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Chapter 1

Introduction

1.1 Physics-guided machine learning
This thesis is about physics-guided machine learning [Che+18; Jia+21; RPK19; Um+20; Wil+20], a
nascent field that has garnered significant attention in the last few years. The story, like a creation
myth, begins with an original sin: the implication that the integration of physics and machine
learning is a novel endeavor. In reality, physics — the most fundamental of the natural sciences
— has been guiding and inspiring machine learning, as well as other scientific disciplines since its
inception. These have borrowed methods and techniques (and also some of the foremost experts),
sometime wholesale, in a reciprocal relationship that persists to this day. In return, Machine
Learning has contributed with methods and techniques which have been employed to solve complex
problems more efficiently, uncover hidden dynamics by data, and even search for new physics.

But from this mild original sin of bearing a not perfectly accurate name, comes redemption. The
existence of this new field, this new name, forces the question of how to make the cross-pollination
between the two disciplines explicit, and congregates efforts and collaborations.

From the many questions that may occur, we shall start with the following: how to best integrate
explicit physical knowledge into a machine learning model in order to facilitate or guide learning?

To answer it, we must first define what we mean by ”physical knowledge”. Is it a constraint
connecting physical quantities? A differential equation describing their evolution? Perhaps a con-
servation law expressing some fundamental symmetry in Nature?

And once we integrate this knowledge into our machine learning model, another question arises:
how much of the model is physics, and how much is machine learning?

Estimating quantity of knowledge using Shannon’s entropy To tackle these questions, we
turn to the Bayesian interpretation of probability, which considers probability distributions pi as
descriptions of states of knowledge, expressed in terms of the relative likelihood of the outcomes of
a given experiment i. The more certain one is about the outcomes of such an experiment, the more
knowledge one has.

In 1957, Edward T. Jaynes proposed to estimate ”quantity of knowledge” using a measure [Jay57a;
Jay57b] that was devised in the context of communication by Claude Shannon in 1948 [Sha48] to
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CHAPTER 1. INTRODUCTION

estimate the number of relays necessary for Bob to receive a message from a certain emitter Alice1.
Shannon’s measure became known as Entropy, so the story goes, because the foremost physicist

and polymath John von Neumann told Shannon in conversation that ”in the first place, your
uncertainty function has been used in statistical mechanics under that name. In the second place,
and more importantly, nobody knows what entropy really is, so in a debate you will always have the
advantage.” [SW93].

Entropy, the measure that has been winning Shannon all the discussions since 1948, is simply
expected surprise (estimated as log 1/pi):

H = −
∑
i

pi log pi (1.1.1)

The more one knows about the outcomes of an experiment, the less surprising these would be on
average. In this sense, then, Shannon entropy can be seen as estimating the amount of information
(rather lack of, i.e. uncertainty) in a state of knowledge described by a probability distribution pi.

There are other measures of uncertainty and complexity, as we shall see in Chapter 2. But
Shannon’s possesses a number of interesting properties, namely that it is the sole measure, up to a
multiplicative constant, that satisfies a few reasonable properties that one would assign ”informa-
tion” or ”quantity of knowledge” [Sha48; Khi57].

But as Shannon himself mentions in his seminal work, that single-handedly created an entire
scientific discipline, Information Theory, axiomatic well-posedness is not the most important aspect
of his ideas – possible applications are. And Information theory, which at heart was devised to
engineer communication systems that can reliably pass messages between Alice and Bob, has seen
applications for beyond its original scope, in a host of domains — amongst which physics and
machine learning.

Physical entropy: Clausius, Boltzmann, and Gibbs John von Neumann’s name suggestion
is not, of course, a mere jest. Physics has long had a measure called Entropy, which emerged in
the context of Thermodynamics, the branch of physics that studies heat and energy transfer, in
the mid-19th century, with Rudolf Clausius. It measures the amount of thermal energy in a system
that is unavailable for doing mechanical work. For a system at temperature T undergoing a process
from states A to B where an infinitesimal quantity of heat dQrev is exchanged reversibly at each
step with its surroundings, the change in entropy ∆S is given by:

∆S =

∫
A→B

dQrev
T

. (1.1.2)

Admittedly, this quantity seems rather far from the measure in eq. (1.1.1). To understand von
Neumann’s suggestion, we move a bit forward in time to the late 19th century, where Boltzmann and
Gibbs gave the concept of entropy a statistical sense. The Boltzmann-Gibbs entropy is defined as the
logarithm of the number W of microstates —specific arrangements of the microscopic particles in a
system, characterized by their positions and momenta—that are compatible with a given macrostate
— which is defined by observable macroscopic properties like temperature and pressure. As can be
seen today carved on Boltzmann’s tombstone in Vienna, this is

S = k logW, (1.1.3)
1Shannon was aware of the many possible applications of his ideas. See e.g. Weaver’s introduction in [SW63]
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1.1. PHYSICS-GUIDED MACHINE LEARNING

where k is Boltzmann’s constant2. Since the formalization effort of Statistical Physics, entropy has
since colloquially been used as a measure of disorder of thermodynamic states, in the sense that
the higher it is, the more microstates are accessible to a thermodynamical system — and hence the
system is seen as more disordered.

Information theory, thermometers, and calorimeters But this interpretation was generally
seen as that – an interpretation – of a measure that is anchored in an experimental reality much like
mass, length, or volume. Indeed ”Entropy is a definite physical quantity that can be measured in
the laboratory with thermometers and calorimeters.”, as the prominent physicist George Uhlenbeck
protested when Jaynes showed that statistical physics can be formalized in purely Information
Theoretic terms [Jay78] using Shannon’s measure of uncertainty.

Let us make clear how remarkable Jaynes’ claim is: thermodynamics, which was conceived
as a physical theory anchored in experiment (thermodynamics was built phenomenologically from
experiment), can actually be seen as a theory of our state of knowledge about a certain physical
situation. Rather than a strictly physical theory, that describes physical quantities, statistical
physics describes how states of knowledge compatible with (described by) macroscopic variables of
state evolve, and result in new macroscopic variables.

To emphasize Uhlenbeck’s point, recall how to actually measure the entropy of a certain quantity,
a mole, say, of a certain substance. We begin by cooling a mole of the substance to (near) zero
Kelvin, where it has (near) zero entropy by the third law of thermodynamics, and then slowly heat
it up in small incremental steps to a final state A, allowing it to reach equilibrium at every step,
while using the calorimeter and the thermometer to measure Cpk

T , where Cpk
is the molar heat

capacity at a constant pressure at each step. Since for a reversible step dS
dT =

Cpk

T , adding up all
these quantities we obtain, in the limit of infinite steps, the entropy of the final state.

One then understands Uhlenbeck’s protestation: Jaynes claims that a major branch of physics
is actually based on states of knowledge, which are subjective; how then can this statement be
compatible with the fact that you and I can go in a lab and measure entropy using a thermometer
and a calorimeter using the procedure above and agree on the measured quantity?

Gibbs’ resolution of Gibbs paradox Jayne’s and Uhlenbeck’s claims are reconcilable, and
they are both correct. A beautiful and clear answer to this question was given by Jaynes [Jay92],
repeating an argument by Gibbs, which we now present. Consider n1 and n2 moles of two different
but ideal gases inside adjacent volumes V1 and V2 separated by a membrane, such that V1

V2
= n1

n2
, and

at the same temperature and pressure. If we remove the membrane and the gases are allowed to mix,
the entropy of the mixture increases, by standard thermodynamics, as it there is no way to unmix
the gases without effecting external changes (making work). But if the membrane separates two
equal gases, removing changes nothing. The entropy remains the same. This is what is commonly
known as ”Gibbs paradox”.

The reason for the entropy increase cannot lie in the actual physical microstate of the gases,
Jaynes states, repeating an argument by Gibbs. Because it is no more difficult to bring the two
different gases to its initial positions state than it is to bring the two equal gases to their original
positions. But there is a difference when we consider thermodynamic state, rather than physical
state, where instead of having to bring molecules to the original location, we just have to bring the

2The constant is usually and in the rest of the thesis denoted kB , where ”B” stands for Boltzmann, but denoting
it as such for posterity in one’s own tombstone would be unfitting.
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CHAPTER 1. INTRODUCTION

same number of molecules of the same gas to the same side whence they came. From a thermo-
dynamic point of view, this new state is indistinguishable from the original state. Hence, Jayne
argues, the reason for the entropy increase lies in the knowledge that the gases are made from dif-
ferent particles. It is this knowledge that defines the state, which can thus change, independently
of the actual physical setting, as our knowledge does as well.

This is compatible with Uhlenbeck’s method, as two researchers having the same knowledge
would agree in their measurement of entropy: the same amount of work would be required by
either to return the mix to its original thermodynamical state – as defined by their knowledge. It
takes considerably more work to return a mix of two different gases to their original thermodynamic
state — hence the higher entropy.

Statistical physics can in this sense be seen simultaneously as an objective theory, and as based
on subjective states of knowledge. The subjective quantity measuring uncertainty of those states
of knowledge can be objectively measured!

Thermodynamical laws being expressed in terms of entropy, we have that in this extreme case,
an entire physical theory can be regarded wholesale as the evolution of knowledge (or uncertainty,
i.e., lack thereof) about a certain physical situation, the quantity of which can be measured using
a calorimeter and a thermometer.

The previous discussion is hopefully a convincing argument that defining what constitutes phys-
ical knowledge to incorporate in a machine learning model, and measuring how much of it there
is, is far from straightforward. We presented an information-theoretical measure, entropy, that can
be used to estimate the amount of knowledge in a probability distribution, as suggested by Jaynes.
And then we saw that an entire branch of physics can actually seen in information-theoretical terms,
as drawing conclusions from the evolution of this quantity of knowledge — which, remarkably, can
actually be measured in the laboratory using calorimeters and thermometers!

We are not always in this extreme case, of course. We do not always have the luxury to
measure the quantity of knowledge in physical information, such as Newton’s laws, for example,
using lab instruments like thermometers and calorimeters. Nor will we be able to do so for the
Swift-Hohenberg equation modeling Rayleigh-Bénard convection, which we will examine in detail
in this thesis. Neither is it common that physical knowledge comes neatly formulated in terms of a
probability distribution of the states of the system that is being considered. Much more often this
knowledge is rather given in terms of other quantities which bring about some implicit knowledge
about the physical situation. How can this be quantified and used?

Physical knowledge about laser-matter interaction in the Swift-Hohenberg equation
The first topic in this thesis belongs in Surface Engineering, more specifically, laser-matter in-
teraction. The problem that we addressed was that of learning the relationship between laser
parameters such as fluence, for example, and the nanometer-scale topography modifications that
the laser-matter interaction induces on the surface of Nickel.

As discussed in detail in Chapter 3, the number of topography/laser parameter pairs that we
have access to for training in order to learn this relationship is extremely (and fundamentally)
low, in the order of the tens of data points (one single scanning electron microscope image per
dynamics). How can one then learn anything other than the most simplistic relationship using
Machine Learning methods alone?

One cannot. But thankfully, the knowledge that we have about Nickel and laser-matter in-
teraction, as well as the controlled experimental conditions, is extensive. For example, we know
the atomic mass of Nickel, we know its melting temperature, etc. We also know that laser-matter
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interaction, in spite of its extraordinary complexity, can be approximately described as a sequence
of different stages: in a first stage, energy is transferred from the electromagnetic field to the mat-
ter; in a second stage, the molten material follows a hydrodynamic process roughly governed by
Navier-Stokes type equations, until in a final stage it solidifies again. The Navier-Stokes equations,
although much too complex to admit an analytical solution (even numerical solution are challeng-
ing), still constitute a massive simplification regarding the actual physical process taking place,
which we will simplify even further. Symmetry and physical considerations discussed in detail in
Chapter 4 motivate choosing an even simpler equation, called the Swift Hohenberg equation, that
approximately models the first hydrodynamics stage of the laser-matter interaction, given a number
of simplifying assumptions that are satisfied in the experimental setting.

If one would be able to integrate this physical knowledge to guide learning, then one could learn
a complex and useful relationship between laser parameters and observed topographies, even with
few data. Unfortunately, solving these equations to model dynamics requires initial and boundary
conditions, to which we do not have access.

We know all of this, but unfortunately (i) it is unclear how to use it, and (ii) it is unclear whether
it is enough to successfully learn under such constrained conditions. The reason behind the first
difficulty is clear: the knowledge that we would like to integrate is not given explicitely about the
quantities that we wish to relate, nor is there a known relationship between these quantities and
those present in the Swift Hohenberg equation. To make up for this fact, one would typically use
data, which we do not have; in our case, we project the dynamics into a lower-dimensional space,
which considerably simplifies the problem.

Knowledge about the evolution of knowledge in the Swift-Hohenberg equation To
understand the second difficulty, note that what we would like to ideally do with this partial
differential equation is to integrate enough knowledge in the learning process to make up for the
fact that we are trying to learn a full dynamical process3 on the basis of a single Scanning Electron
Microscope image. This is of course hopelessly complicated, and generally impossible to do.

Crucially, the Swift Hohenberg equation does not just bring knowledge regarding the hydro-
dynamics of the situation. It also encapsulates the knowledge that only the Fourier modes in the
vicinity of a certain critical mode are important in the long term dynamics. It contains not only
physical information, but also information about how our knowledge of this information evolves.
That this harks back to the statistical physics discussion above is no coincidence, because the Swift
Hohenberg equation is really a statistical model in disguise! (cf. Sec.3.5.2).

Why is this crucial? Because in order to learn with a single data point, we must have a model
(think a Hilbert space with basis functions {ϕn}) in which the pattern field can be expressed in
terms of a single basis element. So the physical knowledge that we have is going to be useful to
us precisely because it tells us that initial conditions (within reason) are not important to select
which spatial frequencies we will end up observing. The uncertainty that we have on the spatial
frequencies is bound to decrease. In this case, we shall show, the relationship can be learned even
in the case of extremely low data.

The data-equivalent of physical knowledge A certain equation or a certain symmetry bring
knowledge about a certain problem, as it can replace a great number of data in certain situations –
but possibly not others. The knowledge that we integrate using physical information, as measured in

3To be precise, we do not really need the full process, just enough that we can use it to predict pattern features
based on laser parameters. See Chapter 3 for details.
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”quantity of data equivalent”, so to speak, depends on the relationship between physical information
and the data.

As we just saw, the Swift-Hohenberg equation allows dramatic simplification, to the point that
it can effectively replace an infinity of data in a learning problem that, as we shall see, consists
mostly in learning spatial-frequencies. But the underlying complexity of the problem is still there:
it is just a matter of asking the right questions. If instead of focusing on the spatial frequencies of
the patterns we wish to learn the actual value of the field at a certain point, the knowledge about
the behavior of the frequencies is not going allow the same, dramatic, simplification.

This motivates the following questions: how can we meaningfully compare the knowledge in
data and the knowledge in a some physical information, in an integrated way? Can they be given
the same units, so to speak, and compared?

Minimum description length principle as a principle of model selection The second
part of this thesis (cf. Chapter 4) focuses on the Minimum Description Length principle [Ris78],
a principle of probabilistic model selection proposed by Jorma Rissanen in the late 1970s. This
principle can be seen as a formalization of Occam’s razor, often stated as ”entities should not be
multiplied beyond necessity” or more simply, ”the simplest explanation is the best one.” In the
context of the Minimum Description Length principle, one equates descriptions and probability
distributions (cf. Sec. 4.3.2) we seek the probabilistic model family that provides the shortest
description length — which is seen as a measure of complexity — for the data, comprising the
description length of the model itself. The goal is to find the simplest model that adequately
explains the data, thereby embodying the essence of Occam’s razor.

In the early 2000’s [Ris01] Rissanen proposed a way to measure the description length, in which
the two complexities are neatly separated into two terms, which are measured in the same ”units”:
essentially, model family complexity is measured by tallying up the likelihood of all possible data
(cf. Section 4.3.5). This can be seen as a measure of the explaining power of a model family, using
the behavior of elements of the model family with respect to data.

The data-equivalent of knowledge for a task via the Minimum description length prin-
ciple The minimum description length principle thus provides a unified way to measure the ”quan-
tity of knowledge” in data (its description length) and in the model family (the sum of the maximum
likelihoods that elements of the model family can assign arbitrary data). Unfortunately, as we shall
see in Chapter 4, this conceptually beautiful approach is riddled with technical complications that
limit its scope.

Moreover, albeit unifying the ”quantity of knowledge” in data and in the model family (which
one may think as formalizing physical information in the Bayesian sense above), the minimum
description length principle, in this form, does not quantify the ”quantity of knowledge” for a
specific problem. To take a physical example, data that comes from ocean observations should be
seen as simple by a good physical model of ocean circulation. Conversely, a good model of ocean
circulation would be able to replace a considerable amount of ocean circulation data.

In this second part of our work in Chapter 4, we were able to address some of these diffi-
culties by proposing a new Minimum Description Length measure of complexity which measures
the complexity of a model class (our physical knowledge) in terms of its behavior with respect to
classification-relevant and classification-irrelevant data, in the context of neural network classifica-
tion problems. For differentiable Neural Network models trained by gradient descent to minimize
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classification loss4, we show that when learning is good (in the sense that it generalizes well), then
the model is good as well (in the sense that it can replace a lot of data).

Complexity in Physics and Machine Learning In the first part of the works that consti-
tute the core of this thesis, we incorporated knowledge of laser-matter interaction in a particular
experimental setting, and also, crucially, how the knowledge of this situation will evolve (much
like in the statistical physics sense of Jaynes) to learn the relationship between laser parameters
and nanopatterns in the extremely low data regime. In the second part, we sought a formalism in
which data and knowledge, as formalized via probabilistic model families, are in the same footing.
We proposed a modification of this formalism that depends on the task. As we have just argued,
understanding this relationship is essentially finding the data equivalent of a certain physical model.
This will eventually allow one to gauge how much data and of what type will be needed to tackle
a certain problem, about which we have a certain physical knowledge.

1.2 Thesis organization and contributions
1.2.1 Complexity, full of sound and fury
A number of measures of complexity have been proposed in the literature. In this chapter, we
introduce, compare and contrast a number of such measures relevant to the context of patterns
formed self-organization, which we illustrate with the nanopatterns observed in Nickel that will be
the main topic of the next chapter.

1.2.2 Learning Complexity to Guide Light-Induced Self-Organized Nanopat-
terns

In the context of physics-guided machine learning, the task is often to solve the inverse problem
by incorporating physical information to guide learning. In many applications, however, this is
not feasible due to severe constraints in the quantity of data, lack of access to initial conditions,
incompleteness of the physical model, among others. In this case, a combination of methods is in
order, and even so success is not guaranteed. In the case of self-organization processes, we show
that because complexity decreases in time, we can tackle the inverse problem under severe data
constraints. This, in turn, provides deep physical insights with respect to the underlying physical
process, and opens the door to automatic exploration of the solution space.

Contributions

We solve the inverse problem for femtosecond laser-induced nanopatterns on monocrystalline (100)
Nickel by integrating physical information in the form of the Swift-Hohenberg equation, which is an
archetypal model of type I-s pattern formation and a model of Rayleigh-Bénard convection. We do
so under severe data constraints, and in the fundamental absence of dynamical data, which allows
us to validate the hydrodynamic nature of the novel patterns observed in Nickel upon irradiation,
and opens the door to automatically exploration of pattern space. In unpublished work, we also
propose a novel physical mechanism for pattern formation, based on the two temperature model,
extending the work in [Rud+20] to the first picoseconds before thermalization.

4More generally, Lipchitz continuous, although the paper focused on Neural Networks.
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This line of research combines methods and techniques in physics and in machine learning. As
research at the intersection between two fields of research, it could be perceived by the community
as ”jack of all trades, master of none”. Instead, the paper led to two publications, each focusing on
the Physics and on the Machine Learning aspect:

• Brandão, Eduardo, Anthony Nakhoul, Stefan Duffner, R. Emonet, Florence Garrelie, Amaury
Habrard, François Jacquenet, Florent Pigeon, Marc Sebban, and Jean-Philippe Colombier.
”Learning Complexity to Guide Light-Induced Self-Organized Nanopatterns.” Physical Review
Letters 130, no. 22 (2023): 226201.

• Brandão, Eduardo, Jean-Philippe Colombier, Stefan Duffner, Rémi Emonet, Florence Gar-
relie, Amaury Habrard, François Jacquenet, Anthony Nakhoul, and Marc Sebban. ”Learning
PDE to model self-organization of matter.” Entropy 24, no. 8 (2022): 1096.

1.2.3 Is my neural Net Guided by the MDL principle?
The answer is ”yes”. The Minimum description length principle, which was introduced by Rissanen
in the late 1970s, can be seen as a formulation of Occam’s razor: from a set of competing hypothesis,
choose the simplest. Specifically in Machine Learning: choose the model family that provides the
simplest description of the data, comprising the model itself. In spite of the intuitive attractiveness
of this formulation, there remains the conceptual difficulty in how to measure the complexity of the
model.

Contributions

We propose a formulation of the MDL principle that addresses the aforementioned conceptual
difficulty, by formulating it in terms of signal and noise in the training data as defined by the task
itself. By formulating MDL in this way, we are also able to resolve a number of technical difficulties
regarding its application, and predict the distribution of the local Jacobian spectrum of Neural
Network classifiers trained according to the MDL principle. Following closely the experimental
setting in [Zha+17], we show experimentally that Jacobian spectra for different model types and
different data sets do agree with predictions, and thus provide indication that Neural Networks do
follow the MDL principle.

This line of research led to a publication studying the dynamics of learning of Neural Networks,
in the following conference paper:

• Brandão, Eduardo, Stefan Duffner, Rémi Emonet, Amaury Habrard, François Jacquenet,
and Marc Sebban. ”Is My Neural Net Driven by the MDL Principle?.” In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp. 173-189. Cham:
Springer Nature Switzerland, 2023.
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Chapter 2

Entropies and measures of
complexity

2.1 Introduction: complexity of measures of complexity
How complex is a square? Is it more or less complex than a circle? The latter seems to be intuitively
simpler but both are balls, respectively for the l1 and for the l2 distances on the plane. How complex
is a cloud on a summer day? Is it more or less complex than a fractal that looks like a cloud on
a summer day but which is generated using a simple deterministic program on a computer? The
latter seems to be intuitively simpler but the former is arguably also generated by another simple
deterministic program: physics. How complex is the set of all sequences that can be written by a
computer? How complex is the set of all sequences that can be generated by physics? How do they
compare?

To summarize, the previous paragraph is intended to show that complexity is a deep cross-
disciplinary topic. I should know that because I wrote it. But it seems to be intuitively much
more complex than the summary that was just provided. For once, it is much longer, running at
688 characters including spaces, whereas the summary is only 93 characters long. But although
Einstein’s On the electrodynamics of moving bodies [Ein05] is 31 pages long in its original version,
it seems unreasonable to claim that it it less complex than 32 pages of the letter ”o”. Why?

We shall provide an answer to some of these questions in the sequel, but the fact remains that
complexity is complex to define. Indeed, taking into account the previous discussion, it should be
no surprise that to date, no general and widely accepted means of measuring complexity exists. On
the contrary, the number of measures of complexity are legion ([Edm97] alone cites 386 different
measures of complexity), and their justification often lies on their ability to produce intuitive results.

There is some regularity to these measures, however, as most can be seen as approximations or
estimates of a few fundamental types. [Ben18] for example, divides measures of complexity in those
which are based on function and those based on structure. In [Gra12], the difficulty in providing a
single, all-encompassing definition of complexity is seen as fundamental. There cannot be a single
measure of complexity, not because we have not been able to find it, but because it depends on
what the observer is interested in computing. This subjectiveness is regarded as fundamental, much
as in Quantum Mechanics, for example. A taxonomy based on task is proposed instead.
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In this work, for the purpose of systematization, we shall adopt Lloyd’s taxonomy of complexity
[Llo01] which also adopts a task-based approach, but further organizes measures of complexity
into three main axes: (i) difficulty of description, (ii) difficulty of generation, and (ii) degree of
organization.

We shall be interested in measures of complexity which are applicable to self-organization and
pattern formation, more specifically to the recently discovered ultrafast laser-induced nanopatterns
described in [Rud+20; Nak+21a] and which, we showed recently by using physics-guided machine
learning techniques in [Bra+23; Bra+22], can be modeled by the Swift-Hohenberg equation, which
is a maximally symmetric model of pattern formation.

The goal is not to provide a definitive measure of complexity in this case, which we already
argued is impossible to provide. Rather, our investigation will follow Bennet, who functionally
defines complexity in this setting as ”whatever increases when something self-organizes” [Sha01].
In our case, ”something” are the laser-induced nanopatterns, and which we shall use as test-bed for
appropriate measures of complexity.

The program is as follows: we begin by introducing Lloyd’s taxonomy and provide a general
overview of the complexity measures used in this thesis, integrating them within this system. At
the basis of all the measures used in this thesis, are the notions of Shannon entropy and Kolmogorov
complexity. We shall strive to provide, as much as possible, a self-contained primer that introduces
the notions that will be used in the fundamental notions of complexity: Shannon entropy and
Kolmogorov complexity, which we hope will be useful to physicists. These will serve as a basis
to introduce and examine a number of reasonable measures of complexity found in the literature,
propose a few generalization that we believe to be relevant for our context, and apply them to the
2-dimensional patterns described in [Abo+20] and to the Swift-Hohenberg equation.

One of the main difficulties that we encounter is that the measures above turn out to be measures
of ”disorder” or ”information” rather than measures of ”complexity” (in the intuitive sense). This is
an important problem that we shall examine in Section 2.4. Regarding this point, we shall originally
propose a compression-based measure of complexity, which we call Intensive Lempel-Ziv complexity.
To our knowledge, this is the first measure of this kind that is not distributional based.

Another important problem in the literature is the absence of a canonical measure of complexity
for the evolution of multidimensional field. To address this difficulty, we propose a novel measure
of disorder and associated complexity Taylor entropy and Taylor complexity, the former being a
natural generalization of Permutation entropy to the multidimensional case and which takes local
information into account.

2.2 Three axes of complexity
Lloyd measures complexity along three different axes [Llo01]: (i) difficulty of description, (ii) diffi-
culty of generation, and (iii) degree of organization.

2.2.1 Axis 1: Complexity as difficulty of description
The first axis of Lloyd’s taxonomy measures complexity by difficulty of description. It is the most
fundamental of the three axes, as it lays the foundations for the other two.

Shannon entropy A description is essentially a way to identify an object uniquely amongst
other objects. If we attempt to do so based on the relative likelihood of observing the object in
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comparison to those in a previously agreed upon set, then the only reasonable notion (cf 2.3.3) is
Shannon entropy. In this approach, which can be regarded as either probabilistic or combinatorial
in nature [Kol65], the measure that we obtain can be seen as quantifying the degree of uncertainty
in predicting an outcome or, conversely, as a measure of how much of that uncertainty we lose when
performing a measurement. That quantity is the information, and Shannon entropy if a measure
thereof.

Assigning a precise meaning to uncertainty can be done in different ways. In Shannon’s case,
information theory is essentially an engineering theory1, and uncertainty is measured in number of
relays. As described by Shannon, entropy is the answer to the following question: how many relays
does a receiver need on average in order to identify a received message amongst a set of pre-defined
messages, each with a possibly different probability of being observed? Other ways to assign a
meaning to this uncertainty lead to generalizations of Shannon entropy: Rényi entropy and Tsallis
entropy, which we present, respectively, in Sec. 2.3.5 and Sec. 2.3.4.

However uncertainty may be quantified: it is uncertainty with respect to what? We can apply
Shannon’s ideas to different types of messages, or even to different aspects of the same message2,
which will in turn correspond to uncertainty with respect to the relative likelihoods of different
things. For example, as we shall illustrate by applying them to different SEM images of the laser-
induced nanopatterns on the surface of monocrystalline Nickel (which will be the topic of Chapter 3),
the power and phase spectrum of an images. But the same ideas can also be applied to the letter
frequencies of the English language, etc. The significance of this measure of complexity is clearly
different in each of these cases but an engineering theory of relays should not concern itself with
the meaning of the messages. Each message should simply be identified by said relays, irrespective
of their individual nature. In the words of Shannon [Sha48]:

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the messages
have meaning; that is they refer to or are correlated according to some system with
certain physical or conceptual entities. These semantic aspects of communication are
irrelevant to the engineering problem. The significant aspect is that the actual message
is one selected from a set of possible messages. The system must be designed to operate
for each possible selection, not just the one which will actually be chosen since this is
unknown at the time of design.

Kolmogorov complexity But one can of course think of many situations where semantic aspects
of communication or correlations ”according to some system with certain physical or conceptual
entities” are important. One such case is individual message complexity. Intuitively, some messages
are clearly more complex than others. First, we note that quantifying the complexity of individual
messages cannot be meaningfully done in the context of Shannon’s engineering theory of relays:
for the number of relays that takes to identify a message does not depend on the content of the
message itself.

Defining complexity of an individual message cannot be done in the void. Doing so requires that
we appeal to the relationship between the message and ”certain physical or conceptual entities”.
These need to be sufficiently general that they can be used in as many situations as possible:

1An engineering theory with far-reaching conceptual implications, which Shannon certainly did not miss!
2E.g. some function of the message.
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ideally, we would like to be able to compare the complexities of the human genome and Beethoven’s
Symphony No. 9.

The idea is to describe the object based on some sufficiently general (”Universal”) way. Doing
so, we are arguably identifying the object ”intrinsically”. If we measure difficulty of identification by
the length of this description, then we obtain what is known as Kolmogorov complexity or algorith-
mic complexity, an idea that was developed independently by Solomonov [Sol64], Chaitin [Cha69]
and Kolmogorov [Kol65]: the shortest description length amongst all computable descriptions (cf.
Sec. 2.3.1).

Similarly to Shannon entropy, we can measure Kolmogorov complexity of different aspects of
the same object. Deciding which aspect is important for the problem at hand is of course crucial.

A major difficulty with this approach is the incomputability of Kolmogorov complexity. The
most common way around this problem is to restrict the universality of the law in some fashion.
If we do so dramatically and in a specific case (but still recovering Kolmogorov complexity asymp-
totically), leads to Lempel-Ziv (cf. 2.6.5). Choosing to do so in a more flexible way, we obtain
Stochastic complexity (cf. 4.3.5). We shall examine both approaches, the latter with special care
as it led to one recent publication where we propose a generalization measure for neural network
classifiers that is based on the Minimum Description length principle (where description length is
known as Stochastic complexity).

As we shall see, complexity in the statistical sense and in the individual message sense are
related: as we shall see, Shannon entropy can be recovered as the expectation of Kolmogorov
complexity in a number of interesting cases. Remarkably, there is no such result for either Rényi
entropy nor Tsallis entropy [Tei+11].

Order vs. complexity The problem with both Shannon’s and Kolmogorov’s approaches is that
they are arguably measures of order or information rather than measures of complexity. Shannon
entropy being a measure of uncertainty implies that it is maximal for probability assignments
which, based on the principle of indifference assign the same probability to every outcome. Most
of us would arguably describe a set of n samples from the corresponding distribution as being
”disordered” rather than complex.

Similarly, if an individual message cannot be described succinctly using a sufficiently general
”universal” way, then most of us would call it disordered rather than random. To see this, consider
that most objects must be complex, as there is simply not enough space at the bottom: assume
that an n-bit object can be compressed by at least k bits. There are 2n objects with n bits and
the number of compressed objects is 1 + 2 + 4 + · · · + 2n−k = 2n−k+1 − 1. The probability that
an object can be compressed by more than k bits is thus approximately 2−k+1. This probability
quickly becomes exceedingly small. With k = rn, where r is the compression rate, one sees that
the probability that a 100 bit string can be compressed by more than ten percent ( r = 0.9) is only
2−8: 99.61% of all 100 bit strings cannot be compressed by more than 10%.

Hence, an object that cannot be simplified is in the majority of the possible strings, and we
would characterize the great majority of strings as being disordered rather than complex. Hence,
as Shannon entropy, complexity in the Kolmogorov (incompressibility) sense seems to correspond
to disorder rather that intuitive complexity.

Strings that one would characterize as complex show some sort of regularity, but are not per-
fectly ordered. They seem to be neither totally ordered nor totally disordered, the maximum of
complexity occurring somewhere in the middle. For a given measure of disorder D, this is most
simply constructed by taking D(1 − D), but we shall examine in Sec. 2.4 a more sophisticated
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measure, where (1−D) is replaced with a measure of dissimilarity[LMC95].

2.2.2 Axis 2: Complexity as difficulty of generation
The second axis of Lloyd’s taxonomy of complexity is difficulty of generation. Although we shall
not be treating this approach in this thesis, we mention what is arguably its a key example, Ben-
net’s Logical Depth [Ben88]. Simply put, logical depth also looks at objects in terms of universal
descriptions. But rather than measuring complexity by how long the minimal description is, one
looks at how much time that description needs to be computed. Like others before it, this approach
is physically motivated: extant physical objects must be produced efficiently, otherwise in all like-
lihood they would not be observed. In terms of self-reproducing objects the argument is even more
pertinent, as competition by resources means that objects that we observe must be more efficient
than others at producing the same structure. If there would be two possible approaches, the one
taking more time would quickly overwhelm the one that took longer. As Kolmogorov complexity,
logical depth is incomputable.

2.2.3 Axis 3: Complexity as degree of organization
The third axis of Lloyd’s taxonomy of complexity is the degree of organization. On the one hand,
this can be measured by the relationship between the different parts of the object, which is typically
measured in terms of either mutual information or self-correlation (cf. Sec 2.6.4) or its Kolmogorov
analogue (cf. Normalized compression distance for a computable approximation (2.6.12)). On
the other hand, one can examine the degree of organization in the Dynamical system sense. In
our illustration, we focus on a measure of chaos, the chief example thereof being Metric entropy
or Kolmogorov-Sinai entropy of a dynamical system. Here too, incomputability, motivates the
introduction of approximations of this measure, such as Permutation entropy (cf. Sec. 2.5.3), which
has the added advantage that can be applied even in presence of noise. As we shall see, it does not,
however, generalize straightforwardly to a multidimensional setting. To address this difficulty, we
shall define and apply novel measure of organization applicable in the multidimensional case, that,
since it depends on the spacial gradients, is particularly relevant in the case where the field results
from a dynamical process.

2.3 Measures of complexity: axis 1
We shall now define and illustrate, when possible, using the SEM images discussed in Chapter 3 a
number of measures of complexity.

2.3.1 Kolmogorov Complexity
The structure of the following argument can be summarized as follows: (i) Turing machines provide
a model for computability: each Turing machine can be associated with a certain (partial) function,
which is called computable. The Church-Turing thesis asserts that functions that can be effectively
calculable by humans are computable. (ii) there are Turing machines that can simulate the behavior
of any other Turing machine. These machines are special as they provide a universal mean of
computation. (iii) since I can humanly generate any finite string x, so can a universal Turing
machine T . The length of the smallest self-delimited prefix input to the machine that generates x is
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called the Kolmogorov complexity (iv) This length of this input is at most a (potentially enormous)
constant from the Kolmogorov complexity with respect to another machine, the constant being the
cost of simulating the other machine (which is a partial function, and hence can be simulated by
T ; asymptotically for very long strings, the two lengths coincide.

This is a brief overview of Kolmogorov complexity, that we present for completeness. For an
extensive exposition, please refer to [LV13].

Turing Machine as a model of computability

A Turing Machine [Min19] T consists of a finite program called the finite control, which can move
and write symbols on a linear list of cells called a tape using a head. The finite control consists of a
finite number of states Q̃ = {q0} ∪Q, with Q = {q1, . . . , qn}, and the head can write either 0, 1, or
B on the tape. Computation proceeds in discrete time steps starting from an initial configuration
in which the machine is in the start state q0, and the head is positioned over a special ”start cell.”
To the right of such a cell, there is a certain number of cells containing a sequence of 0 and 1, called
the input. All other cells on the tape are blank (B). Computation consists of the following actions:

1. The machine scans the tape for the symbol directly under it.

2. The machine overwrites it with either {0, 1, B}.

3. The machine shifts the head one cell left or right.

4. The machine assumes a state qi from Q.
Items 2 and 3 are called operations.
The machine is constructed in such a way that it behaves according to a set of rules, consisting

of quadruples (qt, st, ot+1, qt+1), where t designates the current time step, qt ∈ Q̃ is the current
machine state, st is the symbol under scan, ot+1 ∈ {0, 1, B, L,R} is the operation to perform,
and qt+1 is the new state after the operation. The machine T is deterministic, in the sense that
(ot+1, qt+1) = f(qt, st). Importantly, the machine can halt if it reaches a state (o, q) for which there
is no associated rule. Deterministic Turing Machines can be identified by this mapping.

Computability Let ϕ : A → B be a function. Then ϕ is a partial function if, for each x ∈ A,
either ϕ(x) ∈ B, in which case we say that ”x is a value of ϕ”; or ϕ(x) is undefined. If every
x ∈ A is a value of ϕ, then ϕ is called a total function. Otherwise, it is called a strictly partial
function [Min19]. Every Turing Machine can be associated with a partial function. We can associate
each Turing Machine with a partial function from n-tuples of integers onto N in the following sense:
we take the input as xn = (x1, . . . , xn), where xi ∈ {0, 1}∗ and write it on the tape in self-delimiting
form 1l(x1)0x11

l(x2)0x2 · · · 1l(xn)0xn; and take the output as the maximal binary string (bordered
by blank cells) written on the tape when the machine halts. Partial functions that can be associated
with Turing machines in this way are called partial computable. If T halts for every input, we call
the partial function that is associated with it total or computable.

Kolmogorov complexity as description length by a Universal Turing Machine We call
a Universal Turing Machine (UTM) a Turing machine that can simulate the behavior of any other
Turing machine, in the following sense: it takes as input a description of another Turing machine
and an input for that machine and simulates its execution. The length of the smallest self-delimited
prefix input to the machine that generates x is called the Kolmogorov complexity
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Definition 1. Kolmogorov complexity, denoted K(x), is a measure of the complexity or information
content of a string x relative to a Turing machine. It is defined as follows in terms of a Universal
Turing Machine:

K(x) = min{|p| : T (p) = x}

where K(x) is the Kolmogorov complexity of x relative to the Universal Turing Machine T , p is the
shortest program that generates x when run on T , and |p| is the length of program p.

Relative to a Universal Turing Machine T , Kolmogorov complexity differs from one Turing
machine to another by at most a constant. This constant is essentially the length of the program
that encodes the other Turing machine (which is a partial function, and hence can be simulated by
T ). Asymptotically, as the length of the strings increases, the cost of simulating the other machine,
which is constant, becomes less important. For very long strings, asymptotically, the two lengths
coincide. One can define Kolmogorov complexity analogs of information theoretic quantities, using
string concatenation in the place of joint distributions.

Unfortunately, Kolmogorov complexity is not computable, which motivates a number of approx-
imations that we discuss further below:
Theorem 2.1. The complexity function K is not computable; moreover, any computable lower
bound for K is bounded from above.
Proof. Assume that k is a computable lower bound for K which is not bounded from above. Then
for any m, we can effectively find a string x such that K(x) > m, since its lower bound is computable
and not bounded by above. Consider now f defined as

f(m) = the first discovered string x such that k(x) > m

Note that by definition, K(f(m)) > m; on the other hand, f is a computable function and
therefore K(f(m)) ≤ K(m) + O(1), since the output of f on a universal Turing machine can be
simulated by simulating f at a fixed cost, together with the cost of simulating the input; and the
latter is lower-bounded by the Kolmogorov complexity of the input. But since K(m) ≤ |m|+O(1),
we have that m ≤ |m| + O(1) which is impossible since a natural number is not smaller than the
length of its binary representation (n ≤ ⌈log2(n)⌉)

2.3.2 Boltzmann-Gibbs entropy
In the context of statistical mechanics, one typically considers ensembles, that is copies of the same
system, that are compatible with some measurement or property, called a macrostate. The precise
definition of each copy of the system specifying all the positions and momenta x⃗i, p⃗i of each of its
composing particles3 i = 1 . . . N is called a microstate.

To each macrostate one can associate a probability distribution, which assigns to each of the
microstates j a certain probability pj

4. In the canonical ensemble, the system is in thermal equi-
librium with a heat bath at temperature T and the probability of the system being in microstate j
with energy Ej is given by

pj =
1

Z
e−Ei/kBT ,

3The system is usually supposed composed of N monoatomic particles.
4More exactly, a Liouville function WN (x⃗1, p⃗1, . . . , x⃗N , p⃗N , t), which gives the probability density in the phase

space of the system

15



CHAPTER 2. ENTROPIES AND MEASURES OF COMPLEXITY

where kB is the Boltzmann constant and Z is a normalization constant called the partition function.
Then we define the Gibbs entropy as

SG = −kB
∑
i

pi ln pi. (2.3.1)

If the total energy of the system is specified, i.e. the macrostate is specified by the temperature and
energy, all pj are equal to 1/W , the number of possible microstates with energy E (the ensemble
of which is called the microcanonical ensemble. In this case, Boltzmann’s entropy S is defined as a
measure of the number of microstates W accessible to the system in the given macrostate:

SB = kB lnW (2.3.2)

. Specifically, Jaynes showed in [Jay65] that in the canonical ensemble, the difference in Gibbs
entropy over a reversible path coincides with that obtained via Clausius’ definition 1.1.2 (and hence
in the case of an ideal gas with uniform density and temperature and no inter-particle forces, with
the difference in Boltzmann entropy).

This allows him to show the second law: the argument is as follows. The canonical distribu-
tion minimizes Gibbs’ entropy for a given mean energy, over all distributions compatible with it.
Recalling that at the canonical distribution, Gibbs entropy and Clausius’ coincide, it follows that
over all ensembles with the same mean energy, Gibbs entropy SG is a lower bound of Clausius’ SC

SG ≤ SC .

Now if a system begins at complete thermal equilibrium and hence macroscopic quantities
can be represented by the canonical distribution, experimental and Boltzmann entropy coincide
SG(A) = SC(A). If one moves the system adiabatically from A to B using e.g. a piston (no heat
flows), then by Liouville’s theorem, because the energy is constant, the phase space distribution
does not change, and hence neither does Gibbs’ entropy SG(B) = SG(A).

Now wait until the system is allowed to come once more to equilibrium with a new experimental
entropy SC(C). At this new state, the system is no longer necessarily represented by the canonical
distribution. But since the mean energy did not change, the new ensemble is still compatible with
the initial mean energy, which was lower bounded by the Gibbs entropy SG(A) ≤ SC(C). But since
SG(A) = SC(A) by assumption, we have for adiabatic paths

SC(A) ≤ SC(C),

which is the Second Law of thermodynamics.
To relate this derivation with the discussion in the introduction regarding entropy and knowl-

edge, note that in going from A to C, the knowledge of the mean energy did not change (by
construction and Liouville’s theorem): hence, the Gibbs entropy remains the same. But how well
that mean energy actually characterizes the system did: we lost a great deal of knowledge regard-
ing the microstates as the system evolved, and this is reflected in the non-decrease in Clausius’
entropy5.

5See also [Jay92] for an interesting thought experiment with isotopes that shows that this entropy is objective but
still dependent on a state of knowledge.
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2.3.3 Shannon entropy
Definition 2 (Shannon entropy). Let X be a discrete random variable with alphabet X and prob-
ability mass function p(x) := Pr(X = x), x ∈ X . Then we define the Shannon entropy (or simply
entropy) as [CT12]

H(X) = −
∑
x∈X

p(x) log p(x) = EX

[
log

1

p(x)

]
(2.3.3)

where the logarithm is taken in base 2 and we set 0 log 0 = 0 throughout this work.

Interpretations of Shannon entropy Since the logarithm is a strictly increasing function,
log 1

p(x) can be seen as a measure of the surprise of outcome x, and entropy can be interpreted as
the expectation of this measure of surprise. Another fruitful interpretation of the Shannon entropy
can be given in terms of the expected length of encoding (intuitively, a description) of samples from
X. In fact, the Kraft-Macmillan inequality [CT12] show that the expected length for any uniquely
decodable code C of a random variable X over an alphabet of size D is greater than or equal to
HD(X), the Shannon entropy calculated in base D, with equality holding iff D−li = pi.

Axiomatic definition of Shannon entropy

Shannon Entropy can be characterized axiomatically. There are several ways to do so, but we shall
present two, the first due to Shannon himself [Sha48] who actually states (Section 6, page 50):

This theorem, and the assumptions required for its proof, are in no way necessary for
the present theory. It is given chiefly to lend a certain plausibility to some of our
later definitions. The real justification of these definitions, however, will reside in their
implications.

and the second due to Khinchin [AK57]. There are similar characterization of Tsallis entropy and
Rényi entropy [Abe00]. Other axiomatic characterizations of Shannon entropy exist: in [BFL11],
for example, it is shown that Shannon entropy is the only measure of information loss that composes
well, mixes well, and is robust.

Khinchin axioms Khinchin proves that three properties uniquely define entropy up to a multi-
plicative constant in a theorem that we adapt below:

Theorem 2.2. Given a discrete random variable X with distribution p1, p2, · · · , pn. Let H(p1, · · · , pn)
be continuous with respect to all its arguments and have the following properties:

1. For any given n, the function H(p1, · · · , pn) takes its largest value for X uniformly distributed
pi =

1
n , ∀i

2. H(X,Y ) = H(X) +H(Y |X)

3. H(p1, · · · , pn, 0) = H(p1, · · · , pn)
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Then

H(p1, p2, · · · , pn) = −λ

n∑
i=1

pi log pi, (2.3.4)

where λ is a positive constant.

Note that we define H as a continuous function of a distribution measuring the amount of
”choice”, ”disorder” or ”ignorance”. The first property states then that among all distributions,
the one with equally probable states is maximally ”disordered”. The third property states that in
estimating ignorance, we do not consider impossible events.

Recalling that p(x, y) = p(x)p(y|x)6 and that H(Y |X) :=
m∑
i=1

p(xm)H(p(y1|xm), · · · , p(yn|xm)),

or, more concisely, H(Y |X) :=
m∑
i=1

p(xm)H(Y |X = xm), we can write the second property as

H (p(x1)p(y1|x1), · · · , p(x1)p(yn|x1), · · · , p(xm)p(y1|xm), · · · , p(xm)p(yn|xm))

= H(p(x1), · · · , p(xn)) +

m∑
i=1

p(xi)H(p(y1|xi), · · · , p(yn|xi))

Proof. The property is essentially that of the uniqueness of the logarithm. With H(n) the entropy
of uniform random variable with n elements, and H(n, 0) the entropy of random variable with
n + 1 elements, n of each equally probable and the remaining impossible, from the first and third
property, we have that H(n) = H(n, 0) ≤ H(n+ 1), so H(n) is a non-decreasing function of n.

Shannon’s axioms Shannon proves uniqueness of entropy based on similar properties. Rather
than deriving monoticity, Shannon requires it axiomatically. The spirit of the properties, however,
is similar:

1. H should be continuous in the pi.

2. If all the pi =
1
n are equal, then H(n) should be a monotically increasing function of n.

3. If a choice is to be broken into two successive choices, the original H should be the weighted
sum of the individual values of H

To see how the last property, which is known as the coarse-graining property because it prescribes
how to the entropy at two different scales is calculated, is the same as the second property above,
consider a pair of random variables (first choice, second choice), which have the following joint
distribution for picking left/right.

XY r l X

r 1
6

1
3

1
2

l 0 1
2

1
2

6In this section, p(x) is short for pX(x) or P (X = x) and it denotes the probability that the random variable X
takes the value x. Abusing notation, p(x, y) is short for pXY (x, y), etc.
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Shannon implicitly assumes hypothesis 3 above, and writes

H(
1

2
,
1

3
,
1

6
, 0) = H(

1

2
,
1

2
) +

1

2
H(

2

3
,
1

3
)

In the language of property 2 above, we have H(X) = H(1/2, 1/2) and H(Y |X) = 1
2H(1) +

1
2H( 23 ,

1
3 ). So Shannon really is assuming that H(1) = 0, which squares up quite well with the

interpretation on H as a measure of choice. The proof is now quite similar and is based on the
uniqueness of the logarithm. The interested reader may find a proof in [Die69].

2.3.4 Tsallis entropy
Tsallis entropy was introduced in [Tsa88] as a generalization of the Boltzmann-Gibbs entropy:

Definition 3 (Tsallis entropy). Given a discrete random variable X with probability mass function
pi and q any real number, the Tsallis entropy of X is defined as

Sq(X) =
k

q − 1

(
1−

∑
i

pqi

)
(2.3.5)

where q is a real parameter called entropic index and k is a positive constant.

Importantly, in the limit q → 1, k = kB the Boltzmann constant we recover the Gibbs entropy,
as can be shown straightforwardly using l’Hôpital’s rule:

lim
q→1

kB
1−

∑
i p

q
i

q − 1
= lim

q→1
kB

−
∑

i p
q
i log pi
1

= −kB
∑
i

pi log pi

Tsallis entropy is a measure of disorder. To see this, note that7 when when q = 2, we have
S2(X) = 1−

∑
i p

2
i . This is the negative of the probability that independently identically distributed

(i.i.d.) random variables X and Y are not in the same state, that is S2(X) = P (X ̸= Y ). To provide
an intuition as to in what sense this a measure of disorder, we provide two examples, one in the
dynamical system sense, the other in a sense that is more applicable to an SEM image.

Disorder in the sense of dynamical system Let X be a random variable describing a scalar
field at time t resulting from the evolution from some slightly perturbed initial conditions u by
some physical process. Then if Y is an i.i.d random variable, the probability P (X ̸= Y ) can be
approximated by letting a large number N of pairs of fields evolve from slightly perturbed initial
conditions for a long time, and counting the number of times the pairs do not coincide. If the
evolution is very sensitive to initial conditions, then the number of coincidences n is small, and
S2(X) ≈ N−n

N is large. For larger integer q > 0 the intuition is the same, but we now only count
coincidences if they occur in q samples at the same time, a stricter condition. Specifically, if a state
has low probability, then the number of times we observe q coincidences is going to be exceedingly
small. Large q thus weights proportionally more coincidences in high probability states.

7For simplicity, we work in units such that kB := 1
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Disorder in the sense of collection of samples Consider an 8-bit SEM image. Each pixel can
be in one of 256 states u0, . . . , u255. Then 2.3.5 can be approximated by sampling a large number
N of times q -tuples from the image and counting the number of times they are in the same state.
If an SEM image is uniform, then we expect this number to be large. If the image appears to be
disordered, on the other hand, we would expect this number to be small.

Disorder is disorder of something The first definition of disorder depends on symmetries, for
example: we count coincidences after projecting the field onto a certain feature space. The second
notion of disorder is tied to the definition of state. An image that has maximal disorder when
considering states to be pixel values can still be perceptually ordered: coincidence of states in this
case corresponds to coincidence of shapes such as stripes or dots.

Axiomatic definition of Tsallis entropy Similarly to Shannon entropy, Tsallis entropy can be
derived axiomatically [Abe00]. The main difference with respect to the Shannon entropy is that
Tsallis entropy is no longer necessarily extensive. Specifically, given independent random variables
X,Y we have

Sq(X,Y ) = Sq(X) + Sq(Y ) + (1− q)Sq(X)Sq(Y ) (2.3.6)

The system is called superadditive or subadditive if respectively, q < 1 or q > 1.

Determining the entropic index q As we saw above q determines the sensitivity for low
probability events for a given problem. It is typically determined by fitting data to theoretical
distributions [GL04]. In the absence of a theoretical distribution, there is no standard procedure
for setting it. For image thresholding applications it is commonly set by eye [Ram+16]. In the same
paper, the authors set q by maximizing q-redundancy Rq(X) = 1− Sq(X)

Smax
q

, where Smax
q = k 1−Ω1−q

q−1

is the maximum Tsallis entropy for a random variable with Ω states. In the same lines, q has also
been set in the context of anomaly detection in such a way that it maximizes the difference between
normal and abnormal behavior [ATT12].

Importantly, there is a relationship between entropic index q and sensitivity to initial conditions
at the onset of chaos [GT04].

2.3.5 Rényi entropy
Entropy does not need to have the coarse-graining property: this is precisely the motivation in
[Sha06], where in page 49, in the context of Khinchin’s axiomatic approach, Rényi entropy is
introduced via a relaxation of the coarse-graining property (axiom 2 in Khinchin’s characterization).

Definition 4 (Rényi entropy of order α). The Rényi entropy of order α ≥ 0, α ≠ 1 of a discrete
random variable X is defined as [Rén+61]

Sα(X) =
1

1− α
log

(
n∑

i=1

pαi

)
(2.3.7)

where pi is the probabilities of the ith outcome of X and the logarithm is commonly taken to be base
two.
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When α → 0, Rényi entropy becomes the log-cardinality, also known as Hartley entropy of X.
When α → 1 we obtain the Shannon Entropy, as can be shown using l’Hôpital’s rule:

lim
α→1

log
∑

i p
α
i

1− α
= lim

α→1
−
∑

i p
α
i log pi∑
i p

α
i

= −
∑
i

pi log pi,

and when α = 2 we obtain collision entropy (often just called ”Rényi entropy”), which measures the
probability that a pair of samples from X are identical. As in the case of the Tsallis entropy, Rényi
entropy can thus be interpreted in terms of probabilities of coincidences, specifically α-coincidences
(on a log scale).

Note that unlike Tsallis entropy, Rényi entropy is additive. If X,Y are independent random
variables

Sα(X,Y ) = Sα(X) + Sα(Y ) (2.3.8)

2.4 Complexity versus disorder
It has been argued in [LMC95] that the entropic measures above capture the notion of disorder
rather than complexity.

Complexity should be a product of entropy and a measure of disequilibrium, which is essentially
some form of distance to the maximum entropy distribution such as the Jensen-Shannon Divergence
DJS(·, ·):

DJS(X,Y ) =
1

2
(DKL(X||M) +DKL(Y ||M)) (2.4.1)

where M = 1
2 (X + Y ) and DKL(·||·) is the Kullback-Leibler divergence.

In [Ros+07] the authors extend this notion to define a statistical complexity measure that is:

1. Able to grasp essential details of the dynamics.

2. Intensive, i.e., does not depend on the size of the system.

3. Capable of discerning among different degrees of periodicity and chaos.

This is achieved by defining CJS(X), the intensive statistical complexity of random variable X:

CJS(X) = α
DJS(X,X∗)H(X)

H(X∗)
(2.4.2)

where X∗ is such that pX∗ is the maximum entropy distribution (the uniform distribution in this
case) and α is a constant that sets complexity to [0, 1]. Since the properties of KL-divergence imply
DJS(X,Y ) = H(M)− H(X)+H(Y )

2 , replacing in (2.4.2), we obtain

CJS(X) = α

(
H(X+X∗

2 )H(X)

H(X∗)
− H(X)

2
− H2(X)

H(X∗)

)
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Figure 2.1: The definition of complexity presented in [LMC95] with archetypal examples ”crystal”
(simple but ordered) and ”gas” (simple but disordered) on the x-axis.
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Note the H(X+X∗

2 ) term that complicates dependency in what would otherwise be essentially, up
to axes translations, H2. The intensive character of the measure of complexity comes via division
by H(X∗) and the fact that the distribution being considered (the distribution of ordinal patterns
used to compute permutation entropy is the case of [Ros+07])) is an intensive quantity.

We shall use this notion to define intensive statistical complexities associated with Rényi and
Tsallis entropy, which we call, respectively, Rényi and Tsallis complexity. To do so, we replace
the Jensen-Shannon divergence with their respective Rényi and Tsallis analogues, replacing the KL
divergence in DJS , respectively, by the Rényi divergence [VH14]

Dα(P ∥ Q) =
1

α− 1
log

(∑
x

P (x)αQ(x)1−α

)
(2.4.3)

and q-Divergence [Tsa88]

Dq(P ∥ Q) =
1

q − 1

(∑
x

P (x)qQ(x)1−q − 1

)
. (2.4.4)

We shall also, in Section 2.6.5, originally propose Intensive Lempel-Ziv complexity (cf. eq. (2.6.13)),
based on a compression-based measure of disequilibrium.

2.5 Measures of complexity: axis 3
2.5.1 Complexity of a dynamical system
Before we begin by defining a complexity measure we provide a short dynamical systems primer
for completeness. A concise but very clear treatment can be found in [San96], who cites [GH13] for
details.

Dynamical systems primer

A dynamical system is a set of functions given by an equation expressing how they change. This
change can be either discrete or continuous:
Definition 5 (Continuous-time dynamical system). An n-dimensional continuous-time autonomous
smooth dynamical system is defined by the differential equation

ẋ = F (x) (2.5.1)

where ẋ = dx
dt , x(t) ∈ Rn is the state vector at time t, and F : U → Rn is a Cr function (r ≥ 1) on

an open set U ⊂ Rn.
Definition 6 (Flow). We say that the vector field F generates the flow f : U × R → Rn, where
f t(x) := f(x, t) is Cr defined

˙f t(x) = F (f t(x)), ∀x ∈ U, t ∈ R (2.5.2)
Definition 7 (Discrete-time dynamical system). A Cr map f : U → Rn on an open set U ⊂ Rn

defines an n-dimensional discrete-time autonomous dynamical system by the state equation
xt+1 = f(xt) (2.5.3)

where xt is the state of the system at time t and f maps to the next state xt+1.
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Complexity of a dynamical system

In the context of a dynamical system, one may wish to quantify the system’s complexity, particularly
its sensitivity to initial conditions. To illustrate this concept, consider a communication problem:
Alice wants to send Bob a string deterministically generated by a dynamical function f from a
certain initial condition. All Alice needs to do is send the initial conditions, because assuming
both Alice and Bob know f , Bob can then generate an arbitrarily long string from it that will
exactly match hers. However, depending on the sensitivity of f to initial conditions, and given
that Alice and Bob cannot communicate the initial condition with infinite precision in finite time,
their generated orbits from slightly differing initial conditions may diverge. One can then ask: how
frequently must Alice resend the initial conditions to Bob to ensure that their generated orbits
never diverge by more than a given tolerance?

If this frequency is calculated in bits per symbol, and under a number of restrictive assumptions
(chiefly ergodicity), the answer to this question defines what is known as the Kolmogorov-Sinai
(KS) entropy (rate) hµ of the dynamical system ẏ = f :

Definition 8 (Kolmogorov-Sinai Entropy). Let (X,F , µ) be a probability space and T : X → X be
a measure-preserving transformation. Given a finite measurable partition α of X, the Kolmogorov-
Sinai entropy hµ(T ) is defined as:

hµ(T ) = sup
α

lim
n→∞

1

n
H

(
n−1∨
k=0

T−kα

)

where H is the Shannon entropy of the partition H(β) = −
∑

b∈β µ(b) log µ(b), and
∨n−1

k=0 T
−kα

denotes the refinement of the iterated pullback of α. [GP83]:

This measure of the sensitivity of the system to initial conditions is unfortunately incomputable
in a practical setting. One then uses the Lyapunov exponents, which are (approximately) com-
putable without ergodicity requirements:

Definition 9 (Lyapunov Exponents). Given a dynamical system y(k+1) = F (y(k)), the Jacobian
matrix Jk at step k is defined as Jk = dF

dy

∣∣
y=y(k)

. The i-th Lyapunov exponent λi is defined by:

λi = lim
L→∞

1

L
log σi

where σi is the i-th singular value of the matrix product JL · · · J1, with Jl evaluated along the orbit
y(k), k = 1, . . . , L. [ER85]

Moreover the following result relates the two measures for ergodic systems:

Proposition 1 (Pesin’s Entropy Formula). For an ergodic system, the Kolmogorov-Sinai entropy
hµ can be expressed as:

hµ =
∑
λi>0

λi

where the sum is taken over all Lyapunov exponents λi that are greater than zero. [Pes77]
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The Lyapunov exponents can be approximated using the local versions: the ith Lyapunov
exponent of the system at L time steps is the logarithm of the ith singular value of the product of
Jacobians of all the intermediate steps from x. The local Lyapunov exponents can be computed
from local data as described in [ABK92], and their sum yields a measure of local Kolmogorov-Sinai
entropy (via a local Pesin’s type formula [ABK91]).

The authors in [CV13] estimate λ1 using a technique introduced in [Ego+00], which essentially
determines the L = 1 Lyapunov exponents, involving only a singular value decomposition of the
Jacobian matrix, and is straightforward to calculate. Interestingly, the authors superimpose the
magnitude of λ1 on a field at a given time and find that the ”complexities” correspond to regions of
large λ1 which peaks when they are about to change and that tend to disappear during evolution.
The distribution of the intensity of these regions could be a measure of complexity. The rationale
for this is that regions that would change a lot during a self-organization process do so because the
are relatively complex.

Kolmogorov-Sinai entropy is traditionally calculated using Shannon entropy, but other entropy
measures like Tsallis or Rényi entropy can also be employed [Sha06]. Different entropy measures
have generally different meanings as well. As discussed in [BS95; Rue89], for example, KS-Rényi
entropies with different parameter are related to the fractal dimension of the attractor.

Estimating KS-Entropy One way to estimate the entropy rate H of a random process X = {Xi}
with values in a finite alphabet A is to use an algorithm like the one proposed by Kontoyian-
nis [Kon+98]. With, for i < j, Xj

i denoting {Xi, Xi+1 . . . , Xj} the algorithm calculates Ln, the
minimum length k such that the sequence Xk−1

0 that starts at time zero does not appear as a
subsequence within the past X−1

−n. Wyner and Ziv showed that Ln grows like (log n)/H in proba-
bility [WZ89], a result later refined to pointwise convergence by Ornstein and Weiss [OW93]. To
account for the dependency on the starting position, an average over different starting positions is
taken. Let Λn

i (X) = Ln(T
iX), where T iX is the translated sequence. It has been shown that

lim
n→∞

1

n

n∑
i=1

Λn
i

log n
=

1

H
,

almost surely and in L1, under a condition known as the ”Doeblin Condition” [Kon+98]. This
condition holds for i.i.d. processes, ergodic Markov chains, and certain non-Markov processes. In
a nutshell, the algorithm takes the mean of the longest run without repeating the past, divided
by the logarithm of the length of the past, and then lets the past extend to negative infinity. A
generalization of this method exists for random fields, as discussed in [Kon+98].

2.5.2 Approximate Entropy
A practical, computable alternative to Kolmogorov-Sinai entropy is Approximate Entropy, which is
its lower bound [DM19; GP83].

To calculate the Approximate Entropy, of a time series of N equally spaced data points u(i),
given a window length m and a filtering level r, we proceed as follows: one constructs n = N−(m−1)
vectors of length m (m-grams), denoted as x(k) = (u(k), u(k+ 1), . . . , u(k+m− 1)). The d(i, j) =
∥x(i)− x(j)∥∞ are then computed, and one counts the number of times the norm changes by
less than r, taking its logarithm, and then computing the mean. This quantity scales with the
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Lyapunov exponents of the system. The Approximate Entropy is obtained by computing the
difference between this quantity for windows m and m+1. This provides a computationally feasible
way to estimate a lower bound for the KS entropy, particularly for the case where the Rényi entropy
form of KS entropy is considered with q = 2.

2.5.3 Permutation entropy
Permutation entropy was introduced in [BP02] as measure of complexity of time series. Unlike other
measures, it is simple to calculate and robust to the introduction of noise. The idea is simply to cal-
culate the entropy of the permutation patterns (called ordinal patterns in the literature [Ley+22]):
using a sliding window of size n, we tally up the permutations that make the time series values
increasing. Dividing by the total number of observations, we get the probability of observing a
certain permutation during the dynamics. Specifically, we have the following definitions:

Definition 10 (Permutation entropy). let {x(t)}t=0...T be a real-valued time series and πn
k the

permutation that places the n elements starting at position k in increasing order. For example, for
a time series {1, 2, 5, 3,−9, 4, . . .}, we have π3

0 = (1, 2, 3) and π3
1 = (1, 3, 2).

Then the permutation entropy of order n ≥ 2 is defined as the Shannon entropy of the distribution
of permutations over the dynamics:

Hperm(n) := −
∑

π∈Π(n)

p(π) log p(π) (2.5.4)

where the p(π) are the relative frequencies of each of the n! permutations

p(π) =

∑T−n
k=0 1πn

k = π

T − n
(2.5.5)

Definition 11. In the conditions of Definition 10, we define the permutation entropy rate per
symbol of order n ≥ 2 as

hn :=
Hperm(n)

n− 1
(2.5.6)

where division by n− 1 comes from the fact that comparisons start at the second value.

A key result is that Kolmogorov-Sinai entropy can be estimated from the permutation entropy
in one dimension [AKK05; BKP02] under the assumption of ergodicity, and indeed in more general
settings by complementing it with a measure of dispersion of trajectories characterized by the same
permutation.

Multidimensional extensions of permutation entropy The extension of permutation en-
tropy to the multidimensional setting is difficult. Whereas in one dimension the order in the
permutation is the natural order induced by that of the underlying field, R), in higher dimensions
there is no natural definition of order. The simplest choice is to simply count the probabilities of
each permutation across all different dimensions [Ley+22]. An extension of this approach, weighted
permutation entropy, is to weight the probability of each permutation by their amplitude variation
across dimensions [Fad+13].
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The idea of including amplitude information, now in the one-dimensional setting, was also used
in [Sun+14], where the authors construct states composed of permutation, amplitude pairs. Rather
than encoding information in probabilities of observing each pair, the authors encode transition
probabilities in the form of a graph, where each node represents a amplitude, permutation pair,
with the connection weight between states representing the probability of transition between these
states. Instead of entropy, as a measure of complexity, the authors use other graph-specific measures.

Again in the multidimensional setting but no longer in the time series context, in [Rib+12] the
authors map images to the complexity-entropy plane defined in [Ros+07]. Essentially, the authors
construct a time series from an image by sliding a square window of side L across it and simply
apply the measure in [BP02]. Note that while the states (squares) built in such a way are unique
and do not depend on the path, it is not clear what is the significance of a permutation of a flattened
2D array. The idea is simple, however, and was applied to images to plot entropy complexity plots
of paintings [SPR18].

Finally, there are extensions using the using the minimum Rényi entropy [ZOR15] rather than
the Shannon entropy to compute the complexity of the ordinal patterns.

2.6 Complexities of SEM images
In what follows we are interested in computing complexity measures of certain two-dimensional
real fields fields u(x, y) := u(x) on a square domain. These fields were produced on the surface of
monocrystalline Nickel 0018 by femtosecond laser irradiation, as described in detail in Section 4.5.1,
and then recorded as SEM images. As mentioned on Section 2.1, we shall be interested in computing
complexity measures of various transforms of such fields f(u), with a particular emphasis on taking
into account local or process information. The main goal of this section is to illustrate measures of
complexity, and to compare and contrast them. We shall examine at least one measure for each of
the axes proposed in Sec. 2.2.

Without loss of generality, throughout our discussion, unless otherwise stated image resolution,
in pixels (512²), as well as the number of gray levels (256) of the SEM images, are fixed.

2.6.1 Some notions of SEM image acquisition
It will now prove useful to discuss some of the details of Scanning electron microscopy, in order to
understand the relationship between observed images and underlying fields. An in-depth treatment
is outside the scope of this thesis, but the interested reader may wish to consult [Rei00] or [Gol+18a].

In Scanning electron microscopy, a sample of material is exposed to an electron probe emitted
from an electron gun. These electrons are absorbed by the material and interact within a drop-
shaped region called the interaction volume. The details of the interaction between matter and
electrons is complex, and depends, amongst other things, on material and topography. This complex
process results in the emission of (amongst others) electrons called secondary electrons, which are
detected by a current detector placed at some distance above the sample.

The secondary electron current emitted from the sample is proportional to the intersection
between sample and interaction volume, which changes with topography. The energy of the beam
also plays a role (see e.g. Fig.[Gol+18b] or Fig. 5 in [Baa+21]).

8The numbers are Miller notation, and indicate that the sample is composed of monocrystalline Nickel, which has
face-centered crystal structure, and that the sample is parallel to one of the faces of cube.
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The signal at the detector at the position of the beam is amplified and converted into a pixel
intensity value, which for the sake of simplicity, we shall assume can take one of 256 values. The
collection of pixel intensities at a grid thus creates an array which is converted to an image file.

This image maps to the geometry of the sample. At the edges, a greater number of electrons can
be emitted since a significant portion of the interaction region is in close proximity to the surface.
At the trenches, fewer secondary electrons may escape and make their way to the detector, as they
may be obstructed along their path. Consequently, the detector behaves like a virtual light source,
making objects with a geometry that is oriented towards the detector appear brighter.

See Fig. 2.2, reproduced from [Sch20], for a schematic representation illustrating this process.

Figure 2.2: Reproduced from [Ara+19], Fig. 21: Interaction volume and contrast mechanism in
SEM. a) Schematic view of the interaction volume of a focused electron beam with a bulk sample.
Different signals are generated which can escape from different depths below the sample surface.
b) Contrast generation in SEM: at different points of a sample geometry different intensities of SE
are detected with edges being bright. If a nanostructure has a comparable size to the interaction
volume it will appear bright as a whole.

It is possible to go beyond this simple relationship and recover actual height information
from SEM images. Unfortunately, most methods to do so crucially depend on multiple image
views[Taf+15], which were unavailable to us. Image height reconstruction can also be achieved
for single images, via sophisticated machine learning models[Hou+22] or expert models[Ara+19]
relying on pre-generated shape databases and Atomic Force Microscopy (AFM) images[BQG86],
which do contain height information.

Most of these models being inaccessible to us, and the accuracy of commercial packages being
disputed[TVV17], we instead make the simple approximation that the intensity of the image is
proportional to the amplitude of the field u. This is true to first order for sufficiently high-energy
beams compared to height of the features this approximation holds, as the intersection between the
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interaction volume and the surface increases with height (see [Ara+19], Fig.2). It is the basis for
the height estimation method in [Ara+19], which provides with good results.

Figure 2.3: Legend reproduced verbatim from [Ara+19], Fig. 1: SE emission sites on the top and
the sidewall of a (1 µm high) step are shown for three acceleration voltages (10, 5, and 3 keV). The
zero-diameter electron beam (with 104 electrons) lands on top of the step, 50 nm away from the
edge. The white dashed lines on the sidewall aid in judging how many electrons can actually be
emitted from a particular depth of the step.

2.6.2 Estimating field amplitude distribution from SEM images
The SEM images available to us were acquired during several experimental sessions. The details
of the image processing vary with session and laser parameters, but typically the highest gray level
value does not correspond to the highest field value, rather to the threshold of the detector, which
saturates at a certain level. SEM images are typically optimized for visualization and hence pro-
cessed to capture the maximum possible dynamic range, by (automatically) setting the maximum
and minimum of each image so that most pixels in the image are represented in the middle range.
This make images more aesthetically appealing, but it also randomly modifies the scale of each im-
age: image gray levels for two different images typically correspond to different detector intensities.
It also saturates the bottom level in the same way as the top level discussed above.

This transformation will of course impact complexity measures which depend on the gray level
histograms. To see how, consider Shannon entropy, which as discussed above, given state of knowl-
edge encoded in the form of a probability distribution, is the mean surprise (a decreasing function
of probability) when observing events which follow that distribution.

To encode knowledge about the amplitude of u, we take its representation as a 8-bit image I
and then build and subsequently normalizes a histogram binning each of the 256 possible pixel
intensity values. We thus obtain a probability mass function pi representing the probability that
one finds the gray level i among the image pixels. Crucially, assuming that image intensity is
proportional to field amplitude, this probability mass function is that of the field amplitudes as
well. The complexity of the field amplitudes can then be characterized by the Shannon entropy of
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the gray levels of the image, which is a proxy for the entropy of the field:

H(I) = −
255∑
i=0

pi log pi.

We note about the entropy of the image gray levels H(I)

1. It is roughly independent of image size

2. It does not take into account local information

3. It is very dependent on the entropy of the saturation

Maxent distribution of the saturated levels Given an 8-bit image (hence 256 possible gray
levels) of size N , assume that there are n < N pixels at the saturated level. If n is large, then
the entropy of the image is low, as the saturated level is a good gray level guess: the image is
unsurprising. But this is an artefact of image acquisition, and cannot correspond to the entropy of
the physical field, for which the intensity is not bounded above by a threshold.

To estimate the entropy of the physical field, we must model the distribution of gray levels above
the threshold. A simple approach is to assume a fixed number of possible gray levels above the
threshold (256 for simplicity). According to the principle of parsimony, assume that each is equally
likely; then according to the coarse-graining property, the entropy of the field is upper bounded by
(1−p255)H(I)+p255(log n), where the term in parenthesis is the entropy of the uniform distribution.
Note that the greater p255, the more the entropy of the saturated part will be important. Also,
note that even if p255 is small, there is always a large enough n that will make the second term
dominate. A more sophisticated model, which we use in this report, is to take an exponential
distribution (which is the maxent distribution with support on the positive reals given mean),
truncated so that the resulting image has 512 gray levels.

p(x|λ, b) =
1
λe

− x
λ

1− e−
b
λ

,

where λ > 0 is the exponential distribution scale parameter and b > 0 is the threshold (that is
0 < x ≤ b). See Fig. 2.4 for a visualization of the results.

All images in this Chapter are thus 9 bits where the degenerate level was resampled from a
shifted truncated exponential distribution, the scale parameter of which is inferred by continuity
(see supplementary material/code).

2.6.3 Complexities of SEM images
In this section, we compute, visualize, and compare several entropies and complexities of SEM
images. Since entropies are measures of complexity associated to representations of states of knowl-
edge given in terms of a probability distribution, we shall endeavour to specify what knowledge is
being encoded. The SEM images that constitute the object of this analysis can often be described in
terms of patterns. We shall therefore focus on the distributions that take into account this notion:
of gray level runs, of Fourier modes, of particular-size patches of the image, for example. After
settling on the encoded knowledge, there remains the actual measure of complexity associated with
this distribution. We thus present, for each distribution, the Shannon, Rényi, and Tsallis entropies,
and the associated complexities as defined in Sec. 2.4.
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Original Saturation Desaturated

Figure 2.4: SEM images (left) may be saturated at the top gray level. The percentage of saturated
pixels can be very high (middle), which will strongly impact image entropy. We remove saturation
by resampling saturated pixels from a shifted truncated exponential distribution (right)

Of gray levels

We start our illustration of measures of complexity applied to SEM images with the gray level
distribution of an image, which consists in the histogram of gray levels (typically 0-255) of the
image. As this histogram is created simply by counting how many pixels have a certain gray
value, the histogram loses all spatial and contextual/local information. For example, two entirely
different images can have exactly the same histogram but differ in texture, edge orientation, and
object arrangement. Consider e.g. a checkerboard and a zebra stripe pattern; both may have an
equal number of black and white pixels, yielding identical gray-level distributions. However, the
spatial relationships between the pixels, which define the actual patterns, are entirely different. In
the case of SEM images in Fig. 2.5, we observe that, for example, the ”nothing” image and the
”faint” image have similar distributions.

Another interesting thing to observe is the dependency of the Tsallis and Rényi entropies and
complexities on the respective parameters, in Figs. 2.8, 2.9, and 2.14, 2.7, respectively. Changing
the magnitude of the parameters changes the values of the entropies, but it does not change the
rankings of the SEM images with respect to this measure. However, changing the parameter does
affect the ranking in the case of the complexity measures. This opens the door to principled
parameter selection, which would be set in such a way that the ranking of complexities of baseline
fields matches intuition/application.

As another illustration, we apply these measures to random samples of five series of SEM
images obtained at constant laser fluence and time delay, and varying the N parameter, as depicted
in Fig. 2.19, obtaining Fig. 2.22, As explained in Sec.3.2.4, these series can be roughly regarded
as depicting a temporal evolution (in samples from a time-varying distribution sense). Generally
speaking, entropies of gray levels tend to increase with N , and complexities to decrease.

Finally, we apply the several measures of complexity to the fluence-delay plane presented
in [Nak+22], in Section A.1.
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Figure 2.5: Measures of complexity of gray levels (distributions in blue, bottom row) of selected
SEM field images (top row): Shannon, Rényi, Tsallis entropies and complexities (inset, bottom row;
entropies in bits and complexities in bits²). Gray levels above 256 are inferred using the strategy
described in 2.6.2 . We set q = 1.05 and α = 0.5 in Tsallis and Rényi measures, respectively to stay
within the same order of magnitude.

Of gray level runs

Another way to include local information in the probability mass function is to consider the gray
level runs [Gal75], a feature transformation that was originally proposed in the context of visual
texture analysis. A gray level run is a set of consecutive, pixels having the same gray level along
some chosen direction. The authors in [Gal75] propose a number of measures, but here we shall
define an entropy for consistency: after building the gray level run matrix (GLRM), we can simply
consider the Shannon entropy of the gray level run (GLR) matrix ”image”. With g denoting pixel
intensity, the GLRM collects the unnormalized probabilities of runs of length r, pθ(r|g) along a
given direction θ (angle, in degrees, with respect to the original image orientation). The entropy of
the GLR ”image” is thus H(R|G), and we denote it GLRE1.

Another possibility, since the marginal probability pθ(g) can be inferred from the image gray lev-
els histogram, is to compute the entropy of the joint probability mass function pθ(r, g) = pθ(r|g)p(g).
Assuming a square image of L pixels side, we define GLRE2 as

Hθ(r, g) = −
255∑
g=0

L∑
r=1

pθ(r, g) log pθ(r, g) (2.6.1)

GLRE dependence on direction By construction, the GLRM depends on the direction. As
can be seen in Figs. 2.11c, 2.11a, 2.11b, GLRE1 depends strongly on image orientation, in particular
for anisotropic images, as can be observed in Figs. 2.11a, 2.11b. On the other hand, the GLRE1
of isotropic images is roughly constant with respect to the GLRM direction, as can be seen in
figure 2.11c.

To account for this variability, we simply pick the direction that minimizes the direction-
dependent GLRE1 2.6.2, because the orientation of the images is arbitrary (thus has no physical
significance) and because the intuitive notion of pattern complexity does not depend on orientation
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Figure 2.6: Comparative analysis of Rényi entropy of the gray levels across various laser-induced
patterns. The top plot shows the Rényi entropy as a function of the parameter α for seven different
patterns. Intersections between the curves are marked with vertical lines and annotated. The
bottom plot ranks the patterns based on their entropy values, with the pattern having the highest
entropy ranked as 1. As explained in Section 2.3.5, the interpretation of Rényi entropy changes for
different values of α. Interestingly, the ranking of the SEM images with respect to this measure
stays roughly constant.
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Figure 2.7: Comparative analysis of Rényi complexity of the gray levels across various laser-
induced patterns. The top plot shows the Rényi complexity as a function of the parameter α
for seven different patterns. Intersections between the curves are marked with vertical lines and
annotated. The bottom plot ranks the patterns based on their complexity values, with the pattern
having the highest complexity ranked as 1. As explained in Section 2.3.5, the interpretation of Rényi
entropy changes for different values of α. Interestingly, whereas for Rényi entropy, the ranking of
the SEM images stayed constant for different values of the parameter, for Rényi complexity the
different interpretations have a dramatic impact in the ranking of the SEM images.
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Figure 2.8: Comparative analysis of Tsallis entropy of the gray levels across various laser-induced
patterns. The top plot shows the Tsallis entropy as a function of the parameter q for seven different
patterns. Intersections between the curves are marked with vertical lines and annotated. The
bottom plot ranks the patterns based on their entropy values, with the pattern having the highest
entropy ranked as 1. As explained in Section 2.3.4, the interpretation of Tsallis entropy changes
for different values of q. Interestingly, the ranking of the SEM images with respect to this measure
stays roughly constant.
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Figure 2.9: Comparative analysis of Tsallis complexity of the gray levels across various laser-
induced patterns. The top plot shows the Tsallis complexity as a function of the parameter q
for seven different patterns. Intersections between the curves are marked with vertical lines and
annotated. The bottom plot ranks the patterns based on their complexity values, with the pattern
having the highest complexity ranked as 1. As explained in Section 2.3.4, the interpretation of Tsallis
entropy changes for different values of α. Interestingly, whereas for Tsallis entropy, the ranking of
the SEM images stayed constant for different values of the parameter, for Tsallis complexity the
different interpretations have a dramatic impact in the ranking of the SEM images.
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Figure 2.10: Measures of complexity of gray level runs (glr1 and glr2) (distributions in blue, bottom
rows; for the glr1 distribution, we shown only non-zero run lengths) of selected SEM field images
(top row): Shannon, Rényi, Tsallis entropies and complexities (inset, bottom row; entropies in bits
and complexities in bits²). Gray level runs matrices are depicted on the second row from the top
(note the different ranges). Gray levels above 256 are inferred using the strategy described in 2.6.2
. We set q = 1.05 and α = 0.5 in Tsallis and Rényi measures, respectively to stay within the same
order of magnitude.
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Figure 2.11: Comparison of GLRE1 as a function of angle for different types of images.

either, we describe a particular pattern as ”ordered” if there is one or several particular directions
along which it appears to be ”ordered”. Precisely:

HGLR(r, g) = min
θ

{Hθ(r, g)} (2.6.2)

A GLRE1 heatmaps of entropy and complexities applied to an experimental range of SEM
images can be observed in Section A.1.2. GLRE2, on the other hand, is much less dependent on
orientation than GLRE1, as can be seen in Figs. 2.12c, 2.12a, 2.12b, which justifies taking a single
random orientation in GLRE2 computations. GLRE2 heatmaps for several measures of complexity
applied to an experimental range of SEM images can also be observed in Section. A.1.2.

0 25 50 75 100 125 150 175
Angle in degrees

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

Gr
ay

 le
ve

l r
un

 e
nt

ro
py

(a) GLRE2 as a function of an-
gle for nanoholes.

0 25 50 75 100 125 150 175
Angle in degrees

0.002

0.003

0.004

0.005

Gr
ay

 le
ve

l r
un

 e
nt

ro
py

(b) GLRE2 as a function of an-
gle for stripes.

0 25 50 75 100 125 150 175
Angle in degrees

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Gr
ay

 le
ve

l r
un

 e
nt

ro
py

(c) GLRE2 as a function of an-
gle for chaos.

Figure 2.12: Comparison of GLRE2 as a function of angle for different types of images.

Of the Fourier spectrum

Pattern formation in self-organization systems is commonly described in terms of spacial frequency
selection [CH93], since in the frequency domain, a dominant spacial frequency corresponds to a
wavelength that occurs more frequently. Simple patterns in the frequency domain, having low
Shannon entropy, will have a small number of frequent spacial frequencies. A pattern with just one
spacial frequency has a Dirac delta power spectrum.

In the same way that there is no natural way to take into account spacial information in the
binning in the time domain, also in the frequency domain there is a degree of arbitrariness on how
to build the 2D histogram.

A simple procedure is to average 1D spectra in all directions around the center building an
azymuthal power spectrum. Once this one-dimensional power-spectrum is obtained, we can use the
approach in [KK92]: given a field u : R → R with discrete Fourier transform F [u(x)] := û(k), we
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2.6. COMPLEXITIES OF SEM IMAGES

define its power Spectral density distribution

pi :=
|ûi|2∑
i |ûi|2

and the spectral entropy as the Shannon entropy of this distribution

Hspec
1 = −

∑
i

pi log pi (2.6.3)

As explained above, Hspec
1 measures the average surprise in the distribution of powers of differ-

ent spacial frequencies, for a given choice of averaging procedure. For the azymuthal averaging
above, the entropy measures average surprise in spacial frequency independently of orientation (see
Fig.. 2.13, fourth row).

This idea can be generalized straightforwardly to the two-dimensional case. Given u : R2 → R

with discrete Fourier transform F [u(x)] := û(k), we define its two-dimensional power Spectral
density distribution

pij :=
|ûij |2∑
ij |ûij |2

and the spectral entropy as the Shannon entropy of this distribution

Hspec
2 = −

∑
i,j

pij log pij (2.6.4)

The entropy measures now the average surprise in the distribution of powers of different spacial
frequencies, where direction is taken into account (see Fig. 2.13, third row). Similarly, we examine
the complexities of the distribution of the phase part of the Fourier transform, which is known to
hold structural information (see Fig. 2.13). Intuitively, if one perturbs the phase spectrum, the
modes will interfere in unexpected ways, with an overall effect that will tend to destroy original
image features.
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Figure 2.13: Complexity and entropy measures of spectra of selected SEM field images. The top
row displays the SEM images, each labeled with its corresponding laser fluence, pulse duration,
and number of pulses. The second row shows the (log) power spectra of these fields. The third
row presents the sorted power spectrum probability mass function (pmf), log transformed for ease
of visualization, with inset boxes indicating Shannon, Rényi, and Tsallis entropies and complex-
ities. The fourth row displays the azimuthal power spectrum pmf, also log transformed for ease
of visualization, with inset boxes for entropies and complexities. The fifth row shows the phase
spectra, and the bottom row presents the phase spectrum pmf, again with inset boxes for entropies
and complexities. All pmfs are computed using the strategy described in 2.6.3. All entropies are
measured in bits and complexities in bits². We set q = 1.05 and α = 0.5 for Tsallis and Rényi
measures, respectively, to maintain a consistent scale. . Note the phase spectral distributions are
almost uniform, which explains the low variance on complexity measures.
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2.6.4 Self-correlation
In this section, we study the internal degree of organization of the SEM images, which places us
squarely in axis 3. The idea is to measure the degree of organization of an SEM image by the
measuring self-similarity.

We do this in two different ways: (i) we measure the similarity between different same-size
patches of the image. It is clear that an image for which composing parts are either featureless
or display a high degree of organization, with the same pattern repeatedly displayed, will score
high in similarity. As in previous measures, there is the matter of scale which will strongly impact
the performance of this measure. And (ii) we measure the similarity between different scales of
the same image, by comparing different scaled versions of patches of the same image. An image
that is scale invariant will score high with respect to this measure. We propose a third measure of
similarity which is simply one of the Pythagorean means of the other two.

For simplicity and ease of implementation, we use cross correlation as a similarity measure,
but other similarity measures could arguably be used as well. Cross correlation has been used
since the 1970s [KWS75; Anu70], and is a standard measure of image similarity in Digital Image
Correlation[SOS09]. Given fields u, v ∈ R2, we define their cross-correlation c(u, v) ∈ Cn as the
inverse Fourier transform of the Hadamard product of the transform of u and the conjugate of the
transform of v:

c(u, v) = F−1
{
F {u} ◦ F {v}∗

}
(2.6.5)

where the circle denotes the elementwise Hadamard product and F ,F−1 denote, respectively,
the Fourier transform and the inverse Fourier transform. We normalize this quantity by taking

C(u, v) =
c(u, v)√

c(u, u)× c(v, v)

Finally, this allows us to define correlation strength r(u, v), which will be used as a measure of
image similarity.

Definition 12 (Correlation strength). In the conditions and notation above, we define correlation
strength between real two-dimensional fields u and v as the maximum9 of the absolute value over
the domain of C(u, v). If the common domain of u and v is discretized as an n×n array (meaning
C(u, v) is represented by a n× n complex matrix), we have

r(u, v) = max
i,j=1···n

|C(u, v)ij | (2.6.6)

We use the Fast Fourier Transform [CT65] in our implementation of this measure, which makes
computation expedient.

Cross-patch similarity We define the cross-patch similarity of a field u ∈ Rn at a scale s as the
mean correlation strength for field patches of size s× s. With S denoting all the s by s patches of

9Other norms other than the max norm are used in the literature [SOS09] but they are less robust to noise and
spurious correlations. By looking at the maximum peak, we are less likely to be affected by noise because it is unlikely
for noise to cause a very high peak at the wrong alignment.
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u, we have

CPS(u) =
1

|S2|
∑

v,w∈S

r(v, w) (2.6.7)
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Figure 2.14: Comparative analysis of mean cross-patch similarity across various laser-induced pat-
terns. The top plot shows the mean cross-patch similarity, with min-max error bands, as a function
of the square patch side for seven different patterns. Intersections between the curves are marked
with vertical lines and annotated. The bottom plot ranks the patterns based on their mean cross-
patch similarity values, with the pattern having the highest similarity ranked as 1. As can be seen
on that plot, after an initial stage (up to 20-patch side) of some variation (for nano-stripes and
chaos in particular), the ranking remains constant, which is in agreement with the existence of local
features of different scales for some of the patterns.

Cross-scale similarity We define the cross-scale similarity of a field u ∈ Rn at scale s as the
mean correlation strength for field patches across scales at that scale. To compares patches at
different scales, one scales them up or down until they are at the desired scale t. For simplicity,
we shall only consider square patches with an even number of pixels. With T now denoting all the
t = 2n by t = 2n patches of u that can be obtained by scaling up or down other even-side patches
of u, we have

CSS(u) =
1

|T 2|
∑

v,w∈T

r(v, w) (2.6.8)

Internal similarity The measures defined above see ”organization” in different ways, either as
organization as similarity between different parts or organization as similarity between different
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scales. In order to create a combined measure, we study three alternatives. The first is the simply
the mean of the two. Repeating Shannon’s argument[Sha48], additivity is a desirable property of
a natural measures of complexity, we can easily justify the first. To justify using a multiplicative
notion of complexity, we appeal to the work described in Section 2.4, where complexity is defined as
the product of a dissimilarity and an entropy. The harmonic mean is the third Pythagorean mean,
and can be seen as a combination of the other two. We recall that we adopt Bennet’s functional
definition of complexity as ”whatever increases when something self-organizes”, which will allow us
to assess the quality of a complexity measure by how well it conforms to observations.

Definition 13 (Internal similarity). In the notation and conditions above, we propose three mea-
sures of internal similarity of a real field in two dimensions u, respectively, arithmetic, geometric,
and harmonic:

ICa =
1

2
(CSS(u) + CPS(u)) (2.6.9)

ICg =
√
CSS(u)× CPS(u) (2.6.10)

ICh =
2

1
CSS(u) +

1
CPS(u)

, (2.6.11)

2.6.5 Lempel-Ziv complexity
Kolmogorov complexity of a sequence, the size of the shortest program on a Universal computer that
can compute it and halt, is not effectively computable. But arbitrarily restricting the encoding to use
only recursive copy and recursive paste operations [ZRB05; LZ76], we obtain a complexity measure
that is effectively computable and approximates Kolmogorov complexity asymptotically [Gra12].

To compute the Lempel-Ziv complexity of a sequence, do:

1. Break the sequence S into words W0 = ∅, and Wk+1 being the shortest new word imme-
diately following Wk. For example, the sequence S = 11010100111101001 . . . is broken into
(1)(10)(101)(0)(01)(11)(1010)(01 . . .).

2. Each word Wk, with k > 0, is an extension by one digit slast of some other word Wj ,
with j < k. It is encoded simply by the pair (j, slast). In the example above, we have
(0, 1), (1, 0), (2, 1), (0, 0), (4, 1), (1, 1), (3, 0), . . .. Thus, the encoding is lossless, as it can be
uniquely decoded.

3. Count the number of words. This is the Lempel-Ziv complexity.

To compute a complexity measure in the spirit of Section 2.4, we use normalized compression
distance the similarity measure proposed in [Li+04], which is essentially a compression-based es-
timate of the relative Kolmogorov complexity between strings. With xn := x1x2 · · ·xn denoting
a string composed of n symbols, and xnyn denoting the concatenation of strings xn and yn, and
CLZ(x

n) denoting an estimate of Kolmogorov complexity of the string xn via some compression
algorithm (in our case, Lempel-Ziv), we have

NCDLZ(x
n, yn) =

CLZ(x
nyn)−min{CLZ(x

n), CLZ(y
n)}

max{CLZ(xn), CLZ(yn)}
(2.6.12)
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SEM Power Spectrum Phase Spectrum
LZ I-LZ LZ I-LZ LZ I-LZ

nano holes 0.15108 0.09414 0.94121 1.83606 0.96376 1.89159
nano stripes 0.14143 0.10517 0.94146 1.83730 0.96382 1.89185
chaos 0.16396 0.07624 0.94172 1.83841 0.96395 1.89282
nothing 0.12296 0.11949 0.94093 1.83557 0.96375 1.89114
faint 0.10722 0.12473 0.94228 1.83921 0.96384 1.89180
nano peaks 0.15751 0.08520 0.94174 1.83789 0.96387 1.89207
nano peak-stripes 0.14293 0.10362 0.94136 1.83703 0.96381 1.89327

Table 2.1: Lempel-Ziv (LZ) complexity and Intensive LZ Complexity (I-LZ) values for original
512 square pixel SEM field samples, their Power Spectrum, and their Phase Spectrum for different
image samples. Note the low variance of the values for the Power and Phase Spectra.

Hence, the complexity measure that we propose is a compression based analog of the intensive
statistical complexity (cf. eq. 2.4.2. We define Intensive Lempel-Ziv complexity:

CLZ(x
n) = α

NCDLZ(x
n, xn

∗ )CLZ(x
n)

CLZ(xn
∗ )

, (2.6.13)

where we take xn
∗ to be some sufficiently random sequence (which in our case consists of n samples

from the uniform distribution U(G), where G is the number of gray levels of the original image).

2.6.6 Taylor Entropy
The idea is simple: we see a large pattern u as a collection of independent long-time evolutions
from slightly perturbed initial conditions and average boundary conditions via a local process f .
Since there are no long-range interactions, the correlation between different patches ui, uj of the
pattern u are the result of a composition of local interactions.

We can thus see each sub-patch of the same image as the result of perturbed initial conditions,
and the diversity of such patches as a measure of sensitivity to initial conditions, in the same manner
as KS-entropy.

To have a measure of diversity of patches ui that takes into account spatial information, we look
at all the derivatives that are present in f . Specifically, if f(xi, . . . , ∂

j
i , . . .) contains a certain number

of spatial derivatives, we consider the smallest patch size k such that all the spatial derivatives in
f can be computed using a finite difference scheme in k(we say that the derivatives are compatible
with the patch size). The patch size defined in this way is a measure of locality of the process.

In this setup, there is no natural order between patches: it is meaningless to say that patch ui

comes before or after uj , and so it is making as-hoc ordinal patterns.
But one does not need to. As each patch represents a different evolution of the system from

perturbed initial conditions, the diversity of the patches determines the sensitivity to initial condi-
tions, which is a measure of the complexity of f . For simplicity, we measure patch diversity using
the distribution of the sign {−, 0,+} patterns of the derivatives compatible with the patch size. For
a 3 by 3 patch, which is compatible with derivatives of up to order two, for each derivative there
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are 39 possible patterns. As each of the derivatives is a term in the Taylor expansion, they are
independent (by Taylor’s theorem). Hence, the diversity of the patterns can be obtained by adding
the diversities of the individual terms, weighted by the coefficients of the Taylor expansion:

Definition 14. Given a multidimensional field u, we define its Taylor entropy of order n as the
sum of the entropies of the sign pattern distributions of all the spatial derivatives up to order n,
weighted with Taylor series coefficients. Patch size is defined as the minimum patch size that allows
calculating all derivatives up to order n using a finite difference stencil.

This entropy can be calculated using Shannon, Rényi, or Tsallis measures of uncertainty, and
complexity: cf. Figs. 2.15, 2.16, 2.17, and 2.18 for a visualization. It should be added, however,
that the super- and sub- additivity 2.3.8 of Tsallis entropy implies that combining the derivative
entropies needs to be done differently. This will be the subject of a future investigation.
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Figure 2.15: Our original generalization of permutation entropy to the multidimensional setting – ”Taylor
entropy” –, taking into account local information, applied to selected samples of SEM fields. In each sub-
figure, the top row show the sign of the indicated field (the first, after subtracting the mean): red for
> 0, white for 0, blue for < 0. The second row shows the 3x3 sign pattern distribution of the fields above
in log scale. The small inset squares are the 5 most frequent patterns, with white < 0 and black > 0
(gray indicates 0, but it is not in the most frequent patterns), the arrows pointing at their location in the
histogram. Inset boxes indicate Shannon, Rényi, and Tsallis entropies (in bits) and complexities (in bits²),
of the respective distributions. The suptitle shows the aggregate Taylor measures (cf.Sec. 2.6.6), in the
same order. We set q = 1.05 and α = 0.5 for Tsallis and Rényi measures, respectively.
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Figure 2.16: Our original generalization of permutation entropy to the multidimensional setting – ”Taylor
entropy” –, taking into account local information, applied to selected samples of SEM fields. In each sub-
figure, the top row show the sign of the indicated field (the first, after subtracting the mean): red for
> 0, white for 0, blue for < 0. The second row shows the 3x3 sign pattern distribution of the fields above
in log scale. The small inset squares are the 5 most frequent patterns, with white < 0 and black > 0
(gray indicates 0, but it is not in the most frequent patterns), the arrows pointing at their location in the
histogram. Inset boxes indicate Shannon, Rényi, and Tsallis entropies (in bits) and complexities (in bits²),
of the respective distributions. The suptitle shows the aggregate Taylor measures (cf.Sec. 2.6.6), in the
same order. We set q = 1.05 and α = 0.5 for Tsallis and Rényi measures, respectively.
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(b) Nano Peaks

Figure 2.17: Our original generalization of permutation entropy to the multidimensional setting – ”Taylor
entropy” –, taking into account local information, applied to selected samples of SEM fields. In each sub-
figure, the top row show the sign of the indicated field (the first, after subtracting the mean): red for
> 0, white for 0, blue for < 0. The second row shows the 3x3 sign pattern distribution of the fields above
in log scale. The small inset squares are the 5 most frequent patterns, with white < 0 and black > 0
(gray indicates 0, but it is not in the most frequent patterns), the arrows pointing at their location in the
histogram. Inset boxes indicate Shannon, Rényi, and Tsallis entropies (in bits) and complexities (in bits²),
of the respective distributions. The suptitle shows the aggregate Taylor measures (cf.Sec. 2.6.6), in the
same order. We set q = 1.05 and α = 0.5 for Tsallis and Rényi measures, respectively.
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Figure 2.18: Our original generalization of permutation entropy to the multidimensional setting – ”Taylor
entropy” –, taking into account local information, applied to selected samples of SEM fields. In each sub-
figure, the top row show the sign of the indicated field (the first, after subtracting the mean): red for
> 0, white for 0, blue for < 0. The second row shows the 3x3 sign pattern distribution of the fields above
in log scale. The small inset squares are the 5 most frequent patterns, with white < 0 and black > 0
(gray indicates 0, but it is not in the most frequent patterns), the arrows pointing at their location in the
histogram. Inset boxes indicate Shannon, Rényi, and Tsallis entropies (in bits) and complexities (in bits²),
of the respective distributions. The suptitle shows the aggregate Taylor measures (cf.Sec. 2.6.6), in the
same order. We set q = 1.05 and α = 0.5 for Tsallis and Rényi measures, respectively.
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2.7 Experimental section
In this section, we show the application of the aforementioned measures of complexity to (i) a panel
range of femtosecond laser induced patterns with constant N and varying laser fluence and time
delay between pulses and (ii) five different increasing N series (cf. Figure 2.19).

F=0.20 J/cm², t=2 ps

F=0.22 J/cm², t=30 ps

F=0.24 J/cm², t=30 ps

F=0.18 J/cm², t=8 ps

F=0.18 J/cm², t=10 ps

Figure 2.19: Visualization of SEM (Scanning Electron Microscopy) field samples for different laser param-
eters. Each row represents a series of samples generated with specific laser parameters, as indicated by the
y-axis labels, at increasing values of N . Each column represents a sample taken at equal intervals within
the series: in steps of 2, from 0 to 38 for all series except the second from the bottom, which is sampled
from 10 to 48

As for (i), it provides a dictionary of sorts , which allows one to understand the behavior of the
different measures of complexity where applied to SEM images. We present an exhaustive list in
the hope that they will prove useful to the researcher trying to identify the measure of complexity
that quantify disorder or complexity in a certain way.

With respect to (ii), the idea is to, as mentioned in Sec. 2.1, to investigate which of the measures
of complexity that we examined, if any, allow us to take Bennet’s stance, who functionally defines
complexity as ”whatever increases [or decreases] when something self-organizes”. Conversely, the
measure that increases in the case of self-organization of laser induced nanopatterns can also be used
to characterize self-organization in this setting. The good news is that we identified a number of
measures that monotonically increase or decrease when nanopatterns self-organize. What arguably
stands out with respect to these measures is that (a) most show high variance when applied to real
SEM patterns (b) the rate of increase/decrease differs for different series (which is not surprising)
and changes from measure to measure.

This much being said, our newly proposed Shannon Taylor entropy arguably captures this re-
searcher’s intuitive notion of complexity the best (cf. Fig. 2.34), decreases during self-organization
and shows comparatively low variance as shown in Fig. 2.36, and certainly merits further investiga-
tion. One can study, for example, the role of the parameters in Rényi and Tsallis entropies in the
quality of the respective Taylor entropy, or the introduction of higher order derivatives. Another
interesting question is how each of the derivative terms evolves with N . Finally, we would like
to investigate the behavior of this measure in more controlled conditions, i.e. artificial data, in
particular those generated by the Swift-Hohneberg equation which, we shall see in Chapter 3, is
an apt model of pattern formation. For conciseness, we present a single example for each of the
measures of complexity that we examined. The full list can be found in Appendix A.1.
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2.7. EXPERIMENTAL SECTION

2.7.1 Gray levels complexities
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Figure 2.20: Shannon entropy of the gray levels of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.21: Shannon complexity of the gray levels of SEM images for a range of Fluence, delay
pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.22: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) gray level entropies (top
row) and complexities (bottom row) for five different experimental N series (laser parameters in the inset
in the top leftmost plot, cf. Fig. 2.19 for a visualization). The 2σ error bars are obtained by sampling each
series of 512 square pixel images 100 times from the original SEM image. All entropies increase up to a
certain N , then stabilize: exception being the Purple series (F = 0.18 J/cm², ∆t = 10 ps), with a great
variety of different structures that form during the dynamics, ranging from holes to hexagons to chaos.
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2.7.2 Gray level runs complexities
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Figure 2.23: Shannon entropy of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.24: Shannon complexity of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.25: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) glr2 entropies (top row) and
complexities (bottom row) for five different experimental N series (laser parameters in the inset in the top
leftmost plot, cf. Fig. 2.19 for a visualization). The 2σ error bars are obtained by sampling each series of
512 square pixel images 100 times from the original SEM image.

2.7.3 Fourier spectrum complexities
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Figure 2.26: Shannon entropy of the Fourier power spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.

54



2.7. EXPERIMENTAL SECTION

0.16

0

0.17
0.18

0.19
0.20

0.21
0.22

0.23
0.24

24681012141618202224262830

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Shannon Complexity

Fluence (J/cm
²)

Delay (ps)

Figure 2.27: Shannon complexity of the Fourier power spectrum of SEM images for a range of
Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images for ease of
visualization.
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Figure 2.28: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) power spectral entropies
(top row) and complexities (bottom row) for five different experimental N series (laser parameters in the
inset in the top leftmost plot, cf. Fig. 2.19 for a visualization). The 2σ error bars are obtained by sampling
each series of 512 square pixel images 100 times from the original SEM image.
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2.7.4 Lempel-Ziv complexities
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Figure 2.29: Lempel-Ziv complexity of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.30: Intensive Lempel-Ziv complexity of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.31: Comparison Lempel-Ziv complexities on the original SEM images, their Fourier power spectra,
and phase spectra(top row) and intensive complexities (bottom row) for five different experimental N series
(laser parameters in the inset in the top leftmost plot, cf. Fig. 2.19 for a visualization). The 2σ error bars
are obtained by sampling each series of 512 square pixel images 100 times from the original SEM image.

2.7.5 Cross-patch similarity
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Figure 2.32: Cross-patch similarity of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization. Each patch is a square
with side length of 56 pixels at random orientations.
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Figure 2.33: Comparison of Cross-patch similarity of the original SEM images, their Fourier power spectra,
and phase spectra, for five different experimental N series (laser parameters in the inset in the top leftmost
plot, cf. Fig. 2.19 for a visualization). The 2σ error bars are obtained by sampling each series of 512 square
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2.7.6 Taylor complexities
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Figure 2.34: Taylor Shannon entropy of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.35: Taylor Shannon complexity of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure 2.36: Comparison of Taylor-Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) entropies (top row)
and complexities (bottom row) for five different experimental N series (laser parameters in the inset in the
top leftmost plot, cf. Fig. 2.19 for a visualization). The 2σ error bars are obtained by sampling each series
of 512 square pixel images 100 times from the original SEM image.
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Chapter 3

Learning Complexity to Guide
Light-Induced Self-Organized
Nanopatterns

3.1 Introduction
Self-organization is prevalent in Nature. It is responsible for the interesting patterns and struc-
tures that we observe in systems outside equilibria, from the clouds of Jupiter to how the leopard
got his spots. Without self-organization, we would observe mostly disordered states with no dis-
cernible structure [CH93]. Laser-irradiated surfaces are a chief example of a self-organizing system,
as one observes coherent, aligned, chaotic and complex patterns that emerge at the microscale
and the nanoscale [Rud+20]. These patterns are of great practical interest, with a number of
potentially groundbreaking optical, hydrophobic and microbiological applications suggested in the
literature [VG15; Ran+10; Bon+16; Grä20]. Laser texturing can be used as a method to reduce
bacterial colonization of dental and orthopedic implants [Cun+16], as it can change surface wettabil-
ity [VG15; Fad+11] and morphology, the interplay of which affect antibacterial properties [Lut+18]
of the surface.

Laser induced periodic structures on stainless steel surfaces were also shown to act as a surface
grating that diffracts light efficiently [Dus+10; Yao+12; Gua+17]. Since the orientation of the
induced structures depends strongly on laser parameters, and it is possible to have multiple orien-
tation structures with spacial overlap, surfaces can be decorated in such a way that different colors
and patterns appear when white light is irradiated on the surface from different directions or even
selectively displayed using structural color, with applications to encryption and anti-counterfeiting.

Importantly, laser texturing is reliably reproducible, meaning that these groundbreaking appli-
cations have the potential to be turned into industrial processes. In this respect, laser texturing
has significant advantages over other surface functionalization methods such as electrochemical
etching [Li+15], for example: laser induced structures can be generated in a simple, single-step
process [Bon+16] that is reliable, reproducible and scalable, applicable to a great variety of mate-
rials [AGK14], and to large surfaces [Gni+17].

Put simply, under controlled experimental conditions, observed patterns are a function of the
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laser parameters. This functional dependence is complex, with abrupt boundaries between pattern
types for continuous variation of laser properties [Abo+20]. Pattern features of interest, such as
rotational invariance, characteristic length, and feature height, for example, also show interesting
dependence on laser parameters [Nak+21a; Abo+20; Rud+20] and novel structures that can be
reproduced reliably have recently been observed [Nak+21a; Nak+22] (cf. Sec. 3.2 for a description
of the experimental setup).

The variety of patterns and their potentially groundbreaking applications, combined with the
controllability and reproducibility of laser-induced structure formation, motivate an exhaustive
search of laser parameter space. This search is unfortunately impractical, as each experimental
manipulation is costly and time-consuming. Having a model to guide the initialization of laser
parameters would thus be of great interest.

A first solution to guide laser parameter selection would be to have a physical model explicitly
relating pattern characteristics and laser parameters. This model, is however, not available. While
a hydrodynamic process has recently been proposed to explain the hexagonal patterns observed in
experiments [Abo+20], the full picture is complex and strict conditions are required for the process
to occur upon ultrashort laser irradiation [Rud+20] (cf. Sec. 3.2.3 for an overview of this model).

The photoexcited material evolves in a non-deterministic way due to stochastic surface rough-
ness that may trigger local nonlinear optical response and collective thermomechanical response.
In that far from equilibrium conditions, a deterministic approach is able to explain specific nanos-
tructuring regimes [Nak+22] but fails to predict the coexistence and the transition between several
nanopatterns (cf. Sec. 3.2.4) for our original approach that offers an explanation for the coexistence
between nanopatterns).

In the absence of an explicit physical model, a second solution to guide laser parameter selection
is to use machine learning, which can produce data-driven models with remarkable results. The
quality of these results, however, depends on the quantity of training data available. More precisely,
drawing from the language of statistical learning theory [FHT+01], let h be some hypothesis (a
model) chosen from some class of hypotheses H of a given complexity C1, which is chosen by using
some algorithm based on minimizing the expected loss (intuitively, expected error) on training data
Xtrain drawn from an unknown distribution D. Then ∆E, the expected difference in error that
we make by evaluating our model on unseen test data Xtest drawn from the same distribution is
bounded above by g, a function of the model complexity and the number of training examples
|Xtrain|. Crucially, it can be shown that g is an increasing function of model complexity C and
g → 0 as |Xtrain| → ∞

∆E ≤ g(C, |Xtrain|), (3.1.1)

which means that to keep ∆E small with little data, one should keep the model complexity small.
In this sense, the complexity of the model is bounded by the quantity of data: with little data, we
can only effectively learn simple models. This is precisely the case with laser induced pattern exper-
imental data, since the difficulty in data acquisition both motivates and hinders the construction of
a machine learning model. This situation is far from being exceptional, as most ”natural” scenarios
are neither in the high data regime [Sil+16], nor in the high model, little data regime [Har+13].

There are a variety of methods and techniques to learn from data in this case, namely by
integrating physical information to guide the ML model. This collection of techniques is generally
grouped in under the ”Physics-guided” or ”Physics-informed” machine learning topic where, among

1Such as Vapnik-Chervonenkis dimension, Rademacher complexity, uniform stability or algorithmic robustness to
cite a few.
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other things, some approaches aim to integrate physical knowledge in the form of a PDE to solve
a certain task [Kar+21; Wil+20; Jia+21; Um+20; YPK21]. Our work falls into the scope of
this scenario. As a physical model of the convective process that is at the origin of the observed
physical structures, we use in this work the Swift-Hohenberg partial differential equation (PDE) on
the plane [SH77], a simple and well-studied model of complex pattern formation under Rayleigh-
Bénard convection [CH93]. We leverage this PDE because in spite of it being a considerable
simplification with respect to the actual process taking place in laser irradiated surfaces, it is still
compatible with the physical situation, as originally shown in Sec. 3.2.4. Moreover, the Swift-
Hohenberg equation can be seen as maximally symmetric model of pattern formation, as shown is
Sec. 3.5.3, and most of the symmetries involved in the derivation are indeed present in the initial
stages of laser-matter interaction before thermalization.

Pattern-like solutions of Swift-Hohenberg (SH) equation are remarkably similar to the ones that
we can observe in the irradiated surfaces Scanning Electron Microscope (SEM) images, as can be
seen in Figure 3.1. In spite of its simplicity and longevity, the variety of pattern-like solutions of
SH equation still makes it a topic of active research [EC20].

Stripes &  Bumps
genreal

HSFL & Humps
real gen

Hexagons
real gen

Stripes
real gen

Figure 3.1: Comparison between real SEM images (red) and SH-generated images (green). SH-
generated images are able to reproduce a variety of patterns (e.g. stripes, hexagons, bumps, hsfl,
humps) and scales. A couple of model simplifications can be observed in this comparison: first, since
the SH model is an isotropic model, global symmetries are only apparent (e.g. oriented stripes),
whereas SEM images retain some measure of global symmetry from laser polarization. Second,
since the SH model is a single scale model (in the sense that there is a single critical wavelength),
it can only match a single pattern, even for SEM images that contain a superposition of patterns
(such as e.g. 7th column, top image).

The main objective of this chapter is to design new physics-guided ML techniques that allow
us to integrate partial physical information and learn with few data the relationship between
patterns and laser parameters given that the patterns were produced via a SH convective instability.
While the complexity of the resultant model is still bounded by the same quantity of data, we
expect it to be more faithful. To be precise, although the difference in error ∆E in (3.1.1) might
be small, the minimum error that can be attained in H, which measures the quality of our model,
might still be quite large. But if integrating physical knowledge H makes it more compatible with
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the physical situation (in this sense more faithful), the minimum error will be smaller2.
In situations where similar patterns are observed, there is considerable information contained

in the parameters of the Swift Hohenberg equation, which determine the type and general features
of the pattern solutions for a range of initial conditions. In this sense, for the purpose of predicting
novel patterns, there is too much physical information in the SH solutions, and a feature trans-
formation F exists such that in the image of F , patterns can be effectively described using model
parameters alone (see Fig. 3.2 for details).

As we shall see in the sequel, this key insight informs our contribution which is five-fold: (i)
we present a Bayesian inference formulation for solving the dual inverse problem of estimating
state and model parameters in the case of self-organization, (ii) we design an efficient solver of
SH PDE allowing the generation of a large amount of SH (parameters-patterns) pairs of data (iii)
from this large dataset, we learn a differentiable-Neural Network (NN) surrogate of the SH PDE,
(iv) we leverage this pre-trained NN, on the one hand, and the SH (parameters-patterns) pairs,
on the other, to learn two alternative end-to-end models from the laser parameters to the patterns
obtained by laser irradiation; (v) we conduct experiments showing a good agreement between the
generated images and experimental data for some parameter ranges, which can serve as a guide for
laser initialization and suggest improvements to the SH model.

The rest of this chapter is organized as follows: we begin, in Section 3.2 by briefly presenting
the experimental setup involved in the creation of nanopatterns on Nickel. We then proceed by
schematically describing the two-temperature physical hydrodynamic model of laser-matter inter-
action presented in [Rud+19a; Rud+20], which is the state of the art. We then originally show
(unpublished material) that the ionic fluid follows Boussinesq-like equations after the faster elec-
tronic dynamics has been allowed to equalize.

In Section 4.2 we frame the problem of learning novel laser patterns by integrating partial
physical information in the form of a PDE and discuss related work. In Section 3.4 we present
a framework for solving the dual inverse problem with few data by integrating partial physical
information in the context of systems with self-organization. In Section 3.5 we apply this framework
to the specific case of learning novel laser-induced patterns on monocrystalline Nickel (Ni) at the
nanoscale: we begin by presenting the SH equation as partial model of the physical situation. To do
so, we start by summarizing the original derivation of the equation in Section 3.5.2, which was done
in the case of Rayleigh-Bénard convection in the Boussinesq approximation. Our original result
above regarding the dynamics of the ionic fluid then implies that multi-double pulse dynamics
of the laser-matter interaction with crossed polarization follows the Swift Hohenberg equation.
As the Swift-Hohenberg equation is a model for pattern formation, we have thus been able to
explain the mechanism of nanopattern formation by femtosecond laser irradiation. We also present
an alternative derivation of the Swift-Hohenberg equation as a maximally symmetric model of
pattern formation, which further justifies its use as a simplified model. We show that the Swift
Hohenberg equation has potential dynamics, and for completeness, describe how Swift-Hohenberg-
like equations can be derived from a potential. In order to use SH as a simplified model of the
physical situation for learning novel patterns, we need to to be able to solve it efficiently. We thus
proceed by presenting a pseudo-spectral second-order solver of the SH equation combining accuracy
and speed in Section 3.5.5; we continue by discussing, in Section 3.5.6, a particular feature mapping
that we chose for our problem, which allows considerable simplification, and that we validate via
a quality measure based on expert clustering results in Section 3.4.4. And finally, we present two

2As an extreme example, consider learning the sine function, which has an infinite power series expansion (complex)
and a one-term expansion in Fourier series (simple).
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Figure 3.2: (top) The naive approach to learning the relationship between laser parameters θ ∈ R3

and fields ∈ R224×224 (224 by 224 pixels SEM images) is to seek the minimizer h∗ of the loss L in
the large set H. With few observations, this is unfeasible. (middle) Physical knowledge can guide
the search by restricting it to mappings that are compatible with the SH model — the much smaller
subset of H in blue. The learned mapping is now only between θ ∈ R3 and SH parameters ∈ R4.
We still have to minimize over initial conditions u0 ∈ I, to which we do not have experimental
access. Again this is unfeasible. (bottom) Since we are only interested in general pattern features,
and the SH model is based on a self-organization process, a feature mapping F exists such that in
the image of F , patterns can be described using model parameters alone. We safely ignore initial
conditions (e.g. choosing u∗

0) and seek the minimizer over mappings that are compatible with SH
patterns — the much smaller subset of H in blue. This is feasible with few data.

alternative models to learn the relationship between laser parameters and SH parameters, which
will allow us to predict novel patterns in Section 3.5.7. In the next Section 4.5 we present and
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discuss experimental results; notably, we see that pattern features are correlated and that more
than one SH process may be at play, which is a new physical insight. We conclude in Section 4.6
and discuss future research.

3.2 Self-organized nanopatterns formation
The emergence of instabilities and symmetry breaking leading to the formation of coherent struc-
tures, is one of the most fascinating aspects of the complex dynamics governing light-surface in-
teraction [Her+98; Shi+03; Ild+17]. When a randomly rough surface is subjected to ultrafast
laser pulses, it enters a far-from-equilibrium state due to the repeated absorption of pulsed opti-
cal fields. As a result, the surface exhibits spontaneous spatial organization, which is oriented by
energy gradients generated by laser polarization, giving rise to laser-induced periodic surface struc-
tures (LIPSS) [Sip+83]. These structures form under far-from-equilibrium conditions and can be
triggered by capillary waves, convection rolls, and thermoconvective instabilities, [Kei83; YSV84;
Tsi+16; Rud+20] which persist through dissipative structures [PV63]. Eliminating the prevailing
laser polarization effects reveals puzzling patterns emerging from a sequence of instabilities, in-
ducing different types of complex patterns, ranging from chaos to six-fold symmetries [Nak+21a].
The photoexcited matter undergoes a transition from a disordered state to a more coherent one, re-
ferred to as a strange attractor in the phase space of nonlinear dynamics. This transition results in a
metastable state, defining a self-organization structuring regime. Through this self-organization pro-
cess, the material surface can be sculpted seamlessly, enabling nanoscale manufacturing [Nak+22].
Understanding the selection mechanisms involved in this morphogenesis to gain control over the
uniformity, symmetry, and size of the resulting surface patterns is a major research theme in
laser processing for photonics metasurfaces, biomimetics, or catalysis functionalization. [Str+20;
OMY20]. To apply statistical inference approaches to complex systems and achieve generalizabil-
ity, advanced physics-guided machine learning strategies are essential.

Upon laser irradiation, a hazy boundary separates self-organized and organized surface patterns.
When a material is exposed to sufficiently intense laser irradiation, it tends to organize along
the stationary electromagnetic fields due to scattered/excited waves [Sip+83; Rud+19b] and self-
organize in response to the random fluctuations of light absorption with a symmetry breaking with
respect to polarization [Var+06; Abo+19]. Light-oriented and self-assembled dynamical processes
are inherently superimposed, and surface topographies evolve spatio-temporally towards equilibrium
patterns that result from a complex competition between free energy dissipation imposing entropy
production and spontaneous ordering.

Consequently, any preexisting or transient organization can be disrupted by random perturba-
tions, which can be amplified by positive feedback to lead the system towards new patterns.

Ultrafast laser texturing has recently been used to obtain deep sub-wavelength periodic patterns,
which raises questions about the relevant electromagnetic processes that drive the formation of these
patterns well below the diffraction limit [SC20; BG20].

Various types of 2D surface patterning have been reported, including patterns with oriented,
triangular, hexagonal, labyrinthine, or chaotic symmetries [Qia+18; Fra+19; Abo+20; Mas+21],
featuring both positive and negative reliefs such as humps, bumps, peaks, and spikes [Nak+21a]. To
explain the remarkably uniform establishment of these patterns on the microscale independently
from the oriented near-field optical effects on the random local nanotopography, a more global
and collective perspective is required [Abo+20; Nak+21a]. Nanoscale fluid flows were shown to be

66



3.2. SELF-ORGANIZED NANOPATTERNS FORMATION

driven by a complex interplay between electromagnetic, internal and surface pressure forces which
can become trapped due to the resolidification process [Abo+20; Rud+20].

The deterministic approach to predict the underlying optical coupling processes is limited be-
cause it requires the artificial integration of fluctuating conditions induced by surface roughness.
Transiently formed structures can become unstable under nonlinear amplification and bifurcate into
more complex patterns that are not accurately described by classical approaches like Navier-Stokes
combined with Maxwell equations. Nonetheless, the complex pattern landscape has been exper-
imentally explored and can be now compared with mathematical models dedicated to nonlinear
system dynamics.

The Kuramoto-Sivashinsky approach has become a paradigm for describing pattern formation
and spatiotemporal chaos on surfaces eroded by ion bombardment, which ultimately reproduces
ripple formation and other organized patterns [BS10]. A similar approach was initially proposed
for laser-induced nanopatterns, although a clear physical picture has yet to be established [Rei+12].
Along similar lines, the Swift-Hohenberg (SH) dynamics has been identified as a relevant candidate
for representing the observed complexity of convective instabilities with spatiotemporal features,
such as chaos, rolls, and hexagons [EVG92; CH93]. The SH approach has proven to be useful in
identifying generic spatiotemporal dynamics of patterns in convective fluids [DPW94; ER00], as
well as curvature- and stress-induced pattern-formation transition [Sto+15]. The SH approach was
formally deduced from the Navier-Stokes equations in the Boussinesq approximation, with thermal
fluctuation effects in a fluid near the Rayleigh-Bénard instability [SH77].

3.2.1 Experimental setup
We briefly describe the experimental setup in [Nak+21a] for completeness.

The experiment involves directing an ultrafast Ti:Sapphire laser onto a 10mm cube of mono-
crystalline Nickel (Ni) with a (100) orientation, which ensures uniform laser-induced structuring.
To ensure a smooth initial surface, the sample undergoes both mechanical and electrochemical
polishing to achieve a surface roughness below 5 nm, as confirmed by Atomic Force Microscopy
(AFM). The laser setup includes a modified Mach-Zehnder interferometer, which is an optical device
that splits the laser beam into two separate beams. These beams may travel along optical paths
of different lengths, allowing for the introduction of a temporal delay between them. Importantly,
the interferometer is adjusted to produce beams with perpendicular polarizations. The crossed
polarization facilitates isotropic energy deposition on the sample, which is crucial for the formation
of the specific patterns of interest.

After irradiation, the surface topography changes from the initial sub 5 nm uniform roughness.
The resulting topography ranges from chaotic structures to very regular structures of different
shapes and scale, as was observed using Scanning Electron Microscopy (SEM) (cf. Fig. 3.3.

Surface irradiation in double pulses was conducted a number of times N (number of pulses, with
each pair of cross-polarized double pulses separated in time by a certain time delay ∆t and with a
combined total fluence F . As these parameters are allowed to change, so do pattern features, in an
intriguing and highly non-linear way. As stated above, the dynamics of this change is not currently
fully understood, as laser-matter interaction induces a highly complex dynamics over extremely
short time-frames – too short to even allow image acquisition with standard experimental setups.

Tailoring nanotopographic features on a surface is a challenging task that has been successfully
accomplished using ultrafast laser processes with time-controlled polarization strategies. Numerous
regimes of LIPSS have been reported with various periodicities, heights, orientations, and sym-
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metries depending on different polarization directions between the first E⃗1 and second pulse E⃗2,
characterized by α =(E⃗1 · E⃗2) in Fig. 3.3(a) [Bon+12; Wan+20; Abo+20; Nak+21a].

Figs. 3.3(b-d) present surface topographies measured by high resolution atomic force microscopy
(AFM). A circular region with a diameter of 1 µm corresponding to the laser impact center was
mapped in 3D (tilted) mode in Fig. 3.3(b-c) and in 2D for Fig. 3.3(d). To observe the significant
role of temporal pulse splitting ∆t in nanopatterns control, laser peak fluence F and N were kept
fixed at 0.18 J/cm2 and 25 respectively, as shown in Fig. 3.3(b). At ∆t = 8 ps, organized nanopeak
structures were observed with a high aspect ratio, a height of ∼ 100 nm and a diameter of ∼ 20
nm [Nak+22]. An extension of 2 ps in ∆t modifies the observed patterns that turn into a different
organization, a regime referred to as nanobumps [Nak+21a]. For ∆t = 15 ps, a regime of nanohump
generation is reached with a lower aspect ratio as the structures display a height of ≈ 10 nm and
a diameter of ≈ 30 nm.

The role of laser fluence is revealed by fixing ∆t = 25 ps and N = 25, as depicted in Figure
3.5.2(c). At F = 0.18 J/cm2, a low-contrast nanopeak regime is formed, evolving into a nanostripe
pattern with a slight increase in laser fluence increase to 0.20 J/cm2. At F = 0.22 J/cm2, a transition
region is established, combining both stripes and cavities. Finally, at F = 0.24 J/cm2, the surface
is uniformly organized with hexagonally arranged nanocavities having a depth of ≈ 25 nm and a
diameter of ≈ 30 nm. Both nanohumps and nanovoids result from hydrothermal flows guided by
surface tension and rarefaction forces, leading to thermoconvective instability at the nanoscale, sim-
ilarly to well-known Rayleigh-Bénard-Marangoni instabilities [Abo+20; Nak+21a; Vit+20; BPA00;
TB95; Pea58; Mor+18b; SD83; Smi86; TFS15; Bus14; BT99; BV98; SP15; Rud+20]. Laser dose
also plays a role, as positive feedback regulates pulse-to-pulse topographical transformations. As
shown in Fig.3.5.2(d), at a fixed F = 0.24 J/cm2 and ∆t = 8 ps with different N , corresponding to
the parameters of nanopeaks formation presented in Fig.3.5.2(a), three different surface organiza-
tions were observed. Pulse-to-pulse growth dynamics exhibits the transitions from convection cells
(N = 15), to the creation of crests on the convection cells (N = 20). The nanopeaks grow on the
edges of the crests to reach their optimal shape, concentration and organization at N = 20.

Before we set to combine the existing partial physical understanding of this dynamics with the
available data, in the next section we shall present a brief overview of the state of the art model
used in [Rud+20]. We shall then spend some time presenting an original analysis of the dynamics in
the initial picoseconds (tens of picoseconds for Ni). We show that during these early moments, the
dynamics can be described using a particularly simple model, the Swift-Hohenberg model, which
has pattern-like solutions. This is the model that we shall ultimately use as ”physical knowledge”.

3.2.2 Rayleigh-Bénard convection
Rayleigh-Bénard convection [Ray16; Bén00] is a type of natural convection, and a cornerstone
phenomenon in the study of pattern formation due to the high level of agreement between theory
and experiment.

The setup for observing Rayleigh-Bénard convection involves a thin fluid layer, typically water
or oil, with a thickness d, between two flat, horizontal plates in a gravitational field, assumed to be
ideal heat conductors. The upper plate is maintained at a temperature T0 that is lower than the
upper plate’s temperature T0 +∆T . The temperature difference ∆T > 0 drives the system out of
equilibrium.

In the absence of a significant ∆T , the fluid remains static. However, as ∆T increases, buoyancy
forces begin to act on the fluid, causing the warmer, less dense fluid at the bottom to rise. This
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Figure 3.3: Adapted from [Nak+21a](a) Schematic illustration of experimental self-organization
regimes induced by bursts of ultrafast laser double pulses. (b) Self-organized patterns of topography
that develop varying time delays for a given F and N (AFM-3D mode). (c) Nanopatterns variation
with respect to laser fluence at fixed ∆t and N (AFM-3D mode). (d) Nanostructure growth by
feedback at different number of pulses (AFM-2D mode), for a fixed ∆t and F . The scale bars
represent a length of 500 nm.

buoyancy force is given by aρg∆T , where a is the thermal expansion coefficient, ρ is the average
mass density, and g is the acceleration due to gravity. These buoyancy forces are counteracted by
dissipative forces due to thermal conduction and viscosity, represented as vKρ/d3, where v is the
kinematic viscosity and K is the thermal diffusivity.

Convection occurs when the buoyancy forces exceed dissipative forces, a transition that is char-
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Figure 3.4: Schematic representation of Rayleigh-Bénard convection. The lower plate, shown in
red, is maintained at a higher temperature T0 +∆T while the upper plate at a distance d above it,
shown in blue, is at a lower temperature T0. Convective rolls form in the fluid layer between the
plates due to the temperature gradient.

acterized by a non-dimensional parameter called the Rayleigh number R, defined as:

R =
ag∆Td3

vK
> Rc ≈ 1708 (3.2.1)

If all fluid were to rise, it would violate mass conservation. Hence, as some fluid rises, other
descends, leading to the formation of convective patterns, the simplest form being convective rolls,
schematically represented in Fig. 3.4. The size of these rolls is proportional to the fluid layer
thickness, and they occur at a critical wavelength, characterized by a wave number q0 ≈ 3.17/d.

3.2.3 Hydrodynamics of nanopattern formation by laser irradiation
The complex interaction between matter and ultrashort laser is commonly modeled by using the
well-known two-temperature model [AKP+74]. In metals, the electrons in the conduction band
absorb laser energy and subsequently transmit it in the interaction volume due to their thermal
conductivity. At the same time, the lattice is heated through electron-phonon collisions. The general
intuition is that there are two essentially different dynamics: that of the fast, mobile electrons and
that of the relatively slow phonons.

The fast electrons in the conduction band absorb laser energy, a process that can be modelled
using the Maxwell equations for electric and magnetic fields E⃗ and H⃗). These electrons subsequently
diffuse the absorbed energy in the interaction volume due to their thermal conductivity. In the
absorption region, they also induce a polarization current J⃗ , the dynamics of which can be modeled
using the Drude model that sees the resistivity of the bulk in terms of the scattering of fast electrons
by the relatively slow immobile phonons in the metal that act like obstructions to the flow. For Ni
metal with ωpl and ν plasma and collision frequencies we have


∂E⃗
∂t = ∇×H⃗

ϵ0
− 1

ϵ0
J⃗

∂H⃗
∂t = −∇×E⃗

µ0

∂J⃗
∂t + J⃗ν = ϵ0ω

2
plE⃗

(3.2.2)

The rate of energy absorbed by the conduction layer is Iαabs, where I = 1
2

√
ϵ0
µ0

∣∣∣E⃗∣∣∣2 is the inten-
sity and αabs is the absorption coefficient related to the extinction coefficient k and the wavelength
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as αabs =
4πk
λ .

The two-temperature electron-lattice heat transfer and diffusion phonon dynamics was recently
modelled with the compressible Navier-Stokes equations [Rud+19a; Rud+20] as follows:

• Continuity equation:
∂ρ

∂t
+∇ · (ρu⃗) = 0, (3.2.3)

• Conservation of energy for electrons:

Ce
∂Te

∂t
= ∇ · (ke∇Te)− γep(Te − Tp) + Iαabs, (3.2.4)

• Conservation of energy for phonons:

ρCp

[
∂Tp

∂t
+ u⃗ · ∇Tp

]
= ∇ · (kp∇Tp) + γep(Te − Tp), (3.2.5)

• Conservation of momentum:

∂(ρu⃗)

∂t
+ (u⃗ · ∇)(ρu⃗) + (ρu⃗)∇ · u⃗ = −∇(Pe + Pp) + µ∇2u⃗+

1

3
µ∇(∇ · u⃗), (3.2.6)

• u⃗ and ρ are the fluid velocity and density, respectively.

• Te and Tp denote the electron and lattice temperatures.

• Pe, Ce, and ke represent the electronic pressure, the electron heat capacity, and conductivity,
respectively. These are evaluated based on the results of ab initio calculations [Bév+14].

• Pp is the lattice pressure, defined by the equation of state [LBF94].

• µ, Cp, and kp correspond to the ion viscosity, heat capacity, and thermal conduction, respec-
tively

• γep represents the electron-ion coupling constant or collision frequency, quantifying the rate
of energy exchange between electrons and ions.

These equations were solved using a finite difference scheme with a hexagonal distribution of
half-spherical nanometer-scale cavities as initial conditions. For the simulations, two cross-polarized
pulses, having a combined fluence F = 0.18 J/cm2, were applied with a delay of 8 ps to replicate
experimental irradiation conditions.

3.2.4 Dynamics when diffusion dominates exchange
Electrons, due to their much smaller mass compared to ions respond much more quickly to changes
in the environment than ions do. We can thus assume that electron dynamics occurs on a much
faster timescale than ion dynamics. In the sequel, we shall assume that enough time has passed that
Iαabs ≈ 0 (so of the order of the femtosecond in our experimental setting). This energy from the
laser that was just absorbed creates a great variation of ion and electronic temperature gradients.
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We shall assume that we are at a time scale in which these gradients are still important, but enough
time has passed that thermalization, which will end at circa τ =≈ 10 ps, has started to occur. At
this time, the term γep(Te − Tp) is small compared to both ∇ · (ke∇Te) and ∇ · (kp∇Tp): diffusion
dynamics dominates electron-ion dynamics (which is consistent with a electron blast wave).

This is a different time interval than that which is analyzed in [Rud+19a], which examines the
dynamics after thermalization, and studies the effect of the ionic pressure wave propagation and
subsequent rarefaction wave (see Fig.1 in [Rud+19a]). We rather study the first pressure wave and
subsequent rarefaction wave, which take place early in the dynamics, as can be seen in the leftmost
image in Fig. 3.5. The latter induces a pressure gradient in the electronic fluid, that has opposite
sign to that of the ionic fluid, and thus acts as buoyancy term in the hydrodynamics equations for
ions. This, for a sufficiently wide laser spot and a double-pulse experimental that breaks preferential
spacial direction, can be approximately described in terms of the Boussinesq approximation (valid
only in the very short time frame up to thermalization) and hence, as shown in the original paper
by Swift and Hohenberg [SH77], vertical convective motion known as Rayleigh-Bénard convection,
which can be modelled by the Swift-Hohenberg equation.

This convective process, because it takes place at depths of the order of tens of nanometers,
is more consistent with the sub-wavelength feature size of circa 50 nm reported in the litera-
ture [Nak+21a] – since for Rayleigh-Bénard convection the radius of convection cells should be
approximately equal to the depth of the liquid layer, as stated in the last equation of Sec. 3.2.2.

The duration of the process, of the order of 10 ps for Ni as can be observed in Fig. 3.5, is also
consistent with the determinant role that inter-pulse delay has on the observed patterns. If the
time delay between pulses is large, then the second pulse acts on a layer of a different depth and
different material properties. We would expect to observe a change in pattern shape and spatial
frequency.

If the second shock wave comes in when the blast wave is in effect, it will result in a weaker
second blast wave: we have less electronic buoyancy, and we expect the order parameter to be closer
to zero. This should result in less spatial wavelengths to be selected (via the mechanism described
in Sec. 3.5.1), and we should expect more ordered, patterns. By inspection of Fig. 3.5, this happens
in Ni between 2 and 5 ps. And indeed, 4 ps is he time delay for which the highly-ordered nanopeaks
reported in [Nak+21a]) are experimentally observed.

On the other hand, this also suggests that the patterns multi-modality, that is observed discon-
tinuously at certain delays, could be explained via a resonance mechanism: only when the second
pulse appears at a depth that is a multiple of the first pulses’ final depth, will the second feature
size not destroy the prior features.

Finally, this new mechanism of pattern formation offers an alternative explanation for the for-
mation of experimentally observed hexagonal patterns, for which a process known as Marangoni
convection instability has recently been proposed as the only reasonable candidate [Abo+20] to
explain their formation. However, the full picture is more complex, and such fluid flow induced
by Rayleigh-Bénard-Marangoni hydrodynamic instability requires isotropic thermal gradients con-
ditions to occur upon ultrashort laser irradiation [Rud+20]. Indeed, below we show that certain
hydrodynamic equations (Boussinesq) approximately govern the dynamics after the early stages of
laser-matter interactions and before thermalization. This, together with the symmetries imposed
by the experimental setup, lead to a Rayleigh-Bénard type convection governed by the SH equa-
tion, which indeed cannot produce hexagonal patterns. However, as was shown in [Hak77], the
modified SH equation with a quadratic non-linearity can be obtained with the same experimental
assumptions by replacing the Boussinesq equations with their compressible flow analog. This second
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Figure 3.5: Pressure and temperature hydrodynamics of femtosecond laser-Nickel interaction (Jean-
Philipe Colembier, private communication). In prior work, emphasis was on t > 5ps, the thermal-
ization time, where one can observe a pressure wave and the subsequent rarefaction wave (blue).
As can be shown in hydrodynamic simulations, before thermalization time ≈ 10ps, a similar event
takes place, at a much thinner layer, of up to 50 nm.

equation, which is called Haken model in [Wal12] but is more generally referred to as the modified
SH model in the literature, can produce hexagonal patterns.

Because the convective process is so short-lived, only by accumulation of double-pulse events
will we be able to observe pattern formation. The full dynamics thus consists of series of short-time
Rayleigh-Bénard convection approximately modelled by the Swift-Hohenberg equation, interrupted
by the subsiding of the electronic blast wave and finally fixed by solidification.

3.2.5 Recovering the Boussinesq approximation from the two tempera-
ture model

We now show that we can recover the Boussinesq approximation from the two temperature model.
Assume first that ke ≈ k0Te as in [Cor+88] and γep ≈ c1e

−c2Te as seen in [LZC08], Fig.5(d),
where c1 ≈ 8, c2 ≈ 2 ln 2 are positive constants3, and get, for the first condition

∇ · (ke∇Te) ≫ γep(Te − Tp) ≈ γepTe ⇒
k0∥∇Te∥2 + k0Te∇2Te ≫ c1e

−c2TeTe ≈ c1(Te − c2) ⇒
k0∥∇Te∥2 + k0Te∇2Te ≫ c1Te ⇒

which should hold in the case of large temperature gradients.
In the following, we shall make the approximation that ke, kp, γep are spatially constant with

respect to the gradient of the respective temperatures. With that approximation we obtain

∥∇2Te∥
|Tp − Te|

≫ γep
ke

3c2 has units of inverse temperature and c1 units of γep.
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and similarly for the ions.
, the electronic conservation of energy equation (3.2.4) becomes

Ce
∂Te

∂t
= ∇ · (ke∇Te)− γep(Te − Tp) + Iαabs ≈ ke∇2Te

To investigate this equation further, assume that the interaction domain is a thin volume that
extends infinitely in the the x- and y- directions. Then Te will only vary in the z direction and all
spatial derivatives in the x and y direction will be zero. This allows us to rewrite the electronic
conservation of energy (3.2.4) above as

∂Te

∂t
=

ke
Ce

∂2Te

∂z2

This is a wave equation, and the particular form of its solution depends on boundary conditions. At
the time t0 of the beginning of this evolution, the laser energy has been absorbed by the conduction
band and has had some time to equalize. The electronic temperature thus decreases with depth from
Te(0, t0) exponentially, that is Te = −a∂Te

∂z , where a > 0 is a constant. Ths defines how abruptly
the electronic temperature decays from its maximum at time t0, which depends on the amount of
energy that was deposed, etc. We assume a separable solution Te(z, t) = g(z)h(t). Substituting
this above yields

g(z)
d2h

dt2
=

ke
Ce

h(t)
d2g

dz2
.

Dividing both sides by ke

Ce
g(z)h(t), we get

1
ke

Ce
h(t)

d2h

dt2
=

1

g(z)

d2g

dz2
.

Since the left-hand side is only a function of t and the right-hand side is only a function of z,
both sides must be equal to a constant, say −ω2:

d2h

dt2
+ ω2h(t) = 0,

d2g

dz2
+ ω2 ke

Ce
g(z) = 0.

We also assume that ∂Te

∂z = aTe, or g′(z) = a · g(z), decreasing exponentially from the bottom
z = h up to z = 0 where g(0) = U , which is compatible with rarefaction. Solving for g(z), we get

g(z) = Aeaz.

Using the condition g(0) = U , we find g(z) = Ueaz. Plugging this back into the wave equation for
g, we obtain ω2 = −a2Ce

ke
which implies that ω is imaginary. The general solution for h(t) can thus

be written as

h(t) = Ce
√

|ω|t +De−
√

|ω|t.

Combining these, the full solution becomes

Te(z, t) = Ue−az
(
Ce

√
|ω|t +De−

√
|ω|t
)
.
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Finally, we use the boundary conditions h(0) = 1 and Te(z, τ) = U , where τ is the equalization
time (of the order of 10 ps for Ni). The condition h(0) = 1 can be satisfied with C +D = 1, but
since Te(z, τ) = U we get

C =
1 + e

√
|ω|τ

2

D =
1− e

√
|ω|τ

2

which, together with
√

|ω| = a
√

Ce

ke
yields the following solution for the electronic temperature

for t0 < t < τ :

Te(z, t) = Ueaz
(
Ce

a
√

Ce
ke

t
+De

−a
√

Ce
ke

t
)
.

Let us now examine the phonon conservation of energy equation. Requiring that the fluid be
incompressible we get

∂Tp

∂t
+ u⃗ · ∇Tp =

1

ρCp
∇ · (kp∇Tp) +

γep
ρCp

(Te − Tp)

=
1

ρCp
∇ · (kp∇Tp)

where in the last step we used the hypothesis that for t0 < t < 5 ps the diffusive dynamics dominates.
If kp is a spatial constant, the phonon energy conservation equation further simplifies

∂Tp

∂t
+ u⃗ · ∇Tp =

kp
ρCp

∇2Tp.

We now show that the phonon fluid follows the Boussinesq approximation. Typically in this
setting, we assume that fluid density is first-order constant ρ = ρ0 + δρ with |δρ| ≪ |ρ0|, which is
sensible for phonons. The the continuity equation becomes

∇ · u⃗ = 0,

Replacing the new continuity equation in the momentum conservation equation we get

∂(ρu⃗)

∂t
= −(u⃗ · ∇)(ρu⃗)− (ρu⃗)∇ · u⃗−∇(Pe + Pp) + µ∇2u⃗+

1

3
µ∇(∇ · u⃗)

= −(u⃗ · ∇)(ρu⃗)−∇(Pe + Pp) + µ∇2u⃗

since ∂(ρ0u⃗+δρu⃗)
∂t = ρ0

∂u⃗
∂t + u⃗∂(δρ)

∂t ≈ ρ0
∂u⃗
∂t and since, for the convective term we have

(u⃗ · ∇)((ρ0 + δρ)u⃗) = (u⃗ · ∇)(ρ0u⃗) + (u⃗ · ∇)(δρu⃗)

≈ (u⃗ · ∇)(ρ0u⃗)

= ρ0(u⃗ · ∇)u⃗,
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(where we assumed small velocities and spacial gradients of u⃗ and δρ, and used the fact that ρ0 is
constant in space4), the modified momentum conservation equation will thus be:

ρ0
∂u⃗

∂t
= −∇Pp + µ∇2u⃗− ρ0(u⃗ · ∇)u⃗−∇Pe

where we collected all the terms other than the inertial term on the right-hand side. This equation
is analogous to the one we obtain in the classical Boussinesq approximation with the gravity-based
buoyancy replaced by the negative gradient of electronic pressure −∇Pe, which for the duration of
the blast wave, has the opposite sign of that of −∇Pp.

Assuming that we are sufficiently close to equilibrium that Pe is proportional to Te (which should
hold locally), then −∇Pe = −C∇Te (in the ideal gas limit, the constant would be the Boltzmann
constant). Using the expression we found above for Te, expanding around z = h and keeping only
up to first-order terms we have

Te(z, t) ≈ Uh(t) + azUh(t) ⇒
∇Te ≈ aUh(t)e⃗z ≈ aTpe⃗z

where e⃗z points down. Replacing this in the expression above we obtain

ρ0
∂u⃗

∂t
= −∇Pp + µ∇2u⃗− ρ0(u⃗ · ∇)u⃗− C∇Te

= −∇Pp + µ∇2u⃗− ρ0(u⃗ · ∇)u⃗− CaTpe⃗z

In summary, we have found, for the ion temperature and velocity:

∇ · u⃗ = 0 (3.2.7)
∂Tp

∂t
+ u⃗ · ∇Tp =

kp
ρCp

∇2Tp (3.2.8)

ρ0
∂u⃗

∂t
= −∇Pp + µ∇2u⃗− ρ0(u⃗ · ∇)u⃗ −aCTpe⃗z︸ ︷︷ ︸

e− buoyancy

, (3.2.9)

which are the Boussinesq equations for fluid motion, with a modified ”electronic buoyancy” origi-
nating from the electronic pressure gradient term from the blast wave, which is proportional to −e⃗z
and points up.

Summary As shown in Fig. 3.3, after a short period of laser-matter interaction, matter is left to
evolve, a process which can modelled using eqs. 3.2.3, 3.2.4, 3.2.5, and 3.2.6. As we showed above,
this can be seen, at the time scale of pre-electron temperature equalization, as ion fluid motion
using the Boussinesq approximation, with the gravitational buoyancy term being replaced by an
electronic buoyancy originating by the blast wave near the surface of the solid.

This, as shown in [SH77] generates a shortly lived Rayleigh-Bénard type convection of the ion
fluid, the unstable 2D-dynamics of which can be described using what is known as the Swift-
Hohenberg equation (cf. Sec. 3.5.2).

In between pulses the electron blast wave subsides, convection stops, matter becomes solid
again, and all temperatures equalize. The process begins again at each new impulsion (possibly

4Nothing much happened on the phonon side yet, so this should be okay?
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interacting with previous blast waves), following an approximately SH-dynamics at the scale of the
time-difference between double pulses.

This physical model cannot be expected to explain the full dynamics of pattern formation.
Before we proceed, we shall therefore examine the problem of learning with data by integrating
partial physical information.

3.3 Learning by integrating partial physical information: re-
lated work

Given a physical phenomenon modeled by a PDE, the problem of predicting the result of mea-
surements is known as the forward problem, while estimating unobserved states and parameters
that characterize the system — which are needed to solve the forward problem — is called the
inverse problem. The solution of the forward problem for deterministic PDEs is generally unique,
but that of the inverse problem is not. It is rather naturally expressed as a probability distribution,
which motivates a rigorous formulation of the inverse problem in terms of Bayesian inference, with
well-established methods going back to Laplace [Tar05].

Incorporating prior knowledge and combining it with data is the key problem in Bayesian es-
timation. Since priors and data are domain specific, it should come as no surprise that methods
to tackle the inverse problem have been developed in parallel in several domains where physical
knowledge can be expressed in terms of a PDE and data is abundant.

In geophysics and climate science, physical models are sophisticated and well-established but
there is only partial information about state: satellite data, for example, is given in patches, but
forecasting using the physical model requires knowledge of the full state; solving this inverse problem
in this domain is commonly done using a collection of methods known as data assimilation [Car+18].

In the physics community, on the other hand, one can often carefully prepare experiments to
set the initial state, and the main goal is now physical model development or validation. When the
initial state is known, the inverse problem of finding the distribution of model parameters is thus
the main focus. It is known as model calibration [KO01], and a host of recent results exist using
machine learning techniques, notably deep learning [VS21], to learn the parameters of either the
full model5 or a correction to incomplete physical knowledge [Yin+21] (an augmented model) from
data.

More specifically in photonics, the focus is on inverse design [Mol+18] — algorithmic techniques
for discovering optical structures based on desired functional characteristics —, with neural networks
being used to speed up optimization of nano-photonics structures, by replacing the forward model
with a much faster to evaluate neural network surrogate [Wie+21; Ma+21], for example. The task is
reminiscent of our own. Unlike in our case, however, the physical model is assumed to be complete,
the system state can be prepared, and data is abundant. Crucially, there is a a specific functional
characteristic to optimize for, whereas we are interested in exploration rather than design.

In reality there is always some uncertainty with respect to either model parameters or system
state. To solve the joint inverse problem of finding state and model parameters, several approaches
involving machine learning were recently proposed in the climate sciences. The main idea is to
alternate a data assimilation step to estimate state and a machine learning step to learn model
parameters from data [Fil+20; Far+21; Ngu+20; Bra+21]. Because in the climate science case the

5Which is typically carefully constrained as to incorporate the right biases, and can thus be seen as already
incorporating physical knowledge.
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dynamics are generally well-known, the models that are jointly learned can be seen as corrections
to partial physical knowledge given as a governing PDE, and the goal is to learn them from data
(although the correction itself also commonly incorporates physical knowledge or symmetries in the
form of constraints imposed during training [Déc+20; GDY19; Che+19; Cra+20; Don+22] and/or
in the network architecture [Beu+19; Fil+20]).

In these terms our task of predicting new laser patterns can be framed as follows: we have a
complex system in which the laser-matter interaction takes place; Xt, the state of this system at
time t is unknown but for its noisy image through an observation operator Yt = HXt + ϵ, which
consists in the laser parameters and the SEM images of the material at the zone of incidence of the
laser spot after solidification (the solidification time is not fixed and depends, among other things,
on laser fluence). As in the climate science approaches above, we have an explicit partial model for
the transition from state Xt to Xt+1, the Swift-Hohenberg equation with unknown parameters φ,
which we can see as a first order model of the physical phenomenon6, and we have no access to the
hidden state. Crucially, unlike these approaches, we have a single observation for each evolution and
several orders of magnitude less evolution data. This makes the dual inverse problem of inferring
initial state and model parameters unfeasible, and the aforementioned methods inapplicable.

We shall overcome this difficulty by recasting the problem in such a way that for our purposes, in
the case of self-organization pattern forming dynamics, the state determination inverse problem is
unnecessary, in the sense that a feature transformation F exists such that in the image of F , patterns
can be effectively described via model parameters alone7. This turns the high-dimensional ill-posed
inverse problem into a much lower-dimensional problem of learning the relationship between laser
parameters and model parameters using data.

3.4 Integrating partial physical information to learn with
few data and no knowledge of initial conditions

In this section, we derive a principled approach to the problem of learning a complex relationship
between an observable quantity θ and a physical field u, given only few data, by taking advantage
of partial contextual physical knowledge in the form of a differential equation on u not explicitly
depending on θ, in the absence of knowledge of initial conditions. We strive for generality but we
shall refer to the main subject of this chapter for examples and clarification.

This problem is fundamentally difficult in three interacting ways: first, the dearth of experi-
mental data makes learning a complex relationship directly, from data alone, impossible. This is
usually where a physical model can be of assistance, typically via data augmentation: one uses a
differential equation solver — or a neural network surrogate of a differential equation solver — to
generate more θ, u pairs in a principled, physically consistent manner, which we can then use to
complement the small dataset size. Even if the physical information is not complete, it can still
be of use: if the model is only approximate, one splits the field in two components, one which is
exactly modeled by the physical model, and a second which can be seen as a perturbation of the
former, and which can be learned from data [Yin+21]. But producing a model explicit on θ is the
second difficulty, particularly in the earlier stages of the experimental process or in the case where θ
are difficult to interpret in terms of known physical quantities commonly used to parameterize the

6In our case, we are solving the inverse problem for the first order model, not a correction.
7This feature transformation is shown to exist in Section 3.4.4 for the case of models with pattern-like solutions

(which is our case, as detailed below in Section 3.5.1)
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physical model. This is not an insurmountable difficulty: we may lack explicit physical knowledge,
but it is rarely the case that we approach a physical situation without any sort of background
knowledge. In most situations, a general model relating common physical observables and the
physical field can be produced, derived on first principles or symmetry arguments. This can be
a considerable simplification, as it may allow us to turn the problem of learning the relationship
between the θ and u into one of learning the relationship between the θ and the general model
parameters φ. As the dimension of φ is generally lower than the dimension of u, it is much easier
to learn the latter. Herein lies the third difficulty: if the general model is good and the observables
are sufficiently informative, one can hope that the number of data required for calibration be small.
But calibration data is of a different nature as it is typically done via a series of carefully designed
experiments [CH93]. Learning the parameters of a differential equation in time typically involves
knowledge of u at different times, which is not necessarily part of the original θ, u data — we need
then knowledge of initial conditions for u.

We propose to address these difficulties as follows: we first show that in the case of self-
organization, pattern-forming processes, the information contained in the initial conditions u0 is
small, in the sense that a non-injective feature transformation F exists such that they can be
losslessly expressed in the lower-dimensional F (u0), which makes the dependency on initial con-
ditions less important. We then proceed by making two assumptions on the physical process and
its relationship with the observables, allowing us to propose a method to take advantage of self-
organization physical knowledge to learn with few data. We note that these assumptions hold in
a number of interesting cases, namely climate models, where our method could be also applied to
find the relationship between observed quantities and features of rare events, for example (extreme
event prediction, of which, by definition, we have few data).

3.4.1 Problem statement
Consider a physical field u(x, t) := u which we believe is mainly the result of a certain physical
process, the evolution of which can be described in terms of physical process parameters φ and
initial conditions u0 (compatible with the physical situation) and by a PDE u̇ = f(φ, u0)

8. Assume
we have no knowledge of either φ or u0 — although the latter is assumed to belong to a large set
U0 of ”reasonable” initial conditions compatible with the physical situation. We also assume that a
certain observed quantity θ (which in our case will correspond to the laser parameters) exists which
affects φ — although it may also affect other unknown latent variables, which may in turn affect u
(Fig. 3.6, left).

We would like to sample from the distribution of u given a certain value of the observed quantity
θ. Unfortunately, since we have no knowledge of the initial conditions, p(u|θ) cannot be calculated
directly

p(u|θ) =
∑
u0

∑
φ

p(u, u0, φ|θ)

=
∑
u0

∑
φ

p(u|u0, θ, φ)p(u0, φ|θ),

8Throughout this section we assume that u is a real field and periodic boundary conditions; we further assume
that conditions are satisfied such that u is unique (existence is posited since we are assuming that the process is
modeled by this equation and we observe the fields)
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Figure 3.6: Left: Observable θ influences a physical process φ, among others (marked ’?’), which,
together with unobserved initial conditions u0, determine observed field u. Center: A feature trans-
formation exists such that u = (F (u), F (u)

⊥
), and the observable F (u) is useful and independent

of initial conditions u0. Right: in addition, the feature transformed observable is not affected by
the other physical processes.

(where sums are to be replaced by integrals in the continuous case) and we shall need to make
hypothesis about the physical process to proceed.

3.4.2 Two hypotheses on the physical process
The distribution p(u|θ) may be impossible to calculate directly, but the quantity of interest is often
not u, but rather a certain function of u, F (u), where F (u) is typically simpler than u, which
motivates the following hypotheses:

Hypothesis 3.1. A function F of the field u exists such that the knowledge of the physical process
φ suffices to determine the likelihood of F (u) conditioned on θ. Precisely, p(F (u)|u0, θ, φ) =
p(F (u)|θ, φ). We call feature space the image of F on the domain of u.

Under Hypothesis 3.1, and assuming that the initial conditions are independent of the physical
process φ and the observed quantity θ (as shown in Fig. 3.6), we have

p(F (u)|θ) =
∑
u0

∑
φ

p(F (u)|u0, θ, φ)p(u0, φ|θ)

=
∑
u0

∑
φ

p(F (u)|θ, φ)p(u0|φ, θ)p(φ|θ)

=
∑
u0

∑
φ

p(F (u)|θ, φ)p(u0)p(φ|θ)

=
∑
φ

p(F (u)|θ, φ)p(φ|θ).
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To proceed, we make the following additional assumption:

Hypothesis 3.2. The observed quantity θ determines the physical process: p(φ|θ) is peaky, in
the sense that there is a φ̃ such that p(φ|θ) = 0 for φ ̸= φ̃. In particular, if p is continuous,
p(φ|θ) = δ(φ− φ̃(θ)), where δ(·) refers to the peaky distribution related to physical process.

Under this assumption, φ̃ is a function of θ, which implies that θ is at least locally a function
of φ̃ and we can write

p(F (u)|θ) =
∑
φ

p(F (u)|θ, φ)p(φ|θ)

= p(F (u)|θ(φ̃), φ̃)p(φ̃|θ)
= p(F (u)|θ(φ̃), φ̃)
= p(F (u)|φ̃).

How can we find φ̃(θ)?

3.4.3 Learning by maximizing the likelihood
Our general method to learn φ̃(θ) is to maximize the likelihood of the observations. In the sequel,
we propose two strategies to do so: one in which we maximize it directly, and another in which we
maximize a lower bound.

Maximizing the likelihood directly

Having access to experimental data
{
θi, ui

}
i=1...N

, we can parameterize φ̃ with a Neural Network
(α), for example, and maximize the log likelihood of observing the F (ui):

ᾱ = argmax

N∑
i=1

log p
(
F (ui)|φ̃(θi);α

)
. (3.4.1)

If u is high-dimensional, the relationship between F (u) and φ̃ is potentially complex, and thus
requires N large to model satisfactorily. Having physical knowledge in the form of a differential
equation solver u = Solver(φ̃, u0), however, considerably simplifies the problem.

In feature space, for a process respecting Hypothesis 3.1, we can choose arbitrary initial condi-
tions and fit only the relationship between θ and the parameters of the differential equation, which
generally have much lower dimension than the field u. Since this is a much simpler task, we expect
that a much smaller N will suffice to produce a satisfactory model.

Assuming data is generated i.i.d. from a fixed-variance Gaussian distribution, this corresponds
to minimizing the mean squared error between the images, through F , of experimental fields, and
fields generated by the PDE solver for an arbitrary initial condition u0 ∈ U0.

ᾱ = argmin
1

N

N∑
i=1

∥∥F (ui)− F (Solver(φ̃α(θ
i), u0))

∥∥2 (3.4.2)

Note that this optimization is more conveniently done with a differentiable surrogate of the solver.
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Maximizing a lower bound of the likelihood

Note that9

log (p(F (u)|θ(φ̃), φ̃)p(φ̃|θ)) = log p(F (u)|θ(φ̃), φ̃) + log p(φ̃|θ)
= log p(F (u)|φ̃) + log p(φ̃|θ).

Let φ̃1 be the maximizer of the first term, φ̃1 = argmaxφ̃ log p(F (u)|φ̃). Then

max
φ̃

{log p(F (u)|φ̃) + log p(φ̃|θ)} ≥ log p(F (u)|φ̃1) + log p(φ̃1|θ). (3.4.3)

Provided we find φ̃i
1 for each ui, we can replace the log likelihood maximization objective with

that of maximizing a lower bound:

ᾱ = argmax
α

N∑
i=1

log p
(
φ̃i|θi;α

)
(3.4.4)

which, repeating the argument above, corresponds to minimizing the mean squared error,

ᾱ = argmin
α

1

N

N∑
i=1

∥∥φ̃i − φ̃α(θ
i)
∥∥2 .

We can replace this task with maximizing a lower bound, after having found the first maximizer.
It remains to find the φ̃i. To do so, we note that having an efficient solver and assuming sufficient
regularity, one can pre-generate sufficiently many fields Ug =

{
uk
g

}
k=1...M

such that the expected
distance to the nearest neighbor in feature space, given by F , is as small as one would like:

δ =
1

M

M∑
k=1

min
j ̸=i

∥∥F (uk
g)− F (uj

g)
∥∥2

=
1

M

M∑
k=1

∥∥F (uk
g)− F (ûk

g)
∥∥2 ,

where we denoted ûk
g as the nearest neighbor in Ug of uk

g , in feature space. Denoting Solver(φ̃α, u0) :=
uα for simplicity and ûα its nearest neighbor in Ug, we have

9We recall that even though we are under the conditions of Hypothesis 3.2 — φ is a function of θ —, we don’t know
which function that is, which explains keeping around the term log p(φ̃|θ), which we will maximize for experimental
data in order to find φ̃.
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min
α

1

N

N∑
i=1

∥∥F (ui)− F (uα)
∥∥2 =

1

N

N∑
i=1

min
α

∥∥F (ui)− F (ûi
p) + F (ûi

p)− F (uα)
∥∥2

≤ 1

N

N∑
i=1

∥∥F (ui)− F (ûi
p)
∥∥2 +min

α

1

N

N∑
i=1

∥∥F (ûi
p)− F (uα)

∥∥2
≤ 1

N

N∑
i=1

∥∥F (ui)− F (ûi
p)
∥∥2 + δ

≤ 2δ.

Since δ → 0 we can set φ̃i as the solver parameter of the nearest neighbor in feature space,
among pre-generated fields, of ui.

3.4.4 Generality of the two hypotheses
The hypotheses above correspond to the following desiderata:

• A useful, simplifying and separating feature space F exists.

• In F , the task is independent of initial conditions.

• In F , the physical process φ is essentially a function of the observed θ.

which we now examine in turn.

Choosing a useful, simplifying, separating feature space

In the exploratory stages of research, an explicit measure of usefulness is typically not available,
because future applications are unknown. It is thus important to keep the feature transformation
F as discriminating as possible. Without imposing further constraints, this is trivially satisfied by
choosing a bijection. On the other hand, we want F to be simplifying, in the sense that it is invariant
to quantities which we do not care for. Without further constraints, this objective is satisfied
trivially by choosing F as projection to a single point. These two objectives, which we illustrate in
Fig. 3.7, are in contradiction and fulfilling them simultaneously is not trivial. This strategy could
still be pursued in principle by training a model for a set of broadly defined constraints, but doing
so is expensive in terms of time and data, and cannot be justified in practice in the early stages of
research. The problem is reminiscent of that in [Beu+21], in which F is called a physical rescaling;
as in our work, the assumption is that it is inconvenient to train a model to find such a rescaling,
which is thus obtained based on physical knowledge and/or statistical properties leaving the target
variables invariant. This method is interesting but, in a setting of partial physical information and
few data, explicitly defining discriminating invariant feature transformations based on physical or
statistical arguments is challenging.

A reasonable alternative in this setting is to choose a simplifying feature transformation F which,
applied to similar data, is known to allow a broad task to be performed, which is the strategy that
we propose. This has the inconvenience of the feature transformation F not being uniquely defined,
which is why we now propose a method to compare several such transformations.
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F

F

F

F

F
F

Figure 3.7: One would like the feature transformation of choice F to be simplifying in the sense
that it abstracts away pattern minutia while still being discriminating in the sense that patterns
which are different will be mapped to different points.

For concreteness and for the sake of clarity, we present this strategy in the context of our
specific task of finding a feature space for predicting novel laser-induced nanoscale patterns (shape
and scale). The shape of the patterns observed in SEM images is described by the experts in
somewhat loose terms such as ‘labyrinthine’, ‘hexagons’, ‘bumps’, ‘peaks’. Different patterns are
believed to have different applications with different utility. However, this strategy can in principle
be generally used in the context of the early stages of the experimental process, with few data and
partial knowledge, and where a specific measure of utility is not yet established.

A quality measure for the Feature transformation We define as a measure of quality of a
feature transformation F with respect to physically relevant patterns, the accuracy of the classifica-
tion task where the patterns are classified as the modal pattern in the clusters obtained by k-means
in feature space. To see why, consider u(p1)

i , u
(p1)
j two fields with the same pattern. If F is invariant

with respect to this pattern, then F (u
(p1)
i ) = F (u

(p1)
j ). If F is discriminating, for all patterns pk,

if k ̸= l then for all i, j, F (u
(pk)
i ) ̸= F (u

(pl)
j ). It follows that if F is invariant and discriminating, it

solves the task of clustering fields according to patterns. This motivates our definition.
In practice, as mentioned in [Beu+21], a fully invariant non-trivial mapping is difficult or im-

possible to find, which leads us to define invariance with a given tolerance. This motivates our
measure of invariance as the accuracy of a distance-based clustering algorithm, which we take as
the k-means modal classifier for simplicity.

We note that identification of the modal pattern and choice of the number of clusters k require
physical knowledge, and were therefore performed by an expert. On the other hand, this knowledge
does not have to be explicitly defined, which allows our method to be applied in the context of partial
physical knowledge, in the early stages of the research process. Finally, we also note that the choice
of invariant, discriminating feature F transformation is not unique: if F is such a transformation,
we can obtain another one by adding a constant feature, for example. All things being equal, we
would rather choose an F as simple as possible.
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Independence of initial conditions

In general we cannot guarantee that a feature transformation exists that allows abstracting away
initial conditions, but we now show that this is the case for pattern-forming systems via a determin-
istic process. To ground intuition, we recall that patterns are often formed because Fourier modes
are selectively amplified/attenuated during the dynamics, the set of frequencies that are not driven
to zero laying on a band around some critical frequency10. To see that necessarily implies that the
initial conditions are redundant, we begin by establishing notation and a few definitions: Let u be
a real field defined on a finite interval of length L with periodic boundary conditions11. Setting
L = 2π for simplicity, in the frequency domain, the maximum wave number compatible with such
boundary conditions is 2π/L = 1. The possible wave numbers are thus 2π

L n = n for integers n ≥ 1,

and we can write the field as u =
∞∑

n=1
anfn where fn is the Fourier mode with frequency n and

an ∈ C its amplitude.
To each field, we can associate a distribution of its amplitude among the modes by setting

pn = |an|2
∞∑

n=1
|an|2

.

Finally, to this distribution we can associate the following Shannon Entropy H(u):

H(u) = −
∞∑

n=1

pn log pn (3.4.5)

The general idea of the proof is the following:

1. Let u be a real field on a bounded domain Ω at a fixed time t, which is the result of a
deterministic physical process for given initial conditions i. If that is the case, then there is
a function Lt : Ω → Ω such that u = Lt(i). The mutual information between the field u at
time t and its initial value i is thus I(u, i) = H(u) − H(u|i) = H(u), since u = Lt(i) and
H(Lt(i)|i) = 0.

2. We prove that for general initial conditions the entropy for a self-organization physical process
is decreasing H(u) < H(i).

3. If Lt were a bijection, an inverse L−1
t would exist and I(u, i) = I(L−1

t (i), i) = H(i) by the
same argument as above, which would imply H(i) = H(u). Since this is not the case, Lt must
map to a lower-dimensional space.

4. In this lower dimensional space, the initial conditions completely determine the field u (iden-
tically, since u = Lt(i)).

5. Hence, for such a physical process, there is necessarily redundant information in the specifi-
cation of initial conditions.

It remains to show the following proposition:

Proposition 3.1. The entropy of a self-organization process is decreasing for general initial con-
ditions.

10There could be more than one such critical frequency
11The extension to polytopes is straightforward.
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Proof. Consider now a variation in the distribution of amplitudes (ṗ1, · · · , ṗk, · · · ) := ṗ, where the
dot denotes a time derivative. The corresponding time derivative of the entropy is then:

Ḣ = −
∞∑

n=1

ṗn(log pn + 1) (3.4.6)

:= −ṗ · (logp+ 1), (3.4.7)

The maximal change in entropy will be for ṗ aligned with logp+1, which is clearly not generally the
case for some initial distribution of amplitudes p. For self-organization physical processes, patterns
are often formed because a certain range of nodes in the neighborhood of a critical wave number
n0 is amplified, all others being attenuated. One can generally describe this evolution12 in terms
of the amplitude of each node:

an(t) = e−(n−n0)
2tan(0) (3.4.8)

where we dropped the absolute value for notation simplicity. Assuming that there is no large
power mode (all pk < 1/2, which is indeed the case for k > 2 for the maxent distribution of Fourier
power spectrum, which is the uniform distribution), all components of the vector logp+ 1 are
negative. Further assuming that the physical process has the property that the l2 norm of the field
is constant,

∞∑
n=1

|an( t)|2 := 1/α we have, by replacing (3.4.8) in the time derivative of the entropy

above, that the entropy of the self-organization process Hso decreases for every initial distribution
of amplitudes:

Ḣso = −
∞∑

n=1

ṗn(log pn + 1)

= −α

∞∑
n=1

˙(a2n)(log pn + 1)

= −2α

∞∑
n=1

ȧnan(log pn + 1)

= α

∞∑
n=1

(n− n0)
2a2n(log pn + 1) < 0,

which proves the claim. As we mentioned above, this decrease is not maximal as it is not necessarily
so that to low power modes there will correspond a greater decrease in amplitude.

The likelihood is peaky: φ is a function of θ

We cannot control whether or not the likelihood p(φ|θ) is peaky. If it is not, then there are several
φ that can be associated to the same θ and the log-likelihood is

log p(F (u)|θ) = log
∑
φ

p(F (u)|θ, φ)p(φ|θ).

12These statements are strictly true for a Type 1S instability, near onset, and for a small perturbation of the u = 0
solution in the linear approximation, see [CH93] for details.
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We can proceed to maximize the likelihood of the data as before
N∑
i=1

log p(F (ui)|θi) =
N∑
i=1

log
∑
φ

p(F (ui)|θi, φ)p(φ|θi),

but in this case, Hypothesis 3.2 does not apply and so the expression does not simplify. If that is
the case, we propose a generalization of Hypothesis 3.2 which may still hold.

Likelihood is peaky in different subsets of data If we can split the data in subsets13 D1 ={
(ui, θi)

}
i=1...N−P

and D2 =
{
(ui, θi)

}
i=N−P+1...N

(where the data were possibly reordered) such
that for data in D1 the likelihood p(F (ui)|θi, φ) is close to zero for all but single φ̃1 and likewise
for D2, then we obtain the following upper bound for the log likelihood of observing the data:

N∑
i=1

log p(F (ui)|θi) =
N∑
i=1

log
∑
φ

p(F (ui)|θi, φ)p(φ|θi)

=

N−P∑
i=1

log
∑
φ

p(F (ui)|θi, φ)p(φ|θi) +
N∑

i=N−P+1

log
∑
φ

p(F (ui)|θi, φ)p(φ|θi)

=

N−P∑
i=1

log p(F (ui)|θi, φ̃1)p(φ̃1|θi) +
N∑

i=N−P+1

log p(F (ui)|θi, φ̃2)p(φ̃2|θi).

We thus have effectively two separate maximization problems, which we can proceed to solve in
either of the likelihood maximization strategies presented above. The reasoning extends to an
arbitrary number of subsets. We note that i indexes observations, hence that θi = θj for i ̸= j. It
could very well be that every θj is repeated. If that is the case, there are two concurrent physical
processes, which we would discover by fitting each subset of the data.

Combining separate models The method produces effectively two models for the same dataset.
In order to recombine these models, assume for simplicity that every observed θ is in both D1 and
D2, the same number of times. Then the likelihood is

N∑
i=1

log p(F (ui)|θi) =
N/2∑
i=1

log p(F (ui)|θi, φ̃1)p(φ̃1|θi) +
N∑

i=N/2+1

log p(F (ui)|θi, φ̃2)p(φ̃2|θi)

=

N/2∑
i=1

log p(F (ui)|θi, φ̃1) +

N∑
i=N/2+1

log p(F (ui)|θi, φ̃2)+

N/2∑
i=1

log p(φ̃1|θi) +
N∑

i=N/2+1

log p(φ̃2|θi).

If we use the second method (maximizing a lower bound of the likelihood), we use the sum of the
distance to the nearest neighbors of each datum as a measure of likelihood of the data associated
with each process.

13We chose a two dataset partition for ease of presentation but the reasoning extends straightforwardly to an
arbitrary number of sets.
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A remark on learning the feature space

As we noted in Section 3.4.3, learning the relationship between θ and the parameters of a differential
equation is a considerable simplification. We do so by choosing a feature projection with the desired
characteristics.

It is certainly possible to learn this feature projection, given enough data. To understand what
is at stake, consider the setting of Section 3.4.4: we are to use the same number of training examples

to maximize the likelihoods
N∑
i=1

log p(F (ui)|θi, φ̃) and
N∑
i=1

log p(φ̃|θi), where now F is to be learned.

To ground intuition, consider the problem of learning a linear mapping — the number of param-
eters of the linear mapping is a lower bound of the more general task. Consider the first task, that
of learning the relationship between the parameters of the differential equation and the physical
observables. Typically, the number of parameters of a differential equation nφ is of order zero, and
the number of physical observables nθ is of order one. The number of parameters to learn a linear
mapping between these spaces nφ × nθ is thus of order one. As for the second task, consider that
physical fields are typically discretized n, and typically take values on a m-polytope, for a total
number of features of nm. In the task of predicting laser patterns, we have n = 224 and m = 2. The
number of features is of order three, which brings the number of parameters of the linear mapping
between the two spaces to order seven — seven orders of magnitude more than in the previous case.

If the number of training examples is large, the two tasks can be solved in the sense that a small
bound on generalization error can be found. But if the number of training examples is small —
which we can define in terms of providing an acceptable bound to generalization for the first task —
then the second task, since the bound on true risk is given by an increasing function of complexity,
cannot be acceptably solved with the same number of data.

3.5 Predicting novel laser patterns with few data by inte-
grating partial physical information

We now apply the framework described in the previous section to predicting new laser patterns.
This problem is strictly in the scope of inverse problem theory, which aims at estimating physical
model parameters based on observations, with the added difficulty of having few observations at
a single moment in time and only a partial model of the physical process: the Swift-Hohenberg
(SH) equation [SH77], a 4th-order partial differential equation on the plane which can be seen as a
maximally symmetric model of convection.

In spite of Hypotheses 3.1 and 3.2 the problem remains severely ill-posed, and biased, since
the SH prior is only an approximate model of the dynamics. Our general strategy to tackle this
problem relies on finding a feature transformation F to remove some of this degeneracy.

We integrate the physical information in the SH equation in two ways: our first approach is based
on training a Deep Neural Network surrogate of a SH solver [LLF98; RPK19] on great number of
solutions of the SH equation, in the image of F . To our best knowledge, this is an original approach.
Neural Network surrogates have been shown to provide accurate solutions of Partial Differential
Equations (PDE) solvers at a fixed computational cost, and were applied successfully to notoriously
difficult problems such as the three-body problem [Bre+19]. We then learn h, the mapping from
laser parameters θ to SH parameters φ by backpropagating through the differentiable surrogate to
minimize the mean squared error in feature space. Finally, we use the solver on the output of h in
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order to produce a novel pattern, given a set of laser parameters.
Our second strategy to integrate SH physical information is to label experimental data with

the SH solver parameters of its nearest neighbor, in the image of F , amongst a great number of
pre-generated solutions of the SH equation. This dramatically simplifies the problem of learning
the relationship h between laser parameters θ and SH parameters φ, since φ is low-dimensional. As
in the first case, we use the solver on the output of h in order to, given a set of laser parameters,
produce a novel pattern.

Our experiments show that the second approach yields better results than the first, with good
agreement between experimental and generated images (see Figure 3.22). As we showed in Sec-
tion 3.4, the second approach corresponds to maximizing a lower bound of the likelihood of the
first, and the error that we incur can be controlled by the expected distance between pre-generated
solutions of the SH equation in feature space.

3.5.1 The Swift Hohenberg equation: introduction and qualitative anal-
ysis

The Swift Hohenberg equation was first presented in [SH77] and [PM80] in the context of Rayleigh-
Bénard convection. It is a 4th degree partial differential equation governing the time evolution of a
certain real field u(x, t), by defining the relationship between it spacial and time derivatives. In one
dimension, with N [u] representing some nonlinear functional of u, we have, in adimensional form:

∂u

∂t
= (ϵ− 1)u− 2

∂2u

∂x2
− ∂4u

∂x4
+N [u] (3.5.1)

The term N [u] is a nonlinear term that controls the growth of the instability, the simplest choice
being N [u] = u3. With this choice, if u is a solution of the equation, then so is −u; and u = 0 is a
solution.

It can be seen seen by linear stability analysis that small perturbations of the u = 0 solution
will be amplified selectively: specifically, when ϵ > 0, Fourier modes whose wave vector norm lies
on a certain interval centered at 1, the width of which depends on ϵ, will be amplified, while all
others will be attenuated. The left endpoint of the interval not being zero, this is a called a type Is
instability [CH93]. This type of selective attenuation leads to the formation of patterns by selecting
perturbations with certain periodicities. Since the selection of wave vectors depends only on the
norm, the patterns formed via this mechanism are isotropic.

In our application, it will prove convenient to break the symmetry with respect to u → −u
by introducing a term γu2. The quadratic term allows small amplitude destabilization and the
existence of the hexagonal patterns which we observe experimentally, while the negative cubic
term, which dominates for large amplitudes, controls the magnitude of the instabilities, which
would otherwise grow without bound. The modified form of the Swift-Hohenberg equation used in
this work, also known as the Haken model [Hak77], is thus

∂u

∂t
= (ϵ− 1)u− 2

∂2u

∂x2
− ∂4u

∂x4
+ u3 − γu2 (3.5.2)

Pattern selection: intuition To provide intuition on how a simple equation motivated on
symmetry grounds originates the complex patterns observed experimentally, we examine the rela-
tionship between the time derivative and each of the terms on the right-hand side separately. We
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shall see that it is the balance between the several terms of the SH equation which provides the
complexity leading to the formation of patterns, as we illustrate in Fig. 3.8.

Figure 3.8: Action of the linear part of the one-dimensional Swift Hohenberg equation ∂tu =

ϵu − (1 + ∂2
x)

2
u + N [u] on three Fourier modes u = a(t) sin(kx). For small a(t), ignoring the

nonlinear part and to first order in time, ∂tu = (ϵ − 1 + 2k2 − k4)a(t) sin(kx). The zeros of the
factor on the right hand-side are k =

√
1±

√
1 + (ϵ− 1). For ϵ = 0.5 and k1 =

√
1−

√
0.5 the

leftmost zero, the overall derivative of the mode sin(k1x) is zero, as can be seen on the center plot.
Modes with lower frequency will be attenuated, as can be seen on the leftmost plot, where we show
the magnitude of the various terms on sin(0.5k1x). Finally, the mode sin(2k1x), for which the
frequency lies between the zeros of the factor is amplified, as can be seen on the rightmost plot.

Consider first ∂u
∂t = (ϵ− 1)u. Since ϵ ∈ [0, 1[, u will increase in time where u < 0, and decrease

where u > 0, in proportion to |u|. If the field evolution were determined by this term alone, the
amplitude of u for a perturbation of the zero solution would be everywhere attenuated with time.

As for the ∂u
∂t = −2∂2u

∂x2 term, because of the negative sign, the value of u increases in regions
that are convex (peaks) and decreases in regions that are concave (troughs). Determined by this
term alone, perturbations of the zero solution would increase in magnitude, and more so where the
frequency of u is high than where it is low.

The evolution under the fourth-order term is similar: the value of u decreases in time in regions
where the fourth spacial derivative is positive and increases where it is negative. Fourth order
derivatives are more difficult to visualize, so we examine its action on sin (qnx), where qn are
integer multiples of 2π

L , since it is a well-known fact from Fourier analysis that any sufficiently
well-behaved odd f function of period L can be written as weighted sum (superposition) of these
functions (the Fourier modes).

Since the derivative can be taken term by term, we examine each fn individually. With an ∈ R
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we have

f(x) =
∑
n

an sin qnx :=
∑
n

anfn

The second derivative contribution of fn to the Swift Hohenberg dynamics is 2q2nfn: fn will increase
in time where fn > 0 and decrease where fn < 0 (as discussed above), large wavelength features
changing in amplitude faster than small wavelength ones. The fourth derivative term’s contribution
is −q4nfn: fn will decrease where fn > 0 and increase where fn < 0, proportionally to the inverse
fourth power of its wavelength: large wavelength modes will see their amplitude change faster than
small wavelengths.

To determine the overall effect, we sum up the contributions for each mode ϵ − 1 + 2q2n − q4n.
The sign of this coefficient will determine if fn gets amplified (negative) or attenuated (positive).
We conclude that modes will be amplified if 1 +

√
ϵ ≤ q2 ≤ 1 +

√
ϵ, which determines the range of

characteristic inverse wavelengths of the features in the observed patterns. We conclude by noting
that this amplification is without bound, and that the nonlinear part N [u] plays the important role
of controlling this growth.

3.5.2 The Swift-Hohenberg equation as a model of pattern formation for
Rayleigh-Bénard convection

The full derivation of the Swift Hohenberg equations in [SH77] is rather involved and outside the
scope of this work, but the general idea is simple, and thus we include an overview of its main lines
for completeness.

The main idea behind the derivation of the Swift-Hohenberg equation in [SH77] is that of reduced
dynamics. In the case of the [SH77] paper, this reduction is performed by adiabatic elimination.
There are other techniques to do so, namely via multiple scale analysis or via normal forms derivation
(see [Sid11] for a detailed derivation). The interested reader may also consult [Man83], where a
similar derivation to that in [SH77] is performed in physical space rather than working in Fourier
space.

In the vicinity of an instability point (a set of conditions at which a system undergoes a transition
from a stable to an unstable state), small perturbations to the system no longer decay but rather
grow over time. Swift and Hohenberg start in the context of Rayleigh-Bénard convection in the
Boussinesq approximation. There, it is known that this instability is given in terms of a critical
value of ∆T , the temperature difference between the two horizontal plate, beyond which sustained
convection appears. This is often defined in terms of a critical Rayleigh number Rc, where, in the
notation in [SH77], the Rayleigh number is given by

R =
gαl3∆T

νκ

here g is the acceleration due to gravity α is the thermal expansion coefficient of the fluid l is the
distance between the plates at ∆T temperature difference, ν is the kinematic viscosity of the fluid,
and κ its thermal diffusivity.

After rewriting the temperature equation in terms of a variable θ which describes the departure
of the temperature T from the uniform gradient ∆t/l, the authors introduce what is known as
a Langevin forces in the conservation of energy and conservation of momentum equations in the
Boussinesq approximation. These Langevin forces model random ”kicks” in energy and momentum

91



CHAPTER 3. LEARNING COMPLEXITY TO GUIDE LIGHT-INDUCED
SELF-ORGANIZED NANOPATTERNS

that particles experience due to their thermal environment, which will be reflected in kicks in
temperature and velocity as well.

The idea is to follow the effect of these fluctuations in the vicinity of the critical temperature. To
do so, the authors linearize and then Fourier transform the Boussinesq equations for the temperature
and the z-component of the velocity with the Langevin forces. This allows to identify two eigenvalues
of the linearized system: one with a real part that tends to zero at the critical point (stable), and
one that remains finite (unstable). The real part of its eigenvector being much greater, the stable
eigenvectors thus evolve much faster than the unstable eigenvectors in the vicinity of the instability.

The key idea now is that the faster evolution of the stable eigenvectors will allow them to adapt
to the evolution of the unstable nodes. In the terminology in [Hak77], the stable modes are slaved
to the unstable modes and can thus be adiabatically14 eliminated from the dynamics. Thus, in the
vicinity of the instability point the dynamics may be reduced to the slow modes dynamics.

To actually perform this reduction, the authors in [SH77] proceed to represent the full non-
linear dynamics in the basis of the eigenvectors of the linear system (in Fourier space). One of
these equations, that of the slow mode, in the vicinity of the instability, can be seen as stationary.
Solving this equation for the critical slow mode (see Appendix B in [SH77]), and plugging it back
into the nonlinear equations, the authors arrive at an expression that, up to a reparameterization
and up to a negligible noise term (at least in the limit of large Prandtl number ν/κ), the Swift
Hohenberg equation in the eigenvector of the slow mode.

3.5.3 The Swift-Hohenberg equation as maximally symmetric model of
pattern formation

Although the SH equation was introduced as a model of Rayleigh-Bénard convection as described
above, it can actually be motivated on general grounds, by appealing to symmetries. Specifically,
given appropriate boundary conditions, the SH equation is the simplest equation with a type Is
instability that is isotropic, translation invariant, and with invariance with respect to the u →
−u substitution (see [CH93] for details). Crucially, the SH equation can be derived from these
assumptions alone [CH93], as we shall see in the following, in an argument that is loosely based
on [CH93] and [VHV94], and that we present for completion.

We begin by assuming that the field u(x, t) that describes a two-dimensional pattern at position
x and time t, approximately respects the following conditions:

1. Translational Invariance: Invariance under translation x → x + a, where a is an arbitrary
vector. This is of course an idealization and implies that u has no spacial structure and
extends infinitely in all directions.

2. Isotropy: Invariance under rotation of x.

3. Reflection Symmetry: u → −u.

These symmetries are, in our experimental setting, approximately verified: (i) translational invari-
ance is clearly approximately verified at the scale of the patterns that we consider (the center of the
laser spot), as can be seen by inspection. This is explains the efficacy of the convolutional neural
network extracted features, as we shall see in Sec. 3.4.4. (ii) since cross-polarization was introduced

14The term ”adiabatic” here, which originates in thermodynamics, refers to a process that occurs so slowly that
the system has enough time to adapt, thereby allowing the elimination of fast modes in favor of slow-changing ones.

92



3.5. PREDICTING NOVEL LASER PATTERNS WITH FEW DATA BY
INTEGRATING PARTIAL PHYSICAL INFORMATION

specifically to make the patterns isotropic [Abo+20], we also expect this symmetry to hold within
the limits of experimental reality. (iii) reflection symmetry is not expected to hold, and we shall
explicitly break this symmetry introducing a quadratic term in the SH equation.

Instabilities of dynamical systems We shall consider idealized pattern-forming systems, which
evolve from a uniform, translational invariant state following an equation

∂tu = N [u]

where ∂xi
means partial differentiation with respect to variable xi, and the right-hand side is a

non-linear differential operator acting upon field u. We shall be interested in how a perturbation of
base state up = u− ub will grow over time. Since both u and ub = 0 are solutions of the equation
we have

∂tu = N [u] ⇒
∂t(up + ub) = N [up + ub] ⇒
∂tup = N [up + ub]− ∂ub ⇒
∂tup = N [up + ub]−N [ub]

hence

∂tup = N [up + ub]−N [ub] (3.5.3)

If the field up is sufficiently small, we can approximate N [up + ub] by linearizing about ub, which
will result in keeping only terms that involve a single factor of up or its spatial derivatives on the
right hand-side of eq 3.5.3, resulting in a linear evolution equation

∂tup =

(∑
i

ai(x, t)∂
ni

ki

)
up(x, t) := L[up]

We can look for Fourier mode solutions of this equation of the form

up(x, t) = Aeσteα·x

where σ, α := (α1, · · · , αn), A are possibly complex. This is convenient because j-degree differenti-
ation with respect to any spatial variable xi becomes multiplication:

∂j
i up = αj

iup

and replacing it in the linearized equation for the perturbations leads to a simple polynomial
equation:

σ =
∑
i

ai(x, t)α
ni

ki

Consistently with the infinite-sized domain necessary for translational invariance, we assume peri-
odic boundary conditions, that is, the spacial part of the perturbation is invariant under translations
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by a certain vector L := (L1, . . .). That is, for every xk we have eαkxk = eαk(xk+Lk) . This im-
plies that αkLk = (2πi)m for some integer m, which implies that αk = iqk is purely imaginary.
Specifically, the numbers qk are quantized and can only take up the following values

qk = m
2π

Lk
, m ∈ Z.

The vector q := (q1, . . .) is called the wave vector. This means that we are interested in solutions
of the form

up(x, t) = Aeiσteiq·x.

where we have redefined Re(σ) := σ Since the equation is linear, a general solution can be found
as a superposition of particular solutions

up(x, t) =
∑
q

cqe
iσqteiq·x,

where the sum goes over the set of quantized tuples of qk found above. For the base state to be
linearly stable, that is ub = 0 for t → ∞, all growth rates σq must be negative.

Heuristic derivation of the SH equation Since the system is rotationally invariant, the growth
rate of a perturbation of the base state σ(q) can only depend on q, the norm of the wave vector q,
not its orientation. Let qc be the norm of the wave number such that, for q > qc, the growth rate
becomes positive and the modes become unstable, as discussed in Sec. 3.5.1. Then we can expand
σq in the neighborhood of this critical wave number; keeping only the first even-order terms

σ(q) ≈ σ(qc) + a(q − qc)
2

= σ(qc) + aq2 + 2aqqc + aq2c

We shall be interested in equations of this type that have a stationary type-I-s instability, that
is, for which the previous equation has a local maximum at q = qc for σ(qc), called the control
parameter, equal to zero. This means that the constant a < 0.

Now since, as seen above, for Fourier mode solutions uq, we have σ(q)uq = ∂tuq and similarly
for the spatial operators e.g. q2uq = (q2x + q2y)uq = −∇2uq, then by multiplying the growth rate
expansion by uq on both sides we obtain the following equation

∂tuq =

(
σ(qc) + a

(√
−∇2 − qc

)2)
uq

The fractional derivative term
√
−∇2 is impractical to work with outside the Fourier domain.

For that reason, noting that for σ(qc) small, q + qc ≈ 2qc, and one can approximate the right hand
side of the expansion for σ(q) as

σ(q) ≈ σ(qc) + a(q − qc)
2

≈ σ(qc) + a

(
q + qc
2qc

)2

(q − qc)
2

= σ(qc) +
a

4q2c
(q2 − q2c )

2
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Using the same anszats as before we obtain,

∂tuq =

(
σ(qc) +

a

4q2c

(
−∇2 − q2c

)2)2

uq,

which can be rescaled to cast in adimensional form, in what is commonly known as the adimensional
Swift-Hohenberg equation:

∂tu = ru−
(
∇2 + 1

)2
u.

0.0

×104

2.0

1.0

(5)

(3)

(7)(8)

(4)

(6)

(2)(1)

t=0.83 t=1.60 t=3.20 t=7.40

t=13.9t=26.46t=51.06t=100

Figure 3.9: (right) SH solution with ϵ a centered 2D Gaussian ramp with a maximum of 0.8
and a standard deviation of 1/4 the domain size, to mimic the laser fluence distribution, and
γ = −1.0, shown at several solver times t, with 1024² colocation points, represented as a 1024²
heatmap (normalized to 1 since the SH eq. is adimensional); (left, top) SH Lyapunov functional
E [u] =

∫
Ω

u
2

(
∇4u+ 2∇2u+ u

)
+ 1

4u
4− γ

3u
3− ϵ

2u
2dx (a functional of the field which has the property

to decrease during the dynamics) with points corresponding to the solutions on the right highlighted.
Note that, as expected, E converges asymptotically to a stable value; as can be observed from the
field heatmaps on the right, as it does so, organized patterns form. (left, bottom) SH Lyapunov
functional shifted up in log-log scale; SH solver terminates when the Lyapunov functional stops
decreasing.

3.5.4 The Swift-Hohenberg equation has potential dynamics
The Swift Hohenberg equation for field u(x, t) on a domain Ω with the periodic boundary conditions
that are used in this work has potential dynamics, meaning that there is a functional E of the field
u, called the Lyapunov functional, such that

u̇ = −δE

δu
(3.5.4)

where δE
δu is the variational derivative of E with respect to variations δu. The functional E has the

property of decreasing during the dynamics [CH93]. Since E[u] is also bounded below, it converges
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asymptotically to a stable value. The Lyapunov functional for the SH equation used throughout
this work is

E [u] =

∫
Ω

u

2

(
∇4u+ 2∇2u+ u

)
+

1

4
u4 − γ

3
u3 − ϵ

2
u2dx (3.5.5)

:=

∫
Ω

E
(
u,∇2u,∇4u

)
dx (3.5.6)

as can be verified straightforwardly by calculating the functional derivative δE
δu using the Euler-

Lagrange equations

δE

δu
=

∂E
∂u

+
∑
i=2,4

(−1)
i∇i · ∂E

∂ (∇iu)

: =
∂E
∂u︸︷︷︸
A

+∇2 · ∂E
∂ (∇2u)︸ ︷︷ ︸

B

+∇4 · ∂E
∂ (∇4u)︸ ︷︷ ︸

C

And since ∇2 · ∂E
∂(∇2u) = u and ∇4 · ∂E

∂(∇4u) = u/2, we get

A =
∇4u

2
+∇2u+ u+ u3 − γu2 − ϵu

B = ∇2u

C =
∇4u

2
,

which implies, replacing in eq. (3.5.4)

u̇ = −∇4u− 2∇2u− (1− ϵ)u− u3 + γu2

= ϵu− (∇2 + 1)2u− u3 + γu2,

which is indeed the generalized SH equation.
The fact that E decreases during the dynamics (cf. Figure 3.10) will allow us to check for

divergence by calculating it at fixed iteration intervals, as we explain in the following section.

3.5.5 A pseudo-spectral second order solver for the SH equation
In this section, we describe the finite-difference solver that we use in this thesis to integrate the
knowledge of the Swift-Hohenberg equation into the machine learning model. We shall also use
this solver indirectly in the form of a surrogate neural network, which motivates some of the
implementation choices that we describe below. We choose a second-order pseudo-spectral method,
providing a good compromise between accuracy and speed. A pseudo-spectral method is a split-step
method, a technique which we explain briefly below following mainly [Lev07] and [Yos90]. We use
one spacial dimension in our discussion for ease of presentation, as it generalizes straightforwardly
to the plane. We assume periodic boundary conditions throughout.

96



3.5. PREDICTING NOVEL LASER PATTERNS WITH FEW DATA BY
INTEGRATING PARTIAL PHYSICAL INFORMATION

Figure 3.10: Lyapunov functional of the generated field solutions of the SH equation as a function
of evolution time t̃ for fixed ϵ and γ (ϵ a centered 2D Gaussian ramp to mimic the experimental laser
fluence distribution consistent with Sec. 4.5.1), depicted as a heatmap in symlog scale (symlog(x)
is the odd function that equals lnx if x > 1 and x if 0 ≤ x ≤ 1), for independent initial conditions.
Lyapunov functional evolution is largely independent of initial conditions and decreases during
dynamics. The SH equation is able to reproduce, among others, highly symmetric hexagonal
solutions (top), as well as labyrinthine solutions surrounded by nanopeaks.

Operator splitting

The SH equation can be written in terms of the sum of the action of a linear L and a non-linear N
differential operators acting on u

u̇ = L[u] +N [u] (3.5.7)
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with the action of L given by L[u] = (ϵ− (1 + ∂2
x)

2
)u and the action of the nonlinear part defined

as N [u] = γu2 − u3.
The idea is to discretize and integrate each of these parts in turn, which explains the name of

the technique. Doing so allow us to solve the non-linear part in Fourier space, where its action
reduces to multiplication, a considerable reduction in computational cost. The nonlinear part can
be solved using a straightforward explicit method which is easy to implement. The solution u(tn+1)
of the equation above at a later time tn+1 = tn + dt can be obtained from that at u(tn) via the
exponential of the operator L+N [Lev07]

u(tn+1) = exp (dt(L+N ))u(tn).

Integrating each part separately amounts to using the approximation

exp (dt(L+N )) ≈ exp (dtL) exp (dtN ). (3.5.8)

The error that we incur in doing so can be established using the Baker-Campbell-Hausdorff formula
(see [Hal03] for a proof and [Yos90] for applications to higher-order integrators), which states that
for any non-commutative operators X and Y , the product of the two exponentials can be expressed
in terms of the exponential of a single operator Z

exp(X) exp(Y ) = exp(Z)

where Z is given in terms of the commutators of X and Y in all except the linear term

Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) +

1

24
[X, [Y, [Y,X]]] · · · (3.5.9)

Applying this formula with X = dtL and Y = dtN we conclude, since the commutator [dtL, dtN ] =
dt2 [L,N ] ̸= 0, that the approximation eq3.5.8 is order one — independently of the order of the
methods that we choose for each of the individual parts. Specifically, we have

u(tn+1) = exp (dtL+ dtN )u(tn)

= exp (dtL) exp (dtN )u(tn) +O(dt).

Second-order pseudo-spectral solver

It is possible to increase the order of approximation at the expense of extra intermediate steps [Yos90].
In this work, we use an order two splitting scheme, known as Strang splitting [Str68], which consists
in taking a half step with the linear operator, a full step with the nonlinear operator, and a final
half step with the linear operator15:

u(tn+1) = exp

(
dt

2
L
)
exp (dtN ) exp

(
dt

2
L
)
u(tn) +O(dt2).

15We examined a symmetric 3-fold Strang composition method [Yos90] of order four, but the improvement was
not sufficient for our purposes to justify the increase in execution time, which stems not only from the extra time
stepping, but from the higher-order methods for each of the individual steps.
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Strang splitting increases the order of ordinary time-splitting to two provided we choose order two
methods to discretize each of the individual steps. We thus integrate the nonlinear part using Ral-
ston’s method, an order two explicit Runge-Kutta method with the Butcher tableau (see e.g. [Lev07]
for notation)

0 0 0
2/3 2/3 0

1/4 3/4

and integrate the linear part in Fourier space, where spacial derivatives amount to multiplication,
using the trapezoidal rule, with Butcher tableau

0 0 0
1 1/2 1/2

1/2 1/2
,

the result then being transformed back to the original space. Using the Fast Fourier Trans-
form [CT65] to calculate the discrete Fourier transform allows us to take this otherwise costly
step at quasi-linear time complexity.

With T (L, ut, k) and R(N , ut, k) representing the Trapezoidal and Ralston’s numerical methods
solving, respectively, u̇ = L[u] and u̇ = N [u] over a time step of k starting with data ut, and
denoting the discrete Fourier transform of a field u by v, our pseudospectral scheme reads

u∗ = F−1

{
T (L, vt, dt

2
)

}
u∗∗ = R(N , u∗, dt)

ut+1 = F−1

{
T (L, v∗∗, dt

2
)

}
where u∗, u∗∗ are intermediate solutions.

Stability and adaptive time-stepping

The Trapezoidal rule is an order two method with a region of absolute stability including the entire
left half of the complex plane (which makes it suitable for the solution of stiff equations [But16;
Lev07]); stability of the split step method is thus determined by that of the explicit step.

We use an adaptive time step of the order of inverse of the spectral norm of the Jacobian of the
nonlinear stepping operator to control the stability of the explicit scheme, and improve the time
performance of our solver. We control for divergence by examining the Lyapunov functional at fixed
iteration intervals. As explained above, a growth of the Lyapunov functional implies divergence.
When this happens, we go back to the time before Lyapunov functional growth, divide the time
step by two, and proceed with the time stepping. This method is simple but allows us to automate
the solver with minimum input on our part, which is important given the number of images that
we need to generate.

Training a differentiable surrogate of the SH solver

For our method it is convenient to train a differentiable surrogate of the SH solver described above
in feature space. Although strictly unnecessary, as we could alternatively use automatic differenti-
ation, introducing a surrogate allows dramatic decrease in training time [RPK19] for learning the
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relationship between the SH parameters and the laser parameters. Faster forward problem solu-
tions provided by the surrogate will also prove convenient in evaluating feature choices by cross
validation.

The surrogate consists in a neural network fω : φ → F which learns the mapping between
4-dimensional φ (SH equation parameters, evolution time, and scale) to the projection of the SH
solver generated solutions in feature space, by minimizing the MSE. We use a 5 hidden-layer neural
network with GeLU activations [HG16], which we initialize using He initialization [He+15] and
regularize using weight decay. The number of units of the hidden layers are 24, 26, 28, 210, 212. The
architecture was chosen by cross validation on a fraction of the data. The neural network was
trained for 1000 epochs with early stopping (cf. Fig. 3.11).

22 24 26 28 210 212 212

Surrogate

3 64 128 64 4 4

h

Figure 3.11: Neural network architectures: (left) differentiable SH surrogate, mapping from φ ∈ R4

(Swift Hohenberg equation parameters, evolution time, and scale) to feature space (R224×224).
(right) mapping h from laser parameters θ ∈ R3 (laser Fluence, delay between pulses, and number
of pulses) to φ ∈ R4.

3.5.6 Choosing a feature space to learn patterns

We would like our framework presented in Section 3.4, which crucially depends on the existence
of a feature space in which the dependency of initial conditions is weak, to be generally applicable
in the early stages of the experimental process, where there is neither enough physical knowledge
to handcraft this invariance explicitly nor enough data to learn it directly. These two constraints
motivate the use of features extracted by a large pre-trained model on a diverse dataset.
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Off-the-shelf feature space projector

We choose, as feature projector, the first before last layer of a pre-trained VGG16 [SZ15], a deep
convolutional network (CNN) model trained on ImageNet [Den+09], a dataset of over 15 million
labeled high-resolution images belonging to roughly 22,000 categories. See figure 3.12 for details.
Any complex model trained on a complex dataset like ImageNet is likely to acquire biases that
depend on the dataset itself. Some of these may actually be good [Gei+18], but since they were not
specifically controlled for, they could be undesirable for our task. In this sense, VGG16 appears to
be a reasonable candidate in the context of our application.

conv1

conv2

conv3

conv4
conv5

fc6 fc7 fc8

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512
14 x 14 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

convolutional + ReLU

max pooling

fully connected + ReLU

softmax

Figure 3.12: VGG16 network architecture. Our baseline features are extracted using layers “conv1”
to “fc6” (inclusive).

Deep Convolutional Neural Networks achieve state-of-the-art performance on image classifica-
tion tasks [Sze+16; He+16]. VGG16 in particular achieves 92.7% top-5 test accuracy on ImageNet,
which is the main motivation for our choice, since the representation that a deep convolutional
model needs to build (edges, textures, colors and combinations thereof), in order to do well in such
a classification task should be complex enough to represent the Swift-Hohenberg equation patterns
as well. We further justify our choice by noting that this same feature extractor was used success-
fully to localize casting defects in (grayscale) X-ray images [Fer+17], and classify weld defects, both
of which bare some similarities to our task.

Learning scale with the features of a scale-invariant network

There is still the problem of pattern scale, that needs to be learned. The success of convolutional
neural networks and the scale-invariant nature of common image classification tasks led to extensive
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work in precisely the opposite direction: learning scale invariant features, rather than learning scale.
Convolutional neural networks such as VGG16 are not truly scale invariant, though. Scale

invariance is rather learned implicitly, even without a specific scale-invariant design [LV15], by
training on datasets such as ImageNet, in which instances of the same class are represented at
different scales. To obtain truly multi-scale scale invariant representations, we need to resort to
local descriptors such as SIFT, which are popular in image processing [Sze10], or recent deep learning
techniques which focus specifically on scale invariance and equivariance [KSJ14; Mar+18; WW19;
GG19], or impose it as a particular group symmetry [CW16].

Although learned implicitly, learned scale invariance for large convolutional models trained on
ImageNet such as ResNet50 [He+16] and InceptionV3 [Sze+16] is quite good, as it was found
recently that the probability of the correct class is approximately invariant to input size [Gra+21].
The authors show, however, that scale invariance varies with depth, information about scale being
chiefly present at intermediate layers, with invariance reached just before the softmax layer, and
early layers focusing on local textures and small object parts. The authors then go on to show that
by pruning the layers where the scale invariance is learned there are gains on a medical imaging
task which, like our regression task, depends on scale.

Bearing this in mind, we prune the last two layers of a pre-trained VGG16, resulting in features
encoding scale information and with enough complexity to represent the patterns of the Swift-
Hohenberg equation. The resulting feature space has 4096 dimensions in the base case.

Building the datasets

We have two data types: one consisting of real SEM images, the other of SH-generated images.
Because experimental manipulation is costly and time-consuming, the first dataset is small. It

consists of 78 SEM images labeled with the laser parameter values Fp peak laser Fluence (in J/cm²),
time delay ∆t (in 10−15s) and number of pulses N , of an area roughly 5 µm² size with a resolution
of 237 pixels per µm.

The second dataset consists of a set of real fields generated by the SH equation with periodic
boundary conditions on a square of side 224 according to the following procedure: we first sample
uniformly the order parameter ϵ ∈ (0, 1), the symmetry breaking parameter γ ∈ [−2, 2], and the
system size l ∈ (8, 25) (in units of 2π); we seed the square with pointwise uniform initial conditions
in [0,

√
ϵ] and evolve it according to the SH solver 3.5.5 until convergence, as assessed by the time

derivative of the Lyapunov functional; we keep a maximum of ten snapshots of this evolution at
regular solver time intervals t. Each of the resulting field is labeled with the tuple ϵ, γ, l, t.

Pre-processing Since we shall ultimately compare real and generated images, we need to make a
choice regarding image normalization. The experimental images are obtained via SEM microscopy,
their intensity being preset. As for the generated images, the initial perturbation has a maximum
amplitude of

√
ϵ, and after a typical evolution time of 1

ϵ [CH93], in the linear approximation, the
maximum amplitude will remain a function of ϵ. To see this, note that the maximum growth rate
σ(q2) = ϵ−1+2q2+q4 is at q2 = 1, which corresponds to a maximum amplification at evolution time
1/ϵ of eϵ/ϵ = e, regardless of our chosen ϵ. Multiplying an ϵ-dependent maximum initial amplitude
by a constant factor remains ϵ-dependent. The actual significance of such an amplitude depends
also on the size of the domain, which is one of the parameters of the Swift-Hohenberg generated
fields. Furthermore, since we take ten images at arbitrary time snapshots, the relationship between
the maximum amplitude across fields is complex. This renders any normalization to our data other
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than image-wise difficult to establish (or essentially meaningless). This arbitrariness of levels is
actually compatible with VGG16, in the sense that we expect that the ImageNet photographs that
it was trained to classify were acquired with arbitrary levels and exposure.

We therefore normalize each image individually and subsequently transform the resulting array
to pixel intensity space. Since VGG16 takes color images as its input, we use copies of our grayscale
images as the input for the remaining two channels, before the final pre-processing of the input
provided as a Keras [Cho+15] method (centering and normalizing each color channel with respect
to ImageNet, and flipping RGB to BGR).

Subsampling VGG16 takes 224x224 pixel images as inputs. In order to keep as much information
as possible, we sub-sampled a maximum of ten such images at random orientations for each SEM
image instead of downsampling the data. We allow for some variation in the number of samples
due to varying quality of SEM images, some of which have large patches consisting mostly of noise,
which were removed.

Splitting the dataset As described in Section 3.4.4 one of the key assumptions in our framework
is that the likelihood is peaky, possibly in different subsets of the data. We do observe that several
SEM images have patches of two superimposed patterns of different length scales, an assertion that
can be confirmed by analyzing their Fourier power spectrum, as shown in Figure 3.13. Since the

Figure 3.13: Pattern superposition: SEM image Fourier spectrum has two modal frequencies corre-
sponding to two different patterns of different characteristic wavelengths. (2D PSD) is a heatmap
of the logarithm of the Fourier power spectral density of the (Real) image. (1D PSD) is the fourth
power (to exaggerate peaks) of the 1D PSD, obtained by azimuthally averaging 2D PSD along radii
from the origin [Lu11]. Peaks marked in red are automatically extracted using a SimPy [Meu+17]
method and correspond to the physical wavelengths displayed in the labels. The two images on the
right are obtained from the real image by filtering out all wavelengths except the ones correspond-
ing to the 1D PSD peaks, by multiplying it in Fourier space with a ”Gaussian annulus” centered
at the center of the image in Fourier space with a diameter equal to the wavelength of the peak.
Image (Filtered around (a)) highlights the ”top” pattern, whereas image (Filtered around
(b)) highlights the ”bottom” pattern.

SH equation is a single scale model, we built two expert-constructed datasets, “bottom” and “top”,
with respectively 435 and 550 samples taken at random orientations, with a pattern that was found,
in superimposed patterns, either bottom or on top. We concatenated the data into an “full” dataset
consisting of 985 images. A visualization of the parameter ranges of each dataset can be seen in
Figure 3.14.
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Figure 3.14: Real data laser parameters 3D scatter plots, with jitter for ease of visualization, for
the ”top”, ”bottom”, and ”full” datasets with, respectively 550, 435, and 985 data points. Data is
represented in black, with projections on the Fluence/Delay plane in blue, Fluence/N plane in red,
and Delay/N plane in green.

Selecting the best feature space

In order to select the best feature space, we performed a KNN clustering task on the experimental
images using Euclidean distance on each instance of the extracted features, and asked the domain
experts to assess the quality of the extracted clusters, as described in 3.4.4.

We evaluate feature transformations consisting in variations of the features extracted by pruning
the last two layers of a pre-trained VGG16: a version denoted “normalized” in which zero-variance
features were removed and the remaining features scaled to unit variance; a version denoted “scale
variant”, where we explicitly introduce scale information by concatenating the VGG16 extracted
features with features with scale information consisting of a 1D power summary of the 2D power
spectrum of each image obtained by azimuthally averaging the 2D power spectrum (PSD) along
radii from the origin [Lu11]; and finally, a version denoted “aligned”, in which a simple feature space
alignment method [Fer+13] was used to align the distributions of the generated and real images.

Since normalization and alignment, as well as experts and MSE evaluations, are dataset-
dependent, we compare each of these feature mappings in each dataset: “bottom”, “top”, “full”.
We present a selection of the most relevant variations below.

Expert clustering results As can be observed in Table 3.1 feature evaluation tends to favor
the VGG16-extracted features without further transformation. We show cluster assignment for
a random sample of images in the full dataset for the case of the VGG16-extracted features in
Figure 3.15. Adding the PSD features generally reduces the expert-assessed clustering quality,
which is consistent with the findings in [Gra+21]. If we choose to add the PSD features, however,
we observe that the clustering quality improves by performing feature subspace alignment between
real and SH-generated images, which can be explained by the fact that the PSD of real images
contains small-scale information that is not present in SH-generated images, and that VGG16-
extracted features are invariant to small-scale “noise”.
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Dataset PSD Normalized Aligned Accuracy
full False False False 0.778
full False False True 0.776
full True True True 0.699
full True True False 0.671
full True False True 0.634
bottom False False False 0.953
bottom False False True 0.952
bottom True True True 0.812
bottom True True False 0.712
bottom True False True 0.793
top False False False 0.857
top False False True 0.864
top True True True 0.855
top True True False 0.770
top True False True 0.709

Table 3.1: Expert-assessed cluster quality for different feature choices. Best result for each dataset
in bold. Adding the PSD features does not improve the expert-assessed clustering quality. If we
choose to add the PSD features, however, the clustering quality improves by performing feature
subspace alignment between real and SH-generated images.

3.5.7 Learning h : θ → φ

Having access to a SH solver, the key task is learning the function h from laser parameter space to
SH parameter space.

We begin by noting that the equation that we used throughout this chapter is adimensional,
and that it can be derived on symmetry grounds only (cf. Sec. 3.5.3). For that reason, the scale is
a hyperparameter of our solver, which also needs to be learned. The experimental setting described
in [Nak+21a], implies that there is a pattern solidification time that is independent of that of
the process (which is chiefly controlled by the order parameter). This makes it unlikely that the
observed patterns will be the long-time solutions of the SH equation: we are most likely observing
transients. This is also apparent from inspection (e.g. top real image, third column in Figure 3.1.
We thus choose as SH parameters the SH equation parameters ϵ and γ, the SH solver domain size
l given in units of 2π, and the solver evolution time t. The laser parameters are Fp the laser peak
fluence in units of J/cm², the time delay between pulses ∆t in picoseconds, and the number of laser
pulses N .

We use the two methods described in Section 3.4.3 to learn h: directly 3.4.3 and by maximizing
a lower bound 3.4.3.
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Figure 3.15: 10 random samples for each of the 7 clusters obtained by k-means clustering (k=7) for
the f000 features, which consist of the full dataset projected into the VGG16 feature space without
further modification.

Learning h directly

In order to learn h directly, we use the pre-trained surrogate Solversurr : φ → F described in
Section 3.5.5 with frozen weights, with the following objective:

min
α

1

M

M∑
i=1

∥∥Solversurr ◦ hα(θ
i)− F (Ii)

∥∥
2

2 (3.5.10)

where hα is a neural network parameterized by α, and M is the number of experimental data.
We use a 4-hidden layers neural network with GeLU activations, which we regularize using weight
decay. The number of units of the hidden layers are 64, 128, 64, and 4 (cf. Fig. 3.11). The network
was trained over 1000 epochs with early stopping. We illustrate this procedure in Figure 3.16.

Learning h indirectly

In order to learn h indirectly, we first “train” a 1NN model with respect to the Euclidean distance on
the pre-generated SH solutions Ii with parameters in the set Φpregen (as described in Section 3.5.6)
projected to feature space, and assign to each experimental datum the SH parameters of its nearest
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Figure 3.16: Learning h directly: (left) we begin training a surrogate f (orange) of the SH solver
SH(·) in the image space of F , on a great number of pre-generated φ(i), F (SH(φ(i))) pairs (green),
where φ(i) are SH parameters and F (SH(φ(i))) is the image in feature space of the solution generated
by our solver with parameters φ(i), by minimizing the mean squared error in feature space; (center)
we then learn h : θ → φ (blue) with real data

{
θ(i), I(i)

}
i=1...M

(red) by minimizing the mean
squared error in feature space; (right) finally, we generate patterns for unseen θnew using the
learned h and the solver: SH(h(θnew))

.

neighbor. Explicitly:

φi = argmin
φ∈Φpregen

∥∥Solver(φ)− F (Ii)
∥∥
2

(3.5.11)

We then learn h by minimizing the mean squared error in feature space

min
α

1

M

M∑
i=1

∥∥φi − hα(θ
i)
∥∥2
2

(3.5.12)

where hα is a support vector regressor with RBF kernel, C = 1.0 and ϵ = 0.1, and M the number
of experimental data. We illustrate this procedure in Figure 3.17.

3.6 Experimental results
In this section we present the experimental results. We begin by showing a comparison of cross-
validation scores of the two methods in Section 3.5.7 as well as the feature mappings and datasets
defined in Section 3.5.6. Cross validation results in feature space show high variance, which is
possibly a consequence of few training data, but could also be due to problems in training the
surrogate, which is used to evaluate the scores (see the direct model discussion on Section 3.6.2
for details). In addition, the variety of feature transformations renders direct comparison between
scores in different spaces difficult to interpret. As explained in Section 3.5.6, in our setting, the
choice of feature space is best done by expert-evaluated cluster accuracy.

We then show a selection of predictions of the learned models and a map of parameter space
for each dataset. We shall see that the choice of method is faced with much the same difficulties
as the choice of feature mapping. We observe that better cross validation scores do not necessarily
lead to better predictions, and that this is a consequence of the severe constraints of our problem.
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Figure 3.17: Learning h indirectly: (left) we begin by labelling each experimental datum i (red)
with the SH parameter φnn(i) of its nearest neighbor, in the image space of F , among a great
number of pre-generated solutions of the SH equation (green) ; (center) we then learn h : θ → φ
with data

{
θ(i), φnn(i)

}
i=1...M

by minimizing the mean squared error in parameter space; (right)
finally, we generate patterns for unseen θnew using the learned h and the solver: SH(h(θnew))

.

We also observe that our best model is able to recover the main features (shape and scale) of
test data, and that the learned model is simpler for data where there is no pattern superposition.
We show evidence that splitting the dataset improves the quality of the model, which suggests
concurrent multiscale SH processes taking place, as explained in Section 3.4.4.

3.6.1 Cross validation

Ideally, in order to compare the different feature mappings and methods, we would like to perform
10-fold cross validation of mean squared error in feature space, which is closest to the task. The
problem with this approach is that the image space of different feature mappings has different
dimensions, which makes mean squared error comparison for different feature mappings meaning-
less16. In order to circumvent this difficulty, we can compare MSE in the 4-dimensional image of
h, which we call SH parameter space. Although cross-validation scores become comparable across
different feature spaces, this strategy is not without problems. Indeed, MSE in feature space is not
necessarily a good measure of feature quality and the comparison across methods is unfair, since
the indirect method relies on optimizing MSE in parameter space to with respect to the nearest
neighbors, which is advantageous.

Baseline method, parameter space We define a baseline method as the “regressor” which
predicts, for each datum, the SH parameters of its nearest neighbor in feature space. Instead
of presenting the 10-fold cross validation MSE results for this method, we actually present the
leave-one-out cross validation results, the latter being a lower bound of the former. The reason is
expedience, since the latter is simply the average squared distance in between data in each dataset.

16An alternative would be to normalize mean squared error by the variance, but this runs into the same problems
that we discussed in Section 3.4.4 and yields inconsistent results. If we use this method to normalize the data in
Table 3.3, the best feature space for the ”full” dataset would be f111 which underperforms the expert-chosen f000
features by 7%.
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Cross validation in parameter space As we can observe in Table 3.2, cross-validation results
for the direct method are compatible with the expert-based clustering results in 3.4.4, although the
strength of this conclusion is limited by the high variance in the scores.

We also observe that cross-validation scores for the indirect method are best for features for
which the PSD was appended and real and generated data features are aligned. Although the
mean is strictly lower than in the case where the features are further normalized, the score ranges
intersect.

A possible explanation for the better performance of the aligned feature choices is that the
method crucially relies on the quality of the nearest neighbors. Fitting nearest neighbors in high
dimensions is difficult, since all points tend to be equidistant. Since aligned feature spaces are lower
dimensional, their performance for this method should be better.

baseline direct 1NN
b000 8.019 2.065±0.629 0.975±0.202
b001 8.019 2.979±1.146 0.870±0.205
b101 8.019 3.701±1.565 0.745±0.283
b111 8.019 3.180±2.739 0.765±0.335
t000 8.015 2.169±0.976 0.989±0.150
t001 8.015 5.207±5.226 0.914±0.203
t101 8.015 5.323±2.589 0.609±0.142
t111 8.015 4.513±6.354 0.615±0.122
f000 8.008 2.351±0.852 0.993±0.950
f001 8.008 2.814±1.814 0.912±0.901
f101 8.008 3.693±3.240 0.659±0.201
f111 8.008 2.006±0.330 0.694±0.167

Table 3.2: 10-fold cross validation mean and standard deviation of MSE in SH parameter space
for different methods (baseline, direct, 1NN), datasets, and feature spaces. Each row is labeled as:
dataset, Includes PSD, Normalized, Aligned; 1 denotes True and 0 False. The b101 row for example,
lists the MSE and standard deviation in SH parameter space for the bottom datataset (b) where
features include the PSD (1), are not normalized (0) and are aligned to with respect to the bottom
dataset (1). Best scores for each method for each dataset are highlighted in bold. Note that SH
parameter space is the same for every row and column.

Baseline method, feature space We define a baseline method as follows: the “regressor” which
predicts the features of the nearest neighbor in feature space. As in the case of the parameter space
baseline above, we report the leave-one-out cross validation MSE score, which is a lower bound of
the 10-fold cross-validation score, consisting of the mean squared distance in between data in each
dataset.

Cross validation in feature space We present the 10-fold cross validation scores in feature
space for several choices of modified VGG16 features, datasets, and methods in Table 3.3. We note
the high variance of the scores as well as the difference in scores across feature spaces spanning twelve
orders of magnitude. We also note that the “direct” method is always better, as we evaluated it
using the SH solver surrogate (doing 10-fold cross validation using the solver directly is impractical
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and would increase the variance even more), which makes for an unfair comparison with the 1NN
“indirect” method.

baseline direct 1NN
b000 4.55e04 9.92e00±7.23e-01 1.46e01±5.27e-01
b001 3.70e04 8.93e01±9.73e00 1.37e02±7.7e00
b101 2.75e09 3.95e06±1.44e06 7.99e09±1.45e09
b111 2.17e-03 1.08e-04±2.00e-04 7.98e-03±1.21e-03
t000 4.54e04 1.08e01±9.52e-01 1.43e01±8.04e-01
t001 3.71e04 7.22e01±6.05e00 9.36e01±5.08e00
t101 6.25e09 3.92e07±1.02e08 9.13e09±1.88e09
t111 5.51e-03 1.07e-05±1.46e-06 1.25e-02±1.39e-03
f000 4.73e04 1.08e01±1.13e00 1.43e01±2.73e-01
f001 3.70e04 9.57e01±1.04e01 1.44e02±4.79e00
f101 6.93e09 9.09e06±1.17e07 9.10e09±1.10e09
f111 6.00e-03 1.38e-05±4.48e-06 1.02e-02±1.05e-03

Table 3.3: 10-fold cross validation mean and standard deviation of MSE in feature space for different
methods (baseline, direct, 1NN), and feature spaces, for the full dataset. Each row is labelled as:
dataset, Includes PSD, Normalized, Aligned; 1 denotes True and 0 False. The f000 row for example,
lists the MSE and standard deviation in SH parameter space for the full datataset (f) where features
do not include the PSD (0), are not normalized (0) and are not aligned to with respect to the bottom
dataset (0). Best scores across rows are highlighted in bold. Note that comparing across columns
is meaningless, as MSE are calculated in different feature spaces.

3.6.2 Model predictions
In this section we present the model-predicted SH parameters for the expert-selected features for
unseen data from the ”top”, ”bottom” and ”full” datasets, using the indirect method. We also
present the direct method model-predicted SH parameters (for the full dataset only) which are
inconsistent, and provide a possible explanation for this behavior.

Indirect method

Comparing the model predictions for the ”top”, ”bottom”, and ”full” datasets (cf. Fig. 3.19, 3.20
and 3.21 respectively), we note that the first two are much simpler than the predictions learned
on the combined dataset, which is consistent with the discussion about pattern superposition in
Section 3.5.6 and the hypothesis that there is more than one SH process at play.

For all datasets, we note that the models struggle to extrapolate to regions for which there is no
experimental data, in particular for laser fluence: predictions were generated for Fp ∈ (0, 0.5) for
models trained on fluence data in (0.18, 0.24); but as can be seen in the Figures above, we only show
the fluence interval (0.1, 0.32) because outside this range predictions are essentially constant. As for
the time delay, experimental data ∆t ∈ [8, 25] but we manage to observe interesting prediction in the
[0, 50] range. For the laser parameter N (number of pulses), in spite of most experimental data being
sampled at N = 25, models manage to extrapolate to unseen N based on two sets of experimental se-
ries at {(Fp = 0.18 J/cm²,∆t = 10 ps, N)}N=6...36 and {(Fp = 0.18 J/cm²,∆t = 8 ps, N)}N=15...33
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(the vertical lines in Figure 3.14). This opens up the possibility to improving predictions with
sparse additional experimental data, with a focus on the Fp laser parameter.

The SH parameter that shows the largest variation in predictions across values of N is the
evolution time t parameter — which is what we would expect, since a larger number of pulses
implies a process that is more extended in time. On the other hand, for all datasets, the complexity
of the learned relationship increases with the number of observations, with sharp boundaries of
rapidly varying parameters appearing where there is enough data.

Also noteworthy is the correlation between the various SH parameters l, γ, ϵ, t, as can be seen in
Figure 3.18, which implies that one cannot design laser patterns freely. This correlation changes as
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Figure 3.18: Mean squared error (top row) and Pearson’s coefficient (bottom row) between SH
parameters l, ϵ, γ, t for indirect method predictions for the f000 features, for several values of N
(columns).

the number of pulses N of the laser varies, which again testifies to the complexity of the underlying
process.

System size l The parameter l is inversely correlated with the pattern characteristic size. Con-
sistently with observations, l increases with N . Interestingly, this increase is not uniform: it is
greater for large l regions in laser parameter space for low N , than for small l regions. The rapidly
transitions between l regions that can be observed for all values N are of possible interest to ap-
plications, in particular where other parameters are constant, as it would allow one to control the
characteristic size of the particular pattern defined by the other SH parameters.

Symmetry breaking parameter γ The SH parameter γ determines whether we observe holes
or bumps. Of particular interest is the fact that for the ”top” dataset, the transition from holes to
bumps is in the ∆t direction, whereas for the ”bottom” dataset, the change is in the Fp direction.
This suggest that either two fundamentally different SH processes or a non-SH process are at play.

Order parameter ϵ To a larger parameter ϵ, farther from onset, there correspond less ordered
patterns, since there is a greater number of non-attenuated Fourier modes. The large ϵ low order
patches at high fluence/low delay for the ”bottom” dataset are consistent with this fact and match
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observations. For the ”top” dataset, however, we observe an ordered pattern region of low ϵ and
small l at low values of delay, which is more challenging to interpret. For the ”full” dataset,
the complexity of the ϵ isosurfaces in the central region of and around the isosurface of γ = 0 is
consistent with observations where a lower symmetry pattern is superimposed on a highly symmetric
grid pattern (cf. Fig. 3.1).

Evolution time t For constant l, ϵ, γ, symmetry increases with evolution time t as highly sym-
metric patterns require a large t to produce from a uniformly random state.

On the other hand, for all datasets, evolution time t tends to increase with N , which is consistent
with the physical situation, as a large number of pulses increases the time the physical system is in
a driven state. This increase, however, is not uniform across fluence, delay pairs: indeed we observe
that the area of the region in laser parameter space of relatively long evolution time decreases with
N .

Generating novel patterns Instead of relying on the SH parameter interpretations above, one
can use the SH solver to generate new patterns, as illustrated in Figure 3.17. We present the
generated solutions from unseen laser parameters together with the corresponding real SEM image
and nearest neighbors in feature space in Figure 3.22. Comparing solutions generated by the model
from unseen test data to real SEM images allows further interpretation. The model does quite
well for the ”Stripes” and ”Hexagons” group, as there is a single pattern to learn. For the two
other groups there is more than one pattern/feature superimposed on the SEM image. Note that
the model does predict one of the observed patterns with the correct scale and shape but, by
design, it cannot possibly predict the other. For the ”Stripes and Bumps” group, for instance, we
observe nanopeaks and lower-frequency stripes among the nearest neighbors, whereas the model
predicts the lower frequency pattern only. For ”HSFL and Humps” group, where the difference in
pattern frequency is more pronounced, again the model focuses on the lower frequency pattern; the
high-frequency pattern is no longer among the nearest neighbors.
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Figure 3.19: Each plot shows the predictions of the indirect model, trained on the “top” dataset,
of a single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order
parameter ϵ; symmetry breaking parameter γ; solver evolution time) as a function of laser fluence,
time delay, and number of pulses (respectively, x-axis and y-axis, and column). Experimental points
are overlaid on each plot.
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Figure 3.20: Each plot shows the predictions of the indirect model, trained on the “bottom” dataset,
of a single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order
parameter ϵ; symmetry breaking parameter γ; solver evolution time) as a function of laser fluence,
time delay, and number of pulses (respectively, x-axis and y-axis, and column). Experimental points
are overlaid on each plot.
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Figure 3.21: Each plot shows the predictions of the indirect model, trained on the full dataset,
of a single SH parameter, as a heatmap (top to bottom: system size in multiples of 2π; order
parameter ϵ; symmetry breaking parameter γ; solver evolution time) as a function of laser fluence,
time delay, and number of pulses (respectively, x-axis and y-axis, and column). Experimental points
are overlaid on each plot.
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HexagonsStripes

HSFL & Humps

real pred

Nearest neighbors

0.24 J/cm², 25 ps, 25 11.3 | 0.11 | −0.61 | 167.3

13.0 | 0.04 | −1.61 | 158.5 12.3 | 0.15 | −1.19 | 311.8 12.7 | 0.13 | −0.88 | 205.1

real pred

Nearest neighbors

0.20 J/cm², 22 ps, 25 15.2 | 0.14 | 0.33 | 292.9

13.1 | 0.07 | −0.45 | 26.9 12.3 | 0.02 | −0.28 | 857.3 14.8 | 0.01 | −1.36 | 15.5

Stripes & Bumps
predreal

Nearest neighbors

0.18 J/cm², 8 ps, 27 8.7| 0.26 | 0.68 | 107.5

6.5 | 0.06 | −0.18 | 2508.1 7.1 | 0.06 | −0.06 | 1396.1 12.2 | 0.01 | 0.51 | 135.8

real pred

Nearest neighbors

0.18 J/cm², 10 ps, 31 6.7 | 0.23 | 0.60 | 56.1

6.0 | 0.09 | −0.09 | 919.9 6.2 | 0.12 | 0.08 | 712.4 7.0 | 0.74 | −1.52 | 2.4

Figure 3.22: Each group shows experimental SEM images (red, never seen by the model), model
predicted images (green, trained on the ”full” dataset using the indirect method), given the same
laser parameters and three nearest neighbors of the former among solver generated images (blue).
Image labels, left to right: Fp,∆t,N (real images); l, ϵ, γ, t̃ (other images). All images are 224 by 224
pixels; for real images, 1µm ≈ 237 pixels. Model’s predictions are better than the nearest neighbor,
since they integrate global information. On the ”Stripes and Bumps” group, we observe nearest
neighbors with different length scales, suggesting concurrent multi-scale SH processes taking place.
Only one of these can be recovered by the ML model (the stripes, rather than the nanobumps),
which integrates single-scale SH knowledge. On the ”HSFL and Humps” group, the real image has
a top, low frequency pattern and a finer grid pattern underneath. The model predicts the former,
which is also the only the among the nearest neighbors.116
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Direct method

While the surrogate trains well on SH-generated data, as can be seen in Figure 3.23, the h model,
which trains on few real data, is unstable. Although this small dataset artifact could partially

h h

Figure 3.23: Direct method training and test (90/10) loss curves (mean and 95% confidence in-
terval):(left) surrogate training on the large dataset of SH-generated data is stable, with narrow
confidence interval bands; in all runs, early stopping was activated considerably earlier than the
1000 epoch limit (center) the h : θ → φ model, trained on few real data (the ”full” dataset), on
the other hand, is unstable; this behavior could be attributed to the dataset size, but the problem
remains even for typical runs (right) detail of h : θ → φ training, with outliers for which training
MSE exceeds 50 removed. A number of runs for which no early stopping was ”activated” is evident,
which further evidences training instability.

explain why the direct method fails to yield accurate predictions, the problem remains even for
”aligned” datasets and for typical training runs, closer to the center of the confidence interval,
as can be seen in Figure 3.24. It is known that surrogates using fully connected architectures
often fail to achieve stable training by gradient descent and produce accurate predictions [Rai18;
Zhu+19; FT20], and it is believed that this phenomenon is due to the difficulty of deep fully-
connected networks in learning high-frequency functions [WYP22]. We note that since we learn the
surrogate on feature space, we cannot assess generated solutions accuracy directly. That being said,
this unstable behavior is consistent with the very large variance observed in the cross validation
experiments in feature space 3.6.1.

While methods have been proposed to improve this behavior, either by introducing an adaptive
learning rate [WTP21] or by adjusting the weight of each term in the loss according to the singular
values of the Neural Tangent Kernel [WYP22], we do not use them in this work, as the indirect
method provides satisfactory results, is robust, and straightforward to implement.

3.7 Conclusion
In this work we integrated partial physical knowledge in the form of a PDE, the SH equation, to
solve the problem of predicting novel nanoscale patterns in femtosecond irradiated surfaces. We
showed that in the case of a self-organization process, the dual inverse problem of estimating state
and equation parameters simplifies by choosing a feature transformation in the image space of which
the initial conditions play a less important role. In the case where data is few and not time-series
and the physical knowledge is only partial, this transformation can neither be learned nor derived:
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we use as transformation the higher-order features of a CNN pre-trained on a large dataset for a
broad task. We proposed a principled approach to choosing such a feature transformation, and an
expert based quality measure of the features as well.

We integrated the PDE knowledge by implementing a fast and accurate second-order pseu-
dospectral solver of the SH equation and then by using a great number of pre-generated solutions
to learn a surrogate in feature space, on the one hand, and to label the few experimental data
with SH parameters of the nearest neighbors in feature space, in the other. This technique allowed
us to learn the relationship between laser parameters and SH parameters (with which novel laser
patterns can be generated via the solver), a relationship that can be used as an experimental tool
to guide new pattern discovery.

This led us to make a number of observations. First, in spite of the good agreement between
the partial SH model predictions and experimental data, we also found evidence that there is more
than one SH process at play. This leaves the door open to either using a generalized SH model
that integrates several length scales, or to exploring possibilities to combine multimodal single-scale
data into a superimposed solution. Second, we observed that pattern features are not independent;
finding novel patterns requires searching laser parameter space ”creatively” by looking at regions
where some SH parameter varies and some other does not. Third, we noted that although the
model does not extrapolate well, it is still able to learn interesting features from few data. This
opens the door to a dialectic approach to novel pattern discovery: one could simply acquire new
experimental data iteratively in order to fill-in the gaps in the laser parameter space until the
predictions stabilize; since the SH model is already trained and data is pre-generated, integrating
new experimental data only requires retraining a simple model on few data.

The main challenge in our approach is the scarcity of data. Although it is always possible, in
principle, to acquire more experimental data, in practice the amount of data is unlikely to change
because the cost is too high. In the laser pattern case, one possibility to circumvent this limitation
is to combine data from experiments on several materials using domain adaptation [Red+19], which
would increase data by an order of magnitude and open the door to exploring patterns in unseen
materials, which has great interest for applications.
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Figure 3.24: Each plot shows the predictions of the direct model, trained on the “full” dataset, of a
single SH parameter (bottom to top: system size in multiples of 2π; order parameter ϵ; symmetry
breaking parameter γ; simulation evolution time) as a function of laser fluence, time delay, and
number of pulses (respectively, x-axis and y-axis, and column). Experimental points are overlaid
on each plot.
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Chapter 4

Is my Neural Net Driven by the
MDL principle?

4.1 Introduction
New data often traces out regularities found in past observations, an idea known as generalization:
finding regularities that are consistent with available data which also apply to data that we are yet
to encounter. In the context of supervised machine learning we measure it by learning the rules on
observations by minimizing some loss function, and evaluating it on observed and unobserved data.
The difference between risk in the training data and new observations is known as the generalization
gap. When it is small, the model generalizes well.

In the context of empirical risk minimization the generalization gap can be estimated in terms
of model complexity, which increases with its number of parameters. We thus expect to reduce
the generalization gap through a form of regularization, either by explicitely reducing the number
of parameters, controlling a norm [KH92; YM17], or e.g. using dropout [Sri+14; HL15] or batch
normalization [IS15; Luo+18; San+18].

Surprisingly, neural networks (NN) trained by stochastic gradient descent (SGD) generalize
well despite possessing a higher number of parameters than training data, even without explicit
regularization [GBC16]. An elegant explanation for this phenomenon is that SGD implicitly controls
model complexity during learning [NTS14; HRS16], resulting in networks that are significantly
simpler than their number of parameters suggests, as shown by several metrics to assess effective
capacity, e.g. the model’s number of degrees of freedom [GJ16], which is related to generalization
gap, or its intrinsic dimension [Li+]. It is thus puzzling that, in spite of their implicit simplicity, NN
classifiers trained by SGD are able to perfectly fit pure random noise [Zha+21], even while explicitly
using regularization. In pure random noise, there is no signal to learn a rule from, and to reduce
the generalization gap we must reduce the training performance. Since common regularization
methods are unable to achieve this, using them to control model expressiveness does not address
generalization: we need to ”rethink generalization”.

To do so we offer the following insight. To learn, from noisy observations, regularities that apply
to data that we are yet to encounter, we must do so in a noise insensitive way: we must learn from
signal rather than from noise. If we do so, there is no generalization gap when learning from pure
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noise: since there is no signal, the model would simply not learn at all!
In this chapter, we shall give a formulation of this insight in terms of a minimum description

length principle (MDL), [Ris78; Ris83] a principle of model selection which can be seen as a for-
malization of Occam’s Razor. MDL states the problem of learning from data in terms of finding
regularities that we can use to compress it: choose the model that provides the shortest description
of data, comprising the model itself 1. This idea was formulated in different ways since it was first
advanced in [Ris78], to respond to technical difficulties in application [Grü05]. In the original,
two-part form, restricting the model class to finite sets, application of this principle turns into
Kolmogorov’s minimal sufficient statistic [VL00].

MDL expresses the ability to generalize in terms of compressibility, which can be motivated
using three main facts: (i) regularities in a random variable X can be used to losslessly compress
it (ii) the minimum achievable code length is the entropy (iii) it is very unlikely that data that
has no regularities can be compressed. Taken together, these imply a model’s ability to compress
data is likely due to finding a regularity, which will likely be found in new data as well. It is this
intuitive appeal that motivates the use of MDL in spite of some conceptual difficulties, namely in
selecting the encoding used to measure the length of the description of the model, which depends
on the choice of encoding.

To address this difficulty, we propose an approach that uses both the signal and the noise in the
data to implicitly define model complexity unambiguously: Choose the model whose representation
of the data can be used to compress the signal, but not the noise.

Formalizing this statement requires a perspective of signal and noise that is particularly adjusted
to classification problems, where the signal is task-defined [Grü05], and everything else can be
considered as noise. As we shall see, our MDL statement has a significant impact on the distribution
of the singular values of the point Jacobian matrices of a NN. Networks that learn from noise (where
their output can be used to compress the noise) tend to maximize singular values in arbitrary
directions to capture the fake ”signal” in local directions. As a result the spectrum is uniformly
distributed. On the other hand, NN that learn from signal but not from noise (where their output
can be used to compress the signal but not the noise) tend to capture local regularities in the
signal by maximizing singular values in directions aligned with the data. These directions are,
by definition of signal, not arbitrary. Since the network also tends to ignore everything that is
not signal, by minimizing singular values in arbitrary directions, in the limit of infinite epochs, this
results in a spectrum distributed according to a power law, with a large proportion of small singular
values and a fat tail.

Our contributions Our main contributions in this chapter are 3-fold: (i) we provide a formula-
tion of the MDL principle that is generally applicable to learned representations (ii) we provide a
capacity measure based upon this principle (iii) we show experimentally that neural networks are
driven by the MDL principle.

Chapter organization This chapter is organized as follows: Sec. 4.2 contextualizes of our work,
focusing on the sensitivity measure provided in [Aro+18]. We then provide a few information theo-
retic results in Sec. 4.3.2 to contextualize our definition of signal and noise in Sec. 4.3.6. Section 4.4
is the core of our contribution: we define our MDL objective in Sec. 4.4.1, and provide the local ap-
proximation in Sec. 4.4.2 that allows us to predict the spectral distribution in Sec. 4.4.2. In Sec. 4.5

1This formulation is known as two-part MDL, which depending on the author can be seen as ”traditional” (in
opposition to ”modern” MDL which uses a one-step encoding using universal encodings [Grü05]) or ”pure [VL00]”.
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we present experimental results2 which allow us to conclude in Sec. 4.6 that neural networks are
driven by the MDL principle, and discuss future work.

4.2 Related work
MDL has traditionally been used for model selection [Ris01; HY03; Grü05; BRY98; MNP06], but
its intuitive appeal has led to applications in other areas such as pattern mining [Gal22; Hu+15]. In
supervised learning, MDL was used in NN as early as [HV93], in which the authors added Gaussian
noise to the weights of the network to control their description length, and thus the amount of
information required to communicate the NN. In classification, existing approaches are inspired
in MDL for density estimation [Grü05], and most can be reduced to the same approach based on
the 0/1 loss, which, while not making probabilistic assumptions about noise, was shown to behave
suboptimally [GL07]. Existing modifications to address this [Bar91; Yam98] do not have, unlike
our approach, a natural coding interpretation. Finding a formulation of MDL for classification that
can be applied in general and realistic settings is thus an open problem, and this thesis aims to
contribute in this direction.

The relationship between noise, compressibility and generalization has been explored in [BL03],
for example, to derive PAC-Bayes generalization bounds, or in the information bottleneck frame-
work [TZ15]. Closer to our approach [Mor+18a] studies the stability of the output of NN with
respect to the injection of Gaussian noise at the nodes, experiments showing that networks trained
on random labels are more sensitive to random noise. In [Aro+18], the notion of stability of outputs
is extended to layer-wise stability, improving network compressibility and generalization. The au-
thors define layer sensitivity with respect to noise (essentially the expected stable rank with respect
to the distribution of the noise), and show that stable layers tend to attenuate Gaussian noise.
A compression scheme is provided for the layer weights that acts on layer outputs as Gaussian
noise, which subsequent stable layers will thus tend to attenuate. This, since the output of the
network is unchanged, shows that a network composed of stable layers is losslessly compressible.
A generalization bound for the compressed network is then derived in terms of the empirical loss
of the original network and the complexity of the compressed network. This work shows a clear
connection between compressibility of the model and generalization, but the connection to MDL is
less evident. We will show that enforcing our MDL principle leads to a measure that can be seen
as an average of local sensitivities, which are similar to those defined in [Aro+18], but with cru-
cial differences. In our approach, sensitivity is logarithmic, direction-dependent, and importantly
combines sensitivity to signal and to noise.

4.3 MDL principle, signal, and noise
In this section we offer a brief overview of the Minimum description length principle. We explain
how it can be applied to the case of Neural Network classifiers, and motivate our new contribution
in Section 4.4. We strove to keep the section self-contained for readers new to the field, which is
vast and covers over 40 years of development.

However, the section is clearly geared towards MDL for neural network classifiers operating in
the overparameterized regime. We thus put ourselves in the context of finite parametric probabilistic

2Repository: https://anonymous.4open.science/r/ismymodeldrivenbymdl-96BA/.
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families, since this is the case of interest for this application. MDL has traditionally been used for
model selection, where a ”model” is actually a family comprised of different probability distributions.
We focus on the parametric probabilistic family case, again since it is the case of interest for neural
network applications.

In its original two-part form[Ris78], MDL states the learning problem as finding regularities in
data, which is identified with ’ability to compress’. This has important philosophical appeal, as it
avoids assuming a data-generating process, a ’true’ from which comes the data.

This is not the case in some more recent formulations of MDL in terms of one-part codes, called
expectation-based MDL in [Grü05]. In our presentation, we shall focus on MDL in the individual
sequence sense where possible, to keep with the clear interpretation even when no assumptions are
made with respect to a ’true’ data generating process.

This section is organized as follows: in Section 4.3.1 we introduce definitions and terminology
that will be use throughout the section, which we illustrate using a toy example. In Section 4.3.2
is a short information-theory primer, focusing on the Kraft-Macmillan inquality[Kra49] and the
existence of optimal codes. It is intended as an intuitive motivation for the MDL approach to
learning.

The MDL principle was originally introduced in a two-part form, which we present in Sec-
tion 4.3.4, where we also motivate the need for one-part codes.

In Section 4.3.5 we present a modern formulation of MDL, which is based upon the idea of
universal codes and the minimization of maximum regret in the individual sequence sense. We
show that in a number of important applications (namely neural network classifiers), the universal
distribution is the normalized maximum likelihood (NML) distribution. The latter is generally
uncomputable, but provides great insight into the MDL objective. We present a few of these in-
terpretations, focusing on Rissanen’s[Ris00], which will be the basis for the subsequent arguments
in this Section. We present and discuss a precise definition of noise in the MDL context in Sec-
tion 4.3.6.

In the following Section4.3.7, we show how MDL can be applied to the context of neural network
classifiers by framing it as a communication problem. We conclude in Section 4.3.8 with a discussion
that originally shows that stochastic complexity minimization is unsuitable for model selection
in this context, in the overparameterized regime, and propose a novel approach, which specifies
complexity implicitly in terms of signal and noise. This approach will be formalized and applied in
Sections 4.4 and 4.5 respectively, which constitute the core of our contributions.

4.3.1 Preliminaries and notation
MDL lies at the intersection of information theory, statistics. It draws terminology and notation
from both and uses some of its own.

Models and model families

Denote xn := x1, x2, . . . , xn a sequence of elements taken from finite or countable sample space
X . Let pn denote a probability distribution on Xn, with pn(xn) the probability of xn and Xn the
corresponding random variable, that is pn(xn) = Pr(Xn = (x1, x2, . . . , xn)). We write pn(xn) :=
p(xn) whenever this is not a source of confusion.

Definition 15 (Probabilistic source). A probabilistic source3 P is a sequence of probability dis-
3Also known as information source in the literature.
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tributions p1, p2, . . . , pk, . . . on X 1,X 2 . . . ,X k . . . , such that for all n, pn+1 is compatible with pn,
that is p(xn) =

∑
y∈X p(xn, y).

We say that data are i.i.d. under source P if for each n, we have p(xn) =
n∏

i=1

p(xi). If X is

continuous, the sum in the compatibility condition is replaced by an integral.

Definition 16 (Probabilistic model). A probabilistic model M is a set of probabilistic sources.
We usually use it to denote sources of the same functional form, which are typically indexed M
with a parameter θ over some set Θ. In that case, we denote the probability mass function of the
source indexed by θ as p(·|θ): in particular, the probability of observing xn = x1, x2, . . . , xn is given
by pn(xn|θ) = p(xn|θ) in the notation above.

Definition 17 (Parametric family). A probabilistic model M = {p(·|θ) : θ ∈ Θ} is called a para-
metric model or a parametric family if Θ ⊆ Rk, k ≥ 1 is connected and if, for all n, for all xn ∈ Xn

the mapping θ → p(·|θ), viewed as a function of θ, is well-defined and continuous. We call the
parametric family smooth if in addition the mapping is infinitely differentiable.

Codes and codelength

By ”coding” we mean to describe a samples or a sequence of samples from a random variable X by
a symbol or sequences of symbols from an alphabet — a finite or countable set of symbols.

Definition 18 (Source code). A source code C(X) (C when there is no risk of ambiguity) for
random variable X, is a function from X the range of X to D∗ the set of finite strings of a d-ary
alphabet D, associating x ∈ X to a codeword C(x). Where it exists, the inverse of a non-singular
code is called the decoding function.

The length of the codeword l(x) is the number of elements in C(x), and the expected code
length is L(X) := EX [l(x)]. A code is said to be non-singular if every x ∈ X maps to an unique
element of D∗. An extension C∗ of code C codes sequences x1x2 · · ·xn : xn of elements of X as
the concatenation of individual code words: C(xn) = C(x1)C(x2) · · ·C(xn). The image xn by C is
called an encoding.

A code is said to be uniquely encoded if its extension is non-singular. Since in that case, every
element in Xn is unambiguously encoded with a unique string, non-singular codes allow us to
losslessly compress data.

Definition 19. A code c : X → D∗ is called a prefix code or prefix-free code or instantaneous
code if no codeword is a prefix of any other codeword[CT12], that it, for all x, y ∈ X , there is no
s ∈ D∗ such that c(x) = c(y)s.

Prefix codes are uniquely encoded. In this thesis, unless otherwise stated, codes will be taken
to mean ’prefix codes’.

Example 4.1. Consider the set of Fruits = {apple,mango, orange, } and a fruit salad consisting
of samples from that set. We build a few different binary non-singular source codes for a random
variable X taking values on Fruits, ci : Fruits → {0, 1}∗.

1. A fixed length prefix code: c1(apple) = 00, c1(mango) = 01, c1(orange) = 10.

2. A variable length prefix code: c2(apple) = 0, c2(mango) = 10, c2(orange) = 110.
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3. A variable length non-prefix code: c3(apple) = 0, c3(mango) = 00, c3(orange) = 000.

Encodings can be seen as messages. Consider Alice, a sender or encoder and Bob, a receiver
or decoder, who is to prepare a fruit salad for dessert. They meet at a certain point in time and
agree on the alphabet D, and a source code that Alice will use to send messages to Bob. If the
source code is prefix, Bob will be able to decode every message Alice sends uniquely. Using code
1, upon receiving the string 000000000110, Bob knows that he should prepare an apple, mango,
orange fruit salad, with one orange and one mango, and four apples. Had they agreed to use code
2 instead, Bob would know to prepare the same fruit salad if he had received the string 000010110.
Bob would be able to unambiguously decode every possible message that Alice could send: either
code has a non-singular extension.

But using the non-prefix code 3, Alice would send 000000000 for the desired recipe. Bob,
however, could also interpret this message as ’three oranges’ and prepare that instead. The non
prefix code extension is singular, and for that reason, we consider consider prefix codes only.

Finally, we note that although codes 1 and 2 are equally good to communicate unambiguously
and assuredly, and the encoded message is shorter than the original one, the length of the encodings
are different. If Alice and Bob want to communicate expediently, they could be interested in keeping
the code length as small as possible. In that case, if Bob really likes apples in his fruit salad, it
would be reasonable to use the variable length prefix code c2 rather than the fixed-length one c1:
apples are encoded using a single bit in the former, and use up two bits in the latter. Messages from
Alice would tend to have lots more apple in them than oranges and mangoes. If a short encoding
in expectation is desirable, it is thus reasonable to pick short codewords to encode apples rather
than the less frequent oranges and mangoes.

This statement about Bob’s preferences induces a ”regularity” in data, and this regularity can
be used to the advantage of the code designer to minimize expected code length: assign short
codewords to frequent outcomes and keep the longer codewords for the least frequent outcomes.

As we shall see in 4.2, there is a limit to how much we can minimize this expected code length:
the Shannon entropy of random variable X, ”Alice’s choice of fruit for the fruit salad”.

As we discussed in Section 2.3.3, given a random variable X which encodes knowledge about the
likelihood of outcomes, its Shannon entropy H(X) measures the expected surprise when sampling
from that distribution. If Alice has ”a lot of knowledge” about Bob’s fruit preferences, she will assign
large probability to his favorite fruit, which results in a peaky distribution, and small entropy. She
can use this knowledge to design a code that is short in expectation.

If on the other hand she knows nothing about Bob’s fruit preferences, she has no reason to
assign a greater probability to either fruit. This will result in a uniform distribution with high
entropy and long expected minimal codelength.

4.3.2 A few fundamental results in Information theory
MDL can be motivated by three fundamental information-theoretic results: (i) regularities in a
random variable X can be used to losslessly compress it using a non-singular code for X; (ii) the
minimum achievable codelength is the entropy; and (iii) it is extremely unlikely that data that has
no regularities can be compressed. In this section, we motivate (i) in 4.3.2 with a toy example,
prove (ii) and provide an informal argument for (iii) (see e.g. [CT12] or [MM03] for proofs in
more general settings). A similar argument can be used to prove a finite-precision version of the
Theorem 1 in [Zha+17], which provides a necessary condition for a 2-Layer ReLU network to be
able to perfectly fit the training data. A straightforward application of this original result allows
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us to show 4.3.3, for example, that a two-layer network that can be losslessly compressed to less
than about 125 kB cannot perfectly overfit cifar-10 [KH+09].

Using regularities to compress To motivate (i), consider an object of mass m falling freely
from a height h0 on Earth (acceleration of gravity g), and a table recording heights {h1, h2, . . .} at
times {t1, t2, . . .}. which are known to obey h(t) = h0 − 1

2mgt2 since Galileo. We do not expect
this law to hold exactly: it is clearly an approximation, assuming negligible air resistance, uniform
gravitational field, etc. But we do expect it to be good, in the sense that the better the conditions
of the approximation hold, the more can deviations to the results predicted by Galileo’s law be seen
as corrections.

This is the key to understanding how the regularity captured by Galileo’s formula can be used
to losslessly compress the height-times table. Since we expect Galileo’s formula to predict the first
significant digits of the height with high confidence, and measurements are performed and stored
with finite precision, instead of storing xi, hi, we can store xi,∆hi = hi − h(ti). We can thus store
the same data (in expectation) using less digits, which amounts to lossless compression. The more
regularities we are able to find in data, the more we can compress it.

But we can do even better. Galileo’s law ignores air resistance, for example. A better ”law”,
taking e.g. drag into account (while still assuming uniform gravitational field, etc.), increases
confidence in the first significant digits of the predictions, reducing in expectation the number of
significant digits of the deviations, allowing better compression.

This is, however, achieved at the expense of an increase in description length of the ”law” itself.
Whereas with Galileo’s law, we only need to store m and g, using a more accurate model we need
to store additional quantities. There is a trade-off between the description lengths of the data and
the model, as a better model takes longer to describe (although we expect this to saturate at some
point). In the limit, a very large model can decrease the description length of finite data simply by
memorizing it. Notably, two-layer ReLU feed forward NN can do this with surprising ease [Zha+17]
but, as predicted in the MDL framework, at the expense of an increase in complexity [BO18].

Kraft Inequality and Optimal codelength Results (ii) and (iii) crucially rest on the Kraft-
Macmillan inequality, which we state and prove below for the case of prefix codes (known as the
Kraft inequality) for completeness, and then use to show (ii). See [CT12] for a more detailed
treatment.

Theorem 4.1 (Kraft-Macmillan inequality). For any uniquely decodable code C over an alphabet
of size D, the codeword lengths l1, l2, . . . , lm must satisfy the inequality∑

i

D−li ≤ 1 (4.3.1)

Conversely, given a set of codeword lengths that satisfy 4.3.1, there exists a uniquely decodable code
with these word lengths.

Proof. The idea of the proof for prefix codes (known as the Kraft inequality) is that prefix codes
from a D - adic alphabet can be seen as the childless nodes on a rooted tree. No prefix code can
then be among the descendants of another. Hence, the sum of the descendants of prefix codes
cannot exceed the number of leaves of the tree:

∑
i D

lmax−li ≤ Dlmax . The converse is established
simply by noting that lengths that satisfy 4.3.1 can be placed on rooted tree. If they couldn’t there
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would be more words of length li than descendants of non-used codes; but since the total mass at
every level is constant, this cannot happen.

As a straightforward application of Kraft’s inequality, we can immediately see that all codes
1, 2 and 3 are uniquely decodable, since, respectively,

∑
i 2

−li = 1/4 + 1/4 + 1/4 < 1,
∑

i 2
−li =

1/2 + 1/4 + 1/8 < 1, and
∑

i 2
−li = 1/2 + 1/4 + 1/8 < 1.

Theorem 4.2 (Optimal code length). The expected code length for any uniquely decodable code C
of a random variable X over an alphabet of size D is greater than or equal to HD(X) the entropy
calculated in base D, with equality holding iff D−li = pi.

Proof. To establish this, consider the difference between the entropy and the expected length:

H(X)−
∑
i

pili = H(X) +
∑
i

pi logD D−li

= −
∑
i

pi logD pi +
∑
i

pi logD
D−li∑
j D

lj
+ logD

∑
j

D−lj

= −KL(p|| D−li∑
j D

lj
) + logD

∑
j

D−lj

≤ 0

where the non-positivity at last step follows from the non-negativity of the Kullback-Liebler diver-
gence (a consequence of the concavity of the logarithm, via Jensen’s inequality, see [CT12]), and
from the Kraft-Macmillan theorem 4.1 for the second term. To prove equality iff D−li = pi we
again appeal to the properties of the Kullback-Liebler divergence: the first term in the sum is zero
iff pi =

D−li∑
j Dlj

, in which case logD
∑

j D
−lj = logD 1 = 0. This proves the claim.

An optimal prefix code always exists (e.g. Huffman code), but for our purposes, the Shannon-
Fano code, which sets codeword lengths l(x) = ⌈− log p(x)⌉ suffices. The Shannon-Fano code is
competitive, meaning that the probability that the expected length exceeds another code’s by c bits
does not exceed 21−c [CT12]. Indeed for the Shannon-Fano code, the Kraft-Macmillan inequality 4.1
is automatically satisfied and by definition, l(x) < − log p(x) + 1. Hence, in expectation, for any
other code with expected length L′ we have

L < −
∑
x

p(x) log p(x) + 1

= H(X) + 1

≤ L′ + 1

Incompressible data Finally, to justify (iii) the statement that it is extremely unlikely that
data with no regularities (with maximal entropy) can be compressed, we provide the following
argument. By the Kraft-Macmillan inequality 4.1, for every prefix code of a random variable X
over an alphabet of size D, the expected codeword length is no greater than the entropy, with
equality iff the li = − logD pi. Assuming X is discrete, all n events have the same probability 1

n .
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Hence, the expected code length (per symbol) is L ≥ −
n∑

i=1

pi logD pi = logD n. The lower bound

is what we can achieve simply by assigning each codeword to the leaves of a D-nary tree: the best
code coincides with the worst possible code, and so data cannot be compressed.

4.3.3 Finding a finite precision network that overfits
Memorizing data with Neural Networks Two-layer ReLU feed forward neural networks are
able to memorize data for any given, arbitrary sample size n, data in arbitrary dimension d with
surprising ease: as stated in [Zha+17], Theorem 1, within the set of such networks N with at
least 2n+ d parameters, there is at least one N ∈ N that will be able to compress y perfectly, by
expressing it in terms of x. This is not at odds with the MDL principle (i) since MDL states that
compressibility of data without a rule is unlikely, rather than impossible (ii) the description lenght
of the network is not taken into account (see [Mor+18a]).

The proof of Theorem 1 in [Zha+17] implicitly assumes infinite precision in the weights of the
network, which would take up infinite, and thus unavailable, space. For completeness, we briefly
restate it and provide a gist of the proof in [Zha+17]. We then use this intuition to prove a simple
result showing how overfitting in finite precision (i.e. with real data and real networks) imposes
constraints on the size of the network, not just the number of parameters.

Finally, we apply this new result to cifar-10, showing that with 32 bit precision, 2n+d parameters
are far from enough to overfit cifar-10-like data.

Theorem 4.3 ( [Zha+17], Theorem 1). There exists a two-layer neural network C with ReLU
activations and 2n+d weights that can represent any function on a sample of size n in d dimensions,
in the sense that, for every sample S ⊆ Rn with |S| = n and for every function f : S → R, there
exists a setting of the weights of the C such that C(x) = f(x), for all x ∈ S.

Proof gist. The proof rests on a Lemma that constructs a matrix A that is lower-triangular and
has non-zero and distinct real diagonal elements: the first differences of an increasing sequence.
A is hence non-singular, since the diagonal elements of a triangular matrix are its singular values.
The authors then proceed to stating the overfitting problem for a 2n + d-parameter 2-layer ReLU
network c(x) =

∑n
j=1 wj max

{
a⊤x− bj

}
with weight vectors w, b ∈ Rn and a ∈ Rd as the solution

of a linear system in a matrix B. This matrix can be made of type A via a judicious choice of
network parameters a and b. Precisely, one needs to chose a such that for every sample xj we have
a⊤xj < a⊤xj+1. This can always be done for distinct xi, by the Archimedian property of the reals.
It remains to select bj such that a⊤xj < bj < a⊤xj+1, which can be done because R is complete.
The remaining parameters of the network w are precisely the solutions of the system in B.

Memorizing data with finite-precision Neural Networks In finite precision, it is not always
possible to find a, b, w as in the theorem above. The least number of bits per parameter for this to
happen is given by the following proposition.

Proposition 4.1. Let data be composed of inputs {x1, x2, . . . , xn} ⊆ Rd and labels {y1, y2, . . . , yn} ⊆
R, with respectively sx > sy denoting the least significant figures of the least significant component
of, respectively the inputs, and the labels: sx := mini,j

{
xk
j

}
and similarly for the inputs.

Then to be able to represent this data it suffices a neural network classifier with d parameters
with the same significant digits than x, n parameters with the one more significant digits than x,
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and n parameters with the same number of significant digits as y, For an expected number of bits
of (sxd+ n(sx + 1) + nsy) log2 10.
Proof. Each a⊤xj has at most the number of significant figures as the akxk

j with the least significant
figures, which is sx. Hence, each ak has at most sx significant figures, for a total of sxd for all
components.

The problem of finding constant b such that we can place a b between every two a⊤xj can be done
assuredly by picking each of the n parameters b with one more significant figure per component than
xj , so n(sx + 1). This allows us to construct the non-singular matrix A = [aij ] = [max {xi − bj , 0}]
as in the proof of 4.3. Given A, the w are solutions of a system y = Aw. In classification, y is the
limiting term, which implies that each of the n components of w has the number of significant figures
of y, so nsy. The total number of significant base 10 digits is therefore K = sxd+ n(sx + 1) + nsy.
Assuming all of them are independent, these can be encoded in K log2 10 bits, which proves the
claim.

Memorizing cifar-10-like data We now apply this new result to cifar-10-like data in the set-
ting of a typical Machine Learning pipeline, where the number of significant figures is fixed. For
simplicity, we assume that the precision of the data and weights are the same: a 32 bit float.

The result gives an upper bound to the parametric complexity of the model family ’2-layer ReLU
networks in finite precision’ MReLU−2 : we will be able to perfectly fit with m ∈ MReLU−2 data
with precision sx, sy with 2n+ d parameters as long as m satisfies the constraints in Prop 4.1.
Example 4.2 (Overfitting cifar-10 with 2-layer ReLU network). The dataset cifar-10 is composed
of n = 6× 104 8 bit square images with 32 pixels size and 3 channels, each image belonging to one
of 10 classes. Hence, n = 6× 104, d = 3× 322 and in bits, sx = 8 and sy = log2 10. Hence, in bits,
sxd + nd(sx + 1) + nsy ≈ 95.5KB, which is significantly smaller than 492.3KB required to store
the 2n+ d parameters at 32 bit precision. Note that this is the size of the network before fitting the
data. The weights after fitting cifar-10, for example, could be compressed at a much higher rate.

4.3.4 From two-part to one-part MDL
MDL was devised as an extension of Kolmogorov’s algorithmic complexity which, we have seen
before, in spite of its intuitive appeal, suffers from the important fact that it is fundamentally
immeasurable.

Crucially, Kolmogorov complexity measures complexity without appealing to a ”true” underlying
generating process, but suffers from the fact that it is uncomputable.

To solve this issue, Rissanen proposed to, rather than state complexity in terms of a universal
computer, to focus on the description length with respect to a given model family instead. Intro-
duced by Rissanen in [Ris86] as a modification of Kolmogorov complexity, Stochastic complexity is
the shortest description length of data within that model family (see [Ris97] for an exposition and
results) .
Definition 20 (Stochastic complexity). Given a probabilistic model family M and data D, the
stochastic complexity of D with respect to model family M SC(D,M) is the shortest possible code
length that can be obtained by using models in M.

Equating learning with compression, the code that provides maximal compression within a model
family M allows us to obtain ”all the useful information in observed data that can be extracted
with selected class of modeled distributions” [Ris87].
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As should be clear from Sec. 4.3.2, a principle that equates learning with compression must also
take into account the size of the compression method itself: using the free-fall data table as example,
a model that is sufficiently complex to memorize the table in full is able to perfectly compress it,
but at the expense of having enough complexity to memorize it.

This motivates the original formulation of MDL as a principle of model selection, which we call
two-part MDL following [Grü05]:

Definition 21 (Two-part MDL). Let M(1),M(1), . . . ,M(n) a set of candidate models (i.e. model
families) to explain data D. Then the best candidate model (i.e. distribution) m∗ ∈

⋃
i M(i) is the

one which minimizes the sum

m∗ = argmin
m∈

∪
i M(i)

L(m) + L(D|m)

where L(m) is the description length of m and L(D|m) is the description length of the data when
using the Shannon-Fano encoding corresponding to m. The best model family M∗ to explain D is
the one that contains m.

Put differently, the best model family M∗ is the one minimizing stochastic complexity SC(D,M∗),
and the best model is the one for which this code length is achieved4

In terms of the taxonomy in Sec. 2.2, MDL measures complexity in the sense of difficulty of
description. In spite of its intuitive appeal, this formulation has a fundamental problem. The second
term measures description length with respect to the model m. As we use one of the distributions in
M to create an optimal encoding (Shannon-Fano for definiteness), it is well-defined. As for the first
term L(m), however, there is no natural encoding with respect to which to measure the description
length of m. In this sense, the description length of the data given the model and of the model
itself are expressed in ’different units’.

In the next section, we present a one-part formulation that solves this problem. Unfortunately,
as we shall see, it also introduces new ones.

4.3.5 One-part MDL
The basic idea of one-part MDL is to measure complexity with respect to a representative of the
model family that compresses data well in the worst case.

This representative, which we will define rigorously below, is called a universal model5. We
then show how we can formulate model selection as a minmax problem by presenting a definition
of regret. For parametric model families and under regularity assumptions, the solution to this
minmax problem is called the normalized maximum likelihood distribution.

Using this solution opens up a number of insights with respect to the nature of the MDL solution,
and importantly with respect to the model complexity term.

Basic idea: universal codes

The best code for data xn in a parametric model family M = {p(· · · |θ) : θ ∈ Θ} is given by the max-
imum likelihood estimator for xn, which has length − log p(xn|θ̂(xn)). Unfortunately, p(xn|θ̂(xn)) is
not a distribution, since

∑
xn p(xn|θ̂(xn)) =

∑
xn maxθ∈Θ p(xn|θ). If Θ has more than one element,

4The statement is simplified, as in general more than one minimizer can exist.
5But this time, in the sense of a distribution belonging to a model family.

131



CHAPTER 4. IS MY NEURAL NET DRIVEN BY THE MDL PRINCIPLE?

there is always at least one xn for which the conditional probabilities are different, and if this set
has nonzero measure, the total mass therefore exceeds one.

We could still use p(xn|θ̂(xn)), of course, but that would require us to either know the maximum
likelihood estimator θ̂(xn) in advance (which is why it is called ”best code in hindsight”), or else
to encode and send the parameters θ̂(xn), which would be equivalent to a two-part code and thus
raise the same problems (how do we encode them?, etc.).

Regret A possible solution to this problem is to pick a code that is closest to this best code in
hindsight. We measure closeness using the notion of regret:
Definition 22 (Regret). Let M be a probabilistic model and p a distribution on Xn (not necessarily
in M). Then for given xn ∈ Xn the regret of p relative to M is defined as

R [p,M] (xn) := − log p(xn)− min
q∈M

{− log q(xn)} (4.3.2)

If the maximum likelihood estimator θ̂(xn) is a function, then

R [p,M] (xn) = − log p(xn) + log p(xn|θ̂(xn)). (4.3.3)

Regret is thus the minimum number of extra bits needed to encode xn using elements of M
compared to the optimal code in hindsight (the code that we could use would we have known the
data to do maximum likelihood, or the maximum likelihood estimator itself). Note that since we
allow p to be outside M, regret can be negative.

Optimal codes minimize worst-case regret We thus define worst-case regret, which will be
used as a measure of distance to the distribution in M that would minimize description length in
hindsight.
Definition 23 (Worst-case regret).

Rn [p,M] := max
xn∈Xn

{R [p,M] (xn)} (4.3.4)

Note that to measure Shannon entropy, instead of the maximum we look at the mean. In this
case, we measure regret as the maximum extra bits with respect to all sequences xn ∈ Xn.

We define p̂ as the optimal Universal model relative to a Probabilistic model if it minimizes
worst-case regret.
Definition 24 (Optimal Universal Model). We call p̂ the optimal universal model relative to a
probabilistic model M if, denoting P (Xn) the set of possibly defective distributions on Xn,

p̂ = argmin
p∈P (Xn)

Rn[p,M] (4.3.5)

If M is a parametric probabilistic family, then the optimal universal model is

p̂ = argmin
p∈P (Xn)

Rn[p,M] = argmin
p∈P (Xn)

max
xn∈Xn

{
− log p(xn) + log p(xn|θ̂(xn))

}
(4.3.6)
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Finally, we define a logarithm measure of the total mass under the curve (recall, not a distri-
bution) that picks the maximum over all distributions in M of the probabilities of observing each
xn:
Definition 25 (Parametric complexity). We define the parametric complexity or model cost of
M [Grü05] as

COMPn(M) = log
∑

xn∈Xn

p(xn|θ̂(xn)) (4.3.7)

Implementation: Normalized Maximum likelihood

It turns out that in the case of parametric model family M and given some regularity assumptions,
the so-called normalized maximum likelihood distribution has minimal worst case regret with respect
to M. This is a theorem proved by Shtarkov[Sht87]:
Theorem 4.4 (Shtarkov’s theorem). Suppose that M is a parametric probabilistic family, and the
parametric complexity COMPn(M) is finite. Then (4.3.6) is achieved uniquely for the distribution
pnml given by

pnml(x
n) =

p(xn|θ̂(xn))∑
yn∈Xn p(yn|θ̂(yn))

(4.3.8)

The distribution pnml is called the Shtarkov distribution or the normalized maximum likelihood
distribution (NML).

We adapt the proof from [Grü05] for completeness.

Proof. By definition of worst-case regret, pnml, and model cost, we have:

Rn [pnml,M] (xn) = − log pnml(x
n) + log p(xn|θ̂(xn))

= − log p(xn|θ̂(xn)) + log

∑
y∈Xn

log p(yn|θ̂(yn))

+ log p(xn|θ̂(xn))

= log

∑
y∈Xn

log p(yn|θ̂(yn))


= COMPn (M) ,

which is independent of xn. Now since for every p ̸= pnml, ∃zn ∈ Xn : p(zn) < pnml(z
n), we have

Rn [p,M] = max
x∈Xn

R [p,M] (xn)

≥ Rn [p,M] (zn)

≥ Rn [pnml,M] (zn)

which, since the regret for pnml is independent of zn, equals the worst-case regret, which proves the
claim.
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Note that the proof above also shows that, when model cost is finite, we can define it 4.3.7 as
the regret achieved by the pnml distribution for any data xn.

Interpreting Stochastic complexity via Normalized maximum likelihood encoding

As we have just shown, by encoding data D with the NML distribution we obtain, by definition,
a description length that exceeds the best description length in hindsight by a term that equals
exactly the model complexity:

− log pnml(D|M) = − log p(D|θ̂(D)) +COMPn(M) (4.3.9)

As the NML distribution minimizes the worst-case risk, the left hand-side of this expression is, by
definition, the stochastic complexity. By expressing stochastic complexity via the NML distribution
we will provide an interpretation in terms of model complexity and of noise.

Stochastic complexity measures the relative likelihood of observed data Stochastic com-
plexity can be thought of as the amount of information in the data D relative to M. To see this
note that if the normalized maximum likelihood of the data is high, then the likelihood of data D
according to its maximum likelihood model is high relative to the sum of the likelihoods of all other
data according to their respective maximum likelihood models: in terms of the model family, data
D is likely compared to all other possible data. An encoding of D with elements of M exists such
that the negative log-likelihood, the code length, is small. According to the MDL formalism, this
means that the model family captures a a great deal of regularity about the data.

Stochastic complexity interpretation in terms of noise and model cost The expression
(4.3.9) consists of two terms; the first term, model cost, which informally speaking, measures how
likely the model family finds arbitrary data. If on average, for arbitrary xn, there is a distribution
in M that finds it likely, then the term will be high.

Model cost uses the behavior of distributions within the model family with respect to data
to measure model complexity, thus solving the difficulty of choosing an appropriate measure of
complexity for the model. Unfortunately, it is often infinite and generally incomputable [Grü05].
The first difficulty is commonly addressed via a luckiness function which essentially consists in
imposing a prior on Xn effectively removing the diverging parts.

The first term is the shortest description length of data D that can be obtained within the model
family. If there is an element in M that is certain about D then − log p(D|θ̂(D)) = 06.

If the the shortest description length that can be given of D within model family M is large,
then there is no model in M that can be used to compress D: in other words, as far as elements of
M are concerned, observation D is noise.

Toy examples: empirical and Gaussian distribution model families To gain intuition,
suppose that {xn} = X is a finite set of observations of some physical experiment. Consider a
model family consisting of the set of empirical distributions corresponding to these observation, i.e.

6This of course implies that the distribution p(·|θ̂ (D)) is zero everywhere else but has no implication regarding
the likelihood that other elements in M assign to other data.
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M = {δ(x− xn)}, where x, xn ∈ X ⊆ R. Then for every observation xo ∈ X , since δ(x− xo) ∈ M
and δ(xo − xo) = 1, the stochastic complexity is

− log pnml(xo|M) = 0 + log
∑
xo∈X

1 = log |X |

But suppose now that upon performing the experiment, we make some new observation xnew that
was not in the original set X . Since this new observation has zero probability for every distribution
in M, the first term in stochastic complexity is infinite.

This phenomenon is of course not specific to empirical distribution model families: observing
any data that is assigned zero probability by all members of M is always a infinite stochastic
complexity event. And the divergence does not mean that stochastic complexity breaks down as
a measure of complexity for new data. A straightforward interpretation in terms of MDL is that
the model family M is simply not appropriate to explain xnew: since MDL prescribes selecting the
model family minimizing stochastic complexity, M would never be selected to explain xnew.

To avoid divergences, we should consider only model families for which the union of the support
of its elements is the entire real line. This can easily be done, for example, by adding some infinite
support distribution to the original model family, which we can assume without loss of generality
is the Gaussian distribution centered on µ the mean of the observations in X : M(µ) = M∪N (µ).
The stochastic complexity of the model family is now always finite:

− log pnml(xo|M(µ)) =

{
0 + log |X |+ 1, if xo ∈ X
(xo − µ)2 + log |X |+ 1, otherwise

.

If now one observes xo and wishes to select amongst a set of families {M(µ)}, MDL prescribes
selecting the model family such that xo is closest to the mean of the previous observations7. The
simplest MDL Gaussian explanation of an observation is the one whose mean is closest to the
observation. This reasoning extends straightforwardly for Gaussian mixture families.

4.3.6 Signal and noise in MDL
In this chapter, we introduce an MDL principle that specifies the encoding scheme in which to
measure the description length implicitly in terms of the signal and the noise in noisy data. To
define signal and noise, we rely on [Ris00] which defines noise as the part of the data that cannot be
compressed with the models considered, the rest defining the information bearing signal. This idea
is used in the paper in the context of Gaussian models arising in linear-quadratic regression problems
to derive a decomposition of data that is similar to Kolmogorov’s sufficient statistics [CT12]. In
our case, we shall assume that the signal is implicitly provided by a given classification task, and
define noise to be everything else.

Definition 26. We define noise as ”noise relative to a signal”: given r.v.s X (signal) and ∆
(noise) such that X + ∆ is well-defined, we say that ∆ is noise relative to X if for every Ci ∈ C
non-singular code of X, we have L(Ci(∆)) ≥ H(∆) + α, with α > 0.

7Note that it is irrelevant how the the mean was constructed: we did so in a reasonable way using the previous
observations, but the result would stand regardless.
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Note that if Cj ∈ C were optimal for ∆, then L(Ci(∆)) = H(∆) ≥ H(∆)+α, which with α > 0
is a contradiction. The definition is thus equivalent to stating that there is no code of X in C (
which may include the optimal code for X) that is optimal for ∆. Also note that the noise ∆ is
not particularly ”disordered”. Going back to 4.3.2, the physical laws that compress height vs. time
data are unable to compress the effect of hitting the object with a baseball bat. Even if a model
provides a simple description of some data, adding noise as defined in Def. 26 destroys its ability to
compress it. It is implicit in the MDL principle that not only do we learn the regularities in data,
but also the ”irregularities”!

4.3.7 MDL for Deep neural network classifiers
In this section we discuss MDL in the context of classification.

Encoding labels with neural network classifiers

Suppose Alice wishes to send Bob a set of labels yn ∈ Yn using the least amount of bits. Rather
than choosing a method that directly encodes the labels, they decide to proceed as follows. First,
they select a set of publicly available data xn ∈ Xn8 — say a set of cat pictures on Wikipedia
for concreteness. Alice then assigns a label to each cat picture using a process of her choice, in
order to create a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} := {zi}i=1···n. She then uses D to
train a Neural Network classifier fθ : X → Y parametrized by θ ∈ Θ to predict the labels, by
using some flavor of gradient descent to find the θ(D) ∈ Θ that minimizes a classification loss
function (which, we shall assume for concreteness, is cross entropy; we shall also assume that the
optimization method is fixed).

Bob has access to the data xn but he does not know the labeling procedure that Alice used.
But he does not need to: if he somehow gains access to the trained neural network, he will be able
to use it to predict the labels yn from the publicly available xn and obtain Alice’s message.

Encoding labels with a neural network can be efficient Convoluted as it may seem, this
method can be very efficient. Using standard integer encoding for n labels with |Y| label choices,
sending over the labels directly takes n log |Y| bits. In order to make sure that Bob has access to
the trained network, Alice needs to, either implicitly or explicitely, communicate its parameters
θ(D) to Bob.

The parameters θ(D) are stored with some precision, say as a 32-bit single precision float. But in
general, Alice does not need to communicate the full parameters to Bob: she just needs to send them
to Bob with enough precision that he can use them to select a network that will predict the same
labels as fθ(D). Assuming for simplicity that Θ ⊆ Rn and that N different parameter choices for
each parameter suffice to select an appropriate model, Alice could send over a θ̃ : fθ̃(x

n) = fθ(D)(x
n)

with k logN bits, which would be enough for Bob to be able to decode the labels yn. Hence, as long
as the size of the dataset is n > k logN

log|Y| , this encoding procedure will be more efficient (i.e. shorter)
than just sending over the labels. If there is a binary network that suffices for encoding cifar-10,
for example, this would mean that for this encoding to be more efficient than simply sending over
the labels, we would need to have approximately k < 30n. To be clear, at the time of this writing,
the state of the art binary network for cifar-10 is a k = 10 million parameter network f with a

8Strictly speaking, the public data needs to be at least as diverse, as measured by Shannon entropy, as the set of
labels she wishes to send over to Bob, and of the same size as the set of labels.
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C10 accuracy at test time of 95.5[BMT20]. Assuming that f is able to reach a perfect train time
accuracy, it could be used by Alice and Bob to encode cifar-10 training data. Moreover, with
n = 6× 105, it is able to do so efficiently, because k = 107 is smaller than n× 30 = 18× 106.

Train and test-time encodings Judging by its test time accuracy, it may seem that the trained
network that Alice sent Bob is close to being an efficient encoder, not just for cifar-10 training data,
but for all cifar-10-like data as well!

Unfortunately, this is not necessarily the case. As stated above, Alice sends Bob a lower-precision
version of the parameters such that θ̃ : fθ̃(x

n) = fθ(D)(x
n), amounting to k logN bits. And while

fθ̃(x
n) may have enough precision to decode xn, it will not be able to do so in general. To see

this, take the simple case where the network is simply a diagonal matrix for a binary classification
problem W :=

[
a1 a2 . . . an
b1 b2 . . . bn

]
: Rn → R2 trained on a single example, say x with label 0 for

simplicity. Then all we need to do be able to decode the training example correctly is to make sure
that

(Wx)0 < (Wx)1 ⇔ (a− b)⊤x < 0 ⇔ cos(θ) < 0

Choosing b := 0, we just require a row vector a that makes an angle θ with x that is between π
2

and π — any row vector. In particular, we can pick a row vector with a single non-zero component,
say the first, a1. So the condition becomes a1x1 < 0, which can be achieved by setting the sign
of a1 to the negative of the sign of x1

9. This low-precision classifier is able to decode the training
example x. But it would not work for any other example x′ with label 0 such that x′

1a1 > 0, for
example.

Of course if there is a finite training data/network parameter size that would allow us to reach
zero test error for arbitrary cifar-10 like data, then the method becomes again more efficient than
just sending over the labels, as Alice would only have to send a finite number of bits over to Bob,
with which he could decode arbitrary-size cifar-10 like data.

Neural networks classifier architectures as probabilistic model families

Typically in this context, a neural network classifier is a probabilistic classifier10 which, given an
input x ∈ X ⊆ Rn, outputs the conditional probabilities of observing the labels fθ(x) = p(y|x, θ) ,
with

∑
y∈Y p(y|x, θ) = 1. The classification step is performed by predicting the most probable class

ypred = argmax
y∈Y

p(y|x, θ).

In the language of this chapter, neural network classifier architectures (Multilayer Percep-
tron, VGG, etc.) can thus be seen as parametric probabilistic families (cf. Def. 17) M =
{p(·|x, θ) : x ∈ X , θ ∈ Θ}. Within each model family, we select the network that we are interested
in as the one for which the parameter θ(D) minimizes a given classification loss for the training
data D, where the minimization is performed using a flavor of gradient descent by backpropagating
through the layers of the network.

9We assume for simplicity that we picked a component i such that aixi ̸= 0, and that this can be done.
10Typically, the last layer is a softmax layer of width |Y|.
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The most commonly used classification loss is the categorical cross-entropy between the empir-
ical distribution of the labels given the inputs and the one that the network predicts for the same
inputs11. Because, as shown in Thrm. 4.2, the length of the optimal code for the empirical distri-
bution is the entropy, and because minq H(p, q) = H(p), we are really looking for the distribution
within M that has, according to the empirical distribution, the shortest code length for all inputs
on average:

H(Yemp, fθ(Xemp)) = −
n∑

i=1

pemp(yi|xi) log p(yi|xi, θ) (4.3.10)

= −
n∑

i=1

log p(yi|xi, θ), (4.3.11)

since pemp(yi|xi) = 1 .
Using the the Shannon-Fano code, which assigns codeword lengths as the inverse of the prob-

abilities, lSF
i = ⌈− log pi⌉ is near optimal (cf. Sec. 4.3.2 ). Thus, if the data xn, yn really are

generated by fθ independently, the cross-entropy (4.3.10) equals, up to a single bit, the optimal
codelenght.

lSF (yn|xn) := ⌈− log p(yn|xn, θ)⌉
= ⌈− log p(y1|x1, θ) · · · p(yn|xn, θ)⌉

=

⌈
−

n∑
i=1

log p(yi|xi, θ)

⌉
= ⌈H(Yemp, fθ(Xemp))⌉

4.3.8 The need to replace stochastic complexity minimization to select
DNN classifiers

As we saw in Sec. 4.3.5, stochastic complexity can be written in eq. 4.3.9 as the sum of two terms:
the first term is the maximum log-likelihood of the training data for models in the parametric
family. This can be seen as a measure of noise in the data, as seen by the model family. The second
term is what we called the model cost and, as we saw above, can be interpreted as a measure of
complexity of the model family.

This measure of complexity does not depend on a particular choice of encoding, which resolves
the ambiguity in 2-part MDL. It does so by defining complexity in terms of the behavior of the
model family with respect to data.

Unfortunately, as we shall now argue, this measure of complexity is not appropriate for a neural
network classification setting in a sufficiently overparameterized regime. It is hence not an appro-
priate tool for model selection in this context. For three reasons: (i) the model cost term is infinite,
as we are summing over all possible data, a difficulty that is common in NML for MDL [GR19].
Even if this difficulty is addressed, for example by considering only model families with large but
finite support or by introducing a luckiness function [GR19] (essentially a prior on the data), two

11Because H(p, q) = KL(p, q) +H(p), their minimizer over q is the same distribution.
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difficulties remain: (ii) the noise terms vanishes in the overparameterized regime. For sufficiently
large neural network models, a set of parameters exists such that the log-likelihood of the train-
ing data is zero. This makes stochastic complexity depend on non-observed data only and, as we
shall see in the sequel, in an overly simple way. (iii) For sufficiently differentiable model families,
the model cost term is simple far from observations and complex in a small neighborhood of the
observations. There, moreover, it depends on whether the directions are relevant for classification
(signal) or not (noise).

As we shall seen in the sequel in Sec. 4.4.1, this motivates our introduction of an MDL principle
that implicitly defines model complexity in terms of signal and noise in classification data.

Noise term is zero in the overparameterized regime Feedforward neural networks are
universal approximators [HSW89; Cyb89], as they can approximate arbitrary continuous functions
on compact sets to any desired degree of accuracy, given a sufficient number of parameters. In a
number of cases of interest for neural network classifiers, we indeed work in an overparameterized
regime, where the number of parameters of the model far exceeds the number of training data.
In that case, one is typically interested in classification accuracy. As it was shown in [Zha+17],
in this situation neural networks can memorize labels of arbitrary data with remarkable ease and
reach perfect accuracy. Moreover, if the network is sufficiently overparameterized, the training loss
continues to decrease during training12, eventually improving test performance, a phenomenon know
as deep double descent [Nak+21b] in the literature. Indeed, there is work showing that specifically
preventing the loss to decrease improves performance [Ish+20].

In the sequel we shall assume categorical cross entropy loss as discussed in Sec. 4.3.7, and i.i.d.
observations. In this case then, loss coincides with the noise term − log p(yno |xn

o , θ̂(z
n
o )) in eq. 4.3.9:

0 ≤ − log p(yno |xn
o , θ̂(z

n
o )) = −

n∑
i=1

max
p∈M

log p(yio|xn
o )

= min
p∈M

−
n∑

i=1

log p(yio|xn
o )

≤ −
n∑

i=1

log p(yio|xn
o )

= H(Yemp, fθ(Xemp)) → 0

Where in the first and second steps we used independence of observations, in the step before last
we used eq. 4.3.10, and the last step is by assumption in the overparameterized regime13. It follows
that for sufficiently complex neural network classifiers, without explicitely imposing measures to
prevent the loss to reach zero, the first term in stochastic complexity is zero. This implies that for
classifier model families in the overparameterized regime, MDL simply focuses on the behavior of

12Note that the second task is more difficult than the first, and requires a ”universal approximator” class of
overparameterization, rather than a ”universal classifier” class of overparameterization.

13And we slightly abused the notation introduced earlier in this chapter in order to keep the subscript ”o” for
”observed”; whereas xn denotes the set of n observed inputs x1, . . . , xn in the first line, in subsequent lines xi

denotes the i-th observed input.
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the model family for unobserved data:

SC(yno |xn
o ,Mi) =

=0 in the
overparameterized regime︷ ︸︸ ︷
− log p(yno |xn

o , θ̂(z
n
o )) +COMPn(Mi)

= COMPn(Mi)

= log

( ∑
zn∈Zn

p(yn|xn, θ̂(zn))

)

= log

 ∑
zn=zn

o

1 +
∑

zn ̸=zn
o ∈Zn

p(yn|xn, θ̂(zn))


= log

1 +
∑

zn ̸=zn
o ∈Zn

p(yn|xn, θ̂(zn))


Hence, given a set of neural network classifier families

{
Mi
}
i=1...n

in the overparameterized
regime, the MDL principle, which tells us to pick the model family minimizing stochastic complexity,
simply prescribes picking the model family minimizing model cost for unobserved data:

Mj is best explanation of yno |xn
o within model families

{
Mi
}
i=1...n

⇔

j = argmin
i

{
SC(yno |xn

o ,Mi)
} Mi are NN in the

overparameterized regime︷︸︸︷⇔ j = argmin
i

{
COMPzn ̸=zn

o
(Mi)

}
where we wrote COMPzn ̸=zn

o
(Mi) := log

(∑
zn ̸=zn

o ∈Zn p(yn|xn, θ̂(zn))
)

and ignored the constant
inside the logarithm in minimization.

By a simple convergence argument, the maximum likelihood of most unobserved data should
be close to zero, even in the infinitely countable data case. Specifically, consider model families
M1,M1 containing the empirical distribution of zno . Then MDL prescribes selecting the M i for
which the distributions it contains assign as little likelihood as possible to unobserved data. In
particular, a model family containing only the empirical distribution M = {δ(zn − zno )} would
always be selected. And importantly, regardless of the model family that it selects, MDL assigns
as best explanation of the data (the p ∈ M∗ minimizing stochastic complexity within the model
family minimizing stochastic complexity) the empirical distribution!

In the overparameterized regime, MDL thus prescribes, to explain data zno , picking the model
family that contains distributions that are point-wise closest in likelihood to the empirical distri-
bution. And within that family, it prescribes picking the empirical distribution as a model for zno .
This is clearly not very useful.

Finally, we should add that the argument carries over to the case where the maximum likelihood
of the data amongst the model families is the same but not one: MDL would select model families
assigning the least maximum likelihood to unobserved data. The actual distribution being selected,
however, would not be the empirical distribution.
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Differentiable model families There is a saving grace in the case of differentiable model families
(such as neural networks with common activation functions). In this case, Taylor’s theorem allows
us to express the behavior of the network for unobserved data in the neighborhood of observations
in terms of its behavior at the observed points.

The following qualitative discussion ignores matters of convergence and glosses over other im-
portant details, but it serve as a guide for intuition, and to motivate our novel MDL principle.

To make matters as precise as possible, we focus on neural network model families, consisting of
neural network classifiers trained using data znt by gradient descent to minimize the categorical cross-
entropy 4.3.10 loss. Different families correspond to different architectures, initialization methods,
gradient descent flavors, etc.

Hence, by θ̂(zn) we mean ”the set of parameters that, for neural networks trained using data znt
by gradient descent to minimize cross-entropy loss”, assign maximum likelihood to data yn|xn”14.

In addition, to simplify notation, we omit the n superscript in xn, yn, zn and the ”hat” in θ. We
thus denote z = (x, y), and p(y|x, θ(x, y)) is the maximum likelihood that any model within M can
assign to labels y given inputs x. In particular, in the overparameterized regime, we shall assume
that p(yt|xt, θ(xt, yt)) = 1 as seen in the previous section. Finally, motivated by the discussion in
Sec. 4.3.5, we shall assume that Z is compact and that ∀z ∈ Z ∃θ : p(y|x, θ(z)) > 0. That is, we
assume that no observation is impossible for all members of M.

With these assumptions, minimizing stochastic complexity is, as seen above, minimizing the
maximum log-likelihood of unobserved data

min log

 ∑
z ̸=zt∈Z

p(y|x, θ(z))


If we expand each of these likelihoods around the observations, setting z = zt + δz, and assuming
for ease of exposition that the number of labels is sufficiently large that taking the derivative with
respect to y is a sensible thing to do, we get

∑
z ̸=zt∈Z

p(y|x, θ(z)) =
∑

δz ̸=0∈Z

p(yt|xt, θ(zt)) +

(
dp

dz

)⊤

δz +O(δz2)

=
∑

δz ̸=0∈Z

p(yt|xt, θ(zt)) +

(
∂p

∂x
+

∂p

∂θ

∂θ

∂x

)⊤

δx+

+

(
∂p

∂y
+

∂p

∂θ

∂θ

∂y

)⊤

δy +O(δz2)

=
∑

δz ̸=0∈Z

1 +

(
∂p

∂x
+

∂p

∂θ

∂θ

∂x

)⊤

δx+

(
∂p

∂y
+

∂p

∂θ

∂θ

∂y

)⊤

δy +O(δz2)

where we used p(yt|xt, θ(zt)) = 1 in the overparameterized regime, and ∂p
∂x denotes the gradient of p

with respect to the input x, calculated at the training data xt, yt, and similarly for the other terms.
Aiming at understanding the behavior of this expression, we divide our analysis in two parts:

(i) ∥δz∥ small and (ii) ∥δz∥ large.
14Note the maximization within the set of all networks trained using data znt !
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(i) for δz small, the first order terms dominate. For the sum to converge, we must thus have
(dp/dz)

⊤
δz ≈ −1 for almost all δz: that is, in the neighborhood of the observations, most directions

are those of steepest decline of likelihood. Now if the distance between z and zt is of the order of
∥δz∥2, then in the direction h := z − zt, the first order term in the expansion is zero. If the labels
don’t change (δy = 0), in input space, the direction δx does not impact classification. As defined
by the classification problem, it can be considered as noise. By setting the first term in the Taylor
expansion to zero, we see that noise directions are orthogonal to directions of maximum change (a
decrease) in likelihood in terms of input, and hence have little impact on likelihood as well:(

dp

dx

)⊤

δx = 0

If on the other hand a direction δx does impact classification (δy ̸= 0) — and can thus be considered
as signal — changes in input will have an impact on likelihood as well. In this case, the change
(decrease) in likelihood is determined by the equation(

dp

dx

)⊤

δx+

(
dp

dy

)⊤

δy = 0,

where some additional condition, on the norm of the derivatives for example, would have to be
imposed to obtain a single solution for each δz.

(ii) Let us now look at the case where δz is large. In this case the likelihood function is no
longer dominated by the first-order term. To minimize stochastic complexity in this case we must
assign a likelihood as close to zero as possible for all δz, which, as we saw above, is achieved quite
rapidly outside a small neighborhood of the observations.

In conclusion, in the overparameterized regime, in the case of differentiable model families such
as neural network classifiers, MDL as a principle of model selection focuses on the behavior of
the model family in a small neighborhood of the observations. In that region, likelihood should
decrease in almost every direction (noise) as rapidly as possible, except in the directions that impact
classification (signal). The ”velocity” of the descent is determined by the behavior of the particular
model family with respect to change in inputs and labels in the neighborhood of the training data,
i.e. the derivative terms in the Taylor expansion above. The greater the variety (as measured by the
size of the derivatives) of networks that can be obtained with the same training data, the steeper
the descent.

The discussion above motivates our MDL principle, adapted to neural network classifiers in the
case where the number of parameters far exceeds the training data. Instead of measuring complexity
with respect to all data, we focus on the behavior of the model family with respect to signal and
noise, as defined by the classification task.

4.4 Learning with a novel MDL principle
We now provide an MDL principle that eliminates the need for defining the model encoding, as in
two-step MDL or a universal coding such as one-step MDL [GR19]. Instead, we utilize the signal
and the noise in the training data to implicitly define the encoding: increase the description length
of the noise, and decrease the description length of the signal.

We then establish a lower bound of this maximization objective in terms of the minimal descrip-
tion lengths of signal and noise(cf. 4.2). We further simplify the problem by expressing it locally,
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which enables us to provide an interpretation in terms of sensitivities to the signal and noise. Fi-
nally, we combine these local problems to express a global MDL objective in terms of the spectra
of the local Jacobians, and that the spectral distribution of models that maximize MDL is either
power law or lognormal.

4.4.1 MDL objective
The MDL paradigm quantifies learning based on the ability to compress: if f(X + ∆) contains
information about X it can compress it and conversely, if it does not contain information about
the ∆, it cannot be used to compress it. This formulation implicitly defines the complexity of the
model f in terms of unknown X and ∆ present in training data. It is therefore applicable in a
classification context, where these are defined with respect to a task. Formally:

Definition 27 (MDL principle). Let X̃ = X + ∆ be noisy data, comprised of unknown signal
X and a noise ∆ parts in the sense of 26, and a model fθ trained on X̃ according to some (e.g.
classification) objective. Let L(X|f(X̃) = y) and L(∆|f(X̃) = y) be, respectively, the expected
description length of X and ∆ given knowledge fθ(X̃) = y. Then with γ > 0 a hyperparameter, fθ
follows the MDL principle if it maximizes

max
θ

{∫
pfθ(X̃)(y)L(∆|fθ(X̃) = y)dy − γ

∫
pfθ(X̃)(y)L(X|fθ(X̃) = y)dy

}
(4.4.1)

The idea is to minimize the mean L(X|f(X̃) = y) and maximize L(∆|f(X̃) = y) seen as
functions of y15, with γ controlling the relative strength of these objectives.

A lower bound in terms of minimal description length Using Theorem 4.2 we can express
the length of the description of noise knowing fθ(X̃) = y as a multiple α(y) ≥ 1 of the length of
the minimum length description for each y:∫

pfθ(X̃)(y)L(∆|fθ(X̃) = y)dy =

∫
pfθ(X̃)(y)α(y)H(∆|fθ(X̃) = y)dy

≥
(
inf
y
α(y)

)∫
pfθ(X̃)(y)H(∆|fθ(X̃) = y)dy

=

(
inf
y
α(y)

)
H(∆|fθ(X̃))

Proceeding similarly for the signal term we obtain∫
pfθ(X̃)(y)L(X|fθ(X̃) = y)dy ≤

(
sup
y

β(y)

)
H(X|fθ(X̃))

Denoting infy α(y) := α and supy β(y) := β the minimum and maximum expected description
lengths of codes of noise and of signal, respectively, knowing fθ(X̃) = y, we combine the two
desiderata and maximize a lower bound of 4.4.1:

max
θ

{
αH(∆|fθ(X̃))− γβH(X|fθ(X̃))

}
15For classification, we work on an intermediate representation, which explains the use of integrals in calculating

the expectation.

143



CHAPTER 4. IS MY NEURAL NET DRIVEN BY THE MDL PRINCIPLE?

Since H(∆|fθ(X̃)) = H(∆, fθ(X̃))−H(fθ(X̃)) and similarly for the second term,

H(∆|fθ(X̃))− γβH(X|fθ(X̃)) = αH(fθ(X̃)|∆)− γβH(fθ(X̃)|X)

+ αH(∆)− γβH(X) + (βγ − α)H(fθ((̃X)))

Ignoring terms independent of θ, since α > 0, we obtain a lower bound of 4.4.1:

Proposition 4.2 (MDL objective lower bound). Given noisy data X̃ = X + ∆ comprised of a
signal X and a noise ∆ parts, a model fθ trained on X̃ according to MDL, λ := γ β

α , the following
is a lower bound of the the MDL objective:

max
θ

{
H(fθ(X̃)|∆)− λH(fθ(X̃)|X) + (λ− 1)H(fθ(X̃))

}
(4.4.2)

In this lower bound, λ has the role of γ modulated by the ratio between the worst case expected
signal description length knowing the model output and the best case description length of the noise
knowing the model output in units of entropy. Note that to minimize the description length of the
noisy data H(fθ(X̃)) we must have λ − 1 < 0 and hence objective 4.4.2 is MDL in expectation
with a constraint on the conditional entropies. Since λ < 1 ⇒ α > γβ the implications depend
on the model class {fθ}: if for the given model class ∆ is more difficult to compress than X, then
α > β and so γ < 1. This corresponds to, in 4.4.2, focusing relatively more on ignoring the noise.
Conversely, if {fθ} is such that X is mode difficult to compress, then γ > 1 and we focus relatively
more on learning the signal.

As an example, consider F-MNIST data noised up by the addition of MNIST data, and a
model class consisting of an intermediate representation of a classifier trained on MNIST, which
we hold fixed, to which we add a final trainable classification layer. We expect that members of
this model class be better at representing noise (MNIST), hence γ > 1. Learning in this case
corresponds mostly to finding the element of the model class that is better at representing the
signal. Conversely, if the representation is learned on MNIST γ < 1 and we expect learning to
correspond to finding the model that is best able to ignore F-MNIST data.

4.4.2 Local formulation
We now simplify the problem in 4.4.2 by expressing it locally and then ultimately in terms of the
spectrum of the point Jacobian matrix ∇fθ|xk

.

Local objective

We begin by showing that given a sufficiently smooth function f , points x1, . . . , xN and an error
budget E, a set of radii can be chosen such that the maximum linear approximation error does not
exceed it, and these radii are inversely proportional to the largest principal singular value of the
point Hessian matrices, a result that is a direct consequence of Taylor’s theorem. We also show,
conversely, that for a compact domain, a set of radii can be chosen such that every point is inside
one of the neighborhoods of the x1, . . . , xN that minimizes the total approximation error.

Intuitively, since the Hessian matrix at a point controls the curvature, the curvature along the
maximum curvature direction controls how far we are able to go away from the point while not
changing the Jacobian too much.
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Lemma 4.1. Let f : A ⊆ Rn → B ⊆ Rm be analytical, with A compact and x1, . . . , xN ⊆ A. Then
given Ek > 0, a set of balls {Vk}k=1···N centered at xk and with radius rk can be chosen such that
the norm of the approximation error f(xk + rk)− f(xk) is upper bounded by

∀k=1···N , sup
w∈Vk
i=1···m

1

2
σ1(∇2f i|w) · ∥rk∥2 = Ek

where σ1(∇2f i|w) is the first singular value of the Hessian matrix of the component f i calculated
at w ∈ Vk.

Conversely, a set of radii can be chosen such that every point is inside one of the neighborhoods
of the x1, . . . , xN that minimizes the total approximation error.

Proof. For each component f i of f , Taylor’s theorem states that the approximation error of f i(xk+
rk)− f i(xk) ≈

(
∇f i|xk

)
rk, along a radius rk, in Lagrangean form, is 1

2rk
⊤ (∇2f i|w

)
rk, where w is

a point between xk, xk + rk. The approximation error is thus

1

2
rk

⊤ (∇2f i|w
)
rk =

1

2

rk
⊤ (∇2f i|w

)
rk

rk⊤rk
· ∥rk∥2

≤ 1

2
σ1(∇2f i|w) · ∥rk∥2

sup
w∈Vk
i=1···m

1

2
σ1(∇2f i|w) · ∥rk∥2

, where we used the definition of the first singular value in terms of the Rayleigh quotient to establish
this result on the sup norm. A result that holds for other norms follows from convexity of the norms
and the bound on each of the components of the vector of the Hessian matrices.

To see the converse, consider that given a compact set and a point, there is always a ball that
contains it. Hence so would a union of such balls. Since each of the radii sets an upper bound for
the local approximation error, with sup w∈Vk

i=1···m

1
2σ1(∇2f i|w) := σk

1 , we can write the total error as

min
rk

N∑
k=1

σk
1 · r2k

with the constraint that A ⊆ V1 ∪ · · · ∪ VN .

Proposition 4.3 (Local MDL objective). In the conditions of Lemma 4.1 and notation above,
locally in Vk the MDL objective 4.4.2

max
f

{
H(f(X̃)|∆)− λH(f(X̃)|X) + (λ− 1)H(f(X̃))

}
can be expressed approximately as

max
Jk

λH(JkδXk)−H(Jk∆k) (4.4.3)

where δXk,∆k denote the signal and the noise in Vk with respect to its center, and the approximation
error is controlled by Prop. 4.1.
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Proof. Let f : A ⊆ Rn → B ⊆ Rm be analytical, A compact and D = x1, . . . , xN ⊆ A and
{Vk}k=1···N a set of balls centered at xk and with radius rk such that A ⊆ V1 ∪ · · · ∪ VN , chosen
such that the Jacobian matrix of f is constant in each Vk in the sense of Lemma 4.1. Then to first
order in δxk, δ, every x ∈ A can be expressed in terms of the ”center” of the Vk that contains it
k(x) = k ∈ {1, · · · , N} : x ∈ Vk. Writing for simplicity xk(x) := xk we have, for all x ∈ A

f(x̃) = f(xk + δxk + δk)

≈ f(xk) +∇f |xk
δxk +∇f |xk

δk

:= f(xk) + Jkδxk + Jkδk

with the approximation error controlled by the principal singular value of the Hessian.
Noting that the choice of Vk determines f(x̃k), we can apply this approximation to 4.4.2 to

obtain a local version, in Vk, of the expression to maximize :

H(JkδXk + Jk∆k|∆k)− λH(JkδXk + Jk∆k|δXk)

Assuming local independence of signal and noise implies locally that H(JkδXk|δXk) = 0,H(Jk∆k|∆k) =
0 and H(JkδXk|∆k) = H(JkδXk),H(Jk∆k|δXk) = H(Jk∆k)? Hence:

H(JkδXk + Jk∆k|∆k)− λH(JkδXk + Jk∆k|δXk) + (λ− 1)H(JkδXk + Jk∆k) =

H(JkδXk)− λH(Jk∆k) + (λ− 1) (H(JkδXk) +H(Jk∆k)) =

λH(JkδXk)−H(Jk∆k)

Finally, noting that maximizing f locally in Vk, at this order of approximation, amounts to maximize
over the its local Jacobian

max
f

λH(JkδXk)−H(Jk∆k)
Vk,order of approx.⇔ max

Jk

λH(JkδXk)−H(Jk∆k)

which proves the claim.

Interpretation in terms of sensitivity measure in [Aro+18]

In [Aro+18] the authors define sensitivity of a mapping f with respect to noise ∆ at x as

S = Eδ∼∆

[
∥f(x+ δ)− f(x)∥2

∥f(x)∥2

]
In a region of constant Jacobian Jk, using the arguments in 4.4.2, to first order in δ, we obtain

∥f(x+ δ)− f(x)∥2

∥f(x)∥2
≈ ∥Jkδk∥2

∥f(xk)∥2

In expectation, up to a scale, this is the variance of Jk∆k which is a measure of its complexity
like the entropy above, (for a Gaussian distribution, up to a logarithm and a constant, the two
coincide). H(Jk∆k) in prop. 4.3 thus corresponds to sensitivity with respect to noise and, by
a similar argument, H(JkδXk) to sensitivity with respect to signal. Our MDL objective thus
selects the model that locally maximizes sensitivity with respect to signal and minimizes sensitivity
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with respect to noise. Although similar to [Aro+18], in our formulation sensitivity is logarithmic,
direction-dependent (cf.4.4.2), and crucially combines sensitivity to signal and sensitivity to noise.

Finally, since λ < 1, if H(JkδXk) > H(Jk∆k) then 4.4.3 is upper bounded by zero, where
λ = H(Jk∆k)

H(JkδXk)
. Maximizing 4.4.3 thus corresponds to getting closer to a model that locally produces

the same balance between sensitivity to signal and to noise, determined by the global parameter
λ. This problem cannot always be solved. Consider f a one layer ReLU network of width N ; the
local {Jk} are given by deleting a certain number of rows in the pre-ReLU Jacobian, which is the
weight matrix of f . Since f can have at most 2N different {Jk}, the conjunction of local problems
can only be solved if the number of Vk where the balance between sensitivities needs to be adjusted
differently is smaller that 2N . The case of deeper networks is similar, each new ReLU layer of width
Mi multiplying the number of possible Jacobians by 2Mi .

Local objective: spectral formulation

To provide a spectral version of 4.4.2, we express Jk in terms of its singular value decomposition
(SVD), and the signal and noise in terms of local PCA representations. We work in Vk but omit
the label k wherever possible for clarity of presentation. Jacobian, signal, and noise refer to the
local versions.
Proposition 4.4. (Local objective spectral formulation) Let δXpca and ∆pca be, respectively, the
representations of the local signal δX and noise ∆ in a neighbourhood of constant Jacobian Vk,
and δXj

pca,∆
j
pca its k-th component (with basis vectors ordered by the magnitude of its associated

eigenvalue). In the conditions of prop. 4.3, the following is its lower bound:

max
σ

λ
(
max

i

{
log σi +H(δXi

pca)
})

−
∑
j

(
H(∆j

pca) + log σj

) (4.4.4)

Proof. Let J = UΣV ⊤ be the singular value decomposition of J ∈ Rn×m. Drawing from the
argument in the proof of Proposition 4.3, for each observation x̃(i) ∈ Vk, we have x̃(i) = xk+δx

(i)
k +

δ
(i)
k . Each point in Vk can thus be represented by its local signal δx(i)

k and noise vectors δ
(i)
k .

The set of all noise vectors in Vk induces a PCA basis, composed of the eigenvectors of the noise
data matrix

[
δ
(1)
k δ

(2)
k . . . δ

(m)
k

]
and similarly for the signal data.

Thus, the signal δX can be expressed as the transform to local coordinates of δXpca, the signal
in local PCA coordinates δX = W⊤

signalδXpca, and similarly for noise: ∆ = W⊤
noise∆pca, where

Wsignal,Wnoise are, respectively, the PCA coordinate transformation for signal and for noise16.
Noting that U has determinant one everywhere, the transformation it induces does not change the
entropy. We thus have:

λH(JδX)−H(J∆) = λH(UΣVW⊤
signalδXpca)−H(UΣVW⊤

noise∆pca)

= λH(ΣVW⊤
signalδXpca)−H(ΣVW⊤

noise∆pca)

The VW⊤ are contractions measuring the alignment between the singular vectors of the Jacobian
and the principal components of the signal (for Wsignal) and noise (for Wnoise). We thus maximize
the RHS of this expression by:

16These matrices are, respectively, the transpose of the eigenvector matrix of the signal, and of noise.
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• aligning J with δX and then maximizing the logarithm of the singular values in the non-zero
dimensions: if δX is locally low-dimensional, the singular values that get maximized are few.

• aligning J with ∆ and then minimizing the logarithm of the singular values in the non-zero
dimensions: since ∆ tends to be relatively high-dimensional, all singular values of J tend to
be minimized.17

The overall effect is to maximize a few neighborhood-dependent singular values of J , and minimize
all the rest – consistently with the experimental observations in Fig. 4.2. See Fig. 4.1 for a schematic
representation.

singular values

fr
e
q
u
e
n
cy

1
singular values

1
singular values

many shrink

few expand

1

training epochs

Figure 4.1: Illustration of the evolution of the point Jacobian spectral distribution for a Neural
Network classifier at three different epochs – from left to right, (i) initial, (ii) transient, (iii) final. (i,
top) Before training, the sensitivity of the network to direction in input space (the wavy plane below)
is independent of the direction, as can be seen by the ellipses whose axes’ direction/magnitude
represent the singular vectors/values of the Jacobian matrix of the network at that point. As
can be seen in (i,bottom), the distribution of the spectra of all Jacobian matrices at all training
points is, correspondingly, evenly split amongst contractions (singular values smaller than one) and
expansions (singular values greater than one) (ii, top) As training evolves, the network becomes
increasingly sensitive to directions that are important to classification and less so for directions that
are not. This can be seen by the stretching of the ellipses in directions for which the classification
changes and shrinking otherwise and, in (ii,bottom), the relative increase of contraction directions.
In (iii), we observe the overall final effect on the Jacobians and the spectra.

Since δX and J are unknown, so are the ”selected” directions. The full entropy of the local
signal is at least as that of its components. Replacing it with the entropy of the singular direction

17A similar argument can be found in [Aro+18] in the discussion of noise sensitivity.
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i for which the entropy of the transformed signal is maximal, we obtain the stated lower bound of
the local objective 4.4.3.

4.4.3 Combining local objectives to obtain a spectral distribution
We combine local objectives by maximizing their sum over all local patches Vk. This is essentially
assuming cross-patch independence. For it to hold, (i) the network should be able to produce
sufficiently many local Jacobians as explained in 4.4.2 and (ii) Vi ∩ Vj should be small for all
i, j. Assumption (i) holds in practice since we work in the overparameterized regime and (ii)
holds for ReLU networks. Both assumptions are thus expected to hold as a first approximation,
although [HS19] suggests more complex behavior and will be considered in future work.

Recalling that we do not know which singular value gets ”selected” and assuming that the signal
is locally low-dimensional (which is known as ”the manifold hypothesis” [Cay05; FMN16] ), which
we take for simplicity to mean that maxik H(δXik

k ) ≈ H(δXk) we obtain, summing over the M
patches of rank-Nk Jacobian

M∑
k=1

λ

(
max
ik

{
log σik +H(δXik

k )
})

−
Nk∑
j=1

(
H(∆j

k) + log σj

)
Simplifying and maximizing over the singular values of all the Jk leads to

max
σ

{
λME [log σ] + λH(X)−H(∆)− N̄ME [log σ]

}
where expectations of both log singular values and Jacobian rank are over the patches, the latter
denoted N̄ for readability. As the sum of lower bounds of non-positive quantities is non-positive,
its maximum value is zero, where

E [log σ] =
H(∆)− λH(X)

M(λ− N̄)
(4.4.5)

A note on selecting singular values Aligning the Jacobian and δX implies that the entropy
H(δXik) is maximal. Using the manifold hypothesis, we assume that the maximal entropy com-
ponent accounts for most of the entropy, that is maxik H(δXik

k ) ≈ H(δXk). As explained in 4.4.2,
the maximal entropy component does not necessarily correspond to the maximal singular value:
during training, singular spaces corresponding to higher-order singular values will also be ”selected”.
Taking this ”selection” as a one-sample estimate of the mean justifies replacing the maximization
over ik in the expression above with E[log σk] + H(δXk). Under the assumption of cross-patch
independence, we have

∑M
i=1 H(δXk) = H(X) and similarly for ∆. The expression below follows

from linearity of expectation:

max
σ

{
λME [log σ] + λH(X)−H(∆)− N̄ME [log σ]

}
Since each of the terms in the sum above is negative, this expression is non-positive. At the
maximum, we obtain 4.4.5

149



CHAPTER 4. IS MY NEURAL NET DRIVEN BY THE MDL PRINCIPLE?

Point Jacobian spectral expectation as a model-dataset measure of complexity For this
expectation to be positive the entropy of the noise must be sufficiently smaller than the entropy
of the signal, since λ − N̄ < 0 because 0 < λ < 1. If 4.4.1 holds, E [log σ] thus decreases with
the number of patches of constant Jacobian and the mean Jacobian rank. It is thus a measure of
model complexity which increases with the weighted difference between the entropy of noise and
the entropy of signal, it depends on the signal and noise. All things being equal, for the same
E [log σ] models trained with more noise will have smaller M and Ñ . Adding noise is a form of
regularization. If on the other hand, entropy of noise is greater than the entropy of signal, the
reverse effect is produced. On very noisy data (relative to signal!), models trained with more noise
need to become more complex.

4.4.4 The MDL spectral distributions
We now show that the predicted distribution that is compatible with 4.4.5 is a power law or, for NN
trained with SGD, a lognormal distribution. The true spectral distribution contains information
on, e.g. architecture and training process whereas in the maxent formalism [Jay78] we use, the
prediction is maximally non-committal: it contains no information on the MDL-trained network
beyond its adherence to the MDL principle and the signal-to-noise entropies of the training data.

Incorporating knowledge of the expectation of the log spectrum and SGD The dis-
tribution that incorporates knowledge of the expectation of the spectrum4.4.5 and nothing else is
the maximum entropy distribution for which the constraint on the spectrum 4.4.5 holds [Jay78].
Specifically, the power law distribution

p(σ) =
α− 1

α

(σ
b

)−α

,

where α = 1 + 1
E[log σ]−log b and b is a cutoff parameter. Power laws model scale-free phenomena18,

but can emerge when aggregating data over many scales [Zha+15; GC04], as we did in 4.4.3 to
obtain eq. 4.4.5. For a ReLU NN trained by SGD, there is also a constraint on the variance of
log σ: the spectrum depends continuously on the network weights (cf. sec. 4.4.2), which are SGD-
updated using a finite number of steps. The corresponding maxent distribution is the lognormal,
which is the Gaussian distribution with given mean and variance in log-scale.

4.5 Experimental results
Our experiments show that spectral distribution matches theoretical predictions in 4.4.4, suggesting
that NN are driven by the MDL principle. We study the effect of noise in the point Jacobian spectral
distribution of three groups of models of increasing complexity, ReLU MLPs, Alexnet, and Inception
trained on MNIST [Den12] and cifar-10 [KH+09], using the experimental setup in [Zha+17]. See
Sec. 4.5.1 for details. The section is organized as follows: (i) we describe the experimental setup
used in the works presented in this chapter (ii) we present two different types of noise and discuss
expected consequences with respect to spectral distribution, and (iii) we present and discuss the
experimental results.

18Since p(kσ) = a (kσ)α = akασα. Since the constant is a normalization factor, we must have p(kσ) = p(σ).
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4.5.1 Experimental setup
The experimental setup follows [Zha+17] closely. We investigate two image classification datasets,
namely the MNIST dataset [LCB10] and the CIFAR10 dataset [KH+09]. Both datasets are com-
posed of 50,000 training and 10,000 validation images, distributed across 10 different classes. In
CIFAR10, each image in the dataset has dimensions of 32x32, with 3 color channels. To scale the
pixel values into the range of [0, 1], we normalize them by dividing each value by 255. Addition-
ally, we center crop the images to obtain a size of 28x28, and normalize them by subtracting the
mean and dividing the adjusted standard deviation independently for each image, adapting the
per_image_whitening function in Tensorflow [Mar+15], as presented in [Zha+17]. The same pro-
cedure adapted to one channel, except center cropping which is unnecessary since MNIST images
are 28x28, is performed on MNIST.

On both datasets, we use two common deep architectures, which were adapted to smaller im-
age sizes/single-channel images: a simplified Inception model [Sze+17] and Alexnet [KH+09]. As
in [Zha+17], the simplified Inception model uses a combination of 1x1 and 3x3 convolution path-
ways, while the simplified Alexnet is constructed using two (convolution 5x5 → max-pool 3x3 →
local-response-normalization) modules followed by two fully connected layers with 384 and 192 hid-
den units, respectively. We utilize a 10-unit linear layer for prediction, and to calculate the point
Jacobians. All architectures employ the standard rectified linear activation functions (ReLU).

We also study two fully connected multi-layer perceptrons (MLPs): one having a hidden layer
with 512 units, the other having three hidden layers of the same size.

For all experiments, we train the models using SGD with a momentum of 0.9, using an initial
learning rate of 0.01. We apply a decay factor of 0.95 per epoch to adjust the learning rate, and
train the models without weight decay, dropout, or any other explicit regularization techniques.

In all experiments, we calculate the Jacobian at the linear layer, using automatic differentia-
tion with Pytorch’s torch.autograd.functional.jacobian method. The point Jacobian spectrum is
calculated at all training and test examples using Pytorch’s torch.linalg.svdvals, which is a port of
Numpy’s.

The experimental spectral distributions were split at the first deepest trough. The lognormal
fit of each modality, the probabilty plots and line of best fit were calculated using scipy [Vir+20].

4.5.2 Experimental Noise
We study two forms of ”natural” noise: label noise, used in [Zha+17] and dataset noise, which
consists in adding a lossy compressed version of a similar dataset.

Label noise We focus on instance-independent symmetric label noise [Son+22], which randomly
assigns labels to training and test examples unconditionally on example and training label with
probability p. Label noise can be modelled realistically using human annotators [Wei+22], but the
former choice is closer to the MDL sense 26. In this setting, the entropy of the introduced noise
can be estimated as p · H(X0), since incorrectly labelled examples become noise with respect to
the classification task. This allows us to express the numerator of 4.4.5 for the noised dataset in
terms of the entropy and noise of the original dataset as H(∆p)− λH(Xp) = H(X0)− λH(X0) +
p(1+λ)H(X) > H(X0)−λH(X0). All things being equal, for NN following MDL, the log Jacobian
point spectrum increases with the probability of label noise p.
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Figure 4.2: Point Jacobian spectral distribution for model | label noise | cifar-10, from first epoch
to overfit. ”Left” and ”right” distributions (cf. 4.5.3) are represented separately for each triplet
for clarity. The best fit lognormal plot is superimposed on each histogram, with the corresponding
probability plot on the right, with the line of best fit (R2 displayed on top). Legend elements, in
order: epoch, training and validation accuracy, and the mean log spectrum.

Dataset noise We add to the original dataset D0 a similar dataset Dsim lossy compressed at
rate r19. Symbolically Dr = D0 + rDsim. We choose Dsim commonly used in place of D0 in ML
practice: cifar-100 for cifar-10, and Fashion-MNIST for MNIST. To compress D̃ we reconstruct
it using only a certain number of PCA components. This causes less bias in setting r, compared
to compressing with e.g. jpeg [PM92] or an autoencoder, in which the architecture introduces an
element of arbitrarily, but we lose the ability to set the compression rate at will. Since for the
noised dataset Xr + ∆r the numerator in 4.4.5 can be written as H(∆r) − λH(Xr) = H(∆0) −
λH(X0) + r(H(Xsim) + H(∆sim). All things being equal, for NN that follow MDL, the average
log Jacobian point spectrum decreases with r. Interestingly, assuming the entropies of the similar
dataset are approximately the same as that of the original dataset, we obtain H(∆r)− λH(Xr) =
(1+r)H(∆0)−(λ−r)H(X0), which corresponds to the same maximization objective with a rescaled

19Our notion of dataset noise bears similarities to ”bubble noise” in the speech recognition literature [Kob+96],
consisting in superimposing independent speech signals. This is a phenomenon that occurs naturally in conversation,
and from the point of view of speech recognition, the problem consists in separating the specific speech signal that
one should be listening to.
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λr = λ−r
1+r < λ0 corresponding to less sensitivity to signal.

Figure 4.3: Point Jacobian spectral distribution for model | nbr. pca comp. | cifar-10, from first
epoch to overfit where possible. ”Left” and ”right” distributions (cf. 4.5.3) are represented separately
for each triplet for clarity. The best fit lognormal plot is superimposed on each histogram, with the
corresponding probability plot on the right, with the line of best fit (R2 displayed on top). Legend
elements, in order: epoch, training and validation accuracy, and the mean log spectrum.

4.5.3 Discussion
As Figs. 4.2 and 4.3 show, NN trained using SGD are driven by the MDL principle: (i) their
spectra is remarkably well-fit by a lognormal distribution, as predicted in 4.4.4, and experimental
spectra become globally more lognormal with training epoch (cf. fit overlay on the histograms,
and inset probability plots); also, as predicted in the discussion following 4.4.5 (ii) for each model
E[log σ] tends to increase with noise (iii) and with model complexity, which also influences the
quality of lognormal fit20, Inception being the overall best and MLP the overall worst. Remarkably,
these observations hold for both label noise and dataset noise. In the early stages of the training
process, though, representation-building takes precedence. This can be inferred by observing that
experimental distributions are typically bimodal (see Sec. 4.5.3, for figures and discussion), and

20The number of training epochs being relatively small, we did not find a power-law behavior.
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noting that at the last linear layer of a classification-induced representation, one of the directions
should leave the output relatively more unchanged than the others: the direction assigned to the
class of the training point (see 4.15 for a visual explanation). Representation building occurs early,
as can be seen in Figs. 4.5.3 or in Figs. 4.2 and 4.3, dominating MDL in early epochs. To handle
this asymmetry, we divide the spectrum in each of its two modalities (cf. 4.5.1). The statements
above apply to each of the two parts of the spectrum, corresponding to the two representations.
The observations above hold for MNIST as well, exception being where the initial spectrum is
multi-modal (suggesting a great degeneracy of the directions in which the classification prediction
does not change — i.e. MNIST is very simple). In this case our splitting method is ineffective, as
we would need to split the spectral distribution into each of the several modalities.

Point Jacobian spectrum, full spectra For the figures detailing the full spectrum, i.e. figs. 4.6
through 4.14, note that train and test distributions are the same, since the underlying distributions
are the same for this relatively simple dataset. We also note that the overall shape of each dis-
tribution does not change significantly with the addition of noise. As discussed in the main text,
we note the clear bimodality in all spectral distributions, comparatively higher ”lognormality” of
Inception, and that the addition of noise increases the mean spectrum.

Finally, note that at the beginning of training, MLP and Alexnet’s predictions are very local,
since there is a great number of relatively small singular values (high peak), and more so with the
addition of noise. This effect is also observed in Inception, but to much less extent. Using fig. 4.15
as illustration, MLP and Alexnet are more conservative than Inception, keeping close to the image
of the training examples for small perturbations. This is similar to the strategies of generalization
that we commonly use (e.g. maxent). Inception, on the other hand, which generalizes better, while
not being conservative at all, which suggests that it does so by focusing on the signal.

Point Jacobian spectrum MNIST Figures 4.4 and 4.5 parallel those in the main text for the
MNIST dataset.

Dataset noise leading to bimodality Figure 4.15 provides a graphical illustration of the rep-
resentation building leading to bimodality.

The example is for a classifier f : R3 → R2 and an autoencoder g for visualization, but the
overall idea extends to higher dimensions.

4.6 Conclusion and future work
In this work, we propose an MDL principle that implicitly defines model complexity in terms of
signal and noise: choose the model whose representation of the data can be used to compress the
signal, but not the noise. We show that models driven by this principle locally maximize sensitivity
to the signal and minimize the sensitivity to noise, and predict that the point Jacobian spectrum of
NN trained by gradient descent follow either a power law or a lognormal distribution. We provide
experimental evidence supporting this prediction, hinting that neural networks trained by gradient
descent are driven by the MDL principle.

As for future work we plan, aiming at a generalization bound, to extend the connection estab-
lished in 4.4.2, by making the MDL objective layer wise as in [Aro+18]. Another possible extension
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Figure 4.4: Point Jacobian spectral distribution for model | label noise | MNIST, from first epoch
to overfit. ”Left” and ”right” distributions (cf. 4.5.3) are represented separately for each triplet
for clarity. The best fit lognormal plot is superimposed on each histogram, with the corresponding
probability plot on the right, with the line of best fit (R2 displayed on top). Legend elements, in
order: epoch, training and validation accuracy, and the mean log spectrum.

is to use our findings to explain the power law behavior of the spectra of the layer weight ma-
trices and connection to generalization gap found in [MM18; MM20], by noting that each point
Jacobian of ReLU networks is a sub-matrix of the product of the network weight matrices, which
can be expressed in terms of the singular values of the point Jacobian submatrix via an interlacing
inequality [Tho72].

4.6.1 Addendum: deriving the MDL local approximation, alternative
derivation

Within each local patch the Jacobian J has a singular vector decomposition J = UΣV ⊤. Assume
without loss of generality that J ∈ Rn×m. Then U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is a
diagonal matrix and V ∈ Rn×n is orthogonal as well. The entropy H(V ⊤δX) = H(δX) since
V T has determinant one everywhere. In the same way, H(JδX) = H(U⊤JδX) = H(ΣV ⊤δX).
In the case of an embedding, the matrix Σ has a number of zero components along its diagonal,
which will, upon multiplying by V ⊤δX produce a vector that has a number of zero components
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Figure 4.5: Point Jacobian spectral distribution for model | nbr. pca comp. | MNIST, from
first epoch to overfit. ”Left” and ”right” distributions (cf. 4.5.3) are represented separately for
each triplet for clarity. The best fit lognormal plot is superimposed on each histogram, with the
corresponding probability plot on the right, with the line of best fit (R2 displayed on top). Legend
elements, in order: epoch, training and validation accuracy, and the mean log spectrum.

independently of the other components. Hence, the entropy of the zero part and the nonzero part
is the same as the entropy of the nonzero part. So the entropy above is just the entropy of the
non-zero components after acting on data with V ⊤. Explicitly, H(σ1v

⊤
1 δX, . . . , σkv

⊤
k δX, 0, . . . , 0) =

H(σ1v
⊤
1 δX, . . . , σkv

⊤
k δX). Plugging into our objective we obtain

max
J

λH(JδX)−H(J∆) = max
σ

λH(σ1v
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Noting that
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⊤
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=
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Figure 4.6: Full point train (left) and validation (right) Jacobian spectrum for MLP trained on
cifar-10, from first epoch to overfit, with no label noise. Horizontal scale is the same across all plot
in the same column. Epochs and performance are indicated on top of each graph.

where we called v⊤i ∆ := ∆i. Doing the same for δX and plugging in our objective above, we obtain

max
J

λH(JδX)−H(J∆) ≥ max
σ

{
max

i
λH(σiv

⊤
i δX)−H(σ1v
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}
= max

σ

{
λmax

i
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)}

Note now that we can do three things to maximize this local lower bound: imagine that we
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Figure 4.7: Full point train (left) and validation (right) Jacobian spectrum for MLP trained on
cifar-10, from first epoch to overfit, with label noise p = 0.5. Horizontal scale is the same across all
plot in the same column. Epochs and performance are indicated on top of each graph.

start training and there is one component of the data that happens to have an image with larger
entropy; assuming that the singular values at start are the same, then this is because we are more
aligned with the data. And so we will promote this alignment by increasing both the singular value
along that direction and rotating it in order to improve the alignment.

The last terms are interesting as well: in order to reduce them and thus increase the lower
bound, we can do two things: reduce the mean entropy of the projections of noise onto the singular
directions and reduce the mean logarithm of the singular values of the Jacobian. Although the latter
can be done without restriction, the former depends on the local shape of noise. Without further
assumptions, the only sure way to reduce the mean entropy is to remove dimensions altogether.

But note that since the logarithm can be very negative, it is even better to keep the dimensions
and just focus on decreasing the singular values to as close to zero as possible.
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Figure 4.8: Full point train (left) and validation (right) Jacobian spectrum for MLP trained on
cifar-10, from first epoch to overfit, with label noise p = 1.0. Horizontal scale is the same across all
plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.9: Full point train (left) and validation (right) Jacobian spectrum for Alexnet trained on
cifar-10, from first epoch to overfit, with label noise p = 0.0. Horizontal scale is the same across all
plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.10: Full point train (left) and validation (right) Jacobian spectrum for Alexnet trained on
cifar-10, from first epoch to overfit, with label noise p = 0.5. Horizontal scale is the same across all
plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.11: Full point train (left) and validation (right) Jacobian spectrum for Alexnet trained on
cifar-10, from first epoch to overfit, with label noise p = 1.0. Horizontal scale is the same across all
plot in the same column. Epochs and performance are indicated on top of each graph.

162



4.6. CONCLUSION AND FUTURE WORK

0.00

0.20

0.40

De
ns

ity

epoch: 00 | trn. prec.: 0.54 epoch: 00 | val. prec.: 0.52

0.00

0.20

De
ns

ity

epoch: 05 | trn. prec.: 0.77 epoch: 05 | val. prec.: 0.73

0.00

0.20

De
ns

ity

epoch: 10 | trn. prec.: 0.89 epoch: 10 | val. prec.: 0.78

0.00

0.20

De
ns

ity

epoch: 15 | trn. prec.: 0.95 epoch: 15 | val. prec.: 0.78

0 20 40 60 80
Singular value

0.00

0.20

De
ns

ity

epoch: 20 | trn. prec.: 1.00

0 20 40 60 80
Singular value

epoch: 20 | val. prec.: 0.80

Figure 4.12: Full point train (left) and validation (right) Jacobian spectrum for Inception trained
on cifar-10, from first epoch to overfit, with label noise p = 0.0. Horizontal scale is the same across
all plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.13: Full point train (left) and validation (right) Jacobian spectrum for Inception trained
on cifar-10, from first epoch to overfit, with label noise p = 0.5. Horizontal scale is the same across
all plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.14: Full point train (left) and validation (right) Jacobian spectrum for Inception trained
on cifar-10, from first epoch to overfit, with label noise p = 1.0. Horizontal scale is the same across
all plot in the same column. Epochs and performance are indicated on top of each graph.
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Figure 4.15: Principal directions of the point Jacobian for a classifier f and an autoencoder g for
three-pixel pictures of cats and dogs on the neighborhood of a given point. By definition, the norm
of the change of the image through f for perturbations in first singular direction σ1 is maximal
among all directions, and similarly for the second direction in the orthogonal space to the first.
Note that since the destination space is in R2, there are only two singular directions in the original
R3. For each point P the two directions are the directions of respectively maximum and minimum
change with respect to ”cat-dog”. As for the autoencoder, reconstruction is much more sensitive
to perturbations along σ1 than σ2: changes along the latter are reconstructed as being the same
image, which means that the model considers them as being noise.

166



Chapter 5

Conclusion and perspectives

This thesis is about physics guided machine, to which we contributed along two main directions:
in the first core of contributions, we worked on integrating partial physical knowledge in the form
of a partial differential equation (PDE), specifically the Swift-Hohenberg (SH) equation, to solve
the inverse problem of predicting nanoscale patterns in femtosecond irradiated surfaces. In this
first direction, we were able to show that in the case of a self-organization process, the dual inverse
problem of estimating state and equation parameters simplifies by choosing a feature transformation
in the image space in which the initial conditions play a less important role. In the case where data
is few and not time-series and the physical knowledge is only partial, this transformation can neither
be learned nor derived: we use as transformation the higher-order features of a Convolutional Neural
Network pre-trained on a large dataset for a broad task. We proposed a principled approach to
choosing such a feature transformation, and an expert based quality measure of the features as well.

We integrated the PDE knowledge by implementing a fast and accurate second-order pseu-
dospectral solver of the SH equation and then by using a great number of pre-generated solutions
to learn a surrogate in feature space, on the one hand, and to label the few experimental data
with SH parameters of the nearest neighbors in feature space, in the other. This technique allowed
us to learn the relationship between laser parameters and SH parameters (with which novel laser
patterns can be generated via the solver), a relationship that can be used as an experimental tool
to guide new pattern discovery.

In the second core of contributions, we addressed the problem of measuring the amount of
knowledge in data and in a (e.g. physical) model. We did so through the angle of the Minimum
Description Length (MDL) principle, in the framework of which an elegant solution was found: the
so-called one-part MDL, which uses Normalized Maximum Likelihood as detailed in Section 4.3.5.
This solution, however, suffers number of technical shortcomings which hinder its application,
namely in task-oriented setting. To address these difficulties, we proposed an MDL principle that
implicitly defines full model complexity (model + data) in terms of signal and noise as defined by
the classification task: choose the model whose representation of the data can be used to compress the
signal, but not the noise. We show that models driven by this principle locally maximize sensitivity
to the signal and minimize the sensitivity to noise, and predict that the point Jacobian spectrum of
neural networks trained by gradient descent follow either a power law or a lognormal distribution.
We provide experimental evidence supporting this prediction, hinting that neural networks trained
by gradient descent are driven by the MDL principle.
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Learning Complexity to model Self-Organization of Matter – conclusions and outlook
Our work in this direction led us to make a number of observations, which motivate future research:

(i) First, in spite of the good agreement between the partial SH model predictions and ex-
perimental data, we also found evidence that there is more than one SH process at play. This
leaves the door open to either using a generalized SH model that integrates several length scales,
or to exploring possibilities to combine multimodal single-scale data into a superimposed solution.
These two directions are independent, as our original proposed mechanism for pattern formation in
Sec. 3.2.4 seems to indicate. On the one hand, multimodality is predicted to exist for large enough
fluences, and so should absolutely be incorporated in an improved model. As for using a general-
ized model, the matter is slightly more complex. If one believes that Rayleigh-Bénard convection
is at the origin of pattern formation, then the Swift Hohenberg equation appears naturally. Either
the sign-symmetric version in [SH77], in the Boussinesq approximation, or the generalized model
used in our work with an additional quadratic term (also known as the Haken model) [Hak77], if
one admits a compressible fluid (which is indeed a more natural hypothesis), and which is more
compatible with the observed hexagonal patterns. As for further options for modeling the hy-
drodynamics, there is the Kuramoto–Sivashinsky equation [Kur78; Siv77], for example, a notable
4th-order equation which can be derived in a hydrodynamic setting and which has a great variety of
pattern solutions [KKP15]. A more involved and alternative approach would consist in modelling
the dynamics at different times using different equations. This would allow integrating knowledge
and data at several stages of the dynamics, in an iterative approach. This could alleviate the severe
data constraints by focusing on building physical models for different parts of the dynamics using
available data (absorption, for example); these could later be integrated as ”physical knowledge
building blocks” that could be used to model the full, complex dynamics.

(ii) Second, we observed that pattern features, as described by the parameters of the SH equa-
tion, are not independent; finding new pattern regions requires searching laser parameter space
”creatively” by looking at regions of laser-parameter space where some SH parameter shows great
variation. This is to be expected, as the SH equation has a limited number of pattern solutions, but
poses an important limitation for industrial applications, in which we would like to have maximum
flexibility in what kind of patterns can be produced. To address this important issue, note that it is
not difficult to leave this constraints even while keeping the SH model, which is known to have so-
lutions that are heavily dependent on the boundary conditions (which we kept periodic throughout
this work), for example, and by taking into account pattern interference (although the heavy at-
tenuation of spatial frequencies away from the unstable modes makes interference negligible unless
the second hydrodynamic process selects spatial frequencies that are a multiple of the first). The
sub-5 nm polishing procedure, perpendicularly polarized double pulse, as well as the 100 alignment
of Ni, strongly contribute for the symmetry setting in which Rayleigh-Bénard convection can oc-
cur. Controllably stepping outside these constraints could open the door to other self-organization
convection mechanisms, which could see other pattern solutions. This idea is reinforced by the fact
that there are recently observed patterns that do not appear to be similar to known solutions of
the SH equation. To do so in a principled way requires iteratively testing different mechanisms
for pattern formation, which would then be compared to experimental data, and ultimately be
used to propose new experiments — in short, the scientific method, combining principled physical
modelling and physics-guided-ML-assisted experimentation.

(iii) Third, we noted that the model learns interesting features from few data even while not
extrapolating particularly well. This opens the door to a dialectic approach to novel pattern discov-
ery, even while keeping within the constraints of the SH model: one could acquire new experimental
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data iteratively in order to fill-in the gaps in the laser parameter space until the predictions stabi-
lize; since the SH model is already trained and data is pre-generated, integrating new experimental
data only requires retraining a simple model on few data. This idea could of course be replicated for
other models other than the SH model, to guide the physical exploration of experimental parameter
space. The main challenge in our approach is the scarcity of data. Although it is always possible, in
principle, to acquire more experimental data, in practice the amount of data is unlikely to change
because the cost is too high. In the laser pattern case, one possibility to circumvent this limitation
is to combine data from experiments on several materials using domain adaptation [Red+19], which
would increase data by an order of magnitude and open the door to exploring patterns in unseen
materials, which has great interest for applications.

(iv) For another possible direction of future work, recall that as explained in the schematics
Fig. 3.2, the role of the feature transformation is crucial, as it allows us to dramatically reduce the
complexity of the problem by reducing the dimension. But it is also crucial, as mentioned in the
introduction (1), that the feature transformation incorporates physical knowledge. The choice of a
Convolutional Neural Network classifier integrates translation equivariance explicitly, and also other
symmetries implicitly which are learned from data. There is clearly work to be done to incorporate
other symmetries explicitely by learning e.g. by leveraging scattering networks [BM12]) or via
[DNT22] or even [CW16]. A learneable differentiable feature transformation that incorporates
symmetries can be used in an integrated approach where symmetries and dynamics in projected
space could be learned separately, with the latter being learned using, for example [Rud+17; LLD18]
or [Xu21], in a physics-guided approach to model order reduction.

Is My Neural Network Guided by MDL? – conclusions and outlook (i) The first direction
that we would like to explore regarding our work in this direction is one of systematization: for
example, we would like to understand the role of the radii and number of the constant Jacobian
neighborhoods (or the error budget, cf. 4.1), which remained largely unexplored in this first work.
Another interesting research direction is to relax the manifold hypothesis used in Section 4.4.3
to derive a spectral version of our MDL objective. The predicted effect on the spectrum could
be experimentally compared against known geometries. Although we designed our experiments
around the notion of ”natural” noise, a systematic exploration in an artificial setting could also be
useful. Another rather obvious research question is to explore using our MDL objective in learning
by integrating in the loss function.

(ii) Another line of research is to understand the connection between our proposal and other
measures of complexity and generalization. Specifically, we plan, aiming at a generalization bound,
to extend the connection between our MDL formulation and sensitivity established in Section 4.4.2,
by making our MDL objective layer-wise as in [Aro+18]. A layer-wise MDL objective would poten-
tially open doors to comparisons with the Information Bottleneck Principle [Sax+19] which would
be interesting to explore. Another possible direction for drawing from our MDL objective to obtain
generalization bounds is to use the PAC-Bayesian Theory as proposed in [Via+23] to derive bounds
from arbitrary complexity measures (inspired from empirical results presented in [Jia+19]). These
bounds could then be compared with those obtained via other methods. Another possible extension
is to use our findings to explain the power law behavior of the spectra of the layer weight matrices
and connection to generalization gap found in [MM18; MM20] in the context of Random Matrix
Theory, where the authors show that the spectrum of the layer weight matrices of Neural networks
with published weights (thus that have sufficiently good performance to merit publishing) follow
a power law behavior, and propose a measure of generalization for pretrained neural networks.
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To make the connection with our work we note that each point Jacobian of ReLU networks is a
sub-matrix of the product of the network weight matrices, which can be expressed in terms of the
singular values of the point Jacobian submatrix via an interlacing inequality [Tho72].

(iii) To make our MDL formulation more general, we would like to extend it to a regression
setting, as this is the context of interest in a number of problems of physical interest. This should
be possible in principle, since the MDL principle that we proposed is applicable to settings where
a meaningful definition of signal and noise in terms of the task exists. In a regression setting,
this is also the case. But in a regression problem, the number of output dimensions is typically
much higher, which poses considerable practical difficulties in computing the singular values of the
Jacobian.

(iv) Finally, as stated in the introduction (1), MDL provides a natural formalism in which to
compare on the same footing knowledge in data, and knowledge in some physical information –
which comes in so many different shapes and forms. As an architecture-independent, formalism
independent way to assess the task-relevant knowledge in data and in physical information, MDL is
arguably the ideal setting to compare models incorporating physical information and data. Another
possible direction for future research is thus to apply our MDL measure to problems where physical
information is available, in order to find, as we mentioned in the introduction (1), the ”data-
equivalent of physical knowledge”. To do so, we would follow a systematic approach that explores
a range of physical problems, where physical knowledge is formulated in different ways (e.g. a
PDE governing the quantities of interest or a derived quantity, symmetries, conservation laws), and
examine the behavior of trained models with respect to the introduction of data, and of knowledge.

Taylor entropy We introduced Taylor in Section 2.6.6 as a measure of complexity of dynamical
systems that is applicable in the multidimensional setting. This measure, as can be seen in e.g.
Figures 2.34 and 2.36 provides a good measure of complexity that is applicable in a very noisy
setting. As such, this measure merits further investigation on its own: for once, one would like to
study it in a more controllable setting (with PDE-generated data, for various noise settings) and
in different dimensions. In an true time series setting, instead of the averaging procedure that we
used for the SEM field, where we only have access to two-dimensional sign patches, one would have
access to three-dimensional sign right rectangular prisms. A measure of diversity of these prisms
bares a number of wq resemblances to permutation entropy, with derivative sign sequences in the
former taking the role of ordinal patterns in the latter. One could also examine the complexity of
each derivative individually, and its relationship to the form of the (known) governing equation.
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Appendix A

Appendix

A.1 Experimental section: full figure list
In this section, we show the application of the aforementioned measures of complexity to (i) a panel
range of femtosecond laser induced patterns with constant N and varying laser fluence and time
delay between pulses and (ii) five different increasing N series (cf. Figure A.1).

F=0.20 J/cm², t=2 ps

F=0.22 J/cm², t=30 ps

F=0.24 J/cm², t=30 ps

F=0.18 J/cm², t=8 ps

F=0.18 J/cm², t=10 ps

Figure A.1: Visualization of SEM (Scanning Electron Microscopy) field samples for different laser
parameters. Each row represents a series of samples generated with specific laser parameters, as
indicated by the y-axis labels, at increasing values of N . Each column represents a sample taken
at equal intervals within the series.
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A.1. EXPERIMENTAL SECTION: FULL FIGURE LIST

A.1.1 Gray levels complexities
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Figure A.2: Shannon entropy of the gray levels of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.3: Rényi entropy of the gray levels of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.4: Tsallis entropy of the gray levels of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.5: Shannon complexity of the gray levels of SEM images for a range of Fluence, delay
pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.6: Rényi Complexity of the gray levels of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.

177



APPENDIX A. APPENDIX

0.16

0

0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30 0.07

0.08

0.09

0.10

0.11

0.12

0.13

Ts
al

lis
 C

om
pl

ex
ity

Fluence (J/cm²)

De
la

y 
(p

s)

Figure A.7: Tsallis Complexity of the gray levels of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.8: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) gray level entropies
(top row) and complexities (bottom row) for five different experimental N series (laser parameters
in the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars are obtained
by sampling each series of 512 square pixel images 100 times from the original SEM image. All
entropies increase up to a certain value of N , where they stabilize. The exception being the Purple
series (F = 0.18 J/cm², ∆t = 10 ps), which presents a great variety of different structures that
form during the dynamics, ranging from holes to hexagons to humps and chaos
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A.1.2 Gray level runs complexities
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Figure A.9: Shannon entropy of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.10: Rényi entropy of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.11: Tsallis entropy of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.12: Shannon complexity of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.13: Rényi Complexity of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.14: Tsallis Complexity of the gray level runs (glr1) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.15: Shannon entropy of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.16: Rényi entropy of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.17: Tsallis entropy of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.18: Shannon complexity of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.19: Rényi Complexity of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.20: Tsallis Complexity of the gray level runs (glr2) of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.21: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) glr1 entropies (top
row) and complexities (bottom row) for five different experimental N series (laser parameters in
the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars are obtained
by sampling each series of 512 square pixel images 100 times from the original SEM image.
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Figure A.22: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) glr2 entropies (top
row) and complexities (bottom row) for five different experimental N series (laser parameters in
the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars are obtained
by sampling each series of 512 square pixel images 100 times from the original SEM image.
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A.1.3 Fourier spectrum complexities
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Figure A.23: Shannon entropy of the Fourier power spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.24: Rényi entropy of the Fourier power spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.25: Tsallis entropy of of the Fourier power spectrum SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.26: Shannon complexity of the Fourier power spectrum of SEM images for a range of
Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images for ease of
visualization.
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Figure A.27: Rényi Complexity of the Fourier power spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.28: Tsallis Complexity of the Fourier power spectrum of SEM images for a range of
Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images for ease of
visualization.
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Figure A.29: Shannon entropy of the Fourier phase spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.30: Rényi entropy of the Fourier phase spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.31: Tsallis entropy of the Fourier phase spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.32: Shannon complexity of the Fourier phase spectrum of SEM images for a range of
Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images for ease of
visualization.
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Figure A.33: Rényi Complexity of the Fourier phase spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.34: Tsallis Complexity of the Fourier phase spectrum of SEM images for a range of
Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images for ease of
visualization.
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Figure A.35: Shannon entropy of the azimuthally averaged Fourier power spectrum of SEM images
for a range of Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images
for ease of visualization.
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Figure A.36: Rényi entropy of the azimuthally averaged Fourier power spectrum of SEM images
for a range of Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images
for ease of visualization.
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Figure A.37: Tsallis entropy of the Fourier phase spectrum of SEM images for a range of Fluence,
delay pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.38: Shannon complexity of the azimuthally averaged Fourier power spectrum of SEM
images for a range of Fluence, delay pairs and N = 25, as a heatmap superimposed on the original
images for ease of visualization.
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Figure A.39: Rényi Complexity of the azimuthally averaged Fourier power spectrum of SEM images
for a range of Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images
for ease of visualization.
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Figure A.40: Tsallis Complexity of the azimuthally averaged Fourier power spectrum SEM images
for a range of Fluence, delay pairs and N = 25, as a heatmap superimposed on the original images
for ease of visualization.
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Figure A.41: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) power spectral
entropies (top row) and complexities (bottom row) for five different experimental N series (laser
parameters in the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars
are obtained by sampling each series of 512 square pixel images 100 times from the original SEM
image.
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Figure A.42: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) phase spectrum
entropies (top row) and complexities (bottom row) for five different experimental N series (laser
parameters in the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars
are obtained by sampling each series of 512 square pixel images 100 times from the original SEM
image.
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Figure A.43: Comparison of Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) of azimuthally
averaged power spectrum entropies (top row) and complexities (bottom row) for five different
experimental N series (laser parameters in the inset in the top leftmost plot, cf. Fig. A.1 for a
visualization). The 2σ error bars are obtained by sampling each series of 512 square pixel images
100 times from the original SEM image.
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A.1.4 Lempel-Ziv complexities
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Figure A.44: Lempel-Ziv complexity of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure A.45: Lempel-Ziv complexity of the Power spectrum for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.46: Lempel-Ziv complexity of the Phase spectrum for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.47: Intensive Lempel-Ziv complexity of SEM images for a range of Fluence, delay pairs
and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.48: Intensive Lempel-Ziv complexity of the Power spectrum for a range of Fluence, delay
pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.49: Intensive Lempel-Ziv complexity of the Phase spectrum for a range of Fluence, delay
pairs and N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.50: Comparison Lempel-Ziv complexities on the original SEM images, their Fourier power
spectra, and phase spectra(top row) and intensive complexities (bottom row) for five different
experimental N series (laser parameters in the inset in the top leftmost plot, cf. Fig. A.1 for a
visualization). The 2σ error bars are obtained by sampling each series of 512 square pixel images
100 times from the original SEM image.
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A.1.5 Cross-patch similarity
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Figure A.51: Cross-patch similarity of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization. Each patch is a square
with side length of 56 pixels at random orientations.
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Figure A.52: Cross-patch similarity of the Power spectrum for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization. Each patch is
a square with side length of 56 pixels at random orientations.
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Figure A.53: Cross-patch similarity of the Phase spectrum for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization. Each patch is
a square with side length of 56 pixels at random orientations.
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Figure A.54: Comparison of Cross-patch similarity of the original SEM images, their Fourier power
spectra, and phase spectra, for five different experimental N series (laser parameters in the inset in
the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars are obtained by sampling
each series of 512 square pixel images 100 times from the original SEM image. Each patch is a
square with side length of 56 pixels at random orientations.
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A.1.6 Taylor complexities
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Figure A.55: Taylor Shannon entropy of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure A.56: Taylor Rényi entropy of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure A.57: Taylor Tsallis entropy of SEM images for a range of Fluence, delay pairs and N = 25,
as a heatmap superimposed on the original images for ease of visualization.
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Figure A.58: Taylor Shannon complexity of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.59: Taylor Rényi Complexity of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.60: Taylor Tsallis Complexity of SEM images for a range of Fluence, delay pairs and
N = 25, as a heatmap superimposed on the original images for ease of visualization.
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Figure A.61: Comparison of Taylor-Shannon, Rényi (α = 0.5), and Tsallis (q = 1.05) entropies (top
row) and complexities (bottom row) for five different experimental N series (laser parameters in
the inset in the top leftmost plot, cf. Fig. A.1 for a visualization). The 2σ error bars are obtained
by sampling each series of 512 square pixel images 100 times from the original SEM image.
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