
HAL Id: tel-04514888
https://theses.hal.science/tel-04514888

Submitted on 21 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extension and Analysis of Dataflow Models of
Computation for Embedded Runtimes

Florian Arrestier

To cite this version:
Florian Arrestier. Extension and Analysis of Dataflow Models of Computation for Embedded Run-
times. Signal and Image processing. INSA de Rennes, 2020. English. �NNT : 2020ISAR0022�. �tel-
04514888�

https://theses.hal.science/tel-04514888
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES

APPLIQUEES DE RENNES

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Signal, Image, Vision

Par

Florian ARRESTIER
Extension and Analysis of Dataflow M odels o f C omputation for
Embedded Runtimes

Thèse présentée et soutenue à Rennes, le 10 novembre 2020
Unité de recherche : IETR
Thèse N° :20ISAR 17 / D20 - 17

Rapporteurs avant soutenance :

Tanguy RISSET Professeur des Universités, INSA Lyon
Renaud PACALET Directeur d’études, Télécom Paris

Composition du Jury :

Président : Alix MUNIER-KORDON
Examinateurs : Tanguy RISSET

Renaud PACALET
Jocelyn SÉROT

Professeure des Universités, Sorbonne Université - LIP6
Professeur des Universités, INSA Lyon
Directeur d’études, Télécom Paris
Professeur des Universités, Institut Pascal

Dir. de thèse : Daniel Ménard Professeur des Universités, INSA Rennes
Encadrant : Karol Desnos Maitre de conférences, INSA Rennes
Encadrant : Eduardo Juarez Assistant Professor, Universidad Politécnica de Madrid

Pour toi, Maman.

Table of Contents

Acknowledgements 11

1 Introduction 13

Introduction 13
1.1 Context . 13
1.2 Objectives and Contributions of this Thesis 16

I Background 21

2 Dataflow Model of Computations 23
2.1 Introduction . 23
2.2 Dataflow Models of Computation (MoCs): overview 24

2.2.1 Dataflow Process Network . 25
2.2.2 Dataflow Model of Computation (MoC): Properties 26

2.2.2.1 Parallelism in Dataflow Models of Computation (MoCs) . 26
2.2.2.2 Dataflow Models of Computation (MoCs) Properties . . . 27

2.3 Static Dataflow Models of Computation (MoCs) 29
2.3.1 Synchronous DataFlow . 29
2.3.2 Cyclo-Static Dataflow and Affine DataFlow 31

2.4 Hierarchical Dataflow Models of Computation (MoCs) 32

5

TABLE OF CONTENTS

2.4.1 Naïve Hierarchical Synchronous DataFlow (SDF) 33
2.4.2 Interfaced Based Synchronous Dataflow: Adding Compositionality

to Synchronous DataFlow (SDF) 34
2.5 Dynamic and Reconfigurable Dataflow Models of Computation (MoCs) . . 36

2.5.1 Parameterized and Interfaced Synchronous DataFlow 36
2.5.2 Schedulable Parametric Dataflow 40

2.6 Conclusion . 42

3 Embedded Runtimes for Multi-Processor System on Chips 45
3.1 Introduction . 45
3.2 Embedded Systems . 46

3.2.1 Heterogeneity in Embedded Systems 46
3.2.2 Memory Architectures in Embedded Systems 47

3.3 Multicore Scheduling . 48
3.3.1 Scheduling approaches . 50

3.4 Model-Based Embedded Runtimes . 52
3.5 Conclusion . 56

II Contributions 57

4 Dynamically Initialized and State-Aware Dataflow MoCs 59
4.1 Introduction . 59
4.2 Motivation: The Limitations of Delays in Dataflow Models of Computation

(MoCs) . 60
4.2.1 Initialization of Delays . 61
4.2.2 Persistence of Delays . 62

4.3 Dynamic Initialization of Dataflow Graphs 64
4.3.1 Extending Delay Initialization Semantic 64
4.3.2 Consistency and Liveness Analysis 66

4.3.2.1 Synthetic Example . 68
4.3.3 Corner Cases: Recursive and Multiple Initialization 69
4.3.4 Modeling of an Iterative Structure in Dataflow 71

4.3.4.1 Generic Iterative Process Example 71
4.3.4.2 Matrix Multiplication Example 76

6

TABLE OF CONTENTS

4.4 Initial Tokens Values: A Matter of State 78
4.4.1 Persistence Scope of Delays . 79

4.4.1.1 Definition . 79
4.4.1.2 Hierarchical Implications: Serial vs Parallel Execution . . 81

4.4.2 Application to the πSDF Model of Computation (MoC) 84
4.4.2.1 SA-πSDF Semantics . 84
4.4.2.2 SA-πSDF Runtime Operational Semantics 85

4.5 SA-πSDF Application Example . 87
4.5.1 Application Description . 87
4.5.2 Results . 88

4.6 Conclusion . 89

5 An Efficient Intermediate Representation for Resources Allocation 91
5.1 Introduction . 91
5.2 Dynamic Scheduling of Dataflow Applications Challenges 93

5.2.1 The Single-Rate Directed Acyclic Graph Transformation 93
5.2.2 RunTime Challenges . 95
5.2.3 Existing Runtimes . 96
5.2.4 Avoiding Excessive Graph Expansion 97

5.3 Numerical Modeling of Dataflow Models of Computation (MoCs) 99
5.3.1 Modeling a Flat Dataflow Model of Computation (MoC): The Syn-

chronous DataFlow (SDF) case . 99
5.3.2 Modeling a Hierarchical and Compositional Dataflow Model of

Computation (MoC): The Parameterized and Interfaced Syn-
chronous DataFlow (πSDF) case . 105

5.3.3 Relaxed execution model for Parameterized and Interfaced Syn-
chronous DataFlow (πSDF) . 107

5.4 Exploitation: Scheduling and Memory Allocation 116
5.4.1 Experimental Setup . 117
5.4.2 Results . 118

5.4.2.1 Memory footprint . 119
5.4.2.2 Execution time . 121

5.5 Conclusion . 125

7

TABLE OF CONTENTS

6 SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime 127
6.1 Introduction . 127
6.2 Spider 2.0: Runtime Structure and Design Choices 130

6.2.1 Runtime Structure . 130
6.2.2 Hardware Model and Application Programming Interface (API) . . 132
6.2.3 Heterogeneous Dynamic Mapping and Scheduling 135
6.2.4 Execution Modes . 136
6.2.5 Supported Model Features . 138

6.3 Implementation Details for an Efficient Model-Based Runtime 139
6.3.1 Efficient Parameterized Expression Parser 140

6.3.1.1 Just-In-Time Compiled Expression Parser 140
6.3.1.2 Experimental Results . 144

6.3.2 Enforcing the Parameterized and Interfaced Synchronous DataFlow
(πSDF) Execution Model . 148

6.3.3 Notification-based Synchronization between Local RunTimes (LRTs)151
6.3.3.1 Notification Messages and Local RunTimes (LRTs) State

Machine . 151
6.3.3.2 Just-In-Time (JIT) and Delayed Execution of Tasks 153
6.3.3.3 Notification rate Results 157

6.4 Conclusion . 159

7 Conclusion 161

Conclusion 161
7.1 Research Contributions . 161

7.1.1 Dataflow Model Extension . 162
7.1.2 Dataflow Graph Dependencies Analysis 162
7.1.3 Synchronous Parameterized and Interfaced Dataflow Embedded

Runtime 2.0 (Spider 2.0): A Dataflow Runtime 163
7.2 Prospects – Future Works . 163

7.2.1 Just-In-Time Reconfiguration . 164
7.2.2 Dynamic Memory Compression . 164
7.2.3 Debugging Capabilities . 165

8

TABLE OF CONTENTS

A French Summary 167
A.1 Introduction . 167

A.1.1 Problématiques . 167
A.1.2 Plan . 169

A.2 État de l’Art . 169
A.2.1 Modèles de Calcul Flots de Données 169

A.3 Extension de Modèles Flot de Données . 172
A.4 Analyse de Modèles Flot de Données . 173
A.5 Spider 2.0 : Un Manageur de Ressource d’Applications Basées Flot de Don-

nées . 174
A.6 Conclusion . 174

B Platform API 176

List of Figures 183

List of Tables 185

List of Listings 186

Glossary 190

Bibliography 191

9

Acknowledgements

Pour commencer, j’aimerais remercier mes encadrants de thèse, à savoir le docteur
Karol Desnos et les professeurs Daniel Ménard et Eduardo Juarez. Merci de m’avoir
accordé votre confiance, que ce soit en me confiant ce sujet ou tout du long de la thèse
par l’autonomie que vous m’avez donné. L’encadrement d’une thèse est, pour ma part et
au delà des qualités du candidat, l’un des facteurs déterminant de la réussite de celle-ci et
je ne pense pas que j’aurais pu en avoir un meilleur. A Karol, je te remercie pour toutes ces
discussions autour du café, souvent sans rapport direct, et ça fait du bien, avec la thèse.
Je te remercie aussi d’avoir su me redonner la confiance nécessaire pour aller au bout lors
de mes quelques moments de doute. A Eduardo, je te remercie pour l’accueil chaleureux
que toi et ton équipe, au CITSEM, m’avez réservé lors de mes visites à Madrid. Enfin,
à Daniel, que serait un bateau sans son capitaine pour le diriger ? Je ne pense pas que
j’aurais signé pour ces 3 ans avec un autre directeur que toi, merci pour la confiance que
tu m’as accordé de mon premier stage d’études avec Alexandre à la thèse.

Je tiens également à remercier le professeur Tanguy Risset et monsieur Renaud Pacalet
d’avoir fait partie de mon jury de thèse et surtout d’avoir pris le temps, pendant leurs
vacances d’été, de relire mon manuscrit. Merci pour vos remarques et retours constructifs.
Je tiens également à remercier la professeur Alix Munier-Kordon d’avoir présidée mon jury
de thèse et le professeur Jocelyn Sérot pour en avoir fait partie.

Je voudrais aussi remercier l’ensemble de l’équipe de VAADER, pour son accueil, sa
bonne ambiance et ses multiples repas et barbecues d’équipe. Évidemment, je remercie
tous mes collègues doctorants, Alexandre Honorat, Guillaume Gautier, Ketty Favre, Nico-

11

TABLE OF CONTENTS

las Sourbier, Leonardo Suriano, Claudio Rubattu, Florian Lemarchand, Thomas Amestoy,
et enfin, mais pas des moindres, Alexandre Tissier. Vous avez su me donner envie de venir
au travail tous les jours, non pas par devoir mais par envie et surtout avec plaisir ! Pour
toutes ses pauses, parfois longues il est vrai, et durant lesquelles de nombreux débats,
souvent d’un niveau douteux avouons le, ont eut lieu, merci. Sans vous, ça n’aurait pas
été la même expérience, c’est certain.

Que seraient ces remerciements si je n’évoquais pas la personne qui m’a convaincu de
faire de la recherche ? Je parle bien entendu du docteur Alexandre Mercat. Merci à toi
Alex, sincèrement, sans toi, je n’aurais sans doute jamais eu l’idée de réellement faire une
thèse. Mais au-delà du cadre de la recherche, merci pour tout ce que tu m’as apporté sur
le plan personnel.

Enfin, je voudrais remercier ma famille pour tout le soutient qu’ils m’ont apportés
durant ces 3 ans. Que ce soient mes grands parents, mon grand frère, Johann, ou mon
papa, Jean-Pierre, je sais que vous avez toujours cru en moi et que vous êtes fier de moi
et de mon parcours. Evidemment, je pense à toi, maman. Même si tu n’étais plus avec
nous durant ma thèse je sais que tu aurais été extrèmement fier de moi. Tu nous manques
tous les jours.

PS: J’aimerais aussi remercier l’ensemble de l’équipe du VandB pour m’avoir permis
de me détendre durant ces 3 années de thèse.

PS2: Je voudrais aussi remercier l’Europe et la France, et en particulier les projets
CERBERO et ARTEFACT d’avoir financés ma thèse ainsi que, pour au moins une partie,
le VandB longschamps.

12

CHAPTER 1

Introduction

1.1 Context

Our modern society is surrounded by a myriad of embedded systems: from the sim-
ple thermostats in our homes, the connected pedometers, to more complex systems
such as our phones, our cars and to the highly complex and critical automated navi-
gation systems on airplanes. The number of systems entering our daily life is expected
to keep rising in the next few years, with an expected growth of 6.1% from 2020 to
2025 [marketsandmarkets_embedded_2020].

Embedded Systems Constraints

We define an embedded system as an integrated electronic and computing system de-
signed for a specific purpose. The combination of specialized hardware inside embedded
systems increases the complexity needed for programming them. Indeed, it is not un-
common to have dedicated hardware for encoding and decoding video, or for performing
Artificial Intelligence (AI) computations, for managing the Inputs/Outputs (IOs) of the
system or for connecting the systems to the internet through modern 4G and 5G net-
works. All of these dedicated hardware accelerators are generally connected to a Central
Processing Unit (CPU) which will need to communicate with them in an efficient manner.

13

Chapter 1 – Introduction

Hence, in the past decades, there have been many developments toward facilitating the
exploitation of the computational resources of these embedded systems.

Designing and programming embedded systems require taking into account functional
constraints and non-functional constraints. In [desnos_memory_2014], the author
classify the constraints applied to embedded systems into three categories, namely the
application constrains, the cost constraints and the external constraints. In our proposed
classification, we split the application constrains into functional constraints and design
constraints.

• Functional constraints refer to the constraints that an embedded system must
satisfy to serve its intended purpose. These functional constraints include, but not
exhaustively, performance requirements, reliability of the system or the intrinsic
purposes of the system (e.g. encoding and decoding a video).
• Cost constraints refer to the constraints that will affect the final cost of the

embedded system such as development cost, production cost, recycling cost, etc.
• External constraints refer to external requirements that an embedded system

must satisfy and that are non essential to fulfill the functional constraints of the
system, such as standards compliance (e.g. MPEG standard) or environment con-
straints (e.g temperature, pressure, etc.).
• Design constraints refer to all non-functional constraints (e.g. memory usage,

energy consumption, etc.) composing the design space of possible solutions once
components satisfying all of the above constraints have been selected. These con-
straints are orthogonal to the functional constraints, which means that finding a
solution that satisfies a design constraint should not question the fulfillment of
functional constraints. Indeed, design constraints are constraints applied on top
of satisfied functional constraints and thus, must be compatible with them. For
instance, finding the most energy efficient solution can not affect the intrinsic
functional aspect of the system as the search space is restricted to compatible
solutions.

All of these constraints might result in orthogonal solutions. For instance, finding a
energy optimal solution might result in sub-optimal memory consumption constraint or
in an higher cost of the system. Hence, the design of an embedded system most often
boils down to finding and accepting the most appropriate, or acceptable, trade-off across
all of the possible solutions. The process of finding this trade-off is often refereed to as

14

1.1. Context

the Design Space Exploration (DSE) of a system and has been an active field of research
with the development of dedicated tools.

Reducing the Software Productivity Gap

The famous Moore’s law [moore_cramming_1998] that predicts that the number
of transistor inside of an integrated circuit would double every 18 months is reaching
its end. For the past two decades, a new law called the "More than Moore" has ap-
peared [zhang_more_2009; waldrop_chips_2016] in order to keep the Moore’s law
going by leveraging the heterogeneity of modern System on Chips (SoCs).

In [leiserson_theres_2020], authors show that even though hardware is not evolv-
ing as fast as it was, there is now a lot of room for improving current software. Indeed, as
mentioned in [zhang_more_2009] the software productivity, i.e the complexity of the
program that are written, of programmers has not been keeping up with the evolution
rate of hardware (2.5 times slower in 2009). This differential in productivity in regard to
the evolution of hardware is refereed to as the software productivity gap. One of the
reason behind the software productivity gap is that one of the most popular programming
language for embedded systems still remains the C programming language, a low level
and imperative language not adapted to the modern massively parallel and heterogeneous
systems. Hence, recent years have seen the development of high level programming lan-
guages and rapid prototyping techniques to bridge the software productivity gap. One of
the programming paradigm intended for higher software productivity of programmers is
the dataflow programming paradigm.

Dataflow Programming

Dataflow Models of Computation (MoCs) is a programming paradigm that was de-
veloped in order to naturally capture the parallelism of applications. In dataflow MoCs,
applications are described as graphs where vertices are computational entities of different
level of granularity, from the addition instruction level of granularity to complex process-
ing kernel level of granularity; and edges are data communication channels.

Many dataflow MoCs have been proposed since the original work of Kahn in
1974 [kahn_semantics_1974]. Every proposed dataflow MoC comes with its own se-
mantics and execution rules that are designed for expressiveness, compactness or effi-
ciency of the model. For instance, static models such as the Synchronous DataFlow

15

Chapter 1 – Introduction

(SDF) [lee_synchronous_1987] and its derivatives are tailored for modeling static
applications with strong execution guarantees such as memory boundness or the absence
of deadlock. On the other end of the spectrum, dynamic dataflow MoCs have the same
expressiveness as Turing machines [buck_scheduling_1993; lee_dataflow_1995].
Consequently these models can not statically derive schedules, or check for memory bound-
ness for the infinite execution of an application and need to have these analysis deferred
at runtime. The popularity of the dataflow MoCs comes from their abstraction of the
underlying implementation of computational kernels and, thus, their compatibility with
existing code.

Moreover, outside of the academic formalism of the dataflow MoCs, dataflow based
tools have also emerged due to the recent explosion of the deep learning research area
such as the Tensorflow tools [abadi_tensorflow:_2016]. Similarly, a new dataflow
based standard, called OpenVX [kronos_group_openvx_2013], has emerged for mod-
eling computer vision application. More generally, there is a trend in the academic
and the industry to go toward tools with higher level of abstraction (often dataflow
based), increasing the productivity of the programmer [elliott_national_2007;
augonnet_starpu:_2009; pelcat_preesm:_2014; heulot_runtime_2015]. These
tools abstract the complexity of modern heterogeneous Multi-Processor System on Chips
(MPSoCs) to the programmer with the aim of high performance generated software code
or hardware layout.

1.2 Objectives and Contributions of this Thesis

There is a variety of dataflow MoCs available in the literature, each tailored for spe-
cific use cases. Using dataflow graphs as an high level programming paradigm and as en
execution model offers benefits such as compile time analysis, predictability, abstraction
from hardware, etc. However, dynamic dataflow MoCs require a portion of the analysis
to be done at runtime. For instance, deadlock analysis or scheduling are only possible
at runtime in fully dynamic MoCs. Therefore, in order not to invalidate satisfied design
constraints of embedded systems, the overhead of runtime analysis should not interfere
with the application functionality.

Moreover, with the growing complexity of modern embedded systems architecture
(e.g. many core platforms, heterogeneous MPSoCs, etc.), there is a need for efficient
rapid prototyping tools to explore the DSE of these systems [augonnet_starpu:_2009;

16

1.2. Objectives and Contributions of this Thesis

gautier_xkaapi:_2013; pelcat_preesm:_2014; heulot_runtime_2015; dauphin_odyn_2019].
Finally, these tools should also be flexible enough to allow for developing, comparing and
testing new algorithms easily.

This thesis studies dataflow MoCs from the model aspect to the implementation of a
dedicated embedded runtime. The main objectives of this thesis are 3 folds:

1. Propose an extension to existing dataflow MoCs that improve their expressiveness
without adding complexity to their analysis.

2. Develop a novel intermediate representation for the management of dynamic
dataflow based applications in an embedded context.

3. Provide a research framework for experimenting, and integrating analysis algo-
rithms for dynamic dataflow applications onto heterogeneous platforms and test-
ing them on real world applications (e.g. signal or image processing applications,
machine learning applications, etc.).

To address these objectives, the following contributions are made:
• Dataflow MoCs Extension: Chapter 4 proposes a new meta-model called State-

Aware dataflow Meta-Model (SaMM) extending the expressiveness and flexibil-
ity of a given MoC. SaMM introduces new semantics for dynamically initializ-
ing delays using dataflow actors and extends the notion of states of hierarchical
dataflow graphs with explicit state persistence and state forwarding. The work
presented in this chapter has been accepted in the 2018 SAMOS international
conference and published in the ACM International Conference Proceeding Series
(ICPS) [arrestier_delays_2018]
• Dataflow MoCs Analysis: Chapter 5 presents a new lightweight intermedi-

ate representation for fast resources allocation of an application graph. The pro-
posed Intermediate Representation (IR) has been implemented into the Spider
tool [heulot_runtime_2015] as a proof of concept for the resource allocation
of image processing and machine learning applications. The work presented in
this chapter has been accepted in the 2019 EMSOFT international conference and
published in the ACM Transactions on Embedded Computing Systems (TECS)
journal [arrestier_numerical_2019].
• Dataflow MoCs Implementation: Chapter 6 presents an improved implementa-

tion of the existing Spider runtime [heulot_runtime_2015] called Spider 2.0.
Spider 2.0 is an embedded runtime for experimenting with dataflow analysis al-
gorithms for reconfigurable applications. The Spider 2.0 runtime uses the Parame-

17

Chapter 1 – Introduction

terized and Interfaced Synchronous DataFlow (πSDF) MoC [desnos_pimm:_2013]
extended with the SaMM delay semantics from Chapter 4.

All of this work was developed within the European project CERBERO and the French
ANR project ARTEFACT. Additionally, this thesis was co-supervised by Eduardo Juarez
from the Universidad Politechnica de Madrid (UPM), which was also part of the CER-
BERO consortium.

Chap.2

Chap.6

Chap.4

Chap.3

Chap.5 An Efficient Intermediate
Representation for Resources
Allocation

SPIDER 2.0: Implementation of
a pSDF-based Extensible
Runtime

Dynamically Initialiazed and
State-Aware Dataflow
Models of Computration

Background on Dataflow
Models of Computation

Background on Embedded
Systems and Embedded
Runtimes

Figure 1.1 – Summary of the organization and contributions of this thesis. Colored
chapters correspond to contributions chapters and gray chapters correspond to
state-of-the-art chapters. Filled lines correspond to direct connections between chapters
and dotted lines correspond to possible connection that was explored during this thesis.

Figure 1.1 illustrates the organization of this document and emphasizes the relation-
ship between the different contribution of this thesis. State-of-the-art chapters, Chap-
ters 2 and 3, are colored in gray and the colored chapters correspond to the contribution
chapters (Chapters 4 to 6). The direct relationship between chapters is marked by a gray
line. The dotted line between Chapter 5 and Chapter 6 indicates a potential connection
that was not explored during this thesis due to a lack of time.

18

1.2. Objectives and Contributions of this Thesis

Outline

This thesis is organized in two distinct parts: Part I introduces the concept and research
issues studied in this thesis, and Part II presents the different contributions of this thesis.

In Part I, Chapter 2 presents the concepts of dataflow MoCs and emphases on the
specific MoCs used in this work. Then, Chapter 3 presents the challenges of designing an
embedded runtime for heterogeneous MPSoCs along with existing solutions.

In Part II, limitations of current dataflow MoCs are presented with the proposition of
a new meta-modeling technique called SaMM in Chapter 4 that aims at removing some
of these limitations. Then, Chapter 5 introduces a new IR for dataflow graphs tailored
for on-the-fly resources allocation, which involve mapping, scheduling and memory allo-
cation, in an embedded runtime context. Chapter 6 presents an embedded runtime for
MPSoCs developed during this thesis and that takes on the legacy of the existing run-
time Spider [heulot_runtime_2015] with improved performances. Finally, Chapter 7
concludes this work and lean into the future of the studied themes of this thesis.

19

Part I

Background

21

CHAPTER 2

Dataflow Model of Computations

2.1 Introduction

The computational complexity of modern applications has been rising exponentially
for the past 50 years. In parallel, to keep up with this increase in computational power
demand, the complexity architecture of embedded systems has also been increasing ex-
ponentially. As computers become more and more complex, it is necessary to increase
the level of abstraction for programming them. The first abstraction layer when pro-
gramming computers is the programming language. When the C language replaced as-
sembler [kernighan_c_2011], it revolutionized computer programming due its much
higher abstraction, while maintaining good performances.

While in the recent years Multi-Processor System on Chips (MPSoCs) have become
more and more parallel with an increasing number of cores and dedicated hardware ac-
celerators, the C programming language is inherently sequential and was not designed for
parallel computing. For instance the AMD EPYC 7742 processor 1 possess 64 processing
cores and 128 threads. Programming such highly parallel processor requires a change in
the programming paradigm.

Graphical based programming languages offers an high level of abstraction and are a
popular alternative to classical text based programming languages such as the C language.

1. https://www.amd.com/fr/products/cpu/amd-epyc-7742 .

Chapter 2 – Dataflow Model of Computations

Labview [johnson_labview_2006] and Matlab Simulink [klee_simulation_2018]
are among the most popular diagram-based programming languages used in academic
and industrial environments.

This thesis focuses on the study of diagram-based MoCs called dataflow MoCs.
Dataflow MoCs are commonly used to model stream processing applications in a
wide range of domains such as video and audio processing [park_extended_1999;
pelcat_preesm:_2014; theelen_scenario-aware_2006], telecommunications [dardaillon_new_2016],
computer vision [kronos_group_openvx_2013], and machine learning [abadi_et_al._tensorflow:_2016].
Dataflow MoCs and related languages are subject to an increasing popularity due to their
advanced analyzability and their natural expressiveness of parallelism.

This chapter is organized as follows. Section 2.2 formally presents the concepts and
properties of dataflow MoCs. Then, Section 2.3 present static MoCs with the Synchronous
DataFlow (SDF) MoC and one of its many extensions. Section 2.4 present the concept of
compositionality in dataflow and two examples of hierarchical dataflow MoC. Dynamic
and Reconfigurable MoCs are presented in Section 2.5. Finally, Section 2.6 summarizes
and concludes this chapter.

2.2 Dataflow MoCs: overview

In computer science, a Model of Computation (MoC) describes the set of elementary
operations and rules that define how a computer program is executed. Similarly to the laws
of physics that govern how our universe works and how objects interact with each other
within it, a MoC govern how a program works and what are the interactions between the
MoC objects. It is important, however, to differentiate between MoCs and programming
languages as a programming language can be used to implement different MoCs. For
instance, it is possible to implement a Turing machine in C, but it is also possible to
implement any dataflow MoC with it.

There exists a variety of MoCs such as sequential MoCs (e.g. Turing ma-
chines [turing_computable_1937], Finite-State Machines (FSMs)), functional MoCs
(e.g. lambda calculus [church_set_1932; barendregt_lambda_2012]), or concur-
rent MoCs like the Kahn Process Networks (KPNs) [kahn_semantics_1974] and
dataflow MoCs [davis_data_1982].

24

2.2. Dataflow MoCs: overview

2.2.1 Dataflow Process Network

The Kahn Process Network (KPN) [kahn_semantics_1974] is probably the first
known dataflow MoC. Kahn defined a KPN as a network of concurrent tasks connected
by directed unbounded First-In First-Out Queues (Fifos) channels transmitting data
tokens. In a KPN, data tokens are indivisible, produced only once and consumed only
once, and they cannot be shared by tasks.

B

1

A CA actor

Data ports

FIFO

FIFO with D
delay tokensD

Figure 2.1 – DPN graph example.

In [lee_dataflow_1995], Lee and Parks introduced a specialization of KPNs, called
the Dataflow Process Network (DPN), and specified the semantics of dataflow networks.
Formally a Dataflow Process Network is defined as follows:

Definition 2.2.1 (DPN definition)
A Dataflow Process Network (DPN) is a directed graph G = 〈A,F 〉 where:
• A is the set of vertices called actors of G representing computational tasks. Each
actor a ∈ A defined as a tuple a = 〈Din, Dout,F, R〉 embeds:
— Din, Dout are the data input and output ports of the actor, respectively.
— F = {F1, F2, ..., Fn} are the firing rules of the actor. A firing rule Fi ∈ F is

condition that when satisfied, can start an execution (or firing) of the associated
actor.

— R: A set of data rates. A rate is the number of data tokens consumed at a
given data input port dini ∈ Din or produced on a data output port douti ∈ Dout

corresponding to a specific firing rule.
• F is the set of edges of the graph G, representing unbounded Fifo data queues.
These Fifos are the medium through which data tokens are exchanged between
actors of the graph. Each Fifo f ∈ F is associated with a produced and a consumer
actor, producing and consuming data tokens on the Fifo, respectively. A Fifo is
also associated to a delay value which correspond to the number of initial data
tokens present in the Fifo at the start of the application.

The semantics of the DPN MoC only specifies the execution behavior of the graph, but
does not say anything about the internal behavior of actors. The description of the internal

25

Chapter 2 – Dataflow Model of Computations

behavior of any actor of a DPN graph can be implemented using various programming
languages such as C, Python, Java or VHDL. Specific dataflow programming languages
also exist, such as CAPH [serot_implementing_2011] or CAL [eker_cal_2003].
These languages describe both the graph structure and the internal behavior of the actors.

2.2.2 Dataflow MoC: Properties

Since the original dataflow MoCs proposed in the early 80’s [goos_first_1974;
davis_data_1982], numerous dataflowMoCs have been introduced. New dataflowMoCs
are often introduced to fill in the gaps of pre-existing models. For instance, some MoCs
extends the semantics of existing models in order to capture a wider range of applications
specificities [park_extended_1999], or to encompass analysis information directly into
the model semantics [damavandpeyma_schedule-extended_2013]. Other models in-
troduce new concepts to, or generalize, an existing MoC [piat_interface-based_2009;
bilsen_cycle-static_1996]. Finally, some models are introduced to enforce the analyz-
ability of existing models with strong mathematical formalism [theelen_scenario-aware_2006].

2.2.2.1 Parallelism in Dataflow MoCs

In [zhou_scheduling_2016], authors identify 4 types of parallelism that are com-
monly found in dataflow based applications, namely the task parallelism, data parallelism,
the pipeline parallelism (or time parallelism), and the actor level parallelism. Figures 2.2
illustrate these four types of parallelism with four corresponding schedules. These sched-
ules does not reflect the behavior of any precise dataflow graph. In the different schedules
of Figures 2.2, it is assumed that there exists a notion of iterations to the presented
schedules, distinguished by their color.

The four types of parallelism are defined as follows.
• Task Parallelism: This form of parallelism is illustrated in Figure 2.2a and corre-

sponds to distinct tasks being executed concurrently. For instance, in Figure 2.2a,
tasks B and C are executed concurrently.
• Data Parallelism:Data parallelism corresponds to the possibility of a task to have

multiple instances executed concurrently. This is only possible in dataflow MoCs
where actors have no internal states possible. In Figure 2.2b, task C exploits data
parallelism as multiple instances are executed at the same time.

26

2.2. Dataflow MoCs: overview

Time

PE1

PE0 C DA

B

E A

B

CD E

(a) Example of a schedule with task parallelism.
Time

PE1

PE0 C DBA A B

C

E C

C

(b) Example of a schedule with data parallelism.

Time

PE1

PE0

C

D

B

D

A C

D

BA A B

E E E

(c) Example of a schedule with time parallelism.
Time

PE1

PE0
C

DBA E A B
C

(d) Example of a schedule with actor level
parallelism.

Figure 2.2 – Illustration of the different typ of parallelism in dataflow graphs.

• Time Parallelism: Also refereed as pipelining, time parallelism refers to the over-
lapping of multiple iterations of a given application graph. Figure 2.2c illustrates
this property with up to 2 iterations overlapping.
• Actor level Parallelism: This final form of parallelism, illustrated in Fig-

ure 2.2d, is related to the internal behavior of tasks, with tasks being ex-
ecuted on multiple Processing Elements (PEs) at the same time. For in-
stance, in a hierarchical dataflow MoC, the internal execution of a hier-
archical actor onto multiple PEs could be seen as actor level of paral-
lelism [bhattacharya_parameterized_2001; neuendorffer_hierarchical_2004;
piat_interface-based_2009; desnos_pimm:_2013].
An other source for actor level parallelism is to use a programming language that
allows parallel computation for describing the internal behavior of the actor. The
use of OpenMP [chapman_using_2008] inside the specification of an actor for
the parallelization of for-loops is a common practical example.

2.2.2.2 Dataflow MoCs Properties

In [desnos_memory_2014], Desnos proposed a classification of properties of
dataflow MoC. The list of properties proposed is used for comparing dataflow MoCs
and is split into two distinct set of properties, namely the properties objectively measur-
able and the properties that can not be objectively measured. In the following definitions,

27

Chapter 2 – Dataflow Model of Computations

the decidability, determinism, compositionality and reconfigurability properties are objec-
tively measurable properties of dataflow MoCs. On the other hand, the predictability and
expressiveness properties are not objectively measurable but provide nonetheless useful
information when comparing different MoCs.

• Decidability: A dataflow MoC is decidable if it is possible to prove statically, i.e.
at compile time, that an application described with this MoC will execute within
bounded memory, and that there exists at least one sequence of firings, called a
schedule, for which the application will execute without deadlock.
• Determinism: The determinism property of a dataflow MoC is for applications

modeled with this MoC to solely depends on the data flowing in the application
and not on external factors [lee_dataflow_1995].
• Compositionality: This is the property of a dataflow MoC to be analyzable

independently from the internal specification of the actors composing an applica-
tion graph modeled with this MoC [tripakis_compositionality_2013]. In other
words, in a compositional MoC, modifying the internal behavior of any actor does
not affect the analyzable properties (consistency, liveness, etc.) of a given graph.
• Reconfigurability: A reconfigurable dataflow MoC is a MoC in which the firing

rules of actors can change during the execution of an application. In order to
maintain some predictability or partial determinism, reconfiguration should only
happen at quiescent points [neuendorffer_hierarchical_2004].
• Predictability: The predictability property of a dataflow MoC encompass all the

behaviors of a MoC that are related to the change of its firing rules. For instance,
in [neuendorffer_hierarchical_2004], the predictability is defined in respect
to how often the firing rules of a MoC changes, but in [heulot_runtime_2015]
predictability is defined as a function of how the firing rules of a MoC are changed.
• Expressiveness: The expressiveness, or expressive power, of a dataflow MoC rep-

resent the range of possible applications that can be representated with this MoC.
For instance, the ability to model conditional structures, for-loops, or infinite loops
is what defines the expressiveness of a MoC. The more expressive a MoC, the
broader the range of applications that can be modeled with it. Static dataflowMoCs
have a limited expressiveness as they can not model applications with dynamic be-
havior, hence dynamic MoCs are more expressive than static MoCs.

28

2.3. Static Dataflow MoCs

2.3 Static Dataflow MoCs

There are two main categories among the existing dataflow MoCs, namely the dy-
namic and static MoCs. In this section, static dataflow MoCs are presented, starting with
the SDF MoC, one of the most studied and derived dataflow MoC, and originally pre-
sented in [lee_synchronous_1987]. Static dataflow MoCs are a restrictive subset of the
DPN MoC [lee_dataflow_1995] where the firing rules are fixed and that a complete
execution of a graph, if it exists, can be analyzed at compile time. This property restrict
the expressiveness of static MoCs, i.e it restricts the class of applications that can be
modeled with a static MoC.

This section is not an exhaustive list of existing static dataflow MoCs but introduces
the reader to different models in order to understand the changes in semantics that jus-
tify the existence of different MoCs. For a more in depth dive into static and dynamic
dataflow MoCs, the interested reader will find in [bhattacharyya_decidable_2013]
and in [bhattacharyya_dynamic_2019; bouakaz_survey_2017] more complete
surveys on static and dynamic dataflow MoCs, respectively.

2.3.1 Synchronous DataFlow

B
11

1

A C18 42A actor

1 Data ports
and associated
rate

FIFO

FIFO with D
delay tokensD2

Figure 2.3 – SDF graphical semantics and a graph example.

The Synchronous DataFlow (SDF) MoC [lee_synchronous_1987] is the most pop-
ular static specialization of the DPN MoC [lee_dataflow_1995]. Firing rules of the
SDF MoC define data token production and consumption rates of actors as fixed scalars,
meaning that rates are set at design time and are fixed for the entire execution of the
application. The graphical semantics of the SDF MoC and an example of SDF graph are
presented in Figure 2.3.

Formally, an SDF graph G = (A,F) contains a set of actors A that are interconnected
through a set of Fifos F. An actor a ∈ A reads data tokens from its input ports and
produces data tokens on its output ports. The execution of an actor is called a firing and
for an actor to fire, enough data tokens need to be available on all of its input ports. In

29

Chapter 2 – Dataflow Model of Computations

the graph of Figure 2.3, actor B can only fire when 2 data tokens are present on the Fifo
(~AB) and 1 data token is present on its self-loop. The initial data tokens of a Fifo f ∈ F
are called delays. The value n of the delay is the number of initial data tokens of f .

The popularity of the SDF MoC comes from its great analyzability. Indeed, using
static analyses, the consistency and liveness properties of an SDF graph can be verified.
When an SDF graph is schedulable, i.e it is consistent and live, a minimal sequence of
firings of the actors exists to achieve an infinite execution with bounded memory. Such
minimal sequence is called a graph iteration and the number of firings of each actor is
given by the coefficients of the Repetition Vector (RV) of the graph. Figure 2.3 presents
an SDF graph that is consistent and live. For each graph iteration, actor A is executed 1
time, actor B 4 times, and actor C 16 times.

SDF: Consistency and Liveness

There are two important properties of SDFs Graphs (SDFGs) that guarantee the
execution of an SDFG in bounded memory and that the execution will not deadlock,
namely the consistency and the liveness properties.
• Consistency is the property of an SDFGmeans that no data token will indefinitely

accumulate in any Fifo of the graph. Consistency is checked through the analysis of
the topology matrix Γ associated with an SDF graph [lee_synchronous_1987].
Formally, Γ(i, j) is the number of data tokens produced or consumed by actor i on
Fifo j. Γ(i, j) is a positive number if the actor i produces data tokens on the Fifo
j and a negative number if the actor consumes data tokens. The graph is consistent
if and only if rank(Γ) = |A| − 1, with |A| the number of connected actors in the
graph. The Repetition Vector (RV), noted q, is defined as the smallest non-zero
integer vector verifying Γ ∗ q = 0.
Finding the vector q, corresponding to the nullspace of the topology matrix Γ, for
large SDFGs is computationally expensive. An efficient algorithm for computing
the repetition vector of an SDFG is given in [bhattacharyya_software_1996].
This algorithm computes the repetition vector by computing the least common
multiplier of the rationals of the different edges of an SDFG.
• Liveness is the property of a graph to run indefinitely without any dead-

locks. A live graph has sufficient initial data tokens to execute a full itera-
tion and each graph iteration starts with the same number of initial data to-
kens. Different approaches to the problem of verifying liveness of a graph exist

30

2.3. Static Dataflow MoCs

in the literature. The most common approach is called the Symbolic Execution
(SE) [bilsen_cycle-static_1996]. SE consists of performing a symbolic execu-
tion of a graph to check if the graph can go through a full iteration and returns to
the same initial state. SE is not suited for large graph as it takes a long time to
perform the symbolic execution. Mathematical approaches have been researched to
make this analysis faster. In [ghamarian_liveness_2006], Ghamarian et al. give
a necessary and sufficient condition based on the analysis of the strongly connected
components of an SDF graph.

Static extensions to the SDF MoC have been proposed to enforce its expressiveness
and conciseness while maintaining the same level of analyzability and predictability. The
Cyclo-Static Dataflow (CSDF) MoC [bilsen_cycle-static_1996] has the same expres-
siveness as the SDF MoC but is more concise. In CSDF, data rates change according
to static cycles defined at the creation of the graph. The Interfaced Based Synchronous
Dataflow (IBSDF) MoC [piat_interface-based_2009] enforces the compositionality
and expressiveness of the SDF MoC by adding explicit and well-defined levels of hierar-
chy. In an IBSDF graph, actors can be defined by the mean of other IBSDF graphs. The
Parameterized DataFlow (PDF) [bhattacharya_parameterized_2001], Schedulable
Parametric Dataflow (SPDF) [fradet_spdf:_2012], and Parameterized and Interfaced
Synchronous DataFlow (πSDF) [desnos_pimm:_2013] are reconfigurable extensions
of the SDF that enforce dynamic reconfiguration of dataflow graphs.

2.3.2 Cyclo-Static Dataflow and Affine DataFlow

The CSDF MoC is an extension and a generalization of the SDF MoC introduced
in [bilsen_cycle-static_1996].

B
11

1

A C{2,1}3 {1,1,2}{3,1}

x2x1 x3

Figure 2.4 – A CSDF graph example.

In a CSDF graph, the data rates of the Fifos of the graph are defined in term of finite
and cyclic sequences of fixed scalar values. For instance, in the graph of Figure 2.4, actor
B has an input data rate sequence of 2 and 1 data tokens, corresponding to its first and

31

Chapter 2 – Dataflow Model of Computations

second firing, respectively. Similarly, actor B produces 3 and 1 data tokens on its output
port which are consumed by the 3 firings of actor C following the consumption sequence
of 1, 1 and 2 data tokens, respectively.

Although, the CSDF MoC is a generalization of the SDF MoC, it does not increase its
expressiveness. Indeed, in [parks_comparison_1996], authors show that every CSDF
graph can be transformed into an equivalent SDF graph. Moreover, due the generalization
of the firing rules of the CSDF MoC over the SDF MoC, the scheduling of a CSDF graph
may be unnecessarily complicate in some situations. However, CSDF graphs are often
more compact and have simpler precedence constraints over SDF graphs. For instance,
in a CSDF graph, cyclic path may be live without requiring to the need of delayed data
tokens as in the SDF MoC. Finally, several years after its introduction, it has been shown
in the Section 5.2 of [thies_empirical_2010] that the CSDF MoC revealed itself to be
impractical and confusing for the user.

The Affine DataFlow (ADF) MoC is a generalization of the CSDF MoC introduced
in [bouakaz_affine_2012]. The ADF MoC extends the CSDF MoC with a finite se-
quence of initialization rates. In other words, in addition to the infinite sequence of rates
of the CSDF MoC, the ADF MoC proposes some initialization period. The combination
of both sequences is called the ultimately periodic sequence. It is worth noting, however,
that similarly to the CSDF MoC, the ADF MoC does not increase the expressiveness of
the SDF MoC as there exists a transformation from an ADF graph to an SDF graph.

2.4 Hierarchical Dataflow MoCs

«Every piece of knowledge must have a single, unambiguous, authoritative representa-
tion within a system»- Hunt and Thomas [hunt_pragmatic_2000]

From building structures out of basic Lego blocks to building complex applications out
of basic processing blocks, we are used to the compositionality principle. Compositionality
is a feature of programming languages that makes building higher order functions out of
simpler one possible. Specifically, a definition of compositionality in dataflow MoCs is
given in Section 2.2.2.2.

Compositional dataflow MoCs improve the design, optimization and reusability of
dataflow applications. For instance, primitive building blocks such as Fast-Fourier Trans-
form (FFT), convolution filter, Finite Impulse Response (FIR) filter, can be designed,
optimized and reused in a multitude of applications.

32

2.4. Hierarchical Dataflow MoCs

In dataflow MoC, composing application graphs out of other application graphs is
not something new and was originally introduced in [davis_data_1982]. However,
in the work of Davis et al., macro functions representing dataflow subgraphs are just
an abstraction and are compositional in the sens of the definition above. Similarly, in
the SDF MoC [lee_synchronous_1987], composing actors are discussed, in the term
of hierarchical actors, but the SDF MoC does not offer any compositional mechanism.
Several extensions to the SDF MoC were proposed later on, to add compositionality to
the MoC [piat_interface-based_2009; tripakis_compositionality_2013].

2.4.1 Naïve Hierarchical SDF

D1H 11A 1

B 11
11

1

N C 1 11

Figure 2.5 – Graph example of a hierarchical SDFG.

The first approach to hierarchical modeling for SDFGs is introduced in [lee_synchronous_1987]
and consists in defining the behavior of a hierarchical actor using an SDFG as its refine-
ment. This replacement can be seen as syntactic sugar as it does not reflect any com-
positional behavior of the SDF MoC. Indeed, the behavior of an SDF subgraph directly
affects the behavior of its parent graph.

Taking Figure 2.5 as an example of a hierarchical SDFG. The top level graph is
composed of the three actors A, H and D. Actors A and D are regular SDF actors, whereas
actor H is a hierarchical actor with its internal subgraph being composed of actors B and
C. In the subgraph of H, the number of repetition of the actors directly influence the
repetition of the top level graph. Indeed, if the graphs are analyzed independently, the
corresponding repetition vectors qtop and qH are given by Equations (2.1) and (2.2) for
the top level graph and the subgraph of actor H, respectively. In this scenario, actors A,

33

Chapter 2 – Dataflow Model of Computations

H and D have a repetition value of 1, and actors B and C have a repetition value of N
and 1, respectively.

qtop =

A 1
H 1
D 1

 (2.1)

qH =
B N

C 1

 (2.2)

However, in a hierarchical SDFG, the inner subgraph of a hierarchical actor is
not encapsulated and abstracted from its parent graph. Thus, in the example of Fig-
ure 2.5, the repetition value of actor A is directly influenced by the one of actor
B and its repetition value is then N and not 1. Moreover, the presence a delay on
the self-loop of actor B is hidden from the top level graph and may cause a po-
tential deadlock. In [pino_hierarchical_1995], Pinot et al. provides an hierarchical
scheduling framework for SDFGs that relies on the clusterization of SDFGs and de-
fine four distinct criteria to check for the validity of the obtained clusters. Authors
in [tripakis_compositionality_2013] propose a solution to the problem of compo-
sitionality of the SDF MoC with the form of a compositional abstraction called Deter-
ministic SDF with Shared Fifos (DSSF) profiles.

2.4.2 Interfaced Based Synchronous Dataflow: Adding Compo-
sitionality to SDF

D1H 11A 1

B 11
11

1

N C 1 11

data interfaces

A actor

FIFO

D
Data ports
and rate1

H
hierarchical
actor

FIFO with D
delay tokens

Figure 2.6 – IBSDF graphical semantic and a graph example.

34

2.4. Hierarchical Dataflow MoCs

The IBSDFMoC is a generalization of the SDFMoC introduced in [piat_interface-based_2009].
Similarly to the SDF MoC, in the IBSDF MoC it is possible to define the behavior of
dataflow actors using hierarchical subgraphs. However, the IBSDF MoC introduces the
compositionality property to the SDF MoC through the use of data interfaces and specific
execution rules for subgraph.

Formally, an IBSDF graph G = (A,F, I) contains in addition to a set of actors A a set
of Fifos F, a set of interfaces I. Interfaces I = (I in, Iout) decorrelate the inner definition
of a subgraph G from the apparent behavior of the associated hierarchical actor HG.
A source interface iin ∈ I in is a vertex transmitting to the subgraph the data tokens
received on the corresponding data input port of the corresponding hierarchical actor. If
more data tokens are consumed by the subgraph during an iteration than made available
by the interface, the source interface behaves as a circular buffer and produces the same
data tokens as many times as needed. Symmetrically, a sink interface iout ∈ Iout only
transmits the last data tokens produced during a subgraph iteration, and discards any
excess of data tokens relatively to the production rate of the parent actor.

The behavior of the interfaces of the IBSDF MoC is one of the key features that makes
the MoC compositional. An other important feature is the property of the interfaces of a
subgraph to be write locked and read locked during the entire execution of the subgraph
for the source interfaces and the sink interfaces, respectively. Finally, delays have no side
effects in hierarchical IBSDF graphs [piat_interface-based_2009]. Combining all of
these features makes the IBSDF MoC a compositional MoC.

Figure 2.6 presents an example of an IBSDF graph along with the associated semantics.
The example graph of Figure 2.6 is the same example as in Figure 2.5 but expressed in
the IBSDF MoC. In Figure 2.6, actors A, B, C and D are non-hierarchical actors, and
H is a hierarchical actor. In the subgraph of actor H, data input and output interfaces
are added for every input and output data ports of actor H, respectively. In Figure 2.6,
actor B is executed N times within the subgraph of the hierarchical actor H. Using the
semantics of the IBSDF MoC, the data input interface connected to actor B will repeat
its data token N times. Hence, as opposed to the non compositional example of Figure 2.5
presented in Section 2.4.1, the repetition vectors given by Equations (2.1) and (2.2) are
valid for the graph of Figure 2.6 regardless of the value of N.

Using the compositional property of a dataflow MoC, it is possible to perform hier-
archical analysis for specific properties such as the latency or the throughput of IBSDF
graphs. In [deroui_relaxed_2017], Deroui et al. show that using the hierarchy and the

35

Chapter 2 – Dataflow Model of Computations

compositional property of the IBSDF MoC, it is possible to perform faster throughput
analysis compared to state-of-the-art approaches.

2.5 Dynamic and Reconfigurable Dataflow MoCs

Static dataflow MoCs offer great analyzability and predictability thanks to fully static
firing rules and data rates. However, static MoCs trade all of these analyzability tools for
a limited expressiveness. Additionally, many applications are dynamic per nature and can
not be fully predictable at compile time. For instance, a computer vision application that
reads signalization signs for autonomous vehicles is unpredictable per nature. Indeed, if
there are no signalization sign, then no processing needs to be done. Symmetrically, if
there are 1, 2 or any number of signalization signs then the application will read each of
these signs, hence the processing load can not be known at compile time.

To overcome this limitation, many generalizations of the SDF MoC have been in-
troduced over the years to model dynamic and reconfigurable applications. One of the
main challenge of these dynamic dataflow MoCs is to increase the expressiveness of the
SDF MoC while maintaining predictability and analyzability as much as possible. Next
sections present two reconfigurable dataflow MoCs: the πSDF and the SPDF MoCs.

2.5.1 Parameterized and Interfaced Synchronous DataFlow

D1H 11A 1

B 11
11

1

N C 1 11

SetN N
N

data interfaces

N parameter

parameter
dependency

configuration
ports

configuration
input interface

A actor

FIFO

D

Data ports
and rate1

H
hierarchical
actor

FIFO with D
delay tokens

Figure 2.7 – πSDF graphical semantic and a graph example.

The πSDF MoC [desnos_pimm:_2013] is a hierarchical and dynamically recon-
figurable extension of the SDF and IBSDF MoCs. Similarly as in the IBSDF MoC, in a
πSDF graph, a hierarchical actor is an actor whose internal behavior is defined by a πSDF

36

2.5. Dynamic and Reconfigurable Dataflow MoCs

graph. Figure 2.7 presents an example of a πSDF graph with the associated graphical se-
mantics. Actor H is a hierarchical actor defined by the subgraph formed by actors B and
C.

Formally, a πSDF graph G = (A,F, I,Π,∆) contains in addition to a set
of actors A and a set of Fifos F, a set of hierarchical interfaces I, a set of
parameters Π, and a set of parameter dependencies ∆. The hierarchical inter-
faces of the πSDF MoC [desnos_pimm:_2013] are directly inherited from the
IBSDF MoC [piat_interface-based_2009]. This direct inheritance of the interfaces
make the πSDF MoC a compositional MoC which means that the internal specification
of the actors composing a graph do not influence its analyzability. In Figure 2.7, the defi-
nition of the subgraph formed by actors B and C does not impact the analysis performed
on the top-level graph.

Parameters π ∈ Π are associated with parameter values v ∈ N. Parameter values can
either be statically defined, derived from other parameters, or dynamically set by configure
actors at runtime. A dynamically set parameter is called a configurable parameter and its
value is set by a configure actor at runtime. The value of a configure parameter is only
set once per graph iteration to which it belongs. For instance, in Figure 2.7, parameter
N at the top-level graph is a configurable parameter set by the configure actor SetN .

Dependencies δ ∈ ∆ are directed edges of the graph that propagate the values of
parameters to, and from, configuration input and output ports of actors and parameters.
For hierarchical actors, configuration ports are also called configuration interfaces and
are considered as static parameters inside the associated subgraph. The combination of
parameters Π and dependencies ∆ form a so-called parameter dependency tree T =
(Π,∆). Parameter dependencies do not follow the same synchronization and precedence
rules as the Fifos of a dataflow graph. Indeed, in πSDF, parameters are made available,
virtually, instantly to every connected data dependency as soon as their values is fixed.

Reconfigurability of the πSDF MoC directly comes from parameters whose values are
used to influence different properties, namely the computation of an actor, the rates of
the data ports of an actor, the value of another parameter and the number of delays in a
Fifo. Importantly, if an actor A has all of its input and output data rate set to 0, then
A will not be executed. Combining the parameterized data rates and the property
of non-execution of actors gives the possibility to change the topology of a πSDF graph
dynamically. For instance, a data path can be completely disabled, and therefore non
taken into account by any of the consistency and liveness analysis.

37

Chapter 2 – Dataflow Model of Computations

In Figure 2.7, parameter N is set the by the actor SetN and controls the number of
firings of actor B inside the hierarchical actor H but, due to the compositional nature of
the πSDF MoC, does not affect the analysis of the top-level graph.

Configure Actors

Configurable parameters are set by actors which possess configuration output ports.
These actors are called configure actors and have a distinct runtime behavior. Configure
actors are the source of reconfigurability in πSDF and thus their execution can only happen
at quiescent points [neuendorffer_hierarchical_2004; desnos_pimm:_2013]. For
any configure actor acfg of a graph G, the following restriction are applied.
• acfg must be fired exactly once per graph iteration of G. The firing of every

configure actors must happen before any firing of non-configure actors.
• acfg must consume data tokens only from data input interfaces and must consume

all available tokens during its unique firing.
• Data input and output rates of acfg must only depend on locally static parameters

values of G. Consequently, it is not possible to use a configure actor to set the value
of a parameter that is used in the data rates of an other configure actor.
• Data output ports of acfg are seen as data input interfaces by other actors. There-

fore, the same rules of consumption are applied to them

Runtime Operational Semantics

The execution rules for any πSDF graph are given in [desnos_pimm:_2013] and
reminded here. Let G = (A,F,Π,∆) be a πSDF graph associated to a hierarchical actor
HG. For every firing of the actor HG in its containing graph, G starts a new iteration
which follows the following steps.

1. Wait for all input parameters of the graph to be available. This step is called a
partial configuration of the graph G.

2. Compute the data rates of all input and output data interface using the values of
the parameters obtained during the partial configuration of G.

3. Wait for HG to be fired in its containing graph.

4. Fire every configuration actors, if any, of G. By setting the values of all of its
configurable parameters, G reaches a complete configuration.

38

2.5. Dynamic and Reconfigurable Dataflow MoCs

5. Compute the RV of G and check its consistency and liveness and, if possible,
compute a schedule for G.

6. Fire all non-configure actors of G following the derived schedule from the previous
step.s

7. Produce the output data tokens and output parameters computed by the actors
of the graph on the corresponding data output interfaces and configuration output
interfaces, respectively.

8. If necessary, go back to step 3 and start a new firing of the graph.
The runtime operational semantics of the πSDF is similar to the one of the Parame-

terized Synchronous DataFlow (PSDF) MoC [bhattacharya_parameterized_2001].
Steps 1 and 2 correspond to the init phase of a PSDF graph, steps 3 to 5 correspond to the
subinit phase and finally steps 6 to 8 correspond to the execution of the body subgraph
of a PSDF graph.

Design Patterns in πSDF

With the possibility to selectively enable or disable actors in the πSDF MoC it is
possible to build conditional structures in πSDF graphs.

Switch Pattern

C
1*(1-S)

F 1*S
1*(1-S)1

S
B

1*S
Sw S

A 1

Figure 2.8 – Example of a switch pattern modeled in πSDF.

Figure 2.8 shows an example of a switch pattern modeled using the πSDF MoC. In
Figure 2.8, the configure actor Sw sets the value of the configurable parameter S which
will in return sets the value of the data rates of actors F, B and C. Actor F is a special
actor called a fork actor which splits the input tokens it receives on its unique data input
port to all of its data output ports. Importantly, the sum of all the data rates of the data
output ports of a fork actor is strictly equal to the data rate of its data input port.

39

Chapter 2 – Dataflow Model of Computations

In the graph of Figure 2.8, the values taken by S are supposed to either be 0 or 1.
In the case of S being equal to 1, the first data output port of actor F will have a data
rate equal to 1 and the second data output port a data rate equal to 0. Similarly, the
data input rate of actors B and C will be equal to 1 and 0, respectively. Following the
semantics of the πSDF MoC, since all of its data rates are equal to 0, actor C will not
be executed. Symmetrically, when S has a value of 0, actor B will not be executed and C
will be executed. To summarize, the behavior of the graph of Figure 2.8 is as follows.
• S = 0: The data token produced by actor A is forwarded to actor C using the fork

actor F. Actor B is not executed.
• S = 1: The data token produced by actor A is forwarded to actor B using the fork

actor F. Actor C is not executed.

Select Pattern

Figure 2.9 shows an example of a select pattern modeled using the πSDF MoC. The
select pattern is the symmetric of the switch pattern presented above. In the graph of
Figure 2.9, the configure actor Sel sets the value of the configurable parameter S which
will in return sets the value of the data rates of actors J, A and B. Similarly to actor F
in the graph of Figure 2.8, J is a special actor called a join actor which merges all the
input tokens it receives to its unique output data port. Importantly, the sum of all the
data rates of the data input ports of a join actor is strictly equal to the data rate of its
data output port.

Finally, using the same reasoning as the one used for the switch pattern, the behavior
of the graph of Figure 2.9 is as follows.
• S = 0: The data token produced by actor A is forwarded to actor C using the join

actor J. Actor B is not executed.
• S = 1: The data token produced by actor B is forwarded to actor C using the join

actor J. Actor A is not executed.

2.5.2 Schedulable Parametric Dataflow

The Schedulable Parametric Dataflow (SPDF) MoC [fradet_spdf:_2012] is a re-
configurable and parameterized extension of the SDF MoC.

Reconfiguration in SPDF comes from the possibility to dynamically, i.e. at run-
time, change the values of the parameters of the graph. Importantly, parameters in

40

2.5. Dynamic and Reconfigurable Dataflow MoCs

A
1*(1-S)

S

B
1*S

Sel S

C1

J
11*S

1*(1-S)

Figure 2.9 – Example of a select pattern modeled in πSDF.

C 1A B1
q[p]p[1]

2p q pq2

2

Figure 2.10 – Example of an SPDF graph.

SPDF can not have a null value, thus making the SPDF a dynamic MoC for data
rates but not for the topology of a graph. However, the Boolean Parametric Dataflow
(BPDF) MoC [bebelis_bpdf:_2013], which is an extension of the SPDF MoC, sup-
ports dynamic topology but still does not support null data rates.

In SPDF, the value of a parameter is set by an actor called the modifier of the pa-
rameter. Each parameter has only one modifier. Moreover, a parameter is not allowed
to change its value arbitrarily; the changes can only occur at precise quiescent points
called the period of the parameter which is denoted by p[α], where p is the name of the
parameter and α its associated period. In SPDF, the period of a parameter can also be
defined as an expression of other parameters.

For instance, in the graph of Figure 2.10, actors A and B are both modifiers of param-
eters p and q, respectively. The periods of parameters p and q are 1 and p, respectively.
In other words, the value of the parameter p changes every 1 firing of actor A and the
value of the parameter q changes every p firings of actor B.

One of the key feature of the SPDF MoC is its static analyzability for consistency and
liveness of an SPDF graph. Indeed, in SPDF, if the graph is consistent, a symbolic solution
to the balance equations of the graph is found, otherwise the graph is not consistent. This
symbolic solution is valid for any value of the parameters of the graph. Moreover, the
periods of parameters are checked to ensure that they do not introduce any deadlock
or inconsistency. This check is performed by the determination of so-called influence
regions of parameters which correspond to the set of edges which are influenced by a

41

Chapter 2 – Dataflow Model of Computations

given parameter. For instance, in Figure 2.10, the influence region of the parameter p is
the set of edges {−→AB,−−→BC}.

This concept of region of influence and bound change rate of parameter is similar to
the concept of hierarchy of the πSDF MoC. In πSDF, the parameters can not change their
values during the execution of the graph in which they are used which is enforced by the
hierarchical semantics and execution rules of the πSDF.

2.6 Conclusion

Dataflow
Process Network

Dynamic Dataflow
MoCs

Static Dataflow
MoCs

Scenario Aware
Dataflow (SADF)

Parameterized and
Interfaced SDF (PiSDF)

Parametric
SDF (PSDF)

Interface
Based SDF
(IBSDF)

Variable Rate
Dataflow (VRDF)

Synchronous
Dataflow (SDF)

FSM-SADF

Variable-Rate
Phased Dataflow (VPDF)

PFSM-SADF

Cyclo Static
SDF (CSDF)

Multidimensional
SDF (MDSDF)

Parametric Rate
Dataflow (PRDF)

Dynamic
Dataflow (DDF)

Schedulable
Parametric
Dataflow (SPDF)

Boolean Parametric
Dataflow (BPDF)

Boolean Controlled
Dataflow (BDF)

Reconfigurable
Dataflow MoCs

Enable-Invoke
Dataflow (EIDF)

PRUNE

Affine Dataflow
(ADF)

Synchronous
Piggy-backed Dataflow
(SPDF)

Figure 2.11 – An non exhaustive illustration of the dataflow MoCs landscape.

Dataflow Models of Computation (MoCs) are well suited for describing parallelism in
data oriented applications. The high-level diagram based representation of dataflow MoC
offer a natural representation of these applications. Moreover, dataflow MoCs have been
extensively studied in the literature with numerous models available, each with specific
semantics, advantages and restrictions. Figure 2.11 summarizes the existing landscape
of dataflow MoCs in a non exhaustive manner. In Figure 2.11, the different MoCs are
classified in three main categories, the static, dynamic and reconfigurable MoCs. We define

42

2.6. Conclusion

the difference between dynamic and reconfigurable MoCs as the possibility for a given
MoC to being able to model a Turing machine or not. Additionally, Figure 2.11 shows
the relationship between different MoCs, with dataflow MoCs inheriting from other MoCs
being toward the bottom of the figure.

The πSDF MoC is the MoC that will serve as a basis to the work of this thesis and
is only one of the many existing MoCs. This model combines properties of expressivity,
compositionality and predictability in such a way that a wide range of applications may
be represented and exploited efficiently. Reconfiguration using parameters allows good
predictability of the application execution that immediately follows, permitting informed
scheduling decisions.

In this thesis, we will focus on the extension of dataflow MoCs delay semantics by
the mean of a new meta-model called State-Aware dataflow Meta-Model (SaMM). The
capabilities of SaMM will be demonstrated with its application to the πSDF MoC. We
will then study the dependencies modeling of the hierarchical semantics of the πSDF MoC
to accelerate resource allocation algorithm used during the runtime management of πSDF
applications.

43

CHAPTER 3

Embedded Runtimes for Multi-Processor System on Chips

3.1 Introduction

As previously defined, an embedded system is an integrated electronic and computing
system designed to address a specific purpose. The Apollo Guidance Computer system
used during the NASA Apollo missions is often considered as being the first modern
embedded system. This system was embedded in the command of the lunar modules of
the Apollo program. It was used for guidance, navigation and control of modules. This
embedded computer was designed during the 1960’s by Charles Stark Draper from the
MIT Instrumentation Laboratory.

Embedded systems have largely evolve since then, and modern embedded systems are
more complex than ever. Due to physical constraints, increasing the speed of General Pur-
pose Processors (GPPs) inside computers is no longer sufficient to keep up with the ever
growing demand for processing power. In the last two decades, embedded systems have
changed to become more heterogeneous than ever, featuring multiple processor types on a
same chip. These systems, called Multi-Processor System on Chips (MPSoCs) are highly
complex to program due to the different types of PEs and memory architectures they
embed. Hence, a lot of research has been done in order to provide tools to programmers
that abstracts the complexity of these systems while trying to harness their computational
power as efficiently as possible.

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

In this chapter, the overview of embedded systems will be described in Section 3.2.
Multicore scheduling techniques will be subsequently presented in Section 3.3. Then, Sec-
tion 3.4 presents a list of existing model-based runtimes.

3.2 Embedded Systems

3.2.1 Heterogeneity in Embedded Systems

One of the main challenges when programming heterogeneous embedded systems is
to take into account the different types of PEs composing it, and the different types of
memory architectures.

We define a PE type as being a compute element capable of doing one or multiple
type of computation. There are two larger types of PEs: the programmable PEs and
the dedicated co-processors. We reefer as programmable PEs as PEs having a dedicated
instruction set, which list the available instructions for programming the PE (e.g. GPPs,
Graphics Processing Units (GPUs), etc.). On the other side of the spectrum, dedicated co-
processors are highly specialized PEs designed for a single task (e.g. FFT, video decoding,
channel demodulation, etc.).

Plaftorm

GPP GPP

GPPGPP

(a) Example of an homogeneous platform.

Plaftorm

GPP GPP

FFT ASIC

Video Decoder
ASIC

GPPGPP

GPU

4G ASIC

(b) Example of an heterogeneous platform.

Figure 3.1 – Examples of homogeneous and heterogeneous platforms.

Embedded MPSoCs will often contains different PE types. For instance, the Texas In-
strument Keystone II [texas_instrument_keystone_2013] is an heterogeneous plat-
form that contains 4 ARM cores and 8 Digital Signal Processing (DSP) cores, along with
dedicated FFT, network, and other co-processors. The NVIDIA Jetson TX-2 is a rela-

46

3.2. Embedded Systems

tively less complex heterogeneous architecture which features 4 ARM A57 cores, 2 Denver
ARM cores and an NVIDIA Pascal GPU.

3.2.2 Memory Architectures in Embedded Systems

In addition to the PEs heterogeneity of embedded MPSoC platforms, the memory
architecture of these platform is not unique, and there exists multiple type of memory
architecture layout and hierarchy.

Memory

PE subsystem

PE PEPE

Memory

Memory Units

(a) Uniform Memory
Access

Memory Units

Memory Memory
PE

Memory

PE Memory

PE subsystem

PE Memory

PE subsystem

(b) Non-Uniform Memory
Access

PE Memory

PE subsystem

PE Memory

PE subsystem

PE subsystem

PE Memory PE

(c) NO Remote Memory Access

Figure 3.2 – Examples of memory architectures.

Among the different type of memory architectures, shared memory systems are the
simplest one. In a shared memory system, all PEs have access to all available memory of
the system. This is the type of memory architecture used in most desktop computers for
example. However, other schemes of memory architecture exist. In the literature, shared
and distributed memory systems are commonly separated into three memory models,
namely the Uniform Memory Access (UMA), the Non-Uniform Memory Access (NUMA),
and the NO Remote Memory Access (NORMA) memory architectures as illustrated in
Figure 3.2.

Figure 3.2a illustrates the shared memory system of a UMA machine with multiple
memory units. Each unit can be accessed by every PEs. Both reliability and access speed
are identical for each PE. UMA systems are often implemented using a memory bus (PEs
share connection to each memory) or a crossbar network (each PE has its private connec-
tion to each memory). With increasing number of PEs, the UMA generally experiences
bottlenecks (for the bus implementation) or requires complex memory subsystems (for

47

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

the crossbar implementation). UMA systems are thus not suitable for massively parallel
platforms.

A NUMA machine provides multiple memory units where each unit can also be ac-
cessed by every PEs, as shown in Figure 3.2b. However, the access speed to each memory
unit is dictated by the accessing PEs. This memory architecture is used to provide a ded-
icated access at a memory unit to a specific PE. This type of memory architecture does
not necessarily scale well and as the number of PEs increases, this memory architecture
restricts the memory subsystem growth.

To improve the scalability of systems with a high number of PEs, distributed memory
systems are used. They are called NORMA machines. As is indicated in Figure 3.2c, PEs
can only access local memory units. Communication for data exchange with other PEs is
possible through dedicated hardware. Interconnections between cores can be implemented
using a Network On Chip (NoC) which improves communication performance and scal-
ability but also increases programming complexity. NORMA memory systems have very
good scalability properties but their complexity brings new challenges in MPSoC pro-
gramming. The MPPA architecture is a distributed NORMA systems with a total of 256
PEs and 16 memory units exchanging data over a NoC [hascoe_distributed_2018].

3.3 Multicore Scheduling

Multicore, or multi PEs, platforms are challenging on multiple levels, including pro-
gramming them and performing mapping and scheduling of applications onto them.
Scheduling applications onto multicore platforms is often decomposed into four distinct
steps, namely the extraction, mapping, ordering and timing steps. Figure 3.3 illustrates
these four steps. Note that the mapping and the ordering are often done at once.
• Extraction: The extraction step is the first step of the multicore scheduling pro-

cess and consists of extracting the different parallel and sequential executable tasks
of a given application. As seen in Section 2.2.2.1, in dataflow applications, paral-
lelism may come from different sources such as parallel data paths, or auto con-
current executions, etc.
• Mapping: After all executable tasks have been extracted, the mapping step will

assign a given PE to each of them. The assignment of a task to a PE is often
done using heuristics such as the communication costs, or the energy efficiency of

48

3.3. Multicore Scheduling

PE0 PE1 PE2

MappingExtraction Timing

Algo

Ordering

1

1

1

2

2

2 3

3

3

Time

1 2

33

32

2

1

1

Figure 3.3 – Multicore scheduling flow decomposed for an application onto a 3 PEs
(yellow, orange and purple) platforms. The extraction consists of extracting executable
tasks from a application, then the mapping assigns a PE to each of the tasks which are
then ordered and finally, the timing phase attributes a given start time to each of the
tasks.

every PE capable of running the task for instance. The communication costs can
be computed using the the predecessors and successors of the task being mapped.
• Ordering: Once all the tasks have been mapped, the ordering phase consists of

assigning an execution order to the different tasks of the application based on their
mutual dependencies. On dataflow applications, data dependencies will impose a
strict ordering of tasks in a same data path.
• Timing: This last phase consists of assigning time point at which each task will

start. This step is often left to the runtime manager of the application or the
underlying host operating system. The value of each start point is based on multiple
factors such as the current level of processing load of the platform, synchronization
points such as data availability in the case of dataflow applications, etc.

Table 3.1 summarizes the different scheduling strategies obtained when the four steps
are either done at compile time or at runtime, as defined in [lee_scheduling_1989]. A
scheduling strategy is the result of a specific combination of compile-time and runtime
steps.

For instance, the fully dynamic strategy consists of letting the runtime performs every
steps on-the-fly, which will induce an significant overhead to the application execution
time. On the other hand, a fully static strategy will consist of applying each of the steps
at compile-time, thus resulting in lower overhead. The different scheduling strategies have
their advantages and disadvantages. Indeed, deferring a given step to the runtime will add

49

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

Table 3.1 – Multicore scheduling strategies.

Strategy Mapping Ordering Timing
Fully dynamic runtime runtime runtime

Static assignment compile-time runtime runtime
Self timed compile-time compile-time runtime
Fully static compile-time compile-time compile-time

to the complexity of the application execution and add some overhead; but it will also
offer more flexibility that a compile-time strategy can not achieve.

Taking a telecommunication application such as the 5G network as example, depending
on the number of connected devices, the processing load will be completely different and
the topology of the application itself may change. Since the number of user is not constant
and will vary during the runtime of the application, a dynamic strategy will be able to
adapt to this varying number of users.

3.3.1 Scheduling approaches

In order to exploit efficiently the complexity of modern MPSoCs architec-
tures, there exists multiple approaches to the scheduling of parallel applications.
In [park_multiprocessor_2009], Parks et al. classify these approaches into 3 main
categories, namely the compiler based, the language extension and the model-based ap-
proaches, illustrated in Figure 3.4.
• Compiler based: This approach is the most straightforward of the three ap-

proaches. Indeed, in this approach, the input is the sequential source code of the
application written in a language such as C, C++, Fortran, etc. Then the com-
piler analyzes the source code in order to extract sensible information, such as
parallelism using data dependencies analysis, control flow analysis, etc. Polyhedral
analysis is one of the possible transformation that can be applied to sequential
source code in order to unveil parallelism opportunities of the application. From
the extracted information, the compiler will then generate multi threaded code in
order to exploit as much as possible the available parallelism.
• Language extension: Similarly to the compiler based approach, this ap-

proach takes as input a sequential source code of the application. However,

50

3.3. Multicore Scheduling

Program

Compiler

Source
Code

Adding Language
extension

#pragma

Compiler

Compiler

D1H 11A 1

B 11
11

1

N C 1 11

Model Based
description

Plaftorm

PE PE...

Co-Processor

Co-Processor

...

Figure 3.4 – Illustration of the three main approaches to parallel scheduling of
applications onto MPSoCs

to ease the extraction of parallelism information, user provided indications are
added. These indications are used to highlight parallel regions of the code. The
OpenMP [chandra_parallel_2007] Application Programming Interface (API)
is a well known example of this approach. OpenMP supports shared memory
architecture and generally targets homogeneous platforms. Based on C, C++
or Fortran code, this API uses compiler directives such as pragmas to de-
fine parallel regions and to provide a multicore communication API. The soft-
ware developer must manually identify and specify parallel regions in his code.
OpenMP is now widely supported on embedded MPSoC platforms, such as TI’s
keystone architecture or the MPPA platform [tagliavini_unleashing_2018].
Other tools or APIs based on language extensions are available, such as Open-

51

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

MPI [graham_open_2006], OpenCL [stone_opencl_2010] or the dedicated
NVIDIA CUDA API [nvidia_nvidia_nodate].
• Model-based: The model-based approach uses a high level model-based de-

scription of the application conjointly to the source code of the application.
This approach has gained popularity in the recent years due to its high level
of abstraction from both the underlying low level implementation of the ap-
plication and the complexity of the MPSoC architecture to which the appli-
cation needs to be mapped. In a model-based approach, the application is de-
scribed using one or multiple MoCs. Dataflow based MoCs are a popular choice
when design signal processing applications to heterogeneous architecture. In a
dataflow MoC, the extraction of parallelism information becomes less complex
compared to the compiler based approach due the natural representation of task
and data parallelism in dataflow graphs. Some dataflow models also enforce, by
construction, the deadlock freeness of the application. Dataflow models have be-
come widely adopted now for hardware and software co-design. For instance, the
CAPH language [serot_implementing_2011] is a dataflow based program-
ming language that, given a dataflow based specification, produces VHDL code
for hardware synthesis. There exists many tools based on dataflow MoCs such
as the Ptomely tool [eker_taming_2003], Preesm [pelcat_preesm:_2014],
Orcc [yviquel_orcc_2013], or StreamIt [goos_streamit_2002].

The next section presents existing dataflow or task based runtime managers as one of
the contribution of this thesis is the creation of a new dataflow based runtime manager
for heterogeneous architectures.

3.4 Model-Based Embedded Runtimes

Modern dataflow applications such as state-of-the-art video encoding, deep learn-
ing applications, or 5G telecommunication network require high computational power.
Recently, these applications have been deployed onto heterogeneous platforms em-
bedding GPPs, GPUs and dedicated co-processors to improve their performance
and energy efficiency [abadi_et_al._tensorflow:_2016; dardaillon_new_2016;
pelcat_preesm:_2014].

Historically, the main approach for the scheduling and the mapping of dataflow applica-
tions onto heterogeneous platforms have been to use static methods [sriram_embedded_2009].

52

3.4. Model-Based Embedded Runtimes

Since static methods are computed at compile time, these methods can leverage high com-
putational power to search for solutions in a larger design space that dynamic, i.e. done
at runtime, methods. Moreover, static methods are often associated with automatic code
generation or provide sensible information that a programmer will need to apply to its
application, hence they offer very low overhead on the applications runtime.

However, the main advantage of static methods is also their biggest downside. Since
all the analysis is performed at compile-time, they lack the flexibility required by modern
applications. While pre-computed mapping and scheduling offer a great predictability on
the behavior of an application, it is not possible to adapt to dynamic changes at runtime
such as changes in the application topology, or in the available processing resources (e.g.
the underlying operating system allocating resources to other application).

Applications runtime managers are an alternative to static approaches that add flex-
ibility by taking into account the runtime constraints of applications. In this thesis, we
introduce Spider 2.0 a novel dataflow based runtime manager, that is based upon the
Spider [heulot_runtime_2015] runtime, for image and signal processing applications
on heterogeneous platform. In this section we present different dataflow based runtime
managers, in order to situate Spider 2.0 with respect to existing solutions.

Table 3.2 summarizes the different features of the presented runtimes. The deadlock
prevention is based on the definition given in [dauphin_odyn_2019] and consider the
capability of a runtime to ensure that no deadlock will occur during the runtime. PRUNE,
HTGS Model-Based Engine (HMBE) and the proposed Spider runtimes fail to propose
any deadlock prevention mechanism. However each of these runtimes provide a way for
detecting if a deadlock occur but in a reactive and not a pro-active manner. As shown
by Table 3.2, Spider supports heterogeneous architecture, with NUMA, and with a fully
dynamic mapping and scheduling strategy.
• Odyn: Odyn [dauphin_odyn_2019] is a dataflow model-based runtime that

offers an hybrid approach with both static analysis at compile time and runtime
analysis, and supports heterogeneous platforms composed of GPPs, GPUs and
co-processors and with NUMA.
Odyn uses an input graph modeled with the SDF MoC annotated with real-
time constraints for each actors such as deadlines, Worst Case Execution Times
(WCETs), and mapping information containing the actors to PEs assignment, the
allocation of buffers to PEs memory, and the size of each memory units of the archi-
tecture . In Odyn, the dynamic scheduling and memory management decisions are

53

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

Table 3.2 – A comparison of existing dataflow-based and tasks-based runtimes.

Feature Odyn StarPU XKaapi PRUNE HMBE Spider

Heterogeneity CPU/DSP/ CPU/GPU CPU/GPU CPU/GPU no (CPU) CPU/DSPFPGA
Dynamic mapping No Yes Yes Yes No Yes
Dynamic scheduling Yes Yes Yes Yes Yes Yes
Deadlock prevention Yes Yes No No No No
NUMA support Yes Yes Yes undef. Yes Yes
Reconfigurable Applications No Yes Yes Yes No Yes
Targeted System real-time HPC HPC General real-time real-time

taken at runtime, independently for each PEs. The input SDF graph is transformed
into an Acyclic Homogeneous SDF (AHSDF) graph which is then partitioned, and
each PE of the platform manages its own partition.
Odyn uses a variant of the Memory Exclusion Graphs (MEGs) introduced
in [desnos_memory_2012] to perform memory deadlock analysis, which is done
at compile time due to its high computational cost.
• StarPU: StarPU [augonnet_starpu:_2009] is a runtime that supports het-

erogeneous platforms composed of multi-Central Processing Units (CPUs) and
multi GPUs. StarPU dynamically schedules and maps Directed Acyclic Graph
(DAG) based application and is optimized for High-Performance Computing
(HPC). The scheduler of StarPU uses a variant of the Heterogeneous Earliest-
Finish-Time (HEFT) [goos_scope_1995] algorithm based on cost models for
data transfer and task execution time [hutchison_automatic_2010].
• XKaapi: Similarly to StarPU, XKaapi [gautier_xkaapi:_2013] is task based

dataflow runtime oriented toward HPC. XKaapi is an evolution of the origi-
nal Kaapi runtime [gautier_kaapi:_2007] and supports heterogeneous plat-
forms composed of multi-CPUs and multi GPUs. The main difference between
StarPU and XKaapi lies in the scheduling policy and the communication with
the GPUs. In StarPU, a synchronization is enforced when tasks are sent to the
GPUs to ensure that all kernels are properly finished, whereas XKaapi uses an
asynchronous mechanism. Moreover, the HEFT scheduling policy of StarPU does
not react well with variations in the system load or in the tasks execution times.
XKaapi, on the other hand, uses a dynamic job stealing scheduling policy which

54

3.4. Model-Based Embedded Runtimes

was showed to be as efficient as the StarPU scheduler in its default configura-
tion [lima_exploiting_2012].
• PRUNE: PRUNE [boutellier_prune_2018] is an hybrid runtime using both

static analysis and runtime analysis. PRUNE uses a dynamic extension of the
SDF MoC and applies deadlock freedom and bounded memory usage analysis at
compile time. At runtime the user is free to use a static or a dynamic mapping.
Finally, each actor is assigned to a different thread and the scheduling is left to the
host operating system (e.g. Linux or Windows). PRUNE supports heterogeneous
architectures composed of CPUs and GPUs.
• HMBE: HMBE [wu_model-based_2017] is dataflow model-based runtime for

heterogeneous platforms composed of CPUs and GPU. HMBE is a model-based ab-
straction of the Hybrid Task Graph Scheduler (HTGS) [blattner_hybrid_2017]
API. Applications are modeled using the Windowed Synchronous DataFlow
(WSDF) MoC [keinert_windowed_2005] and statically transformed into an
Acyclic Precedence Expansion Graph (APEG). During runtime, each actor in the
APEG of the input graph is assigned to a thread, meaning that there are as many
threads as there are actors in the APEG. To avoid contention due to the high
number of threads in regard to the number of available CPU cores, the HMBE
scheduler uses an heuristic to put threads in dormant state and uses a ready list
type of scheduling policy to choose among the pool of ready tasks which one to
wake up. To the best of our knowledge, although HTGS supported CPUs + GPUs
heterogeneous architecture, it does not seem to be the case of HMBE.
• Spider: Spider [heulot_runtime_2015] is a dataflow model-based runtime

that supports heterogeneous platforms. Spider relies on a πSDF modeling of an
application associated with runtime information composed of WCETs for each ac-
tors and for each PEs of the platform, and actors to PEs mapping constraints. The
support of heterogeneous platforms in Spider is done by re-implementing a low
level API corresponding to the communication primitives used in the platform. For
instance, on shared memory architectures, Spider uses semaphores to synchronize
multiple threads, whereas on the Keystone II platform, Spider employs the dedi-
cated communication queues of the platform to perform low level synchronization.

55

Chapter 3 – Embedded Runtimes for Multi-Processor System on Chips

3.5 Conclusion

Embedded systems are heterogeneous systems, featuring multiple processor types on
a same chip, called Multi-Processor System on Chips (MPSoCs). Due to the complexity
of programming Multi-Processor System on Chips (MPSoCs), multiple approaches have
been investigated. First, compiler based approaches try to automatically extract sensible
information from classical sequential code (e.g. C, C++ or fortran code) in order to
parallelize tasks as much as possible on modern platforms. These approaches require
really complex algorithms as the information needs to be extracted from code not meant
for parallel MPSoCs but offer more productivity to programmers as they do not need to
change anything in their code.

A secondary approach, which is complementary to the first one, is based on
language extensions and APIs such as OpenMP [chandra_parallel_2007], or
OpenCL [stone_opencl_2010]. In this approach, the programmer needs to investi-
gate which portion of the code is the bottleneck and use the API to indicate the compiler
which area of the code need to be parallelized and how.

Finally, the last approach seen in this chapter is the model-based approach. In a model-
based approach, the programmer needs to describe his application using one or multiple
MoCs. For instance, for signal processing applications, using a dataflow MoC to model the
application will ease the job of the compiler due to the natural definition of parallelism
in dataflow MoCs.

In order to improve the efficiency and adaptivity to external events, numerous runtime
managers are proposed in the literature. In this chapter, we presented a list of these
runtimes that are similar to the one we introduce in Chapter 6.

One of the major contribution of this thesis is the creation of a dataflow based runtime
called Spider 2.0. Spider 2.0 is designed to support heterogeneous architectures com-
posed of GPPs, GPUs and hardware accelerators, including NUMA support. Spider 2.0
takes as input a πSDF modeling of an application and a logical hardware model of the
platform and performs the mapping, scheduling and memory management of the appli-
cation onto the physical platform. Spider 2.0 is introduced in Chapter 6.

56

Part II

Contributions

57

CHAPTER 4

Dynamically Initialized and State-Aware Dataflow MoCs

4.1 Introduction

In this chapter, a new meta-model called State-Aware dataflow Meta-Model (SaMM)
is proposed. SaMM extends the semantics of a targeted dataflow MoC with explicit and
dataflow based semantics for the initialization of delays. Additionally, SaMM provides
the extended dataflow MoC with unambiguous and controllable persistence scope for
the delayed data tokens. SaMM is applicable to any dataflow MoC with a well-defined
concept of graph iteration. For example, MoCs deriving from the Synchronous DataFlow
(SDF) MoC such as the Parameterized Synchronous DataFlow (PSDF), Parameterized
and Interfaced Synchronous DataFlow (πSDF), Cyclo-Static Dataflow (CSDF) or the
WSDF naturally satisfy this condition as it is possible to derive a periodic schedule for
all of them, which is a natural expression of the concept of iteration.

Given a delay between two actors in a dataflow graph, SaMM extends the semantics
of a targeted dataflow MoC by allowing direct data connections to and from the delay
with other actors from the graph. These additional connections give the possibility to
dynamically initialize the data tokens of the delay at the beginning of a graph iteration
and to retrieve the data tokens from the delay at the end of a graph iteration. Providing
such a mechanism to delays results in concise and expressive representation of complex
applications containing nested loops. In addition, SaMM comes with a well-defined notion

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

of local and global state scope. In SaMM, deep hierarchy graphs may have a local persistent
state at low-levels hierarchy that do not impact the data parallelism of upper level actors.
Thus, SaMM provides programmers with flexibility in the design of complex applications
by enforcing the compositionality of hierarchical graphs. In this chapter, the capabilities
of the State-Aware dataflow Meta-Model will be demonstrated by applying it to the
πSDFMoC. The choice of the πSDFMoC for the application of SaMM is mainly motivated
by the fact that this is the MoC used by the targeted tools of this thesis which are the
Preesm 1 and Spider 2 tools. In the following, the notation State-Aware Dataflow (SAD)
graph refers to any kind of dataflow graph using the semantics of SaMM. This notation
is used in order to maintain good readability. The work presented in this chapter has
been accepted in the 2018 SAMOS international conference and published in the ACM
International Conference Proceeding Series (ICPS).

This chapter is organized as follows, the novel initialization semantics of SaMM is in-
troduced in Section 4.3 along with the intermediate transformations that are necessary for
deriving properties such as consistency and liveness of SAD graphs. Section 4.4 presents
the persistence concept and the associated semantics of SaMM with an application of the
meta-model to the πSDF MoC, resulting in the State-Aware Parameterized and Interfaced
Synchronous DataFlow (SA-πSDF) MoC. Finally, Section 4.5 presents an example of a
reinforcement learning application modeled with SaMM.

4.2 Motivation: The Limitations of Delays in Dataflow
MoCs

In the SDF MoC [lee_synchronous_1987], delays are defined as being the initial
state of a given First-In First-Out Queue (Fifo). The initial state of a Fifo corresponds
to the initial number of data tokens present in the Fifo at the beginning of the graph
iteration. Importantly, tokens present in Fifos at the end of a graph iteration are used for
the initial state of the next graph iteration. Such mechanism allows creating cyclic data
path and temporal pipelining, which would be impossible otherwise. All the other dataflow
MoCs that derive from the SDF MoC have the same definition of delays. Figure 4.1
illustrate the 2 main usages of delays in the SDF MoC: pipelining actor firings, and
ensuring liveness of cyclic data-paths.

1. https://github.com/preesm/preesm
2. https://github.com/preesm/spider

60

4.2. Motivation: The Limitations of Delays in Dataflow MoCs

B1A 1

1

(a) Example of a pipeline in an SDF graph.

A 11 B 11

1

(b) Example of an SDF graph with a cyclic path.

Figure 4.1 – Examples of delay usage in dataflow graphs. Delays are represented
graphically by a filled circle on a Fifo.

4.2.1 Initialization of Delays

In the SDF MoC, having a pipelining delay on a Fifo f means that an offset exists
between the iteration in which data tokens are produced on f, and the iteration in which
these data tokens are consumed. In Figure 4.1a, the token produced by actor A at iteration
n is consumed by actor B at iteration n + 1 . Consequently, the delay of Figure 4.1a also
removes the direct data dependency between actor A and actor B, allowing the execution
of actor B to occur in parallel of the execution of the actor A using delayed data tokens.

Initial tokens inside Fifos also prevent deadlocks in dataflow graphs that contain
cyclic data paths. For example, during an iteration of the graph of Figure 4.1b, actor B
fires only when actor A produces 1 data token, and actor A needs a data token from
actor B to fire. Hence, a sufficient number of delays are needed in this cyclic data path
to initiate the first actor firing, and prevent a deadlock.

Although the concept of delays exists in most dataflow MoCs, two main aspects of their
properties are often left unspecified: the initial value property and the persistence prop-
erty. The initial values given to the corresponding data tokens of a delay is hardly men-
tioned, let alone specified, in the literature. When specified, initial values are usually set
to 0 [lee_synchronous_1987; sriram_embedded_2009]. In [davis_data_1982],
the initial value of the initial state seems to be defined by the user prior the execution of
the first graph iteration. The lack of specification on the initial values of delays leads to
inconsistent behaviors across different programming tools. With the explicit new seman-
tic of delay proposed in SaMM, the initialization of delays is explicit and can no longer
change from one implementation to the other.

61

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

4.2.2 Persistence of Delays

The persistence of data tokens across multiple graph iterations is an important prop-
erty that means that data tokens produced at a given graph iteration n are not neces-
sarily consumed during iteration n but instead are propagated to further graph itera-
tions. This property is particularly useful in streaming signal processing application or
signal filtering where delayed samples are often needed. In dataflow MoCs, the persis-
tence property of data tokens is conveyed using delays. The persistence property of the
data tokens of delays raises multiple questions, especially regarding the notion of global
state of a dataflow graph. In a hierarchical MoC, the persistence of delays also influ-
ence the internal and local state of subgraphs. This notion of persistence is nearly never
mentioned in any dataflow MoC. In a flat model, that is without hierarchy, like the SDF
MoC [lee_synchronous_1987], the last data tokens produced during an iteration n are
used for the initial state of iteration n + 1 . This definition induce a global state to an SDF
graph saved inside the delays of the Fifos of the graph. This persistence across multiple
iterations is what allows pattern such as time pipelining as illustrated in Figure 4.1a.
When clustering an SDF graph, this notion of delays has to be taken into account as
shown in [pino_hierarchical_1995]. Indeed, when clustering graph containing delays
information such as precedence relationship between actor firings may be lost or cyclic
data path may be broken.

However, in hierarchical MoCs, the internal behavior of actors can be defined by
dataflow graphs. Thus, what happens to the persistence of the delays contained in a hier-
archical actor? Additionally, what does it mean for the internal state of this actor? In the
Interfaced Based Synchronous Dataflow (IBSDF) MoC [piat_interface-based_2009],
and in the πSDF MoC [desnos_pimm:_2013], levels of hierarchy are clearly delim-
ited with the use of data input interfaces and data output interfaces. Therefore, in the
IBSDF MoC, a hierarchical actor is considered in the same manner as an atomic actor.
This means that if a hierarchical actor is fired several times per iteration of its parent
graph with no feedback loop, the data parallelism property makes it possible for these
firings to occur in parallel. In this context, if the subgraph of a hierarchical actor contains
a delay, the corresponding data tokens may not persist across firings of this hierarchical
actor, as it would force the sequential execution of the hierarchical actor and, by exten-
sion, of the parent graph. In other words, the delay is only persistent within the scope of
the subgraph. Going further, this means that in the IBSDF MoC, a hierarchical actor is

62

4.2. Motivation: The Limitations of Delays in Dataflow MoCs

not permitted to have an internal local state that will persist for multiple iteration of the
actor.

In the Dataflow Process Network (DPN) MoC [lee_dataflow_1995], Lee et al. state
that delays in hierarchical actors may result in non-deterministic behaviors even with
a consistent and live subgraph. Lee et al. propose to make delays persistent across all
levels of hierarchy with implicit feedback loops around a hierarchical actor in order to
maintain the precedence relationship between multiple successive firings of the actor.
However, serializing the execution of an actor induces a loss of data parallelism. Losing
data parallelism significantly impacts performance in graphs with deep nested hierarchy
levels as it forces the serialization of the execution of the entire hierarchy tree. Additionally,
persistent delays in hierarchical graphs makes the DPN MoC a non compositional MoC as
the behavior of hierarchical actors directly impact the analysis of the graph they belong.

In recent dataflow-based domain-specific programming language, the semantics of de-
lays is also problematic. In OpenVX [kronos_group_openvx_2013], a computer vi-
sion dataflow-based programming language, delays object are considered persistent, thus
limiting hierarchical graph composition due to possible hidden internal states. In Tensor-
Flow [abadi_et_al._tensorflow:_2016], there is no explicit notion of delay. Tensors,
the basic data type in TensorFlow, are considered to be globally persistent during the
lifetime of the application and are stored in the global shared state of the application.

In the rest of this chapter, we introduce the State-Aware dataflow Meta-Model
(SaMM). SaMM can be used similarly to the Parameterized and Interfaced Meta-Model
(PiMM) [desnos_pimm:_2013] or the Parameterized DataFlow [bhattacharya_parameterized_2001]
to extend the semantics of any dataflow MoC implementing a well-defined notion of graph
iteration. SaMM adds both explicit initialization of delays and hierarchical state aware-
ness through the use of a explicit and tunable persistence scope of delays to the extended
MoC. The next section presents the new initialization semantics of delays of SaMM and
demonstrates its efficiency to model simple algorithm structures with a for-like structure
example.

63

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

4.3 Dynamic Initialization of Dataflow Graphs

4.3.1 Extending Delay Initialization Semantic

The SaMM semantics extends the definition of delays of Section ?? and is applicable
to any dataflow MoC with a well-defined concept of graph iteration. In the proposed
semantics, a delay d = (f , n, cin, cout) contains in addition to a Fifo f and a number of
initial tokens n, two optional data connections cin and cout . The input data connection cin

of the delay associates a Setter actor responsible for initializing the n data tokens of the
delay. The output data connection cout of the delay associates a Getter actor receiving
the last n data tokens held by the delay. The dataflow rates of cin and cout are such
as rate(cin) = rate(cout) = n. However, the production rate of the Setter actor and the
consumption rate of the Getter actor are not required to be equal to n.

GoS i

CP
n

p c

Figure 4.2 – Proposed initialization semantics of delay.

Delays are usually represented by a filled circle positioned on a Fifo as displayed
in Figure 4.1. Figure 4.2 introduces a new graphical representation of delays with the
additional data connections. Actors P and C are the production and the consumption
actors of the Fifo f of the delay, respectively; and actors S and G are the setter and
getter actors of the delay, respectively. The Fifo between the setter actor S and the
delay, and the delay and the getter actor G, are drawn with a dashed line to avoid any
confusion with the Fifo to which the delay is attached.

The new data connections induce the following precedence rules in the firing sequence
of actors during each graph iteration.

R1. All firings of the Setter actor of a delay must occur prior the first firing of the
Consumption actor of this delay.

R2. All firings of the Getter actor of a delay must occur after the last firing of the
Production actor of this delay.

Figures 4.3a and 4.3b illustrate the firing rulesR1 andR2. In the graph of Figure 4.3a,
actors S and G are the setter and getter actors of the delay and actors P and C are the

64

4.3. Dynamic Initialization of Dataflow Graphs

GS

CP
3

1

x3

x1x3

x2
23

3

(a) Graph example of the firing
rules of SaMM Time

Core1

Core0

C0

G0

C1

P0

S0

S1

C2

Core2 C0

S2

P1

(b) Possible schedule of the graph of Figure 4.3a.

Figure 4.3 – Illustration of the firing rules of SaMM.

production and consumption actors of the delay, respectively. The repetition value of the
different actors are noted below them. Figure 4.3b gives a possible schedule of the graph
of Figure 4.3a. The red dashed arrows illustrate the implication of the rules R1 and R2.
Indeed, the first firing of the actor C is only possible after the last firing of actor S due to
the rule R1 and, similarly, due to rule R2, the firing of actor G only occurs after the last
firing of actor P. The red dashed box C0 of Figure 4.3b illustrate a potential placement of
the firing 0 of actor C satisfying its consumption requirement of its input data port but
not satisfying the rule R1. The aforementioned rules enforce the expected initialization
behavior of delays and ensure that no data tokens a delay is consumed prior the end of its
initialization and prior the end of the pipeline, or cycle, to which the delay is attached.

On the initialization side, the data tokens of a delay must be explicitly initial-
ized for the delay to be fully specified. The default initialization of the proposed semantics
is to set all data tokens of a delay to zero. Explicitly initializing the delays means that new
initialization tokens are produced on each graph iteration. Thus, if no actor is connected
to the cout data connection of a delay, the produced data tokens have to be discarded to
ensure bounded memory execution. Importantly, making the initialization of delays ex-
plicit for each graph iteration unambiguously removes memory persistence across graph
iterations. Indeed, each graph iteration starts with initial data tokens independent from
previous computations. Therefore, dataflow initialized delays are no longer allowed to
transfer data tokens from iteration n to the iteration n + 1. Section 4.4 introduces new
unambiguous semantics for modeling this persistence of data tokens across graph itera-
tions. The next section details how the delay initialization semantics of SaMM impacts
the consistency, liveness, and scheduling analyses of a dataflow graph.

65

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

4.3.2 Consistency and Liveness Analysis

GoS i

CP
n

p c

(a) SAD graph example.

GonS i n

CP
n

p c

xNS

xNP

x1 xNG

xNC

(b) Consistency Equivalent Graph
of Figure 4.4a.

C

G

S i n NC

on

1

NP1
P

n

p

c

(c) Consistency and Liveness
Equivalent Graph of Figure 4.4a.

Figure 4.4 – SAD graph example and equivalent graphs used for consistency and
liveness analyses.

A key feature of SaMM is its compatibility with state-of-the-art methods for analyzing
the consistency and liveness of a graph. The proposed method for verifying the consistency
and liveness of a graph consists of 4 steps.

Step 1. The analyzed dataflow graph is transformed into a Consistency Equivalent
Graph (CEG). The CEG is an intermediate representation used for the consistency anal-
ysis of State-Aware Dataflow (SAD) graphs. To build a CEG, every delay with a Setter
actor or a Getter actor is replaced with a delay with no cin nor cout connection. The
setter and getter actors of every delay are now connected to virtual delay actors. The
virtual delay actor is noted ∆P

C , with P and C being the names of the Production and
Consumption actors connected to the delay, respectively. The virtual delay actor has a
unique input data port and a unique output port. The rates of the data ports of the
virtual delay actor are equal to the value n of the delay it replaces. Figure 4.4b illustrates
the CEG transformation of the graph of Figure 4.4a. Actors S and G are now connected
to the virtual delay actor ∆P

C instead of the delay. The rates of the input and output data
ports of ∆P

C are equal to the value n of the delay.
Step 2. The consistency of a CEG is verified by analyzing the topology matrix Γ

of the CEG using the same method as for SDF graphs [lee_synchronous_1987]. The
transformation into the CEG may result in disconnected graphs as illustrated by Fig-
ure 4.4b. Thus, the consistency of every graphs in the CEG has to be verified for the CEG
to be consistent. A necessary but not sufficient condition for the liveness of a SAD graph
is that every virtual delay actor must have a Repetition Vector (RV) value of 1, using the
RV of the CEG. In Figure 4.4b, the RV values are noted below each actor of the CEG.

66

4.3. Dynamic Initialization of Dataflow Graphs

Step 3. The CEG is transformed into a Consistency and Liveness Equivalent Graph
(CLEG) using the RV values computed during step 2 to verify the liveness of the original
graph. The CLEG enforces and models the precedence rules R1 and R2 of Section 4.3.1.
The CLEG transformation splits virtual delay actors in two virtual actors and adds virtual
data ports and Fifos to every production and consumption actors connected to delays.

The virtual actors are illustrated in Figure 4.4c, which shows the CLEG of the graph
of Figure 4.4a. Virtual actors ∆C and ∆P replace the actor ∆P

C of Figure 4.4b and enforce
the rules R1 and R2, respectively. NP and NC are the RV values of actors P and C in
the CEG of Figure 4.4b and n is the number of delays. Actor ∆C has a consumption rate
of n on its input port and a production rate of NC on its output port. Symmetrically,
actor ∆P has a consumption rate of NP on its input port and a production rate of n on
its output port. The virtual data ports of actors P and C, represented in blue, have a pro-
duction and consumption rate equal to 1, respectively. The CLEG in Figure 4.4c exposes
both the precedence relationships and the explicit data productions and consumptions of
Figure 4.4a.

Step 4.The liveness of the CLEG is verified using methods of the state-of-the-art
such as the Symbolic Execution method [lee_synchronous_1987] or the mathematical
analysis in [marchetti_sufficient_2009].

The scheduling of a graph using the proposed delays is compatible with the scheduling
techniques used by current dataflow MoCs. Indeed, the CLEG gives all the dependencies
between firings of actors and can be used to derive a schedule for the original graph. Note
that the virtual ports, actors, and Fifos are used for analysis and scheduling purposes
only. The virtual Fifos do not convey actual data tokens, and the virtual actors have a
null execution time. Another important note is that the CLEG can not be used directly
to allocate memory as the virtual Fifo do not convey the notion of shared Fifo between
the Setter actor, the Production actor, the Consumption actor and the Getter actors. For
memory allocation, the original SAD graph is used. With the semantics of SaMM, Fifos
connecting setter and getter actors to delay are directly identified and can be physically
allocated to the same Fifo f of the production and consumption actors of the delay.

An example of the analysis workflow of a SAD graph is given in Figure 4.5. The input
SAD graph is used to derive both the CEG and the CLEG. The CEG and the CLEG
are then used directly for consistency and liveness analysis, respectively. The CLEG is
also used directly for the mapping and scheduling task. Then, the memory allocation task
uses both the output information of the mapping and scheduling task and the original

67

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

Mapping /
Scheduling

Memory
Allocation

Execution
CLEG

Transformation

Liveness
Analysis

Consistency
Analysis

CEG
Transformation

SAD Graph CLEGCEG

Mapping and Scheduling Information

Memory allocation
information

Figure 4.5 – Example of an analysis workflow of a SAD graph.

input SAD graph to allocate the different Fifos of the graph. Finally, the graph can
be executed using both the mapping and scheduling information along with the memory
allocation information.

The next section presents a synthetic graph example with nested initialization of delays
for using the newly introduced semantics. Then Section 4.3.3 presents some forbidden
graph construction patterns in SaMM.

4.3.2.1 Synthetic Example

E2

D 25

A 4

B1 5
2

I
1
4 C1 1

2 2

4

2

(a) An SDF graph with the proposed semantics
of delays.

D 25B1 5
2

I
1
4 C1 1

2 2

4

22

E2A 4 44

G1

G2

(b) CEG of the graph of Figure 4.6a.

Figure 4.6 – CEG transformation of a synthetic SAD graph.

Figure 4.6a presents an example of a complex synthetic SDF graph with the newly
introduced semantics for delays. The graph of Figure 4.6a is used as an illustration of the
analyses steps presented in Section 4.3.2. In this graph, the delay on Fifo (D,B) is used to
avoid a deadlock and the delay on the self-loop of actor C is used to specify explicitly the
transmission of a state between successive firings of actor C. The two delays of Figure 4.6a

68

4.3. Dynamic Initialization of Dataflow Graphs

are initialized by actors A, for the delay on Fifo (D,B), and by I for the delay on the self-
loop of actor C. Finally, after the last iteration of the cycle composed of actors B, C andD,
the two firings of actor E use the data tokens held by the delay of Fifo (D,B). Figure 4.6b
gives the CEG transformation of the original graph of Figure 4.6a. Actors A and E are
now connected to the virtual delay actor ∆D

B and actor I is connected to the virtual
actor ∆C . The original graph of Figure 4.6a is now split into two unconnected graphs
in the CEG, namely G1 and G2. Thus, checking the consistency of the original graph is
equivalent to checking the consistency of both graphs in the CEG. Equations 4.1 and 4.2
gives the topology matrices Γ1 and Γ2 of the graphs G1 and G2, respectively.

Γ1 =

I ∆C B C D

I∆C 1 −2 0 0 0
IB 4 0 −1 0 0
BC 0 0 5 −1 0
CD 0 0 0 1 −5
DB 0 0 −2 0 2

, q1 =

I 2
∆C 1
B 8
C 40
D 8

(4.1)

Γ2 =

A ∆D

B E

A∆D
B 4 −4 0

∆D
BE 0 4 −2

, q2 =

A 1

∆D
B 1
E 2

 (4.2)

On top of Γ1 and Γ2 are noted the names of the actors to which the columns of the
matrices refer. On the left of Γ1 and Γ2 are noted the names of the Fifos to which the
lines of the matrices refer. rank(Γ1) = 4 and rank(Γ2) = 2, thus the graphs G1 and G2

are consistent and so is the graph of Figure 4.6a. The RVs q1 and q2 of respectively G1

and G2 give a repetition factor of 1 for both ∆C and ∆D
B actors. Figure 4.7 shows the

CLEG of the graph of Figure 4.6a. Actor ∆B is now connected to actor B through a
virtual port with a production rate of q1(B) = 8 and a consumption rate of 1 as specified
by Section 4.3.2. Similarly actor ∆C is connected to actor C with a production rate of
q1(C) = 40. Finally, actor ∆D is connected to actor E and actor E has a consumption
rate of 8 on this Fifo which is equal to q1(D). The CLEG of Figure 4.7 is live and thus
the graph of Figure 4.6a is both consistent and live.

4.3.3 Corner Cases: Recursive and Multiple Initialization

Figures 4.8a and 4.8b illustrate two potential scenarios raising from the possibility of
dynamically initialized delays. Figures 4.8a shows a recursive initialization pattern for the

69

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

I
1
4

A 4 4 8

2 40

B1

2

C1
2 2

2

5

1

E2D 1
2

45

4

8
1

1

Figure 4.7 – CLEG of the graph of Figure 4.6a.

GoS i

CP
n

p c

n'

G'S' i' o'

(a) Example of recursive initialization of delay.

GonS i n

CP
n

p c

xNS

xNP

xM xNG

xNC

(b) CEG of Figure 4.4a with multiple
initialization of the delay.

Figure 4.8 – Illustration of recursive and multiple initialization of delays.

delay attached to the edge ~PC and Figure 4.8b uses the CEG transformation to show
a multiple initialization pattern of the delay of Figure 4.4a. The recursive initialization
pattern emerges from the fact that if an edge can exists from, or to, a dataflow actor
and to, or from, a delay; then there can be a delay on this edge. This property means
that initial data tokens of a delay could be set by multiple stages of setter and getter
actors (see Figure 4.8a) and, symmetrically, there could be multiple stages on the edge
connecting a delay to a getter actors which could themselves be initialized by delays. This
pattern has been judged to add too more complexity into the implementation of tools
supporting SaMM semantics for no clear functional benefits. Thus, in SaMM, there can
be no delay on an edge going from a setter actor to a delay or from a delay to
a getter actor.

The multiple initialization pattern shown in Figure 4.8b emerges from the fact that
data rates on edges connecting a setter actor to delay or a delay to a getter actor are
not required to be equal to the delay value (see Section 4.3.1). Thus, using the CEG
transformation and then computing the topology matrix on the obtained graph, virtual
delay actor could have a RV greater to 1. Although this does not seem to be a problem
at first glance, multiple repetitions of the virtual delay actor raises multiple question as

70

4.3. Dynamic Initialization of Dataflow Graphs

to how to interpret such behavior. Indeed, multiple repetition of the virtual delay actor
imply that there are either more data tokens produced on the delay by the setter actor
than the delay value or that there are more data tokens consumed by the getter actor
than the delay value which leads to two possible scenarios:

S1. Delays should behave as roundbuffers in respect to setter actors and as repeat-
buffers in respect to getter actors when more tokens are produced onto the delay
or consumed from the delay, respectively.

S2. The entire path to which the delay is attached should be repeated as many times
as the virtual delay actor is repeated. For instance, in the graph of Figure 4.8b,
actors P and C are repeated NP and NC times, respectively, and the virtual delay
actor ∆P

C is repeated M times. In this scenario, the entire path composed of NP

execution of actor P and NC should be executed M times.
Scenario S1 adds a functional behavior to the delays, meaning that delays are no

longer considered as just initial data tokens of a given Fifo but as functional entities with
potential runtime behavior. However, the purpose of the proposed extended semantics of
delays is to enforce the behavior of the existing semantics while adding the possibility
of dynamic initialization of delays, hence this scenario is discarded in SaMM. Scenario
S2 adds complexity to the analysis of SAD graphs due to the fact that the entire path
affected by a given delay need to be determined in order to apply the scaling factor
which may not be trivial in graphs with complex cycle and pipeline structures. For this
reason, the scenario S2 is also discarded in SaMM, meaning that virtual delay actors are
required to have a repetition value strictly equal to 1 as mentioned in the Step
3 of Section 4.3.2.

The next section demonstrates the advantages of the proposed semantics in term of
conciseness, readability and memory usage over standard SDF based dataflow MoCs. Then
an application example is given in Section 4.3.4.2 with the use of the SaMM semantics to
model the computation of a matrix multiplication.

4.3.4 Modeling of an Iterative Structure in Dataflow

4.3.4.1 Generic Iterative Process Example

In this section, we model a simple for-loop algorithm structure with the SDF MoC
to demonstrate the lack of proper semantics to expose efficiently fine grained parallelism.
Then the same structure is modeled with a SAD graph to show how the proposed delay

71

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

semantics improves the expressiveness of the SDF MoC. In many applications, iterative
computations similar to the one shown in Algorithm 1 are used. Algorithm 1 is decomposed
in 3 distinct phases, namely the prologue (line 1), the loop kernel (line 2-4) and the epilogue
(line 5).

Algorithm 1: Iterative Process Example
Input: Number of iterations N ;

Parameter file paramFile;
1 dataBuffer = execute(P, inputsP); // actor P

2 for i ∈ [0 : N] do // actor I

3 parametersi = readFile(paramFile); // actor R

4 dataBuffer = execute(B, dataBuffer , parametersi); // actor B

5 execute(E, dataBuffer); // actor E

The prologue phase is the phase initializing dataBuffer . The loop kernel is the phase
corresponding to the iterative computations of the loop. Finally, the epilogue is the pro-
cessing done after the final iteration of the loop. The three phases of Algorithm 1 are
sequential due to the data dependency of dataBuffer . This data dependency is enforced
at line 4 of the loop kernel phase, where results from the previous loop iterations are
used. In other words, the line 4 computation of iteration n + 1 and iteration n are not
executable in parallel. Nevertheless, parallelism can still be exploited inside each of the 3
phases.

I
BR 1

RB1 EDDN*DDup DD

Mux D
D
D

1

P RB0D N*D

N

D

Loop Kernel

D
D1

D

D

Figure 4.9 – Equivalent SDF graph of Algorithm 1.

Figure 4.9 shows how Algorithm 1 is expressed in the strict SDF MoC. Note that
the inner processing of the loop kernel phase is fully exposed in the strict SDF MoC.
Actors P , {R,B} and E represent the prologue, the loop kernel and the epilogue phases

72

4.3. Dynamic Initialization of Dataflow Graphs

of Algorithm 1, respectively. The size of dataBuffer is noted D and corresponds to the
consumption and production rates of actor B. Actor I is used here to set the number N
of iterations of the for loop. Actors RB0 , RB1 and Dup are special actors used to manage
the loop context of Algorithm 1. RB0 and RB1 are used to guarantee unique execution
of the prologue and epilogue phases. RB0 duplicates N times the tokens received on its
input port to its output port and symmetrically, RB1 forwards only the last D tokens
received on its input port to its output port. The Mux actor is a multiplexer used to select
which tokens are forwarded to actor B. Since actors are stateless in the SDF MoC, the
Mux actor distinguishes the first iteration from the rest of the loop based on the values
produced by actor I. On the first firing of actor B, tokens produced by actor P are used.
For every other firings, actor B uses the tokens produced by its previous firing through a
feedback Fifo. The Dup actor is a duplicate actor and is used to forward the data tokens
produced by actor B to both Mux and RB1 .

{D,0,...,0}
{D,...,D}

Mux
{D,...,D}

Dup {0,...,0,D} E

Loop Kernel

B
R

D

P {D,0,...,0} {0,...,0,D}

{1,...,1}

{D,...,D}{D,...,D}

{D,...,D}
{D,...,D}{1,...,1}

Figure 4.10 – Equivalent CSDF graph of Algorithm 1.

D D D D EP H

I Mux D
D
D

1N
D

Loop Kernel

BR 1
D

D1 DDup DD
D

D

Figure 4.11 – Equivalent πSDF graph of Algorithm 1.

Figures 4.10 and 4.11 show how Algorithm 1 can be expressed using the
CSDF [bilsen_cycle-static_1996] and πSDF MoCs, respectively. In Figure 4.10, the

73

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

cyclic rates remove the need for the RB0 and RB1 actors of Figure 4.9. Indeed, the Mux
actor consumes D data tokens on its first input for its first iteration and then consume 0
data tokens for the N − 1 other iterations. Symetrically, the Dup actor produces 0 data
tokens on its first output for the first N − 1 iterations and then produces D data tokens
on the last iteration. The modeling of the Algorithm 1 with the πSDF MoC in Figure 4.11
is very similar to the one with the SDF MoC in Figure 4.9. The main difference is the use
of the hierarchy semantics of the πSDF MoC to benefit from the implicit circular buffers
of the data input and output interfaces which have the same role as the RB0 and RB1

actors of Figure 4.9.

BR 1

Loop Kernel

D1

EDP D

I N
D
1

D

Figure 4.12 – Equivalent SAD graph of Algorithm 1.

Figure 4.12 shows the representation of Algorithm 1 using the SaMM delay initializa-
tion semantics presented in Section 4.3.2. The initialization of the delay is used as the
prologue phase of Algorithm 1, then actor B is fired sequentially N times. Finally, the last
data tokens produced by B are automatically forwarded to actor E through the delay.
Figure 4.12 demonstrates the conciseness improvement offered by the SAD semantics of
delay.

It would be possible to simplify the graph of Figure 4.9 by encapsulating all iterations
of the loop kernel as a single firing of a unique actor. The interest of exposing multiple
iteration of the loop kernel in dataflow is demonstrated by analyzing the resulting sched-
ules of both approaches. When the iterations of the loop kernel are not exposed in the
dataflow graph, parallelism opportunities such as time pipelining are lost as showed in
the resulting schedule of Figure 4.13a. In the schedule of Figure 4.13a, P and E corre-
spond respectively to the prologue and epilogue phases of Algorithm 1. Ri and Bi are the
computations of lines 3 and 4 of the ith iteration of the loop. The entire loop kernel is
done in 1 firing of the unique actor in which R and B are encapsulated. In the schedule

74

4.3. Dynamic Initialization of Dataflow Graphs

of Figure 4.13a, the total execution time of Algorithm 1 is defined by

T1critical = TP +N ∗ (TR + TB) + TE (4.3)

where Tx is the execution time of the corresponding actor x andN the number of iterations
of the loop.

Time

P ECore0

1 firing

Loop kernel

R0B0
... RN-1BN-1

(a) Sequential schedule of Algorithm 1.

Time

Core1

Core0

R0 R1
... RN-1

B0 B1
... BN-2 BN-1

P E

N firings

N firings
(b) Pipelined schedule of Algorithm 1.

Figure 4.13 – Potential schedules of Algorithm 1 depending on the level of parallelism of
the loop kernel exposed.

In Algorithm 1, the readFile function calls (line 3) are independent from the loop
iteration. This independence of the executions of the actor R is naturally represented in
the equivalent dataflow graphs (Figures 4.9 , 4.10 , 4.11 and 4.12) where R has no incoming
dependency and no feedback loop. Thus, it is possible to execute the N firings of actor R
in parallel, without interleaving them with the N firings of actor B. Figure 4.13b shows
the schedule of the latter scenario. Executions of actor R starts before the start of the loop
and allow actor B to immediately starts its computation after the end of the prologue.
The resulting total execution time of Figure 4.13b is defined by

T2critical = max(TB +N ∗ TR, N ∗ TB + TP) + TE (4.4)

Given T1critical and T2critical definitions, exposing the inner-loop parallelism gives a sig-
nificantly shorter execution time. In addition, exposing such loop structures in dataflow
is also relevant in the context of Field Programmable Gate Array (FPGA) implemen-

75

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

tation of nested loop kernels [milford_constructive_2016]. Thus, in the following of
this section, we only consider the exposed dataflow representation of the inner-loop.
In Figure 4.9, actors Mux, RB0 and RB1 and Dup added to manage the loop context
have a non negligible impact on memory. In the graph of Figure 4.9, dataBuffer values
are stored simultaneously in 4 different Fifos for each iteration of the loop: (Br, Sw),
(Sw, B), (B, Br) and (Br ,RB1). The main issue is that the values of dataBuffer are only
useful for actor B but get copied 3 times. The remaining Fifos (RB0 , Sw), (P,RB0) and
(RB1 ,E) lead to a total memory allocation of the graph for dataBuffer defined by

M = D ∗ (2 ∗N + 5) (4.5)

with D the size of dataBuffer and N the number of loop iterations.
In Figure 4.12, using the delay to manage the loop means that only 1 Fifo is needed for
the entire loop structure. In the graph of Figure 4.9 the size of the allocated memory is
dependent on the number N of iterations of the loop (Equation 4.5) whereas with the
proposed semantics the allocated memory size is always constant and equal to the size of
dataBuffer . In a dynamic context where the number of iterations of the loop is resolved at
runtime, dynamic allocations of all the buffers combined to the memory transfer operations
can have a great overhead on the performance of an application.

4.3.4.2 Matrix Multiplication Example

In this section, the new delay initialization semantic is used for modeling a matrix
multiplication computation. The matrix computation is given in Algorithm 2. Algorithm 2
takes two matrices as input, namely A and B, of dimensions m×n and n×p, respectively,
and produces as output a matrix C of dimension m× p.

Algorithm 2: Matrix Multiplication
Input : Matrices Am×n, Bn×p;
Output: Matrix Cm×p;

1 for i ∈ [1 : m] do
2 for j ∈ [1 : p] do
3 C[i][j] = 0;
4 for k ∈ [1 : n] do
5 C[i][j] += A[i][k]×B[k][j];

76

4.3. Dynamic Initialization of Dataflow Graphs

Figure 4.14 shows a possible model of Algorithm 2 using the SaMM semantics. The
actors MatA and MatB produces the two input matrices A and B of the matrix multi-
plication. Actor ∗ correspond to the Hadamard product of two 1-D vectors (entrywise
product) and actor Σ performs the sum of all its input tokens. The combination of actors
∗ and Σ result in the dot product of one row of the matrix A and one column of the
matrix B. The Trans actor compute the transpose of its input matrix, and is used here
to reshape the data of the matrix B in order to be able to use the dot product actor. The
Rep and Dup actors are two special actors that perform specific memory operations. The
Rep actor is called a repeat actor and repeats its input data tokens a given number of
times k on its output data port, with k ∈ N∗. The Dup actor is called a duplicate actor
and duplicates its input data tokens on all of its output data port.

n*pMatB p*nn*p Trans

Dispm*p

p*n

Dup p*n
p*np*n

MatA m*n * 1n
n

n nRepn n*p

Figure 4.14 – Example of a matrix multiplication modeled with a SAD graph.

A firing of actors ∗ and Σ corresponds to the computation of one output value in the
output matrix C. Hence, computing 1 row of the output matrix C correspond to p firings
of the ∗ and Σ actors, with p the number of columns of matrix B. Data wise, computing
one output row requires 1 row of the matrix A and the entire transposed matrix B. To
compute the entire output matrix C, it is then necessary to execute ∗ and Σ actors m ∗ p
times, with m the number of rows of the matrix A. In Figure 4.14, actor Dup is used to
repeat the entire transposed matrix BT m times, with the delay of the self-loop around the
actor Dup being initialized by the output of the actor Trans. The rational behind using
this rather odd pattern with the self-loop around the duplicate actor is based on the fact
that duplicate actors are often optimized and end up resulting in no-op operations with
all of the output data tokens on all output data ports pointing directly to the input data
tokens. The duplicate actor is then mainly used here to enforce the need of repetition of
the matrix. For example, on an FPGA, this pattern would be entirely optimized away
with the ∗ actor fetching data directly from the output of the Trans actor m times.

Figure 4.15 shows the CEG of the graph in Figure 4.14 with the different repetition
values of the actors noted below them. Analysis of the CEG of Figure 4.15 using the same

77

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

G1

Dispm*p

p*n

Dup p*n
p*np*n

MatA m*n * 1n
n

n nRep

G2

n*pMatB p*nn*p Trans p*n

x1x1x1

x1 xm*p x1
xm*p

xm

n n*p

xm

Figure 4.15 – CEG of the graph of Figure 4.14.

approach as in Section 4.3.2.1 shows that the graph in Figure 4.14 is consistent. Finally,
the CLEG in Figure 4.16 shows that the matrix multiplication graph is also live.

n*pMatB p*nn*p Trans

Dispm*p

p*n

Dup p*n
p*np*n

MatA m*n * 1n
n

n nRep

1p*n m

n n*p

Figure 4.16 – CLEG of the graph of Figure 4.14.

This more concrete example showed how the newly introduced semantics allows to
model fined grained parallelism applications in a concise and expressive manner. Modeling
such applications is interesting particularly in FPGAs [milford_constructive_2016]
where each atomic operations, such as multiplications and additions, are mapped to dis-
crete logic blocks leveraging more data parallelism.

4.4 Initial Tokens Values: A Matter of State

Following the concept of graph iteration, a delay in a graph G associated with an
explicit initialization such as the one introduced in Section 4.3.1 is initialized once per
iteration of G. Therefore, Consumption actors of delays always have new data tokens
for their first firing of each graph iteration. Having the fixed initial conditions at every
iteration of a SAD graph G means that pipelined behavior, such as the one depicted in
Figure 4.1a, are no longer modelable. Indeed, pipelining multiple executions of a graph

78

4.4. Initial Tokens Values: A Matter of State

is only possible due to the forwarding of data tokens produced by a given iteration n

to iteration n + 1; which is not possible with the initialization and retrieval semantics
presented in previous section. To reconcile pipeline functionality with the new semantics
of delay introduced in Section 4.3.1, it is necessary to define unambiguous persistence
scopes for delays. The persistence of delays defines whether data tokens inside a delayed
Fifo should be discarded or preserved for the next graph iteration. In other words, are
graphs allowed to have a persistent state or not?

In this section, the new semantics for persistence of delay of SaMM is presented along
with the application of SaMM onto the πSDF MoC, resulting in the State-Aware Param-
eterized and Interfaced Synchronous DataFlow (SA-πSDF) MoC.

4.4.1 Persistence Scope of Delays

4.4.1.1 Definition

As explained in Section 4.2, having a delay in a hierarchical subgraph GH of an actor
H induces an internal state for H. Such a state can either be discarded at the end of
the firing of H or preserved for the next firing. In order to preserve the state of H, it is
necessary to expand explicitly the persistence scope of the delay outside of the subgraph
GH . Preserving the state of H has the consequence of inducing a precedence relationship
between its successive firings. An actor with a persistent state across graph iterations also
constitutes a state for its parent actor, which in turns is considered as having a state, and
must have serialized firings. Hence, expanding the persistence scope of a delay to all levels
of hierarchy, as proposed in [lee_dataflow_1995], induces a precedence relationship
between every parent graphs of H. Having such strong constraint on the firing sequences
of actors becomes problematic in complex applications with a deep hierarchy as it will
strongly undermine the data parallelism of the application. To control the persistence
scope of a state in a hierarchical graph, SaMM introduces 3 different types of delays:
the Local Delays, the Locally Persistent Delays and the Globally Persistent Delays. The
different types of delays are defined here after:

Definition 4.4.1 (Local Delays)
Local Delays (LDs) use the semantics presented in Section 4.3.1. Thus, an LD can be
initialized dynamically by dataflow actors. The data tokens contained in the Fifo of an
LD are preserved within the scope of a unique graph iteration.

79

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

Definition 4.4.2 (Locally Persistent Delays)
Locally Persistent Delays (LPDs) are delays whose data tokens persist outside of the scope
of the graph to which the LPD belongs. An LPD specifies the persistence of a delay for
one level of hierarchy and establishes a precedence relationship for successive firing of the
parent actor H of the subgraph GH to which the LPD belongs. Any subgraph containing
an LPD is guaranteed to have the state associated to this delay preserved from one firing
to another inside the graph to which it belongs. Additionally, the persistence scope of an
LPD can be extended to any given number N of level of hierarchy independently from the
instance of the subgraph to which it belongs. In other words, multiple hierarchical actors
sharing the same internal subgraph are allowed to have different levels of persistence.
Finally, LPDs can not be initialized using dataflow actors due to the fact that delays need
to be initialized prior the first use of the data tokens they held. Therefore, it would imply
that setter and getter actors of an LPD would be fired in a different level of hierarchy of
the one of the delay they are connected to. However, to be connected to an LPD, setter
and getter actors need to be in the same subgraph as the LPD meaning that they will be
fired once per subgraph iteration which will initialize the LPD once per subgraph iteration,
thus nullifying the persistent property of the LPD.

Definition 4.4.3 (Globally Persistent Delays)
Globally Persistent Delays (GPDs) are delays that persist across all levels of hierarchy
up to the top-level graph. GPDs are initialized only once in the lifetime of an application,
prior to the first firing of the top-level graph. Since dataflow actors are fired once per graph
iteration, they cannot be used to initialize a GPD once in the application lifetime. There-
fore, a GPD is initialized either with a function or a constant value directly associated
with the delay. GPDs are equivalent to the delays described in [lee_dataflow_1995].
By definition, any LPD in the top-level of hierarchy is a GPD.

Figure 4.17 illustrates the different levels of delay persistence definitions. The LDs
persist within exactly 1 level of hierarchy, the LPDs persist for N levels of hierarchy
and finally the GPDs persist for all the levels of hierarchy. The unambiguous persistence
semantics of SaMM enforces the compositionality of hierarchical actors and their re-
usability. Listing 4.1 shows an equivalence of the SaMM persistence scopes using the C
language. In this example, the 3 types of delays of SaMM are illustrated. Local Delays, at
line 3, are equivalent to locally declared arrays with a life scope ending at the end of the
scope within which they are declared. Locally Persistent Delays, at line 8, are equivalent

80

4.4. Initial Tokens Values: A Matter of State

H
ie

ra
rc

h
y
 L

e
v
e
l

0

1

M

M-1

Locally Persistent
Delay

Local Delay

Local Delay

... Globally Persistent
DelayN M

1

1

Figure 4.17 – Illustration of the different levels of persistence for delays in SaMM. LDs
persist within only 1 level of hierarchy, LPDs persist for N levels of hierarchy and GPDs
persist for all the levels of hierarchy.

to arrays declared in a scope greater than the one of the function call they are used in.
Finally, Globally Persistent Delays, at line 2, are equivalent to statically declared arrays.
1 void subgraph (int *lpd) {

2 static int GPD [4] = { 0 }; // Globally Persistent Delay

3 int LD [4] = { 1, 3, 3, 7 }; // Local Delay

4 // ...

5 }

6 int main(int argc , char *argv []) {

7 {

8 int LPD [4] = { 0 }; // Locally Persistent Delay

9 for (int i = 0; i < 10; ++i) {

10 subgraph (LPD);

11 }

12 }

13 return 0;

14 }

Listing 4.1 – Equivalence of Persistence Scopes in C Language.

4.4.1.2 Hierarchical Implications: Serial vs Parallel Execution

In this section, the hierarchical implications of the persistence of delays are discussed.
In other words, how does the level of persistence of a delay influences the execution of a
hierarchical graph?

81

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

GAA

x2 x3

H D1 1

B
1

1
1

1

1 C1 12 1

x2 x2

x2
x21

24

46

Figure 4.18 – πSDF graph example with an internal delay.

Figure 4.18 shows an example of a πSDF graph with multiple levels of hierarchy. All
repetitions values of the actors are noted below them and are relative to their respective
graph. For instance, actors B and C have a repetition value of 2 within the subgraph
H but a total repetition count of 12 given that actor H is repeated 2 times within the
subgraph G, which is itself repeated 3 times. The different levels of hierarchy of the graph
of Figure 4.18 are composed of the hierarchical actor G in the top-level graph and the
hierarchical actor H in the subgraph of actor G. In the subgraph of actor H, there is a
self-loop Fifo around the actor B with a delay attached to it, which leads to the question
of how long should the tokens inside the Fifo persist?

The πSDF MoC is a fully compositional MoC [desnos_pimm:_2013] which means
that each level of hierarchy can be analyzed independently and every hierarchical actors
are considered as atomic actors for all analysis tools. Importantly, the hierarchical actors
are considered to share the same properties as other atomic SDF actors. One of the most
interesting property of SDF actors is the stateless property [lee_synchronous_1987].
In other words, SDF actors do not hide internal state and so do πSDF hierarchical actors
which means that actors can be executed in an auto concurrent context, i.e multiple firings
of a same actor can be executed in parallel.

Going back to the Figure 4.18, the property of composition thus defines that all possible
firings of a hierarchical actor can be executed in parallel as the internal delay does not
create any link between successive firing of a hierarchical actor. Hence, Figure 4.19 shows
a possible schedule of the graph of Figure 4.18. Firings of the internal actors of the
subgraph of actor H are not showed on the schedule as they are not relevant to the current
demonstration. In the schedule of Figure 4.19, all firings of both levels of hierarchy occur in
parallel due to the fact that there is no internal state that need to be passed from one firing

82

4.4. Initial Tokens Values: A Matter of State

Time

Core3

Core2

Core1

Core0 A0

A1 H1

G0

D1

H0 D0

H1 D1

H0 D0

G2

G1

H1 D1

H0 D0

Figure 4.19 – Possible schedule of the graph of Figure 4.18 with no internal state.

of actor H to another. Hence, using the persistence scope definitions of Section 4.4.1.1,
all delays inside hierarchical actors of the πSDF MoC, and the delay of Figure 4.18, are
defined as Local Delays (LDs). Importantly, in the πSDF MoC, delays located at the
top-level graph have the same persistence scope as the delays of the SDF MoC and are
considered as Globally Persistent Delays (GPDs).

Figures 4.20 and 4.21 show potential schedules of the graph of Figure 4.18 using an
LPD and a GPD for the delay of the subgraph of actor H, respectively. In Figure 4.20, the
LPD imposes a serialization of actor H due to the persistence of the delay. Importantly, in
this scenario, the LPD only specify the persistence of the delay for one level of hierarchy
which has the consequence of creating a local state for actor H for each firing of actor
G. Consequently, in this scenario, all firings of the hierarchical actor G can still occur
in parallel. However, in Figure 4.21, following the Definition 4.4.3 of Section 4.4.1.1, the
persistence of the delay is extended to the top-level graph. This extended persistence
scope induces that firings of actor G also need to be serialized.

In conclusion, the graph example of Figure 4.18 associated with the different schedules
in Figures 4.19 , 4.20 and 4.21 illustrate the design flexibility of the explicit persistence
semantics for delays of SaMM. Indeed, the different persistence scopes definitions of delays
offered by SaMM lead to controlled data parallelism in hierarchical graphs which can be
taken into account during the analysis and scheduling of the graphs. The next section
present the application of SaMM to the πSDF MoC.

83

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

Time

Core3

Core2

Core1

Core0 H1H0

G0

A0

A1

D1

D0

H1

H0

G1
D1

D0

H1

H0

G2

D1

D0

Figure 4.20 – Possible schedule of the graph of Figure 4.18 with a local internal state.

Time

Core3

Core2

Core1

Core0 H1H0

G0

H1H0

G1

H1H0

G2

A0

A1

D1

D0

D1

D0

D1

D0

Figure 4.21 – Possible schedule of the graph of Figure 4.18 with a global internal state.

4.4.2 Application to the πSDF MoC

4.4.2.1 SA-πSDF Semantics

The application of SaMM to the πSDF MoC result in the State-Aware Parameter-
ized and Interfaced Synchronous DataFlow (SA-πSDF) MoC. The additional graphical
semantics of the SA-πSDF MoC over the πSDF MoC are presented in Figure 4.22. In
Figure 4.22, the delay inside the hierarchical actor H is an LPD and its persistence scope
extends up to the top-level graph. This extended persistence scope is made explicit in
Figure 4.22 with a dashed self-loop around the actor H. The explicit representation of the

84

4.4. Initial Tokens Values: A Matter of State

H
1

A D4 1 12
1

1

B
1

1
1

1
L

1 C1 12 1

H

D

L

D

G

D

Hierarchical actor
with internal state

Locally Persitent Delay

Globally Persitent Delay

Local Delay

Figure 4.22 – SA-πSDF graph example and associated graphical semantics.

H
1

A D4 1 12
1

1
S G11

B
1

1
1

1

1 C1 12 1

11

H

Figure 4.23 – Example of emulating the LPD of the graph of Figure 4.22 using LDs.

persistence scope of the delay is only represented in Figure 4.22 to help the reader and
is not required in practice when designing SA-πSDF graphs. Definition 4.4.2 states that
LPDs can not be initialized dynamically using dataflow actors. This property holds in
the SA-πSDF MoC. However, it is possible to emulate the behavior of an LPD and have
the dynamic initialization with dataflow actors using LDs and the inherited πSDF data
interfaces. Figure 4.23 shows the equivalent graph of Figure 4.22 using LDs and setter
and getter actors. Using this emulated persistence representation, it is the responsibility
of the application designer to make sure that the inner state of the graph is correctly
propagated with a correct number of delays to upper levels of hierarchy.

4.4.2.2 SA-πSDF Runtime Operational Semantics

The execution of a SA-πSDF graph G associated to a hierarchical actor aG follows the
same steps as a πSDF graph [desnos_pimm:_2013]:

1. Wait for partial configuration of G.

2. Compute the production and consumption rates of the data interfaces based on
the partial configuration.

3. Wait until aG is fired by its parent graph.

85

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

4. Fire the configuration actors that will set the configurable parameters of G: a
complete configuration is reached.

5. Check the local synchrony of G with the rates and delays resulting from the com-
plete configuration and compute a schedule (if possible).

6. Fire the non-configuration actors: i.e complete an iteration of G.

7. Produce on the output ports of aG the data tokens and parameter values written
by the actors of G.

8. Go back to step 3 to start a new iteration of G, i.e. a new firing of aG.

In reconfigurable and hierarchical dataflow MoCs such as the πSDF MoC, a graph
can dynamically configure parameters of hierarchical subgraphs. Specifically, a graph can
change the number of delays of a subgraph at runtime [desnos_pimm:_2013]. Changing
the number of delays of a graph affects the liveness and the consistency of the graph as
mentioned in Section 4.2. Thus, the number of delays must be known when the liveness
and consistency analysis of a graph are verified.

With the SaMM semantics, persistent delays can impact different levels of hierarchy
depending on their persistence scope. Thus, since a persistent delay inside a subgraph
sG is forwarded at least to the parent graph pG, any change to the number of delays has
to be known when firing pG (step 3) in order to be able to check the local synchrony of
pG (step 5). The dependency between pG and sG means that the value of a persistent
delay can not be set by a reconfigurable actor within sG. This property extends
to the highest level of persistence of a delay, that is if a Locally Persistent Delay is
set to be persistent across 2 levels of hierarchy then its value can neither be set by a
reconfigurable actor in its original subgraph but neither in the second level in which
it is set to persists. In other terms, the number of data tokens of a persistent
delay can not depend on a parameter located in a level of hierarchy below
the highest level of hierarchy in which the delay persists. The SA-πSDF MoC
inherits the semantics, the compositionality, and the schedulability properties of the πSDF
MoC [desnos_pimm:_2013]. Thus, in the SA-πSDF MoC, the static parameter tree
inherited from the πSDF MoC naturally enforces this property.

Having parameterized value of delays means that a delay can vary in size during the
lifetime of an application. For Local Delays, it does not affect their behavior since they
are only allowed to change their size during steps 1 to 2 of the firing of a graph. However,
it is necessary to explicit the behavior of persistent delays when changes in size occur. If a

86

4.5. SA-πSDF Application Example

persistent delay increases in size, the additional tokens are set to 0. If the delay decreases
in size, only the last tokens of the Fifo are kept. For instance, if a delay is of size D and
decreases to size D2 , only the D2 last tokens of the original Fifo are kept.

4.5 SA-πSDF Application Example

4.5.1 Application Description

In this section we use the Continuous Actor Critic Learning Automaton (Cacla)
algorithm [van_hasselt_reinforcement_2007] as an application example to demon-
strate the conciseness and memory efficiency of the SA-πSDF MoC. Cacla is part of
the reinforcement learning branch of machine learning. Reinforcement learning consists
of learning the model of an environment E and taking actions accordingly without prior
knowledge of E. The reinforcement learning algorithm learns the model of E based on an
abstract representation of E called the state (S) of the environment. For instance, in the
case of the control of a robotic arm, the environment E is the arm, the state S would be
the position and velocity of each motor, and the actions would be the commands of the
motors of the arm. Due to a lack of space, the whole application is not detailed here, but
it is available in the Preesm tool [pelcat_preesm:_2014] open-source repository 3.

It N

Adam

Grads
out

raw

St

T GNN

GNN

PNN

PNN

Pad

Pad

NNR
PNN

out

raw

St

NNN

NNN

NNN

NNN

NNNNNN

NNN

NNN

Dup
NNN

NNN
1

NNN

NS

NT

NS

NS

NNN

NT

Nad

Nad

Dup
NS

NSNS

1
It

NNN

L

Nad

NNN

PNN

St

V

T

PNN
NNN

N

SetN1 N

Figure 4.24 – SA-πSDF graph of the Cacla actor update algorithm. Nx is the size of
the associated x parameter.

Cacla uses multiple neural networks to make predictions and the coefficients of the
neural networks are updated at each iteration of the main loop of the algorithm. Fig-
ure 4.24 illustrates the subgraph responsible for the update of the coefficients of the

3. https://github.com/preesm/preesm-apps

87

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

neural network that predicts the actions to apply to E. The graph takes as inputs the
coefficients of the neural network WNN , the target T toward which the network is up-
dated, the state St of the environment and the variance V of the temporal difference er-
ror [van_hasselt_reinforcement_2007]. The graph produces as output the updated
coefficients of the neural network PNN . The NNR, Adam and Grads actors are hierarchical
actors whose internal behavior are not detailed here.

In the graph of Figure 4.24, the coefficients of the neural network PNN are updated
iteratively N times, N being set by the configuration actor SetN . The NNR actor is a
Multi Layer Perceptron (MLP) neural network that takes the state of the environment St
as input and predicts the action based on current coefficients of the network. The Grads
actor computes the gradients of each coefficient of the neural network based on a target T
and the outputs of NNR. Finally, the Adam actor apply the gradients on the parameters
using the Adam optimizer algorithm [kingma_adam:_2014]. The graph of Figure 4.24
uses both semantics introduced by the State-Aware dataflow Meta-Model (SaMM). The
Locally Persistent Delay is used to store the hyper parameters and coefficients needed by
the Adam algorithm [kingma_adam:_2014]. The Local Delay is used for the iterative
update of the coefficients of the neural network.

4.5.2 Results

Table 4.1 – Comparison of memory usage of SA-πSDF and πSDF implementations of
the Cacla algorithm.

πSDF SA-πSDF Gain
Update of neural network (in bytes) 9716 4430 56, 53%
Full application (in bytes) 27492 17720 35, 4%

Table 4.1 shows the difference in memory usage between the SA-πSDF and a strict
πSDF implementation of the Cacla algorithm [van_hasselt_reinforcement_2007].
The memory usage is defined as being the amount of allocated memory needed to run the
application. Table 4.1 presents the difference in memory usage for both the full Cacla
application and the subgraph of the update of the neural network of Figure 4.24. The
memory comparison is based on a neural networks with 3 layers and a total of 101 param-
eters per network, where each parameter is encoded on 4 bytes. A gain of 35.4% in total
memory usage is observed for the whole application with a gain of 56.53% of memory

88

4.6. Conclusion

usage for the update graph alone. The update of the neural network is the part of Cacla
benefiting the most from the new semantics due to the use of a persistent delay and due
to the iterative loop needed for the update. Indeed, in the strict πSDF MoC, making
a delay persistent across levels of hierarchy induce the need of extra actors similarly to
Figure 4.9. The results of Table 4.1 show that for applications with iterative computations
and with locally persistent data, the new semantics of SAD can drastically reduce the
memory footprint of the application. Thus, SAD is particularly well suited for modeling
applications on embedded platforms with sparse ressources.

4.6 Conclusion

Delays are an important part of existing dataflow MoCs and yet,they lack of a proper
definition and flexibility. Indeed, in current dataflow MoCs, delays are seen as unspecified
initial conditions of an application and are used to endure the state of the application
by passing their data tokens from one iteration of the application to the next. However,
these properties of delays are limited and does not permit the modeling of patterns such
as iterative structures efficiently. The problem is of greater importance with hierarchical
dataflow MoCs where the persistence property, i.e the property of how long data tokens in-
side a delay should persist, is either ambiguous or limited leading to potentially inefficient
scheduling decisions.

In this chapter, we have proposed a new dataflow meta-model called the State-Aware
dataflow Meta-Model (SaMM) that extends the semantics of delays of a given dataflow
MoC. SaMM can be applied to a wide range of dataflow MoCs to extend their expressivity
and conciseness, while preserving the analysis tools of the extended MoC. We have shown
that SaMM is well suited to expose the fine-grain parallelism of nested loops with less
memory overhead compared to state-of-the-art dataflow MoCs. SaMM brings functional
aspect of an application into the model space by expliciting initial conditions and persis-
tence of hierarchical graphs at any given point in time, thus ensuring independence of the
model from its implementation. The well-defined notion of local and global state scope
provided by SaMM leads to higher design flexibility of complex hierarchical application
compared to state-of-the-art MoCs. Finally, we have demonstrated the conciseness and
memory efficiency of SA-πSDF through a reinforcement learning example application.

89

CHAPTER 5

An Efficient Intermediate Representation for Resources
Allocation

5.1 Introduction

Stream processing applications running on Heterogeneous Multi-Processor Systems on
Chips (HMPSoCs) require efficient resource allocation and management, both at compile-
time and at runtime. To cope with modern adaptive applications whose behavior can not
be exhaustively predicted at compile-time, runtime managers must be able to take resource
allocation decisions on-the-fly, with a minimum overhead on application performance.

Resource allocation algorithms often rely on an internal modeling of an application.
Directed Acyclic Graphs (DAGs) are the most commonly used models for capturing con-
trol and data dependencies between tasks. DAGs are notably used as an intermediate
representation for deploying applications modeled with a dataflow MoC on HMPSoCs.
For multirate and reconfigurable dataflow MoCs, building such an intermediate represen-
tation at runtime for massively parallel applications is costly both in terms of computation
and memory overhead. Indeed, in multirate MoCs, one data parallel node in the original
model graph can transform into potentially hundreds of nodes in the final DAG. Addi-
tionally, cyclic paths are necessarily unrolled in the resulting DAG, adding to the number
of nodes.

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

In this chapter, an Intermediate Representation (IR) of DAGs for resource allocation
is presented. The proposed IR is composed of the original dataflow graph and an ad-
hoc numerical model encompassing all the data dependencies that would otherwise be
included in the DAG representation. This new representation shows improved performance
for runtime analysis of dataflow graphs with less overhead in both computation time and
memory footprint. The performances of the proposed representation are evaluated on a
set of computer vision and machine learning applications.

In an embedded context, taking fast and efficient decisions requires an efficient in-
termediate representation of the application. Using compact and expressive dataflow
MoCs, such as the CSDF [bilsen_cycle-static_1996], the Schedulable Parametric
Dataflow (SPDF) [fradet_spdf:_2012] or the IBSDF [piat_interface-based_2009]
allows for a high-level description of an application. However, the more compact and
expressive the representation, the more costly it can be to extract information. For
instance, extracting fine-grain dependencies information from a DAG is a straight-
forward operation. However, it is first necessary to compute a model transforma-
tion on a CSDF-based application to do so. The more expensive stages of expres-
sive model analysis have led to the more frequent use of DAG-based models in
programming frameworks. Frameworks such as StarPU [augonnet_starpu:_2009],
XKaapi [gautier_xkaapi:_2013], OpenVX [kronos_group_openvx_2013] or Ten-
sorFlow [abadi_et_al._tensorflow:_2016] rely on DAGs dataflow MoCs. DAGs effi-
ciently model directed workflows with task-level parallelism. However, complex structures
such as loops are cumbersome to model with DAGs due to the fact that the entire loops
have to be unrolled, making it impractical on large loops.

There is a paradox between developing more expressive and more compact dataflow
MoCs, and the fact that analysis methods often depend on the need of expanding expres-
sive graphs into DAGs. Some works, however, try to take advantage of the expressiveness
of the original MoC [deroui_relaxed_2017] or to limit the expansion of graphs and
accelerate analysis [zaki_partial_2012].

Construction of the intermediate DAG representation at runtime is a costly step that
needs to be repeated multiple times in the context of reconfigurable applications. In this
chapter, we propose a numerical modeling of the expanded DAG representation of the
SDF-based MoC and some of its extensions which avoids having to build the intermediate
DAG completely, thus improving significantly the performance of embedded runtimes.
Our representation allows using DAG oriented analysis methods while maintaining the

92

5.2. Dynamic Scheduling of Dataflow Applications Challenges

compactness and the expressiveness of the targeted dataflow MoC. The proposed numer-
ical modeling of DAGs was implemented in the Spider tool [heulot_spider:_2014]
on three different platforms ranging from a medium laptop to a low power embedded
platform. Our experiments show a significant reduction of the overhead of the Spider
embedded runtime both in terms of execution time and memory footprint of the runtime.
The work presented in this chapter has been accepted in the 2019 EMSOFT international
conference and published in the ACM Transactions on Embedded Computing Systems
(TECS) journal.

The challenges of dynamic scheduling of dataflow applications are presented in Sec-
tion 5.2. The Single-Rate Directed Acyclic Graph (SR-DAG) transformation is pre-
sented in Section 5.2.1, followed by a presentation of existing runtimes that use DAG
representation and methods that aim at avoiding the full expansion of DAG in Sec-
tions 5.2.3 and 5.2.4. Then, our numerical representation of the DAG is presented in
Section 5.3. Section 5.4 presents experimental results of the implementation of our contri-
bution into the Spider tool [heulot_spider:_2014] on signal processing applications.
Finally, Section 5.5 concludes this chapter.

5.2 Dynamic Scheduling of Dataflow Applications
Challenges

In this section, the SR-DAG specialization of SDF [lee_dataflow_1995] and the
related transformation between an SDF Graph (SDFG) and an SR-DAG are first pre-
sented. Then, the different challenges the proposed contribution addresses are detailed
in Section 5.2.2 followed by a presentation of existing techniques and frameworks where
these challenges are partially addressed.

5.2.1 The Single-Rate Directed Acyclic Graph Transformation

A Single-Rate Directed Acyclic Graph (SR-DAG), also called Acyclic Precedence Ex-
pansion Graph (APEG) in the literature [lee_synchronous_1987], is a specialization
of an SDFG. An SR-DAG does not contain any cycle and all the data rates on the edges
composing the graph are unitary which means that for every edge, the production and
consumption rates are equal. Figure 5.1 shows the transformation of a πSDF graph, in
the upper part of the figure, to the equivalent SR-DAG, in the lower part of the figure.

93

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

B 21A C2

D 21 E 11 21

x2

x2 x1

x2 x1
2

C0

C1

B0 11

1

E0

E11

11

1

E2

E31

A 2

D11 2

F 1
1

2

F 1
1

2

D01 2 F 1
1

2

B1

2J1 2
1

J1 2
1

2

Graph Transformation

Resulting SR-DAG

Original SDF Graph

Figure 5.1 – A πSDF to SR-DAG transformation example.

Under each πSDF actor of Figure 5.1 are noted their repetition value relative to their
containing graph. Actors D and E have repetition values of 1 and 2, respectively, within 1
iteration of actor B but a global repetition value of 2 and 4, respectively. In the SR-DAG,
all actors have a repetition value strictly of 1.

In our work, SR-DAG is considered to respect the SDF MoCsemantics. Particularly,
each data port can be connected to a unique edge. Thus, in order to respect this constraint,
special actors are introduced to distribute data tokens from a single produced to multiple
consumers, and symmetrically to merge the data tokens from multiple producers to a single
consumer. Fork actors split a given edge into multiple edges such as∑n−1

j=0 (pj) = PF , where
pj is the production rate of the split edge j of the Fork actor and PF is the production
rate of the original edge. In Figure 5.1, three Fork actors are added for the edges ~AB

and ~DE during the SR-DAG transformation. Symmetrically, Join actors merge multiple
edges into one edge, with ∑n−1

j=0 (cj) = CJ , where cj is the rate of merged edge j and CJ
is the consumption rate of the obtained merged edge. In Figure 5.1, two Join actors are
added for the edge ~BC of the original πSDF graph, which becomes an edge ~JC after the
SR-DAG transformation.

94

5.2. Dynamic Scheduling of Dataflow Applications Challenges

211 M M 31 M N1

Figure 5.2 – An SDF graph resulting in O(M N) SR-DAG actors.

Building the SR-DAG of an SDFG is a way of explicitly exposing dependencies across
all actor firings of the original SDFG. The SR-DAG exposes all information a scheduler
needs to take decisions. However, once the SR-DAG is built, the scheduler no longer
benefits from the compact and expressive representation of the original MoC used to
describe the application. For instance, using the πSDF representation of the graph in
Figure 5.1, a scheduler could easily perform hierarchical scheduling of actor B, whereas
using the SR-DAG representation this information is lost. Having a tunable intermediate
representation where information is already pre-processed helps to make simpler and faster
scheduling algorithms. Finally, the complexity of building the SR-DAG on graphs with
a high degree of parallelism grows exponentially with the repetition values of the actors
and so does the complexity of the scheduling algorithm. An example of a graph with such
exponential growth is given in Figure 5.2 where each actor is executed M times relatively
to its predecessor. Indeed, in Figure 5.2 the actor 2 is firedM times and the actor 3 is also
fired M times for each firing of the actor 2 which results in a total of M2 firings of the
actor 3. Following this pattern up to the last actor of the graph leads to MN−1 firing of
the actor N. Building the SR-DAG representation of an SDFG is therefore not well-suited
for embedded runtimes where scheduling needs to be done on-the-fly.

5.2.2 RunTime Challenges

In the context of this work, reconfigurable dataflowMoCs such as the πSDF [desnos_pimm:_2013]
or the SPDF [fradet_spdf:_2012] are considered. Here, reconfigurable means that ap-
plication graphs may evolve at runtime with changes in data rates or in the graph topol-
ogy itself. Reconfigurable dataflow MoC imply that full static analysis of an application
is not always possible at compile-time and needs to be handled at runtime. SPDF and
πSDF MoCs allow for a quasi-static schedule to be derived at compile-time, removing a
part of the runtime overhead. However, this work only consider the case where quasi-static
schedules are not derived at compile-time as it is the worst case scenario for these models.

When dealing with dynamic behavior such as graph reconfiguration, the first challenge
is to perform graph analysis and scheduling of the application with an overhead as low

95

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

as possible relative to the application execution time. Ideally, the time allocated for these
analyses should always be negligible compared to computation time of the application
itself.

A second concern of matter should be the memory footprint of the runtime manager.
Some analysis techniques require storing additional information that is only used for
analysis purposes. For instance, in the Kalray Massively Parallel Processor Array (MPPA),
memory is a great concern. The MPPA architecture features 16 clusters composed of
16 VLIW processing core each. Each of the cluster has a local memory of 2MB and,
although it has access to a larger shared-memory, reading and writing to this memory is
expensive and should be avoided as much as possible. In such a context, storing additional
information only for analysis purposes can result in more frequent accesses to the shared-
memory and thus in a downgrade of overall performances.

5.2.3 Existing Runtimes

HMBE Integrated HTGS (HI-HTGS) [wu_design_2018] is a design tool that aims
at automating analysis and optimizations of WSDF [keinert_modeling_2006] graphs.
HI-HTGS provides a lock-free and race-condition-free scheduler that dynamically adapts
to changes in actor execution times and cope with non-deterministic characteristics of
thread-based execution. HI-HTGS works in two distinct phases: a compile-time phase
and a runtime phase. During the compile-time phase, HI-HTGS builds the SR-DAG rep-
resentation of the WSDF user graph and performs various analyses that will be used
during the runtime phase. At runtime, HI-HTGS uses the built SR-DAG and additional
information of the compile-time phase to perform dynamic scheduling on multi-core pro-
cessors. Due to the compile-time construction of the SR-DAG, HI-HTGS only handle
static applications.

Spider [heulot_spider:_2014] is a runtime manager designed for the execution
of reconfigurable πSDF [desnos_pimm:_2013] applications on HMPSoCs platforms.
Spider takes a high-level πSDF graph description of an application as input. Due to
the reconfigurable nature of the πSDF MoC, Spider derives an SR-DAG and performs
graph optimizations, mapping and scheduling of the application at runtime, as opposed
to HI-HTGS [wu_design_2018]. The transformation to SR-DAG may take a non-
negligible time on reconfigurable applications with a high-degree of task and data paral-
lelism and with low complexity computation kernels, hence the need for a more compact
representation of the SR-DAG.

96

5.2. Dynamic Scheduling of Dataflow Applications Challenges

The OpenVX [kronos_group_openvx_2013] standard is a graph-based Applica-
tion Programming Interface (API) proposed by the Khronos group for developing and de-
ploying computer vision applications on embedded platforms. The MoC used by OpenVX
is an SR-DAG specialization of the SDF MoC [lee_synchronous_1987]. As seen in
Section 5.2.1, SR-DAGs are less-expressive and more restrictive than SDFGs but allow
for global high-level optimization. However, they limit the data-parallelism opportunities
due to the fact that in OpenVX each node is supposed to be an atomic computer vision,
or deep-learning, computation kernel. In SDFGs, non-unitary data rates between actors
favor data parallelism allowing for each computation kernel to be further parallelized.
Hence, OpenVX standard relies mostly on task-parallelism.

Other runtimes such as StarPU [augonnet_starpu:_2009] or XKaapi [gautier_xkaapi:_2013]
are task-graph based runtimes. Similarly to OpenVX, StarPU and XKaapi use a DAG
dataflow model to schedule the different tasks. However, StarPU and XKaapi mainly fo-
cus on High-Performance Computing (HPC) on heterogeneous architectures composed of
multi-core CPUs and GPUs whereas OpenVX main focus are computer vision applications
on embedded platforms. It is important to note that contrary to OpenVX, StarPU sched-
ules the application graph at the same time it is constructed, thus limiting its vision of the
full application for resource allocation decisions but allowing for dynamic reconfiguration
of the application.

5.2.4 Avoiding Excessive Graph Expansion

Building the SR-DAG of an SDF application does not guarantee the best perfor-
mance. The resulting graph often contains more parallelism than what can actually be
exploited by the targeted architecture. Moreover, the exponential growth of the SR-DAG
with respect to the original SDFG increases the complexity of scheduling algorithms for
HMPSoCs platforms.

To limit the explosion of nodes in the SR-DAG transformation, the clustering of the
original SDFG is proposed in [pino_hierarchical_1995], where four clustering crite-
ria are identified. These clustering criteria provide sufficient condition for checking the
introduction of deadlocks in resulting clustered graphs. Pino et al. then propose a hier-
archical scheduling algorithm and show that clustered SDFGs result in faster schedul-
ing with very low impact on the obtained makespan compared to scheduling the full
SR-DAGs. Using a MoC that is hierarchical and compositional by nature, as in the
IBSDF [piat_interface-based_2009] or the πSDF [desnos_pimm:_2013] MoCs,

97

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

removes the need for the clustering step and the hierarchical scheduling algorithm may
be used directly.

Another approach to avoid the full-expansion of an SR-DAG is called the vectoriza-
tion of SDFGs [ritz_optimum_1993]. In [ritz_optimum_1993], the optimal vec-
torization of an SDFG is achieved by multiplying the rates of the original graph by
integers resulting in less invocation of the actors of the SDFG. Partial Expansion Graphs
(PEGs) [zaki_implementation_2017] formulation provides a framework in which the
vectorization of actors is integrated efficiently for multiprocessor scheduling context. Zaki
et al. use Particle Swarm Optimization (PSO) to find and adjust the amount of expansion,
or vectorization, of the actors of the graph.

Schedule-Extended SDFGs [damavandpeyma_schedule-extended_2013] are an-
other class of SDFGs that aims at providing a more compact representation for throughput
analysis and buffer sizing than SR-DAGs. Damavandpeyma et al. show that encompass-
ing scheduling information directly into the original SDFG significantly reduces time for
iterative throughput and buffer sizing analysis. Additionally, authors show that SR-DAG
representation may lead to overestimated required buffer sizes compared to applying the
same buffer sizing technique on schedule-extended SDFGs. The authors also mention that
the construction time of the SR-DAG is very low compared to the analysis time. Although
this is true in the context of static analysis at compile-time, the same assumption can
not be made when the construction of SR-DAG is performed at runtime. Experiments in
Section 5.4 show that in the Spider tool [heulot_spider:_2014], for all applications
and platforms, the overhead induced by the construction time of the SR-DAG alone is
significantly higher than the scheduling time of the SR-DAG.

Most of the existing work presented in this section show that using an SR-DAG trans-
formation for scheduling and analysis of dataflow graphs is the most classical approach.
SR-DAG offers a complete exposure of task and data parallelism available in the ap-
plication. However, most of the presented work use static dataflow MoCs and SR-DAG
computation time is neglected, as it can be computed at compile-time. In the context
of a reconfigurable MoC such as the πSDF MoC [desnos_pimm:_2013], embedded
runtimes need to compute SR-DAG on-the-fly which may have a significant overhead on
application performance, especially in the context of embedded platforms.

In the rest of this chapter, we show that it is possible to use SR-DAG information
without having to pay the actual cost of building and storing it. In Section 5.4, the results

98

5.3. Numerical Modeling of Dataflow MoCs

of the implementation of our contribution in the Spider [heulot_spider:_2014] tool
show significant gain both in term of memory footprint and computation time overhead.

5.3 Numerical Modeling of Dataflow MoCs

In this section, the proposed IR which consists of a dataflow graph augmented with an
ad-hoc numerical model of the dependencies of the graph is presented. In Section 5.3.1, we
show how it is possible to numerically model an SR-DAG by the equations of dependencies
that define it. Then, we show that it is possible to further tune these equations in order
to encompass the hierarchy semantics of the πSDF MoC.

5.3.1 Modeling a Flat Dataflow MoC: The SDF case

In this section, a numerical representation of the dependencies of an SDFG is presented.
First, the use of an SR-DAG is illustrated with an example, then the numerical model of
dependencies is developed. In Sections 5.3.2 and 5.3.3, this model is extended to take into
account the specificity of the πSDF MoC.

In the following, we refer to the firing ai of actor a as being the i th invocation
of actor a during 1 iteration of the graph containing it. The last firing of actor a is
aqa−1, with qa being the repetition value of actor a. In the original work of Lee et
al. [lee_synchronous_1987], SR-DAG is depicted as a step needed for scheduling an
SDFG.

A B 24
4

3 C1

D3

x4

x6
x3

x4

Figure 5.3 – SDF graph with overlapping dependencies.

The SR-DAG removes all the cycles and exposes the precedence relationship between
the different firings of all actors within one iteration of a given SDFG. Figure 5.3 shows
an example of a simple SDFG in which there is some overlapping in dependencies for
the execution. We refer to overlapping dependencies as the fact that multiple firings of
a same actor depend on the same firings of another actor. For example, in the graph
of Figure 5.4 which is the SR-DAG of the graph of Figure 5.3, firings D0 and D1 both

99

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

depend on firing B0. The SR-DAG of Figure 5.4 unravel all the dependencies of the
graph of Figure 5.3 both for scheduling the execution of the graph and for the memory
allocation of the different Fifos. For instance, D0 depends only on B0 but D1 depends on
both B0 and B1. On the other hand, every two firings of actor C depend on only one firing
of actor B meaning that a scheduler minimizing memory allocation could schedule two
successive firings of C between two firings of B so that the allocated buffer of the Fifo
~BC is reused. Importantly, the added Fork and Join actors are necessary in the SR-DAG
transformation to explicit the shared dependencies but they are not necessary to model
those dependencies and thus will not appear in the proposed numerical representation.

A0 3

A3 3

D03

D13

D23

D33

C01

C11

C21

C31

C41

C51

F 1
1

2

F 1
1

2

F 1
1

2

B0 2
4

4

B1 2
4

4

B2 2
4

4 F 3
1

4

F 2
2

4

F
3
14

J 3
1
2

J 31
2

A1 3

A2 3

F 13
2

F
1

3 2

J
1
3 4

J1
3

4

J2 4
2

Figure 5.4 – SR-DAG of πSDF graph of Figure 5.3.

Building the SR-DAG, however, is not necessary to have the information of the de-
pendencies. All dependencies between firings of actors can be derived numerically by
analyzing the production and consumption rates of the different edges of the graph. Let
∆a be the dependency matrix of an actor a in Equation (5.1a). Dimensions of ∆a are
Nin × qa, with Nin the number of input edges of actor a and qa the repetition value of a.
There is one row for each input edge ej of actor a and one column per firing k of a. Each

100

5.3. Numerical Modeling of Dataflow MoCs

value of ∆a, noted δj,k (Equation (5.1b)), is a sub-matrix of size 1 × 2 that corresponds
to an interval of dependency for edge ej and firing k of actor a.

The first value of δj,k, noted δ0
j,k, corresponds to the first firing of src(ej) needed for

the firing of ak, with src(ej) being the actor producing data tokens on ej. The second
value of δj,k, noted δ1

j,k, correspond to the last firing of src(ej) needed for the firing of ak.
In other words, δj,k represent the interval of firings of src(ej) on which firing k of actor a
depends to execute. Since dependencies are necessary in increasing order, the first and the
last firing number of src(ej) are sufficient to define completely the dependency interval.

∆a = edges

y

firings of a−−−−−−−−−−−−−−−−−−−−−−−−−−−→
δ0,0 δ0,1 · · · δ0,qa−1
...

δNin−1,0 δNin−1,1 · · · δNin−1,qa−1

 (5.1a)

δj,k =
[
δ0
j,k δ

1
j,k

]
(5.1b)

Taking the example of Figure 5.3, Equation (5.2) gives the corresponding dependency
matrix of actor D. Firing 0 of actor D, D0, depends on the firings 0 to 0 of actor B, i.e
D0 can be fired as soon as B0 is finished. Similarly, D1 depends on firings 0 to 1 of actor
B. Hence, D1 can be fired if and only if B0 and B1 have finished their execution.

∆D =
[D0 D1 D2 D3

~BD [0 0] [0 1] [1 2] [2 2]
]

(5.2)

Theorem 5.3.1
Let G be a consistent and live SDF Graph, and A be the associated set of actors. If and
only if G is consistent, there exists a repetition vector q of size |A|. For any firing k
of an actor a ∈ A, and for any input edge ej ∈ a, there exists a dependency interval
δj,k =

[
δ0
j,k δ

1
j,k

]
with δ0

j,k, δ1
j,k the first and last dependencies of ej, respectively.

It comes:

δ0
j,k =

⌊
k ∗ cj − dj

pj

⌋
(5.3a)

δ1
j,k =

⌊
cj ∗ (k + 1)− dj − 1

pj

⌋
(5.3b)

101

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

where cj, pj and dj are the consumption rate, the production rate and the number of initial
delays on the edge ej, respectively.

Proof of Equation (5.3a). Let b ∈ A be the actor producing data tokens on input edge ej

of actor a and qb and qa be the repetition values of b and a, respectively. If and only if G
is consistent, then the sum of all data tokens produced by actor b is equal to the sum of
all data tokens consumed by actor a. Equation (5.4) formalizes this property.

qa−1∑
l=0

(cj) =
qb−1∑
i=0

(pj) (5.4)

To execute any firing k of actor a, the sum of all the data tokens consumed by firings
of actor a up to k, k excluded, must be strictly less to the sum of all the data tokens
produced by actor b plus the initial delays of the edge ej. Formally, for any ak, k ∈ [0 ; qa[,
there exists a given positive integer n ∈ [0 ; qb[verifying Equation (5.5).

k−1∑
l=0

(cj) <
n∑
i=0

(pj) + dj (5.5)

We search the minimal value n0 of n such that Equation (5.5) holds. In other words,
we search the minimal value n0 for which the sum of all the data tokens produced by
actor b and the initial delays is strictly greater than the sum of data tokens consumed
by actor a up to, but not and including, its kth firing. Consequently, this means that for
n0 − 1, the sum of all data tokens produced by actor b and the initial delays is less or
equal to the sum of the data tokens consumed by actor a up to firing k which translates
in Equation (5.6).

k−1∑
l=0

(cj) ≥
n0−1∑
i=0

(pj) + dj (5.6)

By developing the sums in Equation (5.5) with n = n0 comes:

k ∗ cj < (n0 + 1) ∗ pj + dj (5.7a)
k ∗ cj − dj

pj
< n0 + 1 (5.7b)

102

5.3. Numerical Modeling of Dataflow MoCs

Developing Equation (5.6):

k ∗ cj ≥ n0 ∗ pj + dj (5.8a)
k ∗ cj − dj

pj
≥ n0 (5.8b)

And using the fact that bxc = m, m ∈ N if and only if m + 1 > x ≥ m:

n0 =
⌊
k ∗ cj − dj

pj

⌋
(5.9)

�

Proof of Equation (5.3b). Let b ∈ A be the actor producing data tokens on input edge ej

of actor a and qb and qa be the repetition values of b and a, respectively.
To execute any firing k of actor a, the sum of all the data tokens consumed by firings

of actor a up to k, k included, must be less or equal to the sum of all the data tokens
produced by actor b and the initial delays of the edge ej. Formally, for any ak, k ∈ [0 ; qa[,
there exists a positive integer m ∈ [0 ; qb[verifying Equation (5.10).

k∑
l=0

(cj) ≤
m∑
i=0

(pj) + dj (5.10)

We search the minimal value m0 of m such that Equation (5.10) holds. In other words,
we search the minimal value m0 for which the sum of all the data tokens produced by
actor b and the initial delays is greater or equal to the sum of data tokens consumed by
actor a up to, and including, its kth firing. Consequently, this means that for m0 − 1,
the sum of all data tokens produced by actor b and the initial delays is strictly inferior
to the sum of the data tokens consumed by actor a up to firing k which translates in
Equation (5.11).

k∑
l=0

(cj) >
m0−1∑
i=0

(pj) + dj (5.11)

By developing the sums in Equation (5.10) with m = m0 comes:

(k + 1) ∗ cj ≤ (m0 + 1) ∗ pj + dj (5.12a)
(k + 1) ∗ cj − dj

pj
≤ m0 + 1 (5.12b)

103

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

Developing Equation (5.11):

(k + 1) ∗ cj > m0 ∗ pj + dj (5.13a)
(k + 1) ∗ cj − dj

pj
> m0 (5.13b)

And using the fact that dxe = n, n ∈ N if and only if n ≥ x > n − 1:

m0 + 1 =
⌈

(k + 1) ∗ cj − dj
pj

⌉
(5.14a)

m0 =
⌈

(k + 1) ∗ cj − dj
pj

⌉
− 1 (5.14b)

Finally, since k, cj and pj are positive integers, comes:

m0 =
⌊

(k + 1) ∗ cj − dj − 1
pj

⌋
(5.15)

�

Having delays on a Fifo may result in negative values for δ0
j,k and δ1

j,k . If δ0
j,k or δ1

j,k

is negative, this means that firing k of actor a depends on initialization tokens com-
ing either from previous graph iteration or from a setter actor setting those initial to-
kens [arrestier_delays_2018].

A B 24
4

3 C1

D3

[[0 0] [0 1] [1 2] [2 2]]

x6
x3

x4

[[0 0] [0 0] [1 1] [1 1] [2 2] [2 2]] [[0 1] [1 2] [2 3]] []

x4

C0 C1 C2 C3 C4 C5

D0 D1 D2

B0 B1 B2

D3

Figure 5.5 – Example of the proposed IR of the graph of Figure 5.3. Each actor in the
graph is annotated with its corresponding dependency matrix.

Figure 5.5 shows the proposed IR, which is the results of the computation of all the
dependency matrices and the original graph, applied to the graph of Figure 5.3. For each
actor a in Figure 5.5, its corresponding dependency matrix ∆a is annotated above it.

104

5.3. Numerical Modeling of Dataflow MoCs

This new augmented graph is sufficient for deriving a complete schedule of the graph of
Figure 5.3 an does not require expanding it into the corresponding SR-DAG.

5.3.2 Modeling a Hierarchical and Compositional Dataflow
MoC: The πSDF case

Equations (5.3a) and (5.3b) hold in the general case of SDF graphs. However, to
take into account the hierarchical specificity of the πSDF and IBSDF MoCs, it is nec-
essary to define additional equations for the behavior of interfaces. In this section, only
the interfaces are discussed as the other actors inside a subgraph behave the same way
as in a SDFG, meaning that Equations (5.3a) and (5.3b) apply to them. As defined
in [piat_interface-based_2009; desnos_pimm:_2013], input and output interfaces
act as a "frontier" between a hierarchical actor and its inner subgraph definition. All data
tokens of an input interface must be consumed at least once during an iteration of a
subgraph. If more data tokens are consumed, due to repetition values, then the interface
behaves like a circular buffer producing the same data tokens as many times as needed.
Symmetrically, an output interface only outputs the last data tokens produced by the
actor connected to it and discards the rest. Importantly, interfaces have a repetition value
of 1.

C1A 1

2 H
1B 1

1
3

D 21 E 11

F11

2 1
1

3

G1

x4
x2

x1

x2

x1 x1
x3

x1

Figure 5.6 – Hierarchical πSDF graph example.

Figure 5.7 illustrates the behavior of the output interface connecting the subgraph H
to the actor G from Figure 5.6. In Figure 5.6, the actor E is executed 4 times within the
subgraph H, producing 4 data tokens on its output data port connected to the output
interface, itself connected to the actor G in the upper-graph. The output interface only

105

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

Consumed Token

Forwarded Token

Non-Discarded Token

Discarded Token

E0 E1

G0

H0

E2

G1

H0

G2

E3

H0

Production Order

H
ie

ra
rc

h
y
 L

e
v
e
l

CG

COUTG

PE

G1

x3

E
1

3

x4

Figure 5.7 – Behavior of the output interface connecting the subgraph H to actor G in
Figure 5.6. Tokens are named after the corresponding firing of the actor producing them.

consumes 3 data tokens, meaning that only the last three executions of the actor E are
used for this interface, as showed in Figure 5.7 with the first data token produced by actor
E being discarded.

Equations (5.16) give the dependency interval definition for an output interface oif of
a given subgraph.

δ0
oif

= qP −
⌈

coif

poif

⌉
(5.16a)

δ1
oif

= qP − 1 (5.16b)

where qP is the repetition value of the actor producing data tokens on oif, coif the
consumption rate of the interface oif and poif the production rate on the interface oif. In
Figure 5.7, poif corresponds to PE = 1, coif corresponds to CoutG = 3 and qP corresponds to
qE = 4. Applying Equations (5.16a) and (5.16b) to Figure 5.7 gives the first dependency
on E equal to δ0

outG
= 1 and the last dependency on E equal to δ1

outG
= 3. Note that delays

on Fifos connected to output interfaces do not impact Equations (5.16a) and (5.16b)
due to the behavior of the interface to only output the last data tokens produced on it.
Dependencies on output interfaces also give to the scheduling algorithm the earliest time
at which a hierarchical actor can be considered to have finished its internal execution.

Equation (5.16b) comes directly from the definition of the output interfaces [piat_interface-based_2009].
If the interface only outputs the last data tokens produced on it, then the last depen-
dency of the interface is necessarily the last firing of the actor producing data tokens on
it. Equation (5.16a) is derived using a similar development to the one of Equation (5.3a).
The aim is to find the minimum number of firings N of the actor producing data tokens

106

5.3. Numerical Modeling of Dataflow MoCs

on output interface oif such as:

N∑
i=1

poif ≥ coif (5.17a)

N−1∑
i=1

poif < coif (5.17b)

Using the developments of Equation (5.3a), it comes:

N =
⌈

coif

poif

⌉
(5.18)

The first dependency of the output interface is then defined by:

δ0
oif

= qP −N (5.19a)

δ0
oif

= qP −
⌈

coif

poif

⌉
(5.19b)

which corresponds to Equation (5.16a).
Input interfaces inherit the dependencies of the hierarchical actors to which they be-

long. This comes directly from the definition of input interfaces that state that input
interfaces can start executing as soon as the hierarchical actor is ready to fire in its parent
graph. Therefore, actors connected to input interfaces can start their execution as soon as
the subgraph starts and the only dependency to check is related to the presence of delays.

5.3.3 Relaxed execution model for πSDF

H 21A C1

D 21 E 11 21

x1

x2

x2 x1

F1

x1

1

1

x1

Figure 5.8 – A hierarchical graph example used for illustrating the relaxed execution
model of the πSDF MoC.

107

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

Core1

Core0 E1D0

H0

C1A0 F0

E0 C0

Figure 5.9 – A possible schedule of the graph of Figure 5.8 following the strict execution
rules of the πSDF MoC. Firings of actor C can only start after the end of the complete
firing of the hierarchical actor H.

Core1

Core0 E1D0

H0

C1

A0 F0

E0 C0

Figure 5.10 – A possible schedule of the graph of Figure 5.8 with relaxed execution rules
of the πSDF MoC. Firings of actor C can start in parallel of the firing of the
hierarchical actor H, as the data dependencies are satisfied.

In [deroui_relaxed_2017], a relaxed model of execution is used on the IBSDF MoC
to maximize the throughput of an application containing multiple levels of hierarchy.
The relaxed execution model allows for actors contained inside an IBSDF subgraph to
start their execution without having to wait for data tokens on all interfaces of their
containing hierarchical actor. The same relaxed execution model is applied to the πSDF
MoC. For example, Figures 5.9 and 5.10 illustrates two potential schedule of the graph
of Figure 5.8 following the strict execution rules of the πSDF MoC and with relaxed
execution rules, respectively. In the graph of Figure 5.8, actor C is connected to the
output interface of the hierarchical actor H which itself is connected to the actor E. In
the πSDF MoC, hierarchical actors are seen as atomic, hence their firing rules follow the
one of non hierarchical actors. In other words, a hierarchical actor fires only when sufficient
data tokens are available on all of its input data ports and, importantly, its execution is
considered as atomic from the perspective of the graph in which it belongs.

Therefore, in the graph of Figure 5.8, actor C is not aware of the internal specifi-
cation of the actor H and only fires when the complete execution of the subgraph of
H is finished, which results in the possible schedule of Figure 5.9. However, as noted
in [deroui_relaxed_2017], the synchronization enforced by the data input and out-

108

5.3. Numerical Modeling of Dataflow MoCs

put interfaces of hierarchical actors can be relaxed as long as the data dependencies are
respected. In the context of the graph of Figure 5.8, actor C actually depends on the
actor E inside the subgraph of actor H and thus, it is possible to relax the firing rule
of C to depend on actor E instead of actor H, which results in the possible schedule of
Figure 5.10.

Taking into account the relaxed constraint in the numerical model of the SR-DAG adds
some complexity to the previously proposed equations. We will first investigate the case
of the output interfaces. Relaxing the execution model of the πSDF leads to extend the
dependency resolution problem of an actor depending on a hierarchical actor from its level
of hierarchy to the subgraph level. For example, in the graph of Figure 5.6 dependencies
of actor C are now 2-dimensional. Indeed, actor C depends on executions of actor H and
for each firing of actor H, depends on executions of actor E. The objective is thus to
combine Equations (5.3a) and (5.3b) to Equations (5.16a) and (5.16b), respectively.

Let δN
a|j,k be a sub-matrix of size 1× 2, with N the total number of levels of hierarchy

the firing k of an actor a depends on for its input edge ej. δN
a|j,k is a generalization of

the matrix δj,k introduced in Section 5.3.1. Equation (5.20) gives the general definition of
δN

a|j,k .
δN

a|j,k =
[[
δ0 ,0

a|j,k · · · δ0 ,N−1
a|j,k

] [
δ1 ,0

a|j,k · · · δ1 ,N−1
a|j,k

]]
(5.20)

Similarly to the definition of δj,k given in Section 5.3.1, δN
a|j,k represents the interval of

dependencies of firing k of actor a. The main difference is that δ0
j,k and δ1

j,k are now defined
as sub-matrices of size 1 × N . δ0,n

j,k is the first dependency of the kth firing of actor a at
level n of hierarchy. Similarly, δ1,n

j,k is the last dependency of ak at the level n of hierarchy.
The generalized definitions of δ0,n

j,k and δ1,n
j,k are given in Equations (5.21a) and (5.21b),

respectively.

δ0 ,n
a|j,k =

δ0

a|j,k , n = 0, see Equation (5.3a)

qpn −
⌈

C0,n
a|j,k

Pn

⌉
, n ∈ [1;N [

(5.21a)

δ1 ,n
a|j,k =

δ1

a|j,k , n = 0, see Equation (5.3b)

qpn −
⌈

C1,n
a|j,k

Pn

⌉
, n ∈ [1;N [

(5.21b)

where:
— qpn , the repetition value of the actor producing data tokens on the output interface

at level n of hierarchy.

109

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

— Pn, the production rate on the output interface at level n of hierarchy.
— C 0,n

a|j,k, the updated consumption rate of the output interface at level n of hierarchy
for the first dependency.

— C 1,n
a|j,k, the updated consumption rate of the output interface at level n of hierarchy

for the last dependency.
C 0,n

a|j,k and C 1,n
a|j,k correspond to the updated consumption rates of the output interface

at the level n of hierarchy for the first dependency and the last dependency, respectively.
For each level n of hierarchy, the updated consumption rate of the corresponding output
interface depends on the one of the level n − 1, up to the consumption rate of the edge
ej of actor a at the top level of hierarchy. The definitions of C 0,n

a|j,k and C 1,n
a|j,k are given by

Equations (5.22a) and (5.22b), respectively.

C 0,n
a|j,k =

(δ0
a|j,k + 1) ∗ pj + dj − k ∗ cj, n = 1

C 0,n−1
a|j,k − (qpn−1 − (δ0 ,n−1

a|j,k + 1)) ∗ Pn−1, n ∈ [2;N [
(5.22a)

C 1,n
a|j,k =

(δ1
a|j,k + 1) ∗ pj + dj − (k + 1) ∗ cj + 1, n = 1

C 1,n−1
a|j,k − (qpn−1 − (δ1 ,n−1

a|j,k + 1)) ∗ Pn−1, n ∈ [2;N [
(5.22b)

where:
— cj, the consumption rate of edge ej of actor a.
— pj, the production rate of edge ej.
— dj, the initial delay of edge ej.
— k, the firing of actor a for which dependencies are computed.
We only provide the proof for Equations 5.22a, as the Equations 5.22b is derived in a

similar way.

H a

B

E

pj cj

P1

P2

C1

C2

akak-1 ak+1

k*cj

n = 1

pj cj

P1 C'1|ak

C1

C2

C'2|ak

n = 2H
ie

ra
rc

h
y
 L

e
v
e
l

n = 0

P2

Figure 5.11 – Illustration of C ′1|ak
, delays are omitted.

110

5.3. Numerical Modeling of Dataflow MoCs

Proof of Equation (5.22a). Let a be an actor connected to a hierarchical actor H with
N levels of hierarchy through an edge ej in a graph G. The edge ej connecting H to a
has a production rate pj, a consumption rate cj and an initial delay dj. We will prove by
induction that, for any firing k of actor a and for all n ∈ Z,

δ0 ,n
a|j,k = qpn −

C 0,n

a|j,k

Pn

where:

C 0,n
a|j,k = C 0,n−1

a|j,k − (qpn−1 − (δ0 ,n−1
a|j,k + 1)) ∗ Pn−1

and with:
C 0,1

a|j,k = (δ0
a|j,k + 1) ∗ pj + dj − k ∗ cj, δ0

a|j,k =
⌊
k ∗ cj − dj

pj

⌋

Base case: For n = 1, Equation (5.21a) gives:

δ0,1
a|j,k = qp1 −

(δ0,0
a|j,k + 1) ∗ pj + dj − k ∗ cj

P1

 (5.23)

And from Equation 5.16a we know that:

δ0
oif

= qp1 −
⌈
C1

P1

⌉
(5.24)

with C1 the consumption rate of the output interface of H corresponding to the
edge ej, qp1 the repetition value of the actor producing data tokens on the inter-
face and P1 the production rate onto the interface. Let C ′1|ak

be the expression
of C1 as a function of k, cj, dj and pj. In other words, C ′1|ak

is the transposition
of the consumption rate of ak on H into the inner subgraph of H for the first
level of hierarchy. The first dependency of ak onto H for the edge ej is given by
Equation (5.3a):

δ0
a|j,k =

⌊
k ∗ cj − dj

pj

⌋

C ′1|ak
is the sum of data tokens produced by H up to its firing δ0

a|j,k and the initial
tokens dj of the Fifo ~Ha to which the sum of data tokens consumed by actor a up
to its kth firing is subtracted. Figure 5.11 illustrate the transposition mechanism
and Equations 5.25 formalize its definition.

111

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

C ′1,ak
=

δ0
a|j,k∑
i=0

pj + dj − k ∗ cj (5.25a)

C ′1,ak
= (δ0

a|j,k + 1) ∗ pj + dj − k ∗ cj (5.25b)

Inserting C ′1|ak
into Equations 5.24 gives Equation 5.26:

δ0
oif|ak

= qp1 −
⌈
C ′1|ak

P1

⌉
(5.26a)

δ0
oif|ak

= qp1 −
⌈(δ0

a|j,k + 1) ∗ pj + dj − k ∗ cj
P1

⌉
(5.26b)

Equation (5.26) is equal to Equation (5.23), thus Equation (5.21a) is true for n = 1
Induction step: For n = 2, the dependency definition of the interface is given by:

δ0,2
oif

= qp2 −
⌈
C2

P2

⌉

with δ0,2
oif

the dependency of the output interface in level 2 of hierarchy using Equa-
tion (5.16a). Then following the same substitution scheme as in the base case but
with the transposition of C ′2|ak

into C2:

C ′2,ak
=

δ0
a|j,k∑
i=0

pj + dj − k ∗ cj − ((qp1 − 1)− δ0,1
a|j,k) ∗ P1

C ′2,ak
= (δ0

a|j,k + 1) ∗ pj + dj − k ∗ cj − ((qp1 − 1)− δ0,1
a|j,k) ∗ P1

C ′2,ak
= C ′1,ak

− ((qp1 − 1)− δ0,1
a|j,k) ∗ P1

which gives:

δ0,2
a|j,k = qp2 −

⌈
C ′2,ak

P2

⌉

Generalizing to n:
δ0,n

oif
= qpn −

⌈
Cn
Pn

⌉

112

5.3. Numerical Modeling of Dataflow MoCs

with δ0,n
oif

the dependency of the output interface in level n of hierarchy using
Equation (5.16a). Then following the same substitution scheme as before:

C ′n,ak
= C ′n−1,ak

− ((qpn−1 − 1)− δ0,n−1
a|j,k) ∗ Pn−1

Therefore, for n ∈ Z:

δ0,n
oif

= qpn −

C 0,n

a|j,k

Pn

with:

C 0,n
a|j,k = C ′n−1,ak

− ((qpn−1 − 1)− δ0,n−1
a|j,k) ∗ Pn−1

and:
C 0,1

a|j,k = (δ0
a|j,k + 1) ∗ pj + dj − k ∗ cj

�

The rest of this section provides the concepts used to derive the Equations 5.22a and 5.22b.
A multi-level hierarchical πSDF graph is presented in Figure 5.12, and Figure 5.13 shows
the corresponding data tokens dependency analysis. Figure 5.13 shows the direct data
dependencies across the different levels of hierarchy.

H A
x2 x3

23

B
x2

32

E 1 2

x3

Subgraph H

Subgraph B

Top-Level Graph

Figure 5.12 – Multi-Level Hierarchical πSDF graph example.

In Figure 5.13, the first data token consumed by A1 is produced by E2 during the
second firing of the subgraph B (B1), in the first firing of the subgraph H (H0). Examples
of relaxed and non-relaxed dependencies are given in Figure 5.13 for A0. With non-relaxed
dependencies, A0 depends only on H0, then the output interface of H depends on B1 and
finally the output interface of B depends on E2. In other words, with non-relax dependen-
cies, A0 has to wait for the complete execution of the second firing of the subgraph B and
the corresponding firings of actor E before it can be fired. With relaxed dependencies, A0

113

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

depends directly on E2, from B0 and H0, and the dependencies due to the interfaces of
the different levels of hierarchy are omitted.

E1 E2 E2

B1 B1B0

A0

E1E0E0

B0

H0 H0 H0

E1 E2 E2

B1 B1B0

A2 A2

E1E0E0

B0

H1 H1 H1

A1A0

H
ie

ra
rc

h
y
 L

e
v
e
l

Production Order

Non-Relaxed DependencyRelaxed Dependency

A1

Figure 5.13 – Dependency analysis of the graph of Figure 5.12. The graphical formalism
is the same as in Figure 5.7

By analyzing the distribution of the different data tokens and how the consumption
rate of the output interfaces is influenced across the different levels of hierarchy, it comes
a direct relationship linking the level n to the level n − 1 that is expressed in the Equa-
tions (5.22a) and (5.22b) with the terms C 0,n−1

a|j,k and C 1,n−1
a|j,k , respectively. The subtraction

term of the Equations (5.22a) and (5.22b) corresponds to the offset that should be applied
in order to have the actual consumption rate of the output interface of the next level of
hierarchy. This subtraction comes from the inverse behavior of the output interfaces. For
instance, in Figure 5.13, the real consumption rate of A0 on the output interface of B0 is
equal to 1 and not 3. Similarly, the consumption rate of A2 on the output interface of H1

is 2 instead of 3 which will make A2 dependent on B1 and not B0.

In Section 5.3.1,the definition of an interval was introduced to be sufficient to define
the full dependencies of an actor for a given input edge due to the fact that there can
be no discontinuity in the dependencies. In other words, if an actor A depends on an
actor B with the following interval [B0 B2], then actor A must also depends on B1. This
property is also applicable to the hierarchy case. This means that if an actor A depends
on the following dependency interval [[G0 H0] [G1 H1]], it must depend on all firings of G
and H that fall in between except for the discarded firing of actors due to the behavior
of the interfaces. Using Equations (5.20) , (5.21a) and (5.21b) on the example graph of

114

5.3. Numerical Modeling of Dataflow MoCs

Figure 5.12, the following dependency intervals for actors A is derived.

δ0
A|0,1 = [0 1] (5.28a)

δ1
A|0,1 = [[0 1] [1 0]] (5.28b)

δ2
A|0,1 = [[0 1 2] [1 0 2]] (5.28c)

Equation (5.28a) corresponds to the dependency interval of A1 at the top level of hierar-
chy, Equation (5.28b) corresponds to the dependency interval of A1 in the subgraph H

and Equation (5.28c) corresponds to the fully relaxed dependency interval of A1. Equa-
tion (5.28a) shows that A1 depends on H0 to H1 and Equation (5.28b) shows that A1

depends on B1 from H0 to B0 from H1. Finally, Equation (5.28c) shows that A1 depends
on E2 from [H0 B1] to E2 from [H1 B0]. It is possible to individually tune the number
of hierarchy levels for which the execution of an actor is relaxed which gives flexibility to
the scheduling algorithm. In our work, only the cases of no-relaxation and full-relaxation
are considered.

It is important to note that for dynamic applications with parameter changes in a
hierarchical actor H, it is necessary to store the different values of the parameters of each
instance of H as it may influence the repetition vector in a particular instance of H and
change the dependencies for actors depending on H. This constraint is not necessary for
the non-relaxed execution model as the subgraph is hidden from any actor depending on
H.

For the case of input interfaces, as stated in Section 5.3.2 no special equations have
to be derived. Actors depending on interfaces directly inherit dependencies of the cor-
responding input edge of the containing hierarchical actor. This inheritance goes up to
the top level of hierarchy. However one particular case has to be considered, the case of
an actor consuming more data tokens on an input interface that the interface produces.
Since, interfaces have a repetition value strictly equal to 1, a special actor, called a dupli-
cate actor, is introduced. A duplicate actor has one input port and one output port and
duplicates the tokens received on its input port as many times as needed to respect the
consistency property. Duplicate actors are automatically inserted during graph analysis.

115

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

5.4 Exploitation: Scheduling and Memory Allocation

The proposed numerical approach is compatible with dataflow MoCs derived from the
SDF MoC and can be used to derive a schedule the same way a DAG would. Indeed, it
is possible to build an API that emulates accesses to an SR-DAG using the proposed nu-
merical model. From the user point of view, the emulated SR-DAG behaves as a standard
SR-DAG, the only difference being that dependencies are computed on-the-fly instead
of having a pre-built graph. Therefore, any resource allocation algorithm that uses an
SR-DAG can be based on the proposed numerical model instead.

The main advantage of our proposed method is to remove the costly step of building
and storing the SR-DAG. However, using our method may result in an increase of the
complexity of the original resource allocation algorithm, compared to using the SR-DAG,
due to the computation of the dependencies done on-the-fly.

In the experiments of the following sections, to demonstrate the capacity of our model
to be used in a real resource allocation algorithm and evaluate the performance gain over
the SR-DAG representation, a naive greedy scheduling algorithm is used. The performance
of the greedy algorithm is not the focus of this contribution. The chosen greedy algorithm
is described in Algorithm 3.

Algorithm 3: Greedy Scheduling Algorithm
Input : Dataflow graph: G

Processing Elements (PEs) list: pe_list
1 list = create_list(G); // Create a list with all actors of the graph.

2 while list is not empty do
3 for a ∈ list do // Find an actor a in the list that can be scheduled.

4 if is_schedulable(a) then
5 if is_mappable_onto_pe(a, pe_list) then
6 map_onto_pe(a, pe_list); // Map actor a onto an available PE.

7 remove_from_list(a, list); // Remove actor a from the list.

8 else
9 display_error();

The main difference between the SR-DAG-based greedy scheduler and the numerical
one comes from the input graph representation used. Using the SR-DAG, the SR-DAG

116

5.4. Exploitation: Scheduling and Memory Allocation

itself is used and the greedy scheduler directly goes through the actor list of the SR-DAG
to find the first actor that can be scheduled according to the DAG dependencies. Using
the numerical model, the original πSDF representation of the application is used and the
greedy scheduler goes through the πSDF actor list, then for each actor it computes the
dependencies of the actor on-the-fly and for the current firing of the actor checks if it can
be scheduled.

5.4.1 Experimental Setup

Table 5.1 – Experimental platform characteristics

Platform Processor Cores RAM GCC
Laptop Intel Core i7-7820HQ 4 32GB DDR4 7.3.0

Jetson TX2 ARM Cortex-A57 4 + 2 8GB LPDDR4 5.4.0+ NVIDIA Denver 2
ODROID-XU3 Samsung Exynos 5422 4 + 4 2GB LPDDR3 4.9.2

The different experiments are conducted on 3 different platforms ranging from an
x86 laptop with medium processor to a very low power ODROID-XU3 platform. The
characteristics of these platforms are summarized in Table 5.1. The Spider library was
compiled with O3 level of optimizations on all platforms. Four applications from the offi-
cial repository 1 of the Preesm tool [pelcat_preesm:_2014] have been used to conduct
the experiments. These applications are state-of-the-art AI, and computer vision applica-
tions. The SqueezeNet application is an implementation of a pre-trained convolution neu-
ral network based on the SqueezeNet architecture [iandola_squeezenet_2016]. The
Reinforcement Learning application corresponds to the implementation of the CACLA
reinforcement learning algorithm [van_hasselt_reinforcement_2007] applied to the
case of lifting-up and stabilizing an inverse pendulum. The Stabilization application is a
video stabilization application which applies motion compensation on an input video and
produces a stabilized output video. Finally, the Sobel-Morpho application is an edge detec-
tion application which applies the Sobel operator followed by the morphological dilation
and erosion operations on the luminance channel of an input video. The four applications
feature different levels of hierarchy and task and data parallelism, as summarized in Ta-
ble 5.2 where |GπSDF| corresponds to the number of actors in the πSDF representation,

1. https://github.com/preesm/preesm-apps

117

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

Nlevels corresponds to the number of hierarchical levels and |GSR-DAG| corresponds to the
number of actors in the SR-DAG representation of the application. The number of edges
for both MoCs is noted in the NEdges column of the corresponding MoC.

In the applications used for our experimentation, all parameter values are changing at
each graph iteration, thus triggering a complete rescheduling of the application. Although
unrealistic, this behavior was forced, even in case of static parameter values, in order
to emphasize the most dynamic, and thus the most complex scenario for the runtime
allocation of resources. In the case of a more static behavior, both the DAG-Based and
numerical model-based solutions can benefit from optimizations to retain information
between successive graph iterations, which is out of the scope of this work.

Table 5.2 – Applications description

πSDF SR-DAG
Application |GπSDF| NEdges Nlevels |GSR-DAG| NEdges

SqueezeNet 108 272 2 5436 17248
Reinforcement Learning 188 459 3 417 1114
Stabilization 20 41 2 101 325
Sobel-Morpho 6 7 0 65 85

5.4.2 Results

In this section, the different experimental results obtained for our implementation
of the presented numerical model into the Spider tool are presented and compared to
the reference implementation that uses an SR-DAG model. Two configurations of the
proposed numerical model are compared to the reference implementation. The first con-
figuration is referred to the relaxed configuration and corresponds to the use of the relaxed
execution model presented in Section 5.3.3, and the second configuration is referred to
the standard configuration and corresponds to the non-relaxed execution model of the
πSDF MoC. In these experiments, the metrics used for comparing the different config-
urations are the computation time and the memory footprint of the runtime manager
performing the scheduling and mapping of a πSDF application onto multi-cores processor
platforms. The scheduling algorithm used in these experiments is the greedy scheduling
algorithm described in Algorithm 3. Despite being a rather simple algorithm, this schedul-

118

5.4. Exploitation: Scheduling and Memory Allocation

ing algorithm allows us to rapidly demonstrate the feasibility of our proposed models.
Nevertheless, the results show that using the direct numerical model gives overall great
improvements both in terms of computational complexity and memory footprint. The
measured application performance may be further optimized with a smarter scheduling
algorithm [kwok_high-performance_1997], which would reduce the scheduling time
of all experiments, but would not change the memory nor the construction time overhead
of the SR-DAG based runtime.

5.4.2.1 Memory footprint

In this section, the memory footprint of the different representations for the scheduling
and mapping is presented. No differentiation is made between the relaxed and standard
configurations of the numerical model as both configurations share the exact same memory
footprint.

Table 5.3 shows the total memory footprint of Spider during the scheduling and
mapping of the applications. The gains expressed in Table 5.3 represent, as a percentage,
the amount of memory saved with the numerical model compared to the reference SR-DAG
implementation. Results show significant memory reduction with up to 98.63% of memory
reduction for the reinforcement-learning application and an average memory reduction of
97.33%. This high memory reduction is due to the implementation of the proposed IR.
Indeed, in the proposed implementation, only two values per πSDF actor are stored: the
repetition value of the actor and the current scheduled firing of the actor. All dependencies
needed by the mapping and scheduling algorithm, which correspond to the Line 4 of
Algorithm 3, are computed on-the-fly when needed.

Table 5.3 – Memory footprint of the representations

Application Reference (SR-DAG) Numerical Model Gain (%)
SqueezeNet 8405.9 KB 515.3 KB 93, 87
Reinforcement Learning 5183.7 KB 70.9 KB 98.63
Stabilization 782.8 KB 11.8 KB 98.49
Sobel-Morpho 404.5 KB 6.8 KB 98.32
Average 3694,2 KB 151.2 KB 97.33

119

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

In addition to the memory needed for the different representations, there is memory
used to store information about the schedule execution. The memory used for the sched-
ule execution is similar in both the SR-DAG and the numerical model and is comprised
in the values of Table 5.3. In other words, there exists an upper bound to the potential
memory footprint reduction that depends on the memory used for the schedule execution.
Figure 5.14 shows the relative memory footprint of the numerical model and the SR-DAG
representation over the total memory footprints of Table 5.3, hence highlighting the rela-
tive memory footprint of the schedule execution information. Values of Figure 5.14 show
that actual memory used by the numerical models to perform scheduling and mapping
only account for 0.93% to 11.15% of the total memory footprint of Spider whereas in the
case of the SR-DAG representation, actual memory used for the scheduling and mapping
is greater than 92% of the total memory footprint. Hence, Figure 5.14 emphasizes the low
memory footprint overhead of the proposed approach on the runtime over the reference
SR-DAG representation.

0 20 40 60 80 100
Relative memory footprint (%)

SqueezeNet

Reinforcement-Learning

Stabilization

Sobel-Morpho

0.93

11.15

8.47

5.88

92.01

98.88

98.39

98.05

Num Ref

Figure 5.14 – Relative memory footprint of representations over total memory footprint
(lower is better). The Num configuration corresponds to the proposed IR and the Ref
configuration corresponds to the SR-DAG IR. A low value indicates a low memory
footprint of the given IR over the runtime memory usage. The SR-DAG IR is
responsible for almost the entire runtime memory footprint (with up to 98.8%) as
opposed to the light weight proposed representation.

120

5.4. Exploitation: Scheduling and Memory Allocation

5.4.2.2 Execution time

In this section, the execution times of the different configurations of the numerical
model (relaxed and standard) are compared to the reference implementation based on the
SR-DAG representation. Then, a comparison of the schedule latency, i.e execution time
for one graph iteration, for the two configurations of the numerical model is performed,
highlighting a potential trade-off between execution time and schedule latency.

Table 5.4 – Intermediate Representation building time in ms for the three tested
platforms (lower is better). The values correspond to the time needed by the runtime to
build the complete intermediate representation needed for the scheduling and mapping
operations.

Laptop Jetson TX2 ODROID-XU3
Application Ref Num Gain(%) Ref Num Gain(%) Ref Num Gain(%)

SqueezeNet 7.105 0.221 96.89 39.43 0.664 98.32 79.77 1.90 97.62
Reinforcement Learning 0.868 0.180 79.26 6.03 0.551 90.86 12.41 1.71 86.22
Stabilization 0.138 0.017 87.68 0.67 0.059 91.19 1.70 0.19 88.82
Sobel-Morpho 0.061 0.005 91.80 0.23 0.017 92.61 0.69 0.06 91.30

Table 5.4 presents the execution times taken by the construction phase of the interme-
diate representations. In the case of the SR-DAG (Ref column), this time corresponds to
the construction of the SR-DAG and the initialization of the schedule execution informa-
tion. In the case of the proposed numerical model (Num column), the value of Table 5.4
corresponds to the initialization of the schedule execution information and the allocation
of the arrays used to store firing information during the scheduling and mapping phase.
Note that the construction phase is shared for both relaxed and standard configurations,
thus no difference is made between them in Table 5.4. The Gain column corresponds to
the relative reduction time of the proposed approach over the SR-DAG approach. On
all three platforms, building the numerical model is significantly faster than building the
SR-DAG representation, with a maximum speedup factor of 59.52 for the SqueezeNet
application on the Jetson TX2.

Table 5.5 shows the resource allocation execution times for the three compared config-
urations. In Table 5.5, Num-R and Num-S refer to the relaxed and the standard configura-
tions of the numerical model, respectively. The results show significantly lower scheduling
times for the standard configuration over the two others. This is explained by the hierar-
chical nature of the standard execution model and the greedy scheduling algorithm used.

121

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

Table 5.5 – Resource allocation execution time in ms of the different configurations. The
values in the table corresponds to the time needed by the runtime scheduler to perform
the scheduling and mapping of an application onto a given platform. There is a
significant gain using the Num-S configuration on all platform. On the other hand, the
Num-R representation is most of the time the slowest configuration.

Laptop Jetson TX2 ODROID-XU3
Application Ref Num-R Num-S Ref Num-R Num-S Ref Num-R Num-S

SqueezeNet 2.491 4.856 1.043 22.51 14.50 2.76 23.10 23.19 4.49
Reinforcement Learning 0.105 0.327 0.120 0.50 0.91 0.35 0.81 1.47 0.71
Stabilization 0.020 0.055 0.019 0.08 0.13 0.06 0.18 0.24 0.12
Sobel-Morpho 0.012 0.010 0.009 0.05 0.03 0.03 0.11 0.06 0.05

Indeed, the greedy algorithm iterates over the actors of a graph until it finds an actor
that can be scheduled. In the numerical model configurations, the algorithm is thus much
faster, as it iterates over the πSDF graph which contains fewer actors than the SR-DAG
one (see Table 5.2). Moreover, in the standard configuration, actors located in nested lev-
els of hierarchy are not tested until the corresponding hierarchical actor can be scheduled
reducing furthermore the number of tested actors per iteration of the greedy algorithm.

Interestingly, Table 5.5 shows that the relaxed configuration has overall higher resource
allocation times than the reference configuration. Contrary to the standard configuration,
in the case of relaxed execution, every actor of the πSDF is tested per iteration of the
greedy algorithm. Moreover, the complexity of fetching the dependencies of an actor
located in a deep level of hierarchy is significantly higher than when dealing with same
level of hierarchy dependencies. This effect is particularly visible with the SqueezeNet
application which possesses a high number of dependencies between actors belonging to
separate subgraphs. However, the case of the relaxed execution could be improved in future
implementations by storing hierarchical dependencies, thus avoiding their re-computation
at the cost of an increased memory footprint. Another way of improving the relaxed
execution model would be to perform graph analysis before the first graph iteration to
simplify the πSDF hierarchy whenever it is possible.

Finally, Table 5.6 gives the relative difference of the obtained schedule latency when
scheduling with the numerical models compared to the reference implementation. A value
of 0% means that the obtained schedule latency is equal to the one of the reference. Small
relative differences in latency (inferior to 5%) are explained by two factors. Firstly, in the
SR-DAG representation, Fork and Join actors are explicitly scheduled due to the fact that

122

5.4. Exploitation: Scheduling and Memory Allocation

Table 5.6 – Relative change in schedule latency (%) for the different configurations.
Values > 0% are increase in the schedule latency and values < 0% are decrease in the
schedule latency.

Laptop Jetson TX2 ODROID-XU3
Application Num-R Num-S Num-R Num-S Num-R Num-S

SqueezeNet 0.11 0.22 -0.05 0.22 0.07 4.30
Reinforcement Learning 1.36 8.19 3.10 22.25 1.61 25.71
Stabilization 5.45 5.45 4.55 4.55 9.20 9.20
Sobel-Morpho −2.23 −2.23 4.86 4.86 0.00 0.00

Average 1.17 2.91 3.12 7.97 2.72 9.80

they are part of the resulting graph whereas they are not in the numerical representation.
Secondly, Spider performs several passes of optimizations on the SR-DAG to reduce
the number of special actors (Fork, Join, Broadcast and Roundbuffer actors) introduced
during the transformation. However, optimizations do not necessarily remove all special
actors introduced during the transformation. Importantly, optimizations passes may also
remove special actors that are part of the original πSDF graph which can further improve
the obtained schedule latency which is not the case for the numerical representation where
no optimizations are performed on the πSDF graph.

Table 5.6 shows no clear improvement of the schedule latency of the relaxed execution
model over the standard one on 3 out of the 4 tested applications. For the Sobel-Morpho
application, this is explained by the absence of hierarchy, thus there is no need for relax-
ation. In the case of the Stabilization application, the obtained latency is limited by the
topology of the graph itself with synchronization points that can not be reduced. However,
in the case of the Reinforcement-Learning application, a significant gain with a difference
up to 24.1 percentage points can be achieved using the relaxed execution model at the
cost of higher scheduling time.

Figure 5.15 shows the relative total execution time for the three configurations and
for the three different platforms. The total execution time is the sum of the intermediate
representation building time (Table 5.4) and the scheduling time (Table 5.5). The relative
total execution time is the relative difference of the total execution time of the numerical
representations with the total execution time of the reference. Figure 5.15 shows that even
with higher scheduling time for the relaxed configuration, a minimum reduction of 47.11%

123

Chapter 5 – An Efficient Intermediate Representation for Resources Allocation

(a) Laptop

(b) Jetson TX2

0 20 40 60 80 100
Relative Execution Time (%)

100.00

100.00

100.00

100.00

24.40

24.02

22.49

13.95

6.18

18.43

16.24

13.67

(c) Odroid-XU3

Figure 5.15 – Relative total execution time, intermediate representation building time +
scheduling time, for the 3 platforms.

of total execution time is achieved when considering the total execution time spent in the
resource allocation phase of Spider.

For the SqueezeNet application, a reduction of up to 94.5% of the total execution
time is achieved on the Jetson platform with the standard execution model with 0.22%
of increase on the obtained schedule latency (Table 5.6). By comparison, the relaxed con-

124

5.5. Conclusion

figuration reduces the execution time of 75.53% on the Jetson platform with a negligible
(and positive) impact on the obtained schedule latency (−0.05%). On the other hand, for
the reinforcement learning application, there is a non-negligible difference in the obtained
schedule latency for the Jetson and Odroid platforms (19.15 and 24.1 percentage points,
respectively) with a difference inferior to 10 percentage points of execution time between
the relaxed and the standard execution models. Therefore, depending on the application
graph topology and the targeted platform, there is a trade-off between better scheduling
performance and execution time. Finally, it is important to note that the execution time
of the relaxed configuration could be improved with additional optimizations of the im-
plementation in Spider, which would reduce the gap with the standard configuration in
terms of raw execution time performance.

5.5 Conclusion

Resource allocation algorithms often rely on an internal modeling of an application.
DAGs are the most commonly used models for capturing control and data dependencies
between tasks. DAGs are notably used as an intermediate representation for deploying
applications modeled with a dataflow MoC on HMPSoCs.

In this chapter, we proposed a new Intermediate Representation (IR) for modeling the
dependencies relationship between actors first for the SDF MoC and then extended it to
the πSDF MoC. This new IR is composed of the original dataflow MoC augmented with
an ad-hoc numerical representation of the data dependencies in the application graph.

We showed that our proposed IR implemented into the Spider tool is better suited
for fast resources allocation of application than DAG-based methods due to the cost of
building and storing DAGs. Experiments on various computer vision and machine learning
applications showed significant gains compared to DAG-based methods both in scheduling
time and memory overhead. On average, the proposed IR reduces the memory overhead
of the runtime manager of 97.33% while being at least twice as fast as the DAG-based
method implemented into Spider, and with a maximum speedup of 18.18.

125

CHAPTER 6

SPIDER 2.0: Implementation of a πSDF-based Extensible
Runtime

6.1 Introduction

In the scientific literature, when conceiving a dataflow Model of Computation (MoC),
the practical implementation is too often left aside to future developments. For in-
stance, in [theelen_scenario-aware_2006] introduces the Scenario-Aware DataFlow
(SADF) MoC but a more practical implementation of the model is only provided later
on in [stuijk_scenario-aware_2011] with the FSM-SADF. The more features a given
MoC supports, the more complex the analysis tools and the implementation will be. For in-
stance, the CSDF MoC [bilsen_cycle-static_1996] is a generalization of the SDF MoC
which offers more flexibility in the design of dataflow applications but which revealed itself
to be impractical to use as stated in Section 5.2 of [thies_empirical_2010].

For static MoCs, it is often possible to perform all of the analysis, including map-
ping and scheduling of tasks, and model checking at compile time allowing for no
runtime overhead [pelcat_preesm:_2014]. However, steps such as the mapping or
the scheduling of tasks are sometimes left to the runtime, using self-timing meth-
ods [ma_communication-aware_2018] or using performance indicators such as exe-

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

cution time or memory usage to drive optimization decisions [dauphin_odyn_2019;
boutellier_prune_2018; wu_model-based_2017]. The latter approach often re-
quires a dedicated runtime with as low overhead as possible.

For dynamic MoCs, using a dedicated runtime is necessary in most cases. For instance,
in the πSDF MoC, features such as dynamic parameterized expression of data token rates
or quiescent re-configuration points induced by configure actors require a dedicated run-
time. Additionally, due to the dynamic nature of the πSDF MoC, intermediate transfor-
mations such as the SR-DAG transformation, or the numerical representation introduced
in the previous chapter, have to be computed at runtime. Therefore, these transformations
need to be efficiently implemented to reduce as much as possible the overhead of the run-
time manager over the actual processing of the application. Other graph transformations
such as graph optimizations [heulot_runtime_2015] are also applied on-the-fly when
required and also need special care in the implementation. Finally, dedicated runtimes
are often provided to the end user as shared libraries which require to be loaded into the
application memory. On embedded architectures with little memory available, the size of
the library should also be taken into consideration.

Execution

SPIDER 2.0
Shared library

SPIDER 2.0
2.0

API code

PiSDF Graph

Architecture Model C++ Code
Generation

Scenario

HA D

B C

Compile
Binary

HA D

B C

Memory Interface

PE PE PE

Mapping constraints, Timings, Energy

Memory Interface

PE PE PE

Figure 6.1 – Preesm and Spider 2.0 development framework.

In this chapter, we introduce the Synchronous Parameterized and Interfaced Dataflow
Embedded Runtime 2.0 (Spider 2.0), an extensible and open-source runtime for dynamic
πSDF based dataflow applications. Spider 2.0 is a new, i.e. written from scratch, run-
time which is built upon the legacy of the Spider [heulot_runtime_2015] runtime
and improves on it. For instance, one of the improvement of Spider 2.0 over Spider
is the handling of static applications. In Spider, static applications where treated sim-
ilarly to dynamic applications with a recompute of the mapping and scheduling of the
application graph at each graph iteration. Spider 2.0, on the contrary computes the

128

6.1. Introduction

mapping and schedule once and then reuse it for the next iterations offering better per-
formances. Spider 2.0 is a cross-plateform (Linux and Windows) shared library fully
written in C++11. Spider 2.0 takes as input a πSDF graph, with a full support of the
SaMM semantics presented in Chapter 4, and an architecture model description of the tar-
geted platform. Spider 2.0 handles the dynamic execution of the application along with
its memory management. Spider 2.0 can be used directly from the provided C++ API
or through the Preesm [pelcat_preesm:_2014] framework as shown in Figure 6.1.
Using the Preesm framework to automatically generate the C++ code for Spider 2.0
requires three input files: the πSDF description file, the System-Level Architecture Model
(S-LAM) architecture model [pelcat_system-level_2009] and the scenario file. This
design approach which consists in splitting the constraints, the architecture, and the appli-
cation and its implementation is often refereed to as a Y-shaped Design Space Exploration
(DSE) [suriano_damhse_2019]. Preesm provides the user with a graphical interface
to ease the creation and edition of πSDF graphs.

Using the interface of Preesm, the user designs the application graph and associates
with each actor of the graph a so-called refinement corresponding to the implementation
code of the behavior of the actor in C/C++, Cuda, etc.. The S-LAM architecture model
describe the physical target platform. Finally, the scenario file embeds all of the runtime
constraints of the application which correspond to the mapping constraints of the actors
over the different PEs of the target architecture, the execution timings of the actors and
the size of the different data types and data structures used in the application. All these
information are translated into the corresponding Spider 2.0 API calls by the Preesm
C++ automatic code generation for Spider 2.0. Then, the user need to compile the
generated code and run the application.

Additionally, a dedicated runtime provided as a shared library should be as light
in memory usage as possible. On that matter, the Spider 2.0 runtime is a lightweight
runtime with a size of approximately 500KB in release mode. Although this is not currently
supported in the official build tools of Spider 2.0, the library is built in such a manner
that it is possible to further reduce the size of the library by removing components such
as the graph and schedule exporters that are mainly used for debug purposes. Spider 2.0
ships with different mapping and scheduling algorithms, it would also be possible to only
compile the necessary ones in order to reduce the library size to reduce as much as possible
the memory overhead of the runtime.

129

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

The rest of this chapter is organized as follows, Section 6.2 introduces the core com-
ponents of Spider 2.0 with the architecture model used to describe physical platform
and the global runtime structure. Then, Section 6.3 present the different implementation
challenges addressed by Spider 2.0. Finally, Section 6.4 concludes this chapter.

6.2 Spider 2.0: Runtime Structure and Design Choices

In this section, the general structure of Spider 2.0 is described along with the mo-
tivations that led to the implemented design choices. The general runtime structure is
directly inherited from the Spider [heulot_runtime_2015] runtime. Spider 2.0 build
on the legacy of Spider while optimizing some aspect of the internals and extending the
global user experience with a more comprehensive API. As Spider, Spider 2.0 has been
thought to be application and platform independent.

6.2.1 Runtime Structure

In this section, the runtime structure of Spider 2.0 is presented. Figure 6.2 shows the
centralized runtime structure of Spider 2.0 which is directly inherited from Spider.

Jobs
Data
Tokens

Parameters JobsTimings
GRT

Jobs

Data
Tokens

Data
Tokens

LRTLRT

Figure 6.2 – Spider 2.0 runtime structure.

The runtime structure is divided into two main entities, namely the Global RunTime
(GRT) and the Local RunTimes (LRTs) and follows a master / slave structure. The GRT
is the main manager of Spider 2.0 and centralizes every decisions that need to be taken
as opposed to the LRTs which only execute received jobs. There is only one GRT and
as many LRTs as there are PEs handled by Spider 2.0. The GRT is in charge of the

130

6.2. Spider 2.0: Runtime Structure and Design Choices

intermediate transformations of the input graph, and of the mapping and scheduling of
the actors onto the different PEs of the platform. The GRT and the LRTs communicate
through different queues which are handled as follows.

— The Parameters queue is a centralized queue that is used by the different LRTs to
send resolved values of dynamic parameters back to the GRT.

— The Traces queue is a centralized queue that is used to send execution traces about
the jobs execution back to the GRT.

— The Jobs queues are distributed queues in which the GRT distributes the different
jobs that need to be executed.

— The Data Tokens queues are distributed queues containing the data tokens ex-
changed by the actors of the application graph.

The Parameters, Traces and Jobs queues are handled directly by the Spider 2.0
library and rely on a shared memory address space. Indeed, the current implementation
of LRTs relies exclusively on the C++ standard thread library. The Data Tokens queues
are not directly handled by the library itself. The runtime uses user provided function to
handle the memory allocation and communication of the data tokens of the application
between different PEs. For homogeneous platform, a default implementation based on the
malloc and free C functions is provided.

This design choice was motivated by the fact that most heterogeneous platform fol-
lows a Central Processing Unit (CPU) + accelerator(s) pattern. In other words, it is
not uncommon to have heterogeneous platforms with multiple general purpose CPUs and
specialized accelerators. CPUs will most likely be in a shared memory space whereas accel-
erators will have their own local memory. Spider 2.0 has been developed to be compatible
with different kind of heterogeneous platform while maintaining its core internal code as
generic as possible. Hence the choice of delegating the definition of platform specific data
management to the programmer via dedicated API function calls.

For instance a 2 CPUs + GPU platform could be modeled as having the GRT and 1
LRT on the CPUs but with one either the GRT or the LRT sending the jobs to the GPU.
Thus, all parameters, traces and jobs can be communicated in the shared memory space
of the CPUs but the data need to be sent to, and received from, the GPU via dedicated
function calls. From the point of view of the application, all of the data management such
as allocation, copy, move are transparent operations managed by the runtime.

131

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

6.2.2 Hardware Model and API

In this section, the specific logical hardware model of Spider 2.0 is presented. The
logical term comes from the fact that this hardware model does not reflect precisely the
real physical platform but offers an abstraction to the Spider 2.0 runtime.

Memory Interface

PE PE PE

Cluster

... ...

Memory Interface

PE PE PE

Cluster

... ...

Inter Cluster
Communication Bus

Platform

Figure 6.3 – Spider 2.0 hardware logical model.

Figure 6.3 shows an illustration of the logical hardware model. The model is defined
using the following concepts.
• Processing Elements (PEs) are the basic compute units of the model. In

Spider 2.0, a PE can either be an accelerator such as a GPU, or an FPGA or
general purpose CPU. Any CPU PE can either be an LRT, that will manage jobs
in addition to running them, or a pure compute unit, thus seen as an accelerator,
that will need to be attached to an LRT. An accelerator PE is always necessarily
attached to an LRT which means that there must be a way for sending work to
the accelerator from one of the available CPU.
• Clusters are defined as groups of PEs sharing a memory node. For instance, on

a classical 4 cores CPU, there would be 1 cluster in the sense of the Spider 2.0
model. An other example is the MPPA architecture from Kalray which features
16 physical clusters of 16 PEs and two 4 cores CPU, each with their own physical
local memory. In the Spider 2.0 model, this will effectively result in 18 clusters.
An other example would be the Exynos big.LITTLE architecture which feature 4
ARM 15 cores and 4 ARM A7 cores. The eight cores of the architecture share the
same memory unit, hence there would be only 1 cluster of 2 different PE types.
• Memory Interfaces represent the physical memory units of the platform. Each

memory interface provides the primitives for allocating and deallocating memory

132

6.2. Spider 2.0: Runtime Structure and Design Choices

on the physical associated physical memory to the runtime. There are exactly as
many memory interfaces as there are clusters.
• Inter Cluster Memory Buses are the basic communication links between clus-

ters of the Spider 2.0 model and are composed of two unidirectional buses: one
from cluster A to cluster B, and one from cluster B to cluster A. The Inter Clus-
ter Memory Buses provide the send and receive primitives that are needed by the
runtime to manage data movements between different physical memory units.

The mapping and scheduling algorithms implemented into Spider 2.0 rely completely
on this logical model. Importantly, when supporting a new platform, the user should not
have to change any code inside the runtime but instead should use the provided API to
describe its specific platform. For instance, a CPUs + GPU architecture can be seen as
two cluster of PEs with one being composed of the CPUs and one composed of the GPU.
For NVIDIA GPUs, the allocation and deallocation of the memory interface, and the send
and receive primitives of the communication buses will then be defined using the NVIDIA
CUDA library function calls.

133

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

1 # include <spider .h>

2
3 constexpr size_t CLUSTER_COUNT = 1;

4 constexpr size_t PE_COUNT = 2;

5
6 void createPlatform () {

7 using namespace spider ;

8 /* == Creates the main platform == */

9 api :: createPlatform (CLUSTER_COUNT , PE_COUNT);

10 /* == Creates the intra MemoryInterface of the cluster == */

11 auto * x86MemoryInterface = api :: createMemoryInterface

(1073741824) ;

12 /* == Creates the actual Cluster == */

13 auto * x86Cluster = api :: createCluster (2, x86MemoryInterface);

14 /* == Creates the processing element (s) of the cluster == */

15 auto * x86Core0 = api :: createProcessingElement (TYPE_X86 ,

PE_X86_CORE0 , x86Cluster , "Core0", PEType ::LRT , 0);

16 api :: createProcessingElement (TYPE_X86 , PE_X86_CORE1 ,

x86Cluster , "Core1", PEType ::LRT , 1);

17 /* == Set the GRT == */

18 api :: setSpiderGRTPE (x86Core0);

19 }

Listing 6.1 – Example of the creation of an homogeneous platform in Spider 2.0.

Listing 6.1 shows a example code snippet example of the creation of an x86 platform
containing two cores using the Spider 2.0 API. The main platform is created in line
9 with the total number of clusters and PEs of the platform. On line 11, the memory
interface that will be used by the x86 cluster is created with an affected memory size of
1GB. Then, on line 13, the x86 cluster with 2 PEs and the previously created memory
interface is declared. On line 15 and 16, the two PEs associated corresponding to the 2
cores of the platform are created. The parameters passed to the PEs are the following
ones.
• PE hardware type: unique identifier associated with a given PE type (e.g. x86,

ARM, GPU, etc.).
• PE identifier: unique identifier associated with a given PE.

134

6.2. Spider 2.0: Runtime Structure and Design Choices

• Cluster: cluster to which the PE belongs.
• PE name: name of the PE (used for human readable traces).
• Spider 2.0 runtime PE type: indicate whether the PE is an LRT or an accelerator.
• Thread affinity: optional parameter indicating the thread affinity of the PE, if left

unspecified, the thread affinity management is left to the host operating system.
Finally, line 18 indicates to Spider 2.0 which PE will be the GRT. A complete snippet
of the Spider 2.0 API for creating platform is available in Listing B.1 in Appendix B.

6.2.3 Heterogeneous Dynamic Mapping and Scheduling

In Spider 2.0, actors mapping to PEs and actors scheduling are done on-the-fly during
runtime analysis. Indeed, due to the reconfigurable nature of the πSDF MoC used in
Spider 2.0, a good mapping obtained for a given iteration of the graph will not necessary
yield good performance, or even be usable due to topology changes in the graph, at the
next iteration. At compile time, the user gives a set of mapping constraints for every actors
of the application graph, corresponding of a list of execution constraints and Worst Case
Execution Times (WCETs) for each PEs type actors can be executed on. These mapping
constraints will serve Spider 2.0 for the mapping and scheduling of tasks at runtime.

The scheduling analysis of Spider 2.0 is based on a list of hypothesis that are similar
to the ones of the Odyn runtime [dauphin_odyn_2019] and are defined here-after.
• Application:

— H1 An application is modeled using the πSDF MoC, with the addition of the
SaMM semantics, and all actors are stateless.

• Architecture:
— H2 Each PE of the platform belongs to exactly one cluster.
— H3 There are exactly as many clusters as there are different memory nodes.
— H4 All PEs connected to the same memory node belong to the same cluster.
— H5 PEs can be dynamically enabled or disabled during runtime but all possible

PEs are known at compile time.
• Mapping:

— H6 Buffers are dynamically allocated into the memory node attached to the
PE where their consumer or producer actors have been mapped and are not
allowed to migrate at runtime.

— H7 Explicit communication primitives must be inserted for migrating memory
from one cluster to another.

135

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

— H8 Data transfer time between clusters are computed based on the transferred
data sizes and user-defined cost functions.

— H9 Task migration between PE is not permitted once a mapping has been
derived.

• Scheduling:
— H10 There is no task preemption which means that a given PE can only execute

one task at a time.
— H11 There is no risk of deadlock on memory and there are no data loss during

transfers.
— H12 Data transfers between PEs can not be interrupted.
— H13 User defined primitive for data memory allocation should respect H10 and

H11 .
These different hypothesis ensure correctness of the execution relatively to the com-

puted mapping and scheduling (H9, H10 and H11). Some of the scheduling hypothesis
of Spider 2.0 also open the door for optimizations of the mapping process such as H4

which states that all PEs connected to a given memory node necessarily belong to the
same cluster. Thus, if an actor is not executable on a given PE type, and if the cluster is
homogeneous in PE types, or can not use a specific memory node, then the entire cluster
can be discarded at once reducing the DSE. Similarly, dynamically disabled PEs (H5) are
ignored during the mapping and scheduling phases. Hypothesis H7 and H8 enforce the
logical hardware model into the mapping and scheduling analysis. Indeed, based on these
hypothesis the mapping and scheduling algorithm can systematically map and schedule
communications in an automatic and generic manner using solely the Fifo data sizes and
user-defined transfer cost functions from one cluster to another. In other words, the user
does not need to reimplement the mapping and scheduling algorithms when changing the
targeted platform of the runtime.

6.2.4 Execution Modes

The Spider 2.0 runtime is designed to accelerate signal processing applications by
handling the deployment of the processing on different Processing Elements (PEs). The
runtime relies on a πSDF modeling of an application and a logical hardware model,
presented in Section 6.2.2, of the platform on which it runs. Using these information,
Spider 2.0 automatically performs mapping and scheduling of dataflow applications onto
multicore platforms. Spider 2.0 also manages the memory allocation of the application

136

6.2. Spider 2.0: Runtime Structure and Design Choices

Fifos and handles the communications and synchronizations between the different PEs.
As opposed to the Spider runtime, Spider 2.0 has two main operating modes: the ac-
celerator mode and the master mode.

In the master mode, similarly to Spider, the runtime is in charge of the complete
application, which means that Spider 2.0 is the main entry point of the application and
that the entire application needs to be modeled using the πSDF MoC.

In the accelerator mode, Spider 2.0 only handles a specific portion of an application
and has the possibility to receive, and transmit, data tokens from, and to the outside of
the dataflow graph through dedicated data interfaces. The accelerator mode is similar
to the way OpenMP works. Using the accelerator mode, only a specific portion of an
application that would benefit from a dataflow modeling needs to be modeled which will
ease the transition from imperative language modeling to dataflow modeling for the user.

However in accelerator mode, contrary to the master mode, Spider 2.0 is not in
control of the entire application resource management and the application designer must
pay attention not to starve the resources assigned to Spider 2.0. The accelerator mode
is particularly interesting in the case of applications having a lot of Input/Output (IO)
operations and only a small portion of parallel processing.

Finally, on threaded platforms, such as the Linux operating system, it is possible to
explicitly set a thread affinity for each PE and each LRT in order to enforce the logical
hardware model onto the actual physical hardware layout. However, this is not mandatory
and the host operating system can be let in charge of managing the PEs and LRTs
thread placement. In some applications, letting the host operating system manages the
load-balancing of the threads might yield better performances compared to fixed thread
affinity [hautala_toward_2018].

Read
U

Y

V

W*H
W*H/4
W*H/4

Display
U

Y

V

W*H/4
W*H/4

W*H

Sobel NNNSplitW*H MergeN W*H

(a) SDF graph of the Sobel application fully modeled in dataflow.

Sobel NNNSplitW*H MergeN W*H
Y Yout

W*HW*H

(b) SDF graph of the Sobel application partially modeled in
dataflow.

Figure 6.4 – Example of modeling of the Sobel application using master mode and
accelerator mode of Spider 2.0, respectively.

137

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

Figure 6.4a and 6.4b illustrate the difference of modeling for both execution mode of
Spider 2.0 for the Sobel application available on the preesm-apps repository 1. The Sobel
application applies the Sobel operator onto the Y component of a given raw YUV image.
Figure 6.4a shows the complete modeling of the Sobel application and Figure 6.4b shows
only the processing part that actually needs acceleration. In Figure 6.4a, actors Read and
Display read a YUV image (either from a camera or a video file) of size W ∗H, with U
and V components being downsampled, and where W is the width of the image and H its
height, and display it to the screen, respectively. Actor Split splits the input image into
multiple slices that are then processed by Sobel actor. For instance if the Sobel operator
is to be applied onto 4 slices, the Split actor divides the input image into 4 slices of size
W ∗H/4, and then for each slice adds extra rows at the beginning and at the end of the
slice due to the convolution of the Sobel operator that need neighboring pixels. Hence,
the final size of the slice depends on the size of the chosen Sobel operator and not strictly
equal to W ∗H/4. Symmetrically, actor Merge performs the reverse operation of merging
the different slices into one image of size W ∗H.

In Figure 6.4b, only the data path corresponding to the Sobel filtering operation is
modeled. The data input and output interfaces Y and Yout are used to communicate with
the outside of the dataflow graph. In Figure 6.4b, Spider 2.0 will not handle the memory
allocation of the input and output data buffers, it is up to the user to provide buffers to
the runtime that are valid during the entire execution of the application graph.

6.2.5 Supported Model Features

Spider 2.0 is a model-based embedded runtime implementing the πSDFMoC with the
extended semantics of SaMM, presented in Chapter 4. Model-based tools do not necessary
support of all the features that a MoC provides. We refeer as the feature of a MoC as
being an intrinsic property of a MoC, capturing a particular behavior or functionality.
For instance, parametric rates are a feature of the πSDF MoC.

Table 6.1 list the main features of the PiMM and SaMM models and their official
support by the Preesm [pelcat_preesm:_2014], Spider [heulot_runtime_2015]
and Spider 2.0 tools. Supported features marked with a star are features added during
this thesis and that were not available before. The parameterized delays and parameterized
(dynamic) delays features correspond to the possibility of having parameterized delay

1. https://github.com/preesm/preesm-apps/tree/master/tutorials/org.ietr.preesm.sobel.

138

6.3. Implementation Details for an Efficient Model-Based Runtime

Table 6.1 – PiMM and SaMM model feature support by the Preesm, Spider, and
Spider 2.0 tools.

PiMM / SaMM model feature Preesm Spider Spider 2.0
Static Parameters Yes Yes Yes
Dynamic Parameters No Yes Yes
Parameters Dependency Tree Yes Yes Yes
Parameterized Delays (LDs, LPDs, GPDs) Yes (all) Yes* (LDs and GPDs) Yes (all)
Parameterized (dynamic) Delays (LDs, LPDs) No (all) Yes* (LDs) Yes (LDs)
Hierarchical Graphs Yes Yes Yes
Hierarchical Configure Actors No No No
Data Path Selection Yes* (static) Yes Yes
Dataflow Initialized Delays Yes* Yes* Yes

values. When combined with dynamic parameters, this lead to potentially variable delay
sizes during the execution of an application. Chapter 4 details how parametric delays can
change their value when using the persistence semantics of SaMM. The data path selection
feature corresponds to the possibility of disabling completely some data path in a πSDF
graph. To do so, it is necessary that all data rate in the data path are null.

The Preesm tool support all of the static features of the PiMM and SaMM models
whereas the Spider and Spider 2.0 tools support all of the static features and the recon-
figurability of PiMM and SaMM, with the exception of reconfigurable LPDs. Interestingly,
although it is possible to create hierarchical configure actor in Preesm, this feature is
usable neither by Preesm itself nor by the Spider and Spider 2.0 runtimes.

In the next section, some of the implementation details of Spider 2.0 are presented
and discussed.

6.3 Implementation Details for an Efficient Model-
Based Runtime

Due to the embedded nature of the Spider 2.0 runtime, internal features of the run-
time need to be implemented efficiently. In this section, details about the implementation
of the dynamic expression evaluator, intermediate transformation and the synchronization
mechanism used inside the runtime are discussed.

139

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

Section 6.3.1 presents the implementation of a fast and efficient math expression
parser used for the dynamic evaluation of the πSDF parameterized expressions. Then
Section 6.3.2 introduces a new intermediate transformation that enforces the execution
rules of the πSDF MoC and leads to a simplification in analysis algorithms used in the
runtime. Finally, Section 6.3.3 presents the asynchronous notification system of commu-
nications between the LRTs and the GRT.

6.3.1 Efficient Parameterized Expression Parser

In the πSDF MoC, parameter values can either be constants or set dynamically at
runtime by the use of configure actors [desnos_pimm:_2013]. Parameters can also be
the result of math expressions depending on other parameters that are either static or
dynamic. In the latter case, the math expression of a parameter can only be evaluated at
runtime after the values of the dynamic parameters on which it depends have been set. In
the πSDF MoC, parameterized expressions are used for fixing the value of data rates on
the Fifos of a graph which means they will be evaluated many times per graph iteration.

Additionally, some applications may require complex parameter expressions involving
trigonometric functions, exponential and logarithm functions, power and square root func-
tions, etc. For instance, the SIFT application from the preesm-apps repository 2 contains
many complex parameter expressions including conditional statements, square roots, floor
and ceil functions, and geometric sums. For those type of dynamic expressions, an efficient
and fast expression evaluation mechanism is needed. Such a parser is presented in this
section and performances are evaluated against a state-of-the-art math parser.

6.3.1.1 Just-In-Time Compiled Expression Parser

Spider 2.0 has been designed to have as small runtime overhead as possible and also
to have a low memory impact. This means that Spider 2.0 should be fast enough so
that its execution time is negligible relatively to the execution time of the application the
runtime is managing, and the size of the generated shared library should be as small as
possible not to clutter the application memory.

Three main optimization criteria are derived for the expression parser:
C1 The parser should not introduce any runtime latency.
C2 The parser should not increase the binary size of the Spider 2.0 library.

2. https://github.com/preesm/preesm-apps/tree/master/SIFT/.

140

6.3. Implementation Details for an Efficient Model-Based Runtime

C3 The parser should depend on as few external libraries as possible.

Algorithm 4: Expression creation algorithm
Input : Literal infix math expression : E

Symbol list: S = {si}
Output: Output expression object: Eout

1 if checkExpressionSyntax(E) == ERROR then
2 exit("syntax error"); // Exit if the syntax of the expression is ill-formed.

3 infixStack = tokenize(E); // Tokenize input expression.

4 if isExpressionStatic(E) then
5 postFixStack = convertToRPN (infixStack); // Convert the infix stack into a

postfix stack using the RPN.

6 Eout = createExpressionFromStaticStack(postFixStack, S); // Statically

evaluate the expression and create an object with the constant value.

7 else
8 functionFile = printCppFunctionCode(infixStack); // Create a CPP file

containing a function with the input expression E.

9 libraryFile = systemCallForJITCompilation(functionFile); // Calls a C++

compiler to compile the generated file into a shared library.

10 loadedLibrary = loadDynamicLibrary(libraryFile); // Load the compiled shared

library into the runtime.

11 Eout = createExpressionFromLibrary(loadedLibrary, S); // Creates an object

associated with the dynamically loaded library for runtime evaluation.

12 return Eout; // Return the expression object.

The two criteria C1 and C2 directly depend on the implementation choices, and the
third criterion C3 is to improve the portability and maintainability of the Spider 2.0
code. An important point to take into consideration is that applications modeled with a
dataflow MoC are often stream processing applications with a long sustained execution
time. In other word, it is rather uncommon to model a dataflow application with its
main top graph being only executed once. This strong hypothesis is at the heart of the
proposed solution. Indeed, the proposed parser is a "compile once, evaluate many times"
kind of parser which means that the compilation of the expressions is supposed to happen
only once during the initialization of the application and may take a non negligible time.

141

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

However, during the execution phase of the application, expressions may be copied and
evaluated very often for close to natively compiled code performances.

Algorithm 4 describes the expression parsing principles in Spider 2.0. Algorithm 4
takes as input an infix expression E and a list of symbol S = {si} and return an ex-
pression object Eout used for later evaluation. The infix expression notation corresponds
to the classical way of writing mathematical expressions and is opposed to the postfix
notation style. Specifically, the Reverse Polish Notation (RPN) is used in Spider 2.0.
Equation (6.1) shows an example of a mathematical function using the infix notation and
Equation (6.2) shows the same expression written using the RPN. RPN was proposed in
1954 [burks_analysis_1954] as a memory efficient approach to functions evaluation
for computers. The main advantage of using polish notation or RPN over infix notation
is that it removes the need for parenthesis, as there are no ambiguity in the precedence
of operators.

f(x) = (3 ∗ (x+ 1))/(4 ∗ x) (6.1)

f(x) = 3 x 1 + ∗ 4 x ∗ / (6.2)

The second input of Algorithm 4 is the list of symbol S = {si}, which corresponds to
the list of symbolic variables of a dynamic mathematical expression. In other words, each
si ∈ S corresponds to a variable of the expression that is dynamically set and that is only
known at runtime. For example, in Equation (6.1), S = { x }.

Algorithm 4 works as follows. First, the syntax of the input expression E is checked
in line 1. This step checks for missing parenthesis and verifies that operators are not
missing operands. For example, the + operator requires two operands and the syn-
tax checker will return an error if only one operand is provided to this operator. The
second step is to tokenize the infix expression (line 3), i.e. to extract all atomic ele-
ments making the expression. For example, the tokenized output of Equation (6.1) is
T (E) = {(, 3, ∗, (, x,+, 1,),), /, (, 4, ∗,)}. This second step is an important step as it al-
lows for constructing the RPN of the expression and for checking if the expression contains
variable symbols.

Thirdly, the static property of E is checked on line 4. The expression is considered
to be static if and only if all symbols used in the expression are either constant numeric
values or static parameters. In case E is static, E is converted to postfix notation and

142

6.3. Implementation Details for an Efficient Model-Based Runtime

statically evaluated (lines 5 and 6). The result of the static evaluation is stored inside the
expression object Eout as a constant value, resulting in a simple value lookup at runtime.
If the expression E is dynamic, i.e. it contains at least one dynamic symbol, then the JIT
compilation process starts.

1 # include <cmath >

2 # include <functional >

3
4 extern "C" {

5 double expr_0 (const double *const args []) {

6 using namespace std;

7 const auto x = *(args [0]);

8 return ((3*(x+1))/(4*x));

9 }

10 }

Listing 6.2 – Example of an automatically generated function call for Equation (6.1).

The first step of the JIT compilation of an expression is to create an equivalent function
call. This function call is then printed into an automatically generated Cpp file (line 8).
Listing 6.2 shows an example of automatically generated function call for Equation (6.1).
Then, the automatically generated Cpp file is compiled into a dynamic shared library using
a system call to a compiler (line 9). On Linux-based systems, the default compiler used
is GCC 3 and the command of Listing 6.3 is used for compilation, where #filename.cpp
correspond to the generated file (line 8). To limit the impact and the number of system
call to the compiler, a cache system is used to avoid recompiling a given expression. This
cache is based on a computed hash of the expression infix string. Using an hash-based
cache raises the potential issue of having collisions and thus, avoiding to compile a new
expression resulting in incorrect evaluation at runtime. Indeed, if two different expressions
result in the same hash then the cache system will not compile the second expression and
directly use the pre-compiled first expression. However, in the studied use case (dataflow
applications), there will unlikely be hundred of different dynamic parameter expressions,
thus lowering the risk of collision.

3. https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/.

143

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

$ g++ -shared -o # filename .cpp -std=c++11 -O2 -fPIC -lm

Listing 6.3 – System call used for the JIT compilation of dynamic expressions in the
Linux environment.

Finally, the last step of the JIT process is to load the compiled shared library into the
program memory space (line 10). On Linux-based system, this is done using the dlopen
and dlsym functions. Once the JIT-compiled function is loaded, the associated function
pointer is stored inside the expression object Eout (line 11), which will result in close to
natively compiled code performance during runtime evaluations of the expression.

Spider 2.0 is a cross-platform runtime running also under the Windows operating
system. However, as of today, the JIT compiled approach presented in this section uses
specific UNIX system function call and currently works only under the Linux operating
system. Therefore, when running on Windows, Spider 2.0 uses a fallback method using
a runtime evaluation similar to the one of the exprtk library. This fallback approach will
not be evaluated in the following section.

6.3.1.2 Experimental Results

In this section, the proposed JIT compiled expression parser is evaluated against the
current state of the art implementation of a math expression parser in C++. All the
experimentation are done on a x86-x64 Laptop equipped with an Intel Core i7-7820HQ
processor and 32GB of DDR4 RAM memory. The GCC version used in these experiments
is the version 7.3.0 with the O2 level of optimization and the Link Time Optimization
(LTO) enabled.

Spider 2.0 expression parser is compared against the exprtk 4 header library and
natively compiled code. The natively compiled code correspond to the case of the evaluated
function being known at compile time and thus benefiting from the compiler optimizations.
It correspond to the best case scenario. The exprtk library was chosen due to the fact
that it seems to be the fastest open-source library for math expression parsing available
to the best of our knowledge. Indeed, when compared to other libraries 5, exprtk is the
best overall library.

4. https://github.com/ArashPartow/exprtk.
5. https://github.com/ArashPartow/math-parser-benchmark-project.

144

6.3. Implementation Details for an Efficient Model-Based Runtime

Table 6.2 – Functions used in the benchmark for the expression parsing.

Function Expression
F0 y + x

F1 2 ∗ (y + x)
F2 (2 ∗ y + 2 ∗ x)
F3 ((1.23 ∗ x2)/y)− 123.123
F4 (y + x/y) ∗ (x− y/x)
F5 x/((x+ y) + (x− y))/y
F6 1− ((x ∗ y) + (y/x))− 3
F7 (5.5 + x) + (2 ∗ x− 2/3 ∗ y) ∗ (x/3 + y/4) + (y + 7.7)
F8 1.1x1 + 2.2y2 − 3.3x3 + 4.4y15− 5.5x23 + 6.6y55
F9 sin(2 ∗ x) + cos(pi/y)
F10 1− sin(2 ∗ x) + cos(pi/y)
F11 sqrt(111.111− sin(2 ∗ x) + cos(pi/y)/333.333)
F12 (x2/sin(2 ∗ pi/y))− x/2
F13 x+ (cos(y − sin(2/x ∗ pi))− sin(x− cos(2 ∗ y/pi)))− y
F14 max(3.33,min(sqrt(1− sin(2 ∗ x) + cos(pi/y)/3), 1.11))
F15 if((y + (x ∗ 2.2)) <= (x+ y + 1.1), x− y, x ∗ y) + 2 ∗ pi/x

Table 6.2 shows the 16 functions that were used in this comparison. All of these func-
tions directly come from the proposed benchmark of the exprtk library 6 and span across
a variety of math expressions. Although mathematically equivalent, functions F0 and F1

test the capability of the expression parser to optimize patterns such as factorization with
a constant value. Each function has been ran for a total of 72072 values for x and y,
respectively, spanning from −100 to +100 with a delta of 0, 002775. These values directly
come the benchmark of the exprtk library. Each run has been averaged over 100 iterations
to further reduce measurement noise.

Figure 6.5 shows the average evaluation rate in million of evaluations per seconds
(Mevals / s) for each function of Table 6.2 and for each of the method. These values
are also reported in Table 6.3 along with the compile time needed by each function for

6. https://github.com/ArashPartow/exprtk.

145

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

Method
proposed

exprtk

native

Figure 6.5 – Average evaluation rate in Mevals / s for the functions of Table 6.2 for the
three different approaches.

the JIT approach. On Figure 6.5, the standard deviation for each function is represented
with a black oval on top of each bar. The first take away message from Figure 6.5 is that
natively compiled code is faster than both the proposed and the exprtk approaches for
every functions, except for the function F8 . The function F8 uses the std::pow function
in the natively compiled code and an optimized version for the other two approaches.
Indeed, the std::pow function is a generic method using a floating point data type for
the exponent whereas the optimized approaches consider both integer and floating point
exponents.

In Figure 6.5, there is a clear benefit to the JIT compilation approach over the fully
runtime approach of the exprtk library, with the JIT approach being faster for every
function, except function F8 . On trivial functions like the F0 , F1 and F2 functions, there
is no clear advantage for either of the methods. However, with functions using the division
operator (F3 to F7 and F12), the compiler seems to be able to apply drastic optimizations.

146

6.3. Implementation Details for an Efficient Model-Based Runtime

Table 6.3 – Average evaluation rate in Mevals / s for every function of Table 6.2 for the
three different approaches. The compile time (in ms) of each function for the
JIT-Compiled approach is also reported.

JIT-Compiled Exprtk Native
Function Compile Time(ms) Mevals / s Mevals / s Mevals / s
F0 167 425.4 418.5 428.4
F1 165 403.8 387.9 428.4
F2 165 402.7 387.8 419.1
F3 163 392.8 198.9 428.6
F4 165 376.6 173.0 404.9
F5 170 355.6 159.0 398.9
F6 169 334.9 253.0 411.3
F7 168 296.9 79.0 395.9
F8 178 23.0 31.0 4.0
F9 166 40.0 34.0 43.0
F10 168 40.0 31.0 43.0
F11 178 38.0 29.0 40.0
F12 166 94.0 56.0 105.8
F13 168 16.0 13.0 16.0
F14 178 37.0 21.0 39.0
F15 166 343.8 89.0 411.3

Indeed, there is an average speedup of 2.19, and up to 3.76 for F7 , using the proposed
JIT-Compiled method compared to the exprtk library on these functions. Interestingly,
functions including trigonometry such as the F9 , F10 , F11 and F13 function have a similar
evaluation rate for the three approaches. It seems that in this case, the computation is
bounded by the standard library math function and that no particular optimization can
benefit from compile time optimizations of these functions.

Table 6.3 also reports the compile time for each function for the proposed JIT-
Compiled approach. On the processor used for these experiments, there is an average
compile time of 170ms which is non negligible. However, in the context of Spider 2.0,
the expressions are only compiled once on startup which will result in a high initialization

147

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

time (measured in seconds); but considering that applications that run with Spider 2.0
will most likely run for several minutes, this initialization time is not an issue.

6.3.2 Enforcing the πSDF Execution Model

In this section, a new intermediate transformation of a πSDF graph is proposed that
enforce both the execution rules of the πSDF MoC [desnos_pimm:_2013] and the data
dependencies associated to the reconfiguration semantics of πSDF.

The πSDF MoC is a hierarchical, parameterized and reconfigurable dataflow MoC.
The reconfigurable property of the πSDF MoC comes from the dynamic value of param-
eters. Indeed, in a πSDF graph, there are two types of parameters: static and dynamic
parameters. Static parameters have fixed values that can not change during the runtime
execution of the application graph. Dynamic parameters on the other hand, have dynamic
values that are set by configure actor. The value of a dynamic parameter can change be-
tween two successive firings of a hierarchical graph but the value is fixed during the firing
of the hierarchical graph to which it belongs.

N

SetN1 N

N
C1

12

1

x2

x1

H

x2

A
E1x1

x2

2

1 D1 1 1

x2

H 11
2B

x1

2

Figure 6.6 – Example of a reconfigurable hierarchical graph.

Figure 6.6 shows an example of a hierarchical and reconfigurable πSDF graph, with
the value of the parameter N, inside the hierarchical actor H, being set by the configure
actor SetN . In Figure 6.6, the hierarchical actor H is executed 2 times, which means that
the parameter N can change two times, at the beginning of each firing of H.

In [desnos_pimm:_2013], the authors define the execution rules of a πSDF graph
which state that all configure actor are executed before any other non-configure actors in
the graph. Additionally, configure actors have a repetition value strictly equal to 1 and

148

6.3. Implementation Details for an Efficient Model-Based Runtime

all data output ports of a configure actor act equivalently to data input interfaces for the
actors connected to them. This means that if more data tokens are consumed by an actor
connected to a configure actor, then the data tokens will be repeated as many times as
necessary.

In Spider [heulot_runtime_2015], in order to respect those execution rules, spe-
cializations of the SR-DAG transformation and of the scheduling functions were used.
Indeed, the SR-DAG transformation has a special partial transformation which will per-
form the single rate linkage only up to the next configure actors ready to be executed
and their direct dependencies; and a general single rate linkage algorithm for the other
non configure actors. Similarly, the scheduling algorithms of Spider also possess partial
specializations for only scheduling configure actors and their dependencies. Such special-
izations imply an higher cost on maintainability of the runtime on the long term and
require writing additional specific section to otherwise generic algorithms.

N

SetN1 N
1

x12

1

HInit

H

N
C

12

x2

1

NHRun

1 D1 1 1

x2

HRun

11 1

x1

2

x2

A
E1x1

x2

2
H 11

2B
x1

2

Figure 6.7 – Enforced execution model of the graph of Figure 6.6.

To avoid such issues in Spider 2.0, a new intermediate transformation is applied to
every reconfigurable graph of a πSDF application during the initialization phase of the
runtime. This transformation enforces the execution rules of the πSDF MoC while main-
taining the genericity of algorithms used to manipulate πSDF graphs. The proposed inter-

149

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

mediate transformation consists of systematically splitting reconfigurable πSDF graphs
into two distinct subgraphs corresponding to their initialization and execution phase,
respectively. Given a reconfigurable graph G, the transformation steps are as follows:

1. Create a new subgraph GRun inside G and copy every non-configure actors of G to
GRun.

2. For every data input and output interfaces in G connected to a non-configure actor,
add a corresponding data interface in GRun.

3. Connect every data interfaces of GRun created during Step 2 to the original data
interfaces of G, and to the copied non-configure actors inside GRun.

4. For every edge between a configure actor and a non-configure actor in G, add a
data input interface to GRun. Connect the new data interface to the non-configure
actor in GRun and connect the configure actor in G to the input interface of GRun.

5. Remove all the non-configure actors and the associated edges in G.

6. For every parameters in G, create a corresponding configure input interface
(see [desnos_pimm:_2013] for more details) in Grun.

Figure 6.7 shows the result of the intermediate transformation applied to the graph of
Figure 6.6. All the non-configure actors have been moved inside the new hierarchical actor
HRun with the appropriate data interface connections. This new transformation naturally
enforces the execution rules of a πSDF by adding a precedence between configure actors
and non-configure actors. The transformation also naturally enforces the consumption
rules on data output port of configure actors by explicitly adding data input interfaces.

Importantly, the graph of Figure 6.7 requires no specialization of the SR-DAG trans-
formation and scheduling algorithms. Indeed, during the SR-DAG transformation, hier-
archical graphs are iteratively processed in a top-down approach. This means that for
a given hierarchical graph H, every hierarchical actors contained in H are first treated
as atomic actors by the transformation and are then replaced by their inner subgraph
at the next iteration of the transformation. With the proposed pre-processing interme-
diate transformation, it is then only necessary to annotate "Run" graph as future jobs
to defer their replacement after the resolution of the dynamic parameters they depend
on. Similarly the scheduling algorithm does not need to know about the specificity of
the πSDF MoC but will instead schedule all available single rate actors of the current
iteration of the SR-DAG transformation.

150

6.3. Implementation Details for an Efficient Model-Based Runtime

6.3.3 Notification-based Synchronization between LRTs

The Spider 2.0 runtime relies on a master/slave structure with the GRT being the
master and the LRTs being the slaves. The synchronization between the LRTs and the
GRT and the LRTs is done using an asynchronous notification system.

6.3.3.1 Notification Messages and LRTs State Machine

Synchronization between multi-threaded applications is often performed using syn-
chronous semaphore or mutexes primitives. In [koster_using_2001], authors use a
message-based system to synchronize multiple thread and applications using asynchronous
messages. The rationale behind this idea is that synchronizations done using semaphores
or mutexes tend to be difficult to maintain, introduce potential bugs that are complicated
to track and are more prone to synchronization errors in complex applications.

In Spider 2.0, the same message based approach is used. Whenever an LRT needs to
send an information to another LRT, the first LRT sends a notification at a time t to the
second that will handle it at some other time point t2.

When executing actors, LRTs need to wait for all the input buffers that are required
to be written by the predecessors of the actor. In Spider [heulot_runtime_2015], a
semaphore was attached to each buffer controlling the access to it and the LRTs needed to
wait for the semaphores of the buffers to be increased in order to pursue their execution.
This means that, if a job was not executable right away, the LRTs would have to wait for
all the input buffers to be ready and were not able to process any other signal that could
arise from the GRT in the mean time.

In [miomandre_embedded_2018], the synchronization pattern used to implement
the Spider runtime on a many core architecture was based on the observer pattern. Each
LRT would embed a job counter for every other LRTs. When an LRT needs to fire an
actor that does not have all of its dependencies satisfied, it first registers itself upon the
LRTs to which these dependencies are mapped by sending them a notification. When the
LRTs finish their current execution, they go through all of their pending requests and
notify the demanding LRTs with the new value of their job counter. Additionally, in the
implementation of [miomandre_embedded_2018], each LRT also has the possibility
to peek at the job counter values of other LRTs to limit the synchronization wait.

151

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

Algorithm 5: LRT State Machine
1 while run == true do
2 while gotNotification() do
3 notifcation = readAndPopNotification();
4 handleNotification(notification);

5 if gotJobsToDo() then
6 job = popNextJob();
7 if isJobExecutable(job) then
8 runJob(job);
9 sendEndOfJobNotification(job);

10 else
11 pushFrontJob(job);

In Spider 2.0, similarly to [miomandre_embedded_2018], each LRT possess a
local job counter value for all other LRT for job synchronization. However, the synchro-
nization mechanism of Spider 2.0 relies on the scheduling algorithm and instead of the
observer pattern to limit the synchronization. For each scheduled task, a job message
is sent to its mapped LRT. This job message possess a unique job id and a list of job
dependencies that must be satisfied before executing the associated task. The list of de-
pendencies of task is a list of pair of integers, where the first integer corresponds to the
job id, set by the scheduler, of the dependency and the second integer corresponds to the
id of the LRT to which the dependency is mapped. Every job message also contains an
array of boolean notification flags. These flags are set by the scheduler and indicate to the
LRT receiving the job message which LRTs should be notified upon the job completion.
Depending on the scheduling policy, which may vary from one platform to another, there
is the possibility to limit the number of exchanged notification without having to change
the LRTs state machine and implementation.

Algorithm 5 describes the LRT state machine based on the described asynchronous
notification system. An LRT runs in an infinite loop until it receives a notification to stop.
In line 2 and 3, the LRT checks and reads from its notification queue until there are no
more notifications available. The read to the notification queue can be either blocking or
non blocking. The read is blocking in the case of an LRT having no more jobs to execute
and thus waiting for commands from the GRT and non blocking else.

152

6.3. Implementation Details for an Efficient Model-Based Runtime

Then, after handling all of its input notifications, the LRT checks if it has non executed
jobs available (line 5). The LRT pop the first job from its job queue and checks if its
dependencies are satisfied (line 7) by comparing the expected job id of the dependencies
to the local values of the other LRTs job counters. If the dependencies are satisfied, the
LRT executes the job and send a notification to the LRTs required by the job.

6.3.3.2 JIT and Delayed Execution of Tasks

This section details the two implemented mode of jobs execution in Spider 2.0 and
their impact on the number of exchanged notification messages is compared in Sec-
tion 6.3.3.3.

C

x2

11
1

x2

D1
1

A
x2

1

B
x2

1

2E
x1

(a) Example of a an SDF graph with multiple
dependencies.

F 1
1

2E0 2

B1 1

A1 1

A0 1

B0 1

C0 11
1

C1 11
1

D01
1

D11
1

(b) Resulting SR-DAG of the graph of
Figure 6.8a

Figure 6.8 – Example of an SDF graph containing actors with multiple input data
dependencies and its corresponding SR-DAG.

In Spider 2.0, the possibility to implement any kind of mapping and schedul-
ing algorithm gives the user the flexibility to adapt the runtime to specificities of
a given platform similarly to what was done in Spider for the MPPA architec-
ture [miomandre_embedded_2018]. Moreover, Spider 2.0 support two specific ex-
ecution policies, namely the JIT execution and the delayed execution policies. The JIT
execution policy consists of an execution policy where all jobs are executed during the
scheduling of the tasks, which means that jobs are sent to LRTs as soon as they are
scheduled. The delayed policy on the other hand first maps and schedules all the available
task and then send all the tasks to the LRTs for the execution.

153

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

Any scheduling algorithms implemented in Spider 2.0 has a dedicated traits indi-
cating which execution policy of Spider 2.0 it supports. Scheduling algorithms are not
required to support both policies but should support at least one of them. The default
mapping and scheduling algorithm implemented in Spider 2.0 is a LIST algorithm based
on the work of [kwok_high-performance_1997].

The JIT execution policy sends every job to its mapped LRT as soon as it has been
mapped and scheduled. Using this policy, it is not possible to perform any kind of opti-
mizations regarding the synchronization of jobs. In other words, since jobs are executed
concurrently to the scheduling algorithm, they have no vision of the future and can not
know in advance which LRT should be notified upon their completion. Therefore, using
the JIT execution policy, every LRT must broadcast their current job counter to every
other LRTs after each job completion.

Time

LRT1

LRT0 C0 D0 D1

A1 C1B1B0

A0 E0

Notify LRT1

Notify LRT0

Notify LRT0

Notify LRT0

Notify LRT0

Notify LRT1

Notify LRT1

Notify LRT1

Figure 6.9 – Example of notification synchronization when using a JIT schedule and
execute approach.

Figure 6.8a and 6.8b show an example of an SDF graph with its corresponding
SR-DAG. In the graph of Figure 6.8a, there are multiple actors with multiple input data
dependencies. For instance, actors C and D depends on actors A and B, and C and E, re-
spectively. Figure 6.9 shows a potential schedule of the graph of Figure 6.8a using the JIT
execution policy. In this schedule, a notification is sent after the execution of every jobs,
respecting the execution policy, resulting in unnecessary synchronizations. For instance,
actor A0 is executed on the LRT0 and its direct successor, actor C0, is also executed on
LRT0 making the notification to LRT1 unnecessary.

In the delayed execution policy, the mapping and scheduling algorithm used by
Spider 2.0 first perform the mapping and scheduling of all actors that are currently

154

6.3. Implementation Details for an Efficient Model-Based Runtime

available for mapping and scheduling before sending any jobs to the LRTs. Hence, only
the required notifications are sent.

Using this execution policy, the LRTs spend more time in IDLE (or sleep) than with
the JIT execution policy. However, delaying the execution of the actors after the map-
ping and scheduling offers better optimization opportunities. Indeed, once the complete
mapping and schedule is obtained, it is possible to reduce synchronization points using
two optimization passes. The first synchronization optimization leverages the fact that
synchronizations between actors depend on their data dependencies in the application
graph, but that there is a limited number of LRTs. For instance, an actor might have 4
data dependencies but if there are only two LRTs in the platform, then at most, there is
only 1 synchronization necessary between both LRTs and not 4.

The second synchronization optimization is related to special actors behavior. It is
possible to remove unnecessary fork and duplicate actors, two special actors that are
used to either split a given input buffer into multiple output buffers or to duplicate the
input buffer on multiple outputs, respectively. In [heulot_runtime_2015], the author
explains that if the memory allocation of the Fifos of the graph takes into account the
specific behavior of these actors, they do not need to be executed at all, thus removing
unnecessary synchronization points.

Algorithm 6 details the first synchronization optimization for a list of actors that
have been mapped and scheduled. The algorithm first goes through all scheduled actors
(line 1) and, for each actor A, goes through all of its dependencies (line 3). Then, for each
dependency D of A, it starts by disabling the sending of a notification from the PE onto
which D is mapped, to the PE onto which A is mapped (line 4). This is done due to the
fact that the dependency D might have been mapped onto the same PE as A, and since
the scheduler will necessary have scheduled the dependency D before the actor A, when
the PE starts the execution of A, there is not need to wait for the completion of D.

Then, the second step is to check if the PE to which D is mapped is the same as the
one where A is mapped (line 6). If it is not the case, meaning that both actors are mapped
onto different PEs, then the test of line 8 verifies if there is already a notification coming
from the PE to which D is mapped. If not, then a notification should be sent after the
completion of actor D to the PE of actor A (line 9). In the case where there already exists
a synchronization between the PE of actor D and the one of actor A, then the current
actor D2 sending the notification is fetched (line 11). Finally, the scheduling positions of

155

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

both D and D2 are compared (line 14) and if D is further placed into the schedule, i.e it
will be executed after D2, then the synchronization is switched from D2 to D.

Algorithm 6: Notification Optimization Algorithm
Input : List of actor : LA

List of actor dependencies : LD
Schedule and Mapping information: SM

1 for actor A ∈ LA do
2 mappedPEA = getMappedPE(A, SM);
3 for actor D ∈ LD(A) do
4 setNotificationFlag(D, mappedPEA, false);
5 mappedPED = getMappedPE(D, SM);
6 if mappedPED == mappedPEA then
7 continue;

8 if gotNotificationFromPE(mappedPED) == false then
9 setNotificationFlag(D, mappedPEA, true);

10 else
11 D2 = getJobNotifyingFromPE(mappedPED, A);
12 positionD2 = getJobPositionInSchedule(D2, SM);
13 positionD = getJobPositionInSchedule(D, SM);
14 if positionD2 < positionD then
15 setNotificationFlag(D2, mappedPEA, false);
16 setNotificationFlag(D, mappedPEA, true);

Figure 6.10 shows the schedule, equivalent to Figure 6.9, of the graph of Figure 6.8a
but with Algorithm 6 applied to it before the start of the execution. Compared to the
schedule of Figure 6.9, there are significantly less notifications between both LRTs with
only two notifications left. Indeed, in this scenario,both actors C0 and D1 have one of
their dependencies on the same LRT as they are mapped to (A0 for actor C0 and E0 for
actor D1) and the other one on the second LRT. Hence no notifications is required for the
first dependency and only the dependency of B0 to C0 and C1 to D1 are required.

In the next section, the JIT and delayed execution approaches are compared on dif-
ferent image and signal processing, and machine learning applications. Although it seems
that the JIT policy will always result in low performances due to its high synchronization

156

6.3. Implementation Details for an Efficient Model-Based Runtime

Time

LRT1

LRT0 C0 D0 D1

A1 C1B1B0

A0 E0

Notify LRT0 Notify LRT0

Figure 6.10 – Example of notification synchronization when using a delayed execution
after schedule approach. Compared to Figure 6.9, there is less notification noise for
unnecessary synchronizations.

cost, this not the case as shown in the results of the next section. Moreover, in recon-
figurable applications, the JIT policy could yield better performances compared to the
delayed policy due to the possibility of having configure actors running sooner and thus,
having less wait for the reconfiguration phases.

6.3.3.3 Notification rate Results

In this section, the JIT execution and the delayed execution policies are compared. The
average total number of notification messages exchanged along with the average number
of Iterations per seconds (IPS) for 5 different image and signal processing applications are
measured. The experiments are done on an x86 Intel Core i7-7820HQ Laptop processor
with 4 cores and equipped with 32 GB of RAM memory. All applications have been
compiled with O2 level of optimization using GCC 9.2.1 version.

The SqueezeNet, Reinforcement Learning and Stabilization applications are the same
image processing and machine learning applications as the ones used in the Chapter 5.
The 6-Steps Fast-Fourier Transform (FFT) application is a signal processing application
used in [heulot_runtime_2015], that performs a Discrete Fourier Transform (DFT)
based on the algorithm described in [bailey_ffts_1990]. Although the original 6-Steps
FFT of [heulot_runtime_2015] is a reconfigurable application, in these experiments,
the value of the parameters were fixed and the FFT used was of size 65536. Finally, the
Adaptive Filtering application is a reconfigurable application that works as follows:

1. Read an RGB image from a camera and convert it to the YUV format.

2. Compute the average brightness level of each of the three components.

157

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

3. For each of the luminance (Y) and chrominances (UV) components of the image,
if the average brightness of the component is below a given threshold go to step 6,
else go to step 4.

4. Apply a sobel operator onto the component.

5. Apply a sharpening filter using a median filter of size 3x3 onto the sobelized image.

6. Merge the different filtered, and unfiltered, components into one image.

7. Display the merged image.

In the following experiments, due to the highly content dependent nature of the adap-
tive filtering application, the decision making of step (3) is replaced by a uniform random
decision to ensure that the processing load of the application do not depend on the ex-
perimental setup. Additionally, the application is then ran 10 times and the average value
of the number of exchanged notification of the different runs is taken, along with the
standard deviation of these values.

Table 6.4 – Number of average notification messages exchanged during 100 graph
iterations of various image and signal processing application, depending on the
execution policy used.

JIT-Execution Delayed-Execution
Application #N IPS #N IPS

SqueezeNet 1634757 5.8 18744 5.9
Reinforcement Learning 126253 945 27830 1220
Stabilization 30449 81 4401 83
6-Steps FFT 20398 570 10460 550
Adaptive Filtering 57842± 36.44 30.22± 0.34 31399± 14.73 30.35± 0.15

Table 6.4 shows the obtained results for the different applications using both the JIT
and delayed execution approaches. As expected, the number of notifications exchanged
during the lifetime of the applications is significantly lower with the delayed execution
approach compared to the JIT. Indeed, as seen in Section 6.3.3.2, when using the delayed
execution, all synchronizations between actors are optimized depending on which LRTs
they are running on, whereas the JIT execution has no vision of the future and thus
require a lot more message exchange.

158

6.4. Conclusion

However, this significant difference in synchronization points does not reflect on the
actual performances of each application with almost no difference in the number of IPS
between both execution policies, except for the Reinforcement Learning application. The
difference in IPS for the Reinforcement Learning application is explained by the fact that
the majority of the computation kernels of the application are very simple, being at most
30 multiplications and additions, and thus, the cost of synchronization is higher than the
computation itself.

For the rest of the applications, this seems to be linked to the fact that x86 proces-
sors have a very low overhead for mutexes and condition variables and that the cost of
synchronization is lower than the cost of putting a thread to sleep and waking it up.
However, these are late results obtained during the writing of this thesis and no further
investigation was conducted on this matter.

Consequently, on the x86 platform it seems that both method are suitable for syn-
chronization between LRTs. However, on a many core platform like the MPPA platform
used in [miomandre_embedded_2018], the delayed execution approach might yield
better performance due to less congestion of the Network On Chip (NoC) used for the
communication of the different PEs cluster.

6.4 Conclusion

Developing new dataflow MoCs requires developing associated tools for supporting
them. These tools often serve as a demonstration of what it is possible to do, or not, with
a MoC. However, the implementation of the tools is often left aside in the literature, and
it is not uncommon to face abandoned projects that were developed only for supporting
the publication of a given MoC. Additionally, when targeting embedded platforms the
implementation of a dedicated tool needs to be carefully thought out in order not to
introduce any overhead that would invalidate the potential benefits of using a given MoC.

In this chapter, we presented the Spider 2.0 runtime, the spiritual son of the Spider
runtime. Spider 2.0 is an open source library that is thought to be used as an exper-
imental platform for the πSDF MoC. Spider 2.0 directly inherits the global runtime
structure from Spider but improve on some aspect of its implementation. Spider 2.0
embeds a state-of-the art expression parser that is dedicated to the evaluate the dynamic
expression of the πSDF MoC as fast as possible. When compared to the fastest available
expression parsing library, we showed that our proposed JIT-compiled expression is 2.19

159

Chapter 6 – SPIDER 2.0: Implementation of a πSDF-based Extensible Runtime

times faster on average. Spider 2.0 also improves on the maintainability of the library
source code with a new intermediate transformation that removes the need for dedicated
partial specializations of the SR-DAG transformation and scheduling algorithms.

The Spider 2.0 offers more flexibility to the user than Spider with a more compre-
hensive API. The Spider 2.0 offers a flexible core library that aim at easing the support
of different multicore platforms. Using a logical hardware model, the user can describe
a given platform architecture (memory communications, number of PEs, etc.) with a
dedicated API independently from the library source code. Spider 2.0 also offers debug
capabilities with the possibility to output execution traces on the different PEs of the
platform.

Even though, Spider 2.0 has only been tested on x86-x64 and ARM platforms, the
authors are confident that supporting new platforms as a future work should not be a
problem. Preliminary results on the Jetson TX-2 show the capability of Spider 2.0 to
handle ARM + GPU platforms.

Indeed, during the writing of this thesis a preliminary work of supporting a CPU +
GPU platform was made. In this preliminary work, the platform has been modeled as
a 2 cluster architecture with one cluster of 5 CPUs and 1 cluster of 1 GPU using the
hardware model and API of Spider 2.0. The GPU is handled by an LRT running on 1 of
the 6 CPU cores of the Jetson platform, using the official NVIDIA CUDA library specific
memory primitive to allocate and transfert data from the CPU cluster to the GPU one.

160

CHAPTER 7

Conclusion

In the recent years, the evolution of embedded systems has resulted in more and more
heterogeneous platforms integrating multiple type of processing elements into one MPSoC.
At the same time, the rise of new types of computational heavy applications such as deep
learning applications have increased the demand for more efficient and specialized systems
as well as more efficient and high-level programming techniques of these systems.

For these purposes, the dataflow Models of Computation (MoCs) have emerged
as a popular programming technique to unveil and exploit the parallelism of appli-
cations as demonstrated by the emergence of programming framework such as the
OpenVX [kronos_group_openvx_2013] or the tensorflow [abadi_tensorflow:_2016]
frameworks. Dataflow MoCs have proven efficient means for modeling computational as-
pects of Cyber-Physical Systems due to their natural expression of parallel processing
pipelines and their high level of abstraction which benefit both to software and hardware
acceleration. Over the years, diverse Models of Computation (MoCs) have been proposed
that offer trade-offs between expressivity, conciseness, predictability, and reconfigurability.

7.1 Research Contributions

In this thesis, contributions are made to increase the expressiveness and compactness
of dataflow MoCs along increasing the efficiency of their analysis for resources allocation

in a context of scarce resources available. Finally, an embedded runtime system called
Spider 2.0 and dedicated to the support the πSDF MoC was developed during this thesis
to address the issue of managing complex dataflow based application onto MPSoCs.

7.1.1 Dataflow Model Extension

Chapter 4 introduces a new meta-model called SaMM which brings functional aspects
into the model space. SaMM can be applied to a dataflow MoC to increase its expressive-
ness and its compactness.

SaMM introduces new semantics for dynamically initializing delays using dataflow
actors. This new semantics of initialization of delays brings a more compact representa-
tion of iterative patterns to dataflow MoCs while offering more memory optimizations
opportunities when compared to current state-of-the-art dataflow MoCs. The new rep-
resentation is also well suited in cases such as high level synthesis for FPGAs with
more direct translation of the input graph to the synthesized hardware. Indeed, as shown
in [serot_implementing_2011] and [serot_high-level_2014], dataflow MoCs are
efficient for modeling streaming applications on FPGAs both as an high level program-
ming model and as an execution model.

Secondly, SaMM extends the notion of states of hierarchical dataflow graphs with
explicit state persistence and state forwarding. Indeed, in SaMM it is possible to fine
tune the degree of task parallelism of a given hierarchical graph by selecting the degree
of persistence of its inner state. The state of a hierarchical dataflow graph is handled the
delay belonging to the graph.

7.1.2 Dataflow Graph Dependencies Analysis

In Chapter 5, a new Intermediate Representation (IR) of SDF graphs for resource allo-
cation is proposed. The intermediate representation is then extended to the πSDF MoC.

The new proposed IR is composed of the original dataflow graph combined with an
ad-hoc numerical model of the dependencies of the graph. The proposed IR has been
implemented into the Spider tool [heulot_runtime_2015] as a proof of concept for
the resource allocation of image processing and machine learning applications. On the
set of tested applications, the results show that our proposed IR reduces the memory
overhead of the runtime by 97.33% in average while offering a speed up of the resource
allocation algorithm of a factor up to more than 18.

162

7.1.3 Spider 2.0: A Dataflow Runtime

In Chapter 6, the Spider 2.0 runtime is presented. Spider 2.0 is an efficient and open-
source framework for experimenting with dataflow analysis algorithms for reconfigurable
applications. The Spider 2.0 runtime uses the πSDF MoC extended with the SaMM delay
semantics. The runtime has been thought to be application and platform independent.
Indeed, it relies on an internal logical hardware model for abstracting the physical platform
on which it runs.

Some optimizations implemented into the runtime are presented in Chapter 6 that
reduces its overall overhead such as a very fast and efficient expression parser (and eval-
uator) for the dynamic parameter expressions of the πSDF MoC. The expression parser
method employed in Spider 2.0 uses a JIT compilation approach, which results in close
to natively compiled code results in term of speed of evaluation.

Secondly, Spider 2.0 also embeds a pre-process intermediate transformation that en-
forces the execution rules of the πSDF MoC which simplifies the analysis algorithms used
inside the framework by removing any partial specialization of these algorithms compared
to the original Spider runtime.

Finally, the asynchronous system of notifications used for the synchronization of the
different LRTs was discussed, with a proposed algorithm for optimizing the number of
notifications to its minimal possible value. Interestingly, results show that less notifications
does not yield significantly better performances on x86 processors. Indeed, it seems that
more notifications avoid the different threads of the runtime of getting into IDLE mode
too often which outweighs the cost of the synchronizations itself. However, due to a lack
of time to investigate this phenomenon further, this remark is solely based on empirical
observations.

7.2 Prospects – Future Works

The work presented in this document opens opportunities for future work, especially
in the improvement of the runtime capabilities of the proposed Spider 2.0 runtime. This
section outlines some the improvements the authors think could be made to the existing
runtime.

163

7.2.1 Just-In-Time Reconfiguration

In Chapter 6, we presented the Spider 2.0 runtime. A fast and lightweight runtime
supporting the dataflow πSDF MoC [desnos_pimm:_2013]. The πSDF MoC is a re-
configurable dataflow MoC, which means that the graph topology of a given application
graph is not completely fixed and can change during the execution. The πSDF reconfig-
urability directly comes from the dynamic values of application parameters. As of today,
even if no parameter changes between two executions of a reconfigurable graph, the run-
time still need to recompute the graph transformations, the mapping and the scheduling
of the graph.

In a future work, it could be interesting to integrate a system of cache for the values
of dynamic parameters. For a given reconfigurable and hierarchical graph, there can be
multiple reconfiguration points; the cache system could store the state of each of these
reconfiguration points (mapping and scheduling and intermediate transformation of the
application graph) with the corresponding parameter values. On the next iteration, the
execution would start using the previously cached states until one of the dynamic param-
eters value changes compared to the cached values. In this scenario, the cache would be
invalidated from this reconfiguration point up to the end of the graph iteration.

Such a cache system would probably lead to better performances in application with
a low rate of parameters change. However, in applications where parameters change their
value at every iteration of the application graph, such a cache would be counter productive
by adding an extra overhead. Adding a detection of parameters change rate could, however,
automatically enable or disable the cache system depending on the current context of the
application (low parameters change rate or high parameters change rate).

7.2.2 Dynamic Memory Compression

In dataflow graphs, synchronization between actors is done based on the exchange of
data tokens and in the case of complex heterogeneous architecture, it is often needed to
move data from one memory space to another. Moving or copying memory is often one
of the most expensive operation within an embedded system. The proposed future work
would be to investigate the possibility for the runtime to automatically compress and
decompress on-the-fly data in order to accelerate data transmission between LRTs of the
platform and to reduce IOs operations.

164

Online compression is an active research field with popular algorithms such as the
LZO [oberhumer_lz0_nodate], the LZ4 [collet_realtime_nodate] or the ACE
method [krintz_adaptive_2006]. Recently, with the development of more and more
powerful gaming console such as the Playstation 4, or the Xbox One, there have been
development focused on algorithms with high decompression speed such as the Kraken
algorithm 1. Although thought to be used directly within software with compression and
decompression phases handled by CPUs, these algorithms have also seen specific hardware
implementations [bartik_lz4_2015].

With dedicated hardware support, or very fast compression and decompression al-
gorithms, the Spider 2.0 runtime could handle applications with higher memory usage
(such as ultra HD video input) on architectures with small local memory available. For
instance, on the Kalray MPPA architecture where each cluster only possess less than 2MB
of local memory, dynamic decompression could lead to less wait for data of the PEs inside
the cluster. Indeed, with 16 PEs per cluster of the MPPA, 2MB of memory is not always
sufficient for all PEs to work simultaneously.

7.2.3 Debugging Capabilities

Dataflow MoCs naturally express data parallel applications with an high level of ab-
straction. However, as any parallel type of parallel programming paradigm, debugging a
dataflow application can be tedious for the least.

As presented in Chapter 6, the Spider 2.0 runtime is an experimental framework for
the prototyping of dataflow applications. Adding dataflow debugging capabilities to such a
framework would increase programmer productivity and efficiency. Although, Spider 2.0
already proposes a verbose mode displaying extensive execution traces of the internal
functioning of the runtime, these traces are not easy to interpret and thus, here after are
noted some future lead for improvements.
• Dataflow Breakpoints: almost all programming languages possess the notion of

execution breakpoints which allows the programmer to freeze the execution of an
application under certain conditions.
For dataflow graph, breakpoints could correspond to freezing the entire application
when the graph execution reaches a given actor and for a given firing of the actor,
or based on the content of a given Fifo of the graph. The runtime would then

1. http://www.radgametools.com/oodlekraken.htm.

165

automatically handle the freeze of all LRTs and gives the user a command line (or
graphical) interface to inspect the current execution state of the dataflow graph
and LRTs.
• Sandboxed Actor Executions: One of the issue when designing complex

dataflow graphs is the possibility to individually test an actor of a graph as it often
relies on the data production of its predecessors. Adding the possibility to isolate
an actor within a graph and execute it with buffers containing pre-computed, or
randomly generated, values without having to generate dedicated graphs would
greatly improve programmer productivity.
• Dynamic Execution Traces: In the current implementation of the runtime, it

is possible to output execution traces but either the execution traces information
appear in the console directly or it is necessary to wait the end of a graph iteration
to use an external tool. Having the possibility to graphically analyze in real time
the state of the runtime, specifically the load of each LRT, the memory usage, the
system calls execution traces (memory allocation time for instance) or the current
mapping of the application, would add great value to an experimental tool such as
Spider 2.0.

166

APPENDIXA

French Summary

A.1 Introduction

Notre société moderne est entourée d’une myriade de systèmes embarqués :
des simples thermostats dans nos maisons, aux podomètres connectés, en passant
par des systèmes plus complexes tels que nos téléphones, nos voitures et les sys-
tèmes très complexes et critiques de navigation automatisés dans les avions. Le
nombre de systèmes entrant dans notre vie quotidienne devrait continuer à augmen-
ter dans les prochaines années, avec une croissance prévue de 6,1 % entre 2020 et
2025 [marketsandmarkets_embedded_2020].

A.1.1 Problématiques

La conception et la programmation de systèmes embarqués nécessitent la prise en
compte de contraintes fonctionnelles et non fonctionnelles. Dans [desnos_memory_2014],
l’auteur classe les contraintes appliquées aux systèmes embarqués en trois catégories, à
savoir les contraintes d’application, les contraintes de coût et les contraintes externes.
Dans la classification que nous proposons, nous divisons les contraintes d’application en
contraintes fonctionnelles et en contraintes de conception.

Toutes ces contraintes peuvent déboucher sur des solutions orthogonales. Par exemple,
trouver un la solution optimale sur le plan énergétique pourrait entraîner une contrainte
de consommation de mémoire sous-optimale ou dans un coût plus élevé du système. Par
conséquent, la conception d’un système embarqué le plus souvent se résume à trouver et
à accepter le compromis le plus approprié, ou le plus acceptable, entre toutes les solutions
possibles. Le processus de recherche de ce compromis est souvent désigné sous le nom
de l’Exploration de l’Espace de Conception (EEC) d’un système et a été un domaine de
recherche actif avec le développement d’outils dédiés.

Parallèlement, la célèbre loi de Moore [moore_cramming_1998] qui prévoit que le
nombre de transistors dans un circuit intégré doublerait tous les deux ans arrive à son
terme. Au cours des deux dernières décennies, une nouvelle loi appelée "Plus que Moore"
est apparue [zhang_more_2009 ; waldrop_chips_2016] afin de maintenir la loi de
Moore en vigueur en tirant parti de l’hétérogénéité des systèmes modernes. Afin de tenir
compte de cette hétérogénité, ces dernières années ont vu le développement de langages
de programmation de haut niveau et de techniques de prototypage rapide pour combler
le fossé de la productivité des logiciels. L’un des paradigmes de programmation visant à
accroître la productivité des programmeurs est celui de la programmation basée flot de
données.

Les Modèles de Calcul (MdCs) flot de données (MoCs) sont un paradigme de pro-
grammation qui a été développé afin de capturer naturellement le parallélisme des ap-
plications. Dans les MdCs flot de données, les applications sont décrites comme étant
des graphes où les sommets sont des entités de calcul de différents niveaux de granula-
rité, du niveau de granularité très fin correspondant aux instructions élémentaires (ex :
addition, multiplication, etc.) au niveau de granularité élevé correspondant à des trai-
tements complexe (ex : convolution) ; et les arêtes sont des canaux de communication
de données. De nombreux MdCs flot de données ont été proposés depuis le travail ini-
tial de Kahn en 1974 [kahn_semantics_1974]. Chaque MdC flot de données proposé
est accompagné de sa propre sémantique et de ses propres règles d’exécution qui sont
conçues pour l’expressivité, la compacité ou l’efficacité du modèle. Par exemple, les mo-
dèles statiques tels que le SDF [lee_synchronous_1987] et ses dérivés sont conçus pour
modéliser des applications statiques avec de fortes garanties d’exécution telles que la limi-
tation de la mémoire ou l’absence de blocage. À l’inverse, les MdCs flot de données dyna-
miques ont la même expressivité que des machines de Turing [buck_scheduling_1993 ;
lee_dataflow_1995]. Par conséquent, ces modèles ne peuvent pas dériver statiquement

168

des ordonnancements, ni vérifier la consommation mémoire nécessaire pour l’exécution
infinie d’une application ; et ont besoin de décaler ces analyses au moment de l’exécution.
La popularité des MdCs flot de données vient de leur abstraction de l’implémentation
sous-jacente des noyaux de calcul et, par conséquent, de leur compatibilité avec le code
existant.

A.1.2 Plan

Cette thèse est organisée en deux parties distinctes : La première partie présente les
concept et problématiques de recherche étudiées dans cette thèse, et la deuxième partie
présente les différentes contributions de cette thèse.

Dans la partie 1, le Chapitre 2 présente les concepts des Modèles de Calcul (MdC) flot
de données et présente spécifiquement le modèle utilisé au cours de cette thèse. Ensuite,
le Chapitre 3 présente les différents problèmes liés au design d’un manageur applicatif
embarqué pour des plateformes multi processeurs hétérogènes.

Dans la partie 2, certaines limitations des MdCs flot de données existant sont présen-
tées et un méta-modèle appelé SaMM est proposé dans le Chapitre 4 pour répondre
à certaines de ces limitations. Ensuite, le Chapitre 5 introduit une nouvelle Repré-
sentation Intermédiaire (RI) pour graphes flot de données conçu spécifiquement pour
l’allocation de ressources matérielle dynamique dans un contexte embarqué. Le Cha-
pitre 6 présente un manageur applicatif pour plateformes multi processeurs hétérogène
développé au cours de cette thèse, et basé sur une version pré-existante du manageur
Spider [heulot_runtime_2015]. Enfin, le Chapitre 7 conclut cette thèse.

A.2 État de l’Art

A.2.1 Modèles de Calcul Flots de Données

En informatique, un Modèle de Calcul (MdC) décrit l’ensemble des opérations et
des règles élémentaires qui définissent comment un programme informatique est exécuté.
Comme les lois de la physique qui régissent le fonctionnement de notre univers et l’interac-
tion entre les objets qui le composent, un MdC régit le fonctionnement d’un programme et
les interactions entre les éléments du MdC. Il est toutefois important de faire la différence
entre les MdCs et les langages de programmation. En effet, un langage de programmation
peut être utilisé pour mettre en œuvre différents MdCs. Par exemple, il est possible d’im-

169

plémenter une machine de Turing en langage C, mais il est également possible d’utiliser
ce langage pour implémenter n’importe quel MdC flot de données.

Modèle de flot de données synchrone (SDF)

B
11

1

A C18 42A actor

1 Data ports
and associated
rate

FIFO

FIFO with D
delay tokensD2

Figure A.1 – Modèle de Calcul SDF.

Le MdC flot de données synchrone (SDF) [lee_synchronous_1987] est la spéciali-
sation statique la plus populaire du MdC DPN [lee_dataflow_1995]. Les règles d’exé-
cution du MdC SDF définissent les taux de production et de consommation des jetons
de données des acteurs comme étant des scalaires fixes, ce qui signifie que les taux sont
fixés au moment de la conception du graphe et sont fixés pour toute l’exécution de l’ap-
plication. La sémantique graphique du MdC SDF et un exemple de graphique SDF sont
présentés dans la Figure A.1.

Formellement, un graphique SDF G = (A,F) contient un ensemble d’acteurs A qui
sont interconnectés par un ensemble de Fifos F. Un acteur a ∈ A lit des jetons de données
sur ses ports d’entrée et produit des jetons de données sur ses ports de sortie. L’exécution
d’un acteur s’appelle une exécution et pour qu’un acteur puisse s’exécuter, il faut qu’il
y ait suffisamment de jetons de données disponibles sur tous ses ports d’entrée. Dans le
graphique de la Figure A.1, l’acteur B ne peut s’exécuter que lorsque 2 jetons de données
sont présents sur la Fifo et 1 jeton de données est présent sur sa boucle. Les jetons de
données initiaux d’une Fifo f ∈ F (AB) sont appelés des délais. La valeur n du délai est
le nombre de jetons de données initiaux de f.

La popularité du MdC SDF vient de sa grande capacité d’analyse. En effet, à l’aide
d’analyses statiques, les propriétés de consistance et de vivacité d’un graphe SDF peuvent
être vérifiées. Lorsqu’un graphe SDF est ordonnançable, c’est-à-dire qu’il est consistant et
vivant, une séquence minimale, et répétable à l’infini, d’exécutions des acteurs le compo-
sant existe en mémoire fini . Cette séquence minimale est appelée une itération de graphe
et le nombre d’exécution de chaque acteur est donné par les coefficients du Vecteur de
Répétition (VR) du graphe. La Figure A.1 présente un graphe SDF consistant et vivant.
Pour chaque itération du graphe, l’acteur A est exécuté 1 fois, l’acteur B 4 fois, et l’acteur
C 16 fois.

170

Modèle de flot de données Synchrone, Interfacé et Paramétré (πSDF)

D1H 11A 1

B 11
11

1

N C 1 11

SetN N
N

data interfaces

N parameter

parameter
dependency

configuration
ports

configuration
input interface

A actor

FIFO

D

Data ports
and rate1

H
hierarchical
actor

FIFO with D
delay tokens

Figure A.2 – Modèle de Calcul πSDF.

Le MdC flot de données Synchrone, Interfacé et Paramétré (πSDF) [desnos_pimm:_2013]
est une extension hiérarchique et reconfigurable dynamiquement des MdCs SDF et
IBSDF [piat_interface-based_2009]. De même que dans le MdC IBSDF, dans un
graphe πSDF, un acteur hiérarchique est un acteur dont le comportement interne est
défini par un graphe πSDF. La Figure A.2 présente un exemple de graphe πSDF avec la
sémantique graphique associée. L’acteur H est un acteur hiérarchique défini par le sous-
graphe formé par les acteurs B et C. Formellement, un graphe πSDF G = (A,F, I,Π,∆)
contient en plus d’un ensemble d’acteurs A et un ensemble de Fifos F, un ensemble d’in-
terfaces hiérarchiques I, un ensemble de paramètres Π, et un ensemble de dépendances
de paramètres ∆. Les interfaces hiérarchiques du MdC πSDF sont directement héritées
du MdC IBSDF. Cet héritage direct des interfaces fait du MdC πSDF un MdC com-
positionnel, ce qui signifie que la spécification interne des acteurs composant un graphe
n’influence pas son analysabilité. Dans la Figure A.2, la définition du sous-graphe formé
par les acteurs B et C n’a pas d’impact sur l’analyse effectuée sur le graphe de niveau
supérieur.

Les paramètres π ∈ Π sont associés à des valeurs de paramètres v ∈ N . Les va-
leurs de paramètres peuvent soit être définies statiquement, dérivées d’autres paramètres,
ou définies dynamiquement par les acteurs de configuration au moment de l’exécution.
Un paramètre défini dynamiquement est appelé paramètre configurable et sa valeur est
fixée par un acteur de configuration au moment de l’exécution. La valeur d’un paramètre
configurable n’est fixée qu’une seule fois par itération du graphe auquel il appartient.

171

Par exemple, dans la Figure A.2, le paramètre N au niveau supérieur du graphe est un
paramètre configurable défini par l’acteur de configuration SetN .

Les dépendances δ ∈ ∆ sont des liens dirigés du graphe qui propagent les valeurs de
paramètres vers et depuis les ports d’entrée et de sortie de configuration des acteurs et
des paramètres. Pour les acteurs hiérarchiques, les ports de configuration sont également
appelés interfaces de configuration et sont considérés comme des paramètres statiques à
l’intérieur du sous-graphe associé. La combinaison des paramètres Π et des dépendances
∆ forme ce que l’on appelle un arbre de dépendance des paramètres T = (Π,∆). Les
dépendances de paramètres ne suivent pas les mêmes règles de synchronisation et de
priorité que les Fifos d’un graphe flot de données. En effet, dans le MdC πSDF, les
paramètres sont mis à disposition, virtuellement, instantanément à chaque dépendance
de données connectée dès que leur valeur est fixée.

La reconfigurabilité du MdC πSDF provient directement des paramètres dont les va-
leurs sont utilisés pour influencer différentes propriétés, à savoir le coeur de calcul d’un
acteur, les taux de production ou de consommation des ports de données d’un acteur, la
valeur d’un autre paramètre et le nombre de délais dans une Fifo. Il est important de noter
que si les taux de production et de consommation de données d’entrée et de sortie d’un
acteur A est égal à 0, alors A ne sera pas exécuté. La combinaison des taux de production
et de consommation de données paramétrés et de la propriété de non-exécution des acteurs
donne la possibilité de modifier la topologie d’un graphe πSDF de manière dynamique.
Par exemple, un chemin de données peut être complètement désactivé, et donc non pris
en compte par l’analyse de consistance et de vivacité. Dans la Figure A.2, le paramètre N
est défini par l’acteur SetN et contrôle le nombre de répétitions de l’acteur B à l’intérieur
de l’acteur hiérarchique H mais, en raison de la nature compositionnelle du MdC πSDF,
n’affecte pas l’analyse du graphe de niveau supérieur.

A.3 Extension de Modèles Flot de Données

GoS i

CP
n

p c

Figure A.3 – Nouvelle sémantique d’initialisation des délais.

172

Le Chapitre 4 présente un nouveau méta-modèle appelé State-Aware dataflow Meta-
Model (SaMM) qui introduit des aspects fonctionnels dans l’espace des modèles de
calcul. SaMM peut être appliqué à un MdC flot de données pour en augmenter l’ex-
pressivité et la compacité. SaMM introduit une nouvelle sémantique pour l’initialisa-
tion dynamique des délais en utilisant des acteurs du graphe flot de données direc-
tement, présentée en Figure A.3. Cette nouvelle sémantique d’initialisation des dé-
lais apporte une représentation plus compacte des structures itératives (par exemple
des boucles) aux MdC flot de données tout en offrant plus d’opportunités d’optimi-
sations mémoire. La nouvelle représentation est également bien adaptée dans des cas
tels que la synthèse de haut niveau pour les FPGAs avec une traduction plus di-
recte du graphe applicatif d’entrée vers le matériel synthétisé. En effet, comme indiqué
dans [serot_implementing_2011] et [serot_high-level_2014], les MdC flot de don-
nées sont efficaces pour modéliser les applications de flux de données sur les FPGAs à la
fois comme modèles de programmation de haut niveau et comme modèles d’exécution.

Dans un second temps, SaMM étend la notion d’états des graphes flot de données hié-
rarchiques avec une persistance d’état et une transmission d’état explicites. En effet, dans
SaMM, il est possible d’affiner le degré de parallélisme des tâches d’un graphe hiérarchique
donné en sélectionnant le degré de persistance de son état interne. L’état d’un graph de
flot de données hiérarchique étant géré uniquement en utilisant les délais appartenant à
ce graphe.

A.4 Analyse de Modèles Flot de Données

Dans le Chapitre 5, une nouvelle Représentation Intermédiaire (RI) des graphes SDF
pour l’allocation des ressources est proposée. La représentation intermédiaire est ensuite
étendue au MdC πSDF. La nouvelle RI proposée est composée du graphe flot de données
original combiné à un modèle numérique ad-hoc des dépendances de données. La RI pro-
posée a été mise en œuvre dans l’outil Spider [heulot_runtime_2015] comme preuve
de concept pour l’allocation des ressources d’applications de traitement d’images et d’ap-
prentissage automatique. Sur l’ensemble des applications testées, les résultats montrent
que la RI proposée réduit l’occupation mémoire du manageur d’applications de 97, 33%
en moyenne tout en offrant une accélération de l’allocation des ressources d’un facteur
allant jusqu’à 18.

173

A.5 Spider 2.0 : Un Manageur de Ressource d’Ap-
plications Basées Flot de Données

Dans le Chapitre 6, le manageur applicatif Spider 2.0 est présenté. Spider 2.0 est un
environnement open-source permettant d’expérimenter des algorithmes d’analyse sur des
graphes flot de données pour des applications reconfigurables. Le manageur applicatif
Spider 2.0 utilise le MdC πSDF étendu avec la sémantique de SaMM. Le manageur a été
pensé pour être indépendant des applications et des plateformes sur lequel il est exécuté.
En effet, il s’appuie sur un modèle interne matériel our abstraire la plateforme physique
sur laquelle il fonctionne.

Certaines optimisations mises en œuvre dans le manageur sont présentées au Cha-
pitre 6, qui réduisent sa charge globale, comme un analyseur (et un évaluateur) d’expres-
sions mathématiques très rapide et efficace pour les expressions de paramètres dynamiques
du MdC πSDF. La méthode de l’analyseur d’expressions utilisée dans Spider 2.0 utilise
une approche de compilation Juste à Temps (JAT), qui donne des résultats proches des
résultats du code compilé en natif.

Deuxièmement, Spider 2.0 intègre également une transformation intermédiaire qui ap-
plique les règles d’exécution du MoC πSDF, ce qui simplifie les algorithmes d’analyse
utilisés en supprimant toute spécialisation partielle de ces algorithmes par rapport à l’an-
cienne version du manageur.

Enfin, le système asynchrone de notifications utilisé pour la synchronisation des diffé-
rents Manageurs Applicatif Local (MAL) a été discuté, avec une proposition d’algorithme
pour optimiser le nombre de notifications. Il est intéressant de noter que les résultats
montrent que moins de notifications ne donne pas de performances significativement
meilleures sur les processeurs x86. En effet, il semble qu’un plus grand nombre de no-
tifications évite aux différents fils du temps d’exécution de passer trop souvent en mode
repos, ce qui dépasse le coût des synchronisations elles mêmes. Cependant, faute de temps
pour approfondir ce phénomène, cette remarque est uniquement basée sur des observations
empiriques.

A.6 Conclusion

Dans cette thèse, des contributions sont faites pour améliorer l’expressivité et la com-
pacité des Modèles de Calcul (MdC) basé flot de données tout en augmentant l’efficacité

174

de leur analyse pour l’allocation des ressources dans un contexte de ressources peu dispo-
nibles des systèmes embarqués. Enfin, un manageur de ressources intégré appelé Spider 2.0
et dédié au support du MdC πSDF a été développé au cours de cette thèse afin d’aborder
la question de la gestion des applications complexes basées flot de données sur plateformes
hétérogènes multi-processeurs embarqués.

175

ANNEXEB

Platform API

This appendix presents the list of functions available in the platform API of
Spider 2.0. Using all of these functions, the programmer can describe heterogeneous
platforms with specific communication routines between different memory space. It is
also possible to define exchange costs between two memory units based on the size of
the data exchanged ; these costs will be used at runtime to take mapping and scheduling
decisions.

1 # ifndef SPIDER2_ARCHI_API_H
2 # define SPIDER2_ARCHI_API_H
3
4 /* === Includes === */
5
6 # include <cstdint >
7 # include <string >
8 # include <api/global -api.h>
9

10 namespace spider {
11
12 inline uint64_t defaultC2CZeroCommunicationCost (uint32_t , uint32_t , uint64_t) {
13 return 0;
14 }
15
16 inline uint64_t defaultZeroCommunicationCost (uint64_t) {
17 return 0;
18 }
19
20 inline uint64_t defaultInfiniteCommunicationCost (uint64_t) {
21 return UINT64_MAX ;
22 }
23
24 /* === Type definition (s) === */
25
26 /**
27 * @brief Memory exchange cost routine (overridable).

28 */
29 using MemoryExchangeCostRoutine = std :: function < uint_least64_t (uint_least64_t /* = Number of bytes = */) >;
30
31 /**
32 * @brief Memory bus send / receive routine .
33 */
34 using MemoryBusRoutine = std :: function <void(int_least64_t /* = Size in bytes = */ ,
35 void *, /* = Buffer to send / receive = */
36 void * /* = Buffer to send / receive = */) >;
37
38 /**
39 * @brief Data memory allocation routine (overridable).
40 * This should return the allocated buffer .
41 */
42 using MemoryAllocateRoutine = std :: function <void *(uint_least64_t /* = Number of bytes = */) >;
43
44 /**
45 * @brief Data memory deallocation routine (overridable).
46 */
47 using MemoryDeallocateRoutine = std :: function <void(void * /* = physical address to free = */) >;
48
49 /* === Function (s) prototype === */
50
51 namespace archi {
52 /**
53 * @brief Get the unique platform of the spider session .
54 * @return reference pointer to the platform .
55 */
56 Platform *& platform ();
57 }
58
59 namespace api {
60
61 /* === General Platform related API === */
62
63 /**
64 * @brief Create a new Platform (only one is permitted)
65 * @param clusterCount Number of cluster in the platform (1 by default).
66 * @param totalPECount Total number of PE in the platform (1 by default).
67 * @return pointer to the newly created @refitem Platform
68 * @throws @refitem Spider :: Exception if a platform already exists .
69 */
70 Platform * createPlatform (size_t clusterCount , size_t totalPECount);
71
72 /**
73 * @brief Set the Global Run -Time (GRT) PE.
74 * @param grtProcessingElement Processing Element of the GRT.
75 */
76 void setSpiderGRTPE (PE * grtProcessingElement);
77
78 /* === MemoryUnit related API === */
79
80 /**
81 * @brief Create a new MemoryInterface .
82 * @param size Size of the MemoryInterface in bytes .
83 * @return Pointer to newly created @refitem MemoryInterface .
84 */
85 MemoryInterface * createMemoryInterface (uint64_t size);
86
87 /**
88 * @brief Override the allocate routine of a given @refitem MemoryInterface .
89 * @param interface Pointer to the @refitem MemoryInterface .
90 * @param routine Routine to set.
91 */
92 void setMemoryInterfaceAllocateRoutine (MemoryInterface *interface , MemoryAllocateRoutine routine);
93
94 /**
95 * @brief Override the deallocate routine of a given @refitem MemoryInterface .
96 * @param interface Pointer to the @refitem MemoryInterface .
97 * @param routine Routine to set.

177

98 */
99 void setMemoryInterfaceDeallocateRoutine (MemoryInterface *interface , MemoryDeallocateRoutine routine);

100
101 /**
102 * @brief Creates a new @refitem MemoryBus .
103 * @param sendRoutine Routine used for sending data on this bus.
104 * @param receiveRoutine Routine used for receiving data on this bus.
105 * @return pointer to the created @refitem MemoryBus .
106 */
107 MemoryBus * createMemoryBus (MemoryBusRoutine sendRoutine , MemoryBusRoutine receiveRoutine);
108
109 /**
110 * @brief Override the send cost routine of a given @refitem MemoryBus .
111 * @param bus Pointer to the @refitem MemoryBus .
112 * @param routine Routine to set.
113 */
114 void setMemoryBusSendCostRoutine (MemoryBus *bus , MemoryExchangeCostRoutine routine);
115
116 /**
117 * @brief Override the receive cost routine of a given @refitem MemoryBus .
118 * @param bus Pointer to the @refitem MemoryBus .
119 * @param routine Routine to set.
120 */
121 void setMemoryBusReceiveCostRoutine (MemoryBus *bus , MemoryExchangeCostRoutine routine);
122
123 /**
124 * @brief Set the writing speed of a given @refitem MemoryBus .
125 * @param bus Pointer to the @refitem MemoryBus .
126 * @param value Writing speed in bytes /s.
127 */
128 void setMemoryBusWriteSpeed (MemoryBus *bus , uint64_t value);
129
130 /**
131 * @brief Set the reading speed of a given @refitem MemoryBus .
132 * @param bus Pointer to the @refitem MemoryBus .
133 * @param value Reading speed in bytes /s.
134 */
135 void setMemoryBusReadSpeed (MemoryBus *bus , uint64_t value);
136
137 /**
138 * @brief Create a @refitem InterMemoryBus associated to the communication between two @refitem Cluster .
139 * @param clusterA Pointer to cluster A.
140 * @param clusterB Pointer to cluster B.
141 * @param busAToB Pointer to @refitem MemoryBus in the direction A -> B.
142 * @param busBToA Pointer to @refitem MemoryBus in the direction B -> A.
143 * @return pointer to created @refitem InterMemoryBus .
144 */
145 InterMemoryBus * createInterClusterMemoryBus (Cluster *clusterA ,
146 Cluster *clusterB ,
147 MemoryBus * busAToB = nullptr ,
148 MemoryBus * busBToA = nullptr);
149
150 /* === Cluster related API === */
151
152 /**
153 * @brief Create a new Cluster . A cluster is a set of PE connected to a same memory unit.
154 * @param PECount Number of PE in the cluster .
155 * @param memoryInterface Memory interface of the memory unit of the cluster .
156 * @return pointer to the newly created @refitem Cluster .
157 */
158 Cluster * createCluster (size_t PECount , MemoryInterface * memoryInterface);
159
160 /* === PE related API === */
161
162 /**
163 * @brief Create a new Processing Element (PE).
164 * @param hwType S-LAM user defined hardware type.
165 * @param hwID Physical hardware id of the PE (mainly used for thread affinity).
166 * @param cluster Cluster of the PE.
167 * @param name Name of the PE.

178

168 * @param type Spider PE type.
169 * @param affinity Optional thread affinity .
170 * @return Pointer to newly created @refitem ProcessingElement , associated memory is handled by spider .
171 */
172 PE * createProcessingElement (uint32_t hwType , uint32_t hwID , Cluster *cluster , std :: string name ,
173 PEType type = PEType ::LRT , int32_t affinity = -1);
174
175 /**
176 * @brief Attach a Processing Element to a managing Local RunTime (LRT).
177 * @param pe Pointer to the PE.
178 * @param lrt Pointer to the LRT.
179 * @remark If the either of the pointers is null , nothing happens .
180 * @remark If the pe is already attached to an LRT or is an LRT , nothing happens .
181 * @throws @refitem spider :: Exception If lrt is not a valid LRT , nothing happens .
182 */
183 void attachPEToLRT (PE *pe , PE *lrt);
184
185 /**
186 * @brief Set the SpiderPEType of a given PE.
187 * @param processingElement Pointer to the PE.
188 * @param type Spider :: PEType to set.
189 */
190 void setPESpiderPEType (PE * processingElement , PEType type);
191
192 /**
193 * @brief Set the name of a given PE.
194 * @param processingElement Pointer to the PE.
195 * @param name Name of the PE to set.
196 */
197 void setPEName (PE * processingElement , std :: string name);
198
199 /**
200 * @brief Enable a given PE (default).
201 * @param processingElement Pointer to the PE.
202 */
203 void enablePE (PE * processingElement);
204
205 /**
206 * @brief Disable a given PE.
207 * @param processingElement Pointer to the PE.
208 */
209 void disablePE (PE * processingElement);
210 }
211 }
212 }
213 # endif // SPIDER2_ARCHI_API_H

Listing B.1 – Platform creation API of Spider 2.0.

179

List of Figures

1.1 Summary of the organization and contributions of this thesis. Colored chap-
ters correspond to contributions chapters and gray chapters correspond to
state-of-the-art chapters. Filled lines correspond to direct connections be-
tween chapters and dotted lines correspond to possible connection that was
explored during this thesis. 18

2.1 DPN graph example. 25
2.2 Illustration of the different typ of parallelism in dataflow graphs. 27
2.3 SDF graphical semantics and a graph example. 29
2.4 A CSDF graph example. 31
2.5 Graph example of a hierarchical SDFG. 33
2.6 IBSDF graphical semantic and a graph example. 34
2.7 πSDF graphical semantic and a graph example. 36
2.8 Example of a switch pattern modeled in πSDF. 39
2.9 Example of a select pattern modeled in πSDF. 41
2.10 Example of an SPDF graph. 41
2.11 An non exhaustive illustration of the dataflow MoCs landscape. 42

3.1 Examples of homogeneous and heterogeneous platforms. 46
3.2 Examples of memory architectures. 47

180

3.3 Multicore scheduling flow decomposed for an application onto a 3 PEs
(yellow, orange and purple) platforms. The extraction consists of extracting
executable tasks from a application, then the mapping assigns a PE to each
of the tasks which are then ordered and finally, the timing phase attributes
a given start time to each of the tasks. 49

3.4 Illustration of the three main approaches to parallel scheduling of applica-
tions onto MPSoCs . 51

4.1 Examples of delay usage in dataflow graphs. Delays are represented graph-
ically by a filled circle on a Fifo. 61

4.2 Proposed initialization semantics of delay. 64
4.3 Illustration of the firing rules of SaMM. 65
4.4 SAD graph example and equivalent graphs used for consistency and live-

ness analyses. 66
4.5 Example of an analysis workflow of a SAD graph. 68
4.6 CEG transformation of a synthetic SAD graph. 68
4.7 CLEG of the graph of Figure 4.6a. 70
4.8 Illustration of recursive and multiple initialization of delays. 70
4.9 Equivalent SDF graph of Algorithm 1. 72
4.10 Equivalent CSDF graph of Algorithm 1. 73
4.11 Equivalent πSDF graph of Algorithm 1. 73
4.12 Equivalent SAD graph of Algorithm 1. 74
4.13 Potential schedules of Algorithm 1 depending on the level of parallelism of

the loop kernel exposed. 75
4.14 Example of a matrix multiplication modeled with a SAD graph. 77
4.15 CEG of the graph of Figure 4.14. 78
4.16 CLEG of the graph of Figure 4.14. 78
4.17 Illustration of the different levels of persistence for delays in SaMM. LDs

persist within only 1 level of hierarchy, LPDs persist for N levels of hier-
archy and GPDs persist for all the levels of hierarchy. 81

4.18 πSDF graph example with an internal delay. 82
4.19 Possible schedule of the graph of Figure 4.18 with no internal state. 83
4.20 Possible schedule of the graph of Figure 4.18 with a local internal state. . . 84
4.21 Possible schedule of the graph of Figure 4.18 with a global internal state. . 84
4.22 SA-πSDF graph example and associated graphical semantics. 85

181

4.23 Example of emulating the LPD of the graph of Figure 4.22 using LDs. . . . 85
4.24 SA-πSDF graph of the Cacla actor update algorithm. Nx is the size of

the associated x parameter. 87

5.1 A πSDF to SR-DAG transformation example. 94
5.2 An SDF graph resulting in O(M N) SR-DAG actors. 95
5.3 SDF graph with overlapping dependencies. 99
5.4 SR-DAG of πSDF graph of Figure 5.3. 100
5.5 Example of the proposed IR of the graph of Figure 5.3. Each actor in the

graph is annotated with its corresponding dependency matrix. 104
5.6 Hierarchical πSDF graph example. 105
5.7 Behavior of the output interface connecting the subgraph H to actor G in

Figure 5.6. Tokens are named after the corresponding firing of the actor
producing them. 106

5.8 A hierarchical graph example used for illustrating the relaxed execution
model of the πSDF MoC. 107

5.9 A possible schedule of the graph of Figure 5.8 following the strict execution
rules of the πSDF MoC. Firings of actor C can only start after the end of
the complete firing of the hierarchical actor H. 108

5.10 A possible schedule of the graph of Figure 5.8 with relaxed execution rules
of the πSDF MoC. Firings of actor C can start in parallel of the firing of
the hierarchical actor H, as the data dependencies are satisfied. 108

5.11 Illustration of C ′1|ak
, delays are omitted. 110

5.12 Multi-Level Hierarchical πSDF graph example. 113
5.13 Dependency analysis of the graph of Figure 5.12. The graphical formalism

is the same as in Figure 5.7 . 114
5.14 Relative memory footprint of representations over total memory footprint

(lower is better). The Num configuration corresponds to the proposed IR
and the Ref configuration corresponds to the SR-DAG IR. A low value in-
dicates a low memory footprint of the given IR over the runtime memory
usage. The SR-DAG IR is responsible for almost the entire runtime mem-
ory footprint (with up to 98.8%) as opposed to the light weight proposed
representation. 120

5.15 Relative total execution time, intermediate representation building time +
scheduling time, for the 3 platforms. 124

182

6.1 Preesm and Spider 2.0 development framework. 128
6.2 Spider 2.0 runtime structure. 130
6.3 Spider 2.0 hardware logical model. 132
6.4 Example of modeling of the Sobel application using master mode and ac-

celerator mode of Spider 2.0, respectively. 137
6.5 Average evaluation rate in Mevals / s for the functions of Table 6.2 for the

three different approaches. 146
6.6 Example of a reconfigurable hierarchical graph. 148
6.7 Enforced execution model of the graph of Figure 6.6. 149
6.8 Example of an SDF graph containing actors with multiple input data de-

pendencies and its corresponding SR-DAG. 153
6.9 Example of notification synchronization when using a JIT schedule and

execute approach. 154
6.10 Example of notification synchronization when using a delayed execution

after schedule approach. Compared to Figure 6.9, there is less notification
noise for unnecessary synchronizations. 157

A.1 Modèle de Calcul SDF. 170
A.2 Modèle de Calcul πSDF. 171
A.3 Nouvelle sémantique d’initialisation des délais. 172

183

List of Tables

3.1 Multicore scheduling strategies. 50

3.2 A comparison of existing dataflow-based and tasks-based runtimes. 54

4.1 Comparison of memory usage of SA-πSDF and πSDF implementations of
the Cacla algorithm. 88

5.1 Experimental platform characteristics . 117

5.2 Applications description . 118

5.3 Memory footprint of the representations 119

5.4 Intermediate Representation building time in ms for the three tested plat-
forms (lower is better). The values correspond to the time needed by the
runtime to build the complete intermediate representation needed for the
scheduling and mapping operations. 121

5.5 Resource allocation execution time in ms of the different configurations.
The values in the table corresponds to the time needed by the runtime
scheduler to perform the scheduling and mapping of an application onto a
given platform. There is a significant gain using the Num-S configuration
on all platform. On the other hand, the Num-R representation is most of
the time the slowest configuration. 122

184

5.6 Relative change in schedule latency (%) for the different configurations.
Values > 0% are increase in the schedule latency and values < 0% are
decrease in the schedule latency. 123

6.1 PiMM and SaMM model feature support by the Preesm, Spider, and
Spider 2.0 tools. 139

6.2 Functions used in the benchmark for the expression parsing. 145
6.3 Average evaluation rate in Mevals / s for every function of Table 6.2 for

the three different approaches. The compile time (in ms) of each function
for the JIT-Compiled approach is also reported. 147

6.4 Number of average notification messages exchanged during 100 graph it-
erations of various image and signal processing application, depending on
the execution policy used. 158

185

Listings

4.1 Equivalence of Persistence Scopes in C Language. 81
6.1 Example of the creation of an homogeneous platform in Spider 2.0. 134
6.2 Example of an automatically generated function call for Equation (6.1). . . 143
6.3 System call used for the JIT compilation of dynamic expressions in the

Linux environment. 144
B.1 Platform creation API of Spider 2.0. 176

186

Glossary

πSDF Parameterized and Interfaced Synchronous DataFlow17, 31, 36–40, 42 f., 55 f.,
59 f., 62, 73, 79, 81–86, 88, 93–99, 105, 107, 109, 113, 116–119, 121 f., 125, 127 f.,
130, 132, 134–140, 142, 144, 146, 148 ff., 152, 154, 156, 158–163, 170–174

SAD State-Aware Dataflow . 59 f., 66 f., 71, 74, 78, 88

Cacla Continuous Actor Critic Learning Automaton . 87 f.

Fifo First-In First-Out Queue24 f., 29 ff., 34 f., 37, 60 f., 63 f., 66–69, 71 f., 75 f., 78 f.,
81, 86, 99, 104, 106, 111, 136, 140, 155, 165, 188

FPGA Field Programmable Gate Array . 75, 77 f., 132, 162, 172

Preesm Parallel Real-time Embedded Executives Scheduling Method . . . 52, 59, 117,
128 f., 138 f.

Spider Synchronous Parameterized and Interfaced Dataflow Embedded Runtime 17,
19, 53, 55, 59, 92 f., 96, 98, 117 ff., 122–125, 128, 130, 136–139, 149, 151, 153, 159 f.,
162 f., 169

Spider 2.0 Synchronous Parameterized and Interfaced Dataflow Embedded Runtime
2.0 17, 53, 56, 128–142, 144, 147, 149–154, 159–163, 165 f., 176, 179, 186

ADF Affine DataFlow . 31 f.

AHSDF Acyclic Homogeneous SDF . 53

AI Artificial Intelligence . 13

APEG Acyclic Precedence Expansion Graph . 55, 93

187

API Application Programming Interface 50, 55 f., 96, 115, 128–131, 133 ff., 160, 176,
179, 186

BPDF Boolean Parametric Dataflow . 40

CEG Consistency Equivalent Graph . 66–70, 77

CLEG Consistency and Liveness Equivalent Graph . 66 f., 69, 77

CPS Cyber-Physical System. .161

CPU Central Processing Unit . 13, 54 f., 131 ff., 160, 164

CSDF Cyclo-Static Dataflow . 31 f., 59, 73, 92, 127

DAG Directed Acyclic Graph . 54, 91 ff., 97, 115 f., 118, 125

DFT Discrete Fourier Transform . 157

DPN Dataflow Process Network . 24 f., 28 f., 63

DSE Design Space Exploration . 14, 16, 128, 136

DSP Digital Signal Processing . 46

DSSF Deterministic SDF with Shared Fifos . 34

FFT Fast-Fourier Transform . 32, 46, 157

FIR Finite Impulse Response . 32

FSM Finite-State Machine . 24, 188

FSM-SADF Finite-State Machine (FSM) based SADF. .127

GPD Globally Persistent Delay . 79 f., 82 f.

GPP General Purpose Processor .45 f., 52 f., 56

GPU Graphics Processing Unit. .46, 52–56, 131 ff., 160

GRT Global RunTime . 130 f., 135, 139, 150 ff.

HEFT Heterogeneous Earliest-Finish-Time . 54

HI-HTGS HMBE Integrated HTGS . 96

HLS High-Level Synthesis . 192

HMBE HTGS Model-Based Engine . 53, 55

HMPSoC Heterogeneous Multi-Processor System on Chip 91, 96 f., 125, 192

HPC High-Performance Computing. .54, 97

HTGS Hybrid Task Graph Scheduler .55

188

IBSDF Interfaced Based Synchronous Dataflow. 31, 34–37, 62, 92, 97, 105, 107

IO Input/Output . 13, 137, 164

IPS Iteration per seconds . 157 f.

IR Intermediate Representation 17, 19, 91, 99, 104, 119, 125, 162

JIT Just-In-Time . 140, 142–147, 153–159, 163, 186

Khronos Khronos . 96

KPN Kahn Process Network . 24 f.

LD Local Delay . 79 f., 82, 84, 86, 88

LPD Locally Persistent Delay . 79 f., 83 f., 86, 88, 139

LRT Local RunTime 130 ff., 135, 137, 139, 150–156, 158 ff., 163–166

LTO Link Time Optimization . 144

MEG Memory Exclusion Graph . 54

MLP Multi Layer Perceptron. .88

MoC Model of Computation 15 ff., 19, 23–43, 52 f., 55 f., 59–64, 66 ff., 70–74, 76,
78 ff., 82 ff., 86–89, 91 f., 94–99, 101, 103, 105, 107, 109, 111, 113, 115, 117 f., 125,
127 f., 135, 137–141, 148 ff., 159, 161 ff., 165, 192

MPPA Massively Parallel Processor Array 96, 132, 153, 159, 165

MPSoC Multi-Processor System on Chip 16, 19, 23, 45–48, 50, 52, 54 ff., 161

NoC Network On Chip . 48, 159

NORMA NO Remote Memory Access .47 f.

NUMA Non-Uniform Memory Access . 47 f., 53, 56

OpenVX OpenVX . 92, 96 f., 161

PDF Parameterized DataFlow. .31

PE Processing Element 27, 45–48, 53, 55, 116, 129–137, 155, 159 f., 165

PEG Partial Expansion Graph . 98

PiMM Parameterized and Interfaced Meta-Model .63, 138 f.

PSDF Parameterized Synchronous DataFlow . 39, 59

PSO Particle Swarm Optimization . 98

RPN Reverse Polish Notation . 141 f.

189

RV Repetition Vector . 30, 38, 66 f., 69 f.

S-LAM System-Level Architecture Model . 128 f.

SA-πSDF State-Aware Parameterized and Interfaced Synchronous DataFlow60, 79,
84–89

SADF Scenario-Aware DataFlow . 127, 188

SaMM State-Aware dataflow Meta-Model . . . 17, 19, 43, 59 ff., 63, 65–69, 71, 74, 76,
79 f., 83 f., 86, 88 f., 128, 135, 138 f., 162, 169, 172 f., 192

SDF Synchronous DataFlow. . . .15, 24, 28–34, 36, 40, 53, 55, 59 ff., 66, 68, 71 ff., 82,
92 ff., 96 f., 99, 101, 105, 115, 125, 127, 154, 162, 168, 188, 190

SDFG SDF Graph . 30, 33 f., 93 f., 96–99, 101, 105

SE Symbolic Execution . 30, 67

SoC System on Chip . 15

SPDF Schedulable Parametric Dataflow . 31, 36, 40 f., 92, 95

SR-DAG Single-Rate Directed Acyclic Graph .93 f., 96–100, 104, 109, 115–122, 128,
149 f., 154, 159

UMA Uniform Memory Access . 47

WCET Worst Case Execution Time . 53, 55, 135

WSDF Windowed Synchronous DataFlow . 55, 59, 96

190

Titre : Extension et Analyse des Modèles de Calcul de Type Flux de Données pour Gestion-
naires de Ressources Embarqué.

Mot clés : Modèles de calcul flux de données, Système Embarqué, Modélisation d’application

Résumé : Ces dernières années, les Modèles
de Calcul (MdCs) de type flux de données
ont été utilisés pour la modélisation d’applica-
tions dans un large éventail de domaines tels
que le traitement vidéo et audio, les télécom-
munications, la vision par ordinateur et l’ap-
prentissage machine. Ces applications s’exé-
cutant sur des Systèmes Hétérogènes Multi-
Processeurs sur Puce, elles nécessitent une
allocation et une gestion efficaces des res-
sources disponibles, à la fois lors de la com-
pilation mais aussi lors de l’exécution. Afin
de gérer des applications dynamiques dont
le comportement ne peut être entièrement
prévu lors de la compilation, les gestionnaires
d’exécution doivent pouvoir prendre des déci-
sions à la volée, tout en minimisant l’impact
sur les performances des applications. Dans

cette thèse, des contributions sont faites à la
fois dans le domaine des MdCs de type flux
de données et dans le domaine de la ges-
tion des ressources des systèmes embarqués,
avec l’introduction d’une nouvelle sémantique
pour les MdCs flux de données et la propo-
sition d’une nouvelle représentation intermé-
diare des graphes flux de données. La nou-
velle sémantique proposée ajoute aux MdCs
de type flux de données améliore la modéli-
sation d’applications avec un niveau de paral-
lélisme à fin grain ce qui peut bénéficier aux
outils de synthèse de haut niveau. Enfin, la
représentation intermédiaire des graphes flux
de données proposée améliore grandement
la consommation de mémoire et la rapidité
d’exécution lors de la gestion d’applications
dynamiques basées flux de données.

Title: Extension and Analysis of Dataflow Models of Computation for Embedded Runtimes.

Keywords: Dataflow Models of Computation, Embedded Runtime, Application Modeling

Abstract: In the recent years, dataflow Mod-
els of Computation (MoCs) have been com-
monly used to model stream processing ap-
plications in a wide range of domains such
as video and audio processing, telecommuni-
cations, computer vision and machine learn-
ing. Stream processing applications running
on Heterogeneous Multi-Processor System on
Chips require efficient resource allocation and
management, both at compile-time and at run-
time. To cope with modern adaptive appli-
cations whose behavior can not be exhaus-
tively predicted at compile-time, runtime man-
agers must be able to take resource allo-
cation decisions on-the-fly, with a minimum

overhead on applications performance. In this
thesis, contributions are made to address is-
sues in both dataflow MoCs and runtime re-
source management with the introduction of
the State-Aware dataflow Meta-Model (SaMM)
and with a novel intermediate representation
of dataflow graphs, respectively. SaMM adds
an explicit semantics for fine grained paral-
lelism modeling to dataflow MoCs which can
benefit to High-Level Synthesis tools. Sec-
ondly, the proposed intermediate representa-
tion offers significant memory gains and run-
time speed-up when used in a dynamic and
embedded dataflow-based runtime.

	bc349530017debb0a938b64d1bd251b2192c147b4ccbabee2b486dd7b2da153b.pdf
	Acknowledgements
	1 Introduction
	Introduction
	1.1 Context
	1.2 Objectives and Contributions of this Thesis

	I Background
	2 Dataflow Models of Computation
	2.1 Introduction
	2.2 Dataflow MoCs: overview
	2.2.1 Dataflow Process Network
	2.2.2 Dataflow MoC: Properties
	2.2.2.1 Parallelism in Dataflow MoCs
	2.2.2.2 Dataflow MoCs Properties

	2.3 Static Dataflow MoCs
	2.3.1 Synchronous DataFlow
	2.3.2 Cyclo-Static Dataflow and Affine DataFlow

	2.4 Hierarchical Dataflow MoCs
	2.4.1 Naïve Hierarchical SDF
	2.4.2 Interfaced Based Synchronous Dataflow: Adding Compositionality to SDF

	2.5 Dynamic and Reconfigurable Dataflow MoCs
	2.5.1 Parameterized and Interfaced Synchronous DataFlow
	2.5.2 Schedulable Parametric Dataflow

	2.6 Conclusion

	3 Embedded Runtimes for Multi-Processor System on Chips
	3.1 Introduction
	3.2 Embedded Systems
	3.2.1 Heterogeneity in Embedded Systems
	3.2.2 Memory Architectures in Embedded Systems

	3.3 Multicore Scheduling
	3.3.1 Scheduling approaches

	3.4 Model-Based Embedded Runtimes
	3.5 Conclusion

	II Contributions
	Bibliography

	bc349530017debb0a938b64d1bd251b2192c147b4ccbabee2b486dd7b2da153b.pdf
	bc349530017debb0a938b64d1bd251b2192c147b4ccbabee2b486dd7b2da153b.pdf

