
HAL Id: tel-04515237
https://theses.hal.science/tel-04515237

Submitted on 21 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unveil the Local Universe.
Aurélien Valade

To cite this version:
Aurélien Valade. Unveil the Local Universe.. Cosmology and Extra-Galactic Astrophysics [astro-
ph.CO]. Université Claude Bernard - Lyon I; Universität Potsdam, 2023. English. �NNT :
2023LYO10089�. �tel-04515237�

https://theses.hal.science/tel-04515237
https://hal.archives-ouvertes.fr


THÈSE de DOCTORAT DE 
L’UNIVERSITE CLAUDE BERNARD LYON 1

En cotutelle avec :
l’Université de Potsdam, Allemagne

Ecole Doctorale 52
Physique et Astrophysique

Discipline : Cosmologie

Soutenue publiquement le 12/06/2023, par :

Aurélien Niels Valentin Valade

Unveil the Local Universe

Devant le jury composé de :

Président.e

Rapporteure

Rapporteur

Examinatrice

Examinateur

Examinateur

Examinatrice

Directrice de thèse

Co-Directeur de thèse

Jounghun LEE

Professeure, Université de Séoul, CORÉE

Rien VAN DE WEIJGAERT
Professeur, Université de Groningen, PAYS-BAS
Sophie CODIS
Chargé de recherches, Université de la Sorbonne, FRANCE 
Yannick COPIN
Professeur associé, Université Claude Bernard Lyon 1, FRANCE 
Noam LIBESKIND
Chargé de recherches, Université de Potsdam, ALLEMAGNE 
Jenny SORCE
Chargé de recherches, Université de Lille, FRANCE
Anne EALET
Professeure, Université Claude Bernard Lyon 1, FRANCE 
Matthias STEINMETZ
Professeur, Université de Potsdam, ALLEMAGNE



Abstract
Galaxies in the Universe form a gigantic, complex edifice, called the Large Scale Structure (LSS). Still,
the vast majority of the matter is thought to be dark, i.e.not directly observable by our telescopes and
detectable solely through its gravitational interaction with its surrounding. The relationship between
the distribution of galaxies and the total matter field is still not fully described and thus, the LSS cannot
be reduced to the galaxies that inhabit it.

Unveiling the matter distribution and the associated velocity field in the Local Universe is an ex-
tremely difficult task. One approach consists in combining, for each galaxy, a measurement of redshift
and estimation of distance to obtain its velocity with respect to its local environment. With the only
source of motion on these scales being gravitation, and using the fact that the velocity field is tightly
linked to the matter distribution, the two can be reconstructed together.

Yet, estimations of distances, and thus of velocities, are difficult to make: data are sparse, tainted
with errors and plagued with observational biases. Only the radial component of the velocity can be
measured and the error size grows with the distance. Powerful mathematical methods need thus be
employed.

Our method follows the Bayesian inference approach developed in the last decade to over-come the
short-falling of the Wiener Filter methodology, whose simplistic modeling of the data requires a somewhat
ad-hoc treatment of the data beforehand. The first step in Bayesian inference is the description of the
conditional probability of a set of parameters of a given model given a set of observations. The second
step is the creation of a series of realizations of this probability law with a Monte Carlo method, on
which summary statistics can be computed.

However, this process is computationally very costly, and the previously developed methods were
unable to face the growing size of the current and future problems. This work answers this issue thanks
to two major innovations. Firstly, with the use of the cutting edge Hamiltonian Monte Carlo method to
create the realizations of the posterior (no comma) and secondly, with the implementation of an GPU
accelerated code which reduces the computation time by orders of magnitude: the HAmiltonian Monte
carlo reconstruction of the Local EnvironmentT (Hamlet).

Hamlet is first applied to mock data consistent with the implemented model. We demonstrate that
our method converges properly with the number of constraints and the amplitude of the uncertainties.

Then, Hamlet is ran on another mock catalog extracted from a dark matter only cosmological
simulation. In parallel, we apply to the same catalog the most recent instance of the canonical twofold
approach: the Bias Gaussianization correction / Wiener Filter (BGc/WF) pipeline. In comparison to
the BGc/WF, Hamlet is able to extract more information from the data and produce maps with a
higher contrast. However, some new biases appear in its reconstruction.

Finally, we apply Hamlet to the latest release of the Cosmicflows peculiar velocity catalogs: Cosmicflows-
4. We compare our reconstruction of the matter distribution to a large compilation of redshift surveys,
demonstrating a remarkable matching between the two. We analyze the Basins of Attraction of the
velocity field as well as the monopole and dipole, showing a mild tension with ΛCDM .
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Résumé (version courte)
Les galaxies de l’Univers forment un édifice gigantesque et complexe, appelé structure à grande échelle
(LSS). Cependant, la grande majorité de la matière est considérée comme sombre, c’est-à- dire qu’elle
n’est pas directement observable par nos télescopes et qu’elle n’est détectable que par son interaction
gravitationnelle avec son environnement. La relation entre la distribution des galaxies et celle de la
matière n’étant à ce jour pas entièrement bien bien décrite, la LSS ne peut être réduit aux galaxies qui
l’habitent.

Dévoiler la distribution de la matière et le champ de vitesse associé dans l’Univers local est une tâche
extrêmement difficile. Une approche consiste à combiner, pour chaque galaxie, une mesure du décalage
vers le rouge et une estimation de la distance pour obtenir sa vitesse par rapport à son environnement
local. La seule source de mouvement à ces échelles étant la gravitation, le champ de vitesse est étroitement
lié à la distribution de matière, et les deux peuvent être reconstruits ensemble.

Cependant, l’estimation des distances, et donc des vitesses, est difficile à réaliser : les données sont
rares, entachées d’erreurs et entachées de biais d’observation. Seule la composante radiale de la vitesse
peut être mesurée et la taille de l’erreur croît avec la distance. Des méthodes mathématiques puissantes
doivent donc être employées.

Notre méthode suit l’approche de l’inférence bayésienne développée au cours de la dernière décennie
pour pallier les insuffisances de la méthodologie du filtre de Wiener, dont la modélisation simpliste des
données nécessite un traitement quelque peu ad hoc des données préalables. La première étape de
l’inférence bayésienne consiste à écrire la probabilité conditionnelle d’un ensemble de paramètres d’un
modèle donné, à partir d’un ensemble d’observations. La deuxième étape consiste à créer une série de
réalisations de cette loi de probabilité à l’ aide d’une méthode de Monte Carlo, sur laquelle des statistiques
sommaires peuvent être calculées.

Cependant, ce processus est très coûteux en temps de calcul, et les méthodes développées précédem-
ment n’ont pas pu faire face à la taille croissante des problèmes actuels et futurs. Ce travail répond
à cette question grâce à deux innovations majeures. Tout d’abord avec l’utilisation de la méthode de
pointe Hamiltonian Monte Carlo pour créer les réalisations du postérieur, et avec l’implémentation d’un
code accéléré par le GPU qui réduit le temps de calcul par des ordres de grandeur : la reconstruction
HAmiltonian Monte carlo de l’environnement localT (Hamlet).

Hamlet est d’abord appliqué à des données fictives compatibles avec le modèle mis en œuvre. Nous
démontrons que notre méthode converge correctement avec le nombre de contraintes et l’amplitude des
incertitudes.

Ensuite, Hamlet est exécuté sur un autre catalogue fictif extrait d’une simulation cosmologique de
matière noire uniquement. Parallèlement à Hamlet , nous appliquons au même catalogue l’exemple
le plus récent de l’approche double canonique : le pipeline Bias Gaussianization correction / Wiener
Filter (BGc/WF). Par rapport au BGc/WF, Hamlet est capable d’extraire plus d’informations des
données et de produire des cartes plus contrastées. Cependant, de nouveaux biais apparaissent dans sa
reconstruction.

Enfin, nous appliquons Hamlet à la dernière version des catalogues de vitesses particulières Cos-
micflows : Cosmicflows-4. Nous comparons notre reconstruction de la distribution de matière à une large
compilation de relevés de décalage vers le rouge, démontrant une correspondance remarquable entre les
deux. Nous analysons les bassins d’attraction du champ de vitesse ainsi que le monopôle et le dipôle,
montrant une légère tension avec ΛCDM .
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Résumé (version longue)
La cosmologie est un domaine en plein essor depuis le début du XXème siècle. Dans la première moitié de
ce siècle, les mathématiques fondamentales nécessaires à la physique moderne et à la description statis-
tique du cosmos ont été développées (e.g. Einstein, 1916; Friedmann, 1922), tandis que l’existence de
plusieurs galaxies et l’expansion de l’Univers ont été mises en évidence (Hubble, 1929; Lemâitre, 1933).
Dans la seconde moitié du XXrmth siècle, la quantité et la qualité croissantes des données observation-
nelles ont conduit à quatre découvertes majeures : le fond diffus cosmologique et ses anisotropies (CMB
; Penzias & Wilson, 1965; Smoot et al., 1977, 1992; Fixsen et al., 1996; Komatsu et al., 2011; Planck
Collaboration et al., 2016), la structure à grande échelle formées par les galaxies (Large Scale Structure
(LSS); e.g. Peebles, 1980; de Lapparent et al., 1986), l’expansion accélérée de l’Univers (Λ constante ou
énergie noire ; Riess et al., 1998) et le problème de la gravitation, résolu dans le modèle actuel par la
présence de matière noire (Zwicky, 1937; Rubin et al., 1980) et de matière noire froide (CDM Blumenthal
et al., 1984; Davis et al., 1985). Les trente dernières années ont été marquées par l’expansion rapide des
capacités de calcul offertes par des technologies en plein essor, qui ont ouvert la voie à des approches
beaucoup plus frontales et computationnelles de problèmes qui devaient auparavant être simplifiés pour
être résolus analytiquement.

Depuis la découverte de la LSS, des catalogues de redshifts de plus en plus précise profonds et couvrant
des parties de plus en plus large du ciel ont été effectués (e.g. SDSS, York et al. 2000 ; 2dF, Colless et al.
2001 ; 6dF, Jones et al. 2009 ; DESI DESI Collaboration et al. 2016, etc), confirmant l’existence et la
structure à grande échelle de la toile cosmique. En parallèle, des catalogues les distances des galaxies
ont été contruits, qui, associées à des mesures de redshift, ont permis de construire des catalogues de
vitesses radiales particulières (e.g. Great-Attractor, Lynden-Bell et al. 1988 ; SAMURAI, Han & Mould
1992 ; Mark III, Willick et al. 1997 ; SFI++ Springob et al. 2007 ; Cosmicflows Tully et al. 2009, 2013;
Tully et al. 2016; Tully et al. 2023).

La structure à grande échelle de l’Univers se révèle dans la distribution des galaxies ainsique que
dans leurs vitesses. Ce qui a mené les cosmologistes à étudier l’Univers proche au moyen de catalogues
de redshifts de galaxies et de catalogues de vitesses radiales. Deux familles de stratégies ont vu le jour
pour reconstruire la LSS.

La première vise à récupérer le champ de densité de matière à partir de la distribution des galaxies
dans l’espace des redshifts, à commencer par la reconstruction avec filtre de Wiener de l’IRAS Lahav et al.
(1994) et Zaroubi et al. (1995), puis un article ultérieur de Erdoǧdu et al. (2004) sur la reconstruction du
catalogue 2dF à l’aide de la même méthode. L’approche MCMC de la reconstruction bayésienne à partir
de catalogues de redshifts a été inaugurée par Kitaura et al. (2009), suivie par Jasche & Wandelt (2013)
et Wang et al. (2014). Cependant, son hypothèse centrale, la relation entre la présence de galaxies et
la densité de matière sous-jacente, est mal comprise (Kaiser, 1984; Bardeen et al., 1986; Mo & White,
1996), ce qui menace la fiabilité de leurs estimations.

La deuxième famille de méthodes de reconstruction vise à contraindre le champ de vitesse de l’Univers
à partir des vitesses des galaxies (Bertschinger & Dekel, 1989; Dekel et al., 1999; Zaroubi et al., 1999;
Lavaux, 2016; Graziani et al., 2019). A ces échelles, la seule source de mouvement étant la succion
gravitationnelle, le champ de vitesse est censé retracer la distribution complète de la matière. Ces
méthodes ne souffrent pas de la mauvaise compréhension de la relation entre la densité des galaxies et
la densité de matière. Elles sont cependant limitées par la mauvaise qualité et la rareté des données
résultant de la difficulté d’estimer les vitesses des galaxies lointaines.

En effet, non seulement les données ont un rapport signal/bruit très faible mais elles sont également
entachées de forts biais (Strauss & Willick, 1995). Ceci a motivé le développement de plusieurs algo-
rithmes pour corriger les données avant la reconstruction du champ de vitesse par un programme séparé
(Sorce, 2015; Hoffman et al., 2021). Cependant, les biais sont nombreux et leur modélisation complexe :
toutes les méthodes diffèrent dans leur approche et aucune ne résout l’ensemble du problème de manière
frontale.

Ce travail consiste à concevoir, tester et appliquer à des données réelles une méthode qui reconstruit le
champ de vitesse linéaire à partir de la mesure des vitesses particulières des galaxies. Elle suit l’exemple
de Lavaux (2016); Graziani et al. (2019), qui ont respectivement développé et appliqué un algorithme
qui conjointement corrige les biais dans les données et reconstruire la vitesse en une seule fois, d’une
manière probabiliste, bayésienne et cohérente. La nouveauté de ce travail est triple et consiste en (1)
l’amélioration de l’algorithme d’exploration Monte Carlo (2) l’implémentation d’un code accéléré par
le GPU et (3) la meilleure modélisation des données, à savoir de sa fonction de sélection. Alors que
les méthodes précédentes étaient limitées par leur immense cout computationnel, ces innovations nous
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permettent de reconstruire la dernière version des données des catalogues Cosmicflows (CF4 ; Tully et al.,
2023) et ouvrent la porte à de futurs développements.

L’inférence bayésienne est la réponse mathématique à la question "à condition d’avoir fait certaines
observations et d’avoir un modèle dépendant d’un ensemble de paramètres (ou degrés de liberté), quelles
sont les valeurs des paramètres du modèle qui peuvent expliquer au mieux les observations". L’approche
de la modélisation prospective, détaillée sous l’angle de son application à la reconstruction du LSS dans
chapter 2 et publiée dans Valade et al. (2022), est double.

La première étape consiste à écrire la loi de probabilité conditionnelle de l’ensemble des paramètres
compte tenu de l’ensemble des observations et du modèle. Cette probabilité est appelée la distribution
postérieure. Elle est le produit d’une fonction de vraisemblance, qui est la probabilité que les observa-
tions proviennent de l’ensemble des paramètres, et d’une distribution a-priori, qui est la probabilité des
paramètres, indépendamment des observations. Dans notre travail, la distribution postérieure modélise
les observations de redshifts et de distances à partir d’un champ de vitesse linéaire, dérivé dans le con-
texte de ΛCDM. Les paramètres libres sont les modes de Fourier du champ de surdensité linéaire projeté
sur une grille ainsi que les distances des contraintes.

Bien que la probabilité a posteriori puisse être écrite analytiquement, sa complexité empêche tout
calcul analytique ou même numérique simple des statistiques sommaires (champs moyens, monopole,
dipôle, etc.). Le deuxième aspect de la modélisation prospective est donc l’exploration de la probabilité
a posteriori par une méthode de Monte Carlo. Une telle méthode génère une longue série arbitraire de
réalisations de la probabilité postérieure, sur laquelle des statistiques sommaires peuvent être calculées.
L’une des innovations de ce travail est le remplacement de l’échantillonnage de Gibbs utilisé par Graziani
et al. (2019) par une méthode d’exploration de pointe : le Monte Carlo Hamiltonien (HMC ; Hoffman
& Gelman, 2011). Le HMC utilise les équations hamiltoniennes pour intégrer les trajectoires dans
l’espace des paramètres, ce qui permet au processus d’exploration de faire de grands pas dans des
espaces de paramètres hautement dimensionnels et donc de résoudre partiellement à ce que l’on appelle
la "malédiction des dimensions" – l’augmentation en loi de puissance du temps d’exploration nécessaire
en fonction du nombre de données. Cette innovation n’est pas seulement technique : elle permet de faire
un bond en avant dans l’applicabilité de la méthode à de grandes distances et de réaliser les plus grandes
reconstructions à partir de vitesses particulières de l’univers à ce jour .

La deuxième amélioration clé de ce travail est la mise en œuvre d’un code, Hamlet , qui est
conçu pour fonctionner sur GPU. Cette accélération réduit le temps d’exécution de plusieurs ordres
de grandeur par rapport à un algorithme précédemment conçu qui était limité dans ses capacités en
raison de l’utilisation inefficace des ressources de calcul1. En outre, les cadres physique et mathéma-
tique sont extrêmement souples et permettent d’améliorer encore le modèle physique et les méthodes
d’exploration. Cette flexibilité est reflétée par l’extrême modularité du code.

La dernière amélioration majeure de cette thèse est la modélisation des coupures de redshift dans
les données suivant Hinton et al. (2017). Elle est présentée dans le chapter 4, avant l’application à
Cosmicflows-4.

Dans chapter 2, directement après la présentation de la méthode, celle-ci est testée sur des données
fictives qui sont entièrement conformes à ce que le modèle attend (champ linéaire et même description
des erreurs). Un catalogue fictif de référence est construit avec une taille de et une modélisation des
erreurs qui reproduit le catalogue Cosmicflows-3, qui était au moment de ce chapitre le catalogue de
vitesses radiales le plus fourni .

La fonction de sélection de ce catalogue est isotrope et vise un nombre fixe de points par coquille de
distance (donc une densité diminuant comme le carré de la distance) qui correspond à peu près à celle de
Cosmicflows-3. D’autres catalogues fictifs sont créés en variant le nombre de contraintes (par un facteur
1/2 et 2) et l’amplitude des erreurs (par un facteur 1/2 et 1/10) du catalogue de référence, conduisant
à un nombre total de 9 catalogues fictifs. Les résultats se concentrent sur (1) la moyenne et l’écart-type
du champ de surdensité (2) la moyenne et l’écart-type du champ de vitesse et (3) les premiers moments
du champ de vitesse (i.e. monopôle et dipôle).

Nous montrons que pour ces quantités, notre code converge bien et de manière attendue avec la
quantité et la qualité des contraintes. Cette étude nous permet également de donner une première
estimation quantitative de l’incertitude sur ces mesures et des prévisions pour les applications futures.

Dans chapter 3, publié dans Valade et al. (2023), Hamlet est testé sur des observations fictives issues
1Les différences méthodologiques et numériques entre ce code et celui de Graziani et al. (2019) rendent le calcul exact

du facteur d’accélération non trivial. Il semble varier autour de quatre ordres de grandeur. En pratique, un résultat peut
être obtenu en quelques minutes avec la présente méthode, alors que des mois ont été nécessaires avec le code de Graziani
et al. (2019).
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d’un univers simulé. La taille du catalogue et la modélisation des erreurs sont à nouveau liées à celles de
Cosmicflows-3, étendu de quelques milliers de points. Alors que la fonction de sélection est très basique
dans le premier test, ce catalogue fictif reproduit avec une grande fidélité l’empreinte de Cosmicflows-3
dans l’espace des redshifts, avec notamment une asymétrie hémisphérique et la zone d’ombre de notre
galaxie. Les données générée atteignent une 160Mpc/h. La construction de ce catalogue fictif est réalisée
par un algorithme avancé de type Monte-Carlo qui effectue la sélection des halos de matière noire de la
simulation (qui représentent des galaxies et des groupes de galaxies).

Deux autres méthodes sont appliquées aux mêmes données fictives afin d’évaluer et de comparer
quantitativement la qualité des reconstructions : (1) la Bias Gaussianization correction (BGc) est ap-
pliquée aux données, qui sont ensuite données au filtre de Wiener pour construire les champs (pipeline
BGc/WF) et (2) les observations fictives sans erreurs sont données directement au filtre de Wiener
(pipeline Ex/WF). Alors que les deux premières méthodes (Hamlet et BGc/WF) sont des méthodes
qui peuvent être effectivement appliquées à des données réelles, la dernière est utilisée comme un scé-
nario hypothétique du meilleur cas, dans lequel la position et la vitesse de chaque contrainte ont été
parfaitement récupérées. Il nous permet de quantifier les erreurs et les incertitudes résultant (1) de la
rareté des données et (2) de l’application de la théorie linéaire à un univers non linéaire. Les résultats se
concentrent à nouveau sur la moyenne et l’écart-type des champs de surdensité et de vitesse, ainsi que
sur les moments des champs de vitesse.

Nous démontrons qu’en l’absence d’erreur d’observation, la qualité de la reconstruction est proche
de la perfection sur un très grand volume, même avec une description des champs simplifiée et un
ensemble limité de contraintes. En présence d’erreur, la situation est cependant différente. Les méthodes
Hamlet et BGc/WF donnent toutes deux des résultats très similaires dans un volume de 80Mpc/h,
en dehors duquel Hamlet affiche un contraste plus élevé (et donc a priori meilleur) que la BGc/WF,
jusqu’à la fin des données à 160Mpc/h. Cependant, Hamlet a tendance à "sur-évaluer" le contrast dans
entre 80Mpc/h et 160Mpc/h, ou la méthode produit des vitesses dont l’amplitude dépasse celles de la
simulation cible. Enfin, les moments du champs de vitesse sont mieux reconstruits avec la BGc/WF
qu’avec Hamlet .

La conclusion de cette étude est que si Hamlet semble extraire beaucoup plus d’informations à partir
des mêmes données, la BGc/WF reste une méthode plus conservatrice. En effet, Hamlet semble être
sujet à certains biais qui freinent son potentiel prometteur et qui doivent encore être compris et corrigés.

Après avoir été largement testé et comparé à d’autres méthodes dans chapters 2 and 3, Hamlet est
appliqué à des données réelles dans la chapter 4, i.e. le catalogue de vitesses particulières Cosmicflows-4
(Tully et al., 2023).

Dans cette section, nous poussons à nouveau Hamlet plus loin : la taille des catalogues Cosmicflows-
4 dépasse celle de la version précédente d’un facteur trois, et double approximativement le volume (en
étendant la région contrainte de 160Mpc/h à un peu moins de 300Mpc/h dans une direction du ciel).
Plus que de sortir Hamlet de sa "zone de confort computationnelle", l’application à des données réelles
est également éprouvante pour la modélisation physique.

En effet, les données sont extrêmement complexes : le catalogue Cosmicflows-4 n’est pas le résultat
d’un seul relevé mais plutôt de la fusion de plusieurs relevés de redshifts, étendus par différents catalogues
de distance basés sur des méthodes différentes. L’empreinte spatiale est donc très asymétrique, et les
erreurs sur chaque mesure ne sont pas triviales. Bien que ces différentes composantes du catalogue global
soient inter-étalonnées, la possibilité d’une erreur dans le processus ou dans les sources demeure.

La distribution réelle de la matière dans l’Univers est inconnue. La validité de notre reconstruction
sur ce nouvel ensemble de données ne peut donc pas être évaluée de la même manière que dans chapters 2
and 3. Au lieu d’une véritable étude quantitative, nous avons choisi de comparer qualitativement nos
champs reconstruits à la distribution dans l’espace des décalages vers le rouge de la base de données
des galaxies extragalactiques de Lyon Meudon (LEDA ; Paturel et al., 2003). Même sans supposer une
forme spécifique pour le biais des galaxies, on peut s’attendre à une certaine corrélation entre le champ
de surdensité et la distribution des galaxies. Le redshift étant un estimateur assez précis de la distance,
cela constitue un premier test satisfaisant pour l’application de notre méthode sur des données réelles.

La correspondance entre les galaxies LEDA et notre estimation du champ de surdensité est satis-
faisante, les principales déviations étant imputables à la distorsion de l’espace des décalages vers le rouge.
Les principales caractéristiques de l’Univers sont retrouvées, et pour la première fois, la distribution de
matière est directement mesurée dans la région du Sloan Digital Sky Survey (SDSS). Ce volume contient
notamment le célèbre Sloan Great Wall, qui apparaît comme la surdensité la plus importante de notre
reconstruction, plus que la concentration de Shapley et le complexe Hercules–CfA-Great-Wall–Coma.
Le champ de surdensité montre une structure filamentaire très riche remplissant le volume nouvellement
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cartographié du SDSS.
Le champ de vitesse reconstruit est également examiné de près. Une analyse des bassins d’attraction

(BoA) montre que les deux principaux attracteurs dans le volume reconstruit sont Shapley et le Sloan
Great Wall dans la région de SDSS. Le Groupe local semble être intégré dans le BoA de Shapley. Le
superamas d’Hercule est également l’attracteur d’un BoA relativement grand et bien contraint. Les
moments du champ de vitesse sont ensuite discutés. Alors que le monopôle ne montre aucun comporte-
ment inattendu et est totalement cohérent avec ΛCDM et le spectre de puissance, le dipôle manifeste
un comportement quelque peu surprenant autour de 160Mpc/h, où la composante le long de l’axe X
super-galactique et l’amplitude du dipôle s’écartent de l’espérance de 2-σ de ΛCDM . Ce résultat est
confirmé dans la littérature (Hoffman et al., 2015; Magoulas et al., 2016; Howlett et al., 2022; Watkins
et al., 2023). L’alignement du dipôle avec la vitesse du CMB est également remarquablement élevé et
constant et mérite d’être étudié. Enfin, la V-Web est discutée.
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Zusammenfassung
Die Galaxien im Universum bilden ein gigantisches, komplexes Gebilde, die sogenannte Large Scale
Structure (LSS). Der größte Teil der Materie gilt jedoch als dunkel, d. h. sie ist mit unseren Teleskopen
nicht direkt beobachtbar und kann nur durch ihre Gravitationswechselwirkung mit ihrer Umgebung
nachgewiesen werden. Die Beziehung zwischen der Galaxienverteilung und der Materieverteilung ist
nach wie vor nicht vollständig erforscht, weswegen die LSS nicht auf die ihr innewohnenden Galaxien
beschränkt werden kann.

Die Kartierung der Marterieverteilung und des damit verbundenen Geschwindigkeitsfeldes im lokalen
Universum ist eine äußerst schwierige Aufgabe. Eine Alternative besteht darin, für jede Galaxie eine Mes-
sung der Rotverschiebung und eine Abschätzung der Entfernung zu kombinieren, um ihre Geschwindigkeit
in Bezug auf ihre lokale Umgebung zu ermitteln. Da die einzige Bewegungsquelle in Messungen dieser
Größenordnung die Gravitation ist, ist das Geschwindigkeitsfeld eng mit der Materieverteilung verknüpft.
Diese beiden Einheiten können im selben Schritt rekonstruiert werden.

Doch die Schätzung von Entfernungen und damit von Geschwindigkeiten ist schwierig: Daten sind
rar und mit Bias behaftet. Es kann lediglich die Radialgeschwindigkeit der Galaxien beobachtet werden,
wobei die Fehlergröße mit der Entfernung zunimmt. Es müssen daher leistungsfähige mathematische
Methoden angewendet werden.

Unsere Methode folgt dem Bayesschen Inferenzansatz, der im vergangenen Jahrzehnt entwickelt
wurde, um die Mängel der Wiener-Filter-Methode zu beheben, deren vereinfachte Modellierung der
Beoachtungen eine gewisse vorhergehende Behandlung der Daten erfordert. Der erste Schritt des
Bayesschen Inferenzansatzes ist die Beschreibung der bedingten Wahrscheinlichkeit eines Satzes von Pa-
rametern eines gegebenen Modells bei einer Reihe von Beobachtungen. Der zweite Schritt ist die Erstel-
lung einer Reihe von Realisierungen dieses Wahrscheinlichkeitsgesetzes mit einer Monte-Carlo-Methode,
auf deren Grundlage zusammenfassende Statistiken berechnet werden können.

Dieses Verfahren ist jedoch sehr rechenintensiv und die zuvor entwickelten Methoden konnten der
wachsenden Komplexität der aktuellen und zukünftigen Herausforderungen nicht gerecht werden. Diese
Arbeit löst dieses Problem mithilfe zweier wichtiger Neuerungen. Erstens mit der Verwendung der
hochmodernen Hamiltonschen Monte-Carlo-Methode, um die Realisierungen des Posteriors zu erstellen,
und zweitens mit der Implementierung eines GPU-beschleunigten Codes, der die Rechenzeit erheblich
verringert: die HAmiltonian Monte carlo reconstruction of the Local EnvironmentT (Hamlet).

Hamlet wird zuerst auf Scheindaten angewendet, die mit dem implementierten Modell übereinstim-
men. Wir zeigen, dass unsere Methode richtig mit der Anzahl der Nebenbedingungen und der Amplitude
der Unsicherheiten konvergiert.

Dann wird Hamlet auf einem anderen Scheinkatalog ausgeführt, der aus einer kosmologischen Simu-
lation nur mit dunkler Materie extrahiert wurde. Gleichzeitig wenden wir die jüngste Instanz des kanon-
ischen zweifachen Ansatzes auf denselben Katalog an: die Bias-Gaussianization correction/Wiener-Filter
(BGc/WF)-Pipeline. Im Vergleich zu BGc/WF ist Hamlet in der Lage, mehr Informationen aus den
Daten zu extrahieren und Karten mit höherem Kontrast zu erstellen. Bei seiner Rekonstruktion treten
jedoch einige neue Bias auf.

Schließlich wenden wir Hamlet auf die neueste Ausgabe der Cosmicflows-Kataloge der Pekuliar-
geschwindigkeiten an: Cosmicflows-4. Wir vergleichen unsere Rekonstruktion der Materieverteilung mit
einer großen Zusammenstellung von Durchmusterungen der Rotverschiebungen und demonstrieren eine
bemerkenswerte Übereinstimmung zwischen den beiden. Wir analysieren die Basins of Attraction sowie
Monopol und Dipol des Geschwindigkeitsfeldes und zeigen eine leichte Spannung mit ΛCDM .
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An equation free introduction

The problem discussed in this work spreads over very different scales and relies on number of concepts
and objects. In this short section, we aim at reviewing them in simple, equation free, descriptive manner.
At the end of it, a simple explanation of the problem discussed in the work is given. A more technical
and precise detailing of the problem comes next. If what is written here is given as a general truth for
readability, the reader has to keep in mind that this description of the Universe is the current state of
Science, i.e. as accepted by (the majority of) the scientific community, and is always subject to change.

The Earth
Our exploration of the Universe is limited by our relatively stationary position on Earth. While telescopes
bring the remote Universe to us, it is (apparently) impossible to physically travel through the universe.
Being able to observe the Universe only now and here results in a series of limitations.

First and foremost, there is only one Universe to observe. In other words, we have a sample size
of one. It is impossible to create smaller universes on demand in laboratories and study them. Thus,
each object (be it a particular type of star, a rare merger of galaxies, etc) is fundamentally unique.
And although astronomers are able to botanically catalog objects, each class is composed of only a very
limited sample size. Further more, environmental conditions that cannot be changed or controlled for.
To draw conclusions on the physical properties of the entire universe, from our limited view point, a
fundamental assumption has to be made, called the Copernicus principle, which states that we are not
sitting in a peculiar place of the Universe. We thus expect to be observing the Universe from a reasonably
average location.

Secondly, each telescope can only observe part of the sky. For instance, a telescope in any northern
latitude can not observe the South Pole (and vice-versa). Since telescopes are expensive and the locations
where they can be built are rare, sets of data tend to be rather sparse and our ability to cover the sky
is imperfect. The reader will note that this is not entirely true with space based observations, however
these are limited by other more practical factors.

Finally, the Earth is not fixed in the Universe. It orbits the Sun, which orbits around the center of
the Milky Way, which moves in its local surrounding, as will be detailed in lengths in the work. This
is a problem, as we aim at measuring the velocities of other objects of the Universe. We will however
shortly see how this problem can be solved.

Stars
Stars are gigantic balls of hot plasma resulting from the collapse of gas by self-gravitations. The most
famous of them is of course the Sun, and at night, thousands of others can be observed by the naked eye.

While stars are much smaller than the scales we intend to study in this work, they are very important
to us because they shine. Each star emits light some of which will travel across space from one side of the
Universe to the other, and that can be detected in various wave ranges (infrared, visible, ultraviolet, etc)
by our telescopes. They are, in some sense, the light houses of the Universe. The light house metaphor
is particularly apt because star light also wanrs us where the non-luminous matter resides, as this work
demonstrates.

Stars come in many types: different colors (blue, red, white, etc), sizes (from fractions of the Sun to
thousands times bigger), ages, stages in their lives, chemical compositions (metalicities), and luminosities.

However, like light houses, the more distant they are from us, the dimmer they seem. First and
foremos. the light they emit dilutes in space as flux drops with increasing distance. Secondly, photons
are scattered and absorbed by the intergalactic and interstellar media; gas or space dust. Thus, looking
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at how bright a star appears in our telescopes, it is a priori impossible to know just from its magnitude
if we are observing a nearby dim star, or a distant bright star.

Some stars have interesting properties that allow us to estimate how bright they truly are, and
therefore to estimate how far they are. Some examples are the Cepheid stars, who’s periodic variability
depends directly on their luminosity, extremely massive and hot stars who sometimes collapse in ex-
ceptionally violent and bright explosions (Super-Novae) whose intrinsic luminosity scales with the speed
with which their brightness dims or stars whose intrinsic luminosity peaks at the end of the red giant
phase of their evolution.

Galaxies
Stars do not form in random places in the Universe, but rather in islands of matter in an ocean of void:
galaxies. Indeed, if stars seem to float distant from one another in an extremely empty space, the void
that separates galaxies is order of magnitude bigger and emptier. Galaxies come in various shapes and
sizes, but three main families can be drawn.

Irregular galaxies – galaxies whose morphology cant be well defined – are very often small (up to
about a tenth of our galaxy, the Milky Way) and make up about a quarter of the galaxies in the Universe.
Although they are of great scientific interest, they are not relevant to this work.

Spiral galaxies, are of average size (about the size of the Milky Way, which happens to be a very
normal galaxy) and compose the majority of the galaxies in the Universe. They are rather flat rotating
disks, populated by hundreds of billions of stars, with often a Super Massive black hole at their center.
They tend to have two or more “gran design” spiral arms wound up around their center’s - some of them
also have co-rotating bars in their centers or small spheroids of stars.

Elliptical galaxies, can be very massive (up to hundred times the size of the Milky Way) and are
rarer galaxies that are mostly found in very dense regions of the Universe. Their relatively spherical
shape is thought to emerge from the merging of several spiral galaxies. They exhibit little to no internal
structure.

Galaxies are the building blocks, the atoms of this work. We will consider them as points and not
discuss their internal properties, with some exceptions.

As stars are born, live and die in them, galaxies are also luminous object, thus, the image of the
light house stands. Just like for stars, it is a priori impossible to know if an observed galaxy is dim but
close or bright but far. This limitation is in fact one of the core problems we have to tackle in order to
reconstruct the cosmic web.

The Cosmic Web
Galaxies are also not randomly spread across the Universe. They form the greatest structure of the
Universe know to date: the Cosmic Web, a multi-scale three-dimensional spiderweb-like shape that
spreads across the entire universe.

Four features are generally distinguished. Clusters are the most dense regions, where hundreds of
galaxies can be found. They are the nodes of the Cosmic Web. Filaments are elongated structures, often
linking a node to another or flowing into another filament. Walls are like filaments, but flatter. Finally,
voids are big empty bubbles lying between the rest of the structure.

Galaxies are in movement in the Cosmic Web, interacting almost exclusively through gravitation.
This movement is extremely slow relative to typical intergalactic distances: a few hundreds kilometers
per second – to be compared to the 1022 kilometers to our closest neighbor galaxy, for instance. As a
result, only a small fraction of galaxies are merging, interacting or colliding. The motion of galaxies
through the cosmic web can be very complex and including laminal flows, vortical flows, and chaotic
motion.

The Cosmological Microwave Background
When pointing a radio telescope in any direction of the sky, even in the emptiest regions, there is still a
very faint signal: The Cosmological Microwave Background (CMB).

Since the speed of light is finite the further away an object is from us, the longer it has taken the
light to reach us and thus the younger the Universe was wehn the light was emitted. The CMB is an
image of the Universe 13.7 billions light years away from us about 300 000 years after the Big Bang. The
signal of the CMB is the first light signal that could ever travel through space since before recombination,
photons Thompson scatter off free electrons and the Universe was opaque. What is “behind” the CMB
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will therefore forever stay hidden to us using photons; there may be a cosmic Neutrino background that
could in theory be detected.

The CMB is the best source of information of the very early Universe we have. We learn from it
thatthe Universe was then extremely but not perfectly homogeneous with variations on the order of the
millionth of it mean density. We believe these minuscule inhomogeneities are the seeds of the gravitational
instabilities that later led to the formation of the Cosmic Web, void regions, clusters, etc.

The sphere of the CMB is however so far and so huge, that the part of the Universe we see in the
CMB gives no information about the Universe close to us. Only statistical information can be extracted
from it, like its “granularity”. We expect our local Universe to have the same statistical properties as this
very distant shell. This is gives us some keys to understand the formation of the structures around us.

A Universe in expansion
Observations show unequivocally that the Universe is expanding on very large scales. This means that
the underlying frame of the Universe is growing itself. Two objects, locally fixed in their environment,
and that are not interacting, are constantly moving away from one another.

According to the Hubble’s law, the speed with which two points in the universe recede from each other
is proportional to their distances. Edwin Hubble first discovered this phenomenon in the late 1920s and
with it the discovery of the extension of the Universe. This growth seems to be the same everywhere,
meaning it is a homogeneous and isotropic expansion. Thus objects relatively close to the us recede
slowly while objects at cosmological distances recede with speeds approaching he speed of light.

Measuring distances and redshifts
Measuring the distances of galaxies is very difficult. Because of the movement of the Earth around the
sun, the direction of any objects (star, galaxy, etc) changes a bit in the sky. The maximum of variation
is when the observations are made six months apart. Thanks to a few lines of plain trigonometry, and
given that we know the radius of the orbit of the Earth around the sun, the distance to this object can
be computed. This method, known as parallax can be used to find the distance to nearby stars.

However, as the distance to extra galactic objects is many orders of magnitude larger than the size
of the orbit of the Earth, this variation is too small to be measured by our telescopes. We thus have
toresort to other methods to estimate the distances of galaxies.

The first solution is to use the redshift as proxy for the distances, since according to Hubble’s law
distance and velocity are simply proportional to each other. Galaxies that should appear white in the
sky seem in fact yellow, dark orange or even red. This effect due to the shifting of spectral emission lines
towards the red end of the spectrum is, aptly, called the redshift and can be interpreted as a Doppler
effect. Just as with sound, as a loud object moves away from us its pitch drops as the sound wave
frequency decreases due to the added effect of the recessional motion. As the Universe expands, distant
galaxies move away from us, leading to an apparent redshift. This relation can be inverted, and the
distance estimated from the observed redshift.

The second solution is to estimate the true brightness of the galaxy (or of a star in the galaxy) and
compare this with the observed brightness. Indeed, knowing how bright a galaxy is, it is possible to
reconstruct how far it has to be in order to explain the loss of brightness observed from the Earth.
The estimations of distances resulting from this approach often suffer from errors, the extent to which
depends on the accuracy and precision of the method used to estimate the intrinsic, or absolute or “true”
brightness.

The problems of dark matter and dark energy: ΛCDM
Not only do observations show that the Universe is growing, but also that the rate of growth is speeding
up: the expansion is accelerating. This means that the speed at which two independent objects at a
fixed distance are moving away from one another increases with time. Fundamental physics associates
an energy to this accelerating force. As there is obvious source for that energy – it is virtually “invisible”,
it earned the name of “dark energy”. However many ideas exist, including the concept that dark energy
may simply be the vacuum energy, although no particle has been found yet to support one theory of
another. In the equations of general relativity, there is a constant, famously introduced by Einstein
to prevent the solutions to the field equations from being dynamically unstable. Einstein termed this
constant a cosmological constant called Λ, and famously called it his “biggest blunder” since he could
have predicted the expansion of the universe without it. Dark energy makes up around 70% of the total
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energy of the Universe, that is to say a large majority of it. Understanding dark energy is thus quite
central to understanding the Universe.

The problem of dark matter is more local. Let’s consider a satellite orbiting around a planet. Kepler’s
laws of planetary motion, as explained by Newton’s theory of gravity (the current model in use today)
states that the higher the mass of the planet, the faster a satellite at a a given distance will orbit. Thus
a satellite at a given distance from the Moon orbits slower than it would be if it was orbiting at that
same distance around the Earth. Using the same equations and observing the rotation curve of galaxies,
we can estimate their mass. However, it appears that the gravitational mass is much greater than the
luminous mass (gas, stars, etc). An equivalent problem is found for cluster of galaxies: they are orders
of magnitude more massive than their inferred from their emitted light. The missing mass is supposed
to come from the invisible “dark matter”, which composes not less than 80% of the total amount of
gravitationally active matter. Many non-baryonic particles have been proposed to be dark matter. If
none of the candidates has been discovered yet, constraints points towards a cold particle, that is to
say, a particle which has a non relativistic energy when it decouples from the radiation field. As such
it decouples later and is more massive than say hot dark matter (i.e. neutrinos), hence the name, Cold
Dark Matter (CDM).

Combining these two important hypothesis leads to the ΛCDM model, which is the current paradigm.
The entirety of this work in done within this model. The matter and the energy we know and understand
well constitutes only a few percents of the total amount found in the Universe.

This work
Both baryonic matter (that we know) and non-baryonic dark matter (that we do not understand) interact
gravitationally. However, we can only directly observe galaxies, made of baryonic matter, which makes
up for less than 20% of the total amount of matter.

As we have just seen, placing galaxies in space is not trivial, as measuring their distances is hard.
It is nevertheless doable, and the (approximate) distances of millions of galaxies are known. We are
therefore able to make maps of the galaxy distribution. On the other hand, mapping the distribution
of dark matter is not directly possible. This is because, the relationship between the distributions of
baryonic and dark matter is not yet understood – the so-called galaxy “bias” implies that galaxies are
biased tracers of the dark matter distribution. Thus the presence of baryons does not necesarilly indicate
the presence of a proportional amount of dark matter.

The present work aims at reconstructing the distribution of both baryonic and dark matter in theLocal
Universe (up to about one billion light years). This is done by first reconstructing the velocity field: the
map of the direction and velocity of each and every point of the Universe. In order to constrain this field,
we use measurements of peculiar velocities of galaxies: given a measure of redshift and an independent
measure of distance for a given galaxy, it is possible to estimate its peculiar velocity, i.e. the component
of the galaxy’s velocity which is due to the gravitational forces as opposed to the component due to the
expansion of the Universe. As galaxies interact with all the matter (baryonic and dark) by gravitation,
their peculiar velocities are dictated by the distribution of matter. Under a certain number of assumption
this relation can be inverted, and a map of the distribution of the matter in the Local Universe can be
inferred from the velocities of the galaxies.

This work is not the first to attack this problem. Its originality lies in the method developed and
the strategy of approach. The traditional way to reconstruct the density field from the velocity field is
by trying to correct for the imperfections and uncertainties of the data before applying a reconstruction
algorithm that retrieves the distributions of interest. Here, we propose a new algorithm that reconstructs
the distributions and corrects the data at once, in a self consistent manner. Like most advances in science,
this thesis is built on the work of others, among them a similar algorithm put forth by Romain Graziani
during his PhD (2015-2018). However string differences exist between his proposed method and the one
presented here, differences which, as it turns out, are system-critical for the problem at hand

In this work we tested our idea on fake observations taken from a simulated universe in order to see
how accurate it is before applying it to the real universe, whose matter distribution is of course unknown.
We also compared how it fares against another completely independent method where the correction of
the data and reconstruction of the plans are split. This enabled us to quantify the accuracy and the
limits of our techniques. Finally, in the last chapter, we applied our method to the last data release of
the Cosmicflow-4 catalogue and present a novel insight on the distribution of dark matter in the Local
Universe.
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Chapter 1

Introduction

The Universe is filled with matter in a magnificent variety of states, temperatures and composition. From
the emptiness and vastness of the intergalactic vacuum to the infinite density in the centers of Black
Holes. Physics as a discipline is dedicated to the study of matter and energy in the universe. This thesis
is focused on one specific scale in the vast spectrum of scales available to the natural scientist: Galaxies
and the large scale distribution of matter. Since, as will be described below, galactic light traces the full
matter distribution in the Universe, this thesis begins its journey by examining galaxies: what they are,
how we measure their properties and how we employ them as tools to characterize the nature of of our
Universe.

1.1 Observing Galaxies
Galaxies are – with some exceptions – the only constraints we have on the large scale of the Universe.
After a brief definition of what a galaxy is, this section goes into detail of how to recover the necessary
data needed for our work, namely the distance and the redshift.

1.1.1 What are galaxies?
In the vaguest sense galaxies are relatively dense agglomerations of stars, gas, and dark matter. Galaxies
have a variety of shapes and sizes, colors and magnitudes, masses and kinematics. The earliest classifi-
cation of galaxies - the so called “tuning fork” is due to Hubble (1926). Although there is intense debate
in the community regarding what exactly constitutes a galaxy (e.g. Forbes & Kroupa, 2011) and how –
for example, these differ from star clusters, perhaps one their most important defining quantities is that
the are bright enough to be seen clearly across the Universe. Even as this thesis is being written some
studies claim that the James Webb Space Telescope has spied galaxies so far away that their light was
emitted when the Universe was a mere 100 million years old (Naidu et al., 2022).

Thanks to theirs stars, galaxies (and objects therein or thereabout) are the most commonly observed
objects in the cosmos that are emitting in the optical wave band. They have been the first cosmological
objects known by humankind, imagined by Kant (1755) under the terms of “islands Universes” and whose
scientific existence was the subject of the so-called “great debate” of 1921 that opposed between H. Curtis
and H. Shapley (e.g. Smith, 1982). The hot and cold gas of galaxies can be observed at radio, infrared,
ultraviolet or even X-ray wavelengths. Super-massive black holes have been directly and indirectly
observed at the centers of most galaxies (e.g. Fabian, 2012; Event Horizon Telescope Collaboration
et al., 2019).

A large quantity of dust (as in small particles of matter) are found in the interstellar regions of most
galaxies. Cosmic dust is the product of the stellar life cycle (e.g. Weingartner & Draine, 2001; Draine,
2003). The dust of our own galaxy obstructs our view and makes it virtually impossible to observe
through the disk of our galaxy, creating what is called a Zone of Avoidance (ZoA): a region of ∼ 20 deg
around the plane of the Milky Way in which little to no galaxies can be observed (Hubble, 1929). This is
because cosmic dust is opaque to most star light, absorbing it and re-emitting it as heat in the infra-read
(e.g. Draine, 2003).
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1.1.2 Measuring distances
Measuring the distances of galaxies is extremely hard. Considering a generic nebula on the sky, the
question comes down to not knowing if it is big bright and far or if it is small, dim but close. Direct
measures such as parallax or measuring the proper motion of an object against a fixed background is, in
general, not applicable to extra galactic sources1. Therefore other indirect methods must be used.

Distance moduli

With the exception of proper motion measurements, which are available only in the local group (e.g.
Sohn et al., 2013), all methods for determining extra galactic distances relies on comparing the observed
luminosity of an object (also called apparent luminosity) and its estimated true luminosity (also called
absolute or intrinsic luminosity)2. Since the true, absolute luminosity of a galaxy is not known, it must
be modeled. If an object has a luminosity L, the flux f received at a distance dL is

f =
L

4πdL
2 . (1.1)

The quantity dL is called the luminosity distance, as it is derived from a discussion on the luminosity of
objects, as seen in section 1.4.5, it is close to but is not the true distance of this galaxy.

Historically, astronomers prefer to use the logarithm of the flux: the magnitude3

m = −2.5 log

(
f

f0

)
= −2.5 log

(
L

4πdL
2f0

)
(1.2)

where f0 is a flux of reference (considered as a technical parameter for this work) for example from a
reference star like Vega. The absolute magnitude is defined as the magnitude of an object if it was
observed from 10 pc of distance, i.e. setting dL = 10pc 4:

M = −2.5 log

(
L

4π102f0

)
. (1.3)

Taking the difference between the apparent and the absolute magnitude, we obtain the distance modulus:

μ = m−M = 5 log

(
dL

10 pc

)
. (1.4)

The apparent magnitude can be directly observed with great precision, but the absolute magnitude
can only be indirectly estimated based on a model. The uncertainty on the intrinsic magnitude M can
thus be directly reported on the distance modulus μ: σμ ≡ σM . In other words, a poor estimator of the
intrinsic magnitude yields a poor estimator of the distance. An extensive discussion on the uncertainties
of distances measurements and their implications is presented in section 1.5.

In this work, we exclusively write distances in Mpc, we thus rewrite eq. (1.4) to

μ = 5 log

(
dL

1Mpc

)
+ 25. (1.5)

Standard candles and scaling relationships

Objects whose true intrinsic brightness can be deduced from other properties are called standard candles.
When a galaxy is the host of such an object, its distance can be relatively precisely observed. The
standard candles most used in this work are:

1By measuring the position of some Local Group galaxies (the nearest ones) a decade or more apart, the proper motion
of these objects can be measured by aligning the background high redshift quasars. At the moment this is not possible
beyond 1Mpc (e.g. Sohn et al., 2013)

2A recent new technique makes use of gravitational wave sirens. However this is still too recent to be suitable for this
work

3The first classification of stars by magnitude was done by the ancient Greeks with the naked eye. The mathematical
definition of the magnitude is based on this classification.

4This value is arbitrary and is in fact much smaller than the size of any galaxy.
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— Cepheid stars. Due to the so-called κ-mechanism (an oscillating obstruction of the light by the
ionization of the rejected Helium), their brightness varies in time with a period that can directly be
linked to their true (average) brightness. Cepheids are the first observed standard candles (Leavitt
& Pickering, 1912) and were used by Hubble (1929) to demonstrate that the Andromeda’s nebula (a
galaxy in fact) is not part of the Milky Way. They are used up to 10Mpc and yield measurements
of M with an uncertainty σM ∼ 0.1 (e.g. Riess et al., 2018).

— Tip of the red-giant branch (TRGB). When a Sun-like star approaches the end of its life, its
luminosity increases while its temperature decreases until a so-called “helium flash” (Deupree &
Wallace, 1987), after which it virtually retraces its steps in terms of temperature and luminosity.
When plotted on a Hertzsprung-Russel diagram, red-giant stars constitute a prominent branch-like
feature whose tip is very well defined. Because of nature of the process, any start undergoing a
helium-flash has the same luminosity Ferrarese et al. (2000). Thus, stars that form the “Tip of the
red-giant branch” (TRGB) are expected to have the same luminosity in every galaxy: this feature
of the Hertzsprung-Russell diagram can be used as a standard candle. Technically, every galaxy is
the host of red-giant stars, but for these to be observed, the galaxy needs to be close enough so
that its stellar population can be resolved (i.e. stars can be separately observed). This method is
used up to 10Mpc and yields measurements of M with an uncertainty σM ∼ 0.1 (e.g. Lee et al.,
1993; Riess et al., 2018).

— Super Novae Ia (SNIa). In the very rare situation where a star and a white dwarf orbit together,
at end of its life, the white dwarf collapses in an gigantic explosion whose luminosity rivals the
entire host galaxy.The Nova is a flash followed by a gradual decrease in magnitude. The speed
with which the nova fades can be charactersized in a “light curve”. It turns out that the shape of
the light curve is directly related with the peak brightness of the nova. Therefore by timing the
rat rate at which the nova fades, it is possible to estimate the true brightness of the super nova.
Although they are very rare events (rouhgly one per galaxy per century in the late universe), they
can be used until ∼ 4000Mpc and yield measurements of M with an uncertainty σM ∼ 0.14 (e.g.
Betoule et al., 2014).

Standard candles are not the only way distances from galaxies can be estimated. Other methods, the
scaling methods, although less precise, can also be used. Scaling relations are often empirically driven
“laws” which correlate bulk properties of a galaxy with their intrinsic magnitude.

— Tully-Fisher relation (TF). As can be naively derived from Newton’s gravitational law, the more
massive a spiral galaxy is, the faster it rotates. Meanwhile, the more massive it is, the more stars
are formed. Building on this idea, Tully & Fisher (1977) showed through observations that there
is a direct (but noisy) relation between the asymptotic rotation velocity of a spiral galaxy and its
intrinsic luminosity. This method can be widely applied to many galaxies. It yields measurements
of M with an uncertainty σM ∼ 0.4 (e.g. Kourkchi et al., 2020; Tully et al., 2023).

— Fundamental Plane / Faber-Jackson relation (FP). Faber & Jackson (1976) found another
relation of the same type of the Tully-Fisher relation, but for elliptical galaxies. Since elliptical
galaxies are supported by isotropy – stars orbit the galactic center on all possible orbits, the
velocity dispersion of the stellar spheroid is correlated with the diameter of the galaxy. The size
is in turn correlated with the mass. Faber & Jackson (1976) thus linked the Intrinsic luminosity
of elliptical galaxies their stellar velocity dispersion. Further work showed these quantities (stellar
velocity dispersion and Luminosity) to also correlate with effective radius, impling the existence of
a “fundamental plane” which all elliptical galaxies sit on in stellar veloticy dispersion - Luminosity-
effective radius space Thus measuring either the velocity dispersion or the effective radius give an
estimate for the intrinsic brighness. It yields measurements of M with an uncertainty σM . ∼ 0.4
(e.g. Djorgovski & Davis, 1987).

— Surface Brightness Fluctuation. The surface (as seen from the Earth) of a galaxy is not
perfectly smooth, there is some granularity due to the inhomogeneous distribution of stars within
the galaxy. When looking at the image of a galaxy on a CCD captor, as found in every modern
telescope, there is thus a random fluctuation of the number of photons that landed on each pixel.
The farther away the galaxy is, the smoother it seems at a given pixel resolution, and the smaller
the amplitude of this fluctuation is. Thus, once the method has been properly calibrated, and with
some modeling of the galaxy, the distance of a galaxy can be estimated from its measured surface
brightness fluctuation. This method yields measurements of M with an uncertainty σM ∼ 0.4
(Tonry, 1997; Blakeslee et al., 1999; Tonry et al., 2000, 2001).
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1.1.3 Measuring redshifts
When observing a distant galaxy well known sets of emission or absorption lines are routinely shifted
towards the red end of the spectrum. For example, the series of wavelength emitted by a Hydrogen atom
when electrons fall into the ground state, known as the Lyman Series, has a well measured wavelengths
for each transitions. Yet in distant objects the Lyman Series (as well as other series) are routinely shifted
toards the red end of the spectrum from where they are measured on earth. This effect is called the
redshift and is defined as

zobs =
Δλ

λsource
(1.6)

where λsource is the known (or estimated) wavelength of the source and Δλ = λobs − λsource is the
difference between the observed and expected spectral line. Note that if the redshift is negative, we refer
to a “blue shift”. As this effect is comparable to a Doppler effect5, the redshift is very often transformed
into a velocity by a simple multiplication by the speed of light vrec = czobs, called the recession velocity.
This velocity is not necessarily physical, as it can exceed the speed of light. By abuse of notation,
redshifts are thus often given in km/s.

There are two methods to measure the redshift in use today:

— Spectroscopy. Once the spectrum of a galaxy has been obtained, emission or absorption lines in
it are compared to their expected value. Instead of one couple λobs and λsource, several are used,
yielding a quite precise results with an error of only 50 km/s. Yet, obtaining the spectrum is time
consuming, and thus this method only applies to a subset of the observed galaxies.

— Photometry. Using two pictures of a galaxy where two different colored filters have been put
in the optic of the telescope (usually red and blue), it is possible to estimate its redshift. This
technique allows for many galaxies to be observed at once but is much less precise and has errors
up to about σcz/cz ≈ 50%, which reaches to 15 000 km/s for the range of redshifts of matter to
this work (Bolzonella et al., 2000).

1.1.4 Hubble’s Law
In 1929, shortly after the extra-galactic nature of nebulae was confirmed6 by Hubble (1926), Hubble
demonstrated that there is a direct linear relation between the redshift of galaxies and their distances
(measured with Cepheid stars Hubble, 1929). This relation is called the Hubble or Hubble-LeMaitre Law
and reads

cz = H0d (1.7)

whereH0 is known as Hubble’s constant. This law has been confirmed in the Local Universe by later mea-
surements (e.g. Riess et al., 2018), however, the value of Hubble’s constant is the source of a controversy.
Estimations of H0 from the CMB are found around H0 = 67.8 ± 0.9 km/s/Mpc (Planck Collaboration
et al., 2016), which is much lower than estimations from the local universe, e.g. H0 = 74.6±0.8 km/s/Mpc
(Tully et al., 2023). If the redshift is interpreted as a Doppler effect, this law means that a object at a
distance d recedes with a velocity H0d.

1.2 The homogeneous Universe
In this section, we review the theoretical bases on which this work – and indeed modern cosmology – is
built. We start by a general description of the dynamics of a homogeneous, isotropic universe.

1.2.1 The Cosmological principle
Modern cosmology relies on a fundamental hypothesis, the Cosmological principle, namely the assump-
tion that the Universe is homogeneous and isotropic on large scales. The Cosmological principle is a

5The Doppler effect is the shift of the frequency perceived by a fixed observer with respect to a moving emitter.
Acoustically this is simply a drop in pitch, but it can also be applied to light sources as well, both being waves. However
it is noted that the redshift has various interpretations including the stretching of wavelengths due to metric expasion of
space. see https://arxiv.org/abs/1605.08634

6The term nebula was then, used to designate any extended source of light, which notably included galaxies.
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generalization of the Copernican principle stating that we, on Earth, are not privileged observers of the
Universe. Such an hypothesis is motivated not just by the philosophy that it is highly unlikely that
we inhabit a special place or time in the Universe, but also from observations that the universe indeed
appears homogeneous and isotropic.

1.2.2 The glue of the Universe: gravitation
At great distances, objects interact primarily through gravitation. According to the Newtonian interpre-
tation, gravity is a force that every massive object applies to every other massive object. It is an intrinsic
property of all mass, regardless of form. The force exerted by two masses on each other is proportional
to the mass of each object ma and mb and inversely proportional to the square of the distance between
the objects rab:

Fab = −GMaMb

r2ab
(1.8)

where G = 6.674 ·10−11 m3kg−1s−2 is the gravitational constant. This law as the value of G are empirical
and have been at first designed by Newton to explain movements in the solar system.

1.2.3 The large scale dynamics of the Universe: Friedmann equations
The theory of modern cosmology starts with general relativity, which extends or replaces Newtonian
gravity. In Newton’s view of gravity, the Universe is the stage on which gravitating objects act. In
general relativity, however space-time is considered to by a dynamical quantity that can change due to
the presence of mass-energy. These changes are described by the Field equations of general relativity:
(Einstein, 1914, 1915b,a; Einstein, 1916):

Rμν − 1

2
Rgμν + Λgμν︸ ︷︷ ︸

Curvature of space

=
8πG

c4
Tμν︸ ︷︷ ︸

Content of space

(1.9)

where gμν is the metric tensor7 from which one can compute the self contracted Riemann Tensor Rλ
μλν =

Rμν , known Ricci tensor, as well as the Ricci scalar R. Λ is the “cosmological constant” whose physical
meaning is to be discussed in the next section. The energy-momentum tensor Tμν describes the content
space-time, and c is the velocity of light. A more precise understanding of this equation is not necessary
for the purpose of this work. In the non-relativistic limit of weak fields and low velocities, general
relativity, simplifies to the Newtonian description of gravitation.

The problem of finding solutions to eq. (1.9) was immediately posed after Einsteins seminal 1917 Fiel
equation paper. After K Schwarzschild famously found the solution to the gravitational field around
a point mass, Friedmann (1922, 1924) and Lemâitre (1927, 1931) were the first to independently find
solutions for a homogeneous isotropic distribution of matter, namely the solutions which describe the
dynamics of the Universe as a whole. This is known as the Friedmann-LeMaiter-Robertson-Walker
(FLRW) metric (Robertson, 1933, 1935, 1936a,b; Walker, 1937). The line element can be written in
spherical coordinates (r, θ, φ):

dτ2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ + r2 sin2 θdφ2

)
(1.10)

where a ∈ [0, 1] is a time dependent global scale factor of the Universe and k is its curvature8. This metric,
which forms the basis of modern cosmology, describes the solution to the Einstein Field equations under
the Cosmological principle. The resulting equations describe a homogeneous and isotropic universe
of density ρ and internal pressure p whose evolution is described by the two independent so-called
“Friedmann equations”:(

ȧ

a

)2
=

8πG

3c2
ρ− kc2

a2
+

Λc2

3
, (1.11)

ä

a
= −4πG

3c2
(ρ+ 3p) +

Λc2

3
. (1.12)

7The core quantity that describes the “shape” ofspace-time.
8There are three possibilities here: either the Universe is lat (k = 0), spherical (k > 0), or hyperbolic (k < 0). Accordingly

the sum of the internal angles in a triangle is either exactly 180◦, greater than 180◦, or less than 180◦ respectively.
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A key characteristic of such an universe is its possible expansion (or collapse) with time. This was at
first a pure mathematical conjecture when the equations of Friedmann were first written by Lemaitre,
but was evidenced some years later by Hubble (1929) (see section 1.4.1 for an observational description
of the Hubble Law). The time dependent expansion rate is named the Hubble parameter H(t) = ȧ/a
and converges at modern times to the so-called Hubble constant H(0) = H0.

A choice of mean density, pressure and cosmological constant thus provides a description with how
the Universe expands - a testable prediction of the theory. Among the predictions are that there exists
a “critical density” ρc, namely the density needed to halt the expansion of the Universe.

ρc =
3c2H2

0

8πG
. (1.13)

ρc is in general a function of time (but can be defined today) and derived by solving eq. (1.11) assuming
k = 0 and Λ = 0. In general, if ρ > ρc, the Universe has ample matter and thus positive curvature and
will expand to a maximum extent, and then collapse under its own gravity. If ρ < ρc there is insufficient
matter to halt the expansion, the universe has negative curvature and expands eternally. Lastly, if ρ = ρc
the universe is flat, and there is just enough matter to balance the expansion which slows down, never
reversing. Measuring the rate of expansion or the rate of deceleration (or the rate of change of the
expansion) is thus a kin to measuring its matter content.

Note that the growth factor is often substituted to the cosmological time (i.e. time dependent
functions are given as functions of a instead of t). These two quantities are bound by

t(a) =

∫ a

0

da

ȧ
. (1.14)

1.2.4 The content of the ΛCDM Universe
Such a universe, although homogeneous and isotropic, can have several constituents i such that

∑
ρi = ρ.

We define Ωi = ρi/ρc which is preferred over the ρi, such that
∑

Ωi = 1 in a flat Universe. Several
models have been proposed to describe how the Friedmann equations evolve and thus the history and
fate of the universe (e.g. Einstein & de Sitter, 1932). The model developed over the last decades to
explain the observations is named ΛCDM (“Lambda Cold Dark Matter”). It comprises four components.

— Baryonic Matter. Baryonic matter is what the common use of “matter” implies9 It has been
well observed, on Earth and in the Universe. It composes all atomic matters including the gas and
the stars that make up galaxies. It constitutes only about 5% of the total content of the Universe
(Ωb = 0.04859; Planck Collaboration et al., 2016).

— Cold Dark Matter. Dark matter was introduced in the 1980s to explain the failure of newtonian
gravitation (see eq. (1.8)) on large scales. Indeed, the amount of baryonic matter we detect in
galaxies does not explain their rotation curves, which instead of dropping off at great distances
from their centers appear flat: stars at a galaxy’s edge have the same circular speed as stars
much closer to the center of the galaxy. Similarly, galaxies in clusters move too fast, compared to
the amount of matter inferred by the observed light (Zwicky, 1937; Rubin et al., 1980) In other
words the typical speeds of galaxies in clusters is higher than the escape velocity inferred by mass
estimates based on the visible light (i.e. number of galaxies). Under the assumption that these
objects are not flying apart, the sensible conclusion is that the escape velocity is much higher than
that predicted by simply counting the galaxies. There thus must be a non-luminous component to
these clusters that binds the cluster members and prevents them from flying apart. No dark matter
particle has been directly detected, despite many detection experiments. Constraints, coming from
observations and cosmological simulations, show that dark matter has to be cold or at least warm
and that it cannot be hot, namely relativistic at decoupling10. The main evidence for this is due
to a phenomenon known as “free streaming” (Blumenthal et al., 1984; Davis et al., 1985) In brief:
if dark matter was very hot (i.e. fast) then it would be able to easily escape the potential wells
that confined it in the early Universe. The shallow potential wells would be erased where as deeper
ones could survive. As such the minimum galaxy mass, namely the smallest potential well that

9We note that the term “Baryonic Matter” is a misnomer since it also refers to Hadronic matter such as leptons like the
electron or mesons like the pion. However, cosmologists somewhat incorrectly refer only to baryons since these are many
orders of magnitude more massive than leptons and mesons.

10The “temperature” of the matter has to be understood under the eye of statistical physics and refers to the velocity of
the particles.
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can survive free-streaming, sets a limit on the nature of the dark matter particle (at decoupling).
Given the existence of structures on smaller and smaller scale the free streaming process appears
to have been unimportant and thus dark matter must have been cold (i.e. slow). Hence the name:
Cold Dark Matter (CDM). Dark matter makes up for 25% of the total content of the Universe
(ΩDM = 0.2603; Planck Collaboration et al., 2016).

— Dark Energy. Dark energy, or energy of the void is the source of the accelerated expansion of the
Universe. In the Einstein and Friedmann equations, it is represented by the Λ, the cosmological
constant11. There are many suggestions as to what Λ could be including the vacuum zero point
energy, quintessence, dynamical dark energy among others. It is the largest constituent of Universe
with ≈ 70% of the total (ΩΛ = 0.6911; Planck Collaboration et al., 2016).

— Curvature. Even though curvature is not really a “constituent” of the Universe, it is treated
similarly in the Friedmann equations 1.11 and 1.12. Modern measurements indicate that our
Universe is flat (Ωk = 810−4; Planck Collaboration et al., 2016).

— Radiation. Due to how radiation and baryons loses energy as the Universe expands and their
number density drops, radiation can be neglected in the matter dominated era, i.e. Ωr = 0.

Usually all matter terms are grouped together such that Ωm = Ωb + ΩDM. Planck Collaboration et al.
(2016) gives Ωm = 0.3085. The acceleration of the growth factor can be written as a function of the
constituents of the Universe:

ȧ = H0

√
Ωm

(
1

a
− 1

)
+ΩΛ(a2 − 1) + 1. (1.15)

Similarly as the universe expands, the self gravity of all the gravitating mass in it, decelerates the
expansion leading to a deceleration parameter, which today is

q0 =
1

2
Ωm − ΩΛ (1.16)

Measuring the deceleration parameter can thus constrain the amount of matter and dark energy in the
Universe.

1.3 The Large Scale Structure
Galaxies form a large structure named the Cosmic Web (Bond et al., 1996), or less originally, the Large
Scale Structure (LSS) of the Universe, which was first discovered in the 1980s by the CfA survey (de
Lapparent et al., 1986). Four main types of features are found in the LSS: void regions, flat walls
of galaxies, elongated filaments and clusters; the filaments and the walls form an irregular web where
clusters are found at each intersections (e.g. Zeldovich, 1978; Bond et al., 1996). This structure is the
largest observed today (hence the name, the Large Scale Structure). In fact the transition from cosmic
web to homogeniety has yet to be found and estimates on the “scale of homogeniety” differ from 70
(Scrimgeour et al., 2012) to hundreds of Mpc (Peebles, 1980)

1.3.1 The local dynamics of the Universe: structure formation
Even if the Universe is homogeneous and isotropic on the largest scales, it displays rich structures on
small(er) scales, from the size of a star to the so-called Cosmic Web, or Large Scale Structure (LSS), a
structure coherent over hundred of millions of light years. These small scale inhomogeneities are often
characterized by means of density perturbations, or more generally, of a density field. The evolution
of this density field constitutes one of the main problems in cosmology and, within the context of the
hot big bang, it is determined by assuming the universe is an ideal fluid that behaves according to well
known conservation laws. We define the comoving cosmological reference frame in which the expansion
of the universe is omitted. Namely two points in the universe whose only motion is due to the expansion,
remain at constant comoving distance from each other:

x = r/a. (1.17)
11It was first introduced by Einstein himself to prevent the Universe from collapsing on itself under the effect of self

gravitation, but was then abandoned as Hubble proved the expansion of the Universe. It was reintroduced in the equation
long after his death.

11



where x is the comoving coordinate and r is the physical or proper coordinate. Thus the dynamics of
the density field are governed by:

∂ρr
∂t

+∇r · (ρrv) = 0 Conservation of matter, (1.18)

∂v

∂t
+ (v ·∇r)v = −∇rp

ρr
−∇rΦ Euler’s equation, (1.19)

ΔrΦ = 4πGρr Poisson’s equation. (1.20)

where the subscript r refers to the physical, proper reference frame. In the comoving frame the space
and time derivatives as well as the density field are modified:

∇ ≡ ∇[x] = a∇r, (1.21)

v ≡ dr

dt
= ȧr + u with u ≡ aẋ, (1.22)

dv

dt
=

du

dt
+
ȧ

a
u+ äx, (1.23)

ρ = a3ρr. (1.24)

Equations 1.18 then become

∂ρ

∂t
+

1

a
∇ · (ρu) + 3ȧ

a
ρ = 0, (1.25)

∂u

∂t
+

1

a
(u ·∇)u = −∇Φ, (1.26)

ΔΦ = 4πGa2ρ. (1.27)

Even though they can be written, these equations can not be analytically solved. The approach
adopted depends on the scales on which the formation of structures is studied. For the analysis of the
Universe two methods are applied. The first one is the simplification of these equations by means of a
linear Taylor expansion to first order, the subject of the next section. The second is the use of computers
to numerically discretize the continuous field and solve the N -body problem as described in section 1.7.

1.3.2 Linear Theory
The linear over-density field

Although the density field is a function of cosmic time t and location x, for convenience we may define
the over density field δ(x, t) in terms of the mean density ρ̄(t), since this is just a function of time

ρ(x, t) = ρ̄(t)(1 + δ(x, t)). (1.28)

The over-density δ(x, t) describes the local relative variation with respect to the mean. The over-density,
a function of both space and time, is the core quantity of the linear theory of structure formation. In
the linear regime, deviations from the mean density field are considered small (δ � 1) such that a first
order approximation is valid. Similarly the velocity field is assumed to be slowly varying ∇ · u � 1.
These approximations are the key of the linear theory.

This separation affects the gravitational potential Φ which splits into a mean potential φ̄ such that
Δφ̄ = 4πGa2ρ̄ and a perturbed potential Δφ = 4πGa2ρ̄δ. In the linear regime the eqs. (1.25) to (1.27)
become equations which govern the evolution of a small over density:

∂δ

∂t
+

1

a
∇u = 0, (1.29)

u̇+
ȧ

a
u = −∇φ/a, (1.30)

Δφ =
3ȧ

2a
Ωmδ. (1.31)

Combining these equations together, one single equation that governs the dynamics of the over-density
field may be obtained (Bonnor, 1957; Strauss & Willick, 1995):

δ̈ +
2ȧ

a
δ̇ =

3ȧ

2a
Ωmδ. (1.32)
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Another simplifying assumption that may be made is that the spatial and the time components of the
over-density fields may be separated:

δ(x, t) = D(a)δ0(x). (1.33)

In this model, the over-density field is frozen in space, but can change over time. Inserting eq. (1.33)
into eq. (1.32), two solutions for D(a) emerge (Heath, 1977; Peebles, 1980):

D+(a) ∝ ȧ

a

∫ a

0

da

ȧ3
, D−(a) ∝ ȧ

a
. (1.34)

If the value of D+(a) and D−(a) are not analytical, they are easily numerically computed. Both are
smooth, but D+ increases with a while D− decreases with increasing a. Therefor in today’s Universe,
D−(a) does thus not contribute anymore, and the solution can be simplified to include just D+, also
known as the growing mode.

δ(x, t) = D+(t)δ0(x). (1.35)

The linear velocity

In this section we examine the evolution of the linear velocity field. It follows from eq. (1.29) that

∇ · u =
∂δ

∂t
= −Ḋδ0 = −Ḋ

D
δ = −d logD

da
ȧδ (1.36)

= −H
a
fδ (1.37)

where f = d logD
da is the linear growth factor.

In the modern Universe, this relation simplifies to

∇ · u = −H0fδ. (1.38)

and if the universe is flat universe by a function of Ωm only (Lahav et al., 1991):

f(Ωm) = Ω4/7
m +

1

70
(1− Ωm)× (1 + Ωm/2). (1.39)

Note that the dependence of this parameter in ΩΛ is implicit as ΩΛ = 1−Ωm in these conditions. Note
that this equation is the same as an equation of conservation of the matter. The flow is simply pointing
towards high density regions, and away from empty regions. The linear velocity is a potential flow and
thus irrotational, i.e. ∇ ∧ u = 0.

Limits of the linear theory

The increasing contrast predicted by eq. (1.35) is a simplistic model of gravitational collapse. Indeed,
the dense regions become denser and the empty regions emptier, as one would expect. Yet, the shape of
the structure itself is frozen and just grow “in place”, which is not realistic.

On one hand, a key approximation of the linear theory is the small contrast of the over-density field
(δ � 1). On the other hand, this same theory predicts that the contrast increases indefinitely over time.
The first hypothesis is thus eventually broken. Worse, points where δ(x) is negative eventually reach
δ(x, t) < −1, thus indicating regions where the density ρ(x, t) of the universe is negative, which is clearly
unphysical. The linear theory can therefore only be applied at early times.

However, a key hypothesis of cosmology is that the Universe is homogeneous on large scales. The
larger the scales considered are, the smaller the amplitude of the perturbations. A second realm in which
the linear theory can therefore be applied is when studying the (very) large scales of the Universe.

The limits of the linear theory are discussed further in section 1.8 from the point of view of its
statistics. In chapters 2 to 4, the linear theory is applied outside of its range of validity, in clear violation
of the conclusions of this discussion.

13



1.3.3 Galaxy bias
Because of their supposed formation process, galaxies are thought to be found in very dense regions of
the Universe (e.g.; Kaiser, 1984; Bardeen et al., 1986; Mo & White, 1996).

The exact relation between the position of galaxies and the density of the underlying distribution
of matter (dark and luminous) is, until today, an unsolved question. It is extensively discussed in the
literature under the term of galaxy bias (Bardeen et al., 1986; Mo & White, 1996; Peacock & Smith,
2000; McBride et al., 2011). Indeed, if the distribution of galaxies is relatively easy to estimate, the
distribution of matter is more challenging, as discussed throughout this work. The most widespread
model is a simple linear relation between the galaxy density and the matter density:

ρg = bρ (1.40)

where b is the linear galaxy bias factor, and ρg is the density of galaxies.
The shape, color and luminosity of galaxies have been shown to be linked to their environment

(Dressler, 1980; Sheth & Diaferio, 2001; van der Wel et al., 2010). Furthermore, the population of
galaxies evolves with time, i.e. distance. The galaxy bias is thus not a constant but rather a function of
other parameters (Mo & White, 1996). Although the issue of the positioning of galaxies is necessary to
understand this work, we do not assume any galaxy bias model.

1.4 Observations in the ΛCDM Universe
In this section, we draw the links between the observed quantities discussed in section 1.1 and the ΛCDM
model of the Universe of sections 1.2 and 1.3.

The redshift of a galaxy spawns from several physical effects. The next three sub-sections treat
ofthese effects separately. The fourth next section discusses how they combine into the observed redshift.
The link between the luminosity distance of section 1.1.2 and the comoving distance introduced in
section 1.3 is then detailed. Next, the estimation of peculiar velocities of galaxies from measurements of
their redshifts and distances is explained. Finally, the use of the redshift as a proxy to the distance is
discussed.

1.4.1 The cosmological redshift
The first source of redshift to consider is thus the expansion of the Universe. This component of the
redshift is called the cosmological redshift. It emanates from the dissolution of the energy of the wave in
space: the light was emitted when the Universe was smaller, therefore the energy that was then comprised
in a small volume is now spread over a larger volume. In terms of light, the corresponds to a increase of
the wavelength, and thus a redshift. The cosmological redshift is linked to the comobile distance of the
object, and has to be computed with a model of the history of the expansion of the Universe (Davis &
Scrimgeour, 2014). In a flat universe, the expression of zcos reads

d =
c

H0

∫ zcos

0

dz√
(1 + z)3Ωm + (1− ΩΛ)

(1.41)

where d is the comoving distance, zcos the cosmological redshift. The reader will note that eq. (1.41)
become czcos = H0d (see eq. (1.7)) when the integral is simplified to zcos. Equation (1.41) can not be
analytically solved. It is however trivial to integrate numerically, which is the approach used in this
work.

1.4.2 The peculiar redshift
The Hubble Law described in eq. (1.7) a small scatter around cz = H0d. This scatter is due to the
peculiar velocities of galaxies. “Peculiar” is a misnomer as this velocity is simply the gravitational
velocity, namely the component of a galaxy’s motion due to the gravitational forces it feels. Whereas
he Hubble Law traces the global expansion of the Universe, the peculiar velocity follows a galaxies local
movement relative to the inertial frame of the CMB. Even though, the peculiar velocity of a galaxy is
three-dimensional, its effect on the redshift is limited to the line of sight, namely the Doppler-Fizault
effect (Davis & Scrimgeour, 2014)

zpec =

√
1 + vr/c

1− vr/c
, vr = v · x̂ (1.42)
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where zpec is the peculiar redshift, vr is the radial peculiar velocity, v is the full peculiar velocity and
x̂ = x/|x| is the direction in the sky.

In the context of the linear theory vr ≈ ±300 km/s (see eq. (1.95)). The dispersion of velocities is
slightly larger in a gravitationally evolved universe but remains of the same order of magnitude (see
section 1.8). For our application then, vr � c and the expression of the peculiar redshift zpec can be
reasonably simplified to its non relativistic form

zpec = vr/c. (1.43)

1.4.3 The observer’s peculiar redshift
In the same sense that the movement of the observed galaxies has an effect on their measured redshift,
the motion of the observer itself has the exact same effect. Thus, the combined motions of

1. the telescope on the Earth12,
2. the Earth around the Sun,
3. the Sun around the center of the Milky Way,
4. and the Milky Way with respect to the inertial frame of the CMB

have to be taken into account (Calcino & Davis, 2017). Since observations of the CMB show a strong
dipole in the distribution of microwave temperature’s the peculiar redshift of the Earth can be easily
assessed. These can then be transformed to the solar frame and then, via the “Local Standard of Rest”,
to the Galactic frame. Planck Collaboration et al. (2016) gives a peculiar velocity of the Sun in the
Universe of

vobs = 369.82± 0.11 km/s, lgal = 264.021◦ ± 0.011◦, bgal = 48.253◦ ± 0.005◦ (1.44)

where lgal and bgal are the galactic longitude and latitude in which vobs is pointing. This velocity can
be projected on the line of sight to any galaxy and removed from the measurement of redshift or radial
peculiar velocity of each and every galaxy:

zobs = vobs · x̂. (1.45)

The redshifts given are then with respect to the CMB. Unless mentioned otherwise, this work makes
exclusive use of such corrected redshifts.

1.4.4 Combining redshifts
The observed redshift is not the direct sum of the different redshifts but rather reads (Davis & Scrimgeour,
2014)

1 + z = (1 + zcos)(1 + zpec)(1 + zobs) for peculiar redshifts w.r.t the Sun, (1.46)
1 + z = (1 + zcos)(1 + zpec) for peculiar redshifts w.r.t the CMB. (1.47)

For the sake of calculus, this expression can be simplified at its first order (z... � 1):

z = zcos + zpec + zobs +O(z2). (1.48)

1.4.5 Luminosity distance and comoving distance
The peculiar and cosmological redshifts are critical and needed to obtain peculiar velocity, which in turn
are needed to obtain distances. As mentioned above, in the ΛCDM cosmology the concept of distance is
ambiguous since the expansion of the universe affects light, angular sizes and proper motions differently.
In this thesis we concentrate exclusively on luminosity distances. The distance required to measure
eq. (1.50) is the comoving distance but what is discussed in section 1.1.2 is the luminosity distance.
These differ due to the fact that the universe has expanded between when the light was emitted and
when it was measured. The expansion means that the true comoving distance can be obtain by (Calcino
& Davis, 2017):

dL = (1 + z)d = (1 + zcos)(1 + zpec)d. (1.49)

Note that at low redshift, z � 1, where the expansion is negligible, the comoving distance tends to the
luminosity distance.

12The rotation of the Earth if the telescope is ground based, or its orbit around the Earth in the case of a space telescope.
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1.4.6 Estimating radial peculiar velocities
As mentioned in section 1.4.2 the velocity is the deviation from the expansion due to the net gravitational
force a galaxy feels. Therefore if an estimate of the galaxy’s distance exists then, at low redshift, one
may approximate z ≈ zcos + zpec and dL ≈ d, vr can be simply written:

vr = cz −H0d. (1.50)

One can recognize the terms of the Hubble Law on the right hand side, leaving the radial peculiar velocity
as the deviation of each point to this law on the left hand side. This approximation is only valid within
a few dozen of Mpc, when czcos = H0d is non-relativistic.

The approximation breaks down at high redshift when the cosmological expansion velocity is no
longer non-relativistic. In this case, assuming the peculiar velocity is non-relativistic, the radial peculiar
velocity can be isolated from eqs. (1.43) and (1.47):

vr = c
z − zcos(d)

1 + zcos(d)
. (1.51)

where zcos(d) is obtained by numerical resolution of eq. (1.41). Note that the peculiar velocity does not
depend only on the redshift but rather on both the redshift and the distance of the galaxy. These two
quantities thus need to be measured in order for the radial peculiar velocity to be estimated (Davis &
Scrimgeour, 2014).

1.4.7 Estimating distances from observed redshifts
As detailed in section 1.1.2, estimating the distance to a galaxy is quite challenging. The result obtained
can be marred by large errors and subject to biases (extensively discussed in section 1.5). As we have seen
in section 1.1.3, spectroscopic redshifts are relatively easy to obtain, and have only small uncertainties.

Recall that eq. (1.41) displays a straightforward relation between the distance and the redshift. If
the cosmological redshift is known, the distance can be computed (assuming values for Ωm,ΩΛ). This
estimator is problematic because the observed redshift is not the cosmological redshift, but rather the
total redhift, namely the combination of the cosmological and peculiar redshifts. In absence of knowledge
of the cosmological redshift, eq. (1.41) can only be applied to the observed redshift z:

dz =
c

H0

∫ z

0

1√
Ωm(1 + Z)3 + (1− ΩΛ)

dZ ≈ cz

H0
. (1.52)

Note that the difference between and eq. (1.41) is the upper limit on the integral. When using sec-
tion 1.4.7 to compute the distance, a bias is introduced due to the the presence of a peculiar redshift in
the observed redshift. In other words, the local movement of the galaxy biases the estimation of distance
when the distance is computed from the observed (total) redshift. This effect is well known under the
name of Redshift Space Distortion (RSD). Equations (1.50) and (1.95) and section 1.4.7 can be used to
assess the size of the bias:

dz ≈ cz/H0 ≈ d− vr/H0

vr ∼ N (0, σv)

⎫⎬
⎭ =⇒ dz ∼ N (d, σdz

) , σdz
=
σv
H0

. (1.53)

RSD manifests itself in two regimes: where galaxies are laminar flowing in the linear, non-vortical,
regime towards density peaks; and where galaxies exhibit chaotic motion deep in the non-linear regime,
after shell crossing and accretion into clusters. First, in the low to medium density regions where the
velocity field is relatively linear the theory dictates σv ≈ 300 km/s, the uncertainty on dz thus reads
σdz

≈ 3Mpc/h. This effect leads to the creation of Kaiser’s pancakes, structures that appear flattened
transversally to the line of sight (Kaiser, 1987; Praton et al., 1997; Thomas et al., 2004). In addition,
the peculiar velocities of galaxies is correlated over large distances (see section 1.6). The RSD is thus
non-local and large patches of the sky can be coherently distorted.

The second regime of the RSD affect massive clusters, where the virial motion of galaxies dominates
over the linear motion. It manifests under the form of so-called Fingers of God (Jackson, 1972), spurious
structures elongated along the line of sight. In these regions, the radial peculiar velocities of galaxies
is so high that the galaxies behind the clusters (dgal > dcluster =⇒ vr,gal < 0) appear in front of it in
redshift space while the galaxies in front of the cluster (dgal < dcluster =⇒ vr,gal > 0) appear behind it.
In this region, σdz can be larger than a dozen of Mpc/h and depends on the mass of the cluster.

The correction of the RSD to recover the true distances from redshift measurements is the subject of
past and ongoing research (e.g.; Peacock & Dodds, 1994; Tsujikawa, 2013).
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1.5 Biases in the observations of distances
Any observation of distance is subject to an number of biases: physical or observational effects often
counter-intuitive that lead to systematically bend the result in an undesired way when not properly
accounted for.

Most of the biases that affect our work come from the estimation of the distances of the galaxies.
Indeed, one would naturally think that the probability of the true distance is entirely described by the
probability of observation of its distance moduli μobs with an error σμ. This is however not the case.

Using the Bayes theorem, one can write the probability of the true distance d:

P (d|μobs) =
P (μobs|d)P (d)

P (μobs)
, (1.54)

P (d|μobs) ∝ P (μobs, d)P (μobs|d)P (d) (1.55)

where μobs is the observed distance modulus. In presence of a selection function, this probability law
has to be renormalized (Strauss & Willick, 1995; Hinton et al., 2017):

P (d|μobs,O) ∝ P (O|μobs, d)P (μobs|d)P (d)
P (O|d) (1.56)

where O = {0, 1} is the event “the galaxy has been observed". Note that the normalization can not be
ignored in eq. (1.56) while it was discarded in eq. (1.55). This difference of treatment is due to the fact
that the normalization depends on the fitted parameter in the second case and not in the first.

A good notation convention is the key to the understanding of the these biases. We distinguish the
true properties of the observed galaxies with the subscript true: μtrue, dtrue, etc. These are fixed qualities,
there exists one and only one true distance for a given galaxy. Similarly, we note observed quantities
with the subscript obs: μobs, dobs, etc. Again, these are fixed quantities, as we are dealing with one
single observation per galaxy. Finally, the random variables do not have any subscript: μ, d, etc. These
are variables, that are a priori, unknown. The purpose of observations is to have P (d) = I(dtrue − d),
that is to say that the random variable d converges to dtrue. However, in presence of biases and errors,
we will see that is not the case.

1.5.1 The Log-Normal bias
We begin by discussing the source of bias from P (μobs|d). Note that because the errors on the redshift
are relatively small compared to the errors on the estimated distances, for matter of simplifications, we
neglect them in this discussion.

Let us consider a galaxy at a distance dtrue having a radial peculiar velocity vr,true. We note its true
distance moduli μtrue, and luminosity distance dL,true. Suppose for the sake of simplicity that this galaxy
is close enough so that dtrue ≈ dL,true = 10μtrue/5−5 and vr,true = cztotal −H0dtrue. Let this galaxy have
a distance error σμ. The probability to observe a distance moduli μ reads

μ ∼ N (μtrue, σμ) =
1√
2πσμ

exp

(−(μ− μtrue)
2

2σ2
μ

)
(1.57)

which transforms into a log-normal distribution on the luminosity distance dL = 10μ/5−5:

d ∼ L(dtrue, νμ) = 1√
2πνμd

exp

(
− ln2
(
d/dtrue

)
2ν2μ

)
, νμ =

ln(10)

5
σμ. (1.58)

The log-normal distribution is skewed. One of the consequences is than its mean is skewed:

〈d〉 = dtrue e
ν2
μ/2 ≈ dtrue

(
1 + ν2μ/2

)
, (1.59)

σd = dtrueνμ. (1.60)

This equation is the core of the Log-Normal bias. It shows that the mean over an ensemble of measured
distances 〈d〉 of a single galaxy is always greater than the galaxy’s real true distance dtrue.

If we consider n galaxies all at the exact same distance dtrue and measure their distance moduli {μi},
the mean of the computed distances 〈d〉i is greater than dtrue. Even if the same distance moduli was
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measured a great number of times independently for each galaxy, the mean distance recovered would
still be over-estimated.

Equation (1.59) also highlights the proportionality of the error with the distance. Indeed, an error of
σμ = 0.5 =⇒ νμ ≈ 0.2 on the distance modulus which results in a 2Mpc/h uncertainty for a 10Mpc/h
distance measurement, and a 20Mpc/h uncertainty on a 100Mpc/h measurement.

The mean and standard deviation of the observed radial peculiar velocity of a single galaxy can be
approximated from eq. (1.50):

〈vr〉 = cz −H0 〈d〉 = cz −H0

(
1 + ν2μ/2

)
dtrue < cz −H0 dtrue = vr,true, (1.61)

σ2
v = σ2

cz +H2
0σ

2
d = σ2

cz +H2
0ν

2
μd

2
true. (1.62)

The systematic over-estimation of the distance leads directly to an under-estimation of the radial
peculiar velocity. The large error on the distance can have quite a dramatic effect on the velocity.
Indeed, in the absence of measurement, we know that the radial peculiar velocity of any galaxy follows
N (0, σv) , with σv ≈ 300 km/s (see eqs. (1.95) and (1.96)). However, given an uncertainty on the distance
modulus of say σμ = 0.4 (resp. σμ = 0.05), the observational uncertainty σv,obs exceeds 300 km/s for
all galaxies more distant than 15Mpc/h (resp. 120Mpc/h). In other words, at 150Mpc/h, with an
uncertainty on the measured distance modulus of σμ = 0.4, the implied uncertainty on the peculiar
velocity is σv,obs = 3000 km/s, i.e. ten times the likely ΛCDM value! This means that, for a distant
galaxy, a measurement of the peculiar velocity has virtually no constraining power at all, since its error
is so much greater than the expected value.

The reader will note that the error on both the distance and on the peculiar velocities are functions of
the true distance, which is unknown. In presence of both a redshift and a direct distance measurements,
the redshift should be used as proxy to the true distance to estimate the biases and the uncertainties.

The bias discussed above, implies that the under-estimation of the radial peculiar velocity of each
galaxy at a given distance leads to a spurious infall. This bias motivates the designing of estimators of
radial peculiar velocities, which try to over-come this effect and correct the statistics (see section 1.9.5
or e.g. Watkins & Feldman, 2015). In this thesis, we detail two other methods in chapters 2 and 3. More
visual examples of this bias are to be found in chapter 3.

1.5.2 Flux bias Malmquist Biases
The second bias discussed is named after Karl Gunnar Malmquist, who first discussed it in Malmquist
(1922). In its original form, it is a selection bias which describes the probability that an existing galaxy
is effectively observed, which is written P (O|μobs, d) in eq. (1.56). The Malmquist bias stems from the
existence of an observational flux threshold. Indeed, each telescope (associated with a light detector, e.g.
a CCD, photographic plate, the eye) has a flux1999; Boruah et al., 2022b), and its consequences on our
methods are discussed throughout this work. threshold below which light is not detected. Thus, galaxies
that appear dimmer than this threshold are not detected and de facto “invisible” to this device. A galaxy
that appears dim is either close and faint or bright but distant enough that its light has be diluted
in space. If we make the naive assumptions that all celestial objects are identical and have the same
absolute luminosity, the number of galaxies drops with distance (instead of increasing, see section 1.5.3)
and that only bright galaxies are to be found in the far away Universe.

1.5.3 Homogeneous Malmquist bias
By abuse of notation, the term of Malmquist bias has unfortunately, in common practuce, become
generalized to all observational biases. The homogeneous Malmquist is a geometrical observational bias
that affects the prior distribution of distance P (d). It simply models the idea that in a homogeneous
universe, there are more points in the shell at [d, d+ dd] than in the shell [d− dd, d]. Indeed, while the
number density of galaxies is constant, the volume of the shells grow with distance, and so thus should
too the number of observed galaxies (Strauss & Willick, 1995):

P (d) ∝ d2. (1.63)

When neglected, galaxies tend to be put to closed to the observer, which tends to over-estimate the
radial velocities following eq. (1.50).
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1.5.4 Inhomogeneous Malmquist bias
The inhomogeneous Malmquist bias also affects the prior distribution of the distances P (d). The ho-
mogeneous Malmquist bias results for the geometry of the Universe but not from its content. The
inhomogeneous Malmquist bias, is itself a consequence of the inhomogeneous distribution of the galaxies
in the Universe. Indeed, the probability to find a galaxy at a distance d, given its direction x̂ = x/d,
depends directly on the galaxy density distribution in the Universe:

P (d) ∝ ρg(dx̂). (1.64)

Modeling the inhomogeneous Malmquist bias is difficult as the true galaxy density distribution is
unknown in the context of reconstruction (see section 1.9 or e.g. Strauss & Willick, 1995; Dekel et al.,
1999; Boruah et al., 2022), and its consequences on our methods are discussed throughout this work.

Note that this bias differs slightly from the galaxy bias presented in section 1.3.3. The inhomogeneous
Malmquist bias may affect the measurement of a galaxy’s distance if the underlying distribution of
galaxies is ignored. The galaxy bias arises when the matter and the galaxy distributions are confused.
However, both a depend on the type of galaxy discussed, e.g. the distribution of elliptical galaxies is
different from the distribution of dwarf galaxies.

1.5.5 Biases due to the nature of observational surveys
Lastly, there are a number of effects that can affect the apparent brightness of galaxies. For example
the presence of interstellar cosmic dust or gas or even stars along the line of the sight leads to extinction
effects as light is aborbed and reemitted. It is for instance notoriously difficult observe galaxies in the
plane of our own galaxy since the density of Milky Way stars is so high there are no clear inter-stellar
sight line. The “milky” nature of the via lactea creates a so called Zone of Avoidance (ZoA) (Hubble,
1934). When observing the sky from the ground, the light of galaxies at zenith travel through less
atmosphere than the light of galaxies closer to the horizon. Since the atmosphere absorbs or scatters
light, this makes observations on the horizon more difficult than at the zenith. Different telescopes,
with different through-puts, different detection devices, and resolutions, must thus be used to compile
catalogs of distance moduli. Furthermore, all telescopes have a limited frequency range in which light
can be detected (e.g. the visible light for the eye, radio frequencies for a radio telescope, etc). Galaxies
that redshifted might simply fall out of this frequency detection range. Finally, artificial limitations of
the selection function, like a redshift cut (i.e. galaxies whose redshift is higher than a certain value are
excluded from the sample because the survey is incomplete there) may lead to biases if they are not
properly modeled. Indeed, any reconstruction has to be “aware” that the absence of observed galaxies is
either physical, i.e. there are in fact no galaxies there, or artificial, i.e. for one of myriad of reasons the
galaxies are unobservable.

The probability to observe a galaxy is thus not only function of its distance modulus μobs and its
distance d, but rather of many of its intrinsic properties combined with the technical specificities of
telescope aiming at it. The main implications of this bias are discussed in section 1.9.2.

1.6 Statistics of the linear fields
Behind every star and galaxy, beyond the dust and the molecular gas clouds, a signal is emitted from
any direction of the sky at a wavelength of about 1.063 mm: the Cosmic Microwave Background (CMB).

The CMB is close to being a perfectly uniform black body spectrum at 2.7K. Yet, variations in its
temperature of about one hundred thousandth of the average value have been detected by the Smoot et al.
(antenna Dicke radiometer; 1977), Smoot et al. (COBE; 1992); Fixsen et al. (COBE; 1996), Komatsu
et al. (WMAP; 2011) and more recently by the Planck Collaboration et al. (2016) missions. These
temperature variations are thought to be due to the inhomogenous density distribution in the early
universe. Although seemingly random, these perturbations are correlated in space. This means that the
knowledge the value of the field at a position constrains the expected randomness of its neighborhood.
The fluctuations of the temperature field are tied to the ones of the density field. The CMB is thus used
a source of information on the statistics of the early or large scale over-density field δ.
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1.6.1 Gaussian process
The perturbations δ are well modeled by a Gaussian process (Kolb et al., 1990). Such a process is entirely
characterized by a mean field – which we take as null here – and a two point correlation function13 defined
as (Wiener, 1930; Khintchine, 1934)

ξ(x1,x2) = 〈δ(x1)δ(x2)〉 =
∫∫

δ(x1)δ(x2) P
(
δ(x1), δ(x2)

)
dδ(x1) dδ(x2). (1.65)

The probability of the Gaussian field is written on a finite set of n sampled positions δ = {δi}i<n =
{δ(xi)}i<n rather than on the continuous field itself. Such a set of values follows a Multivariate Normal
Distribution (MND):

P : Rn → [0, 1]

δ → 1

(2π)n/2|Σ| exp
(−1

2
δTΣ−1δ

) (1.66)

where Σ ∈ Mn×n is a positive definite matrix named the correlation matrix, |Σ| is its determinant and
Σ−1 is its inverse. The coefficients of the correlation matrix are the values of the two points correlation
ξ at the sampled positions

Σij = ξ(xi,xj) = 〈δ(xi)δ(xj)〉 = 〈δiδj〉 , 0 < i, j < n. (1.67)

As stated above, a fundamental principle in cosmology is that the Universe is homogeneous and isotropic
on large scales: there is no preferred or special direction. These assumptions simplify the form of the
two point correlation functions which becomes

ξ(xi,xj) = ξ (|xj − xj |) . (1.68)

Namely, the two point function depends only on the separation. The marginal law on each value of the
MND is a normal law centered on zero and with a width σ2

δ = ξ(0):

δ(xi) ∼ N (0, σδ). (1.69)

Note that it is the same law for all values, which is a direct consequence of the hypothesis of homogeneity
of the Universe.

1.6.2 The matter power spectrum
The frequencial approach is often preferred to the spatial approach. Indeed, under the assumptions
of homogeneity and isotropy, the Fourier modes of the field are independent random variables, which
simplifies greatly the use of this model. Throughout this work, the following Fourier transform convention
is adopted (same convention as in Peacock, 2007):

f̃(k) = FT[f ](k) =

∫
R3

f(x)e−ik·xdx, (1.70)

f(x) = FT−1[f̃ ](x) =
1

(2π)3

∫
R3

f̃(k)eik·xdk. (1.71)

(1.72)

The Fourier transform of the over-density field δ is thus noted δ̃. The probabilty of the mode
associated with the wavenumber k depends solely on the value of the power spectrum P(k), which is
simply the Fourier transform of the correlation function

P = FT[ξ] ⇐⇒ ξ = FT−1[P]. (1.73)

Furthermore, the assumption of homogeneity and isotropy of the Universe simplifies the form of the
power spectrum P(k) = P(k). The writing of ξ is thus also simplified:

ξ(r) =

∫ ∞

0

k2j0(kx)P(k)dk (1.74)

13Which is in fact a covariance function.
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where j0 is the spherical Bessel function of order 0.
The values of the power spectrum P(k) are constrained from measurements of the CMB on large

wavelength by collaboration such as Planck Collaboration et al. (2016) and on shorter scale by redshift
surveys (e.g. SDDS; York et al., 2000). The amplitude of the power spectrum is a cosmological parameters
whose value is still debated. It is directly linked to the amplitude of the over-density field. The standard
deviation of the over-density field can be computed from the power spectrum

σδ
2 = ξ(0) =

1

(2π)3

∫
R3

P(k)dk =
1

2π2

∫ ∞

0

k2P(k)dk (1.75)

but depending on the shape of P(k) it does not necessarily converge (i.e. k2P(k) is not integrable). A
solution is to smooth the field with a kernel W (kR):

δR =
1

(2π)3

∫
R3

W (kR)δ̃(k)P(k)dk, (1.76)

σδR
2 =

1

2π2

∫ ∞

0

k2W 2(kR)P(k)dk, (1.77)

Two examples of commonly used kernels are:

W (kR) = exp

(
− (kR)2

2

)
Gaussian kernel, (1.78)

W (kR) =
3j1(kR)

kR
Top-Hat kernel, (1.79)

where j1 is the spherical Bessel function of order 1. Historically, a smoothing length of 8Mpc/h with
a Top-Hat kernel is used, as first estimations of the over-density fields gave σ8 ≈ 1 (Davis & Peebles,
1983),

σ8
2 =

9

128π2

∫ ∞

0

j1
2(8k)P(k)dk. (1.80)

This measures the amplitude of fluctuations on a scale of 8 Mpc, i.e. σ8 = δT/T . Planck Collaboration
et al. (2016) gives σ8 = 0.829 ± 0.015. As smoothing is a linear process, the smoothed field are as
Gaussian fields (Bardeen et al., 1986).

Figure 1.1 shows the power spectrum derived from Planck Collaboration et al. (2016) and the derived
two points correlation function. The power spectrum peaks slightly above k = 10−2 h/Mpc which is
equivalent to a wavelength of about 600Mpc/h. It tends to zero both for k → 0 which is consistent with
an homogeneous Universe. For large values of k, the power spectrum decreases as k−1, meaning that
k2P(k) is not integrable and that for the non-smoothed field, σδ → ∞.

As can be seen in the third panel of Figure 1.1, the two point correlation function drops around
10Mpc/h. Points that are more than 50Mpc/h apart are almost uncorrelated. There is however a peak
of correlation at about 100Mpc/h visible in the second panel. This is the signal of Baryonic Acoustic
Oscillation (BAO) (Eisenstein & Hu, 1998). BAO are broadly speaking spherical shells of over-density
of about 110Mpc/h in radius spread across the Universe. These over densities are a result of acoustic
waves in the primordial plasma which froze at the epoch of decoupling. Their detection remains until
now only statistically evidenced (i.e. as a bump in the correlation function Beutler et al., 2011; Alam
et al., 2017). The measurement of a single instance of a BAO has been however claimed by Einasto et al.
(2016).

1.6.3 Statistics of the Fourier modes
The statistics of the modes of the over-density depend solely on the power spectrum (Wiener, 1930;
Khintchine, 1934). Both the real and the imaginary parts of each mode follows independent normal laws
(Bardeen et al., 1986):

P
(
δ̃�(k)
)
= N
(
0,
√

P(k)/2
)
, P

(
δ̃�(k)
)
= N
(
0,
√

P(k)/2
)
. (1.81)

where δ̃�(k) and δ̃�(k) are respectively, the real and imaginary parts of each mode: δ̃(k) = δ̃�(k)+iδ̃�(k).
The amplitude of the mode thus follows a Rayleigh distribution

P
(
δ̃(k)
)
=

2
∣∣δ̃(k)∣∣
P(k)

exp

(
−∣∣δ̃(k)∣∣2
P(k)

)
. (1.82)
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Figure 1.1: Top row: the matter-matter power spectrum of Planck Collaboration et al. (2016). Bottom
row: the correlation function in log-log and in semi-log. To derive the correlation function, the power
spectrum has been smoothed with a Gaussian kernel of 1Mpc/h. Note the peak of correlation of the
Baryonic Acoustic Oscillation (BAO) at � 110Mpc/h in the correlation function.

The correlation between modes is〈
δ̃(k)δ̃†(k′)

〉
(k,k′) = I(k − k′)P(k) (1.83)

where I is the Kronecker symbol, and δ̃†(k′) is the complex conjugate. These last equations highlight
the independence between modes and yields the mean amplitude of each mode:〈

|δ̃(k)|2
〉
= P(k). (1.84)

1.6.4 The linear velocity field
The observations are made for the density field either at early times or large scales. In both case, the
linear theory can be safely applied. The relationship between over-density and velocity fields eq. (1.38)
reads in the Fourier space:

ũ(k) = Hf
ik

k2
δ̃(k). (1.85)

From this relationship the self- and cross-correlation functions between density and velocity fields can
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Figure 1.2: Top row: the isotropic density-velocity correlation function ζ(r) (left in log-log, right in
semi-log). Bottom row: the isotropic radial and transversal velocity-velocity correlation functions ψR(r)
and ψT (r).

be derived. The density-velocity correlation function reads

ζa =
〈
uaδ
〉

a = x, y, z

= FT−1
[〈
ũa(k)δ̃(k)

〉]
a = x, y, z

= FT−1

[
Hf

ika
k2

P(k)

]
a = x, y, z

(1.86)

and the velocity-velocity correlation function reads

ψab =
〈
uaub
〉

a, b = x, y, z

= FT−1
[〈
ũa(k)ũb(k)

〉]
a, b = x, y, z

= FT−1

[
−(Hf)2

kakb
k4

P(k)

]
a, b = x, y, z.

(1.87)

Simplifications can be made in a Friedman universe. The density-velocity correlation function can be
written as (Monin & Yaglom, 2007; Gorski, 1988; Zaroubi et al., 1999)

ζa(r) = r̂aζ(r) (1.88)

ψab(r) =
[
ψT (r)Iab + [ψR(r)− ψT (r)]r̂ar̂b

]
, (1.89)

where ψR(r) and ψT (r) are respectively the velocity-velocity radial and tangential correlation functions.
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These are only a function of the separation between the points r and read

ζ(r) =
Hf

2π2

∫ ∞

0

kj1(kr)P(k)dk, (1.90)

ψR(r) =
−(Hf)2

2π2

∫ ∞

0

[
j0(kr)− 2j1(kr)

kr

]
P(k)dk, (1.91)

ψT (r) =
−(Hf)2

2π2

∫ ∞

0

j1(kr)

kr
P(k)dk. (1.92)

The correlation between two velocity vectors ui(xi) and uj(xj), pointing in possibly different direc-
tion (e.g. radial velocities) can be written with the mean of the 3× 3 tensor ψ

〈uiuj〉 = uiψ(xj − xi)uj =
∑
a,b

ui,auj,bψab(xj − xi) (1.93)

while the correlation between any velocity vector uj(xj) and the over-density on another point in space
δi(xi) reads:

〈δiuj〉 = ζ(xj − xi) · uj =
∑
a

uj,aζa(xj − xi) (1.94)

Note that, even though the correlations functions ζ(r), ψR(r) and ψT (r) are isotropic, the ten-
sor Ψ(r) and the vector ζ(r) are not: the isotropy is broken by the r̂a and r̂ar̂b terms of eqs. (1.88)
and (1.89). For instance, the correlation of the x component of the velocity field along the x axis
〈ux(0, 0, 0)ux(x, 0, 0)〉 = ψR(x) is different from the correlation function of the same quantity along the
y axis 〈ux(0, 0, 0)ux(0, y, 0)〉 = ψT (y).

In an isotropic Universe, the standard deviation of each component of the velocity field can be
computed as:

σ2
v = ΨR(0) =

(Hf)2

2π2

∫ ∞

0

P(k)dk (1.95)

and the marginal law of the components of the velocity can thus be written

va(xi) ∼ N (0, σv). (1.96)

As opposed to σδ, the value of σv converges (i.e. P(k) is integrable). Its value is about 275−300 km/s at
z = 0 for the power spectra of Komatsu et al. (WMAP; 2011) and Planck Collaboration et al. (Planck;
2016). As each component of the velocity field is normal, the distribution of its magnitude follow a
Maxwell distribution.

Figure 1.2 displays correlation functions related to the velocity field. The top rows shows the density-
velocity correlation ζ of eq. (1.86) in both log-log and log-linear scales. The peak of the correlation
occurs around 10Mpc/h. Below ∼ 1Mpc/h and above ∼ 100Mpc/h, no correlation between the two
fields is expected. The form of this function is interesting as it does not peak at r = 0 as the other
correlation functions presented here. This means that the knowledge of the over-density field at a point
in space does give any information about the velocity field at that same point, but it does constrain its
neighborhood. This can be understood by looking at eq. (1.38): the over-density field is proportional to
the divergence of the velocity field. Knowing the value of the over-density field does thus not constrain
the value of the velocity but its gradient. The velocity field tends to converge (locally) to over-densities
and diverge (locally) from under-densities. However, a (locally) constant offset in the velocity field does
not affect the over-density field.

The bottom row of fig. 1.2 shows the radial and transversal correlation functions of the components of
the velocity field ψR and ψT introduced in eqs. (1.91) and (1.92). The correlation length of the velocity
field is about an order of magnitude bigger than the one of the over-density field: the radial correlation
drops at 100Mpc/h while the transversal correlation slowly decreases between 50 – 500Mpc/h. The
longer correlation length of the velocity field with respect to the over-density field could be predicted
from eq. (1.87). Indeed, the high frequencies are damped by the kakb/k4 = O(k−2) term. In absence of
these frequencies, the velocity field is expected to vary slower than the over-density field.
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1.6.5 Random realizations of periodic universes
The independence of the Fourier modes makes the creation of random realizations (RRs) of the density
field trivial. In practice, these RRs are always evaluated on a grid. Let that grid be a cubic lattice and
have n nodes in each direction and have a side of L. The Discrete Fourier Transform (DFT) is thus:

f̃j =
∑
i

fie
−ikj ·xi , fi =

1

(2π)3

∑
j

f̃je
ikj ·xi , (1.97)

where 1 ≤ i ≤ n3 is the ith node of the grid and 1 ≤ j ≤ n3 is the jth mode of the grid. Because of the
intrinsic functioning of the DFT, modes whose wavelength are greater than 2L – so called tidal modes –
are lost, as well as modes whose wavelength are shorter than 2L/n.

To account for the discretization, the power spectrum needs to be renormalized to the resolution of
the grid14:

P(k) → Pnorm(k) = P(k)
(n
L

)3
. (1.98)

The fastest method to create a RR is in two steps:

1. the real and imaginary parts of each mode are independently drawn from eq. (1.81);
2. the over-density field is evaluated by inverse Fourier transform of these modes.

A second method is often used, even though is it computationally more expensive:

1. a random normal signal N (0, 1) is drawn on the grid;
2. the signal is transformed in the Fourier space;
3. the modes of the signal are multiplied by P(k);
4. the over-density field is evaluated by inverse Fourier transform of these modes.

The velocity field can be easily computed using the inverse Fourier transform of eq. (1.85)

u = FT−1

[
Hf

ik

k2
δ̃(k)

]
(1.99)

which is in fact much easier than solving the Poisson problem of eq. (1.38). Using the DFT leads to the
creation of (computational) universes that are periodic on the size of the box and thus anisotropic15.
This modifies the correlation functions. Indeed, points that are on opposite corners of the cube are
distant in an infinite universe but are in fact close in a periodic universe. This must be reflected in the
correlation functions.

The function ζ has to computed from eq. (1.86). However, only one component needs to be computed,
e.g. ζx, while the others can be evaluated thanks to the symmetries of the periodic box: ζx(x, y, z) =
ζy(y, x, z) = ζz(z, x, y). ψR and ψT can be respectively computed from ψxx and ψxy using eq. (1.87).
Again, the periodicity of the box allows for permutations and other functions ψab for all combinations
of a, b = x, y, z can be evaluated from ψxx and ψxy.

The use of the DFT also limits the power found in the grid because of the lacking modes: the
standard deviation of the over-density field on a grid is finite and always smaller than the σδ computed
from eq. (1.75). The finer and the bigger the grid, the more power is to be expected.

14This factor comes from the implicit discretized dk → Δk of the DFT: fi = 1
(2π)3

∑
j f̃je

ixik̇jΔ3
k. To insure convergence

of fi → f(xi) = 1
(2π)3

∫
R3 f̃(k)eik·xdk when L/n → 0, one has to set Δk = n/L. We simply report this factor to the

power spectrum.
15For instance, the direction towards the face of the cube is different from the direction towards a corner of the cube.

The first is periodic of length L, the second is periodic of length
√
3L. Any other direction is more complex.
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1.7 Simulating the Universe
Even though linear theory describes quite accurately the formation of structure on very large scales or the
early times of the Universe, it cannot render properly the modern Universe. Indeed, these equations are
obtained through the simplification and the linearization of the full equations of the hydro-dynamics of
matter. Among other things, non-linear motion, gas dynamics, or even electro magnetic interactions are
omitted. The full equations can however not be solved analytically in the general case. This is a major
issue in astrophysics and cosmology: the physical models of formation of different structures (cosmic
web, galaxies, stars, etc) can be quite easily written but solving them can only be achieved numerically.

Following the increasing capabilities of computers and super-computers over the past few decades,
astrophysicist have taken the path of cosmological simulations (Klypin & Shandarin, 1983; Springel,
2005). A simulation is like a lab experiment, but for a Universe and in a computer. Cosmological
simulations start from an initial state – a very early universe – which is evolved, step by step following
a set of rules – the aforementioned hydro-dynamics equations. This way, models can be run and tested
against the observations of the modern Universe.

1.7.1 Initial conditions for cosmological simulations
Random initial conditions

A philosophical limitation of this approach is that the initial state of our Universe is only known statisti-
cally (ie inferred from the power spectrum of temperature fluctuations in the CMB) and not specifically.

A metaphor could maybe bring some light on the meaning and the implications of this statement.
Imagine an artist who has never seen a mirror. They can draw very well any human face, and they
can even make up human faces on command. They can however not possibly draw their own face: they
can assume that they have a nose, a mouth, eyes, etc, like other humans they have seen, yet they do
not know exactly what the exact shape their nose or their mouth is nor what the color of their eyes is.
We are in the same situation: we have observed the early Universe over a very large volume very far
away (the CMB), which enables us to create initial conditions statistically indistinguishable from these
observations, but does not tell us anything about the exact features of our own local volume - since this
is of course a subset of the entire Universe.

Cosmological simulations thus all start from statistically similar random initial conditions, and thus
produce statistically similar universes, but not our exact Universe. These universes can be statistically
compared to ours, e.g. to study the the mass function of Milky Way haloes and the merging history of
Milky Way like galaxies, but cannot answer certain specific questions, e.g. the merging history of the
actual Milky Way. In other words they can constrain the Milky Ways merger history statistically insofar
as they can constrain the merger history of all haloes similar to the Milky Way, yet they can not predict
the merging history of the real Milky Way.

The initial density and velocity fields of simulations have to describe the early Universe: the linear
theory is then to be used here. For technical reasons, simulated universes are always periodic, thus the
methodology of section 1.6.5 can be employed to create them.

Constrained initial conditions

Even though constrained initial conditions are slightly outside of the scope of this work, a short descrip-
tion could help understand the long term goal and the stakes of the reconstruction methods introduced
in section 1.9 and discussed throughout this thesis.

It is possible to constrain the early density and velocity fields from an estimation of the evolved
density and velocity fields (Dekel et al., 1999). The same simulation codes applied to these constrained
initial conditions lead to the creation of constrained simulations of the Universe, where both the statistics
and the positions of observed objects are recovered.

The fidelity of constrained simulation is limited at two levels. First, the complex equations that model
the evolution of a universe are chaotic. This means that a small perturbation to the initial state can
lead to a large difference at later times. A direct implication of this characteristic is the impossibility to
properly go back in time: a tiny difference in the estimation the modern field leads to a very inaccurate
set of initial conditions. This is a mathematical property due to the chaotic nature of the solutions to
the coupled differential equations, and cannot be solved with higher computational capabilities. The
machinery employed to reconstruct initial conditions from evolved field is thus bound to a certain degree
of inaccuracy.
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Secondly, and this is the main discussion of this work, estimating the modern density and velocity
fields is itself very challenging. This introduce another source of uncertainty and possible biases (see
section 1.5) that limits the quality of the constraints on the initial conditions. Thus part of the motivation
of improving the reconstruction of today’s universe (and of this thesis) is to improve future constrained
simulations of the local universe (Yepes et al., 2009).

1.7.2 Dark matter only simulations
Cosmological simulations may model just the formation of structure due to gravity, namely solve the
problem of N gravitating bodies. When considering pressure-less dark Matter, this is assumed to be
sufficient - as opposed to simulations which also include baryons and must thus also follow magento-
hydrodynamic forces. Dark matter only codes thus integrate over time the N-body problem of often
millions of particles solely interacting through gravitation (Barnes & Hut, 1986). These particles are
assumed to sample the mass distribution. Their mass is fixed depending on the size and the resolution of
the simulated box, and they do not collide with each other in accordance with the assumption that dark
matter particles are collision-less. The integration in time also takes into account the global expansion
of the Universe. This type of simulation is suitable for studies of structure formation on scales where
gravity dominates the dynamics. The approximation made by such simulations becomes less and less
valid where galaxies are expected to form (e.g. Vogelsberger et al., 2019).

On smaller scales, the simulated dark matter particles collapse into very dense groups. These can
be identified as halos by different methods (Friend of Friend, etc; Cole & Lacey, 1996; Behroozi et al.,
2013). Galaxies are thought to form in and only in these halos of dark matter (Peacock & Smith, 2000).
Most halo finding algorithms impose a threshold defining haloes as regions above a specific over density
(Knebe et al., 2011).

Particle based approaches to the N-body problem are in essence Lagrangian, i.e. they trace the
movement of particles not of the fields. To recover the density and velocity fields, a Cloud in Cell (CiC)
algorithm can be used (Birdsall & Fuss, 1969). At the 0th order, a CiC method consists simply in
counting the number of particles in a cell of a given grid. A slight improvement can be seen when the
mass of the particle is spread on the nodes of the grids with respect to their spatial separation to the
particle. The velocity field is computing in the same manner: at the 0th order, the velocity of a cell is
the mean velocity of the particles in this cell. Again, more subtle approaches can refine the result. In
general, the minimal size of a cell is governed by the number of particles of the simulation in the sense
that if the CIC is too fine, the cells are too small, and do not smooth over the particle distribution. As
such, a rule of thumb dictates that the number of cells in each dimension has to be at most 4 times the
number of particles in each dimension (i.e. a simulation with 5123 particles should be projected at most
on a 1283 nodes grid; Libeskind et al., 2014).

The reader will note that simulations are only used in this thesis in section 1.8 for a discussion on
the limits of the linear theory and in chapter 3 where our method is tested against mock galaxy catalogs
drawn from cosmological simulations.

1.8 Statistics of the fully evolved density and velocity fields
The statistics of the density and velocity evolved by dark matter simulations is discussed, with a focus
on the comparison with the statistics of the linear fields. We use the New MultiDark Planck16 (Riebe
et al., 2013), a N -body run of N = 38403 particles in a periodic box of side length L = 1Gpc/h. The
cosmological parameters of the simulation are from Planck Collaboration et al. (2016), i.e. a flat ΛCDM
Universe Ωm = 0.307, Ωb = 0.048, ΩΛ = 0.693, σ8 = 0.8228, ns = 0.96 and a dimensionless Hubble
parameter h = 0.678 where H0 = 100 × h km/s/Mpc. The fields are taken on a regular grid of 5123
nodes, leading to a cell resolution of 1.93 [Mpc/h]3. Similar analyses are presented in Sheth & Diaferio
(2001); Hamana et al. (2003, 2005); Doumler (2012).

In this section we compare two definitions of the over-density:

δρ = ρ/ρ̄− 1 obtained from the CiC, (1.100)
δv = −H0f∇ · v the “linear” density of eq. (1.38). (1.101)

16https://www.cosmosim.org/metadata/mdpl2/
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Figure 1.3: Distributions of several definitions of the over-density: predicted by the linear theory (black),
derived from the evolved density field of a simulation (red) and by applying eq. (1.38) to the evolved
velocity field of the simulation. The statistics of the fields smoothed at R = 8Mpc/h are dashed.

In the context of the linear theory, δρ and δv represent the same field. This is however not the case for
non-linear evolved fields: δρ �= δv. The quantity commonly understood as density for an evolved field is
δρ whereas δv is just the divergence of velocity field.

These definitions are motivated by the use of the linear theory throughout this thesis to sometimes
model non-linear fields. Some insight on the fundamental differences between these two statistics are thus
necessary. In order to compare the statistics of non-linear fields to the ones of the linear theory, we also
introduce δLT, a linear over-density field drawn from a random realization of the (Planck Collaboration
et al., 2016) power spectrum on a grid similar to the one on which the CiC is computed (see section 1.6.5).
Note that this field describes an universe unrelated to the one of the simulation, and that it is just used
to compute the statistics predicted by the linear theory in a periodic universe evaluated on a finite grid.

1.8.1 Comparison with the linear theory
This section is articulated in two parts: the non-smoothed (over-density and velocity) fields are first
compared and discussed, then the influence of smoothing on this comparison is studied.

The density field

Let us start this discussion with the statistics of the fields in the linear regime. As shown in Figure 1.3,
the distribution of the density field δLT, is normal: it is symmetrical, with a null mean equal to its median.
Half of the volume is over-dense, the other half is under-dense. Its 95%, 99% and 99.9% quantiles are
respectively 4.0, 5.7 and 7.55 (these values are the same for the 5%, 1% and 0.1% percentiles). The
two point correlations of the linear over-density field shown in fig. 1.4 (top panel), has been described in
section 1.6.

The distribution of δρ appears in fig. 1.3 to be log-normal. The most striking consequence is the
skewness of this distribution. δρ has (by definition) a null mean, has a lower boundary of −1 (due to the
fact that ρ cant be negative) but reaches very high values. On one hand, more than 80% of the volume
has a negative density and half has a density below −0.65, on the other hand the 95%, 99% and 99.9%
percentiles respectively read 2.2, 9.8 and 45.1. The maximum value for this particular simulation and
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Figure 1.4: Two-point correlation functions for different fields and quantities. The functions are nor-
malized by the standard devations of the considered field, they do thus represent the correlation rather
than the covariance. Top: Two-point correlation functions of several definitions of the over-density:
predicted by the linear theory (black), derived from the evolved density field of a simulation (red) and
by applying eq. (1.38) to the evolved velocity field of the simulation. Middle: Two-point correlation
functions with the velocity field of several definitions of the over-density, with the same color conven-
tion as the top panel. Bottom: Two-point correlation functions of the velocity field predicted by the
linear theory (black) and of an evolved velocity field (in red). The statistics of the fields smoothed at
R = 8Mpc/h are dashed.
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the fields smoothed at R = 8Mpc/h.

grid size reaches 1095 (not plotted), although this value is subject to large fluctuations depending on
the size of the sample17 and the resolution of the grid. The two-point correlation presented in fig. 1.4
(top panel) decreases even faster than the one predicted by the linear theory. The matter in an evolved
universe is thus extremely clumped, rapidly changing in space, and leaves most of the volume empty.

The three main differences with the linear theory are thus the positivity of the density field (δρ+1 > 0)
and its skewness. Describing the universe with the linear theory thus overestimates the depth of the void
regions and underestimates the extreme compactness of the dense regions. Moreover, a linear field has
as many over-dense cells as under-dense cells which does not capture the extreme high contrast and
predominant void of an evolved universe. Finally, the size of the cosmic structures is smaller in an
non-linear universe than in the linear theory. This does not indicate that they are less complex or rich,
but rather that they are more compact.

In the face of this discrepancy, one might argue that these two quantities are not comparable: the
linear over-density is the divergence of the linear velocity field and should thus be compared to the
divergence of the evolved velocity field, which we note δv. Figure 1.3 shows that this quantity also
does not follow a normal distribution. It is indeed less skewed than δρ and not bound to −1: its 0.1%
percentile reaches −2.6. However, it keeps some properties of δρ: 65% of the volume is “under-dense”
and half displays a δv < −0.37. The 95%, 99% and 99.9% percentiles are respectively 2.6, 5.4 and 10.1.
The correlation function of δv presented in fig. 1.4 (top panel) reveals a field that varies slower than its
equivalent of the linear theory. Structures are thus less compact and more extended.

Finally, fig. 1.5 (left panel) shows the distribution of δρ against δv on a cell by cell basis. It demon-
strates that the divergence of the evolved velocity field δv is not a good proxy for the true over-density
δρ. Indeed, the bulge of the distribution is wide, and even though these two quantities are not completely
independent, a very large scatter is seen. There is thus no simple function such that δρ = f(δv), and
the knowledge of δv only partially constrains the range of the possible values of δρ at the same position.
Interestingly, the correlation between 〈δv(x)δρ(x+ r)〉 = 〈δvδρ〉 (r) is very similar to ζρ(r) for r > 0, as
displayed in fig. 1.4. The knowledge of δv(x) or the knowledge of δρ(x) are thus put the same amount
of constraint on the value of δρ(x+ r).

The velocity field

Let us again start with a description of the velocity field as predicted by the linear theory. Like the
over-density field, the components of the velocity field are normal, as can be seen in fig. 1.6. Their 95%,
99% and 99.9% percentiles read 460 km/s, 643 km/s and 843 km/s (these values are the same for the

17Statistically speaking, it theoretically diverges to +∞ with the size of the sample.
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Figure 1.6: Distributions of the velocity field predicted by the linear theory (black) and of an evolved
velocity field (in red). The statistics of the fields smoothed at R = 8Mpc/h are dashed.

5%, 1% and 0.1% percentiles). A detailed description of the correlation functions ψR and ψT plotted in
fig. 1.4 (lower panel) is found in section 1.6.

The linear and evolved velocity field exhibit very similar distributions in fig. 1.6. The evolved velocity
field is also symmetrical, which is a consequence of the hypothesis of isotropy. Only the tails slightly
deviate from one another: the evolved velocity field has more high velocity cells than its linear equivalent.
This is due to the gravitational collapse and the formation of compact clusters. The 95%, 99% and 99.9%
percentiles of the evolved velocity field read 465 km/s, 672 km/s and 931 km/s. The deviation from the
linear theory is thus minimal.

The correlations functions of both fields are also very similar. While the evolved over-density field is
less correlated than the one of the linear theory, it is the opposite for the velocity fields. Indeed, for almost
all sampled separations r, ψR(r) > ψR,LT(r) and ψT (r) > ψT,LT(r). This interesting and unexpected
property comes from the large voids of evolved universes in which the velocity field is self-coherent.

The density-velocity correlation

The last question that can be answered with the one- and two-point statistics is the correlation between
density and velocity fields. Figure 1.4 (lower panel) shows the cross-correlation between the over-density
and the velocity fields.

Very similar observations to those made in section 1.8.1 can be drawn. Indeed, the same behavior as
for the density-density correlations is observed: δρ and v are the less correlated, and over the shortest
distance while δv and v shows a higher correlation and over larger distance than the linear theory itself.
At r = 1.9Mpc/h, the correlation between δv and v suddenly drops below the predictions of the linear
theory. It has to be noted that all these functions converge to ζ → 0 when r → 0. The resolution of the
grid does however not allow us to explore the very local behavior below separations r < 1.9Mpc/h.

1.8.2 Smoothing the fields
The linear theory is deemed fit for the description of the early times of the Universe or at (very) large
scales. Smoothing the fields should thus increase the agreement between the different statistics. We
propose here a smoothing of 8Mpc/h ≈ 12Mpc.
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The density field

The smoothing procedure brings all the distributions of fig. 1.3 closer. The linear theory predicts a
normal law of standard deviation 0.46 with a 99.9% percentile at 1.4 for the smoothed over-density field.
The upper tail of δρ is cut and its 99.9% now read 2.9 (against 45.1 for the non-smoothed field). Only
60% of the volume is now under-dense (against 80% for the non-smoothed field). As for δv, both its
upper and lower tails disappear: it now ranges from −0.8 to 2.0, its 0.1% and 99.9% percentiles (against
−2.6 and 10.2 for the non-smoothed field). It is interesting to note that, like for δρ, −1 becomez a lower
bound. Almost exactly half of the volume is “under-dense”.

The two point correlations of fig. 1.4 (top panel) are also very similar for the smoothed fields. All
the functions are flat up to 10Mpc/h and decrease slowly until 100Mpc/h. Interestingly, the linear
theory predicts a drop of the two point correlation function of the density field between 70Mpc/h and
100Mpc/h which is not seen in the other fields. The peak at 110Mpc/h is the BAO, stronger in the
evolved field as in the linear theory.

As demonstrated in fig. 1.5 (right panel), the two definitions of the over-density δρ and δv converge
when the fields are smoothed on large enough scales. Indeed, although there is some scatter left in the
distribution of δρ against δv, it is much smaller than in the non smoothed case, and for most points
δρ ≈ δv is a good approximation. Moreover, the deviation between the two fields is continuous and
smooth, and there exists a simple function f such that δρ = f(δv) gives a better fit than δρ ≈ δv.

The velocity field

Smoothing the velocity field has a similar effect. As shown in fig. 1.6, it removes the tails of distribution
of the evolved velocity field, which becomes nearly identical to that predicted by the linear theory. The
95%, 99% and 99.9% percentiles of the linear velocity field read 351 km/s, 483 km/s and 626 km/s while
these same percentiles are 381 km/s, 548 km/s and 737 km/s for the evolved velocity field. The fields
are not exactly statistically equivalent, but 90% of the cells (from 5% to 95% percentile) cover the same
range of values.

The two-point correlations functions shown in fig. 1.4 (bottom panel) are also affected by the smooth-
ing. There again, the convergence to similar statistics is striking, the curves sitting almost on top of each
other.

The density-velocity correlation

As for the over-density field, smoothing brings the statistics together to a single behavior as demonstrated
in fig. 1.4. This behavior very much resembles the one of the linear theory (see fig. 1.2 top right panel).
Although close, the curves are not identical. The linear theory shows the most correlation, followed
by the pair δv-v while δρ-v remains less correlated. The peak of correlation remains somewhat shifted
between the different pairs. It is interesting to see that the order between non-smoothed and smoothed
has changed.

1.8.3 Conclusion of the comparison between evolved and linear fields
This discussion demonstrates very clearly using the one- and the two-points statistics that the evolved
over-density field strongly differs from the linear theory. Indeed, low z universes are much clumpier and
emptier than the linear theory predicts. Shifting the focus to the divergence of the evolved velocity field
can somewhat reduce the tension between the two, but the physical meaning of this quantity is of lesser
interest. Finally, the divergence of the evolved velocity and the over-density are not similar and only
poorly correlated, the former thus cannot be used as a proxy for the latter.

It is very interesting to note that this deviation is much milder for the velocity field. Indeed, the
one- and two-points statistics are very similar, with a slightly increased amplitude for the evolved field.
Another remarkable conclusion is that the non-linear velocity field correlates over longer distances than
its linear equivalent.

Smoothing appears as the best way to solve these tensions between the two. After a smoothing of
8Mpc/h, all the fields display rather similar statistics. Moreover, the divergence of the velocity field and
the over-density converge. There is no saying at what scale the linear theory describes the (smoothed)
evolved fields properly because such a scale itself would depend on the environment. The convergence
with the smoothing is slow and a metric should be defined to quantify an quality threshold, however this
discussion suggests that a value of 8Mpc/h for the smoothing gives good results.
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1.9 Reconstruction methods

1.9.1 An introduction to the problem of reconstruction
The problem of reconstruction as we understand it in this work, can be summed up as the following
question: "How the distribution of matter in the Universe and its associated velocity field be inferred
from observations of galaxies?"

In other words, a reconstruction is a map of the matter in the Local Universe. In theory, other
sources of information than galaxies could be used, but in practice they are the only ones employed in
this work. Although cosmography - making maps of the universe - is a goal in itself, it is not the only
goal reconstructions can achieve: associated with an evolution model, they allow us to constrain physical
models and cosmological parameters (see section 1.7.1 for more details). Reconstruction is thereby a
important tool of cosmology.

Several methods and approaches have been developed since the 1990s, adapting to the quantity and
the quality of the data and growing more and more capable as the power of computers increased. As of
today, two main families of reconstruction methods are in use 18. The first reconstructs the density field
using only the redshift positions of galaxies. The second, discussed extensively in this work, reconstructs
the velocity field using both the redshifts and the distances of galaxies, i.e. the peculiar velocities of
galaxies. A similar, more detailed, discussion can be found in Strauss & Willick (1995).

1.9.2 Reconstruction of the density from redshifts surveys
A few words about the reconstruction methods from redshifts surveys are due to understand the moti-
vations of using peculiar velocities. The redshift of a galaxy is quite easy to measure with a satisfactory
precision, and many large redshifts surveys have been carried over the last decades (e.g. de Lapparent
et al. (CfA; 1986) , York et al. (SDSS; 2000), Jones et al. (6dF; 2009), DESI Collaboration et al. (DESI;
2016)) while more are to come (Euclid; Laureijs et al., 2011). Some surveys are pencil like, going very
deep in a restricted area of the sky; some display a flat selection function, covering a large angle in one
direction but with a very restricted thickness; and some explore a larger solid angle (Strauss & Willick,
1995). Only the 2 Micron All Sky Survey (2MASS; Skrutskie et al., 2006) covers the whole sky up to
about 160Mpc/h. As it appears here, the issue of the coverage of the sky by the data is the first limit
of all reconstruction methods.

The two key ideas to create a reconstructions from redshift surveys are: (1) the redshift is a good
proxy to the distance and (2) the distribution of galaxies is tightly correlated to the distribution of matter.
The first point can be even corrected for: provided that a velocity field is constructed in the process, the
exact distance can be estimated from the measured redshift (see eqs. (1.41), (1.42) and (1.47)). However,
the second point may be the Achilles heel of these methods. This correlation, the galaxy bias, is subject
to discussion (see section 1.3.3). When using this approach, one has no other solution than assuming a
model – be it parameterized – to estimate the matter density field.

A second difficulty that these methods encounter is the incompleteness of redshift surveys. Indeed,
because of technical limitations of the observations not all galaxies at all distance can be observed. The
main bias is the absence in the catalogues of distant faint galaxies, the flux Malmquist Bias discussed in
section 1.5.2. Extinction through dust or galaxies morphology and color evolution amongst other effects
crossed with the complex selection function are many unknowns that can plague a survey, which is thus
called incomplete. The galaxy density ρg cannot be well retrieved from it. A careful treatment of any
survey is therefore needed before the application of these methods. The need for completeness also makes
the merging of surveys difficult, as they have inherently different selection functions.

Very powerful methods have been developed recently in the AQUILA collaboration with the BORG
code19, an HMC sampler very close from the one discussed in this work (Jasche & Wandelt, 2013).
Applied to an improved 2MASS catalogue, they reconstructed the non linear velocity and density field
of the Local Universe within about 160Mpc/h (Jasche & Lavaux, 2019). A similar approach is taken by
the ELUCID collaboration (Wang et al., 2014, 2016).

18We ignore here the methods based on the weak gravitational lensing of images of galaxies, (e.g. Bartelmann & Schneider,
2001).

19https://www.aquila-consortium.org/method/borgpm.html
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1.9.3 Reconstruction of the velocity field from peculiar velocities surveys
An alternative is the reconstruction of the velocity field from measurements of peculiar velocities. Instead
of asking the question “where are galaxies?”, assuming that there is matter where they are, it asks the
question “where do galaxies go?”, assuming there is matter where they converge. Galaxies – or any
luminous object – is thus taken as a probe of the velocity field rather than of the density field.

There is no such thing as a peculiar velocity survey strictly speaking. Peculiar velocity catalogues
are derived from pre-existing redshifts catalogues, from which all or part of the galaxies have seen their
distance estimated, resulting in a catalogue where each entry has (at least) two values: a redshift and a
distance (e.g. Willick et al., 1997; Tully et al., 2008, 2013; Tully et al., 2016; Tully et al., 2023). These
can be converted into a catalogue of pairs distance – peculiar velocity (see section 1.4.6).

Such catalogues are not directly sensitive to the very complex aforementioned galaxy bias. Indeed, it
does not matter if the galaxy is old or young, elliptic or spiral, in a dense or an empty region, as long as
its velocity is measured. The completeness of the catalogue is thus much less of an issue. Furthermore,
the velocity field is correlated over much larger distances than the density field, and therefore easier to
constrain. This is even more true for the non-linear fields (see section 1.8).

Although the aforementioned reasons may be considered quite convincing, reconstructions from pecu-
liar velocities also have their limitations. The main one is the scarcity and the poor quality of estimations
of galaxies distances. Indeed, as discussed in section 1.1.2, indicators of distance are difficult to get and
have errors ranging from 5% to 20%. This leads to a truly small signal to noise ratio for distant galaxies.
Furthermore the error is log-normal, which complicates the interpretation and the use of the estimated
peculiar velocities (see section 1.5.1).

As demonstrated throughout this work, the placing of the constraints is actually the core issue of
these methods, even though the form that it takes depends on the method. The galaxy bias and the
selection effects are thus not completely absent from the problem (Strauss & Willick, 1995).

Finally, the density field cannot be directly estimated from the velocity field. Measuring the later is
thus intrinsically different from measuring the former. Note that this shortcoming is also present in the
methods estimating the density field from redshifts surveys, which do not directly estimate the velocity
field. Up to now, methods of reconstruction from peculiar velocities have been limited to the linear theory
to link density and velocity field (see section 1.6). However, this model is a quite a strong simplification
of the problem, as highlighted in section 1.8, which curbs the quality of the produced maps.

Reconstruction methods from peculiar velocities include the POTENT method (Bertschinger & Dekel,
1989; Dekel et al., 1999), the methods based on the Wiener Filter method detailed in the next section
(Hoffman & Ribak, 1992; Ganon & Hoffman, 1993; Zaroubi et al., 1995; Zaroubi et al., 1999), while other
methods include forward modeling (Lavaux, 2016; Graziani et al., 2019) and this work, chapters 2 to 4.

1.9.4 The Wiener Filter
Since a series of papers in the early 1990s, the Wiener Filter has become the tool of choice for the
reconstruction of the velocity and density fields from peculiar velocities. This method has been (very)
extensively described in the literature, in or outside of the context of reconstruction. (Ganon & Hoffman,
1993; Zaroubi et al., 1995; Zaroubi et al., 1999; Doumler, 2012; Doumler et al., 2013b; Graziani, 2018).

In this section, I would like to propose a simple mathematical approach ensuing from the discussion
of section 1.6.

If two random variablesX and Y are correlated, the knowledge ofX influences directly the probability
distribution of Y : P (Y |X) �= P (Y ). Amongst other summary statistics, its mean might be shifted
〈Y |X〉 �= 〈Y 〉 and its standard deviation affected σY |X �= σY . This law can be computed in the context
of a Multivariate Normal Distribution (MND) as described in section 1.6: this is what the Wiener Filter
is about (Wiener, 1930). When fixing some of the variables of the MND, the others are affected, and it
is possible to derivate their new conditional probability.

Wiener Filter and Gaussian process

Let’s consider a spacial Gaussian process, i.e. a random field whose values sampled in space follow a
MND depending on the positions where these values are sampled. First, let’s fix n values of this field
(e.g. we have measured them). These constraints are noted {ci} and situated at the positions {xi}.
Note that c = {ci} is a generic description of the constraints. In our case it may be the constrained
density or peculiar velocity field. Now, we would like to recover the conditional probability of the m a
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priori unknown values of the field {sj} (for sample) at the positions {yj}. Note that s = {sj} represents
the value of say peculiar velocity or density that is sampled in the reconstruction.

The probability law resulting from that process is written P (s|c) = P ({sj}|{ci}). In the next section,
we will see that both the constraints and the samples can be values of the over-density or of the velocity
field.

Remember that the value of the field at every point of space is correlated with the value at every
other point through the two points correlation function, it is therefore possible to write the probability
of the all n+m values:

P (s, c) = P (a) =
1

(2π)(n+m)/2|Σ| exp
(−1

2
aTΣ−1a

)
(1.102)

where a (for all) is the concatenation of n constraints {ci} and m samples {sj}:

a = (c, s) =

(
c1, . . . , cn, s1, . . . , sm

)
(1.103)

and Σ is the self-correlation matrix that can be split as such:

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ ΔT

Δ Π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.104)

where

— Γ ∈ M(n× n) is the constraints-constraints correlation matrix: Γij = 〈cicj〉;
— Π ∈ M(m×m) is the samples-samples correlation matrix: Πij = 〈sisj〉;
— Δ ∈ M(m× n) is the constraints-samples correlation matrix: Δij = 〈sicj〉.

The distribution of the sampled values alone ({sj}), prior to the measurement of the constraints({ci}),
is also straightforward to write:

P (s) =
1

(2π)m/2|Π| exp
(−1

2
sTΠ−1s

)
. (1.105)

It is an MND whose correlation matrix is the bottom right block of Σ. The same goes for the constraints,
prior to there own measurement:

P (c) =
1

(2π)n/2|Γ| exp
(−1

2
cTΓ−1c

)
. (1.106)

The distribution P (s) is however modified by the injection of the knowledge of the constraint. The
demonstration is out of the scope of this work, but is rather simple. The distribution of the samples,
posterior to the constraining the field reads

P (s|c) = 1

(2π)m/2|Λ| exp
(−1

2
(s− sWF)

TΛ−1(s− sWF)

)
, (1.107)

sWF = ΔΓ−1c, (1.108)

Λ = Π−ΔΓ−1ΔT . (1.109)

The constraints shift the mean of the samples to a possibly non-null value and modifies their correlations.
From a more physical point of view, the new mean sWF represents the expected values of the samples
given the constraints. The residuals sR = (s−sWF) hold the remaining randomness and follow an MND,
covering less volume than the prior (i.e. they are constrained). It is very interesting to note that the
correlation matrix of the residuals Π does not depend on the values taken by the constraints, but rather
on their positions and the ones of the samples. Similarly, the expected values of the samples sWF and
the constraints c are linked through is a simple matrix ΔΓ−1 which depends only on the positions of
both constraints and samples.
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Application to the linear theory

The application of the previous theorem to the fields of linear theory is straightforward. Indeed, the only
needed ingredients are the self- and cross-correlations functions between constraints and samples.

Let us take a simple example. Suppose the over-density field has been measured at x, δ(x) = δc,
where the subscript c refers to “constraint”. We would like to know the value of the over density field at
another position y, δ(y) = δs. We note r = |y − x| = |y|. A priori, the probability of δs is

P (δs) =
1√
2πσδ

exp

(−δ2s
2σ2

δ

)
(1.110)

where σδ is the standard deviation of the over-density field. Following eqs. (1.107) to (1.109), the
distribution of the sample given the constraint reads:

P (δs|δc) = 1√
2πλδ

exp

(−(δs − δWF)
2

2λ2δ

)
(1.111)

where

δWF(y) =
ξ(r)

σ2
δ

δc, λ2δ(y) = σ2
δ −

ξ2(r)

σ2
δ

. (1.112)

It appears that the value taken by δs(y) solely depends on the density-density two point correlation
function ξ(r) plotted in fig. 1.1. As the Universe is isotropic, only the distance between the sample
({sj}) to the constraint ({ci}) matters, not its direction.

When r → 0, that is to say when the sampled value is taken very close from the constraint, ξ(r) → σ2
δ

and thus δWF → δc, the sampled value converges to the constraint. The standard deviation of the residual
tends to zero: the result is certain. The posterior distribution becomes P (δs|δc) → I(δs − δc).

Reciprocally, when r → ∞, ξ(r) → 0 and thus δWF → 0, while λδ → σδ. The volume affected by
the constrained is limited, and the further away the unknown value is sampled, the more its posterior
distribution converges to its prior behavior: P (δs|δc) → P (δs). In other words far from the region where
constraints exist, the Wiener Filter returns the mean field.

Note that there is no configuration where the value of δWF exceeds the one of δc. Indeed, ξ(r) ≤ σ2
δ

for all r ≥ 0. This shows a very fundamental property of The Wiener Filter: it is conservative. It does
not add any power to the signal but only discards it. It can thus not create a false positive, which is very
important for the rest of this work. When several constraints are set, the fields evolves from one value
to the next “as smoothly as possible”, going to the null field in the absence of constraint. Similarly, the
constrained standard deviation λδ is bound between 0 (of course) and σδ. There is thereby only a gain
of information, or worse case no gain at all (λδ → σδ).

Errors in the measurements

In certain aspects of cosmology, errors may dominate the signal. The methodology of the Wiener Filter
is needed to formalize the possible uncertainties on the measurements.

Errors can be added as an additional MND field. The errors e on the constraints c are thus:

P (e) =
1

(2π)n/2|Υ| exp
(−1

2
eTΥ−1e

)
, (1.113)

such that c′ = c + e where e = {ei} is the “error field” drawn at the location of each constraint. The
distribution of the constraints with the now added errors c′ is easy to recover: the sum of two MNDs is
another MND with a correlation matrix:〈

c′ic
′
j

〉
= 〈(ci + ei)(cj + ej)〉 = 〈cicj〉+ 〈eiej〉+ 〈eicj〉+ 〈ejci〉 (1.114)

In practice the errors are considered uncorrelated between measurements, i.e. Υ is diagonal, and uncor-
related with the signal, i.e. 〈eicj〉 = 0. This simplifies the calculus. Recall from equation 1.106 that Γ is
the constraint auto-correlation function. The standard deviation of the error MND is ε2i = 〈eiei〉. This
implies

Γ′ = Γ+Υ (1.115)

= Γ+ diag(ε21, . . . , ε
2
n). (1.116)
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The Wiener Filter and the residuals correlation matrix of eqs. (1.108) and (1.109) are modified in the
presence of these errors

sWF = Δ
[
Γ′]−1

c′, (1.117)

Λ = Π−Δ
[
Γ′]−1

ΔT . (1.118)

Let us continue the simplified problem proposed in the previous section and add an error drawn from
e ∼ N (0, ε) on the constraint δ′c = δc+e. How is the probability of the sample affected? Equation (1.111)
holds but both δWF and λδ change:

δWF(y) =
ξ(r)

σ2
δ + ε2

δ′c, λ2δ(y) = σ2
δ −

ξ2(r)

σ2
δ + ε2

. (1.119)

The behavior the sampled value of the field remains unchanged when r → ∞. The convergence for
r → 0 is however different:

δWF(x) =
δ′c

1 + ε2/σ2
δ

, λ2δ(x) =
ε2

1 + ε2/σ2
δ

. (1.120)

On the contrary to the previous case, the sampled value does not converge to the constraint δ′c when
r → 0, but rather to smaller value δWF(x) ≤ δ′c. In parallel, the standard deviation does not fully cancel
λδ(x) ≥ 0. Indeed, if the constraint is tainted by error, the true value of the field at this point is not
necessarily the one measured. In presence of many measurements with well modeled errors, the Wiener
Filter is a better estimator of the real value of the field δc than δ′c is: |δs(x) − δc| < |δc − δ′c|. Being
conservative, the Wiener Filter proposes a value that is less that the one measured, but also leaves room
for variation. Yet, λδ(x) cannot exceed σδ, even for very large uncertainties. Indeed, if the constraint is
very weak (or virtually absent) the prior behavior takes over, and again P (δs|δ′c) → P (δs).

Application of the Wiener Filter to the problem of reconstruction from peculiar velocities

Now that all the theoretical foundations of the Wiener Filter methodology have been laid, its application
to the problem of this work can be explained in a few words.

In practice, the constraints are observations of peculiar velocities c′i = vobsr,i (xi) of which there are
nobs observations. As previously discussed, each measurement is a position - radial peculiar velocity pair.
The coefficients of the correlation matrix Γ are computed with the velocity-velocity correlation tensor
ψ whose expression is given in eq. (1.93). To build the modified matrix Γ′, the observation dependent
uncertainties εi = σobs

v,i are added to the diagonal of Γ following eq. (1.116). The expression of σobs
v,i is

given in eq. (1.62).
The reconstruction is the value of the over-density field sampled on a regular grid sj = δ(yj) of which

there are m = n3grid points. The self-correlation matrix Π is thus computed using the density-density
correlation function ξ of eq. (1.74). Finally, the constraint-sample correlation matrix Δ is in this case
built with the density-velocity cross-correlation function ζ presented in eq. (1.88).

Extending the 〈 〉 notation to Matrices, the mean field and the residual correlation matrix can be
simply summarized as

δWF = 〈δvr〉 [〈vrvr〉+ 〈εε〉]−1
v′r, (1.121)

Λδ = 〈δδ〉 − 〈δvr〉 [〈vrvr〉+ 〈εε〉]−1 〈vrδ〉 . (1.122)

The reader should bear in mind that the values of v′r = {vobsr,i } are not the values of the radial velocity
fields at {xi} but rather estimations of peculiar velocities of galaxies set at their estimated positions. The
fact that these estimations are inherently tainted with errors and biases makes a conceptual difference.
Moreover, this is what truly prevents the Wiener Filter to perfectly reconstruct the fields, as detailed in
section 1.9.5.

The velocity field can be recovered from the over-density field using eq. (1.38) or eq. (1.99). Recip-
rocally, the 3 components of the velocity field can be separately estimated directly from the constraints

va,WF = 〈vavr〉 [〈vrvr〉+ 〈εε〉]−1
vr, a = x, y, z, (1.123)

and the over-density derived later with eq. (1.38) or eq. (1.99). This approach allows for the reconstruction
of the tidal modes, but its computational cost is about three times greater.
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Computing the Wiener Filter and the Constrained Realizations

In the context of reconstructions, two objects are of interest. First, the field recovered from the Wiener
Filter, which is the mean expectation of the density distribution in the Universe given our constraints.
However, this very conservative estimation of the over-density field is not consistent with the statistics
of the linear theory: its power spectrum (or its Fourier Transform, the spatial correlation function)
is not the P(k) (respectively ξ(r)) presented in fig. 1.1. Because of the scarcity of the data and the
uncertainties, the fields has less power, mostly at high frequencies.

Thus, the constrained realizations of the density field (δCR) can be written as the sum of the mean
field (δWF) and the residual field δR i.e. δCR = δWF + δR, where the residual field follows the statistics of
eq. (1.107). Indeed, these so called constrained realizations (CR) are fields that are compatible with the
constraints and that have the intrinsic statistics dictated by the linear theory. In other words, they are
plausible Universes whereas the Wiener Filter only gives an average picture. CRs are notably used for the
generation of initial conditions for constrained cosmological simulations (see section 1.7.1). Generating
these CRs is however non trivial.

If the mathematics are fairly easy to write in the general case, applying them to a practical case
can be indeed more challenging. Modern applications of these methods deal with tens of thousands of
constraints nobs � 10 000, and reconstruct the over-density fields on grids of up to n3

grid = 10243.
Analytical calculus is prevented by the inversion of the Γ′ matrix, which is virtually not tractable for

nobs > 2. Furthermore, the reconstruction of the field in finite boxes (i.e. periodic Universes) prevents the
use of formula of the correlation functions as written in eqs. (1.74), (1.88), (1.91) and (1.92). Numerical
methods and computers thus have to be employed. The inversion of the Γ′ matrix remains an obstacle,
as it is grows in O(n3

obs). To avoid the inversion, a Cholesky decomposition can be performed, and then
the problem c′ = Γ′η is solved for η , which is also O(n3

obs). This obstacle will not cease to grow as the
size of the data increases.

Another bottleneck of the numerical application is the computation of the Δ matrix and the product
of Δ with the intermediary n-vector η = [Γ′]−1

c′. Indeed, in practical applications, the constaints-
samples correlation matrix Δ can have as many as ngrid × nobs ≈ 109 × ·104 = ·1013 coefficients. All
of these coefficients have to be computed one by one using the proper correlation function evaluated on
each pair constraint-sample. Then the vector-matrix product Δη has to be performed, which means
another 1013 multiplications and additions. Fortunately this can be easily parallelized and the matrix
Δ does not need to be stored as a whole20.

However, the computation and the storage of the residual correlation matrix Λ is out of reach: it can
reach 1018 coefficients. Even it were to be computed, it would be impossible to use in order to produce
realizations of the residual field21. This makes the direct construction of a CR on this scale impossible.

Hoffman & Ribak (1992) designed the so-call Hoffman-Ribak algorithm that allows the generation of
CRs while avoiding the construction and the use of this very cumbersome matrix:

1. A random realization of the over-density field δRR is generated;
2. The velocity field vRR is derived from δRR using eq. (1.99);
3. The random field to constrain is evaluated at the positions of the observational con-

straints yielding the cRR;
4. An error consistent with the observational error is added on the constraints c′RR =
cRR +N (0, ε);

5. The CR is evaluated using

δCR = δRR +Δ [Γ′]−1
(c′ − c′RR). (1.124)

In other words, the Hoffman-Ribak algorithm creates a CR from a RR by replacing the Wiener Filter
field of the random constraints by the one of the observational constraints. This algorithm truly opened
the doors to the field of constrained simulations described in section 1.7.1.

20The vector-matrix product can done block by block or line by line.
21Which would notably involve a Cholesky decomposition, whose cost grows as O(n9

grid)!

38



1.9.5 The limits of the Wiener Filter
The methodology of the Wiener Filter is directly derived from the properties of the Gaussian fields and
the associated MNDs. From the point of view of the linear theory, it thus is a perfectly adapted tool.
Moreover, it can be easily proved that it yields the optimal field in this context.

Yet, when applied to measurements of peculiar velocities, the Wiener Filter fails to capture the
complexity of the observations. First, the errors on the velocity is closer to log-normal than normal.
Consequently, in absence of a correction, it produces fields plagued by the log-normal bias. Furthermore,
in order to write all the correlation matrices necessary for its application, the positions of the constraints
need to be known. This, again, does not correspond to the reality of the data: the positions of the
galaxies, and thus the constraints, are subject to large errors and possible biases.

There are then two possibilities: setting the constraints at their redshift positions knowing that these
are biased by the redshift space distortion; or setting them at their directly observed position even though
these can have dramatic errors and positional biases. In the very early applications of these methods (up
to CF1, (Tully et al., 2008)), the data was limited to the close neighborhood and a direct measurements
of distance with small errors could still be used. Starting with CF2 (Tully et al., 2013) and later releases,
as data extended deeper in the sky, using direct distances became impossible due to the larger errors
and biases. While some groups chose to use redshifts positions, other developed methods that prepare
the data before their use by the Wiener Filter (Sorce, 2015; Hoffman et al., 2021).

These methods suffer two inherent problems. First, there is not one unique way to “unbias” the data.
Simplifications have to be made depending on exactly which bias the method aims to correct, or how
it interprets the data – which is again not as trivial as it sounds. These differences from a method to
another make the comparison and the objective assessment of their quality difficult and subjective to
some extent. This is the topic of chapter 3, where we compared one of these unbiasung methods (The
Bias Gaussianization correction; Hoffman et al., 2021) to the algorithm we developed and propose in
chapter 2.

The second issue is that these methods ultimately have to pick one distance per point, which then
is fed to the Wiener Filter. Of course galaxies have only one true position however since this is cant be
recovered from such error prone data, it is more sensible to assign galaxies a positional probability. That
is the guiding philosophy employed here.

These profound flaws of the Wiener Filter methodology motivated the development of a novel ap-
proach that bypasses both the splitting of the unbiasing and Wiener Filter and encloses both the treat-
ment of the data and the reconstruction of the fields in a single self-consistent probabilistic algorithm.
That is the main content of this thesis and explained in detail in the following chapter.
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Chapter 2

Hamiltonian Monte Carlo
Reconstruction of the Local
Environment (HAMLET)

The aim of the present chapter is to present a new numerical approach to the MCMC algorithm of Lavaux
(2016) and by Graziani et al. (2019). The Gibbs sampling algorithm suffers from a slow convergence and
is very CPU inefficient in comparison with the WF/CRs formalism. A very considerable improvement
is presented here by a numerical implementation of the Hamiltonian Monte Carlo (HMC) sampling
technique. The HMC sampling technique was applied before to reconstruct the Large Scale Structure
(LSS) from a galaxy redshifts survey by Jasche & Wandelt (2013); Jasche & Lavaux (2019) and it is
applied here for the first time to a galaxy velocities survey. Both the Gibbs sampling based MCMC
reconstruction implementations and the present HMC one are constructed within the same theoretical
framework and to the extent that they are applied to the same data aiming at the same resolution they
should yield very similar results. Our motivation here is to considerably improve the numerical efficiency
of MCMC algorithm, aiming in particular to achieve the numerical resolution needed for setting up
constrained initial conditions for numerical simulations of the local universe (e.g. Sorce et al., 2014; Sorce
et al., 2017; Sorce & Tempel, 2017; Libeskind et al., 2020). The HAmiltonian Monte carlo reconstruction
of the Local EnvironmenT (Hamlet ) code is presented here and is tested against a mock catalog.

While using the HMC sampling over the Gibbs sampling accelerates greatly the exploration, it remains
computationally very heavy. In order to reach convergence in a reasonable time, Hamlet is employs
GPUs, which enables a computational speed up of several orders of magnitude in time. The code takes
advantage of the very powerful python library Tensorflow, which permits python code to run on CPU(s),
GPU(s) and even be compiled1 with a Just In Time compilation library.

The chapter starts with a few discussion on Bayesian inference (section 2.1.1), followed by a descrip-
tion of its application to the reconstruction of the LSS (section 2.2). The HMC method is presented in
details after an introduction of the more “classical” Monte Carlo method and a the key tools and concept
to understand their functioning (section 2.3). Finally, a the application of the Hamlet code to a mock
velocity survey and its analysis conclude this chapter (section 2.5).

This is work is published as Valade et al. (2022). It has been augmented by section 2.1.1, added
during the redaction of this thesis to improve the readability. A few editorial modifications have been
made to insure the global consistency of the thesis.

2.1 Bayesian inference and Monte Carlo exploration

2.1.1 Bayesian inference
The Bayesian probabilistic approach is adopted here, according to which the PDF represents one’s
confidence in the certainty of the knowledge of the values of some parameters/variables. These can
be either observable quantities that can be measured or theoretical parameters whose values are to
be inferred. A very complete description of the use Monte Carlo methods in the context of Bayesian

1Python is an interpreted language, which makes it orders of magnitude slower at run-time than compiled languages,
like C, C++ or Fortran.
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inference and forward modeling can be found in Betancourt (2017). This section is limited to the key
ideas necessary to the understanding of this work.

Bayesian inference in the context of forward modeling consists in recovering the probability density
function of these parameters, given fixed observations or constraints, and a model. We denote the
parameters q = {qa}, such that q ∈ Q, where Q ⊂ R

n is the so-called parameters space, and n is the
number of parameters (i.e. the dimensionality of the parameter space). Using Bayes’ theorem, one can
write the posterior distribution of the parameters given the data P (q|data) as a product of the likelihood
P (data|q) and the prior P (q):

P (q|data) ∝ P (data|q)P (q). (2.1)

The likelihood function can be understood as the probability that the data stem from these parame-
ters, while the prior is the probability of these parameters in the model, prior to any measurement. The
posterior is in itself not of great interest, but it is the core function necessary to the derivation of any
observable or summary statistics:

〈F (q)|data〉 =
∫
Q
F (q)P (q|data)dnq (2.2)

where F represents any function of the parameters2. For instance, taking F (q) = q simply yields the
mean of the posterior of the posterior distribution; taking F (q) = (q − 〈q|data〉)2 yields the variance.
More complex functions can be used (e.g. the Fourier Transform as below). Any other observable
quantity of the model can be reproduced, and potentially be compared against other sets of data or to
produce predictions.

2.1.2 Monte Carlo exploration of the parameters space
However, and this is the core issue of forward modeling, eq. (2.2) cannot be simply evaluated, even for
trivial functions of the parameters F (q). First, unless the posterior has a very simple form, analytical
calculus cannot be done. Secondly, as the number of parameters grows, numerical evaluation by dis-
cretization of the parameters space becomes quickly too expensive. For instance, if the parameters space
is regularly sampled on a grid of m cells in each dimension, the number of evaluations F (q)P (q|data) to
perform grows with the dimensionality of the parameters space as O(mn).

It is possible to proceed with a maximization of the posterior. Indeed, very efficient algorithms have
been designed even for highly dimensional parameters spaces, and it is apriori reasonable to approximate
a distribution to its most probable value. This procedure is known under the name of “likelihood opti-
mization” as priors are often constant, i.e. the only source of information comes from the data and not
the model. Yet, this approach gives only limited results: the higher the dimensionality of the parameters
space is, the less the peak itself weights in the integral of eq. (2.2), i.e. P (qmax|data)dnq → 0 when
n → ∞. In parallel, the higher the dimensionality of the parameters space is, the higher the weight of
the volume around the peak is. This volume, called the “typical set”, contains the parameters such that
P (q|data)dnq is the most significant (Betancourt, 2017).

The only way forward is to perform a Monte Carlo exploration of the parameters space, and more
specifically of the typical set (Metropolis et al., 1953; Betancourt, 2017). The purpose of a Monte Carlo
method is to iteratively build a series of ns sets of parameters {qs} which follow the posterior probability
law

qs ∼ P (qs|data). (2.3)

The evaluation of the eq. (2.2) then simplifies to

〈F (q)|data〉 = lim
ns→∞

1

ns

ns∑
s=1

F (qs) (2.4)

The first Monte Carlo method that have been designed is the so-called Metropolis-Hasting sampling
(Metropolis et al., 1953). The Hamiltonian Monte Carlo approach presented here (as almost any Monte
Carlo method) is a variation of it. The Metropolis Hasting method is an iterative process constructed

2Note that F (q)P (q|data) has to be integrable on the parameters’ space.
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on two building blocks. First, it it creates a Markov Chain: a series of random states, which has the
particularity that the probability distribution of a state only depends on the previous state:

P (qs+1|qs, . . . , s0) = P (qs+1|qs). (2.5)

Secondly, it relies on the so-called fine balance that insures that eq. (2.3) is respected: the probability of
moving to a new step has to follow

P (qs+1|qs)P (qs) = P (qs+1, qs) = P (qs|qs+1)P (qs+1) ⇐⇒ (2.6)

P (qs+1|qs)
P (qs|qs+1)

=
P (qs+1)

P (qs)
. (2.7)

The Metropolis Hasting algorithm reads:

Initialization

— an initial state q0 is set or drawn at random;

Loop over s until ns states are kept

1. a candidate state is drawn at random from a probability law q ∼ C(q|qs);
2. a random number u ∼ Uniform[0, 1] is drawn;
3. if u < P (q)/P (qs), the step is accepted, q becomes the new current state qs+1;
4. else, the step is rejected, the current state remains qs.

By construction, this approach creates a Monte Carlo Markov Chain: step (1) insures that the qs+1

only depends on qs while step (3) insures that the fine balance is respected. As the initial guess may not
necessarily be “likely”, the first steps are often discarded, until the chain reaches the typical set. This
number is fixed by the operator and is regarded as a technical parameter in the rest of this work.

A key issue of Monte Carlo methods is the proposition of a “good” candidate q ∼ C(q|qs). If C(q|qs)
tends to yield unlikely candidates, they are systematically rejected. This is quantified by the acceptance
rate

α =
number of accepted steps

number of proposed steps
, (2.8)

which takes low values in this peculiar case. The loop converges very slowly and a large amount of
computational power is wasted.

To avoid this pitfall, q can be draw in the close neighborhood of qs, which has been already accepted
and is thus likely. This may however lead to a second issue: if the successive states of the Monte Carlo
chain are too close, a very large number of steps is needed to cover the entire typical set, which also may
result in a very inefficient use of the computational power. This effect is strongly exacerbated by the
increasing of the dimensionality of the parameters space, this is the “curse of dimensionality”. Moreover,
an incomplete exploration of the typical set may lead to a dramatically biased estimation of eq. (2.4).

A balance thus has to be found between the acceptance rate and the length of the chain. The
variations between Monte Carlo algorithms often concern the mechanism of proposition of a candidate
state q ∼ C(q|qs), so as to maximize the distance between successive states while also insuring a high
acceptance rate. The more a Monte Carlo maximizes these two quantities, the more efficient it is said
to be.

2.2 Application to the large scale structure
The aim of the Bayesian analysis, in the present context, is the construction of the posterior PDF of the
distances of the data points, the set of the Fourier modes that define the density and velocity fields, and
σNL (to be defined later), given Cosmicflows-like data and under the assumption of the ΛCDM model.
More specifically, the posterior PDF is calculated within the linear approximation of the ΛCDM model,
with the Planck parameters (Planck Collaboration et al., 2016). A mild non-linear correction is added
to the linearly calculated velocity field whose amplitude is controlled by σNL, whose magnitude is to be
estimated as well.
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The Bayesian posterior PDF is numerically evaluated by means of the MCMC sampling. Given the
posterior PDF the mean and variance of the desired density and velocity fields are readily calculated,
much in the same way as in the WF/CRs formalism (Zaroubi et al., 1995). The main difference between
the WF/CRs and the MCMC cases is that in the former the posterior PDF is assumed to be know
analytically and in the later it is evaluated numerically.

2.2.1 Bayesian posterior PDF and likelihood function
Bayes’ theorem states that the posterior PDF, of the model given the observed data, is the product of
the conditional probability of the data given the model, hence the likelihood function, times the prior
probability of the model, normalized by the evidence. In the language of Bayes’ theorem the distribution
of the true distances of the data points, the ensemble of the Fourier modes and σNL consist of the multi-
parameter model whose parameters are to be estimated given the data. The ΛCDM cosmological model
provides the framework within which that multi-parameter model is constructed. Neglecting here the
evidence the posterior PDF is:

P
(
Δk,D, σNL|M,Z) ∝ L

(M,Z|Δk,D, σNL

)
P
(
Δk,D, σNL

)
(2.9)

Here D = {di} (proper distances of the data points, i = 1, ..., n where n is the number of data points),
Δk = {δk} (the ensemble of the Fourier modes, where δk = FT (δ(r)) is the Fourier transform of the
fractional over-density field δ(r)) and σNL are the output variables/parameters to be estimated. We
denote m = |Δk| the number of complex Fourier modes. Z = {zi} (observed redshifts of the data points)
and M = {μi} (observed distance moduli) are the input observed data. L

(M,Z|Δk,D, σNL

)
is the

likelihood function and P
(
Δk,D, σNL

)
is the prior.

The errors on the observed data points are assumed to be independent, and so are the errors on the
redshift and distance modulus of a given galaxy. All observational errors are assumed to be normally
distributed. The likelihood function is thus the product of n likelihood functions, one for each of the i
constraints used. Furthermore, given that the redshifts and distance moduli are independent, the i-th
likelihood function is a product of two independent likelihood functions denoted here by Lvr

i , associated
eventually with the velocity of the data point (eq. (2.15) below) and Lμ

i . The likelihood function is:

L
(M,Z|Δk,D, σNL

)
=

n∏
i

Lμ
i (μi|Δk,D, σNL)L

vr
i (zi|Δk,D, σNL) (2.10)

2.2.2 The Likelihood function: distances
Given a Gaussian error σμ,i on the measurement, Lμ

i is written:

Lμ
i (μi|di) = 1√

2πσ2
μ,i

exp

(
−(μi − μ(di)

)2
2σ2

μ,i

)
(2.11)

where

μ(d) = 5 log10

(
dL(d)

1Mpc

)
− 25, (2.12)

where dL(d) is the luminosity distance associated with the proper distance d

dL(d) = d
(
1 + zcos(d)

)
(2.13)

and to 2nd order the cosmological redshift zcos corresponding the proper distance d is given by:

zcos(d) =
2

3Ωm

(
1−
√

1− 3ΩmH0

c
d

)
. (2.14)

Here Ω0 is the matter density parameter, H0 is Hubble’s constant evaluated at the present epoch and c
is the speed of light.

Note that this writing of the luminosity distance ignores the peculiar redshift of the observed con-
straint as it appears in eq. (1.49). This simplification has been brought in Graziani et al. (2019), whose
model we try to match in this chapter. Neglecting the peculiar redshift simplifies the correlation between
Δk and D, making the posterior possibly smoother and its exploration faster.

43



2.2.3 The Likelihood function: velocities
The velocity of the i-th data point is related to its observed redshift via

vobsr,i = c
zi − zcos(di)

1 + zcos(di)
. (2.15)

Given the ensemble of Fourier modes, Δk, the assumed cosmological 3D velocity field is given by the
following inverse Fourier transform,

v(r|Δk) = FT−1

(
−iH0f(Ωm)

k

k2
δk

)
, (2.16)

where f(Ωm) is the linear growth factor. One should note here that v(r|Δk) is the velocity field predicted
by the linear theory from a given over-density field δ(r).

The evaluation of eq. (2.16) is in practice not direct. Indeed, when employing the FFT algorithm,
the values of the field can only be computed on the nodes of the regular grid. Yet, the constraints are
irregularly placed in space, and an interpolation from the grid is thus necessary.

In this work we limit ourselves to a (tri-)linear interpolation of the components of the fields vx,y,z.
This apparently technical detail has some physical consequences. First, for a points that is not on a node
of grid, the interpolated value is different from the true value of the discrete Fourier transform. This
error is complex to described, as it is depends on the positions of the constraint in a cell and is different
for each Fourier mode. Still, a general trend can be drawn: the higher the frequency of the modes, the
less smooth the field between two nodes is, the more error is injected by the linear interpolation. This
error also leads the correlation functions to be violated within a cell and between neighbor cells – which
is not a direct concern for our algorithm, but is worth being noted. As the velocity field has a correlation
length much bigger than the effective resolution of our grids, this error is minimal. It would however not
be the case when interpolating the over-density field, which shows much more small-scale variations.

Other interpolation methods can be used. For instance, Lavaux (2016) proposes a Taylor-Fourier
interpolation. The value of a point in a cell is computed from the Taylor approximation of field on the
closest grid node. This method is equivalent to the linear approximation when the expansion is carried
out to the first order. It surpasses the linear approximation at the second order, in which case ten
FFTs need to be computed (instead of one), which significantly affects the computational cost of the
interpolation.

Our aim here is to reconstruct the LSS from the grouped version of a Cosmicflows-like catalog of
galaxy velocities. A grouped catalog means here a catalog in which all galaxies belonging to a group
or cluster of galaxies are collapsed onto one data point. The grouping acts as a smoothing process of
the internal virial velocities and thereby serves as a filter of non-linear velocities. The following crude
approximation is introduced here to account for the residual non-linear component of the observed data.
The full velocity field is assumed to include a non-linear component:

vfull(r) = v(r|Δk) + v
NL(r). (2.17)

The residual component, vNL(r), is assumed to constitute a white noise with a variance given by:

σ2
NL =
〈
(vNL)2
〉
. (2.18)

The likelihood function for the observed redshift is readily written here in terms of the observed
velocity:

Lvr
i (zi|Δk,D, σNL) =

1√
2πκi

exp

(
− (vobsr,i − v(dir̂i|Δk) · r̂i

)2
2κ2i

)
(2.19)

where r̂i is the unit vector in the direction of the i-th data point and

κ2i = σ2
NL +

σ2
cz,i

(1 + zcos(di))2
. (2.20)
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2.2.4 Priors
The elements of the model under consideration are the Fourier modes, the distribution of the distances
of the data points and σNL. Following the steps of Graziani et al. (2019), we split the joint prior into
marginal priors:

P (Δk,D, σNL) = P (Δk)P (D)P (σNL). (2.21)

The Fourier modes are evaluated on a discrete grid which is written here symbolically as {kj}, where
j = 1, ...,m where m is the number of the Fourier modes. The prior of the ensemble of the Fourier modes
is:

P (Δk) =
m∏
j=1

1

2P(kj)
exp

(−|δkj |2
P(kj)

)
(2.22)

Here P(k) is the ΛCDM power spectrum at wave number k. Note that this probability law is the same
as eq. (1.82), but it applies to two amplitude squared. Writing it under this form simplifies and thus
accelerates its computation.

Writing the prior on the distances is complicated and somewhat ad hock. As discussed in section 1.5,
biases can arise from a wrong derivation of this probability, namely the homogeneous in in-homogenous
Malqmist biases. In the mean time, this prior function has to take into account the selection effects,
that are impossible to properly describe for the Cosmicflows catalogues, as each one gathers and merges
different survey, each one having their own specificities.

We opt for a simple description based on the fact that the redshift distance, dz is a good proxy to
the actual distance for all but the very nearby data points:

dz =
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + (1− Ωm)

, (2.23)

which is an application of eq. (1.41) to the observed redshift. This distance estimator is thus subject to
the redshift space distortion (RSD).

A histogram of the distribution of the redshift distances, Nobs
dz

is constructed from the distribution
of the observed redshifts.

P (D) =

n∏
i=0

Nobs
dz

(di). (2.24)

To account for the RSD, this histogram is smoothed with a Gaussian kernel of width σv/H100 ≈ 3Mpc/h.
The binning and the smoothing lead to what seems to be a good proxy to the histogram of the distribution
of the true distances. Note that using the measurements of redshift as an estimator has the upside of
partially modeling selection effects and partially accounting for the in-homogeneous Malmquist bias by
pulling distances to fall in higher-density shells. However, the exact limitations and biases created by
this approach have yet to be studied and understood.

2.2.5 Shape of the posterior
The exact shape of the posterior distribution is, needless to say, unknown. Yet, a rough estimation of
its properties can be done before exploration with Monte Carlo methods, which is of great help for the
choice of the sampling method and for the estimation of meta-parameters (see section 2.3.3).

Fourier modes of the over-density field

The formalism adopted for the creation of linear over-density fields yields an prior distribution for the
real and the imaginary components of each Fourier mode, written in eq. (1.81). We also know from
previous works with Wiener-Filter / Constrained Realization method (e.g. Doumler et al., 2013b) that
low-frequency modes are more constrained than high frequency modes. We thus expect the posterior
to be roughly normal for the Fourier modes of the field, with a standard deviation dictated by the
power spectrum for high-frequency modes and a reduced standard deviation for low-frequency modes.
Correlation between the low-frequency modes is also expected.
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Figure 2.1: Top left: a slice through the over-density (δ) of the target field. Top right: the radial
component of the velocity fields (vr) of the target field. The mock observer is located at the origin of
the coordinate system. The color bars present the color coding of the presented fields. Velocities are in
units of km/s. The contour lines corrrespond to the zero values of the two fields. The target field is
Gaussian smoothed with a kernel of 5Mpc/h. Bottom: the “selection function” i.e. the distribution of
the distances for the sample of points used as constraints. For comparison we also show CF3.

Distances of the probes

Here again, the form of the posterior can be easily outline prior to its exploration. The informative
value of the observation of the distance moduli is close from null, it is thus better to start from the
redshifts. Section 1.4.7 highlights that the true distance of each constraint is found in the neighborhood
of its redshift distance, with a scatter due to its radial peculiar velocity. Marginalizing over the later – a
priori unknown – we expect the distances to follow a normal law centered on the redshift with a standard
deviation lower or equal to σv/H100 � 3Mpc/h. As the velocity field is expected to be well constrained
at large scales, a constant shift from the redshift is predictable.

General properties

The posterior is general expected to be smooth, virtually mono-modal and roughly gaussian in any
direction. Correlations between parameters are expected, but nothing indicates complex structures or
stiffness in the posterior. The only challenge brought by this posterior is its extremely high dimension-
ality: np = 2m+ 2n+ 1. In this work, np reaches several millions (from 2 · 106 to 16 · 106) parameters.

The Hamlet algorithm is tested against a CF3-like survey drawn from a linear random realization
of the density and velocity fields, constructed within the framework of the ΛCDM model. The selection
of the data points and the assignment of the observational errors replicate the selection and the errors
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Figure 2.2: Differences between successive partial estimations of the signal over noise ratio field as a
function of the number of steps used to estimate it. All mocks converge in a very identical way.

of the actual CF3 data. Our aim here is to test the the Hamlet algorithm and its performance in the
ideal case where in the limit of perfect data - densely, homogeneously and and isotropically sampled and
with negligible errors - the Hamlet should accurately recover the input density and velocity fields (cf.
Graziani et al., 2019).

2.3 Hamiltonian trajectories in phase space
The detail of the Hamiltonian Monte Carlo (HMC; Hoffman & Gelman, 2011; Neal, 2011; Betancourt,
2017) is complex and out of the scope of this thesis. Only the key general elements of the HMC are
given here. In this section we will describe the HMC method through its application to our model, for
the reconstruction of the large scale structure.

The parameters of the model are denoted here by:

q = {qa} =
(
δRk,1, . . . , δ

R
k,m, δ

I
k,1, . . . , δ

I
k,m, d0, . . . , dn, σNL

)
. (2.25)

Here, the real and imaginary components of the complex δk = δRk + iδIk are denoted as separate pa-
rameters. For the sake of the clarity of the presentation we define here the posterior function as
Π(q) = P (Δk,D, σNL|M,Z).

A Hamiltonian system is defined by means of associating Π(q) with a potential of classical particles,
Ψ(q),

Ψ(q) = − lnΠ(q). (2.26)

The parameters {qa} are assumed to consist a set of canonical coordinates. These are supplemented by
auxiliary quantities, referred to as their associated momenta, p = {pa} and a “mass matrix” M . The
dynamics of this Hamiltonian system is governed by the Hamiltonian,

H (p, q) =
1

2
pTM−1p+Ψ(q) (2.27)

The equations of motions of the q and p are given by Hamilton equations:

dpa
dt

= −∂H
∂qa

= −∂Ψ(q)

∂qa
,

dqa
dt

=
∂H

∂pa

(2.28)

Considering these Hamiltonian system as a many body system, probability distribution function of
q and p, Π(q,p) is related the the Hamiltonian via:

Π(q,p) ∝ exp (−H(q,p)) = Π(q) exp

(
−1

2
pTM−1p

)
. (2.29)

This is a key result. There is no cross-correlation between the distributions of the coordinates and the
momenta in the joint PDF Π(q,p). It follows that the Hamiltonian trajectories properly sample the
desired posterior PDF of the parameters of the model under consideration.
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Figure 2.3: The conditional mean δ field given CF3-like mock data and the ΛCDM prior model. The
field is Gaussian smoothed with a kernel of 5Mpc/h. The plots show color maps of a slice of the δ field.
The color bar indicates the color coding of δ and the contour lines correspond to the zero level of the
target field. The frames correspond to the different mock catalogs dented by (N/104, α), where N is the
number of data points and α controls the level of the observational errors, σμ = ασCF3

μ . The nine mock
data are: a. (0.75, 1.0), b. (1.5, 1.0), c. (3., 1.0); d. (0.75, 0.5), e. (1.5, 0.5), f. (3., 0.5); g. (0.75, 0.1),
h. (1.5, 0.1), i. (3., 0.1). Frame b corresponds to the actual CF3 data in terms of the number of data
points and the magnitude of the errors.

2.3.1 Construction of HMC chains
A chain starts with the coordinates and momenta randomly drawn and serve as the initial conditions
for the integration of equations of motion (eq. (2.27)). These are integrated over a pseudo time τ . The
final position of that trajectory in the {q,p} phase space, is the candidate state. If the endpoint failed
the modified Metropolis-Hastings acceptance rule (step (3), see section 2.1.2)

u <
P (−p, q)
P (p, q)

, u ∼ Uniform[0, 1], (2.30)

the integration starts all over with the same initial coordinates but with new randomly drawn momenta.
If the endpoint passed the acceptance rule, that trajectory becomes a step along the chain. The next
step starts with the coordinates (q) accepting the final coordinates from the last step and the momenta
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Figure 2.4: Color maps of the local constrained variance normalized by the cosmic variance of the δ field,
Σδ(r)/σδ. The conventions and structure of fig. 2.3 are followed here.

(p), on the other hand, are again randomly drawn. The final positions of the successive trajectories form
the chain.

2.3.2 Integrating the HMC trajectories
If the integration can be done analytically, the Hamiltonian framework ensures an acceptance rate of
1, namely all candidate states are accepted, even when candidates are far from the current position.
However, for most problems, analytical integration is impossible and numerical solvers must be used.
The integrator of choice is the Leapfrog algorithm, which ensures ergodicity, namely the conservation of
the Hamiltonian. This ensures that the error introduced when computing the trajectory depends only
on the integration step size and not on the number of integration steps. In other words, the use of
the Leapfrog algorithm yields stable trajectories. In practice, this stability is limited by the numerical
precision of the derivatives

(
∂ ln Π(q)

∂qa

)
. Thus, the HMC is only applied to models where these derivatives

can be computed analytically, which is the case for this work.
Note that trajectory length is simply the product of the step size and the number of steps used in

the (leapfrog) integration. In this context, the acceptance rate for a given state is only a function of
the step size. Therefore the step size can be tuned in order to obtain a given acceptance rate. Studies
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Figure 2.5: Same as fig. 2.3 but for the radial component of the velocity field.

in the literature (e.g. Hoffman & Gelman, 2011) advocate that an acceptance rate of 0.65 (used here)
provides an optimal balance between computational resource usage and exploration. Hoffman & Gelman
(2011) introduced the “Dual Averaging” method that dynamically tunes the step size to reach any given
acceptance rate. The step size set to achieve this acceptance rate depends on the complexity of the
problem: the more complex the problem and the more correlated the variables, the smaller the step size
must be.

Secondly, since the integration is ergodic, every trajectory ultimately returns to the initial state (to
within integration error). This is problematic since such closed orbits return a final state identical to the
initial state resulting in no additional knowledge of the parameter space (and a waste of computational
resources in the process). Therefore it is absolutely critical that the integration is halted after a designated
number of steps, specifically chosen such that the candidate state is the furthest away from the initial
position. At this maximum, the trajectory starts turning back towards the initial state. Depending
strongly on the initial momentum, this value is different for each trajectory. Several methods have been
developed to automatically tune this parameter, the most well known being the No U-Turns (NUTS)
algorithm proposed in Hoffman & Gelman (2011), whose detail is out of the scope of this paper. NUTS
and the “Dual averaging” technique can be used together.
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Figure 2.6: Same as fig. 2.4 but for the radial component of velocity field (vr(r)). The constrained and
cosmic variances are evaluated for vr(r).

2.3.3 The Mass matrix
Consider the classical dynamics described by eq. (2.28) - a trajectory evolves from a random position
in the multi-dimensional phase space towards a local minimum of the potential Ψ(q). In the presence
of dissipative forces, the trajectory would reach a local minimum of the potential and stay there. For a
Hamiltonian system whose energy is conserved, the trajectory oscillates around the local minimum with
an amplitude dictated by the energy of the system and its mass. As the energy of each trajectory is set
by the random choice of its initial momentum. The statistics of these initial momenta are encoded in
the mass matrix. The selection of a mass matrix influences heavily the efficiency of the exploration and
the rapidity of the convergence. Asymptotically however, it does not bias nor modify the result. Even
though there is theoretically no optimal choice of mass matrix, using the covariance of the parameters is
the canonical approach. This covariance matrix is however a priori not know and has to be estimated.

We base the coefficients of the mass matrix on our estimation of the shape of the posterior PDF
described in section 2.2.5. In the absence of knowledge about the cross-correlation between parameters,
we set the non diagonal coefficients of the matrix to zero. Furthermore, the posterior being close from
normal in all direction, using a correlation matrix as mass matrix is almost optimal. The choice of the
size of the other parameters (limited to σNL in this work) has to be estimated more freely.
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Figure 2.7: Top row: The monopole moment (namely the mean fractional over-density; upper panel),
the amplitude (middle panel) and alignment (with the target; lower panel) of the dipole moment (namely
the bulk velocity) are shown shown for α = 1, 1/2 and 1/10 (columns left to right) and for N =

(
0.75

(green), 1.5 (red) and 3.0 (blue)
) × 104, where N is the number of data points. The mean (solid lines)

and the scatter are calculated over the ensemble of HMC steps. The moments of the target field are
shown in black.

M−1
ab = Iab ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P(ka)/2 if a ≤ m,

P(ka−m)/2 if m < a ≤ 2m,

σ2
v/H

2
0 if 2m < a ≤ 2m+ n,

1 if a = 2m+ n+ 1,

(2.31)

where I is the identity matrix and ka is the wavenumber of the Fourier mode δk,a. The mass matrix of
eq. (2.31) is used here in the general case, where the estimation is done given the data and the prior.

More complex mass matrices could be used in the future, where some cross-correlation coefficients. It
is however impossible to date to encore the full correlation matrix of the parameters space, as it contains
(2m + n + 1)(2m + n)/2 ≈ 1014 coefficients for our application, which exceeds by orders of magnitude
the amount of memory available in modern GPUs3.

2.4 Technical Implementation
An HMC algorithm computationally outperforms the more traditional Metropolis - Hastings and Gibbs
sampling algorithms. This is also the case with the problem of the reconstruction of the LSS from
a CF3-like catalogue, addressed here and by Graziani et al. (2019) which used the Gibbs sampling

3Encoded on 4-bytes float, this matrix would occupy close to 400 000GB of memory.
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Figure 2.8: Top row: The mean plus-minus standard deviation of the density field per distance shell is
shown for α = 1, 1/2 and 1/10 (left to right). In black we show the target results while in green, red and
blue we show the curves reconstructed from 7 500, 15 000 and 30 000 points respectively. Beyond this
region there are no constraints. Bottom row: same plots but for the correlation between the reconstructed
field and the target field.

approach. Quantifying the speed-up of the Hamlet method compared to that of Graziani et al. (2019)
is complicated because there are differences to both the implementation (compiled on GPUs versus
interpreted on a single CPU) and the algorithm (HMC versus Gibbs sampling). Its thus not straight
forward to identify exactly which aspect of the Hamlet method is mostly responsible for the increase
in efficiency. A quick comparison shows that the Hamlet code outperforms the code of Graziani et al.
(2019) by several orders of magnitude (between 3 to 4) in speed while fitting orders of magnitudes more
parameters (∼ 2× 106 versus ∼ 4.5× 104). For example, in the case of reconstructing the LSS from the
∼ 1.5 × 104 constraints provided by the grouped CF3 catalogue, the MCMC method of Graziani et al.
(2019) takes more than a month compared with the Hamlet which takes on the order of 10 minutes.
The increase in speed is a necessary condition for future applications of the Hamlet code. One such
application is the setup of constrained initial conditions for high resolution cosmological simulations (cf.
Libeskind et al., 2020), for which the number of the needed Fourier modes is much larger that what is
used here. Also, the upcoming 4th Cosmicflows data release (CF4) is expected to roughly triple the size
of the CF3 data. Preliminary analysis suggests that Hamlet will be capable in exploiting the CF4 data.

A brief review of the computational implementation of the Hamlet code follows. It takes advantage
of a number of highly-abstract layers as implemented by open-source Python libraries tensorflow and
tensorflow-probabilities. The tensorflow library provides a framework that enables a python
code to transparently scale on multiple CPUs and/or GPUs and to be compiled at run time, while the
tensorflow-probabilities provides a plug-and-play implementation of the HMC, NUTS and other
tools to run and analyse MCMC chain. While the gradient of the the posterior PDF, can be extremely
tedious to write by hand, tensorflow is capable of transparently computing it, by constructing a complex
derivation graph that can be very efficiently evaluated. Only the gradient of the inverse of the Fourier
transform had to be constructed.

2.5 Testing Hamlet against a linear mock Cosmicflows-3 survey

2.5.1 Mock Catalogue construction
A linear realization of a Gaussian random field, defined by the ΛCDM power spectrum and cosmolog-
ical parameters (Planck Collaboration et al., 2016) is used here as a base for our mocks. The field is
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Figure 2.9: Same as fig. 2.8 but for the radial velocity field instead of the density field.

constructed on a 1283 Cartesian grid within a box with side length L = 500Mpc/h. Periodic boundary
conditions are assumed. A random observer is selected to reside at the center of the computational
box and a mock Supergalactic coordinate system is assigned centered on the observer and aligned with
the principal directions of the grid. A mock catalog consists of Supergalactic latitude (SGB) and longi-
tude(SGL), distance modulus (μ), its error (σμ), the redshift (z) and its error (σcz).

fig. 2.1 presents the “target” density and velocity field, from which the mock data has been drawn
and which the Hamlet algorithm is designed to recover. The linear over-desnity (δ) and the radial
component of the velocity field (vr) are depicted. The target field is smoothed with a Gaussian kernel of
a radius of 5Mpc/h.

The constraints are isotropically selected within a sphere of radius of 160Mpc/h. A radial selection
function is imposed so as to have a uniform distribution per radial distance bins, P (d) = constant, where
distances are measured with respect to the mock observer at the relative centre of the box. This choice
is motivated by the relative flatness of the redshift distance distribution of the CF3 grouped data points
(fig. 2.1 bottom). The 160 Mpc/h cut corresponds to the effective distance cut of the CF3 data. The
errors assigned to the mock data points follow the redshift distribution of the errors of the actual CF3
data. The following procedure is used. Given a mock point it inherits the error of the actual CF3 data
point that is closest to it in redshift.

The two main factors that affects the quality of the Bayesian reconstruction in general and the HMC
in particular are the numbers of the data points and their associated errors. In the limit of very dense
sampling of the data points and negligible errors the target field should be reconstructed with high
fidelity. In the other extreme case of very sparse sampling and large observational uncertainties, the
null field predicted by the prior PDF is recovered. An ensemble of 9 different mock databases has been
constructed so as to investigate how these two factors affect the outcome of the Hamlet reconstruction.
Three different numbers of data points are selected, (7.5, 15, 30)× 104. The distance moduli errors are
gauged by an α parameter, σμ = ασCF3

μ , where σCF3
μ is the value for the actual CF3 survey error4. In

otherwords α = 1 corresponds to the typical errors associated with the inherent uncertainty in scaling
relations (eg. Tully-Fisher) distance measures, while α = 1/10 is meant to mimic a catalogue constructed
entirely with more accurate distance measures, like TRGB or SuperNovae. The 9 mock databases are
assigned the 3 different numbers of data points and 3 different α values (table 2.1). The case of 1.5×104

data points and α = 1 corresponds most closely to the grouped CF3 data.
A note of caution on the expected effect of the sharp drop has on the Bayesian reconstruction is

4Varying σμ is meant to mimic the different precision of different standard candles since e.g. the error on a distance
obtained from SN method is around 3-5% while from scaling relations are closer to 20-30%. Thus a catalogue of just scaling
relations like TF would correspond to α = 1 while a catalogue of just SN would correspond to α ≈ 0.1.
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Table 2.1: Mock catalogues and their characteristics
Name N of points α, Factor on σμ
CF3+ like 15 000 1
Better measurements 15 000 1/2
Very good measurements 15 000 1/10
More measurements 30 000 1
More, better measurements 30 000 1/2
More, very good measurements 30 000 1/10
Fewer measurements 7 500 1
Fewer, better measurements 7 500 1/2
Fewer, very good measurements 7 500 1/10

due here. Hinton et al. (2017) have investigated this exact problem: the effect that a sample selection
function with a sharp cutoff has on the likelihood function and thereby on the Bayesian posterior PDF.
Their conclusion is that the inferred variables close to the edge of the data, namely close to the cutoff,
are biased. Our analysis and findings support the finding of Hinton et al. (2017). Consequently we limit
our analysis and present results only within a sphere of a radius of 150Mpc/h.

2.5.2 Convergence
A critical issue that MCMC methods in general and the HMC in particular face is that of convergence,
namely how long should an MCMC chain or HMC trajectory be to meet some given criteria of confidence
in the estimated parameters. (The discussion that follows focuses on HMC trajectories but it implies to
MCMC chains in general.) The HMC trajectories never “rest” and keep on “moving” in the parameters
space. Three obvious issues to consider are: a. Does the HMC trajectory oscillate around the “true”
values of the parameters, namely the issue of bias; b. What is the scatter exhibited by the trajectory, i.e.
the variance around the mean (defined by eq. (2.4)); c. What is the rate of convergence. The convergence
rate is discussed here and the issues of bias and variance are addressed in subsections 2.5.3 and 2.5.5
below.

The rate of convergence is examined here by monitoring the change of the mean of the density
field,
〈
δ
〉
, along the HMC trajectory. fig. 2.2 presents the differential change in 〈δ〉 normalized by the

(square root of the) cosmic variance between successive steps,
∣∣(〈δ〉 /Σδ)s − (〈δ〉 /Σδ)s−1

∣∣. Here Σ2
δ is the

variance of the δ field evaluated at a given step of the HMC. fig. 2.2 indicates that to get to percent level
convergence requires on the order of 100 chains.

2.5.3 Reconstruction of the large scale structure
The Hamlet method’s main mission is to perform a Bayesian estimation of the LSS, namely the density
and velocity fields, from Cosmicflows-like databases. To meet that end and examine it we focus here on a
subset of the q parameters, qLSS =

(
δRk,1, . . . , δ

R
k,m, δ

I
k,1, . . . , δ

I
k,m

)
, namely the ones that determine the

LSS. The conditional mean field, given the data and the prior model is readily written (as a particular
case of the general eq. (2.4)) as:

〈qLSS〉 = 〈qLSS | data, prior〉 ≈ 1

ns

ns∑
i=1

qLSS,i (2.32)

The conditional mean field and the ensemble of states are the HMC equivalent of the WF estimator
and the ensemble of CRs of the WF/CRs algorithm.

Figure 2.3 shows a slice of the δ field for the 9 different mock data sets (see table 2.1). The presented
density field is the conditional mean field given the data, namely 〈δ〉 = δ (〈qLSS〉). The grid of density
maps reflects the change of quality of the data - more data points and smaller errors corresponding to
better data. Degradation of the data leads to an attenuation of 〈δ〉. This a manifestation of the well
known property of the Bayesian estimation - the worse the data the more biased the results are towards
the null field predicted by the prior model (cf. Zaroubi et al., 1995). The grey lines represent the δ = 0
contour of the target. The reader will note how similar these are to the the limit of small errors and
large data set (i.e. fig. 2.3(i)) Indeed, in general, the target and reconstructions δ = 0 contours match
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for α = 1/10, fig. 2.3(g,h,i). In the case of the CF3 mock (α = 1, 15,000 points, figure fig. 2.3(b) ), the
target density contour is fairly accurately recovered in the inner regions, ie within around 50−60 Mpc/h.
Examining the density field reconstructions “vertically” indicates that the single most important factor
for obtaining an accurate density field reconstruction is the data quality. Namely: Better data is more
important than larger data sets. For a given catalogue size, better data allows the reconstruction to
be accurate at greater distances. For a given error, more data improves the reconstructions at fixed
distances, instead of extending the improvement of the reconstruction.

The linear over-density field constitutes a random Gaussian field whose variance is determined by
the power spectrum of the field and the resolution of the given realizations of the field. This is the
cosmic variance of the δ field, denoted by σ2

δ . The variance of different states along the HMC chain, Σ2
δ ,

varies according to the “strength” of the data and the properties of the prior model. Furthermore, it
varies with the location at which it is evaluate, i.e. Σδ = Σδ(r). The spatial variation of Σδ(r) reveals
the constraining power of the data, given the prior model. Where Σδ(r)/σδ � 1 the density field is
strongly constrained by the data and the prior model and only very small scatter is expected to be found
around the mean field. Where Σδ(r)/σδ ∼ 1 the field is essentially unconstrained by the data and the
prior model. fig. 2.4 presents the variation of normalized constrained variance, Σδ(r)/σδ, for the 9 mock
databases presented in fig. 2.3. Inspection of fig. 2.4 reveals that for all the mock data considered the
quality of the reconstruction degrades with the distances from the (mock) observer. This is a reflection
of the degradation of the data with the distance - the magnitude of the errors increases and the density
of data point decreases with distance. The picture of how the reconstruction degrades with distance as
a function of date set size and error reinforces the conclusions drawn from fig. 2.3 namely smaller errors
on the data improves the reconstructions more than larger data sets. Small data sets with small errors
are worth more than large data sets with large errors when examining the reconstructed density field.

Next, the radial component of the velocity field is investigated (figs. 2.5 and 2.6). The velocity field
power spectrum is “redder” than that of the δ field, namely it has more power on long wavelengths
than on short ones, hence the velocities’ effective correlation length is larger than that of the densities.
Hence one expects the velocities to be more constrained by the data than the densities. This is clearly
manifested by fig. 2.5. A visual of how well the target’s vr = 0 contour matches the reconstructed radial
velocity field indicates that even in the case of CF3 like mock (ie fig. 2.5b) the reconstructed velocity
field is doing a good job at greater distances (as compared with the δ field). The velocity field around
large distance concentrations of matter and voids is accurately reconstructed with Hamlet . We can
qualitatively asses the superiority of the velocity field reconstruction as compared to the density field
by examining fig. 2.6 (and comparing to fig. 2.4) which shows just how well similar the reconstructed
velocity field is to the target.

2.5.4 Monopole and dipole
Global measures of the velocity field are given by the volume-weighted mean monopole and dipole
moments of the velocity field in spheres of radius R (Hoffman et al., 2021, for details). The monopole
moment is the mean of −∇ · v/H0, where the scaling by H0 is introduced so as to make the expression
dimensionless and proportional to the mean (linear) over-density within R. The minus sign is introduced
so as to make the monopole within a sphere of R to be proportional to the mean over-density within that
volume. The dipole moment is the (volume weighted) mean value of the velocity, namely it is the bulk
velocity of a sphere of radius R. The variation of the monopole and dipole moments with depth provides
a global measure of the underlying LSS of the universe, and as such they serve as good monitors of the
quality of the Hamlet reconstruction.

fig. 2.7 presents the variation with depth of the monopole (upper row) and the dipole (middle row) of
the velocity field, namely the mean fractional over-density (δ) and the bulk velocity of a sphere of radius
R. The lower row shows the alignment of the bulk velocity of the reconstructed and the target velocity
fields. The dependence of the estimation of the radial profiles of the moments on the quality of the data is
investigated. The profiles are shown as a function of the magnitude of the errors (α = (1.0, 0.5, and 0.1)
and of the number of data points, N = (0.75, 1.5 and 3.0) × 104. The profiles are presented by their
mean and standard deviation taken over the ensemble of steps.

The plots of fig. 2.7 are informative. Reconstructions behave as expected, with the exception of the
monopole moment close to the edge of the data, R � 150 Mpc/h, where the reconstructed monopole
exceeds that of the target one. The edge-of-the-data discrepancy is in line with the findings of Hinton
et al. (2017). As for all the other cases they behave as expected. The mean Hamlet profiles’ deviation
from the target profile and the scatter around the mean profiles grow with R and get smaller with
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the increase of the number of steps. A note is due here on the large scatter in the amplitude and
alignment of the bulk velocity at R � 100 Mpc/h, say. The bulk velocity of a sphere of radius R is
induced by structures outside that radius. The target field is constructed within a box of side length of
L = 500 Mpc/h with periodic boundary condition, which renders the power within the box and outside
these radii, and its constraining power to be rather small. This is manifested by the large scatter around
the mean. The lesson to be learnt here is that the reconstruction of the bulk velocity on a given scale R
needs to be done within boxes of L much larger than R.

2.5.5 Correlation Coefficients
Next, the fidelity of the Hamlet reconstruction is monitored by means of the scatter of the density and
radial velocity fields evaluated in radial shells. The upper panel of fig. 2.8 shows the mean and scatter of
the density in spherical shells of width of ΔR = 10 Mpc/h for the 3 values of α and the 3 assumed sizes
of the mock catalogue. The mean density of the target field is presented for reference. The disagreement
at R � 150 Mpc/h is again clearly manifested. Next the density field within the shells is examined by
studying the correlation between the densities of individual voxels (grid cells) within the shells. The
lower panel of fig. 2.8 shows the (Pearson) correlation coefficients of the Hamlet reconstructed and the
target densities. The correlation coefficient profiles are again plotted for the 3 levels of errors and the 3
ensembles of the HMC chain. In general, the Hamlet reconstruction follows the target quite well. In
the limit of much data and small errors, the reconstruction is very close to the target.

fig. 2.9 applies the analysis of fig. 2.8 to the case of the radial velocity field. The mean and scatter
of vr within spherical shells (upper row) and the correlation coefficient with the target field (lower row)
are presented in fig. 2.9. As expected, the comparison of the 2 figures clearly shows that the (radial)
velocity field is much more correlated than the density field. Smoothing the target and the reconstructed
density fields would make them much more correlated. Again, in the limit of much data and small errors
the reconstructed velocity field is so accurate that a correlation coefficient of nearly 0.8 is obtained at
150 Mpc/h. Obtaining a CF like catalogue with such large numbers of data points is already a reality in
CF4. On the other hand, having small errors corresponding to α = 1/10 is still slightly unrealistic, but
not unimaginable with future purpose built telescopes designed specifically to monitor variable stars at
cosmological distances.

2.6 Partial conclusion
The problem of the reconstruction of the large scale density and velocity fields from peculiar veloci-
ties surveys is addressed here within a Bayesian framework. In particular, the reconstruction aims at
Cosmicflows-like data where observational uncertainties are on the distance moduli, which results in a
Log-normal bias on the estimated distances and velocities (see section 1.5.1). The HAmiltonian Monte
carlo reconstruction of the Local EnvironmenT (Hamlet) algorithm performs the reconstruction within
the framework of the linear theory of the ΛCDM standard cosmological model, which is taken here as
the Bayesian prior, using the Hamiltonian Monte Carlo (HMC) method to sample the posterior proba-
bility distribution function (PDF) given the ΛCDM model and the Cosmicflows-like data (e.g. Tully
et al., 2016). Like previous MCMC treatments of the problem (Lavaux, 2016; Graziani et al., 2019)
the Hamlet samples the posterior PDF of true distance of the data points coupled with the underlying
linear density field. This differs from the Wiener filters and constrained realizations (WF/CRs) approach
where the correction of the Log-normal bias is done independently of the Bayesian reconstruction of the
LSS (see section 1.9.5 or Sorce, 2015; Hoffman et al., 2021).

The current Hamlet HMC algorithm and the Lavaux (2016); Graziani et al. (2019) MCMC ones are
formulated within the same mathematical Bayesian framework, making similar assumptions on the prior
PDF and deriving the same posterior PDF from the same input data. The main difference between the
standard MCMC algorithm and the HMC is in the sampling of the posterior PDF. The extremely low
rejection rate of the HMC steps and its ability to be run on GPUs, makes the procedure very efficient.
A comparison of the performance of the Hamlet algorithm with the one presented in Graziani et al.
(2019) finds an efficiency gain factor of two to four orders of magnitude in favor of Hamlet . This gain
in efficiency will enable a very significant increase of resolution in future applications of the Hamlet
algorithm compared to to the resolutions used in the MCMC cases (Lavaux, 2016; Graziani et al., 2019).
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Chapter 3

Tests on realistic mocks and
comparison with the BGc/WF

3.1 Introduction
As such, compilations of peculiar velocities are difficult to analyze (for a comprehensive review Strauss
& Willick, 1995) and are usually a patchwork of various surveys and methods observed with different
telescopes in different locations on earth (or in space). The POTENT method was the first attempt to pro-
duce continuous maps of the density and velocity fields based on peculiar velocities surveys (Bertschinger
& Dekel, 1989). The main underlying assumption of the POTENT method is that galaxy velocities are
drawn from an irrotational, potential flow. No further assumptions, were made on the statistical nature
of the flow field beyond the existence of a galaxy bias (Kaiser, 1987). Therefore, its ability to handle the
shortcomings of such peculiar velocity surveys was limited. Subsequent approaches to the reconstruction
of the LSS from peculiar velocities have been formulated within Bayesian frameworks - these include the
Wiener filter (WF) and constrained realizations (CRs) methodology (Ganon & Hoffman, 1993; Zaroubi
et al., 1999; Tully et al., 2019) as well as Markov Chain Monte Carlo algorithms (MCMC Lavaux, 2016;
Graziani et al., 2019; Boruah et al., 2022; Prideaux-Ghee et al., 2022). They have been remarkably
successful in “mapping the invisible” and recovering the underlying cosmic fields.

Beyond the issues of noisy, sparse data, plagued with inhomogenous errors, there is one additional
inherent conceptual problem common to all surveys of peculiar velocities and that is that peculiar velocity
itself is not observed but is a derived quantity. Given the redshift of and a distance to a galaxy, it is
the radial component of its peculiar velocity that can be computed. But only the redshift is observed;
distances themselves are not directly observed. What is measured is the distance modulus of a galaxy
(cf. Tully et al., 2016). Because the error of the measured distance modulus is assumed to be normally
distributed, the errors on the observed distances are thus log-normally distributed. This leads to a biased
estimate of the distances and peculiar velocities with respect to the actual distances (see Hoffman et al.,
2021). Often this bias is treated as yet another manifestation of the Malmquist bias (see Strauss &
Willick, 1995). Here we refer to it as the log-normal bias. For the WF/CRs reconstruction algorithm,
the log-normal bias is treated outside of the Bayesian framework in a separate process (Sorce, 2015; Tully
et al., 2014; Hoffman et al., 2016, 2021). For Monte Carlo methodologies the log-normal bias is treated
within a comprehensive algorithm (Lavaux, 2016; Graziani et al., 2019).

The Constrained Local UniversE Simulations (CLUES; Yepes et al., 2009; Sorce et al., 2014; Sorce,
2015) project focuses on the reconstruction of LSS of our nearby cosmic neighbourhood from surveys
of galactic distances and thereby peculiar velocities, in particular the Cosmicflows database (cf. Tully
et al., 2016, and references therein). Two main methodologies have been employed by the CLUES for
the reconstruction of the local LSS and the setting of initial conditions for constrained cosmological
simulations - one that is based on the WF/CRs methodology (Hoffman & Ribak, 1992; Zaroubi et al.,
1995) and the other on MCMC and of Hamiltonian Monte Carlo (HMC) sampling. In particular, within
the WF/CRs framework the issue of the log-normal bias has been handled by two independent algorithms,
that of Sorce (2015) and that of Hoffman et al. (2021) and within the Monte Carlo sampling approach
by Graziani et al. (2019) and chapter 2.

Our aim in this work is to test the quality of two methods that reconstruct the LSS from peculiar
velocities: the WF/CRs method with a log-normal bias correction algorithm, known as the Bias Gaussian
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Figure 3.1: The distance, in units of km/s, of the CF3 data points (magenta) and mock data points
(green) projected on the three supergalactic principal planes. Note the ZOA is accurately reproduced in
the mock catalogues.
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Figure 3.2: From left to right, the distribution SGB, SGL and z. Note that in panels a and b the two
curves are on top of one an other.

Correction (BGc; Hoffman et al., 2021) and the HAmiltonian Monte carlo reconstruction of the Local
EnvironmenT (Hamlet for short) method (see chapter 2). These two methods are applied to a mock
data catalogue drawn from a cosmological simulation designed to imitate the CosmicFlows-3 data (Tully
et al., 2016). The original simulation is referred to as the target simulation. The two reconstructions are
compared with the target simulation to gauge their fidelity.

This paper is structured as follows. In section 3.2 the algorithm for constructing halo catalogues
that mock the cosmic flows data is presented. In section 3.3 the nature of the input data as well as its
biases and a bias correction scheme are presented. The results of applying to the two reconstruction
methods to these mocks, as well as a comparison between them is presented in section 3.5. A summary
and conclusion is offered in section 3.6.

This is work is published as Valade et al. (2023). A few editorial modifications have been made to
insure the global consistency of the thesis.

3.2 Mock Catalogue construction
We wish to create a mock version of the grouped Cosmicflows catalogue that reproduces its main charac-
teristics, since it is on these observational data that the methods studied here are supposed to be applied
to. We start from the publicly available CF3 data release and add to this ∼ 4 000 points given to us by
the authors of CF4 as a pre-release (Tully, private communications1), resulting in a ensemble of ∼ 15 000
entries, hereafter named CF3+.

A mock catalogue is constructed from the MultiDark Planck 2 simulation2 (MDPL2, Riebe et al.,
1R. B. Tully provided us with an advance set of redshifts and angular positions of CF4 for the purpose of this paper.

Distance modulii, and associated erros were not provided.
2The MultiDark simulations are publicly available: www.cosmosim.org
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Figure 3.3: The distance of a galaxy as a function of its peculiar velocity is shown for the grouped CF3
data (magenta) as well as the mock catalogue (green). We can only make use of CF3 and not CF3+ as
distances (and thus radial velocities) were not communicated for the pre-release of CF4. The log-normal
bias is evident here in the lack of symmetry about vr = 0; beyond around 70Mpc/h the universe appears
to be systematically collapsing, in a so-called “breathing mode”. Bottom panel: after application of the
BGc correction, symmetry is reestablished.

2013), a dark matter only N -body run of N = 38403 particles in a periodic box of side length L =
1Gpc/h. The cosmological parameters of the simulation are from the 2nd Planck data release Planck
Collaboration et al. (2016) i.e. a flat ΛCDM Universe Ωm = 0.307, Ωb = 0.048, ΩΛ = 0.693, σ8 =
0.8228, ns = 0.96 and a dimensionless Hubble parameter h = 0.678 where H0 = 100× h km/s/Mpc. A
Friend-Of-Friend’s (FOF) algorithm with a linking length of 0.2 times the mean inter particle separation
is used to identify haloes whose mass is roughly M200 (Davis et al., 1985). It is appropriate to use a FOF
halo in this case since it is the grouped CF3 catalogue which is being mocked. Grouping the members
of a virialized object together averages out nonlinear motions implying that the (e.g.) cluster’s peculiar
velocity is a better traces of the flow field. Note that the MDPL2 box size of L = 1Gpc/h is large enough
to embed the CF3 catalogue, whose effective depth is roughly 160Mpc/h.

An “observer” is associated with a randomly selected halo of mass in the range of [0.9— 2.0] ×
1012 M�/h. The simulation is then re-centered on this halo and the simulation’s coordinate axes are
then arbitrarily labelled as Supergalactic (SGX, SGY, SGZ). Furthermore a mock “sky projection” is
made such that each halo is given a sky position (SGL, SGB).

The (proper) distance d of each halo from the center, is used to compute a cosmological redshift z̄ by
numerically integrating eq. (1.41). The (proper) distance d is turned into a luminosity distances dL by

dL = d× (1 + zcos) (3.1)

which is a simplification of eq. (1.49). The halo’s distance modulus is then computed with eq. (1.5).
Note that eq. (3.1) is an approximation of the full luminosity distance as described in eq. (1.49) (from
Calcino & Davis, 2017). We include here only the cosmological redshift, which leads to a difference on
the order of 10% at the edge of the Cosmicflows data. The corrections to the luminosity distance due
to peculiar velocity redshift are of the order of ≈ 0.2% for any observed data point, which is negligible
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against the 5-20% observational errors. These should however be taken into account in future works or
for the estimation of cosmological parameters.

The radial peculiar velocity vr is combined with the cosmological redshift to obtain the full redshift
(see eq. (1.47))

z + 1 = (zcos + 1)
(vr
c

+ 1
)
. (3.2)

The velocities here are relative to the simulation box (which is equivalent to the Cosmic Microwave
Background).

At this point each halo’s position relative to the observer has been transformed into two “observable”
quantities: 1. a redshift z (which includes a contribution from the radial peculiar velocity vr) and 2. a
distance modulus μ.

The mock catalogue aims to have the same Probability Distribution Functions (PDF) of P (SGB),
P (SGL) and P (z) as in the CF3+ data. This is accomplished with a monte-carlo style algorithm in
the following way: the same number of haloes as data points in CF3+ are drawn at random from the
simulation, within a sphere of around 300Mpc/h. A merit is assigned to this initial set of haloes by
computing the absolute difference between its P (SGB), P (SGL) and P (z) and that of CF3+. Iterations
proceed by adding and subtracting one halo at a time and evaluating the merit of the new P (SGB),
P (SGL) and P (z), compared to CF3+’s. If a new potential halo improves the merit of the distributions,
it is kept; otherwise it is rejected. In this way, the process converges halo by halo, towards reproducing
the distribution CF3+’s P (SGB), P (SGL) and P (z).

Once the merit function has converged and a suitable mock catalogue has been constructed, the
observational errors from the CF3 catalogue are added to the mock. Namely, the redshift and distance
modulus of each CF3 data point is given as z+εz and μ+εμ where εz and εμ denote the errors associated
with each measurement. εz is assumed to be entirely due to spectroscopic precision while εμ depends on
which standard candle is used and may range from 5% for Supernova to 20% for scaling relations. Both
εz and εμ are assumed to be Gaussian with means of zero and standard deviations of cσz = 50 km/s and
σμ, respectively. The value of σμ associated to each halo is taken from the entry of CF3 whose redshift
is the closest, so as to reproduce the dependency of the σμ with the distance.

The fidelity of the mock to the CF3 catalogue, is shown in figs. 3.1 and 3.2. fig. 3.1 shows the three
supergalactic projections with the mock data points in green and the CF3 constraints in purple. The
Zone of Avoidance (ZOA) and visual distribution of the catalogues are well recovered. Quantitatively
this is shown by looking at the distributions of P (SGB), P (SGL) and P (z) themselves shown in fig. 3.2a,
b, and c, respectively. The distribution of SGB, SGL and cz for the mock galaxies and CF3 constraints,
are largely indistinguishable from each other. fig. 3.2c shows that within ∼ 20Mpc/h, the number of
CF3 constraints is much greater than the mock catalogues presented here. This is because of there are
too many CF3 constraints in this region, with respect to the resolution of our simulation.

In principle the original unperturbed d, dL, zcos and vr for each halo that in the mock can be
“forgotten” and new values can be computed using the values of z and μ that include the observational
errors. These new values should exhibit similar biases to the observational data by construction. This
is seen in fig. 3.3, where the radial velocity as a function of distance is plotted. The diagonal cut in this
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plot is indicative of the log normal bias dicussed in section 3.3. At a given distance there is an unequal
number of galaxies moving towards and away from the observer, making it appear that the universe is
contracting in a “breathing mode”. This log normal bias and its correction are presented in section 3.3.

3.3 The log-normal bias and the Bias Gaussian correction (BGc)
One of the main purposes of constructing such a detailed mock catalogue as described above is to ensure
that the log-normal bias is reproduced, thereby allowing us to gauge the ability of the two reconstruction
methods to handle this bias. Much hand wringing and literature has been devoted to the handling of
biases in peculiar velocity surveys, and we refer the reader to Strauss & Willick (1995) for a comprehensive
explanation (or section 1.5.1 of this thesis). Here we briefly explain what the log-normal bias is and how
it is handled in the context of the BGc as proposed by Hoffman et al. (2021). We refer the reader to that
work for a comprehensive description of the log-normal bias and its correction by the BGc algorithm.

As mentioned, a Gaussian error on the distance modulus transforms into a log-normal error on the
luminosity distance (e.g. the inverse of eq. (1.5)). In other words, if the same galaxy is observed many
times, the mean of the different distance measures will not coincide with its actual value. This bias
changes the spatial distribution of the galaxies as well as their inferred peculiar velocities. The log-
normal bias can be seen in fig. 3.3 where the CF3 and mock catalogue peculiar velocity vr is plotted as a
function of distance. Beyond around ∼ 70Mpc/h, there is no longer symmetry in the distribution of vr
about zero: more galaxies have negative vr and the universe naively appears to be collapsing, a so-called
“breathing” mode. In theory it can be corrected since the standard ΛCDM model makes an explicit
prediction that the expected scatter for the radial component of the velocity is roughly σv,th ∼ 275 km/s.

The essence of the BGc scheme is to map the log-normal distribution of the inferred distances around
their respective redshift distances into a normal distribution around the median of the log-normal one.
The width of that normal distribution is treated as a free parameter set to be about 3Mpc/h, in agreement
with the ΛCDM prediction that the theoretical intrinsic scatter of the radial velocities is σd = σv,th/H0:

dBGc = dmed
cz +

σd
νμ

log

(
d

dmed
c z

)
, (3.3)

dmed
cz = median

{
d1≤i≤nobs

s.t. cz −Δ < czi < cz +Δ
}
. (3.4)

where dmed
cz is the median of the distances of the constraints in the redshift neighbourhood [cz−Δ, cz+Δ]

of the considered constraint.
The same procedure is applied to the observed radial velocities, retaining the median of the distribu-

tion of the radial velocities of data points in a given redshift bin:

vBGc = vmed
cz +

Σv

νμ
log

(
v

vmed
c z

)
, (3.5)

vmed
cz = median

{
v1≤i≤nobs

s.t. cz −Δ < czi < cz +Δ
}

(3.6)

where Σv is the observational uncertainty (as opposed to the theoretical scatter). Indeed, for the ve-
locities, unlike the inferred distances, the variance of the distribution is preserved as well. Namely the
log-normal distribution of the observed distances is mapped to a Gaussian distribution, while preserv-
ing the median of the log-normal distribution. It is the invariance of the median under the normal -
log-normal transformation which constitutes the backbone of the BGc scheme. After the application of
the BGc scheme to the data, the breathing mode dissapears and the radial peculiar velocities scatter
normally about 0 as can be seen in fig. 3.3, bottom panel.

3.4 Wiener Filter reconstruction from Exact data (Ex/WF)
As there exist no possibility to homogenize the sampling (namely the Zone of Avoidance will always
inhibit full sky coverage), the only source of statistical uncertainty that could, one day, be mitigated, is
the observational uncertainty in the distance measurement. In order to test the methods’ inherent ability
to reconstruct the underlying fields, an additional “method” is compared: the exact WF (hereafter labeled
Ex/WF). This is the WF applied to a mock where the error on each data point has been artificially set to
zero (and thus no BGc scheme is applied). The reader will note that both the Ex/WF and the BGc/WF
will never be fully accurate due to the fact that the density and velocity fields are non linear and these
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Figure 3.5: Scatter plots of the residual of the BGc/WF (panel a), of the Hamlet (panel b) and of the
Ex/WF (panel c) reconstructed vrs evaluated at the data points. The residual of the BGc/WF from the
Hamlet reconstructed vrs at the data points is shown as well (panel d). Each bins comprises the same
number of points so as to avoid variations due to Poissonian statistics. The solid thick line represents
the median, the thin solid lines delimit the 1-σ region around it and the dashed line shows the mean.

are linear reconstruction methods. Since these methods will never overcome this, we are only able to
gauge the effect of observational errors on the reconstructions. This serves the purpose of testing the WF
in the case where the only source of statistical uncertainty is the sampling. In other words in section 3.5,
the reconstruction based on the BGc/WF, the Ex/WF and the Hamlet method are presented.

3.5 Results
The results are presented in three sub-sections where we (a) compare how the predicted constraints
themselves differ from their real values (section 3.5.1); (b) examine the accuracy of the reconstruction of
the cosmic fields (sections 3.5.2 and 3.5.3); and (c) compare the reconstructed monopole and dipole (i.e.
bulk flow) multipoles with their target counterparts (section 3.5.4).

3.5.1 Reconstructed data
After applying the BGc/WF and Hamlet methods to the mock catalogues (as well as the WF to the
exact, no error mocks), the first things to check is how well the distributions of radial peculiar velocities,
distances and redshifts of the data points, match their target values. This is shown in fig. 3.4a,b and
c, respectively, where the target curve represents the true distributions of the mock catalogue; namely,
the closer the BGc/WF or the Hamlet curve is to the target, the more accurate the reconstructions.
The values of the reconstructed vr’s of the mock data points are obtained by interpolation over the grid
points. The distances are obtained differently for the different methods. The Ex/WF’s distances are the
true distances, thus they are identical to the target. For the BGc/WF method, the distances are the
result of the application of the BGc to the data, before the WF is applied. Finally, for Hamlet , the
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Figure 3.6: A comparison of the of the BGc/WF (left column), Ex/WF (central column) and the Hamlet
(right column) reconstructed over-density fields with the target simulation. For consistency, the over-
density plotted for the target field is the linear over-density i.e. the divergence of the velocity field. The
middle panels present the reconstructed δ and the bottom ones show the constrained variance normalized
by the cosmic variance, Σδ/σδ. All plots refer to the SGZ = 0 plane of the target simulation and all
fields are Gaussian smoothed with a 5Mpc/h kernel.

distance of each constraint is the mean of all the distances sampled over the Monte-Carlo steps.
We remind the reader that the Exact WF (green dashed) represents the limits of the WF method.

fig. 3.4a shows that the Hamlet reconstruction method does an exceptional job at recovering the
distribution of radial peculiar velocities. Note also that the WF in its purest form too recovers the target
distribution. The BGc/WF struggles slightly by narrowing the data’s distribution with a slight over
emphasis on smaller values of the peculiar velocity at the expense of the large values. We note, as an
aside, that the fact that the target (and hence the reconstructions) are not centered at vr = 0 is due to
the specific nature of the mock observer chosen (i.e. cosmic variance). The BGc/WF suppression of the
reconstructed radial velocities of the data points relative to the target is inherent in the WF algorithm,
where the estimated signal is the weighted “compromise” between the data and the prior model. Where
the data is not very strong the WF estimator is biased towards the null field predicted by the prior.

In fig. 3.4b and c the distance and redshift distributions are examined. For both of these quantities the
two reconstructions do a remarkably good job at matching the target, rendering their curves practically
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Figure 3.7: Density scatter plots of δ reconstructed versus δ target. Rows from bottom to top: Hamlet
, Ex/WF BGc/WF. Columns from left to right: within spheres of 40, 80, 120, 160Mpc/h. The red line
represents the best fitted line whose line equation is y = ax + b. The parameters of the line and the
Pearson correlation coefficient are given in the legend. The black line y = x is shown for reference.

indistinguishable from the target. Note however that the BGc/WF method tends to “exaggerate” some
of the peaks and valleys in the distance distributions (fig. 3.4b). All models reliably follow the input’s
form. In the absence of errors, i.e. the Ex/WF case, the reconstructed vr’s of the data points should be
equal to the input constraints taken from the target simulation (Hoffman & Ribak, 1992).

The slight mismatch between the vr histograms of the Ex/WF and the target seen in fig. 3.4 occurs
because the Ex/WF histogram is an interpolation over the course grid of the WF.

It is important to understand by how much each constraint shifts during the BGc and reconstruction
procedures. In fig. 3.5 the difference between the reconstructed vr and the input vr is compared on a
constraint by constraint basis and as function of distance. From top to bottom this difference is shown
for show the BGc/WF, Hamlet and the Ex/WF (respectively fig. 3.5a, b and c). The difference between
the two main reconstruction methods (BGc/WF and Hamlet ) is shown in the final panel, fig. 3.5d. In
these plots each constraint is a dot, the median and mean values of the difference are shown as a solid
and dotted black line, respectively. One standard deviation is indicated by the two thin black lines. An
examination of fig. 3.5 reveals that the methods based on the WF tend to underestimate the vr in the
inner most distance shells (below ≤ 60Mpc/h) while overestimating it in the outer shells. This is sure
even for the ideal case of the Ex/WF. The mean of Hamlet method, however (fig. 3.5b) indicates the
constraints are not systematically shifted in the region ∼ 40− 110Mpc/h, but underestimate vr outside
this range.
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Figure 3.8: Statistics per shell of distance. Absolute value of the coefficient of correlation for δ between
the different reconstructions and the target field. The error envelope represents the 2σ variation of the
ensemble of realizations. Left: over-density field. Right: radial velocity field.

3.5.2 Reconstructed density maps
The non-linear density field of the target simulation cannot be directly compared with the reconstructed
linear density field. To enable a meaningful comparison we compare the divergence of the velocity field
of the two (i.e. eq. (1.38)), terming both of these δ, out of convenience.

In order to visually inspect the reconstructed density distribution, a 3.9Mpc/h thick slab at the super
galactic plane (SGZ=0) is chosen. This is not an arbitrary choice: given that the largest numbers of
constraints are expected to lie in or close to SGZ=0, we expect this slab to be the most accurate. The
fields are smoothed with a Gaussian kernel of 5Mpc/h.

fig. 3.6 examines the density distribution in this slab. fig. 3.6a is the target density distribution. The
column below it (namely the middle column, fig. 3.6c, f shows the Ex/WF results, while the left column
(fig. 3.6b, e) shows the BGc/WF results and the right column (fig. 3.6d, g) shows the Hamlet results.
The middle row (panels b, c, d) shows the reconstructed density distribution. Some conclusions may be
drawn from a visual examination of fig. 3.6b, c, d. The Ex/WF generally recovers the features of the local
cosmography at all distances. The reconstruction is not exact; given that there are no “observational”
errors here, this implies that the mismatch between the Ex/WF and the target (i.e. between fig. 3.6c
and fig. 3.6a), on both small and large scales is due to the finite, inhomogenous and anisotropic sampling.
On small scales there is an additional contribution due to non-linearities that are not modeled by the
WF. Comparing the BGc/WF (fig. 3.6b) with the target indicates a decline of power of the reconstructed
density field with the distance from the observer, yet the general structure of the cosmic web of over-
and under-dense regions is recovered. The Hamlet reconstructed δ field does not exhibit the same loss
of power as in the BGc/WF case but it suffers from a loss of spatial resolution with distance (fig. 3.6d).
The more distant structures become more fuzzy and diffuse.

The bottom panels of fig. 3.6 present the constrained variance Σ2
δ of the three reconstructed δ fields.

It is defined as the local, cell by cell, variance calculated over an ensemble of CRs for the Ex/WF and
BGc/WF case and over a set of independent states of the Monte Carlo chain in the Hamlet case. The
panels show the square root of constrained variance normalized by the cosmic variance, Σδ/σδ. The
cosmic variance is calculated by calculating the variance over all CIC cells in each reconstructed δ field.
The value of Σδ/σδ gauges the constraining power of the constraints and the assumed prior model.
When this equals to 0 the region is highly constrained and when it equals unity the reconstructions are
as random as cosmic variance. Thus one expects it to be small close to the observer and to approach
unity asymptotically with distance.

fig. 3.6e, f, g quantifies what is visually apparent from (fig. 3.6b, c, d) namely that the inner regions
are well constrained but that this fades with increasing distance. The reconstruction methods that
include errors (i.e. fig. 3.6e,g) are never “perfect”, while the Ex/WF method fig. 3.6f, does obtain values
of Σδ/σδ close to 0. Interestingly, the impact of the ZOA on the reconstruction method is apparent in
fig. 3.6f. Here it causes a very clear limitation of the expected ability to reconstruct the density field.

The accuracy of the density field reconstructions - specifically their accuracy as a function of distance -
is shown in fig. 3.7. These are scatter plots which compare, on a cell by cell basis, the density of the target
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Figure 3.9: Same as fig. 3.6 for the radial component of the velocity field.

with the BGc/WF (top row), Ex/WF (middle row) and Hamlet (bottom row). The line, y = ax + b,
(or δmethod = aδtarget + b, to be more precise), which best describes the scatter is shown in red; its slope,
y intercept and the Pearson correlation coefficient is given in each sub-panel. In the ideal case where a
reconstruction method perfectly matches the target this would simply be a slope of a = 1 and an offset
or bias of b = 0 line with zero scatter (shown in black), with a Pearson correlation coefficient of unity.
The columns in this figure denote different 40Mpc/h thick radial shells under consideration. Note that
a slope less than unity indicates that the reconstruction under-estimates the over-dense regions and over
estimates the under-dense regions. A slope greater than unity represents the opposite (exaggerates over-
and under-dense regions). An offset of b �= 0 means a biased reconstruction.

There are a number of important features of this fig. 3.7. First, considering the inner most bin
(leftmost column) the Ex/WF reconstruction recovers very well the density of the target. A slope of
unity and practically null offset of b = 0.01 and a correlation coefficient of 0.92 indicates that in general
in this region the Ex/WF reconstructions is very well recovered. This implies that the nearby sampling
of the CF3 catalog is almost optimal. Obviously, the Hamlet and the BGc/WF methods do worse in
recovering the density field. Moving to the outer shells all three density reconstruction systematically
degrade with slopes and correlation coefficient decreasing. The slope in all cases is less than unity,
indicating that the reconstructions suppress the power of the recovered density field. This diminishing
of the power increases with the distance from the observer. The BGc/WF suffers more from the loss of
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Figure 3.10: Same as fig. 3.7 for the radial component of the velocity field.

correlation with distance than the Hamlet . Yet, the latter reconstruction is at large distances with
b = 0.12 for the distance range of 120 ≤ d ≤ 160Mpch. The BGC/WF behaves, on the other hand, by
the “Bayesian book” - where the sampling is very sparse and the errors are much larger than the signal,
the unbiased ΛCDM prior is recovered.

The correlation between the reconstructed mean field and the target is shown as a function of distance
in fig. 3.8. These are the correlation coefficients from the scatter plots (fig. 3.7) plotted as a function of
distance in order to gauge the degradation of the reconstruction methods as data becomes more sparse
and volumes become large. Note that the binning is different hence the non identical values of the
correlation coefficient between the two plots. The solid lines in fig. 3.8 represent the mean correlation
coefficient between the reconstruction and the target; the error corridor represents the 2σ variance about
this mean. As expected the Ex/WF is always a superior to the BGc/WF and the Hamlet method.
With the exception of the inner most bin, the Hamlet method achieved higher correlation coefficients
than the BGc/WF method. At the edge of the data, no method achieves a correlation coefficient of
greater than 0.5.

3.5.3 Reconstructed radial velocity maps
The examination of the radial component of the velocity field follows here that of the density field (see
section 3.5.2). The same SGZ = 0 and 4Mpc/h thick slab is shown in fig. 3.9. Again, the top panel
is the target radial peculiar velocity field while the left column shows the BGc/WF reconstruction, the
middle column the Ex/WF reconstruction and the right most column, the Hamlet reconstruction. The
fields are smoothed with a Gaussian kernel of 5Mpc/h.

The radial velocity field (fig. 3.9b, c, d) appears much more accurately reconstructed than the density
field. The same outflows and inflows are generally visible and the cosmographic landscape is recognisable
in all three cases. Although the reader will note that the accuracy of the velocity reconstruction, like the
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Figure 3.11: The monopole moment (upper panel), the amplitude of the dipole moment (i.e. the bulk
velocity; middle panel), and the cosine of the angle of alignment between the reconstructed and target
bulk velocities (lower panel) are shown. The profiles present the mean and “2σ” scatter of the mean
profile in spheres of radius d. The reconstructions correspond here to the Ex/WF (green dashed line), the
BGc/WF (red dotted line) and the Hamlet (blue dot-dashed line) case. The scatter is the constrained
variance of the different reconstruction and the target simulation is presented by the black solid line
(middle and upper panels).

density field, deteriorates at larger distances. Features are recognisable but distorted and smoothed out.
The constrained and cosmic variances of the radial velocity, Σvr

and σvr , are calculated much in the
same way as in for the density field (see section 3.5.2). The imprint of the ZOA is clearly seen in the
Σvr/σvr

map of the Ex/WF map. Yet, in all cases considered here the constrained variance, normalized
by the cosmic variance, is much smaller than in the density case. Namely, the velocity field is much more
constrained by the CF3 data than the density field. In general the reconstructed Hamlet velocity field
bares a closer resemblance to the target than the BGc/WF reconstruction.

A close inspection of fig. 3.9d uncovers one troubling feature. At the edge of the reconstructed volume,
at distances close to 150Mpc/h the reconstructed is “bluer” than in the corresponding target and the
Ex/WF maps. Namely the Hamlet reconstructed velocity field has a spurious negative infall. This is
a manifestation of the limitation of the method as described by Hinton et al. (2017).

Again, we turn to a scatter plot, on a cell by cell basis to quantify the quality of the reconstruction as a
function of distance in fig. 3.10, which is structured identically to fig. 3.7 - namely radial extent increasing
column wise from left to right, while the rows from top to bottom being BGc/WF, Ex/WF and Hamlet .
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This figure is qualitatively identical to its density field counter part (fig. 3.7) in that the same behavioural
trends between the different reconstructions methods and as a function of distance exist. The correlation
analysis of the Ex/WF and BGc/WF cases behaves much in the same way as for the density field - a
degradation of the correlation with distance, a slope (a) that is close to unity nearby and diminishes
with distance, and essentially with zero offset (b ∼ 0). Yet, the quality of the reconstruction of the
radial velocity is much better than that of the density. The Hamlet reconstruction shows a somewhat
unexpected behaviour. The slope of the best fit line for the distance range of 40 ≤ d ≤ 80 Mpc/h
exceeds unity, a = 1.22, i.e. there is an excess of power compared with the target and the Ex/WF cases.
This effect is likely symptomatic of the so-called Inhomogenous Malqmist Bias (see section 1.5). Indeed,
in the current model of Hamlet , the positions of the probes are not directly correlated to the density
field, whereas in reality, galaxies tend to be found in over-dense regions (i.e. they tend to cluster). This
bias leads to an over-estimation of the contrast, seen here as a slope a > 1. This bias doesn’t show itself
in the outer bins (i.e. 80 - 160Mpc/h) since here it is counteracted by the loss of contrast due to the
decrease in sampling. The best linear fit forthe range of 120 ≤ d ≤ 160 Mpc/h yields a significant
negative offset of b = −151 km/s, in agreement with the visual inspection of fig. 3.9g.

The correlation of the radial component of the velocity field between the reconstructions and the
target is shown as a function of distance in fig. 3.8, right panel. Similar to fig. 3.8 left panel, these
are the correlation coefficients computed from scatter plots (fig. 3.10) plotted as a function of distance
in order to gauge the degradation of the reconstruction methods as data becomes more sparse and
volumes become large. The solid lines in fig. 3.8 represent the mean correlation coefficient between
the reconstruction and the target; the error corridor represents the 2σ variance about this mean. As
expected the Ex/WF is always a superior to both the BGc/WF and the Hamlet method. The Ex/WF
reconstruction is very well correlated with the target out until ∼ 80Mpc/h, beyond which it begins to
drop, although it is worth noting that it stays correlated for the full sample. This drop is a manifestation
of the sampling and the decreasing number of the data (per volume) at these distances. The Hamlet
and BGc/WF method are roughly equal in the inner regions out to ∼ 70Mpc/h, and beyond it the
Hamlet method provides better correlation. At the edge of the data, no method achieves a correlation
coefficient of greater than 0.5.

3.5.4 Multipole moments of the reconstructed velocity field
The first two moments of the velocity field, the monopole and dipole, are examined here. The effect
of errors and sampling on the fidelity of these two physical quantities is of particular interest since the
monopole and dipole are often used as probes of the scale of homogeneity and can affect probes of the
cosmological model in particular.

fig. 3.11a shows the target and reconstructed velocity monopole as a function of distance. The same
colouring and line style convention used in fig. 3.8 is adopted here too, with the moments of the target
simulation plotted in black. Note that the monopole - the mean infall or outflow of matter, is the zeroth
order moment of the velocity field. It is the mean of the divergence of the velocity field in spheres of
radius d and as such is called the “breathing mode” of the velocity field. In the linear theory of the
cosmological gravitational instability the density and velocity fields are related by eq. (1.38), hence we
opted here to present the monopole term by means of this equations. Thereby, fig. 3.11a effectively
presents the mean linear density with spheres of radius d. The Ex/WF is nearly indistinguishable from
the target here: the error corridor (which corresponds to variance across all the constrained realisations)
is tiny and the black and green dashed line are practically on top of each other.

The BGc/WF curve overestimates the monopole in the inner parts (within ∼ 50 Mpc/h) while
underestimating it outside that range. This increased monopole implies an overestimation of the density
in the inner parts of the mock universe, which is confirmed by examining the equation of the best fit line
to the scatter plot fig. 3.7 (upper row, left column, d < 40Mpc/h). The best fit line has has an offset
of b = 0.11, meaning that there is a systematic increase in the estimated densities, consistent with the
higher monopole. Both the reconstructions and the target tend to zero infall at these large scales. The
Hamlet method on the other hand behaves inversely to the BGc/WF method, underestimating the
target monopole at small scales and over estimating it at large scales. The Hamlet ’s monopole term
at the edge of the data reveals an excess of density at d ∼ (120− 150)Mpc/h, in agreement with fig. 3.7
(lower/right panel). Otherwise, the Hamlet method succeeds in tracking the target monopole over a
large range from ∼ 20 to ∼ 100Mpc/h.

fig. 3.11b and c shows the second moment of the velocity field, namely the dipole or the bulk flow.
fig. 3.11b refers to the magnitude of the bulk flow, while fig. 3.11c refers to its direction. Accordingly
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all methods do a fine job of recovering the magnitude of the bulk flow beyond around ∼ 30Mpc/h. The
Ex/WF has, predictably, a smaller error corridor than the other two methods, which are roughly similar
in size. With respect to direction, fig. 3.11c shows the dot product between the target bulk flow direction
and the reconstructed one (hence in this plot there is no black target line). The bulk flow directions for
the Hamlet and BGc/WF method are aligned to within ∼ 15 deg of the target out to a distance of
∼ 50Mpc/h, while the Ex/WF is well aligned to greater distances. Note that however, even the Ex/WF
curve begins to deviate significantly at the reconstructed edge. This indicates that even in the best case
scenario of zero errors, sampling at these great distances is a limiting factor in terms of recovering the
direction of the cosmic dipole. Note that the accuracy recovered here is also restricted in its ability to
recover the underlying dipole direction by the limited depth of the survey (Nusser, 2014). The problem
is exacerbated when examining the BGc/WF and Hamlet curves at large distances. fig. 3.11 indicates
that although the monopole and dipole are well recovered across a large range, the direction of the
reconstructed dipole begins to deteriorate when the sampling drops.

3.6 Summary
The reconstruction of the large scale density and velocity fields from Cosmicflows-like databases of galaxy
distances, and hence peculiar radial velocities, is challenging. The data is sparse, extremely noisy with
Noise/Signal ratio larger than a few for the majority of the data, non-uniformly and anisotropically
distributed. Furthermore the data suffers from the log-normal bias, which leads to a non-linear bias in
the estimated distances and velocities.

A number of independent methods have been developed to reconstruct the local LSS and to produce
constrained initial conditions for cosmological simulations designed to reproduce our local patch of the
Universe (i.e Sorce, 2015). What is generally missing from the literature in this field is an understanding
of the accuracy of these methods. Often the reconstructions are applied directly to observational data
and only very limited conclusions can be drawn on the viability of a cosmography. The present paper
compares the BGc/WF (Hoffman et al., 2021) and the Hamlet algorithms (see chapter 2) by testing
them against a carefully crafted mock of an observational catalogue (an improved CF3-like survey) drawn
from one the MultiDark cosmological simulations.

The quality of the reconstruction is gauged by studying the residual between the reconstructed and
target density and velocity fields. The residual is mostly analyzed by quadratic measures and as such it
is characterized by the mean and variance of the distribution. An optimal reconstruction should make
the mean of the residual to be as close as possible to the null field and aim at minimizing its variance.
A related measure is the linear correlation analysis which yields the best “line”, y = ax+ b, that fits the
linear dependence of reconstructed field on the target one, and the Pearson correlation coefficient. The
values of the offset, b, for the case of the linear over-density and for the radial velocity are consistent
with zero fro the BGc/WF, in agreement with the theoretical expectations. The distant data points are
extremely noisy and very sparsely distributed, hence the WF reconstruction is dominated by the ΛCDM
prior model. The Hamlet ’s significant offset is however inconsistent with the prior model.

We define here three different regions: the nearby (d � 40Mpc/h), the intermediate (40 � d �
120Mpc/h) and the distant one (d � 120Mpc/h). Based on the above criteria we conclude that nearby
the BGc/WF and the Hamlet methods are doing roughly equally well. The methods diverge at large
distance - with the Hamlet outperforming the BGc/WF with a tighter correlation and smaller variance
but underperforming in terms of the bias. This is most noticeable for distant region (the right columns
of fig. 3.7 and fig. 3.8).

The three panels of Fig. 3.11 deserve a special attention here. The upper panel shows the radial
profile of the monopole moment. The four profiles shown there - target, Ex/WF, BGc/WF and Hamlet
- are all constructed under the assumption of ΛCDM value of H0 = 67.7 km/s/Mpc. Yet, the negative
offset of the monopole moment at the edge of the data implies that the local value of H0 is somewhat
smaller than its global value. A phenomenon expected for any finite volume realization in the ΛCDM
cosmology (see Hoffman et al. (2021) for a quantitative assessment). A proper adjustment of the local
value of H0 would bring the target and Ex/WF profiles to converge to zero at the edge of the data,
together with the BGc/WF asymptotic value. This would leave the Hamlet positive offset standing
out with a systematic bias. The amplitude of the dipole moment, namely the bulk velocity, is recovered
equally well by the three reconstruction and is in very good agreement with the target. The bottom panel
shows the cosine of the angle between the reconstructed and the target bulk velocities. The BGc/WF
behaves as expected - the mean misalignment is consistent with the full alignment to within one σ of the
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constrained variance. This is not the case with the Hamlet reconstruction, where the misalignment is
more than 2σ away from the expected alignment.

Our overall assessment of the Hamlet and the BGc/WF reconstructions is that the former outper-
forms the latter one in terms of reduced scatter and tighter correlation between the reconstructed and
the target density and velocity fields. Yet, the Hamlet suffers from biases in the reconstructed LSS at
the distant regime - ones that do not appear in the BGc/WF reconstruction. It follows that the Hamlet
should be the method of choice for the reconstruction of the LSS and the study of the cosmography of
our local patch of the Universe. The BGc/WF reconstruction is the preferred tool for performing quanti-
tative analysis and parameters estimation and possibly also for setting initial conditions for constrained
cosmological simulations. One last comment is due here. The WF/CRs is a very well tested approach
that is based on a solid theoretical foundations (Hoffman & Ribak, 1992; Zaroubi et al., 1995; Zaroubi
et al., 1999). As such it provides an attractive framework for performing Bayesian reconstruction of the
nearby LSS. Yet, any bias in the observational data and in particular the log-normal one needs to be
addressed and apply outside that framework in some ad-hoc and approximate way. The HMC method-
ology, and in particular its Hamlet implementation, still suffer from some teething problems that need
to be overcome, such as a proper modeling of the so-called Inhomogenous Malmquist Bias and of the
selection function. The ability of the MCMC methodology in general and the HMC in particular to
address the issue of reconstruction of the LSS, the handling of observational biases and the estimation
of cosmological parameters within one computational self-consistent framework makes Hamlet a very
attractive tool in the CLUES’ toolbox (Yepes et al., 2009; Doumler et al., 2013c; Sorce et al., 2014; Sorce
et al., 2017; Sorce & Tempel, 2017). The incredible improvement in the computational efficiency of the
Hamlet compared with previous implementation of MCMC algorithms makes it even more promising
for future implementations within the CLUES project.
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Chapter 4

Application to Cosmicflows-4

4.1 Introduction
Our knowledge of the Local Universe has grown at an ever increasing pace over the last decades. Since
the discovery by the CfA survey in the 1980s that galaxies are not uniformly distributed but rather that
they form a Large Scale Structure (LSS) (CfA Wall, Sloan Great Wall, etc; e.g. de Lapparent et al.,
1986; Gott et al., 2005), until today, our understanding of how our local cosmographic landscape has
grown out of an initially smooth homogeneous distribution of perturbations has deepened considerably.
In cosmographic efforts to chart maps of the heavens, we have come to name such features of the galaxy
distribution.

Peculiar velocities of galaxies can be used as tracers of the full matter density distribution of the
Universe. Unlike reconstruction from pure redshift surveys, they do not suffer from Redshift Space
Distortion (RSD; see section 1.4.7) nor need any assumption on the galaxy bias (see section 1.3.3).
Instead, exactly because peculiar velocities are gravitational velocities and are due to the net gravitational
field, a relatively small sample accurately trace the full density distribution of the universe.

In order to recover the peculiar velocity of a galaxy (on the order of 300km/s in ΛCDM , see sec-
tions 1.6 and 1.8) two measurements need to be made: its redshift and its distance. From these two
measurements a peculiar velocity can be inferred (see section 1.4.6). Estimations of peculiar velocities
are primarily curbed by the difficulty in estimating the distance of a galaxy (since redshift measurements,
when available, tend to be fairly precise; see sections 1.1.2 and 1.1.3). This leads peculiar velocity data
to be (relatively) rare and extremely noisy.

Although some standard candles are highly accurate (i.e. Surface Brightness fluctuations or the
magnitude of stars measured at the Tip of the Red Giant Branch (TRGB; Ferrarese et al., 2000)),
all of which are accurate to 5% to 10%) these have their limits. TRGB tends to be unobtainable at
large distances due to inherent technological limitations (i.e. the ability to resolve stellar populations
at cosmological distances; see section 1.1.2). Other methods, that allow for a distance measurement
at cosmological distances include scaling relationships such as Tully-Fisher (Tully & Fisher, 1977, TF;)
and Fundamental Plane (Faber & Jackson, 1976; Djorgovski & Davis, 1987). Here however the error is
around 18% to 25% and exceeds the signal at cz ≈ 104 km/s. It increases with distance reaching a factor
of 30 at at the edge of the CF4 data, cz ≈ 30 000 km/s.

However, despite the large errors associated with using scaling relations as distance measures and
hence peculiar velocity, what they lack in precision they make up for in sample size. Scaling relations are
relatively “cheap” and outnumber more accurate measures immensely (e.g. Tully et al., 2016; Tully et al.,
2023). For all the reasons mentioned above, powerful methods of reconstructions need to be employed in
order to extract the peculiar velocity signal from such a complex, inhomogeneous and error prone data.

In this work, we apply the Hamlet method of chapter 2 (published as Valade et al., 2022) to the
Cosmicflows-4 catalogue (CF4; Tully et al., 2023): the largest and the most complete catalogue of peculiar
velocities to date. With more than 38 000 groups of galaxies, it extends the previous Cosmicflows catalog
(CF3; Tully et al., 2016) by adding more than 5 000 distance measurements within cz � 10 000 km/s, as
well as the entire SDSS-PV sample bad citation (Howlett et al., 2022), which contains more than 20 000
FP measurements up to cz � 30 000 km/s in the SDSS region.

As seen in previous chapters, the Hamlet code is a very efficient GPU-accelerated implementation
of the Hamiltionian Monte Carlo exploration of a posterior probability designed to reconstruct the linear
over-density and velocity fields from measurements of the radial component of peculiar velocities. The
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Figure 4.1: The distribution of the various subsamples of the grouped CF4 data: SDSS (green), 6dF
(blue) and all the others (red): The distribution in ±10 Mpc/h slices around the three principal Super
galactic planes, where galaxies redshift distances are taken as proxy to actual proper distances (upper
row); The angular distribution is presented in Aitoff projection in Galactic (l, b) coordinates (lower-
right panel, the black line indicates the delimitation between celestial north and south hemisphres);
The redshift distribution of the CF4 data points, with the clear redshift cuts for the SDSS and 6dF
respectively at cz = 30 000 km/s and cz = 16 000 km/s (lower-right panel.

method has been tested on mocks in chapters 2 and 3 (published as Valade et al., 2023).
In this chapter we first introduce our interpretation of the data in section 4.2. We then briefly in-

troduce an improvement of the modelization of the selection function in section 4.3. A cosmographic
description of our reconstruction of the matter distribution in the Local Universe in done in section 4.4.3,
where a qualitative comparison with the LEDA galaxy catalogue is carried. We then proceed to exten-
sively analyses the velocity field, first by studying its Basins of Attractions (BoA) in section 4.4.4, its
moments in section 4.4.4 and the LSS classification by the V-Web in section 4.4.4. Finally, a series of
visualizations done by Daniel Pomarède1 are presented in section 4.4.5.

4.2 Data
This work presented here is entirely based on the grouped Cosmicflows-4 catalogue (CF4; Tully et al.,
2023). This catalogue of galaxies is not one survey but rather the careful compilation of several inde-
pendent surveys. This makes it the biggest self-consistent catalogue of galaxies peculiar velocities with
about 38 000 entries. However its footprint and selection function are very complex to describe given
the heterogeneous nature of the catalogs it is based on. For each entry in the CF4 catalog (ie galaxy
or group), we consider 5 quantities: its angular sky position (RA and dec), its redshift (cz) where c
is the speed of light, its distance modulus (μ) and its uncertainty on the distance modulus (σμ). An
uncertainty on the redshift of σcz = 50 km/s is assumed for all entries and aims at reproducing the error

1Institut de Recherche sur les Lois Fondamentales de l’Univers, CEA Université Paris-Saclay, F-91191 Gif-sur-Yvette,
France, daniel.pomarede@cea.fr.

74



−200 −100 0 100 200

SGY [Mpc/h]

−200

−100

0

100

200

S
G
Z

[M
p
c/

h
]

−2

−1

0

1

2

δ

Figure 4.2: Over-density field at SGX = 0 and LEDA galaxies within −5 < SGX < 5Mpc/h at their
redshift position. The labels of some prominent features of the Local Universe are given in yellow.

size of spectroscopic redshift measurements. Errors both on the distance modulus and on the redshift
are considered as normally distributed. The catalogue comes with an estimation of H0 = 74.6 km/s/Mpc
that minimizes the flow at the edge of the data in accordance with the hypothesis of an homogeneous
universe. This is the value taken for our reconstruction. The grouping of the data is a complex topic
that is not discussed in this chapter. Groups and single galaxies are treated equally by our method, and
indifferently named “constraint” or “entry”.

CF4 is composed of about a dozen different sources, some have thousands of constraints, some just a
few. We separate the two main sources from the rest, thus splitting CF4 in three sub-catalogues: SDSS,
6dF and other . An entry (either a single galaxy or a group of galaxies) is associated to

— SDSS if it contains more than one Fundamental Plane (FP) measurement (Howlett et al., 2022),
has a declination greater than −3.5 deg and a positive galactic latitude;

— 6dF if it contains more than one FP measurement (Campbell et al., 2014), has a negative declina-
tion

— other in the remaining cases.

The small overlap between SDSS and 6dF in the region −3.5 > dec > 0 is resolved in favor of 6dF.
This division is motivated by the very different sky coverages and redshift distributions of the different

surveys, which should ideally be treated separately. The other sub-catalogue is fairly isotropic and
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Figure 4.3: Same as fig. 4.2 but for the SGY = 0 plane.

does not need sub-dividing, and contains mostly TF measurements (Kourkchi et al., 2020) but also
higher quality Ssupernovae and TRGB measurements. The SDSS, 6dF and other sub-catalogue comprise
respectively about 22 000, 5 000 and 10 500 entries.

Figure 4.1 shows three different views of the data. First, we focus on the distribution in the three
principal super-galactic planes, and plot for each plane the points in a 10Mpc/h slice. This gives a good
overview of the spatial coverage of CF4 as a whole, but it also highlights the differences between the
sub-catalogues. SDSS data covers a very large volume in the galactic north, but is however restricted to
a rather small solid angle. The 6dF sub-catalogue covers the celestial south almost entirely and stops in
the galactic north where SDSS begins. The other catalogue is dense in all direction up to 100Mpc/h.
The Zone of Avoidance (ZoA) obscures the SGY = 0 plane, leaving only a few points within less than
100Mpc/h. The second view is the projection of the data on the sky. Here, the angular separation of the
different sub-catalogues is striking, and the limitations of SDSS and 6dF respectively to the celestial north
and south becomes clear. The ZoA can be seen here obstructing the Universe by about ±10 deg around
the galactic disc. Finally, looking at the redshift distributions, the distinct depths of the sub-catalogues
become apparent. The other sub-catalogue dominates within 10 000 km/s ≈ 100Mpc/h. Both SDSS and
6dF show dramatic redshift cuts at respectively 16 000 km/s ≈ 160Mpc/h and 30 000 km/s ≈ 300Mpc/h.

Note that the 6dF selection function drops almost immediately following the local maxima (a mere 3
bins later the histogram has dropped to zero) while the SDSS selection function has a slightly “fuzzier”
cut off. As we will see, this sharp cut off has an affect on the reconstructed density and velocity filed at
these distances.
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Figure 4.4: Same as fig. 4.2 but for the SGZ = 0 plane.

4.3 Adapting the model to CF4

4.3.1 Prior on distances
Modeling the selection function of the CF4 catalogue is very tedious for the reasons mentioned above.
Therefore, after separating the full catalogue into SDSS, 6dF and other (as described in section 4.2), we
model the prior on each entry’s distance as the histogram on the redshifts distances smoothed with a
300 km/s Gaussian kernel (to account for peculiar motions). Such a model helps reduce the Inhomoge-
neous Malmquist Bias described in section 1.5.4 and Boruah et al. (2022).

4.3.2 Modeling the redshift cuts
The edge of the SDSS and 6dF data are characterized by sharp redshift cuts. If not taken into account,
these may lead to a spurious infall at the edge of the data due to the “inaccessible” values of redshifts
and thereby to an overestimation of the density field at the edge of the data section 3.6. Therefore it is
necessary to properly undo this effect.

The likelihood L(zi|Δk,D, σNL) of measuring a redshift (zi) given the model’s parameters has to be
renormalized in the case that not all values of (zi) are accessible. Following Strauss & Willick (1995);
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Figure 4.5: Screenshot of the 3D visualization of the flow lines (in black), with different Basins of
Attraction (BoAs) colored. The blue and yellow region delimits respectively the BoAs converging on
the Sloan Great Wall and Shapley. The other BoAs are named in the following figs. 4.6 and 4.7. The
visualization is cropped to the reconstructed volume. The 3D visualization can be found here.

Hinton et al. (2017), we rewrite eq. (2.19):

L(zi|Δk,D, σNL) → L(zi|Δk,D, σNL)

erfc
(

z(Δk,di)−zcut
i√

2γ(di)

) , (4.1)

z(Δk, di) =
(
1 + z̄(di)

)(
1 + v(dir̂i|Δk) · r̂i/c

)− 1, (4.2)

γ2(di) =
1

c2

(
σ2
cz +
(
1 + z̄(di)

)2
σ2

NL

)
(4.3)

where zcuti depends on the sub-catalogue to which the entry belongs. This value is set to czcutSDSS =
30 000 km/s, czcut6dF = 16 000 km/s, while the sub-catalogue other does not have any redshift cut and
thus does not undergo this re-normalization process. To insure full consistency after this renormalization
procedure has been completed, if a SDSS or 6dF redshift is greater than the redshift cut of that catalogue,
the constraint is removed from the catalogue, which in practice concern a few dozen of galaxies. The
renormalization effectively bends the likelihood L(zi|Δk,D, σNL) towards higher values of reconstructed
redshifts z(Δk, di), allowing for a larger outflow at the edge of the data.

4.4 Results

4.4.1 Hyper-parameters of the reconstruction
A grid of size 2563 covering a 1 [Gpc/h]3 cubic volume is employed in the reconstruction. The resulting
cell size is 3.9Mpc/h per grid cell side. Such a grid can capture density wave numbers in the range
kmin = 6.28 · 103 h/Mpc to kmax = 1.39h/Mpc, i.e. wavelengths in the range λmin = 4.5Mpc/h to
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Figure 4.6: Same as fig. 4.5 with another view angle. The BoAs visible in this figure are: Sloan Great
Wall (blue), Shapley (yellow), Hercules (white), Corona-Borealis (olive green), Perseus-Pisces (orange),
Pisces-Cetus (light green, left), Pisces (light green, right) and Funnel (dark green). The yellow green
BoA on the left of the reconstructed region is unnamed.

λmax = 1Gpc/h. All the modes of the grid are taken into account, leading to 2563 = 16 777 216
free parameters representing the reconstructed field. The cosmology is fixed to a flat Universe with
H0 = 74.6 km/s/Mpc, Ωm = 0.3, Ωb = 0.0471, σ8 = 0.8228 and the linear growth factor is f = 0.51.

4.4.2 Comparison to an independent redshift galaxies catalogue
The reconstruction method has been thoroughly tested against mocks in chapters 2 and 3. However,
when it comes to reconstructing the real Local Universe, quantifying the credibility or the quality of the
recovered map is slightly nuanced. Borrowing from previous work with the same goal (e.g.; Graziani
et al., 2019), the most direct way to do so is to over-plot on the field a catalogue of galaxies independent of
the one used for the reconstruction. Indeed, the galaxy distribution is supposed to be strongly correlated
to the full matter distribution down to the galaxy-bias (see section 1.3.3), and galaxies are thus expected
to be preferentially found in high-density regions, i.e. the galaxies and the over-density field are expected
to align.

For that purpose, the Lyon Meudon Extragalactic database (LEDA) catalogue is chosen (Paturel
et al., 2003). Only the galaxies whose sky position, redshift (spectroscopic or photometric) are known
are selected. The LEDA catalogue, like the Cosmicflows catalogues, does not result from one survey
but is rather the compilation of many sources. Even though its selection function is complex, it can
be described as roughly flux limited. We limit our comparison to the LEDA galaxies that are in the
constrained volume. In this volume, the LEDA catalogue is pseudo-complete2 for galaxies such that
M < −19. We limit thus our study to these bright galaxies, of which there are more than 360 000 in the
reconstructed region.

These galaxies are subject to the effects of Redshift Space Distortion discussion in section 1.4.7,
2Again, the selection is complex, and provide a true completeness of the catalogue is out the scope of this work.
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Figure 4.7: Same as fig. 4.5 with another view angle. The BoAs are: Sloan Great Wall (blue), Lepus
(red), Funnel (dark green), Perseus-Pisces (orange), Pisces-Cetus (light green, left). Other BoAs do not
have a known or named over-density as attractor, and are thus named after the constellation there are
in + distance in 10 000 km/s. It is the case in the SDSS region of Cancer+30 (light orange), Hydra+26
(light green) and Gemini+24 (pink).

namely the “Kaiser’s pancakes” and “Bull’s eye” effects for field galaxies and the Finger of Gods for
galaxies in clusters (e.g.; Jackson, 1972; Kaiser, 1987; Praton et al., 1997; Thomas et al., 2004).

4.4.3 The over-density field
Figures 4.2 to 4.4 show the SGX = 0, SGY = 0 and SGZ = 0 planes containing the entire volume of
the reconstruction, with the LEDA galaxies over-plotted. In the rest of this section, we will simplify the
notation by naming these planes respectively the X, Y and Z plane. The footprint of the CF4 catalogue
is easily recognizable. The ZoA shadowing the Y plane is visible is both X and Z planes along the Y-axis
and in Y plane by the very limited surface reconstructed. In the Z plane, a slight asymmetry along
the X-axis below SGY ≈ 160Mpc/h is due the contribution of 6dF. In both the X and Z planes, the
large volume covered by SDSS is striking, leaving to a strong asymmetry between the SGY > 0 and the
SGY < 0 hemispheres of the reconstruction.

Structures at the edge of the data (e.g. SGY > 250Mpc/h at the end of the SDSS region, visible
both the in X and Z planes) are quite well defined. There is only a small lessening of the sharpness of the
contrast with distance, a phenomenon usually observed in reconstructions with the Wiener Filter (see
chapter 3). It shows that Hamlet is able to precisely recover the fields in the entirety of the constrained
volume. The quality and the density of the constraints severely decreases with the distance: this ability
is thus all the more remarkable that it holds up to the edge of the SDSS region, around cz ≈ 30 000 km/s,
a distance never reached by velocity based reconstructions.

Description of the Local Universe and comparison with the LEDA galaxies

The comparison of the predicted linear fractional over-density (δ) field with the observed galaxy distribu-
tion should be conducted within the following framework. The reconstructed over-density field is actually
the divergence of the reconstructed velocity field, properly normalized and as such does not reflect the
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Figure 4.8: Moments of the reconstructed velocity field. Top left: Monopole, computed as the mean
over-density within a sphere. The mean monopole over the reconstructions is in red full line enclosed
withing two shades for the 1- and 2-σ intervals of confidence. The full black line is the mean of the random
signal, while the grey shades in the background are the associated 1- and 2-σ intervals of confidence. They
are computed over a hundred random realizations of the power spectrum over the same grid (n = 256,
L = 1Gpc/h). Top right: Amplitude of the dipole, following the same color convention as for the
monopole. Bottom left: components of the dipole, with the same convention as for the monpole,
except the use of different colors and line styles to differentiate the components. Bottom right: cosine
of the angle between the dipole and the CMB velocity vCMB = (−410, 353,−324) km/s. The red line
and shades represent the results from the reconstruction, while the black line and shades stand for the
random signal. The blue line and shades show the alignment of the random dipoles with their value
at the observers’ position (i.e. the CMB velocity in this random universe, assuming it stems from the
peculiar velocity of the observer w.r.t. the universe).

non-linear evolution of the density field in general, and the virial collapsed clusters of galaxies in partic-
ular. Rich clusters are to be associated and compared with local over-density maxima, smoothed on the
scale of a few Mpc. Galaxies, are on the other hand, the end product of very complicated non-linear grav-
itational and other - yet to be understood - galaxy formation processes. Moreover, the LEDA galaxies,
used here as a benchmark, are distributed in redshift space. The comparison with the linear over-density
field is further hampered by RSD effects, the Finger of God in particular (see section 1.4.7. Given all
that the qualitative matching between the galaxies and the over-density field is quite remarkable.

The known nearby clusters, superclusters and voids structures are labeled on figs. 4.2 to 4.4. A short
description of these structures follows:

— The nearest clusters, Virgo and Fornax are robustly recovered.

— The Perseus-Pisces (PP) supercluster, the Pavo and Norma clusters and the Sculptor Wall are
recovered in the region solely covered by the other catalogue.

— In the Z plane, the Centaurus and the 4-cluster region is not well captured by the reconstruction.
The causes of this discrepancy are not understood yet.
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Figure 4.9: Same as fig. 4.2 but the V-Web is shown here. Each cell is given a type associated to the
colors: (0) for void in white, (1) for wall in yellow, (2) for a filament in red and (3) for clusters in black.
The computation of the V-Web is based on the mean field smoothed with a 5Mpc/h kernel and uses
λth = 0.1. The V-Web is cropped to the reconstructed volume.

— In the volume constrained by the 6dF component of CF4, a multimodal structure is found around
Lepus in the X plane, along with other over-densities mirrored in the galaxy distribution at the
edge of the data on the SGY < 0 end. Most of the structures are seen on the Z plane, with
Pisces-Cetus at the SGY < 0 edge of the data, the SGX < 0 end of the Sculptor-Wall, the South
Pole Wall which cuts the plane and last but not least, the massive Shapley concentration. Shapley
is here split in two: a foreground and a core. A long, very dense filamentary-like structures spans
from Shapley to another strong over-density also appearing in the galaxy distribution, midway to
the Sloan Great Wall.

— Where the SDSS and the other catalogues overlap, the reconstruction captures well the complexity
of the very rich region comprising Coma, Leo, Hercules supercluster along with the CfA Great
Wall. This region is caught in both the X and Z planes. In the same planes, deeper alongside
the SGY > 0, in the region of SDSS, an intricate structure of voids over-densities can be seen.
In the X plane, the most prominent are the Bootes and the Corona-Borealis superclusters and
other unnamed strong although smaller peaks in the SGZ < 0 region. The notorious Sloan Great
Wall cuts the Z plane, where Ursa-Major supercluster can also be found. There again, many other
clusters are found in accordance with the LEDA galaxy distribution.
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Figure 4.10: Same as fig. 4.9 but for the SGY = 0 plane.

— Voids are important features of the Universe and they are also properly retrieved by Hamlet . In
the X plane, the Sculptor void, the Local void as well as Hercules void and Bootes void (showing
between the CfA great Wall and Bootes superclusters, the void is not exactly aligned with the X
plane) can be recognized. Only the Sculptor void cuts the Z plane.

The detailed cosmographical inspection of the HAMLET reconstruction and its comparison with the
observed distribution of galaxies is still in preparation (Valade, Tully, Pomarede, Libeskind and Hoffman,
to be submitted).

4.4.4 The velocity field
Basins of Attraction (BoA)

Basins of Attraction (BoA) are large scale gravitational watersheds. A BoA is defined as a volume of
space in which, if the expansion were permanently frozen and all galaxies followed their gravitational
trajectories, all points would move toward a common attractor, like the drops of water of a watershed all
converge to the same river. They can be easily derived from the three-dimensional velocity field through
the computation of streamlines. A streamline (or flow line) is a method to visualize a vector field, i.e.
the velocity field in our application. A flow line is the trajectory in space of a particle q(s) alongside (a
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Figure 4.11: Same as fig. 4.9 but for the SGZ = 0 plane.

pseudo) time, starting at position q0 and moving alongside the velocity field:{
dsq = v(q)

q(s = 0) = q0.
(4.4)

A BoA is then the ensemble of cells whose streamlines converge to the same point. The concept of BoA
has been introduced by Tully et al. (2014) to propose a new definition of a super-cluster as the attractor
of a BoA, rather than an unusually large cluster.

The quality of the retrieved BoAs through our reconstruction methods is yet to be extensively studied.
Not knowing the limits of our methodology, they are thus quite hard to be properly analysed. It is however
known that smoothing leads to the merging of neighbor BoAs (Dupuy et al., 2020). One of the effects
of the large errors and the scarcity of the data points of distant regions is an apparent smoothing of the
structures in the mean field. It is thus expected that true BoAs tend to be merged in the reconstruction
into larger artificial BoAs in regions where constraints are poor. This artificial merging of BoAs may
explain why the BoAs tend to span until the edge of the reconstruction (or even leak outside of it if
not cropped). In the absence of good constraints at the edge of the reconstruction, the possibly existing
BoAs are merged to the well defined ones whose attractors are well retrieved. Dupuy et al. (2020) also
demonstrates that the mass contained in a BoA ranges from roughly 1015 M�/h to 1017 M�/h. There
is however no statement on the span of their volume, but, given that they are all roughly of the same
(mean) density, it is reasonable to expect quite a large variety in volume as well.

Figures 4.5 and 4.6 are screenshots of the 3D visualization of the velocity flow lines with the Basins
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of Attraction (BoA) marked in different colors.
The BoA of the Sloan Great Wall is by far the most prominent is the SDSS region, and in the whole

reconstruction. It covers the vast majority of the volume above the Hercules, CfA Great Wall and Coma
complex. This large BoA may possibly the results of the merging of several BoAs. Other BoAs are
found in the SDSS region: Corona-Borealis with an identified attractor, Cancer+30, Hydra+26, and
Gemini+24 without an identified attractor. Although these BoAs are at the edge of the reconstruction,
nothing indicates that they are not to be trusted. Indeed, in the absence of constraints, BoAs are
expected to merge, not to split. Although this is purely hypothetical, the attractors of these BoAs could
be outside of the constrained volume.

Most of the region of 6dF is enclosed in the BoA of Shapley, which spans from the edge of the
reconstruction to the Local Group, absorbing the South Pole Wall, Virgo, Norma and all the very nearby
Universe. Lepus, Pisces and Pisces-Cetus have their own BoAs. Another unnamed BoA is found at the
SGY < 0 end of the reconstruction, with no identified attractor, which could again possibly be outside
of the constrained volume.

In the volume covered primarily by the other catalogue, Funnel and Perseus-Pisces have neighbor
BoAs going deep into the reconstruction. The boundaries of the later come quite close to the Milky Way
and the Local Group (≈ 10− 15Mpc/h). The BoA of Hercules, which includes the CfA Great Wall and
Coma, is of great interest. At the border of both Shapley’s and the Sloan Great Wall’s BoAs, it lies in
a very well constrained region, almost at the core of the reconstruction. This BoA might be one of the
main findings of this chapter. It would make of Hercules a supercluster under the definition of Tully
et al. (2014), i.e. that a supercluster is the attractor of a large BoA. Further work is however necessary
to confirm this result.

Moments of the velocity field

Another common approach to analyze the velocity field is through its moments. Here, we limit ourselves
to the monopole and the dipole, also called bulk flow. Although more complicated definitions exist,
the monopole can be computed as the average over-density within concentric spheres centered on the
observer, and the dipole as the average velocity of that same volume:

B =
(
Bx, By, Bz

)
, B = |B|, Bα(r) = 〈vα(x)〉|x|<r (4.5)

Both the magnitude and the separated components of the dipole are discussed in the literature. These
metrics are thus well studied, and are relatively stable. They are as such a good tool to quantify the
quality of our reconstruction. The periodic boundary conditions employed by the HAMLET algorithm
affect the reconstructed velocity field. Not only that it misses the tidal contribution of the structures
outside of the computational box but also distant structures close to the edge of the box gets correlated
by the periodic boundary conditions. It is estimated here that the bulk velocity on scales exceeding
∼ 250Mpc/h are strongly affected by the boundary conditions (Hellwing et al., 2018).

To compare the results of our reconstruction to the predictions of ΛCDM , we create 100 random
realizations (see section 1.6.5) on which we compute each metric discussed in this section. We show these
results in fig. 4.8 as a black line for the mean of the metric, augmented by two grey shades that represent
the 68% and 95% quantiles of the distribution centered on the median (which we abusively name 1- and
2-σ interval of confidence).

The monopole is displayed in fig. 4.8 (top left) stays in the 2-σ prediction of ΛCDM and shows no
strong deviation from the expected signal. Except the first data point, whose deviation is large compared
with the grey 1 and 2 σ corridors, the peaks around 10Mpc/h and 80Mpc/h respectively due to Virgo
and Coma, the Universe within 100Mpc/h and even up to 150Mpc/h appears under-dense. Two bumps
at 160Mpc/h and 300Mpc/h are of interest, reaching respectively the 1- and the 2-σ limits. Indeed,
these coincide respectively with the edge of the 6dF and the SDSS samples. They thus may be resulting
from the selection function of the CF4 catalogue rather than features of the Universe.

The magnitude of the dipole seen in fig. 4.8 (top right) lies as well in the 2-σ expectation from ΛCDM.
However, a prominent bump spanning from 80Mpc/h to 180Mpc/h, reaching the 2-σ expectation limit
around 160Mpc/h. This feature is also found in the components of the dipole: as shown in fig. 4.8
(bottom left), the x-component leaves the 2-σ expectations shortly before 100Mpc/h and re-enters it
around 200Mpc/h. The z-component briefly leaves the 1-σ shade which it re-enters after 150Mpc/h.

Our result is strengthened by the finding of similar features in the bulk flow in (1) a reconstruction of
the CF2 catalogue (Hoffman et al., 2015) (2) in the 6dFGSv catalogue (Magoulas et al., 2016) and (3) in
the SDSS-PV (Howlett et al., 2022). Shapley is often cited as the source of this major flow in the Local
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Universe, which would indeed be consistent with our analysis of the BoAs of section 4.4.4. However,
Watkins et al. (2023) argues that the bulk flow of CF4 is extremely inconsistent with ΛCDM .

The alignment of the dipole with the CMB velocity is studied in fig. 4.8 (bottom right). As the
velocities of our reconstruction are the velocities with respect to the CMB, the CMB velocity to consider
is not the one with respect to the Sun of eq. (1.44), but with respect to the Milky Way:

vCMB = (−410, 353,−324) km/s. (4.6)

Three different metrics are shown. In grey, the mean, 1- and 2-σ zones of confidence of the alignment
of the bulk flow of each random universe with the true CMB velocity (i.e. the alignment between two
random vectors, as they are expected to be completely independant). In blue, the alignment of the bulk
flow of each random universe with the bulk flow at the center of of box (taken as a proxy to the CMB
velocity of the observer in this random universe). Finally, in red, the alignment of the bulk flow of our
reconstruction with the CMB velocity.

The alignment between the reconstructed bulk flow and the CMB velocity remains out of the 1-σ
region of the random signal until the edge of the box. This, and the red shades, tighter than their
grey equivalent, demonstrate a constraining of this angle on the entire volume of the reconstruction.
More than non-random, this alignment is very strong even compared to the self-alignment of bulk flows
of random universes: it borders on the 1-σ limit on the most of the reconstructed distance range and
exceeds it between 200Mpc/h and 300Mpc/h. After 300Mpc/h, the alignment of the reconstruction
decreases rapidly, as expected in the absence of constraints.

The remarkable deviation of the alignment of the dipole and the CMB velocities resonates with the
tension in the bulk flow amplitude. A deeper analysis of the moments of the velocity field with more
accurate methods of computation, a discussion on the selection function and of course tests on mocks
are due.

The V-Web

The large scale distribution of galaxies seems to span a range of structures that form a continuity from
voids, walls/sheets, filaments an clusters - the so-called cosmic web. Numerous methods have been
suggested for the classification and the construction of the cosmic web (Libeskind et al., 2018).

A method of classification has been developed from the projection of the velocity field on a regular
grid (Hoffman et al., 2012). The method is based on the evaluation of the velocity shear tensor on a
regular grid and classification of the cosmic web elements by means of the eigenvalues of the shear tensor.
Similarly the cosmic web can be constructed by means of the tidal tensor (Forero-Romero et al., 2009).

The detail of the classification algorithm can be found in Hoffman et al. (2012), a very brief summary
is given here. First, the shear tensor of the velocity field

Σab = − 1

H0

(
∂va
∂xb

− ∂vb
∂xa

)
, a, b = x, y, z (4.7)

where the tensor is evaluated on a regular Cartesian grid. The − 1
H0

normalize is introduced so as to
make the tensor dimensionless and the minus sign to associate positive eigenvalues to a contraction
along eigenvectors. Eigenvalues are assumed to be ordered by decreasing order ( λ1 > λ2 > λ3). The
classification is done with respect to an assumed positive threshold value (λth such that: voids (type 0):
λth > λ1; sheets (type 1): λ1 > λth > λ2; filaments (type 2): λ2 > λth > λ3; and clusters (type 3):
λ3 > λth;

In this work, we limit our interpretation of the V-Web to its visual inspection. The value of the
threshold directly influences the volume occupied by the V-Web: a lower value of λth is less restrictive
and leads to a larger number of cells to be marked as a given type. The values of the V-Web on the
three super-galactic planes are presented in figs. 4.9 to 4.11, with the LEDA galaxies over-plotted. The
value of the threshold is λth = 0.1. The first remark that can be made about the V-Web is its relative
bulkiness, with respect to both the galactic Cosmic Web (of the LEDA galaxies, for instance) and of the
structures of the over-density field.

The present visual analysis of the cosmic web is to be extended to more qualitative studies, relating
the distribution of DM halos (in simulations) and galaxies (in simulation and observed ones) to the
various components of the cosmic web. This lies outside the scope of the present thesis.

The alignment between the V-Web and the LEDA galaxy might not be as remarkable as for the over-
density field but it remains significant. Galaxies are found preferentially in colored regions (i.e. part of
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Figure 4.12: Over-density field (from dark violet to orange) with the XSCz galaxies over-plotted. The
left panel shows the SGZ = 0 plane (also called super galactic plane), while the right one is the SGX = 0
plane. The names of the major over-densities and voids are labeled respectively in white and yellow. The
slices are both 4 000 km/s thick. The over-density field is smoothed with a Gaussian kernel of 5Mpc/h.

the V-Web), and cluster in red regions, i.e. filaments. There is thus a gradation between the galaxy
density and the V-Web type. Better, the V-Web seems to follow better radial filaments, i.e. filaments
parallel to the line of sight, than the over-density field. The black regions (i.e. clusters) are however not
aligned with the clusters of the LEDA galaxies. Even though the velocity and the density field are not
fully coherent with one another (see section 1.8), the separation between the knots of the velocity field
and the peak of the LEDA galaxy density do seem a bit distant.

To continue this analysis of the reconstruction of the V-Web, analysis on mocks should be run.
Indeed, the V-Web classification has been separately applied to simulations (e.g. Forero-Romero et al.,
2009; Hoffman et al., 2012; Tempel et al., 2014; Pfeifer et al., 2022, and Hoffman et al., 2023, in prep.)
and to the Universe (Pomarède et al., 2017). Yet, its stability through our methods of reconstructions
has never been studied.

4.4.5 Gallery
In this section we present figs. 4.12 to 4.15, which show alternative visualizations of the reconstruction.
The building of these pictures is quite advanced, it associates 3D projections of the over-density field
and ray casting. Even though they are based on the same reconstuction, they might thus differ from the
“simple” slices presented in section 4.4.3. The description and few comments on the figures are found in
the respective captions.
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Figure 4.13: Zoom in on the left panel of fig. 4.12. On the left (resp. right) panel, the redshift corrected
2MASS catalogue (resp. CF4 non-grouped catalogue) is over-plotted. To sharpen the structures, the
over-density field shown here is not smoothed.

Figure 4.14: Slice of the over-density field between SGY = 5000 km/s and SGY = 12 000 km/s. On the
left (resp. right) panel, the XSCz galaxies (resp. Abel clusters) are over-plotted. The color of the Abel
clusters marks their belonging to identified groups of clusters.
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Figure 4.15: Slice of the over-density field between SGY = 16 000 km/s and SGY = 26 000 km/s. On the
top left (resp. top right) panel, the XSCz galaxies (resp. Abel clusters) are over-plotted. The bottom
plot shows the CF4 galaxies over-plotted on the over-density field. The color of the Abel clusters marks
their belonging to identified groups of clusters.
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Chapter 5

Summary and outlook

5.1 Summary

5.1.1 Motivations
Cosmology has been a flourishing field since the beginning of the XXth century. In the first half of that
century, the fundamental mathematics necessary for the modern physical and the statistical description
of the cosmos were developed (e.g. Einstein, 1916; Friedmann, 1922), while the first the existence of
several galaxies and the expansion of the Universe were evidenced (Hubble, 1929; Lemâitre, 1933). In
the second half of the XXth century, the increasing quantity and quality of observational data lead to
four major discoveries: the cosmological Microwave Background (CMB; Penzias & Wilson, 1965; Smoot
et al., 1977, 1992; Fixsen et al., 1996; Komatsu et al., 2011; Planck Collaboration et al., 2016), the Large
Scale Structures formed by galaxies (LSS; e.g. Peebles, 1980; de Lapparent et al., 1986), the accelerated
expansion of the Universe (Λ constant or dark energy; Riess et al., 1998) and the problem of gravitation,
resolved in the current model by the presence of dark matter (Zwicky, 1937; Rubin et al., 1980) and cold
dark matter (Blumenthal et al., 1984; Davis et al., 1985). The last thirty years have seen the incredibly
rapid expansion of computational capabilities offered by fast growing technologies, which opened the
door to much more frontal and computational approaches of problems that had before to be simplified
to be analytically solved.

Since the discovery of the LSS, redshifts surveys of increasing precision, depth and sky coverage
have been carried out (e.g. SDSS, York et al. 2000; 2dF, Colless et al. 2001; 6dF, Jones et al. 2009;
DESI DESI Collaboration et al. 2016, to name a few), confirming the existence and the structure of the
Cosmic Web. In parallel, surveys of galaxies distances have been conducted, which, associated to redshift
measurements, allow for the construction of catalogues radial peculiar velocities (e.g. Great-Attractor,
Lynden-Bell et al. 1988; SAMURAI, Han & Mould 1992; Mark III, Willick et al. 1997; SFI++ Springob
et al. 2007; Cosmicflows Tully et al. 2009, 2013; Tully et al. 2016; Tully et al. 2023).

The LSS of the Universe unveils itself by the distribution and the velocities of galaxies. This has
driven cosmologists to study the nearby Universe by means of galaxy redshift surveys and by radial
velocity surveys. Two families of stratagies for uncovering the LSS have emerged.

The first one aims at retrieving the matter density field from the distribution of the galaxies in
redshift space. Reconstruction from redshift surveys - start from the Wiener Filter reconstruction from
the IRAS Lahav et al. (1994) and Zaroubi et al. (1995), then a later paper from Erdoǧdu et al. (2004)
on the reconstruction of the 2dF galaxy survey with the same method. The MCMC approach to the
Bayesian reconstruction from redshift survey was pioneered by Kitaura et al. (2009), followed by Jasche
& Wandelt (2013) and Wang et al. (2014).

However its central assumption, the relationship between the presence of galaxies and the underlying
matter density, is poorly understood (Kaiser, 1984; Bardeen et al., 1986; Mo & White, 1996), which
threatens the trustworthiness of their estimations. The second family of reconstructions methods aims
at constraining the velocity field of the Universe from the velocities of the galaxies (Bertschinger &
Dekel, 1989; Dekel et al., 1999; Zaroubi et al., 1999; Lavaux, 2016; Graziani et al., 2019). On these
scales, the only source of motion being gravitational suction, the velocity field is expected to trace the
full matter distribution. These methods do not suffer from the poor understanding of the galaxy density
versus matter density relationship. They are however curbed by the poor quality and the scarcity of the
data stemming from the difficulty to estimate the velocities of distant galaxies. These methods are thus
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subject to numerous observational biases (Strauss & Willick, 1995).
Not only have data a very low signal to noise ratio but they are also tainted with strong biases. This

has motivated the development of several algorithm to correct the data before the reconstruction of the
velocity field by a separated program (Sorce, 2015; Hoffman et al., 2021). However, the biases are many
and their modeling complex: all methods differ in their approach and none frontally solves the whole
problem.

5.1.2 Hamiltonian Monte Carlo reconstruction of the Local EnvironmenT
(Hamlet)

This work consists in the designing, the extensive testing and the application to real data of a method that
reconstructs the linear velocity field from measurement of peculiar velocities of galaxies. It follows the
lead of Lavaux (2016); Graziani et al. (2019), who respectively developped and applied an algorithm that
conjointly correct the biases in the data and reconstruct the velocity at once, in a probabilistic, Bayesian,
self-consistent manner. The novelty of this work is threefold and constists of (1) the improvement of the
Monte Carlo exploration algorithm (2) the implementation of a GPU accelerated code and (3) the better
modelization of the data, namely of its selection function. These innovations enable us to reconstruct
the last data release of the Cosmicflows catalogues (CF4; Tully et al., 2023) and open the door to future
developpements.

Bayesian inference is the mathematical answer to the question "provided that I have made certain
observations, and provided that I have a model depending on an ensemble of parameters (or degrees of
freedom), what are the values of the model’s parameters that can explain the observations best?". The
approach taken by forward modeling, detailed under the angle of its application to the reconstruction of
the LSS in chapter 2, is twofold.

The first step is the writing of the conditional probability law of the set of parameters given the
ensemble of the observations and the model, which is called the posterior distribution. It is the product
of a Likelihood function which is the probability that the observations spawn from the set of parameters,
and a prior which is the probability of the parameters, independently of the observations. In our work,
the posterior distribution models observations of redshifts and distances from a linear velocity field,
derived in the context of ΛCDM. The free parameters considered are the Fourier modes of the linear
over-density field project on a grid as well as the distances of the constraints.

Although the posterior can be analytically written, its complexity prevents analytical or even simple
numerical calculus of summary statistics (mean fields, monopole, dipole, etc). The second aspect of
forward modeling is thus the exploration of the posterior probability by a Monte Carlo method. Such a
method generates an arbitrary long series of realizations of the posterior probability, on which summary
statistics can be computed. One of the innovations of this work is the replacement of the Gibbs sampling
used by Graziani et al. (2019) by a cutting edge exploration method: the Hamiltonian Monte Carlo (HMC;
Hoffman & Gelman, 2011). The HMC utilizes the Hamiltonian equations to integrate trajectories in the
parameters space, allowing the exploration process to make large steps in highly dimensional parameters’
spaces and thus partially tackle the so-called “curse of dimensionally” – the rapid escalation of the cost
of the exploration of the parameters space as its dimensionality increases. This innovation is not merely
technical: it allows for a leap in the applicability of the method to great distances and making the largest
reconstructions to date of the universe, from peculiar velocities.

The second key improvement of this work is the implementing of a code, Hamlet , which is designed
to run on GPUs. This speed up reduces the running time by several orders of magnitudes with respect to
a previously designed algorithm that were limited in their abilities due to inefficient use of computational
resources.1. More, the physical and the mathematical frameworks are extremely supple and allow for
further improvements of both the physical model and the exploration methods. This flexibility is reflected
by the extreme modularity of the code.

The last major enhancement of this thesis is the modeling of the redshift cuts in the data following
Hinton et al. (2017). It is presented in the later chapter 4, before the application to CF4.

1The methodological and numerical differences between this code and the one of Graziani et al. (2019) make the exact
computation of acceleration factor non trivial. It seems to range about more than four orders of magnitude. In practice, a
result can be achieved in a matter of minutes with the present method, whereas months were necessary with the code of
Graziani et al. (2019).
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5.1.3 Testing Hamlet
The Hamlet method is applied in this work against data with increasing complexity: in chapters 2
and 3 on mocks and in chapter 4 on real, partially ill-described, data.

Linear mock data

In chapter 2, directly after the presentation of the method, it is tested against mock data that are fully
consistent with what the model expects (linear field and same description of the errors). A reference
mock catalogue is built with a size of and an error modeling that replicates the Cosmicflows-3 catalogue,
the most up-to-date catalogue of distance available at the time of the writing of this chapter. The
selection function is isotropic and aims at a fixed number of points per shell of distance (thus a density
decreasing as the square of the distance) which corresponds roughly to that of Cosmicflows-3. Other
mock catalogues are created by varying the number of constraints (by a factor 1/2 and 2) and the
amplitude of the errors (by a factor 1/2 and 1/10) of the reference catalogue, leading to a total number
of 9 mock catalogues. The results focus on (1) the mean and standard deviation of the over-density field
(2) the mean and standard deviation of the velocity field and (3) the first moments of the velocity field
(i.e. monopole and dipole).

We show that for these quantities, our code converges well and in an expected fashion with the
quantity and the quality of the constraints. This study also allows us to give a first quantitative estimation
of the uncertainty on these metrics and predictions for future applications.

Non-linear mock data and comparison with the BGc/WF

In chapter 3, published as Valade et al. (2023), Hamlet is tested against mocks issued from a simulated
universe. The size of the catalogue and the modeling of the errors are again linked to that of Cosmicflows-
3, extended by a few thousand of points. While the selection function was very basic in the first test,
this mock catalogue reproduces with a great fidelity the footprint of Cosmicflows-3 in redshift space,
with notably a hemispheric asymmetry and a zone of avoidance. The data effectively spawns up to
160Mpc/h. The construction of this mock catalogue is done by an advance Monte-Carlo like algorithm
that performs the selection the dark matter halos of the simulation (which represent galaxies and groups
of galaxies).

Two other methods are applied to the same mock data in order to quantitatively assess and compare
the quality of the reconstructions: (1) the Bias Gaussianization correction (BGc) is applied to the data,
which are then fed to the Wiener Filter to retrieve the fields (BGc/WF pipeline) and (2) the mocks
without errors are fed directly to the Wiener Filter (Ex/WF pipeline). While the two first methods
(Hamlet and BGc/WF) are methods that can be effectively applied to real data, the last one is used as
an hypothetical best-case scenario, in which the position and the velocities of each constraint has been
perfectly retrieved. It allows us to quantity the errors and uncertainties resulting from (1) the scarcity
of the data and (2) the application of the linear theory to a non-linear universe. The results focus again
on mean and standard deviation of both the over-density and velocity fields, as well as the moments of
the velocity fields.

We demonstrate that in absence of observational error, the quality of the reconstruction is close to
perfect on a very large volume, even with a simplified field theory and a limited set of constraints. In
presence of error, the picture is however different. Both Hamlet and the BGc/WF methods yield very
similar results within a volume of 80Mpc/h, outside of which Hamlet displays a higher (and thus a
priori better) contrast than the BGc/WF, until the end of the data at 160Mpc/h. Yet, Hamlet tends
to “over-shoot” within 80Mpc/h and 160Mpc/h as it produces velocities whose amplitude exceed the
ones of the target simulation. Finally, the moments of the velocity are better reconstructed with the
BGc/WF than with Hamlet .

The conclusion of this study is that while Hamlet seems to be extract much more information from
the same data, the BGc/WF remains a more conservative method. Indeed, Hamlet seems to be subject
to some biases that curb its promising potential and that are yet to be understood and corrected.

5.1.4 Application to Cosmicflows-4
After having been extensively tested and compared to another methods in chapters 2 and 3, Hamlet is
applied to real data in chapter 4: the peculiar velocity catalogue Cosmicflows-4 (Tully et al., 2023).
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In this section, again we push Hamlet further: the size of the Cosmicflows-4 catalogues exceeds
the one of the previous release by a factor three, and roughly doubles the volume (by extending the
constrained region from 160Mpc/h to slightly less than 300Mpc/h in a direction of the sky). More than
bringing Hamlet outside of its “computational zone of comfort”, the application to real data is also
trying for the physical modeling.

Indeed, the data is extremely complex: the Cosmicflows-4 catalogue is not the result of a single survey
but rather the merging of several redshifts surveys, extended by different distance catalogues based on
different methods. The spatial footprint is thus very asymmetrical, and the errors on each measurement
are non trivial. Although these different components of the whole catalogue are inter-calibrated, the
possibility of an error in the process or in the sources remains.

The real distribution of the matter in the Universe is unknown. The validity of our reconstruction
on this new set of data can thus not be assessed in the same fashion as in chapters 2 and 3. In place of a
proper quantitative study, we chose to qualitatively compare our reconstructed fields to the distribution
in redshift space of the Lyon Meudon Extragalactic galaxy database (LEDA; Paturel et al., 2003). Even
without assuming a specific form for the galaxy bias, a certain correlation between the over-density field
and the galaxy distribution can be expected. The redshift being a quite precise estimator of the distance,
this constitutes a fair first test for the application of our method on actual data.

The correspondence between the LEDA galaxies and our estimation of the over-density field is sat-
isfactory, the main deviations being imputable to the redshift space distortion. The main features of
the Universe are recovered, and for the first time, the matter distribution is directly measured in the
region of the Sloan Digital Sky Survey (SDSS). This volume encloses notably the famous Sloan Great
Wall, which appears to be the most prominent over-density of our reconstruction, more than the Shapley
concentration and the Hercules–CfA-Great-Wall–Coma complex. The over-density field displays a very
rich filamentary structure filling the newly mapped volume of SDSS.

The reconstructed velocity field is also closely inspected. An analysis of the Basins of Attraction
(BoA) shows that the two major attractors in the reconstructed volume are Shapley and the Sloan Great
Wall in the region of SDSS. The Local Group appears to be embedded in the Shapley BoA. The Hercules
supercluster is also the attractor of a relatively large, well constrained BoA. The moments of the velocity
field are then discussed. While the monopole shows no unexpected behavior and is fully consistent with
ΛCDM and the power spectrum, the dipole manifest a somewhat surprising behavior around 160Mpc/h,
where the both the component along the super-galactic X axis and amplitude of the dipole deviate from
the 2-σ expectation of ΛCDM . This result in confirmed in the literature (Hoffman et al., 2015; Magoulas
et al., 2016; Howlett et al., 2022; Watkins et al., 2023). The alignment of the dipole with the CMB
velocity is also remarkably high and constant and may deserve being investigated. Finally, the V-Web
is computed and presented.

5.2 Future work
The method and the code presented in this work have a promising potential. Indeed, the method allow
the expansion of the physical model to correct existing biases or add new sources of information, while
the mathematical algorithm and the high efficiency computing implementation leave to door open to
more complex and costly models. In this final section, we briefly review a few outlooks that may be the
directions taken in further works. ‘

5.2.1 The need for a CF4 mock catalogue
First of all, the testing of the method done so far was mimicking the properties of Cosmicflows-3 (Tully
et al., 2016). However, for the coming years, the cutting edge data in term of size, errors and more
generally selection footprint is Cosmicflows-4 (Tully et al., 2023). Moreover, this work leads not only
to the development of a novel reconstruction method, but its extensive testing also gave us a deep
understanding of its strengths and shortcomings.

New mocks will thus be built based on Cosmicflows-4 and with a proper modeling of the important
characteristics that influence the Hamlet reconstructions. To represent well the galaxy bias(es) depend-
ing of the components of the Cosmicflows-4 catalogue (SDSS, 6dF and other ), the dark matter halos
used in the previous mocks will be replaced by galaxies. However, given the size of our catalogue, hydro-
dynamical simulations can not be employed. Thus, a dark matter only simulation with a semi-analytical
galaxy modelling will be used.

Among other applications, these mocks will enable us to
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— check the stability the basins of attraction and the V-Web through our reconstructions;
— test different hypotheses of the ortho-radial bending of the LSS and more generally quantify the

robustness of Hamlet with respect to the galaxy bias and other biases;
— construct and test methods to correct the RSD with the maps of density and velocity;
— construct and test a constrained simulation pipeline with Hamlet (see section 5.2.2).

5.2.2 Quasi-linear maps and initial conditions with Hamlet
Already in preparation, the very next step is to go beyond the linear theory, which is one of the limitations
of our method. This will be done in the first place by the modification of eq. (2.16) by a first Largrangian
Perturbation evolution model (1-LPT; Zel’dovich, 1970) which gives an estimation of the position of
particle in the modern universe x given its initial position q and the initial velocity field u

x = q +
1

H0f
u(q). (5.1)

The detail of the analytical implications of this approximation is discussed in Nusser et al. (1991).
The method and its application will be the subject of a future publication, but the big lines are

as follow. The 1-LPT evolved density and velocity fields can be computed on a grid from the initial
over-density field on the same grid as follow

1. the initial velocity field on the grid is computed using eq. (1.38) (alternatively eq. (1.85));
2. the nodes of the grid are moved following eq. (5.1);
3. a Cloud In Cell (CiC) algorithm is employed to reconstruct the evolved density field2;
4. the evolved velocity field is computed by applying eq. (1.38) to the evolved density field.

The replacement of eq. (2.16) by this method directly implicates that the parameters are not the
Fourier modes of the evolved linear over-density field but rather the ones of the initial linear over-density
field. Two goals are thus achieved at once: (1) a quasi linear map of the evolved Universe is drawn
(2) constrained initial conditions for cosmological simulations are created as a “by-product”. These two
applications should lead hopefully to a better mapping of the Local Universe, and a better constraining
of the evolution models through the constrained simulations.

Note that this method is fundamentally different from the Reverse Zeldovich approximation developed
in Doumler et al. (2013a); Doumler et al. (2013b,c), where the Zeldovich approximation is applied to the
constraints using a linear estimation of the evolved velocity field. What is proposed in this section is
to use a linear description of the initial velocity field, apply the Zeldovich approximation to a grid, and
compare the resulting evolved fields with the constraints.

Nothing prevents the implementation of a 2-LPT (Buchert & Ehlers, 1993) or higher order even a
rough Particle Mesh (Darden et al., 1993) or Particle-Particle Particle-Mesh (Couchman, 1991) models
of evolution. Including these higher order methods in the furture is one way the current model could be
improved.

5.2.3 A better modeling of the galaxy bias
The modeling of the galaxy bias will be at the core of future works. Moving away from the linear theory
as proposed in section 5.2.2 would be a step towards it, as the actual density field (as opposed to the
divergence of the velocity field) would be constructed. This estimation would however be relatively rough
and diverge in high density regions.

Yet, the problem of the resolution of the grid remains, independently of the quality of the evolution
model. Either future works will demonstrate that a good estimation of the density field on a course grid
is sufficient for a good correction of the IHM and the galaxy bias, or grid independent methods should
be developed.

An alternative solution would be to model the two-points correlation between galaxies, the probability
to observe a galaxy at a position x knowing there is agalaxy at y. This quantity has been studied
extensively in the 1970s and 1980s. It is written in an isotropic universe as (Peebles, 1980)

P (x,y) = ng(x)ng(y)[1 + ξ(r)], r = |x− y|, (5.2)
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where ng is the galaxy density. The two-point correlation is well modeled by (Peebles, 1980)

ξ(r) =

(
r

R0

)−α

. (5.3)

This probability could be injected in our code, however two main obstacles are on the way. First, the
values of R0 and α depend on the type of constraints (Bahcall & Soneira, 1983). As there are several types
of galaxies in the Cosmicflows catalogues and that the data is grouped, a very careful modelization has
to be done. Secondly, the number of pairs of constraints increases as O(n2

obs). Such an interaction matrix
takes too long to compute and too heavy to store in memory. As both short and long distance interactions
are important, a mixture of accurate description for the close by pairs and Taylor development for distant
pairs should be developed and tested.

Note that this solution may solve the IHM bias, i.e. it constraints the distribution of galaxies in space,
yet, it does not bind it to the underlying over-density field. Finally, the two-points correlation captures
only part of the statistics of the LSS: the three-point, four-point and more generally n-point correlation
functions should be taken into account for a full description (Peebles, 1980). These can however not
easily written (Fry, 1984) and their computation is out of reach in our framework, as the number of
interactions grows as O(np

obs) where p is the order of the correlation function.
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