismarck
Archipelago and the Solomon Islands respectively, were never connected to Sahul. When
and how were Sahul, the Bismarck Archipelago and the Solomon Islands settled? Who

were the first settlers of these regions?

1.1.1 Sahul: the initial settlement

Archaeological materials indicate that the peopling of Near Oceania began with the
settlement of the ancient continent of Sahul. Multiple routes taken by the first settlers were
hypothesized including the northern and southern routes that are today favoured by the
scientific community but highly debated (Kealy, Louys, and O’Connor 2017, 2018; Bird et al.
2018). The northern route hypothesis assumes a peopling of Sahul via Sulawesi and New
Guinea and the southern route, via Flores Island/Timor and Australia. Paleogeographic
studies propose two advantages of the northern route with respect to the southern route: (i)
distances between islands are shorter and (ii) backward voyages were possible using winds
and water currents. However, the archaeological record is older in northwestern Australia
(southern Sahul) (Clarkson et al. 2017) than New Guinea (northern Sahul) favoring the
southern route (O’Connell et al. 2018a; O’Connell and Allen 2015).

Besides the route(s) taken by the first settlers, recent works based on mathematical models
and simulations also shed light on the nature of these voyages: it is unlikely that Sahul
was settled by accident but instead, the voyages were planned and deliberated, involving
a founder population of a least 1,300 individuals (Bird et al. 2019; Bradshaw et al. 2019;
Bradshaw et al. 2021). These first settlers of the region lived in small structured groups
and were highly mobile. They were likely initially “strand looper” foragers who hunted
and gathered maritime resources along the shore but also rapidly exploited plant resources

such as yams in the Highlands of New Guinea (Summerhayes et al. 2010).
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1.1.2 The Bismarck Archipelago: behaviour changes and networks

The Bismarck Archipelago - composed of volcanic islands and covered by a dense tropical
rain forest - was settled around 40,000 years ago shortly after northern Sahul (New Guinea)
(Leavesley and Chappell 2004). Three islands of the archipelago were never connected to
each other by land: New Britain, New Ireland and Manus (Figure 1.2). The Pleistocene
archaeology of the Bismarck Archipelago can be divided into two broad periods. The first
period covers the initial settlement (40,000 years ago) until the Last Glacial Maximum
(LGM) around 22,000 years ago and the second period started after the LGM until the

end of the Pleistocene period around 11,700 years ago.

Before 20,000 years ago, the first settlers of the Bismarck Archipelago, were small, highly
mobile groups of hunter gatherers, similar to those in Sahul. They moved in search of
food resources such as shellfish, rats and reptiles. After 20,000 years, the different groups
developed networks where they exchanged food and goods; in other words, resources “were
moved to people” (Gosden 1995; Leavesley 2006). Indeed, there is archaeological evidence
of connectivity from that period between Bismarck islands but also between islands of
the Bismarck Archipelago and Northern Sahul (New Guinea). These connections led, for

example, to the introduction of the cuscus (Phalanger orientalis) to New Ireland from New

Mussau
MANLUS gt ¥ Emirau N
- Eloaua
m A Balof /'l
— Pamwak alof .'I
_‘i"—-,____ E‘\\\ e 9
Aitape 3 NEW IRELAND M‘-t -
- atenbe
o Watoma g = Anir
0 Willaurmez Peninsula F’j liv = Nissan
o Garu Buka
MEW GUINEA - T D (e - Sohano &~
kil ﬂ\Sra'ssnﬁ- - ,-/‘/
e ArAWE |5 MEW BRITAIN
55 k
QM““ SOLOMON 1" =
R N q ISLANDS q@%ﬂ
“\_\_\"-_ . -, ‘f::l
-_ﬂﬁﬁ/_) Caution Bay (l\ ~ ,_:IQ

= h— (\L‘_‘-\_

o -«_H___\__\‘: .._u

& o ko]

b

;} 1 0 500 k =<
£ — —

Figure 1.2: Map of the Bismarch Archipelago (Specht et al. 2014).



Guinea via New Britain (Leavesley 2005). The cuscus became the main resource in the
archipelago. Between 20,000 and 18,000 years ago, the first extractions of obsidian stones
occurred in New Britain, with evidence of exchanges to New Ireland (Summerhayes 2009).
Later, around 12,000 years ago, obsidian, together with other animals such as the bandicoot
and another species of cuscus (Spilocuscus kraemeri), were introduced to Manus island from

New Guinea (Spriggs 1997).

1.1.3 The Solomon Islands: An isolated archipelago?

The Solomon Islands encompasses hundreds of inhabited islands covered of tropical
rainforest and mountains. The main islands of this archipelago are Bougainville (politically
part of Papua New Guinea), Vella Lavella, New Georgia, Kolombanga, Choiseul, Santa
Isabel, Guadalcanal, Malaita and Makira (Figure 1.3). Most of these islands were combined
in a single landmass named Greater Bukida or Greater Bougainville until the end of the
Pleistocene period (Walter and Sheppard 2009).

Archaeology for the Pleistocene of the Solomon Islands is only represented by one site
in the island of Buka (Kilu sites, western Solomon Islands) discovered in 1988. This site
revealed an early settlement of the western Solomon Islands by Homo sapiens from 29,000

year ago, after the peopling of Sahul and the Bismarck Archipelago (Wickler and Spriggs
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1988). This settlement would have involved a sea crossing of less than 200 km from New
Ireland (Bismarck Archipelago). Little is known about the first settlers of the Solomon
Islands and there is no archaeological evidence of the changes in behaviour and networks
observed in the Bismarck Archipelago and New Guinea. The first and only evidence of
connexion with the Bismarck Archipelago is the presence of Canarium charcoals dated
from the end of the Pleistocene (Walter and Sheppard 2009).

1.2 Oceania in the Holocene

While the different islands that compose the region of Near Oceania were peopled during
the Pleistocene period, Remote Oceania remained uninhabited until the late Holocene
period. Who were the first settlers of the remote islands of Oceania and where did they

come from? Which route(s) did they take? How did they settle Remote Oceania?

1.2.1 Lapita: the first Remote Oceanians

Remote Oceania comprises the islands of Micronesia, the Reef/Santa Cruz, the Vanuatu
archipelago, New Caledonia, Fiji, and the different Polynesian islands (Figure 1.4). This
region was settled only from around 3,200 years ago by seafarers, associated with the
spread of the Lapita Cultural Complex (LCC) and Austronesian languages. | will focus
here mainly on the peopling history of the western part of this region, which includes

islands from the Reef/Santa Cruz to Fiji.
The Lapita Cultural Complex

Up to now, 293 Lapita sites have been found across the Pacific region covering a geographic
transect including New Guinea, the Bismarck Archipelago, the Solomon Islands, Vanuatu,
New Caledonia, Fidji, Tonga, Samoa as well as Wallis and Futuna (Bedford and Spriggs
2019). The earliest site is dated to 3500-3200 years ago in the Bismarck Archipelago
(Mussau island), likely the homeland of the Lapita Cultural Complex (Rieth and S. 2017).
This oldest Lapita site coincides with the most massive volcanic eruption that occurred in
New Britain island (Bismarck Archipelago) and named the W-K2 event, around 3,600 years
ago. Novel archaeological artefacts were found above the W-K2 tephra as well as evidence
for a change in settlement pattern, which, altogether reflect a sharp cultural change soon

after the volcanic eruption (Kirch 2017).

This new cultural assemblage is mainly characterised by a specific type of decorated

potteries known as dentate-stamped pottery with a large spatiotemporal variation in
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Figure 1.4: Map of Near and Remote Oceania. Brown dashed line indicates the limit
between Near and Remote Oceania

motifs, decorations, style and form (Figure 1.5a). The specificity of this type of pottery
relies in its production with the use of toothed tools to stamp complex patterns into the wet
clay. Besides potteries, the Lapita culture is also characterized by long-distance transfers
of obsidian (Figure 1.5b), the use of shell-based ornaments and tools such as arm rings,

necklaces, food scrapers, fishhooks and adzes (Figure 1.5¢) (Noury and Galipaud 2011).

Archaeological sites were mainly located along the coasts or in small offshore islands
reflecting a preference of the Lapita people for small and uninhabited areas. There is
evidence that the first Lapita settlers transported with them domesticated animals and
plants such as taro, yams, coconuts, pigs, dogs and rats, which indicate horticulture and
gardening practices (Kirch 2017). However, isotopic measures of human and pig bone
collagen from archaeological sites in Vanuatu, revealed that initially, Lapita people were
likely “strand loopers”, who mainly lived along the shore and consumed maritime resources
and to a lesser extent wild animals as well as domesticated plants and animals (Kinaston,
Buckley, et al. 2014; Kinaston, Bedford, et al. 2014).

The Austronesian languages

The Austronesian language family comprises around 1,200 languages spoken by more
than 380 million people in the world. Austronesian speakers form the largest expanded
diaspora, which covers territories ranging from Madagascar, Island Southeast Asia, Near

Oceania and Remote Oceania up to the Polynesian Triangle. The world’s largest language
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(b) Obsidian from Vanuatu

(c) Adzes from the Solomon Islands

Figure 1.5: Archaeological elements of the Lapita Cultural Complex
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density per capita is located in Vanuatu where 138 Austronesian languages are spoken,

corresponding to about one language for 1,700 speakers (Klamer 2019; Blust 2019, 2009).

The study of the vocabulary, mainly cognates (i.e. words of the same origin) together with
phonology (i.e. sounds), indicates that (i) all Austronesian languages derived from a same
ancestral language named Proto-Austronesian and that (ii) all Austronesian languages
spoken outside Taiwan belong to the same group known as Malayo-Polynesian (Blust
2019). Austronesian languages are categorized into 10 primary subgroups: Atayalic, East
Formosan, Puyama, Paiwan, Rukai, Tsouic, Bunun, western Plains, northwest Formosan
and Malayo Polynesian. The first 9 groups are found in Taiwan and are gathered into a

group named "Formosan".

The Malayo-Polynesian (MP) languages, spoken outside Taiwan, are themselves divided
into western MP and central-eastern MP. Western MP speakers are located in the
Philippines, western Indonesia, mainland Southeast Asia, Madagascar as well as in some
Micronesia islands. Central-eastern MP languages are found in eastern Indonesia as
well as in Near and Remote Oceania. Centre-eastern MP languages are subdivided into
deeper levels as shown in Figure 1.6. It is worth mentioning that although scholars
broadly use this tree of the Austronesian language family, some branches are still currently
debated (Blust 2009). For example, Blust and other linguists suggest that languages
grouped into western MP do not belong to a unique subgroup but instead, correspond
to multiple branches or subgroups that do not fall within the central-eastern MP cluster
(Ross 1995; Blust 1999). Similarly, the catalogue of worldwide languages and dialects,
Glottolog (https://glottolog.org/), does not consider the subgroup western MP but instead
distinguishes a total of 25 subgroups of MP including central-eastern MP, Central MP,

eastern MP, S Halmahera W New Guinea and Oceanic.

1.2.2 Origin of the Lapita and settlement of Remote Oceania

From the “express-train” to the “Out-of-Taiwan” model

In 1988, Jared M. Diamond proposed the hypothesis of the “express-train” to explain the
origin of the Polynesian populations (Diamond 1988). This model stipulates that a group
of people associated with the Lapita culture, spread rapidly over around 4,500 km, from
the Bismarck Archipelago to Samoa, the hypothesized cradle of the ancestral Polynesian
population. These sea travellers brought with them animals, plants and also agriculture.
However, Diamond did not address the question of the origin of the first Lapita people
(“Where west of the Bismarcks did the train start and what were its intermediate stations?”,
(Diamond 1988)).
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Austronesian (AN)

[9 primary AN subgroupsin Taiwan] Malayo-Polynesian (MP)
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W New Guinea

Figure 1.6: Tree of Austronesian languages (Blust 2009).

The strong correlation between sites where Lapita potteries were found and the geographic
repartition and structure of the Austronesian languages prompted the archaeologist
Peter Bellwood to hypothesize that the Lapita Cultural Complex derived from the vast
Austronesian expansion in Oceania (Bellwood 1997). In this context, both Peter Bellwood
and the linguist Robert Blust, refined Diamond’s “express-train” model by providing a
Taiwanese origin for the Proto-Austronesians and thus by correlation, for the Proto-Lapita
culture. This refers to the “Out-of-Taiwan” model. More precisely, this model proposes
that the ancestors of Polynesians and their culture expanded through a wave-of-advance
mode. This expansion involved rice farmers who spoke Austronesian languages from
southern China, around 6,000 years ago, and arrived to Taiwan around 4,000 years ago.
The expansion continued into the Philippines, Islands Southeast Asia to reach eventually
Remote Oceania around 3,000 ago and eastern Polynesian islands less than 1,000 years
ago. Through their migrations, Austronesian speakers would have also replaced local

populations who first settled the islands of Southeast Asia during the Pleistocene period.

Under the “Out-of-Taiwan” hypothesis, the first settlers of Remote Oceania, originating
from Taiwan, would have brought with them a whole package composed of new
technologies and navigation skills, horticulture and agriculture practices, the Austronesian

language, and also their genes.

The “Slow-boat” and the “Triple-1” models

10



| will present here two alternative models that has been propose to the explain origin(s)
of the Lapita Cultural Complex in the Bismarck Archipelago: the “slow-boat” model
(Oppenheimer and Richards 2001; Kayser et al. 2000) and the “Voyaging Corridor Triple I”
model (Green 2003).

The “slow-boat” model was initially proposed through the study of the genetic diversity
of the Y chromosome, which is male-specific and uniparentally-inherited (Oppenheimer
and Richards 2001; Kayser et al. 2000). This model stipulates that the Lapita
Cultural Complex and the genetic makeup of the first Remote Oceanians would have
emerged through intensive exchanges and gene flow between eastern Indonesians and
non-Austronesian-speaking groups from the Bismarck Archipelago and the Solomon
Islands starting between 6,000 and 3,500 years ago. This long process, which occurred in a
voyaging corridor between Tropical Island Southeast Asia and Near Oceania would have

been followed by a rapid peopling of Remote Oceania islands, around 3,100 years ago.

Kayser and colleagues in 2000 (Kayser et al. 2000) were the first to propose this model, or at
least to give it a name (“[...] we propose a new model of Polynesian origin that we call the
slow-boat model”), and placed the origin of the ancestors of Polynesians in "Asia/Taiwan"
in agreement with the “Out-of-Taiwan” model, but a concomitant study (Su et al. 2000)
also based on Y chromosomes, proposed an origin in Islands Southeast Asia rather than
Taiwan, as also supported by other geneticists (Oppenheimer and Richards 2001) and some

anthropologists and archaeologists (Terrell 2004; Torrence and Swadling 2008).

From 1991, the archaeologist Roger Green proposed another model named “Voyaging
corridor Triple 1” (Green 2003), which can be seen as an extension of the “slow-boat”
model. Triple-I stands for intrusion, integration and innovation. With this model, Green
hypothesized a diverse origin for the different components that characterize the Lapita
Cultural Complex: some of them were introduced from lIsland Southeast Asia to the
Bismarck Archipelago, some were innovations made locally by Lapita people in Near
Oceania, and finally some elements of non-Austronesian speaking communities were
incorporated into early Lapita groups. Consequently, under this model, the Lapita Cultural
Complex, which includes the Austronesian language, horticulture and agriculture practices
as well as genes, was not brought together in a single package, through a single migration

wave.
The post-Lapita period in the Vanuatu

500 years after the initial settlement of the Vanuatu, the dented-stamped pottery
disappeared and was replaced by other forms of pottery (Spriggs 1997). For example,
in central Vanuatu, the Lapita pottery style was replaced by the Mangaasi style, which

11
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is characterized by its reddish colour and incised and applied relief decorations (Spriggs
1997). In addition to the end of the Lapita pottery, the long-distance trade of obsidian
also disappeared and the study of Vanuatu burials revealed a change in diet and funerary
practices (Summerhayes 2010; Valentin et al. 2014). Secondary migrations occurring
shortly after the initial settlement have been hypothesized to explain this cultural change
observed in the Vanuatu. In line with this, a craniometric study carried out by Valentin
et al. in 2016 (Valentin et al. 2016) indicates that Ni-Vanuatu from the Lapita period
are morphologically closer to present day East Asians and Polynesians while the latest
post-Lapita Ni-Vanuatu present a stronger affinity to present-day Australo-Papuans. The
authors suggested that migrations from Papuan-related groups into Ni-Vanuatu can
explain these observations, starting around 200 years after the initial settlement of western

Remote Oceania (i.e. 3,200 years ago for the Vanuatu).
European contacts

When looking at the name of some islands of Vanuatu, it is apparent that Europeans played
a role in the history of the Archipelago. In 1606, with the support of the Castilian Crown
(King Philip II1), Pedro Fernandez de Quirés and his crew anchored at Big Bay on an island
that he named Austrialia del Espiritu Santo (nowadays known as Espiritu Santo in central
Vanuatu) in honour of the Spanish Habsburg monarch’s Royal house of Austria. Despite
limited but violent contacts with Ni-Vanuatu (e.g. kidnappings and beheadings), Quirds
claimed this land in the name of the Spanish Crown, as well as the Catholic Church in
order to “take Christianity to the heathens of the unknown Terra australis” (Luque and
Mondragon 2005). Pedro Fernandez de Quirds’s voyage lasted around a year, including
a month spent in Espiritu Santo. He visited different islands before entering the land of
what is nowadays Espiritu Santo, such as Taumako in the Solomon Islands. Nevertheless,
limited elements of the Oceanian cultures, languages and lifestyles can be drawn from this
voyage. Perhaps because it was not the priority or because the relationship with others
was different at that time: “the convoluted procedures and overall behaviour of the Spanish
men in Big Bay were neither the result of one man’s extravagant religiosity nor simply
of Spanish arrogance, but encompass overlapping medieval, renaissance and (to a lesser
degree) baroque legal and cultural canons which have hitherto been glossed in scholarly

analyses of the earliest European explorations of Oceania.” (Luque and Mondragon 2005).

It was only during the mid-18" century that scientists joined French and British
expeditions to the Pacific. At that time, the Age of Enlightenment, both France and Britain
were powerful expending empires that placed science at the centre of the society. It is
crucial to say that the perception of human societies during the 18" century was stadial.

Indeed, in the mid-18" century French and Scottish philosophers developed the stadial
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theory also named the four stages theory, notably influenced by contacts with indigenous
peoples from the Americas. According to this theory, societies go through four different
stages or ages: (i) the age of hunters or savagery, (ii) the age of pastoralism or barbarism,
(iii) the age of agriculture or civilisation and (iv) the age of commercial societies or Europe
(Schorr 2018). In this context, Louis-Antoine de Bougainville from France (1768) and James

Cooks from Britain (1774) undertook their voyage to the Pacific.

For the first time, observing, recording and collecting data were at the centre of the
expedition. Contrary to Pedro Fernandez de Quirés’s voyage, Bougainville and Cook
brought precious, though subjective, descriptions and information about the fauna and
flora and Oceanian cultures, societies and peoples. They both indisputably contributed
to major scientific breakthroughs (at least from the European point of view), notably in
cartography, with the mapping of Pacific Islands, navigation and naturalism. In 1774,
James Cook explored the islands of what is nowadays Vanuatu and named this archipelago
New Hebrides.

European contacts and influences in the Vanuatu increased from 1839 with the beginning
and intensification of Protestant and Catholic missionaries, first in the South of the
Archipelago, mainly in Tanna, Aneityum and Erromango islands. The first contacts
turned most of the time violent, with the murders of Europeans (e.g. John Williams and
James Harris in 1839) at Dillon’s Bay in Erromango island because Ni-Vanuatu rejected
missionaries (Flexner and Spriggs 2015). Instead of discouraging Europeans, missionaries
reached their height with the idea of bringing “light to the dark isles” (Flexner and Spriggs
2015) in a region of the world peopled by “savages” who used black magic and cannibalistic
rituals (Copeland 1866).

Overall, the process of conversion was long, especially outside the New Hebrides
(Vanuatu) because of the non-acceptance of Europeans missionaries and strengthened by
competition between Catholic and Protestant missionaries. In the New Hebrides, both
coexisted but with different ways of converting Ni-Vanuatu. Anglican missionaries adopted
a strategy that | would personally name “from the inside”: young people were taken
from a location (e.g., a Vanuatu island), placed in schools located in another place (e.g.
in New Zealand), and were then placed back in their original communities, to convert
their relatives. Catholics adopted a strategy “from the outside”, where they preferred
to maintain a permanent presence at different strategic places to convert most of the

communities, involving some recently converted Polynesians in the process (Flexner 2013).

In Melanesian practices, referred also as kastom (pidgin word for custom), spirituality,

the supernatural and thus religion is part of the Melanesian identity and the daily life,
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including politics and economics. This link between religion, identity and daily life
choices is so tight that missionaries failed to deeply change Ni-Vanuatu practices, but local
communities incorporated elements of Christianity into kastom, mainly material things:
traditional dresses were replaced by imported European clothes, pottery was in part locally
replaced by iron cooking vessels and the most prized item in 1860 in Northern Vanuatu was
empty bottles. Missionaries also impacted the daily life and societies of local communities
by, for example, setting labour tasks and changing the gender role (toward a male authority
versus female domestic tasks) (Flexner 2016; Bedford and Spriggs 2008). This incorporation
of the Christianity into kastom is still visible nowadays, as attested by James L. Flexner and
Matthew Spriggs: “many Ni-Vanuatu still see supernatural causes at work in instances of

illness or death” (Flexner and Spriggs 2015).

Social structure was also impacted by the arrival of western traders of sandalwood who,
after having exhausted sandalwood resources, traded young Ni-Vanuatu men to work in
sugar plantation in Australia, Fiji and New Caledonia, a practice referred as blackbirding
(Docker 1970). One major consequence of this trade was a massive depopulation of
Vanuatu islands, coupled with an increased mortality due to European diseases transmitted
to local populations (e.g. measles, influenza and cholera) (Flexner 2016). In the mid-19'"
century, ca. 5,000-7,000 individuals peopled the island of Erromango in South Vanuatu
(Gordon 1863) while Colley and Ash estimated a population of ca. 600 inhabitants in 1967
(Colley and Ash 1971).

From the 20t century onwards, the New Hebrides became an Anglo-French condominium
(1906) and played a strategic role during the World War I, notably with the presence
of American soldiers to prevent Japanese army from gaining a foothold after the attack
of Perl harbour in 1941. The New Hebrides obtained their independence in 1980 and
the archipelago was renamed Vanuatu (Vanua “land” and tu “be independent”) by local
communities (Flexner 2016). Nowadays 86% of Ni-Vanuatu are Christians (Vanuatu
National Statistics Office) and a part of them, in southern islands (TAFEA province)
consider missionary sites as being part of their culture, history and heritage (Flexner and
Spriggs 2015): “In our fieldwork experiences, we have found that people will unironically
express their sincere Christian faith, and then invite visitors for a traditionally prepared

shell of kava”.
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Archaeology, anthropology and linguistics have provided valuable insight into the peopling
history of Near and Remote Oceania and the lifestyles of the different populations that
settled these regions. However, cultural, linguistic and genetic studies do not always tell
the same story and all have their own limitations. For example, because populations
tend to move, genetic continuity between past and present-day groups of a region is
not necessarily observed. Consequently, the different demographic events estimated

with genetic approaches would not reflect the population history of the initial ancestral
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population. Cultural practices and the language can be transmitted not only vertically
(from one generation to another), as genes, but can also be transmitted horizontally,
through the transmission of ideas (Diamond and Bellwood 2003). Another important
point is the fact that population geneticists study the dynamics of genetic interactions
between populations, while current archaeological research tends to focus on internal
changes rather than the impact of movements of people (Veeramah 2018). Hence, the
information provided by genomic data is complementary to other disciplines and can add

another dimensionality to the history of a population.

For decades, evolutionary genetic approaches, combined with the rapid and dramatic
progress of sequencing technologies and methods, have allowed the detailed
reconstruction of human population history, such as the estimation of populations
size changes over time, divergence time, admixture, introgression events with now extinct
hominins and events of genetic adaptation to new environments (Dannemann and Racimo
2018; Gosling and Matisoo-Smith 2018b; Marchi, Schlichta, and Excoffier 2021; Patin
and Quintana-Murci 2018; Rotival, Cossart, and Quintana-Murci 2021). We will see in
this chapter how genomes are used to trace back the demographic history of human

populations and what genomes of Oceanian groups revealed about their past history.
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2.1 Theory and basic principles of population genetics

2.1.1 Variations in the human genome: mutations and

recombination

The DNA (deoxyribonucleic acid) is a macromolecule found within cells and composed of
linked nucleotides that are commonly represented by four letters. A nucleotide is composed
of a sugar, a phosphate group and a nitrogenous base. Four canonical nucleotides are
found in the DNA: Adenine (A) and Guanine (G) are the two purines and Cytosine (C) and
Thymine (T), the two pyrimidines. Billions of linked nucleotides form the DNA sequence
(Watson and Crick 1953). In humans, less than 3% of the DNA contains genes that encode
proteins (Dunham et al. 2012).

Genetic mutations, i.e., changes in the DNA nucleotide sequence, result in different
versions of a same genetic position (i.e. a locus), the alleles, that segregate in the
population. A mutation that occurs in a gene and that changes its final product, the protein
amino-acid sequence, is named a non-synonymous mutation. On the contrary, a genic
mutation that does not change the protein sequence is called a synonymous mutation.
From an evolutionary perspective, molecular evolution corresponds to the changes in
frequency through time of the different alleles that constitute the genetic diversity of a
specific population or group. Only mutations located in the DNA of reproductive cells
(germinal mutations) are transmitted to the next generation and participate to the genetic

diversity of a population.

Mutations are divided into three classes based on the number or the size of the
modification: substitutions (point mutations), insertions and deletions and chromosomal
rearrangements. | will focus here on point mutations because they are the most frequent
and are broadly used in the population genetics field. A substitution, also named single
nucleotide polymorphism (SNP), corresponds to the modification of a single position
(one nucleotide) of the DNA owing to either an error during the DNA replication or
errors introduced by the DNA maintenance machinery while fixing physical or chemical
alterations (e.g. UV exposure). In the human genome, transitions (i.e., the change of a
purine (pyrimidine) by another purine (pyrimidine)) are observed at least twice as more as
transversions (i.e., the change of a purine (pyrimidine) by another pyrimidine (purine)). The
rate of substitutions per site and per generation is expected to be 1075, but the mutation
rate can go up to 10~° substitutions per site and per generation depending on the genomic

region (e.g. CpG sites) (Campbell et al. 2012; Lipson et al. 2015; Walser, Ponger, and Furano
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2008; Seplyarskiy and Sunyaev 2021).

The development and improvement of sequencing technologies allow to obtain the whole
sequence of the individual’s DNA. Among the 3.5 billion positions in the human genome,
around 4 millions are polymorphic between two individuals, i.e., 1 substitution variation
is expected every 1,000 positions between two randomly chosen individuals (Genomes
Project et al. 2015; International HapMap 2003; Karczewski et al. 2020; Bergstrom
et al. 2020). The dbSNP, database of single nucleotide polymorphisms and short
insertions/deletions counts more than 683 million variants detected in world-wide human
populations (2019, build 153, (Sherry et al. 2001)).

Humans have two sets of chromosomes inherited from their two parents (one set per
parent). During the creation of reproductive cells, also named gametes (i.e sperm and
oocyte), homologous chromosomes align and pair with each other through the formation
of DNA junctions that result in the exchange of the genetic information, a process
referred to as meiotic recombination. Recombination generates at each meiosis unique
combinations of alleles, called haplotypes, which are different from the combinations of
alleles inherited from the parents (Figure 2.1). The number of recombination events per
generation between two given positions of a chromosome, i.e., the recombination rate,
increases with increasing chromosomal distance between the two positions. Two SNPs of
the same chromosome are said to be in linkage disequilibrium when the recombination rate
between these SNPs is low. As a result, alleles are not transmitted independently to the next
generation but rather in blocks where genetic recombination is low. Hence, the frequency
of a mutation depends on the frequency of other mutations located on the same haplotype.
Recombination tends to dissociate mutations found in a same genetic region (i.e. decrease
of the linkage disequilibrium). In addition to create haplotype diversity, recombination,

through time, also tends to break long haplotypes into smaller ones (Figure 2.1).

The recombination rate, like the mutation rate, varies greatly along the genome,
characterized by “hotspots” and “coldspots” of recombination. This rate depends on
the genomic context, such as the percentage of G and C nucleotides, the number of
transposable elements in the region and the presence of binding sites for PRDM9, a
DNA-binding protein that promotes recombination (Genomes Project et al. 2015; Myers et
al. 2005).

To summarize, the genome is organised in blocks or haplotypes made of alleles in high
linkage disequilibrium. Each haplotype block is separated by hotspots of recombination.
The mutation and recombination are critical events that create genetic variations in a given

population. This variability constitutes a substrate on which other evolutionary forces can
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Figure 2.1: Genetic recombination. Schematic representation of recombination events
and its impact on the size of the haplotypes (coloured bars) through times (two
generations).

2.1.2 Demographic history: genetic drift, gene flow and isolation

Among all mutations found in a genome, most are neither beneficial nor deleterious for
the carrier, meaning that they do not have any phenotypic consequences. Such mutations
are said to evolve under neutrality, i.e., in absence of natural selection (chapter 3). If the
population size is small, a stochastic process known as genetic drift drives their frequency
over time (Kimura 1991; Wright 1931). Allele frequencies at generation g+1 are different
from those at generation g, because siblings are a non-representative sample of the adult
population. Under genetic drift, the probability of a neutral mutation to be fixed in a
population (or to be eliminated) depends on its initial frequency. Considering an isolated
population of effective size N, (i.e. number of individuals who contribute genetically to

the next generation), a new neutral mutation that appears in this population has a fixation
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probability equal to 1/(2N,) and takes an average of 4N, generations to reach fixation
(Hartl and Clark 2007). Consequently, in a population with large N, the strength of the
genetic drift is weak, leading to a stability of allelic frequencies during a long period of
time. On the contrary, in small populations (small N.), the genetic drift is stronger causing

sharp allele frequency variations from one generation to another.

Under neutrality, levels of genetic diversity of a population, 6, is proportional to the
effective population size: § = 4N u, p being the mutation rate. Changes in population
size that occur over time, i.e., the demographic history, have ultimately an impact on
the genetic diversity of a given population, by affecting the strength of genetic drift.
Hence, human populations that experienced contrasting demographic histories, such as
bottlenecks, founder effects, population expansions and contractions, differ in their current

levels of genetic diversity.

Human populations can also exchange migrants, resulting in gene flow. Contrary to
genetic drift, gene flow reduces levels of genetic differentiation between populations.
Populations that are geographically closer tend to be less genetically differentiated,
because of more recent divergence and/or substantial gene flow between them. The
isolation-by-distance model explains this correlation between genetic differentiation and
geographic distance (Wright 1943; Cavalli-Sforza and Feldman 2003).

To sum up, the levels of genetic differentiation between human groups depend on their
demographic history affecting the strength of genetic drift, as well as their level of genetic
isolation. The resulting distribution of genetic variation within and between populations

is called the genetic structure of human populations.

2.1.3 Different types of genetic data

Each human cell includes 22 homologous pairs of autosomes, which are inherited from
each parent, one pair of sex chromosomes (i.e.,, a maternal X and a paternal X or Y
chromosomes), and a mitochondrial genome (mtDNA), a small circular genome of 16,569
base pairs found in mitochondria. Genetic markers on these different chromosomes can
be used to reconstruct different aspects of the demographic past of human populations.
Indeed, because mitochondria are only transmitted from the mother to the child, the study
of mtDNA mutations is thus used to trace back the maternal lineages. Similarly, the study
of mutations on the Y chromosome, which is only carried by men trace back the history of
the male lineages. Historically, uniparentally-inherited chromosomes were broadly used
to reconstruct the demographic history of human populations because they are short, thus

easy to sequence and non-recombining.
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The genetic information, can be retrieved using a variety of technologies such as
genotyping or SNP arrays, which capture the information at pre-ascertained SNPs, and
next generation sequencing (NGS), for instance whole genome sequencing (WGS), which
provides the information for the full DNA sequence. Markers found in SNP arrays are
either (i) old variants that segregate at intermediate or high frequency in different human
populations or (ii) SNPs that segregate mainly in well-studied populations (e.g. Europeans).
This ascertainment bias can lead to an underestimation of the genetic diversity, mainly
because of the exclusion of rare and private mutations. The WGS strategy gives access to
mutations that segregate at very low frequencies and thus reduces the ascertainment bias.
However, whole genome sequences are obtained at a higher cost, around $1,000 for one

individual, limiting the sample size of populations to study.

Consequently, the choice of the strategy to access the genetic information depends on
the scientific questions, the methods and the study populations (and the budget): do the
sampled individuals belong to under-studied populations? Are the methods that | want to
apply sensitive to the number of rare variants? Can | correct for the ascertainment bias?

Do | need a large sample size or/and a high variant density?

2.2 Demographic inference

We saw in the previous sections how variations in effective population size changes and
gene flow or admixture affect patterns of neutral genetic diversity in the genome of human
populations. We will see now how to infer the demographic parameters that characterize

their demographic past.

2.2.1 The coalescent theory

A pair of alleles sampled in present-day individuals is made of an ancestral form and a
derived form that appeared in the population some generations ago. All current copies
of the derived allele are thought to descend from the same mutational event in the past,
and to have thus been inherited from the same common ancestor. The coalescent theory
(Kingman 2000) describes how the alleles observed in a sample may have originated
from a common ancestor, called the most recent common ancestor (MRCA). Looking
backward in time, the coalescent model is a random process that merges the two copies
of an allele at a given generation into one ancestral copy inherited from the previous
generation (i.e., a coalescence event). Considering not only a pair of alleles or genes but

a subset of the observed current genetic diversity of a population, the coalescent theory
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can estimate the topology of the gene genealogy. This topology is then used to estimate
demographic parameters such as the divergence time between human populations, or

changes in effective population size trough time (Rosenberg and Nordborg 2002).

Assuming a panmictic (i.e. random mating) and isolated population and in absence of
recombination and natural selection, the probability that two lineages coalesce in the
previous generation is 1/(2N, ). The probability that these two lineages did not coalesce in

the previous generation is 1—1/(2N,). Hence, the probability that two lineages coalesce at

generation t is given by the following geometric distribution: Pc(t) = (1 — ﬁ)“‘”(ﬁ).

Considering k allele copies, the probability that at least two allele copies coalesce in the
k(k—1)
iN.
AN,

distribution with E[T}] = w1y generations, which indicates that the first coalescence
event in a sample of k allele copies occurs on average % generations ago. The expected

time to the MRCA, meaning the time for which all lineages coalesce into a unique ancestral
allele is equal to E[Tjoq1) = 4Ne Zf:Q ﬁ

previous generation is The time to first coalescence thus follows a geometric

In case of a population collapse, the genetic diversity decreases, thus lineages coalesce
(backward in time) more rapidly in the population, which leads to an acceleration of
the coalescence rate. On the contrary, with a recent population expansion, a large
fraction of the genetic diversity is composed of new variants that are carried by only
few samples (e.g. singletons) and there are more genetic lineages because of a higher
effective population size. Therefore, under a recent expansion, the probability that two

alleles coalesce decreases leading to a slowdown of the coalescence rate.

2.2.2 Joint estimation of demographic parameters

Methods implemented in software such as PSMC (Li and Durbin 2011), which estimates
effective population size changes in time and divergence times, or GLOBTROTTER
(Hellenthal et al. 2014), which infers the time of admixture events, are used to estimate
simple demographic models. They usually estimate a demographic parameter of interest,
assuming that all other parameters are constant or null. For example, PSMC (Li and
Durbin 2011) estimates the effective population size through time, without considering
gene flow between populations. However, an increase in effective population size could be
due either to (i) an increase of the census size or (ii) an increase in the rate of new incoming
migrants (admixture). Furthermore, population stratification, meaning a population that
is composed of sub-groups that exchange varying levels of gene flow, can produce a
signal of bottleneck (Walhund effect, (Nielsen and Beaumont 2009; Chikhi et al. 2010)).

Similarly, tools that estimate the time of admixture assume a constant effective population
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size of the parental and the admixed populations. These methods work better when
admixture occurred less than 5,000 years ago. They are able to estimate older events
but with less accuracy because, with time, ancestry segments are shorter and thus more
difficult to detect. These methods also estimate admixture times less accurately when
admixture is continuous rather than discrete, especially if the events are recent (Hellenthal
et al. 2014; Pugach et al. 2018b). Indeed, it is usually assumed that genetic interactions
between groups occurred in pulses, meaning very rapid and short contacts that lasted one
generation. However, when working with human populations, we expect to observe more
complex modes of gene flow, such as continuous and repeated genetic interactions between
two or several human groups. Although these algorithms are robust to the violation of some
assumptions, depending on the populations studied and the questions that are addressed,

the interpretation of the results can be convoluted and/or limited.

One way to overcome these issues is to jointly estimate the parameters characterizing
the demographic history of the studied populations using simulations. The parameters
can be inferred using different statistical frameworks such as the maximum likelihood
framework, which searches for the set of parameters that best explain the observed
data via maximization of a likelihood function (Gutenkunst et al. 2009; Excoffier et al.
2021) or an approximate Bayesian Computation Approach (ABC) (Beaumont, Zhang, and
Balding 2002; Cooke and Nakagome 2018), which relies on the comparison of observed
and simulated genetic data, in the form of summary statistics, to estimate demographic

parameters.

Depending on the scientific questions that are addressed, only a subset of the parameters
that characterized the demographic history of the studied populations can be estimated.
The other parameters are referred to as “nuisance parameters” because they are not
estimated but instead, they are just considered (they are allowed to vary) in order to
not bias the inference of the parameters of interest (e.g., considering gene flow between
two populations to not bias the estimation of their divergence time and their effective

population size).
Site frequency spectrum and the maximum likelihood framework

The site frequency spectrum (SFS) or allele frequency spectrum (AFS) corresponds to the
distribution of allele frequencies in a given population. The SFS can be obtained using
frequencies of either the derived allele (“unfolded” SFS) or using the minor allele (“folded”
SES). It is also possible to compute the SFS for more than one population at the same time

through joint or multidimensional SFS (Excoffier et al. 2013).

The different demographic events that populations experienced have an impact on the
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shape of the SFS. For example, under a recent expansion, the effective population size
increases, which inflates the number of rare mutations segregating in the population.
Under such a scenario the SFS is characterized by an excess of rare mutations and a
deficit of fixed mutations compared to what is expected under a stationary demography.
Conversely, a drop in effective population size - due to a population contraction or a
founder event - increases the strength of genetic drift, which leads to a greater fixation or
elimination of alleles at low and intermediate frequencies, as well as a global loss of genetic
diversity. Under such a scenario, the SFS is characterized by an excess of fixed mutations
and a deficit of rare mutations compared to what is expected under stationary demography.
When investigating the demographic history of human populations, it is paramount to
compute the SFS using only neutral mutations, or the least selected mutations (as neutral
as possible), usually by removing mutations inside genes, since natural selection can mimic

the impact of demography on the shape of the SFS.

The inference of demographic parameters using the SFS can be done, for example,
using the maximum likelihood framework and coalescent simulations implemented in the
Fastsimcoal2 tool (Excoffier et al. 2021; Excoffier et al. 2013). This algorithm estimates the
likelihood of the observed SFS (one-dimensional, joint or multidimensional SFSs) given
the expected SFS generated under a set of demographic parameters. These expected SFSs
are approximated from a number of coalescent simulations provided by the user (usually
> 100,000 simulations). The algorithm starts from initial values of the parameters taken
randomly from a distribution. Then, through a series of cycles, the algorithm calculates
the likelihood for different parameter values to finally find the set of parameters that
maximizes the likelihood. This algorithm needs to be repeated several times (i.e. multiple
runs) starting from different initial values to ensure that the likelihood converges toward

the global maximum of the likelihood function and not just to local maxima.

However, depending on the complexity of the model tested (i.e. the number of demographic
parameters to infer), the algorithm may not converge. When inferring demographic
parameters with this method, the user should thus take a step-by-step approach, starting
with very simple models and make them more and more complex. It is also important to
run additional tests to check for the robustness of the inference, e.g., by increasing both
the number of simulations used to approximate SFS or increasing the number of runs and

cycles.
Approximate Bayesian Computation

Approximate Bayesian Computation approaches (Beaumont, Zhang, and Balding 2002;

Cooke and Nakagome 2018), based on the Bayesian statistical framework, are often used
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to estimate parameters of models for which the likelihood function is too complex to
be evaluated. This framework relies on the simulation of genetic data under different
demographic models, such as different topologies of the population tree, and values of
the corresponding parameters (prior distributions). Summary statistics are then computed
from the simulations and compared with the observed summary statistics. The comparison
is classically done through the calculation of a distance between observed and simulated
summary statistics. Nowadays, new approaches can be used to compare simulated and
observed data such as machine learning approaches. The closest simulations are then used

to compute posterior distributions of demographic parameters to estimate.

The summary statistics should be tested a priori because not all are informative for
estimating demographic parameters. For example, the SFS and derived summary statistics
(e.g. Tajima’s D, 0, 0,) have been shown to be informative to infer effective population
size and divergence times (Cooke and Nakagome 2018; Fagundes et al. 2007; Veeramah et
al. 2012) while the length of haplotypes is informative to date events of admixture (Gravel
2012; Liang and Nielsen 2014). The evaluation of the summary statistics as well as the
accuracy, the sensitivity and the specificity of the ABC are essential but computationally

demanding analyses.

2.3 What did the genomes of Pacific islanders reveal

about their history?

2.3.1 Deep population structure of Near Oceania

The first genetic studies of Near Oceanians were mainly based on a subset of genetic
markers contained in the hypervariable regions of the mitochondrial DNA (mtDNA) (Redd
and Stoneking 1999; Huoponen et al. 2001; Betty et al. 1996; Stoneking et al. 1990).
These studies unravelled the deep coalescent age of Australian and New Guinean lineages,
which was interpreted as evidence for multiple settlements of Sahul, followed by a rapid
genetic isolation between groups. However, the complete sequencing of the mitochondrial
DNA showed that northern and southern Sahul, corresponding to current New Guinea
and Australia respectively, were settled by a common founder population dated back to
50,000 years ago (Hudjashov et al. 2007). More recently, Pedro and colleagues (Pedro et al.
2020), based on 379 whole mtDNA sequences of Australians and Near Oceanians, argued
for at least two concomitant waves of settlement around 50,000 years ago, through two

different routes (northern and southern routes), followed by a period of 20,000 years of
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genetic isolation. The study of Y chromosome variations also indicated deep population
structure and old divergence times within Near Oceanians (Kayser 2010; Bergstrom et al.
2016).

Wollstein and colleagues in 2010 (Wollstein et al. 2010), followed by Malaspinas et al. in
2016 (Malaspinas et al. 2016a), provided the first genetic demographic models of Oceanians
using an autosomal genotyping and a whole-genome sequencing strategy, respectively. In
the latter study, the authors co-estimated effective population size changes and divergence
time between Oceanians and non-Oceanian groups assuming a model of isolation followed
by migrations. Using coalescent simulations and the maximum-likelihood framework,
they found that present-day Australians and New Guineans derived from the same
Out-of-Africa migration as their Eurasian neighbours, dating back to around 60,000-104,000
years ago. They also estimated that all present-day Australians derived from the same
ancestral population, suggesting a unique wave of settlement for southern Sahul. Finally,
they dated an old divergence time between Australians and New Guineans, around 20,000

to 45,000 years ago which points toward a deep structure of Sahul populations.

2.3.2 Which model for the peopling of Remote Oceania?

Archaeologists, anthropologists and linguists proposed different scenarios for the origin
of the proto-Lapita and the first Bismarck Lapita societies. Although the archaeological
data point to the Green’s Triple-l model (Green 2003), a Taiwanese versus Island Southeast
Asian origin for the proto-Lapita is debated (Gray, Drummond, and Greenbhill 2009; Terrell
2004; Torrence and Swadling 2008). Does genetics also favour Green’s Triple-1 model
(Green 2003)? Do genomic studies point to a specific geographic area for the origin of

the proto-Lapita? Are the Lapita people entering Remote Oceania already admixed?
Using animals and plants to trace back population movements in the Pacific

In the 1990s, strengthened by issues in obtaining DNA samples from Oceanian individuals,
Lisa Matisoo-Smith proposed a new approach to trace back the migration routes taken by
Oceanian seafarers: the use of the DNA of animals and plants they transported with them
(Matisoo-Smith 1994; Matisoo-Smith et al. 1999; Matisoo-Smith 2015). This approach is

referred to as the “commensal model”.

The study of mtDNA variation of the Pacific rat (Rattus exulans) (Matisoo-Smith and
Robins 2004), supports the Triple-l model for the origin of Lapita cultural complex
and discards the “Express-Train” model and the “Bismarck Archipelago Indigenous

Inhabitants” model, which stipulates that the Lapita cultural complex emerged locally
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from the Bismarck Archipelago without any migration wave from East/Southeast Asia.
Similarly, the study of ancient pig bones, using both ancient DNA and morphometry,
placed the origin of Oceanian pigs in mainland Southeast Asia (coast of Vietnam). This
study also revealed that Oceanian pigs are not closely related to present-day pigs from
China, Taiwan and the Philippines, which suggests that the spread of the Austronesian
languages from Taiwan (“Out-of-Taiwan” model) does not correlate with the movement of
pigs in Oceania (Larson et al. 2007). On the other hand, a recent genetic study of the paper
mulberry (Broussonetia papyrifera) used for textile production, indicates an exclusive
Taiwanese origin of this plant (Olivares et al. 2019). Other commensal plants and animals
have been studied such as the dog, the chicken or the taro (Zhang et al. 2020; Thomson
et al. 2014). Altogether, these different studies attest of a diverse origin of the different
domesticated animals and plants transported by the first settlers of Remote Oceania and
suggest multiple migrations and complex interactions between East/Southeast Asians and

Oceanians.
Y chromosome and mtDNA tell a different story

Early works based on uniparentally inherited genetic markers shed light on a specific set
of four mutations in the control region of the mtDNA that characterized the haplogroup
“B4alala”, also known as the “Polynesian motif” (Sykes et al. 1995; Melton et al. 1995;
Redd et al. 1995). This mtDNA haplogroup is found at very high frequency in Polynesian
groups and is also present in Micronesia and in Near Oceania, mainly in the Bismarck
Archipelago. Although the Polynesian motif is absent in Taiwan, the Philippines and China,

related B4 lineages are found in these three regions.

The geographic distribution of the Polynesian motif was initially interpreted as in favour
of the “Express-Train” and “Out-of-Taiwan” models, to explain the origin of Polynesians
(Redd et al. 1995). However, Richards et al. in 1998 (Richards, Oppenheimer, and Sykes
1998), combining the geographic distribution with the estimated age of the Polynesian
motif and founder events, proposed an alternative interpretation: the Polynesian motif
originates from Island Southeast Asia between 5,500 years ago and 34,500 years ago, before
the arrival of Taiwanese farmers in Indonesia around 4,000 years ago. Soares et al. (Soares
et al. 2011), through the study of the full mtDNA sequence of 157 Pacific islanders, argued
that the so-called Polynesian motif arose around 6,500 years ago, before the Lapita period
and likely within the Bismarck Archipelago. The motif then spread westward to Islands
Southeast Asia around 5,000 years ago and eastward to Remote Oceania around 3,500
years ago. Although the authors rejected both a Taiwanese and an Island Southeast Asian
origin of the ancestors of Polynesians, they hypothesized a model of non-demic diffusion

of Austronesian languages (here diffusion of the language with very limited population
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movements) from Taiwan to other Pacific islands from around 4,000 years ago.

Y chromosome lineages (NRY) of Remote Oceanian islanders are mainly of Papuan-related
origin (K, M, S and C NRY branches, (Kayser 2010; Mona et al. 2007; Scheinfeldt et
al. 2006)), but also of East Asian-related origin, such as the O lineages (Kayser 2010).
This suggests an appreciable contribution of Papuan-related groups to the ancestors of
Remote Oceanians (“slow-boat” model). The discrepancy between East Asian maternal
markers and Papuan-related paternal markers (mtDNA versus NRY) has been interpreted
as sex-specific migrations: women of East Asian-related ancestry migrated and admixed
with local Papuan-related men. Hage and Marck in 2003 (Hage and Marck 2003), attributed
this difference between maternal and paternal markers to the effect of matrilocal residence

and matrilineal descent structure of Lapita societies (Jordan et al. 2009).

New insight into the settlement of Remote Oceania using ancient DNA and

autosomal markers

The genetic studies based on autosomal markers (microsatellites and SNPs) of modern
Oceanian individuals confirmed the admixed nature of some Austronesian-speaking
groups from Near and Remote Oceania. They also show that Polynesian groups present the
highest level of East Asian-related ancestry, around 80%, with only 20% of Papuan-related
ancestry supporting an East/Southeast Asian origin of the proto Lapita people (Wollstein
et al. 2010; Friedlaender et al. 2008). The date of this admixture was estimated to occur
around 3,000 years ago, using different methods (Pugach et al. 2018b; Wollstein et al. 2010;
Pugach et al. 2011). Taken together, these studies strengthened the view that the Lapita
people admixed first in Near Oceania before entering and peopling the pristine islands of

Remote Oceania.

However, in 2016, scientists from the Harvard Medical school published for the first time
the ancient DNA sequence of three individuals from the Vanuatu and one from Tonga
dating to the Lapita period (Skoglund et al. 2016). Surprisingly, this study revealed that
the initial settlers of Remote Oceania were of almost complete East Asian ancestry, as
also suggested by craniometric data (Valentin et al. 2016). Based on these results, the
authors suggested that the first people to migrate to Remote Oceania did not mix with Near
Oceanian Papuan-related groups, as previously thought. The authors suggested that the
Papuan-related ancestry observed in modern individuals reflect more recent or post-Lapita

migrations of Papuan-related groups to Remote Oceania.

This hypothesis was confirmed by two ancient DNA studies (Posth et al. 2018; Lipson
et al. 2018) that generated a time-transect dataset composed of Lapita and post-Lapita

individuals from different islands of Vanuatu. These studies point towards a secondary
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wave of settlement after the initial settlement of Remote Oceania, albeit Lipson et al.
(Lipson et al. 2018) estimated a non-zero proportion of Papuan-related ancestry in some
Lapita individuals. These two ancient DNA studies also suggest that the second settlement
occurred before the end of the Lapita period, in the late Lapita period around 2,700 years
ago and that the Papuan-related groups involved in the event are closer to group that live

nowadays in the Bismarck archipelago.

Pugach et al (Pugach et al. 2018b), using a SNP array dataset composed of 823 Pacific
individuals, found that the peopling of Remote Oceania did not follow a simple linear
wave-of-advance scenario as suggested by the “Out-of-Taiwan” model. By comparing the
level of Bismarck-related ancestry between groups, they found that populations from Santa
Cruz Islands were closer to populations from the Bismarck Archipelago than to any other
Solomon islanders, in agreement with previous genetic analyses based on mtDNA (Duggan
et al. 2014). Pugach and colleagues thus suggested that the peopling of Remote Oceania
occurred in a “leapfrog” manner, bypassing most of the Solomon Islands. This “leapfrog”
hypothesis was first proposed by Peter Sheppard in 2011 to explain the absence of Early
Lapita pottery in the archaeological record of western and central Solomon Islands as well

as the presence of Bismarck obsidian only in Santa Cruz islands (Sheppard 2011).
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In the previous chapter, | briefly described the molecular signatures left by genetic drift and
gene flow — and thus the demographic history — on the patterns of genetic variation. | also
evoked how we can use the genetic data to infer the different demographic parameters
characterizing the population history of human groups. | will now describe another
evolutionary force, natural selection. Four evolutionary forces shape the genetic diversity
of a population: the mutation that creates the genetic variation, the genetic drift that
tends to increase genetic differentiation of small populations, migrations or gene flow that
homogenises populations (Chapter 2) and natural selection that (i) allows populations

to adapt to their environments (i.e. positive natural selection) or (ii) purges deleterious

30



mutations (i.e. negative selection). In this chapter | will focus on both negative and positive

natural selection.

The effective population size determines the strength of genetic drift acting on the genomes
of populations. However, in theory, due to the codon degeneracy (i.e. redundancy of
the genetic code), around 1/3 of new mutations in genes are expected to be synonymous
and around 2/3 non-synonymous. A large fraction of new mutations that arise in human
genes have thus the potential to reduce the fitness (i.e. the survival probability and the
reproductive success) of individuals that carry these mutations and contribute to disease
susceptibility. In small populations, one expects the frequency of such mutations to be
under the control of genetic drift, and can thus theoretically be found at intermediate
frequency even if they are deleterious. Therefore, understanding the joint effects of
demographic history and natural selection on deleterious mutations appears crucial to
better understand the between-population differences in the susceptibility to common and

rare diseases.
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3.1 The burden of deleterious mutations in humans

Strongly deleterious mutations such as mutations that appear in genes involved in
fundamental developmental processes, but also in functions such as innate immunity,
are under strong purifying selection (Quintana-Murci 2019; Quintana-Murci and Clark
2013) and are therefore rapidly eliminated from the population. However, a large fraction
of deleterious mutations corresponding to weakly deleterious mutations are eliminated
(also by purifying selection) at a slower rate and can persist for some generations in the

population.

3.1.1 The link between demography and efficacy of natural

selection

Each individual carries thousands of deleterious mutations, most of them in the
heterozygous state, that have not yet been eliminated by natural selection. The rate at
which deleterious mutations are fixed in the population is named the efficacy of natural
selection and increases with the product N.s, where N, is the effective population size
and s the selection coefficient, which measures relative change in fitness conferred by
mutations (Charlesworth 2009). Mutations with a selection coefficient lower than 1/N,, are
considered to be “nearly neutral” mutations, meaning that the frequency of such mutations
fluctuates in the population following random genetic drift expectations. Hence, a same
mutation that would be quickly eliminated by natural selection in large populations (large

N,) can reach intermediate frequency - although deleterious - in small populations (small

N).

To sum up, in theory, deleterious mutations have more chances to increase in frequency
and reach fixation in populations that experienced strong founder events or bottlenecks,
where the efficacy of natural selection to remove deleterious mutations is expectedly lower.
On the contrary, populations that experienced a recent expansion would have a higher
efficacy of natural selection, but more rare, deleterious mutations that recently appeared

in the population.

3.1.2 The genetic load

The genetic load (L) measures the reduction in fitness of an average genotype found
in a population compared to the maximal or optimal fitness, which by convention is

set to 1: L = W;”V“—I*W where W,,., is the optimal fitness and 1 the mean fitness

mazx
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of the individual. The main factor contributing to the genetic load is attributed to the
reduction in fitness that is due to the accumulation of deleterious mutations in genomes,
also known as mutational load. The genetic load includes other elements such as the
inbreeding load, which corresponds to the increase in the number of recessive mutations
in the homozygous state carried by the children of consanguineous marriages increasing

inbreeding depression (i.e.,increase of genetic load because of parental relatedness)

When fixing W, to 1 in the equation above L = 1 — w. Assuming one deleterious
mutation that segregates at frequency p reducing the fitness of carriers by s in the
homozygous state and by hs in the heterozygous state we obtain L = 2p(1 — p)hs + p?,
with h the dominance coefficient, i.e., relationships between alleles and their effect on the
phenotype (dominant/recessive). Nevertheless, in humans, it is not possible to measure
the fitness of individuals and very little is known about the distribution of the dominance
coefficient h. To circumvent these issues, one can use empirical proxies (i.e. measures
or statistics derived from empirical data), to evaluate the mutational load in different
human populations and consider that all deleterious mutations follow the same model
of dominance. In this thesis, | will refer mainly to two models of dominance: either
all mutations are under a semi-dominant model, also named additive model, where the
heterozygous carriers have an intermediate phenotype (h = 0.5), or under a recessive
model, where the reduction in fitness is only seen when the deleterious allele is in the

homozygous state (h = 0).

3.1.3 Approximation of the mutational load in human populations

Different statistics have been proposed to approximate the mutational load in human
populations (Lohmueller 2014) such as the ratio of non-synonymous/synonymous
mutations (P,/P;) (Lohmueller et al. 2008; Henn et al. 2015a) or the number of
heterozygous and derived homozygous genotypes per individual (Lohmueller et al. 2008).
In 2016, Simons and Sella (Simons and Sella 2016) found that under an additive model of
dominance, the number of derived alleles (Nyicies = 2Nhomozygous + Nheterozygous) carried
by individuals is the only statistic that directly correlates with the mutational load and is
not biased by demographic events such as bottlenecks (Figure 3.1). Based on this statistic,
the same authors found that recent demographic events did not significantly impact the
load in humans, meaning that no differences are observed between human groups. For
instance, no differences are observed between sub-Saharan Africans and Eurasians, despite
the additional bottleneck experienced by the latter (the Out-Of-Africa bottleneck). One
likely explanation for these results is that under an additive model, the proportion of

segregating mutations, both neutral and weakly deleterious, and the frequency of these
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mutations vary in the opposite directions, maintaining the individual burden of deleterious
mutations almost constant (Simons and Sella 2016; Simons et al. 2014). Similar conclusions
were drawn by Do et al. (Do et al. 2015) using a similar statistic named 2,/, (ratio of the
count of derived alleles between two individuals from population x and y). They concluded
that Africans and Europeans did not present any significant differences in the ability of
natural selection to remove deleterious mutations. These results are at odds with previous
studies (Lohmueller et al. 2008; Henn et al. 2016a; Fu et al. 2013) that found, based on other
statistics, that recent demographic events impacted the burden of deleterious mutations

and the efficacy of natural selection in humans.

During a bottleneck, heterozygosity decreases due to the loss of mutations, so the number
of homozygous alleles increases. This means that, contrary to additive alleles, the count
of recessive deleterious mutations, thus the recessive load, is more likely to be affected

by recent demographic changes. Studies revealed that mutations with a strong impact on
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Figure 3.1: Proxies for load (Simons and Sella 2016). Additive load computed from
simulations (green lines) with bottleneck (population size in gray varies from 10,000 to
1000 at time 0 and recovers a 1000 generations later) compared with different proxies used
to calculate the mutational load using different samples sizes (blue and purple lines): (a)
ratio non-synonymous/synonymous, (b) number of homozygous sites and (c) number of
derived alleles. Only the number of derived alleles directly correlates with the mutational
load and is not biased by the bottleneck (demographic event).
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the phenotype, such as Loss-of-Function (LoF) mutations, are more likely to be recessive
(Wright 1929; Simmons and Crow 1977; Phadnis and Fry 2005). Populations marked by
strong founder events such as the Finnish or Ashkenazi Jews harbour significantly less LoF
mutations than other populations (Narasimhan et al. 2016). The study of endogamous
groups, e.g. Pakistani populations, also indicates the presence of fewer segregating LoF
mutations highlighting the likely role of recent inbreeding in purging recessive alleles
(Tadmouri et al. 2009; Bittles and Hamamy 2010; Garcia-Dorado 2008). Finally, Lopez
et al. (Lopez et al. 2018b), found evidence for significant differences in the burden of
deleterious mutations under a recessive model of dominance between African Rainforest
hunter-gatherers, African farmers and Europeans. Similarly, Pedersen et al. (Pedersen et al.
2017b) found that Greenlandic Inuit harbour a higher recessive load than some continental

populations because of their prolonged and extreme bottleneck.

3.2 Genetic adaptation to environments

A small fraction of the human genome, the genes and their regulatory regions, can
harbour mutations that are under positive natural selection because they increase fitness
by affecting traits. If a phenotype confers an advantage in a given environment, the
carriers of the mutation(s) involved in such a phenotype would have a higher survival
probability and reproductive success (i.e., higher fitness). Consequently, the mutation(s)

would increase in the population more rapidly than expected under genetic drift alone.

A large number of population and evolutionary genetic studies have provided new insight
into genomic regions that have been targeted by natural positive selection, ultimately
contributing to the adaptive history of modern human populations (Barreiro et al. 2008;
Barreiro and Quintana-Murci 2010; Bersaglieri et al. 2004; Fan et al. 2016; Hamblin and
Di Rienzo 2000; Karlsson, Kwiatkowski, and Sabeti 2014; Lee et al. 2012; Malaspinas et
al. 2016a; Quintana-Murci 2016, 2019; Quintana-Murci and Clark 2013; Sabeti et al. 2007;
Tishkoff et al. 2007; Voight et al. 2006). For instance, genetic variants responsible for
lactase persistence in adulthood present strong signals of positive selection in the genome
of Europeans and East Africans (Bersaglieri et al. 2004; Tishkoff et al. 2007). Pathogen
exposure also played a key role in the genetic adaptation of human populations (Barreiro
and Quintana-Murci 2010; Quintana-Murci 2016, 2019; Quintana-Murci and Clark 2013)
such as a genetic mutation at the ACKRT locus conferring resistance to malaria in Africa
(Barreiro et al. 2008; Hamblin and Di Rienzo 2000; Quintana-Murci 2019) or in genes
involved in the NF-xB signaling pathway conferring a resistance to cholera in population
from Bangladesh (Lee et al. 2012; Karlsson, Kwiatkowski, and Sabeti 2014). There is also
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evidence for genetic adaptation to climates, such as desert arid climate as reported for
Aboriginal Australians in this case, mutations in the NET0T7 and KCNJ2 genes (Malaspinas

et al. 2016a). Other examples of human local genetic adaptations are shown in Figure 3.2.

3.2.1 The classic sweep model

The “classic selective sweep” model, also named the “hard selective sweep” model, refers to
a process in which a new and strongly beneficial mutation appears and increases rapidly
in frequency to ultimately reach fixation in a given population (Pritchard, Pickrell, and
Coop 2010). | have previously mentioned that mutations in the genome are genetically
linked to each other (i.e. linkage disequilibrium) and form haplotypes. Under the “classic
selective sweep” model, the strongly beneficial mutation will appear on a specific genetic
background or haplotype that contains neutral mutations. Due to linkage disequilibrium,
not only the beneficial mutation but the whole haplotype will disproportionately be
transmitted to next generations following a mechanism known as “genetic hitch-hiking”.
The haplotype will increase so fast, that the recombination will not have time to break it

into smaller haplotypes. As a result, one would expect to find around the selected locus (i)
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Figure 3.2: Human local adaptation to their environments (Fan et al. 2016).
Examples of genes and phenotypes targeted by positive natural selection. Phenotypes
with associated targeted genes are labelled according to the nature of selected traits.
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a drop in genetic diversity, (ii) derived alleles at high frequency and (ii) haplotypes that are

conserved over large genomic distances.

To be adaptive, a new mutation must appear in the right genomic region(s) and at the
right moment. Consequently, “classic sweep” signals are expected to be rare. There is
indeed compelling evidence to suggest that human genetic adaptation over the last 250,000
years involved only a low number of classic sweeps, suggesting that other modes of natural
selection did occur (Pritchard, Pickrell, and Coop 2010; Schrider and Kern 2017).

3.2.2 Selection on standing variation and polygenic adaptation

Under a “selection on standing variation” model of genetic adaptation, the environmental
pressure postdates the occurrence of the mutation(s) (Przeworski, Coop, and Wall 2005).
In a specific environment, only a subset of mutations is beneficial, most of the genetic
variation is neutral. Most of these mutations appeared in human ancestral populations
and segregate under genetic drift in populations at different frequencies. Following a
change in environmental pressure (e.g. settlement of a new geographic region) part of
the standing variation can become advantageous, because they confer an advantage in
face of this new environment; the frequency of these specific mutations would no longer
be driven by genetic drift only but also by natural selection. As these mutations already
exist in the population, the adaptive process will be faster than under the classic sweep

model of natural selection.

There is increasing evidence to suggest that most traits in humans are polygenic, and each
of the associated genes appear to have a small effect on the ultimate phenotype. However,
the classic model of positive selection (the “hard sweep” model), assumes that selection
targets de novo mutations that strongly impact adaptive traits (e.g., lactase persistence). A
more realistic model, the polygenic model of selection, predicts that weak positive selection
targets several genomic regions associated with complex traits or diseases (Pritchard,
Pickrell, and Coop 2010). This alternative model of selection, also known as polygenic
adaptation, is a process in which alleles associated with a specific complex trait and used
to segregate only by genetic drift in a population become advantageous due to a change in
environmental pressures (Pritchard, Pickrell, and Coop 2010; Peter, Huerta-Sanchez, and
Nielsen 2012).

Molecular signatures of positive selection can be detected with a number of statistics based
on several, different aspects of the data; the site frequency spectrum (Nielsen et al. 2005),
genetic differentiation among populations (e.g Fsr or PBS statistics, (Shriver et al. 2004;
Yi et al. 2010)) and haplotype homozygosity (e.g XP-EHH and iHS statstics, (Sabeti et al.
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2007; Voight et al. 2006)). Under the hard sweep model, we expect a selected allele to
be highly frequent in a specific population and be carried by haplotypes conversed over
long genomic distances, due to hitchhiking effects (Fig. 3.2). However, for complex traits
or diseases, many genetic variants are involved in the phenotype and each of them has a
small contribution to the variance of the trait. Consequently, under a model of polygenic
adaptation, we expect a subtle shift in allelic frequency in a specific population and in
this case, the selective event follows a “soft-sweep model” (Pritchard, Pickrell, and Coop
2010)(Fig. 3.2).

3.2.3 Adaptive admixture and adaptive introgression

Adaptive admixture corresponds to another regime of natural selection in which beneficial
mutations are transmitted from a population to another via gene flow. In human
populations, admixture events are pervasive and thus have the potential to play a key
role in the rapid genetic adaptation of human populations (Racimo et al. 2015; Gower
et al. 2021; Patin et al. 2017; Hamid et al. 2021; Jeong et al. 2014). | will refer in this
manuscript (Chapter 5, Article) to adaptive admixture when the two populations belong to
the same species (i.e two modern human populations) and to adaptive introgression when
they are from two different species or human lineages, like between archaic hominins (i.e.,

Neanderthal and Denisova) and Homo sapiens.

3.3 Metabolic disorders in the Pacific

According to the World Health Organization (WHO), most of the top 10 countries with
the highest rate of obesity are found in Pacific Islands. In some islands of Polynesia and
Micronesia, more than 70% of the population is obese (e.g Nauru, Samoa, Tonga) and
obesity represents up to 75% of the causes of death (Fig. 3.3). More specifically, metabolic
disorders such as Type 2 diabetes and Gout are highly prevalent in the Oceanian regions
(Gosling et al. 2015).

3.3.1 Population history

The first Europeans who arrived in the Pacific islands described autochthonous people
as “healthy”, “muscular” and “strong” indicating that traditional food and diet were
appropriate for the lifestyle of Pacific islanders (Fisk 1966). Since 1963, the Pacific region

has experienced a sharp nutrition transition owing to the global trade and globalization.
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Imported food has either replaced part of the local food, especially carbohydrate sources
(root crops, fruits and vegetables have been replaced by imported flour, rice, meat, alcohol
and milk) or has been added to local fat sources (e.g. imported vegetable oil or butter added
to coconuts). More generally, the consumption of fat increased, for example, in French
Polynesia, by 80% between 1963 and 2000 (Gosling et al. 2015; Hughes and Lawrence 2005;
Fisk 1966).

Over the last 50 years, Pacific islanders migrated from rural to urban regions and nowadays
more than half of the population lives in urban areas where they have a more sedentary
lifestyle and practice less physical activity. As a consequence, the highest rate of obesity
is found in urban centers such as New Zealand and a survey from 1998 in the Vanuatu
islands indicates that although people living in rural areas absorbed more calories than
people from urban areas, they are less obese mainly because they consume five times less

imported fat products (Hughes and Lawrence 2005).

Despite the lower levels of metabolic disorders, they are still present in rural regions
where people maintain a more traditional lifestyle and remain more isolated from
the globalization (Gosling et al. 2015; Gosling, Matisoo-Smith, and Merriman 2014).
Furthermore, bone lesions resembling that of gout arthritis have been also identified in
the first Lapita settlers of the Vanuatu dated to around 3,000 years ago (Buckley 2007).
Together, these observations suggest that, in addition to environmental factors, Pacific
islanders could also be more biologically susceptible to metabolic disorders because of
their genetic background and specific population history (both demographic and adaptive
history).

3.3.2 A case of “maladaptation™?

The geneticist James Neel in 1962 proposed the hypothesis of the thrifty gene or thrifty
genotype to explain the high prevalence of Type 2 diabetes observed in contemporary
societies (Neel 1962). This hypothesis stipulates that mutations found in genes involved in
fat storage were under positive natural selection because they conferred an advantage in
period of food privation. Because of changes in diet and lifestyle (caloric and food excess),
the genetic variants that were formerly advantageous are nowadays detrimental and are

associated with metabolic disorders.

Focusing on Oceania, studies (Diamond 2003; Bindon and Baker 1997) argued that
the voyages in canoes associated with the settlement of remote islands as well as
between-island connexions (trade) were accompanied by food privation and a high

mortality rate. In this context, people aboard canoes who carried thrifty alleles would have
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had a higher survival probability. Candidate thrifty alleles have been proposed, such as a
mutation located in the CREBRF gene, which shows a signature of positive selection and is
associated with increased Body Mass Index (BMI) and fat storage in Samoans (Minster et
al. 2016; Loos 2016). However, the same mutation protects against Type 2 diabetes (Minster
et al. 2016; Krishnan et al. 2018) and is also associated with taller stature in Samoans and
Maori (Carlson et al. 2020). Because of these pleiotropic effects, it is not possible to know
which of these traits was/were likely targeted by natural selection and, thus, whether the

CREBRF mutation is indeed a thrifty allele.

After more than 60 years of research, the thrifty gene hypothesis is still currently highly
debated. For example, Ayub et al. (Ayub et al. 2014) found no evidence of positive selection
at loci associated with Type 2 diabetes in African, European and East Asian groups.
Although the thrifty gene hypothesis is commonly used to explain the high prevalence of
metabolic disorders found in Oceania, very few studies succeeded in formally assessing and
identifying genetic variants associated with metabolic disorders specifically in Oceanian
groups (most of associated variants come from European-based association studies) and

presenting signatures of natural selection.
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Figure 3.3: Prevalence of obesity and Type 2 diabetes in Oceania (Gosling et al.
2015).
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OBJECTIVES OF THE THESIS

During the last 125,000 years, modern humans (Homo sapiens) spread across all continents
and settled in diverse ecosystems, as extreme as the Sahara Desert, the Arctic Circle,
or the Himalayas. Archaeological and linguistic data have provided valuable insights
into the tempo of human dispersals across the globe but many questions remain
open: did populations expand together with their languages and lifestyles? Do human
cultures defined by archaeology reflect distinct genetic entities? Were human dispersals
accompanied by genetic admixture with local groups of archaic or modern humans? How
have humans genetically adapted to the newly colonized environments? The recent advent
of high-throughput sequencing technologies now allows tackling these questions in great
detail, through the full characterization of the genetic diversity of human populations

living in current and ancient times.

These massive sequence-based datasets can be interpreted in light of theoretical
frameworks in population genetics, developed from well-known mathematical
frameworks, such as the coalescent theory or the diffusion approximation to the discrete
generational model. Combining whole-genome sequencing data with robust statistical
and mathematical frameworks in population genetics thus allows infer demographic

models that best explain current patterns of genetic variation.

The region of Oceania, composed of thousands of scarcely populated islands, provides
with an excellent model system to test important hypotheses in human evolution,
population genetics and evolutionary biology. This project aims to reconstruct the genetic
history of Oceanian Islanders, with the goal of dissecting their demographic past and to
ultimately better understand their present-day relation to disease. Specifically, my PhD
project aims to (i) characterize the genetic diversity of Oceanian populations, which are

under-represented in genomic studies, (ii) trace back all the different events constituting

41



CHAPTER 4

their demographic history (see Chapter 5), and finally (iii) evaluate the purge of deleterious

mutations (i.e., mutations that could cause diseases) in these populations (see Chapter 6).

To do so, | have first set up the necessary pipeline to process the high-coverage sequencing
of 317 new whole genomes. | combined multiple bioinformatics tools to align sequencing
reads, call genetic variants and genotypes, and check sample and variant quality. Once
high-quality data was obtained, my next steps have been the detailed characterisation
of the genetic diversity and structure of Oceanians, to ultimately jointly infer the
demographic parameters characterizing their population history. Specifically, | inferred
the demographic models of (i) Near Oceanians, (ii) western Remote Oceanians and (iii)
East/Southeast Asian ancestors of Near and Remote Oceanians. | explored and evaluated
a large range of possible demographic scenarios using the maximum likelihood framework
and SFS-based parameter estimations implemented in Fastsimcoal2 (Excoffier et al. 2013;
Excoffier et al. 2021). Secondly, | started to evaluate the burden of deleterious mutations
of Pacific islanders. To do so, | estimated and compared the efficacy of natural selection

and the mutational load between Pacific and reference populations.
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CHAPTER 5

5.1 Context

As seen in chapters 1 and 2, the islands of the Pacific are classified into Near Oceania and
Remote Oceania. These two-sub regions of Oceania differ in their geographic location and
peopling history. The oldest archaeological sites are found in Near Oceania (New Guinea,
the Bismarck Archipelago and the Solomon Islands) and studies indicate a settlement
of this region between around 45,000 years ago for Northern Sahul and 25,000-30,000
years ago for western Solomon Islands. The descendants of this Pleistocene occupation
are Papuan-speaking communities that live today in New Guinea and islands lying off
its northeast coast. The peopling of the rest of the Pacific, known as Remote Oceania
and including the Reef/Santa Cruz islands, Vanuatu, New Caledonia, Fiji, Micronesia
and Polynesia, only occurred recently in the Holocene. This dispersal which has been
associated with the expansion of Austronesian languages and the Lapita Cultural Complex,
was proposed to originate around 5,000 years ago from Taiwan and reach western Remote
Oceania by around 3,200 years ago, and the Polynesian Triangle by 1,000-700 years aga

(i.e. the “Out-of-Taiwan” model).

Ancient DNA studies in Remote Oceania, primarily in Vanuatu and Tonga, have reported
virtually no Papuan ancestry in individuals from the Lapita period, and supported a
second movement of Papuan-like people likely from the Bismarck Archipelago, shortly
after the initial Lapita settlement (Lipson et al. 2018; Posth et al. 2018; Skoglund et al.
2016). Genetic studies of modern Oceanians have reported varying levels of Papuan-
and East Asian-related ancestry across islands (Friedlaender et al. 2008; Pugach et al.
2018b; Wollstein et al. 2010). However, the detail characterization of the demographic
history (i.e. effective population size, divergence times, mode and tempo of gene flow) of
Near and Remote Oceanians as well as the different biological functions that contributed
to their adaptation remain poorly defined. Additionally, some Oceanian groups have
retained the highest worldwide levels of combined Denisovan and Neanderthal ancestry
(Qin and Stoneking 2015; Reich et al. 2011; Vernot et al. 2016; Sankararaman et al.
2016), but it is still unclear when and how this introgression occurred and whether it
facilitated local adaptation. To date, genetic studies of this region have focused on
geographically-restricted datasets and/or ascertained SNP arrays (Friedlaender et al. 2008;
Pugach et al. 2018b; Wollstein et al. 2010), limiting our ability to unbiasedly study the
genomic history of Near and Remote Oceania and the legacy of archaic admixture across

Oceanians.

In this article | mainly led and performed the processing of the high-coverage whole

genome sequences, the analyses related to the description of the dataset, the population
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structure (see Genomic dataset and population structure and related Supplementary
information) and demographic inference of Pacific islanders (see The settlement of
Near and Remote Oceania, Insights into the Austronesian expansion and related

Supplementary information).

5.2 Article
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The Pacific region is of major importance for addressing questions regarding human
dispersals, interactions with archaic hominins and natural selection processes’.
However, the demographic and adaptive history of Oceanian populations remains
largely uncharacterized. Here we report high-coverage genomes of 317 individuals
from 20 populations from the Pacific region. We find that the ancestors

of Papuan-related (‘Near Oceanian’) groups underwent a strong bottleneck before the
settlement of the region, and separated around 20,000-40,000 years ago. We infer
that the East Asian ancestors of Pacific populations may have diverged from
Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to
have started from Taiwan around 5,000 years ago”*. Additionally, this dispersal was
not followed by animmediate, single admixture event with Near Oceanian
populations, butinvolved recurrent episodes of genetic interactions. Our analyses
reveal marked differences in the proportion and nature of Denisovan heritage among
Pacific groups, suggesting thatindependent interbreeding with highly structured
archaic populations occurred. Furthermore, whereas introgression of Neanderthal
geneticinformation facilitated the adaptation of modern humans related to multiple
phenotypes (for example, metabolism, pigmentation and neuronal development),
Denisovan introgression was primarily beneficial forimmune-related functions.
Finally, we report evidence of selective sweeps and polygenic adaptation associated
with pathogen exposure and lipid metabolismin the Pacific region, increasing our
understanding of the mechanisms of biological adaptation to island environments.

Archaeological dataindicate that Near Oceania, whichincludes New Guinea,
the Bismarck archipelago and the Solomon Islands, was peopled around
45thousandyearsago (ka)’ Therest of the Pacific—known as Remote Oce-
ania, and including Micronesia, Santa Cruz, Vanuatu, New Caledonia, Fiji
and Polynesia—was not settled until around 35 thousand years later. This
dispersal, associated with the spread of Austronesian languages and the
Lapita cultural comple, is thought to have started in Taiwanaround 5ka,
reaching Remote Oceania by about 0.8-3.2 ka®. Although genetic studies
of Oceanian populations have revealed admixture with populations of
East Asian origin’®, attributed to the Austronesian expansion, questions
regarding the peopling history of Oceania remain. It is also unknown how
the settlement of the Pacific was accompanied by genetic adaptation to

island environments, and whether archaic introgression facilitated this
process in Oceanian individuals, who present the highest levels of com-
bined Neanderthal and Denisovanancestry worldwide™ ™. Wereport here
awhole-genome-based survey that addresses a wide range of questions
relating to the demographic and adaptive history of Pacific populations.

Genomic dataset and population structure

We sequenced the genomes of 317 individuals from 20 populations
spanning a geographical transect that is thought to underlie the
peopling history of Near and Remote Oceania (Fig. 1a and Supple-
mentary Note 1). These high-coverage genomes (around 36x) were
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Fig.1|Whole-genome variationinPacificlslanders. a, Location of studied
populations. Theindented map is amagnification of western Remote Oceania.
Circlesindicate newly generated genomes. Sample sizes are indicatedin
parentheses. Squares, triangles and diamonds indicate genomes from Mallick
etal.”, Vernot etal.’ and Malaspinas etal.’¥, respectively. b, The number of
SNPs (left), expressed in tens of millions, and comparison with dbSNP (right).
New variants are SNPs that are absent from available datasets'®'®"” and dbSNP.
¢, ADMIXTURE ancestry proportions at K= 6 (lowest cross-validation error; for

analysed with the genomes of selected populations—including Papua
New Guinean Highlanders and Bismarck Islanders'®*®*—and archaic
hominins?*%(Supplementary Note 2 and Supplementary Table1). The
final datasetinvolves 462 unrelated individuals, including 355 individu-
als from the Pacific region, and 35,870,981 single-nucleotide poly-
morphisms (SNPs) (Fig. 1b). Using ADMIXTURE, principal component
analysis (PCA) and a measure of genetic distance (Fs;), we found that
population variationis explained by four components, associated with
(1) East and Southeast Asianindividuals; (2) Papua New Guinean High-
landers; (3) Bismarck Islanders, Solomon Islanders and ni-Vanuatu;
and (4) Polynesian outliers (here ‘Polynesian individuals’) (Fig. 1c, d,
Extended Data Fig.1and Supplementary Note 3). The largest differ-
ences are between East and Southeast Asian individuals and Papua
New Guinean Highlanders, the remaining populations show various
proportions of the two components, supporting the Austronesian
expansion model®*®", Strong similarities are observed between Bis-
marck Islanders and ni-Vanuatu, consistent with an expansion from
the Bismarck archipelago into Remote Oceania at the end of the Lapita
period®', Levels of heterozygosity differ markedly among Oceanian
populations (Kruskal-Wallis test, P=1.4 x10™?) (Fig. 1e), and correlate
withindividualadmixture proportions (p=0.89, P<2.2x107). The low-
est heterozygosity and highest linkage disequilibrium were observed
inPapuaNew Guinean Highlanders and Polynesianindividuals, which
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@ Polynesians

all Kvalues, see Extended Data Fig.1). ADMIXTURE results for Australian
populationsare discussed in Supplementary Note 3. d, PCA of PacificlIslanders
and East Asianindividuals. The proportion of variance explainedisindicatedin
parentheses. e, Population levels of heterozygosity (for all populations, see
Supplementary Fig. 9). Population samples were randomly down-sampled to
obtainequalsizes (n=5). Theline, box, whiskers and pointsindicate the
median, interquartile range, 1.5x the interquartile range and outliers,
respectively. a, ¢, Maps were generated using the maps R package®.

probably reflect low effective population sizes. Notably, F-statistics
show a higher genetic affinity of ni-Vanuatu from Emae to Polynesian
individuals, relative to other ni-Vanuatu, which suggests gene flow
from Polynesia®?®.

The settlement of Near and Remote Oceania

To explore the peopling history of Oceania, we investigated a set of
demographic models—driven by several evolutionary hypotheses—with
acomposite likelihood method* (Supplementary Note 4). We first
determined the relationship between Papua New Guinean Highland-
ers and other modern and archaic hominins, and replicated previous
findings'® (Extended Data Fig. 2a and Supplementary Table 2). We
next investigated the relationship between Near Oceanian groups,
assuming a three-epoch demography with gene flow. Observed site
frequency spectra were best explained by a strong bottleneck before
the settlement of Near Oceania (effective population size (N,) =214; 95%
confidence interval, 186-276). The separation of Papua New Guinean
Highlanders from Bismarck and Solomon Islanders dated back to 39 ka
(95% confidenceinterval, 34-45ka), and that of Bismarck Islanders from
Solomonlslanders to 20 ka (95% confidence interval,16-30ka) (Fig. 2a,
Supplementary Tables 3, 4), shortly after the human settlement of the
regionaround 30-45ka*®.
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Fig.2|Demographic models of the human settlement of the Pacific.

a, Maximume-likelihood model for Near Oceanian populations. Point estimates
of parametersand 95% confidence intervals are reportedin Supplementary
Table 4. The grey areaindicates the archaeological period for the settlement of
Near Oceania. b, Maximum-likelihood model for Formosan-speaking (TWN)
and Malayo-Polynesian-speaking (PHP and POL) populations. Point estimates
of parameters and 95% confidence intervals arereported in Supplementary
Table 7 (‘3-pulse model’).a, b, BKA, Bismarck Islanders; HAN, Han Chinese
individuals; NEA GST, anortheast Asian unsampled population; NOCGST, a
Near Oceanian meta-population; PHP, Philippine individuals; PNG, Papua New
Guinean Highlanders; POL, Polynesian individuals from the Solomon Islands;
SAR, Sardinianindividuals; SLI, Solomon Islanders; TWN, Taiwanese
Indigenous peoples. Rectangle width indicates the estimated effective
populationsize. Black rectanglesindicate bottlenecks. One-and

We then incorporated western Remote Oceanian populations into
the model, represented by ni-Vanuatu individuals from Malakula.
We estimated that the ancestors of ni-Vanuatu individuals received
migrants from the Bismarck that contributed more than 31% of their
gene pool (95% confidence interval, 31-48%) less than 3 ka (Extended
Data Fig. 2b and Supplementary Table 5), which is consistent with
ancient DNA results®'°. However, the best-fitted model revealed that
the Papuan-related population who entered Vanuatu less than 3 ka
was a mixture of other Near Oceanian sources®?: the Papuan-related
ancestors of ni-Vanuatu diverged from Papua New Guinean Highland-
ers and later received approximately 24% (95% confidence interval,
14-41%) of Solomon Islander-related lineages. Interestingly, we found
aminimal (<3%) direct contribution of Taiwanese Indigenous peoples
toni-Vanuatuindividuals, dating back to around 2.7 ka (95% confidence
interval, 1.1-7.5ka). This suggests that the East-Asian-related ancestry
of modern western Remote Oceanian populations has mainly been
inherited from admixed Near Oceanian individuals.

Insightsinto the Austronesian expansion

We characterized the origin of the East Asian ancestry in Oceanian
populations by incorporating Philippine and Polynesian Austronesian
speakersinto our models (Supplementary Note 4). Assumingisolation
with migration, we estimated that Taiwanese Indigenous peoples and
Malayo-Polynesian speakers (Philippine Kankanaey and Polynesian

Present

two-directional arrows indicate asymmetric and symmetric gene flow,
respectively; grey and black arrows indicate continuous and single-pulse gene
flow, respectively. The 95% confidence intervals areindicated in parentheses.
We assumed a mutationrate of 1.25 x 10 mutations per generation per site and
agenerationtime of 29 years. We limited the number of parameter estimations
by making simplifying assumptions concerning the recent demography of
East-Asian-related and Near Oceanian populationsinaandb, respectively
(Supplementary Note 4). Sample sizes are reported in Supplementary Note 4.

¢, Posterior (coloured lines) and prior (grey areas) distributions for the times of
admixture between Near Oceanianand East-Asian-related populations, under
the double-pulse most-probable model, obtained by ABC (Supplementary
NotesS5, 6). Point estimates and 95% credible intervals are indicated by
horizontallinesand rectangles, respectively. The grey rectangle indicates the
archaeological period of the Lapita cultural complexin Near Oceania?.

individuals from the SolomonIslands) diverged around 7.3 ka (95% con-
fidenceinterval, 6.4-11ka) (Extended DataFig.2c),in agreement with a
recentgenetic study of Philippine populations®. Similar estimates were
obtained when modelling other Austronesian-speaking groups (>8 ka)
(Supplementary Table 6). These dates are at odds with the out-of-Taiwan
model—that is, a dispersal event starting from Taiwan around 4.8 ka
that brought agriculture and Austronesian languages to Oceania®™*.
However, unmodelled gene flow from northeast Asian populations
into Austronesian-speaking groups? could bias parameter estima-
tion. When accounting for such gene flow, we obtained consistently
older divergence times than expected under the out-of-Taiwan model*,
but with overlapping confidence intervals (approximately 8.2 ka; 95%
confidenceinterval,4.8-12ka) (Fig.2b and Supplementary Tables 7-9).
Although this suggests that the ancestors of Austronesian speakers
separated before the Taiwanese Neolithic?, given the uncertainty in
parameter estimation, further investigation is needed using ancient
genomes.

We next estimated the time of admixture between Near Oceanian
individuals and populations of East Asian origin under various admix-
ture models, using an approximate Bayesian computation (ABC)
approach (Supplementary Notes 5, 6 and Supplementary Table 10).
Wefound thatatwo-pulse model best matched the summary statistics
for Bismarck and Solomon Islanders. The oldest pulse occurred after
the Lapitaemergenceintheregionaround 3.5ka” (2.2 ka (95% credible
interval,1.7-3.0) and 2.5 ka (95% credibleinterval, 2.2-3.4) for Bismarck
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a, b, Estimates of Neanderthal (a) and Denisovan (b) ancestry on the basis of
fi-ratio statistics. Maps were generated using the maps R package®.

c, Correlation between Papuanancestry and Denisovan ancestry (asa
percentage of Papuan ancestry; n=20 populations). Theblack lineis the
identity line. Bars denote 2 s.e. of the estimate. d, Cumulative length of the
high-confidence archaic haplotypesretrieved in Pacific, East Asian and west
Eurasian populations. e, Matchrate to the Vindija Neanderthal (left) and Altai

and Solomon Islanders, respectively) (Fig. 2c). This reveals that the
separation of Malayo-Polynesian peoples from Taiwanese Indigenous
peoples was not followed by animmediate, single admixture episode
with Near Oceanian populations, suggesting that Austronesian speak-
ers went through a maturation phase during their dispersal.

Neanderthal and Denisovan heritage

Pacific Islanders have substantial Neanderthal and Denisovan ances-
try, as indicated by PCA, D-statistics and f,-ratio statistics (Supple-
mentary Note 7). Whereas Neanderthal ancestry is homogeneously
distributed (around 2.2-2.9%), Denisovan ancestry differs markedly
between groups (approximately 0-3.2%) and is highly correlated with
Papuan-related ancestry™*" (R?=0.77, P<2.1x107) (Fig.3a-c). Anotable
exception is the Philippine Agta (who self-identify as ‘Negritos’) and,
to alesser extent, the Cebuano, who have high Denisovan but little
Papuan-related ancestry (R?=0.99, P<2.2 x107', after excluding Agta
and Cebuano).

To explore the sources of archaic ancestry, we inferred high-
confidence introgressed haplotypes (Fig. 3d and Supplementary
Note 8) and estimated haplotype match rates to the Vindija Nean-
derthal and Altai Denisovan genomes. Neanderthal match rates were
unimodalin all groups (Fig. 3e) and Neanderthal segments signifi-
cantly overlapped between population pairs (permutation-based
P=1x10"*) (Supplementary Notes 9-11), which is consistent with a
uniqueintrogression event in the ancestors of non-African populations
from asingle Neanderthal population. Conversely, different peaks were
apparent for Denisovan-introgressed segments (Fig. 3e and Extended
DataFig.3). Atwo-peak signal was not only detected in East Asian indi-
viduals (around 98.6% and about 99.4% match rate to the Denisovan
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Denisovan (right) genomes, based onlong (>2,000 sites), high-confidence
archaic haplotypes, to remove false-positive values attributable toincomplete
lineage sorting. Fitted density curves for populations with significant bimodal
matchrate distributions are shown. AGT, Philippine Agta; ASN, East Asian
individuals (Simons Genome Diversity Project samples only”); EUR, western
Eurasianindividuals; SCI, Santa CruzIslanders; VAN, ni-Vanuatu. The remaining
acronymsareasin Fig.2. Populationsamplesizesarereportedin
Supplementary Table1.

genome) as previously reported®, but was also found in Taiwanese
Indigenous peoples, Philippine Cebuano and Polynesian individuals.
Haplotypes with a match of approximately 99.4% were significantly
longer than those with a match of approximately 98.6% (one-tailed
Mann-Whitney U-test; P=5.14 x10™*), suggesting that—in East Asian
populations—introgression from a population closely related to the
Altai Denisovan occurred more recently than introgression from the
more-distant archaic group.

We also observed two Denisovan peaks in Papuan-related popu-
lations®® (Gaussian mixture model P<1.68 x10™*) (Supplementary
Table 11), with match rates of around 98.2% and 98.6% (Fig. 3e). Con-
sistently, we confirmed using ABC that Papua New Guinean Highlanders
received two distinct pulses (posterior probability = 99%) (Supplemen-
tary Note 12). Haplotypes with an approximately 98.6% match were of
similar length in all populations (Kruskal-Wallis test, P> 0.05), whereas
haplotypes with a match of around 98.2% were significantly longer in
Papuan-related populations than those with amatch of about 98.6%in
other populations (Supplementary Note 10). ABC parameter inference
supportedafirst pulse around 46 ka (95% credible interval, 39-56 ka),
fromalineage that diverged 222 ka from the Altai Denisovan (95% cred-
ibleinterval,174-263 ka) (Supplementary Note 12 and Supplementary
Table 12) and asecond pulse into Papuan-related populations around
25ka (95% confidenceinterval,15-35ka) from alineage that separated
409 ka from the Altai Denisovan (95% credible interval, 335-497 ka).
This model was more-supported than a previously reported modelin
which the pulse from distantly related Denisovans occurred around
46 ka®® (ABC posterior probability = 99%) (Supplementary Note 12).
Our results document multiple interactions of Denisovans with the
ancestors of Papuan-related groups and adeep structure of introgress-
ing archaic humans.
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a, Genomicregions showing the strongest evidence of adaptive introgression
from Neanderthals (red) and Denisovans (purple). Each rowis a40-kb window,
each columnisaPacific population group, and eachcellis coloured according
towhether thewindowisinthe top 0.5%,1%, 5%, >5% of the empirical
distributions of the adaptiveintrogression Q95 and U-statistics (Supplementary
Note 14). The starting position and genes of each genomic window are indicated.
Only the five most extreme windows are shown for each population group. All
resultsare reported in Supplementary Note 14 and Supplementary Tables 14, 15.

For the Philippine Agta, we also observed two Denisovan-related
peaks, with matchrates of around 98.6% and 99.4% (Fig. 3e). We found
thatthe 99.4% peakis probably due to gene flow from East Asian popu-
lations (Supplementary Note 10). Introgressed haplotypesinthe Agta
overlap significantly with those in Papuan-related populations (Sup-
plementary Note 11), but their high Papuan-independent Denisovan
ancestry (Fig. 3c) suggests additional interbreeding. This, together
with the discovery of Homo luzonensis in the Philippines®, prompted
ustosearch forintrogression from other archaic hominins. Using the
S’method®, and filtering Neanderthal and Denisovan haplotypes, we
retained 59 archaic haplotypes spanning a total of 4.99 megabases
(Mb), around 50% of which were common to most groups (Extended
Data Fig. 4 and Supplementary Note 13). Focusing on the Agta and
Cebuano, weretained only around 1Mb of introgressed haplotypes that
were private to these groups. This suggests that Homo luzonensismade
little or no contribution to the genetic make-up of modern humans or
that this hominin was closely related to Neanderthals or Denisovans.

The adaptive nature of archaic introgression

Although evidence of archaic adaptive introgression exists*-*, few
studies have evaluated its role in Oceanian populations. We first tested
5,603 biological pathways for enrichment in adaptive introgression
signals (Supplementary Notes 14, 15). For Neanderthal and Denisovan
segments, a significant enrichment was observed for 24 and 15 path-
ways, respectively, of which 9 were related to metabolic and immune
functions (Supplementary Tables 13-18). Focusing on Neanderthal
adaptiveintrogression, we replicated genes such as OCA2, CHMPIA or
LYPD6B** (Fig. 4a). We also identified previously unreported signals
ingenesrelatingtoimmunity (CNTNS, ILIORA, TIAM1 and PRSS57), neu-
ronal development (TENM3, UNCI3C, SEMA3F and MCPHI), metabolism
(LIPI, ZNF444, TBCID1, GPBP1, PASK, SVEP1, OSBPL10 and HDLBP) and
dermatological or pigmentation phenotypes (LAMB3, TMEM132D,
PTCH1,SLC36A1, KRT80, FANCA and DBNDD1I) (Extended Data Fig. 5),
further supporting the notion that Neanderthal variants, beneficial or
not, have influenced numerous human phenotypes® -,

For Denisovans, we replicated signals forimmune-related (TNFAIP3,
SAMSN1,ROBO2and PELI2)** and metabolism-related (DLEU1, WARS2
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and SUMFI1)*?* genes. Our most-extreme candidates comprise 14 previ-
ously unreported signals in genes relating to the regulation of innate
and adaptive immunity, including ARHGEF28, BANK1, CCR10, CD33,
DCC, DDX60, EPHB2, EVIS, IGLONS, IRF4, JAK1, LRRC8C and LRRCSD,
and VSIGIOL (Fig.4aand Supplementary Table 15). For example, CD33—
which mediates cell-cellinteractions and keepsimmune cellsinarest-
ing state**—contains an approximately 30-kb-long haplotype with seven
high-frequency, introgressed variants, including an Oceanian-specific
nonsynonymous variant (rs367689451-A; derived allele frequency
(DAF) > 66%) (Extended Data Fig. 5) predicted to be deleterious (SIFT
score=0).Similarly, IRF4—which regulates Toll-like receptor signalling
andinterferon responses to viral infections®—has an around 29-kb-long
haplotype containing 13 high-frequency (DAF > 64%) variants in the
Agta. These results suggest that Denisovan introgression has facili-
tated human adaptation by serving as areservoir of resistance alleles
against pathogens.

Genetic adaptationtoisland environments

Finally, we searched for signals of classic sweeps and polygenic adap-
tation in Pacific populations (Supplementary Notes 16-18 and Sup-
plementary Tables 19-25). We found 44 sweep signals common to all
Papuan-related groups (empirical P< 0.01) (Extended Data Fig. 6),
including the TNFAIP3 gene, which was identified as adaptively intro-
gressed from Denisovans® (Extended Data Fig. 7). The strongest hit
(empirical P<0.001) included GABRP, which mediates the anticon-
vulsive effects of endogenous pregnanolone during pregnancy*, and
RANBP17, which is associated with body mass index and high-density
lipoprotein cholesterol® (Extended Data Fig. 8a,b). The highest score
identified anonsynonymous, probably damaging variant (rs79997355)
in GABRP at more than 70% frequency in Papua New Guinean High-
landers and ni-Vanuatu, and low frequency (less than 5%) in East and
Southeast Asian populations. Among population-specific signals, ATG7,
which regulates cellular responses to nutrient deprivation® and is
associated with blood pressure®, presented high selection scores in
Solomon Islanders.

Among populations with high East Asian ancestry, we identified 29
shared sweep signals (P < 0.01) (Extended Data Fig. 9). The highest
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scores (P<0.001) overlapped with an approximately 1-Mb haplotype
containing multiple genes, including ALDH2. ALDH2 deficiency results
inadverse reactions toalcohol andis associated with increased survival
inJapaneseindividuals*’. The ALDH2rs3809276 variant occursin more
than 60% and less than 15% in East-Asian-related and Papuan-related
groups, respectively. We also detected a strong signal around OSBPLI0,
associated with dyslipidaemia and triglyceride levels* and protection
against dengue*?, which we found to have been adaptively introgressed
from Neanderthals (Extended Data Fig. 7). Population-specific signals
included LHFPL2in Polynesian individuals (Extended DataFig. 8c, d),
variation in which is associated with eye macula thickness—a highly
variable traitinvolved in sharp vision*’. LHFPL2 variants reach around
80%frequencyin Polynesianindividuals, but are absent from databases,
highlighting the need to characterize genomic variationin understud-
ied populations.

Because most adaptive traits are expected to be polygenic*, we
tested for directional selection of 25 complex traits with awell-studied
geneticarchitecture*, by comparing the integrated haplotype scores
(iHS) of trait-associated alleles to those of matched, random SNPs*.
Focusing on European individuals as a control, we found signals of
polygenic adaptation for lighter skin and hair pigmentation but not for
increased height (Fig.4b), as previously reported*®*’. In Pacific popula-
tions, we detected astrong signal for lower levels of high-density lipo-
protein cholesterol in Solomon Islanders and ni-Vanuatu (P=1x107).

Implications for human history and health

The peopling of Oceaniaraises questions about the ability of our species
toinhabitand adapt toinsularenvironments. Using current estimates
of the human mutation rate and generation time'® (Supplementary
Note 4 and Supplementary Tables 2-7), we find that the settlement
of Near Oceania 30-45 ka*® was rapidly followed by genetic isolation
between archipelagos, suggesting that navigation during the Pleisto-
cene epoch was possible but limited. Furthermore, our study reveals
thatgeneticinteractions between East Asian and Oceanian populations
may have been more complex than predicted by the strict out-of-Taiwan
model*, and suggests that at least two different episodes of admixture
occurredin Near Oceania after the emergence of the Lapita culture™.
Our analyses also provide insights into the settlement of Remote Oce-
ania. Ancient DNA studies have proposed that Papuan-related peoples
expanded to Vanuatushortly after the initial settlement, replacing local
Lapitagroups®'°%, We suggest that most East-Asian-related ancestry in
modern ni-Vanuatu individuals results from gene flow from admixed
Near Oceanian populations, rather than from the early Lapita settlers.
These results, combined with evidence of back migrations from Poly-
nesia®%?, support a scenario of repeated population movements in
the Vanuaturegion. Giventhat we explored arelatively limited number
of models, archaeological, morphometric and palaeogenomic studies
arerequired to elucidate the complex peopling history of the region.

Therecovery of diverse Denisovan-introgressed material in our data-
set, together with previous studies?®%, shows that modern humans
received multiple pulses from different Denisovan-related groups
(Extended DataFig.10). First, we estimate that the East-Asian-specific
pulse®, derived from a clade closely related to the Altai Denisovan,
occurred around 21 ka. The geographical distribution of haplotypes
from this clade indicates that it probably occurred in mainland East
Asia. Second, another clade distantly related to Altai Denisovans?®?’
contributed haplotypes of similar length to Near Oceanian populations,
East Asian populations and Philippine Agta. Because our models do
not supportarecent common origin of Near Oceanian and East Asian
populations, we suggest that East Asian populations inherited these
archaicsegmentsindirectly, via gene flow froma population ancestral
tothe Agta and/or Near Oceanian populations. Assuming a pulse into
the ancestors of Near Oceanian individuals, we date this introgres-
siontoaround 46 ka, possibly in Southeast Asia, before migrations to
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Sahul. Third, another pulse?®**—which was specific to Papuan-related

groups—is derived from a clade more distantly related to Altai Deniso-
vans. We date this introgression to approximately 25 ka, suggesting it
occurred in Sundaland or further east. Archaic hominins found east
of the Wallace line include Homo floresiensis and Homo luzonensis®**®,
suggesting that either these lineages were related to Altai Denisovans,
or Denisovan-related hominins were also present in the region. The
recent dates of Denisovan introgression that we detect in East Asian
and Papuan populationsindicate that these archaic humans may have
persisted as late as around 21-25 ka. Finally, the high Denisovan-related
ancestry in the Agta'" suggests that they experienced a different,
independent pulse. Collectively, our analyses show that interbreed-
ing between modern humans and highly structured groups of archaic
hominins was acommon phenomenon in the Asia-Pacific region.

This study reports more than100,000 undescribed genetic variants
in Pacific Islanders at a frequency of more than 1%, some of which are
expected to affect phenotype variation. Candidate variants for positive
selection are observedin genes relating toimmunity and metabolism,
which suggests genetic adaptation to pathogens and food sources that
are characteristic of Pacific islands. The finding that some of these
variants were inherited from Denisovans highlights the importance
of archaic introgression as a source of adaptive variation in modern
humans?***2#°_Finally, the signal of polygenic adaptation related to
levels of high-density lipoprotein cholesterol suggests that there are
populationdifferencesinlipid metabolism, potentially accounting for
the contrasting responses to recent dietary changes in the region®.
Large genomic studiesin the Pacific region are required to understand
the causallinks between past genetic adaptation and present-day dis-
easerisk, and to promote the translation of medical genomicresearch
inunderstudied populations.
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Sample collection and approvals

Samples were obtained from 317 adult volunteersin Taiwan, the Philip-
pines, the Solomon Islands and Vanuatu from 1998 to 2018. DNA was
extracted fromblood, saliva or cheek swabs (Supplementary Note 1).
Informed consent was obtained from each participant, including con-
sent for genetics research, after the nature and scope of the research
was explained in detail. The study received approval from the Institu-
tional Review Board of Institut Pasteur (2016-02/IRB/5), the Ethics Com-
mission of the University of Leipzig Medical Faculty (286-10-04102010),
the Ethics Committee of Uppsala University ‘Regionala Etikprévn-
ingsnamnden Uppsala’ (Dnr 2016/103) and from the local authori-
ties, including the China Medical University Hospital Ethics Review
Board, the National Commission for Culture and the Arts (NCCA) of the
Philippines, the Solomon Islands Ministry of Education and Training
and the Vanuatu Ministry of Health (Supplementary Note 1). The con-
sent process, sampling and/or subsequent validation in the Philippines
were performed in coordination with the NCCA and, in Cagayan val-
ley region, with local partners or agencies, including Cagayan State
University, Quirino State University, Indigenous Cultural Community
Councils, Local Government Units and/or regional office of National
Commissionon Indigenous Peoples. More details about the sampling
in the Philippines can be found in ref. . Research was conducted in
accordance with: (i) ethical principles set forth in the Declaration
of Helsinki (version: Fortaleza October 2013), (ii) European direc-
tives 2001/20/CE and 2005/28/CE, (iii) principles promulgated in
the UNESCO International Declaration on Human Genetic Data and
(iv) principles promulgated in the Universal Declaration on the Human
Genome and Human Rights.

Whole-genome sequencing data

Whole-genome sequencing was performed on the 317 individual sam-
ples (Supplementary Table 1), with the TruSeq DNA PCR-Free or Nano
Library Preparation kits (Illumina). After quality control, qualified
libraries were sequenced on a HiSeq X5 Illumina platform to obtain
paired-end150-bp reads with an average sequencing depth of 30x per
sample. FASTQ files were converted to unmapped BAM files (UBAM),
read groups were added and Illumina adapters were tagged with
Picard Tools version 2.8.1 (http://broadinstitute.github.io/picard/).
Read pairs were mapped onto the human reference genome
(hs37d5), with the ‘mem’ algorithm from Burrows-Wheeler Aligner
v.0.7.13%2 and duplicates were marked with Picard Tools. Base quality
scores were recalibrated with the Genomic Analysis ToolKit (GATK)
software v.3.8%.

Whole-genome data for Bismarck Islanders' were processed in the
same manner as the newly generated genomes, while for Papua New
Guinean Highlanders' and other populations of interest'®, raw BAM
fileswere convertedinto uBAMfiles, and processed as described above.
Variant calling was performed following the GATK best-practice recom-
mendations®. All samples were genotyped individually with ‘Haplo-
typeCaller’ ingvcf mode. The raw multisample VCF was then generated
withthe ‘GenotypeGVCFs’tool. Using BCFtools v.1.8 (http://www.htslib.
org/), we applied different hard quality filtersoninvariant and variant
sites, based on coverage depth, genotype quality, Hardy-Weinberg
equilibrium and genotype missingness (Supplementary Note 2). The
sequencing quality was assessed by several statistics (that is, breadth
of coverage 10x, transition/transversion ratio and per-sample miss-
ingness) computed with GATK>* and BCFtools. Heterozygosity was
assessed with PLINK v.1.90%°¢ and cryptically related samples were

detected with KING v.2.1¥, Previously unknown SNPs were identified
by comparison with available datasets'*'®" and dbSNP®,

Genetic structure analyses

PCAs were performed with the ‘SmartPCA’ algorithm implemented
in EIGENSOFT v.6.1.4%°. The genetic structure was determined with
the unsupervised model-based clustering algorithm implemented in
ADMIXTURE®, which was run—assuming K =1to K=12—100 times with
different random seeds. Linkage disequilibrium (r*) between SNP pairs
was estimated with Haploview®', which was averaged per bin of genetic
distance using the 1000 Genomes Project phase 3 genetic map®%.
Fsrvalues were estimated by analysis of molecular variance (AMOVA)
as previously described®® (Supplementary Note 3).

Demographicinference

Demographic parameters were estimated with the simulation-based
framework implemented in fastsimcoal v.2.6%*. We filtered out sites
(1) within CpG islands®*; (2) within genes; and (3) outside of Vindija
Neanderthal and Altai Denisovan accessibility masks. These masks
exclude sites (1) at which at least 18 out of 35 overlapping 35-mers
are mapped elsewhere in the genome with zero or one mismatch;
(2) with coverage of less than 10; (3) with mapping quality less than 25;
(4) withintandem repeats; (5) within smallinsertions or deletions; and
(6) within coverage filters stratified by GC content. For each demo-
graphic model, we performed 600,000 simulations, 65 conditional
maximization cycles and 100 replicate runs starting from different
random initial values. We limited overfitting by considering only
site frequency spectrum (SFS) entries with more than five counts for
parameter estimation. We optimized the fit between expected and
observed SFS values following a previously described approach'®¢5¢,
Specifically, we first calculated and optimized the likelihood with all of
the SFS entries for the first 25 cycles. We then used only polymorphic
sites for the remaining 40 cycles. We obtained maximum-likelihood
estimates of demographic parameters, by first selecting the 10 runs
with the highest likelihoods from the 100 replicate runs. To account
for the stochasticity thatisinherent to the approximation of the like-
lihood using coalescent simulations, we re-estimated the likelihood
of each of the 10 best runs, using 100 expected SFS obtained using
600,000 simulations. Finally, we re-estimated again the likelihood
of the three runs with the highest average, this time using 107 simu-
lations, and considered the run with the highest likelihood as the
maximum-likelihood run. We corrected for the different numbers
of SNPs in the expected and observed SFS, by rescaling parameters
by arescaling factor defined as S,s/S.,: the N.and generation times
were multiplied by the rescaling factor, whereas migration rates were
divided by the rescaling factor. For all inferences, we considered a
mutation rate of 1.25 x 10 mutations per generation per site’** and
a generation time of 29 years®®. We also provide estimates of diver-
gence and admixture times assuming a mutation rate of 1.4 x 1078
mutations per generation per site® (Supplementary Tables 3-7).
Model assumptions and parameter search ranges can be found in
Supplementary Note 4.

We checked the fit of each best-fit model, by comparing all entries
of the observed SFS against simulated entries, averaged over 100
expected SFS obtained with fastsimcoal2? (Supplementary Note 4).
We also compared observed and simulated Fs; values, computed with
vcftools v.0.1.137, for all population pairs. We checked that parameter
estimates were not affected by background selection and biased gene
conversion (Supplementary Note 4). We calculated confidence inter-
valswithanonparametricblock bootstrap approach; we generated 100
bootstrapped datasets by randomly sampling with replacement the same
number of 1-Mb blocks of concatenated genomic regions as were present
in the observed data. For each bootstrapped dataset, we obtained
multi-SFS with Arlequin v.3.5.2.2” and re-estimated parameters with
the same settings as for the observed dataset, with 20 replicate runs.



Finally, to obtain the 95% confidence intervals, we calculated the 2.5%
and 97.5% percentile of the estimate distribution obtained by nonpara-
metric bootstrapping.

For model selection, classical model choice procedures, such as
the likelihood ratio tests, could not be used because the likelihood
function used in fastsimcoal2* is a composite likelihood (owing to
the presence of linked SNPs in the data). Instead, we compared the
likelihoods of the most likely runs between the alternative models,
estimated from 600,000 simulations. We also compared the distribu-
tionof the log,,(likelihood) of the observed SFS based on100 expected
SFS computed with 107 coalescent simulations, using parameters maxi-
mizing the likelihood under each scenario. A model was considered
the most likely if its mean log,,(likelihood) was 50 units larger than
that of the second most likely model®. We estimated by simulations
that this criterionresultsinan 81% probability to select the true model
(Supplementary Note 4).

We evaluated the accuracy of demographic parameter estimation,
using a parametric bootstrap approach. We simulated, with fastsim-
coal2?, x1-Mb DNA loci, with x chosen to obtain the same numbers
of segregating SNPs and monomorphic sites as in the observed data,
assuming parameters maximizing the likelihood under each model. We
then generated 20 simulated SFS by random sampling and used boot-
strapped SFSto re-estimate parameters under the same settings as for
the original dataset (65 expectation conditional maximization cycles,
600,000 simulations and 100 runs per simulated SFS). We calculated
the mean, median and the 2.5% and 97.5% percentiles of the distribu-
tion of parameter estimates obtained by parametric bootstrapping,
and checked that theyincluded the true (simulated) parameter value.

Admixture models

We applied two ABC approaches™to test for different admixture models
for Near Oceanian populations and estimated parameters under the
most probable model. Model choice and posterior parameter estima-
tion by ABC are based on summary statistics’. The first approach,
developed in the MetHis method™, is based on the moments of the
distribution of admixture proportions and explicit forward-in-time
simulations that follow a general mechanistic admixture model™.
The second approach uses—as summary statistics—the moments of
the distribution of the length of admixture tracts”””. We assumed
three competing models of admixture: a single-pulse, a two-pulse or
a constant-recurring model (Supplementary Notes 5, 6). We checked
a priori the goodness-of-fit of simulated and observed statistics with
the gfit functionimplemented in the abc R package’®. Method perfor-
mance was assessed by estimating the error rates by cross-validation,
and by checking a posteriori that the statistics simulated under the
most probable model closely fitted the observed statistics.

For the MetHis approach, we simulated 100,000 independent
SNPs segregating in the two source populations with fastsimcoal2*,
under the refined demographic model for Near Oceanian populations
(Fig.2a). From the foundation of the admixed population to the present
generation, the forward-in-time evolution of the 100,000 SNPs in the
admixed population was simulated with MetHis™, under the classical
Wright-Fisher model. For model choice, we conducted 10,000 inde-
pendentsimulations under each of the three competing models. On the
basis 0f 30,000 simulations, we used the random-forest ABC approach”
implemented in the abcrf R package. For the best scenario identified,
we conducted an additional 20,000 simulations with MetHis. We then
used all 30,000 simulations computed under the winning scenario for
joint posterior parameter estimation, with the neural-network ABC
approach implemented in the abc R package’. The performance of
the method is described in Supplementary Note 5.

For the approach based on admixture tract length, we performed—
under each alternative admixture model—5,000 simulations of 100 5-Mb
linked DNA loci with fastsimcoal2?*, assuming a variable recombination
rate sampled from the 1000 Genomes Project phase 3 genetic map®.

We performed 10,000 additional simulations for parameter estimation
under the winning model. As summary statistics, we used the mean and
variance, across the100 5-Mb regions, of the mean, minimum and maxi-
mum of the distribution of the length of admixture tracts across Near
Oceanian populations. The six resulting summary statistics were com-
puted based onlocal ancestry inference, with RFMix v.1.5.4%°, which was
run with three expectation-maximization steps, awindow of 0.03 cM,
and Taiwanese Indigenous peoples and Papua New Guinean Highlanders
assource populations. The performance of the method is described in
Supplementary Note 6. We used the logistic multinomial regression and
the neural-network ABC methods implemented in the abc R package™
for model choice and parameter estimation, respectively.

Archaicintrogression

Before performing archaic introgression analyses, we masked our
whole-genome sequencing dataset for regions non-accessible inarchaic
genomes. We merged the masked dataset with the high-coverage
genomes of Vindijaand Altai Neanderthals and the Altai Denisovan® 2,
We assessed introgression between archaic hominins and modern
humans with D-statistics®'. We computed a D-statistic of the form
D(X, West Eurasians/East Asians/Africans; Neanderthal Vindija, chim-
panzee) and D(X, West Eurasians/East Asians/Africans; Neanderthal
Vindija, Denisova Altai) to test for introgression from Neanderthal;
and D-statistics of the form D(X, West Eurasians/East Asians; Denisova
Altai, chimpanzee) and D(X, West Eurasians/East Asians; Denisova Altai,
Neanderthal Vindija) to test introgression from Denisovans. The last
two D-statistics were used to account for the more-recent common
ancestor between Neanderthals and Denisovans. We computed f,-ratios
to estimate the proportion of genome-wide Neanderthal and Den-
isovanintrogressioninamodern human population (Supplementary
Note 7). All D- and f,-ratio statistics were computed with ‘qpDstat’ and
‘qpF4ratio’ implemented in ADMIXTOOLS v.5.1.1%.. A weighted-block
jackknife procedure dropping 5-cM blocks of the genomeineach run
was used to compute standard errors.

We used two statistical methods to identify archaic sequences in
modern human genomes. The first, S-prime (S’), identifies introgressed
sequences without the use of an archaic reference genome®, For the
identification of S’ introgressed segments in Pacific genomes, we only
considered variants with a frequency less than 1% in African individu-
als from the Simons Genome Diversity Project (SGDP) dataset”, and
segments were detected in each population separately. Genetic dis-
tances between ssites were estimated from the 1000 Genomes Project
phase 3 genetic map®. After retrieving empirical S’ scores, we estimated
anulldistribution of S’ scores by simulating—with fastsimcoal2?*—2,500
10-Mb genomic regions under the best-fitted demographic model
for western Remote Oceanian populations (Supplementary Note 4).
We fixed all parameters to maximume-likelihood estimates, but
removed the simulated introgression pulses from Neanderthals
and Denisovans. On the basis of these null distributions of S’ scores,
we estimated the threshold giving a false-positive rate of less than
0.01, to retain significantly introgressed S” haplotypes (Supplemen-
tary Note 8).

The second method, based on conditional random fields (CRF),
identifies introgressed archaic haplotypes in phased genomic data,
using a reference archaic genome'”®2, We phased the data with SHA-
PEIT2%%*, using 200 conditioning states, 10 burn-in steps and 50
Markov chain Monte Carlo main steps, for a window length of 0.5 cM
and an effective population size of 15,000. For the detection of
Neanderthal-introgressed haplotypes, we used as reference panels
the Vindija Neanderthal genome and SGDP African individuals” merged
with the Altai Denisovan genome. To detect Denisovan-introgressed
haplotypes, we used as reference panel the Altai Denisovan genome
and SGDP African individuals®” merged with the Vindija Neanderthal
genome. Results from the twoindependent runs were analysed jointly
to keep those containing alleles with a marginal posterior probability
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Pyeanderthar = 0.9 and Ppqisova < 0.5 as Neanderthal-introgressed haplotypes
and those containing alleles with Ppeisova = 0.9 and Pyeangerchat < 0.5 as
Denisovan-introgressed haplotypes.

We computed a match rate between each detected S’ or CRF seg-
ment and the Vindija Neanderthal and Altai Denisovan genomes
as previously described” (Supplementary Note 9). We considered
that a site matches if the putative introgressed allele is observed in
the archaic genome. The match rate was calculated as the number
of matches divided by the total number of compared sites. Because
longer S” haplotypes carry more information on the archaic ori-
gin of introgressed segments, we computed only match rates for
S’ haplotypes with more than 40 unmasked sites. For the statisti-
cal assessment and assignment of introgressed haplotypes to dif-
ferent Denisovan components, we fitted single Gaussian versus
two-component Gaussian mixtures to the Denisovan match rate
distributions (Supplementary Note 10).

We estimated the sharing of introgressed haplotypes between
populations by first retaining S’ introgressed haplotypes with ascore
>190,000 and a length of at least 40 kb (Supplementary Note 11). We
then classified each haplotype as of either Neanderthal or Denisovan
origin, as previously described®. For each haplotype presentinagiven
population, we then estimated the fraction of base-pair overlap with
the haplotypes present in a second population, with respect to the
length of the segmentsin the first. As atest statistic, we computed the
proportion of segments with a fraction of base-pair overlap greater
than 0.5. We assessed significance by performing 10,000 bootstrap
iterations, in which we randomly placed introgressed segments with
the same number and of the same length as observed along the callable
genome (around 2.1Gb). For each population pairwise comparison, we
reported the highest Pvalue of the two. All Pvalues were adjusted for
multiple testing with the Benjamini-Hochberg method.

We formally tested for the presence of two distinct Denisovan
lineages in Papuan-related populations with an ABC approach”, by
performing 50,000 independent simulations of 64 DNA sequences
of 10 Mb each with fastsimcoal2?*. We simulated the demographic
model for Near Oceanian populations (Fig. 2a), introducing one or two
Denisovan pulses into the Papua New Guinean branch, and a popula-
tion resize in Papua New Guinea to capture the demographic effect
of the agricultural transition'? (Supplementary Note 12). As summary
statistics, we used the moments of the distribution of the S’ scores,
S’ haplotype length and S’ match rate to the Altai Denisovan genome.
We determined which of the single- and double-pulse introgression
models was the most probable, using alogistic multinomial regression
algorithmwithatolerance rate set to 5%. We estimated the performance
of our ABC model choice by cross-validation. Parameter estimation
under the double-pulse winning model was performed on the basis
of an additional 150,000 independent simulations, using the neural
network algorithm with a tolerance rate set to 5%. We used the same
procedure to test whether our two-pulse model, in which the pulse
from a more-distant Denisovan lineage occurs later than the other
pulse, fits the data better than a previous model in which the pulse
from a more-distant Denisovan lineage occurs earlier than the other
pulse®. Introgression parameter values were sampled from uniform
priors limited by the previously obtained 95% confidence intervals
(Supplementary Note 12).

We investigated whether Pacific populations had received gene
flow from an unknown archaic hominin, by retaining S” haplotypes
unlikely to be of Neanderthal or Denisovan origin, through the removal
of Neanderthal and Denisovan haplotypes inferred by the CRF approach
(Supplementary Note 13). We characterized these S’ haplotypes fur-
ther by estimating their match rates to the Vindija Neanderthal and
Altai Denisovan genomes and retaining only those with a match rate
of less than 1% to either of these archaic hominins. The remaining S’
haplotypes represent putatively introgressed material from outside
the Neanderthal and Denisovan branch.

Adaptive introgression

Candidate regions for adaptive introgression were detected on the
basis of the number and derived allele frequency of sites common to
modern and archaic humans (Supplementary Note 14), with Q95 and
U-statistics®. We computed these statistics in 40-kb non-overlapping
windows along the genome of all target populations, using SGDP Afri-
canindividuals® as the outgroup. We used the chimpanzee reference
genometo determine the ancestral or derived states of alleles, removed
sites with any missing genotypes, and discarded genomic windows
with fewer than five sites. Candidate genomic windows were defined as
those withboth Uand Q95 statisticsin the top 0.5% of their respective
genome-wide distributions.

We assessed the enrichment of introgressed genes in various biologi-
cal pathways, including the Kyoto Encyclopedia of Genes and Genomes
(KEGG)®, Wikipathways®, the genome-wide association studies
(GWAS) catalogue®, Gene Ontology®®, and manually curated lists of
innate immunity genes®® and virus-interacting proteins®’. We merged
Pacific populations into three population groups (Supplementary
Note 15). We assessed statistical significance using aresampling-based
enrichment test that compares the number of introgressed genesina
givengene set to that observedinrandomly sampled sets of genes that
are matched for different genomic features (that is, recombination
rate, PhastCons®, combined annotation-dependent depletion (CADD)
scores®, density of DNase I segments® and number of SNPs). We also
determined whether agiven gene set was enriched in adaptively intro-
gressed genes, by comparing the number of genes overlapping an
adaptively introgressed segment in the gene set with that observed
inrandomly sampled sets of matched genes. Adaptively introgressed
segments were defined as those intersecting with genomic windows
with Q95 and U-statisticsin the top 5% of their respective genome-wide
distributions.

Classic sweeps

For the detection of classic sweep signals, we combined the inter-
populationlocus-specific branch lengths (LSBL)** and cross-population
extended haplotype homozygosity (XP-EHH)* statisticsinto a Fisher’s
score (F¢s). We estimated the Fs as the sum of the -log,,(percentile
rank of the statistic for agiven SNP) of all statistics, and defined ‘outlier
SNPs’asthose witha F.;among the 1% highest genome-wide. Putatively
selected regions were defined as genomic windows with a proportion
of outlier SNPs within the 1% highest genome-wide, after partition-
ing all windows into five bins based on the number of SNPs. The test,
reference and outgroup populations used are described in Supple-
mentary Note 16. LSBL and XP-EHH statistics were computed with the
optimized, window-based algorithms implemented in selink (https://
github.com/h-e-g/selink).

Polygenic adaptation

We ssearched for evidence of polygenic adaptation, using an approach
testing whether the mean integrated haplotype score (iHS) of
trait-increasing alleles differed significantly from that of random
SNPs with asimilar allele frequency*®®. We obtained GWAS summary
statistics for 25 candidate complex traits from the UK Biobank data-
base*, including traits relating to morphology, metabolism and immu-
nity, as these phenotypic traits are strong candidates for responses,
through natural selection, to changes in climatic, nutritional and
pathogenic environments. We classified SNPs as ‘trait-increasing’ or
‘trait-decreasing’ based on UK Biobank effect size () estimates. We
computed iHS with selink, for each SNP and population, and standard-
ized scores in100 bins of DAF. We then polarized the iHS, such that posi-
tive iHS values indicated directional selection of the trait-decreasing
allele, whereas negative iHS values indicated directional selection of
the trait-increasing allele. We called the resulting statistic the polar-
ized traitiHS (tiHS).



For each trait, we assessed significance keeping only unlinked
trait-associated variants (Supplementary Note 18). We then compared
the mean tiHS of the x independent, trait-associated alleles with the
mean tiHS of 100,000 random samples of x SNPs with similar DAF,
genomic evolutionary rate profiling (GERP) score and surrounding
recombinationrate, toaccount for the effects of background selection.
We considered that directional selection hasincreased (or decreased)
agiventraitiflessthan2.5% (or 0.5%) of the resampled sets had amean
tiHS that is lower (or higher) than that observed. We adjusted P val-
ues for multiple testing with the Benjamini-Hochberg method. The
false-positive rate of the approach at a P value of 2.5% (or 0.5%) was
estimated by resampling (Supplementary Note 18).

Because this approach assumes that alleles affecting traits are the
samein Oceanian and European populations and that they affect traits
in the same direction, we used another approach, which tests for the
co-localization of selection signals and trait-associated genomic
regions. We partitioned the genome into 100-kb non-overlapping
contiguous windows and considered a window to be associated with
atraitifatleast one SNP within the window was genome-wide significant
(P<5x107%). For each window, we estimated the mean tiHS for each
population. We then tested whether the mean tiHS of trait-associated
windows was greater than that for a null distribution, obtained from
100,000 sets of randomly sampled windows, each set being matched to
trait-associated windows in terms of mean GERP score, recombination
rate, DAF and number of SNPs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The whole-genome sequencing dataset generated and analysed
in this study is available from the European Genome-Phenome
Archive (EGA; https://www.ebi.ac.uk/ega/), under accession code
EGAS00001004540. Data access and use is restricted to academic
research in population genetics, including research on population
origins, ancestry and history. The SGDP genome data were retrieved
fromthe EBIEuropean Nucleotide Archive (accession codes PRJEB9586
and ERP010710). The genome data from Malaspinas et al.’® were
retrieved from the EGA (accession code EGAS00001001247). The
genome data from Vernot et al.' were retrieved from dbGAP (acces-
sion code phs001085.v1.p1).

Code availability

Neutrality statistics were computed with the optimized, window-based
algorithms implemented in selink (https://github.com/h-e-g/selink).
Allother custom-generated computer codes or algorithms used in this
study are available on GitHub (https://github.com/h-e-g/evoceania).
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Extended DataFig.1|Geneticstructure of Pacific populations. was obtained at K=6 (Supplementary Fig. 5). Populations are delimited by
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Extended DataFig. 2| Demographic models for Pacific populations.

a, Maximum-likelihood demographic model for baseline populations. Point
estimates of parameters and 95% confidence intervals are shownin
Supplementary Table 2. b, Maximum-likelihood demographic models for
western Remote Oceanianindividuals (VAN). The likelihoods of the two models
arenot considered to be different. Point estimates of parameters and 95%
confidenceintervals areshowninSupplementary Table 5. The (VAN, PNG)
model (left) assumes that the ni-Vanuatu diverged from Papua New Guinean
Highlanders and then received gene flow from Solomon Islanders, Bismarck
Islanders and Austronesian-speaking Taiwanese Indigenous peoples. The
(VAN, SLI) (right) model assumes that the ni-Vanuatu diverged from the
SolomonlIslanders and thenreceived gene flow from the other three groups.
For the sake of clarity, only Taiwanese Indigenous, Near Oceanian and western
Remote Oceanian populations are shown. ¢, Maximum-likelihood model for
Austronesian-speaking populations, represented by Taiwanese Indigenous,
Philippine Kankanaey and Tikopia Polynesianindividuals. BKA, Bismarck
Islanders; HAN, Han Chinese individuals (China); NOC GST, ameta-population

of Near Oceanianindividuals; O0A GST, an unsampled population torepresent
the Out-of-Africaexodus; PHP, Philippine individuals; PNG, Papua New Guinean
Highlanders; POL, Polynesianindividuals from the Solomon Islands; SAR,
Sardinianindividuals (Italy); SLI, SolomonIslanders; TWN, Taiwanese
Indigenous peoples; VAN, ni-Vanuatu; YRB, Yorubaindividuals (Nigeria). We
assumed a mutationrate of1.25x 10" mutations per generation per siteand a
generationtime of 29 years. Single-pulseintrogressionrates arereported asa
percentage. The 95% confidence intervals are showninsquare brackets. The
larger therectangle width, the larger the estimated effective population size
(N.), except forb. Bottlenecks areindicated by black rectangles. Grey and black
arrows represent continuous and single pulse gene flow, respectively. One-and
two-directional arrows indicate asymmetric and symmetric gene flow,
respectively. We limited the number of parameter estimations by making
simplifying assumptions regarding the recentdemography of East-Asian-
related and Near Oceanian populationsinaandc, respectively (Supplementary
Note 4).Samplesizes are described in Supplementary Note 4.
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Extended DataFig. 5| Examples of candidatelocifor adaptive
introgressioninPacific populations. a, Adaptive introgression of Denisovan
originatthe CD33locus. b, Adaptiveintrogression of Denisovan originat the
IRF4locus. ¢, Adaptiveintrogression of Neanderthal origin at the KRT80locus.
d, Adaptiveintrogression of Neanderthal originat the TBCIDI locus.

e, Adaptiveintrogression of Denisovan originat the JAKIlocus. f, Adaptive
introgression of Denisovan origin at the BANKI locus. a-f, Left, local Manhattan
plotshowingthe derived allele frequency of archaic SNPs (aSNPs), the

proportion of high-confidence introgressed haplotypes (HC CRF) and the gene
isoformsatthelocus (in Mb, based on hg19 coordinates). Middle, derived allele
frequencies of the top archaic SNPin1000 Genomes Project phase 3
populations (excluding recently admixed populations). Right, derived allele
frequencies of the top archaic SNP in populations from this study. Colours in
theleft panelsindicate populationsasin Fig.1. Piechartsindicate the derived
allele frequency in purple, and are centred on the approximate geographical
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Extended DataFig. 6 | Classic sweep signals detected in Papuan-related
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Extended DataFig.10|Schematic model of the history of archaic
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed

|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

E A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

E The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

D A description of all covariates tested
E A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

E A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

E] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|Z| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

E For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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E] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data analysis EIGENSOFT v.7.2.1, ADMIXTURE v.1.22, PONG v.1.4, Haploview v.4.2, SHAPEIT2, fastsimcoal v.2.6, R v.3.4 or later, abc R package v.2.1, MetHis
v.1.0, ADMIXTOOLS v.5.1.1, S-prime v.07Dec18.5e2, CRF (Sankararaman et al., Nature 2014), selink v.2 (www.github.com/h-e-g/selink),
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The whole genome dataset generated and analysed in this study is available from the European Genome-Phenome Archive (EGA), under accession code
EGAS00001004540. The SGDP genome data were retrieved from the EBI European Nucleotide Archive (accession numbers: PRIEB9586 and ERP010710). The
genome data from Malaspinas et al., Nature 2016 were retrieved from EGA (accession number: EGAD00001001634). The genome data from Vernot et al., Science
2016 were retrieved from dbGAP (accession number: phs001085.v1.p1).
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Ecological, evolutionary & environmental sciences study design
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Study description We sequenced the genome of >300 Pacific Islanders at high coverage (>30x), to describe the genetic diversity of human populations
from this understudied region. Population genetics analyses were used to infer (i) the genetic structure, (ii) demographic history, (iii)
the levels of archaic introgression and (iv) candidate loci and traits under positive selection in Near and Remote Oceanians.
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Research sample We sequenced the genome of 317 individuals from 20 human populations that were chosen to cover a geographic transect thought
to underlie the peopling history of Near and Remote Oceania. This includes Taiwan, the Philippines, the Solomon Islands, Santa Cruz
and the Vanuatu Archipelago. These newly sampled populations were analysed in combination with other populations from the Asia-
Pacific region for which genomes are available, including Papua New Guinea, the Bismarck Archipelago and East Asia. Sampled
individuals are meant to represent Near Oceanians (Papua New Guineans, Bismarck and Solomon islanders), western Remote
Oceanians (ni-Vanuatu), Austronesian-speaking groups (Taiwanese aborigines, Philippine Cebuano), Polynesian-speaking populations
(Polynesian outliers from the Solomon Islands), and Philippine 'Negritos' (Philippine Agta). The study sample was also chosen to
characterize in great detail the genomic diversity of human populations that are understudied in human genomics.

Sampling strategy Populations were sampled to cover a geographic transect thought to underlie the peopling history of Near and Remote Oceania.
Sampling of related individuals was avoided, because relatedness can confound population genetics analyses. The ethno-linguistic
group of sampled individuals was defined based on the self-declared group of their parents and grand-parents. An average of n = 16
unrelated individuals were sampled per population. Sample size for demographic inference with fastsimcoal2 is usually n =5
(Malaspinas et al., Nature 2016). For archaic introgression and positive selection analyses, power mainly depends on other factors
than sample size, but it is commonly accepted that n = 20 provides high power (Pickrell et al., Genome Res 2009). We thus merged
closely-related populations into population groups for these analyses.

Data collection All demographic information was collected through a structured questionnaire and/or ethnographic interviews. DNA was obtained
from peripheral whole blood by venepuncture, or saliva by Oragene kits and cheek swabs. The sampling survey of Taiwanese
aborigines was conducted by Albert Ko (Institute of Vertebrate Paleontology and Paleoanthropology, China). The sampling survey of
Solomon Islanders was conducted by Mark Stoneking (Max Planck Institute for Evolutionary Anthropology, Germany). The sampling
survey of Ni-Vanuatu was conducted by Olivier Cassar and Antoine Gessain (Institut Pasteur, Paris). The sampling survey of Philippine
Negritos was conducted by Maximilian Larena (Human Evolution, Department of Organismal Biology, Uppsala University, Sweden).

Timing and spatial scale The sampling survey of Taiwanese aborigines was conducted between 1998 and 2001. The sampling survey of Solomon islanders was
conducted in August and September 2004. The sampling survey of ni-Vanuatu was conducted between April 2003 and August 2005.
The sampling survey of Philippine Negritos was conducted between 2015 and 2018. The timing of sampling surveys was determined

based on logistic requirements that depended on the accessibility of sampling sites and financial resources.

Data exclusions Samples were excluded if they showed evidence of (i) DNA contamination, (ii) parental relatedness, (iii) relatedness to other samples,
or (iv) genetic ancestry from populations outside of Oceania and East/Southeast Asia. All exclusion criteria were pre-established.

Reproducibility We compared genotype calls obtained by next-generation sequencing to SNP genotyping arrays for the same individuals
(unpublished data) and found very high concordance rates (>99.99%). No other experimental data were collected.

Randomization To avoid batch effects, individuals were randomized according to their population of origin, across library preparation batches.

Blinding Blinding was not relevant in this study because no condition or status was compared across sampled individuals.

Did the study involve field work? D Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z| D ChIP-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging
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Policy information about studies involving human research participants

Population characteristics Age, gender, ethno-linguistic group and genotypic information were collected for all human research participants.
Participants include 173 males and 44 females, and were from 18 to 76 years of age. Ethno-linguistic groups are described in
Supplementary Table 1. Genotyping rate was >95% for all participants, except one.

Recruitment In each population, only unrelated volunteers with a self-reported ethno-llinguistic group were recruited from local villages.
Sampling of related individuals was avoided because relatedness can confound population genetics analyses. The ethno-
linguistic group of sampled individuals was defined based on the self-declared group of their parents and grand-parents. We
do not anticipate any bias in our results that could be due to this recruitment strategy.

Ethics oversight The study received approval from the Institutional Review Board of Institut Pasteur (n°2016-02/IRB/5), the Ethics Commission
of the University of Leipzig Medical Faculty (n°286-10-04102010), the Ethics Committee of Uppsala University "Regionala
Etikprévningsnamnden Uppsala” (Dnr 2016/103), as well as from local authorities including the Vanuatu Ministry of Health,
the China Medical University Hospital Ethics Review Board, the National Commission for Culture and the Arts of the
Philippines (in accordance with the provisions of Philippine Republic Act 7356, or the Law Creating the NCCA), and the
Solomon Islands Ministry of Education and Training.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Supplementary Note 1: Population Sampling

DNA sampling in the Vanuatu

The Vanuatu archipelago is located in the Southwest Pacific and is part of Remote Oceania.
Vanuatu contains 83 islands and forms a Y-shaped chain that spans nearly 1,100 km. Its
current estimated population is 307,815. Indigenous Melanesians, called ni-Vanuatu,
constitute 98.5% of the population. The sampling survey of ni-Vanuatu was conducted
between April 2003 and August 2005 by Olivier Cassar and Antoine Gessain (Institut
Pasteur, Paris) in remote villages located on 18 islands!. To avoid relatedness among
individuals, couples were identified through ethnographic interviews, in English or
Melanesian Pijin, and were preferentially sampled. Sex, age and living place, as well as date
and place of blood collection, were collected through a structured questionnaire. 5-ml blood
samples were obtained by venepuncture and transferred to the Institut Pasteur of New
Caledonia, where plasma and buffy coats were isolated, frozen, and stored at —80°C. DNA
was purified from frozen buffy coats at the Institut Pasteur of Paris, using QlAamp DNA
Blood Mini Kit protocol, and eluted in AE buffer. DNA concentration was quantified with the
Invitrogen Qubit 3 Fluorometer using the Qubit dsDNA broad-range assay. Prior to library
preparation, DNA integrity was checked on agarose gels.

DNA sampling in Taiwan

Taiwanese indigenous peoples, also called Taiwanese aborigines, are ethnic groups that
represent 2.4% of the total population of Taiwan, and are thought to have inhabited the
island for at least 5,000 years ago (5 ka)?®. Furthermore, archaeological remains suggest
that Taiwan could have been settled as early as 20-30 ka*. Details about sampling of
Taiwanese indigenous peoples (i.e., Paiwan and Atayal) and DNA extraction can be found
elsewhere®. Briefly, samples were collected from 1998 to 2001 in indigenous villages, and
their ethno-linguistic group was defined based on the group of their parents, using a
structured questionnaire. Genomic DNA was extracted from peripheral whole blood by
wizard genomic DNA purification kit (QIAGEN-Gentra Puregene Blood Kit) following standard
laboratory protocols, and stored at —20°C. DNAs were made available by Ying-Chin Ko
(Environment-Omics-Disease Research Center, China Medical University and Hospital,
Taiwan). Prior to library preparation, DNA integrity was checked on agarose gels.

DNA sampling in the Philippines

The Philippines are an archipelago of 7,641 islands situated in Island Southeast Asia (ISEA),
at the crossroads of historic human migrations in the Asia-Pacific region. Modern humans
have inhabited the Philippine islands for ~47 ka®, and it is thought that ancestors of Aeta,
Ayta and Agta foragers (the so-called Philippine ‘Negritos’) are the archipelago’'s earliest
inhabitants’8. A large—scale sampling campaign was conducted by Maximilian Larena
(Human Evolution, Department of Organismal Biology, Uppsala University, Sweden) from
2015 to 2018. Briefly, saliva samples were collected with the Oragene Saliva Collection Kit
(DNA Genotek Inc, Canada). Only unrelated individuals, or only one individual from sets of
individuals who self-reported to be up to 2"-degree relatives, were included in the study. In
addition, only individuals who self-reported to have all of their 4 grandparents to come from
the same ethnic group were included in the study. The Philippine Negritos included in the
study were asked with regards to the acceptability of the term ‘Negrito’; all participants self-
identify as Negritos and accept this term. The saliva samples were processed for DNA
extraction at the Mattias Jakobsson Laboratory (Department of Organismal Biology, Uppsala
University, Sweden), using the preplT DNA isolation kit (DNA Genotek Inc., Canada). Prior to
library preparation, DNA integrity was checked on agarose gels.

DNA sampling in the Solomon Islands
The Solomon Islands Archipelago consists of six major islands and >900 smaller islands
lying to the east of Papua New Guinea and northwest of Vanuatu. It is believed that the



archipelago was first settled by modern humans ~30 ka°. The present-day population is
constituted of 95.3% and 3.1% of peoples of Melanesian and Polynesian origins,
respectively, the latter most likely originating from back migrations from Polynesial®. Cheek
swab samples were collected across the Solomon Islands in August and September 2004.
Details about sampling can be found elsewhere!'. Self-described information on the
birthplace, language, and ethnicity of each donor was obtained. DNA was extracted from the
cheek swabs as described previously!?. Six island populations were included in the current
study, to represent Austronesian-speaking groups (Malaita and Santa Cruz Islands),
Papuan-speaking groups (Vella Lavella Island) and Polynesian-speaking groups (so-called
‘Polynesian outliers’; Bellona, Rennell and Tikopia Islands). Individuals associated to the
Tikopia Island were recent migrants who traced their ancestry exclusively to Tikopia, but
were sampled in Tikopian communities from other Solomon Islands. DNAs were made
available by Mark Stoneking (Max Planck Institute for Evolutionary Anthropology, Leipzig,
Germany). Prior to library preparation, DNA integrity was checked on agarose gels.

Ethical statements

All participants were volunteers of at least 18 years of age. Informed consent was obtained
from each volunteer participant, including consent for genetic research, after the nature and
scope of the study was explained in detail. The study received approval from the Institutional
Review Board of Institut Pasteur (n°2016-02/IRB/5), the Ethics Commission of the University
of Leipzig Medical Faculty (n°286-10-04102010), the Ethics Committee of Uppsala University
"Regionala Etikprovningsndmnden Uppsala” (Dnr 2016/103) and from the local authorities,
including the China Medical University Hospital Ethics Review Board, the National
Commission for Culture and the Arts of the Philippines (in accordance with the provisions of
Philippine Republic Act 7356, or the Law creating the NCCA), the Solomon Islands Ministry
of Education and Training, and the Vanuatu Ministry of Health. The consent process,
sampling, and/or subsequent validation in the Philippines were performed in coordination
with the NCCA and, in Cagayan valley region, with local partners or agencies, including
Cagayan State University, Quirino State University, Indigenous Cultural Community Councils,
Local Government Units, and/or regional office of National Commission on Indigenous
Peoples. The present study was conducted in full respect of the legal and ethical
requirements and guidelines for good clinical practice, in accordance with national and
international rules. Namely, research was conducted in accordance with: (i) ethical principles
set forth in the Declaration of Helsinki (Version: Fortaleza October 2013), (ii) European
directives 2001/20/CE and 2005/28/CE, (iii) principles promulgated in the UNESCO
International Declaration on Human Genetic Data, (iv) principles promulgated in the
Universal Declaration on the Human Genome and Human Rights, (v) the principle of respect
for human dignity and the principles of non-exploitation, non-discrimination and non-
instrumentalisation, (vi) the principle of individual autonomy, (vii) the principle of justice,
namely with regard to the improvement and protection of health and (viii) the principle of
proportionality. The rights and welfare of the subjects have been respected, and the hazards
have not outweighed the benefits of the study.



Supplementary Note 2: Whole-genome Sequencing

Library preparation

Whole-genome sequencing (WGS) was performed on a total of 317 individuals from Taiwan
(i.e., the Paiwan and the Atayal), the Philippines (i.e., the Agta and the Cebuano), the
Solomon Islands (i.e., populations from Malaita, Vella Lavella, Rennell, Bellona, Tikopia and
Santa Cruz islands), and 10 islands from the Vanuatu archipelago (Supplementary Table 1).
WGS was performed at the CNRGH (Centre National de Recherche en Génomique
Humaine, Institut de Biologie Francois Jacob, Evry, France). For 298 samples, a PCR-free
library preparation was obtained with the Illumina TruSeq DNA PCR-free Library Preparation
Kit from 1pug of genomic DNA. For the remaining 19 samples, a PCR-based library
preparation was obtained with the lllumina TruSeq DNA Nano Library Preparation Kit from
100 ng of genomic DNA (Supplementary Table 1). After normalisation and quality control,
qualified libraries were sequenced on a HiSegX5 lllumina platform (lllumina Inc., CA, USA) to
obtain paired-end 150-bp reads. One lane of HiSegX5 flow cell was produced for each blood-
derived DNA sample. Additional sequencing was produced for saliva-derived DNA samples,
to reach an average sequencing depth of 30x.

Read mapping and variant calling

Sequence quality parameters were assessed throughout the sequencing run. FASTQ files for
each sample were generated using the standard lllumina pipeline. FASTQ files were
converted to unmapped BAM files (UBAM), read groups were added and lllumina adapters
were tagged with Picard Tools version 2.8.1 (http://broadinstitute.github.io/picard/). Read
pairs were then mapped onto the human reference genome hs37d5, using the ‘mem’
algorithm from Burrows—Wheeler Aligner version 0.7.13%3, and duplicates were marked with
Picard Tools. Base quality scores were recalibrated using GATK version 3.8'%. WGS data
from Vernot et al.’® were processed as the newly-generated genomes. WGS data from
Malaspinas et al.'® and the SGDP?'” were first converted to raw BAM files into uBAM files,
and then processed as previously described.

Variant calling was performed following the GATK Best Practices recommendations
(nttps://software.broadinstitute.org/gatk/best-practices/), and using GATK version 3.8, All
samples were genotyped individually using ‘HaplotypeCaller’ in gvcf mode. We turned off the
PCR indel correction of ‘HaplotypeCaller’ (‘-pcr_indel_model NONE’) for the 298 samples
prepared following a PCR-free protocol, as well as for 122 out of the 133 samples from
SGDP?Y’ that were prepared following a PCR-free protocol. A final step of joint genotyping
was performed to create a raw multisample VCF, using the ‘GenotypeGVCFs’ tool with the
option ‘-allSites’, to include homozygous reference sites.

Ancestral state annotation

The ancestral state for any given site was defined as the allele present in the chimpanzee
reference genome (panTro4) aligned against hg19 (ref.?®), which was downloaded from the
UCSC platform?°. Sites not present in the chimpanzee genome, or containing alleles that did
not match either the reference or alternative allele, were discarded.

Quality-control filters

Methods. We split the dataset into two VCFs: one with only autosomal homozygous
reference sites (i.e., invariant sites) and a second with only autosomal variant sites. Variant
sites were first filtered using GATK ‘VQSR’?! with a truth sensitivity cut-off of 99.5 for SNPs (‘-
-ts_filter_level 99.5’) and 99 for INDELs (‘--ts_filter_level 99’). A series of hard filters were
applied on invariant and variant sites, using BCFtools version 1.8 (http://www.htslib.org/); we
set as missing all genotypes with (i) a depth (DP) < 10 or (ii) DP > twice the sample
coverage, and (iii) a genotype quality (GQ/RGQ) < 30. Additional, ad hoc filters were applied
(Supplementary Fig. 1). At Level 1, we removed sites that were missing in more than 5% of
the samples and/or were in Hardy—Weinberg disequilibrium (P-value < 107) in at least one of




the populations. At Level 2, we removed sites that were missing in at least one sample (i.e.,
0% of missingness) and/or were in Hardy—Weinberg disequilibrium (P-value < 107%) in at
least one of the populations. At Level 3a, we removed, in addition to Level 2 filters, sites (i)
within CpG islands, obtained from the UCSC table browser??; (ii) within genes, obtained from
Ensembl BioMart version 97; and (iii) outside of Vindija Neanderthal and Altai Denisovan
accessibility masks, downloaded from: http:/ftp.eva.mpg.de/neandertal/Vindija/FilterBed!/.
These masks exclude sites (i) where at least 18 of 35 overlapping 35-mers are mapped
elsewhere in the human genome with zero or one mismatch; (ii) with minimum coverage of
10; (iii) with mapping quality < 25; (iv) with tandem repeats; (v) with indels; and (vi) with
coverage filters stratified by GC content. At Level 3b, we only removed, in addition to Level 2
filters, sites (i) within CpG islands, (i) within segmental duplications
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ %20genomicSuperDups.txt.gz),
and (iii) where at least 18 of 35 overlapping 35-mers are mapped elsewhere in the human
genome with zero or one mismatch. At Level 3b’, in addition to Level 3b, we excluded sites
outside of Vindija Neanderthal, Altai Neanderthal and Altai Denisova accessibility masks.

Per sample heterozygosity was computed with PLINK version 1.90%22% with the ‘--het’
argument. We defined as a heterozygosity outlier, a sample presenting a level of
heterozygosity at least 3 standard deviations (SD) lower or higher than the population mean,
reflecting high parental relatedness or contamination, respectively. To identify cryptically-
related samples, we used kinship values inferred by KING version 2.1%*. We considered a
pair of samples as related if they presented a kinship coefficient > 0.08, a threshold that is
slightly more stringent than a second-degree of relatedness as defined by KING?*. To
maximise sample size, we excluded related samples using an iterative approach, as
described elsewhere?.

Results. Out of the 317 whole-genome sequenced samples, we identified 3 samples as
potentially contaminated (heterozygosity > mean + 3SD), and 4 samples that presented
evidence for parental relatedness (heterozygosity < mean — 3SD) (Supplementary Fig. 2a,b).
Among the remaining individuals, and based on kinship coefficients, we inferred 21 pairs of
samples that were 1%-degree related (0.177 < kinship < 0.354), 19 2"-degree related (0.0884
< kinship < 0.177), and 3 ambiguous between 2"-degree and 3"-degree related (0.08 <
kinship < 0.0884) (Supplementary Fig. 2b). In total, we removed 39 samples from our
collection of 317 newly-generated genomes, including 7 samples with outlier heterozygosity,
and 32 cryptically related samples. In addition, we removed 6 samples from Vernot et al.'®
that our analysis identified as related, leading to a final dataset of 462 unrelated samples.
Among these, a total of 36,339,995 bi-allelic SNPs were identified, 35,870,981 of which
segregate in the sample (i.e., the two alternative alleles are observed in the sample).

Data quality checks

Methods. Sequencing quality was first assessed by a set of statistics, using ‘GATK
DepthOfCoverage’ version 3.8'® and BCFtools version 1.8 (http://www.htslib.org/) on
individual BAM files and on VCF files (507 samples, 39,035,215 bi-allelic SNPs, no fixed
homozygous reference site). Specifically, we evaluated the percentage of the genome
covered at least at 10x (breadth of coverage 10x on the BAM files) as well as VCF-based
mean coverage per individual. A second round of quality checks was performed on a dataset
fitered at Level 1 (Supplementary Fig. 1), after removing heterozygosity outliers and
individuals presenting signs of cryptic relatedness (i.e., 462 samples). We inspected the
Transition/Transversion ratio (Ti/Tv), which is insensitive to ancestry and should be ~2.0-2.1
for whole genome sequencing?®, and the per-sample missingness (i.e., the number of sites
missing over the total number of sites in the VCF).

Results. The mean coverage per sample ranged between 26x and 49x, with a median of
36x, and the breadth of coverage at 10x varied between 94.7% and 99.8% (Supplementary
Fig. 2c,d). The value of the Ti/Tv ratio was homogenous across samples and was =2.1 (2.14-
2.16) (Supplementary Fig. 2e). No individual genome presented a missingness >5%



(Supplementary Fig. 2f), except the Atayal BOOFLGA (missingness = 6.9%). Quality statistics
indicated that the newly-generated whole genomes were of high quality.
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Supplementary Figure 1. Analysis flowchart of the whole-genome dataset. Salmon and tan boxes
indicate datasets and analyses, respectively. Blue and green text indicates computer programs and
filters applied on the whole-genome data, respectively.
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Cryptic relatedness between individuals. Dashed lines indicate kinship thresholds for the 1st, 2" and
39 degrees of relatedness, according to KING (ref.%6). The solid line indicates the threshold used to
consider a pair of individuals as cryptically related at either the 15t or 2" degree. ¢, Autosomal depth of
coverage. The dashed line indicates the median coverage (36x). d, Breadth of coverage 10x (i.e.,
percentage of the genome covered at >10x). e, Transition-Transversion (Ti/Tv) ratio. f, Missingness
(i.e., percentage of missing genotypes). d, f, To facilitate visualisation, the Atayal sample BOOFLGA
was not plotted (breadth 10x=94.7, missingness=6.9%). a-d, Per-population sample size is shown in
brackets in a. e-f, Per-population sample size is shown in brackets in f. a,c-f, The line, box, whiskers
and points respectively indicate the median, interquartile range (IQR), 1.5*IQR and outliers.

Novel SNPs relative to other datasets

We generated 4 different datasets with PLINK version 1.90 (refs.?2%): (i) 25 Papuans from
Malaspinas et al.1®, (ii) 26 individuals from the Bismarck Archipelago from Vernot et al.%5, (iii)
133 samples from the SGDPY’, and (iv) 278 unrelated samples sequenced for this study. For
each dataset, we removed invariant sites and counted the number of variant sites, i.e., all
remaining bi-allelic SNPs. Using BCFtools ‘isec’ (http://www.htslib.org/), we intersected
variant sites found in the new genomes with (i) the three other datasets'>', (i) SNPs found
in dbSNP database build 15227 (downloaded from https://www.ncbi.nlm.nih.gov/snp/), and (iii)
the union of the four. We considered a SNP as novel if its chromosomal position and both its
reference and alternative alleles were not found in the intersected dataset (‘bcftools isec --
collapse none --complement’). Novel SNPs were then divided into three categories based of
their minor allele frequency (MAF): (i) rare variants (MAF < 1%), (ii) intermediate variants
(1% < MAF < 5%), and (iii) common variants (MAF > 5%).
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Supplementary Note 3: Genetic Structure and Diversity

Principal component analyses

Methods. PCA were performed on the Level 1 dataset (Supplementary Note 2). A first PCA
comprised 355 unrelated individuals from the Pacific region, as well as a group of Europeans
from SGDPY, to detect recent admixture of Oceanians with Europeans. The second PCA
was performed on the same dataset, excluding Europeans and four Vanuatu samples
presenting non-negligible proportions of African or European ancestry (Supplementary Table
1). Additional variant pruning was performed with PLINK version 1.90 (refs.?22%), excluding
variants with MAF < 5% and pairs of common SNPs in strong linkage disequilibrium (LD)
using the ‘--indep-pairwise 50 5 0.5’ argument. PCA was performed using the ‘SmartPCA’
algorithm implemented in EIGENSOFT version 6.1.4 (ref.?8).

Results. In a PCA of populations from the Pacific, East/Southeast Asia and Europe, PC1,
which explains 6.3% of the variance, separates Papua New Guinean highlanders (PNG) from
East/Southeast Asians and Europeans, whereas PC2 (2.4% of the variance) separates
East/Southeast Asians from Europeans (Supplementary Fig. 3). Notably, four individuals
from Vanuatu show suggestive evidence for European or African ancestry. In a PCA of
populations from the Pacific and East Asia only, PC1 separates PNG from East/Southeast
Asians (6.3% of the variance), whereas PC2 (1.8% of the variance) separates
East/Southeast Asians from Polynesian-speaking populations of the Solomon Islands, i.e.,
Polynesian outliers (Fig. 1d). Populations from the Bismarck Archipelago, the Solomon
Islands and Vanuatu and Polynesian outliers form a cline between PNG and East/Southeast
Asians on PC1, suggesting varying levels of East Asian-related ancestry (Fig. 1). PC3 (1.4%
of variance) separates PNG and Polynesian outliers from all other populations, whereas PC4
(1.0% of variance) separates the Philippine Agta from East/Southeast Asians
(Supplementary Fig. 4). PC5 (0.8% of the variance) separates western and eastern Solomon
islanders from all other groups, suggesting contrasting demographic pasts in western and
eastern Solomon Islands!®2?%2°, Finally, PC6 (0.7% of the variance) separates the Philippine
Agta into two populations (Supplementary Fig. 4). Together, these results indicate that
population genomic variation in the Pacific is best explained by four genetic clusters,
associated with (i) East/Southeast Asians including Austronesian speakers, (i) PNG, (iii)
Bismarck, Solomon and Vanuatu islanders, and (iv) Polynesian outliers. The largest
differences are between East/Southeast Asians and PNG, while the remaining populations
show varying proportions of the two components, in agreement with an expansion of East
Asian-related Austronesian speakers across the region, followed by admixture3%-32,
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Admixture analyses

Methods. Genetic clustering analysis was performed on the Level 1 dataset (Supplementary
Note 2). To estimate the proportions of K genetic components for each individual, we used
the unsupervised model-based clustering algorithm ADMIXTURE®:. We ran the algorithm
with K = 1 to K = 12, 100 times with different random seeds, including the argument ‘cv’ to
output cross-validation errors. Results were visualised using ‘PONG’ version 1.434 in major-
mode. All fs-statistics were computed with ADMIXTOOLS version 5.1.1. To estimate allele
sharing of Vanuatu populations with Polynesian outliers, we computed fs-statistics of the form
f4 (Polynesian outliers, Taiwanese indigenous peoples; ni-Vanuatu, Mbuti) for each Vanuatu
population. We grouped the Polynesian outliers from the dataset (Tikopia, Rennell and
Bellona islanders) into a single group, and grouped Atayal and Paiwan as a single
Taiwanese indigenous group. Given that Polynesian outliers appear to descend from
admixture between an East Asian-related and a Papuan-related population, as shown by
previous studies®=*¢ and here, differences among Vanuatu populations in their affinity to
Polynesians could be driven by the Papuan-related ancestry proportions of each Vanuatu
population. To correct for this potential confounder, we computed another fs-statistic of the
form fs(Papuans, Taiwanese indigenous peoples; ni-Vanuatu, Mbuti), which tests the
affinities of each Vanuatu population with Papuans and Taiwanese indigenous peoples.

Results. In agreement with PCA results, ADMIXTURE at K = 2 identified two genetic
components that are maximised in (i) East Asia, the Philippines and Polynesia, and (ii) PNG,
Bismarck, Solomon and Vanuatu islanders. Varying proportions of the East Asian component
were estimated across Near and Remote Oceanians (Extended Data Fig. 1), which has been
attributed to the Holocene expansions of Austronesian speakers likely originating from
Taiwan®032, At increasing K values, ADMIXTURE identified new components that are
maximized in Africans, Europeans and PNG, mirroring human structure at the worldwide
scale!’. At K = 6, for which the cross-validation error was minimal (Supplementary Fig. 5), a
component specific to Polynesian outliers was apparent, suggesting that genetic drift,
probably because of serial founder events, has increased genetic differentiation of these
groups with respect to other Oceanian populations. Of note, four individuals from Vanuatu
(i.e., from Ureparapara, Maewo and Ambae islands) showed non-negligible proportions of
African or European ancestry (Supplementary Figs. 3 and 6 and Supplementary Table 1),
and were discarded from subsequent analyses. At K = 7, ADMIXTURE analyses supported a
component that is maximized in Solomon islanders, in agreement with PCA (Supplementary
Fig. 4b). At K = 8, a component specific to the Philippine Agta was found, suggesting a
history of genetic isolation from other Philippine populations, as previously suggested’.
Nevertheless, we caution that the low sample size of the Agta in our dataset might result in
the underestimation, by ADMIXTURE, of their genetic differentiation from other populations.
Intriguingly, for K > 5, indigenous Australians show a pattern consistent with admixture
between different components maximized in Near Oceanians. We suggest that this pattern is
probably due to increased genetic drift in the latter groups®’, as previously suggested®’, and
to their low sample size. For all K values explored, we observed strong genetic affinities
between individuals of the Bismarck archipelago and of Vanuatu and Santa Cruz islands
(Fig. 1lc,d, Extended Data Fig. 1), consistent with a post-Lapita expansion of Bismarck
islanders into Remote Oceania®!3238,
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Supplementary Figure 6. European and African components in Oceanians. ADMIXTURE results at K
= 6 for the 20 study populations, together with selected populations from Malaspinas et al.16 (Bundi
PNG), Vernot et al.’®> (Nakanai Bileki from the Bismarck Archipelago) and SGDP'" (Africans and
western Eurasians). Detailed ADMIXTURE results are shown in the bottom, where individuals showing
non-negligible proportions of African or European components are indicated by an arrow.

At K = 6, we observed various levels of Polynesian ancestry among Vanuatu populations
(Extended Data Fig. 1). Interestingly, Polynesian outliers — Polynesian-speaking people living
outside Polynesia — are known to reside in different Vanuatu islands, including Emae, Mele,
Ifira, Futuna and Aniwa®°. To test if some Vanuatu populations show increased Polynesian-
related ancestry, we computed fs-statistics®® that estimate allele sharing of Vanuatu
populations with either Polynesians or Papuans, to account for the various proportions of
Papuan-related ancestry in the ni-Vanuatu (Supplementary Fig. 7a). In contrast with other
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Vanuatu populations, Emae islanders showed higher allele sharing with Polynesians than
expected, given their Papuan-related ancestry (Supplementary Fig. 7b). This suggests that
migrations from Polynesia were more frequent in Emae, relative to the other western Remote
Oceanian islands. This is in agreement with linguistic and genetic evidence suggesting back
migrations from Polynesia into Vanuatu islands where Polynesian outliers reside®*4%,
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Supplementary Figure 7. Proportions of Papuan-related and Polynesian-related ancestry in western
Remote Oceanian populations. a, Various proportions of Papuan-related ancestry among western
Remote Oceanian populations. Estimates were obtained with a fs-ratio of the form fa(Han, Mbuti;
Vanuatu, Papuans) / fsa(Han, Mbuti; Taiwanese indigenous peoples, Papuans). Bars indicate two
standard errors. Standard errors were calculated using a weighted-block jackknife procedure dropping
5-cM blocks of the genome in each run. The sample size (n) of each population is detailed in
Supplementary Table 1. b, Allele sharing of western Remote Oceanian populations with Polynesian
outliers, accounting for Papuan-related ancestry. For each western Remote Oceanian population,
allele sharing with Polynesian outliers, relative to Taiwanese indigenous peoples, is shown against
allele sharing with Papuans, relative to Taiwanese indigenous peoples. Bars indicate two standard
errors for all fs-statistic estimates. The black line indicates the regression line of a linear model of all
populations (n=11 populations).

Linkage disequilibrium decay

Methods. Linkage disequilibrium (LD) between pairs of SNPs was estimated based on r?
values with Haploview*?. As r? is sensitive to sample size, we randomly sampled 5 individuals
per population in the Level 1 dataset (Supplementary Note 2). We then removed bi-allelic
SNPs with a population MAF < 5%. r* values were computed for every pair of SNPs using a
1-Mb sliding window approach, and were averaged per bin of genetic distance using the
1000 Genomes Project Phase 3 genetic map
(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/working/20140404 data for_phase3 pap
er/shapeit2 scaffolds/)*.

Results. Polynesian outliers, originating from Rennell, Bellona and Tikopia islands, showed
slower LD decay with genetic distance, relative to other populations (Supplementary Fig. 8).
As LD decay depends on effective population size*4, these results suggest a lower N. for
Polynesian outliers, which may be attributed to the serial founder events experienced by
these populations following the settlement of Polynesia, and/or back migrations from
Polynesia to Near Oceania'’.
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Supplementary Figure 8. Linkage disequilibrium decay with genetic distance in Pacific populations.
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Polynesians from Rennell and Bellona.

Heterozygosity and admixture proportions

Methods. We computed heterozygosity, for each population with a sample size > 5 and for
each sample, as the number of heterozygous sites divided by the total number of callable
positions (i.e., all variant and invariant sites) using BCFtools version 1.8. Individual admixture
proportions were obtained from ADMIXTURE at K = 6 (Fig. 1c).

Results. Levels of heterozygosity differed markedly across populations (Kruskal Wallis P-
value = 1.4x107'% Fig. 1e and Supplementary Fig. 9a). Pacific populations with the lowest
heterozygosity were those showing no evidence of admixture (Fig. 1¢c and Extended Data
Fig. 1), including PNG and Taiwanese indigenous peoples. The Kundiawa and the Bundi
showed heterozygosity levels comparable to those of other groups of PNG, suggesting they
well represent other Papua New Guinean populations. Populations with low heterozygosity
also include Polynesian outliers (Supplementary Fig. 9a), who likely experienced founder
events following the settlement of Polynesia, and/or back migrations from Polynesia to Near
Oceania®. Heterozygosity of Polynesian speakers from Rennell and Bellona Islands was
substantially lower than that of Polynesian speakers from Tikopia, suggesting increased
genetic drift in the former, in agreement with their higher levels of LD (Supplementary Fig. 8),
ADMIXTURE results®” at K = 6 (Fig. 1c and Extended Data Fig. 1), and previous
observations based on levels of LD, runs of homozygosity and genetic differentiation®. This
suggests that Polynesian outliers experienced founder effects of various intensities, following
their back migrations from Polynesia to the Solomon lIslands. Finally, we observed a
significant correlation between heterozygosity and East Asian-related admixture proportions
in Oceanians (Supplementary Fig. 9b; r> = 0. 89, P-value < 2.2x107%), indicating that
admixture is a key determinant of heterozygosity levels in the region.

17



8.0 —
= * =
a = =
2 ‘ =
>
%
: =
o
x 7.0 —
<4
2
Q
T * —
[ - Bl
6.5 —
—r—r—r—r r—r—r—r—r—r—r—r—r—r—r—r— T — T
= c s o 5 ] 5 © = a7 © @ = © s 9 £ ) -] 5 o o o ©
$ f 25 2 EE S P EE s 5 835 §8f z§& £ 8 :F: ¢
< F g ° 2 = s § 3 3 2 2 s F £2 g & @ ¢ g0 K
8 3 s a = 5 g e =
a 2 o 5
o]
12
b c
High Near O i lated ,‘ > High East Asi lated y
£ rho=0.89 ? rho=0.55
@ 047 P.value <2.2¢ "“ g 047 Povalue =7.3¢"
Q ©
c
« ° [®) o
° 2 (@]
% % 0.2- ® (@) @, @]
= 2
r T
z s o 0%
3 § 0o e © o ocEmed
B 2
w 3
T T T 2 T T T
6.5 7.0 7.5 6.5 7.0 75
Heterozygosity (10) Heterozygosity (10°)
Papua New Guinea i Taiwanese Indigenous peoples
.highlanders(PNG) @ Solomon islanders (SLI) [5) (T\gIN) peopl ' ‘
@ Bismarck islanders (BKA) @ Santa Cruz islanders (SCI) o ) @ Polynesian outiiers (POL)
) @ Phlllplgme go/&)ulatlons
@ Ni-Vanuatu (VAN) (PHP & AGT)

Supplementary Figure 9. Heterozygosity and estimated admixture proportions in Pacific populations.
a, Population levels of heterozygosity. For each population with a sample size = 5, five samples were
randomly sampled to obtain equal sizes. The line, box, whiskers and points respectively indicate the
median, interquartile range (IQR), 1.5*IQR and outliers of per-population heterozygosity levels. b,
Heterozygosity of Oceanians against their estimated proportion of East Asian-related ancestry. c,
Heterozygosity of East Asian-related Pacific populations, against their estimated proportion of Papuan-
related ancestry. b-c, Each point represents an individual. Colours indicate the population group of
origin. Individual admixture proportions were obtained from ADMIXTURE at K = 6 (Fig. 1c).
Spearman’s coefficient p and corresponding P-value are shown. The black line indicates the
regression line of a linear model and the grey zone the 95% CI (n=95 and n=35 individuals for b and c,
respectively).

AMOVA-based Fsr

Methods. Fst values were estimated using the Analysis of Molecular Variance (AMOVA)
method (®st in ref.*). Values were computed with a home-made perl script (available on
www.github.com/h-e-g/evoceania).

Results. Fst values indicated low genetic differentiation among Vanuatu islands and between
Vanuatu and Bismarck archipelago populations (Supplementary Fig. 10), as shown by the
PCA (Fig. 1d). The highest genetic differentiation was detected between PNG and
Taiwanese indigenous peoples.
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Supplementary Figure 10. AMOVA-based Fst among Pacific populations. Fst matrix for all possible
pairs of populations. Colour bars by the population names indicate population affiliations according to
Fig. 1. Colour scale indicates lower (Fst < 0.01; in blue) and higher genetic differentiation (Fst > 0.04;
in red). RenBell indicates Polynesian outliers sampled from Rennell and Bellona Islands.
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Supplementary Note 4. Demographic Inference

Parameter estimation

To infer the demographic history of populations from the Pacific, we used datasets filtered at
Level 3a, and annotated for the ancestral state (Supplementary Note 2). Demographic
parameter estimation was performed using the simulation-based framework?*® implemented in
fastsimcoal version 2.6 (http://cmpg.unibe.ch/software/fastsimcoal2/). This method estimates
the multinomial likelihood of the observed multidimensional Site Frequency Spectrum (SFS)
0, given the expected SFS E approximated from coalescent simulations of a given model
under specific parameter values 0, following refs.*4’. The multinomial likelihood is computed
as:

n-1

Lt = PO10) « PES(1 = B)° | [&™
i=1

where O = {01, .., on1} are entries of the observed SFS, E = {e, .., en1} are entries of the
expected SFS, P, is the probability that no mutation occurred on the expected mean
coalescent tree, S is the total number of polymorphic sites and L is the total length of the
surveyed sequence. fastsimcoal2 starts with initial random parameter values sampled from a
specified distribution and performs a series of expectation conditional maximization (ECM)
optimization cycles. To avoid local maxima, the same demographic scenario is simulated
several times with varying starting points of the algorithm (i.e., random seed and initial
values). We performed 600,000 simulations, 65 ECM cycles, and 100 replicate runs (unless
specified) starting from different random initial values. To limit overfitting, only SFS entries
with more than 5 counts were considered for parameter estimations (‘-C 5’).

To maximize the fit between the expected and observed SFS, we used the approach
described in refs.164849  Specifically, the likelihood Ly was first computed and optimized
using all entries of the SFS (i.e. both invariant and variant sites with entry counts > 5) for the
first 25 cycles and then Lggps o [[1' 6% was optimized, using only variant sites (with entry
counts > 5) for the remaining 40 cycles.

To obtain the maximum-likelihood (ML) estimates of demographic parameters for a given
model, we first selected the 10 runs, among the 100 replicate runs, with the highest
likelihood. To account for the stochasticity inherent to the approximation of the likelihood
using coalescent simulations, we re-estimated the likelihood of each of the 10 best runs,
using 100 expected SFS obtained using 600,000 simulations. Finally, we refined the
likelihood of the three runs with the highest average, re-estimated logio(likelihood) using 107
simulations, and considered the run with the highest likelihood as the ML run. To correct for
the different number of SNPs in the expected and observed SFS, we rescaled the
parameters by a rescaling factor (RF) defined as Sons/Sexp: Ne @and generation times were
multiplied by RF, while migration rates were divided by RF.

For all time parameter estimates, we assumed a generation time of 29 years® and a
constant mutation rate of 1.25x10® mutation/generation/site, i.e., the rate of de novo
mutations estimated from deep sequencing of family pedigrees, and used in several recent
population genomics studies'®”51. We decided to use this mutation rate because we built a
demographic model of Oceanian populations by adding newly-studied populations to the
previous ‘Out-of-Africa’ model obtained by Malaspinas et al.'®, where a constant mutation
rate of 1.25x10® mutation/generation/site was also assumed. We note that another study has
estimated a higher mutation rate of 1.3-1.8x10"® mutation/generation/site, based on the
comparison of high-coverage ancient and modern human genomes®2. To account for
uncertainty in mutation rate estimations, we also provide, for all divergence and admixture
times, estimates assuming a mutation rate of 1.40x10® mutation/generation/site
(Supplementary Tables 3-7).
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Confidence intervals

We calculated confidence intervals with a non-parametric block bootstrap approach. We first
generated 100 bootstrapped datasets by randomly sampling with replacement the same
number of 1-Mb blocks of concatenated genomic regions as in the observed data. Then, for
each bootstrapped dataset, we obtained multi-SFS with Arlequin version 3.5.2.2
(http://cmpg.unibe.ch/software/arlequin35/, ref.>®), and re-estimated parameters using the
same settings as for the original dataset, but with 20 replicate runs instead of 100. To obtain
the 95% confidence intervals, we calculated the 2.5% and 97.5% percentiles of the estimate
distribution obtained by non-parametric bootstrap.

Model selection

For model selection, because the likelihood function is a composite likelihood (due to the
presence of linked SNPs in our datasets), we did not use classical model choice procedures
such as the likelihood ratio tests or Akaike Information Criterion (AIC). Instead, we estimated
the difference between models in the expected logio(likelihood) of the observed SFS,
referred as initial likelihood, which is approximated from 600,000 simulations. Furthermore,
we also re-estimated a hundred times the logio(likelihood Lsrs) of the observed SFS, from 100
expected SFS computed with 107 coalescent simulations, instead of 600,000 simulations,
and using parameters that maximized the likelihood under each scenario (i.e., run with the
highest likelihood). These likelihoods are referred as re-estimated likelihoods. Their
distribution reflects the stochasticity inherent to the approximation of the likelihood using
coalescent simulations. We considered that a model is the most likely if (i) the initial expected
logio(likelihood) of the observed SFS under this model is higher than that of the alternative
models, and (ii) the difference between the mean of the 100 re-estimated logio(likelihoods) of
this model and that of other models (A maximum logio(likelihood); AML) is greater than 50
(see ref.*9). Finally, for some of our model comparisons, we also estimated the probability
that the true model is selected, using simulated SFS as observed SFS (see section “Refining
the demographic history of Near Oceania”). The true positive rate of the model selection was

computed as TPR = CAML 2 +50 , where AML = Likelihoodre model — Likelihood akernative
(naML > +50 +0AML < —50)

model, NAML = +50 1S the number of pseudo-observed SFS for which the true model is favoured,
and namp<_so IS the number of pseudo-observed SFS for which the alternative model is
favoured.

Model fitting

To identify entries of the expected SFS that show a poor fit with the observed SFS, we
compared all entries of the observed multidimensional SFS against simulated entries,
averaged over 100 SFS expected under the most likely model, obtained with fastsimcoal24®.
Entries with the worst fit were defined as those that exhibit a difference between the
expected and observed SFS larger than 500 units (i.e., |(milogio(pi)) — (Milogio(mi/L))| > 500,
where m; is the observed count at the i-th entry, p; is the expected SFS at the i-th entry and L
is the total number of polymorphic sites). In addition, we also compared observed vs.
simulated Fsr for all pairs of populations, computed with vcftools version 0.1.13%.
Specifically, we computed Weir and Cockerham’s Fsr for each 1-Mb block of concatenated
genomic regions in the observed data, and averaged values across blocks. In parallel, we
simulated 1,000 times x 1-Mb DNA loci, x being the number of 1-Mb blocks in the observed
data, using fastsimcoal2 under the best-fitted model. We assumed a mutation rate of
1.25x10® mutation/generation/site’”®* and a recombination rate obtained from the 1000
Genomes Phase 3 genetic map*®. We then verified that the observed genomic average of
Fst was included in the distribution of 500 averages of x randomly sampled, simulated 1-Mb
DNA loci. For the baseline model that includes archaic introgression (see section below), we
also compared observed vs. simulated fs;-ratio statistics. Namely, we simulated with
fastsimcoal2 500 independent sets of 10-Mb genomic regions and sampled simulated
individuals from African, East Asian, PNG, Neanderthal and Denisovan populations so that
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sample sizes were equal to those of the observed data. We then estimated Denisovan
ancestry in the simulated PNG population using the following fs-ratio statistic: f4(Africans,
Neanderthal; East Asians, PNG) / fi(Africans, Neanderthal; East Asians, Denisova)
(Supplementary Note 7), and verified that the observed fs-ratio statistic was included in the
distribution of simulated values.

Estimation accuracy

For the most complex models (see sections “Refining the demographic history of Near
Oceania”, “The demographic history of western Remote Oceania” and “Refining the sources
of East Asian ancestry among Oceanians”), we evaluated the accuracy of the estimations of
demographic parameters with fastsimcoal2, with a parametric bootstrap approach.
Specifically, we simulated, with fastsimcoal2, x 1-Mb DNA loci, x being chosen to obtain the
same number of segregating SNPs and number of invariant sites as in the observed data,
assuming parameters that maximized the likelihood under each model. We assumed a
mutation rate of 1.25x10® mutation/generation/site’”>* and used a recombination rate
obtained from the 1000 Genomes Phase 3 genetic map*:. Twenty simulated SFS were then
generated with Arlequin version 3.5.2.2 (http://cmpg.unibe.ch/software/arlequin35/)%3. We re-
estimated the parameters using each of the 20 simulated SFS and the same settings as for
the original dataset (65 ECM cycles, 600,000 simulations and 100 runs per simulated SFS).
Then, we calculated the mean, median and the 2.5% and 97.5% percentiles of the
distribution of parameter estimates obtained by parametric bootstrap, and verified that they
include the true (simulated) parameter value.

Background selection and GC-gene biased conversion

Rationale. Demographic inference assumes that the genome is mainly evolving under
neutrality, but this assumption may be violated because of background selection (BGS; i.e.,
loss of neutral mutations linked with deleterious alleles due to negative selection) and GC-
biased gene conversion (gBGC; i.e., increase in frequency of GC alleles due to
recombination)®®. To account for this, we excluded sites within CpG islands and genes (Level
3a filters) for demographic inference. However, linked selection might affect sites in
intergenic regions, particularly in low-recombining regions. We thus compared the genetic
structure of Pacific populations for different sets of variants filtered, or not, for low-
recombining regions and high gBGC sites.

Methods. We compared the PCA of two datasets that include the same individuals (i.e.,
those used for the demographic inference, to the exclusion of archaic hominins) but include
two different sets of SNPs. The first set is composed of SNPs that passed the Level 3a
filters, whereas the second, referred to as BGS/gBGC-free, includes SNPs that passed the
filters described in ref.%. Specifically, we kept (i) sites with no missingness, (ii) sites with a
local recombination rate > 1.5 cM/Mb using 1000 Genomes Project Phase 3 genetic map*?,
and (iii) sites with mutation types C«~G and AT (i.e., unbiased Weak < Weak, Strong <
Strong alleles)®. As the first set presented ~17x more SNPs than the second set (3,800,502
vs 218,074 SNPs), we randomly selected 218,074 SNPs in the first set, for comparison
purposes. The two PCA were then computed using ‘SmartPCA’ algorithm implemented in
‘EIGENSOFT version 6.1.4 (ref.%).

Results. Highly similar results were obtained by PCA using Level 3a and BGS/gBGC-free
datasets (Supplementary Fig. 11). This suggests that Level 3a filters were sufficiently
stringent to remove most sites influenced by BGS or gBGC, and that our demographic
models of Pacific populations should not be strongly affected by these evolutionary forces.
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Supplementary Figure 11. Impact of background selection (BGS) and GC-gene biased conversion
(gBGC) on the genetic structure of Pacific populations. First ten PCs of a PCA of two different
datasets, one including all the Level 3a SNPs used for demographic inference (in blue), the other
including SNPs that were further filtered for high BGS and gBGC genomic regions (BGS/gBGC-free in
orange). Both datasets include the 41 samples from 10 populations that were used for demographic
inference. Papua New Guinea highlanders (PNG) are represented by Kundiawa and Bundi
populations, the ni-Vanuatu (VAN) by Malakula islanders, the Bismarck islanders (BKA) by the
Nakanai Bileki, Solomon islanders (SLI) by Vella Lavella islanders, Polynesian outliers (POL) by
Bellona islanders, East/Southeast Asians (EA/SEA) by Han Chinese, Paiwan Taiwanese and
Philippine Kankanaey and Europeans by Sardinians (SAR). Proportions of variance explained by PC1
(PC2) were 8.3% (6.5%) and 8.6% (6.5%) for Level 3a and BGS/gBGC-free datasets, respectively.

Baseline demographic model of human populations

Demographic modelling and hypotheses. To build a demographic model of Oceanian
populations, we started by confirming the ‘Out-of-Africa’ model and re-estimating the
parameters obtained by Malaspinas et al.'®. This model includes modern populations from
Africa, Europe, East Asia and Oceania in isolation with migration, as well as archaic
hominins, to model archaic introgression. This baseline model served as a scaffold on which
newly-studied populations were subsequently added. We chose to follow this rationale to
limit the number of parameters to estimate, as we fixed several parameters of the baseline
model (e.g., those related to demographic events that predate the settlement of Oceania) in
the subsequent models.

Our model differs in several aspects from those used by Malaspinas et al.®. We used the
Vindija Neanderthal instead of the Altai Neanderthal, because the Vindija Neanderthal was
shown to be more closely related to the Neanderthals who interbred with modern humans®®.
Near and Remote Oceanians are thought to descend from at least two parental populations
that relate to present-day Papua New Guineans and Austronesian speakers from Taiwan3°-2,
Because our study focuses mainly on the history of Oceania, we replaced the indigenous
Australians by PNG, and added to the model the Taiwanese indigenous peoples, to
represent Austronesian speakers®323857 \We assumed that the ancestors of Taiwanese
indigenous peoples separated from the ancestors of mainland Han Chinese, in agreement
with archaeological and genetic evidence® 8. Furthermore, to leverage the WGS data
obtained for several related PNG populations, PNG were modelled following a continent-
island model, where the continent represents a meta-population that sends migrants to
islands, constituted by the two sampled populations (i.e., the Bundi and Kundiawa). We
assumed that lineages first coalesced within islands during 100 generations until all
remaining lineages are transferred to the continent.

23



To reduce the parameter space, all parameters relating to sub-Saharan Africans were
fixed to previous ML estimates?® (i.e., Ne, divergence times and migration rates), whereas alll
other parameters were re-estimated. The search ranges of divergence times of Denisovans
and Neanderthals were set to the confidence intervals estimated in refs.1”%55°, Sampling time
of the Altai Denisovan and Vindija Neanderthal were fixed to 2,800 and 2,000 generations,
respectively®®. We accounted for archaic introgression in non-African populations, by
estimating the time and proportion of (i) Neanderthal introgression in the common ancestors
of all non-African populations, (ii) Neanderthal introgression in the common ancestors of
Eurasians, and (iii) Denisovan introgression in the ancestors of PNG. Following a hypothesis-
free approach, we tested two tree topologies, to evaluate whether East Asians (Han and
Taiwanese indigenous peoples) share more recent common ancestors with Europeans
(PNG, (EUR, ASN)) or with Papuans (EUR, (PNG, ASN)) (Supplementary Fig. 12a,b). We
note that we did not interpret the divergence time between Han Chinese and Taiwanese
indigenous peoples in the baseline model, as this was the purpose of a more detailed model
of populations contributing East Asian-related ancestry to Oceanians (see sections ‘The
sources of East Asian ancestry among Oceanians’ and ‘Refining the sources of East Asian
ancestry among Oceanians’). All fastsimcoal2 input files can be found on GitHub
(www.github.com/h-e-g/evoceania).

Dataset. We used 2 datasets with different populations for replication. Dataset 1 includes 2
SGDP Sardinians (SAR)Y, 2 SGDP Han Chinese (HAN)Y, 5 Paiwan (Taiwanese indigenous
peoples, TWN), and 5 Bundi and 5 Kundiawa from Papua New Guinea (PNG)!¢. Dataset 2
includes the same populations, except that the 5 Paiwan were replaced by 2 Philippine
Kankanaey (PHP)'’, representing an Austronesian-speaking community from the Philippines.
The two datasets were merged with the two high-coverage genomes of Vindija Neanderthal®®
and Altai Denisovan®, filtered at Level 3a and annotated for the ancestral state
(Supplementary Note 2). Datasets were then decomposed into blocks of 1-Mb concatenated
genomic regions, and multi-SFS were generated with Arlequin version 3.5.2.2 (ref.%3).

Results. We found that the (PNG, (EUR, ASN)) model, where East Asians (ASN) share more
recent common ancestors with Europeans (EUR) than with Papuans (PNG), was significantly
more likely than the alternative (EUR, (PNG, ASN)) model (AML > 1,000 logio units for both
initial and re-estimated likelihoods, see section ‘Model selection’), confirming previous
results!® (Supplementary Fig. 12c). Under the most likely model, we estimated a strong Out-
of-Africa bottleneck in the ancestral population of all non-Africans (Ne = 411, 95% CI: 364—
7,950; intensity = 24%, 95% Cl: 1%-27%). We found a substantial population reduction
associated with the peopling of Eurasia (Ne = 1,822, 95% CI: 395-2,174; intensity = 5.5%,
95% CI: 4.6%—25%) and in PNG (Ne = 247, 95% CI: 140-285; intensity = 40%, 95% CI:
35%-71%). Neanderthal introgression in the ancestral population of non-Africans was
estimated to occur 61 ka (95% CI: 56—62 ka) with a rate of ~2% (95% CI: 1.5%-2.7%)
(Extended Data Fig. 2a; Supplementary Table 2). Neanderthal introgression in the ancestral
Eurasian population was estimated to occur ~52 ka (95% CI: 47-54 ka) with a rate of
~0.36% (95% CI. 0.36%-1.86%). Finally, Denisovan introgression into the ancestral
population of PNG occurred ~42 ka (95% CI: 35—-44 ka) with a rate of ~3.6% (95% CI: 3.2%—
4.1%) (Extended Data Fig. 2a; Supplementary Table 2). We estimated a divergence time
between ancestors of Eurasians and PNG ~57 ka (95% CI. 53-60 ka). Remarkably, and
despite the differences of our model to that of Malaspinas et al.*®, most of our point estimates
fell within the Cls previously reported. Furthermore, point estimates of demographic
parameters were similar when using, instead of Taiwanese indigenous peoples (TWN), the
Philippine Kankanaey (PHP) to represent Austronesian speakers (Supplementary Table 2).
Altogether, our baseline model confirms previous findings, and recapitulates important
aspects of the demographic history of populations involved in the settlement of Near and
Remote Oceania, i.e., East Asians and PNG.
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Model fitting. Overall, we obtained a very good fit of expected and observed marginal SFS,
indicating that the model and parameter estimates well reproduce the data (Supplementary
Fig. 13). The entries of the SFS with the poorest fit were those where the derived allele is
fixed in archaic and most modern human populations (Supplementary Fig. 14). This is most
probably due to ancestral state misspecification, which is not expected to affect the
parameters that we aim to estimate, such as divergence times among modern human
populations. Other entries with a relatively poor fit were those where the derived allele
segregates, or is fixed, in archaic hominins but is absent from modern humans, probably
because some parameters were constrained to previously estimated values (i.e., divergence
times related to Denisovans and Neanderthals!"%%5%). We also tested if simulated data under
the best-fitted model well reproduce the observed data for summary statistics related to
archaic introgression. Namely, we compared the observed fs-ratio statistic for Denisovan
introgression (Supplementary Note 7) to that estimated from simulations with fastsimcoal24¢
under the best-fitted model. Simulated statistics were very close (mean fs-ratio = 0.029;
median fs-ratio = 0.024; IQR = 0.042) to the observed value (fs-ratio = 0.032) in PNG,
confirming the accuracy of our baseline model concerning Denisovan introgression. Finally,
we checked that genetic differentiation among modern human populations, measured by
Weir and Cockerham’s Fsr, was well reproduced by the best-fitted model. We observed a
very good fit between observed and expected Fsr (Supplementary Fig. 15), validating further
our baseline model.
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Supplementary Figure 12. Alternative topologies for the baseline model. a, The (PNG, (Europe, East
Asia)) model assumes that East Asians share a more recent common ancestor with Europeans. b,
The (Europe, (PNG, East Asia)) model assumes that East Asians share a more recent common
ancestor with Papuans. a,b, OOA GST indicates the unsampled African population who left Africa,
SAR indicates Sardinians'’, HAN indicates Han Chinese!’, TWN indicates Taiwanese indigenous
peoples, and PNG indicates Papua New Guinean highlanders (Bundi and Kundiawalf). In both
models, the ancestors of the two groups separate independently from Africans, as in ref.’6. For
convenience, only modern human populations are represented. Grey arrows indicate symmetric
migrations between modern humans. Solid black arrows represent Neanderthal introgression into the
common ancestors of all non-African populations and a, Eurasians or b, Europeans. The dashed black
arrow indicates Denisovan introgression into the ancestral population of PNG. Bottlenecks are
indicated by black rectangles. c, Likelihood distribution of the two alternative topologies in a and b.
The line, box, whiskers and points respectively indicate the median, interquartile range (IQR), 1.5*IQR
and outliers of the re-estimated likelihood distributions obtained from 100 expected SFS computed
with 107 coalescent simulations and using parameters that maximized the likelihood under each
scenario.
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Supplementary Figure 13. Fitting of the SFS for the baseline model. The marginal one-dimensional
SFS of the observed data (in blue) is compared to the averaged expected SFS (in black) obtained
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Supplementary Figure 14. SFS entries with the worst fit for the baseline model. Differences in the
number of counts between the observed (blue) and expected (black) SFS for entries harbouring a
discrepancy of more than 500 logio units of likelihood. The plot at the bottom gives the relative fit
computed as the ratio of the number of counts for the i" entry in the expected and observed SFS.
Entries are indicated by columns and correspond to the counts of the derived allele in Denisova (2n =
2), Vindija Neanderthal (2n = 2), Sardinians (SAR, 2n = 4), Han (HAN, 2n = 4), Bundi (PNG, 2n = 10),
Kundiawa (PNG, 2n = 10) and Paiwan (TWN, 2n = 10) (from bottom to top).

28



0.3

0.2

0.1

Fst Denisova-HAN

0.0

0.3

0.2

0.1

Fst Neandertal-Bundi

0.0

0.3

0.2

0.1

Fs7 SAR-TWN

0.0

03

0.2

01

Fst Kundiawa-TWN

0.0

@ Simulated

Observed ‘
0.0 04 02 03
Fst Denisova-SAR
[€]
0.0 01 02 03
Fst Neandertal-HAN
[
0.0 0.1 0.2 03
Fst SAR-Kundiawa
(o4
0.0 0.1 02 0.3

Fst Bund i~-TWN

4 o 4
- n w

Fst Denisova-Kundiawa

o
o

) o o
- n w

Fst Neandertal-TWN

o
o

o o
o w

Fst HAN-Kundiawa
o

0.0

0.0 0.1 02 0.3
Fsr Denisova-Bundi
0.0 01 02 03
Fst Neandertal-Kundiawa
o
0.0 0.1 0.2 0.3

Fst HAN-Bundi

Fst Neandertal-SAR

Fst SAR-Bundi

Fst Bundi-Kundiawa

03] F
021
011
0.01

0.0 0.1 02 0.3

Fsr Denisova-TWN
03]
021
®

0.1]
001

0.0 01 02 03

Fst SAR-HAN

031
021
0.11
001 @

0.0 0.1 0.2 03

Fsr HAN-TWN

Supplementary Figure 15. Observed versus simulated Fst for each pair of populations used in the
baseline model. Simulated pairwise Fst (dark blue) were obtained with 500 simulations under the best
parameters inferred for the baseline model, and were compared with observed Fst (light blue)
obtained from the empirical data used for parameter inference.
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The demographic history of Near Oceania

Demographic modelling and hypotheses. A Late Pleistocene occupation by modern humans
has been documented in Near Oceania (New Guinea, the Bismarck Archipelago and the
Solomon Islands)®%%?, but the early demographic history of Near Oceanians remains largely
unknown. Archaeological evidence supports the existence of a Holocene expansion from
East/Southeast Asia associated with the peopling of Remote Oceania. This recent expansion
is thought to be at the origin of the Lapita cultural complex and the spread of Austronesian
languages in Near and Remote Oceania®%2. This hypothesis is supported by previous genetic
studies®*-3236:38 gand our analyses (Supplementary Note 3), indicating that Oceanians descend
from two ancestral populations related to present-day PNG and East/Southeast Asians.

To gain insight into the peopling history of Near Oceania, we sought to model, in addition
to baseline populations (see section ‘Baseline demographic model of human populations’),
two representative populations from Near Oceania, i.e., populations from the Bismarck
Archipelago (BKA) and Solomon Islands (SLI). Following a hypothesis-free approach, we
tested different topologies: (i) PNG diverged first, followed by the separation of islanders from
the two other archipelagos (PNG,(BKA,SLI)), (i) Solomon islanders diverged first, followed
by the Bismarck Archipelago islanders and PNG (SLI,(PNG,BKA)), and (iii) Bismarck
Archipelago islanders diverged first, followed by Solomon islanders and PNG
(BKA,(PNG,SLI)) (Supplementary Fig. 16a). To account for admixture with populations of
East Asian origin during the Holocene (i.e., attributed to the Austronesian expansion?%?), we
modelled pulses of gene flow from Taiwanese indigenous peoples (TWN) to Bismarck and
Solomon islanders (Supplementary Note 3), as Taiwanese indigenous peoples are
considered a good proxy of Austronesian-speaking peoples entering Oceania®. Finally,
archaeological studies suggest an extensive exchange network, notably between Papua
New Guinea and the Bismarck Archipelago from 20 ka%¥%4. We therefore considered gene
flow within Near Oceania by simulating asymmetrical migration following a stepping-stone
model (i.e., between PNG and BKA, as well as between the BKA and SLI).

All parameters related to Eurasians and archaic hominins, together with parameters for
events that predate the divergence between Eurasians and Near Oceanians, were fixed to
the values obtained in the best-fitted baseline model (Supplementary Table 2). The rate of
Denisovan introgression into the ancestral population of Near Oceanians was also fixed. To
obtain parameter estimates for each demographic scenario, we selected the run, among 150
runs, that yielded the highest likelihood. All fastsimcoal2 input files can be found on GitHub
(www.qgithub.com/h-e-g/evoceania).

Dataset. We modified our baseline model by adding 5 Nakanai Bileki (Bismarck Archipelago;
BKA) and 5 individuals from Vella Lavella, or Malaita for replication (Solomon Islands; SLI).
To decrease the dimensionality of the multi-SFS, we excluded, from the SFS data, the 2
Sardinians (SAR), the 5 Bundi (keeping 5 Kundiawa samples to represent PNG) and the two
archaic genomes, although the corresponding populations were simulated in the model by
fixing their demographic parameters to the values obtained in the best-fitted baseline model.
The multi-SFS was generated as for the baseline model.

Results. The distributions of re-estimated likelihoods of the three models were largely
overlapping, indicating no marked differences between the three tested topologies
(Supplementary Fig. 16b). On average, a difference of 2 and 52 logio likelihood units was
observed between the (PNG,(BKA,SLI)) and (SLI,(PNG,BKA)) models, and between
(PNG,(BKA,SLI)) and (BKA,(PNG,SLI)), respectively. Of note, we found that the set of
parameters maximizing the likelihood under the (SLI,(PNG,BKA)) topology was compatible
with a divergence of the three groups at the same time; the likelihood distribution of the
(SLI,(PNG,BKA)) and (SLI,PNG,BKA) models were similar (AML = 7; Supplementary Fig.
16b). These results suggest that either PNG diverged first or that the three groups diverged
simultaneously.

Based on the (PNG,(BKA,SLI)) model, which shows the highest average likelihood, we
estimated a divergence between PNG and the ancestral population of the Bismarck
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Archipelago (BKA) and Solomon Islands (SLI) ~34 ka (95% CI: 29.9-37.8 ka), followed by
the divergence of the populations from the two archipelagos ~16 ka (95% CI: 12.3-29.0 ka,
Supplementary Fig. 17 and Supplementary Table 3). We estimated that admixture from
Taiwanese indigenous peoples (TWN) into the two archipelagos occurred ~6 ka (95% CI:
4.0-6.7 ka) and contributed ~28% (95% CI: 23.6%—31%) to Bismarck Archipelago islanders
(BKA), and ~40% (95% CI: 34.7%—42.1%) to Solomon islanders (SLI), in agreement with the
higher East Asian admixture proportion estimated for the latter (Fig 1c and Extended Data
Fig. 1). Finally, strong migration (2Nm > 1) was observed between PNG and the Bismarck
archipelago islanders (2Nmene > Bka = 2.20, 95% CI: 1.88—4.21; 2Nmgka > pne = 1.00, 95% CI:
0.0004-1.11) as well as between Bismarck Archipelago and Solomon islanders (2Nmsy; > gka
= 2.58, 95% CI: 0.14-5.05) (Supplementary Table 3). This suggests substantial gene flow
between Near Oceanians, in agreement with archaeological data suggesting extensive
exchange networks in the region starting 20 ka%¥%4. Importantly, similar estimates of
demographic parameters were obtained when using population samples from Malaita,
instead of Vella Lavella, to represent the Solomon Islands (SLI; Supplementary Table 3).
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Supplementary Figure 16. Alternative topologies for Near Oceanians. a, Schematic representation of
the three topologies tested. Model to the left corresponds to (PNG,(BKA,SLI)) and models to the right
give a simplification of the two other topologies, (BKA,(PNG,SLI)) (top right) and (SLI,(PNG,BKA))
(bottom right). For the sake of clarity, only the populations from Eurasia and Near Oceania are shown.
Grey arrows indicate migrations estimated in these models (one arrow for symmetric and two arrows
for asymmetric gene flow). Black arrows indicate a single-pulse gene flow from Taiwanese indigenous
peoples into the Bismarck Archipelago and the Solomon Islands (modelling the Austronesian
expansion to Near Oceania). Bottlenecks are indicated by black rectangles. SAR indicates Sardinians,
HAN indicates Han Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck
islanders, SLI indicates Solomon islanders, and PNG indicates Papua New Guinean highlanders. b,
Likelihood distribution of the three topologies tested (left) and corresponding nested models where the
three groups diverged simultaneously (right). The line, box, whiskers and points respectively indicate
the median, IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100 expected
SFS computed with 107 coalescent simulations and using parameters that maximized the likelihood
under each scenario. For the nested models, we used the same set of parameters as for the
corresponding topology, except that we set the latest split among Near Oceanians at one generation
apart from the oldest spilit.
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Supplementary Figure 17. Best-fitted model for Near Oceanians. SAR indicates Sardinians, TWN
indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI indicates Solomon
islanders, and PNG indicates Papua New Guinean highlanders. For the sake of clarity, only the
populations from Eurasia and Near Oceania are shown. Grey arrows indicate migrations estimated in
these models (one arrow for symmetrical and two arrows for asymmetrical gene flow). Black arrows
indicate gene flow pulses from Taiwanese indigenous peoples into the Bismarck and the Solomon
islanders (modelling the Austronesian expansion to Near Oceania). Bottlenecks are indicated by black
rectangles. Estimated times are given in ka using a generation time of 29 years. Admixture proportions
are given in %. 95% Cls are given in square brackets. The larger the rectangle width, the larger the
effective population size (Ne). Bottlenecks are indicated by black rectangles. Point estimates of
parameters and corresponding 95% Cls are given in Supplementary Table 3.

Model fitting. We obtained a good fit of expected and observed marginal SFS
(Supplementary Fig. 18). The worst entries were those for high-frequency derived alleles,
particularly in Near Oceanians. The entries of the joint SFS with the poorest fit were also
those where the derived allele is fixed in most modern human samples (Supplementary Fig.
19). As for the baseline model, this is probably due to ancestral state misspecification. We
observed a very good fit between observed and expected Fsr values (Supplementary Fig.
20), indicating that the model and parameter estimates well reproduce this aspect of the
data.
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Supplementary Figure 18. Fitting of the SFS for the best-fitted model for Near Oceanians. The
marginal one-dimensional SFS of the observed data (in blue) is compared to the averaged expected
SFS (in black) obtained from 100 SFS approximated with 107 simulations using parameters that best fit
the data under the (PNG,(BKA,SLI)) model.
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Supplementary Figure 19. SFS entries with worst fit for the best-fitted model for Near Oceanians.
Differences in the number of counts between the observed (in blue) and expected (in black) SFS for
entries harbouring a discrepancy of more than 500 logio units of likelihood. The plot at the bottom
gives the relative fit computed as the ratio of number of counts for the i entry in the expected and
observed SFS. Entries are given in column and corresponds to number of counts of the derived allele
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in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai Bileki
(BKA, 2n = 10) and Vella Lavella (SLI, 2n = 10) (from bottom to top).
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Supplementary Figure 20. Observed versus simulated Fsr for each pair of populations used for the
model for Near Oceanians. Simulated pairwise Fst (dark blue) were obtained with 500 simulations
under the best parameters inferred for the Near Oceanian model and were compared with Fst
obtained from the empirical data used for parameter inference (light blue).

Refining the demographic history of Near Oceania

Demographic modelling and hypotheses. Several studies have documented genetic structure
among populations from Near Oceania®*®. To account for such population structure, we
modified our best-fitted model inferred in the section ‘The demographic history of Near
Oceania’ (Supplementary Fig. 17) to include a ghost population representing a Near
Oceanian meta-population. We thus simulated a ghost, unsampled population representing a
Near Oceanian meta-population (NOC Ghost) and assumed that PNG and populations from
the Bismarck Archipelago (BKA) and the Solomon Islands (SLI) diverged from it. Following a
hypothesis-free approach, we tested two alternative models: (i) Bismarck islanders diverged
from the NOC Ghost before Solomon islanders (BKA,(NOC GST, SLI)) or (ii) Solomon
islanders diverged before Bismarck islanders (SLI,(NOC GST, BKA)) (Supplementary Fig.
21a). To allow comparison between models without (Supplementary Fig. 17) or with
(Supplementary Fig. 21a) a NOC Ghost, we modified the parameters in the latter model so
that the total number of parameters was the same for both models. The dataset used was
the same multi-SFS as in the model for Near Oceanians (see section ‘The demographic
history of Near Oceania’). All fastsimcoal2 input files can be found on GitHub
(www.github.com/h-e-g/evoceania).

Results. We found that the model that best fitted the data was the (BKA,(NOC GST, SLI))
model, where Bismarck islanders (BKA) diverged from the NOC Ghost before Solomon
islanders (SLI) (AML = 65 logio units for both initial and re-estimated likelihoods,
Supplementary Fig. 21b). We estimated the true positive rate of our model choice procedure
(AML = 50 logio units, see section ‘Model selection’), by using simulated SFS as pseudo-
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observed SFS. Namely, we obtained SFS under the (BKA,(NOC GST, SLI)) model by
simulations, and estimated the likelihood of the pseudo-observed SFS under the (BKA,(NOC
GST, SLI)) model, or the (SLI,(NOC GST, BKA)) alternative model. Out of 40 pseudo-
observed SFS, the true model has AML = 50 logio units in 81% of the cases, suggesting a
reasonable true positive rate.

Under the most supported (BKA,(NOC GST, SLI)) model, we found that ancestors of
Near Oceanians experienced a strong population reduction, which is >5x stronger than in
Eurasians (Ne = 214, 95% CI: 186-276; intensity = 47%, 95% CI: 36-54, Fig. 2a,
Supplementary Table 4). We checked whether this bottleneck signal is better explained by
individual bottlenecks in each Near Oceanian population, by estimating the likelihood of an
alternative model where each Near Oceanian population independently experiences a
bottleneck, whose duration is fixed to 100 generations after each split. We found that the
model without population-specific bottlenecks was the most likely (AML = 428 logio units,
Supplementary Fig. 22), further supporting the occurrence of a strong bottleneck in the
ancestors of all Near Oceanians before the settlement of Oceania. We estimated a
divergence between PNG and the NOC Ghost at ~40 ka (95% CI. 34-45 ka; Fig. 2a,
Supplementary Table 4), between the NOC Ghost and Bismarck islanders (BKA) at ~25 ka
(95% CI: 20-36 ka), and between the NOC Ghost and Solomon islanders (SLI) at ~20 ka
(95% CI: 15.8-29.8 ka). We dated admixture between Taiwanese indigenous peoples (TWN)
and the populations from the two archipelagos at ~4 ka (95% CI: 3.2-5.5 ka), with a
contribution of ~43% (95% CI: 27%-58%) to Bismarck Archipelago islanders (BKA), and
~35% (95% CI: 31.7%-38.7%) to Solomon islanders (SLI). Comparable estimates of
demographic parameters were obtained when using samples from Malaita instead of Vella
Lavella, to represent the Solomon Islands (Supplementary Table 4), except for the
divergence of Solomon islanders from the NOC Ghost and the gene flow pulse rates. This is
in agreement with the suggested differences in the peopling history of the eastern, relative to
western, Solomon Islands?®®. Furthermore, we evaluated the accuracy of our parameter
estimation by parametric bootstrap, and found that the mean and median of the parameter
estimates are very close to the true values and are all included in the 95%Cls
(Supplementary Table 8 ‘Near Oceania’), except for one migration rate parameter. Together,
these results indicate that the settlement of Near Oceania was rapidly followed by genetic
isolation among archipelagos, and suggest that populations from the Solomon Islands
diverged more recently or, at least, at the same time than those from the Bismarck
Archipelago.

Model fitting. We obtained a better fit of expected and observed marginal SFS in this refined
model, compared to the model without the NOC Ghost (Supplementary Figs. 21b and 23).
The worst entries were again those for high-frequency derived alleles. The entries of the joint
SFS with the poorest fit were also those where the derived allele is fixed in most modern
human samples (Supplementary Fig. 24). As for the baseline model, this is probably due to
ancestral state misspecification. We observed a very good fit between observed and
expected Fsr (Supplementary Fig. 25), indicating that the model and parameter estimates
well reproduce this aspect of the data.
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Supplementary Figure 21. Alternative refined models for Near Oceanians. a, Schematic
representation of the two alternative refined models tested. SAR indicates Sardinians, HAN indicates
Han Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI
indicates Solomon islanders, PNG indicates Papua New Guinean highlanders and NOC GST indicates
an unsampled population from Near Oceania. The model to the left corresponds to the topology where
the Bismarck Archipelago diverged from the NOC Ghost before the Solomon Islands (BKA,(NOC GST,
SLI)), while the smaller model to the right presents a simplification of the model where the Solomon
islands diverged before the Bismarck Archipelago (SLI,(NOC GST,BKA)). For the sake of clarity, only
the topologies for Eurasia and Near Oceania regions are shown. Grey arrows indicate migrations
estimated in these models (one arrow for symmetric and two arrows for asymmetric gene flow). Black
arrows indicate single pulse gene flow from Taiwanese indigenous peoples into the Bismarck
Archipelago and the Solomon Islands (modelling Austronesian expansions to Near Oceania).
Bottlenecks are indicated by black rectangles. b, Likelihood distribution of the alternative models. The
line, box, whiskers and points respectively indicate the median, IQR range, 1.5*IQR and outliers of the
likelihood distributions obtained from 100 expected SFS computed with 107 coalescent simulations
and using parameters that maximized the likelihood under each scenario. The (PNG,(BKA,SLI)) model
does not include a “NOC Ghost” (Supplementary Figs. 16-20, Supplementary Table 3), the (SLI,(NOC
GST, BKA)) model is that where Solomon islanders diverged from the NOC Ghost before Bismarck
islanders, and the (BKA,(NOC GST,SLI)) model is that where the Bismarck islanders diverged from
the NOC Ghost before Solomon islanders.
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Supplementary Figure 22. Likelihood of refined models for Near Oceanians with or without
population-specific bottlenecks. The line, box, whiskers and points respectively indicate the median,
IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100 expected SFS
computed with 107 coalescent simulations and using parameters that maximized the likelihood under
each scenario. On the x-axis, the “Ancestral” model corresponds to the best-fitted model inferred with
a bottleneck only in the ancestral population of Near Oceanians ((BKA,(NOC GST,SLI); Fig. 2a and
Supplementary Fig. 21), and “Ancestral & all Islands” to a model with a bottleneck in the ancestral
population of all Near Oceanians, as well as independent bottlenecks in each of the Near Oceanian
populations.
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Supplementary Figure 23. Fitting of the SFS of the refined model for Near Oceanians. We compared
marginal 1-dimensional SFS of the observed data (in blue) and the averaged expected SFS (in black)
obtained from 100 SFS approximated with 107 simulations using parameters that best fit the data
under the (BKA,(NOC GST,SLI)) model.
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Supplementary Figure 24. SFS entries with worst fit of the refined model for Near Oceanians.
Differences in the number of counts between the observed (in light blue) and expected (in dark blue)
SFS for entries harbouring a discrepancy of more than 500 logio unit of likelihood. The plot at the
bottom gives the relative fit computed as the ratio of number of counts for the it" entry in the expected
and observed SFS. Entries are given in column and corresponds to number of counts of the derived
allele in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai
Bileki (BKA, 2n = 10) and Vella Lavella (SLI, 2n = 10) (from bottom to top).
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Supplementary Figure 25. Observed versus simulated Fst for each pair of populations used for the
refined demographic history of Near Oceania. Simulated pairwise Fsr (dark blue) were obtained with
500 simulations under the best parameters inferred for the refined model for Near Oceanians and
were compared with observed Fst (light blue) obtained from the empirical data used for parameter
inference.

The demographic history of western Remote Oceania

Demographic modelling and hypotheses. Evidence for the first human occupation of western
Remote Oceania is dated to only ~3.5 ka, and is associated with the Lapita cultural
complex®. A seminal ancient DNA study of three individuals from Vanuatu from the Lapita
period reported their high genetic affinity to Austronesian-speaking populations, supporting
an initial settlement of Vanuatu by Austronesian-related peoples®. Two more recent studies,
primarily in Vanuatu, showed that such an initial settlement was rapidly followed by a partial
population replacement by Papuan-related peoples, who share genetic affinities with
populations from the Bismarck Archipelago3®'-22,

To gain insight into the demographic history of western Remote Oceanians, we sought to
model, in addition to baseline and Near Oceanian populations (see ‘Refining the
demographic history of Near Oceania’), a representative population of western Remote
Oceanians, i.e., the ni-Vanuatu from Malakula or Emae Islands (VAN). Following a
hypothesis-free approach, we modelled western Remote Oceanians as a population that
diverges from any Near Oceanian population or from Taiwanese indigenous peoples (i.e., a
proxy of Austronesian-speaking people expanding to Oceania), and subsequently receives
separate gene flow pulses from any of these populations. Specifically, we tested four
alternative models for the origins of ni-Vanuatu: (i) the (VAN,BKA) model assumes that the
ni-Vanuatu (VAN) diverged from Bismarck islanders (BKA) and then received separate gene
flow pulses from PNG, the Solomon islanders (SLI) and Taiwanese indigenous peoples
(TWN), (i) the (VAN,PNG) model assumes that the ni-Vanuatu diverged from PNG and then
received separate gene flow from the three other populations, (iii) the (VAN,SLI) model
assumes that the ni-Vanuatu diverged from the Solomon islanders and then received
separate gene flow from the three other populations and finally, (iv) the (VAN,TWN) model
assumes that the ni-Vanuatu diverged from Austronesian-speaking Taiwanese indigenous
peoples (TWN) and then received separate gene flow from the three other populations
(Supplementary Fig. 26). The intensity of the gene flow pulses was sampled from a log-
uniform, so that low values are more probable than high values, to avoid difficulties of
interpretation (i.e., a pulse of high intensity is equivalent to a population split in the model).
Furthermore, we acknowledge that the genetic contribution of these different populations
may have been inherited by western Remote Oceanians through a single migration event
from an admixed population. However, we did not test such scenarios, because it would
require exploring a large number of possible models. In light of this limitation, we interpret
these results with caution.

The divergence time between the ni-Vanuatu (VAN) and the other populations was
constrained to occur after ~700 generations ago (~20 ka, i.e., the divergence between
Solomon islanders and the NOC Ghost). The time of gene flow from Taiwanese indigenous
peoples (TWN) to both Near Oceanian populations was constrained to occur after ~300
generations (~9 ka, i.e., the HAN-TWN divergence). There was no a priori on the chronology
of the three gene flow pulses into the ni-Vanuatu. All parameters estimated in the best-fitted
refined model for Near Oceanians were fixed to ML estimates (see section ‘Refining the
demographic history of Near Oceania’), except migrations between Near Oceanians, as well
as the time and proportion of admixture with Austronesian-speaking Taiwanese indigenous
peoples in Bismarck and the Solomon islanders. All fastsimcoal2 input files can be found on
GitHub (www.github.com/h-e-g/evoceania).

Dataset. We used the same dataset as in ‘The demographic history of Near Oceania’, except
that we added 5 ni-Vanuatu individuals from Malakula or 5 ni-Vanuatu individuals from
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Emae, for replication, as populations representative of western Remote Oceanians (VAN),
and we no longer included Han Chinese (HAN) in the multi-SFS. The multi-SFS were
generated as for the baseline model.
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Supplementary Figure 26. Alternative demographic models for western Remote Oceanians. a, The
ni-Vanuatu diverged from the Bismarck Archipelago and then received gene flow from PNG, the
Solomon Islands and Taiwanese indigenous peoples (VAN,BKA). b, The ni-Vanuatu diverged from
PNG and then received gene flow from the three others groups (VAN,PNG). c, The ni-Vanuatu
diverged from the Solomon Islands and then received gene flow from the three others groups
(VAN,SLI). d, The ni-Vanuatu diverged from Taiwanese indigenous peoples and then received gene
flow from the three other groups (VAN,TWN). a-d, SAR indicates Sardinians, HAN indicates Han
Chinese, TWN indicates Taiwanese indigenous peoples, BKA indicates Bismarck islanders, SLI
indicates Solomon islanders, PNG indicates Papua New Guinean highlanders, VAN indicates ni-
Vanuatu, and NOC GST indicates an unsampled population from Near Oceania. For the sake of
clarity, only populations from Eurasia, and Near and western Remote Oceania are shown. Grey
arrows indicate migrations that are estimated in these models (single and double arrows for
asymmetric and symmetric gene flow, respectively). Black arrows indicate gene flow pulses into the ni-
Vanuatu.

Results. Among the four tested models, the re-estimated likelihood distributions of the
(VAN,PNG) and (VAN,SLI) models were the highest and were largely overlapping, indicating
no marked differences between these two models (AML = 37 logio units, Supplementary Fig.
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27). The model with the highest mean re-estimated likelihood was the (VAN,PNG) model,
which assumes that the ni-Vanuatu (VAN) diverged from PNG and then received gene flow
from the Solomon islanders (SLI), Taiwanese indigenous peoples (TWN) and Bismarck
islanders (BKA) (Supplementary Fig. 26b). We estimated that the ancestral population of the
ni-Vanuatu (VAN) diverged from PNG ~16 ka (95% CI: 12-18 ka, Extended Data Fig. 2b,
Supplementary Table 5). It later received ~24% (95% CI. 14%-41%) of lineages from
Solomon islanders (SLI) ~7 ka (95% CI: 4.1-11 ka). Under the second most likely (VAN, SLI)
model (Supplementary Fig. 26¢), the ancestral population of the ni-Vanuatu (VAN) diverged
from Solomon islanders (SLI) ~12 ka (95% CI: 10-16 ka, Extended Data Fig. 2b,
Supplementary Table 5), and later received ~44% (95% CI: 27%-57%) of PNG lineages ~9
ka (95% CI: 6.3-13 ka). This suggests that the Papuan-related population entering Vanuatu
at the end of the Lapita period was different and more diverse than the Bismarck islanders
modelled in our study®?*. Importantly, under both the (VAN,PNG) and (VAN,SLI) models, the
ni-Vanuatu (VAN) received < 3% of lineages from Austronesian-speaking Taiwanese
indigenous peoples (TWN) ~2-3 ka, and ~34-39% of Bismarck Archipelago (BKA) lineages
< 2 ka (Extended Data Fig. 2b and Supplementary Table 5). This result was confirmed when
modelling ni-Vanuatu from Emae, instead of Malakula (Supplementary Table 5).
Furthermore, we found that the accuracy of parameter estimations in this model was high,
using parametric bootstrap (Supplementary Table 8 ‘Remote Oceania’). Collectively, our
findings support a very low, direct genetic contribution of Taiwanese indigenous peoples to
the ni-Vanuatu, suggesting that the bulk of the East Asian ancestry detected in present-day
western Remote Oceanians was inherited from already admixed Near Oceanians.

1
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-10330000

Log Likelihood

-10333500
e

-10334000

T T T T
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Supplementary Figure 27. Likelihood distribution of alternative models for western Remote
Oceanians. The line, box, whiskers and points respectively indicate the median, IQR range, 1.5*IQR
and outliers of the likelihood distributions obtained from 100 expected SFS computed with 107
coalescent simulations and using parameters that maximized the likelihood under each scenario.

Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for

high-frequency derived alleles (Supplementary Fig. 28). The entries of the joint SFS with the
poorest fit were also those where the derived allele is fixed in most modern human samples
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(Supplementary Fig. 29). As for the baseline model, this is probably due to ancestral state
misspecification. We observed a very good fit between observed and expected Fst
(Supplementary Fig. 30), indicating that the model and parameter estimates well reproduce
this aspect of the data.
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Supplementary Figure 28. Fitting of the SFS of the model for western Remote Oceanians. We
compared marginal 1-dimensional SFS of the observed data (in blue) and the averaged expected SFS
(in black) obtained from 100 SFS approximated with 107 simulations using parameters that best fit the
data under the best model (ni-Vanuatu diverged from PNG and received gene flow from the three
other groups (VAN,PNG)).
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Supplementary Figure 29. SFS entries with worst fit for the best-fitted model for western Remote
Oceanians. Differences in the number of counts between the observed and expected SFS for entries
harbouring a discrepancy of more than 500 logio units of likelihood. The plot at the bottom gives the
relative fit computed as the ratio of number of counts for the it entry in the expected and observed
SFS. Entries are given in column and corresponds to number of counts of the derived allele in
Kundiawa (PNG, 2n = 10), Paiwan (TWN, 2n = 10), Nakanai Bileki (BKA, 2n = 10), Vella Lavella (SLI,
2n = 10) and Malakula islanders (VAN, 2n = 10) (from bottom to top).
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Supplementary Figure 30. Observed versus simulated Fst for each pair of populations used for the
model for western Remote Oceanians. Simulated pairwise Fsr (dark blue) were obtained with 500
simulations under parameters inferred for the model of western Remote Oceania (VAN, PNG), and
were compared to observed Fst (light blue) obtained from the empirical data used for parameter
inference.

The sources of East Asian ancestry among Oceanians

Demographic modelling and hypotheses. To gain insights into the genetic history of
populations contributing East Asian-related ancestry to Oceanians, we sought to model, in
addition to baseline populations from East Asia (Han Chinese, HAN, and Taiwanese
indigenous peoples, TWN), a Malayo-Polynesian-speaking population from the Philippines
(PHP). To represent the latter population, we used the Kankanaey because they show little
Philippine Agta ‘Negrito’ ancestry!’, unlike the Cebuano (Extended Data Fig. 1). Although we
could have modelled gene flow from the Agta to the Cebuano, we decided instead to use the
Kankanaey, to keep the model as simple as possible and to limit the number of parameters
to estimate. We first sought to estimate the divergence time between Austronesian-speaking
populations from Taiwan and the Philippines, i.e., between Taiwanese indigenous peoples
(i.e., Formosan speakers) and the Philippine Kankanaey (i.e., Malayo-Polynesian speakers).
To do so, we assumed that Taiwanese indigenous peoples (TWN) and Philippine Kankanaey
(PHP) are sister groups that have evolved under isolation with asymmetric migration (IM).
We checked whether our results extend to Austronesian-speaking populations outside of the
Philippines, by adding to the previous model, two Oceanian populations with high levels of
East Asian-related ancestry, i.e., Polynesian outliers (POL; Polynesians share high genetic
affinities with ancient DNA samples from the Lapita period®-3?:38), and Solomon islanders
(SLI) (Fig. 1, Extended data Fig. 1).

We fixed parameters relating to events that predate the divergence between Eurasians
and Near Oceanians, as well as parameters specific to Europeans, Kundiawa PNG and
archaic introgression from Neanderthal and Denisova, to the point estimates obtained in
previous models (Supplementary Tables 2 and 4). We assumed that Han Chinese (HAN)
diverged from the ancestors of Austronesian-speaking populations, followed by the
divergence of Formosan-speaking Taiwanese indigenous peoples (TWN) and Malayo-
Polynesian speakers (PHP and POL). This tree topology is supported by significant D-
statistic results (Z > 2, Supplementary Table 9) and phylo-linguistic analyses of Austronesian
languages?. For all models, we considered migrations between populations following a
stepping-stone model. In the models including Polynesian outliers (POL) or Solomon
islanders (SLI), we accounted for population structure in Near Oceanians by simulating an
unsampled population representing Near Oceanians (NOC Ghost, see ‘Refining the
demographic history of Near Oceania’), which diverged from PNG. We simulated a gene flow
pulse from the NOC Ghost to Polynesian outliers (POL), to account for their Papuan-related
ancestry (Fig. 1, Extended Data Fig. 1). In the model including Near Oceanians from the
Solomon Islands, Solomon islanders (SLI) diverged from the NOC Ghost and later received a
gene flow pulse from another unsampled ghost population, which diverged from
Austronesian-speaking Taiwanese indigenous peoples. This ‘SEA Ghost’ population
represents an East Asian-related population that migrated to Near Oceania and admixed with
autochthonous groups. All fastsimcoal2 input files can be found on GitHub
(www.github.com/h-e-g/evoceania).

Dataset. SFS data for Malayo-Polynesian speakers included (i) 2 Kankanaey from the
Philippines (PHP; Supplementary Fig. 31a), (i) 5 Polynesian outliers from Tikopia Island
(POL; Extended Data Fig. 2c), (iii) 5 Polynesian outliers from Bellona Island (POL) as a
replicate, or (iv) 5 Solomon islanders from Vella Lavella (SLI; Supplementary Fig. 31b). For
the baseline populations, SFS data for 2 Han Chinese (HAN), 5 Paiwan (Taiwanese
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indigenous peoples, TWN) and 5 Kundiawa (PNG) were used. The multi-SFS was generated
as for the ‘Baseline demographic model of human populations’.

Results. In all models, we estimated that the ancestors of Han Chinese (HAN) and
Taiwanese indigenous peoples (TWN) separated >20 ka (Supplementary Table 6), in
contrast with our baseline model (Supplementary Table 2), where constant population sizes
and symmetric gene flow were assumed for model simplicity. Our models for East Asian-
related populations therefore suggest a relatively ancient structure among continental East
Asia and Taiwan, which was first settled 20-30 ka®*. Alternatively, these results suggest that
gene flow from a non-modelled population into Han Chinese and/or Taiwanese indigenous
peoples artificially inflates divergence time estimates (see ‘Refining the sources of East
Asian ancestry among Oceanians’).

We estimated the divergence between Taiwanese indigenous peoples (TWN) and
Philippine Kankanaey (PHP) at ~15 ka (95% CI: 9.2—-18 ka), under an isolation-with-migration
model (Supplementary Fig. 31a). When modelling Austronesian-speaking populations
outside the Philippines, we estimated the divergence between Formosan-speaking
Taiwanese indigenous peoples (TWN) and Malayo-Polynesian-speaking groups (i.e.,
Philippine Kankanaey, PHP, and Polynesian outliers, POL) to ~7.3 ka (95% CI: 6.4-11 ka),
when using the Tikopia population to represent Polynesians (Extended Data Fig. 2c,
Supplementary Table 6). When replicating this model using Polynesian outliers from Bellona
Island, the divergence was dated to ~11 ka (Supplementary Table 6). Collectively, these
estimations suggest that population differentiation among Austronesian-speaking populations
predates the emergence of agriculture in Taiwan, which is thought to have started ~4,8 ka2,
To confirm these estimations, we also used another model where a population from the
Solomon Islands (SLI) receives gene flow from an unsampled East Asian-related source
(SEA Ghost; Supplementary Fig. 31b). The divergence between Taiwanese indigenous
peoples (TWN) and the source of the East Asian-related ancestry in Solomon islanders (SEA
Ghost) was dated to ~11 ka (95% CI. 8.4-14 ka, Supplementary Table 6), reinforcing the
notion that ancestors of Formosan- and Malayo-Polynesian-speaking populations were
isolated before the emergence of agriculture in Taiwan?°2,

We estimated that Polynesian outliers (POL) received a pulse of gene flow from Near
Oceania ~0.5 ka (95% CI: 0.4-1.1 ka, Extended Data Fig. 2c) that contributed ~35% (95%
Cl: 32%—-36%) to their gene pool, in agreement with ADMIXTURE results (Extended Data
Fig. 1). Conversely, we estimated that Solomon islanders (SLI) received a pulse of gene flow
from an East Asian-related source ~2.7 ka (95% CI: 1.7-7.0 ka, Supplementary Fig. 31b)
that contributed ~38% (95% CI: 34%—-42%) to their gene pool, which we interpret as the
signature of the demic diffusion of the Lapita cultural complex to the region®*®’. Finally, we
found that the effective population size of Polynesian outliers (POL) was highly reduced (Ne =
134, 95% CI: 119-230), suggesting the occurrence of strong bottlenecks during the
settlement of Polynesia® and/or the subsequent back migrations to the Solomon Islands?.
Furthermore, we estimated a stronger founder effect in Polynesian outliers from Bellona,
relative to Tikopia (Supplementary Table 6), in agreement with our empirical observations
(Supplementary Note 3). This indicates that Polynesian groups experienced founder effects
of various intensities following their back migrations to the Solomon Islands.
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Supplementary Figure 31. Demographic models for East Asian-related populations of the Pacific. a,
Best-fitted model for Taiwanese indigenous peoples and Philippine Kankanaey. b, Best-fitted model
for East Asian-related populations contributing to Near Oceanians. a-c, SAR indicates Sardinians,
HAN indicates Han Chinese, TWN indicates Taiwanese indigenous peoples, PHP indicates the
Kankanaey from the Philippines, SEA GST indicates an unsampled population that represents a
Southeast Asian-related population contributing to Near Oceanians, PNG indicates Papua New
Guinean highlanders, NOC GST indicates a meta-population of Near Oceanians and SLI indicates
Solomon islanders. Point estimates of all parameters and corresponding 95% Cls are given in
Supplementary Table 6. Timing of events is given in ka, assuming a generation time of 29 years.
Single pulse admixture rates are reported in %. 95% Cls are given in square brackets. The larger the
rectangle width, the larger the effective population size (Ne). Bottlenecks are indicated by black
rectangles. Grey and black arrows represent continuous and single pulse gene flow, respectively. Uni-
and bi-directional arrows indicate estimated symmetric and asymmetric migrations.

Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for
high-frequency derived alleles (Supplementary Figs. 32 and 35). The entries of the joint SFS
with the poorest fit were also those where the derived allele is fixed most modern human
samples (Supplementary Figs. 33 and 36). As for the baseline model, this is probably due to
ancestral state misspecification. We observed a very good fit between observed and
expected Fst (Supplementary Figs. 34 and 37), indicating that the model and parameter
estimates well reproduce this aspect of the data.
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Supplementary Figure 32. Fitting of the SFS for the model for Taiwanese indigenous peoples and
Philippine Kankanaey. We compared marginal 1-dimensional SFS of the observed data (in blue) and
the averaged expected SFS (in black) obtained from 100 SFS approximated with 107 simulations using
parameters that best fitted the data.
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Supplementary Figure 33. SFS entries with worst fit for the model of Taiwanese indigenous peoples
and Philippine Kankanaey. Differences in the number of counts between the observed and expected
SFS for entries harbouring a discrepancy of more than 500 logio units of likelihood. The plot at the
bottom gives the relative fit computed as the ratio of number of counts for the it" entry in the expected
and observed SFS. Entries are given in column and corresponds to number of counts of the derived
allele in Han Chinese (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Kankanaey (PHP, 2n = 4) and Paiwan
(TWN, 2n = 10) (from bottom to top).
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Supplementary Figure 34. Observed versus simulated Fst for each pair of populations used for the
model for Taiwanese indigenous peoples and Philippine Kankanaey. Simulated pairwise Fsr (dark
blue) were obtained with 500 simulations under parameters inferred for the best-fitted model, and were
compared to observed Fsr (light blue) obtained from the empirical data used for parameter inference.
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Supplementary Figure 35. Fitting of the SFS of the model for East Asian-related populations
contributing to Near Oceanians. a, Model with Polynesian outliers (Tikopia (POL)) and b, with Near
Oceanians (Vella Lavella (SLI)). We compared marginal 1-dimensional SFS of the observed data (in
blue) and the averaged expected SFS (in black) obtained from 100 SFS approximated with 107
coalescent simulations using parameters that best fit the data under the best models.
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Supplementary Figure 36. SFS entries with the worst fit of the model for East Asian-related

populations contributing to Oceanians. a, Model with Polynesian outliers (Tikopia (POL)) and b, with
Near Oceanians (Vella Lavella (SLI)). Differences in the number of counts between the observed and
expected SFS for entries harbouring a discrepancy of more than 500 logio units of likelihood. The plot
at the bottom gives the relative fit computed as the ratio of number of counts for the it" entry in the
expected and observed SFS. Entries are given in column and corresponds to number of counts of the
derived allele in Han (HAN, 2n = 4), Kundiawa (PNG, 2n = 10), Bellona (POL, 2n = 10) or Vella Lavella
(SLI, 2n = 10), Kankanaey (PHP, 2n = 4) and Paiwan (TWN, 2n = 10) (from bottom to top).
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Supplementary Figure 37. Observed versus simulated Fst for each pair of populations used in the
model for East Asian-related populations contributing to Oceanians. a, Model with Polynesian outliers
(Tikopia (POL)) and b, with Near Oceanians (Vella Lavella (SLI)). Simulated pairwise Fsr (dark blue)
were obtained with 500 simulations under parameters inferred for the best models and were compared
to observed Fsr (light blue) obtained from the empirical data used for parameter inference.

Refining the sources of East Asian ancestry among Oceanians

Demographic modelling and hypotheses. Our models for East Asian-related populations from
the Pacific suggest a divergence of Taiwanese indigenous peoples and Malayo-Polynesian
speakers that occurred earlier than 5 ka, at odds with a demic diffusion of agriculture and
Austronesian languages from Taiwan to Oceania ~4.8 ka?®®%, A possible caveat of these
models is that the modelled populations, including Han Chinese, Taiwanese indigenous
peoples, Philippine Kankanaey and Polynesians may have received gene flow from a non-
modelled, distantly-related population, which could bias upward divergence time estimates.
In this context, a recent ancient DNA study has found evidence for gene flow from Northeast
into Costal Southeast Asia after the Neolithic®’. Based on this, we modified our model
(Extended Data Fig. 2c¢) by adding an unsampled population that represents northeastern
Asian groups (NEA Ghost; Supplementary Fig. 38). We considered two alternative models of
gene flow from Northeast to East/Southeast Asians. The first model, referred to as the ‘3-
pulse’ model, includes gene flow from the NEA Ghost to Han Chinese (HAN), to Taiwanese
indigenous peoples (TWN) and to the ancestral population of Malayo-Polynesian speakers
(i.e., Philippine Kankanaey, PHP, and Polynesians, POL; Fig. 2b). The second model,
referred to as the 2-pulse’ model, includes gene flow from the NEA Ghost to Han Chinese
(HAN) and to the ancestral population of Austronesian speakers (here, TWN, PHP and POL;
Supplementary Fig. 38c). To enable model comparison, we estimated the same number of
parameters for the ‘2-pulse’ and ‘3-pulse’ models; for the ‘3-pulse’ model (Fig. 2b), we
assumed that admixture of Northeast Asians with each of the three East/Southeast Asian
groups occurred at the same time, whereas for the ‘2-pulse’ model (Supplementary Fig. 38c),
we allowed for different times of admixture.
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We also reasoned that the well-established introgression event from Denisovans into
East Asians (Extended Data Fig. 10; ref.’*) could affect parameter estimation. We thus
allowed for gene flow from the Altai Denisovan to the ancestral population of East/Southeast
Asian groups. We also allowed for gene flow between (i) Europeans (Sardinians, SAR) and
the NEA Ghost population and (ii) between Taiwanese indigenous peoples (TWN) and the
ancestors of Malayo-Polynesian-speaking populations, as well as a single pulse admixture
from Han Chinese (HAN) to Taiwanese indigenous peoples (TWN), to account for the recent
expansion of Han Chinese to Taiwan’. For both the ‘2-pulse’ and ‘3-pulse’ models, our
demographic parameters of interest were (i) the divergence times between all
East/Southeast Asian populations, (ii) the contribution of the NEA Ghost to East/Southeast
Asian populations, (iii) the migration rate between Taiwanese indigenous peoples (TWN) and
the ancestors of Malayo-Polynesian-speaking populations, (iv) the time and rate of admixture
from Han Chinese (HAN) to Taiwanese indigenous peoples (TWN), and (v) the effective
population sizes of East/Southeast Asians.

Before estimating these parameters of interest, we used a simplified version of the ‘2-
pulse’ and ‘3-pulse’ models, where we assumed no gene flow from the NEA Ghost to other
groups, to estimate the time and rate of the Denisovan introgression into the ancestral
population of East/Southeast Asian groups, as well as the migration between Europeans
(Sardinians, SAR) and the NEA Ghost population (Supplementary Fig. 38a). To limit the
number of parameters to estimate, parameters relative to events predating the divergence
between Eurasians and Near Oceanians, as well as parameters specific to Europeans,
Papuans (Kundiawa, KUN and NOC Ghost) and archaic introgression from the Altai
Denisovan (to the ancestor of Papuan groups) and Neanderthal, were fixed to the point
estimates obtained in previous models (Supplementary Tables 2, 4 and 6). Similarly, to
account for the Papuan-related ancestry found in Polynesians (POL) (Fig. 1, Extended Data
Fig. 1), we also fixed the rate and time of admixture from the NOC Ghost into Polynesians
(POL), based on the point estimate previously obtained (see section ‘The sources of East
Asian ancestry among Oceanians’; Extended Data Fig. 2c and Supplementary Table 6 ‘PHP-
POL’). All fastsimcoal2 input files can be found on GitHub (www.github.com/h-e-

g/evoceania).

Dataset. SFS data for Malayo-Polynesian speakers included (i) 2 Kankanaey from the
Philippines (PHP) and (ii) 5 Polynesian outliers from Tikopia (POL). For baseline populations,
SFS data for 1 Sardinian (SAR), 2 Han Chinese (HAN), 5 Paiwan (Taiwanese indigenous
peoples, TWN) and 1 Kundiawa (PNG) were used. The multi-SFS was generated as for the
‘Baseline demographic model of human populations’.

Results. We found stronger support for the ‘3-pulse’ model, relative to the ‘2-pulse’ model
(AML = 53 logo units, based on the mean re-estimated likelihoods; Supplementary Fig. 38b).
Under the ‘3-pulse’ model, we estimated that the ancestors of Northeast Asians and
East/Southeast Asians diverged ~18 ka (95% CI: 14-22 ka), and ancestors of Han Chinese
(HAN) diverged from the ancestors of Formosan (TWN) and Malayo-Polynesian speakers
(PHP and POL) ~14 ka (95% CI: 11-18 ka; Fig. 2b and Supplementary Table 7 ‘3-pulse’).
Similar divergence times were obtained under the ‘2-pulse’ model (Supplementary Fig. 38c
and Supplementary Table 7 ‘2-pulse’). Taiwanese indigenous peoples (TWN) diverged from
Malayo-Polynesian speakers (PHP and POL) ~8.2 ka (95% CI: 4.8-12.0 ka) under the ‘3-
pulse’ model, and ~5.7 ka (95% CI: 4.3-11 ka) under the ‘2-pulse’ model. We found that the
accuracy of parameter estimations in the ‘3-pulse’ model was good, using parametric
bootstrap (Supplementary Table 8 ‘East Southeast Asia’), except for the admixture rates
from Northeast Asians to East/southeast Asian groups. These results suggest that modelling
gene flow from an unsampled population representing Northeast Asians does not largely
affect the divergence time between Taiwanese indigenous peoples and Malayo-Polynesian
speakers. Collectively, despite a large confidence interval, our most likely model suggests
that the ancestors of present-day Austronesian speakers separated before the Taiwanese
Neolithic®®, questioning the strict Out-of-Taiwan model™®. However, further investigation will
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be needed to evaluate whether other models can better explain the patterns of genetic
diversity observed in the region. These limitations indicate that archaeological and
paleogenomic studies will be required to better understand the complex peopling history of
the Pacific.

Finally, we confirmed that the effective population size of Polynesian outliers (POL) was
highly reduced, based on both the ‘3-pulse’ and ‘2-pulse’ models (Ne ~130, 95% Cls: [107—
156] and [110-162]; Supplementary Table 7 ‘2-pulse’ and ‘3-pulse’), suggesting strong
population bottlenecks during the settlement of Polynesia® and/or the subsequent back
migrations to the Solomon Islands?®.

Model fitting. We obtained a very good fit of expected and observed marginal SFS, except for
high-frequency derived alleles (Supplementary Fig. 39). The entries of the joint SFS with the
poorest fit were singletons and doubletons in the Sardinians (SAR), probably because we
fixed all parameters related to this population, and entries where the derived allele is fixed in
most modern human samples (Supplementary Fig. 40). As for the baseline model, this is
probably due to ancestral state misspecification. We observed a very good fit between
observed and expected Fsr (Supplementary Fig. 41), indicating that the model and
parameter estimates well reproduce this aspect of the data, except for the pairwise
comparison with Sardinians (SAR) and Formosan and Malayo-Polynesian speakers,
suggesting, again, that fixed parameter values for Sardinians (SAR) reduce fitting.
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Supplementary Figure 38. Alternative refined models of sources of East Asian-related ancestry
among Oceanians, with or without gene flow from Northeast Asians to East/Southeast Asians. a,
Schematic representation of alternative models for Formosan- and Malayo-Polynesian-speaking
populations, with (models to the right) or without (model to the left, “No-pulse”) gene flow from the NEA
Ghost to the different groups of East/Southeast Asians (HAN, TWN, PHP and POL). Models in the top
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right and the bottom right corners represent the “2-pulse” and “3-pulse” models, respectively. b,
Likelihood distribution of the three alternative models. The line, box, whiskers and points respectively
indicate the median, IQR range, 1.5*IQR and outliers of the likelihood distributions obtained from 100
expected SFS computed with 107 coalescent simulations and using parameters that maximized the
likelihood under each scenario. ¢, Maximum-likelihood 2-pulse model for Formosan- and Malayo-
Polynesian-speaking populations. Point estimates of all parameters and 95% Cls are given in
Supplementary Table 7. Formosan speakers are represented by the Paiwan from Taiwan (TWN) and
Malayo-Polynesian-speaking populations by Philippine Kankanaey (PHP) and Polynesians from
Tikopia (POL). Point estimates of all parameters and 95% Cls are given in Supplementary Table 7.
The 95% Cls are given in square brackets. SAR indicates Sardinians, NEA GST indicates a Northeast
Asian unsampled population, HAN indicates Han Chinese, TWN indicates Taiwanese indigenous
peoples, PHP indicates the Kankanaey from the Philippines, POL indicates Polynesians from Tikopia,
NOC GST indicates a Near Oceanian meta-population and PNG indicates Papua New Guinean
highlanders. The larger the rectangle width, the larger the estimated effective population size (Ne).
Bottlenecks are indicated by black rectangles. Bi-directional arrows indicate symmetric gene flow, and
grey and black arrows represent continuous and single pulse gene flow, respectively. We assumed a
mutation rate of 1.25x10% mutation/generation/site and a generation time of 29 years. We limited the
number of parameters to be estimated, by making simplifying assumptions concerning the recent
demography of Near Oceanian populations (Supplementary Note 4). Sample sizes are described in
Supplementary Note 4. The admixture pulses from NEA Ghost were constrained to occur after the
divergence between Han Chinese (HAN) and the ancestral population of Austronesian speakers
(Supplementary Table 7). Time axes are not at scale.
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Supplementary Figure 39. Fitting of the SFS of the refined model of sources of East Asian-related
ancestry among Oceanians. We compared marginal 1-dimensional SFS of the observed data (in blue)
and the averaged expected SFS (in black) obtained from 100 SFS approximated with 107 coalescent
simulations using parameters that best fit the data under the best models.
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Supplementary Figure 40. SFS entries with the worst fit of the refined model of sources of East
Asian-related ancestry among Oceanians. Differences in the number of counts between the observed
and expected SFS for entries harbouring a discrepancy of more than 500 logio units of likelihood. The
plot at the bottom gives the relative fit computed as the ratio of number of counts for the it" entry in the
expected and observed SFS. Entries are given in column and corresponds to number of counts of the
derived allele in Sardinians (SAR, 2n = 2), Han (HAN, 2n = 4), Kundiawa (PNG, 2n = 2), Kankanaey
(PHP, 2n = 4), Tikopia (POL, 2n = 10) and Paiwan (TWN, 2n = 10) (from bottom to top).

54



0.06 0.06 0.06

0.04 0.04 0.04
o =z %
& £ g
i s z
£ oo Z o002 . 002
w W = o
— - s °
& g &

0.00 0.00 0.00 .

-0.02 -0.02 -0.02 4
-0.02 000 002 004 006 -0.02 000 002 004 006 -0.02 000 002 004  0.06
Fst SAR-HAN Fst SAR-POL Fst HAN-PNG

0.06 0.06 0.06

0.04 0.04 0.04
£ 6| o
E g g
4 4]
< 002 S o002 £ o002
3 £ g
5 & 5 .

0.00 0.00 0.00

e L]
“‘
L]
-0.02 -0.02 -0.02
-0.02 000 002 004 006 -0.02 000 002 004 006 -0.02 000 002 004 006
Fst HAN-POL Fst PNG-PHP Fst PNG-TWN

0.06 p

Fsr TWN-POL
o o
o o
NN B

o
(=]
=]

-0.02

-0.02 0.00 0.02 0.04 0.06
Fst PHP-POL

Supplementary Figure 41. Observed versus simulated Fst for each pair of populations used in the
refined model of sources of East Asian-related ancestry among Oceanians. Simulated pairwise Fsrt
(dark blue) were obtained with 500 simulations under parameters inferred for the best models and

were compared to observed Fsr (light blue) obtained from the empirical data used for parameter
inference.
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Supplementary Note 5: East Asian Admixture in Near Oceania

Rationale

Gene flow from East Asia into Remote Oceania was previously dated to 1.5-2.5 ka, and was
attributed to the expansions of Austronesian speakers into the Pacific starting from Taiwan
~5 ka%3238  Yet, the methods used in these studies assumed that gene flow was
instantaneous. Likewise, in our ML model for Near Oceanians (see ‘Refining the
demographic history of Near Oceania’), we assumed that gene flow occurred as a single,
instantaneous pulse, to simplify parametrization, and estimated that admixture occurred ~4
ka (95%CI: 3.2-5.5 ka) (Fig. 2a). We reasoned that this assumption may be unrealistic, and
could bias the estimation of the time of the gene flow pulse(s). Indeed, a recent study has
suggested that the discrepancies between admixture time estimates obtained by different
methods could be explained by the occurrence of several pulses of gene flow in Near and
Remote Oceanians®. To determine the mode and tempo of admixture in Near Oceanians,
we applied an approximate Bayesian computation (ABC) approach’®, developed in the
MetHis method™, to estimate the posterior probability of three competing admixture models:
a single-pulse, a two-pulse or a constant-recurring model of admixture. MetHis relies on
explicit forward-in-time simulations of complex admixture histories following a general
mechanistic admixture model™.

Simulation setting

We considered three competing scenarios for the admixture history of the Bismarck
Archipelago and the Solomon Islands, respectively (Supplementary Fig. 42). For all three
models, we considered that (i) the admixed population H (Bismarck or Solomon islanders) is
founded from an admixture event between source populations S1 (Taiwanese indigenous
peoples) and S2 (PNG) occurring at time Trwundaion before present, with a proportion
aSlioundation from S1 and 1 — aSloundaion from S2; (ii) the effective population size Ne of the
admixed population H is constant from Troundation t0 the present; (iii) for simplicity, both source
populations are large populations at the drift-mutation equilibrium throughout the admixture
process; and (iv) mutation is neglected throughout the admixture process.

Under the single admixture pulse model (Scenario 1; Supplementary Fig. 42), we
considered that the admixed population H is founded from a single pulse of admixture
occurring at Trundaion. NO subsequent event of admixture from either S1 or S2 occurs
between Tiundaion and the present. Under the two admixture pulse models (Scenario 2;
Supplementary Fig. 42), we considered that the source population S1 can contribute an
additional pulse of admixture to the gene pool of population H, occurring at time Tagm-s1 With a
proportion aSlr.adm. Separately, we considered that source population S2 can also contribute
an additional pulse of admixture to the gene pool of the admixed population H, occurring at
time Tadm-s2 With a proportion aS21.a¢m. Finally, under the constant-recurring admixture model
(Scenario 3, Supplementary Fig. 42), we considered that, from Tiundaion t0 the present,
source populations S1 and S2 contribute to the gene pool of population H with proportions
aS1 and aS2, respectively, at each generation.

Prior distributions for each parameter are provided in Supplementary Fig. 42, for the three
competing scenarios considered. Note that, for all three scenarios, following model
definitions’, at each generation g after Troundation, @dmixture proportions aS1ly and aS24 from
source populations S1 and S2 satisfy aS1y + aS23 = 1 — hy, where hy is the contribution of
the admixed population H to itself at the following generation, such that hgis in [0,1].

We simulated 100,000 independent SNPs segregating in the two source populations until
Troundation With fastsimcoal24®, under the refined demographic model for Near Oceanians (Fig.
2a). From Tioundaion t0 the present, forward-in-time evolution of the 100,000 SNPs in the
admixed population H was simulated with MetHis”, under the classical Wright-Fisher model.
Namely, at each generation, the two parents of each individual in the admixed population H
were randomly drawn from source populations S1 and S2, and the admixed population H,
with probabilities aS1ly, aS23, and hy = 1 — aS1y — aS2y. At the end of each MetHis
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simulation, n = 40 individuals were randomly drawn from source populations S1 and S2,
respectively, n = 15 individuals from the admixed population H for the Bismarck Archipelago
and n = 17 individuals for the Solomon Islands, as for the observed data (Supplementary
Table 1). All individuals were sampled to be unrelated, by explicitly flagging individual
genealogies during the last two generations of the simulations.

Scenario 1
SOURCE ADMIXED SOURCE
T S1 POP. H S2
Trcunceton [} 5 F 1 Tounaaion  Uniform [1, 300 g]
a foundation
1 ST ndation  Uniform [0, 1]
F GS”\‘ undation N aszfoundation = 1
F Ne Uniform [10 , 20 000]
\ = [e] H
Present Taiwan Solomon n =17 Papuans
n=40 or n=40
Bismarck n = 15
Scenario 2
SOURCE ADMIXED SOURCE
1 s1 POP. H S2
Tfoundation - 51 F - Tloundalion Uniform [1 ’ 300 g]
a5 undation | h )
1 o ! Tﬁ'*‘,—?' Unlform [1 ’ Tfoundation]
Tl m-S1 0'31-,@. * T pim-s2 Uniform [1, T, o]
9
TI as1,,..un  Uniform [0, 1]
Adm-S2
aS2; pim as1.,,  Uniform [0, 1]
F as2,,,  Uniform[0, 1]
g [1‘Tfoundation]Y ast, + aszg * hg = 1
\ = [e] H
Present Taiwan Solomon n =17 Papuans Ne Uniform [1 0 ’ 20 000]
n=40 or n=40

Bismarck n = 15

Scenario 3
SOURCE ADMIXED SOURCE
1 S1 POP. H S2
T!oundatian - * - Tloundalion Uniform [1 ’ 300 g]
asS1,, .ion
1 foundation | h asS1,,. i, Uniform [0, 1]
as1 H aS2 9 [ Toundation)
aS1_=aS1 Uniform [0, 0.1]
aS1
n 952 aS2,=as$2 Uniform [0, 0.1]
el st aszhe1
h
Ne Uniform [10 , 20 000]
\ = [ e
Present Taiwan Solomon n =17 Papuans

n=40 n=40

Bismar::)li n=15
Supplementary Figure 42. Schematic representation of the three scenarios for the admixture history
of Near Oceanians. Scenarios include the single-pulse model (Scenario 1), the two-pulse model
(Scenario 2) and the constant-recurring model (Scenario 3). Prior distributions are indicated on the
right.
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Summary Statistics and ABC implementation

Using MetHis, we computed the following summary statistics for all subsequent ABC
analyses: pairwise Fst’® between S1 and H and between S2 and H; f3(H;S1,S2)%, the mean
and variance of the inbreeding coefficient F among individuals in population H, as
implemented in vcftools®*; the mean and variance of SNP-by-SNP heterozygosities in
population H; the mean Allele-Sharing Dissimilarity (ASD) between S1 and H, S2 and H, and
within population H, and the mean, variance, kurtosis, skewness, and mode of the
distribution of the estimated admixture proportions from source population S1 across
admixed individuals, as well as the minimum, maximum and all 10% percentiles of the
distribution. Admixture proportions were estimated based on the individual-pairwise ASD
matrix’’ calculated for the 100,000 SNPs. We projected the ASD matrix in two dimensions
using Multi-Dimensional Scaling’¥, and considered, as an estimate of the admixture
proportions for each admixed individual, the relative distance between the individual and the
centroids of the two source populations.

We considered the machine-learning ABC pipeline for scenario choice and posterior
parameter estimation, as described in MetHis™*. For ABC scenario choice, we conducted
10,000 independent simulations under each of the three competing scenarios described
above (Supplementary Fig. 42). We identified the most probable scenario with the Random-
Forest ABC approach’ implemented in the abcrf R package, based on 30,000 simulations.
For the best scenario identified, we conducted 20,000 additional simulations with MetHis.
The total 30,000 simulations were then used for joint posterior parameter estimation, using
the Neural-Network ABC approach implemented in the abc R package’.

Method performance

We first plotted each prior distribution of summary statistics, and visually checked that the
observed summary statistics for Bismarck and the Solomon islanders fell within the simulated
distributions. We then performed a goodness-of-fit approach using the dfit function from the
abc R package’, with 100 replicates and tolerance rate set to 0.01.

To estimate the error rate of our scenario-choice approach, we used the abcrf function of
the abcerf R package. Specifically, we obtained the cross-validation table and associated prior
error rate, by using an out-of-bag approach, considering the same prior probability for the
three competing scenarios. We performed scenario-choice prediction and estimation of
posterior probabilities of the winning scenario with the predict.abcrf function in the same R
package, using the complete simulated reference table for training the Random-Forest
algorithm. We did so for the Bismarck and Solomon admixed populations separately. Both
analyses were performed considering 1,000 decision trees in the forest, after visually
checking that error rates converged appropriately, with the err.abcrf function.

To estimate the error rate of our parameter estimation approach, we first had to determine
the parameters of the Neural-Network ABC approach. Indeed, there are no absolute rules for
choosing the tolerance rate and number of neurons in the hidden layer most conservative to
conduct posterior-parameter estimations in Neural-Network ABC’47%8, To do so, we used
the cross-validation procedure implemented with the cv4abc function from the abc package
for tolerance rates of 10% (3000 closest simulations to the target data) or 1% (300 closest
simulations to the target data), and a number of neurons in the hidden layer of the neural
network ranging from 4 to 6 (one minus the number of parameters in the winning scenario)
considering, in-turn and “out-of-bag”, 100 random simulations as pseudo-observed target
data and the remaining 29,900 simulations in the reference table under the winning scenario.
For each analysis, we considered a “logit” transformation of parameters bounded by their
respective prior ranges. All other neural-network parameters were left to default values. The
cross-validation parameter prediction error was then calculated across the 100 separate
posterior estimations for pseudo-observed datasets for each pair of tolerance rate and

number of neurons, and for each parameter 6;, as ¥1°(é; —ei)z/(loo X Variance(6;)),
using the median point estimate for each parameter and the summary.cv4abc function in the
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abc package. This allowed to compare errors for scenario parameters across Neural-Network
tolerance rates and numbers of hidden neurons.

Solomon Islands
Goodness-of-fit p-value = 0.109

Bismarck Archipelago
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Supplementary Figure 43. Goodness-of-fit of the simulated vs. observed summary statistics used in
the ABC approach. P-values were computed from a null distribution obtained by using simulated
summary statistics as pseudo-observed summary statistics, and 100 replicates.

Results

Independently of the admixture scenario considered (Supplementary Fig. 42), the simulation
scheme used for our ABC approach was able to produce vectors of summary statistics that
are consistent with the observed data, for both the Bismarck and the Solomon cases
(goodness-of-fit P-value > 0.05; Supplementary Fig. 43).

Although the different admixture models are nested for certain parts of the parameter
space, the MetHis — RF-ABC framework could distinguish a priori among the three competing
scenarios substantially more frequently than by chance (Supplementary Fig. 44a). We found
a cross-validation out-of-bag prior error rate of 46.82%, compared to an expected 66.66%,
and a substantial majority of votes for the correct true scenario, for every predicted scenario.
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Supplementary Figure 44. Choice of the admixture scenario for Near Oceanians by MetHis RF-ABC.
a, Cross-validation prediction votes. b, Prediction votes for admixture scenarios of Near Oceanians
from the Bismarck Archipelago (BKA) and the Solomon Islands (SLI) by RF-ABC.

Based on this prior analysis, we conducted separate RF-ABC scenario-choice predictions
for populations of the Bismarck Archipelago and of the Solomon Islands. For both admixed
populations, Scenario 2 was favoured with a large majority of the Random-Forest votes
(Supplementary Fig. 44b). Furthermore, the associated posterior probabilities of Scenario 2
were 50.51% and 53.19%, for Bismarck and Solomon populations, respectively, supporting
Scenario 2 as the best choice. Under the scenario with the highest posterior probability, we
next estimated admixture parameters. We first tested different parameters for the Neural-
network ABC approach, and showed that, a priori, 4 neurons in the hidden layer and a 10%
tolerance rate minimized the average parameter prediction error (Supplementary Table 10).
Considering these parameters, and logit transformations of all parameters bounded by their
respective priors, we obtained posterior densities for each parameter, median and mean
point-estimates, as well as 90% Credibility Intervals (Cl), for the Bismarck Archipelago and
Solomon Island populations (Supplementary Table 10). We found that the cross-validation
error was relatively large for all admixture parameters, and the 90% Cls covered most of the
prior distributions, suggesting that our estimations were not accurate. This may stem from the
limited information contained in the summary statistics used by MetHis’* when sample size is
low, and calls for other approaches to accurately estimate admixture parameters based on
other aspects of the data.
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Supplementary Note 6: Dating East Asian Gene Flow

Rationale

We found that admixture patterns among Near Oceanians are more compatible with a
double-pulse than a single-pulse model of admixture, using ABC™ (Supplementary Note 5).
We estimated admixture times under the double-pulse scenario, but obtained large 90%
credible intervals that cover most of the parameter prior distributions, when using moments
of the distribution of admixture proportions as summary statistics (Supplementary Note 5).
We thus reasoned that other aspects of the genetic data should be used as summary
statistics. In particular, the mathematical relationship between the length of admixture tracts
and the time of admixture is well documented, although it is limited to simple admixture
models®82, We thus evaluated and tested another ABC approach that estimates admixture
times under different admixture scenarios, using moments of the distribution of the length of
admixture tracts as summary statistics.

Simulation setting

We moadified our refined ML demographic model for Near Oceanians (Fig. 2a) to include a
single-pulse (SP), a double-pulse (DP) or a constant-continuous (CC) gene flow from East
Asians into Bismarck or Solomon islanders, separately (Supplementary Fig. 45). Specifically,
we assumed in the SP model that the Taiwanese indigenous peoples contributed a
proportion « to the Near Oceanian population, instantaneously at time Tadam. In the DP model,
we assumed that Taiwanese indigenous peoples contributed a; and a» admixture proportions
to Near Oceanians at two different times Taim1 and Tadmz, respectively. In the CC model,
Taiwanese indigenous peoples contributed to Near Oceanians with a constant rate m starting
at Ts.ar and stopping at Tswop. In the three models, we set migration rates among Near
Oceanians and between Near Oceanians and other populations to zero, one generation
before Taam (SP model), Tagm: (DP model), or Tstar. (CC model).

The prior distributions for each model parameter are described in Supplementary Fig. 45.
For the DP model, the time of the second pulse Tam2 was sampled from a uniform
distribution dependent on the sampled value of the time of the first pulse Tagmi, SO that Tagm1
> Tagmz. Likewise, for the CC model, Tsiop Was sampled so that Tswart > Tstop. Because our main
goal was to estimate the time of gene flow, and because we aimed to assess the effect of
admixture proportions without inferring them, we decided to use the parameters a, a1, a» and
m as nuisance parameters for each model. The effective population size of the recipient
population (Ne¢) was also considered as a nuisance parameter. For each simulation, we
simulated 100 5-Mb independent DNA loci with fastsimcoal24®, assuming a variable
recombination rate sampled from the 1000 Genomes Phase 3 genetic map*.

Summary statistics and implementation

Based on previous work®82 we used, as ABC summary statistics, moments of the
distribution of the length of admixture tracts across Near Oceanian individuals. Namely, we
computed, for each observed or simulated 5-Mb genomic region, the mean, minimum and
maximum of the length of admixture tracts across individuals. We also computed the mean
and the variance, across genomic regions, of these three summary statistics. The six
resulting statistics were obtained from local ancestry inference with RFMix v1.5.483, RFMix
was run with 3 Expectation-Maximization (EM) steps, a window of 0.03 cM, and Taiwanese
indigenous peoples and PNG as source populations, as for the observed data
(Supplementary Note 17). Summary statistics were computed with custom R scripts. All the
ABC analyses were performed using functions of the abc R package’®. For model choice, we
performed 5,000 simulations under each alternative model, and used the logistic multinomial
regression method implemented in the postpr function and a 5% tolerance rate. For
parameter estimation, we performed 10,000 additional simulations under the most probable
model, and used the Neural network method implemented in the abc function, using default
numbers of hidden layers and neurons and a 1% tolerance rate.
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Supplementary Figure 45. Three models of East Asian-related gene flow into Near Oceania,
considering Solomon islanders (SLI) as the recipient population. The same models were used for a
Bismarck Archipelago population as the recipient population. Prior parameter distributions for the
haplotype-based ABC approach are shown on the right.

Method performance

To check a priori if simulations generally reproduced the observed data, we first checked
whether the summary statistics for the observed data were in the boundaries of those for the
simulated data. We sampled 100 5-Mb genomic windows in the genomes of individuals from
the Bismarck Archipelago or the Solomon Islands, and computed the mean and variance of
the 100 observed summary statistics. We then compared observed means and variances to
means and variances of summary statistics computed for 100 simulated 5-Mb DNA loci.
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To estimate the performance of model selection by ABC, we used a “leave-one-out” cross
validation procedure: for each gene flow model, a simulation was selected as a validation
simulation, while the rest were used as training simulations, 100 times.

To estimate the accuracy of parameter estimation by ABC, we performed a “leave-one-
out” cross-validation analysis and an accuracy test, to confirm that simulated parameter
values were correctly estimated. Accuracy indices were computed as follows:

%Ziﬁ 1(91_91')2

Prediction error PE =
var(6;)

(4.-6)°
0;
95% credible interval 95%C0V = ¥, 1(q; < 6; < q;)

Relative estimation bias rEB = ;2;”’: L

where 6;and 8, are the true and ABC estimated values of parameter 6 for the it"simulated
dataset, S is the number of simulated data, 1(C) the indicative function (equal to 1 when C is
true, O otherwise) and g, and q, the respective 0.025 and 0.975 quantiles. These accuracy
indices were computed using S = 300 simulated data. Finally, we performed posterior
predictive checks by re-simulating 1,000 datasets of 100 5-Mb regions, using parameter
estimates sampled from the 95% percentile of their approximate posterior distribution.
Nuisance parameters (i.e., Ne, a) were sampled from uniform prior distributions. We then
compared simulated to observed summary statistics.

Results

We first checked whether our simulations generally reproduce the observed data, and found
that they were in good agreement for the six summary statistics used, based on the length of
admixture tracts detected in Near Oceanians (Supplementary Fig. 46). We also checked that
our summary statistics were not sensitive to phasing errors. To do so, we compared statistics
computed from simulations where the phase was known, to the same statistics computed
from the same simulations, but where the data was unphased and then phased with
SHAPEIT2885 under the same conditions as in the observed data. Summary statistics were
generally unchanged (Supplementary Fig. 47).

Based on cross validation, we estimated the probability to correctly choose the SP, DP
and CC models, and found that the error in model choice was minimal for the DP model and
maximal for the SP model (Supplementary Fig. 48a,b). Then, to identify the most probable
gene flow model for Near Oceanians, we compared the observed tract length distributions
against simulations under the three competing scenarios. In agreement with the MetHis ABC
approach”, which is based on other aspects of the data (Supplementary Note 5), we found
that summary statistics for the Bismarck and Solomon islanders were closest to those under
the DP model (Supplementary Fig. 48c,d). Taken together, these results support two
separate epochs of gene flow from East Asian-related populations into Near Oceanians, in
both the Bismarck Archipelago and the Solomon Islands.

We next estimated the performance of our ABC method to estimate the times of the two
gene flow pulses in Near Oceanians. We found that the time of gene flow pulses was more
accurately estimated for recent times (up to ~100 generations) (Supplementary Fig. 49). The
estimation of the time of the oldest pulse Taam1 was generally more accurate than Tagmo.
Nevertheless, we observed a low prediction error and low positive relative biases of Tagmi
and Tagmz for both the Bismarck and Solomon Archipelagos.
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Supplementary Figure 46. A priori check of the summary statistics used to estimate the times of
admixture in Near Oceanians by ABC. a, PCA of the six ABC summary statistics obtained for the three
simulated models of gene flow (90% coloured contours) and the observed data (black plus sign). SP,
DP and CC indicate single-pulse, double-pulse, and constant-continuous models of gene flow. b,
Goodness-of-fit of the simulated models of gene flow with the observed summary statistics. P-values
were computed from a null distribution obtained by using simulated summary statistics as pseudo-
observed summary statistics, and 100 replicates.
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Supplementary Figure 47. Limited effects of haplotype phasing on admixture tract length statistics.
The mean, maximum and minimum length of admixture tracts were computed on simulations where
haplotype phase is known (in orange) and on the same simulations, but where haplotypes were
unphased and reconstructed with SHAPEIT2 (in grey).
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Supplementary Figure 48. Choice of the gene flow model for Near Oceanians by ABC based on
admixture tract length. a, b, Confusion matrix for the choice of gene flow models by ABC for a,
Bismarck Archipelago and b, Solomon Islands. c, d, Approximate posterior probabilities of the three
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Supplementary Figure 49. Performance of the ABC estimation of the times of gene flow Tagm1 and
Tadm2 in the double-pulse gene flow model, for the Bismarck Archipelago and the Solomon Islands.

Finally, we estimated the time of the two gene flow pulses in Near Oceanians, under the
most probable DP model (Supplementary Figs. 44 and 48c,d). Assuming a 29-year
generation time, the time of the oldest pulse was dated to ~2.3 ka in Near Oceanians (2.2
[95% CI: 1.7-3.0] and 2.5 [95% CI. 2.2-3.4] ka for Bismarck and Solomon islanders,
respectively; Fig. 2c), following the emergence of the Lapita cultural complex in the region
~3.5 ka®’. The time of the most recent pulse was estimated to ~1.4 ka (1.4 [95% CI: 0.4-2.0]
and 1.3 [95% CI: 0.7-2.0] ka for Bismarck and Solomon islanders, respectively). Posterior
predictive checks further confirmed that the estimates of the times of admixture were in good
agreement with the observed data (Supplementary Fig. 50). These results collectively
suggest recurrent genetic interactions between East Asian-related populations and the
ancestors of present-day Near Oceanians, and support that the admixture events followed
the Lapita period, in agreement with the Austronesian origin of this cultural complex2®.
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Supplementary Figure 50. Posterior predictive checks of the double-pulse model for populations of
the Bismarck Archipelago and the Solomon Islands. PCA of summary statistics for the observed data
(black ‘+’ sign) and simulated data (90%, 50%, and 10% contours), using prior (red) or posterior
(black) distributions of estimated parameters.
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Supplementary Note 7: Estimating Levels of Archaic Introgression

For all the analyses presented in this section, we used the dataset merged with the high-
coverage genomes of Vindija and Altai Neanderthals®®>°, and that of the Altai Denisovan®,
filtered at Level 3b’ (Supplementary Note 2).

Projected Principal Component Analysis

Methods. To assess the relationship between modern humans and archaic hominins, we
computed a PCA on the chimpanzee, Vindija Neanderthal, Altai Neanderthal and Altai
Denisovan genomes, and projected modern human samples onto the plane defined by the
first two principal components. The PCA was carried out using the ‘SmartPCA’ algorithm
implemented in EINGENSOFT program version 7.2.1 (ref.?8).

Results. All modern human samples were located at the centre of the PCA plot
(Supplementary Fig. 51a). When zooming into the central portion of the projected PCA plot,
modern human populations separate into different clusters, relative to the chimpanzee and
archaic hominins. The first PC (explaining 62% of the variance) separated Africans from non-
Africans, and showed that non-Africans have a greater affinity towards Neanderthal and
Denisovan. The second PC (explaining 32% of the variance) separated the Altai and Vindija
Neanderthals from the Altai Denisovan. The second PC revealed a clear genetic affinity of
Eurasians (East Asians and West Eurasians) towards Neanderthals, and Pacific populations
towards Denisovan. Notably, there is a clear cline of Denisovan-related ancestry in Near and
Remote Oceanians, as well as the Agta, and to a lesser extent the Cebuano population, from
the Philippines.

D- and fs-ratio statistics

Methods. To formally assess introgression between archaic hominins and modern humans,
we computed D-statistics*®. The ancestral state for any given site was defined as the allele
present in the chimpanzee reference genome'®. Sites that were not present in the
chimpanzee genome, or that contained alleles that did not match either the reference or
alternative allele in the chimpanzee genome, were discarded, leaving a total of 13,027,305
bi-allelic SNPs for further analysis.

To test for introgression between Neanderthal and modern humans, we computed a D-
statistic of the form D(X, West Eurasians/East Asians/Africans; Vindija Neanderthal,
Chimpanzee). This statistic measures if a target population X shares more derived alleles
with the Vindija Neanderthal compared to West Eurasians, East Asians or Africans. We
computed a second D-statistic of the form D(X, West Eurasians/East Asians/Africans; Vindija
Neanderthal, Denisova) that measures derived allele sharing with the Vindija Neanderthal or
Altai Denisovan compared to West Eurasians, East Asians, or Africans.

Likewise, to formally assess introgression between Denisovan and modern humans, we
computed a D-statistic of the form D(X, West Eurasia/East Asia; Denisova, Chimpanzee).
Similarly, we computed a second D-statistic of the form D(X, West Eurasia/East Asia; Altai
Denisovan, Vindija Neanderthal). We considered populations showing significant allele
sharing (|Z-scores| > 2) as evidence of Neanderthal or Denisovan introgression.

To estimate the genome-wide proportion of Neanderthal ancestry for a target population X,
we used the following fs-ratio statistic:

fa(Chimpanzee, Neanderthal Altai, Africans, X)
fa(Chimpanzee, Neanderthal Altai; Africans, Neanderthal Vindija)

PN(X) =

However, this statistic can be inflated by unaccounted Denisovan ancestry. To circumvent
this, we repeated the analysis by focusing only on sites where the Denisovan genome is
homozygous ancestral as in ref.%¢. This additional filter removed around 10% of the sites.
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Similarly, to estimate the genome-wide proportion of Denisovan ancestry for a target
population X, we used the fs-ratio statistic of the following form:

fa(Africans, Neanderthal Vindija; East Asians, X)

Pp(X) =
b (%) fa(Africans, Neanderthal Vindija; East Asians, Denisovan)

This fs-ratio statistic can correctly infer genome-wide proportions of Denisovan ancestry in
Oceanians, using East Asians to correct for the levels of Neanderthal ancestry in Oceanians
(see ref.%9).

It has been previously proposed that the Denisovan ancestry in Oceanians was acquired
from the ancestors of PNG®>®, given that the amount of Papuan-related ancestry in these
populations is highly correlated with their Denisovan ancestry. We tested this hypothesis, by
estimating the amount of Denisovan ancestry as a fraction of Papuan-related ancestry using
the following fs-ratio statistic:

fa(Africans, Denisovan; East Asians, X)

P X) =
pasp (X) fa(Africans, Denisovan; East Asians, Papuans)

To estimate the amount of PNG ancestry, we used the following fs-ratio statistic:

fa(Africans, Australians; X, Papuans)

Pp(X) = 1—
p(X) fa(Africans, Australians; East Asians, Papuans)

For these analyses, we considered all African, West Eurasian, and East Asian individuals
from the SGDP (see Table S1 in ref.!’). All D- and fs,-ratio statistics were computed using
‘gpDstat’ and ‘gpF4ratio’ algorithms implemented in ADMIXTOOLS version 5.1.1%,
respectively. A weighted-block jackknife procedure that drops 5-cM blocks of the genome in
each run was used to compute standard errors. To assess the correlation between Papuan-
related ancestry and Denisovan ancestry as a fraction of the Papuan-related ancestry, we
fitted a linear regression model using ordinary least squares using R version 3.4.4.

Results. As expected, D-statistics showed that all Pacific populations share more derived
alleles with the Vindija Neanderthal, compared to Africans (x-axis Z-score > 15 for all
comparisons; Supplementary Fig. 51b). Likewise, all populations, with the exception of the
Atayal population from Taiwan, share more derived alleles with Neanderthals compared to
West Eurasians (x-axis Z-score > 2), as previously reported®-. We detected higher derived
allele sharing with the Vindija Neanderthal in the Agta as well as in Near and Remote
Oceanians compared to East Asians (x-axis Z-score >2). However, this was driven by higher
allele sharing with the Denisovan with respect to the Vindija Neanderthal (y-axis Z-score < -
2). For Denisovan ancestry, D-statistics showed that, with the exception of the Taiwanese
Atayal and Paiwan, all populations share more derived alleles with the Altai Denisovan (x-
axis Z-score > 5), and that this was not driven by higher derived allele sharing with the
Vindija Neanderthal (y-axis Z-score > 2; Supplementary Fig. 51c). This was most apparent
when using West Eurasians as reference populations, which have virtually no Denisovan
ancestryl’.

The estimated genome-wide Neanderthal ancestry levels varied between 2.8% and 3.8%
across Pacific populations, by using fs-ratio statistics (Supplementary Fig. 52). However, after
restricting the analysis to Denisovan ancestral homozygous sites, Neanderthal ancestry
estimates were significantly lower in Near and Remote Oceanian populations (ranging from
2.2% to 2.8%), but differed minimally (<0.01%) in East Asian-related populations (e.g. Atayal
and Paiwan Taiwanese indigenous peoples), who are expected to have low levels of
Denisovan ancestry (Supplementary Fig. 52). Overall, we found that Neanderthal ancestry is
homogenously distributed across Pacific populations, with values ranging from 2.2% to 2.9%
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(Fig. 3a). The highest estimates were found in East Asian populations, such as the Atayal
and Paiwan from Taiwan, in accordance with previous reports®-*°, Conversely, Denisovan
ancestry was heterogeneously distributed, with values ranging from 0% to 3.2% (Fig. 3b,
Supplementary Fig. 53), and was maximal in Near and Remote Oceanians, and the
Philippine Agta. The use of the Altai Neanderthal as a sister group to the Altai Denisovan,
instead of the Vindija Neanderthal, yielded similar fs-ratio estimates (Fig. 3b, Supplementary
Fig. 53).
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Supplementary Figure 51. Genetic affinities of modern humans to archaic hominins. a, Principal
Component Analysis (PCA) of modern human populations projected onto the first two PCs defined by
the chimpanzee, the Altai Neanderthal, the Vindija Neanderthal, and the Altai Denisovan genomes.
The right panel represents a zoomed-in version of the PCA plot on the left. b, Derived allele sharing of
Pacific populations to the Vindija Neanderthal. Z-score of a D-statistic of the form D(X, East Asia/West
Eurasia/Africa; Neanderthal, Chimpanzee) is shown against Z-score of D(X, East Asia/West
Eurasia/Africa; Neanderthal, Denisova). c, Derived allele sharing of Pacific populations to Altai
Denisovan. Z-score of a D-statistic of the form D(X, East Asia/West Eurasia; Denisova, Chimpanzee)
is shown against Z-score of D(X, East Asia/West Eurasia; Denisova, Neanderthal). Dotted lines
indicate significant derived allele sharing (]Z-score| >2). Population sample sizes are reported in
Supplementary Table 1.

70



0.04 4
>
§ 0.03
= Correction
g I
< 0.024
8 I:l Yes
C
©
(0]
prd

0.01

0.00

Agta -
Tikopia 1
Maewo -|
Ambae -

Emae -

Efate -|

Tanna -

Atayal 4
Paiwan -
Papuans 4
Malaita
Pentecost
Ambrym -
Malakula -

Cebuano -

Nakanai_Bileki
Vella_Lavella
Santa_Cruz -
Bellona_Rennell 1
Ureparapara
Espiritu_Santo -

Supplementary Figure 52. Genome-wide levels of Neanderthal ancestry when accounting, or not, for
Denisovan ancestry. Levels of Neanderthal ancestry were estimated via the fs-ratio statistic. Dark blue
bars indicate Neanderthal ancestry estimates using all sites, whereas light blue bars, estimates after
restricting sites to those where the Altai Denisovan is homozygous ancestral. The estimates in
populations known to carry high levels of Denisovan ancestry (Near and Remote Oceanians) are
significantly lower after the correction. Error bars represent 2 standard deviations from the point
estimate computed via a weighted-block jackknife procedure. Population sample sizes can be found in

Supplementary Table 1.
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Supplementary Figure 53. Genome-wide levels of Denisovan ancestry. Levels of Denisovan ancestry
estimated via fs-ratio statistic using a, the Vindija Neanderthal or b, Altai Neanderthal as sister group
to the Altai Denisovan. Error bars represent 2 standard deviations from the point estimate computed

via a weighted-block jackknife procedure. Population sample sizes are reported in Supplementary

Table 1.
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Supplementary Note 8: Detecting Introgressed Archaic Haplotypes

To identify archaic sequences introgressed into modern human genomes, we used two
statistical methods that have been shown to be powerful in this regard’87°1,

S’ reference-free method

Methods. We first used a recently developed method, S-prime (S’), which seeks to identify
introgressed sequences from archaic hominins without using an archaic reference genome™.
The S' method has been shown to have increased power with respect to other archaic
reference-free methods and is suitable for large-scale genome-wide data. S' is designed to
detect divergent haplotypes whose variants are in strong LD and that are absent (or at very
low frequency) in a population that has not received introgression (i.e., the outgroup). To
identify S' introgressed segments in genomes of Pacific populations, we considered only
variants with allele frequency < 1% in the 35 Africans from the SGDP dataset!’. As S'is an
archaic reference-free method, we did not apply the merged Vindija Neanderthal, Altai
Neanderthal, and Altai Denisovan mask filters, but otherwise kept sites that passed all filters
at Level 3b (Supplementary Note 2). Note, however, that when comparing S’ introgressed
haplotypes with an archaic genome, we did apply these masks (see section below). To
estimate genetic distances between sites, we used the 1000 Genomes Phase 3 genetic
map*®. To avoid potential effects of population structure, we performed our analysis
separately by population. However, due to the small sample size of SGDP populations?’, we
combined all East Asian samples (excluding Taiwanese indigenous peoples) as well as all
West Eurasian samples, and considered them as two different population groups. As the S’
approach does not allow for missing data, we further filtered sites with at least one missing
genotype, leaving a total of 26,734,553 bi-allelic SNPs.

After retrieving empirical S' scores from our modern human genomes, we used
simulations to estimate our false positive rate (FPR) to detect S’ introgressed haplotypes. We
estimated a null distribution of S' scores by simulating genomic sequence data using the
coalescent-based simulation software fastsimcoal2*¢. We used the demographic model for
western Remote Oceanians (Extended Data Fig. 2b, Supplementary Table 5) with
parameters fixed to ML point estimates, except that we removed all archaic introgression
pulses (i.e. Neanderthal and Denisovan). Using this demographic model, we extracted a
sample of 20 individuals from each of the populations representing East Asians, Taiwanese
indigenous peoples, PNG, Bismarck and Vanuatu islanders, and 35 individuals from the
population representing Africans. We used a sample size of 35 African individuals, as all S'
analyses were conducted using 35 Africans from the SGDP as outgroup population. Note
that this demographic model is a null demographic model (i.e., without archaic introgression)
for all the analysed populations in this study. The null S' distribution was obtained from
simulations of 2500 independent sets of 10-Mb genomic regions.

Results. We observed that the S' statistic is highly robust to different demographic scenarios,
as attested by the S’ score distributions that are very similar across populations
(Supplementary Fig. 54). The highest estimated 99" percentile of the simulated S’ scores
across populations was 185,742, which was found in the simulated population representing
Bismarck islanders. We therefore decided to use a conservative S' score of 190,000 to
identify significantly introgressed haplotypes, which would be equivalent to a FPR < 0.01.
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Supplementary Figure 54. S' score distribution under a demographic model without archaic
introgression. We computed a null distribution of S’ scores by simulating 2,500 independent sets of 10-
Mb genomic regions for five different populations. Details of the ML demographic model are described
in Supplementary Note 4 (Extended Data Fig. 2b, Supplementary Table 5). The dotted line indicates
the 99t percentile of the S’ distribution, with the corresponding value shown in each panel.

Conditional Random Fields method

Methods. We applied a method based on Conditional Random Fields (CRF) to identify
introgressed archaic haplotypes in our phased genomic data®°!. In contrast to S', which
relies on simulations to determine the significance of introgressed segments, the CRF
method is able to incorporate the parametric assumption directly into a probabilistic
framework. The CRF method uses information of an outgroup population (i.e. a population
that did not experience archaic introgression), archaic genomes (Neanderthal or Denisovan),
and genomes from a population that harbours introgressed sequences. Under this
framework, each site along the genome is included as a random variable with two states:
introgressed or non-introgressed (thus of modern human origin). Emission probabilities that
incorporate different genomic features of a tested haplotype are used to evaluate whether a
particular site has a higher probability of being of archaic or modern human origin. CRF
inferences require estimating model parameters, which were fixed for the values previously
estimated®’.

To estimate the genetic distance between sites, we used the 1000 Genomes Phase 3
genetic map®, as for S' analyses. The ancestral state for any given site was defined as the
allele present in the chimpanzee reference genome?’®. Sites that were not present in the
chimpanzee genome, or that contained alleles that did not match either the reference or
alternative alleles in the chimpanzee genome, were discarded. We phased the data using
SHAPEIT28485 with 200 conditioning states, 10 burn-in steps and 50 MCMC main steps, for a
window length of 0.5 cM and an effective population size of 15,000. Missing sites below the
5% threshold were imputed during the phasing. We did not allow for missing sites in the
Neanderthal and Denisovan genomes before phasing. After phasing, a total of 18,949,412 bi-
allelic SNPs were used for further analysis.
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Following ref.®?, we inferred archaic ancestry in two steps:

1. To infer Neanderthal ancestry, one reference panel consisted of the Vindija
Neanderthal genome, while the other consisted of 35 Africans from SGDP!’ merged
with the Altai Denisovan genome.

2. To infer Denisovan ancestry, one reference panel consisted of the Denisovan
genome, while the other consisted of 35 Africans from SGDP'" merged with the
Vindija Neanderthal genome.

Note that the CRF method was run independently to infer Denisovan and Neanderthal
haplotypes. However, given that Denisovans and Neanderthals share a more recent
common ancestor than with any modern human population, there is a probability of the same
introgressed segment in a particular modern human haplotype to be assigned to both
Neanderthal and Denisovan ancestry. To avoid such cases, we decided to use the posterior
probabilities from both CRF runs to call archaic introgressed sites. Specifically, we
considered Neanderthal introgressed haplotypes as those containing alleles with (i)
Neanderthal marginal posterior probability = 0.9 and (i) Denisovan marginal posterior
probability < 0.5. Likewise, we considered Denisovan haplotypes as those containing alleles
with (i) Denisovan marginal posterior probability = 0.9 and (ii) Neanderthal marginal posterior
probability < 0.5.

Combining 8" and CRF methods

Methods. It has recently been shown that combining different methods that detect archaic
introgressed sequences can increase the detection rate of truly introgressed haplotypes (i.e.,
decrease the FPR)%2. We therefore sought to assess the specificity of combining the CRF
and S' methods by comparing the amount of total retrieved Denisovan haplotypes in PNG
and West Eurasians, as these populations carry the highest and lowest amount of Denisovan
ancestry in our dataset, respectively. Namely, we estimated the ratio of the total amount of
Denisovan haplotypes retrieved in PNG to that found in West Eurasians, as a means to
explore the amount of truly introgressed archaic segments in a given population®.
Specifically, for Denisovan-introgressed haplotypes detected by the CRF method, we
estimated the ratio of remaining haplotypes in PNG and West Eurasians after keeping only
those haplotypes with a fraction of base-pair overlap higher than 0 (i.e., without considering
S’ haplotypes), 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 (i.e.
complete overlap) with S’ haplotypes. We also explored our strategy of considering the
estimated Neanderthal CRF posterior probabilities when calling Denisovan introgressed
haplotypes (described above).

Results. Our analysis showed that accounting for the estimated posterior probabilities of a
Neanderthal haplotype reduces the total amount of Denisovan haplotypes retrieved in PNG
by only ~20% (Supplementary Fig. 55a,b). Conversely, the total amount of Denisovan
haplotypes in West Eurasians was reduced by up to ~70% (Supplementary Fig. 55c¢,d). This
shows that our strategy of considering the posterior probability of Neanderthal haplotypes
does remove incorrectly inferred archaic and/or ambiguous haplotypes (i.e., haplotypes with
similar posterior probabilities for Neanderthal and Denisovan introgression). Our analysis
also showed that using even the most lenient thresholds of overlap between the CRF and S’
methods (i.e., a base-pair overlap of only 0.1%) can result in an approximate 60-fold
increase of Denisovan segments in PNG relative to West Eurasians, while still retaining a
high amount of introgressed segments (Supplementary Fig. 55¢,f). In light of these results,
we decided to keep for each Denisovan or Neanderthal introgressed haplotype detected by
the CRF method (using the procedure outlined above), only those that have a fraction of
base-pair overlap higher than 0.1% with a significant S’ haplotype.
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Supplementary Figure 55. Effects of analysis settings on the detection rate of Denisovan
introgressed haplotypes. For all analyses, the total amount of CRF Denisovan haplotypes was
obtained when filtering (solid line) or not (dashed line) for high-probability Neanderthal haplotypes. a,
Cumulative length of Denisovan CRF haplotypes in PNG using different overlapping thresholds with S’
segments. b, Zoomed-in version of panel a. ¢, Cumulative length of Denisovan CRF identified
haplotypes in West Eurasians, using different overlapping thresholds with S’ segments. d, Zoomed-in
version of panel c. e, Ratio of the cumulative length of Denisovan haplotypes in PNG versus West
Eurasians using the same parameters as in a and b. f, Zoomed-in version of panel e.
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Supplementary Note 9: Match Rates of Archaic Haplotypes

Methods

After retaining introgressed S' haplotypes (Supplementary Note 8), we sought to compare
these haplotypes to archaic genomes. Following a previous study’, we computed a match
rate between each S’ haplotype and the Vindija Neanderthal and Altai Denisovan genomes,
using putatively introgressed alleles (i.e., absent in Africans). We considered that a site
matches if the putative introgressed allele is present in the archaic genotype, and
mismatches otherwise. The match rate was calculated as the number of matches divided by
the total number of compared sites (i.e., matches and mismatches). To eliminate potentially
unreliable genomic regions, owing to poor mappability or low coverage, we computed match
rates using sites that pass all filters at Level 3b’ (Supplementary Note 2). As longer S'
haplotypes carry more information on the archaic origin of introgressed segments, we only
computed match rates for S' haplotypes with more than 40 (unmasked) sites. To visualize
match rates to Neanderthal and Denisovan genomes, we computed two-dimensional
probability densities for the contour density plots, using the kde2d function from the MASS
package in R version 3.4.4 with default parameters, but restricting the contour lines to the
range of interest.

Results

Across all populations, we observed a dense cluster of S’ haplotypes with high match rate to
the Vindija Neanderthal and low match rate to the Altai Denisovan (Extended Data Fig. 3).
These haplotypes likely represent Neanderthal introgressed sequences. The mode of the
match rate to the Vindija Neanderthal is ~0.9, which is higher than the one reported (~0.8) in
ref.”. This is likely due to our use of a more closely related Neanderthal genome (i.e. the
Vindija Neanderthal) to the actual Neanderthal population that introgressed with modern
humans. Accordingly, when using the Altai Neanderthal in our match rate estimations, we
obtained a mode at ~0.8 (Supplementary Fig. 56).

We also observed another cluster of S’ haplotypes with very low match rate to the Vindija
Neanderthal (and Altai Neanderthal), but with a higher match rate to the Altai Denisovan
(mode of ~0.5), which likely represents Denisovan introgressed haplotypes (Extended Data
Fig. 3 and Supplementary Fig. 56). This cluster is most apparent in all populations but West
Eurasians, where we observed only a very small cluster of Denisovan haplotypes. This
observation is likely due to recent East Eurasian ancestry in some of these individuals, as
previously observed!’®. The populations that carry this shared signal of Denisovan
introgression include the Atayal and Paiwan Taiwanese indigenous peoples, the Cebuano
and Agta from the Philippines, Polynesian outliers, and Near and Remote Oceanians.
Notably, we also replicated a second signal of Denisovan introgression (mode at ~0.78) in
East Asians’, which is also present in the Atayal from Taiwan. Lastly, the match rates using
the Altai Neanderthal and Vindija Neanderthal were, as expected, highly correlated
(Supplementary Fig. 57). Nevertheless, we observed that introgressed haplotypes in
Taiwanese indigenous peoples, East Asians, and West Eurasians are slightly more similar to
the Vindija Neanderthal genome, in agreement with previous observations®.
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Supplementary Figure 56. Match rate of introgressed S’ haplotypes to the Altai Neanderthal and Altai
Denisovan genomes. The match rate is the proportion of putative archaic alleles that match a given
archaic genome, excluding sites at masked positions. Only S' haplotypes with at least 40 sites not
masked in the Vindija Neanderthal and Altai Denisovan genomes are included in the match rate
calculations. Numbers inside the contour plots indicate the height of the density corresponding to each
contour line. Contour lines are shown for multiples of 1 (solid lines) and multiples of 0.1 between 0.3
and 0.9 (dashed lines).
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Supplementary Figure 57. Match rate of introgressed S' haplotypes to the Altai Neanderthal and
Vindija Neanderthal genomes. The match rate is the proportion of putative archaic alleles that match a
given archaic genome, excluding sites at masked positions. Only S’ haplotypes with at least 40 sites
not masked in the Vindija Neanderthal and Altai Denisovan genomes are included in the match rate
calculations. Numbers inside the contour plots indicate the height of the density corresponding to each
contour line. Contour lines are shown for multiples of 1 (solid lines) and multiples of 0.1 between 0.3
and 0.9 (dashed lines).

Match rates using high-confidence introgressed haplotypes

Methods. Similarly to the analysis above, we compared high-confidence introgressed
haplotypes (i.e., CRF haplotypes intersecting with those detected by S’; Supplementary Note
8) to archaic genomes. This analysis was based on match rate estimates using only sites
that pass all filters at Level 3b’ (Supplementary Note 2). An important difference between the
CRF and S' haplotypes is that the latter are composed of putative archaic sites only (i.e.,
absent in Africans) whereas the former do not. The CRF haplotypes are therefore not only
composed of the introgressed alleles, but also of alleles that are likely to be old and shared
across modern humans and archaic hominins. The match rates of introgressed CRF
haplotypes to the Neanderthal and Denisovan genomes, are thus much higher than those of
S’ haplotypes.

Results. Using haplotypes composed of at least 100, 500, 1000, 1500, 2000 and 2500 sites,
we observed a single dominant peak of match rate to the Vindija Neanderthal, across all
populations (Supplementary Fig. 58). This pattern, which is in line with our observations
based on S’ haplotypes (Extended Data Fig. 3), supports a unique introgression event from a
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single Neanderthal population that likely occurred in the ancestors of non-Africans, as
recently documented’ 9. Likewise, we plotted the match rate to the Altai Denisovan genome
(Supplementary Fig. 59). In contrast to the match rate distributions for Vindija Neanderthal,
we observed several Denisovan peaks across populations, which vary depending on the
length of the introgressed haplotypes considered. The Denisovan peak that is most similar to
the Altai Denisovan genome was apparent in East Asians as well as in Pacific populations
with high East Asian-related ancestry, even when considering haplotypes with 100 sites. The
two distinct Denisovan peaks recently reported in PNG® were only apparent when using
haplotypes with at least 2,000 sites (Fig. 3e and Supplementary Fig. 59).
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Supplementary Figure 58. Match rate of high-confidence introgressed haplotypes to the Vindija
Neanderthal genome. The match proportion is the proportion of alleles that match the Vindija
Neanderthal genome, excluding sites at masked positions. Each panel is labelled with the minimum
number of sites in the introgressed haplotypes used to compute the density distributions.
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Supplementary Figure 59. Match rate of high-confidence introgressed haplotypes to the Altai
Denisovan genome. The match proportion is the proportion of alleles that match the Vindija
Neanderthal genome, excluding sites at masked positions. Each panel is labelled with the minimum
number of sites in the introgressed haplotypes used to compute the density distributions.
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Supplementary Note 10: Defining Different Denisovan Components

Rationale

To assign introgressed haplotypes to different Denisovan components, which likely reflect
population structure among the Denisovan-related groups that contributed ancestry to
modern humans, we fitted single Gaussian versus two-component Gaussian mixtures to the
Denisovan match rate distributions.

Denisovan components in East Asians and Taiwanese peoples

We first focused on the Denisovan match rate distribution observed in East Asians and
Taiwanese indigenous peoples (Atayal and Paiwan). These populations displayed a strong
signal of bimodality (Fig. 3e); one mode was observed at <99% match rate to the Altai
Denisovan genome, which overlaps the distribution observed in most Southwest, Near and
Remote Oceanian populations, while a second mode was found at ~99.5% match rate, which
is private to East Asians and Pacific populations with high East Asian-related ancestry. Note
that, for this analysis, we used introgressed haplotypes with a Denisovan match rate >98% in
a combined dataset including East Asian, Atayal, and Paiwan introgressed haplotypes that
contained at least 100 SNPs because (i) the bimodal distribution was apparent and stable
with this threshold, and (ii) using more SNPs would result in a lower number of Denisovan
introgressed haplotypes for downstream analyses.

Fitting single versus two-component Gaussian mixture model strongly supported the
bimodal distribution (Likelihood ratio [LHR] = 35.4; P-value = 9.89x10°8, Supplementary Table
11). The two Gaussians are distributed according to N(u = 0.985, 62 = 7.73x10°) and N(u =
0.994, 02 = 8.03x10°). As expected, we confirmed that a bimodal match rate distribution was
also strongly supported when using introgressed haplotypes that contain even higher number
of SNPs, given that longer introgressed haplotypes enable better differentiation of the various
introgression components (Supplementary Table 11). We used the two-mixture Gaussian
model to assign introgressed Denisovan haplotypes to the two distinct Denisovan
components using a probability higher than 0.80. This resulted in a classification of 219 out
of 246 Denisovan introgressed haplotypes.

We next tested whether the length of the Denisovan introgressed haplotypes is
significantly different, which could reflect different pulses of Denisovan introgression
occurring at different times. Although the length of the Denisovan introgressed haplotypes
that are most similar to the Altai Denisovan were longer (median = 131.1kb compared with
median = 93.4kb), the difference was not statistically significant (Two-sided Mann Whitney U-
test, P-value > 0.05). A possible explanation is that the two pulses occurred very closely in
time; however, it is likely that the low number of high-confidence Denisovan introgressed
haplotypes detected in East Asian and Taiwanese indigenous populations also limits our
power to find significant differences. In light of this, we repeated the analysis using
Denisovan introgressed haplotypes detected only by the CRF method, i.e. without
intersecting these with the S' haplotypes. In agreement with our previous analysis, a bimodal
distribution was strongly supported (LHR = 132.83; P-value = 2.22x10%). The two
Gaussians were distributed according to N(u = 0.985,02 = 9.65x10°) and N(u = 0.994,02 =
7.35x10®), similarly to our previous estimates. Assigning Denisovan haplotypes to these
distributions using a probability higher than 0.80 resulted in a classification of 618 out of 679
CRF Denisovan haplotypes. Using these segments, we found that the Denisovan haplotypes
with a match rate of ~99.4% to the Altai Denisovan were significantly longer than those with a
match rate ~98.5% (median = 99.3kb compared with median = 72.7kb, One-tailed Mann-
Whitney U-test, P-value = 5.14x10*). This supports a scenario in which introgression from an
archaic population closely related to the Altai Denisovan occurred later in time than that from
a more distant Denisova-related population.

Denisovan components in the Philippine Agta
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We next focused on the match rate distribution in the Agta from the Philippines. We used
introgressed haplotypes with a Denisovan match rate >98% that contained at least 2000
SNPs, because structure within Denisovan components was only apparent using this
minimum number of SNPs (Supplementary Fig. 59). Fitting single versus two-component
Gaussian mixture model strongly supported the bimodal distribution (LHR = 22.2; P-value =
5.79x10®, Supplementary Table 11). The two Gaussians are distributed according to N(u =
0.985, 02 = 6.36x10°) and N(u = 0.993, 02 = 1.09x10%). We note that the two distributions
are highly similar to those observed in the East Asian and Taiwanese indigenous
populations. This signal may therefore be attributed to gene flow from Austronesian-speaking
groups, carrying the high-match Denisovan component, to the Philippine Agta. Interestingly,
when removing the Denisovan segments that overlapped with those detected in East Asian
and Taiwanese indigenous populations, the Gaussian mixture model did not support
bimodality (LHR = 6.93; P-value = 0.07). The single Gaussian is distributed according to N(u
= 0.985, 02 = 7.47x10®), which overlaps with the components found broadly across East and
Southeast Asians, and Near and Remote Oceanians. If additional interbreeding has occurred
between the ancestors of the Agta and Denisovan-related archaic groups, it is possible that
the Austronesian gene flow into the Agta diluted most of this introgression signal. Further
analysis of additional, multiple Philippine populations, with lower levels of Austronesian-
related ancestry will be needed to support this hypothesis.

Denisovan components in Papuan-related groups

We then focused on the bimodal Denisovan match rate distribution observed in PNG and
populations with high Papuan-related ancestry (Fig. 3e). We used introgressed haplotypes
with a Denisovan match rate >98% and <99% that contained at least 2,000 SNPs, because
the bimodal distribution of interest was only apparent at this range and using this minimum
number of SNPs (Supplementary Fig. 59). As for our previous analysis in the Agta, we also
considered Denisovan introgressed segments originating from recent Austronesian gene flow
in populations from the Solomon Islands, the Vanuatu archipelago, Santa Cruz and
Polynesian outliers, by removing Denisovan segments that overlapped with those detected in
East Asians and Taiwanese indigenous peoples. We then fitted single vs. two-component
Gaussian mixture models to Denisovan match rate distributions, in each population
separately. Two-component Gaussian distributions were supported in all populations, except
in the Polynesian outliers (Supplementary Table 11). The low number of Denisovan
introgressed segments in Polynesian outliers (N = 50, the lowest among all populations)
could have reduced the power to detect distinct Denisovan components.

Notably, the match rate distributions among populations were extremely similar, with the
first component showing a mean of ~98.2%, and the second component showing a mean of
~98.6% match rate to the Altai Denisovan. We then classified Denisovan introgressed
haplotypes using a probability higher than 0.80 and compared their length, in each
population separately. The length of the haplotypes were significantly different in PNG
(median = 435kb vs. 363kb, Two-sided Mann-Whitney U-test, P-value = 1.64x103%), Solomon
islanders (median = 435kb vs. 373kb, Two-sided Mann-Whitney U-test, P-value = 1.92x10%),
ni-Vanuatu and Santa Cruz islanders (median = 435kb vs. 372kb, Two-sided Mann-Whitney
U-test, P-value = 8.21x107®), but not in the Bismarck archipelago islanders (Two-sided
Mann-Whitney U-test, P-value > 0.05). We note that our observation in PNG is different from
that recently reported®, where the two Denisovan components were found to have the same
median length. However, we confirmed our observation when varying the number of SNPs
required to define introgressed haplotypes (Supplementary Table 11). In the populations
where we could detect a significant difference, the Denisovan haplotypes with less similarity
to the Altai Denisovan genome are longer, supporting a scenario where the pulse from a
more distantly related Denisovan group occurred into PNG later in time.

Finally, we also tested whether the length of the Denisovan introgressed haplotypes from
the two distinct Denisovan components in Papuans were significantly different to those found
in East Asians, Taiwanese indigenous peoples, and the Philippine Agta. Given that the
bimodal distribution in Papuans was only apparent using a minimum number of 2,000 SNPs
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per haplotype, we used this number when classifying Denisovan haplotypes. While the
length of the haplotypes in Papuans, East Asians, Taiwanese indigenous peoples, and Agta
with a Denisovan match rate of ~98.5-98.6% were not significantly different (Kruskal-Wallis
rank sum test, P-value = 0.176), putatively introgressed haplotypes in Papuans with
Denisovan match rate ~98.2% were significantly different (Kruskal-Wallis rank sum test, P-
value = 8.93x107). Specifically, those with a ~98.2% match rate in Papuans are longer
compared to those with a match rate of ~98.5-98.6% in East Asians and Taiwanese
indigenous peoples (median = 435kb compared with median = 370kb, One-tailed Mann-
Whitney U-test, P-value = 7.69x107%), and the Agta (median = 435kb compared with median
= 357kb, One-tailed Mann-Whitney U-test, P-value = 2.08x107%). Collectively, these results
suggest that the ancestors of modern humans from the Pacific experienced at least three
independent introgression events from Denisovan-related archaic hominins, one being
specific to East Asian-related populations, one being specific to Papuan-related populations,
and one detected among East Asian- and Papuan-related populations, as well as the Agta
from the Philippines.
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Supplementary Note 11: Detecting shared archaic introgression

Method

We evaluated the extent to which Pacific populations share a common history of archaic
introgression, by computing a statistic measuring the overlap of introgressed haplotypes
detected in two human populations. Our rationale was that, if two populations inherited their
archaic ancestry through an introgression event in their common ancestors, the introgressed
haplotypes would tend to be observed in the same genomic positions. We based this
analysis on S' introgressed haplotypes because this method relies on tiling across individuals
(i.e. detecting introgressed haplotypes at the population level) and is therefore suitable for
comparing introgressed haplotype between populations. For each population, we first
retained only S’ introgressed haplotypes with a score >190,000 and a length of at least 40kb
in order to retain truly introgressed segments (Supplementary Note 8). We then classified
each haplotype as either of Neanderthal or Denisovan origin, as in ref.”t. The Neanderthal
haplotypes are those with a match rate equal or higher than 0.6 to the Vindija Neanderthal
and less than 0.4 to the Altai Denisovan. The Denisovan haplotypes are those with a match
rate equal or higher than 0.4 to the Altai Denisovan and less than 0.4 to the Vindija
Neanderthal. For each haplotype present in a given population, we then estimated the
fraction of base-pair overlap with the haplotypes present in a second population. The fraction
of base-pair overlap is estimated with respect to the length of the segments in the first
population. For example, for a 100Kb segment identified in the first population that has a
25Kb overlap with a segment in the second population, the base-pair overlap fraction is
equal to 0.25. Note that this statistic is not symmetrical as two populations can have different
numbers of introgressed segments. As a test statistic, we computed the proportion of
segments that have a fraction of base-pair overlap higher than 0.5. To assess significance,
we performed 10,000 bootstrap iterations where we randomly placed introgressed segments
of the same number and length as those observed along the callable genome (~2.1 Gbp). In
order to report a single P-value for each pairwise comparison, we took the highest P-value
for each comparison. All P-values were then adjusted for multiple testing by the Benjamini-
Hochberg method.

Results

Neanderthal-introgressed haplotypes overlapped significantly between all pairs of
populations (FDR < 0.005 for all comparisons; Supplementary Fig. 60). This indicates that
there was likely a single Neanderthal introgression event in the common ancestors of all non-
Africans, in line with our observations based on Neanderthal match rate distributions (Fig. 3e
and Supplementary Fig. 58), as well as previous studies’>%2, We note that there is a
tendency for higher overlap between closely related populations, suggesting that our statistic
is to some extent affected by population structure. Conversely, Denisovan-introgressed
haplotypes did not show a significant overlap between all pair of populations, suggesting
independent introgression events (Supplementary Fig. 61). We found that Denisovan-
introgressed haplotypes in Papuans were not significantly shared with East Asians,
Taiwanese indigenous peoples, or West Eurasians. This result is not likely explained by a
lower statistical power due to the lower number of introgressed segments, as we were able
to detect sharing between some Vanuatu populations (which carry similar number of
Denisovan introgressed segments as Papuans) and East Asian-related populations. This
result suggests that Papuans and East Asians inherited at least part of their Denisovan
ancestry through independent introgression events. This analysis is also in line with our
previous observation based on match rate distributions (Fig. 3e and Supplementary Fig. 59),
where East Asian populations show a Denisovan component absent from Papuans, and
Papuans show a component absent from East Asians. We also found that Denisovan-
introgressed haplotypes in West Eurasians overlap significantly with those present in East
Asian and Taiwanese indigenous populations. One plausible hypothesis is that the
Denisovan ancestry in West Eurasians was acquired through recent gene flow from East
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Eurasians, after Denisovan introgression in East Asians®. Lastly, we also found that
Denisovan haplotypes in Papuans and the Agta are significantly shared (FDR = 1.42x10%),
suggesting an introgression event in their common ancestors, or in the ancestors of the Agta,
followed by gene flow from the Agta to Papuan groups. As the Agta carry high levels of East
Asian-related ancestry (Extended Data Fig. 1), we also repeated this analysis by removing
Denisovan haplotypes in Agta that overlap with those found in East Asians. Interestingly, we
found that the Denisovan introgressed haplotypes in the Agta were still significantly shared
with Papuans (FDR = 9.40x104). Removing Denisovan introgressed haplotypes in Papuans
that are shared with East Asians and Taiwanese indigenous peoples also resulted in a
significant sharing (FDR = 1.42x10*). Overall, these results suggest that at least some of the
Denisovan ancestry present in the Agta was acquired through an introgression event shared
with Papuans, occurring in their common ancestors or in the ancestors of the Agta. Further
analysis in additional, multiple Philippine populations, with higher levels of Denisovan

ancestry and a lower degree of East Asian-related ancestry, will be required to test these
alternative scenarios.
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Supplementary Figure 60. Sharing of Neanderthal-introgressed haplotypes between Pacific
populations. Each cell shows the fraction of Neanderthal-introgressed haplotypes that overlap more
than 50% between populations. Numbers above each population label indicate the total number of

Neanderthal-introgressed haplotypes. Significance is indicated by stars, with *FDR < 0.001, **FDR <
0.01, and *FDR < 0.05.
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Supplementary Figure 61. Sharing of Denisovan-introgressed haplotypes between Pacific
populations. Each cell shows the fraction of Denisovan-introgressed haplotypes that overlap more
than 50% between populations. Numbers above each population label indicate the total number of
Denisovan-introgressed haplotypes. Agtafunique] and Papuansfunique] indicate Denisovan-
introgressed haplotypes in the Agta and Papuans that do not overlap with those found in East Asians
and Taiwanese indigenous populations. Significance is indicated by stars, with *FDR < 0.001, **FDR <
0.01, and *FDR < 0.05.
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Supplementary Note 12: Multiple Denisovan Sources in Papuans

Rationale

It has been recently proposed that modern Papuans inherited their Denisovan ancestry
through two Denisovan introgression events®. Our analyses also suggest the presence of
two Denisovan components, based on the distribution of match rates to the Altai Denisovan
genome (Fig 3e and Supplementary Fig. 59). However, a recent study did not find evidence
of two distinct Denisovan lineages in Papuans and argued for a single Denisovan pulse®.
These conflicting observations prompted us to formally test the two competing models, using
an ABC approach” based on summary statistics computed from the S' statistic.

Simulation setting

We used the demographic model for western Remote Oceanians (Extended Data Fig. 2b,
Supplementary Table 5) with parameters fixed to ML point estimates, but adding a single
(SP) or double (DP) pulse of Denisovan introgression in the Papuan branch. We also
changed the sampling time of the Altai Denisovan in the model, because the age of the Altai
Denisovan fossil was recently revised using a Bayesian age modelling approach that
combines chronometric, stratigraphic and genetic data®. As the study did not provide point
estimates, we used an age of 63.9 ka, which represents the centre of the reported date
interval of 51.6-76.2 ka (at 95% probability). We also included a population resize in
Papuans to capture the effect of the agricultural transition in Papua New Guinea®. Including
this extra parameter was needed to obtain simulation-based summary statistics that matched
our observed (empirical) summary statistics (see below). We note that our aim was not to
infer this parameter and as such, the population resize in Papuans is considered a nuisance
parameter. Specifically, in the SP model, we assumed a Denisovan introgression that
occurred Tpr2 generations ago (ga), that contributed apr. of Denisovan ancestry, and that
involved a Denisovan lineage that diverged Tpro-penisovanatai ga from the Altai Denisovan. We
refer to this Denisovan lineage as Denisovan-related lineage 2 (DR2). In the DP model, in
addition to the parameters presented above, we included a second Denisovan introgression
that occurred Tprs ga, that contributed aprs Of Denisovan ancestry, and that involved a
Denisovan lineage that diverged Tors-penisovanaai ga from the Altai Denisovan. We refer to this
Denisovan lineage as Denisovan-related lineage 3 (DR3). The prior distributions for each
parameter are shown in Supplementary Table 12. To differentiate between the SP and DP
models, we simulated a total of 50,000 independent sets of 64 10-Mb genomic sequences
per model, with fastsimcoal26. For parameter estimation, we further computed 150,000 extra
independent simulations under the best supported model.

Summary statistics

As ABC summary statistics, we used moments of the distribution of S’ scores, S' haplotype
length, and S' match rate to the Altai Denisovan genome. As we were interested in the
Denisovan introgression pulses, we restricted our analysis to Denisovan-introgressed
haplotypes by retaining only those haplotypes with a match rate to the simulated Altai
Denisovan genome = 0.2 and < 0.3 to the simulated Vindija Neanderthal genome, as in ref.”*.
Specifically, for each statistic, we computed the minimum, median, mean, first interquantile,
third interquantile, maximum, and the variance. To capture information occurring from two
distinct Denisovan populations, we also fitted two Gaussian distributions on the Denisovan
match rate distribution, and then computed the same summary statistics presented above for
each of the classified components, using a probability classification threshold of at least 0.8.
Given that in our empirical data, we only retained S' haplotypes with an S’ score higher than
190,000 (to lower the number of false-positives) (Supplementary Note 8), we also filtered the
simulated introgressed haplotypes based on this criterion before computing summary
statistics. ABC was then performed using the abc R package’. To differentiate between the
SP and DP models, we used a logistic multinomial regression. For parameter estimation, we
used a neural network using default parameters of hidden layers and neurons.
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Goodness-of-fit and method performance

Prior to model choice and parameter estimation, we checked whether the SP and DP models
provided a good fit to the observed data. We performed a goodness-of-fit test using 100
replicates for each model, and a tolerance set to 5%. As an additional (and graphical)
procedure, we also performed Principal Component Analysis (PCA) of all summary statistics,
using the first two PCs, and displayed the 90% envelope of the first two PCs for each model.
To evaluate the performance of model selection and parameter inference, we used a “leave-
one-out” cross validation approach using 100 replicates.

Results

Our goodness-of-fit test showed that only the DP model was able to produce S'-based
summary statistics that are consistent with the observed data (goodness-of-fit SP model, P-
value<0.01; goodness-of-fit DP model, P-value=0.24). Similarly, the 90% envelope of the first
two PCs, computed from all summary statistics for each model separately, showed that a
high proportion of summary statistics simulated under the DP model were more similar to the
observed values (Supplementary Fig. 62a). Cross-validation via 100 independent simulations
for difference tolerance rates showed that our ABC approach was able to distinguish
between these two different models with high accuracy (>83%; Supplementary Fig. 62b), the
highest accuracy being obtained at a tolerance level of 5%. ABC model selection at a
tolerance level of 5% showed that the DP model was strongly favoured (posterior probability
= 99%). We also conducted a second ABC analysis, using only the S'-based summary
statistics computed from Denisovan match rates. We conducted this second analysis in order
to test whether SP and DP models could produce distinct Denisovan match rate distributions.
Interestingly, the goodness-of-fit test showed that both models were able to produce
summary statistics that are consistent with the observed data (goodness-of-fit for the SP
model, P-value=0.19; goodness-of-fit for the DP model, P-value=0.47). The 90% envelope of
the first two PCs showed that summary statistics simulated under the DP model were more
similar to the observed values (Supplementary Fig. 63a), in line with our previous
observation. Encouragingly, the cross-validation analysis based on this subset of summary
statistics showed that the ABC approach was still able to distinguish between these two
models, albeit with slightly lower accuracy (>76%; Supplementary Fig. 63b). By performing
ABC model selection at a tolerance level of 0.005, 0.01, and 0.05 we found that the DP
model was strongly favoured, resulting in a posterior probability of 99% for the three
tolerance rates. Together, our analyses support that the Denisovan ancestry in Papuans
arose from (at least) two distinct introgression events from two Denisovan-related
populations.

We next focused on the DP model to infer the different parameters of the two distinct
Denisovan introgression pulses. For parameter inference, we relied on the full set of
summary statistics, as these are likely to be more informative for the parameters of interest.
For example, the length of the S' introgressed haplotypes are expected to be highly
informative for estimating the time of introgression. We estimated the performance of our
ABC approach using only summary statistics with a correlation coefficient (r) higher than 0.1
to the parameter of interest (Supplementary Fig. 64). Based on prediction error (PE) as a
performance measure, we found a high accuracy for the estimation of the divergence time
between the introgressing Denisovan lineages and the Altai Denisovan, but only relatively
moderate and low accuracy for the estimation of the time of introgression of these Denisovan
components into Papuans and the introgression rate, respectively (Supplementary Fig. 65).
We therefore caution in interpreting these parameter estimates. Assuming a 29-year
generation time, the divergence times of the two distinct Denisovan lineages to the Altai
Denisovan were dated to 409 ka (95% CI: 335-497 ka), and 222 ka (95% CI. 174-263 ka),
respectively (Supplementary Fig. 66). The introgression pulses from these two lineages were
dated to 25 ka (95% CI: 15-35 ka), and 46 ka (95% CI. 39-56 ka), respectively. Lastly, we
estimated similar levels of Denisovan introgression rate for these two events, with a point
estimate of 2.7% (95% CI. 1.1-4.6%) for the more recent pulse, and a point estimate of 3.2%
(95% CI: 1.2-5.1%) for the more ancient pulse.
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Our results are in agreement with those previously obtained by Jacobs et al. (2019)%,
supporting the presence of two deeply divergent Denisovan lineages in Papuans. However,
we note that in the model proposed in the aforementioned study, the oldest introgression is
from a Denisovan lineage more distantly related to the Altai Denisovan genome, than the one
introgressing more recently. Conversely, in our model, the oldest introgression event is from
a Denisovan lineage more closely related to the Altai Denisovan genome, than the
Denisovan lineage introgressing more recently. In order to formally choose between these
two models, we simulated an extra set of 50,000 simulations under each model. We used the
same set of summary statistics as previously described, but used as limits for the uniform
parameter priors the 95% Cls reported in this section or those in Jacobs et al. (2019), to
simulate each model accordingly. A goodness-of-fit test showed that only our model was
able to reproduce observed S'-based summary statistics (goodness-of-fit for our model: P-
value>0.05, versus goodness-of-fit for Jacobs’ model: P-value<0.01). By performing ABC
model selection at a tolerance level of 0.005, 0.01, and 0.05, we found that our model was
strongly favoured, resulting in a posterior probability of 99% for the three tolerance rates.

Interpretation

Our results support the presence of two deeply divergent Denisovan-related lineages in
modern Papuans. In contrast to a previously proposed model®?, we favour a scenario in
which the more distantly Denisovan-related lineage introgressed with Papuans more
recently. Given the geographic location of the Altai Denisovan, we consider this model as
more parsimonious: it suggests that the ancestors of Papuan-related populations, as they
migrated from mainland Eurasia to Oceania, introgressed with Denisovan-related groups that
were increasingly different from the Altai Denisovan. The older Denisovan introgression
event, dated at 46 ka (95% CI: 39-56 ka) could have occurred before, or very close to, the
colonization of Sahul. In turn, the more recent Denisovan introgression event occurred likely
after the initial colonization of Sahul, which fits with our proposed date at 25 ka (95% CI: 15—
35 ka). These results collectively suggest that Papuans received two independent Denisovan
introgression pulses from two divergent Denisovan lineages, one being probably old and
potentially representing an introgression event common to populations with Denisovan
ancestry, followed by another independent pulse specific to Papuan-related populations.

In Extended Data Figure 10, we show a schematic model recapitulating the history of
archaic introgression that is consistent with our data. Our results are in agreement with
previous studies showing that the ancestors of non-Africans experienced a unique
introgression event from a single Neanderthal population®2°659719295 \We estimate that
interbreeding occurred ~61 ka (95%CI: 56—62 ka; Extended Data Fig. 2a, Supplementary
Table S2), from a Neanderthal lineage that was closely related to the Vindija Neanderthal
(divergence time at 122 ka [95%CI: 107-128 kal).

Conversely, we infer at least three independent introgression events from Denisovans into
modern humans, and report suggestive evidence for a fourth event. The oldest inferred event
of interbreeding occurred in the ancestors of Papuan-related groups, who were probably also
the ancestors of Australian and Philippine Agta®"®%9t, ~46 ka (95% CI: 39-56 ka) from a
lineage that diverged 222 ka (95%CI: 174-263 ka) from the Altai Denisovan. A putative
location would therefore appear to be either in mainland Asia or in the Sunda Shelf, before
the divergence of these populations. As East Asians carry only trace amounts (<1%) of this
introgression event, we suggest the Denisovan ancestry in these populations was likely
acquired through gene flow from Near Oceanians or Philippine ‘Negritos’.

The second Denisovan introgression event was estimated to occur ~25 ka (95% CI: 15—
35 ka), from a very divergent Denisovan lineage to the Altai Denisovan (divergence
estimated at 409 ka [95%CI: 335-497 ka]). Evidence for interbreeding is restricted to PNG
and Papuan-related populations from nearby islands. The estimated date suggests that the
introgression event may have occurred in Sundaland or even further east of the Wallacea
line.

The third Denisovan interbreeding event is inferred in East Asians, from a Denisovan
lineage closely related to the Altai Denisovan, as recently reported’>®2, We date this
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introgression to ~21 ka (95% CI: 15-26 ka; Supplementary Table 7). Given the strong
genetic similarity of this Denisovan lineage with the Altai Denisovan, it is possible that the
introgression event occurred in mainland Asia. The presence of this Denisovan component in
the Philippine Agta and western Eurasians could have been acquired through gene flow with
East Asian groups.

Lastly, although we infer that part of the Denisovan ancestry detected in the Philippine
Agta was inherited through a common introgression event with PNG (Supplementary Note
11), the fact that (i) the Denisovan ancestry in Agta is disproportionately high, given their
Papuan-related ancestry, and (ii) they show a total proportion of Denisovan ancestry
comparable to that of PNG, despite their high East Asian-related ancestry (Extended Data

Fig. 1), suggest that an additional, independent introgression event occurred in the ancestors
of this Philippine group’.
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Supplementary Figure 62. A priori check and performance evaluation of the ABC approach used to
differentiate between the single-pulse and double-pulse models of Denisovan introgression in PNG. a,
PCA of the ABC summary statistics obtained for the two simulated introgression models (90%
coloured contours) and the observed data (black square). b, Confusion matrix showing cross-
validation prediction accuracy at different tolerance rates. SP and DP stand for single-pulse and
double-pulse models of Denisovan introgression, respectively.
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Supplementary Figure 63. A priori check and performance evaluation of the ABC approach used to
differentiate between the single-pulse and double-pulse models of Denisovan introgression in PNG,
based only on Denisovan match rate summary statistics. a, PCA of the ABC summary statistics
obtained for the two simulated introgression models (90% coloured contours) and the observed data
(black square). b, Confusion matrix showing cross-validation prediction accuracy at different tolerance
rates. SP and DP stand for single-pulse and double-pulse models of Denisovan introgression,
respectively.
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Supplementary Figure 65. Performance of the ABC estimation of parameters in the double pulse
model of Denisova introgression. Prediction errors (PE), as a measure of the ABC performance for
three different tolerance rates, are shown in the upper-left corner of each panel.
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Supplementary Figure 66. ABC estimation of the parameters of the double pulse model of Denisovan
introgression in Papuans. Prior (grey area) and posterior (red and black lines) distributions are shown
for the split time between Denisovan lineages and the Altai Denisovan (Torz-beni Altai @Nd ToRr3-Deni Altai),
the time of introgression (Tintrogression-brz @Nd Tintrogression-br3) and the introgression rate (aorz and aprs) of
the two distinct Denisovan lineages into PNG. Black and red curves indicate posterior distributions
obtained with the rejection algorithm and neural networks, respectively.
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Supplementary Note 13: Exploring Unknown Archaic Introgression

Rationale

The S' approach is aimed at detecting introgressed haplotypes without the need of an
archaic reference genome’. We therefore sought to characterize S' introgressed haplotypes
from archaic hominins other than Neanderthals or Denisovans, as they may potentially reveal
introgression from unknown archaic humans. Notably, given the presence of archaic
hominins in the Philippines (Homo luzonensis)® and Indonesia (Homo floresiensis)?’, it is of
interest to study potential unknown archaic ancestry in the Agta and Cebuano from the
Philippines.

Methods

To retain only S" haplotypes introgressed from a potentially unknown hominin, we removed S’
haplotypes that are likely to be of either Neanderthal or Denisovan origin, based on their
overlap with Neanderthal or Denisovan haplotypes detected by the CRF approach
(Supplementary Note 8). To further characterize these S’ haplotypes, we estimated their
match rate to the Vindija Neanderthal and Altai Denisovan genomes.

Results

The total amount of S’ haplotypes retrieved among populations showed that, as expected,
populations harbouring both Neanderthal and Denisovan ancestry have the highest number
of S' haplotypes (Extended Data Fig. 4a). Note that S’ is estimated at the scale of the
population sample, and we are simply analysing the total number of retrieved S’ haplotypes,
so the highest numbers of introgressed S' sequences are found among population samples
with the largest sizes (Supplementary Table 1). We next removed S’ haplotypes of either
Neanderthal or Denisovan origin, as determined by the CRF method. As expected, we
observed a strong reduction in S’ haplotypes in populations with high levels of Neanderthal
and Denisovan ancestry (Extended Data Fig. 4a), particularly in PNG, Papuan-related and
Agta populations.

Characterizing these patterns in west Eurasians can be particularly informative as these
populations carry minimal levels of Denisovan ancestry, as previously observed®, and all S'
haplotypes should mostly be of Neanderthal origin. Accordingly, we observed a strong
reduction of S’ sequences after removing Neanderthal haplotypes in this population group.
Nevertheless, we observed a moderate reduction in the amount of S’ haplotypes in west
Eurasians after removing Denisovan haplotypes (Extended Data Fig. 4a). Two patterns might
explain this observation. First, in contrast to the CRF approach, the S' approach detects
introgressed haplotypes at the population level, and thus detects significantly longer
haplotypes, as it basically concatenates several distinct introgressed haplotypes across
chromosomes’. A single S’ haplotype can therefore overlap with several Neanderthal and/or
Denisovan CRF haplotypes from different individuals. Second, it is also possible that these S’
haplotypes are false positives, or that the pattern is due to the low sensitivity of the CRF
method to detect introgressed haplotypes, together with the stringent posterior probability
threshold (set as >0.90) used to call CRF introgressed haplotypes (Supplementary Note 8).

To further characterize the remaining S’ haplotypes, we estimated their match rate to the
Vindija Neanderthal and Altai Denisovan genomes. Noticeably, we found that several S’
haplotypes have high match rates to Vindija Neanderthal or Altai Denisovan (Supplementary
Fig. 67). These S' haplotypes are likely archaic segments of Neanderthal or Denisovan origin
that were not detected by the CRF approach. This is most apparent in the west Eurasian
population, where the majority of S’ haplotypes are located below the diagonal, and with high
Neanderthal match rate values, similar to those found in our original S' analysis
(Supplementary Note 9). Likewise, in PNG, we observed several S' haplotypes that are
located above the diagonal and with a high match rate to the Denisovan genome. We also
observed several S' haplotypes that are of clearly ambiguous origin. This is most evident in
the Agta, Cebuano, and East Asian populations, where many S’ haplotypes show a similar
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match to the Vindija Neanderthal and Altai Denisovan (i.e. located at the diagonal), which
resulted in a strong correlation (see R? values in Supplementary Fig. 67). We therefore
removed all S' haplotypes with a match rate higher than 1% to either the Vindija Neanderthal
or Altai Denisovan genome. The remaining S' haplotypes, which we termed S'noarchaicLowMatch,
do not overlap with CRF Neanderthal or Denisovan haplotypes.
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Supplementary Figure 67. Match rate of S' haplotypes to the Vindija Neanderthal and Altai
Denisovan, after removing those that overlap with CRF haplotypes. The coloured line indicates the
best fit regression line, and the black, dashed line, the identity line. The number of haplotypes used to
compute the correlation, as well as the linear equation, the correlation coefficient R2 and the
corresponding P-value, are shown inside each panel.

After removing all haplotypes of potential Neanderthal or Denisovan origin based on the
CRF method and estimated match rates, we retained a total of 59 S' haplotypes among all
populations (Extended Data Fig. 4b). If introgression occurred from an unknown archaic
hominin and is present in some groups and not others (e.g. a local Homo erectus population
in Southeast Asia, or Homo luzonensis), we would expect to find that the remaining S’
haplotypes are not shared among populations. In contrast with this expectation, we found
that most of these remaining S’ haplotypes are shared (Extended Data Fig. 4b). For example,
we observed that all haplotypes in west Eurasians and Polynesian outliers are shared with
other populations. Across the remaining populations, we also observed that ~50% of these
haplotypes can be found in other populations. Further characterizing the S’ haplotypes that
are unique to specific populations, we only retained <2 Mb of introgressed material per
population group (Supplementary Fig. 68). For example, less than 1Mb of S" haplotypes were
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detected in the Agta and Cebuano from the Philippines, our two populations of interest.
Overall, these results suggest limited evidence of introgression from hominins other than
Neanderthal and Denisovan in Philippine populations, or, alternatively, that these hominins
were closely related to Neanderthals or Denisovans.

0.5

_llll

Total unique S'NoarchaicLowMateh (Mb)

=0
=2
=2
=2
=3
=1
=1
13)
=0)-

Agta (n
Cebuano (n
Papuans (n

West Eurasia (n
Southeast Asia (n
Nakanai Bileki (n
Solomon Islands (n
Vanuatu & Santa Cruz (n
Polynesian outliers (n

Supplementary Figure 68. Total amount of population-specific S'NoarchaicLowmatch haplotypes. For each
population, the number of haplotypes used to compute the total amount of population-specific
S'NoarchaicLowmatch haplotypes is shown in brackets, next to the population label.

97



Supplementary Note 14: Adaptively-Introgressed Haplotypes

Methods

Two recently developed statistics have been used to detect candidate regions for adaptive
introgression (Al), based on the number and derived allele frequency of sites that are
uniquely shared between archaic hominins and modern humans®. Briefly, under Al, one
would expect to find archaic introgressed alleles at high frequency in a population known to
carry archaic ancestry, but absent (or at very low frequency) in a population without archaic
ancestry. The Q95(w,y,z)% is defined as the 95" percentile of derived allele frequencies
within a genomic window in a target population, where the derived allele frequency of these
sites in an outgroup population (i.e. a population without the archaic ancestry of interest) is
lower than wis higher than y in an archaic hominin, but lower than z in a different archaic
hominin. Throughout this section, we refer to w, y, and z as the derived allele frequency in
Africans, the Vindija Neanderthal genome, and the Altai Denisovan genome. To find
Neanderthal-specific Al genomic windows, we therefore defined the Q95ycanderthar Statistic
as:

Q95Neanderthal(w = 001,y = 1,z = 0).

For the sake of clarity, this statistic estimates the 95" percentile of the derived allele
frequencies in a target population that are lower than 1% in Africans, fixed in the Vindija
Neanderthal genome, but absent in the Altai Denisovan genome. Likewise, we defined the
Q95penisovq Statistic as:

QgSDenisova(W = 0.01,y =0,z = 1)_

We also computed a complementary statistic — the U(w, x,y,z) statistic®®. Unlike the Q95
statistic, this statistic counts the number of sites within a genomic window where a target
population has a derived allele frequency higher than x, where the derived allele frequency in
an outgroup population is lower than w, and where the derived allele frequency in an archaic
hominin is higher than y, but lower than z in a different archaic hominin. In the original
study®®, the authors set the derived allele frequency x to 20%, 30% or 50%. This is a sensible
approach as the archaic ancestry between different populations may vary greatly, and setting
a unique threshold of derived allele frequency x for all populations of interest can result in a
very lenient or conservative statistic. Instead of using several different thresholds, we
decided to set a single derived allele frequency threshold x for each target population
separately by computing the Q95(w, y, z) statistic using all sites across the genome. We term
this statistic QgSGenome Archaic- The QgSGenome Neanderthal and QgSGenome Denisova values used
to compute the U-statistic in each population are reported in Supplementary Table 13. Note
that for the Atayal and Paiwan populations, the Q95;.n0me penisova threshold is zero, which
would mean that any site that is fixed in the Altai Denisovan (but absent in the Vindija
Neanderthal genome) and at lower frequency than 1% in Africans would count towards the
U-statistic computed in these populations. We defined the Uyeandertnar Statistic as follows:

UneanderthaW = 0.01,x = Q956enome NeandertharY = 1,z = 0).

For the sake of clarity, this statistic estimates the number of sites that have a derived allele
frequency higher than the population specific Q95¢enome Neanderthar VAIUE, lower than 1% in
Africans, fixed in the Vindija Neanderthal genome, but absent in the Altai Denisovan
genome. Analogously, we defined the Upgpisovq Statistic as:

Upenisova(w = 0.01,x = Q956enome penisovaryY = 0,2 = 1).
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Given that there is only one archaic genome available for the analysis, a fixed or absent
allele simply refers to a homozygous state for one allele or the other. We did not include the
Altai Neanderthal in this analysis, as this individual is thought to be more distantly related to
the Neanderthal population that introgressed with modern humans®®. Our analyses, using D-
statistics, confirmed this observation by showing that our target populations share
significantly more derived alleles with the Vindija Neanderthal than with the Altai Neanderthal
(Z-score > 2 for all populations comparisons) (Supplementary Fig. 69).
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Supplementary Figure 69. Derived allele sharing between Vindija Neanderthal or Altai Neanderthal
and modern human populations. a, Derived allele sharing using the Chimpanzee or b, Africans as
outgroup populations. Points show derived allele sharing (D-statistic) and bars show two standard
errors from the point estimate computed via a weighted-block jackknife procedure. Population sample

sizes are reported in Supplementary Table 1.

We computed U and Q95 statistics in 40-kb non-overlapping windows along the genome
of all target populations, with the exception of PNG!® and Nakanai Bileki'® individuals,
because of ethical restrictions in this regard. We decided to use this window size because
the mean length of introgressed haplotypes in ref.>® was ~44kb. For both statistics, we used
all 35 Africans from the SGDP dataset!’ as the outgroup population. We defined the
ancestral/derived states of alleles using the chimpanzee reference genome and removed
sites with any missing genotype, and discarded genomic windows with less than 5 sites,
leaving a total of ~65,000 non-overlapping genomic windows in each population. Lastly, our
candidate genomic windows of Al were considered as those with both U and Q95 statistics
values in the top 0.5% of their respective genome-wide distribution (Supplementary Tables
14 and 15). Custom-generated codes to compute U and Q95 statistics are available on
GitHub (www.github.com/h-e-g/evoceania).

Results
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We identified a number of novel hits for Neanderthal adaptive introgression in the Pacific
(Fig. 4a), many of which were shared among populations of the same ancestry
(Supplementary Fig. 70 and Supplementary Table 14). For example, we detected a
Neanderthal-introgressed ~18kb-long haplotype at high frequency in Near and Remote
Oceanians (ranging from ~20% to >60%), which encompasses the 5-UTR and intronic
region of the KRT80 gene (Extended Data Fig. 5c; left panel). KRT80 is a protein-coding
gene that encodes a type Il epithelial keratin. Keratins are intermediate filament proteins
responsible for the structural integrity of epithelial (skin) cells®®. In accordance with a
Neanderthal origin, the derived allele of the top archaic-like SNP (aSNP) (rs2360653-C) is
found at moderate frequencies in Europeans and South East Asians, at low frequencies in
East Asians, and is absent in sub-Saharan Africans from the 1000 Genomes Project*
(Extended Data Fig. 5c; middle panel). Among Oceanian populations, the highest frequency
is observed in PNG, Remote Oceanians and the Agta (Extended Data Fig. 5c; right panel).
Notably, this aSNP acts as an expression quantitative trait locus (eQTL) of KRT80 in sun
exposed skin tissue (P-value = 6.1x10°;, GTEx data!®). The putative introgressed C allele is
associated with a lower expression. This observation is in line with a recent study showing
that Neanderthal introgressed alleles influence disease risk, including skin lesions resulting
from sun exposure (i.e., keratosis)!?. Our findings provide further support to the notion that
Neanderthal alleles have been adaptive in different human populations due to their effects on
skin®:88.102 hyt it remains unclear how Oceanian populations benefited from Neanderthal
alleles that reduce the expression of keratinocyte-related genes.

Another pertinent example of Neanderthal adaptive introgression in Oceanians was
detected at the metabolism-related TBC1D1 gene (Extended Data Fig. 5d), in line with other
studies highlighting genes affecting lipid metabolism, type 2 diabetes risk, adipose tissue
differentiation and body fat distribution!?®1%4, TBC1D1 transcripts have been reported to be
highly expressed in skeletal muscle and adipose tissue'® and are regulated through muscle
contraction and energy depletion'®1%7, Furthermore, mutations at the human and murine
TBC1D1 have been associated with obesity'%11°, In accordance with a Neanderthal origin,
the derived allele of the top TBC1D1 aSNP (rs2303423-C) is found at low frequencies in
Europeans, moderate frequencies in South and East Asians, and absent in sub-Saharan
Africans from the 1000 Genomes Project®® (Extended Data Fig. 5d; middle panel). Among
Oceanian populations, the top aSNP was found at the highest frequency in PNG (derived
allele frequency [DAF] = 71%), Papuan-related Remote Oceanians (DAF ranging from ~30 to
60%), and, notably, in Polynesian outliers from Tikopia, where it is almost fixed (DAF = 90%)
(Extended Data Fig. 5d; right panel). None of the aSNPs present in the Neanderthal
introgressed haplotype have been reported to be associated with any trait by GWAS (as of
March 27, 2020). Future functional studies should help to clarify the effect of this novel
candidate introgressed variant on metabolic or obesity-related traits, given the growing health
concern that obesity represents in this region of the world*?.

We also identified a number of novel hits of adaptive introgression from Denisovan (Fig.
4a), which were often shared among populations of the same ancestry (Supplementary Fig.
71 and Supplementary Table 15). For example, we found a ~30kb-long introgressed
haplotype at CD33, which plays a key role in mediating cell-cell interactions and maintaining
immune cells in a resting state!!?, This haplotype contains 7 high-frequency variants,
including a non-synonymous variant predicted to be deleterious (rs367689451-A; SIFT score
= 0) that is >66% frequency and is restricted to Oceanians (Extended Data Fig. 5a). We
found that the frequency of Denisovan introgressed alleles at CD33 were significantly higher
than that of other genome-wide Denisovan-introgressed SNPs, in all groups independently of
their levels of Papuan-related ancestry (Mann-Whitney U test; P-value<1.5x10), indicating
that high Papuan ancestry is unlikely to explain the Denisovan adaptive signal at this locus.
We also detected a strong signal at IRF4, which presents a ~29kb-long haplotype with 13
high-frequency variants at 64% frequency in the Agta (Extended Data Fig. 5b). IRF4
regulates interferon responses to viral infections and Toll-like-receptor signalling!*?.
Furthermore, we identified a ~78kb-long introgressed haplotype at high frequency among
Near and Remote Oceanian populations (ranging from ~30% to >50%), which encompasses
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the 5’-UTR and intronic region of the JAK1 gene (Extended Data Fig. 5e), a key mediator of
cytokine signalling during important developmental, immune, and inflammatory
responses!'*!® The archaic allele with the highest derived frequency (rs368334238-A),
which is located in the first intron of JAK1, is absent from all Africans and Eurasians,
consistent with an introgression event from Denisovans into the common ancestors of
Oceanian populations.

Another Denisovan adaptively introgressed signal includes a ~37kb-long haplotype,
encompasses the BANK1 gene, at high frequencies among populations with East Asian-
related ancestry (ranging from ~15% to 37%) (Extended Data Fig. 5f; left panel). BANK1
encodes a B-cell-specific scaffold protein that functions in B-cell receptor-induced calcium
mobilization from intracellular stores!'®. Several variants in the BANK1 gene have been
associated with systemic lupus erythematosus (SLE), a prototypical autoimmune disease
characterized by loss of immune tolerance to nuclear and cell surface antigens!!’. Although
GWAS of SLE have been conducted in East Asians'!®12° none of the associated variants
reported in the GWAS catalog included any of the high-frequency introgressed variants (as of
April 1, 2020). In accordance with a Denisovan introgression event, the derived allele of the
top archaic SNP (aSNP) (rs17031656-T) is absent among Africans and Europeans, and is
only present in Southeast Asians from the 1000 Genomes Project*® (Extended Data Fig. 5f;
middle panel). Among Pacific populations, its highest frequency is found in the Cebuano
(DAF = 37%) and Agta (DAF = 14%) from the Philippines, and the Atayal and Paiwan
(DAF~15%) from Taiwan. In the remaining populations, its frequency is < 5%, being
completely absent in PNG (Extended Data Fig. 5f; right panel). This frequency distribution
suggests that this variant has been acquired through a Denisovan population that
introgressed exclusively in the ancestors of East Asians. Notably, several other studies have
shown that archaic introgressed alleles can influence present-day risk of autoimmune
diseases in humans. Recent examples include signals of Neanderthal introgression in the
chemokine receptor (CCR) gene family constituting the risk alleles for celiac disease!??, in
the ZNF365D gene that is associated with a higher risk of Crohn’s disease®’, and in the
TLR6-1-10 gene cluster that has been associated with greater susceptibility to allergies?2123,
In light of this, the introgressed signal of Denisovan origin at BANK1 may represent another
case of evolutionary mismatch in modern humans, i.e., alleles that were beneficial in the past
have become detrimental after important environmental changes?!?1%,
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Supplementary Figure 70. Genomic regions showing the strongest evidence of adaptive
introgression from Neanderthal. Each row is a 40-kb window, each column is a Pacific population, and
each cell is coloured according to whether the window is in the top 0.5%, 1%, 5%, or >5% of the U
and Q95 statistics empirical distributions. The 5 most extreme genomic windows detected in

population groups (Fig. 4a) are shown, and the genes within each window are shown on the right of
each row.
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Supplementary Figure 71. Genomic regions showing the strongest evidence of adaptive
introgression from Denisovan. Each row is a 40-kb window, each column is a Pacific population, and
each cell is coloured according to whether the window is in the top 0.5%, 1%, 5%, or >5% of the U
and Q95 statistics empirical distributions. The 5 most extreme genomic windows detected in
population groups (Fig. 4a) are shown, and the genes within each window are shown on the right of
each row.
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Supplementary Note 15: Gene Enrichment in Archaic Introgression

Introgressed haplotypes of archaic origin

To conduct enrichment analyses of Neanderthal and Denisovan introgressed haplotypes in
gene set categories, we merged our Pacific populations into three population groups, based
on their shared ancestry according to PCA and ADMIXTURE results (Supplementary Note
3). This included (i) a ‘Papuan group’ that consists of populations with high Papuan-related
ancestry: PNG (SGDP samples only!’), Solomon Islands, Santa Cruz, and the Vanuatu
archipelago; (ii) an ‘East Asian group’ that consists of populations with high East Asian-
related ancestry: East Asians (SGDP samples only!”), Taiwanese indigenous peoples,
Philippines (Cebuano), and Polynesian outliers; and (iii) the Philippine Agta. We then
defined introgressed haplotypes in each population group, as the union of high-confidence
introgressed haplotypes of Neanderthal or Denisovan origin, identified in each population
that forms the particular population group (Supplementary Note 8). The union of introgressed
haplotypes can therefore be thought of as a tiling path of inferred Neanderthal or Denisovan
haplotypes among each population group.

Controlling for confounding factors

To establish that archaic introgression, rather than other factors, are driving the enrichment
at a given gene set category, it is important to define the genomic features that can affect the
occurrence of introgressed haplotypes across the genome. Based on a recent study?*, we
considered the following genomic features: (i) recombination rate*?, (ii) density of conserved
elements across mammals identified by PhastCons'?, (iii) density of regulatory elements
based on the DNase | segments cumulated across all ENCODE cell types'?, (iv)
deleteriousness based on CADD scores®?, and (v) number of SNPs.

For each autosomal protein-coding gene (Ensembl genes)!?8, these genomic features
were measured within 50-kb windows at the genomic centre of each gene, with the exception
of the recombination rate, which was measured within 200-kb windows centred on genes.
The reason to use 200-kb windows for the recombination rate estimates is that the sparsity of
sites within the 1000 Genomes Phase 3 genetic map*® would have resulted in recombination
rate estimates based on few sites. We only considered genes with a recombination rate
higher than 0.0005 cM/Mb to distinguish between genes where the recombination rate is 0
and genes within gaps in the genetic map. Deleteriousness was measured using the mean
value of CADD scores in each gene. Genes that contained less than 5 sites with a genetic
map position, less than 5 sites with associated CADD scores, or less than 5 SNPs were
discarded.

Resampling-based enrichment analysis

We devised a resampling-based enrichment test for a given gene set (i.e. a set of genes
composing a particular biological pathway) using a set of ‘control’ genes that were matched
for all genomic features described above, to obtain empirical null distributions. Specifically,
we matched each gene for all aforementioned genomic features based on quartiles (i.e. each
gene was placed into one of four bins for each genomic feature). In doing so, each gene had
a list of control genes with similar genomic features. As some genes can only have a small
number of matching control genes (note that, by partitioning five genomic features into
quartiles, we have 5% = 625 possible bin combinations), we selected for further analysis only
those genes with at least three matching control genes. The values that defined the quartiles
for each genomic feature can be found in Supplementary Table 16. For a given gene set, we
then estimated the number of genes that overlapped introgressed haplotypes. For each gene
that composed this gene set, we then randomly sampled a control gene to obtain a control
gene set of the same length. We repeated this resampling 100,000 times to obtain
resampling P-values. P-values were calculated by counting the proportion of resamples
where the number of control genes that overlapped with introgressed haplotypes were higher
than, or equal to, the value observed for the tested gene set. All P-values were then adjusted
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for multiple testing by the Benjamini-Hochberg method, to account for the number of gene
sets tested. Gene sets with an adjusted P-value < 0.05 were considered as significantly
enriched.

Enrichment analysis of adaptively introgressed genes

To test whether gene set categories are enriched for archaic adaptive introgression, we
intersected the introgressed haplotypes with significant U and Q95 genomic windows
(Supplementary Note 14). We considered adaptively introgressed haplotypes, in each
population group, as introgressed haplotypes that significantly overlapped the Neanderthal or
Denisovan U and Q95 genomic windows identified in each population that forms that
population group. For this analysis, we considered adaptively introgressed U and Q95
genomic windows as those in the top 5% of their respective distribution. Note that this subset
of introgressed haplotypes is composed of introgressed haplotypes at high frequency, a
hallmark of positive selection. We then carried out the resampling-based enrichment test
using only adaptively introgressed haplotypes as described in the section above.

Gene set categories

We considered the following gene set categories for the resampling-based enrichment
analysis: (i) KEGG?, (ii) Wikipathways®®°, (iii) the GWAS catalog*®!, and (iv) Gene Ontology
(GO) (including biological process, molecular function, and cellular component)'32. For the
GO enrichment analysis, we restricted the list of GO terms to those between levels 3 and 7,
to avoid redundancy. Furthermore, we analysed additional gene set categories, including
1,553 manually-curated genes involved in innate immunity!?, and 1,257 genes whose
products are known to have physical interactions with viruses (VIPs)'?4. To limit the effect of
genomic clusters of genes on the enrichment analysis, we only retained genes that were less
than 200kb apart from the centre of other genes present in a given gene set category. In
practice, for each gene set category, we calculated the distance between the gene centre for
all pairs of genes, and removed the gene that had the highest number of genes within 200 kb
from its genomic centre. Gene set categories with less than 10 genes after this procedure
were discarded.

Results

In Papuan-related populations, we detected a significant enrichment in introgressed
haplotypes at genes associated with BMI and obesity-related traits (FDR P-value < 0.05;
Supplementary Table 17), suggesting preferential retention of archaic alleles in pathways
related to lipid metabolism. In line with a role of archaic introgression in immune
responses'?®1?4 we found that VIPs'** were enriched in Denisovan-introgressed genetic
material, and genes affecting ‘immune response to measles’ were enriched in signals of
adaptive Neanderthal introgression (Supplementary Tables 17 and 18). In East Asian-related
populations, genes affecting ‘apoptotic cellular response to stress’ and ‘cancer were
enriched in Neanderthal ancestry and signals of adaptive introgression. Furthermore, we
found an enrichment of adaptive Denisovan-introgressed genetic ancestry among genes
related to ‘sleep duration’, presumably because of adaptation to daytime variation with
latitude (Supplementary Table 17 and 18). Lastly, in the Philippine Agta, we found an
enrichment of Neanderthal adaptive introgression at several pathways related to general
cellular functions, and notably, an enrichment of Denisovan adaptive introgression at genes
associated to obesity-related phenotypes (Supplementary Table 18).
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Supplementary Note 16: Genome Scans for Classic Sweeps

Rationale

We searched for signatures of positive selection under the classic sweep model, by
considering five different analyses (Supplementary Fig. 72 and Supplementary Table 19),
which broadly correspond to different branches of the population tree where positive
selection may have occurred.

- Analysis 1: Detection of positive selection occurring in the ancestral population of
Oceanians (populations with predominantly Papuan-related ancestry). To identify these
signals, we searched for classic sweeps that are common to populations from PNG
(SGDP samples'’), the Solomon Islands and Vanuatu (note that populations from the
Bismarck archipelago alone were not included in the analysis because it was not
permitted by the informed consent they signed). We computed the inter-population
statistics described below for each population separately: PNG, Solomon islanders and ni-
Vanuatu. We used a pool of all populations with East Asian ancestry as reference
population (East Asians, Taiwanese indigenous peoples and Philippine Cebuano, with the
exception of Polynesian outliers), and sub-Saharan African or European samples as
outgroups.

Analysis 2: Detection of positive selection occurring in the ancestral population of East
Asians (populations with predominantly East Asian-related ancestry). We followed a
similar strategy as above. We also computed the inter-population neutrality statistics for
each population separately: East Asians, Taiwanese indigenous peoples, Philippine
Cebuano and Polynesian outliers. We used a pool of all populations with high Papuan-
related ancestry as reference population (i.e., PNG, Bismarck, Solomon and Vanuatu
islanders), and sub-Saharan African or European samples as outgroups.

Analysis 3: Detection of positive selection occurring in each specific population with
high Papuan-related ancestry. We compared each test population (PNG, Solomon
Islands and Vanuatu Archipelago) to a reference population composed of a pool of all
populations with high Papuan-related ancestry (PNG, Bismarck, Solomon and Vanuatu
islanders), excluding the test population. Sub-Saharan African or European populations
were used as outgroups.

Analysis 4: Detection of positive selection occurring in each specific population with
high East Asian ancestry. We compared each test population (East Asians, Taiwanese,
Cebuano, and Polynesian outliers) to a reference population composed of a pool of all
populations with high East Asian-related ancestry (East Asians, Taiwanese indigenous
peoples, Cebuano, and Polynesian outliers) excluding the test population. Sub-Saharan
African or European populations were used as outgroups.

Analysis 5: Detection of positive selection occurring in the Philippine Agta population.
To identify selection signals in this population, we used inter-population neutrality statistics
with, as reference populations, either a pool of the Papuan-related or the East Asian-
related populations. Sub-Saharan African or European populations were used as
outgroups.

106



Analysis 2 = I Analysis 1
:l:- Analysis 5
Analysis4de= &= o= = I = Analysis 3
|
) 5) N
\\9\; 6\@ &) \?OQ " SR
é\ (\ \(\ ‘5 \)@ ?0 P\g\‘a \)‘3 5 c&g 6@ Q \)Q\
(/,9‘5\?‘ ( Q @?® © g\ﬂa

Supplementary Figure 72. Rationale used for the analyses of classic sweeps.

Methods

We scanned the genome for candidate loci under positive selection using the inter-population
LSBL (Locus-specific branch lengths)**® and XP-EHH (cross-population extended haplotype
homozygosity)!** statistics, combined into a Fisher's score (Fcs). We estimated the Fcs as
the sum of the —logio(percentile rank of the statistic for a given SNP), for all the inter-
population statistics. We defined outlier SNPs as those with an Fcs among the 1% highest of
genome. Putatively selected regions were defined as genomic windows that show a
proportion of outlier SNPs (i.e., number of outliers SNPs/total number of SNPs in the window)
among the 1% highest of the genome, after partitioning all windows into five bins based on
the number of SNPs. The test and reference populations (both for XP-EHH and for LSBL)
and the outgroup populations (for LSBL) were defined for each analysis as described in
Supplementary Table 19 and Supplementary Fig. 72. We estimated AMOVA-based Fsr to
compute LSBL, and XP-EHH was computed in 100-kb sliding windows with a 50-kb step.
The derived alleles were determined using the 4-way EPO ancestral sequence from the 1000
Genomes Project
(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/technical/retired reference/ancestral alignments/).
We normalized the XP-EHH scores in 40 separate bins of derived allele frequency. We kept
only windows with >50 SNPs, and removed 500kb around gaps. Neutrality statistics were
computed with the optimized, window-based algorithms implemented in selink
(www.qgithub.com/h-e-g/selink).

Results

We found 44 candidate genes shared among the three different Papuan-related populations
from Near and Remote Oceania (i.e., Analysis 1; Extended Data Fig. 6, Supplementary Figs.
72 and 73 and Supplementary Table 20), among which the strongest hit (P-value < 0.001)
overlaps the GABRP and RANBP17 genes (Extended Data Fig. 8a,b). We detected 29
candidate genes that were shared between the four East Asian-related populations (i.e.,
Analysis 2; Extended Data Fig. 9, Supplementary Figs. 72 and 74 and Supplementary Table
23). The shared region with the highest selection scores (P-value < 0.001) overlaps a ~1Mb-
haplotype encompassing multiple genes (Supplementary Fig. 75), including ALDH2. Among
ALDHZ2 variants, the derived allele at rs3809276 is observed at >60% in East Asians,
Taiwanese indigenous peoples, Philippine Cebuano and Polynesian outliers, while being at <
15% in Papuan-related groups. ALDH2 deficiency results in adverse reactions to alcohol
consumption and is associated with increased survival in Japanese!®.
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Among population-specific signals, one of the strongest signals was observed in Solomon
islanders at ATG7 (Supplementary Table 21), which regulates cellular responses to nutrient
deprivation'®®, and has been associated with blood pressure!®’. Putatively selected variants
at ATG7 reach ~70% frequency in Solomon islanders, 10% in Papuans and < 5% worldwide.
Another strong population-specific hit was detected at LHFPL2 in Polynesian outliers
(Extended Data Fig. 8c,d and Supplementary Table 24); variation in LHFPL2 is associated
with eye macula thickness — a highly variable trait across populations that is responsible for
sharp vision®®8, LHFPL2 variants reach ~80% frequency in Polynesian outliers only, in
particular those from Rennell and Bellona, and are absent from current databases. In the
Philippine Agta, the second strongest hit was detected at DLEU1 (Extended Data Figs. 6d
and Supplementary Table 22), which also showed a signal of adaptive Denisovan
introgression®? (Extended Data Fig. 7). Putatively-selected DLEU1 variants (P-value < 0.002)
are >83% frequency in the Agta and <50% in other Pacific populations, and include 5 high-
frequency aSNPs likely introgressed from Denisova. Genetic variation at this locus is strongly
associated with height**® and waist-hip ratio'*°, suggesting positive selection for introgressed
archaic variants affecting height in the Agta from the Philippines.
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Supplementary Note 17: Signals of Adaptive Admixture

Rationale

Several studies have provided empirical evidence that adaptive introgression — the
acquisition of adaptive traits through hybridization with closely-related species — is a possible
source of adaptive variation'*145. We and others have recently showed that, besides
introgression, gene flow can also promote adaptation by spreading beneficial alleles between
populations of the same species, a process called ‘adaptive admixture’ or ‘adaptive gene
flow'?5146-148 - Because Oceanian populations globally result from pervasive admixture, to
different extents, between populations of Papuan-related and East Asian-related ancestry,
we sought to test if admixed Near and Remote Oceanians (i.e., here populations from the
Solomon Islands and Vanuatu) have acquired advantageous alleles via gene flow from East
Asian-related populations (here Taiwanese indigenous peoples and Philippine Cebuano). We
also tested if Polynesian outliers have acquired advantageous alleles via gene flow from
Papuan-related groups. We used deviations in local ancestry, combined with signatures of
positive selection in parental populations, to identify examples of variants under putative
adaptive admixture, following the procedure described in ref.?>.

Local ancestry simulations

We first used simulations with fastsimcoal2*® to estimate the number of standard deviations
(SD) in local ancestry that is expected under neutrality, and to estimate the window size for
local ancestry inference with RFMix v.1.5.4 (ref.?%). We used the demographic model for
western Remote Oceanians described in Supplementary Note 4 (Extended Data Fig. 2b and
Supplementary Table 5) to simulate 20 diploid individuals representing the Paiwan, 20 for the
Atayal, 40 for PNG and 50 admixed individuals from Vanuatu. We simulated 500 windows of
100-kb each, concatenated in one chromosome, giving a total of 50Mb per chromosome. We
set a constant mutation rate of 1.25x10® mutation/generation/site'’!. The recombination
rate for each simulated window was estimated by averaging the recombination rate from
random 100-Kb windows sampled in the 1000 Genomes Phase 3 genetic map*:. We kept
only biallelic sites and alleles with a MAF > 0.01 and ran 100 simulations (Supplementary
Fig. 76). We estimated local ancestry with RFMix, for 50 admixed, simulated samples from
the Vanuatu using, as parental sources, a population composed of 40 East Asian (20 Atayal
and 20 Paiwan) and 40 PNG samples. We used the TrioPhased algorithm implemented in
RFMix assuming Taim = 50 generations, 3 EM iterations, a minimum number of 5 reference
haplotypes per tree node and different runs for window lengths of 0.005, 0.01, 0.02, 0.025,
0.03, 0.035, 0.04, 0.045, 0.05, 0.1, 0.2 and 0.5 cM, to test for the optimal value
(Supplementary Fig. 77).

We selected the window length for which the mean ancestry estimated from RFMix was
the closest to the admixture proportions estimated by ADMIXTUREZ3. We reasoned that East
Asian-related ancestry could be underestimated when using large windows in RFMix,
because East Asian admixture proportions in western remote Oceanians are low (13% in the
Malakula population, i.e., the ni-Vanuatu population used to represent western Remote
Oceanians in the demographic model; Supplementary Note 4). Indeed, a large window in the
genome of the ni-Vanuatu will typically include few, small East Asian ancestry segments and
many more Papuan ancestry segments, so RFMix will preferentially assign this window to the
Papuan major ancestry. To determine the significance threshold of deviations in local
ancestry, we estimated the number of false positives from the simulated data, according to
the number of SDs in local ancestry considered. Namely, as the simulations are neutral and
therefore no selection signals are expected, the proportion of loci with local ancestry higher
or lower than the genome-wide average + x SD is considered as an estimate of our FPR. We
calculated the FPR for different x values for each ancestry separately. We estimated a FPR =
1% at £+ x = 297 or 3.58 SD for Papuan and East Asian ancestries, respectively
(Supplementary Fig. 78), therefore we set a threshold of x + 3 SD for both ancestries. We
also checked whether our approach was impacted by phasing errors. We estimated our FPR
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using the same simulations, except that we created unphased diploid individuals from the
simulated haploid data, and phased simulated samples using SHAPEIT2 (refs.®48%) with the
same parameters as for the observed data. RFMix was run on the phased simulated data
using the same parameters as before, except that we used the PopPhased algorithm. Under
these conditions, we estimated a FPR = 1% at + x = 2.83 or 2.84 SD for Papuan and East
Asian ancestries, indicating that our approach has low FPR, even in the presence of phasing

errors.
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Supplementary Figure 76. Genetic ancestry analyses of a representative simulation of the parental
and admixed populations. a, ADMIXTURE clustering analysis, b, Distribution and mean (dashed line)
of the genome-wide ancestry of 50 simulated Vanuatu samples, based on local ancestry inference by
RFMix performed for 100 simulations, with a window size of 0.03 cM.
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Supplementary Figure 78. False positive rates (FPR) for a genome scan of adaptive admixture. FPR
was estimated based on neutral simulations. Results are shown for different significance thresholds,

based on standard deviations (SD) from the genome-wide average of local ancestry.

Local ancestry inference

To estimate local ancestry in the genomes of the studied populations, we used RFMix v.1.5.4
(ref.®%), with the same parameters as for the simulations, but allowing for phase correction
(using the PopPhased algorithm implemented in RFMix) and fixing the window length to the
optimal value of 0.03 cM (Supplementary Fig. 77). We set two groups of parental
populations, one for the Papuan-related ancestry and another for the East Asian-related
ancestry. In the first group, we included all the populations in the dataset from PNG (i.e.,
Bundi, Kundiawa, Marawaka, Mendi, Tari and Papuan_SGDP from refs.1817), In the second
group, we included Taiwanese indigenous peoples (Atayal and Paiwan Ami_SGDP, and
Atayal SGDP from ref.}”) and the Cebuano from Philippines. The admixed populations for
which we computed local ancestry were those from the Solomon Islands (Vella Lavella and
Malaita), Vanuatu (Ureparapara, Santo, Malakula, Ambae, Maewo, Pentecost, Ambrym,
Emae, Efate and Tanna), Polynesian outliers (Rennell, Bellona and Tikopia), and the
Philippine Agta. Populations in each of the four population groups were analysed together.
We kept only SNPs with a MAF > 0.01, leaving a total of 7,875,602 SNPs. We removed sites
with a posterior probability lower than 0.9 from the local ancestry results. We also excluded
centromeres, based on UCSC annotations!*®, and 2Mb from the telomeres of each
chromosome. To identify deviations in local ancestry, we estimated the proportion of
ancestry in 100-Kb windows.

Results

No signals of post-admixture selection were detected at genes with classic sweep signals,
such as RANPB17, GABRP and ALDH2, supporting the ancient nature of these selection
events (Supplementary Table 25). We observed a unique, significant increase in East Asian
ancestry among Vanuatu and Solomon islanders at the BROX gene (Supplementary Fig.
79). This gene includes a Brol domain that participates in the virus budding machinery, by
interacting with the virus nucleocapsid and stimulating the production of virus-like particles!®.
Intriguingly, BROX showed a strong, classic sweep signal only in PNG (Supplementary Fig.
79). This suggests strong, local adaptation of PNG after their divergence from other
Oceanians, resulting in PNG being a poor proxy, at the locus, of the Papuan-related source
population of admixed Oceanians, when performing local ancestry inference. Alternatively,
this may suggest post-admixture selection for the East Asian haplotype in populations from
the Solomon and Vanuatu Archipelagos.
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Supplementary Figure 79. Putative local signal of adaptive admixture in admixed Oceanians. Local
proportions of East-Asian ancestry at the candidate locus in admixed populations from a, the Vanuatu
and b, the Solomon Islands. c, Genes of the genomic region that shows an excess of East-Asian
ancestry (top panel). Local signal of positive selection for Papuans (Analysis 1) and East Asians
(Analysis 2) at the candidate locus (middle panel). The y axis shows the —logio(P-value) of the
combined Fisher score (Fcs). Each point is a SNP. Derived allele frequency of SNPs at the locus, in
the admixed Oceanian populations and the parental populations (bottom panel). The SNP with the
highest Fcs is highlighted (rs118050369).
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Supplementary Note 18: Signals of Polygenic Adaptation

Rationale

Because the genetic architecture of most adaptive traits is expected to be polygenict®152 we
searched for evidence, in Pacific populations, of directional selection on candidate traits
whose genetic architecture has been well described by genome-wide association studies
(GWAS). Building upon previous work®*%4 we used an approach that tests if the integrated
haplotype scores (iHS) of trait-increasing alleles are significantly different from those of
random SNPs with similar allele frequency. This approach does not rely on effect size
estimates, which can be biased due to partial correction for population stratification, resulting
in spurious signals of polygenic selection!®>!¢, Instead, it relies on the assumption that
alleles affecting traits are the same in Oceanians and Europeans, and, moreover, that these
alleles affect traits in the same direction. In light of these assumptions, which are relatively
strong, we used in parallel an independent approach that tests for the co-localization of
selection signals and trait-associated genes; this window-based approach makes the
assumption that the same genomic regions affect the traits of interest in all human
populations.

SNP-based approach

Methods. We obtained GWAS summary statistics for 25 candidate traits from the UK Biobank
database®’ (http://www.nealelab.is/uk-biobank), which are less biased by population
stratification than previous GWAS®>%, Traits were considered of interest if they are related
to morphology, metabolism and immunity, as these phenotypes are strong candidates for
responses, through natural selection, to changes in climatic, nutritional and pathogenic
environments. We first classified SNPs as increasing or decreasing the candidate trait, based
on the sign of UK Biobank effect sizes (B), considering a significance threshold of P-value <
5x10%. A negative B indicates that the alternate allele is trait-decreasing, while a positive
value indicates that it is trait-increasing. We thus changed the sign of 8 values when the
alternative allele was ancestral (and the reference was derived), so that the sign of B values
indicates the effect of the derived allele on the trait of interest. Next, we computed iHS (iHS =
In(iHH4/iHHg)) using selink (www.github.com/h-e-g/selink), for each SNP and population, and
standardized scores in 100 bins of DAF. We then polarized iHS, following previous
studies®**4, so that positive iHS indicates directional selection of the trait-decreasing allele,
while negative iHS indicates directional selection of the trait-increasing allele. To do so, we
simply changed the sign of iHS for the derived alleles with a negative B. We called the
resulting statistic the polarized trait-iHS (tiHS).

To test if a trait is under directional selection, we first kept, for each trait, trait-associated
variants that are unlinked. Specifically, we partitioned the genome into 100-Kb non-
overlapping contiguous windows, and kept for each window the variant with the lowest
association P-value. We then compared the mean tiHS of the x independent, trait-associated
alleles to the mean tiHS of 100,000 random samples of x SNPs with similar DAF, Genomic
Evolutionary Rate Profiling (GERP) score'®®, and surrounding recombination rate (based on
1000 Genomes phase 3 genetic map“3), to account for the effects of background selection.
GERP, recombination rate and DAF were grouped into 8 bins. We considered that directional
selection has increased (or decreased) the trait if less than 2.5% (or 0.05% or 0.005%) of the
resampled sets have a mean tiHS that is lower (or higher) than the observed tiHS, which we
considered as empirical P-values. We adjusted P-values for multiple testing with the
Benjamini-Hochberg method, to account for the number of traits and populations tested.

To estimate the FPR of our approach, we sampled 1,000 times x random genome-wide
SNPs, x being the number of independent trait-associated alleles, and used the sampled
SNPs as pseudo-data. We compared each of the 1,000 tiHS average values to a null
distribution obtained by random sampling of x SNPs matched to pseudo-data. The FPR was
estimated as the proportion, out of 1,000 pseudo-data, of tiHS average values that were
within the 2.5%, 0.05% or 0.005% of the null distributions. We adjusted P-values for multiple
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testing with the Benjamini-Hochberg method, to account for the number of traits and
populations tested.

Results. We first estimated the FPR of our approach, based on resampling. The maximum
FPR was 0.1% at P-value = 5x10° and 0.4% at P-value = 2.5x10? (Supplementary Fig. 80),
which were thus used as the significance thresholds in subsequent analyses. As a positive
control, we searched for signals of polygenic adaptation in European populations, where
such signals have been extensively studied!®*1%51%¢ As expected, we found a signal of
polygenic adaptation for lighter skin and hair pigmentation'*®* and no signals for increased
height?>>1%6 (Fig. 4b). We also identified a new signal for decreased cholesterol, which has
not been previously reported. With respect to Pacific populations, we detected a signal for
decreased BMI in Taiwanese indigenous peoples, and a unique, strong signal for decreased
high-density lipoprotein (HDL) cholesterol in the Solomon Islands and the Vanuatu
archipelago (Fig. 4b).

Because some of the traits tested for polygenic adaptation are pleiotropic, it is difficult to
identify the specific trait that is adaptive. For Europeans, 70% of SNPs associated with hair
colour were also associated with skin colour, suggesting that the two traits are highly
pleiotropic (Supplementary Fig. 81). For East Asians, 47% of the SNPs associated with hip
circumference were also associated with waist circumference. However, for Oceanians, <7%
of variants associated with HDL levels were associated with other candidate traits,
suggesting that pleiotropy plays a minor role in explaining these signals. Together, these
findings support the occurrence of polygenic adaptation related to lipid metabolism in
Oceanians, possibly in response to long-term fish consumption®®®,
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Supplementary Figure 80. Specificity of the SNP-based approach to detect polygenic selection.
False positive rate (FPR) estimated based on 1,000 random samples of genome-wide SNPs used as
pseudo-data. The P-value is obtained from the rank of the mean tiHS for resampled SNPs in a null
distribution obtained by resampling. The FPR was estimated by counting the number of significant
resamples at three different P-value thresholds: 0.025, 0.005 and 0.0005.
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Supplementary Figure 81. Genetic architecture of candidate complex traits. a, Number of SNPs
shared among candidate traits. Each column shows the percentage of SNPs associated with the trait
that are also associated with other candidate traits (rows). b, Percentage of associated SNPs per
candidate trait. The total number of SNPs varies across populations (n=9 populations), as it is the
number of SNPs kept for selection analyses for each population. The boxplots indicate the median
value, the first and fourth quartiles and the dots the outliers of the distribution.

Window-based approach

Methods. To statistically test if genes associated with a trait are preferential targets of
positive selection, we first kept, for each trait, trait-associated variants that are unlinked. To
do so, we partitioned the genome into 100-Kb non-overlapping contiguous windows and
kept, for each window, only the variant with the lowest association P-value. We considered a
window to be associated with a trait if at least one SNP within the window shows a P-value <
5x108. For each window, we estimated the mean tiHS for each population (see previous
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section) and calculated the mean GERP score'®®, the mean recombination rate, the mean
DAF and the number of SNPs per window. We then tested if the mean tiHS of trait-
associated windows is higher than a null distribution, obtained from 100,000 sets of
randomly-sampled windows, each set being matched to trait-associated windows in terms of
GERP scores, recombination rate, DAF and number of SNPs. GERP, recombination rate and
DAF were grouped into 8 bins. We calculated a P-value for each trait as the number of
resamples, out of 100,000 resamples, where the mean tiHS was lower (or higher) than that
observed for the trait-associated windows. We adjusted P-values for multiple testing with the
Benjamini-Hochberg method, to account for the number of traits and populations tested.

Results. To relax the assumption that alleles affecting traits are the same in Oceanians and
Europeans, we used another approach that tests for the co-localization of selection signals
and trait-associated genes; this window-based approach assumes that the same genomic
regions affect the traits of interest in all human populations. At a significance threshold of P-
value < 0.005, we replicated a signal for decreased skin and hair colour in Europeans
(Supplementary Fig. 82). With respect to the SNP-based approach, the window-based
approach detected several additional signals, which may suggest either higher power,
because trait-associated SNPs are actually not portable in Pacific populations, or stronger
effects of pleiotropy, because genomic windows supposed to be trait-associated have not
been associated per se with the trait of interest. Conversely, some of the strongest signals
detected using the SNP-based approach (e.g., HDL in Vanuatu, Santa Cruz and Solomon
Islands) were not significant when using the window-based approach, suggesting reduced
power. Importantly, the polygenic adaptation signal for HDL cholesterol in Oceanians was
replicated when decreasing the size of genomic windows (P-value < 0.05), suggesting that
local signatures of positive selection are too weak to be detected when using 100-kb
genomic windows. Among signals that were not detected with the SNP approach, we found
signals related to blood pressure; specifically, lower systolic blood pressure in PNG, higher
diastolic blood pressure in East Asians, and lower diastolic blood pressure in the Philippine
Agta. We also detected a signal for decreased hip and waist circumference, increased hair
pigmentation, and increased age at last reproduction in East Asian-related groups. GWAS of
morphological and life-history traits in Pacific populations, which are largely
underrepresented in genomics research, are required to confirm these results.
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Supplementary Figure 82. Window-based detection of polygenic adaptation in Pacific populations.
Colours indicate the -logio(P-value) for a significant decrease (in blue; tiHS > 0) or increase (in brown;
tiHS < 0) of the candidate trait. P-values were computed for each trait as the number of resamples, out
of 100,000 resamples, where the mean tiHS was lower (or higher) than that observed for the trait-
associated windows (two-sided test). P-values were adjusted for multiple testing with the Benjamini-
Hochberg method, to account for the number of traits and populations tested. Significance is indicated
by stars, with *P-value < 0.025 and **P-value < 0.005.
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CHAPTER 5

5.3 Summary of results

To obtain insight into the peopling and demographic past of Pacific islanders we jointly
inferred the parameters characterizing their demographic history using multidimensional
site frequency spectra and the maximum likelihood framework. We first explored different
branching topologies and estimated the demographic parameters of Near Oceanians (i.e.
Papuans, Bismark and Solomon islanders). We found that the settlement of the region was
accompanied by a strong founder event - around five time stronger than that of Eurasians
- and that the different groups diverged in the late Pleistocene, between 40,000 and 25,000
years ago. These results point to a rapid genetic isolation of the different groups of Near
Oceania, after the initial settlement dated to around 45,000 years ago (archaeological data,
(O’Connell et al. 2018a; O’Connell and Allen 2015)).

Similarly, we tested different topologies and estimated demographic parameters for
western Remote Oceanians. We found that Ni-Vanuatu received post-Lapita gene flow
from Bismarck islanders in agreement with ancient DNA (Posth et al. 2018; Lipson et
al. 2018). Furthermore, the best-fitted models indicate that the Bismarck archipelago
ancestry alone is not enough to represent the Papuan-related genetic diversity found today
in Vanuatu. Because of a lack of continuity between first and present-day Ni-Vanuatu as
shown by ancient DNA and craniometric studies (Posth et al. 2018; Lipson et al. 2018;
Valentin et al. 2016), interpretation of demographic models using modern DNA is very

limited.

We also reconstructed the demographic history of the East/Southeast Asian ancestors of
Near and Remote Oceanians. Assuming an isolation with migration model, we estimated
that Taiwanese Indigenous peoples and Malayo-Polynesian speakers diverged around 7,300
years ago at odds with the "Out-of-Taiwan" model - hypothesis that predicts a dispersal
event from Taiwan around 4,800 years ago and that brought both the agriculture and
Austronesian languages to Oceania (Bellwood 1997). We obtained consistently older
divergence times, even when considering gene flow into Austronesian-speaking groups,
but with broader confidence intervals. These results suggest a population structure of
Austronesian speakers that predate the appearance of agriculture in Taiwan. However,
because of the large uncertainty in the estimates further analyses using ancient genomes

are needed.

After having investigated divergence times, we wanted to obtain insight into the mode
and tempo of gene flow between East/Southeast Asians and Near Oceanians. We used
an Approximate Bayesian Computation (ABC) approach to test for a single-pulse model

versus a two-pulse model or continuous model of gene flow. We found that a two-pulse
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model best matched the summary statistics. We dated a first admixture event in Near
Oceanians (Bismarck and western Solomon islanders) at around 3,000 years ago and a
second at around 1,500 years ago, indicating mutliple contacts between East/Southeast

Asians and Near Oceanians.

We also shed light on the archaic genetic legacy found in the Pacific region. Using allele
frequency-based methods we found that, while the level of Neanderthal ancestry is fairly
homogeneous across the region, the level of Denisovan ancestry is heterogeneous. For
example, the Agta foragers from the Philippines present around 3% of Denisovan ancestry
while neighbour populations have around 0% (e.g. Cebuano Filipinos). The identification
and analysis of Denisovan haplotypes in the genome of present-day Pacific islanders
suggest multiple episodes of interbreeding between Denisovans and Pacific groups. Using
an ABC approach we found that two highly divergent groups of Denisovans introgressed

with Papuan-related groups, around 45,000 and 25,000 years ago, respectively.

Finally, we searched for the occurrence of classic sweeps and other modes of genetic
adaptation such as adaptive admixture/introgression and polygenic adaptation. We found
that unlike Neanderthal introgression which facilitated the adaptation of modern humans
related to a large range of phenotypes (e.g. metabolism, pigmentation and neuronal
development), Denisovan introgression mainly targeted immune-related functions (e.g.
CD33 and IRF4 genes). We identified 44 shared genetic regions targeted by classical
positive natural selection (i.e. classic sweeps) in Papuan-related groups. The strongest hit
includes the RANBP17 gene, which is involved in Body Mass Index and HDL cholesterol.
We identified 29 genetic regions shared between East-Asian related groups (including
Polynesian groups). One of our strongest signal fall within the ALDH2 locus which is

involved in alcohol metabolism.

Collectively, our analyses provide novel insights into the genetic history of Pacific
populations, including various interactions with archaic hominins, early splits during the
late Pleistocene, recent range expansions in the Holocene period and a complex history
of interactions between peoples from East/Southeast Asia and Oceania. Our result also
increased our understanding of the mechanisms of biological adaptation experienced by

Pacific islanders.
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| present here the first results obtain for the second part of my thesis, which aims to
evaluate the efficacy of natural selection in Pacific populations, and ultimately better

understand their present-day relation to diseases.
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6.1 Context

Alleles associated with diseases are part of the human genetic diversity and mutation,
genetic drift and natural selection, thus govern their occurrence, frequency, and population
distribution. At mutation-selection equilibrium and stationary demography, the rate
at which deleterious mutations are removed from the populations, i.e., the efficacy of
natural selection depends on the product between the effective population size (N.)
and the selection coefficient (s) (Charlesworth 2009). Hence, in theory, the efficacy of
natural selection to remove deleterious mutation depends on the demographic fluctuations
experienced by populations, i.e., the demographic history. The burden of deleterious
mutations has often been quantified through the measure of the mutational load, which
corresponds to the reduction in fitness owing to the accumulation of deleterious mutations
in genomes, compared with the optimal fitness (by convention set to 1) (Knudson 1979;
Lopez et al. 2018a; Paul 1987; Simons and Sella 2016). Theoretically, in small or bottlenecked
populations - because of a strong genetic drift - the mutational load is transiently high
(Simons et al. 2014; Balick et al. 2015) due to a drop in the efficacy of natural selection and
the prevalence of recessive diseases may thus increase. These predictions are strengthened
by epidemiological studies, which reported cases of unusually frequent recessive disorders
in isolated or small-island populations (O’Brien et al. 1988; Carr, Morton, and Siegel 1971;
Eickhoff and Beighton 1985).

In an attempt to validate empirically these predictions in humans, a large number of
genomic studies has compared the pattern of deleterious mutations between Sub-Saharan
Africans and non-African groups (Lopez et al. 2018a; Simons and Sella 2016; Simons
et al. 2014; Do et al. 2015; Henn et al. 2016b; Henn et al. 2015b; Lohmueller et al.
2008; Lohmueller 2014; Fu et al. 2013; Pedersen et al. 2017a; Font-Porterias et al. 2021).
Because the individual’s fitness cannot be easily calculated in humans, these studies used
different metrics and definitions of the burden of deleterious mutations and efficacy of
natural selection, which led to conflicting interpretations. For example, Henn et al. (Henn
et al. 2016b), using simulations and selection coefficients approximated from sequence
conservation-based score (GERP (Cooper et al. 2005)) categories, predicted significant
differences in the additive mutational load between human groups. Conversely, Do et
al. (Do et al. 2015) counted the differences in the number of derived deleterious mutations
between African and European individuals and concluded that the Out-of-Africa bottleneck
did not affected the efficacy of natural selection. Although there is increasing evidence
to suggest that bottleneck and recent population growth had a negligible impact on the

additive genetic load and the efficacy of natural selection (Lopez et al. 2018a; Simons and
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Sella 2016; Simons et al. 2014; Do et al. 2015), long-standing and strong bottlenecks, as
experienced by Greenlandic Inuit, appeared to have impacted the number and frequency
of recessive deleterious mutations (Pedersen et al. 2017a). Likewise, recent studies also
highlighted the role of recent admixture in balancing the effect of strong genetic drift on
the burden of recessive deleterious mutations (Lopez et al. 2018a; Font-Porterias et al.
2021).

The region of Oceania, spanning from Papua New Guinea up to the Polynesian Triangle
includes thousands of scarcely populated islands. Archaeological records suggest that
Near Oceania, which includes New Guinea, the Bismarck Archipelago and the Solomon
Islands, was first inhabited around 45,000 years ago (ya) (O’Connell et al. 2018b; Gosling
and Matisoo-Smith 2018a). Remote Oceania, which includes Micronesia, the Reef/Santa
Cruz, Vanuatu, New Caledonia, Fiji, and Polynesia, remained unoccupied until the recent
arrival of Austronesian-speaking people originating from Taiwan and Islands Southeast
Asia around 3,200 ya (Gosling and Matisoo-Smith 2018a; Kirch 2017). Genomic studies
shed light on a demographic past characterized by a strong founder event associated with
the peopling of the ancient Sahul continent and northeastern islands lying off (effective
population size (Ne)= 153-1,788 diploids) (Choin et al. 2021; Malaspinas et al. 2016b),
low effective population sizes notably for Polynesian groups (Choin et al. 2021; Harris et
al. 2020) and recent admixture between Papuan-related and East/Southeast Asian-related
groups (Choin et al. 2021; Pugach et al. 2018a; Posth et al. 2018; Lipson et al. 2018; Lipson et
al. 2020). Moreover, the World Health Organization (WHO) also reports a high prevalence
of metabolic disorders such as Type 2 diabetes, obesity and gout in this region. Yet, little is
known about the burden of deleterious mutations and whether the strong genetic drift
experienced by Pacific islanders (especially Polynesians) resulted in a reduction in the
efficacy of natural selection. More generally, the region of Oceania, by its almost unique
geographic context and sharp demographic events, provides with an excellent model to
evaluate the extent to which recent demographic events have impacted the occurrence

and distribution of deleterious mutations in the human genome.

6.2 Results

6.2.1 Dataset
We combined a previously generated WGS dataset composed of Pacific islanders (Choin
et al. 2021) with sequences from a number of worldwide groups (Malaspinas et al. 2016b;

Bergstrom et al. 2020). This dataset includes a total of 150 individuals distributed in 15
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Sub-Saharan Africans (Yoruba), 15 Europeans (French), 15 East Asians (Han Chinese),
15 Southeast Asians (Cebuano), 15 Polynesian outliers (Rennell and Bellona), 15 New
Guineans (Highlanders) 15 western Solomon Islanders (Vella Lavella), 15 Eastern Solomon
Islanders (Malaita), 15 Southern Ni-Vanuatu (Tanna) and 15 central Ni-Vanuatu (Malakula).
Focusing on Near and Remote Oceanians (New Guineans, Solomon islanders, Ni-Vanuatu
and Polynesian outliers), we identified 73,219 quality-filtered segregating missense and
636 stop gained loss-of-functions variants (hereafter referred as LoF) within exons of
18,300 genes. Considering only 169 LoF variants absent or at low frequency in gnomAD
(Karczewski et al. 2020)(Supplementary Table 1) we did not find significant enrichments
in LoF genes for any gene ontology (GO) categories, after correcting for multiple testing
(Benjamini & Hochberg method, Top 20 GO enrichment results are given in Supplementary
Table 2).

6.2.2 Evaluate the efficacy of natural selection

We investigated whether the demographic history of Oceanian groups, mainly
characterized by strong founder effects, low effective population sizes, as well as recent
admixture events, impacted their burden of deleterious mutations. We first assessed the
allele frequency spectra of deleterious variants, using a sequence conservation-based score
(i.e., GERP RS score (Cooper et al. 2005)) that is free from genome reference biases.
We found that the derived frequency spectrum of all populations is enriched in rare
variants, the proportion of which increases with deleteriousness (Figure 1a). We also
observed that rare variants (singletons) are enriched in deleterious variants, mainly for
the “Moderate” and “Strong” deleteriousness categories (Figure 1b). Altogether, these
results are consistent with the effect of purifying selection acting on worldwide human
populations. Interestingly, Polynesian outliers (RenBell) harbour an excess of neutral
mutations and a default of deleterious mutations in singletons, compared to other groups
(Figure 1b), but the lowest proportion of rare non-deleterious variants was also observed
in this population (Figure 1c), suggesting that differences in the allele distribution of
deleterious variants could be, at least partially, explained by stronger genetic drift among

Polynesian groups.

We next tested whether the observed population differences in the shape of deleterious
SFS could also result from a difference among populations in the efficacy of purifying
selection (which depends on NN,s). We thus calculated the ratio of the fixation probability
(u) for a new deleterious mutation versus a neutral mutation, to quantify the efficacy of
purifying selection to remove mutations, relative to genetic drift (uge1/ tneu, the smaller (u)

the greater the efficacy of natural selection). To calculate the fixation probability of new
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deleterious mutations (ug.), we used the parameters of the distribution of fitness effects
(DFE) inferred with the algorithm implemented in 0adi/FitOadi. We first estimated a
3-epoch demographic model using one-dimensional synonymous SFS for each of the 10
groups. Then, conditional on the demographic parameters, we inferred the parameters for
the DFE of non-synonymous mutations. We found subtle differences in the uge)/the, ratio
between Oceanians and other continental reference populations (Yoruba, Han Chinese
and French). Notably, Oceanians tend to have a higher ratio (Table 1, Supplementary
Figure 1), especially Papuans and Polynesians, suggesting a slightly reduced efficacy
of natural selection in these groups. However, we caution that the DFE and thus the
Ugel/ Unew Tatio of some Oceanian groups, particularly Polynesians, should be interpreted
with caution because of the very poor fit between observed and expected non-synonymous

SFS (Supplementary Figure 1).

6.2.3 Evaluate the mutational load

We compared the empirical mutation load of present-day Pacific and continental reference
groups (Yoruba, Han Chinese and French). Previous studies (Simons et al. 2014; Do
et al. 2015; Lohmueller 2014) have reported that differences in genetic load between
groups depend on the functional category of coding variants (e.g. GERP RS score (Cooper
et al. 2005)) and the dominance model. We thus approximated the load under an
additive and a recessive model for different GERP categories (Cooper et al. 2005), using
between-population ratios of the mean number of derived alleles per individual (Njeles) or
between-population ratios of the mean number of homozygous derived genotypes (Npom)
respectively. We found that all Oceanian populations present the same level of genetic
load as continental reference groups (for all GERP categories) under an additive model
(corrected p values > 0.05, Figure 2a, Supplementary Table 3). However, Pacific groups, to
the exclusion of Cebuano, harbour a significant higher recessive load than Africans for the
strongly deleterious mutation category (adjusted p-value = 0.03 for all ratios, Figure 2b,

Supplementary Table 3).

Simons and colleagues (Simons et al. 2014) have suggested that bottlenecks and
population growth have only a minor impact on the additive genetic load, owing to
(i) the compensation between the number of segregating variants, including deleterious
mutations, and their frequency and (ii) because these demographic events are too recent
or did not last long enough. In line with this, we found that Polynesians and Papuan
highlanders show the lowest number of deleterious variants for all GERP categories and
mutations that segregate on average at higher frequency than in any other Oceanian

and non-Oceanian groups (Figure 3). We obtained similar patterns using stop-gained
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Loss-of-Function variants (Supplementary Figure 2).

6.2.4 Effect of the Papuan-related ancestry and runs of
homozygosity

Runs of homozygosity (ROH) correspond to long genomic regions in which all loci for
an individual are homozygous. These long genomic segments are considered identical by
descent, and are found homozygous in the individual either because the parents of the
individual are related due to cultural endogamy, or because he is part of a population where
relatedness is high. Long ROH can thus be used to measure population size and parental
relatedness. We found that Polynesian outliers (RenBell) and to a lesser extent Papuan
Highlanders (PNG) and Vella Lavella western Solomon islanders presented the highest
levels of cumulative long ROH (cROH, Figure 4, Supplementary Figure 3) suggesting strong
recent bottleneck, isolation or parental relatedness. We then tested whether mutational
load is correlated with the individual cumulative length of long ROH, controlling for
varying levels of Papuan-related genetic ancestry. We found that both additive and
recessive mutational loads are not associated with Papuan-related ancestry proportions
carried by Pacific islanders (corrected p value > 0.05). However, the number of derived
homozygous genotypes correlated significantly with the cumulative length of long ROH,
for different categories of GERP RS score tested (adjusted p values = 0.02, 0.007, 0.003
and slope = 1.50 x 1077, 1.42 x 1077, 1.63 x 1077 for "Neutral", "Moderate" and "Strong"
categories of GERP RS respectively, Supplementary Table 4 and Supplementary Table 5).

207



Rare variants (1/2n)

swax3

Tanna

0.4 z
0.2 I g
0.6
_ I Han
0.4 §
2 I Cebuano
0.2 %
0 " i
3 00 B i e i e e s s . s e i e e st o b . s I RenBell
5 06
9
€ os ® _ [ FNe
g
0.0 i M e e e e e ‘
m
0.2 3
0.0 MJMM“J‘.J.‘.I-‘_A.A\m,l\.um‘l_\..“.|.\ cowd ! - - . .
c ° 0 Gounts 2 30 1.00 075 050 025 0.00
0.0 Proportions
0.5+ §
1.0 g
1.5 Populations GERP categories
2.0
00 W Yoruba B Extreme
- =
0.5 (80_ [l French Il Stong
1.0 o
g 5 B Han I Moderate
£ 1.54
[s]
g B Cebuano Neutral
k<)
o
g ® Il RenBell
5]
mmy || D
[0 VellaLavella
Malaita
Malakula
1 2

Figure 1. Allele frequency spectra of deleterious mutations. (a) Derived allele frequency spectra of
non-synonymous mutations for different bin of GERP score (category of deleteriousness) for different
world-wide populations including Africans (Yoruba), Europeans (French), East-Asians (Han), Filipinos
(Cebuano), Polynesians (RenBell), Papuan highlanders (PNG), Solomon islanders (Vella-Lavella and
Malaita) and Ni-Vanuatu (Malakula and Tanna). (b) Proportion of derived non-synonymous singletons
assigned to different GERP score categories (deleteriousness categories). (c) First and second bin of
derived allele frequency spectra of non-synonymous mutations for different bin of GERP score (category
of deleteriousness) and normalized by the derived allele frequency spectra expected under constant
effective population size and no natural selection. The sample size is equal to 15 for each group.
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0.171 0.01 1126 1.42E-05 0322
Yoruba 15 11343.64496 4.41E-05
[0.160-0.184] | [0.007-0.013] | [82.5-153.2] |[1.39e-05-1.45¢-05 ] [0.316-0.328]
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Table 1. DFE parameters (Beta and E[S]) and fixation probability of a new mutation for each
group. Nw corresponds to the weighted Ne across the 3-epoch model inferred with dadi and calculated
as in (Lopez et al. 2018). u del corresponds to the fixation probability of a new deleterious mutation,
uneu to the fixation probability of a new neutral mutation and udel/uneu to the ratio. 95%CI are given in
brackets and were calculated by bootstrapping by site 100 times.
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equal than 0.05) computed by comparing the bootstrap distribution for the considered GERP RS
category to that of the “neutral” category.
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6.3 Conclusion

6.3.1 Summary of results and short-term perspectives

The impact of bottlenecks, recent expansions and gene flow on the burden of deleterious
mutations in human has been deeply investigated in the last decade (Do et al. 2015;
Font-Porterias et al. 2021; Fu et al. 2013; Henn et al. 2015b; Henn et al. 2016b; Lohmueller
2014; Lohmueller et al. 2008; Lopez et al. 2018a; Pedersen et al. 2017a; Simons and Sella
2016; Simons et al. 2014). Most of these studies focused on the differences in the mutational
load and efficacy of natural selection between continental populations such as African
and European groups. Here, we investigated the burden of deleterious mutations and
efficacy of natural selection of Oceanian islanders, who experienced strong founder effects,
population collapses and recent admixture (Choin et al. 2021; Harris et al. 2020; Malaspinas
et al. 2016b). We find that Oceanians show only subtle differences in the efficacy of natural
selection (Table 1 and Supplementary Figure 1) and the current genetic load (Figure 2 and
Supplementary Table 3), relative to continental reference groups (Yoruba, Han and French).
However, we find that deleterious variants, including Loss-of-Function (LoF) variants tend
to segregate at higher frequency in Polynesian and Papuan highlander groups, likely due
to a stronger genetic drift (Figure 3 and Supplementary Figure 2). Yet, we need to evaluate
whether these observations are also true for variants associated with metabolic disorders
(e.g. BMI, Type-2-Diabetes) and whether a stronger drift (as for Polynesians), increases the

genetic variance at metabolic associated genomic regions (Barton and Turelli 2004).

Additional analyses are required to investigate and dissect in greater detail the impact of
(i) the recent Southeast Asian admixture and (ii) the apparent higher cumulative length
of run of homozygosity in some Oceanians, on the current genetic load. Furthermore, we
need to monitor the trajectory of the load through time using forward-in-time simulations.
Similarly, we want also to investigate the role of each demographic event experienced by
Oceanian islanders in shaping the occurrence and the distribution of deleterious mutations

using forward-in-time simulations.

6.3.2 Limitations

As most of our analyses rely on allele frequency-based methods that are sensitive to sample
size (e.g. SFS comparison, DFE), we randomly sampled 15 individuals per population.
However, the number of deleterious mutations and the probability to observe rare variants,

e.g., strongly or extremely deleterious mutations maintained at very low frequency by
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natural selection, depends on the number of samples used. Consequently, our low sample
size can reduce the power to detect differences in mutation load between Oceanian and
continental reference groups. Likewise, as we do not have any phenotypic data, we
assessed the deleteriousness of variants using a conservation-based prediction score (here
GERP score (Cooper et al. 2005)) as in (Font-Porterias et al. 2021; Henn et al. 2015b; Henn
et al. 2016b; Lopez et al. 2018a; Pedersen et al. 2017a). Nevertheless, this score is not
always proportional to the deleteriousness of a given variant as recently shown by (Huber,
Kim, and Lohmueller 2020).

Furthermore, because Simons and Sella found that the number of derived alleles
(Naneles) is the only statistic directly correlated with the mutational load and not biased
by demographic events (Simons and Sella 2016), we thus approximated the additive
mutational load using this approach. However, Pedersen et al., based on simulations
suggest that the number of derived alleles is likely underpowered to detect narrow

differences in load across human groups.

Our estimates of the fixation probability (u) for a new deleterious mutation versus a
neutral mutation suggest a reduction in the efficacy of natural selection especially for
Polynesians and Papuan highlanders (PNG) (Table 1). Nevertheless, we also found a very
poor fit between observed and expected non-synonymous SFS for Polynesians and to a
lesser extinct, for Papuan highlanders (Supplementary Figure 1). This poor fit can be
due to the effect of a strong genetic drift or/and a demographic history that is not well
considered when fitting the DFE: the exacerbated drift experienced by Polynesians could
have strongly distorted the synonymous and non-synonymous SFS but led also to fewer
segregating variants (fewer SNP to fit both the 3-epoch demographic model and the DFE
with dadi/ Fitdadi (Kim, Huber, and Lohmueller 2017)).

6.4 Material and Methods

Whole-genome sequencing data. HGDP (Bergstrom et al. 2020) FASTQ files were
converted to unmapped BAM files (uBAM), read groups were added and Illumina adapters
were tagged with Picard Tools version 2.8.1 (http://broadinstitute.github.io/picard/). Read
pairs were mapped onto the human reference genome (hs37d5), with the ‘mem’ algorithm
from Burrows—-Wheeler Aligner v.0.7.13 (Li and Durbin 2009) and duplicates were marked
with Picard Tools. Base quality scores were recalibrated with the Genomic Analysis ToolKit
(GATK) software v.3.8 (DePristo et al. 2011). Variant calling was performed following the
GATK best-practice recommendations (McKenna et al. 2010). All samples were genotyped

individually with ‘HaplotypeCaller’ in gvcf mode. For Malaspinas et al. (Malaspinas et al.
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2016b), and Choin et al. (Choin et al. 2021) sequences we started from gvcf files generated
in Choin et al. (Choin et al. 2021). The raw multisample VCF containing all individuals
was then generated with the ‘GenotypeGVCFs’ tool. Using BCFtools v.1.9, we applied
different hard quality filters on invariant and variant sites, based on coverage depth,
genotype quality, Hardy—Weinberg equilibrium and genotype missingness. Heterozygosity
was assessed with PLINK v.1.90 (Purcell et al. 2007; Chang et al. 2015) and cryptically
related samples were detected with KING v.2.1 (Manichaikul et al. 2010). For all analyses
we allowed 0% of missingness except for the description of Loss-of-Function (LoF) and

missense variants where we allowed up to 10%.

Variant annotation. To investigate the burden of deleterious mutations, we restricted our
analyses on bi-allelic synonymous and non-synonymous single nucleotide polymorphisms
(SNPs). To do so, we first kept SNP within CDS based on a downloaded bed files containing
genomic positions (hg19) of coding sequence regions (CDS) for each canonical transcript
form the UCSC ‘Table browser’ database (https://genome.ucsc.edu/). We then classified
variants into ‘missense’ or ‘synonymous’ using ensembl-vep tool (VEP) version 100.2
(McLaren et al. 2016). Stop gained loss-of-function (LoF) variants were annotated with
LOFTEE (available at https://github.com/konradjk/loftee) implemented in VEP (Lipson et
al. 2020).

LoF and missense variants were intersected with gnomAD (Karczewski et al. 2020)
for frequency annotations. Supplementary Table 1 was generated using only Oceanian
samples (without Africans, Han Chinese, French and Cebuano individuals) and including

related samples.

We assessed the deleteriousness of missense variants using a reference-free method
based on the sequence conservation score "GERP RS" (Cooper et al. 2005). We then
classified variants according to bin of GERP score (Lopez et al. 2018a; Henn et al. 2016b;
Font-Porterias et al. 2021): Neutral: —2 < GERP < 2; Moderately deleterious: 2 <
GERP < 4; Strongly deleterious: 4 < GERP < 6; Extremely deleterious: GERP > 6.
For each class of deleteriousness, we generated unfolded and folded site frequency spectra
using a custom python script using the FitOa0i library (Kim, Huber, and Lohmueller
2017). We also calculated the number of segregating variants and their mean frequency
per population and per category of GERP RS. 95%CI| were obtained by bootstrapping by
blocks of 2Mb.

Gene Ontology enrichment. To test whether LoF variants detected in Oceanians and
absent or at low frequency in gnomAD (Karczewski et al. 2020) database (max frequency

in gnomAD of 0.01%) targeted specific biological functions, we tested for Gene ontology
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enrichment using the R package GOseq (Young et al. 2010) which corrects for gene length.
We corrected p-values (multiple testing) using an FDR approach (Benjamini & Hochberg
method).

DFE of new non-synonymous mutations. We used dadi/Fitdadi (Kim, Huber, and
Lohmueller 2017; Gutenkunst et al. 2009) to infer the DFE of new non-synonymous
mutations. We used the synonymous and missense mutations as neutral and deleterious
classes, respectively. We fitted a three-epoch demographic model to synonymous SFS per
population. Fitdadi infers the mean (E(s)) of a gamma distributed DFE model, fitted on
the non-synonymous SFS, accounting for demography. Parameters are scaled by 2Ny,
with Ny, estimated using the following equation 0; = 4Ny, pLg with p the mutation
rate and L, the length of the sequence where synonymous mutations can arise. We used
here a mutation rate equal to 1.5 x 107® (Segurel, Wyman, and Przeworski 2014) and
a ratio Lys/Ls = 2.31 (Huber et al. 2017) to estimate Lg and Lygsfrom Lg + Lyg. We
calculated a weighted Ne over the inferred demographic changes through time as in (Lopez
et al. 2018a; Font-Porterias et al. 2021). We computed the average fixation probability of a
new mutation (u) by integrating over the DFE inferred for each population separately. We
computed the fixation probability of a new deleterious mutation (u4.) and calculated the
ratio of ug over the fixation probability of a neutral mutation (up.,) as a way to quantify the
relative strength of selection versus drift at removing deleterious mutations. We calculated

confidence intervals for estimated parameters by bootstrapping by site 100 times.

Approximation of the mutational load. We used the Ngjces and Ny, statistics
(Simons et al. 2014; Henn et al. 2016b) to approximate the additive and recessive
mutational load of present-day worldwide human groups: Nyjeies = Npet + 2Npom With
Nhper and Npp,, corresponding to the numbers of heterozygous and derived homozygous
genotypes, respectively. We stratified these summary statistics for different categories
of deleteriousness based on the GERP RS score (Cooper et al. 2005). We computed the
average number of Njcies and Ny, per group using a custom python script and calculated
between-population ratio for each GERP score categories. We used a 2Mb-block paired
bootstrapping approach to obtain the 95% confidence intervals of between-population
ratios (1,000 resamples with replacement). P-values were obtained by comparing the
bootstrap distributions of deleterious categories with that of the neutral category. P-values

were corrected for multiple testing using an FDR (Benjamini & Hochberg) method.

Runs of homozygosity. We call Runs Of Homozygosity (ROH) with GARLIC (Szpiech,
Blant, and Pemberton 2017) v1.1.6 (https://github.com/szpiech/garlic) using the weighted
LOD calculation (-weighted flag) to account for linkage disequilibrium between loci and

recombination events (Blant et al. 2017). We used the —auto-winsize flag to automatically
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guess the best window size based on the SNP density, —gl-type GQ to account for the
quality of th genotypes, —auto-overlap-frac flag and a mutation rate equal to 1.25 x 107,
ROH were called per population and classified in 3 clusters based on their length using a
Gaussian mixture model implemented in GARLIC. We focused our analyses on the longest
class of ROH, the third class (class C) because it likely represents ROH due to recent
parental relatedness, isolation or recent bottleneck. Linear regressions between mutational
load (Naijeres and Npopm) and length of long ROH were performed using the [m() function
of R and adjusted by the different levels of PNG ancestry (proportion taken from Choin et
al. (Choin et al. 2021)) and population effect:

Im(Load ~ PNGancestry + cumulativeROH + poppng + poPaatakuia + POPTanna +
POPMalaita + POPVL + POPPolOut)

pop, corresponds to a binary vector that takes the value "1" if the sample belongs to
the population x and "0" otherwise. We performed linear regressions only for the class
"Neutral”, "Moderate" and "Strong" of GERP RS, because the range of the values taken by
Naiieies and Ny, for the last category "Extreme” was tight (discrete values). P-values were

corrected for multiple testing by using an FDR (Benjamini & Hochberg) method
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Supplementary Figure 1. Fitted non-synonymous SFS with Fitdadi. Observed
(blue) and expected (salmon) 1 dimensional folded SFS (n=15 for each group).
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Supplementary Table 1. LoF variants present in 308 Oceanians (including related
samples, Papuan highlanders, Solomon Islanders, Reef/Santa Cruz islanders,
Ni-Vanutu, RenBell and Tikopia Polynesians outliers) absent or at low frequency
in gnomAD (< 1/1000). Count gives the number of LoF alleles in the 308 Oceanians
individuals; n(HET), the number of heterozygous genotypes; n(HOM), the number of
LoF homozygote genotypes; max Freq gnomAD give the maximal frequency observed
in gnomAD and max Pop gnomAD, the population where the maximal frequency is

observed.

[provided as a excel file]

Supplementary Table 2. Top 20 Gene ontology (GO). P.values provided here are
uncorrected for multiple testing (adjusted p.value = 1 for all GO categories).

category p.value term
G0:0062023 | 0.00021261 collagen-containing extracellular matrix
G0:0004867 | 0.00068207 serine-type endopeptidase inhibitor activity
G0:0032982| 0.00177242 myosin filament
G0:0051015| 0.0021489 actin filament binding
G0:0035381| 0.00231927 ATP-gated ion channel activity
G0:0032838| 0.00261907 plasma membrane bounded cell projection cytoplasm
G0:0045742| 0.00285371 | positive regulation of epidermal growth factor receptor signaling pathway
G0:0036289| 0.00299293 peptidyl-serine autophosphorylation
G0:2001225| 0.00308808 regulation of chloride transport
G0:1901186| 0.0034293 positive regulation of ERBB signaling pathway
G0:0042491| 0.0036445 inner ear auditory receptor cell differentiation
G0:0060401 | 0.00393939 cytosolic calcium ion transport
G0:0019896 [ 0.00398365 axonal transport of mitochondrion
G0:0019428|0.00413488 allantoin biosynthetic process
G0:0019628| 0.00413488 urate catabolic process
G0:0035253| 0.00434579 ciliary rootlet
G0:0031012 | 0.00467057 extracellular matrix
G0:0097014 | 0.00521012 ciliary plasm
G0:0005770| 0.0053969 late endosome
G0:0008092 | 0.00557218 cytoskeletal protein binding

Supplementary Table 3. Adjusted p-values (bootstraping) of ratios of the mean per-
individual number of derived alleles (Naieles) and derived genotypes (Nnom) between
Pacific islanders and non-Oceanian groups represented by Yoruba Africans, Han
Chinese and French Europeans.



Pop Moderate_Nalleles | Strong_Nalleles | Extreme_Nalleles | Moderate_Nhom | Strong_Nhom Extreme_Nhom
Cebuano/Yoruba 0.541745825 0.427097290 0.833013728 0.687717435 0.071992801 0.833013728
Cebuano/French 0.554344566 0.699623788 0.935401197 0.833013728 0.833013728 0.884071593

Cebuano/Han 0.972502750 0.817742226 0.833013728 0.833013728 0.972502750 0.699623788
RenBell/Yoruba 0.173582642 0.474252575 0.928257174 0.341135117 0.025197480 0.687717435
RenBell/French 0.116538346 0.733246675 0.972502750 0.341135117 0.435706429 0.741225877

RenBell/Han 0.427097290 0.833013728 0.960468659 0.525787421 0.452621405 0.554344566

PNG/Yoruba 0.427097290 0.341135117 0.833013728 0.683131687 0.029397060 0.607259274

PNG/French 0.442467753 0.554344566 0.928257174 0.733246675 0.569326851 0.622562134
PNG/Han 0.833013728 0.687717435 0.833013728 0.972502750 0.687717435 0.435706429
Vella_Lavella/Yoruba 0.451616377 0.427097290 0.972502750 0.588162236 0.025197480 0.833013728
Vella_Lavella/French 0.435706429 0.687717435 0.833013728 0.687717435 0.591171652 0.928257174
Vella_Lavella/Han 0.846338896 0.833013728 0.907822425 0.960468659 0.687717435 0.822565112
Malaita/Yoruba 0.435706429 0.427097290 0.928257174 0.687717435 0.025197480 0.736405233
Malaita/French 0.427097290 0.687717435 0.960468659 0.833013728 0.627646326 0.833013728

Malaita/Han 0.833013728 0.789060820 0.960468659 0.867132518 0.699623788 0.627646326
Tanna/Yoruba 0.687717435 0.427097290 0.833013728 0.833013728 0.029397060 0.733246675

Tanna/French 0.733246675 0.687717435 0.935401197 0.972502750 0.627646326 0.833013728

Tanna/Han 0.849375257 0.833013728 0.833013728 0.699623788 0.733246675 0.687717435
Malakula/Yoruba 0.530772729 0.341135117 0.960468659 0.733246675 0.029397060 0.808702913
Malakula/French 0.525787421 0.569326851 0.928257174 0.833013728 0.687717435 0.833013728
Malakula/Han 0.928257174 0.688446410 0.972502750 0.833013728 0.833013728 0.697130287

Supplementary Table 4. Adjusted p-values of the linear regressions (Naieies / Nhom ~
PNG ancestry + cumulative ROH + pop PNG + pop Malakula + pop Tanna +
pop Malaita + pop VL + pop PolOut). PNG means Papua New Guinea(n) and pop,

population

Nalleles Neutral | Nalleles Moderate | Nalleles Strong | Nhom Neutral | Nhom Moderate | Nhom Strong

PNG ancestry 8.17E-01 9.30E-01 9.30E-01 3.15E-01 8.27E-01 8.61E-01

cumulative long ROH 1.42E-01 8.61E-01 9.84E-01 2.13E-02 6.66E-03 2.70E-03

pop PNG 5.48E-01 9.30E-01 9.30E-01 3.23E-01 8.17E-01 8.61E-01

pop Malakula 7.44E-01 9.69E-01 9.30E-01 3.24E-01 8.46E-01 8.17E-01

pop Tanna 7.44E-01 9.84E-01 9.30E-01 3.38E-01 8.17E-01 8.17E-01

pop Malaita 7.40E-01 9.30E-01 9.30E-01 1.65E-01 7.44E-01 8.61E-01

pop Vella Lavella 6.22E-01 9.20E-01 9.30E-01 7.64E-02 5.48E-01 9.84E-01

pop Polynesian Outliers 5.80E-02 5.50E-01 9.84E-01 3.86E-01 8.61E-01 9.71E-01

Supplementary Table 5. Slopes of the linear regressions (Naieies / Nhom ~
PNG ancestry + cumulative ROH + pop PNG + pop Malakula + pop Tanna +
pop Malaita + pop VL + pop PolOut). PNG means Papua New Guinea(n) and pop,

population

Nalleles Neutral | Nalleles Moderate | Nalleles Strong | Nhom Neutral | Nhom Moderate | Nhom Strong

PNG ancestry 1.48E+02 -3.29E+01 -5.17E+01 1.81E+02 5.94E+01 -5.08E+01

cumulative long ROH 2.00E-07 -4.15E-08 -1.60E-09 1.50E-07 1.42E-07 1.63E-07

pop PNG -2.38E+02 3.26E+01 4.74E+01 -1.74E+02 -6.15E+01 5.05E+01

pop Malakula -1.52E+02 1.98E+01 4.46E+01 -1.50E+02 -4.82E+01 5.69E+01

pop Tanna -1.54E+02 9.36E+00 4.11E+01 -1.49E+02 -5.51E+01 5.99E+01

pop Malaita -1.02E+02 2.02E+01 2.24E+01 -1.15E+02 -4.37E+01 2.49E+01

pop Vella Lavella -1.18E+02 3.54E+01 3.31E+01 -1.38E+02 -5.97E+01 2.31E+00

pop Polynesian Outliers -1.33E+02 5.09E+01 -1.87E+00 -4.30E+01 -1.23E+01 -3.11E+00
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CHAPTER 7

7.1 A complex demographic history

7.1.1 Near Oceania: A highly structured region

Previous demographic inferences estimated a deep divergence time between northern and
southern Sahul (New Guineans and Aboriginal Australians) occurring at least 37,000 years
ago (Malaspinas et al. 2016a). Our work on the demographic history of Near Oceanian
populations confirms but also extends these findings to the two other archipelagos that
compose the region of Near Oceania. This population structure is among the oldest
estimated at a scale of a continent, excluding Africa. Indeed, the genetic isolation of the
different Near Oceanian groups is almost as old as between Europeans and East Asians
(Wollstein et al. 2010; Malaspinas et al. 2016a). Similarly, at a finer scale, a study
(Bergstrom et al. 2017) based on SNP-array genotyping data of 381 Papua New Guineans
shed light to a strong intra New Guinea population structure, between lowlanders and
highlanders dated back to around 20,000 years ago. However, the genetic structure within
highlanders is more recent, dated back to around 10,000 years ago (Bergstrom et al. 2017).
Archaeological studies indicate an in situ emergence of agriculture in highland New Guinea
around 10,000 years ago (Golson et al. 2017) and more recently, the associated “Neolithic”
behaviour changes (social and economic changes) between 5,050 and 4,200 years ago (Shaw
et al. 2020). This congruence between archaeology and genetic data suggests that the
spread of agriculture in the highland of New Guinea played a key role in re-shaping after
the initial settlement, the genetic makeup of New Guinean highlanders and could explain
in part, the strong but recent genetic structure observed today in the region (Bergstrom
et al. 2017). Likewise, a recent study also indicates that environmental factors (e.g.
climate, topography) are not enough to explain the current geographic distribution of New
Guinean languages and that other factors such as population movement can also explain

the language diversity observed today in the region (Antunes et al. 2020).

Very little is known about the peopling history, population structure and time of divergence
between Solomon islanders. Studies based on SNP array genotyping datasets (Pugach
et al. 2018b; Isshiki et al. 2020) or mtDNA and Y-chromosome datasets (Delfin et
al. 2012) point towards a different demographic history between western and eastern
islands of the archipelago. Western Solomon islands were peopled at least 30,000 years
ago as attested by the only Pleistocene archaeological site of the Buka island (Wickler
and Spriggs 1988). Some Solomon islanders carry specific NRY lineages dated back to
around 9,500 years ago (Delfin et al. 2012). Interestingly, we inferred younger divergence

time between Solomon Islanders and other Near Oceanians when replacing Vella Lavella
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western Solomon Islanders by Malaita eastern Solomon Islanders (around 20,000 years ago
versus around 9,500 years ago) supporting a different peopling history of these two parts of
the archipelago. However, this result needs to be confirmed and extended by for example,

reconstructing the joint demographic history of different Solomon Island groups.

Our demographic inference of Near Oceania islanders is based on a limited number of
groups, only one per archipelago, mainly because of the complexity of the demographic
models and the limits of our approach (see 7.2 Inferring demographic models with
SFS-based methods). How well do our models represent the peopling history of Near
Oceania? As previously mentioned, the intra-archipelago genetic structure could be very
high because of an early isolation of the different groups or because of different admixture
histories within islands/archipelagos and/or with East/Southeast Asians. Consequently,
many divergent genetic lineages might not be represented in our models and it is also
possible that unsampled groups have a different population history. In addition, the
different volcanic eruptions that occurred during the Pleistocene and Holocene periods
forced different groups to migrate, to colonize new territories or to replace other groups
(Torrence et al. 2004; Torrence, Neall, and Boyd 2009). It is thus likely that some Pleistocene
groups disappeared and did not contributed to the current gene pool. Ancient DNA would
help to better portrait the genetic makeup of the first settlers and better understand the

current genetic diversity of Near Oceania.

7.1.2 Dissociating language, culture and genes?

The study of the Austronesian language phylogeny supports a “pulse-pause” model
of the Pacific settlement from Taiwan (Gray, Drummond, and Greenhill 2009). The
analyses indicate a first pause between Taiwan and the Philippines around 4,000 years
ago and a second pause in western Polynesia around 2,800 years ago, as predicted by
the “Out-of-Taiwan” model (Bellwood 1997). These results are also in agreement with
ancient DNA studies, which linked the first Lapita settlers of Remote Oceania to Taiwan
and the Philippines (Posth et al. 2018; Lipson et al. 2020; Lipson et al. 2018). However, a
recent genetic study (Larena et al. 2021) based on 1,028 individuals from the Philippines
and on two ancient individuals dated to around 8,000 year ago from the Liang islands
(between Mainland East Asia and Taiwan) questioned the language-culture package
proposed by the “Out-of-Taiwan” model. The two Liangdao samples form the oldest
link between Mainland East Asians and present-day Austronesian speakers. The analyses
suggest that the Cordilleran Austronesian speakers migrated into the Philippines before
the start of agriculture in the region. Similarly, our demographic models of Formosan

(using Taiwanese aborigines) and Malayo-Polynesian speakers (using Kankanaey Filipinos,
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Solomon islanders and Polynesians) suggest a population structure of Austronesian
speakers that predates the appearance of agriculture in Taiwan and Southeast Asia.
Furthermore, the analysis of Oryza japonica (Gutaker et al. 2020), the main cultivated
subspecies of rice, revealed a very recent diffusion in Island Southeast Asia starting around
2,500 years ago. Altogether, these different studies suggest that the spread of agriculture
in Islands Southeast Asia and later in Oceania is not the consequence of a demic diffusion

but rather a diffusion of ideas involving limited gene flow.

7.1.3 Multiple origins and/or migrations for the Lapita?

The archaeologist Noury, based on the analysis of the motifs found on Lapita potteries,
hypothesized that multiple founder groups were at the origin of the Bismarck Lapita
societies (Noury and Galipaud 2011; Noury 2005). These multiple migrations would
originate from Island Southeast Asia (Borneo/Sulawesi) and the Philippines through the
Marianna islands in Micronesia. The Marianna archipelago is of great interest since
archaeological and paleoenvironmental evidence suggest the presence of the Lapita culture
as old as in the Bismarck archipelago around 3,500 years ago or even older, up to 4,500 years
ago (Carson 2020; Athens and F. 2004). Recently the study of two skeletons from Guam
island (Marianna islands) dated to around 2,200 years ago revealed that the first settlers
of the archipelago likely came from the Philippines (Pugach et al. 2021). This study also
highlights the close genetic relationship between the two Guam individuals and the Lapita
individuals from the Vanuatu and Tonga. This suggests an alternative route through the
Marianna islands for the peopling of western Remote Oceania and ultimately Polynesia.
Hence, although not formally tested, this study proposes an alternative hypothesis that
gives to Micronesia a key role in the peopling history of Polynesia (Figure 7.1). This
archipelago and more generally Micronesia should thus receive careful attention and be

further investigated.

Our analyses indicate multiple interactions between East/Southeast Asia and Near
Oceania, at least two, with the most recent gene flow dated at around 1,500 years ago. In
1992, from the study of western Pacific rock arts, C. Ballard proposed that the Austronesian
Painting Tradition (APT) did not spread from Taiwan or the Philippines with the initial
Austronesian settlers but rather more recently from Island Southeast Asia around 2,000
years ago (Ballard 1992). Does the second gene flow that we detected correspond to most
recent Island Southeast Asian influences in Near Oceania? Does it reflect a settlement of
western Remote Oceania and Polynesia via multiple routes (i.e. through New Guinea and
the Bismarck or through the Marianna Islands)? The mode and tempo of East/Southeast

Asian gene flow should be further evaluated and extended to other Near and Remote
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Figure 7.1: Routes taken by the settlers of Remote Oceania (Pugach et al. 2021). Red
dots indicate the locations of the Lapita samples from Vanuatu and Tonga. The blue and
red arrows indicate the standard route taken by Austronesian speakers and the route for
the peopling of the Mariana Islands respectively. The dashed red arrow indicates the likely
alternative route for the peopling of Remote Oceania.
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CHAPTER 7

Oceanian groups. Ancient DNA from Near Oceania before 3,500 years ago will also give
insight about the hypothesis of early Holocene (around 6,000 years ago or even before)

connexions between Island Southeast Asia and Near Oceania.

7.2 Inferring demographic models with SFS-based

methods

7.2.1 Obtaining unbiased estimates

One of the main objectives of my thesis was to reconstruct the demographic history
of Near and Remote Oceanians using modern DNA. The aim of the analyses was to
estimate unbiased demographic parameters and particularly, times of divergence between
the different Near and Remote Oceanians groups. The admixed nature of Oceanian
islanders makes inaccurate the use of standard methods such as Relate (Speidel et al.
2019) or MSMC (Schiffels and Durbin 2014) to estimate divergence times between groups
or effective population sizes. The joint estimations of the parameters characterizing the
demographic past of Near and Remote Oceanians as well as of the East/Southeast Asian
ancestry of these groups were performed using a multidimensional SFS-based inference
and the maximum likelihood framework implemented in Fastsimcoal2 (Excoffier et al.
2013; Excoffier et al. 2021). The SFS is a powerful summary statistic to infer part
of the demographic parameters including effective populations size or divergence time
(Gutenkunst et al. 2009; Excoffier et al. 2013; Excoffier et al. 2021; Marchi, Schlichta,
and Excoffier 2021). However, in some cases, the same SFS can be explained by different
demographic scenarios (Terhorst and Song 2015; Myers, Fefferman, and Patterson 2008)
and other, more informative summary statistics can be used to infer the number, the nature,
the time and rate of genetic interactions between populations (Cooke and Nakagome
2018; Gravel 2012; Liang and Nielsen 2014). For these reasons, asymmetric and symmetric
migrations between geographically close groups (migrations following a stepping stone
model) as well as single pulse admixture events should be considered in these analyses
more as nuisance parameters. Questions related to gene flow between Near Oceanians
and East/Southeast Asians as well as archaic introgression with both Neanderthal and
Denisovan archaic hominins, were instead investigated in detail using an ABC approach

with informative summary statistics.

To obtain unbiased estimates (less biased as possible) of the divergence times, we

considered in all our models: (i) Neanderthal and Denisovan introgression events,
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(if) continuous migrations between neighbour groups (asymmetric or symmetric), (iii)
East/Southeast Asian gene flow and (iv) effective population size changes over time
including bottlenecks, population contractions and expansions. In some of our models,
we included ghost populations to capture gene flow from unsampled groups and also
population structure. The number of parameters increases very rapidly which limits the
number of populations that can be included in the models. For some of them, the parameter
space was very large increasing the risk of overfitting and model misspecification (Marchi,
Schlichta, and Excoffi 2021; Terhorst and Song 2015). Although, we assessed the accuracy
and uncertainty of the estimated parameters, it is almost impossible to ensure that the

likelihood converged towards the global maximum.

7.2.2 Obtaining uncertainty of the estimates

Unlike ABC approaches enabling the calculation of the 95% confidence intervals, the
algorithm implemented in Fastsimcoal2 does not. To do so, we calculated the 95%
confidence intervals using a non-parametric block-bootstrap approach as recommended
in the literature (de Manuel et al. 2016; Malaspinas et al. 2016a; Sikora et al. 2019)
and Fastsimcoal2 best practices (https://groups.google.com/g/fastsimcoal). The individuals
used to represent the different sampled populations were selected based on their mean
sequencing coverage but also based on other analyses such as PCA and ADMIXTURE. We
considered through our bootstrapping strategy that all the variability of the demographic
parameter estimation came from the selected independent regions of the genome (each
haplotype has its own history) and not from the individuals. However, the individuals
chosen to represent a population can also be a source of variability, for example in case
of recent admixture there is a variance in the ancestry proportions. This variability could
thus be considered in the resampling strategy when calculating the uncertainty of the

parameters.

For most of the model that we inferred, we replicated the same models replacing groups by
others from the same archipelago, for example Vella Lavella by Malaita Solomon Islanders
or Malakula by Emae Ni-Vanuatu. For some of the parameters the confidence intervals
were overlapping, strengthening the accuracy of these estimates. Nevertheless, what does
it mean for those that did not replicate? It is challenging to know whether it is because
these parameters are not correctly inferred or because it reflects true differences in the

demographic past of these groups.
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7.2.3 Model comparison

| would like also to discuss about the model comparison with Fastsimcoal2. The SFS
that we used for model inference were build using all SNP found outside genes and CpG
islands. Because of the presence of linked-SNP, the likelihood computed by Fastsimcoal2 is
a composite likelihood. Composite likelihood provides unbiased parameter estimates but
the likelihood itself is inflated and cannot be used for model comparison using AIC or BIC.
An alternative approach has been proposed which consists in re estimating (100 times) with
more simulations the likelihood of each model included in the comparison (de Manuel et
al. 2016; Malaspinas et al. 2016a; Sikora et al. 2019). We considered that a model was the
most likely if the initial expected log10(likelihood) under this model is higher than that
of the alternative models, and the difference between the mean of the 100 re-estimated
log10(likelihoods) of this model and that of other models is higher than 50 as in (Sikora
et al. 2019). We estimated that using these criteria, the true model was selected in 81%
of the cases, but it is likely that this true positive rate depends on the complexity of the
demographic model to estimate. Therefore, the threshold used to consider a model as the

most likely should be a priori evaluated and adapted to each demographic model tested.

7.2.4 "All models are wrong but some are useful"”

Finally, it is important to mention that all demographic inferences rely on mathematical
simulations and thus on assumptions that, if violated, can lead to biased estimates. For
example, coalescent simulations and demographic inferences assume neutrality. However,
part on neutral variants found outside genes can also be affected by linked selection,
especially background selection which corresponds to the elimination of neutral variants
owing to negative selection acting on linked deleterious mutations. Genomic regions
affected by background selection have a lower genetic diversity mimicking a signal of low
effective population size and recent expansion (Ewing and Jensen 2016; Marchi, Schlichta,
and Excoffi 2021; Schrider, Shanku, and Kern 2016). Moreover, the dates of events in
absolute time (“years ago”) also rely on two parameters: the mutation rate and the
generation time. Despite the mutation rate varies greatly along the genome (as mentioned
in chapter 2) we assumed in our simulations a constant mutation rate, 1.25 x 1078 per site
and per generation as in (Malaspinas et al. 2016a; Schiffels and Durbin 2014; Sikora et al.
2019).

The space of possible demographic models is very large and it is not possible to explore

all of them. Models presented in chapter 5 correspond to the most likely demographic
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scenarios among a subset of models that we compared. Despite | referred in this thesis to
the “inference of complex demographic models”, all models presented here (and in other
studies) are too simple to represent the real demographic history of Oceanian populations.
However, simple models are sometimes useful to test and rise hypotheses as well as to pave
the way for a better understanding of the complex peopling and demographic history of

human populations.

7.3 Future directions

7.3.1 Toward fine-scale and transdisciplinary studies

Our work, combined with other recent genomic studies (Posth et al. 2018; Lipson et al.
2018; Pugach et al. 2018b; Malaspinas et al. 2016a), provide a more detailed picture of the
population history and the genetic diversity observed today in Near and Remote Oceania.
However, the answers provided still remain too general for this region of the world with
the richest cultural and linguistic diversity combined with a very deep continental genetic

structure.

We have seen so far in this thesis (i) the old divergence time and deep population structure
of Near Oceanians, (ii) the role of migrations (Lapita and post-Lapita) in shaping the
biological and cultural makeup of Remote Oceanians and (ii) the heterogeneity in the
admixture history of the different groups. How and when were Central and Eastern
Solomon Islands peopled? Is there a population continuity in this archipelago since initial
settlement? Who is/are the Lapita people(s)? Did the Lapita societies originate from one
or multiple sources? Who were the first western Remote Oceanians and Polynesians?
What were the consequences of Europeans in the population structure and health of
Oceanians? To my mind, these questions should be addressed by considering the inputs
of different disciplines and by shifting toward fine-scale studies: archipelago, island or
even burial-based studies (for ancient DNA) as suggested by K.R Veeramah (Veeramah
2018). Generally, population geneticists try to validate/invalidate hypotheses or models
proposed by archaeologists, anthropologists and linguists. | think, it is time now that new
hypotheses and new models emerge from a common and constructive discussion between

disciplines.

In her review, K.R Veeramah (Veeramah 2018) discussed the issue with the concept
of “migration” that tends to be simplified in genomic and paleogenetic studies. First,

because geneticists typically use only a limited number of samples to represent a likely

235



CHAPTER 7

socially heterogenous group and second, because paleogenetic studies do not address the
question of the nature of the migrations (e.g. back migrations, leapfrogging, continuous).
While Valentin et al. (Valentin et al. 2016; Valentin et al. 2014) referred to “Secondary
movement of people”, geneticists referred to “population replacement”. In this context,
transdisciplinary approaches will allow to harmonize the different terms that are used by
both archaeologists and geneticists but that do not have the same definition or precision
(e.g. “Population replacement” vs “Secondary movement of people”). This approach will

also bring to the same level stories, sometimes different, tell by genes, language and culture.

The perception of blood, DNA or other part of the body changes from culture to
another. Similarly, the destruction of bones to extract ancient DNA or the post-mortem
manipulation of the body in sacred lands can sometimes be perceived as unethical by
autochthonous groups (e.g. the study of the Kennewick man and other native American
groups (Wagner et al. 2020; Rasmussen et al. 2015; Bhattacharya et al. 2018)). For
decades, it was very complicated to obtain DNA samples from Pacific groups, and
although some communities recently consented to be part of genetics studies, others
still refuse. For example, from 2017 the customary senate of New Caledonia refuses the
involvement of indigenous Kanak people in population genetic studies. Archaeologists,
anthropologists and linguists, spend a tremendous amount of time in the fieldwork, where
they create stable relationships, communicate with local authorities and engage, when
desired, autochthonous groups. In this regard, | am personally convinced that geneticists

will benefit from this collaborative and transdisciplinary work.

7.3.2 Lack of diversity in databases

As recently as January 2019, around 78% of individuals found in Genome Wide Association
Studies (GWAS) were of European descent while only less than 0.20% were Oceanians
(Figure 7.2) (Sirugo, Williams, and Tishkoff 2019). More generally, genomic resources
such as ascertained SNP arrays (Lachance and Tishkoff 2013) or databases such as HGDP
(Bergstrom et al. 2020) and gnomAD (Karczewski et al. 2020), epidemiological and clinical
databases, e.g., ClinVar (Landrum et al. 2018) or OMIM (Amberger et al. 2015) are
European-centered. However, many studies point to the low portability, from an ancestry
to another, of SNP effect sizes and corresponding polygenic scores, i.e., individual’s genetic
predisposition score for a given tested trait (Peterson et al. 2019; Majara et al. 2021;
Amariuta et al. 2020; Sirugo, Williams, and Tishkoff 2019). This is a burning issue since
variants associated with diseases in Oceanians or other underrepresented populations (e.g.,
Native Americans) but rare in Europeans, are still lacking (Kessler et al. 2019; Kessler et al.
2016; Landry et al. 2018).
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Future works need to include phenotypic data of Pacific groups especially
metabolic-related traits in order to identify population specific genetic variants associated
with such disorders. Similarly, future work would also include new whole genome
sequences or whole exome sequences of more Pacific groups such as western and eastern
Polynesians who are almost completely absent from genetic databases. These new data
with a reduced ascertainment bias, combined with phenotypic, time transect ancient
DNA, archaeological, anthropological and linguistic data will allow (i) to better portrait
the biological diversity of the region, (ii) to fill in some gaps in the peopling history of Near
and Remote Oceania, (iii) evaluate the impact of Europeans on population structure and
health of Oceanians, (iv) shed light on biological functions that contributed to adaption

to their insular environment and (v) to better understand their present-day relation to

diseases.
Ancestry category distribution Ancestry category distribution
of studies in GWAS catalog of individuals in GWAS catalog
Multiple Multiple
2.36% 2.48%
European European
Multiple, 52,27% 78.39%
including

European
1.88%

Not reported
Non- 6.71%
European
Non-Asian
17.98%

All Asian
20.68%

Non-

European

Non-Asian
3.31%

East Asian

15.91% Hispanic
or Latin
American

5.12%

Multiple,
non-European
0.47%

5.61%

East Asian
Multiple, 8.21%
including
European

2.46%

African
2.03%

Other Asian
2.01%

Hispanic or
Latin American
1.13%

Multiple,
non-European
0.01%

Greater Middle Eastern/

Other and
other admixed Native American/Oceanian

Other Asian
4.77%

2.06% 1.24%

Other and Greater Middle Eastern/
other admixed Native American/Oceanian

Figure 7.2: Ancestry distribution in GWAS Catalog studies (January 2019) (Sirugo,
Williams, and Tishkoff 2019). Percentage of each ancestry based either on studies (left)
or on the total number of individuals in GWAS studies (right).
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SUMMARY

African rainforests support exceptionally high biodi-
versity and host the world’s largest number of active
hunter-gatherers [1-3]. The genetic history of African
rainforest hunter-gatherers and neighboring farmers
is characterized by an ancient divergence more than
100,000 years ago, together with recent population
collapses and expansions, respectively [4-12]. While
the demographic past of rainforest hunter-gatherers
has been deeply characterized, important aspects of
their history of genetic adaptation remain unclear.
Here, we investigated how these groups have adapt-
ed—through classic selective sweeps, polygenic
adaptation, and selection since admixture—to the
challenging rainforest environments. To do so, we
analyzed a combined dataset of 566 high-coverage
exomes, including 266 newly generated exomes,
from 14 populations of rainforest hunter-gatherers
and farmers, together with 40 newly generated,
low-coverage genomes. We find evidence for a
strong, shared selective sweep among all hunter-
gatherer groups in the regulatory region of
TRPS1—primarily involved in morphological traits.
We detect strong signals of polygenic adaptation
for height and life history traits such as reproductive
age; however, the latter appear to result from perva-
sive pleiotropy of height-associated genes. Further-
more, polygenic adaptation signals for functions
related to responses of mast cells to allergens
and microbes, the IL-2 signaling pathway, and
host interactions with viruses support a history of
pathogen-driven selection in the rainforest. Finally,
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we find that genes involved in heart and bone devel-
opment and immune responses are enriched in both
selection signals and local hunter-gatherer ancestry
in admixed populations, suggesting that selection
has maintained adaptive variation in the face of
recent gene flow from farmers.

RESULTS

Exome Sequencing Dataset and Population Structure
African rainforest hunter-gatherers (RHGs)— historically grouped
under the term “Pygmies” —live along the dense tropical rainfor-
ests of central Africa, in the western and eastern part of the
Congo Basin [1-3]. Genetic studies have deeply investigated
the demographic history of these groups, characterized by
long-term isolation since the Upper Paleolithic and substantial
admixture with neighboring Bantu-speaking farmers in the last
1,000 years [4-12]. However, their adaptive history has received
less attention. Natural selection studies in RHGs have primarily
focused on small adult body size as the only trait characterizing
the “pygmy” phenotype [13-20], and used SNP genotyping data
[14, 15, 19-21] or whole-genome/exome sequencing of a few
individuals or populations [4, 6, 18, 22, 23].

To understand human genetic adaptation to the rainforest,
we generated and analyzed whole-exome sequencing data
(~40x coverage) for seven RHG groups from Cameroon,
Gabon, and Uganda, as well as, for comparison purposes, seven
sedentary groups of Bantu-speaking agriculturalists (AGRs) (Fig-
ure 1A; Table S1). After quality filters, we obtained a final dataset
of 566 individuals (298 RHGs and 268 AGRs), consisting of 266
newly generated exomes that were analyzed with 300 previously
reported exomes [4] (Figure S1).

Genetic differentiation among RHG groups was higher than
that between RHGs and AGRs (among-RHG, Fsr = 0.025;
among-western RHG, Fst = 0.021; RHG-AGR, Fst = 0.017;
2
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Figure 1. Location, Genetic Differentiation, and Structure of Central African Populations

(A) Geographic location of the populations analyzed. Populations of rainforest hunter-gatherers (diamonds) and neighboring farmers (circles) originating from the
three countries are shown in the map of Africa. Colors indicate the dominant membership in each population, based on ADMIXTURE results (C).

(B) Levels of genetic differentiation between populations measured by pairwise Fgt calculated on the exome data.

(C) Cluster membership proportions estimated by ADMIXTURE on the merged exome and SNP array data. Cross-validation values were lowest at K = 5 clusters.
(B and C) BaBongoC, BaBongoS, and BaBongoE stand for BaBongo populations from the center, south, and east of Gabon, respectively.

See also Figure S1 and Table S1.

among-AGR, Fst = 0.007; Figure 1B). To increase SNP density,
particularly in the non-coding genome, we combined the exome
data with SNP array data for the same individuals [12, 24, 25],
yielding a total of 1,253,548 SNPs. When using ADMIXTURE
[26] on the dataset pruned for allele frequency (MAF > 5%) and
linkage disequilibrium (* < 0.5), RHGs separated into four clus-
ters at K = 5 (Figure 1C), corresponding to Bezan, Baka,
BaBongo and BaKoya, and BaTwa groups. As previously
observed [5, 12, 14, 24], membership proportions to the cluster
assigned to AGRs were non-negligible and similar among RHG
groups (~4%-9%; Table S1), with the exception of the BaBongo
of east and south Gabon, who presented high AGR proportions

(~43% [SD = 11%] and ~24% [SD = 17%], respectively).
Membership proportions to the cluster assigned to RHGs were
also non-negligible among AGRs (~10%-30%). Our results
show that RHG populations are highly structured, emphasizing
the importance of considering these groups separately in subse-
quent analyses.

Searching for Signals of Local Genetic Adaptation in
Central Africans

For all natural selection analyses, we increased SNP density to
9,129,108 high-quality variants (MAF > 1%), through genotype
imputation using (1) newly generated whole genomes from
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Figure 2. Shared Signals of Classic Sweeps among Rainforest Hunter-Gatherers

(A) Number of candidate windows for classic sweeps (i.e., windows with proportions of outlier SNPs among the 1% highest of the genome) common to western
and eastern AGR populations (WAGR and eAGR), as well as common to RHG populations. p values obtained based on 10,000 resamples are shown: *p < 1074,
(B) Genome-wide map of classic sweep signals in RHG groups. The autosomes of each of the five RHG populations (from top to bottom: Bezan, Baka, lowly
admixed BaBongo, BaKoya, and BaTwa) are shown. Colored dots indicate genomic regions that are common to at least three RHG populations.

(C) Selective sweep signal at the locus containing the TRPST gene (chr8:116702422-116802422) in the Baka RHGs.

(D) Selective sweep signal at the locus containing CISH, MAPKAPK3, and DOCK3 genes (chr3:50610197-50710197 and chr3:50660197-50760197) in the BaTwa
RHGs.

(C and D) Dot colors indicate SNP Fcg percentiles, black squares indicate non-synonymous mutations, and black dots indicate eQTLs (g value < 0.005) [33].
eQTLs of MAPKAPK3 (rs107457 and rs9879397) and DOCK3 (rs12629788) are shown as yellow diamonds. Not all genes of the genomic region are shown for

convenience.
See also Figures S2 and S3 and Data S1.

20 RHG Baka and 20 AGR Nzébi from Gabon (5-6x coverage)
and (2) the 1000 Genomes Phase 3 panel [27] (STAR Methods;
Figure S1). We focused on the five RHG populations presenting
the lowest average levels of AGR ancestry and analyzed the
highly admixed RHG groups differently (see Recent Genetic
Adaptation of Admixed Rainforest Hunter-Gatherers). To identify
signals of strong sweeps, we searched for variants with both
high allele frequency and extended haplotype homozygosity in
RHGs, relative to AGRs (STAR Methods). Genome-wide ranks
of PBS [28] and XP-EHH [29] were combined into a Fisher’s
score (Fcs), and to reduce false positives, candidate regions
were defined as 100-kb windows with the 1% highest proportion
of outlier SNPs of the genome.

We first scanned the genomes of AGR populations (Figure S2),
the evolutionary history of whom is well characterized [24, 29-32].
We found 18 candidate regions for positive selection in both
western and eastern AGRs, while only ~3.5 were expected to
be shared if candidate loci were false positives (10,000 random
samples; resampling p < 10~% (Figure 2A; Data S1). Among can-
didates, we replicated, for example, the signal encompassing the
LARGE gene, involved in Lassa virus infectivity [34]. These results
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provide evidence that the genomic regions detected by our
approach are enriched in true signals.

A Strong, Shared Selective Sweep at TRPS1 across All
Hunter-Gatherer Groups

Our search for sweeps in RHGs identified candidates that
were shared by RHG groups more than expected by chance (re-
sampling p < 107 (Figure 2A; Data S1). Remarkably, we identi-
fied a single genomic region that exhibits sweep signals in all
RHG populations, but not in AGRs (Figures 2A-2C and S3).
This region lies upstream of the 5’ UTR of TRPS1, which encodes
a transcription factor (TF) with multiple pleiotropic effects,
including skeletal development and inflammatory Ty17 cell dif-
ferentiation [35-37]. The six variants presenting the highest fre-
quency differences between RHGs and AGRs (Data S1) define
a 5,777 bp region that contains a primate-specific THE1B
endogenous retrovirus sequence, known to control the expres-
sion of nearby genes [38]. Given the high expression of TRPS1
in monocytes [39], we analyzed published RNA sequencing
(RNA-seq) data from monocytes of individuals of central African
ancestry to test if candidate variants affect TRPS7 expression



[40]. A highly differentiated variant that falls within the THE1B
fragment was associated with increased expression of a short,
non-canonical TRPS1 transcript upon immune stimulation
(rs111351287; regression p = 5 x 10~°). These findings suggest
that the most robust signal of adaptation to the African rainforest
can be ascribed to TRPS1, possibly in relation with variation in
morphological and/or immunological traits.

Detection of Other Classic Sweep Signals in Rainforest
Hunter-Gatherers

Other selective sweep signals were specific to a smaller number
of RHG groups (Figure S2; Data S1). These include the known
150-kb region encompassing CISH, MAPKAPK3, and DOCK3
[6, 14], which we show here to be shared among western and
eastern RHGs (Baka, BaKoya, and BaTwa). We searched the
GTEx database [33] for regulatory variation at these genes
(eQTLs) and found two cis-eQTLs for MAPKAPK3 (rs107457
and rs9879397), one for DOCK3 (rs12629788), and none for
CISH (Data S1). Selection scores at these eQTLs were among
the highest of the region, particularly for MAPKAPK3 (Figure 2D),
which affects hepatitis C virus (HCV) infectivity [41].

We also detected two contiguous regions at the IFIH7 locus
[18], which present strong enrichments in selection scores that
are shared by all western RHG groups. Candidate variation at
this locus (rs12479043) controls the expression of the nearby
FAP gene [33], which regulates fibroblast and myofibroblast
growth and wound healing during chronic inflammation [42].
We also identified two windows—shared by Bezan, Baka, and
BaKoya—encompassing RASGEF1B, whose expression is
induced in macrophages by lipopolysaccharide, a membrane
component of Gram-negative bacteria [43]. Finally, we found a
window in the Bezan, BaBongo, and BaKoya that overlaps
PITX1, recently identified as a selection candidate in RHGs
[22]. PITX1 modulates the core development of limb [44], is asso-
ciated with height variation [45], acts as an early TF in the devel-
oping pituitary gland [46], and regulates interferon-a. virus induc-
tion [47]. These results support the hypothesis that development
and immunity are key traits in local adaptation to the rainforest.

Evidence for Polygenic Selection Favoring the “Pygmy”
Phenotype

Given the polygenic nature of most adaptive traits [48, 49], we
searched for evidence of polygenic adaptation focusing on 12
candidate quantitative traits. These include height, body mass
index, skin pigmentation, life history traits, and immune cell
counts, the genetic architectures of which have been extensively
studied [50]. We compared the distribution of mean Fcg scores in
non-overlapping, 100-kb genomic windows containing trait-
associated SNPs to that of randomly sampled windows, ac-
counting for SNP density, LD levels, and background selection
(STAR Methods). Stature-related traits showed the most signifi-
cant polygenic selection signals, in all RHG groups (adjusted
p < 0.05) while being non-significant in AGRs (Figure 3A). Life-
history traits related to reproduction also exhibited selection sig-
nals in various RHG groups, consistent with the proposed adap-
tive nature of early reproduction in RHGs [51, 52]. Furthermore,
we replicated selection signals for cardiovascular traits in the
BaTwa (adjusted p < 0.001) [23]. Notably, we found significant
signals in “Leukocyte count” in the Baka and the BaBongo

(adjusted p < 0.05), suggesting polygenic adaptation related to
immunity.

We next examined whether signals of polygenic selection
could result from pleiotropy; e.g., advantageous height-associ-
ated variants affect other correlated traits [49]. Using the UK Bio-
bank dataset [50], we computed the genetic correlations from
LD-score regressions between “Standing height” and the re-
maining traits, and found significant correlations for eight of
them (STAR Methods; Data S1). For these, we repeated the anal-
ysis after excluding windows associated with “Standing height”
or “Comparative height at age 10,” and the significance of selec-
tion signals was lost or dramatically reduced (Figures 3B and S4).
Conversely, when excluding windows associated with non-
height traits (e.g., reproduction-related traits), we found that
“Standing height” was still significant in four RHG populations
(adjusted p < 0.05) (Figure 3C). These results show that height
has been an adaptive trait in RHGs, resulting in spurious poly-
genic selection signals for other correlated traits because of
pleiotropy.

Evidence of Pervasive Pathogen-Driven Selection in the
Equatorial Rainforest

We further investigated genomic signatures of polygenic adapta-
tion, by searching for excesses in mean Fgg among windows
related to 5,354 gene ontology (GO) terms [53] (STAR Methods).
We detected 38 terms that were significant in at least three RHG
groups, but not in AGRs (Figure 3D; Data S1). Among these, we
found positive regulation of “mast cell degranulation” and “the
phosphatidylinositol 3-kinase (PI3K) pathway” (false discovery
rate [FDR] p < 5%). Recognition by mast cells of allergens and
antigens induces degranulation, a process mediated by the
PIBK pathway that results in inflammation and allergy [54].
Enrichments were also found in the IL-2 signaling pathway,
which activates the PI3K pathway and regulates immune toler-
ance [55]. All enrichments remained significant after removing
windows associated with height (FDR p < 5%), excluding poten-
tial pleiotropic effects. To gain further insights into pathogen-
driven selection, we next focused on 1,553 innate immunity
genes (IIGs) [56] and 1,257 genes encoding virus-interacting pro-
teins (VIPs) [57]. We found significant enrichments in selection
signals for both gene sets in RHGs, but not in AGRs, in particular
for VIPs interacting with double-stranded DNA (dsDNA) and sin-
gle-stranded RNA (ssRNA) viruses (FDR p < 5%; Table S2;
Data S1). These results collectively support the notion that path-
ogens have been a major driver of local adaptation in the African
rainforest.

Recent Genetic Adaptation of Admixed Rainforest
Hunter-Gatherers

To search for evidence of recent selection in RHG since their
admixture with AGRs, we focused on the highly admixed Ba-
Bongo (Figure 1C) and performed local ancestry inference with
RFMix [58], using as putative parental populations western RHG
and AGR individuals with the lowest AGR and RHG membership
proportions, respectively (STAR Methods). Six contiguous win-
dows on chromosome 1 showed both evidence of selection
(i.e., top 1% of the proportion of outlier SNPs) and an excess of
RHG local ancestry (i.e., higher than the genome-wide average +
2 SD) in admixed RHG (Figures 4A and S2; Data S1). Among the
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Figure 3. Signals of Polygenic Selection in African Rainforest Hunter-Gatherers

(A) Signals of polygenic selection for 12 candidate quantitative traits, based on higher mean Fcg of trait-associated windows relative to genome-wide
expectations.

(B) Signals of polygenic selection for the candidate quantitative traits, based on higher mean Fcs of trait-associated windows relative to genome-wide expec-
tations, after removing windows associated with “Standing height” and “Comparative height at age 10.” Loss of significance was not explained by the reduced
number of windows tested (Figure S4).

(C) Signals of polygenic selection for “Standing height,” based on higher mean Fcg of trait-associated windows relative to genome-wide expectations, after
removing windows associated with each of the remaining quantitative traits.

(A-C) Color gradient and circle sizes are proportional to -logo(adjusted p) with adjusted *p < 0.05, **p < 0.01, and ***p < 0.001. Multiple testing corrections were
performed using the Benjamini-Hochberg method. wAGR and eAGR stand for western and eastern AGR groups. Signals were generally stronger in Baka and
BaTwa RHGs, probably because of their larger sample size.

(D) Gene Ontology (GO) terms enriched in selection scores (FDR p < 5%) in RHG, but not in AGR, populations, considering the window mean Fcg as selection
score. Circle color and size indicate the number of RHG populations that show significant evidence of polygenic selection for a given GO term.

See also Figure S4, Table S2, and Data S1.
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Figure 4. Selection Signals in Highly Admixed Rainforest Hunter-Gatherers

(A) Selective sweep signal and average local RHG ancestry at the chr1:203564464-203764464 locus in the highly admixed RHG BaBongo. Dot colors indicate
SNP Fcs percentiles, the black square indicates the non-synonymous variant (rs6697388) at ZBED6, and black dots indicate eQTLs (q value < 0.005) [33].

(B) GO terms enriched in both local ancestry in the highly admixed RHG BaBongo, and selection scores in each of the two putative parental populations, with
respect to the rest of the genome (FDR p < 5%). Green (brown) dots indicate GO terms enriched in both western RHG (western AGR) local ancestry and selection
scores in parental western RHG (western AGR) populations (FDR p < 5%). Enrichments were assessed using the Mann-Whitney-Wilcoxon rank-sum test.

See also Data S1.

strongest candidate variants, we found a non-synonymous muta-
tion (rs6697388) in ZBEDG6, which encodes a TF that controls
muscle growth through IGF2 repression [59]. ZBEDE6 is located
within the intron of the ZC3H11A gene, whose product is required
for the efficient growth of several nuclear-replicating viruses [60].
The rs6697388 G allele (p.Leu391Arg) is present at the highest fre-
quency in admixed BaBongo (51%), with lower frequencies in
parental RHG (42%) and AGR (15%) groups. With respect to
the strong, shared selective sweep detected at TRPST (Figure 2C),
the locus also presented selection signals in the BaBongo but no
excess of RHG or AGR ancestry (Figures S2 and S3), suggesting
weaker or no positive selection at TRPS1 since admixture.

Finally, we searched for evidence of polygenic selection since
admixture, by testing for excesses in AGR or RHG local ancestry
in genomic windows related to GO terms in the admixed BaBongo
(STAR Methods). We found 21 GO terms that were enriched in
both RHG local ancestry and selection signals in the parental
RHGs (Figure 4B; Data S1), an overlap that was significantly larger
than expected (7.3% versus 4.7%, 2 test, p = 0.042). These
terms were mostly related to cardiac and skeletal development
and immune functions, and included “heparin biosynthetic pro-
cess,” which participates in mast cell-mediated immune and in-
flammatory responses [61], echoing the signals detected for
“mast cell degranulation” in weakly admixed RHGs (Figure 3D).
We also found 16 GO terms that were enriched in both AGR local
ancestry and selection signals in the parental AGRs (Figure 4B;
Data S1), including stem cell proliferation, exocytosis, and muscle
composition. Together, these results support further the notion
that heart and bone development as well as immune responses
have been an important substrate of selection in RHGs, before
and after their admixture with neighboring farmers.

DISCUSSION

Here we present the first exome-based survey of multiple
geographically dispersed groups of African rainforest hunter-
gatherers, with the aim of investigating how populations have
adapted to the challenging habitats of the equatorial rainforest.
Because positive selection often targets regulatory regions
[62], we combined the exome dataset with SNP array data, to
cover both genic and intergenic regions. In doing so, we found
evidence of a unique, strong sweep that is shared by all RHG
groups, targeting the regulatory region of TRPS1, mutations in
which can cause growth retardation, distinctive craniofacial fea-
tures [63], and hypertrichosis [64]. Furthermore, the transcription
factor TRPS1 regulates STAT3, a mediator of inflammation and
immunity [65], and RUNX2, controlling facial features and viral
clearance [66, 67]. Interestingly, TRPS1 has been recently shown
to carry signals of archaic introgression in western Africans [68].
Functional studies should help determine the adaptive nature—
developmental and/or immune-related—of variation at this
locus, which possibly introgressed from extinct African hominins
[18, 68, 69].

This study also extends previous findings of a sweep targeting
the CISH-MAPKAPK3-DOCKS3 region [6, 14], by delineating
MAPKAPK3 as the most likely target. MAPKAPK3 expression
is regulated by two eQTLs that are among the strongest candi-
dates for positive selection at the locus in RHG populations.
MAPKAPKS directly interacts with HCV and regulates cell infec-
tivity [41]. Alower prevalence of HCV infection has been reported
in RHG, with respect to AGR [70, 71]. Our results strengthen the
evolutionary importance of the CISH-MAPKAPK3-DOCKS3
region in both western and eastern RHGs, and pinpoint
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MAPKAPKS3 variation as a putative, additional risk factor for HCV
infection in Africans.

Our analyses provide robust evidence for polygenic selection
of height, which we replicate in various RHG groups. Importantly,
our results are not affected by biased genome-wide association
study (GWAS) summary statistics due to partial control for popu-
lation stratification, which can result in spurious polygenic selec-
tion signals [72, 73]. Our approach tests for the co-localization of
selection signals and trait-associated genes; thus, it does not
depend on effect size estimates and does not assume that asso-
ciated variants are the same across populations. More generally,
polygenic selection of height is unlikely to result from sexual se-
lection [74] but from genetic adaptation to equatorial forest envi-
ronments [75]. Our study sheds new light onto the debated adap-
tive nature of height, and supports that the early reproductive age
of RHGs is not the cause of their small body size, as previously
suggested [51, 52]. Instead, our results suggest that directional
selection of height has resulted in changes in life-history traits
because of pervasive pleiotropy of height-associated genes.

We also found signals of polygenic selection in RHGs at func-
tions related to the IL-2 pathway, the sensing of allergens and
microbes, and interactions with dsDNA and ssRNA viruses.
Interestingly, higher seropositivity for more than 30 viruses has
been reported in the BaTwa from Uganda, with respect to
AGRs, particularly for dsDNA viruses [76]. That we also found
an excess of RHG ancestry related to heparin biosynthesis, inter-
leukin production, and leukocyte chemotaxis in highly admixed
RHGs suggests preferential retention of RHG variation at im-
mune-related functions. This finding supports a long-standing
history of adaptation of RHGs to high pathogen pressures. This
contrasts with a study in southern Africa, which reported a low
exposure and adaptation to pathogens of hunter-gatherers of
the Kalahari Desert, except for those who recently came in
contact with other populations [77].

Collectively, our analyses uncover height, development, and
immune response as iconic adaptive traits of African RHGs. It
is interesting to note that the PI3K signaling pathway—under
polygenic selection in four RHG populations —modulates inflam-
matory responses [78], body energy homeostasis [79, 80], and
insulin secretion [81]. Several studies have highlighted the recip-
rocal relationship between proinflammatory cytokines and the
regulation of the growth hormone through the IGF-1 axis [82]. It
is thus tempting to speculate that pleiotropic effects between
developmental growth and immunity could have further partici-
pated in the “pygmy” phenotype. Epidemiological work on the
infectious disease burden in hunter-gatherers should increase
our understanding of how historical high pathogen-driven selec-
tion has contributed to the reduced stature characterizing popu-
lations of the rainforest.
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LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources should be directed to and will be
fulfilled by the Lead Contact, Lluis Quintana-Murci (quintana@pasteur.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection

Sampling consisted in human saliva or blood from 157 rainforest hunter-gatherers and 120 farmers from western and eastern
central Africa (Figure S1), including 208 males and 69 females. Informed consent was obtained from all participants in this study,
which was overseen by the institutional review board of Institut Pasteur (2011-54/IRB/8), the Comité National d’Ethique du Gabon
(0016/2016/SG/CNE), the University of Chicago (IRB 16986A) and Makerere University, Kampala, Uganda (IRB 2009-137). The 277
new samples collected for exome sequencing were analyzed together with 317 exomes of central Africans from Lopez et al. 2018
[4] and 101 Europeans from Quach et al. 2016 [40] (Table S1).

METHOD DETAILS

Exome Sequencing

Sample libraries were prepared with the Nextera Rapid Capture Expanded Exome Kit, which delivers 62Mb of genomic content per
individual, including exons, untranslated regions and microRNAs, and were sequenced on lllumina HiSeq2500 machines. Using
the GATK Best Practices recommendations [93], pairs of 101-bp reads were mapped onto the human reference genome
(GRCh37) with Burrows-Wheeler Aligner (BWA) version 0.7.7 [85], using ‘bwa mem -M -t 4 -R’, and reads duplicating the start po-
sition of another read were marked as duplicates with Picard Tools version 1.94 (http://broadinstitute.github.io/picard/), using
‘MarkDuplicates’. We used GATK version 3.5 [86] for base quality score recalibration (‘Base Recalibrator’), insertion/deletion
(indel) realignment (‘IndelRealigner’), and SNP and indel discovery (‘Haplotype Caller’) for each sample. Individual variant files
were combined with 'GenotypeGVCFs’ and filtered with ‘VariantQualityScoreRecalibration’. We used high confidence variants
from the 1000G Phase 1 and HapMap 3 projects [94, 95] as VQSR training callsets, and applied a tranche sensitivity threshold
of 99.5%. From the 947,523 sites detected, we removed indels as well as SNPs that (i) were located on the sex chromosomes,

el Current Biology 29, 2926-2935.e1-e4, September 9, 2019



(i) were not biallelic, (iii) were monomorphic in our total sample, (iv) had a depth of coverage <5 x , (v) had a genotype quality score
(GQ) < 20, (vi) presented missingness > 15%, and (vii) presented a Hardy-Weinberg test p < 1078 in at least one of population. As
criteria to remove low-quality samples, we required a total genotype missingness < 15% (21 excluded samples). In addition, we
checked for unexpectedly high or low heterozygosity values, suggesting high levels of inbreeding or DNA contamination, and
excluded 3 individuals presenting heterozygosity levels 4 SD higher than their population average. We thus retained exome
data for 671 individuals, with an average depth of coverage after duplicate removal of 38 x (SD: 9 x ), ranging from 25 X to
95 x. The application of these quality-control filters resulted in a final dataset of 682,468 SNPs (Figure S1), of which 107,621
SNPs were polymorphic only in the 268 newly-sequenced individuals.

SNP Array Data

In addition to exome sequencing, we retrieved the genotyping data of the same 671 individuals from Quach et al. 2016 [40], Patin et al.
2014 [12], Patin et al. 2017 [24] and Fagny et al. 2015 [25] (Figure S1; Table S1). We removed SNPs located on the X and Y chromo-
somes, problematic genotype clustering profiles (i.e., lllumina GenTrain score < 0.35) or with call rate < 95%. We kept 599,559 SNPs
common to different genotyping SNP arrays. We removed a total of 53 C/G or A/T SNPs to prevent misaligned SNPs, and excluded a
total 5 additional SNPs that were under Hardy-Weinberg disequilibrium in at least one of the populations (p < 10~6) using PLINK [96],
leading to a final dataset of 559,501 SNPs.

We applied additional filters on the genotyping dataset of the 671 individuals retained for exome sequencing. We removed two
individuals with heterozygosity levels higher or lower than the population mean + 4 SD Although related individuals were avoided
during the sampling and for exome sequencing (based on published SNP array data) [5, 12, 17, 24, 25], we sought to exclude possibly
remaining pairs of cryptically related individuals. Indeed, RHG populations are small isolated communities, where individuals can be
related to many others. We considered that two individuals were strongly (cryptically) related if they presented a first-degree relation-
ship (kinship coefficient > 0.177), as inferred by KING [84]. Following this criterion, only one individual was removed. Additionally, we
removed another individual who did not present any first-degree relatedness but was related in second-degree to many others. After
removing these two individuals, the dataset included 77 and 232 pairs of second-degree (kinship coefficient > 0.0884) and third-de-
gree (kinship coefficient > 0.0442) related RHG individuals, respectively. The application of these quality-control filters resulted in a
final genotyping dataset of 667 individuals and 599,501 SNPs (Figure S1).

Merging Exome and SNP Array Data

Before merging the genotyping array and the exome data from the 667 high-quality individuals in common, we flipped alleles for 8,393
SNPs with incompatible allelic states, and removed 9 SNPs with alleles that remained incompatible after allele flipping from the gen-
otyping dataset. The total concordance rate was evaluated on 28,403 SNPs common to both datasets. The concordance rates for
each of the 667 individuals exceeded 98%, confirming an absence of errors during DNA sample processing. The entire genotyping
and exome datasets (599,492 and 682,468 SNPs, respectively) were then merged, yielding a final dataset of 1,253,548 SNPs for 667
individuals, 566 of whom were African farmers or hunter-gatherers (Figure S1).

Whole-Genome Sequencing

We generated whole genomes of 20 RHG Baka and 20 AGR Nzébi of Gabon, which were also part of the exome and SNP array data-
sets. All the samples were processed using the paired-end library preparation protocol from lllumina. Libraries were sequenced on
lllumina HiSeq 2000 machines at the Stanford Center for Genomics and Personalized Medicine. 101-pb reads were aligned to the
human reference genome (GRCh37) using BWA [85], followed by base quality recalibration and realignment around known indels
with GATK [86]. Genotyping was carried out across all 40 individuals jointly using GATK ‘UnifiedGenotyper’, and called variants
were stratified into variant quality tranches using ‘VariantQualityScoreRecalibration’ tool (VQSR) from GATK. SNPs with a VQSR
tranche > 99.0 were considered as confidently called. Genotype calls were refined and improved based on LD using BEAGLE
[91], yielding a final dataset of 17,687,206 variants (Figure S1). All individuals presented very low rates of missing values ranging
from 0.5% to 4%, and a mean depth of coverage of 6.5 X (ranging from 4 x to 13 x ).

Imputation of SNP Array and Exome Data

Before imputation, we phased the data with SHAPEIT2 using 100 states, 20 MCMC main steps, 7 burnin and 8 pruning steps [87].
SNPs and allelic states were then aligned with the 1000 Genomes Project imputation reference panel (Phase 3 [27]), referred to as
‘reference panel 1°, as well as the 40 whole genomes of Baka RHG and Nzébi AGR of Gabon, referred to as ‘reference panel 2’
(Figure S1). We removed from the reference panels SNPs with MAF < 1%, SNPs with C/G or A/T alleles and 414,679 multiallelic
SNPs in the reference panel 1. We evaluated the allelic concordance between the two reference panels and excluded 9,649 addi-
tional sites from the reference panel 2, yielding to final datasets of 11,501,018 SNPs in the reference panel 1 and 14,252,666
SNPs in the reference panel 2.

Genotype imputation was performed with IMPUTE v.2 [88] considering 1-Mb windows and both reference panels simultaneously,
with the ‘-merge_ref_panels’ option. We used genotype calls instead of genotype probabilities, which are not handled by down-
stream programs, and considered as confident genotype calls genotypes with posterior probability > 0.8. Of the 13,092,258
SNPs obtained after imputation, we removed SNPs that: (i) presented an information metric < 0.8, (ii) had a duplicate, (jii) presented
a call rate < 95%, and (iv) were monomorphic. The final imputed dataset included 10,262,236 SNPs, and 9,129,103 after filtering
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SNPs with MAF < 1%. To evaluate imputation accuracy, we estimated correlation coefficients r* between true genotypes (i.e., ob-
tained by lllumina genotyping array or exome sequencing) and imputed genotypes for the same SNPs (i.e., obtained by artificially
removing genotyped SNPs from the data before imputation and then imputing them). The average correlation coefficient across
all genotyped SNPs with information metric > 0.8 were 0.86 and 0.85 for reference panels 1 and 2, respectively, showing that our
quality filters ensure to keep accurately imputed SNPs for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome Scans for Selective Sweeps

Genomic regions candidate for positive selection were detected in seven populations of RHG (Bezan, Baka, BaBongo of central
Gabon, BaKoya, BaBongo of south and east Gabon and BaTwa) and two populations of AGR (western and eastern AGR), with an
outlier approach that considers two interpopulation statistics: PBS (Population Branch Score [28]), and XP-EHH [29]. We combined
these scores into a Fisher’s score (Fgs) equal to the sum, over the two statistics, of —logqo(rank of the statistic for a given SNP/number
of SNPs). Interpopulation statistics require a reference population, and PBS statistics an outgroup population. We performed sepa-
rate scans of classic sweeps for each population, using Europeans as outgroup, and different reference populations: western AGR for
each western RHG population, eastern AGR for eastern RHG, pooled western RHG for western AGR, and eastern RHG for eastern
AGR. PBS was calculated for each SNP using AMOVA-based Fsr values computed with home-made scripts (available upon request).
The derived allele of each SNP was defined based on the 6-EPO alignment. XP-EHH was computed in 100-kb sliding windows with a
50-kb pace, with home-made scripts (available upon request). Only SNPs with a derived allele frequency (DAF) between 10% and
90% were analyzed further. XP-EHH scores were normalized in 40 separate bins of DAF. An outlier SNP was defined as a SNP
with an Fcg among the 1% highest of the genome. A putatively selected genomic region was defined as a 100-kb window presenting
a proportion of outlier SNPs among the 1% highest of all windows, in five bins of SNP numbers. Windows containing less than 50
SNPs were discarded as well as 500-kb regions around gaps, to avoid biases in the outlier enrichment scores.

Polygenic Selection of Complex Traits

We retrieved the results of the Genome Wide Association studies from UK BIOBANK (round 2, http://www.nealelab.is/uk-biobank/) of
12 complex traits that we selected as candidates for adaptation of RHG, based on previous hypotheses from biological anthropology
studies [51, 73, 97-101]. Our genomic dataset was split into non-overlapping 100-kb windows. We considered a window as asso-
ciated with a trait if it included a SNP with a genome-wide significant association with this trait (Passoc<5 X 10~8). We computed for
each genomic window, associated or not with the trait, the average Fgs, the proportion of conserved SNP positions based on GERP
scores > 2 [92], and the recombination rate using the combined HapMap genetic map [102], to account for the confounding effects of
background selection.

In order to test for polygenic selection, we generated a null distribution by randomly sampling x windows (x being the number of
windows associated with a tested trait) among windows with a similar number of SNPs, proportion of GERP > 2 sites and recombi-
nation rate observed in the trait-associated windows. We then calculated the average of the mean of the Fss across the x resampled
windows. We resampled 100,000 sets of x windows for each trait. To test for significance, we computed a resampling P-value by
calculating the proportion of resampled windows which mean Fsg was higher than that observed for the tested trait. All P-values
for polygenic adaptation were then adjusted for multiple testing by the Benjamini-Hochberg method, to account for the number of
traits tested, and traits with an adjusted p < 0.05 were considered as candidates for polygenic selection.

To test if polygenic selection signals are due to pleiotropy of height-associated genes, we first estimated genetic correlations
between candidate traits from LD-score regression using the Idsc tool [89]. We used precomputed European LD-scores
(https://data.broadinstitute.org/alkesgroup/LDSCORE/). P-values were corrected for multiple testing using the Bonferroni correc-
tion, and adjusted P-values < 0.05 were considered as significant.

To correct for pleiotropy for each trait genetically correlated with height, we removed windows significantly associated with
‘Standing Height’ and ‘Comparative height at age 10’ in both windows associated with the candidate trait and resampled win-
dows. Similarly, we re-tested for polygenic adaptation on “Standing height” and “Comparative height at age 10” associated re-
gions using the same approach, but by removing all trait-associated windows, except height-associated windows. To test if loss of
significance was due to a decrease in power, we down-sampled the number of tested trait-associated windows to the same
number as after removing height-associated windows. We down-sampled a 100 times trait-associated windows, and estimated
a hundred P-values as described above. We finally compared the distribution of the 100 obtained P-values with the estimated
P-value (non-adjusted for multiple testing) both before and after removing height-associated windows.

Polygenic Selection of Gene Ontologies

To detect enrichment of Fcg scores in sets of genes corresponding to a given biological pathway, we compared the distributions of
Fcs between genes that were part of the gene ontology (GO) term tested, relative to the rest of the genes of the genome, using a
Mann-Whitney-Wilcoxon rank-sum test. To limit the effect of clusters of genes on the enrichment calculation, we assigned to
each 100-kb non-overlapping genomic window both a GO term, based on the presence of at least one gene from the corresponding
term, and a mean Fcg score. We tested if mean Fgg of windows assigned to a given GO term were different from genome-wide ex-
pectations, accounting for multiple testing. We restricted the enrichment analysis to 5,354 GO terms with levels comprised between
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levels 3 and 7 [53], using the python library goatools [90], and that include at least 5 genes. We examined a total of 15,503 windows
and determined P-values corresponding to 5% and 1% of false discoveries, FDR p =9.24 x 1072 and FDR p = 4.03 x 10*, respec-
tively, by randomly resampling y genes (y being sampled from the distribution of the number of genes assigned to each GO term). We
also studied additional gene sets, including 1,553 manually-curated genes involved in innate immunity [56] and 1,257 genes encoding
proteins known to have physical interactions with multiple families of viruses [57].

Local Ancestry Inference

To perform local ancestry inference in the genomes of the highly-admixed BaBongo RHG from south and east Gabon, we first consti-
tuted putative parental populations that were representative of RHG and AGR ancestry. We considered as the parental AGR popu-
lation, 163 individuals with less than 20% of their ancestry assigned to the RHG component, based on the ADMIXTURE analysis at
K =5. Likewise, we considered as the parental RHG population, 101 individuals with less than 5% AGR ancestry. The genomes of the
highly-admixed BaBongo were decomposed into segments of RHG or AGR ancestry with RFMix v.1.5.4 [58], including two EM steps.
We excluded 2-Mb regions from the telomeres of each chromosome. Based on RFMix ancestry estimations, the mean AGR ancestry
was 94% [SD = 1.6%] in the parental AGR population, 62% [SD = 5.9%] in the highly-admixed BaBongo, and 27% [SD = 3.7%] in the
parental RHG population. These ancestry proportions were highly correlated with ADMIXTURE membership proportions at K = 2
(Pearson’s correlation coefficient R? = 0.99). We then searched for excesses in RHG or AGR ancestry in pathways by assigning
ancestry proportions to 100-kb windows across the genome, with the same approach used for GO enrichments.

DATA AND CODE AVAILABILITY

The newly generated exomes (n = 277) and genomes (n = 40) of central African rainforest hunter-gatherers and agriculturalists have
been deposited in the European Genome-phenome Archive (EGA). The accession number for the newly generated data reported
in this paper is EGA: EGAS00001003722. Data accessibility is restricted to academic research on human genetic history and
adaptation. Exome sequencing data for the remaining, previously published samples are available under accession codes
EGA: EGAS00001002457 and EGA: EGAS00001001895.
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Figure S1. Summary of the Data Processing Performed in this Study. Related Figure 1.
The arrow indicates the correspondence between individuals analyzed in both datasets.
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Figure S2. Genome-Wide Signals of Classic Sweeps in Central African Population
Related to Figure 2.

Proportions of outlier SNPs (i.e., Fcs in the top 1% of the empirical distribution) in 100-kb
windows along the genome of RHG and AGR populations. Gene names are shown for
candidate windows with a proportion of Fcs outlier SNPs > 30%.
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Figure S3. Selective Sweep Signal at the TRPS Locus in African Rainforest Hunter-

Gatherers. Related to Figure 2C.

Local genomic signals of classic sweeps at the candidate windows containing the TRPS/ gene
(chr8:116702422-116802422) in all RHG populations. Dot colors indicate SNP Fcs
percentiles, black squares indicate non-synonymous mutations and circled crosses indicate
non-imputed SNPs. Average local RHG ancestry is shown for the admixed BaBongo of south

and east Gabon.
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Figure S4. Significance of Tests for Polygenic Selection when Accounting for Pleiotropy
or Reduced Number of Genomic Windows. Related to Figure 3A-C.

Red dots indicate —logio(non-adjusted P) when accounting for pleiotropy (i.e., after excluding
height-associated windows). Green dots indicate —logio(non-adjusted P) when not accounting
for pleiotropy. Boxplots correspond to—logio(non-adjusted P) of 100 random samples of x
trait-associated windows, where x is the number of windows associated to the trait tested,
when accounting for pleiotropy. The grey dashed line indicates the significance threshold —
logi0(0.05). When red points are below both the dashed line and box plots, this indicates that
the significant signals of polygenic selection are no longer significant, because of our
correction for pleiotropy, and not because of the reduced number of windows.



Reference for SNP | Reference for exome Mean SD of | Minimum | Maximum
Group | Population | Country N array data sequencing AGR AGR AGR AGR
(accession number) (accession number) | ancestry | ancestry | ancestry ancestry

wAGR Tsogo Gabon 29 (EGASO([)§)(1)]1002078) This study 80.7% 1.8% 77.4% 84.3%

wAGR Galoa Gabon 30 (EGAS 0([)%)(1)]1 002078) This study 86.80% 3.2% 78.6% 92.5%

wAGR Shake Gabon 30 (EG ASO([)%(I)]I 002078) This study 67% 2.90% 59.6% 71.3%

wAGR Fang Gabon 31 (EGASO([)§)(1)]1002078) This study 85.3% 1.1% 82.3% 87.8%
[S1] [S2] 0 0 0 0

wAGR Bapunu Gabon 44 (EGAS00001002078) | (EGAS00001002457) 82.5% 3.6% 66.4% 88.2%
i [S1] [S2] 0 0 0 0

wAGR Nzébi Gabon 55 (EGAS00001002078) | (EGAS00001002457) 82.7% 3.1% 73% 87.7%
~ [S3] [S2] 0 0 0 0

eAGR BaKiga Uganda 49 (EGAS00001000908) | (EGAS00001002457) 88.6% 1.9% 84.5% 92.8%

wRHG Bezan Cameroon | 38 (EGASO([)?)g]1000605) This study 9.5% 13.3% 0% 45.5%

WRHG B(izft‘;f)‘) Gabon | 21 This study This study 9.4% | 9.1% 0% 39.8%
BaBongo [S4] . o o o o

wRHG (cast) Gabon 27 (EGAS00001000605) This study 43.3% 11.2% 31.3% 82.8%
BaBongo [S4] . N o o o

wRHG (south) Gabon 33 (EGAS00001000605) This study 24.3% 17.4% 0% 59.1%

wRHG BaKoya Gabon 26 (EGASO([)?)(1)]1002078) This study 4.1% 5.5% 0% 20.8%

[S5] [S2]
WRHG Baka C%’f;;‘l’“/ 73%/ (EGASO([)gg]IOOIO%) (EGAS00001002457) |  8.1% 10.7% 0% 51.4%
(EGAS00001000605) This study

[S3] [S2] 0 0 0 0

eRHG BaTwa Uganda 51 (EGAS00001000908) | (EGAS00001002457) 8.7% 12.2% 0% 43.5%

. . [S6] [Se6]

EUR | Belgian | Belgium | 101} 55,500001001895) | (EGAS00001001895) | N4 NA NA NA

Table S1. Population description, sample size, and AGR ancestry proportions of the
final dataset of 667 individuals. Related to Figure 1.
Ancestry proportions were estimated in AGR and RHG populations with ADMIXTURE at
K=5 clusters.




Immune traits Bezan Baka BaKoya | BaBongoC | BaBongoS/E | BaTwa wAGR eAGR
All II genes 2.13x102 | 6.44x107 0.324 2.95%1073 3.51x1072 0.674 3.33x1072 0.210
Adaptors 0.224 2.54x1073 0.034 9.25%1073 0.359 0.574 0.752 0.310
Regulators 0.140 0.497 0.166 1.84x102 3.36x10° 4.81x103 0.675 0.731
Secondary receptors | 2.26x10° | 1.42x10* |  0.682 5.05%1072 0.144 0.697 0.985 0.487
Signal transducers 0.382 0.074 0.623 1.55x103 2.53%x1072 0.925 0.399 0.387
Sensors 3.89x10* 0.424 0.338 5.99x103 0.507 0.157 8.57x103 0.350
Transcription factors 0.536 0.931 0.930 0.450 0.496 0.362 1.67x1072 0.758
Accessory molecules 0.904 0.777 0.946 0.894 0.548 0.991 0.063 0.287
Effectors 0.250 0.302 0.140 0.410 0.699 0.418 0.387 0.395
Uncharacterized 0.413 0.154 0.047 0.939 0.678 0.906 0.134 3.09%x1072
All VIP genes 0.179 0.199 0.083 6.85x10 1.17x1072 0.236 0.193 0.323
dsDNA 0.268 8.88x103 | 3.93x10% | 2.46x1072 4.22x102 0.073 0.648 0.787
ssSRNA 0.182 0.339 0.084 4.21x10* 7.98x1073 0.562 0.336 0.316
ssDNA 0.919 0.093 2.31x103 | 1.29x102 0.429 0.619 0.592 0.736
dsDNART 0.365 0.985 0.710 0.382 0.152 0.459 0.111 0.569
sSRNART 0.213 0.496 0.864 0.162 0.258 0.069 0.118 0.135

Table S2. Polygenic Selection Signals for Immune-Related Traits in Central Africans.
Related to Figure 3D.
Evidence for polygenic selection across 1,553 innate immunity (II) and 1,257 viral interacting
protein (VIP) genes, based on their enrichment in high Fcs selection scores (FDR P<5%; in

bold), relative to genome-wide expectations. Families of viral interacting proteins include host
genes interacting with: double-stranded DNA virus (dsDNA), double-stranded DNA
retrovirus (dASDNART), single-stranded DNA virus (ssDNA), single-stranded RNA virus
(ssRNA) and single-stranded RNA retrovirus (sSRNART).
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