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Abstract

The main objective of this thesis is to develop methods for statistically consistent
estimation and analysis of graphs from multivariate datasets such as those observed in
neuroimaging. More precisely, we aim to better account for spatial dependencies of the
signals and uncertainties from the data acquisition and models, which are known to greatly
impede both network inference and downstream analyses. Most of the contributions
presented in this thesis could be applied to generic multivariate grouped data. While these
can be found in a wide range of fields, from econometry, to family studies, to meteorology,
we are motivated in particular by a brain functional connectivity application. In this
setting, networks are often constructed from functional Magnetic Resonance Imaging
(fMRI) data. Nodes then correspond to predefined brain regions, containing voxels
associated to time series, and edges routinely link together correlated regions.

We first propose a large-scale correlation-screening-based approach for binary network
inference, and in particular thresholding, in the presence of arbitrary spatial dependence.
In some contexts, weighted networks may be preferred over their binary counterparts.
We hence contribute to a study that leverages both topological data analysis and
spatial information to improve weighted network discriminability. We then tackle the
challenge of consistent edge weight estimation and introduce a clustering-based inter-
regional correlation estimator that simultaneously offsets the effects of noise and arbitrary
spatial dependence. Instead of considering point estimates, as is usually performed
in the literature, we subsequently construct densities of correlations as connectivity
phenotypes for an individual scan, and consider distribution-weighted networks. We
assess repeatability and performance on common machine learning tasks, and highlight
the effects of high inter-subject variability. The proposed distribution-based paradigm
introduces foundations for the definition of a framework that could evaluate and account
for uncertainty and quality in connectivity network estimation.

Throughout this thesis we evaluate and validate our methods on both synthetic and
real-world brain fMRI datasets.





Résumé

L’objectif principal de cette thèse est de développer des méthodes d’estimation statistique-
ment consistantes et d’analyse de graphes à partir de données multivariées telles que celles
observées en neuroimagerie. Plus précisément, nous visons à mieux prendre en compte
les dépendances spatiales des signaux ainsi que les incertitudes liées à l’acquisition des
données et à la modélisation, qui sont connues pour entraver l’inférence de réseaux et les
analyses en aval. La plupart des contributions présentées dans cette thèse pourraient être
appliquées à des données groupées multivariées génériques. Bien que ces données soient
présentes dans un large éventail de domaines, de l’économétrie aux études familiales, en
passant par la météorologie, nous sommes motivés en particulier par une application
à la connectivité fonctionnelle cérébrale. Dans ce contexte, les réseaux sont souvent
construits à partir de données d’imagerie par résonance magnétique fonctionnelle (IRMf).
Les nœuds correspondent alors à des régions cérébrales prédéfinies, contenant des voxels
associés à des séries temporelles, et les arêtes relient couramment des régions corrélées.

Nous proposons tout d’abord une approche basée sur le criblage en grande dimension
de corrélations pour l’inférence de graphes binaires, et en particulier l’étape de seuillage,
en présence de dépendance spatiale arbitraire. Dans certains contextes, les réseaux
pondérés peuvent être préférés à leurs équivalents binaires. Nous contribuons donc à une
étude qui exploite à la fois l’analyse topologique de données et des informations spatiales
pour améliorer la discriminabilité de graphes pondérés. Nous nous attaquons ensuite
au défi de l’estimation consistante du poids des arêtes et introduisons un estimateur de
corrélation inter-régionale basé sur des techniques de clustering. Ce dernier compense
simultanément les effets du bruit et de dépendances spatiales arbitraires. Enfin, au
lieu de considérer des estimations ponctuelles, comme c’est généralement le cas dans
la littérature, nous proposons plutôt de considérer des densités de corrélations comme
phénotypes de connectivité à l’échelle des individus et de construire des réseaux pondérés
par des fonctions de distribution. Nous évaluons alors leur répétabilité et mesurons leurs
performances sur des tâches courantes d’apprentissage automatique avant de mettre en
évidence les effets d’une forte variabilité inter-sujets. Le paradigme proposé, basé sur



vi

l’utilisation de distributions, introduit les bases pour la définition d’un cadre qui pourrait
évaluer et prendre en compte l’incertitude dans l’estimation de réseaux de connectivité.

Tout au long de cette thèse, nous évaluons et validons nos méthodes sur des données
synthétiques ainsi que des données d’IRMf cérébrales réelles.
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Chapter 1

Introduction

This PhD was conducted as part of an American-French research grant in the context of
a multilateral collaboration, and included research visits at Brigham Young University
and the University of California, Santa Barabara, in the United States, as well as the
Lausanne University Hospital, in Switzerland. During the course of this project, two
Master’s student interns, a team of two Master’s students working on an extracurricular
research project, and a Master’s thesis student were recruited and co-supervised.

The label "Research, Enterprise, Innovation" was also obtained in conjunction with this
PhD project. It consists in an introduction to business organization, project management
and entrepreneurship fundamentals.

1.1 General Introduction

Modeling spatially structured data using graphs, or complex networks, which help
capture non-trivial relationships in an intuitive fashion, has been gaining traction over
the last decades. Such data are inherent to a wide range of applications, ranging
from neuroimaging, to meteorology, to bioinformatics. We are primarily interested in
multivariate data that can be grouped according to one of their attributes, such as spatial
structure. For instance, meteorological data, such as temperature or rainfall records, can
be aggregated according to geographical location of measurement site.

This work is motivated in particular by an application to brain functional connectivity
(cf. Figure 1.1). In this setting, networks are often constructed from functional Magnetic
Resonance Imaging (fMRI) data. These provide 3D images of the brain, where each voxel—
which is a 3D pixel—is associated with a blood-oxygen-level-dependent (BOLD) signal.
The latter captures oxygen levels as a proxy for the underlying neural activity. Once
signals are acquired, the brain may be divided into anatomical regions. In brain functional
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connectivity networks, nodes correspond to these predefined brain regions, containing
groups of voxels, and edges often link together correlated regions. Brain functional
connectivity networks have been extensively used to try to improve our understanding of,
not only the healthy, but also, the diseased or injured brain, which, to this day, remains
quite mysterious in many ways. More down-to-earth, but still far-off, applications also
include helping provide patients, who could be comatose for instance, with a more precise
prognosis, and consequently help optimize their treatment and rehabilitation. In such
scenarios, providing reliable methods to model the brain, along with a way to account
for quality is hence paramount.

Fig. 1.1 Pipeline to learn a brain functional connectivity network from fMRI data.
First fMRI scans of the brain are acquired. The brain is subsequently parcellated into
anatomical regions that contain voxel-level BOLD time series. Inter-regional connectivity
is then estimated to construct the weighted functional connectivity network. The latter
can finally be thresholded to obtain a binary graph.

The overarching goal of this thesis is to develop dependable methods for learning
and evaluation of subject-specific networks. More precisely, we aim to better account for
spatial dependencies of the signals as well as uncertainties from the data acquisition and
estimation models, which both considerably hinder network inference.

1.2 Contributions

We present in this section the outline of this thesis, and identify our main contributions.

• Chapter 2 presents the theoretical context of this thesis as well as notations, and
provides an extensive literature review of different concepts utilized throughout this
thesis, from correlation estimation to network inference and analysis. This chapter
includes in particular excerpts from a recently published journal article. It compares
various correlation estimators in the context of functional brain connectivity.
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Achard, S., Coeurjolly, J.-F., de Micheaux, P. L., Lbath, H., and Richiardi, J.
(2023). Inter-regional correlation estimators for functional magnetic resonance
imaging. NeuroImage, 282:120388

• Chapter 3 specifies the different synthetic and real-world brain fMRI datasets
used during the course of this thesis. We first detail how the simulated data was
generated, before describing the different rat and human brain fMRI datasets, as
well as the additional preprocessing we performed.

• In Chapter 4, we introduce a novel correlation-screening-based method for binary
network estimation, and in particular thresholding. More precisely, we present
a novel approach to infer connectivity networks when nodes represent groups
of dependent variables, which is the case in our brain functional connectivity
application. We first formally establish the importance of leveraging dependence
structures to reliably detect inter-group correlations. Our method then consists in
estimating, for each pair of groups, an inter-correlation distribution before deriving
a tailored correlation threshold based on a correlation screening approach. In
particular, we propose simplified expressions for the mean number of discoveries
that allow for easier theoretical and empirical manipulation, while taking into
account dependence within groups. We also apply our framework on both synthetic
data and a real dataset of rat brain fMRI.

This work was presented at the "Brain Connectivity Networks: Quality and Re-
producibility" satellite symposium of the Conference on Complex Systems 2021
(October 2021), in Lyon, France, and at the Joint Statistical Meeting 2022 (August
2022), in Washington DC, USA. It is in the process of being submitted to a journal.

Lbath, H., Petersen, A., and Achard, S. (2021). Brain functional connectivity
estimation. In Brain Connectivity Networks: Quality and Reproducibility -
Satellite of the Conference on Complex Systems 2021, Lyon, France

Lbath, H., Petersen, A., and Achard, S. (2022a). Large-scale correlation
screening under dependence for brain functional connectivity inference. In JSM
2022 - Joint Statistical Meetings, Washington, United States

• In some applications, handling weighted networks, and notably circumventing the
thresholding step, may be preferred over manipulating their binary counterparts.
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Chapter 5 hence leverages both topological data analysis and regional label in-
formation to propose a multi-scale comparison of weighted connectivity networks.
The effectiveness of this approach is illustrated via a comparison of comatose and
healthy subjects, and of real-world data against null models. The latter could also
be seen as way to assess the quality of estimated networks.

This contribution is mainly the product of a Master’s thesis student’s work who
was personally supervised as part of this PhD’s thesis project. It is in the process
of being submitted to a journal.

Sitoleux, P., Carboni, L., Lbath, H., and Achard, S. (in preparation 2023).
Multiscale and multi-density comparison of functional brain networks through
label-informed persistence diagrams

• Chapter 6 subsequently tackles the challenge of consistent edge weight estimation.
To that end, we propose a novel non-parametric estimator of the correlation between
groups of arbitrarily dependent variables in the presence of noise. The challenge
resides in the fact that both noise and intra-group correlation lead to inconsistent
correlation estimation. However, previous works handle either one or the other but
fail to tackle both at the same time. To address this problem, we propose to fully
harness the dependency structures of the data, and utilize hierarchical clustering to
simultaneously offset the effects of both noise and intra-group correlation. We derive
the limiting behavior of our estimator. We also empirically show our approach
surpasses popular estimators in terms of quality, and provide illustrations on
real-world datasets.

This work was presented at the IMS International Conference on Statistics and
Data Science 2022 (December 2022), in Florence, Italy, where it was rewarded with
a Student Award. This contribution has also been published in a journal.

Lbath, H., Petersen, A., Meiring, W., and Achard, S. (2022b). Clustering-
based inter-group correlation estimation. In ICSDS 2022 - IMS International
Conference on Statistics and Data Science, Florence, Italy

Lbath, H., Petersen, A., Meiring, W., and Achard, S. (2023). Clustering-based
inter-regional correlation estimation. Computational Statistics & Data Analysis,
page 107876

• Chapter 7 leverages results from Chapter 6 to introduce distribution-based weighted
networks, where distribution or density functions are assigned to edges, instead of
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the traditional point estimates. This framework hence enables, to a certain extent,
accounting for uncertainties in the connectivity estimation. This chapter then
aims to validate the practicalities of such a framework on a real-world resting-state
fMRI application. We hence evaluate test-retest repeatability and performance on
common machine learning tasks, such as classification and regression. This chapter
presents the first conclusions of on an ongoing project.

Lbath, H., Richiardi, J., Petersen, A., Meiring, W., and Achard, S. (working
paper). Distribution-based weighted networks validation on rs-fMRI data

• In Chapter 8, we discuss possible future directions based on the different con-
tributions of this thesis, and more specifically the proposed distribution-based
connectivity framework. We highlight how it could reveal itself as the starting
point for the development of functional data analysis-based methodologies that
better account for dependencies in high-dimensional settings, as well as provide
foundations for an uncertain functional connectivity graph paradigm.





Chapter 2

Literature Review

In this chapter, we introduce the theoretical context of this thesis, provide a literature
review of various aspects covered in this manuscript, and highlight key challenges we
tackled.

2.1 Preliminaries: Data Structure and Notation

2.1.1 Multivariate grouped data

Multivariate grouped data are inherent to a wide range of applications. Spatio-temporal
data are a natural example, with spatially located variables that can be grouped for
instance geographically, as in agriculture data (Desloires et al., 2023), or anatomically, as
in neuroimaging studies (De Vico Fallani et al., 2014). Data points are typically collected
over a period of time that could span minutes, such as via functional Magnetic Resonance
Imaging (fMRI), to years, as in satellite imaging of fields for agricultural studies. In these
settings, similarity metrics are then often computed between the spatially aggregated
measurements. Other applications include familial studies, where traits, such as height,
are often measured on n independent families, with the aim to compare for example
parents with their children, e.g., (Rosner et al., 1977; Donner et al., 1998). One of the
common types of data used in econometry consists of panels with p subjects, which
frequently are firms in finance panel regression studies, observed across n time periods.
Such data are often clustered across at least one dimension (Cameron and Miller, 2011).
An example of multivariate grouped data is illustrated in Figure 2.1.

In this thesis, we are interested in particular by neuroimaging data, and more
specifically resting-state fMRI data, where brain signals are often spatially grouped by
brain regions, with the aim to estimate inter-regional functional connectivity.
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Fig. 2.1 Representation of multivariate grouped data consisting of n samples, e.g., time
points, of p variables (gray crosses), e.g., voxels, divided into J = 5 groups (blue circles),
e.g., anatomical brain regions. For instance, XA

i (t) is the signal associated to voxel i in
region A at time t.

Vocabulary: Multivariate Grouped Data

We define multivariate grouped data as data that consist of measurements of
a quantity that can be grouped along at least one dimension, such as space. An
illustration of such kind of data is displayed in Figure 2.1.

Depending on the context, these groups may also be denominated clusters
or classes. For instance, these groups may correspond to spatial regions (e.g.,
neuroimaging (De Vico Fallani et al., 2014), agricultural (Desloires et al., 2023) or
meteorological data (Wigley et al., 1984)), siblings and parents (in familial data
literature (Rosner et al., 1977)), or clusters of companies (e.g., econometry literature
(Cameron and Miller, 2011) or organization studies (Ostroff, 1993)). Throughout
this work, we will refer to groups and regions interchangeably.

Handling data that consists of measurements of a quantity that can be grouped along
one or more dimensions is a challenging, but understudied, undertaking for several reasons.
In this section we will highlight key challenges and briefly overview their repercussions.
Some of them will be further detailed in the following sections.

Dependence. First, dependence between variables within a group can substantially
hamper exploitation of the data. This is especially true when one is interested in exploring
associations between groups, by computing for instance inter-group correlations. Effects of
the intra-group dependence on inter-group correlation estimation have been demonstrated
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in various contexts, such as physical activity assessments (Perisic and Rosner, 1999), or
organization studies (Ostroff, 1993). Comparing dependent correlations is often the next
step, and specific test statistics need to be derived, e.g., (Steiger, 1980). Intra-group
correlation has in fact been shown to impact the effective degrees of freedom, and thus
the variance of the sample inter-correlation estimators, which is used for significance
testing of the inter-correlation, see, e.g. (Elston, 1975; Rosner et al., 1979; Konishi,
1982; Clifford et al., 1989; Donner et al., 1998). Econometry studies, such as financial
panel data regression, are also faced with the issue of accounting for correlation within
clusters, which affects estimation of the variance of the regression estimator. Moreover,
data could be clustered across one (e.g., across individuals) or multiple dimensions (e.g.,
across both individuals and time) (Thompson, 2011; Cameron and Miller, 2011; Cameron
et al., 2011). The latter can be also linked to autocorrelation variance estimation in
spatio-temporal settings (Cameron and Miller, 2011). Note however that inter-cluster
correlation is assumed to be zero in these settings, unlike in many other applications,
such as neuroimaging.

Vocabulary: Intra- and Inter-Correlation

Dependence between variables both within and between groups, or regions, is a
salient point that will be addressed throughout this thesis. We highlight here the
definition of two terms that are central to much of this work:

• Intra-correlation is the correlation between any pair of random variables
within the same region.

• Inter-correlation is the correlation between two random variables from two
distinct regions.

High dimensionality. In some contexts, the number of variables, for instance, the
number of genes in gene expression data, or voxels in brain imaging, can be much larger
than the number of samples, such as the number of subjects or the number of time points.
This has consequences for downstream analyses, such as correlation network inference or
correlation screening. For example, increasing the number of variables impacts the sample
correlation distribution, and increases the chance to estimate abnormally large correlations
(Fan and Lv, 2008a). In the context of correlation screening or variable selection, this may
lead to an increase in spuriously detected, or selected, correlations. This phenomenon is
closely linked to the vast multiple testing literature, and is exacerbated when variables
are dependent (Goeman et al., 2019). In the network inference setting, the latter has been
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leveraged for example to recover partial-correlation-weighted networks while controlling
for family-wise error rate (FWER) (Drton and Perlman, 2007). Regression of grouped
variables in high dimensions is also challenging (Qiu and Ahn, 2020).

Noise. Measurement noise is another challenge. While it is an issue that is not
necessarily restricted to multivariate grouped data, its effects are still noteworthy but
often neglected in this setting. For instance, additive noise is known to attenuate
correlation estimation between two variables, e.g., (Perisic and Rosner, 1999; Matzke
et al., 2017). In order to alleviate the effect of noise, a prevalent and effective strategy
is to aggregate the data, for example, by averaging across groups, e.g., (Ostroff, 1993;
Dunlap et al., 1983). In fMRI data, a common preprocessing step is the application of
spatial smoothing for the purpose of increasing the signal-to-noise ratio, e.g., (Liu et al.,
2017a). This method consists in averaging neighboring voxels, weighted by a Gaussian
kernel of user-defined width. However, aggregation can result in information loss and
potentially lead to undesired side effects, such as inter-correlation overestimation (Liu
et al., 2017a).

2.1.2 Notation

In this section, we define our notation together with the inter- and intra-correlation
coefficients. As detailed previously, we are interested in multivariate data that are
organized into groups. Let us consider p variables grouped into J regions. As an
illustration, we will focus in this section on brain fMRI data where individual observed
variables correspond to blood-oxygen-level-dependent (BOLD) signals that are assigned
to voxels (which are 3D pixel), and are grouped into brain regions. Nonetheless, the
following notations and definitions can be applied to any dataset of grouped measurements
of a quantity.

Let us now consider one such region, which we denote A, and that contains pA < p

voxels. Let XA
1 , . . . , XA

i , . . . , XA
pA

denote the pA spatially dependent random variables
inside region A. Quantities of interest include the correlation coefficients between the
variables. We define the intra-correlation as Pearson’s correlation between any pair
of random variables within a given region A. We denote by ηA

i,i′ the population intra-
correlation of the variables XA

i , XA
i′ . Similarly, we define the inter-correlation as

Pearson’s correlation between any pair of random variables from two distinct regions A

and B. Let ρA,B
ij denote the population inter-correlation coefficient between XA

i and XB
j .

These concepts are illustrated in Figure 2.2.
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Fig. 2.2 Simplified representation of two regions A and B, as well as the voxel-level intra-
correlation ηA

i,i′ and inter-correlation ρA,B
i,j coefficients. Gray crosses represent possibly

spatially located random variables, e.g., voxels.

We consider as well n samples of XA
i , and define the corresponding vector of observa-

tions XA
i = [XA

i (1), . . . , XA
i (t), . . . XA

i (n)]. In the context of brain functional connectivity,
XA

i corresponds to the fMRI BOLD signal time series associated with voxel i of brain
region A. It has n time points. Details about the estimation of Pearson’s correlation
coefficient will be elaborated in Section 2.2.

Throughout this thesis · represents an empirical average across either time points or
voxels, and ·̂ corresponds to an empirical estimate.

2.2 Correlation Estimation

2.2.1 Pearson’s sample correlation coefficient

Let XA
i and XB

j be two random variables. Then, Pearson’s correlation coefficient,
also known as Pearson’s product-moment correlation, between these two variables is
defined as:

Cor(XA
i , XB

j ) =
Cov(XA

i , XB
j )√

V ar(XA
i ) · V ar(XB

j )
, (2.1)

where Cov(·, ·) is the population covariance of two random variables, and V ar(·) is the
population variance of a random variable. In saptio-temporal contexts, this corresponds
to the zero-lag cross-correlation. In our multivariate grouped data setting, when B ̸= A,
Cor(XA

i , XB
j ) is equal to the inter-correlation ρA,B

i,j between voxel i in region A and voxel
j in region B, while when B = A, Cor(XA

i , XA
j ) corresponds to the intra-correlation

ηA
i,j. We now assume n samples XA

i (t), XB
j (t), t = 1, . . . , n of each of the two variables

XA
i , XB

j are available. The sample Pearson correlation coefficient is then defined as
follows:
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RA,B
i,j = Ĉor(XA

i , XB
j ) =

∑n
t=1

(
XA

i (t)−XA
i

) (
XB

j (t)−XB
j )
)

√∑n
t=1

(
XA

i (t)−XA
i

)2∑n
t=1

(
XB

j (t)−XB
j

)2
, (2.2)

where XA
i = 1

n

∑n
t=1 XA

i (t) and XB
j = 1

n

∑n
t=1 XB

j (t) are the sample means.
Theoretical properties of the sample correlation coefficient have been extensively in-

vestigated under the assumption
(
XA

i (1), XB
j (1)

)
, . . . ,

(
XA

i (n), XB
j (n)

)
are independent

and follow a bivariate normal distribution. For instance, exact closed-form expressions of
the density of sample correlations can be derived under these conditions (Fisher, 1915;
Hotelling, 1953; Muirhead, 2005), and several transformations of the sample correlation
coefficient that exhibit simplified distributional properties have been proposed, e.g.,
(Fisher, 1921; Harley, 1957; Ruben, 1966). In addition, the sample correlation coefficient
is known to be asymptotically normal, e.g., (Hotelling, 1953; Muirhead, 2005), and
asymptotic expressions of its mean and variance have also been established, e.g., (Fisher,
1915; Hotelling, 1953).

However, in practice, the bivariate normality assumption is often violated. In such
cases, while asymptotic results of varying complexity have been proposed under relaxed
assumptions, such as bivariate elliptical distributions (Muirhead, 2005), or even non-
normality, e.g., (Ogasawara, 2006), to the best of our knowledge, no exact analytical
expression of the sample correlation density has been derived in the general case. This
adds complexity to the study of the influence of various elements, such as noise or spatial
dependence, on the estimation of the correlation.

2.2.2 Impact of noise and dependence on correlation estimation

Temporal dependence. If the temporal samples are dependent, the variance of
the sample inter-correlation will be artificially increased. This phenomenon has been
described in different contexts, such as meteorological data (Gunst, 1995) or fMRI data
(Afyouni et al., 2019). Filtering, another common preprocessing step in fMRI data
was shown to introduce temporal dependence, which exacerbates the inflation of the
variance of the sample inter-correlation (Davey et al., 2013). On the other hand, wavelet
transformation of the BOLD signals, an alternative to filtering, decreases this temporal
dependence (Whitcher et al., 2000b).

Spatial dependence. As mentioned previously, spatial dependence also impacts inter-
correlation estimation. Many works on the estimation of inter-correlations have mostly
focused on aggregating variables within predefined regions (De Vico Fallani et al., 2014;
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Dadi et al., 2019). In the context of brain functional connectivity network inference,
some prefer techniques based on independent component analysis (ICA) (Calhoun et al.,
2012), while most focus on summarizing all voxels within predefined brain regions by their
average, before computing Pearson’s correlation across time, possibly after wavelet or
other filtering, e.g., (Achard et al., 2006; Bolt et al., 2017; Ogawa, 2021; Zhang et al., 2016;
Malagurski et al., 2019). However, such approaches suffer from loss of relevant information
and can lead to statistical inconsistency and incorrect correlation estimation (Ostroff,
1993). In particular, the average of weakly correlated time series, which corresponds to
samples of a single variable in our data model, is difficult to reliably estimate (Wigley et al.,
1984). Additionally, it was observed on small samples that the correlation of averages is
different than the average of correlations (Dunlap et al., 1983). This phenomenon can
also be easily checked with arbitrary large samples. Furthermore, correlation of averages
are known to overestimate the true correlation, especially when intra-correlations are
weak (Spearman, 1913; Hotelling, 1953; Achard et al., 2011, 2023). It was also empirically
observed in fMRI data that the application of spatial smoothing, which is a common
preprocessing step to reduce the effect of noise, causes the inter-regional correlations to
be overestimated (Liu et al., 2017a). Overestimation is particularly problematic when the
goal is to identify significant inter-correlations, such as when inferring binary connectivity
networks, since it may lead to identifying spurious edges. Several methods tackling the
impact of intra-correlation on the estimation of inter-correlation have been proposed in
familial data literature, e.g., (Elston, 1975; Rosner et al., 1977; Srivastava and Keen,
1988; Wilson, 2010). These approaches nonetheless do not address the impact of noise.
Moreover, they require normality assumptions on the samples.

Noise. It has been established in various contexts that correlation is underestimated in
the presence of noise (Ostroff, 1993; Matzke et al., 2017; Saccenti et al., 2020). Bayesian
inference methods have been proposed to offset the effect of measurement errors (Matzke
et al., 2017). However they only handle pairs of variables, as opposed to groups of
variables—which is what we are interested in. Robust correlation estimation has also
been extensively investigated but mostly for specific distributions, such as contaminated
normal distributions (Shevlyakov and Smirnov, 2016) or with heavy tails (Lindskog,
2000). Furthermore, groups of variables are not considered either in these contexts. As
stated earlier, cluster-robust inference in the presence of both noise and within-group
correlation has been studied in the econometric literature (Cameron and Miller, 2015).
However, inter-correlation, which often is the quantity of interest, is assumed to be zero.
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There hence seems to be a lack of non-parametric inter-correlation estimators that are
simultaneously robust to noise and intra-correlation.

2.2.3 Review of inter-correlation estimators

This section is mostly based on portions of the following journal article where several
inter-correlation estimators are compared.

Achard, S., Coeurjolly, J.-F., de Micheaux, P. L., Lbath, H., and Richiardi, J. (2023).
Inter-regional correlation estimators for functional magnetic resonance imaging.
NeuroImage, 282:120388

Model. We first define a model of the data that will be needed to highlight theoretical
properties of the various estimators. For a given region A, let ϵA

1 , . . . , ϵA
i , . . . , ϵA

pA
represent

random local noise variables, and e represent random global noise that is equally corrupting
all voxels of all regions. We assume that the latent (unobserved) process XA

i at each
voxel i at time t is contaminated by both local noise ϵA

i (t), and global noise e(t) so that
the observed variables Y A

i (t) in region A are

Y A
i (t) = XA

i (t) + εA
i (t) + e(t), i = 1, . . . , pA and t = 1, . . . , n. (2.3)

We now need to introduce some assumptions in order to facilitate the derivation of
theoretical properties of the different inter-correlation estimators. We first assume that
Xi(·), εA

i (·) and e(·) are mutually independent and independent in time. We assume
as well within-region homoscedasticity of signal and global homoscedasticity for global
noise, i.e.,

σ2
A = V ar

(
XA

i

)
, σ2

e = V ar (e) , i = 1, . . . , pA, with σA > 0, σe ≥ 0.

We assume that inside each region A, the signals of interest have positive intra-
correlation ηA

ii′ , and that for each time t and for each region both the latent signal and
the local noise are stationary random field defined over the voxels within that region. We
furthermore assume that the intra-correlations between latent signals (resp. between local
noise variables) are stationary and isotropic with respect to the uniform distance, that is,
they only depend on the uniform distance between the two voxels i and i′. Our a priori
is that the intra-correlation is close to 1 for moderate distances δ, meaning that close
neighbors are strongly (positively) correlated. We also assume that there exists d such
that the local noise correlation is equal to 0 for any δ ≥ d. Without loss of generality, we
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also intrinsically assume that for all i = 1, . . . , pA and j = 1, . . . , pB, εA
i (t) and εB

j (t) are
uncorrelated. The intra-regional covariance of the local noise can be defined as follows:

Cov
(
εA

i (t), εA
i′ (t)

)
= σ2

εAηA
ε,ii′ , i, i′ = 1, . . . , pA, with σ2

εA = V ar
(
εA

i

)
=
(
εA

i′

)
≥ 0. (2.4)

For a given pair of distinct regions, A, B, the inter-correlation between any pair of
latent random variables XA

i , XB
j is assumed to be constant across voxels, and is denoted

as ρA,B. This is the quantity we aim to estimate.

Inter-correlation estimators. We now detail several estimators and their theoretical
properties. Gaining a clear understanding of these aspects will prove crucial when
discussing the main contributions of this thesis. The definition of these estimators, as
well as their limit when the number of samples n tends to infinity, are reported in Table 2.1.

The correlation of averages (ca) estimator is the most popular in functional con-
nectivity networks and was designed to reduce the impact of local noise. It consists in
spatially averaging the signals within each region, before computing Pearson’s correlation
between these regional averages. ca is a strongly consistent estimator of (2.6). In the
absence of global noise (σe = 0), (2.6) depends on both the intra-correlation and local
noise, which both appear in the denominator. The local noise is nevertheless smoothed
since the spatial average of the local noise intra-correlations ηA

ϵ = O(1/pA), which can be
small. However, even in the absence of noise, ca is still affected by the intra-correlation:
the weaker the spatial intra-regional dependence, which corresponds to inhomogeneous
regions, the larger the overestimation of the inter-correlation. This effect may also be
compounded when regions are large, as was observed by Achard et al. (2011).

Instead of evaluating correlation of spatial averages, it is natural to perform the spatial
average of correlations (ac). The ac estimator of the inter-correlation corresponds to
the ensemble estimator from the familial data literature, e.g. (Rosner et al., 1977). ac
is a strongly consistent estimator of (2.8), which does not depend on intra-correlation
values. However, even in the absence of global noise, it remains biased by local noise,
which is present in the denominator of (2.8). This implies that ac underestimates the
true inter-correlation when the local noise is large, which is in accordance with results
mentioned in Section 2.2.2.

In order to cancel out the effect of local noise, we can consider a slight adaptation
of the replicate-based estimator introduced by Bergholm et al. (2010) in the context of
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image analysis. The main idea is to average the correlations computed using voxels that
are sufficiently far from each other to ensure local noises are uncorrelated. The replicate
estimator (r) is defined by (2.11), where, for s = 1, . . . , S, the voxels i

(s)
1 , i

(s)
2 in region

A are such that |i(s)
2 − i

(s)
1 | = δ ≥ d. In the same way, voxels j

(s)
1 , j

(s)
2 in region B are

such that |j(s)
2 − j

(s)
1 | = δ ≥ d. r is a strongly consistent estimator of (2.12), which does

not depend on the local noise. Nonetheless, the intra-correlation ηδ between voxels at
distance δ is present in its denominator, although it can be close to 1 for small δ. In that
case, and in the absence of global noise, r would be a consistent estimator of ρA,B.

All these estimators are contaminated by global noise, which appears in both the
numerator and denominator of their limit. In order to counteract the effect of global noise,
we assume there exists two regions K, K ′, which are uncorrelated between themselves and
from all the other ones. In the context of fMRI data, the field of view is typically larger
than the brain itself. The definition of additional, and uncorrelated, regions is hence
possible, for instance using air voxels. The idea is then to subtract their signals from the
that of the regions of interest in order to remove the global noise term. Denominated the
disconnected estimator (d), it is defined by (2.15), where

C̃or(YA
i(s) , YB

j(s) ; YK
k(s) , YK′

k′(s)) =
Ĉov(YA

i(s) −YK
k(s) , YB

j(s) −YK′

k′(s))
ŝ(YA

i(s) , YK
k(s) , YK′

k′(s)) ŝ(YB
j(s) , YK

k(s) , YK′

k′(s))
,

and where for three vectors U, V and W with same length

ŝ2(U, V, W) =
(

V̂ ar(U−V) + V̂ ar(U−W)− V̂ ar(V−W)
)

/2.

d is a strongly consistent estimator of (2.16), which does not depend on the global noise.
However, local noise is present in the denominator.

In order to eliminate the effects of both local and global noise, the r and d estimators
can be combined into the rd estimator, which is defined by (2.19). It is a strongly
consistent estimator of (2.20), which is free of noise terms. It remains nevertheless
contaminated by the ηδ intra-correlation term.

Another approach to reduce the impact of noise, with the side-effect of decreasing
the effect of intra-correlation, would be to go back to spatially averaging the signals. As
mentioned previously, when noisy signals are averaged, the signal to noise ratio increases.
However, as detailed above, averaging over a large area may introduce considerable
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bias. Instead of averaging over entire regions, like in the ca estimator, or of considering
individual voxels, as in the ac or r estimators, one can average over neighborhoods of
voxels of interest. A local version of the previous estimators can thus be defined (cf.
Table 2.1). Additional notation need to be introduced accordingly. For any region A, we
define a ν-neighborhood as the subset of voxels within region A such that they are at a
distance less than or equal to ν from the center of the neighborhood. For s = 1, . . . , S,
denote by V(s)

A the ν-neighborhood of a voxel in region A. Let

ȲV(s)
A

(t) = 1
|V(s)

A |

∑
i∈V(s)

A

Y A
i (t), t = 1, . . . , n,

be the spatial average of the signals associated to the voxels within the neighborhood V(s)
A

with cardinality |V(s)
A |. Analogously to η̄A, let η̄VA be the spatial average of correlations

between voxels within ν-neighborhood VA. Define as well the average correlation between
voxels within two distinct ν-neighborhoods V ,V ′ of voxels i1, i2 at distance |i2 − i1| = δ:

η̄V,V ′

δ = 1
|V| · |V ′|

∑
i∈V,i′∈V ′

ηi,i′ .

Looking at the limits of the local versions of the estimators, it is apparent that the local
noise terms are still smoothed, although maybe not as much as in the non-local versions,
since ηVA

ε = O(1/|VA|). Moreover, local averaging allows to modulate the impact of the
intra-correlation. Indeed, within-neighborhood correlations are expected to be larger
than within-region correlations.



18 Literature Review

Table 2.1 Definitions of inter-correlation estimators and their limit under model (2.3)
when n tends to infinity. Adapted from Table 1 in (Achard et al., 2023)

Estimator Limit of r•
A,B

Correlation of averages (ca)

r ca
A,B = Ĉor

 1
pA

pA∑
i=1

YA
i ,

1
pB

pB∑
j=1

YB
j

 (2.5)
ρA,B + σ2

e/σAσB√
(η̄A + σ2

ε

σ2
A

η̄A
ε + σ2

e

σ2
A

)(η̄B + σ2
ε

σ2
B

η̄B
ε + σ2

e

σ2
B

)
(2.6)

Average of correlations (ac)

r ac
A,B = 1

pApB

pA∑
i=1

pB∑
j=1

Ĉor(YA
i , YB

j ) (2.7)

ρA,B + σ2
e/σAσB√

(1 + σ2
ε

σ2
A

+ σ2
e

σ2
A

)(1 + σ2
ε

σ2
B

+ σ2
e

σ2
B

)
(2.8)

Local correlation of averages (ℓca)

r ℓca
A,B = 1

S

S∑
s=1

Ĉor
(

ȲV(s)
A

, ȲV(s)
B

)
(2.9)

ρA,B + σ2
e/σAσB√

(η̄VA + σ2
ε
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Local averages + Replicates (ℓr)

r ℓR
A,B = 1

S

S∑
s=1

1
4
∑2

α,β=1 Ĉor(ȲV(s)
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Local averages + Disconnected (ℓd)
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Replicates + Disconnected (rd)
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Local averages + Replicates + Disconnected (ℓrd)
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, ȲV(s)

j2
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Properties. We now study the practical properties of these different estimators. Three
datasets were used to that end: a synthetic dataset, a rat dataset including both dead
and live animals, and a healthy human subject dataset from the Human Connectome
Project (HCP). We refer to (Achard et al., 2023) and Chapter 3 for a full description of
the datasets.

First, a simulation study (cf. Figure 2.3) on a pair of synthetic regions show that, as
expected, the ca estimator tends to overestimate the true inter-correlation for all settings.
The d-based estimators are more dispersed than the others for all settings. Even in the
absence of local and global noise, ℓr and ℓrd overestimate the true inter-correlation.
Furthermore, ac, ℓca, d and d are affected by the presence of local noise, and exhibit a
negative bias, while the replicates-based estimators display a slight positive bias. However,
the presence of global noise does not seem to have much impact on the inter-correlation
estimation in these simulation settings.
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Fig. 2.3 Simulation results. Estimates of the inter-correlation between two regions,
containing 20 and 40 voxels, respectively, each corresponding to a time series of length
1000, based on 500 simulation runs of the general model (2.3) with Toeplitz intra-
correlation structure. Situations with no noise, local noise or global noise are considered.
The true inter-correlation is depicted by the red dashed line. Adapted from Figure 2 in
(Achard et al., 2023).
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We next evaluate the different estimators on real fMRI data. First, using rat data,
we perform a face validity analysis of the estimators, with the premise that dead rats
should show no functional connectivity (cf. Figure 2.4). This implies the estimated
inter-correlation coefficients should be close to zero. This is the case for the estimators
ac, r, ℓca, d and ℓd. However, the other four estimators showcase a bias towards
positive values. Results on live rats show that ac and d provide inter-correlation values
close to zero where non-zero correlations should be observed. Combining dead and live
rats results, the estimators ℓca, r and ℓd seem to be the most adequate. Indeed, they
yield near-zero correlation values in the dead rat case, while displaying non-zero values
in live rats. However, as shown in equation (2.17), ℓd is difficult to implement. Indeed,
it requires the definition of two additional regions that are uncorrelated with the main
brain regions of the parcellation and uncorrelated with themselves. Moreover, r cannot
be estimated when regions are too small, which is often the case in rat data. It hence
becomes apparent that the ℓca estimator should be favored.

Fig. 2.4 Rat data results. Empirical distribution of the correlation estimators for all
pairs of brain regions for a dead and two anesthetized rats, for all proposed estimators.
Adapted from Figure 3 in (Achard et al., 2023).

These results are then corroborated on human data. Based on our findings on the
rats datasets, we evaluate the performances of the three estimators ca (most common
estimator in functional connectivity estimation), ac (familial data estimator, with high
dead-live rat similarities) and ℓca on 100 subjects of the HCP dataset. Figure 2.5 reports
the correlation values among all pairs of regions for four randomly selected HCP subjects.
Similarly to the rat results, the estimator ca yields the largest inter-correlation values,
ac yields values close to zero, while ℓca values are different from zero, but smaller than
that of ca.
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Fig. 2.5 Human data results. Empirical distribution of inter-regional correlations for
three selected estimators for all pairs of brain regions for four human subjects. Each
subject was scanned twice, on different days. Adapted from Figure 4 in (Achard et al.,
2023).

More results on the repeatability and subject identifiability performance of the
different estimators are available in the full article (Achard et al., 2023) and underscore
the strengths of the ℓca estimator.

Lastly, we highlight the impact of inter-correlation estimation choices on brain
connectivity network configuration. Figure 2.6 shows median differences between the
estimators ca and ℓca in brain space across the HCP subjects. It brings to light
systematic spatial variations between the two estimators, exhibiting dorsal posterior
hyper-connectivity and corresponding ventral anterior hypo-connectivity for ca compared
to ℓca. The figure also suggests that the largest differences between the two estimators
comes between regions that are the largest, highlighting the reduced effect of region
size for the ℓca estimator. The spatial distribution of these differences suggests that
caution is in order when examining large-scale resting-state networks derived from the ca
estimator, as some apparent topological properties of brain networks, such as modularity,
could be driven in part by region size and intra-correlation. In fact, in our experiments,
thresholded ca- and ℓca-based graphs differed in a large proportion of edges, both in
rats (around 30%-50% edge differences) and humans (around 30% edge differences).
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L R
L R

Fig. 2.6 Largest differences between the ca and ℓca estimators, median over 100 HCP
subjects. Only the top 20% differences are shown. Inter-regional correlations are taken
in absolute value and rank-transformed prior to computing differences (rank 1 for the
strongest correlation, rank 2 for the second-strongest, and so on). Red indicates absolute
correlations that are higher for the ℓca than the ca estimator, while blue indicates
the reverse. Node size is proportional to region size in the atlas. Estimator ca on
average shows hyperconnectivity in occipital and generally dorsal posterior regions, and
hypoconnectivity in frontal, temporal, and general ventral anterior regions. Figure 5 in
(Achard et al., 2023), courtesy of Jonas Richiardi.

2.2.4 Conclusion

It emerges from this section that the inter-correlation estimator must be simultaneously
robust to intra-correlation and noise. We have seen how the choice of the estimator
can have an impact on the topology of the corresponding connectivity networks, and
hence on downstream analyses interpretation. It is thus imperative inter-correlation
estimation be as reliable as possible. The ℓca estimator seems to provide the best
trade-off among the estimators analyzed in this section, while remaining fairly simple to
implement. Nevertheless, it raises the question of neighborhood choice, which we will
tackle in Chapter 6.

2.3 Network Inference from Spatio-Temporal Data

2.3.1 Definitions

A network or graph G = (ν, e) is defined by its set of nodes ν and of edges e, which
link or connect together pairs of nodes. In binary networks, edges simply link together
connected regions and an absence of edge implies an absence of connection. In weighted
networks, edges are associated with a scalar value that often indicates the strength of
the connection. The edges of an undirected graph define a symmetric relation between
the corresponding nodes. On the other hand, edges in directed graphs correspond to a
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connection that is only valid in one direction, that is, for a pair of distinct nodes A, B ∈ ν,
the edge (A, B) is an ordered pair.

Networks are often represented by their adjacency matrix, which encodes connec-
tions between nodes. Entries equal to 0 correspond to the absence of an edge between
two nodes, while the presence of an edge is represented by a 1 in binary networks and
the edge weight in weighted networks. The adjacency matrix of undirected graphs is
symmetric.

In the context of spatio-temporal data, nodes often correspond to a variable attached
to a spatial location. For instance, consider p voxels of a brain fMRI scan of an individual
subject. Connectivity networks can then be constructed at the voxel-level, where nodes
correspond to voxels, or at the regional-level, where nodes correspond to brain regions.
In the latter case, the p voxels are grouped into J anatomical regions and their signals
are typically aggregated to obtain one representative signal per region.

2.3.2 Connectivity Inference

In this section we provide a brief overview of common approaches to infer connectivity
networks from spatio-temporal data. Several comprehensive reviews exist, see for instance
(Dong et al., 2019; Brugere et al., 2018; De Vico Fallani et al., 2014).

Gaussian Graphical Models (GGM). Also known as Gaussian Markov Ran-
dom Fields (MRF) (see, e.g., Dong et al. (2019); Koller and Friedman (2009)), these
approaches infer undirected networks under the assumption the data matrix Xn×J , corre-
sponding to the J region-specific time series of length n, follow a J-dimensional Gaussian
distribution. The GGM structure encodes their joint probability distribution. The lack
of graph edges between two nodes hence represents the conditional independence of the
two corresponding random variables. Several techniques to learn such networks exist.
They all aim to estimate a sparse precision matrix, which is the inverse of the covariance
matrix and in fact encodes conditional independence (it can also be used to compute
partial correlations). They typically fall into two categories: (i) local inference, where
node neighborhoods are learned sequentially, often using Lasso (Tibshirani, 1996), or (ii)
global inference. In the latter paradigm, the entire precision matrix is estimated at once,
often using graphical Lasso (gLasso), which is built upon maximum-likelihood estimation
and l1-regularization (Friedman et al., 2008). In order to control Type I errors, the
Lasso requires stability assumptions (Meinshausen and Bühlmann, 2006), which may not
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hold in practice. Convergence of gLasso may also be problematic, in addition to being
computationally expensive (Mazumder and Hastie, 2012).

Graph Signal Processing. In this paradigm, nodes are formally associated with a
signal. Most of these approaches are then based on estimating the graph Laplacian,
which is the difference between the degree and adjacency matrices (Dong et al., 2019).

Correlation Networks. Another popular, and less computationally expensive, ap-
proach is to estimate correlations, or equivalently covariances, as opposed to the partial
correlations obtained with GGMs. Similarly to GGMs, some methods estimate the entire
covariance matrix at once, using for instance Lasso regression (Bien and Tibshirani, 2011).
However, these approaches are only valid under normality assumption of the underlying
variables. Pairwise estimation of the inter-regional correlation, often combined with a
thresholding step, is another, and more standard, approach.

Under certain conditions, which may not be straightforward, including normality of
the variables and assumptions on the structure of the underlying network, e.g., it must
be sparse or acyclic, gLasso and thresholding of covariance matrices have been shown to
be equivalent (Fattahi and Sojoudi, 2019).

Brain Functional Connectivity Networks. Typically, each region of the brain,
defined by a structural or functional parcellation, is associated to a given set of voxels
among the thousands for which a signal is recorded. The idea is then to extract a
representative of the set of voxels to attach one time series to each region. When
structural atlases are used, the most common approach is to take the average of the voxel
time series at each time point. Indeed, almost 70% of papers on PubMed that used the
Human Connectome Project dataset to conduct functional-connectivity-related studies in
the last five years (e.g., Ogawa (2021); Figueroa-Jimenez et al. (2021); Bolt et al. (2017);
Zhang et al. (2016)) use this method.

The literature review was conducted on PubMed using the keywords “brain connec-
tivity graph resting state ‘human connectome project’ ” on September 30, 2021. It was
included in (Achard et al., 2023). The search returned 32 papers written between 2014
and 2021. Out of those papers, 5 were not open access and 2 papers were literature
reviews, and were not conisdered further. 3 papers were either using seed-based or
voxel-to-voxel correlation. Out of the remaining 24 papers 71% (17/24) first averaged
voxels before computing the inter-regional correlations and 88% (21/24) employed some
kind of spatial aggregation method, including but not limited to averaging over voxels,
ICA or dictionary learning.
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There are numerous functional connectivity metrics other than Pearson’s correlation,
including coherence, Granger causality De Vico Fallani et al. (2014), or mutual information.
However, it has been shown (Hlinka et al., 2011) that nonlinear connectivity metrics are
not substantially more informative than basic linear correlation.

2.3.3 Network thresholding

Once edge weights are estimated, one may want to binarize the network in order to only
keep the most connected edges. One may also be interested in only conserving significant
edges. Various thresholding methods can be employed. They usually belong to either of
these two paradigms: (i) relative thresholding, that is estimation of the binary network
by extracting a fixed proportion of edges (van den Heuvel et al., 2017), and (ii) absolute
thresholding where one chooses a fixed threshold that will be applied to all edges. In
the context of functional connectivity, these two approaches are implemented in several
popular packages, such as the Brain Connectivity toolbox (Rubinov and Sporns, 2010)
and CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012), with little guidance on the
choice of threshold.

Relative thresholds will always detect the same proportion of edges regardless of
the true inter-correlation value, which may be desired in some network comparison
applications (van den Heuvel et al., 2017). However, it also means that non-significant
edges may be retained if the threshold is too low, or, conversely that significant edges
may be missed.

Absolute thresholds can be set more or less arbitrarily. Simple methods based on
the distribution of the edge weights, but without theoretical guarantees, are sometimes
employed, e.g., (Poli et al., 2015; Boschi et al., 2021). Multiple testing approaches, which
aim control to some extent the FDR or FWER by using corrected p-values to determine
the absolute thresholds, have also been used in functional connectivity contexts, see, e.g.,
(Becq et al., 2020b; Váša et al., 2018). Nevertheless, these approaches fail to account
for intra-regional spatial dependencies, which as we have seen previously, impact both
inter-correlation estimation and testing.

2.3.4 Conclusion

While there are many connectivity estimators available, we focus in this thesis on the
inter-correlation. Indeed, it is widely used and is more straightforward to manipulate
than many other connectivity metrics. This is all the more important that there is a lack
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of non-parametric approaches that take into account both noise intra-regional spatial
dependence. This will be explored in Chapter 4 and 6.

2.4 Machine Learning for Connectivity Networks

In this section we introduce various concepts that are needed to perform machine learning
tasks on networks, and that will be used in this thesis, mainly in Chapter 7. In these
contexts, both nodes and edges can be associated with a vector of features.

2.4.1 Network embedding

Some machine learning methods, such as Random Forests or Support Vector Machines
(SVM), which we will describe afterwards, require inputs to be in a vector space. Network
or graph embeddings are typically used to transform networks into a latent vector space.
A basic approach, which we refer to as direct embedding in this thesis, is to stack all
edge weights in a vector. Although simple, information from the network structure is lost.
Node2vec (Grover and Leskovec, 2016) is a widespread network embedding technique that
aims to remedy this issue. Based on random-walks, it embeds nodes in a low-dimensional
feature space while aiming to preserve node neighborhoods. A more recent approach is the
Feather embedding, which uses characteristic functions of node features (Rozemberczki
and Sarkar, 2020). Graph2vec (Narayanan et al., 2017), an adaptation of Node2vec, aims
to preserve subgraph patterns. These graph-based embeddings also operate as dimension
reduction tools.

2.4.2 Common regression and classification methods

A wide range of methods performing classification and regression task are available. One
of the most basic ones is linear regression, but it has a widely acknowledged tendency to
overfit in high-dimensional settings. In this section, we will focus on two alternatives
that will be used in Chapter 7.

Random Forests provide an easily interpretable approach that comes with guarantees
on overfitting. Random Forests are an ensemble learning technique for either classification
or regression tasks. The main idea is to combine, most often via averaging or majority
vote, predictions from individual trees (Breiman, 2001). Each tree is in fact a classifier
or regressor. Random forests have previously been used for classification and regression
tasks from neuroimaging data such as fMRI (Kesler et al., 2017).
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Support Vector Machines (SVM) are another category of common classification and
regression method (Cortes and Vapnik, 1995; Platt, 1999), and have been extensively
used in brain functional connectivity literature (Dadi et al., 2019). Effective in high
dimensions, SVM aim to construct a hyperplane that optimally separate classes. Initially
designed for linear separation, nonlinear extensions were proposed by mapping the data
into a space where a hyperplane can be identified. SVM have also been extended to
perform regression.





Chapter 3

Data Description

We describe in this chapter different ways to generate synthetic multivariate grouped
data, as well as the real-world fMRI datasets used throughout this thesis.

3.1 Synthetic Data Generation

In order to evaluate connectivity inference methods, we need to simulate data with known
ground-truth connectivity. Synthetic data can be generated either at the network- or the
voxel-level. Synthetic networks are useful when studying empirical binary or weighted
networks that have already been estimated. For instance, one could need to compare their
properties with that of null networks. Several approaches to generate null networks exist
(Váša et al., 2018), ranging from generating a random correlation matrix (Zalesky et al.,
2012), to aiming to simulate a weighted connectivity network, to generating random
binary networks using random graph models (e.g., Erdős-Rényi). Nevertheless, with
network-level data, it is not possible to study the effect of voxel-specific activity, which is
what we are most often interested in in this thesis. Alternatively, voxel-level synthetic
data is particularly valuable when one is interested in evaluating connectivity inference
methods. In fact, it allows to finely control diverse parameters impacting the estimation
procedures, such as noise and intra-regional dependence. We will focus on voxel-level
synthetic data generation in the remainder of this section. A few models have been
developed and implemented to simulate brain activity and the corresponding BOLD
signals, such as the SimTB MATLAB toolbox (Erhardt et al., 2012), the NeuRosim R
package (Welvaert et al., 2011), or the more complex The Virtual Brain (TVB)1 software
(Ritter et al., 2013; Schirner et al., 2022; Sanz Leon et al., 2013), which accommodates

1https://docs.thevirtualbrain.org/

https://docs.thevirtualbrain.org/
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several types of neuroimaging modalities, including fMRI. However, while the overall
spatial structure of the correlation can be defined to a certain extent, these methods do
not provide direct and simultaneous control over inter- and intra-correlation. We will
hence next present a simple and principled approach to generate voxel-level data with
user-defined inter- and intra-correlation structure.

3.1.1 Generating a pair of regions

We start by describing how to generate voxel-level signals from a pair of regions.
For each simulation, we simultaneously generate n independent samples of a pair

of inter-correlated regions, containing each pa, pb intra-correlated variables, respectively.
These variables follow a multivariate normal distribution with a predefined covariance
structure contaminated by Gaussian noise. Local or global noise can be used. The
true inter-correlation is assumed to be constant across all pairs of voxels. The different
parameters are chosen to ensure the population covariance matrix of the two regions
is positive semidefinite. For instance, one cannot generate a covariance matrix where
both intra- and inter-correlation values are low. It has been shown indeed that, when
intra- and inter-correlation coefficients are constant within their corresponding region,
or pair of regions, respectively, and that region A only contains one variable (such as
in mother-siblings studies), ρA,B < ηB is a necessary and sufficient condition for the
pairwise population covariance matrix to be positive and semi-definite (Rosner et al.,
1977). Different intra-regional covariance structures can be used, and we detail some
them in this section.

Constant Covariance Structure. One of the easiest structure is to define the
population intra-correlation as constant across all voxels within a given region.

Toeplitz Covariance Structure. A more realistic setting would be to generate 1-
dimensional data with a Toeplitz intra-regional covariance structure (later denoted 1D
Toeplitz), see for instance (Achard et al., 2023). For each region, intra-correlation is
defined such that it decreases as the distance between two variables increases: for any
voxel i, i′ in region A, Cor(XA

i , XA
i′ ) = max(1 − |i′ − i|/30, ηA

min), where |i′ − i| is the
uniform norm between voxels i and i′, and ηA

min the minimal population intra-correlation
of a region A. Several experimental settings can be considered by varying the population
intra-correlation, inter-correlation and the variance of the noise. The sample pairwise
correlation matrices of the observed signals are represented in Figure 3.1 for a low
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intra-correlation and a high intra-correlation setting with high noise. The population
version of these pairwise correlation matrices are displayed in Figure 3.2.
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(a) ηA
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min = 0.2
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(b) ηA
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Fig. 3.1 Sample pairwise correlation matrices (from the 1D Toeplitz model) for different
minimum intra-correlation values, with an inter-correlation ρA,B = 0.3 and noise standard
deviation σA

ε = σB
ε =
√

0.5. The diagonal blocks correspond to the intra-correlation of
each region.
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Fig. 3.2 Population pairwise correlation matrices (from the 1D Toeplitz model) for
different minimum intra-correlation values, with an inter-correlation ρA,B = 0.3. The
diagonal blocks correspond to the intra-correlation of the two regions.

Matérn Covariance Structure. Similarly we simulate 3-dimensional data with a
Matérn intra-regional covariance structure that depends on the Euclidean distance (later
denoted 3D Matérn) (Ribeiro and Diggle, 2001). In this thesis, we set the smoothness
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parameter to κA = κB = 70 to maintain the positive-definiteness of the input covariance
matrix. We then vary the range parameters ϕA, ϕB and the variance of the noise. The
lower the range parameter, the lower the mean intra-correlation. The population pairwise
correlation matrices of data generated using a Matérn structure under two settings are
shown in Figure 3.3.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

(a) ϕA = ϕB = 0.6

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

(b) ϕA = ϕB = 0.8

Fig. 3.3 Population pairwise correlation matrices (from the 3D Matérn model) for different
range values, with an inter-correlation ρA,B = 0.3. The diagonal blocks correspond to
the intra-correlation of the two regions.

Spherical Covariance Structure. We generate 3-dimensional data with a spherical
intra-regional covariance structure that also depends on the Euclidean distance between
voxels (later denoted 3D Spherical) (Ribeiro and Diggle, 2001). We vary the range
parameters ϕA, ϕB and the variance of the noise. The lower the range parameter, the
lower the mean intra-correlation. The population pairwise correlation matrices of data
generated using a spherical structure under two settings are shown in Figure 3.4.

3.1.2 Generating an arbitrary number of regions

We can also generate synthetic datasets with several inter-connected regions with an
underlying ground-truth network. For each dataset, J regions are simultaneously simu-
lated, each region containing p intra-correlated variables following a multivariate normal
distribution. n independent samples of each of these variables are obtained. For each
region, any intra-correlation structure can be used. The true inter-correlation is assumed
to be constant and is set to 0 for region pairs with no ground-truth connection.
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−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

(a) ϕA = ϕB = 8

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

(b) ϕA = ϕB = 12

Fig. 3.4 Population pairwise correlation matrices (from the 3D Spherical model) for dif-
ferent range values, with an inter-correlation ρA,B = 0.3. The diagonal blocks correspond
to the intra-correlation of the two regions.

3.2 Real-World Data: Brain fMRI

3.2.1 Datasets

Throughout this thesis various resting-state fMRI datasets are used. They are described
in this section.

Rat Brain fMRI Dataset. This dataset consists of fMRI scans acquired on both dead
and live, anesthetized rats (Becq et al., 2020a,b). The following anesthetics are used:
Etomidate (EtoL), Isoflurane (IsoW), Medetomidine (MedL) and Urethane (UreL). After
quality control, 3 dead rats and 4 IsoW, 6 EtoL, 2 UreL, and 4 MedL rats are retained.
The dataset is freely available at https://doi.org/10.5281/zenodo.2452871. The scanning
duration is 30 min with a time repetition of 0.5 s. After preprocessing as described in
(Becq et al., 2020b), 51 groups of time series, each associated with its BOLD signal with
a number of time points in the order of thousands, were extracted for each rat. They
correspond to rat brain regions defined by an anatomical atlas obtained from a fusion of
the Tohoku and Waxholm atlases (Becq et al., 2020b).

Human Connectome Project. We also consider 100 healthy subjects from the
human connectome project2 (HCP), WU-Minn Consortium pre-processed (Glasser et al.,
2013). Two resting-state fMRI acquisitions on different days are available for each

2http://www.humanconnectomeproject.org/

https://doi.org/10.5281/zenodo.2452871
http://www.humanconnectomeproject.org/
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subject. The dataset is freely available at: https://www.humanconnectome.org/study/
hcp-young-adult/data-releases. The scanning duration is 14 min and 24 s with a time
repetition of 720 ms. A modified AAL template is used to parcellate the brain into
89 regions. The details of the preliminary preprocessing as well as the parcellation are
available in (Termenon et al., 2016). Additional subject-specific variables are available,
and contain for example age range and family information. Also included are psychometric
variables such as personality scores from the NEO-FFI Big 5 personality questionnaire,
fluid intelligence scores from the Penn Matrix Test, which is based on an abbreviated
version of the Raven’s matrices, as well as other cognitive function scores.

PIOP2. The PIOP2 dataset is another open-source resting-state fMRI dataset. It is part
of the Amsterdam Open MRI Collection (AOMIC) and information about the preliminary
preprocessing can be found in (Snoek et al., 2021). It is freely available at https:
//openneuro.org/datasets/ds002790/versions/2.0.0. Scans of 223 healthy human subjects
are available, as well as subject-specific variables, including age, education category
(applied vs academic) and psychometric variables such as the NEO-FFI personality
questionnaire results and Raven’s matrices scores. The provided fMRI derivative fmriprep
data, which is minimally preprocessed, is used to extract voxel-level BOLD signal time
series. The same modified AAL template is used to parcellate the brain into 89 regions.

3.2.2 Data preprocessing

Throughout this thesis, we use voxel-level data, unlike most functional connectivity
studies—which most often use region-averaged signals. Therefore, open-source data
are often not ready for use as is, and further preparation is needed. Starting from
the partially preprocessed voxel-level BOLD signals that are provided, we applied the
following additional preprocessing steps for each individual scan:

1. Assign each voxel to a unique brain region, based on a predefined anatomical
parcellation.

2. Apply a gray-matter mask to each subject individually.

3. Remove voxels with a signal equal to zero at all time points.

4. Perform a wavelet decomposition of the voxel-level time series (Whitcher et al.,
2000a). The target frequency band is (0.06− 0.13 Hz).

https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://openneuro.org/datasets/ds002790/versions/2.0.0
https://openneuro.org/datasets/ds002790/versions/2.0.0
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At the end of the preprocessing pipeline, the size of the rat dataset is over 6 GB, that of
the HCP dataset over 160 GB, and that of the PIOP2 over 45 GB. Due to the size of
the human datasets, they were uploaded and processed on a computer cluster, which
came with its own set of hurdles, including finely tuning computing resource demands
to reduce access waiting time. Several of the analyses presented in this thesis were also
performed on a cluster.

Note that, in this thesis, we are interested in improving connectivity estimation
and analysis once a parcellation has been defined, no matter its quality. Optimizing
the choice of parcellation is out of the scope of this thesis. For ease of interpretability,
we chose to exclusively use fixed predefined anatomical parcellations in our practical
applications. The contributions presented in this thesis could however also be applied to
data parcellated using data-driven approaches, such as ICA.





Chapter 4

Correlation-Screening-Based Binary
Network Estimation
Large-Scale Correlation Screening under Dependence
for Network Inference

We present in this chapter a novel framework to infer binary connectivity networks. Previ-
ous work has focused on aggregating data across voxels within predefined regions to infer
inter-regional connectivity. However, the presence of intra-correlations has noticeable
impacts on inter-correlation detection, and thus edge identification. To alleviate them, we
propose to leverage techniques from the large-scale correlation screening literature, and
derive simple and practical characterizations of the mean number of correlation discoveries
that flexibly incorporate intra-regional dependence structures. A connectivity network
inference framework is then presented. First, inter-correlation distributions are estimated.
Then, correlation thresholds that can be tailored to one’s application are constructed for
each edge. Finally, the proposed framework is implemented on synthetic and real-world
datasets. This novel approach for handling arbitrary intra-regional correlation is shown
to limit false positives while improving true positive rates.

This chapter is based on the following contributions. It is in the process of being
submitted to a journal.
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Lbath, H., Petersen, A., and Achard, S. (2021). Brain functional connectivity
estimation. In Brain Connectivity Networks: Quality and Reproducibility - Satellite
of the Conference on Complex Systems 2021, Lyon, France Lbath, H., Petersen, A.,

and Achard, S. (2022a). Large-scale correlation screening under dependence for
brain functional connectivity inference. In JSM 2022 - Joint Statistical Meetings,
Washington, United States

4.1 Introduction

Large-scale network inference is a problem inherent to numerous fields, including gene
regulatory networks, spatial data studies, and brain imaging. This work is motivated by
an application to resting-state brain functional connectivity networks of single subjects.
Such networks connect together correlated brain regions, which consist in groups of
dependent voxels. These networks are key to providing insights into the diseased or
injured brain (Achard et al., 2012a; Richiardi et al., 2013; Malagurski et al., 2019). In
this chapter, the terms region and group will be used interchangeably, the former being
associated with the motivating application, and the second with other data sources of
similar structure to which the proposed methods also apply.

The goal of this work is to infer a binary network where nodes correspond to regions
and edges are present only between nodes that are sufficiently highly correlated. The
challenge is two-fold: not only does dependence between voxels within a region impact
inter-regional correlation estimation, but it also affects inter-regional correlation threshold
estimation, and thus edge detection. We propose a correlation screening approach, and
tackle the problem of reliable large-scale correlation discovery between two groups of
arbitrarily dependent variables.

In the context of brain functional connectivity, networks are often constructed
from functional Magnetic Resonance Imaging (fMRI) data by spatially aggregating
blood-oxygen-level-dependent (BOLD) time series within predefined brain regions, e.g.
(De Vico Fallani et al., 2014). However, this may lead to overestimation of the inter-
regional correlation, or inter-correlation for brevity, e.g., (Halliwell, 1962), and hence
incorrect edge detection. We propose a novel network inference framework that leverages,
for each pair of regions, inter-correlation distributions instead of aggregation. To obtain
the associated binary network we then present a thresholding step based on correlation
screening. Existing approaches typically assume variables are independent within their
region. Yet, as detailed in this work, any violation of this assumption markedly impacts
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inter-correlation discovery, i.e., when the sample inter-correlation coefficient is greater
than a given threshold. As will be showcased later, high intra-regional correlation, or
intra-correlation for brevity, which corresponds to settings with homogeneous regions,
leads to lowered true positive rates (TPR). On the other hand, low intra-correlation, a
characteristic of inhomogeneous regions, leads to increased false positive rates (FPR).
In (Hero and Rajaratnam, 2011), a theoretical framework that accounts for arbitrary
dependence is presented. Their approach is nevertheless very difficult to implement in
practice and their empirical evaluation only covers the cases of independence or sparse
dependence. We hence introduce simple and practical expressions to characterize the
number of discoveries that flexibly incorporate dependence structures. These can then be
employed to find a correlation threshold per pair of regions that improves true discovery
rates under dependence, while limiting the number of false discoveries. The main steps of
the proposed pipeline are depicted in Figure 4.1 and are presented in Sections 4.3, 4.4 and
4.5. We illustrate our work on synthetic data throughout this chapter and demonstrate
the effectiveness of our framework on synthetic and real-world brain rat imaging datasets
in Section 4.6.

Fig. 4.1 Main steps of our proposed network inference pipeline. Each circle corresponds
to a group of variables (represented by crosses). The sample inter-correlation estimation
and thresholding steps are detailed for a pair of regions. Some edges were left out to
improve readability.

4.2 Preliminaries

In this section we define the data model and its parameters that will be used in the rest
of this chapter.
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4.2.1 Correlation coefficients

Let A and B be indices of two regions or groups consisting of pA and pB random variables,
respectively. Denote by RA the set of variables in region A and XA

i the ith random
variable in RA. Assume n independent samples of XA

i are available and define the
corresponding vector XA

i = [XA
i,1, . . . , XA

i,n]T . RB, XB
j and XB

j are similarly defined. As
an illustration, in the context of brain functional connectivity, XA

i corresponds to voxel
i of brain region A, which is associated with an fMRI BOLD signal time series with n

time points. We define intra-correlation as the Pearson correlation between each pair
of random variables within a given region. Inter-correlation is the Pearson correlation
between pairs of random variables from two different regions.

Let ρA,B
ij denote the true population inter-correlation coefficient between XA

i and XB
j .

For A ̸= B, define the corresponding sample inter-correlation coefficient

RA,B
i,j =

∑n
k=1(XA

i,k −XA
i )(XB

j,k −XB
j )√∑n

k=1(XA
i,k −XA

i )2∑n
k=1(XB

j,k −XB
j )2

,

with XA
i , XB

j the sample means. Denote the probability density, cumulative distribution,
and quantile functions of RA,B

i,j by fRA,B
i,j

, FRA,B
i,j

, and F −1
RA,B

i,j

, respectively. Sample intra-
correlation coefficients and their distributions can analogously be defined by choosing
B = A. Population intra-correlation between XA

i and XA
i′ is denoted by ηA

i,i′ . Asymptotic
closed-form expressions of the density of correlation can be obtained for Gaussian
independently identically distributed (i.i.d.) variables XA

i , XB
j (Muirhead, 2005). Note

however that this work aims to tackle arbitrary dependence between variables, and in
this context, to the best of our knowledge, such explicit formulas have not been derived
without defining a parametric dependence structure.

In most of this chapter, and for ease of calculation, we assume the joint distribution
of pairs of voxels i, j from a fixed region pair A, B are identically distributed. In such
cases, the sample inter-correlation coefficients RA,B

i,j are identically distributed, and the
i, j subscripts will be dropped, though we emphasize that independence within regions is
not assumed.

4.2.2 Synthetic data examples

We illustrate the different concepts introduced in this chapter with data simulated as
follows. We consider two regions A and B, both containing p intra-correlated variables fol-
lowing a multivariate normal distribution with a predefined Toeplitz covariance structure.
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n independent samples of each of these p variables are generated. We hence obtain data
with a block diagonal covariance matrix of size 2p× 2p, where each block corresponds
to each region. The off-diagonal blocks correspond to the inter-correlation coefficients,
which are set to be constant across all pairs of voxels. The diagonal blocks correspond to
the intra-correlation coefficients, which follow a Toeplitz dependence structure.

4.3 Inter-Correlation Estimation

4.3.1 Related work

As detailed in Chapter 2, previous works on the estimation of inter-correlations have
mostly focused on aggregating variables within predefined regions (De Vico Fallani et al.,
2014; Dadi et al., 2019). In the context of brain functional connectivity network inference,
some prefer techniques based on independent component analysis (ICA) (Calhoun et al.,
2012), while most focus on summarizing all voxels within predefined brain regions by
their average, e.g., (Achard et al., 2012a, 2006; Di Martino et al., 2014; Malagurski et al.,
2019). However, such approaches suffer from loss of relevant information and can lead to
statistical inconsistency and incorrect correlation estimation (Ostroff, 1993). In particular,
the estimate of the average of weakly correlated time series, which corresponds to samples
of a single variable in our data model, is poor (Wigley et al., 1984). Additionally,
it has been observed on small samples that the correlation of averages is different
than the average of correlations (Dunlap et al., 1983). This phenomenon can also be
easily checked with arbitrary large samples. Furthermore, correlation of averages were
empirically observed to overestimate the true correlation (Halliwell, 1962; Achard et al.,
2011). Therefore, when correlating regional averages for binary network inference, one
will tend to identify spurious edges. Some previous works attempted to improve false
positive rate control utilizing multiple testing approaches (Drton and Perlman, 2007).
However, in the context of arbitrary dependence structures, such methods cannot be
straightforwardly applied. One alternative to aggregation is to measure the similarity,
such as the Wasserstein distance or covariance (Petersen and Müller, 2019) between
intra-correlation densities. However, this approach is not equivalent to that of the
Pearson correlation. Indeed, while the Wasserstein distance may provide a first intuition
about how regions are connected, it does not capture as much information about the
relationship between the two regions as inter-correlations do.
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4.3.2 On the impact of intra-correlation on inter-correlation
estimation and detection

We first illustrate how intra-correlation affects the variability of sample inter-correlations
in a simplified scenario, before considering a more general case. It has been known
for some time in familial data studies that intra-correlations impact inter-correlation
estimation (Rosner et al., 1977; Donner and Eliasziw, 1991). In the multivariate normal
case, and under the assumption of within-group homoscedasticity, the asymptotic variance
of the maximum-likelihood estimator of the inter-correlation, denoted as RA,B

MLE, was
derived by Elston (1975). This estimator showcases similar behavior to the voxel-to-voxel
sample inter-correlation coefficients RA,B

i,j and will help provide us with a first intuition
about the impact of intra-correlation. We need to assume all variables XA

i , XB
j have

the same true inter-correlation ρA,B and intra-correlation ηA and ηB. This amounts to
saying sample intra- and inter-correlation coefficients are identically distributed within
their corresponding group, or pair of groups, respectively. Under these assumptions, and
according to Elston (1975), the variance of the maximum-likelihood estimator is:

V ar(RA,B
MLE) = 1

n

[
(ρA,B)2 − 1

pA

[1 + (pA − 1)ηA]
]
×
[
(ρA,B)2 − 1

pB

[1 + (pB − 1)ηB]
]

+ (ρA,B)2

2n

[
pA − 1

pA

(1− ηA)2 + pB − 1
pB

(1− ηB)2
]

(4.1)

The expression in (4.1) shows that the variance of the sample inter-correlation coefficient
explicitly depends on the true intra-correlation coefficients ηA and ηB. When the number
of samples n is sufficiently large, the inter-correlation variance in the multivariate normal
case hence increases when intra-correlation decreases. This observation implies that for
a fixed threshold that does not depend on regional dependency structures, more false
positive correlations are likely to be discovered.

This intuition is illustrated in the left hand-side of Figure 4.2 where the true inter-
correlation is zero and no positive correlations are expected to be discovered. Conversely,
for the same fixed threshold, when the true inter-correlation is positive (cf. right hand-side
of Figure 4.2), increased intra-correlations, which lead to lower inter-correlation variance,
may lead to decreased number of true positives. This phenomenon is observed regardless
of the number of time points or variables (cf. supporting information).

In fact, the impact that intra-correlation distributions have on the spatial average of
sample inter-correlations can be quantified even without any distributional assumptions.
The following result shows that, when the intra-correlation densities of two regions A



4.3 Inter-Correlation Estimation 43

inter=0 intra=0.2

Sample inter-correlation

Fr
eq

ue
nc

y

-0.4 0.0 0.4

0
10

00
0

25
00

0

inter=0 intra=0.9

Sample inter-correlation

Fr
eq

ue
nc

y

-0.4 0.0 0.4
0

15
00

0

inter=0.2 intra=0.2

Sample inter-correlation

Fr
eq

ue
nc

y

-0.2 0.2 0.6

0
10

00
0

25
00

0

inter=0.2 intra=0.9

Sample inter-correlation

Fr
eq

ue
nc

y

-0.2 0.2 0.6

0
15

00
0

Fig. 4.2 Effect of intra-correlation on sample inter-correlation distribution, for different
population inter-correlation values. The correlation samples were computed between all
pairs of variables from two groups. Each group contains n = 150 samples of p = 500 intra-
correlated random variables following a multivariate normal distribution with Toeplitz
intra-correlation (cf. Section 4.2.2). We can note the higher the intra-correlation, the
lower the variance of the inter-correlation distribution.

and B are highly dissimilar, as quantified by a large Wasserstein distance, the average
inter-correlation is upper-bounded. In particular, this phenomenon is by no means
limited to the Gaussian case. We recall here the definition of the Wasserstein distance
between two correlation densities (Petersen and Müller, 2019; Panaretos and Zemel, 2019):
d2

W (fRA,A , fRB,B ) =
∫ 1

0 [F −1
RA,A(c)− F −1

RB,B (c)]2dc. The full proof is available in Appendix
4.A.

Proposition 4.3.1. For any regions A, B with pA, pB voxels, respectively, and RA,RB

the corresponding voxel sets, if there exists d ∈ R+ such that

d2
W (fRA,A , fRB,B ) ≥ min

c∈[0,1]

(
F −1

RA,A(c)− F −1
RB,B (c)

)2
≥ d,

then, RA,B = 1
pApB

∑
i∈RA

∑
j∈RB

RA,B
i,j ≤ 1−

√
d

2 .

4.3.3 Our proposed approach: inter-correlation distribution
estimation

As previously discussed, aggregating variables within regions to estimate inter-correlation
leads to loss of information and incorrect edge detection during the binary network
inference step. We have also brought to light the importance of taking intra-correlation
into account when manipulating inter-correlations. In addition, all the previously cited
approaches that aim to infer a binary network where nodes are groups of variables only
provide a single correlation threshold to be applied to all pairs of regions. In this chapter,
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we propose to derive a correlation threshold specific to each pair of regions to better
harness the particularities of the regional dependence structures. Instead of averaging
variables within regions, we hence propose to estimate the distribution of correlations
measured between all pairs of variables from two different regions. We then obtain an
inter-correlation distribution per pair of region, which then needs to be thresholded.
To that end, we propose to leverage correlation screening. In that paradigm, an edge
is said to be detected in the associated binary graph if a sufficient number of sample
inter-correlation coefficients of the corresponding pair of regions are large enough. In
the following sections, we derive simplified expressions of the number of discoveries to
propose a reliable method to threshold these inter-correlation distributions.

4.4 Characterization of the Number of Discoveries
Under Dependence

Correlation screening (Hero and Rajaratnam, 2011), or independence screening (Fan and
Lv, 2008b), is often used in variable or feature selection problems. In such approaches, the
goal is to discover sufficiently highly correlated variables. A practical method consists in
defining a correlation threshold, above which correlation coefficients, and their associated
variables, are said to be detected or discovered. Nonetheless, in high dimension, such
approaches may suffer from a high number of false discoveries. In (Hero and Rajaratnam,
2011), the authors aim to mitigate this issue in the following way. They first propose
the following maximum-based definition of the number of discoveries, pertaining to
inter-correlation coefficients, with ϕAB

ij (ρ) = 1(|RA,B
i,j | > ρ) for all voxels i, j in regions

A, B and correlation threshold ρ ∈ [0, 1]:

NAB(ρ) =
pA∑
i=1

max
j=1,...,pB

ϕAB
ij (ρ). (4.2)

The authors provide as well an approximation of the expected number of discoveries
E[NAB] that depends on the number of variables p, the number of samples n and a
function of the joint distribution of a transformation of the variables. Then they employ
the derived formula to compute critical threshold values based on a phase transition
approach. Furthermore, the expected number of discoveries is used to control the number
of false discoveries. It is then all the more essential to have an expression of the number
of discoveries that is both interpretable and can easily be theoretically and empirically
utilized. However, the expression for E[NAB] derived in (Hero and Rajaratnam, 2011),
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which depends on joint distributions, is difficult to compute, especially for single subject
analysis where we have access to only a single sample of each signal. We hence provide
simplified explicit expressions of the mean number of discoveries that still harness
information contained in the intra-correlation distributions.

4.4.1 Maximum-based expression: NAB

Empirically, intra-correlation has an impact on NAB and its average (cf. Figure 4.3,
left). Indeed, for a given inter-correlation threshold, the smaller the intra-correlations,
the larger the number of discoveries. This is in accordance with the observations from
Figure 4.2. Additionally, we can remark that in this example the true inter-correlation is
zero. Thus any discovery is a false positive. As the intra-correlation increases, a lower
correlation threshold is then sufficient to maintain similar levels of false discoveries.
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Fig. 4.3 Normalized number of discoveries, NAB/pA (Left) and NAB
e /pApB (Right) as

a function of the inter-correlation threshold for data simulated as described in Section
4.2.2, with pA = pB = 500, n = 150, true inter-correlation ρA,B = 0 and Toeplitz intra-
correlation with varying minimal intra-correlations. For each of the four intra-correlation
values, 50 datasets were simulated and used to compute the number of discoveries (the
colored curves), and their average (the black dotted curves). NAB/pA decreases as the
intra-correlation increases, while NAB

e /pApB does not seem to be much impacted on
average, even though its variability seems to increase with the intra-correlation value.

From (4.2), we can also conclude that for any ρ ∈ [0, 1],

E[NAB(ρ)] =
pA∑
i=1

(
1− F|RA,B

i,1 |,...,|RA,B
i,pB

|(ρ, ..., ρ)
)

, (4.3)

with F|RA,B
i,1 |,...,|RA,B

i,pB
| the joint distribution of the absolute values of the corresponding

correlation coefficients, which will inherently take into account dependence structures
between the inter-correlation coefficients. However, joint distributions are complicated
to estimate and manipulate. Let ν̃AB = E[NAB]/pA. We then propose an approximate
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expression of ν̃AB that depends on the distribution of inter-correlations, and that is exact
under some particular assumptions (cf. Appendix 4.C):

νAB(ρ) = 1− F|RA,B |(ρ)pB , ρ ∈ [0, 1]. (4.4)

We can also derive the following inequality.

Proposition 4.4.1. Consider two regions A and B and a correlation threshold ρ ∈ [0, 1].
If all variables XA

i and XB
i in both regions follow a normal distribution and their sample

inter-correlation coefficients are identically distributed, then for sufficiently large n,

νAB(ρ) ≥ ν̃AB(ρ) (4.5)

Proof. As defined in (Lehmann, 1966), the random variables T1, T2, . . . , Tp are Positively
Quadrant Dependent (PQD) if for any positive number t1, t2, . . . , tp,

P

( p⋂
k=1

Tk ≤ tk

)
≥

p∏
k=1

P (Tk ≤ tk) . (4.6)

Under the assumption XA
i , XB

j are normal for all i, j, the distribution of their sample
correlation coefficients RA,B

i,j is asymptotically normal, e.g., (Ruben, 1966; Hotelling,
1953). Hence, according to Theorem 1 in (Šidák, 1967), when n is large enough, |RA,B

i,j |
are PQD. We can then note that equation (4.6) is equivalent to E [∏p

k=1 1(|Tk| ≤ tk)] ≥∏p
k=1 E[1(|Tk| ≤ tk)]. Under the assumption the sample correlation coefficients are

identically distributed, and setting tk = ρ and Tk = RA,B for all variables, we can thus
write:

pA · νAB(ρ) =
pA∑
i=1

1−
pB∏
j=1

E[1(|RA,B| ≤ ρ)]


≥
pA∑
i=1

1− E

 pB∏
j=1

1(|RA,B| ≤ ρ)
 = E[NAB(ρ)] = pA · ν̃AB(ρ).

This concludes the proof.

This result ensures νAB will provide thresholds that are at least as conservative
as that of ν̃AB. Moreover, the assumptions needed in Proposition 4.4.1 are often
reasonable in practice—and notably in functional brain connectivity applications where
the signals associated with each voxel can appropriately be transformed (Whitcher
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et al., 2000b). In addition, νAB can be estimated by ν̂AB(ρ) = 1− F̂|RA,B |(ρ)pB , where
F̂|RA,B |(ρ) = 1

pBpA

∑pA
i=1

∑pB
j=1 1(|RA,B

i,j | ≤ ρ) is the empirical cumulative distribution
function (ecdf) of |RA,B|. The result stated above can then be empirically observed
in Figure 4.4. The curve of ν̂AB as a function of thresholds is also particularly close
to that of the empirical values of ν̃AB as long as both the inter-correlation and the
intra-correlation of region B are not too high. ν̂AB provides hence an approximation
for the normalized expected number of discoveries that is easier to compute, while still
accounting for the inter-correlation distribution. Moreover, in practice, the ecdf of the
inter-correlation coefficients can be shown to depend on the intra-correlation structure
(Azriel and Schwartzman, 2014) and hence allows us to account for it.
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Fig. 4.4 Normalized number of discoveries ν̂AB, ν̂AB
e , NAB/pA and NAB

e /pApB as a func-
tion of the correlation threshold for different minimal intra-correlation values ηA

min, ρBB
min

and a zero inter-correlation for data simulated as described in Section 4.2.2, with
pA = pB = 500, n = 150. We can note ν̂AB

e ≤ ν̂AB. We can also observe the asym-
metric behavior of NAB/pA and how it is close to ν̂AB when ηA

min ≫ ηB
min, unlike when

ηB
min ≫ ηA

min.

4.4.2 Sum-based expression: NAB
e

We now present another, and more intuitive, way to characterize the number of discoveries
NAB

e (Hero and Rajaratnam, 2011). It represents the total number of discoveries and
will enable us to propose less conservative thresholds:

NAB
e (ρ) =

pA∑
i=1

pB∑
j=1

ϕAB
ij (ρ), ρ ∈ [0, 1]. (4.7)
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However, it is not straightforward to derive a critical correlation threshold from this
expression. We propose the simplified expression below:

ν̂AB
e (ρ) = 1− F̂|RA,B |(ρ), ρ ∈ [0, 1]. (4.8)

We can also remark in Figure 4.4 that ν̂AB
e and NAB

e /pApB look indistinguishable.

4.4.3 Link between NAB
e and NAB

We have presented so far two ways to characterize the number of discoveries. We will
now discuss how they relate to one another. We can remark the following inequality.

Proposition 4.4.2. For all ρ ∈ [0, 1],

ν̂AB
e (ρ) ≤ ν̂AB(ρ). (4.9)

The proof is straightforward and can be found in Appendix 4.B. This result can
notably be observed in Figure 4.4. Thus ν̂AB is more conservative than ν̂AB

e , which in
some circumstances may be desirable. Nonetheless, when the inter-correlation is zero we
expect no discoveries. In this case, a critical correlation threshold can hence be defined
as the minimum correlation such that the number of discoveries is zero. In such cases,
using ν̂AB

e then seems to be preferable, since it provides a lower correlation threshold for
a similar number of false discoveries.

4.5 Correlation Threshold Definition

Now we have better characterized the number of discoveries, we can use it to construct
correlation thresholds tailored to one’s data and that ensure, to a certain extent, a
restricted number of false discoveries and improved number of true discoveries. We
present in this section two possible correlation threshold definition approaches. The
idea behind correlation threshold definition is to ensure that it is very unlikely for any
discovery to correspond to a correlation value that could have happened at random,
which amounts to a setting where the true inter-correlation is zero, which may not be
true in practice. Surrogate data defined such that the population inter-correlation is
zero can hence be utilized to estimate the correlation thresholds. We denote F̂ −1

0,|RA,B | the
corresponding quantile function.
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FWER-based threshold. Correlation thresholds with family-wise error rate (FWER)
theoretical control can be derived for specific dependence structures. These approaches
control the probability of making at least one false discovery. Analogously to Proposition
2 in (Hero and Rajaratnam, 2011), it can be shown, under a weak dependence condition,
that NAB

e converges to a Poisson random variable when pA, pB → ∞ and P (NAB
e >

0)→ 1− exp
(
−E[NAB

e ]
)
. Our proposed expression ν̂AB

e can then be used to compute
correlation thresholds ρAB

α that guarantee a FWER at level α. Nevertheless, the weak
dependence assumption upon which this approach hinges is often not reasonable in
practice.

Quantile-based threshold. The correlation threshold can also be defined such that
the False Positive Rate (FPR) is guaranteed to be less than a given level α. The FPR is
the ratio between the number of false positives (FP) and the total number of ground
truth negatives, that is pA ·pB in the ρA,B = 0 case. Controlling the FPR at level α is thus
equivalent to ensuring the number of discoveries is less than FP = α ·pA ·pB. Since in our
setting (ρA,B = 0) any discovery is a false positive, we can set ν̂AB

e · pA · pB = α · pA · pB,
which leads to the threshold ρA,B

q,α = F̂ −1
0,|RA,B |(1−α). We can remark that when α = 0, the

chosen threshold is larger than any of the observed absolute correlations, ensuring there
will be no discoveries. Additionally, this threshold will depend on the intra-correlation,
as does the ecdf (Azriel and Schwartzman, 2014). We can also remark this threshold
guarantees a FWER at level α = 0 under the previous weak dependence assumption. ν̂AB

can also be used to similarly derive a critical threshold, although stringent conditions on
the region sizes would then need to be verified when α ̸= 0.

Numerical results. We compare in Figure 4.5 the two correlation thresholds defined
above with two other approaches: the critical thresholds ρhero obtained in (Hero and
Rajaratnam, 2011), and a simple method where the threshold is set to ρAB

poli = µ̂AB
0 + σ̂AB

0

where µ̂AB
0 and σ̂AB

0 are the sample mean and standard deviation of the sample inter-
correlation of the surrogate data (Poli et al., 2015). We observe that, when intra-
correlation is lower than 0.5, both our proposed approaches provide similar thresholds
to Hero and Rajaratnam (2011). Nonetheless, our FWER- and quantile-based methods
provide less conservative thresholds when the intra-correlation is high. The lower
thresholds imply an increase in the true positive rate. We can note as well that ρAB

poli is
lower than all three other thresholds for all intra-correlation values, which could lead
to a large number of false discoveries, as will be shown in the next section. It is also
decreasing when intra-correlation increases in accordance with the observations about
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α were computed
for α = 0.

the effect of intra-correlation on the distribution of sample inter-correlation in Section
4.3.

4.6 Network Inference Results

In this section we provide an illustration of our network inference approach on synthetic
and real-world data and compare it to several methods.

Comparison to other methods. As mentioned in Section 4.3.1 and Chapter 2,
most single-subject fMRI studies that use anatomical parcellations estimate the inter-
correlation by computing the correlation coefficient between spatial regional averages of
the signals. We will refer to the correlation of averages approach by ca and our proposed
correlation screening method by CS. As detailed in Chapter 2, various methods can then
be employed to define the correlation thresholds. They usually belong to either of these
two paradigms: (i) relative thresholding, that is, estimation of the binary network by
extracting a fixed proportion of edges (van den Heuvel et al., 2017), and (ii) absolute
thresholding where one chooses, more or less arbitrarily, a fixed threshold that will be
applied to all edges—as opposed to our proposed edge-specific thresholds. These two
approaches are implemented in several popular packages, such as the Brain Connectivity
toolbox (Rubinov and Sporns, 2010) and CONN (Whitfield-Gabrieli and Nieto-Castanon,
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2012), with little guidance on the choice of threshold. Relative thresholds will always
detect the same proportion of edges regardless of the true inter-correlation value, and
as such can be disregarded in this work. Both the thresholds proposed by Hero and
Rajaratnam (2011) and Poli et al. (2015) are absolute thresholds. The latter was used
in (Boschi et al., 2021) to threshold ca-based functional connectivity. In (Becq et al.,
2020b), the authors apply to all edges of a ca-based functional connectivity network a
fixed threshold ρbecq determined according to a multiple testing approach (see Appendix
G of their work for more details). In practice, the values of ρbecq are close to that of ρhero.
The thresholds ρAB

poli, ρAB
α and ρAB

q,α are estimated using surrogate data where the true
inter-correlation is zero and the intra-correlation is constant and equal to the average
sample intra-correlation.

Synthetic data results. We generated synthetic datasets with ten inter-connected
regions. For each dataset, 10 regions are simultaneously simulated, each region containing
p = 150 intra-correlated variables following a multivariate normal distribution. 100
independent samples of each of these variables are obtained. For each region, a Toeplitz
intra-correlation is used with the same minimal intra-correlation value across all ten
regions. Further details about data generation are presented in Chapter 3.

There are 41 true positive (constant true inter-correlation ρA,B = 0.2) and 4 true
negative edges (constant inter-correlation ρA,B = 0) in the ground-truth network. The
different simulation parameters are chosen to ensure the population covariance matrix of
the ten regions is positive semidefinite. To identify the edges of the binary network, the
pairwise thresholds are applied to the corresponding distributions of the absolute value
of the sample inter-correlation. In particular, pairs of regions where the inter-correlation
is larger than the threshold with a probability at most 0.05 are not identified as edges.

Table 4.1 displays the false positive and true positive rates (FPR and TPR, respec-
tively) of the different methods, for varying minimal intra-correlation values. The FPR
and TPR are defined as follows: FPR = FP/(FP+TN) and TPR = TP/(TP+FN). FN
stands for false negatives (i.e., an edge is undetected when it actually exists). FPR
is expected to be close to 0 and TPR to 1. Results in Table 4.1 showcase that, as
expected from the previous section, using ρAB

poli leads to high FPRs, while ρhero and
ρbecq lead to decreasing TPRs as intra-correlation increases. Additionally, while the
FPR is slightly increased, correlation screening methods with FWER- or quantile-based
thresholds markedly improve the TPR when the intra-correlation is high, and should be
preferred in that case. Indeed, when intra-correlation is 0.9 all other methods (except CS
+ ρAB

poli) have a TPR close to zero, while the FWER- and quantile-based thresholds have
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a TPR close to 0.7. The CS + ρAB
poli method displays a FPR of 1 for all intra-correlation

values and should thus to be avoided. Since the FWER- and quantile-based thresholds
are empirically equivalent, from now on we will be using ρAB

q,α=0, which, unlike ρAB
α=0, has

a theoretical control over false positives that is valid for any dependence structure.

Table 4.1 Comparison of the mean (standard deviation) TPR and FPR of several network
inference methods on synthetic data across 100 repetitions. The ground-truth networks
consist of 10 regions, with 4 real negative edges (true inter-correlation ρA,B = 0), 41 real
positive edges (true inter-correlation ρA,B = 0.2), five minimal intra-correlation values
ηA

min, n = 100, and p = 150.

ηA
min = 0.5 ηA

min = 0.6 ηA
min = 0.7 ηA

min = 0.8 ηA
min = 0.9

Method FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR
CA + ρAB

poli 0.51 (0.23) 0.97 (0.02) 0.46 (0.22) 0.90 (0.07) 0.45 (0.25) 0.69 (0.12) 0.43 (0.26) 0.33 (0.14) 0.30 (0.24) 0.04 (0.03)
CA + ρbecq 0.13 (0.13) 0.47 (0.20) 0.04 (0.09) 0.22 (0.13) 0.03 (0.08) 0.11 (0.09) 0.01 (0.04) 0.05 (0.06) 0.01 (0.04) 0.04 (0.04)
CS + ρAB

poli 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
CS + ρhero 0.03 (0.08) 0.13 (0.12) 0.03 (0.08) 0.13 (0.11) 0.04 (0.09) 0.12 (0.09) 0.02 (0.07) 0.11 (0.09) 0.01 (0.06) 0.09 (0.07)
CS + ρAB

α=0 0.06 (0.10) 0.23 (0.17) 0.08 (0.12) 0.32 (0.17) 0.13 (0.13) 0.42 (0.17) 0.15 (0.16) 0.52 (0.16) 0.23 (0.17) 0.68 (0.13)
CS + ρAB

q,α=0 0.06 (0.11) 0.23 (0.18) 0.07 (0.11) 0.32 (0.17) 0.14 (0.13) 0.42 (0.16) 0.15 (0.16) 0.53 (0.16) 0.25 (0.18) 0.67 (0.13)

Real-world data results. We applied our framework on functional Magnetic Res-
onance Imaging (fMRI) data acquired on both dead and live rats, anesthetized using
Isoflurane (Becq et al., 2020a,b). The scanning duration was 30 minutes with a time
repetition of 0.5 second so that 3600 time points were acquired. Additional information
about this dataset are documented in Chapter 3. After preprocessing as explained in
(Becq et al., 2020b), based on an anatomical atlas, 51 groups of time series, corresponding
to the rat brain regions, were extracted for each rat. Due to insufficient signal, four
regions were excluded. Each time series captures the functioning of a given voxel. The
dead rats provide experimental data where the ground-truth network is empty. Indeed, no
legitimate functional activity should be detected, whereas for the live rat under anesthetic,
we expect non-empty graphs as brain activity keeps on during anesthesia. We can note
that no ground-truth is available for the live rat networks. As expected, the networks
of the dead rats estimated using our proposed correlation screening method are empty,
i.e. it does not detect any false positive edges, with the exception of one edge in one rat.
However, the ca + ρAB

poli approach Boschi et al. (2021); Poli et al. (2015) detects over 300
false positive edges, and Becq et al. (2020b) (later denoted B2020) detects between one
and four false positive edges (cf. Table 4.2). While our approach is more conservative
than the other two, important edges are still detected in the live rats, mainly in motor
regions (M1 and M2) and somatosensory regions (S1 and S2), as shown for instance in
Figure 4.6.
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Table 4.2 Comparison of the number of edges in the networks obtained via our proposed
network inference approach and two methods from the literature (B2020 and ca + ρAB

poli)
for dead (Left) and live (Right) rat brain fMRI data. In the dead rat brain networks,
any detected edge is a false positive.

NUMBER OF EDGES

DEAD RATS ID CS + ρAB
q,α=0 B2020 ca + ρAB

poli

20160524_153000 1 4 316
20160609_161917 0 4 317
20160610_121044 0 1 325

NUMBER OF EDGES

LIVE RATS ID CS + ρAB
q,α=0 B2020 ca + ρAB

poli

20160615_103000 25 647 820
20160614_095825 411 847 910
20160615_121820 116 477 692
20160421_133725 83 591 910

4.7 Discussion

We have presented a novel approach to infer connectivity networks when nodes represent
groups of correlated variables. We have formally established the importance of leveraging
dependence structures to reliably discover inter-correlations. Our method consists in
estimating, for each pair of groups, an inter-correlation distribution before deriving a
tailored threshold based on a correlation screening approach. In particular, we proposed
simplified expressions for the mean number of discoveries that allow for easier theoretical
and empirical manipulation, and flexibly take into account dependence within groups.
Motivated by a real-world application, we have demonstrated the feasibility of our
approach on a real dataset of rat brain images.

This work has several possible theoretical extensions. First, while we provide a method
with theoretical FPR control for any setting, we provide theoretical FWER control
guarantees only under a weak dependence assumption. Nevertheless, this assumption
is often unrealistic and relaxing it is difficult and would be an interesting direction to
explore. Additionally, FWER approaches may sometimes be too conservative. On the
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Fig. 4.6 Brain functional connectivity network of a dead and two live rats (anesthetized
with Isofluorane) inferred using our proposed correlation screening framework with the
quantile-based threshold (CS + ρAB

q,α=0).
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other hand, the false discovery rate (FDR) enables a control of the average number of
FPs, which is often sufficient. A procedure to define correlation thresholds was proposed
in (Cai and Liu, 2016) that leverages a quantity linked to the sum-based mean number
of discoveries E[NAB

e ]. While they provide FDR control, it is only valid under some
particular dependence conditions. It would nonetheless be interesting to extend their
work to arbitrary dependence.

In this chapter, the aim was to reliably detect one edge at a time. It would then be
interesting to build upon the proposed edge-centric correlation thresholds to develop
a multiple testing framework so as to provide theoretical control over the estimation
of the connectivity of all pairs of region, perhaps by leveraging existing bootstrapping
techniques (Cai and Liu, 2016).

Finally, it would be valuable to provide practitioners with a way to quantify edge
detection uncertainty. For instance, confidence intervals for each edge of the whole
inferred network could be defined. Some work has been done to determine confidence
intervals for correlation coefficients in the bivariate case, both for underlying normality,
e.g., (Ruben, 1966; Muirhead, 2005), and unknown distributions (Hu et al., 2020). It
would be worth exploring how these methods could build upon our approach to extend
them to a more general case in order to account for dependence.



Appendix

4.A Proof of Proposition 4.3.1

4.A.1 U-scores

Before proving Proposition 4.3.1, we need to introduce U-scores. U-scores are an
orthogonal projection of the Z-scores of random variables. They are confined to an
(n− 2)-sphere centered around 0 and with radius 1, denoted Sn−2, with n the number
of samples. We refer to (Hero and Rajaratnam, 2011) for a full definition. U-scores
namely provide a practical expression of the correlation coefficient as an inner product
of U-scores: RAB

i,j = (UA
i )T UB

j = 1 − ∥UA
i − UB

j ∥2/2, where UA
i , UB

j are the random
variables of the U-scores of voxels i and j in regions a and b, respectively, and ∥.∥2 is the
squared Euclidean distance. Consequently, when U-scores are close to one another on
Sn−2, they are associated with a high correlation.

Intuition behind Proposition 4.3.1. Roughly speaking, Proposition 4.3.1 means that
if the Wasserstein distance between the densities of sample intra-correlation coefficients
is sufficiently large, which means that the two distributions are highly different, then the
average Euclidean distance between U-scores from the two regions is large too. Hence the
average of inter-correlations is quite low. This phenomenon is illustrated in Figure 4.A.1
where two regions with different intra-correlation densities are depicted when n = 3.

4.A.2 Proof of Proposition 4.3.1

Let us first remark:

inf
c∈[0,1]

(
F −1

RA,A(c)− F −1
Rb,b(c)

)2
≤ d2

W (fRA,A , fRb,b) ≤ sup
c∈[0,1]

(
F −1

RA,A(c)− F −1
Rb,b(c)

)2
(4.10)

and as
(
F −1

RA,A − F −1
Rb,b

)2
is continuous on [0, 1], it attains its supremum and infimum.
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Fig. 4.A.1 Sn−2 with n = 3 and U-scores from two regions (red diamonds and orange
discs) that have a high intra-correlation density Wasserstein distance. Recalling that a
high Euclidean distance between U-scores implies a low correlation, we can intuitively
observe that the average inter-correlation is upper-bounded.

Additionally, we can notice that for each c ∈ [0, 1], there exist two points U, V ∈ Sn−2

such that F −1
RA,A(c) = 1 − ∥U − V ∥2/2, and similarly for region b. Moreover, for all

x, y ∈ RA, there exists c ∈ [0, 1] such that, with their corresponding U-scores denoted
Ux, Uy (which are in Sn−2), RA,A

x,y = 1 − ∥Ux − Uy∥2/2 = F −1
RA,A(c), and analogously for

region B.
Therefore, under the assumption min

c∈[0,1]

(
F −1

RA,A(c)− F −1
Rb,b(c)

)2
≥ d, there exist UxA

,
UyA

, UxB
, UyB

∈ Sn−2 such that

min
c∈[0,1]

(
F −1

RA,A(c)− F −1
Rb,b(c)

)2
= 1

4
(
∥UxB

− UyB
∥2 − ∥UxA

− UyA
∥2
)2

,

and it follows for all vA, wA ∈ RA, vB, wB ∈ RB,

d ≤ 1
4
(
∥UxB

− UyB
∥2 − ∥UxA

− UyA
∥2
)2
≤ 1

4
(
∥UvB

− UwB
∥2 − ∥UvA

− UwA
∥2
)2

.

Thus, expanding the term on the right and applying the triangle inequality, followed
by the reverse triangle inequality,

2
√

d ≤ (∥UvB
− UwB

∥+ ∥UvA
− UwA

∥) ·
∣∣∣∣∥UvB

− UwB
∥ − ∥UvA

− UwA
∥
∣∣∣∣

≤ (∥UvB
− UvA

∥+ ∥UvA
− UwB

∥+ ∥UvA
− UwB

∥+ ∥UwB
− UwA

∥) · ∥UvB
− UwB

− (UvA
− UwA

)∥
≤ (∥UvB

− UvA
∥+ ∥UvA

− UwB
∥+ ∥UvA

− UwB
∥+ ∥UwB

− UwA
∥) · (∥UvB

− UvA
∥+ ∥UwB

− UwA
∥)

≤ (∥UvB
− UvA

∥2 + ∥UvB
− UvA

∥ · ∥UwB
− UvA

∥+ ∥UwB
− UvA

∥ · ∥UwB
− UwA

∥
+ ∥UvB

− UvA
∥ · ∥UwB

− UwA
∥)

+ (∥UwB
− UwA

∥2 + ∥UwB
− UvA

∥ · ∥UvB
− UvA
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We can then notice

∥UB − UA∥2 =
 1

pApB

∑
vA∈RA

∑
vB∈RB

∥UvB
− UvA

∥

2

= 1
(pApB)2

∑
hA∈RA

∑
hB∈RB

∥UhB
− UhA

∥2+

1
(pApB)2

∑
hA∈RA

∑
hB∈RB

∑
kB∈RB−{hB}

∥UhB
− UhA

∥ · ∥UkB
− UhA

∥+

1
(pApB)2

∑
hA∈RA

∑
hB∈RB

∑
kA∈RA−{hA}

∥UhB
− UhA

∥ · ∥UhB
− UkA

∥+

1
(pApB)2

∑
hA∈RA

∑
hB∈RB

∑
kA∈RA−{hA}

∑
kB∈RB−{hB}

∥UhB
− UhA

∥ · ∥UkB
− UkA

∥.

Thus ∥UB − UA∥2 ≥ 1
(pApB)2 · (pApB)2

2 · 2
√

d =
√

d. From the Cauchy-Schwarz inequality,

RA,B ≤ 1− ∥U
B − UA∥2

2 ,

which completes the proof.

4.B Proof of Proposition 4.4.2

Let us recall Proposition 4.4.2.

Proposition 4.4.2. For all ρ ∈ [0, 1],

ν̂AB
e (ρ) ≤ ν̂AB(ρ). (4.11)

Proof. Since for all ρ ∈ [0, 1], 0 ≤ F̂|RA,B |(ρ) ≤ 1, then F̂|RA,B |(ρ)pB ≤ F̂|RA,B |(ρ). Thus,
ν̂AB(ρ) = 1− F̂|RA,B |(ρ)pB ≥ 1− F̂|RA,B |(ρ) = ν̂AB

e

4.C Additional insights on νAB

We can derive the following proposition.

Proposition 4.C.1. If, for a fixed i = 1, . . . , pA, all sample inter-correlation coefficients
RA,B

i,j are i.i.d., νAB = ν̃AB.
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Proof. We can first remark max
j∈RB

ϕAB
ij = 1−

pB∏
j=1

(1− ϕAB
ij ). Thus,

E[NAB] =
pA∑
i=1

E[1−
pB∏
j=1

(1− ϕAB
ij )]

=
pA∑
i=1

(1−
pB∏
j=1

E[(1− ϕAB
ij )]) under the assumption of independence.

For a fixed i = 1, . . . , pA, under the assumption all |Ra,b
i,j | are identically distributed, then,

for all j, l = 1, . . . , pB , F|RA,B
i,j | = F|RA,B

i,l
|. Denote, F|RA,B | the distribution function such

that F|RA,B
i,j | = F|RA,B | for all i = 1, . . . , pA, j = 1, . . . , pB. Thus, pA · ν̃AB = E[NAB] =

pA ·
[
1− F pB

|RA,B |

]
= pA · νAB.

4.D Inter-correlation distributions

The effect of intra-correlation on the sample inter-correlation distribution is explored for
additional sets of parameters: either decreasing the number of variables p or increasing
the number of samples n with respect to Figure 4.2. Figures 4.D.1 and 4.D.2 highlight
the fact that the variance decreases for increased intra-correlation is observed no matter
the region or sample size.
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Fig. 4.D.1 Effect of intra-correlation on sample inter-correlation distribution, for different
population inter-correlation values. The correlation samples were computed between all
pairs of variables from two groups. Each group contains n = 500 samples of p = 500 intra-
correlated random variables following a multivariate normal distribution with Toeplitz
intra-correlation (cf. Section 2.2). We can note the higher the intra-correlation, the lower
the variance of the inter-correlation.



4.E Additional intuitions about correlations and U-scores 59

inter=0 intra=0.2

Sample inter-correlation

Fr
eq

ue
nc

y

-0.4 0.0 0.4

0
10

00
20

00

inter=0 intra=0.9

Sample inter-correlation

Fr
eq

ue
nc

y

-0.4 0.0 0.4

0
10

00
20

00

inter=0.2 intra=0.2

Sample inter-correlation

Fr
eq

ue
nc

y

-0.2 0.2 0.6

0
10

00
20

00

inter=0.2 intra=0.9

Sample inter-correlation

Fr
eq

ue
nc

y

-0.2 0.2 0.6

0
10

00
20

00

Fig. 4.D.2 Effect of intra-correlation on sample inter-correlation distribution, for different
population inter-correlation values. The correlation samples were computed between all
pairs of variables from two groups. Each group contains n = 150 samples of p = 150 intra-
correlated random variables following a multivariate normal distribution with Toeplitz
intra-correlation (cf. Section 2.2). We can note the higher the intra-correlation, the lower
the variance of the inter-correlation.

4.E Additional intuitions about correlations and U-
scores

One can turn to the approximate expression of E[NAB] derived in (Hero and Rajaratnam,
2011), which we denote νAB

h . It employs the Bhattacharyya affinity, which quantifies the
overlap between two probability densities and was originally interpreted as a cosine of
the angle between distributions (Bhattacharyya, 1946). In (Hero and Rajaratnam, 2011)
the authors leverage it as a dependency measure between U-scores. It can be reframed
as well, using the law of total probability, as quantifying dependency between pairs of
U-scores from each region of interest, which can be associated with inter-correlation
coefficients. νAB

h is thence maximized when inter-correlation coefficients are independent.
Intuitively, a high intra-correlation when the average inter-correlation is mild will in-
crease the dependence between inter-correlations and decrease the number of discoveries,
which is consistent with Figure 4.3. Furthermore, their proposed approximation νAB

h

is proportional to the number of variables pA and pB. Therefore this phenomenon can
also be explained by the decrease in the effective number of variables observed in the
presence of dependence (Nyholt, 2004). In (Hero and Rajaratnam, 2011) the authors
leverage it as a dependency measure between U-scores. It can be reframed as well, using
the law of total probability, as quantifying dependency between pairs of U-scores from
each region of interest, which can be associated with inter-correlation coefficients. νAB

h is
thence maximized when inter-correlation coefficients are independent. Intuitively, a high
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intra-correlation when the average inter-correlation is mild will increase the dependence
between inter-correlations and decrease the number of discoveries, which is consistent
with Figure 4.3. Furthermore, their proposed approximation νAB

h is proportional to the
number of variables pA and pB. Therefore this phenomenon can also be explained by
the decrease in the effective number of variables observed in the presence of dependence
(Nyholt, 2004). These remarks further highlight the need to take into account the
dependency structures of the variables to reliably detect inter-correlations.

4.F Rat data networks

Figures 4.F.1 and 4.F.2 display the live and dead rat brain networks estimated in Section
4.6 and presented in Table 4.2.

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(a) 20160421_133725

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(b) 20160614_095825

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(c) 20160615_103000

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(d) 20160615_121820

Fig. 4.F.1 Brain functional connectivity networks of four live rats, anesthetized using
Isofluorane, inferred applying our proposed method with quantile-based thresholds. Nodes
represent brain regions and edges connect nodes with a sufficiently high inter-correlation.



4.F Rat data networks 61

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(a) 20160524_153000

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(b) 20160609_161917

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

ACC

Ins_r

APir_r

AU_r

Ent_r

Par_r
M1_rM2_rRSC_r

S1_rS1BF_r

S2_r

TeA_r

V1_r
V2_r

Ins_l

APir_l

AU_l

Ent_l

Par_l
M1_l M2_lRSC_l

S1_lS1BF_l

S2_l

TeA_l

V1_l
V2_l

CPu_r

BG_r

Th_r

Sep_r

H_r

DSC_r

BF_r

HIP_rS_r

CPu_l

BG_l

Th_l

Sep_l

H_l

DSC_l

BF_l

HIP_lS_l

(c) 20160610_121044

Fig. 4.F.2 Brain functional connectivity networks of three dead rats inferred applying
our proposed method with quantile-based thresholds. Nodes represent brain regions and
edges connect nodes with a sufficiently high inter-correlation.
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4.G Additional empirical results about ν̂AB and ν̂AB
e

In this section, we present additional illustrations of our proposed approximations for
the number of discoveries on datasets generated as presented in Section 4.2.2.

In Figure 4.G.1, the inter-correlation is set to 0.3, and can be compared to Figure 4.4.
We can remark how, for a given pair of average intra-correlation values, the number of
discoveries reaches zero at a larger correlation threshold value when the inter-correlation
is larger, which is as expected. To assess the impact of dataset generation variability, ν̂AB

and ν̂AB
e are plotted as a function of the correlation threshold for ten different simulations

(cf. Figures 4.G.2 and 4.G.3). We can observe an increase in the variability of ν̂AB
e when

the intra-correlation increases, which is as expected with regards to Figure 4.2.
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Fig. 4.G.1 Normalized number of discoveries ν̂AB, ν̂AB
e , NAB/pA and NAB

e /pApB as a
function of the correlation threshold for different intra-correlation values ρaa, ρbb and
a 0.3 inter-correlation, with pA = pB = 200, n = 100. The dataset was generated as
described in Section 4.2.2.

4.H Further information about our implementation
and code availability

Our implementation is based on R 4.2.3. All experiments were performed on a laptop
running on Ubuntu 18.04 with eight 1.8GHz 64-bits Intel Core i7-10610U CPUs, 32 GB
of memory and a 1 TB hard drive. Our source code can be found at https://gitlab.inria.
fr/q-func/csinference.

https://gitlab.inria.fr/q-func/csinference
https://gitlab.inria.fr/q-func/csinference
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Fig. 4.G.2 Normalized number of discoveries ν̂AB, ν̂AB
e , NAB/pA and NAB

e /pApB as a
function of the correlation threshold for different intra-correlation values ρaa, ρbb and 10
different simulations. The inter-correlation is 0, with pA = pB = 200, n = 100. The ten
datasets were generated as described in Section 4.2.2.
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Fig. 4.G.3 Normalized number of discoveries ν̂AB, ν̂AB
e , NAB/pA and NAB

e /pApB as a
function of the correlation threshold for different intra-correlation values ρaa, ρbb and 10
different simulations. The inter-correlation is 0.3, with pA = pB = 200, n = 100. The ten
datasets were generated as described in Section 4.2.2.





Chapter 5

Topological Data Analysis for
Spatially-Informed Weighted
Network Comparison
Multiscale and Multi-Density Comparison of
Functional Brain Networks Through Label-Informed
Persistence Diagrams

In Chapter 4 we introduced a novel binary network inference pipeline that accounted
for dependency structures within nodes. Nonetheless, in some applications, handling
weighted networks, and notably circumventing thresholding steps, may be preferred over
manipulating their binary counterparts. Chapter 5 hence leverages both topological data
analysis and regional label information to propose a multi-scale comparison of weighted
connectivity networks. The effectiveness of this approach is illustrated via a comparison
of comatose and healthy subjects, and of real-world data against null models. The latter
could also be seen as way to assess the quality of estimated networks by ensuring they
capture meaningful information beyond mere noise.

This contribution is based on the following contribution, which is in the process of
being submitted to a journal.
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Sitoleux, P., Carboni, L., Lbath, H., and Achard, S. (in preparation 2023). Multiscale
and multi-density comparison of functional brain networks through label-informed
persistence diagrams

5.1 Introduction

Networks are widely used to model brain functional connectivity and have been char-
acterized via the various tools and concepts from graph theory and network sciences
(Sporns, 2022), such as small-worldness (Achard and Bullmore, 2007), degree distribution,
or rich-club coefficient. As previously seen, the correlation of averages (ca) approach
is widely used to define functional brain networks. It requires parcellating the rs-fMRI
signal with a predefined anatomical atlas, giving us the N nodes of the graph (Stanley
et al., 2013). For each node, the rs-fMRI time series is estimated to be the average
of voxel activity in the corresponding parcellated region. Each pair of nodes is then
correlated to yield a dense adjacency matrix. One then generally applies a threshold,
in order to obtain a sparse binary graph (Bassett and Bullmore, 2006; Bordier et al.,
2017; Theis et al., 2021; Achard and Bullmore, 2007). As explored in Chapter 4, an
important issue with this approach is the choice of a threshold. The latter can be based
on correlation distribution properties, as we did in the previous chapter, average degree,
connectivity (Couto et al., 2017), graph regime, multiple testing, or to optimize a metric
such as discrimination accuracy (Zanin et al., 2012), etc. To avoid this, analyses can be
conducted at multiple density levels (Kartun-Giles and Bianconi, 2019). In this chapter,
density is understood as the proportion of edges present in the graph compared to the
maximum possible number of edges. However, there is a lack of attention to multi-density
approaches exploring and summarizing information in functional brain networks.

Moreover, purely graph-based methods are often limited to global or local statistics,
only presenting information at the scale of the whole graph or of a single node neighbor-
hood (Sizemore et al., 2019). Persistent homology is a topological data analysis (TDA)
approach that produces multiscale summaries from a point cloud or a distance matrix.
Persistent homology tracks homological features, in short, the number of connected
components and the number of topological cavities (equivalent to a circle or a hollow
sphere in dimensions 1 and 2, or to higher dimensional cavities), by building simplices.
This is a way to look at structures in the graph that are orders higher than the dyadic
relationships the edges of the graph represent (Torres et al., 2021). The interest in
higher-order interactions has taken off in recent years, whether in the broader context of
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complex systems modeling (Battiston et al., 2020, 2021) or in structural (Andjelković
et al., 2020) or functional brain networks (Gatica et al., 2021; Herzog et al., 2022; Gatica
et al., 2022), with notable findings in aging and neurodegenerative disorders. Another
argument that has been advanced in favor of persistent homology is that it is easily
applicable to biological data, which is often highly dimensional and lacks a natural
concept of distance (Carlsson, 2009). For instance, in neuroscience networks, it has
been applied to differentiate healthy subjects and subjects with neural disorders (Lee
et al., 2012; Chung et al., 2015; Caputi et al., 2021), study the influence of psychotropic
substances and sedatives (Petri et al., 2014; Varley et al., 2021) or to analyze neuronal
network simulations (Reimann et al., 2017; Bardin et al., 2019).

One of the main goals of functional connectivity network studies is detecting and
recognizing brain dysfunctions related to pathological conditions. Indeed, functional
networks offer a unique way of extracting new noninvasive biomarkers (Hallett et al., 2020)
that provide powerful understanding of physio-pathological mechanisms. Recognizing
a given pathology by analysis of the functional connectivity requires graph comparison
distances, similarities functions, or statistical tools, such as efficiency, small-worldness,
global or nodal statistics (Carboni et al., 2023), spectral graph analysis, or edit distances
(Mheich et al., 2020). For this purpose, it is fundamental to be able to precisely quantify
whole-brain variations that can arise in different cohorts, probing the influence of age
difference, state of consciousness, or neurological disorders. To show the benefit of our
proposed framework in real data applications, we consider functional networks of co-
matose patients. Discriminating between subjects within different states of consciousness
using functional networks is a difficult task: previous work did not detect significant
modifications in graph metrics between comatose patients and healthy controls, but what
appears to be a reorganization of network hubs (Achard et al., 2012b). Here, we propose
a new distance among brain networks that combines homological features and regional
information.

We are particularly interested in applications of TDA in functional brain networks.
To that end, we consider null models, which generate surrogate inter-correlation matrices
as benchmarks of real data. This permits the identification of relevant features captured
by a persistent homology approach in brain connectivity. Null models are ubiquitous in
network neuroscience (Váša and Mišić, 2022). For instance, they allow one to test the
statistical significance of graph features of empirical networks against a null hypothesis,
given by the choice of a null model. Furthermore, null models which can be tuned
to reproduce a specific graph layout offer a tool for comparing graph distances and
understanding which properties they capture.
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In this work, we present applications of persistent homology that allow insights into
functional brain connectivity networks without requiring an arbitrary threshold choice to
obtain binary graphs. Persistent homology is newly applied to a density-adjacency matrix
to probe its ability to discriminate between real data and surrogate data generated from
null models, as well as between a set of healthy subjects and comatose patients. However,
while persistent homology summaries are multiscale, they forego critical information: the
identity of nodes and edges. Indeed, these summaries, such as the persistence diagram
or Betti curves,do not depend on the labeling of nodes. We hence introduce distances
taking into account the node labeling, and explore them in the above-mentioned tasks.

This chapter explores four main directions: (i) a novel density-based filtration, (ii)
label-informed distance on persistence diagrams, useful in non-permutation invariant
settings, (iii) application to null-models and comatose-control discrimination, and (iv)
gain insights on the construction of null models from real brain data.

5.2 Materials and methods

5.2.1 Data

We consider a set of resting-state functional networks from the Human Connectome
Project (HCP) (Essen et al., 2012) to investigate the general properties of topological
features of brain graphs. To investigate how significant these features are, attempts will
be made to cluster a second dataset of 20 healthy controls and 17 patients in a comatose
state (Achard et al., 2012b) (8 patients were dropped due to excessive head motion). The
patients were between 21 and 82 years old, had an initial Wessex Head Injury Matrix
(WHIM) score between 1 and 37 (on a scale that goes from 0, meaning deep coma, to 62,
meaning full recovery), and were scanned between 3 and 32 days after the acute medical
event. Twelve of them fell into a coma following a cardiac and respiratory arrest, two
after going into hypoglycemia, two after a gaseous embolism and one after an extracranial
arterial dissection. Six months following their fall into a coma, 9 patients had died, 5
remained in a vegetative state and 3 made a recovery.

Data were corrected for head motion and co-registered with the subject’s structural
MRI images. This allowed mapping fMRI images to a customized parcellation template.
The data were not spatially smoothed and, unless specified, did not undergo any cere-
brospinal fluid, white matter, or gray matter regression. The process needed to go from
raw blood-oxygen-level-dependent (BOLD) image sequences to a meaningful functional
connectivity graph comprises multiple steps, each with its set of assumptions and conse-



5.2 Materials and methods 69

quences on the final network. For example, in the case of global signal regression, that is,
regressing over average of the whole image, it has been established that one has to make
a choice between discarding some neural signals and keeping non-neural nuisances (Liu
et al., 2017b).

5.2.2 Functional connectivity network construction

The measurements were parcellated into N = 90 regions using the Automated Anatomical
labeling (AAL) template (Tzourio-Mazoyer et al., 2002). For each region, the time series
were aggregated by averaging over all voxels, weighted by the proportion of gray matter
in each voxel (estimated through structural MRI) and corrected for head motion. Inter-
correlations were then estimated between all pairs of region-averaged time series.

5.2.3 Functional connectivity network representation

A graph G = (V, E) is a collection of nodes or vertices V and edges linking those vertices,
i.e., each element in E is an element of V × V . There is a range of ways to represent a
graph, here it will be represented by its adjacency matrix, usually denoted A. To avoid
any possible confusion, pairs of nodes, i.e., brain regions, will be denoted i, j in this
chapter, as opposed to A, B in all the other chapters of this thesis. An adjacency matrix
is a symmetric matrix where each off-diagonal element aij is a weight, representing a
chosen attribute of the relation between nodes i and j.

Using the inter-correlation matrix between the inter-regional correlation coefficients
C, we construct the graph adjacency matrix A:

A = 1− |C|. (5.1)

To neutralize the effect of inter-subject fluctuations in the values of the inter-
correlations, an alternative matrix can be defined by considering the density-based
adjacency matrix Ã, computed using the level of edge-appearance as follows:

ãij = 2uij

N(N − 1) , i ̸= j, (5.2)

where ãij is the normalized index of the uij
th off-diagonal element of matrix A, ordered

according to the absolute value of the inter-correlations. In this new matrix, the order
between each off-diagonal element is respected, but these new values are spaced at a
constant interval 2

N(N−1) .



70 Topological Data Analysis for Spatially-Informed Weighted Network Comparison

5.2.4 Null models for functional connectivity

Null models are an ubiquitous tool in network neuroscience (Váša and Mišić, 2022).
By offering a way to generate networks according to a simplified model, they allow
benchmarking of the properties of empirical networks against the null hypothesis provided
by a given model.

Comparing null models and empirical functional connectivity allows for the apprecia-
tion of null model properties and improved understanding of the information captured
by various distances. Here, four null models for correlation networks are presented, each
conserving some features from an initial functional connectivity matrix (Váša and Mišić,
2022). First, we consider the Zalesky matching algorithm, which generates correlation
matrices with a given average correlation and variance between correlations (Zalesky
et al., 2012). This is achieved through generating an N + 1 normally distributed random
vectors of length T xi, y ∼ N (0, I) (i ∈ {1, . . . N}), with I the T -dimensional identity
matrix. Then, the values of xi are repeatedly adjusted as xi ← xi + ay until the desired
average correlation between the vectors is obtained. The process is repeated with a
different number of time points T until the correlation variances also match.

As a second model, we consider a spatio-temporal approach that generates time series
imitating spatial and temporal autocorrelation from the regional time series of a given
scan of a subject (Shinn et al., 2023).

The last two null models are a phase randomization model, generating new time
series where each regional time series has the same power spectrum, and an Erdös-Rényi
model, where each correlation value is randomly distributed.

5.2.5 Persistent homology

Persistent homology is a mathematical formalism from the larger field of topological
data analysis, that allows the production of multiscale summaries of point cloud or
graph distance matrices (Chazal and Michel, 2021), such as Betti numbers and persistent
diagrams.

Starting from a distance matrix, simplicial complexes are built, using a rule denom-
inated filtration, at each possible scale in the matrix. At each step, the appearance
and disappearance of topological features are tracked. These features correspond to
the dimension of pth homology group (Croom, 1978), with p a non-negative integer.
Essentially, the number of 0-dimensional features is the number of connected components,
and higher dimensional ones represent topological cavities: 1-dimensional features are
circle-like, 2-dimensional features are hollow sphere-like, and so on.
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For a set of k + 1 vertices {v0, v1, . . . , vk}, the k--dimensional abstract simplex or
k-simplex is the set containing all nonempty subsets of vertices. A simplex σk is a face of a
simplex σn, k < n means that each vertex of σk is a vertex of σn. For example, 0-simplex
is a single point, a 1-simplex is an edge linking two points, a 2-simplex is a triangle with
its three edges and three points as 1 and 0-faces, a 3-simplex is a tetrahedron, etc.

A simplicial complex K is a finite set of properly joined simplices, i.e., each intersection
of two simplices is either a face of both or empty, and where each face of a member of K

is also a member of K. The dimension of K is the largest positive integer r such that K

has an r-simplex. 5.2.1 presents a 3-dimensional simplicial complex

0-simplex

1-simplex

2-simplex

3-simplex

Fig. 5.2.1 A simplicial complex of dimension 3.

For a given simplicial complex, the number of k-dimensional holes or features is called
the kth Betti number, denoted βk. Formally, βk is the dimension of the kth homology
group Hk, which is itself the quotient of the kth cycle group Zk with the kth boundary
group of the given simplicial complex:

βk = dim(Hk) = dim
(

Zk

Bk

)
. (5.3)

In short, this means that βk counts the number of k + 1-dimensional volumes that are
enclosed by, at least, a k-dimensional cycle that does not correspond to the boundary
of a simplex of the given simplicial complex, with β0 counting the number of connected
components of the simplicial complex. Therefore, in 5.2.1 the simplicial complex has
β0 = 1, since it has a unique connected component, β1 = 1 with the non-filled central
cycle 1 and βk = 0 for k ≥ 2.
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In persistent homology, there is some freedom in how simplices are built. For its lower
computational cost relative to the other options, in this work, and in most persistent
homology applications, the Vietoris-Rips filtration is used. In this setting, a simplex is
in the relevant simplicial complex if all its 1-faces or edges are. Edges are successively
added to the simplicial complex when the corresponding value in the adjacency matrix is
equal to or lower than the given filtration parameter. In this work, instead of using inter-
correlation values, the homology groups are computed at each scale of the density-based
adjacency matrix.

A way to present this topological information is to plot the Betti curves of the Betti
numbers against the filtration values, which can be either inter-correlations or density
levels. Another way is to plot the death values of features against their birth values. This
yields a persistence diagram.

Let us consider the following example. The first row of 5.2.2 presents simplicial
complexes with β0 = 1 and β1 = 0. In all those three cases, there exists at least one
cycle, but each corresponds to the boundary of a simplex. For the second row, each
simplicial complex has β1 = 1. The first two have a unique representative: ABCD and
ABCDEFGHIJ, while the last one has multiples, with two of them disjoint: ACEGI and
BDFHJ. This illustrates both the robustness of persistent homology with regard to the
general structure and the limitations of its discriminative power.

From the examples given here, it also seems that β1 > 0 is a signature of a relatively
low clustering coefficient, i.e., the proportion of possible triangles. This shows how these
features could be significant. Taking the analogy of friendship networks, it means that
there is a cycle of length 4 with some gap with A and C both being friends with B and
D, but neither A and C or B and D are. This might indicate either a pure coincidence or
some hidden organizational principle.

5.2.6 Comparing persistence diagrams

We first recall various distances between persistence diagrams.
The p-Wasserstein distance between measures µ, ν, p ∈ [1,∞[ is

Wp(µ, ν) =
(∫

X ×X
c(x, y)p dπ(x, y)

)1/p

(5.4)

where π(x, y) is the optimal coupling between µ and ν under cost c(·, ·)p. In these
works, the focus is mainly on the 1-Wasserstein distance.
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Fig. 5.2.2 Examples of graphs with different Betti numbers. On the top row, they have
β1 = 0 while those on the bottom have β1 = 1.

Another common option is the bottleneck distance, which is the p→∞ limit of the
p-Wasserstein distance:

Bo(µ, ν) = lim
p→+∞

Wp(µ, ν). (5.5)

For a, b two discrete distributions, the optimal transport distance can be expressed as

dOT(a, b) = γ∗
ab = arg min

γ∈Rm×n

∑
i,j

γijMij (5.6)

such that γI = a, γT I = b, γ ≥ 0 and with M the cost matrix defining the cost of
moving the histogram bin ai to bin bj, I the identity matrix of the relevant dimension.

We now introduce a label-informed distance on persistence diagrams, by designing a
novel cost matrix. First, we list edges {{ek[i]}i∈{1,...,nk}} which correspond to the birth
or death of a the kth homological feature in the persistence diagrams, where nk is the
number features. Next we choose a simple binary cost matrix defined as follows:

M∗
ij =

0 if e[i] = e[j]
1 otherwise

(5.7)
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We define the edge comparison optimal transport distance as the optimal transport
distance dOT where M = M∗:

de,k···(a, b) = arg min
γ∈Rm×n

∑
i,j

γijM
∗
ij, (5.8)

where k · · · denotes the included homological features. It should be noted that this is an
approach that is similar to the fused Gromov-Wasserstein distance (Titouan et al., 2019;
Vayer et al., 2020), applied to a labeled persistence diagram instead of a labeled graph.
Fused Gromov-Wasserstein takes into account both labels and graph structure by taking
a weighted sum of two terms representing each aspect. The label term is equivalent to
the distance introduced here for a general cost matrix M .

In the following, the persistence diagrams and the Wasserstein distances between
them are computed using giotto-tda, with an error tolerance of 0.01 (Tauzin et al., 2020).
The optimal transport distance dOT between the persistence diagram is computed with
the POT package (Flamary et al., 2021).

5.2.7 Comparing edges of labeled graphs

A simple distance between labeled graphs would be to look at the Frobenius norm of the
difference of adjacency matrices P, Q.

dF(P, Q) = 1
2
||P −Q||F
||P ||F + ||Q||F

(5.9)

with ||P ||F =
[∑

i,j p2
ij

]1/2
the Frobenius norm of matrix P (with a normalization

factor to facilitate its interpretation).
In the context of thresholded graphs, node labels can be used to compare graphs. For

A,B two sets, the overlap similarity is

Overlap(A,B) = |A ∩ B|
min(|A|, |B|) (5.10)

and the overlap distance

dO(A,B) = 1−Overlap(A,B). (5.11)

In our setting, A,B correspond to two sets of node label pairs, associated to edges in the
thresholded graph.
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5.2.8 Quantitative class comparison

In order to have a more quantitative understanding of the various distances presented
here we evaluate them in a class comparison task. To that end, we use common clustering
algorithms. The distance matrix structure makes it complicated to find groups if one
only considers pairwise distances. To counteract this issue, the distance matrix are
treated as if it were a matrix of observations. While debatable, this approach allows
exploring this kind of class structure using simple and proven clustering algorithms:
KMeans, hierarchical clustering with complete linkage, and spectral clustering on the
nearest-neighbors graph (Pedregosa et al., 2011).

The performance of the class comparisons are evaluated using the adjusted mutual
information (AMI):

AMI(X; Y ) = I(X; Y )− E [I(X; Y )]
max(H(X), H(Y ))− E [I(X; Y )] (5.12)

where H(X) is the Shannon entropy of the random variable X and I(X; Y ) the
mutual information between random variables X and Y . The AMI takes values 1 for a
perfect identification and has an expected value of 0 for a random assignment of labels
(Vinh et al., 2010).

5.3 Results

5.3.1 Density-based adjacency matrix

In this section, we first compare the correlation- and density-based adjacency matrices on
real-world data. The plot of the inter-subject Frobenius distance for the coma cohort is
depicted in 5.3.1. In the upper diagonal, which corresponds to the density-based matrices,
a clear separation between the comatose and healthy subjects is apparent. However, the
two groups cannot be distinguished when using the correlation-based adjacency matrices.

By varying the density of the graphs, one can also determine an optimal density
threshold value at which groups can be clustered. To that end, we apply clustering
algorithms on the overlap distance. Moreover, comparing different densities provide
insights on the underlying structure of different graph groups. For healthy subjects
and comatose patients, the results are presented in 5.3.2a, and in 5.3.2b for random
graphs compared with healthy controls and comatose patients. Random graph adjacency
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Fig. 5.3.1 Frobenius distances on the coma dataset. Lower diagonal: normalized Frobenius
norm for correlation adjacency matrices A. Upper diagonal: normalized Frobenius norm
for density-based adjacency matrices Ã.

matrices are generated as symmetric matrices, with normal independent and identically
distributed (i.i.d.) off-diagonal elements.

At lower densities, it is obviously impossible to cluster between groups. Starting
from a density of ∼ 10−3—which corresponds to a four-edge graph—the different chosen
algorithms improve and, eventually, cluster groups perfectly for all problems with a
relatively low density. Here, the fMRI measurements of the comatose patients stray
markedly away from the healthy controls and appear collectively closer to each other
than to the random graphs (see 5.3.1). But when individually comparing these two
groups with random graphs, more edges are required to discriminate comatose patients
from random graphs than healthy subjects from random graphs.

When comparing functional brain graphs to random graphs, this gives an estimate of
the scale at which the structure starts to fade away. For non-random graphs, it gives the
scales at which the variations get drowned in the noise.

5.3.2 Betti numbers

Figure 5.3.3 presents the Betti curves of the different rs-fMRI inter-correlation matrices
and their null models using the density-based filtration, which does not require any
thresholding step. The latter are presented in the first two rows.
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Fig. 5.3.2 Adjusted mutual information score (AMI) for density edge overlaps: (a) 20
healthy controls and 17 patients in a comatose state (b) 20 healthy controls and 17
random matrices (symmetric, with normal i.i.d. off-diagonal elements).

Null models. Both Erdös-Rényi and phase randomization models exhibit fast percola-
tion, reaching a single connected component at low density (Figure 5.3.3a). The β1 and
β2 curves also have similar behavior, with a localized peak where the maximal value is
slightly lower for the phase randomization model (Figure 5.3.3b and Figure 5.3.3c). The
Zalesky and spatio-temporal models exhibit slightly different behavior, with a slower
decrease in the β0 curve (Figure 5.3.3d), particularly in the case of the spatio-temporal
model. The β1 and β2 features are on average more present in the Zalesky graphs than
in the spatio-temporal graphs, and tend to appear at lower densities in the former than
in the latter (Figure 5.3.3e and Figure 5.3.3f).

Betti numbers hence seem to capture some characteristics that are specific to each
null model.

Real data. Betti curves highlight the importance of the preprocessing of brain graphs,
and synthesize how it influences the dependencies of the large number of random variables
at play. Here, we compare three preprocessing strategies. The first (HCP) corresponds
to only taking the wavelet correlation between time series, while the other ones include a
regression on white matter and cerebrospinal fluid (WM & CSF), with the last adding
global signal regression (GSR), which are common preprocessing step. For β0, additional
signal regressions make the curve fall faster, meaning that fewer regions are poorly
connected to the main connected component (Figure 5.3.3g). For β1, β2, the curves follow
each other at low and high densities but reach higher maxima (Figure 5.3.3h and Figure
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Table 5.3.1 Graph density thresholds at which each clustering algorithm starts and stops
to cluster the relevant groups perfectly. coma+/coma- correspond to the smallest/highest
density threshold which perfectly identifies healthy and comatose subjects. randh+/randh-
are analogously defined for random graphs and healthy subjects. randc+/randc- similarly
corresponds to random graphs and comatose subjects.

k-means hierarchical spectral
coma+ (1.3± 0.1) · 10−2 (8.8± 0.3) · 10−3 (1.68± 0.01) · 10−2

coma- 0.81 0.79 0.75± 0.02
randh+ (2.3± 0.3) · 10−3 (1.7± 0.3) · 10−3 (1.4± 0.3) · 10−3

randh- 0.87 0.90 0.97
randc+ (1.3± 0.1) · 10−2 (1.0± 0.1) · 10−2 (4.9± 0.1) · 10−2

randc- 0.79 0.70 0.75

5.3.3i). However, it seems that there is an important variability in the number of features,
making it hard to reach conclusions that could be generalized over the entire cohort.

For the healthy subject/comatose patient cohort, there are limited deviations between
the mean Betti curve and they are restricted to some density intervals (Figure 5.3.3j,
Figure 5.3.3k, Figure 5.3.3l). However, the shape of the confidence interval for the coma
class indicates that there are some patients who present Betti numbers noticeably higher
than that of the class average and are probably driving it up.

Finally, it seems Betti numbers mostly capture preprocessing differences, and are not
sufficient to clearly identify the different groups.

5.3.3 Persistence diagrams

With the mean Betti curves having shown their ability to capture some variability be-
tween the different classes of empirical and simulated networks, this section explores the
possibilities offered by standard optimal transport distances between persistence diagrams.

Examples of persistence diagrams are presented in Figure 5.3.4. The Erdös-Rényi
model and the phase randomization model show a large number of β1, β2 features, clear
separation between the different feature scales where the β1 or β2 features dominate,
and important variations in the lifetime of the different features. The example of an
HCP subject, comatose patient, spatio-temporal and Zalesky model all exhibit similar
behavior: fewer features with most of them having a short lifetime, and fuzzier separation
between β1 and β2-dominated scales.



5.3 Results 79

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

nu
ll 

m
od

el
s 1

a 0
phase randomisation erdos-renyi

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

b 1
phase randomisation erdos-renyi

0.0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500
c 2

phase randomisation erdos-renyi

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

nu
ll 

m
od

el
s 2

d
spatiotemporal zalesky

0.0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40
e

spatiotemporal zalesky

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

f
spatiotemporal zalesky

0.0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

pr
ep

ro
ce

ss
in

gs

g
HCP WM & CSF reg. GSR

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25
h

HCP WM & CSF reg. GSR

0.0 0.1 0.2 0.3 0.4 0.5
0.0

2.5

5.0

7.5

10.0

12.5

15.0 i
HCP WM & CSF reg. GSR

0.0 0.1 0.2 0.3 0.4 0.5
density

0

20

40

60

80

co
nt

ro
ls/

co
m

a

j
controls coma

0.0 0.1 0.2 0.3 0.4 0.5
density

0

5

10

15

20

25
k

controls coma

0.0 0.1 0.2 0.3 0.4 0.5
density

0

5

10

15

20

25 l
controls coma

Fig. 5.3.3 From left to right: Betti curves for β0, β1 and β2. (a) (b) (c) Null model
Betti curves: phase randomization and Erdös-Rényi (d) (e) (f) Null model Betti curves:
spatio-temporal and Zalesky (g) (h) (i) Empirical functional connectivity in HCP subjects
with different preprocessings, (j) (k) (l) healthy subjects and comatose patients. Shaded
areas give a 95% confidence interval around the mean βi value at the given density.

Furthermore, we consider the distance between persistence diagrams without label
information (cf. Figure 5.3.5). For the healthy subject and comatose patient cohort, the
1-Wasserstein distance does not capture the difference between the two groups. Most
subjects and patients seem equidistant to each other, with a handful of outliers being a
greater distance away from the main group. The bottleneck distance presents a similar
behavior.

Meanwhile, for the null models, the Wasserstein distance clearly allows to discriminate
between three groups: phase randomization, Erdös-Rényi and a third group including
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Fig. 5.3.4 persistence diagrams (a) of functional connectivity of a healthy subject (b) of
a comatose patient (c) of a spatio-temporal null model (d) of a Zalesky null model (e) of
a phase randomization null model and (f) of an Erdös-Rényi model.

Fig. 5.3.5 Upper triangle: Bottleneck distance. Lower triangle: 1-Wasserstein
distance. (a) Distance matrices for 20 healthy subjects and 17 comatose patients and
(b) 10 healthy subjects with 10 realizations of each of the four null models (phase
randomization, Erdös-Rényi , spatio-temporal, Zalesky).
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healthy subjects, spatio-temporal, and Zalesky models. The bottleneck distance only
separates the latter from a single group containing both phase randomization and
Erdös-Rényi models.

5.3.4 Node-label information

It appears that the persistence diagram alone is not enough to identify fine differences in
true functional network data, unlike a simple overlap approach combined with density-
based thresholding. Hence, taking into account the node ordering is essential to effectively
compare functional networks. Thus, we evaluate our proposed node-label informed
distance on the persistence diagrams.

First, we apply the overlap distance to the coma dataset and to null models at a
density of 0.05 (approximately the percolation density in random graphs, but this remains
an arbitrary choice). Results are reported in the upper diagonal of the matrices in Figure
5.3.6. A simple inspection of the distance matrix reveals a high separation between
comatose and healthy subjects. Similarly, in the comparison of null models and real
data, the overlap distance clearly groups apart healthy subjects from the null models.
Nevertheless, this distance does not differentiate between the various null models.

Then, we compute the edge comparison optimal transport distance which is reported
in the lower diagonal of matrices in Figure 5.3.6. The distance is obtained by considering
H0, H1, and H2 homological features. A clear separation between the healthy subjects
and the comatose patients is apparent. Similarly to the overlap distance, the optimal
transport edge comparison distance separates real data from null models. Moreover,
contrary to the overlap distance, our proposal clusters together the phase randomization
and Erdös-Rényi models.

Finally, we quantitatively compare all the considered distances by their reached
adjusted mutual information score (AMI) for the class comparison task in the coma
dataset (See Table 5.3.2).

The overlap, the Frobenius and our proposed edge comparison optimal transport
de,012 de,01 distances all succeed in realizing a perfect separation of the healthy-coma
cohort. However, the standard Wasserstein and Bottleneck distances do not manage to
cluster the data, with an AMI in the order of 0.05. It should also be noted that, even
if some distances are far from being able to separate the two groups, they can still be
noticeably better than random assignments, see Table 5.A.1.

Node label information is hence crucial to high-quality persistence diagram compari-
son.
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Fig. 5.3.6 Optimal transport de,012 between edges of the persistence diagrams (with
β0, β1, β2 features, lower triangle) and overlap distances between edges at density 0.05
(upper triangle), (a) of 20 healthy subjects and 17 comatose patients (left) and (b)
10 healthy subjects with 10 realizations of each of the 4 null models (right, phase
randomization, Erdös-Rényi, spatio-temporal, Zalesky).

5.4 Discussion

5.4.1 Threshold

As far as the authors know, this work is the first attempt to use graph-density weighted
persistence diagrams for the analysis of dense weighted graphs. This original approach
is grounded in our results presented in Figure 5.3.1 where the Frobenius distance of
inter-correlation matrices fails to detect any difference between healthy subjects and
patients. It seems that in functional brain connectivity, inter-correlation rank is more
informative than its value. Commonly, functional connectivity matrices are thresholded
before performing downstream analysis. A common task in neuroimaging research is
to differentiate multiple classes. Thus, the threshold can be defined to optimize the
class separation as it is done in Table 5.3.1. The inter-subject comparison appears easier
when simply defining a distance through the intersection of the edge sets of thresholded,
binary graphs. Yet, this exclusively requires a supervised approach. Indeed, in these
cases, the density threshold needs to be learned on data with known class assignments.
The benefit of this approach is also highlighted by the perfect AMI score of the overlap
distance-based class comparison reported in Table 5.3.2. This is the only distance to
have a perfect score in all three considered algorithms. However, it should be noted that
the distance dO was applied to a thresholded matrix, where the density was chosen to
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Table 5.3.2 Adjusted mutual information score of different distances for the comparison
of healthy subjects and comatose patients. The distances are dO,τ = 0.05 the edge-overlap
distance for thresholded matrices at density level 0.05, dF the Frobenius-distance, Wp the
p-Wasserstein distance between persistence diagrams, Bo the Bottleneck distance between
persistence diagrams, de,k1k2k3 the edge-optimal transport distance on the persistence
diagram with homology features Hk1 , Hk2 , Hk3 .

k-means hierarchical spectral
dO,τ = 0.05 1 1 1
dF 1 0.59 1
W1 0.04 0.04 0.03
W2 0.06 0.06 0.06
Bo 0.06 0.06 0.12
de,012 1 0.32 1
de,0 0.74 0.32 0.74
de,1 0.16 0.06 0.07
de,2 0.05 -0.02 0.05
de,01 0.84 0.41 1
de,12 0.00 0.00 0.25

maximize the AMI. This means these results might not hold in general settings where
the threshold choice is not optimized for the AMI, or in unsupervised cases.

5.4.2 Graph comparison and label information

Recent developments in the study of complex systems and the increase of data that can
be naturally modeled as networks have led to an explosion of graph-centric problems.
From this arises the need to develop approaches to compare graphs, for example, in order
to establish the properties of a given molecule, proteins, etc. Despite the great interest in
graph distances, relatively few methods are engineered to take into account edge and node
labels, compared with the proliferation of permutation invariant distances (Tantardini
et al., 2019). While introducing labeled and weighted edges brings an additional layer to
the task, it allows leveraging alternative approaches in order to quantify graph similarity.

The traditional persistent homology approach allows to compare brain functional
connectivity networks without requiring a threshold choice or supervised data. Indeed,
one of the main arguments for the use of persistent homology is its multiscale approach.
However, classical persistent distances fail to capture the variability between the comatose
patients and healthy subjects (Figure 5.3.5). This might be due to the permutation
invariant representation which does not take into account node labeling. This is especially
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precarious for functional brain networks, where nodes are brain regions and are obviously
distinct from each other.

Moreover, standard methods might be limited to discriminating groups with radically
different underlying graph structures, as it happens for null models in Figure 5.3.5. This
issue can be partially solved by including in the persistence diagram distance the label
information of the edges associated with the appearance and disappearance of each
feature.

This allows a considerable increase in the AMI score, reaching a perfect separation of
the coma and control groups. While it offers an appealing baseline, it remains somewhat
limited from an interpretation standpoint. Nevertheless, the H0 persistence might be
interpreted as an implicit node-wise threshold, where one keeps roughly only the most
significant edge for each node.

5.4.3 Real-world data

Our reported persistent homology results in real data with different preprocessing reveal
the effect of preprocessing on the Betti numbers, and thus on high-order graph structure
(Fig. 5.3.3). This highlights the importance of documenting the applied framework
for inferring brain networks from fMRI time series. This also suggests that studies
on the effect of preprocessing on connectivity require more attention. Our application
to the coma cohort is highly valuable since discriminating between subjects within
different states of consciousness is a difficult task. With the exception of the Frobenius
and traditional persistence diagram distances, all the considered distances manage to
perfectly cluster patients and controls (Figure 5.3.5, Table 5.3.2). Interestingly, the
pairwise distance between patients and controls is approximately the same as the distance
between patients. It would seem that healthy controls are organized along a similar
pattern while comatose patients are not.

5.4.4 Null models

A qualitative comparison of persistence diagrams shows that the Zalesky and the spatio-
temporal model can roughly reproduce the persistent homology of empirical functional
brain networks (Figure 5.3.4). The persistence diagrams of Phase randomization and
Erdös-Rényi models are similar one to another, but markedly different from the others.

This visual inspection is reinforced by the results on the considered distances (Figures
5.3.5,5.3.6). Interestingly, when considering the W1 distance the real data are grouped
together with the Zalesky and spatio-temporal model. This means that real data birth
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and death feature distribution can be approximated by considering a dominant Gaussian
signal and adjusting the noise of individual regions in order to match the inter-correlation
distribution or by capturing limited spatial and temporal auto-correlations from the fMRI
data. Meanwhile, the amplitude of the persistence diagrams appears to vary across real
data and these two models. This leads to high bottleneck distances and prevents grouping
them all together. The opposite is observed for phase randomization and Erdös-Rényi
models: they are grouped together by bottleneck distance and not by W1. Moreover,
they are also gathered by the edge comparison optimal transport, suggesting they might
produce similar label feature distribution.

Both considered label-based distances differentiate the spatio-temporal and Zalesky
null models from empirical data, but not from each other (Figure 5.3.6). This might
be expected for the latter, since it does not take into account any label information
to generate surrogate matrices, but is more surprising for the former. Hence, these
label-dependent distances demonstrate that even null models that input some kind of
spatial information do not reproduce label-dependent behavior.

None of the null models we consider manage to reproduce the real data label organi-
zation. From a quality control perspective, this helps ensure that the inferred networks
carry meaningful information and are not overcome by noise.

5.4.5 Limitations and perspectives

For somewhat large networks, persistent homology stays limited to the lower dimensions,
as the computational cost for computing higher-order features increases exponentially as
it requires finding an arrangement of cliques. Although in this case, as the dependencies
seem strong, finding high-order features would be surprising, it cannot yet be ruled out.
Furthermore, in functional brain networks, first and second-order homology features seem
to be short-lived, limiting the interest in persistent homology, where longer-lived features
are the signature of particular topological invariants and are the main attribute that is
targeted by persistent homology. In short, persistent homology appears to capture some
of the texture of functional brain networks but does not uncover larger-scale organization.

The approach of building simplicial complexes using inter-correlation matrices has been
criticized as a heavily limited framework for the exploration of higher-order interactions
(Rosas et al., 2022). An alternative would be to consider information measures able to
capture synergistic behavior and, either use them to investigate general properties of
the system (Rosas et al., 2019) or to build simplicial complexes using the tricorrelation
and upwards. The second option is strongly limited by the high combinatorial price to
pay, but could be implemented on a restricted set of nodes in the graph. Additionally,
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approaches based on density could solve one of the big issues in studying higher-order
interactions: the lack of an equivalent to correlations. Indeed, there is no equivalent to
the Cauchy-Schwartz inequality for trilinear and higher dimensional forms, and hence,
for example, the co-skewness of 3 random variables:

S(X, Y, Z) = E(X − E(X))E(Y − E(Y ))E(Z − E(Z))
σXσY σZ

(5.13)

is not bounded and its usefulness for building a filtration is not straightforward. If
instead, one looks at the triangle density (or, 2-simplex density), for triangles ordered
using |S|, one would be able to obtain two-dimensional homology that truly takes into
account triadic dynamics (and this stays true for higher-order interactions). In practice,
this could prove beneficial, as it should yield a finer understanding of the dynamics.
Nevertheless, it stays limited by the exponential growth of the number k-simplices when
k increases.

It should also be noticed that these works have been done on a restricted cohort.
While this has not been investigated in this setting, it is becoming more and more
apparent that small sample sizes can have calamitous consequences on the confidence in
results of functional MRI studies (Marek et al., 2022). This presents multiple challenges,
notably the need for analysis procedures that scale well and for an increase in data
availability. One can easily see how problematic this is in the case of comatose patients,
as their ability to give informed consent is at best uncertain (Bruni et al., 2019; White
et al., 2020).

5.5 Conclusion

To the best of our knowledge, our proposed graph-density-based filtration is the first
attempt to include density levels in weighted graph persistent filtration instead of inter-
correlation values. Moreover, we propose to include label information when comparing
non-permutation invariant applications. Particularly, this is required in functional brain
networks where nodes are associated with brain regions and are not perfectly exchangeable.
We evaluate our approach on both real data and null models.

While standard persistent homology fails in discriminating healthy controls from
comatose patients, our label-informed distance addresses this weakness. In this task, our
distance is comparable to simple overlap or matrix distances. Furthermore, our proposal
does not require the choice of an arbitrary threshold and is more informative.
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Finally, these label-dependent distances show that node information included in some
null models does not constrain the model enough to be close to the real data. This
suggests new objectives in the design of null models for brain connectivity.

Although the application of persistent homology for the comparison of functional
brain networks remains limited, it offers some understanding of the role of multiscale
approaches and of higher-order interactions. It also helps to bring new insights about
the importance of integrating node label information for quantitative functional brain
network comparison.





Appendix

5.A AMI Scores for random labels

Figure 5.A.1 presents AMI quantiles of a set of 1.5 · 106 random binary labels of length
37 (matching the number of points in the healthy/coma dataset) with the true data
set labels. Since 1.5 · 106/237 ≃ 10−5, roughly one hundred thousandths of the possible
labelings have been explored. The mean AMI value is ∼ 10−5, providing a useful sanity
check. The maximal value is ∼ 0.66. Figure 5.A.1 a shows that the clustering score stays
close to zero and is inferior to 0.1 before the top 1% assignments.

Leveraging this allows for a finer understanding of AMI values in Table 5.3.2. This
table is reproduced in Table 5.A.1, with instead of the AMI values, the (estimated from
1.5 · 106 samples) probability that a random assignment is better than the predictions
with the given distance matrix and clustering algorithm. Although this shows that
it is relatively rare for those predictions to be completely meaningless (most of them
outperform at least 90 % or 95% of random labelings), they remain inoperative for
practical predictions. This also demonstrates that, for distances that can perfectly
cluster the two groups for one or two algorithms, the other predictions still significantly
outperform random labels.
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Fig. 5.A.1 (a) Plot of the AMI quantiles (b) Plot of the AMI quantiles for quantiles in
the range [1− 10−2, 1− 10−7].

Table 5.A.1 Probability that a randomly sampled label assignment performs better,
with regards to the adjusted mutual information score, on labels predicted by a given
algorithm on the different distance matrices.

k-means hierarchical spectral
dO 0 0 0
dF 0 6.7 · 10−7 0
1-WA 0.10 0.10 0.11
2-WA 5.0 · 10−2 5.0 · 10−2 5.0 · 10−2

Bo 5.0 · 10−2 5.0 · 10−2 9.4 · 10−3

de,012 0 5.8 · 10−5 0
de,0 0 5.8 · 10−5 0
de,1 2.9 · 10−3 5.0 · 10−2 3.6 · 10−2

de,2 5.5 · 10−2 0.82 5.5 · 10−2

de,01 0 1.0 · 10−5 0
de,12 0.32 0.32 3.5 · 10−4



Chapter 6

Clustering-Based Edge Weight
Estimation in Connectivity Networks
Clustering-Based Inter-Regional Correlation
Estimation

We highlighted in Chapter 5 some possible applications of weighted connectivity networks.
Yet, in Chapter 4 we had also started drawing attention to the negative impact of intra-
correlation on the estimation of connectivity network weights, that is, inter-correlation. It
is then all the more essential we use consistent inter-correlation estimators when learning
connectivity networks. Therefore, we present in this chapter a novel non-parametric
estimator of the correlation between grouped measurements of a quantity in the presence
of noise. The challenge resides in the fact that both noise and intra-regional correlation
lead to inconsistent inter-regional correlation estimation using classical approaches. While
some existing methods handle either one of these issues, no non-parametric approaches
tackle both simultaneously. To address this problem, we propose to leverage hierarchical
clustering to gather together highly correlated variables within each region prior to
inter-regional correlation estimation. We provide consistency results, and empirically
show our approach surpasses several other popular methods in terms of quality. We also
provide illustrations on real-world datasets that further demonstrate its effectiveness.

This chapter is based on the following contribution, which was presented at an
international conference and published in a journal.
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Lbath, H., Petersen, A., Meiring, W., and Achard, S. (2022b). Clustering-based
inter-group correlation estimation. In ICSDS 2022 - IMS International Conference
on Statistics and Data Science, Florence, Italy

Lbath, H., Petersen, A., Meiring, W., and Achard, S. (2023). Clustering-based
inter-regional correlation estimation. Computational Statistics & Data Analysis, page
107876

6.1 Introduction

Correlation estimation is integral to a wide range of applications, and is often the starting
point of further analyses. However, data are often contaminated by noise. If data are
additionally inherently divided into separate, and study-relevant groups, inter-group
correlation estimation becomes all the more challenging. Such datasets are often en-
countered in spatio-temporal studies, such as single-subject brain functional connectivity
network estimation, where voxel-level signals acquired via functional Magnetic Resonance
Imaging (fMRI) are grouped into predefined spatial brain regions (De Vico Fallani et al.,
2014). This work is relevant as well to other fields, such as organizational studies, where
individuals are grouped by organization (Ostroff, 1993). As such, we will be using the
words group, region, and parcellation interchangeably. In these contexts, measurement
replicates of each individual element, most often collected across time, are available and
used to compute the sample correlation between different regions. These elements are
grouped according to a parcellation which is fixed and corresponds to a practical reality,
like anatomical brain regions in fMRI studies. As a result, regions could themselves
be inhomogeneous. This work hence aims to estimate inter-regional correlation, later
shortened to inter-correlation, no matter the quality of the parcellation.

However, both noise and arbitrary within-region correlation, later called intra-
correlation, lead to inconsistent inter-correlation estimation by Pearson’s correlation
coefficient (Ostroff, 1993; Saccenti et al., 2020). Indeed, it has been established in various
contexts that correlation is underestimated in the presence of noise (Ostroff, 1993; Matzke
et al., 2017; Saccenti et al., 2020). Furthermore, data are often high dimensional, which
presents a challenge of its own. In practice, including many fMRI studies, variables hence
are commonly spatially averaged by regions prior to inter-correlation estimation (Achard
et al., 2006; De Vico Fallani et al., 2014). Yet, intra-correlation may be weak, which
would lead to overestimation of inter-correlations (Wigley et al., 1984). This phenomenon
may also be compounded by unequal region sizes (Achard et al., 2011). Thus, standard
correlation estimators are not well-suited for the setting of grouped variables under noise
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contamination. Nonetheless, simultaneously tackling noise and intra-group dependence
structures can be quite difficult, especially in a non-parametric setting. Failing to do
so can be especially problematic for downstream analyses. For instance, in functional
connectivity network estimation, a threshold is often applied to sample inter-correlation
coefficients in order to identify edges between brain regions. Under- or over-estimation of
the inter-correlation would then lead to missing or falsely detecting edges.

To address these problems, we present a data-driven, and non-parametric, approach
with an astute intermediate aggregation. First, we propose to gather together highly
correlated variables within each region. To this end, variables are projected onto a
space where Euclidean distance can serve as a substitute to sample correlation, with
lower values of the former corresponding to higher correlations. Hierarchical clustering
with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014) is then applied to
the projected variables within each region, resulting in intra-regional clusters of highly
correlated variables. Within each intra-regional cluster, these variables are next spatially
averaged. For each pair of regions, a sample correlation is then computed for each pair
of cluster-averages from different regions. Our approach hence provides a distribution of
the sample inter-correlations between each pair of regions, containing as many sample
correlations as there are pairs of clusters from the two regions. For a point estimate of
the inter-regional correlation for a given pair of regions, the average of the sample inter-
correlation coefficients can then be considered. We summarize our main contributions as
follows:

• We propose a novel non-parametric estimator of inter-regional correlation that
offsets the combined effect of noise and arbitrary intra-correlation by leveraging
hierarchical clustering.

• Based on the properties of hierarchical clustering with Ward’s linkage, we derive
the limiting behavior of our estimator for an appropriate choice of the cut-off height
of the dendrograms thus obtained.

• We then empirically corroborate our results about the impact of the cut-off height
on the quality of the estimation. We also show our proposed inter-correlation
estimator outperforms popular estimators in terms of quality, and illustrate its
effectiveness on real brain imaging datasets.
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6.2 Related Work

We recall here relevant related work that were first detailed in Chapter 2. In the context
of functional connectivity, the vast majority of papers that build correlation networks first
average signals within each brain region for each time point, before computing Pearson’s
correlation across time, possibly after wavelet or other filtering, e.g., (Achard et al., 2006;
Bolt et al., 2017; Ogawa, 2021; Zhang et al., 2016). Nevertheless, and as mentioned in
the previous section, the correlation of averages overestimates the true correlation when
intra-regional correlations are weak, while high noise may lead to underestimation. It was
also empirically observed in fMRI data that the application of spatial smoothing, which
is a common preprocessing step to reduce the effect of noise, causes the inter-regional
correlations to be overestimated (Liu et al., 2017a).

Several methods tackling the impact of intra-correlation on the estimation of inter-
correlation have been proposed in familial data literature, e.g., (Elston, 1975; Rosner
et al., 1977; Srivastava and Keen, 1988; Wilson, 2010). These approaches nonetheless do
not address the impact of noise. Moreover, they require normality assumptions on the
samples, while we provide consistency guarantees for our proposed estimator that do not
require parametric assumptions on the signal distribution. Bayesian inference methods
have been proposed to offset the effect of measurement errors (Matzke et al., 2017).
However they require a careful choice of priors, in addition to only handling pairs of
variables, as opposed to groups of variables—which is what we are interested in. Robust
correlation estimation has also been extensively investigated but mostly for specific
distributions, such as contaminated normal distributions (Shevlyakov and Smirnov, 2016)
or with heavy tails (Lindskog, 2000), whereas we are interested in robustness to noise
and weak intra-group dependence. Furthermore, groups of variables are not considered
either. Cluster-robust inference in the presence of both noise and within-group correlation
has been studied in the econometric literature (Cameron and Miller, 2015). However,
inter-correlation, which is the quantity we aim to estimate in this work, is assumed to be
zero. To the best of our knowledge, we are the first to propose a method to simultaneously
tackle the impact of noise and within-group inhomogeneity to estimate inter-correlation
in a non-parametric fashion.

6.3 Preliminaries

From this point forward, and without loss of generality, we will focus on spatio-temporal
contexts. In particular, we are motivated by an application to brain fMRI data where
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individual observed variables correspond to blood-oxygen-level-dependent (BOLD) signals
that are assigned to voxels, and are grouped by regions. Nonetheless, the following results
can be applied to any dataset of grouped measurements of a quantity. In this section we
define our notation and model, together with the inter- and intra-correlation coefficients.

Throughout this chapter we consider two regions, generically denoted A and B. In
reality, datasets will involve a potentially large number of regions but, for the purpose of
correlation network construction, the correlations can be estimated in a pairwise fashion
at the regional-level. Let XA

1 , . . . , XA
i , . . . , XA

NA
denote NA spatially dependent latent

(unobserved) random variables in region A, each variable corresponding to an individual
voxel in that region. Let ϵA

1 , . . . , ϵA
i , . . . , ϵA

NA
represent random noise variables. We assume

that the latent process XA
i at each voxel i is contaminated by noise ϵA

i , so that the
observed variables Y A

i in region A are

Y A
i = XA

i + ϵA
i , i = 1, . . . , NA. (6.1)

We assume within-region homoscedasticity of both signal and noise, i.e.,

σ2
A = Var

(
XA

i

)
, γ2

A = Var
(
ϵA

i

)
, i = 1, . . . , NA.

Analogously we define NB, XB
j , ϵB

j , Y B
j , σ2

B and γ2
B, for region B and voxels j = 1, . . . , NB.

We assume the noise variables are spatially uncorrelated both within and across regions,
and that they are also uncorrelated to the latent state both within and between regions.

A critical reality of the observed data is the intra-correlation or Pearson’s correlation
between any pair of random variables within a given region A. We denote by ηA

i,i′ the
intra-correlation of the latent variables XA

i , XA
i′ . We place no further constraints on

the intra-correlation structure. Similarly, we define the inter-correlation as Pearson’s
correlation between any pair of random variables from two distinct regions. For a given
pair of distinct regions, A, B, the inter-correlation between any pair of latent random
variables XA

i , XB
j is assumed to be constant across voxels, and is denoted as ρA,B.

Consider now n temporally independent and identically distributed (i.i.d.) samples
of all observed signals. That is, for each region A and voxel i = 1, . . . , NA, we have
n i.i.d. observations Y A

i (t), t = 1, . . . , n, each distributed as in (6.1) with the same
intra- and inter-correlation properties as those outlined previously. In particular, for any
time point t = 1, . . . , n, and voxels i and j from distinct regions A and B, respectively,
Cov(Y A

i (t), Y B
j (t)) = ρA,BσAσB. Denote by YA

i = [Y A
i (1), . . . , Y A

i (t), . . . Y A
i (n)] the

vector of observations for the i-th voxel of region A.
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6.4 Proposed Inter-Correlation Estimator

After defining the sample correlation coefficient in Section 6.4.1, we highlight in Section
6.4.2 the impact of the combined presence of noise and intra-correlation, when using
popular estimators of inter-correlation. In Section 6.4.3 we then propose an inter-
correlation estimator that limits these effects. Consistency of our estimator is proved in
Section 6.4.4.

6.4.1 Computing sample correlations

We denote by Ĉor(·, ·) the sample (Pearson’s) correlation between any two equal-length
vectors of samples. This corresponds to the zero-lag empirical cross-correlation in spatio-
temporal studies. To be specific, suppose a, b ∈ Rn are any vectors of the same length,
and let a = n−1∑n

t=1 at and b = n−1∑n
t=1 bt be the averages of their elements, respectively.

Let 1n be the n-vector of ones, ac = a − a1n, and bc = b− b1n their centered versions.
With ⟨·, ·⟩ and ∥·∥ being the Euclidean inner product and norm, respectively, we define

Ĉov(a, b) = n−1⟨ac, bc⟩, V̂ ar(a) = n−1 ∥ac∥2 , Ĉor(a, b) = Ĉov(a, b)√
V̂ ar(a)V̂ ar(b)

. (6.2)

Using this notation, the sample correlation between any two voxels i and j in regions
A and B is

RA,B
i,j = Ĉor(YA

i , YB
j ). (6.3)

Observe that this definition applies equally to sample inter-correlations (A ̸= B) as well
as intra-correlations (A = B).

6.4.2 Impact of noise and intra-correlation

Previously, Matzke et al. (2017) showed that the presence of noise attenuates the observed
correlation. Indeed, this phenomenon is captured in the following result: from model
(6.1) and Achard et al. (2020), RA,B

i,j converges almost surely to

Cov(Y A
i , Y B

j )√
(σ2

A + γ2
A) · (σ2

B + γ2
B)

=
Cov(XA

i , XB
j )√

(σ2
A + γ2

A) · (σ2
B + γ2

B)
. (6.4)

Therefore, if distinct regions A,B with latent signals observed contaminated by noise,
RA,B

i,j is not a consistent estimator of true inter-correlation ρA,B due to the presence
of the noise variances in the denominator of (6.4). Furthermore, in settings where a
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single point estimate of the inter-correlation of the unobserved latent signal between
two regions is needed, the corresponding pairwise sample inter-correlation coefficients
can be averaged to provide an estimator. Denoted rAC

A,B, it corresponds to the ensemble
estimator in familial data literature (Rosner et al., 1977):

rAC
A,B = 1

NA ·NB

NA∑
i=1

NB∑
j=1

RA,B
i,j . (6.5)

However, the latter is similarly impacted by noise.
As mentioned in Section 6.2, one of the most popular estimators in neuroimaging

studies consists of spatially averaging the observation random variables within each
distinct region for each time t, before computing the sample correlation between these
averages. Specifically, define regional (spatial) averages YA = N−1

A

∑NA
i=1 YA

i and YB =
N−1

B

∑NB
j=1 YB

j .
Then this estimator is

rCA
A,B = Ĉor( YA

, YB ). (6.6)

Under model (6.1), and according to results from (Achard et al., 2020), together with
intra-regional uncorrelatedness between latent and noise random variables, as well as
inter-regional uncorrelatedness of noise, rCA

A,B converges almost surely to:

ρA,B√√√√[ 1
N2

A
·

NA∑
i,i′=1

ηA
i,i′ + γ2

A

NA·σ2
A

] [
1

N2
B
·

NB∑
j,j′=1

ηB
j,j′ + γ2

B

NB ·σ2
B

] , (6.7)

where N−2
A · ∑NA

i,i′=1 ηA
i,i′ is the spatial average of the pairwise latent intra-correlation

coefficients within region A.
It follows from (6.7) that intra-correlation and noise both contribute to inconsistency

of the inter-correlation estimator (6.6). Indeed, both quantities appear in the denominator.
It is then apparent that the smaller the regions (smaller NA), the higher the impact of
noise on the correlation estimation. Additionally, the weaker the spatial intra-regional
dependence, the larger the overestimation of the true inter-correlation. This effect may
also be compounded when regions are large, as was observed by Achard et al. (2011).
One would then need to have regions as large as possible, while having an average
intra-correlation as close to 1 as possible in order to offset these biases. However, large
regions tend to be inhomogeneous in practical scenarios, and thus tend to have low
intra-correlation.
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6.4.3 A clustering-based inter-correlation estimator

Based on these findings, we propose an inter-correlation estimator specifically designed
to limit the combined effects of noise and intra-correlation. Instead of aggregating over
entire regions, we propose to aggregate over small groups of highly intra-correlated
variables (cf. Steps 1 and 2), before computing the correlation of the corresponding local
averages (cf. Step 3).

Step 1: U-Scores Computation

To facilitate the grouping of the variables within each region, we can leverage U-scores
to project the sample vectors YA

i onto a space where the Euclidean distance can be used
as a proxy for the sample correlations. We could then apply any clustering algorithm
in the U-score space. U-scores are an orthogonal projection of the Z-scores of random
variables onto a unit (n− 2)-sphere centered around 0. The U-score UA

i of YA
i is defined

by UA
i = HT

2:nZA
i , where HT

2:n is a (n− 1)× (n− 1) matrix obtained by Gramm-Schmidt
orthogonalization, and ZA

i the Z-score of YA
i . We refer to (Hero and Rajaratnam, 2011)

for a full definition. Sample correlations can then be expressed as an inner product of
U-scores: RA,B

i,j = (UA
i )T UB

j = 1−∥UA
i −UB

j ∥2/2, where UA
i , UB

j are the U-scores of the
ith and jth voxels in regions A and B, respectively, and ∥ · ∥2 is the squared Euclidean
distance.

Step 2: Clustering

Once the U-scores are calculated, any standard clustering algorithm can be applied to
obtain homogeneous groups of variables within each region. Agglomerative hierarchical
clustering with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014), which is
closely related to the k-means algorithm (Hartigan and Wong, 1979), aims to minimize
the intra-cluster variance, which implies a maximization of the intra-cluster correlation.
More specif-ically, agglomerative hierarchical clustering starts by assigning each element,
e.g., a voxel in our setting, to its own cluster. Then, clusters are iteratively merged
according to a pre-defined rule. Ward’s linkage specifies that, at each step, the pair of
clusters to be merged is chosen to minimize the increase in the combined error sum of
squares. We used the hclust function from the stats R package, with the ward.D2
method and default parameters (Murtagh and Legendre, 2014). A comparison of different
clustering methods, which empirically validates the use of Ward’s linkage in our context,
is presented in Section 6.5.3. In practice, the number of clusters generally needs to be
specified. However, such a strategy, while often satisfactory in common clustering tasks,
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such as exploratory analyses, does not provide any obvious theoretical guarantees on the
homogeneity of the clusters, which is what we are interested in. Nevertheless, hierarchical
clustering outputs a dendrogram,which indicates the between-cluster distance at which
clusters are merged. It can then be cut off at a designated height to produce a clustering.
Therefore, instead of setting a number of clusters, we propose to specify a cut-off height
through which cluster radii, and by proxy intra-correlations, can be controlled to a certain
extent (cf Theorem 6.4.1). Proofs can be found in the appendix.

Theorem 6.4.1. For a region A, a fixed cut-off height hA, and all clusters νA thus
obtained, the spatial average of the sample intra-cluster correlation is bounded as follows:

1− h2
A

2 ≤ 1
|νA|2

|νA|∑
i,i′=1

RA,A
i,i′ ≤ 1, (6.8)

where |νA| is the size of cluster νA.

Theorem 6.4.1 shows that through careful choice of the cut-off heights, clusters of
highly correlated variables can be selected within each region. This choice can be guided
by the ensuing observations about the maximum distance between U-scores within a
given region, denoted by hmax

A , which follow immediately from Theorem 6.4.1 and the
fact that 1− (hmax

A )2/2 = min
i,i′=1,...,NA

RA,A
i,i′ :

• if hA ≥ hmax
A ,

1− h2
A

2 ≤ min
i,i′=1,...,NA

RA,A
i,i′ ≤

1
|νA|2

|νA|∑
i,i′=1

RA,A
i,i′ (6.9)

• and if hA ≤ hmax
A ,

min
i,i′=1,...,NA

RA,A
i,i′ ≤ 1− h2

A

2 ≤ 1
|νA|2

|νA|∑
i,i′=1

RA,A
i,i′ . (6.10)

Therefore, to ensure all clusters contain more than one voxel, the maximum distance
between any two clusters of the region (i.e., the cut-off height) would need to be larger
than the maximum distance between any two voxels within the region (i.e., hmax

A ). Thus,
setting the cut-off height to hmax

A would ensure to obtain the smallest possible clusters
guaranteed to contain at least two variables. Moreover, computing hmax

A is computationally
inexpensive. It also does not depend on any ground-truth, which remains unknown
in practice. Empirical comparisons of this data-driven choice with the optimal cut-off
heights are made on simulated data in Section 6.5.2. As the optimal cut-off heights are
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Fig. 6.4.1 Illustration of the inter-correlation estimation of a pair of regions for different
cut-off heights. The top panel shows the dendrograms of the hierarchical clustering
applied to each region. The horizontal line over each dendrogram indicates the cut-off
heights hA, hB. The grey crosses in the middle panel correspond to the random variables
inside each regions, and are grouped into the resulting clusters (orange ellipses). The
arrows represent the sample inter-correlation between the average of the variables inside
each cluster (some arrows were left out to improve readability). The bottom panel displays
the distribution of the pairwise sample inter-correlation. The true inter-correlation ρA,B

(solid line) is best approximated by the sample inter-correlation rCLA
A,B (dotted line) when

the cut-off heights are neither too small nor too large.

not known in practice and cannot be computed from the data, these results demonstrate
the practical effectiveness of setting the cut-off height to hmax

A .

Step 3: Clustered Correlation Estimation

Once clusters are obtained within each region, the inter-correlation is estimated as
follows. For two distinct regions A and B, for fixed cut-off heights hA, hB, and any two
pairs of clusters νA, νB within each of these regions, we define the following cluster-level
inter-correlation estimator:

rCLA
νA,νB

= Ĉor( YνA , YνB ), (6.11)

where YνA = |νA|−1∑
i∈νA

YA
i , and YνB is defined similarly. A distribution of sample

inter-correlation coefficients is hence obtained for this pair of regions, as seen in Figure
6.4.1. As mentioned earlier, if a point estimate is needed, one can then simply average
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the cluster-level estimates to derive the following regional-level estimator:

rCLA
A,B = 1

N clust
A ·N clust

B

∑
νA,νB

rCLA
νA,νB

, (6.12)

where N clust
A is the number of clusters within region A. We refer to Algorithm 1 for a

detailed description of our proposed clustering-based correlation estimation procedure
for J regions.

Algorithm 1: Clustering-Based Correlation Estimation
input : N variables grouped in J regions with n samples each
output : Cluster-level and regional-level inter-correlation estimates

1 ▷ Clustering
2 for each region A do
3 Apply hierarchical clustering to A;
4 Choose the cut-off height hA;
5 Cut the dendrogram at height hA;
6 for each cluster νA in A do
7 YνA ← ∑|νA|

i=1 YA
i /|νA|;

8 ▷ Correlation of local averages estimation
9 for each pair of regions A, B do

10 for each pair of clusters νA, νB do
11 rCLA

νA,νB
← Ĉor(YνA , YνB )

12 rCLA
A,B ←

∑
νA,νB

rCLA
νA,νB

/N clust
A ·N clust

B

6.4.4 Consistency of the proposed estimator

The clusters derived in Algorithm 1 are data-driven, and thus random from a probabilistic
perspective. To simplify analysis and allow us to demonstrate the expected behavior of
the proposed estimator as the number of time points n grows, let us assume that clusters
νA and νB are fixed. Then define the following quantity, which will be used in several of
the subsequent results:

ρCLA
νA,νB

= ρA,B√√√√[ 1
|νA|2 ·

|νA|∑
i,i′=1

ηA
i,i′ + γ2

A

|νA|·σ2
A

]
·
[

1
|νB |2 ·

|νB |∑
j,j′=1

ηB
j,j′ + γ2

B

|νB |·σ2
B

] . (6.13)
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Theorem 6.4.2. Under the assumptions of model (6.1), for a fixed pair of clusters
νA, νB, as n tends towards infinity,

rCLA
νA,νB

a.s.→ ρCLA
νA,νB

. (6.14)

The proof is detailed in the appendix. We obtain similar results for the regional-level
point estimate rCLA

A,B .

Corollary 6.4.1. Under the same assumptions as Theorem 6.4.2, for two regions A, B,
as n tends towards infinity,

rCLA
A,B

a.s.→ 1
NA

clustN
B
clust

∑
νA,νB

ρCLA
νA,νB

. (6.15)

Corollary 6.4.1 is a direct consequence of Theorem 6.4.2.
Theorem 6.4.2 and Corollary 6.4.1 emphasize the fact that controlling the denominator

of ρCLA
νA,νB

is key to obtaining a consistent estimator of ρA,B. This brings to light the
influence of the cut-off height, and thereby the cluster size and intra-cluster correlation,
on the consistency of the inter-correlation estimate, both at the cluster- and regional-level.

For a pair of regions A, B, as the cut-off heights hA, hB become larger, the impact of
noise diminishes. Moreover, the clusters increase in size until there is only a single cluster
left that corresponds to the entire region. Thus, for hA, hB sufficiently large, our proposed
estimator rCLA

νA,νB
, and the corresponding point estimate rCLA

A,B are equal to the correlation
of averages rCA

A,B mentioned earlier. Conversely, as hA, hB become smaller the maximum
distance between U-scores within a cluster decreases, hence the minimal intra-cluster
correlation increases (cf. Theorem 6.4.1). There are also gradually less variables within
each cluster, until they eventually contain only a single variable. It follows that when
hA, hB = 0, rCLA

A,B corresponds to a correlation estimate with no aggregation rAC
A,B. This

can be visualized in Figure 6.4.1, where sample correlation distributions are depicted for
different cut-off heights.

Therefore, to simultaneously lessen the impact of noise and intra-correlation a trade-
off is necessary between a sufficiently high cut-off height (to decrease the impact of noise),
and a low enough height (to decrease the impact of intra-cluster correlation). Thus for
suitable cut-off heights, we expect the limits of both rCLA

νA,νB
and rCLA

A,B to be closer to the
population inter-correlation ρA,B than that of rCA

A,B and rAC
A,B. We will empirically compare

these three estimators in Section 6.5.3, where the results suggest that the data-driven
cut-off height does indeed lead to improvement.
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6.5 Experimental Results

In this section we empirically determine the optimal cut-off height, evaluate our proposed
inter-correlation estimator on synthetic data, and illustrate our approach on real-world
datasets.

6.5.1 Datasets

We first present the different datasets used in this chapter. Additional dataset information
and preprocessing details are documented in Chapter 3.

Real-world datasets

A rat and a human brain fMRI dataset is used in this chapter.

Rat brain fMRI dataset. We apply our estimator on fMRI data acquired on both
dead and anesthetized rats (Becq et al., 2020a,b). In this chapter we consider the
following anesthetics: Etomidate (EtoL), Isoflurane (IsoW) and Urethane (UreL). The
scanning duration is 30 min with a time repetition of 0.5 s. After preprocessing (Becq
et al., 2020b), 25 groups of voxels, each associated with its BOLD signal with a number
of time points in the order of thousands, were extracted for each rat. They correspond
to rat brain regions defined by an anatomical atlas obtained from a fusion of the Tohoku
and Waxholm atlases (Becq et al., 2020b). Region sizes vary from about 40 up to
approximately 200 voxels.

Human Connectome Project. We also consider 35 subjects from the human connec-
tome project (HCP), WU-Minn Consortium pre-processed (Glasser et al., 2013). Subjects
were pseudonymized. Two fMRI acquisitions on different days are available for each
subject. The scanning duration is 14 min and 24 s with a time repetition of 720 ms. A
modified AAL template is used to parcellate the brain into 89 regions. The details of the
pre-processing are available in (Termenon et al., 2016). Region sizes are in the order of
thousands of voxels, and number of time points are in the order of thousands.

Synthetic datasets

We consider several synthetic datasets to evaluate our estimator. For each simulation,
we simultaneously generate 800 independent samples of a pair of inter-correlated regions,
containing each 60 intra-correlated variables that follow a multivariate normal distribution
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with a predefined covariance structure contaminated by Gaussian noise. The inter-
correlation is constant across all pairs of voxels. The different parameters are chosen to
ensure the population covariance matrix of the two regions is positive semidefinite. For
instance, one cannot generate a covariance matrix where both intra- and inter-correlation
values are low.

Toeplitz covariance structure. We first generate 1-dimensional data with a Toeplitz
intra-regional covariance structure (later denoted 1D Toeplitz). For each region, intra-
correlation is defined such that it decreases as the distance between two variables increases:
for any voxel i, i′ in region A, Cor(XA

i , XA
i′ ) = max(1−|i′−i|/30, ηA

min), where |i′−i| is the
uniform norm between voxels i and i′, and ηA

min the minimal population intra-correlation
of a region A. In this chapter we consider several experimental settings by varying the
population intra-correlation, inter-correlation and the variance of the noise. The sample
pairwise correlation matrices of the observed signals are represented in Figure 3.1 for a
low intra-correlation and a high intra-correlation setting with high noise.

Matérn covariance structure. Similarly we then simulate 3-dimensional data with a
Matérn intra-regional covariance structure that depends on the Euclidean distance (later
denoted 3D Matérn) (Ribeiro and Diggle, 2001). In this chapter, we set the smoothness
parameter to κA = κB = 70 to maintain the positive-definiteness of the input covariance
matrix. We then vary the range parameters ϕA, ϕB and the variance of the noise. The
lower the range parameter, the lower the mean intra-correlation.

Spherical covariance structure. We then generate 3-dimensional data with a spher-
ical intra-regional covariance structure that also depends on the Euclidean distance
between voxels (later denoted 3D Spherical) (Ribeiro and Diggle, 2001). We vary the
range parameters ϕA, ϕB and the variance of the noise. The lower the range parameter,
the lower the mean intra-correlation.

6.5.2 Choice of the cut-off heights

In this section we empirically evaluate on the 1D-Toeplitz dataset the impact of the
cut-off heights hA, hB on the proposed clustering-based correlation estimator. We also
propose a heuristic to choose optimal cut-off heights.

We consider different scenarios, including one that loosely matches live rat data
settings, where the noise is high and the intra-correlation low. For each simulated pair



6.5 Experimental Results 105

of regions, and for various cut-off heights hA, hB, the squared error of the cluster-level
estimators are computed and then averaged across the different clusters:

ERROR = 1
NA

clustN
B
clust

∑
νA,νB

(rCLA
νA,νB

− ρA,B)2. (6.16)

The resulting surfaces are displayed in Figure 6.5.1. The lower the error, the better
the quality of the estimator. As expected from Theorems 6.4.1 and 6.4.2, the error is
lowest (refer to the orange points in Figure 6.5.1) for cut-off heights that are neither
too small nor too large. Moreover, when both the intra-correlation and the variance
of the noise are low, the error is low, even for low cut-off heights, as there is no need
to aggregate the data to obtain a consistent estimator. However, the error is high for
large cut-off heights regardless of the scenario. Indeed, even in the high noise settings,
intra-correlation still influences the inter-correlation, and this effect is compounded by
that of the cluster size.

In Section 6.4.3, we proposed a computationally cheap heuristic to determine a
suitable cut-off height. Empirically, it seems the maximum distance between U-scores
within a given region A, hmax

A , could indeed be an optimal cut-off height. It is represented
by a yellow diamond in Figure 6.5.1. In fact, it seems to be located at the bottom of a
valley and quite close to the minimal error for all settings.

We then compare our proposed optimal cut-off height, in terms of Mean Squared Error
(MSE), to that obtained using a more standard criterion from the clustering literature: the
maximum silhouette score. The Squared Error (SE) of a simulation-specific correlation
estimate rCLA

A,B can be defined as

SE = (rCLA
A,B − ρA,B)2. (6.17)

In this section, the MSE is computed by averaging the SEs across 50 replicates. The
MSE for varying intra- and inter-correlation values and a fixed high noise variance are
depicted in Figures 6.5.2 and 6.5.3. The MSE is lower when using our proposed cut-off
heights in all the considered scenarios.

From now on, and unless stated otherwise, we will hence estimate the inter-correlation
using this optimal cut-off height.

6.5.3 Comparison with other methods

We then empirically evaluate our choice of clustering method and compare our proposed
approach with other estimators in terms of MSE.
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Fig. 6.5.1 Error as a function of the cut-off heights hA, hB for a pair of simulated regions
for four simulation scenarios, with a true inter-correlation ρA,B = 0.3. The yellow diamond
represents the error for cut-off heights equal to the maximum distance between U-scores
within each region. The orange point corresponds to the minimal error.

We first compare the performance of hierarchical clustering with Ward’s linkage (our
proposed choice and later denoted WardMaxU) with that of k-means (Hartigan and
Wong, 1979) and ClustOfVar (CoV) (Chavent et al., 2012). ClustofVar is a hierarchical
clustering method which is based on a principal component analysis approach, and
closely related to works from Dhillon et al. (2003) and Vigneau et al. (2015). DBSCAN
(Ester et al., 1996), which allows to directly control the cluster radii, was also considered.
However, it fails to produce any clustering on the type of data we handle, which is
high-dimensional. We also compare these clustering methods with a random assignment
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of the voxels into clusters (Random). We choose the cut-off heights required by Ward’s
method according to the heuristic validated in the previous section (that is the maximum
distance between U-scores). ClustOfVar, k-means and Random all require a choice of
the number of clusters (and not of the cut-off heights). We hence choose the former
as that obtained with our proposed method. We also evaluate ClustOfVar with the
number of clusters chosen according to the maximum rand index (randCoV), which is
the proposed criterion in (Chavent et al., 2012). Results are presented in Table 6.5.1.
All methods with the same number of clusters are similar, with the exception of the
random assignment. As expected, the latter displays MSEs an order of magnitude higher
than that of the other clustering techniques, except when both minimal intra-correlations
are high. Indeed, in such cases, the intra-correlation is high enough that the intra-
cluster correlation will be high regardless of the choice of clusters. This demonstrates
the importance of constructing clusters with high intra-cluster correlation to correctly
estimate the inter-correlation. The method randCoV showcases the second highest MSE
in all scenarios, except when both intra-correlation and noise are high, in which case
its MSE is similar to that of the k-means and CoV. Moreover, the computation of the
rand index requires a bootstrapping step and is thus very computationally expensive.
Indeed, the average CPU time of clustering two regions using the method randCov is
in the order of 10 min, while average CPU time is approximately 5 s when using CoV,
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Fig. 6.5.2 MSE (×10), averaged over 50 replicates, for varying intra-correlation values
for regions A and B. The true inter-correlation ρA,B is 0.3 and the noise variance
γ2

A = γ2
B = 0.5.
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Fig. 6.5.3 MSE (×100), averaged over 50 replicates, for varying intra-correlation values
for regions A and B. The true inter-correlation ρA,B is 0.1 and the noise variance
γ2

A = γ2
B = 0.5.

300 ms using kmeans, and 30 ms using WardMaxU. Additionally, neither k-means nor
CoV provide any obvious theoretical guarantees on the intra-correlation values within
each cluster. Furthermore, they require to compute the U-scores, unlike our method.
Indeed, our approach only depends on the distance between U-scores, which can be
obtained directly from the sample voxel-to-voxel inter-correlation coefficients, without
transforming the signals into U-scores. This step has a CPU time of about 15 s per
region. These methods are thus much more computationally heavy. This confirms the
choice of hierarchical clustering with Ward’s linkage for our purposes, and will be used
in all subsequent results.

We then compare our proposed estimator with the standard correlation of averages
estimator rCA

A,B, and the average of correlations rAC
A,B (Rosner et al., 1977). We also

conduct comparisons with another inter-correlation estimator from the familial data
literature, which is specifically designed for groups of dependent variables but fails to
take into account noise (Elston, 1975). Its quality is similar to that of rAC

A,B, and these
results are hence included in the supplementary materials. Comparison with other
correlation estimators from the literature would not be fair as they either only consider
pairs of variables or do not handle arbitrary inter-correlation. To proceed we compute the
regional-level point estimator rCLA

A,B . We then calculate the MSE across 50 simulations.
The results obtained for several simulation scenarios are recorded in Table 6.5.2. As
expected from Theorem 6.4.2 and its corollary, our proposed estimator rCLA

A,B outperforms
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Table 6.5.1 Mean (×10−3) and standard deviation in parenthesis (×10−3) of the squared
errors over 50 replicates for different clustering methods and different simulation scenarios
from the 1D Toeplitz model. The inter-correlation ρA,B is set to 0.3.

Scenarios Clustering Methods
ηA

min ηB
min γ2

A = γ2
B K-means CoV randCoV Random WardMaxU

0.2 0.2 0.5 2.0 (1.4) 2.0 (1.4) 4.8 (7.8) 15 (5.2) 2.0 (1.4)
0.8 0.8 0.5 1.2 (1.5) 1.2 (1.5) 1.1 (1.3) 1.0 (1.0) 1.2 (1.5)
0.2 0.8 0.5 1.1 (1.2) 1.1 (1.2) 2.9 (4.2) 5.0 (3.1) 1.1 (1.2)
0.2 0.2 0.1 1.0 (0.9) 1.0 (0.9) 4.6 (10) 26 (8.1) 1.0 (0.9)
0.8 0.8 0.1 0.6 (1.0) 0.6 (1.1) 1.0 (1.4) 1.4 (1.6) 0.6 (1.1)
0.2 0.8 0.1 0.4 (0.6) 0.4 (0.5) 2.7 (4.4) 10 (4.5) 0.4 (0.5)

the other estimators for all settings, except the low noise scenarios with 3D Spherical
intra-correlation, where the MSE for rAC

A,B is slightly lower. Even in this case, the MSE
for rAC

A,B and rCLA
A,B are in the same order of magnitude. More generally, we can note

that in all scenarios where the intra-correlation is quite high and the noise variance is
low, the MSE for these two estimators are also in the same order of magnitude. Indeed,
according to equation (6.4), Theorem 6.4.1, and Corollary 6.4.1 rAC

A,B and rCLA
A,B would

be very similar. Therefore, not only is the quality of the estimation greatly improved
in the presence of noise and low intra-correlation, but it is also not deteriorated when
intra-correlation is high and the noise is low. Furthermore, in practice, data are expected
to be quite noisy with a low intra-correlation.

We can remark here that we did not include in Table 6.5.2 scenarios where the
intra-correlation is close to zero. Indeed, in such cases no clusters of highly correlated
variables can be found. In practical situations, this could be due to either high regional
inhomogeneity or high noise, and could indicate an issue with the parcellation or data
acquisition. Our clustering approach can hence help identify problematic datasets and
thus provide information on the quality of the data.

6.5.4 Illustration on real-world data

We now apply our proposed estimator on real-world fMRI datasets, with the goal of
estimating functional connectivity. At first, the sample cluster-level inter-correlation
and voxel-level intra-correlation of different subjects can be visually inspected. The
correlation estimates of three rats, including a dead one, are displayed in Figure 6.5.4,
and that of three healthy human subjects (from the HCP dataset) are shown in Figure
6.5.6.
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Table 6.5.2 Mean and standard deviation (in parenthesis) of the squared error over 50
replicates for different simulation scenarios and different estimators. The inter-correlation
ρA,B is set to 0.3.

Scenarios Estimators

1D
To

ep
lit

z

ηA
min ηB

min γ2
A, γ2

B rAC
A,B rCLA

A,B rCA
A,B

0.2 0.2 0.5 1.8× 10−2 (2.8× 10−3) 2.0× 10−3 (1.4× 10−3) 1.5× 10−1 (1.8× 10−1)
0.8 0.8 0.5 1.2× 10−2 (3.7× 10−3) 1.2× 10−3 (1.5× 10−3) 1.0× 10−1 (1.0× 10−1)
0.2 0.8 0.5 1.4× 10−2 (3.0× 10−3) 1.1× 10−3 (1.2× 10−3) 1.0× 10−1 (1.0× 10−1)
0.2 0.2 0.1 5.4× 10−3 (2.0× 10−3) 1.0× 10−3 (9.1× 10−4) 2.3× 10−1 (2.7× 10−1)
0.8 0.8 0.1 1.9× 10−3 (2.0× 10−3) 6.4× 10−4 (1.0× 10−3) 1.2× 10−1 (1.2× 10−1)
0.2 0.8 0.1 2.7× 10−3 (1.7× 10−3) 4.3× 10−4 (5.5× 10−4) 1.4× 10−1 (1.6× 10−1)

3D
M

at
ér

n

ϕA,A ϕB,B γ2
A, γ2

B rAC
A,B rCLA

A,B rCA
A,B

0.6 0.6 0.5 1.0× 10−2 (3.8× 10−3) 7.0× 10−4 (1.1× 10−3) 1.6× 10−3 (1.9× 10−3)
0.8 0.8 0.5 1.0× 10−2 (4.0× 10−3) 7.9× 10−4 (1.2× 10−3) 1.0× 10−3 (1.4× 10−3)
0.6 0.8 0.5 1.0× 10−2 (3.9× 10−3) 7.2× 10−4 (1.1× 10−3) 1.0× 10−3 (1.6× 10−3)
0.6 0.6 0.1 1.3× 10−3 (1.5× 10−3) 7.7× 10−4 (1.0× 10−3) 1.7× 10−3 (2.0× 10−3)
0.8 0.8 0.1 1.4× 10−3 (1.6× 10−3) 7.5× 10−4 (1.0× 10−3) 1.1× 10−3 (1.4× 10−3)
0.6 0.8 0.1 1.3× 10−3 (1.6× 10−3) 7.7× 10−4 (1.0× 10−3) 1.3× 10−3 (1.7× 10−3)

3D
Sp

he
ric

al

ϕA,A ϕB,B γ2
A, γ2

B rAC
A,B rCLA

A,B rCA
A,B

8 8 0.5 1.0× 10−2 (2.3× 10−3) 4.6× 10−3 (2.4× 10−3) 8.8× 10−2 (1.4× 10−2)
12 12 0.5 1.0× 10−2 (2.8× 10−3) 2.4× 10−3 (1.9× 10−3) 2.5× 10−2 (8.2× 10−3)
8 12 0.5 9.4× 10−3 (2.5× 10−3) 4.2× 10−3 (2.3× 10−3) 5.3× 10−2 (1.1× 10−2)
8 8 0.1 9.1× 10−4 (7.9× 10−4) 8.9× 10−3 (3.8× 10−3) 9.3× 10−2 (1.3× 10−2)
12 12 0.1 1.0× 10−3 (1.0× 10−3) 4.5× 10−3 (2.8× 10−3) 2.6× 10−2 (8.4× 10−3)
8 12 0.1 7.3× 10−4 (7.8× 10−4) 7.7× 10−3 (3.3× 10−3) 5.6× 10−2 (1.1× 10−2)

In brain functional connectivity studies, point estimates for each pair of regions
are needed to construct a correlation matrix. A thresholding step is then applied to
obtain a binary connectivity network where only the edges corresponding to the highest
correlation values remain. In this section, we will therefore mostly focus on evaluating
the regional-level entries of these correlation matrices.

Rat data

We first examine rat data results.

Dead rats. No functional activity should be detected in dead rats, unlike in live rats.
Dead rats hence provide experimental data where the ground-truth inter-correlation is
zero. We can therefore compute the MSE across all pairs of regions (each region pair is a
replicate). We expect as well that the intra-correlation is zero within all regions. In fact,
no discernible structure of the dead rat’s intra-correlation can be noted in Figure 6.5.4,
where motor (M1_l, M1_r) and sensory (S1_l, S1_r) regions are represented. We find
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(a) M1_l, M1_r-rat 24
(IsoW)

(b) M1_l, M1_r–rat 31
(EtoL) (c) M1_l, M1_r–rat 9 (dead)

(d) S1_l, S1_r–rat 24
(IsoW) (e) S1_l, S1_r–rat 31 (EtoL) (f) S1_l, S1_r–rat 9 (dead)

Fig. 6.5.4 Sample pairwise correlation matrices for different rats and brain region pairs.
Voxels are ordered by clusters. The diagonal blocks correspond to the voxel-to-voxel
sample intra-correlation rA,A

i,i′ , while the off-diagonal blocks correspond to the sample
inter-correlation between clusters rCLA

νA,νB
.

the MSE of rCLA
A,B is slightly higher than that of rAC

A,B (cf. Table 6.5.3). Nonetheless, they
are both very low and several orders of magnitude lower than the MSE of rCA

A,B. This
indicates that for dead rat data, rCLA

A,B displays similar quality to rAC
A,B, and a considerable

improvement over the standard rCA
A,B.

Table 6.5.3 MSE across all pairs of regions for different dead rats and different estimators.

Dead Rat ID rAC
A,B rCLA

A,B rCA
A,B

16 5.2× 10−6 5.6× 10−5 1.3× 10−2

18 4.7× 10−6 5.4× 10−5 1.3× 10−2

9 5.7× 10−6 6.0× 10−5 1.3× 10−2

Live rats. To further illustrate the advantages of our proposed approach, we consider
three live rats under different anesthetics. Unlike for dead rats, no ground-truth inter-
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correlation is available. We thus inspect directly the values of the estimated inter-
correlations. We can first remark correlation values are visually very different in live and
dead rats. Indeed, both intra- and inter-correlations are higher, in addition to displaying
an apparent structure (cf. Figure 6.5.4 ). While we could not clearly demarcate rAC

A,B

from rCLA
A,B using solely the dead rat data, we can note in Figure 6.5.5 that for any pair of

regions, rCLA
A,B is both larger than rAC

A,B and further away from zero, which corresponds to
dead rat connectivity. In the context of functional connectivity, this implies that, when
applying a thresholding step, rCLA

A,B may allow us to increase the number of rightfully
detected edges in the corresponding connectivity network.
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Fig. 6.5.5 Sample inter-correlation coefficients estimated using rAC
A,B against our proposed

estimator rCLA
A,B for three live rats under different anesthetics. Each point represents a

pair of brain regions.

HCP data

We then illustrate our proposed approach on human data from healthy live subjects. No
ground-truth is available.

Figure 6.5.6 showcases sample correlations of the Precentral regions (Pr_l, Pr_r),
which are large regions containing about 1700 voxels, and Heschl’s gyri (H_l, H_r), which
are ten times smaller. We can first note that the intra-correlation displays some structure,
as in the live rats. Nonetheless, overall, subject 2 seems to have both lower sample intra-
and inter-correlation values, compared to most other subjects (including subjects 1 and
3). Subject 2 has in fact a benign anatomical brain anomaly. Our proposed approach
hence allowed us to single out an unusual subject just by visually inspecting its sample
intra- and inter-correlation values.

We can then compare the sample distribution of our proposed estimator rCLA
A,B with that

of the standard estimator rCA
A,B (cf. Figure 6.5.7) and of rAC

A,B (cf. Figure 6.5.8). Overall,
and as expected from equations (6.4) and (6.7) and Corollary 6.4.1, the correlation of
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(a) Pr_l, Pr_r – subject 1 (b) Pr_l, Pr_r – subject 2 (c) Pr_l, Pr_r – subject 3

(d) H_l, H_r – subject 1 (e) H_l, H_r – subject 2 (f) H_l, H_r – subject 3

Fig. 6.5.6 Sample pairwise correlation matrices for different HCP subjects and brain
region pairs. Voxels are ordered by clusters. The diagonal blocks correspond to the
voxel-to-voxel sample intra-correlation rA,A

i,i′ , while the off-diagonal blocks correspond to
the sample inter-correlation between clusters rCLA

νA,νB
.

averages rCA
A,B values are higher than that of rCLA

A,B , while the sample values of the average
of correlations estimator rAC

A,B are lower. In terms of functional connectivity, this means
using the rCA

A,B estimator could lead to falsely detecting edges, while using rAC
A,B could

lead to missing edges. These results are in accordance with what was observed in the rat
data.
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Fig. 6.5.7 Inter-correlation coefficients estimated using rCA
A,B against our proposed estimator

rCLA
A,B for three HCP subjects. Each point represents a pair of brain regions.
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Fig. 6.5.8 Inter-correlation coefficients estimated using rAC
A,B against our proposed estimator

rCLA
A,B for three HCP subjects. Each point represents a pair of brain regions.

Since we have access to two separate sessions for each subject, we then evaluate the
reproducibility of our estimator. To do so, for each subject, we calculate the Concordance
Correlation Coefficient (CCC) (Lin, 1989) between the inter-correlations estimates from
their two sessions. The CCC is scaled between −1 and 1, with 1 corresponding to a
perfect concordance. This means that the higher the CCC, the more reproducible the
estimator. The estimator rCLA

A,B exhibits the highest CCC, with an average (variance)
across the 35 subjects of 0.69 (0.03), while that of rCA

A,B is 0.63 (0.02) and rAC
A,B is 0.67

(0.04). Our proposed estimator hence improves reproducibility over existing estimators.

6.6 Conclusion

In this chapter, we proposed a novel and non-parametric estimator of the correlation
between groups of arbitrarily dependent variables in the presence of noise. We devised
a clustering-based approach that simultaneously reduces the impact of noise and intra-
correlation through judicious aggregation. We analyzed the convergence of our proposed
estimator, and provided a heuristic selection of cut-off heights of the dendrograms. More-
over, our method yields both point estimates and a corresponding empirical distribution
that could be used, for instance, for uncertainty quantification. We conducted experi-
ments on synthetic data that showed our proposed estimator surpasses popular existing
methods in terms of quality, and demonstrated the effectiveness and reproducibility of
our approach on real-world datasets.



Appendix

6.A Proof of Theorem 6.4.1

The proof follows from the properties of hierarchical clustering. In the context of Ward’s
linkage, the distance between two clusters ν1 and ν2 is defined according to Kaufman
and Rousseeuw (2005, p. 230) as:

D(ν1, ν2) =

√√√√2 · |ν1| · |ν2|
|ν1|+ |ν2|

·
∥∥∥Uν1 −Uν2

∥∥∥2
, (6.18)

where Uν1 is the centroid and |ν1| the cardinality of cluster ν1. Consider a region A and
fix a cut-off height hA. Then, from properties of agglomerative clustering, for any cluster
νA, and for all pairs of U-scores UA

i , UA
i′ inside νA, D({UA

i }, {UA
i′}) ≤ hA. Therefore, by

combining this inequality with properties of the U-scores (Hero and Rajaratnam, 2011),
the sample intra-correlation can be lower-bounded by a function of hA:

1− h2
A

2 ≤ 1− ∥U
A
i −UA

i′∥2

2 = rA,A
i,i′ , (6.19)

which implies the left-hand side of (6.8). The right-hand side follows from properties of
correlation coefficients. This concludes the proof.

6.B Proof of Theorem 6.4.2

For two clusters νA, νB in regions A, B, from (6.11),

rCLA
νA,νB

= Ĉov( YνA , YνB )√
V̂ ar( YνA) · V̂ ar( YνB )

. (6.20)
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Since we have assumed variables are temporally i.i.d., and according to the model
definition (cf. Section 4.2), as n tends towards infinity,

Ĉov( YνA , YνB ) a.s.→ Cov( Y
νA(t), Y

νB (t)), (6.21)

for any time point t and where

Cov( Y
νA(t), Y

νB (t)) = 1
|νA| · |νB|

|νA|∑
i=1

|νB |∑
j=1

Cov(Y A
i (t), Y B

j (t))

= 1
|νA| · |νB|

|νA|∑
i=1

|νB |∑
j=1

σAσBρA,B

= σAσBρA,B, (6.22)

and, from equation (6.1),

V̂ ar( YνA) a.s.→ V ar( Y
νA(t)) = σ2

A ·
1
|νA|2

·
|νA|∑

i,i′=1
ηA

i,i′ + γ2
A

|νA|
, (6.23)

which gives (6.14), and concludes the proof.

6.C Relaxing assumptions about the noise

In the preliminaries section of the main paper we assumed noise variables ϵA
i were spatially

uncorrelated both within and across regions. However, in practice these assumptions
are often violated. Nevertheless, they can easily be relaxed to the presence of spatial
correlation within regions and uncorrelatedness between distinct regions. We can then
extend the consistency results presented at the end of Section 4 of the proposed estimator
rCLA

νA,νB
accordingly.

First, ρCLA
νA,νB

is now equal to:

ρA,B√√√√[ 1
|νA|2

|νA|∑
i,i′=1

ηA
i,i′ + γ2

A

σ2
A

·|νA|2

|νA|∑
i,i′=1

Cor(ϵA
i , ϵA

i′ )
]
·

[
1

|νB |2

|νB |∑
i,i′=1

ηB
i,i′ + γ2

B

σ2
B

·|νB |2

|νB |∑
i,i′=1

Cor(ϵB
i , ϵB

i′ )
] .

It follows immediately that rCLA
νA,νB

is a consistent estimator of ρCLA
νA,νB

. Interpretation
about the impact of the cluster size on lessening the effects of the noise is however slightly
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less straightforward. We can note that for a given cluster νA of region A,

|νA|∑
i,i′=1

Cor(ϵA
i , ϵA

i′ ) = 1
|νA|

+ 1
|νA|2

νA∑
i ̸=i′=1

Cor(ϵA
i , ϵA

i′ ).

Therefore, as long as the correlation between noise variables within a cluster remain quite
small, interpretation of the effect of the cut-off height on the noise remains similar to the
one described in the main paper—that is, the larger, the cut-off height, the larger the
clusters, and the smaller the impact of the noise. All results presented in the main paper
then remain valid.

6.D Comparison with an additional estimator

In this section we compare our proposed estimator rCLA
A,B with the one used by Elston

(1975) in the setting of groups of dependent variables.

Table 6.D.1 Mean and standard deviation (in parenthesis) of the squared error over 50
replicates for different simulation scenarios and different estimators. The inter-correlation
ρA,B is set to 0.3.

Scenarios Estimators

1D
To

ep
lit

z

η−
A η−

B σ2
ϵA , σ2

ϵB rAC
A,B rCLA

A,B Elston (1975)
0.2 0.2 0.5 1.8× 10−2 (2.8× 10−3) 2.0× 10−3 (1.4× 10−3) 1.8× 10−2 (2.8× 10−3)
0.8 0.8 0.5 1.2× 10−2 (3.7× 10−3) 1.2× 10−3 (1.5× 10−3) 1.2× 10−2 (3.8× 10−3)
0.2 0.8 0.5 1.4× 10−2 (3.0× 10−3) 1.1× 10−3 (1.2× 10−3) 3.1× 10−3 (3.1× 10−3)
0.2 0.2 0.1 5.4× 10−3 (2.0× 10−3) 1.0× 10−3 (9.1× 10−4) 5.5× 10−3 (2.0× 10−3)
0.8 0.8 0.1 1.9× 10−3 (2.0× 10−3) 6.4× 10−4 (1.0× 10−3) 1.9× 10−3 (2.0× 10−3)
0.2 0.8 0.1 2.7× 10−3 (1.7× 10−3) 4.3× 10−4 (5.5× 10−4) 2.7× 10−3 (1.7× 10−3)

Suppose we have two fixed clusters νA and νB within regions A and B, respectively.
We place ourselves in the context of model 1 defined in Section 3 of the main paper.
Let ΣνA

be the intra-cluster covariance matrix of the variables within cluster νA, and
ΣνA,νB

be the inter-cluster covariance matrix between clusters νA and νB. It follows
from Section 3 that the inter-cluster covariance elements are constant across all pairs
of variables within theses two clusters. We also assume the intra-cluster variance and
covariance are constant. We now suppose we have n independent samples of the vector[
Y A

1 , . . . , Y A
|νA|, Y B

1 , . . . , Y B
|νB |

]
from a multivariate normal distribution with mean µ and
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covariance matrix with the following structure:

Σ =
 ΣνA

ΣνA,νB

ΣνA,νB
ΣνB

 (6.24)

In the context of fMRI data, this would correspond to the BOLD signal of the voxels
within clusters νA and νB.

Let us consider the following estimators of the elements in Σ. The intra-cluster

variance can be estimated by vνA
= 1

|νA|

|νA|∑
i=1

V̂ ar(YA
i ), and the inter-cluster covariance by

vνA,νB
= 1

|νA|·|νB |

νA∑
i=1

νB∑
j=1

Ĉov(YA
i , YB

j ). Then, according to Elston (1975), vνA,νB
/
√

vνA
vνB

is the maximum likelihood estimator of ρA,B. This estimator is closely related to the
average of correlations estimator rAC

A,B (Rosner et al., 1977). However, instead of spatially
averaging the correlations, Elston averages the covariance and variance terms separately.
While this estimator is specifically designed for groups of dependent variables, it is
impacted by noise in the same manner as rAC

A,B. It turns out the MSE of Elston’s
estimator is also very similar to that of rAC

A,B, and consequently higher than that of our
estimator in most scenarios (cf. Table 6.D.1).

6.E Details about the implementation and code avail-
ability

Our implementation is based on R 4.2. All experiments were performed on a laptop
running on Ubuntu 18.04 with eight 1.8GHz 64-bits Intel Core i7-10610U CPUs, 32 GB
of memory and a 1 TB hard drive.

Source code, including a notebook detailing how to reproduce the figures of this
chapter, is available at: https://gitlab.inria.fr/q-func/clustcorr.

https://gitlab.inria.fr/q-func/clustcorr


Chapter 7

Distribution-Based Weighted
Networks Validation on rs-fMRI
Data

In this chapter we build upon the inter-correlation estimator presented in Chapter 6 to
introduce distribution-based weighted networks, hence fully leveraging inter-correlation
distributions. This chapter aims to validate their use in a practical scenario. We
namely demonstrate our proposed framework improves repeatability, regression and clas-
sification performances compared to that of the standard correlation of averages approach.

This chapter presents results from an on-going project:

Lbath, H., Richiardi, J., Petersen, A., Meiring, W., and Achard, S. (working paper).
Distribution-based weighted networks validation on rs-fMRI data

7.1 Introduction

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is widely used in studies
aiming to predict personality traits (Girn et al., 2023), cognitive functions (van den
Heuvel et al., 2009; Cui and Gong, 2018), or either diagnose or improve understanding of
neurological or psychiatric disorders, such as Alzheimer’s or schizophrenia (Dadi et al.,
2019; Sarica et al., 2017). In these contexts, resting-state functional connectivity (RSFC)
networks, constructed from rs-fMRI data, are prevalent. As presented in Chapter 2,
RSFC networks are most commonly built as follows: nodes represent brain regions, and
edge weights are equal to the correlation between region-averaged signals. We previously
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referred to this inter-correlation estimator as the correlation of averages (ca). However,
scalar-weighted networks only offer limited opportunities to account for uncertainties
when inferring networks.

We hence introduce distribution-based weighted networks, where edges are associated
to a distribution or density function, instead of a scalar value. To build these new types
of networks we leverage the clustering-based inter-correlation estimator introduced in
Chapter 6 (Lbath et al., 2023). Indeed, the latter provides an empirical inter-correlation
distribution in addition to a point estimate.

Our goal in this chapter is to evaluate the use of distribution-based weighted networks
in terms of both repeatability and performance in machine learning pipelines. To this
end, we explored classification and regression tasks on psychometric scores. Indeed,
classification performance has been previously used as a validation criterion in selection
of connectivity network construction models (Zanin et al., 2012). Moreover, studying
associations between RSFC and variables of interests, such as personality traits or medical
diagnosis, is in itself highly valuable. Yet, classification of RSFC data is challenging, and
performances are often moderate at best (Dadi et al., 2019; Cui and Gong, 2018; Sarica
et al., 2017). Furthermore, reliably identifying univariate associations in these contexts
is tremendously difficult (Marek et al., 2022). Exploring multivariate associations is
similarly challenging (Marek et al., 2022; Girn et al., 2023). Improving performances
on these tasks is then a practical and effective way to demonstrate the strengths of our
proposed framework.

It has also been suggested that small populations and high subject heterogeneity
may hinder generalization performances of machine learning models (Vabalas et al.,
2019; Schnack and Kahn, 2016; Marek et al., 2022; Cui and Gong, 2018). We hence
highlight the effect of heterogeneity on univariate effect sizes, and show our proposed
distribution-based approach decreases subject variance in terms of edge weights.

We can summarize the contributions presented in this chapter as follows. We first
introduce a novel distribution-based weighted network paradigm. We then proceed to
validate its effectiveness on two real-world human datasets. To that end, we evaluate
its test-retest reliability in terms of both RSFC network edge weights and graph metric
values, as well as its performance in various machine learning tasks. These include
classification and regression tasks on cognitive and personality scores at both brain- and
edge-level, and the latter encompassing different types of graph embeddings.
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7.2 Materials and Methods

7.2.1 Data

We present in this section the datasets used in this chapter. Additional dataset information
and preprocessing details are documented in Chapter 3.

Human Connectome Project (HCP). The work presented in this chapter uses
the test-retest fMRI data from 100 healthy subjects of the HCP dataset, WU-Minn
Consortium preprocessed (Glasser et al., 2013). Two resting-state fMRI acquisitions
on different days are available for each subject, and are later denoted HCP 0 and HCP
1. A modified AAL template is used to parcellate the brain into 89 regions (Termenon
et al., 2016). We also use subject-specific psychometric variables, such as NEO-FFI Big
5 personality questionnaire scores and fluid intelligence scores from the Penn matrix test,
which is based on an abbreviated version of Raven’s matrices.

PIOP2. Some of the analyses presented in this work are repeated on the PIOP2
dataset from the Amsterdam Open MRI Collection (AOMIC) (Snoek et al., 2021). The
latter includes several subject variables that can be used for regression or classification
tasks, including psychometric variables such as NEO-FFI and Raven’s matrices scores.
We exclude subjects with missing fMRI data, missing Raven’s matrices scores, or with
excessive head motion. The motion exclusion criteria pipeline used by Thiele et al. (2022)
is applied. The final sample consists of 204 healthy subjects.

The brain is parcellated into 89 regions with the modified AAL template used to
parcellated the HCP data. Regions with less than 10 voxels with non-zero BOLD signal
in at least one subject are discarded. The same 76 out of 89 regions from the initial
parcellation are retained in all subjects.

7.2.2 Distribution-based weighted connectivity networks

We introduced in Chapter 6 the clustering-based estimator (CLA) (Lbath et al., 2023),
which, in addition to being more consistent than the standard ca estimator, also provides
an empirical inter-correlation distribution by design. In this chapter we build on that to
introduce distribution-based weighted connectivity networks. To this end, we construct
fully connected subject-specific functional connectivity networks where nodes correspond
to brain regions and edge weights are inter-regional correlation density functions (cf.
Figure 7.2.1).
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Fig. 7.2.1 Simplified machine learning pipeline for distribution-based networks of two
subjects. Networks are weighed by inter-correlation density functions. Quantile values
are then extracted to obtain the corresponding connectivity matrices to be input into
machine learning methods.

For each subject, and for each pair of regions A, B, the clustering-based correlation
estimator is used to obtain the empirical inter-correlation distribution between regions
A and B. The corresponding inter-correlation densities and quantile functions are then
obtained using default kernel density estimates from the frechet (version 0.2.0) and
fdadensity (version 0.1.2) R (version 4.2.0) packages.

7.2.3 Network representation

We now present how our proposed distribution-based networks can be leveraged in
practice. In order to incorporate them into standard network evaluation and machine
learning pipelines, the edge weights need to be summarized so as to be equal to a single
scalar value (cf. Figure 4.1). A straightforward approach is to only keep the correlation
value corresponding to a given quantile value, later denoted by Qxx where xx is the
corresponding percentile (e.g., Q10 for 10th percentile or 0.1 quantile).

We first utilize brain-level summaries where scalar edge weights are averaged across
all edges of a given subjects. These were used in a recent fMRI reproducibility study
(Marek et al., 2022).

We additionally perform edge-level analyses. These require inputs to lay in a vector
space. In our setting, once edges are summarized by a scalar, quantile-based, value,
various graph embedding techniques can be considered. The most basic approach is
a direct embedding where all edge weights are stacked in a vector. We also employ
more sophisticated approaches, such as the random-walk-based embedding Graph2vec
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(Narayanan et al., 2017) or the Feather embedding, which uses characteristic functions of
node features (Rozemberczki and Sarkar, 2020). Note that embeddings must be applied
on training and testing data separately.

7.2.4 Validation methods

We describe in this section the different methods we use to evaluate the practicality of
employing distribution-based networks in brain functional connectivity studies. Due
to the nature of these evaluation methods, this assessment is focused more specifically
on quantile-based connectivity estimators. We first assess test-retest reliability, before
evaluating classification and regression performances. Results are compared to that of
the popular ca estimator.

Test-retest reliability

We use the Concordance Correlation Coefficient (CCC) Lin (1989) to measure the
repeatability of the inter-correlation estimators. For each subject, fMRI scans from two
separate examinations, which are available in the HCP dataset but not PIOP2, are
required to compute the CCC. For each subject, the latter is defined as follows for two
sets of measurements x, y, corresponding to the two scans:

CCC = 2sxy

s2
x + s2

y +
(

1
K

K∑
j=1

xj − 1
K

K∑
j=1

yj

)2 , (7.1)

where sxy and sx are the empirical covariance and variance across all edges, respectively,
and K is the number of observations, i.e., the number of edges in our case. CCC values
are comprised between −1 and 1, with higher values indicating higher repeatability. For
each subject, the CCC of both edge weights and a classical graph centrality metric, the
betweenness, is computed for various clustering-based inter-correlation quantile values
and the ca estimator. The CCC method from the R (version 4.3.0) DescTools (version
0.99.48) package is used.

Betweenness quantifies for any given node the extent to which it lies on the shortest
path between other nodes. We compute the betweenness for each node of each of the
100 HCP subjects for a range of network sparsity threshold values. The latter are
defined as a percentage of the total number of edges, keeping only edges with the highest
correlation. Edges are thus binarized. In order to calculate the betweenness, which is
not well-defined for disconnected graphs, we then force the network to be connected by
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applying a minimum spanning tree (Alexander-Bloch et al., 2010). The R igraph (version
1.4.2) package is used.

Univariate brain-wide association

In order to preliminarily assess effect size, univariate associations are obtained. Pearson’s
r correlation between individual psychometric scores and brain-level RSFC is hence
computed for various clustering-based inter-correlation quantiles and the ca estimator,
similarly to univariate brain-wide association computation in (Marek et al., 2022). A linear
least square fit is also obtained using the Python (version 3.9.16) numpy (version 1.23.5)
polyfit method. In addition, for each edge, Pearson’s r between the edge weights and
individual psychometric scores are computed for the different inter-correlation estimators.
Brain- and edge-level brain-wide association results are obtained for both the HCP and
PIOP2 datasets.

Classification

We use RSFC networks obtained from the HCP and PIOIP2 dataset to classify individuals
into high and low fluid intelligence categories. To that end, fluid intelligence scores,
corresponding to the Penn matrix test scores (PMAT24_A_CR) and Raven’s scores in
the HCP and PIOP2 datasets, respectively, are binarized in the same manner as in (Dadi
et al., 2019): subjects are split into thirds according to score quantiles 0.33 and 0.66, and
individuals in the middle class are excluded in order to facilitate the binary classification
task. In order to fully leverage our connectivity data, we also examine multivariate
associations. Classification is hence performed both at the brain- and edge-level for
varying clustering-based inter-correlation quantile values and the ca inter-correlation
estimator. We use Support Vector Classification (SVC) (Platt, 1999), which is among
recommended classifiers for rs-fMRI functional connectivity studies (Dadi et al., 2019),
with default rbf kernel from the Python scikit-learn library (version 1.2.2). A 10-fold
cross-validation pipeline is used to measure accuracy and the Area Under the Receiver
Operating Characteristics Curve (AUC). Evaluation scores are averaged across the 10
cross-validation folds. Accuracy is equal to the proportion of correct classifications, while
the AUC measures how well a classifier separates classes. In balanced cases, such as
our own, uninformative classifiers yield 0.5 accuracy and AUC, while both metrics are
equal to 1 for perfect classifiers. When sample size is small, Combrisson and Jerbi (2015)
showed that chance level accuracy is higher. In fact, for the HCP data, with 100 subjects,
accuracy would need to be at least 0.58 for the classification to be deemed significant



7.2 Materials and Methods 125

with a p-value < 0.05. For the PIOP2 data, with 204 subjects, accuracy larger than 0.56
would be required.

Regression

We then use Random Forest regression to predict NEO-FFI personality scores from brain-
or edge-level RSFC. Random Forest has been previously shown to perform adequately
for small effect sizes in neuroimaging studies (Jollans et al., 2019). A Random Forest
regressor with 501 trees and a squared error criterion from the scikit-learn Python library
is employed. Similarly to the classification task, 10-fold cross-validation is used. Pearson’s
r correlation between actual and predicted values, and the Root Mean Squared Error
(RMSE) are computed to evaluate models. RMSE is defined as follows:

RMSE =

√√√√ 1
M

M∑
m=1

(cm − ĉm)2, (7.2)

where cm are actual scores, ĉm predicted scores, and M is the number of subjects in the
testing dataset. Pearson’s r is expected to be close to 1, and the RMSE close to 0 for
perfect predictions. The RMSE is particularly interesting as it can be compared to the
standard deviation of the variables to be predicted.

Subject heterogeneity

In order to study subject variability within the HCP and PIOP2 dataset, we first
compute edge weight standard deviation across subjects for each edge and for different
inter-correlation quantile values and the ca estimator. Furthermore, associations between
psychometric scores and brain-level connectivity is obtained for two subsets of subjects.
The latter are constructed according to a selected cross-validation fold. The same linear
fit as the one used in the univariate association study is obtained from each of the two
subsets of subjects for fixed quantile values. Edge-level connectivity is also obtained
for individual edges. For a fixed edge, linear fits are similarly computed from each of
two subsets of subjects. Finally, we construct edge variability networks for different
inter-correlation estimators. In such networks, edge weights are set to the standard
deviation of the inter-correlation values of the corresponding edge, calculated across all
subjects of the dataset.
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7.3 Results

7.3.1 Inter-correlation edge summarization distribution

To begin with, we visually inspect the distribution of the absolute value of the inter-
correlation edge summaries for the two examinations of four HCP subjects (cf. Figure
7.3.1). This figure can be compared to Figure 2.5 in Chapter 2, which displayed inter-
correlation distribution of various estimators for the same four subjects. We can first note
that, for a fixed subject and session, ca is more variable across edges than quantiles of
the clustering-based inter-correlation. Moreover, ca, which is known to overestimate true
inter-correlation (Achard et al., 2023; Lbath et al., 2023), reaches correlation values up
to almost 1. While the central quantiles (Q50, Q60) showcase correlation values centered
close to zero, they attain values of up to 0.3 − 0.5. The tails of the inter-correlation
distribution (Q10, Q90) provide absolute values of correlations that are higher. They are
nevertheless lower than the most extreme ca values, which is in accord with consistency
results in Chapter 6.

Fig. 7.3.1 Edge weight distribution. Empirical distribution across all pairs of brain regions
of the absolute value of inter-correlations for the ca estimator and selected quantile
values of the clustering-based inter-correlation estimator for four subjects of the HCP
dataset. Each subject was scanned twice, on different days. The black dot corresponds to
the median. The ca estimator is much more variable than the quantile-based estimators.
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7.3.2 Test-retest repeatability

We now evaluate repeatability of the RSFC networks. Results are showcased in Figure
7.3.2. The inter-correlation CCC distribution across the 100 HCP subjects varies with
the quantile value and tend to be highest for quantiles ranging from 0.4 to 0.6, i.e. Q40 to
Q60 (cf. Figure 7.3.2a). This implies that the tails of the inter-correlation distributions
are less repeatable. Additionally, the average CCCs across subjects for quantiles Q40
to Q60 range from 0.64 to 0.66, which are slightly higher than that of the ca estimator
(0.63). Graph metric betweenness repeatability results are reported in Figure 7.3.2b
for varying network threshold values. It shows all distribution-based estimators yield
higher betweenness CCC than ca, with Q10 and Q90 the most repeatable for all network
sparsity thresholds. Indeed average betweenness CCC across all 100 subjects peaks at
0.85 for Q90 and 0.35 for ca. Furthermore, while the betweenness CCC of ca decays to
below 0.2 as the percentage of edges included in the RSFC networks increases, that of
Q10 and Q90 remain high at 0.85, initially reached for slightly less than a 10% threshold,
and only slightly decrease to reach approximately 0.70 for a 50% threshold.

7.3.3 Machine learning for psychometric variables prediction
and classification

We now evaluate our proposed framework in terms of machine learning task performance.

Brain-level analysis

We first report results on brain-level summaries. Figure 7.3.3 depicts univariate associa-
tions between brain-level functional connectivity and either conscientiousness (NEO C)
scores or fluid intelligence (Raven) for the HCP data. Pearson’s r with Raven’s scores is
in the order of 0.1, which is quite low, for all quantile values as well as the ca estimator.
It is however in the same order of magnitude as that obtained by Marek et al. (2022),
where authors considered three datasets, including 1, 200 subjects from the HCP dataset,
and the ca estimator is used on a parcellation with 394 regions. We note as well in
Figure 7.3.3 that effect size from association with NEO C scores are slightly larger for
the 0.5 and 0.9 quantiles (Q50, Q90) and the ca estimator, the largest being obtained
by Q90 (|r| = 0.18). Nevertheless, correlation between the 0.1 (Q10) quantile at the
brain-level and NEO C is 0.01. Association with other NEO-FFI personality variables
are conducted, but not reported here as they show similar results, with NEO C yielding
the highest effect size. Brain-level association results are similar as well for the PIOP2
data (cf. Figure 7.A.1).
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Fig. 7.3.2 Repeatability of the HCP data. (a) Distribution across the 100 HCP subjects
of the Concordance correlation Coefficient (CCC) for the test-retest reliability of edge
weights for varying quantiles of the inter-correlation distributions, ranging from the 10th
to the 90th percentile. The CCC is computed between the two examinations for each
subject. The mean CCC across the 100 subjects for the ca estimator is represented by
a solid red line. Higher CCC indicates a more repeatable estimator. the center of the
inter-correlation distribution is the most repeatable. (b) CCC of a topological graph
metric (betwenness) according to varying choices of network threshold and for different
quantiles of the inter-correlation distributions and the ca estimator. The tails of the
inter-correlation distribution provide the most repeatable network organization in terms
of betweenness.
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Fig. 7.3.3 Brain-level connectivity association with psychometric scores. (a-d) Conscien-
tiousness (NEO C) and (e-h) fluid intelligence (Raven) scores are considered for three
quantile values (Q10, Q50, Q90) and the ca estimator. The black solid lines represent
the linear regression fits, and Pearson’s correlation value r are reported. Data from the
first examination (HCP 0) of 100 HCP subjects is used and reveal low effect size (|r| in
the order of 0.1).

Brain-level classification results are recorded in the first two rows of Table 7.3.1. They
show at least one quantile-based estimator always outperforms the ca estimator on the
HCP data, in terms of both AUC and accuracy. The latter reaches 0.67 for Q40 on the
second scan (HCP 1), which is in the same order of magnitude as the median accuracy
of the optimal fluid intelligence classification pipeline on HCP data in the following
benchmarking study (Dadi et al., 2019). Brain-level classification of the PIOP2 data
using quantile-based edge summaries is better, or at least as good as that using the ca
estimator in terms of both accuracy and AUC.

Similarly, quantile-based RSFC estimators achieve improved psychometric score
regression results compared to the ca estimator. Table 7.3.2 reports regression results
for NEO C scores for the HCP dataset and neuroticism (NEO N) scores for the PIOP2
dataset. We recall that good predictions yield high Pearson’s r and low RMSE. Results
for other NEO-FFI personality scores are not recorded as they yield lower performance.
It can first be noted that Pearson’s r between predicted and actual values is the highest
across all three sets of scans and estimators for Q10 of the first HCP session (HCP 0),
and is significantly different from 0 (r = 0.27, p-value< 0.01). Nonetheless, the lowest
RMSEs, which are obtained by quantile-based RSFC, are quite high, and equal to slightly
more than the standard deviation of the scores for all three sets of scans. Figure 7.3.4
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showcases actual values plotted against predicted values for the best (highest Pearson’s r)
and worst (highest RMSE) performance among quantile-based estimators for the HCP 0
and PIOP2 data. Points tend to be scattered along the identity line in the best regression
scenarios, while in the worst regression case, actual and predicted values are visibly
negatively associated. In fact, Q90 yields a Pearson’s r of −0.18 for the HCP 0 data,
and Q40 yields a Pearson’s r of −0.22 for the PIOP2 data. However, in both scenarios,
predictions seem to be concentrated around their respective mean psychometric scores.
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Fig. 7.3.4 Brain-level regression results. Actual psychometric score values versus values
predicted by a random forest regressor for the (a,c) best case (highest Pearson’s r across
quantile values) and (e-h) the worst case (highest RMSE) using the first examination of
the 100 HCP subjects (HCP 0) and the 204 PIOP2 subjects. (a,b) Conscientiousness
(NEO C) and (c,d) neuroticism (NEO N) scores are considered. Points tend to be
scattered along the identity line (black dashed line) in the best regression scenarios, while
in the worst regression case, actual and predicted values are visibly negatively associated.
In both scenarios, predictions seem to be concentrated around mean scores.

Edge-level analysis

We now examine univariate edge-level association results. Figure 7.3.5 depicts the
distribution across edges of Pearson’s r correlation between edge weights and fluid
intelligence scores for different clustering-based inter-correlation quantiles and the ca
estimator. We note edge weight associations are quite weak for all inter-correlation
estimators. They are however higher than brain-level associations, with Peason’s r values
ranging from −0.3 to 0.3. Effect sizes are slightly different for each of the two sessions
from the HCP datasets as well as the PIOP2 dataset. Distributions of Pearson’s r
between edge weights and additional psychometric scores can be found in the appendix
and are similarly weak (cf. Figure 7.C.1). Conscientiousness is the score with the highest
correlations with HCP edge connectivity, with maximal absolute values reaching 0.4.
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Fig. 7.3.5 Distribution across all edges of Pearson’s correlation between edges weights
and fluid intelligence scores. The correlation values are computed across all subjects
for different quantiles of the edge inter-correlation distributions and the ca estimator.
Distributions for PIOP2 dataset and both scans of the HCP dataset are depicted. The
dashed vertical lines represent the critical correlation values corresponding to a 5%
nominal level.

We then explore multivariate edge-level associations. First, classification results of the
edge-level connectivity are similar to that of brain-level, with quantile-based connectivity
performing better than ca and the highest accuracy at 0.67 and AUC at 0.69 for the
HCP data (cf. Table 7.3.1). Feather embedding yields similar results to the direct
embedding for the HCP 1 data, but deteriorates HCP 1 and PIOP2 results, with a
maximum accuracy at 0.47 for Q40 of PIOP2. Furthermore, quality of the graph2vec
embedding classification is worsened compared to the brain- and edge-level network
representations. In fact, graph2vec accuracy and AUC are close to 0.50 for all settings.
Nonetheless, our proposed quantile-based RSFC improve classification results for both
embeddings.
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Fig. 7.3.6 Edge-level regression results. Actual psychometric score values versus values
predicted by a random forest regressor for the (a,c) best case (highest Pearson’s r across
quantile values) and (e-h) the worst case (highest RMSE) using the first examination of
the 100 HCP subjects (HCP 0) and the 204 PIOP2 subjects. (a,b) Conscientiousness
(NEO C) and (c,d) neuroticism (NEO N) scores are considered. Points tend to be more
scattered along the identity line (black dashed line) in the best HCP data edge-level
regression scenario. In both scenarios, predictions seem to be concentrated around mean
scores, even more so in the PIOP2 data.

Evaluation of the regression of psychometric scores on multivariate edge-level con-
nectivity for various inter-correlation quantile values and the ca estimator are reported
in Table 7.3.2. Once again, our proposed quantile-based estimators outperform ca.
Edge-level regression somewhat improves RMSE, compared to brain-level regression, and
is now slightly less than one standard deviation of the psychometric scores to be predicted.
Nevertheless, edge-level regression provides Pearson’s r that are highly dissimilar to that
of brain-level regression. Indeed, the highest r on the HCP 0 data is obtained for Q50
(r = 0.20, p-value < 0.05), while it is obtained for Q10 in the brain-level regression.
Strongest performances are similarly mismatched between edge- and brain-level for HCP
1 and PIOP2. However, Feather embedding is similar to brain-level RSFC for all three
datasets in terms of both RMSE and Pearson’s r, with the exception of HCP 1, which
yields r = 0.25, p-value< 0.05 for Q40, which is much higher than r at brain-level and
closer to that of the direct embedding at Q50. The graph2vec embedding is worse for all
three datasets in terms of Pearson’s r, but is similar to the direct embedding in terms of
RMSE. Plots of actual values against predicted values showcase predictions that tend to
be more concentrated around the mean scores than that of brain-level classification (cf.
Figure 7.3.6).
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Fig. 7.3.7 Subject heterogeneity. (a) Distribution of edge standard deviation calculated
across all subjects for each edge for various inter-correlation quantiles and the CA
estimates. (b-c) Brain- and edge-level connectivity association with neuroticism (NEO
N) and fluid intelligence (Raven’s score) scores, for the 0.9 quantile. The navy solid
line represents the linear regression fit of the smallest of the two subsets (20 subjects
represented by navy dots) and the golden solid line corresponds to the linear fit of
the remaining 80 subjects (golden crosses). Subsets are different for different figures.
Pearson’s correlation value r are reported. Data from the first examination (scan 0) of 100
HCP subjects is used and reveal that subsets of subjects can have opposing associations.

Subject heterogeneity

We now investigate subject heterogeneity in the HCP and PIOP2 datasets. To begin
with, the distribution across edges of the standard deviation of edge weights calculated
across subjects for both HCP scans and the PIOP2 data are shown in Figure 7.3.7a. The
ca estimator displays the most variability across subjects, with median edge standard
deviation of about 0.17 for all datasets. All quantile-based estimators enable a marked
decrease in variability, with edge standard deviation in the order of 0.01.

Nonetheless, Figure 7.3.7 highlights the fact that independent subsets of the subjects
can display highly differing association effects, e.g., r = 0.62 and r = 0.04 for the
relationship between NEO N and brain-level RSFC on the HCP data. This phenomenon
is also observed for univariate edge-level associations, and are corroborated by the PIOP2
data.
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Fig. 7.3.8 Edge variability networks. Data from the first examination (scan 0) of 100 HCP
subjects. Brain edge standard deviation networks for (a-c) different inter-correlation
quantiles and (d) the CA estimate. Top 2% of most variable edges. Color legend
represents the standard deviation value associated to the edge.

To examine the spatial location of the most variable edges, edge standard deviation
networks are represented in Figure 7.3.8 for the first scans of the HCP dataset. Edge
variability networks of the second HCP scans are qualitatively similar, and hence are
not reported here. PIOP2 edge variability networks can be found in the appendix (cf.
Figure 7.A.2). HCP edge variability networks indicate that the most variable ca-based
edges are located in frontal brain regions, unlike quantile-based edges. Indeed, the latter
display the highest variability in the occipital regions. PIOP2 edge variability networks
indicate similar spatial location of primary edge variability, with the exception of Q10,
which showcases some additional variability in frontal regions, and of ca, whose most
variable edges are now distributed across the entire brain. These figures highlight as
well the fact that quantile-based estimates are much less variable than ca, as previously
shown in Figure 7.3.7a.

7.4 Discussion

7.4.1 Test-retest repeatability

Our first validation step involved assessing test-retest reliability. We showed that the
center of the clustering-based inter-correlation distribution was the most repeatable and
that it was also more reliable on average than the ca estimator (cf. Figure 7.3.2). We
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additionally remark that the most repeatable quantiles were also the ones where edge
weight variability is the lowest (cf. Figure 7.3.7a).

Nevertheless, edge weight CCC values were highly variable across subjects, ranging
from less than 0.2 to over 0.8 for all quantile values. In a previous study, nearly half
of the healthy adult participants were found to have fallen asleep during resting-state
fMRI scan (Soehner et al., 2019). This could help explain why some subject showcase
particularly low repeatability. Regardless of cause, it might be prudent to remove less
repeatable individuals in future studies.

As opposed to edge weight CCC, betweenness CCC was highest for the tails of
the inter-correlation distribution (cf. Figure 7.3.2b). This might be explained by the
fact betweenness is sensitive to region disconnection, since changing a single edge in
the graph may imply alterations in the shortest paths of the graph. Indeed, central
quantiles correspond to low inter-correlation value (cf. Figure 7.3.1), which might be
more sensitive to network thresholding, and thus lead to fluctuating network topologies.
It may be interesting to explore as well the repeatability of additional graph metrics,
such as efficiency. In addition to that, the betweenness CCC of ca sharply declined for
denser networks, which contain many edges with weights not significantly different from
zero, unlike that of quantile-based estimators. This indicates that the latter are much
more reliable estimators of lower-valued edges than ca.

7.4.2 Classification and regression methods choice

We then evaluated performance on machine learning tasks. Before discussing the results
presented above, we briefly address the choice of classification and regression method.
In addition to SVC, Ridge regression and l2 logistic regression were both recommended
for classification tasks in fMRI studies (Dadi et al., 2019). These methods were applied
to both brain- and edge-level classification of HCP datasets. However, Ridge regression
tended to assign all subjects to a single class, and performance of the l2 logistic regression
was worst than that of SVC. A random forest classifier, which is also sometimes used
in neuroimaging data (Sarica et al., 2017), was also evaluated. Overall, its performance
was similar to that of SVC on the HCP data, but it was much worse on the PIOP2 data.
SVC is also the most commonly used classifier in autism-related neuroimaging studies
according to a survey conducted by Vabalas et al. (2019), and reinforced our decision to
use SVC in this chapter. Regarding the regression task, random forest regression, SVR
and ridge regression were explored. However, performance of the latter two were much
worse, in terms of both Pearson’s r and RMSE.
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7.4.3 Brain-level analysis

We now turn to the performance of machine learning tasks on brain-level RSFC. We
showed our proposed distribution-based approach improved both classification and
regression results compared to ca, although performance remained modest. Nevertheless,
the highest accuracy level (0.67) obtained on the HCP 1 data (using Q40) was on par
with state-of-the-art psychometry-related classification of RSFC fMRI data. Indeed,
accuracy of classifiers in the context of neuroimaging studies is expected to be in the
order of 60 − 70%, e.g., (Kassraian-Fard et al., 2016; Dadi et al., 2019). Regression
results were similarly moderate. Nevertheless, Pearson’r was almost always significantly
greater than 0 for at least one quantile. We remark however that classification and
regression performances were not quite replicable across the three sets of scans. Indeed,
while performances were improved by our proposed quantile-based estimates, the specific
quantiles that worked best were different for each set of scans. Furthermore, univariate
associations unexpectedly did not seem to be linked to classification and regression
performance of the various inter-correlation quantile values. Precise interpretation of
association between personality and cognitive scores and brain-level RSFC may be
difficult, as brain-level aggregation may be too coarse. It might however be linked to a
baseline physiological state, analogously to the known relationship with the amplitude of
BOLD signals (Hall et al., 2016).

7.4.4 Edge-level analysis

On the other end of the spectrum, we considered edge-level RSFC. Our clustering-
based correlation estimator once again performed better than the standard ca estimator
in the classification task (cf. Table 7.3.1). Moreover, evaluation of the classification
and regression tasks indicate moderate, and sometimes non-significant, results, with
regression RMSE roughly equal to the standard deviation of the psychometric scores
to be predicted, and the highest accuracy across all estimators, network embedding
techniques, and datasets, equal to 0.67. However, the latter is a state-of-the-art result
(Dadi et al., 2019), as mentioned previously. Similarly to the brain-level analysis, edge-
level classification and regression results for both quantile-based and ca RSFC, highly
differ across sets of scans. Regression results also vary across network representation
levels, highlighting the complexity of the task.

Furthermore, with 3, 916 and 2, 850 edges, and 100 and 204 subjects in HCP and
PIOP2 RSFC networks, respectively, we find ourselves in a high-dimensional setting.
That information, combined with the moderate results of the edge-level analysis indicate
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a need for dimension reduction. Additionally, crucial information about connectivity
networks of comatose patients was previously found at a higher scale level (Achard
et al., 2012a), further suggesting edge-level RSFC may be too fine-grained. Nevertheless,
brain-level classification results were worsened for the PIOP2 data, but similar for the
HCP data compared to that of the edge-level. They were however improved for the
brain-level regression on PIOP2. Yet, while brain-level RSFC may be too coarse, edge-
level Feather and graph2vec embeddings yielded the overall worst classification results.
Further inspection revealed these could be explained by their tendency to assign all
subjects to a single class. Therefore, it appears the two embeddings failed to capture the
structure that is the most relevant to associations with psychometric scores. Further work
is hence required to identify effective dimension reduction approaches in this context.

7.4.5 Subject heterogeneity

Previous works suggested subject heterogeneity may help explain modest performances
in RSFC network machine learning tasks (Schnack and Kahn, 2016; Marek et al., 2022).

We first noted the effect size of the association between psychometric scores and
both brain- and edge-level RSFC varied across subsets of subjects (cf. Figure 7.3.7).
This corroborated previous observations by Marek et al. (2022), and indicated high
subject heterogeneity. Subsequently, qualitative inspection of the distribution across
edges for individual subjects of inter-correlation estimates showed the ca estimator
yielded exceedingly high inter-correlation values compared to our proposed quantile-
based estimators (cf. Figure 7.3.7a). It is worth noting ca is also the estimator that
produced the worst classification and regression results.

The impact of subject variability may be heightened by the sample size. This
hypothesis is supported by a recent work that advocated for the use of thousands of
individuals in rs-fMRI connectivity association studies (Marek et al., 2022). Previously,
Cui and Gong (2018) had also advised a minimum of 200 subjects for RSFC regression
tasks. Moreover, it has been suggested small sample sizes may yield artificially larger
effect sizes in RSFC settings because of their particularly high homogeneity (Schnack
and Kahn, 2016; Marek et al., 2022). This brings us back to our initial observation on
subsets of subjects, some of which displayed particularly high effect sizes.

It is therefore particularly relevant that our proposed quantile-based estimator enable
a reduction in edge-specific heterogeneity compared to ca. We additionally showed that
this phenomenon is mostly localized in frontal brain regions, which are known to be more
prone to the effect of breathing and motion artifacts (Xifra-Porxas et al., 2021).
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7.4.6 Distribution-based weighted networks

In this work, we introduced distribution-based connectivity networks. Assigning distri-
butions or density functions to edges, instead of point estimates such as ca, enables
more flexibility and creates new opportunities for an expanded utilization of data. As
a first step, different quantile values can be chosen for different applications, and we
showed their relevance throughout this chapter. These distributions could be further
exploited, for instance for data augmentation purposes or for ensemble learning, by
obtaining several scalar-weighted graphs per individual subject via approaches akin to
bootstrapping. Manipulating density functions also opens up to the possibility of using
functional data analysis tools. For example, functional PCA scores of the inter-correlation
densities could be used as input features for machine learning tasks.

7.4.7 Conclusion and perspectives

To conclude, our proposed distribution-based network framework improved repeatability,
classification and regression performance over the standard ca estimator on both the
HCP and PIOP2 datasets. However, while our proposed method emerged as the most
superior option, and classification results were similar to state-of-the-art performances
(Dadi et al., 2019), the latter remained moderate. Furthermore, our exploration of several
datasets emphasized the arduous nature of performing reliable classification or regression
using resting-state fMRI to predict psychometric scores. Several factors may help account
for these modest performance, which still surpass that from ca-based networks.

First, as previously detailed, subject heterogeneity may impair performance in RSFC
settings (Schnack and Kahn, 2016). Nevertheless, we showed our proposed quantile-based
edge weights are much less variable across subjects than the ca weights.

However, our sample sizes, of approximately 100 and 200, may prove too small to
offset the effects of subject heterogeneity. Indeed, recent work recommended the use
of thousands of subjects (Marek et al., 2022) in brain-wide RSFC association studies.
Furthermore, classification accuracy of RSFC was also shown to artificially increase
when sample size decreases (Vabalas et al., 2019), further underlining the need for larger
sample size. This may however be difficult to achieve in practice, and even more so when
investigating certain pathologies.

Additional preprocessing may also help increase performance. For instance, removing
physiological and motion nuisance has been shown to improve subject identifiability
(Xifra-Porxas et al., 2021). However, previous works have stressed the importance of
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exercising caution when choosing preprocessing techniques as valuable signals may be
lost (Murphy and Fox, 2017; Liu et al., 2017b).

Yet, it could simply be links between rs-fMRI functional connectivity and psychometric
information are tenuous. It would hence be interesting to validate the proposed framework
on datasets where the informativeness of resting-state imaging would be a more apparent,
such as in comatose patient studies, where resting-state is the only available fMRI
modality. Multi-modality may also help improve performances (Sarica et al., 2017).

It remains that we are in a high-dimensional setting. In order to counteract the lack
of subjects, which is compounded by the subject heterogeneity and high number of edges
more thoughtful dimension reduction methods need to be applied. This can be translated
in terms of improved aggregation of edges. For instance, a node-level analysis that take
into account edge information could be considered. Functional connectivity strength
(FCS) is a common summary metric in brain connectivity studies. It consists in averaging
each row of the RSFC matrix, which in other words amounts to averaging weights of all
edges connected to each node. However, preliminary classification and regression results
were not promising. Furthermore, Cui and Gong (2018) have shown that FCS performs
worse than RSFC in regression tasks. Another, and more insightful, approach could be
to group nodes into equivalence-based node clusters (Carboni et al., 2023) and average
inter-correlations accordingly, instead of aggregating over the entire brain.

Nevertheless, Random Forests and SVM require input graphs to be embedded into
vector space, and preclude the use of multidimensional node and edge features. Graph
Neural Networks (GNN) could be seen through the lens of node and edge aggregation.
Indeed, they traditionally contain message-passing layers, which combine neighboring
node or edge information. For instance, Graph Attention Network layers perform weighted
aggregation based on the importance of node and edge neighbors. Furthermore, GNNs
perform end-to-end learning and take networks as an input, circumventing the network
embedding step. GNNs were hence recently used for classification of major depressive
disorder from RSFC (Gallo et al., 2023). However, edge features were not taken into
account and accuracy results were similarly modest to that of more common classifiers.
We are expecting the use of possibly multivariate edge weights would significantly improve
performances. Preliminary explorations were conducted but application of GNNs to
distribution-based networks is not all that straightforward.
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7.A Additional PIOP2 data figures
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Fig. 7.A.1 Brain-level connectivity association with psychometric scores. (a-d) Neu-
roticism (NEO N) and (e-h) fluid intelligence (Raven) scores were considered for three
quantile values and the ca estimator. The black solid lines represent the linear regression
fits, and Pearson’s correlation value r are reported. Data from the 204 PIOP2 subjects
was used and revealed low effect size (|r| in the order of 0.1).
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Fig. 7.A.2 Edge variability networks. Data from the 204 PIOP2 subjects. Brain edge
standard deviation networks for (a-c) different inter-correlation quantiles and (d) the
CA estimate. Top 2% of most variable edges. Color legend represents the standard
deviation value associated to each edge.

7.B Edge connectivity mean brain networks
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Fig. 7.B.1 Edge mean networks. Data from the 204 PIOP2 subjects. Brain edge mean
networks for (a-c) different inter-correlation quantiles and (d) the CA estimate. Top
2% of edges with the highest connectivity. Color legend represents the average across
subjects of the inter-correlation value associated to each edge.
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Fig. 7.B.2 Edge mean networks. Data from the first scan of the 100 HCP subjects.
Brain edge mean networks for (a-c) different inter-correlation quantiles and (d) the CA
estimate. Top 2% of edges with the highest connectivity. Color legend represents the
average across subjects of the inter-correlation value associated to each edge.

7.C Edge-level brain-wide association for additional
scores
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Fig. 7.C.1 Distribution across edges of Pearson’s correlation between edges weights and
psychometric scores computed across all subjects for different quantiles of the inter-
correlation distribution and the ca estimator.Distributions for both scans of the HCP
dataset are depicted. The vertical dashed lines represent the critical correlation values
corresponding to a 5% nominal level. Age-adjusted cognitive function composite scores
are only available in the HCP dataset. Conscientiousness seems to be the score with the
highest correlations with HCP edge connectivity.



Chapter 8

Conclusion and Perspectives

8.1 Summary

Manipulating multivariate grouped data is a daunting task, particularly when the objective
is to learn, and evaluate, associated connectivity networks.

In Chapter 4, we introduced a novel binary network learning pipeline that leverages
correlation screening and accounts for dependency structures. Once connectivity values
are inferred, it is sometimes preferable to circumvent the thresholding step, and to
namely consider weighted networks instead of their binary counterparts. Chapter 5
hence combined topological data analysis and regional label information to propose a
multi-scale comparison of weighted connectivity networks.

However, intra-correlation and noise are known to negatively impact the estimation of
connectivity network weights, that is, inter-correlation, consequently affecting downstream
analyses. It is therefore crucial to use consistent inter-correlation estimators to infer
connectivity networks. We then proposed in Chapter 6 a novel non-parametric estimator
of the correlation between groups of measurements of a quantity that simultaneously
tackles the presence of both intra-correlation and noise. We derived consistency results,
and empirically established the superiority of our proposed estimator. Leveraging
hierarchical clustering, our approach provides both point estimates and matching empirical
distributions, which inherently quantify some uncertainties. In order to fully utilize this
information, we introduced in Chapter 7 the concept of distribution-based weighted
connectivity networks, where edge weights are inter-correlation distribution or density
functions. We then proceeded to demonstrate its relevance and improved performance
compared to a traditional estimator on real-world resting-state fMRI data in terms of
repeatability and performance in machine learning tasks.
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Distribution-based weighted networks unlock a vast array of possibilities and introduce
the foundations for the definition of a powerful framework that could rigorously quantify
and account for uncertainty and quality in connectivity networks.

8.2 Future Directions

We end this manuscript by detailing some possible future directions arising from this
thesis.

8.2.1 Functional data analysis for connectivity networks

We introduced in Chapter 7 distribution-based weighted networks. These can be reframed
as multivariate functional data, with a density function associated to each edge of
the individual networks. This shift in perspective enables us to utilize tools from
functional data analysis (FDA), such as functional principal component analysis (fPCA),
or functional analysis of variance (fANOVA) and its multivariate counterpart (fMANOVA),
for the purpose of exploring mean and variance effects.

To provide a more tangible perspective, we can consider an application to anesthetic
effects on rat brains. We can recall for instance the rat brain fMRI dataset introduced in
Chapter 3 where rats were administered one of four different anesthetics. In this context,
we can construct brain functional connectivity networks, where each node is a brain
region and each edge is assigned its corresponding inter-correlation density.

Mean effects: high-dimensional fMANOVA. Anesthetic mean effects could then
be examined. Simultaneous comparison of several groups of subjects, i.e., anesthetic
categories in our scenario, is typically performed using ANOVA. It emerges the latter has
been previously successfully used to compare traditional scalar-weighted brain networks
(Fraiman and Fraiman, 2018). This approach even manages to identify edges and nodes
with differences, but only supports scalar weights. fANOVA, which can only handle one
distribution-weighted edge at a time in our context, has also been extensively used in a
wide range of applications, including spatio-temporal climate data, e.g., (Johny, 2021;
Cuevas et al., 2004). Multivariate versions of fANOVA (fMANOVA) could hence be
applied to compare anesthetics while simultaneously accounting for all inter-correlation
densities of a given subject. The fdanova R package provides an implementation of
functional multivariate ANOVA (fMANOVA) (Gorecki and Smaga, 2019, 2017). The
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corresponding null hypothesis is then:

H0 : m1 = · · · = mk = · · · = m4, (8.1)

where mk denotes the vector containing the mean inter-correlation density functions of all
edges, computed across the anesthetic group k. After projecting the density functions into
a Hilbert space (Petersen and Müller, 2016), as required per (Gorecki and Smaga, 2017),
preliminary results on the rat datasets are promising and allow to differentiate anesthetic
groups. However, we have too few subjects for those results to truly be reliable. We are
indeed in a high-dimensional setting, with at most 6 rats per group and a large number
of variables, that is, the number of edges, which are in the thousands. High dimensional
approaches could offer a possible solution. Some high-dimensional MANOVA methods
have already been developed (Lin et al., 2021) and could be extended to functional data.
The approach presented by Lin et al. (2021) relies on maxima among variables, which
would need to be adapted in a functional data setting, perhaps by leveraging quantiles of
the inter-correlation densities.

Variance effects. Anesthetic variance effects could also be of interest. For instance,
distribution-based connectivity networks could be decomposed into a network representing
joint variations across all rats, networks representing anesthetic-specific perturbations,
and individual networks representing rat-specific perturbations. To that end, low-rank
models that could plausibly capture a latent part of the inter-correlation densities could
be used. These would need to be chosen carefully. Preliminary explorations of the Joint
and Individual Variation explained (JIVE) method (Lock et al., 2013) highlighted the
challenges of the task. Indeed, while we were able to obtain joint and individual edge
variation components across all rats, the JIVE framework proved too restrictive to recover
anesthetic-specific variation components. Other approaches, such as fPCA could also be
investigated. More work hence would need to be done and is out of the scope of this
thesis.

8.2.2 Uncertain graphs

We are convinced providing theoretically sound and practical methods to model brain
connectivity only partially meets expectations, and that quantifying their quality is
necessary for physicians to adopt these tools.

Incidentally, the proposed distribution-based paradigm could also serve as a foundation
for uncertainty quantification of connectivity networks. Inter-correlation distributions
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already constitute in and of themselves a characterization of uncertainty, and could
potentially be linked to the Bayesian literature, possibly by way of ensemble learning
(Pearce et al., 2018). Caution is however warranted due to the presence of dependence
between the correlation estimates used to derive individual inter-correlation densities.

A related and pertinent extension would be to consider uncertain graphs, e.g. (Hu
et al., 2017; Liu et al., 2023), that is, graphs whose edge weights are equal to their
own probability of existence. Hailing from the database community, and leveraging
the possible world paradigm, they have been used in various undertakings, from graph
embedding (Hu et al., 2017), to identifying protein complexes (Zhao et al., 2014). In the
context of functional connectivity, such graphs have been introduced as fuzzy networks
(Raimondo and De Domenico, 2021). In the setting where networks edges are associated
with an inter-correlation distribution, the probability of existence of the edge between
any regions A and B could potentially be defined as follows:

πAB = P (ρA,B ≥ ρA,B
q ), (8.2)

where ρA,B
q is the inter-correlation threshold used to determine whether the edge between

regions A and B is sufficiently highly correlated to be deemed to exist. It could be for
instance equal to the quantile-based threshold introduced in Chapter 4. We could then
propose to define the empirical probability of existence of the edge between any regions
A and B as follows:

π̂AB = P (|RA,B| ≥ ρA,B
q ) = 1− F̂|RA,B |(ρA,B

q ). (8.3)

Other definitions of the probability of existence could be alternatively be proposed. For
instance, Raimondo and De Domenico (2021) leverage the hypothesis testing literature
as well as the Bayes factor to derive it.

Once the probability of existence of edges are defined and computed, uncertain graphs
could be exploited in a wide range of situations highly relevant to brain functional
connectivity.

For instance, various graph theory metrics, such as node degree, the clustering
coefficient or the closeness centrality have been extended to uncertain graphs (Raimondo
and De Domenico, 2021; Liu et al., 2023). Since each edge is now assigned a probability
of existence, the probability distribution of these graph metrics can be derived from
individual networks. Graph metrics have recently been used to determine node equivalence
classes via a nodal-statistics-based equivalence relation (Carboni et al., 2023). The latter
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could be extended to the uncertain graph paradigm by taking into account node metric
probability distributions when defining the equivalence classes.

Uncertainty could also be taken into account in subsequent analyses, such as in
machine learning pipelines, possibly using uncertain graph embeddings (Hu et al., 2017).

Finally, uncertainty visualization could be more easily produced. This is all the more
compelling in functional connectivity settings, where brain maps depicting graph metric
information, such as node degrees, could be combined with connectivity uncertainty for
each region. These representations could be specifically designed to help meet the needs
of physicians, for example in terms of prognosis assessment.

8.2.3 Graph neural networks for distribution-based networks

We discuss in this section one last possible future direction. Graph neural networks
(GNN) perform end-to-end learning, taking graphs as an input, and thus circumventing
the graph embedding step. In this paradigm, nodes and edges can furthermore both have
vector features. GNNs have recently been used to classify major depressive disorders
using scalar-weighted functional connectivity networks (Gallo et al., 2023). However,
edge features were not taken into account.

In our proposed distribution-based framework, density functions are attached to each
edge and could easily be discretized to be appointed as input edge features. Node features
could analogously be obtained from intra-correlation distributions. The latter could be
derived from voxel-to-voxel intra-correlations in fMRI contexts.

A typical GNN model contains at least an input and output layer, and one or more
pooling steps that aggregate node or edge features so that the output prediction is a scalar.
Pooling function could be the mean, minimum, maximum, sum, or more sophisticated
aggregation function (e.g., linear regression ). A popular type of layers are message-passing
layers, which take into account the input graph structure by aggregating neighboring node
and edge information. One such layer is the Edge Graph Attention Network (EGAT) layer
(Kamiński et al., 2021), which performs weighted aggregation based on the importance
of node and edge neighbors and can handle vector edge features. The EGAT layer would
hence be particularly appropriate for our setting. It is implemented in the dgl Python
library and has recently been used to classify multi-channel electroencephalography
data (Lin et al., 2023). We are expecting the use of multivariate edge features derived
from inter-correlation densities to improve GNN performances over univariate, or even
non-existent, edge features.
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