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Résumé: Avec les réseaux de cinquième généra-tion (5G), plusieurs services hétérogènes sontsupportés: le service enhanced Mobile Broad-Band (eMBB) caractérisé par ses débits élevés,le serviceUltra-Reliable Low-Latency Communica-tions (URLLC) nécessitant une faible latence et leservice massive Machine-Type Communications(mMTC) privilégiant une importante densité deconnexions. Grâce au slicing, la coexistence deces services sur le même réseau est possible. Leslicing divise le réseau en sous-réseaux logiqueset isolés dont chaque partie est dénommée sliceet attribuée à une catégorie de services. De plus,le Radio Access Network (RAN) est le lieu d’unetransformation visant à désintégrer ses com-posants grâce à des organismes de normalisationcomme l’alliance Open-RAN (O-RAN). Cette évolu-tion apporte plusieurs avantages pour les opéra-teurs comme l’introduction de l’intelligence artifi-cielle au niveau des contrôleurs. Dans ce contextede slicing et d’évolution du RAN, l’optimisationdes ressources radio est un défi majeur pour unopérateur mobile afin d’assurer la qualité de ser-vice des différents slices à partir d’algorithmesefficaces. Par conséquent, dans cette thèse,l’objectif est de proposer plusieurs algorithmesd’allocation de ressources radio en identifiant lesindicateurs de performance nécessaires pour laprise de décisions. De plus, les différentes ap-proches proposées sont comparées entre elleset à celles de l’état de l’art, y compris l’approchestandard. Aussi, pour la plupart des solutionsproposées, leur emplacement dans l’architectureO-RAN est discuté. Notre premier algorithmeest basé sur le Dynamic Weighted Fair Queu-ing (DWFQ) dans un contexte multi-slice et multi-Virtual Operator (VO). Le but est de déterminerla portion de ressources attribuée à chaque VOdans chaque slice en utilisant la théorie des jeux.Dans la suite, on s’intéresse à la gestion desressources radio au niveau d’un même opéra-teur. Pour cela, une deuxième approche se fo-calise sur l’allocation des ressources radio entre

deux slices hétérogènes: eMBB et URLLC. Deuxapproches, centralisée basée sur le Deep-Q Net-works (DQN) et distribuée basée sur un jeu non-coopératif, traitent ce problème où l’allocationdes ressources se fait grâce à l’ingénierie de trafic.Dans la troisième contribution, on ajoute l’aspectnumérologie (espacement entre sous-porteuses)au problème précédent avec l’étude de troisslices: eMBB, URLLC etmMTC. Pour cela, on divisela bande de l’opérateur en plusieurs BandwidthParts (BWPs) dont chacune est associée à unenumérologie ce qui provoque l’Inter-NumerologyInterference (INI). Par suite, on propose un al-gorithme à trois étages dont le premier étageutilise la théorie des jeux pour choisir la BWP quiservira les utilisateurs URLLC. Le deuxième étageutilise une heuristique pour déterminer la por-tion de ressources radio dédiée à chaque BWP.Le troisième étage utilise le DQN pour dimen-sionner une bande de garde entre les BWPs util-isant des numérologies différentes afin de ré-duire l’INI. Pour la suite, on garde toujours l’aspectmulti-numérologies dans le problème mais ons’intéresse plutôt aux utilisateurs connectés si-multanément à plusieurs slices. Pour ces util-isateurs, une latence additionnelle est générée àcause du BWP switching qui est nécessaire pourrécupérer les ressources de chaque slice. Pourcela, notre quatrième contribution propose troismécanismes innovants de BWP switching qui per-mettent de réduire la latence globale due à ceteffet. Pour la dernière contribution, l’efficacitéénergétique de ces utilisateurs est étudiée enproposant un algorithme qui sélectionne entrela configuration "single numerology" (une seuleBWP pour tous les slices) et "multi-numerology"(BWP différente pour chaque slice) en se bas-ant sur plusieurs facteurs comme le niveau debatterie. Cette sélection se fait à travers deuxapproches, centralisée basée sur un problèmed’optimisation et distribuée basée sur la théoriedes jeux.
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Abstract: With Fifth Generation (5G) Networks,multiple heterogeneous services are supportedsuch as the enhanced Mobile BroadBand (eMBB)service characterized by high throughput de-mand, the Ultra-Reliable Low-Latency Communi-cations (URLLC) service requiring a low latencyand the massive Machine-Type Communications(mMTC) service favoring a high density of con-nected devices. Thanks to slicing, these servicescan coexist on the same infrastructure. Slicingdivides the network into multiple isolated logi-cal networks named slices where each slice is at-tributed to a category of services. Furthermore,standardization bodies such as the Open-RAN al-liance (O-RAN) focus on the evolution of the Ra-dio Access Network (RAN) architecture includingRAN components disaggregation. This evolutionbrings in many advantages for the operator suchas the introduction of artificial intelligence at thelevel of the controllers. In this context of RAN evo-lution and slicing, the radio resource optimizationis an important challenge for the mobile networkoperator to ensure Quality of Service (QoS) sat-isfaction for the different slices through efficientalgorithms. Therefore, in this thesis, the objectiveis to propose various radio resource allocation al-gorithms based on the identification of the neces-sary Key Performance Indicators (KPIs) to take theappropriate decisions. Additionally, the proposedapproaches are compared against each other andagainst other approaches from the state-of-the-art. Also, solutions implementation in an O-RANcompliant architecture is discussed. Our first al-gorithm is basedonDynamicWeighted FairQueu-ing (DWFQ) in a multi-slice and multi-Virtual Op-erator (VO) context. The aim of this algorithm isto determine the resource portion that will be at-tributed to each VO in each slice using game the-ory. Next, we focus on the radio resource man-agement at the level of a single operator. There-fore, the second contribution focuses on the radio

resource allocation between two heterogeneousslices: eMBB and URLLC. Two approaches solvethis problem where the radio resource allocationis based on traffic engineering. The first approachis a centralized one based on Deep-Q Networks(DQN) and the second is a distributed one basedon a non-cooperative game. In our third contri-bution, we add the numerology (subcarrier spac-ing) aspect to the previous problem, while consid-ering three slices: eMBB, URLLC and mMTC. Forthis reason, we divide the total band into multi-ple Bandwidth Parts (BWPs) each linked to a nu-merology. This causes a new type of interferencecalled Inter-Numerology Interference (INI). There-fore, we propose a three-level algorithm wherethe first level uses game theory to choose theBWP that will serve the URLLC users. The secondlevel uses heuristics to determine the portion ofradio resources attributed to each BWP. The thirdlevel uses DQN to dimension the guard bands be-tween the BWPs using different numerologies toreduce the INI effect. Subsequently, the multi-numerology aspect is retained in the problem,while considering multiple slices per user. Forthese users, an additional latency is induced dueto BWP switching. The latter is necessary in or-der to retrieve the data of each slice. For this rea-son, our fourth contribution proposes three in-novative BWP switching schemes that help to re-duce the overall latency. As for our final contri-bution, we focus on the energy efficiency aspectof such users by proposing an algorithm that se-lects the most suitable BWP configuration: singlenumerology (a single BWP for all slices) or multi-numerology (different BWP for each slice) whiletaking into account multiple factors such as thebattery level. This selection is done thanks to twoapproaches: a centralized one based on an opti-mization problem and a distributed one based ongame theory.
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Résumé

Plusieurs services hétérogènes sont supportés dans la cinquième génération des réseaux mobiles (5G)
comme le service eenhanced Mobile BroadBand (eMBB) caractérisé par ses débits élevés, le service Ultra-
Reliable Low-Latency Communications (URLLC) nécessitant une faible latence et une fiabilité élevée et le
service massive Machine-Type Communications (mMTC) répondant à un besoin capacitaire en croissance
exponentielle et privilégiant une faible consommation énergétique.

Grâce à son introduction en 5G, le slicing facilite la coexistence de ces services sur le même réseau
physique. En effet, le slicing permet de diviser le réseau physique en sous-réseaux logiques dont chaque
partie est dénommée slice. Chaque slice sera attribué à une catégorie de services. En même temps, une
isolation est assurée entre les différents slices et les ressources radio seront partagées entre slices où
chaque slice aura des ressources dédiées. La répartition des ressources radio entre slices reste un défi
pour un opérateur mobile qui dispose d’une bande limitée à répartir entre les différents services tout en
respectant la qualité de service de chacun.

Aussi, le réseau d’accès mobile ou Radio Access Network (RAN) est le lieu d’une profonde transforma-
tion visant à désintégrer ses composants et ouvrir ses interfaces grâce à des organismes de normalisation
comme l’alliance Open-RAN (O-RAN) et 3rd Generation Partnership Project (3GPP) qui travaillent sur ce su-
jet. En effet, l’infrastructure du RAN est fermée, résistante au passage à l’échelle et difficile à programmer
ce qui freine l’introduction de nouvelles applications métier. Mais grâce à cette transformation, la station
de base en 5G ou g-Node B n’est plus un blocmonolithique déployé sur unmatériel dédié, mais un ensem-
ble de composants répartis dans l’architecture du RAN virtualisée: le Centralized Unit (CU), le Distributed
Unit (DU) et le Radio Unit (RU) qui composent désormais la g-NodeB de la 5G. Cette désintégration apporte
plusieurs avantages et défits pour les opérateurs, en particulier l’interopérabilité entre les composants de
la g-NodeB, l’ouverture de leurs interfaces ainsi que l’introduction de l’intelligence artificielle pour une plus
grande autonomie de ces composants. Relever ces défis est l’objectif de la 3GPP ainsi que de l’alliance O-
RAN regroupant les opérateurs majeurs du secteur Télécom afin d’obtenir l’ouverture du réseau d’accès
radio et le doter d’intelligence.

Dans ce contexte de slicing et d’évolution duRAN, l’optimisation des ressources radio est undéfimajeur
pour un opérateur mobile afin d’assurer la qualité de service des différents slices grâce à l’intelligence qui
peut être ajoutée au niveau du RAN à partir d’algorithmes efficaces. Il est donc indispensable d’introduire
des éléments de réseau virtualisésmunis d’interfaces ouvertes et de profiter de cette évolution du RAN. De
plus, la séparation envisagée du plan de contrôle et du plan de données permettra demettre en place des
mécanismes dynamiques et intelligents pour la gestion des ressources radio dans le RAN. Par conséquent,
dans cette thèse, on se focalise sur ce sujet d’optimisation des ressources radio dans le contexte de slicing
et évolution du RAN, avec comme objectif de proposer plusieurs algorithmes intelligents d’allocation de
ressources radio en identifiant les indicateurs de performance nécessaires pour la prise de décisions et
en comparant les différentes approches proposées à celles de l’état de l’art.

D’abord, notre premère proposition est un algorithme basé sur le Dynamic Weighted Fair Queuing
(DWFQ) dans un contexte multi-slice et multi-Virtual Operator (VO). Le but de cet algorithme est de déter-
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miner la part de ressources radio qu’on va attribuer à chaque VO dans chaque slice. Dans ce contexte, le
DWFQ est utilisé pour ordonnancer les différents VOs dans chaque slice selon le poids de chaque VO dans
chaque slice. Le problème est formulé par un jeu Stackelberg dont le but est de déterminer les poids des
VOs ainsi que le coût monétaire à payer par le VO au fournisseur de l’infrastructure (I-P). L’implémentation
de ces algorithmes dans une architecture compatible avec les spécifications O-RAN est aussi discutée.

Ensuite, on s’intéresse à la gestion des ressources radio au niveau d’un même opérateur. Pour cela,
une deuxième approche se focalise en particulier sur l’allocation des ressources radio entre 2 slices et
services hétérogènes (eMBB et URLLC). Deux approches, centralisée basée sur le Deep-Q Networks (DQN)
et distribuée basée sur un jeu non-coopératif, traitent ce problème où l’allocation de ressources radio se
fait grâce à l’ingénierie de trafic. Ceci nous permettera de sélectionner le slice qui va servir l’utilisateur
avec un ajustement dynamique de ces ressources où on change la portion dédiée à chaque slice selon
plusieurs facteurs comme la charge du traffic, le débit et le délai. Ces approches sont comparées entre
elles et comparées avec un autre travail de l’état de l’art ainsi qu’à l’approche legacy ou statique. On discute
aussi de l’emplacement de ces solutions dans l’architecture O-RAN.

Pour ce qui suit, l’aspect numérologie est intégré dans le problème. La numérologie est un nouveau
concept qui désigne l’espacement entre sous-porteuses de l’Orthogonal Frequency Division Multiplexing
(OFDM) qui est devenu flexible avec la 5G afin de supporter des services de faible latence commeURLLC vu
que la durée de symbole et le Time Transmission Interval (TTI) diminuent avec une numérologie élevée. En
effet, les différents services hétérogènes nécessitent des exigences différentes en terme de numérologies.
Par exemple, le service URLLC nécessite une numérologie plus élevée que le service eMBB. Pour cela, on
divise la bande de l’opérateur en plusieurs Bandwidth Parts (BWPs) qui est une partie de bande scannée
par le User Equipment (UE) et associée à une numérologie. Par contre, l’existence de plusieurs BWPs avec
des numérologies différentes sur la même bande va créer un nouveau type d’interférence appelé Inter-
Numerology Interference (INI) à cause de la perte d’orthogonalité lorsqu’on utilise des espacements entre
sous-porteuses différents. Par suite, dans ce contexte, la troisième contribution propose un algorithme à
trois étages où les conditions radio des utilisateurs sont considérées et où trois slices sont étudiés: eMBB,
URLLC et mMTC. Le premier étage consiste à choisir la BWP qui servira les utilisateurs URLLC entre 2 BWPs
dont l’une est dédiée à URLLC et utilisant une numérologie élevée et l’autre est partagée avec eMBB avec
une numérologie plus basse. Ce choix se fait par un jeu non-coopératif. Le deuxième étage utilise une
heuristique afin de déterminer la portion de ressources radio dédiée à chaque BWP selon les indicateurs
de performance des utilisateurs. Le troisième étage utilise le Deep Q-Networks pour dimensionner une
bande de garde entre les BWPs utilisant des numérologies différentes afin de réduire l’effet INI. Finale-
ment, on évalue la performance de cet algorithme en le comparant avec le travail précédent où une seule
numérologie est utilisée et avec un autre travail de l’état de l’art où on néglige le dimensionnement de
bande de garde entre BWPs. L’alignement de cette solution dans l’architecture O-RAN est aussi discuté.

Ultérieurement, on garde toujours l’aspect multi-numérologies dans le problème mais on s’intéresse
plutôt aux utilisateurs connectés simultanément à plusieurs slices qui nécessitent des numérologies dif-
férentes vu que dans les travaux précédents les utilisateurs étaient connectés à un seul slice uniquement.
Pour ces utilisateurs, l’allocation des ressources radio est particulière puisque l’UE ne peut pas scanner
plusieurs BWPs simultanément vu qu’une seule BWP peut être active à la fois. Par suite, la solution qui
existe aujourd’hui pour ces utilisateurs dans le standard est que tous les slices utilisent la même BWP
et la même numérologie. Mais ceci n’est pas efficace puisque certains slices nécessitent des numérolo-
gies différentes afin d’améliorer la qualité de service de chaque slice. Une autre solution possible est de
configurer pour l’UE plusieurs BWPs et faire un basculement de BWP ou BWP switching pour ces utilisa-
teurs afin que l’UE puisse récupérer les données de chaque slice. Par contre, le BWP switching génère une
latence additionnelle qui peut être nuisible pour certains services comme URLLC. Par conséquent, notre
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quatrième contribution propose trois mécanismes innovants de BWP switching qui permettent de réduire
la latence globale dû à cet effet. Ces trois propositions sont comparées entre elles et avec le mécanisme
de BWP switching qui existe dans le standard.

Pour la cinquième et dernière contribution, on s’intéresse à l’aspect efficacité énergétique de ces util-
isateurs en proposant un algorithme qui sélectionne entre la configuration "single numerology" (une seule
BWP pour tous les slices) et "multi-numerology" (BWP différente pour chaque slice) en se basant sur
plusieurs facteurs comme le niveau de batterie et indicateur de performance du slice. Cette sélection
se fait à travers deux approches, centralisée basée sur un problème d’optimisation et distribuée basée
sur la théorie des jeux. On évalue la performance de ces approches en terme d’efficacité energétique en
les comparant entre elles et à l’approche standard.
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Abstract

With Fifth Generation (5G) Networks, multiple heterogeneous services are supported such as the en-
hanced Mobile BroadBand (eMBB) service characterized by high throughput demand, the Ultra-Reliable
Low-Latency Communications (URLLC) service requiring a low latency and themassiveMachine-Type Com-
munications (mMTC) service favoring a high density of connected devices.

Thanks to slicing, these services can coexist on the same infrastructure. Slicing divides the network into
multiple isolated logical networks named slices where each slice is attributed to a category of services.

Furthermore, standardization bodies such as the Open-RAN alliance (O-RAN) focus on the evolution of
the Radio Access Network (RAN) architecture including RAN components disaggregation. This evolution
brings in many advantages for the operator such as the introduction of artificial intelligence at the level of
the controllers.

In this context of RAN evolution and slicing, the radio resource optimization is an important challenge
for the mobile network operator to ensure Quality of Service (QoS) satisfaction for the different slices
through efficient algorithms. Therefore, in this thesis, the objective is to propose various radio resource
allocation algorithmsbased on the identification of the necessary Key Performance Indicators (KPIs) to take
the appropriate decisions. Additionally, the proposed approaches are compared against each other and
against other approaches from the state-of-the-art. Also, solutions implementation in anO-RAN compliant
architecture is discussed.

Our first algorithm is based on Dynamic Weighted Fair Queuing (DWFQ) in a multi-slice and multi-
Virtual Operator (VO) context. The aim of this algorithm is to determine the resource portion that will be
attributed to each VO in each slice using game theory.

Next, we focus on the radio resource management at the level of a single operator. Therefore, the
second contribution focuses on the radio resource allocation between two heterogeneous slices: eMBB
and URLLC. Two approaches solve this problem where the radio resource allocation is based on traffic
engineering. The first approach is a centralized one based on Deep-Q Networks (DQN) and the second is
a distributed one based on a non-cooperative game.

In our third contribution, we add the numerology (subcarrier spacing) aspect to the previous problem,
while considering three slices: eMBB, URLLC and mMTC. For this reason, we divide the total band into
multiple Bandwidth Parts (BWPs) each linked to a numerology. This causes a new type of interference
called Inter-Numerology Interference (INI). Therefore, we propose a three-level algorithm where the first
level uses game theory to choose the BWP that will serve the URLLC users. The second level uses heuristics
to determine the portion of radio resources attributed to each BWP. The third level uses DQN to dimension
the guard bands between the BWPs using different numerologies to reduce the INI effect.

Subsequently, the multi-numerology aspect is retained in the problem, while considering multiple
slices per user. For these users, an additional latency is induced due to BWP switching. The latter is nec-
essary in order to retrieve the data of each slice. For this reason, our fourth contribution proposes three
innovative BWP switching schemes that help to reduce the overall latency.

As for our final contribution, we focus on the energy efficiency aspect of such users by proposing an
v



algorithm that selects the most suitable BWP configuration: single numerology (a single BWP for all slices)
or multi-numerology (different BWP for each slice) while taking into account multiple factors such as the
battery level. This selection is done thanks to two approaches: a centralized one based on an optimization
problem and a distributed one based on game theory.
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Chapter 1

Introduction

Network slicing and the evolution of the Radio Access Network (RAN) with the Open-RAN Alliance (O-RAN) archi-
tecture are enablers for reducing the mobile network operator’s Capital Expenditures (CAPEX) and Operational
Expenditures (OPEX). By making the RANmore flexible, open, efficient and autonomous, it can face the new chal-
lenges in terms of capacity and requirements for heterogeneous services in Fifth Generation mobile networks
(5G) such as the Ultra-Reliable and Low-Latency Communications (URLLC) and massive Machine-Type Communi-
cations (mMTC) services in addition to the enhanced Mobile Broadband (eMBB) service. Among these challenges,
radio resource optimization is an important one. In fact, the operator disposes of a limited amount of band that
should be distributed astutely among the different services to ensure Quality of Service (QoS) satisfaction and
high users’ Key Performance Indicators (KPIs). This chapter presents the new challenges of a 5G mobile network
operator along with the motivations behind the new mentioned features. Afterwards, the network slicing con-
cept is addressed where we focus on RAN slicing in particular. Further, the evolution of mobile networks and
the RAN are discussed where the O-RAN architecture is presented. Additionally, the radio resource allocation
problem in this context is also discussed. Finally, the thesis objectives, the summary of contributions and the
thesis organization are also detailed in this chapter.

1.1 5G Concepts and Services
Additional services with different QoS constraints are supported in Fifth Generation (5G) New Radio (NR)
compared to its predecessor Long-Term Evolution (LTE) where only services requiring high throughput
are supported. This creates a new challenge for the mobile network operator to support all these services
by respecting the Service Level Agreement (SLA) of each class of service and ensuring QoS satisfaction.
This SLA can take the form of minimum throughput, maximum tolerated latency, etc. Therefore, the main
motive of 5G is to address these new heterogeneous demands and classes of service in terms of Key
Performance Indicator (KPI) satisfaction, implementation, flexibility, security, scalability and isolation.

1.1.1 The Classes of Services in 5G
There are three main classes supported in 5G [5]:

• The enhanced Mobile Broadband (eMBB) service characterized by high data rates (up to 20 Gb/s in
the downlink and up to 10Gb/s in the uplink). This particular service requires a high bandwidth and is
used for applications such as online streaming and gaming. Therefore, it necessitates a large payload
but can tolerate a higher latency compared to other classes. Also, it is supported in LTE. Nonetheless,
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5G NR aims to increase the data rate for this particular class with the increasing demand of mobile
traffic.

• The Ultra-Reliable and Low-Latency Communications (URLLC) service distinguished by high reliabil-
ity (1− 105) and low latency with a tolerated target latency of 1ms as stated by the Third Generation
Partnership Projet (3GPP) [6][7][8]. It mainly concerns applications such as connected cars and con-
nected medicine. The URLLC packets are composed of small payload, therefore this service does
not require a high throughput.

• The massive Machine-Type Communications (mMTC) service requiring a high connection density of
nodes (up to 1Million connections/km2) and a low energy consumption to improve devices’ battery
life and autonomy [9]. Similar to URLLC, mMTC packets are of small payload with a few bytes [10]. It
is mainly used for Internet of Things (IoT) applications and can tolerate a higher latency than URLLC
and a lower throughput than eMBB.

Table 1.1 summarizes the characteristics of each service.
Table 1.1: 5G Services

Service Requirements ApplicationseMBB High throughput Streaming,High payload Gaming, etc.Low Latency Connected cars,URLLC High Reliability Connected medicine, etc.Low PayloadLow energy consumptionmMTC High connection density IoTLow Payload

1.1.2 Flexible Numerology and Radio Frame Structure
In order to support these various services, the flexible numerology concept was introduced where the
numerology refers to the Orthogonal Frequency Division Multiplexing (OFDM) subcarrier spacing. When
the latter is increased, theOFDMsymbol duration is reducedwhich helps reducing latency for services such
as URLLC [11]. In fact, in 5G NR and similar to LTE, a radio frame is fixed to 10ms. This radio frame contains
10 subframes each of 1 ms. However, unlike LTE, the Subcarrier Spacing (SCS) is flexible and no longer
fixed to 15 kHz [12]. A numerology µ designates a specific SCS. In fact, each subcarrier transports 1 OFDM
symbol. Hence, we can observe the reduction of OFDM symbol duration with increasing numerologies.

A Physical Resource Block (PRB), which is the smallest unit of radio resources allocated to a user, is
composed of 12 subcarriers in the frequency domain and a variable number of OFDM symbols in the time
domain. A Transmission Time Interval (TTI) or slot is defined as 14 OFDM symbols in the time domain.
Therefore, since the PRB and TTI depend on the OFDM symbol duration, their duration is reduced with a
higher numerology. Consequently, a subframe contains a variable number of slots depending on µ.

Furthermore, to support low-latency devices such as URLLC, 5G NR proposes the use of mini-slots
or short TTIs (sTTI) [13]. A sTTI is smaller than a TTI and it can occupy 2, 4 or 7 OFDM symbols in the
time domain. It is mainly used to allocate resources to another device (URLLC) on an on-going slot to
immediately serve the concerned URLLC user. Figure 1.1 represents the frame, subframe, TTI, sTTI, and
PRB concepts in 5G NR.
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Figure 1.1: Frame, subframe, slot and PRB representations in 5G NR

However, there are multiple factors for the choice of numerology.
In fact, modifying the numerology does not only impact the TTI and PRB durations but can also affect

the Doppler effect. The latter particularly impairs communications subject to high mobility. It destroys
the orthogonality of OFDM subcarriers causing Inter-Carrier Interference (ICI) [14]. Nonetheless, a higher
numerology mitigates the Doppler effect.

Simultaneously, Inter-Symbol Interference (ISI) is a resulting effect of the use of a higher numerology.
In fact, ISI appears when the symbol duration is lower than the highest delay spread of the multi-path
effect. Hence, with a higher µ, the symbol duration is reduced to a certain value that could be lower than
the highest tolerated delay spreadwhich induces ISI. Consequently, in 5GNRwhere two Frequency Ranges
(FR) are adopted (FR1: sub-6 GHz and FR2: mmWave [12]), higher numerologies can be usedwithmmWaves
that are associatedwith smaller cells where the risk of ISI isminimal, whereas lower numerologies are used
in the sub-6 GHz.

Additionally, the choice of numerology depends on the concerned service. Smaller TTIs (higher nu-
merologies) are used for services requiring stringent delays such as URLLC to reduce latency while larger
TTIs (smaller numerologies) are preferred for services requiring high throughput such as eMBB since they
offer higher spectral efficiency and larger transport block size to support higher payloads [15]. As for
mMTC, it does not require a specific numerology and maintains the SCS of LTE (µ = 0) as specified in the
work in [16].

There are five supported numerologies in 5G NR where µ = 4 can be used to broadcast signals at
mmWave. Table 1.2 summarizes these numerologies along with their concepts for every numerology µ.

When multiple heterogeneous services are proposed by the mobile network operator, multiple nu-
merologies on the same band may be used. For this reason, the concept of Bandwidth Part (BWP) is
proposed in 5G NR [17].

3



Table 1.2: 5G Numerologies
µ 0 1 2 3 4

SCS (kHz) 15 30 60 120 240
OFDM Symbol Duration (µs) 71.35 35.68 17.84 8.92 4.46

TTI Duration (ms) 1 0.5 0.25 0.125 0.0625
Slots in one subframe 1 2 4 8 16
Subframes in one frame 10 10 10 10 10

Frequency Range FR1 FR1 FR1-2 FR2 FR2
Doppler Effect High High Low Low Low
Multipath Effect Low Low High High High
Suitable service eMBB/mMTC eMBB URLLC URLLC URLLC

1.1.3 BWP and INI
A BWP is a set of contiguous PRBs (a chunk of the band) scanned by the User Equipment (UE) and linked
to a certain numerology as displayed in Fig. 1.2 [18]. The configured BWP can be narrower than the carrier
bandwidth where the UEmonitors this BWP to retrieve and send its signals. Since the UE is not monitoring
the entire bandwidth, high energy efficiency is ensured.

Figure 1.2: BWP Multi-Numerology Use Case
UEs can have up to four configured BWPs on the Downlink (DL) and four on the Uplink (UL) but only one

BWP is active at a time. A BWP switch can be performed for UEs running different types of services using
different numerologies and a default BWP is automatically configured for UEs that do not have a specific
BWP configuration. The aim of this concept is to decouple the UE bandwidth from the carrier bandwidth
for power saving purposes and multi-numerology use for multi-service support [19].

However, the use of multiple numerologies on the same band causes Inter-Numerology Interference
(INI) due to the loss of orthogonality between subcarriers when different SCS are used. In fact, with OFDM,
the subcarriers are orthogonal to each other. However, this orthogonality is only maintained if the sub-
carriers use the same SCS. Therefore, INI is the result of interference between subcarriers using disparate
SCS as shown in Fig. 1.3 from the work in [1] that represents the interfering subcarriers using different
numerologies with arbitrary units (a.u.).
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Figure 1.3: Interfering numerologies based on [1] with a.u. as arbitrary units

In fact, INI has been widely studied in the literature. There are many factors that impact the INI accord-
ing to the works in [20, 21, 1, 22] which are summarized below:

• The SCS [20, 21, 1, 22]: the higher the numerology is, the less it is exposed to INI while smaller nu-
merologies are more exposed to INI. Additionally, the higher the SCS offset, the higher the INI.

• The number of active subcarriers [20, 21, 22] knowing that the higher this number, the higher the INI.
• The power offset between different numerologies [20, 21] causing a higher INI.
• Windowing [20, 21, 1, 22] that helps reducing the INI.
• The use of a Guard Band (GB) [20, 21, 1, 22] that reduces the INI at the expense of reducing spectral
efficiency.

Therefore, the use of a GB is highly recommended between BWPs using different numerologies.
While these concepts allow the support of the 5G three classes to a certain extent, network slicing

remains a paramount enabler.

1.2 Network Slicing
Network slicing is an end-to-end solution, where the physical infrastructure is divided into multiple iso-
lated logical networks called slices that can be customized to provide specialized and differentiated ser-
vices. Note that network slicing could be further improved by employing Network Function Virtualization
(NFV) (where the components are virtualized) and Software-Defined Networks (SDN) (where a separation
between control and user planes occurs) [23]. Hence, slicing allows the coexistence of heterogeneous
services on the same network by creating a slice for each service and ensuring isolation between them.
Moreover, according to the current standards [24], a UE can be connected to up to 8 slices simultaneously.
Additionally, the slice is identified by its Single- Network Slice Selection Assistance Information (S-NSSAI)
and is built on top of the physical network which includes the Radio Access Network (RAN), transport and
core networks [25] as can be seen in Fig.1.4.
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Figure 1.4: Network Slicing for the three 5G Classes [2]

In this thesis, we focus on radio resource management solutions for improving the performances of
RAN slicing.
1.2.1 RAN Slicing
In the context of the end-to-end slicing process, the RAN takes an important role especially regarding the
mechanisms for allocating radio resources. Radio resources need to be attributed in an efficientmanner by
allocating to each slice the appropriate amount of resources. Each slice or type of service will be attributed
dedicated radio resources as can be seen in Fig. 1.5. Authors in [26] discuss RAN slicing along with its
benefits and implementation challenges.

Figure 1.5: RAN Slicing for the three 5G Classes
Nonetheless, the evolution of the RAN architecture is an enabler for network slicing solutions. This is

discussed in the next section.

1.3 Evolution of mobile networks
In 5G, the evolution of the core network is witnessed where the separation of the control and user plane
functions using SDN has been implemented [27]. In addition, the virtualization of each component is
possible. Thus, each entity is responsible of a specific function using NFV as can be seen in Fig. 1.6.
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Figure 1.6: 5G Core Network [3]

However, this separation has not been fully done in the RAN. Moreover, to enhance the use of multiple
slices, the same evolution on the RAN is required.
1.3.1 Evolution of the RAN
Standardization bodies such as 3GPP and the Open-RAN Alliance (O-RAN) [28] are focusing on RAN ar-
chitecture evolution by disaggregating RAN components to have more efficient and smarter networks
[4][28][29]. There are many advantages brought by this evolution including:

• Reduced Latency due to the disaggregation of components and optimization of the software stack
• Reduced Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) by using open inter-
faces while exploiting NFV where any material can be used to ensure a specific function

• More efficient and intelligent RANdue to the intelligence introduced at the level of the RAN intelligent
controllers

• Improved Radio Resource Management due to the implementation of efficient resource manage-
ment algorithms

• Improved IT Resource Management due to elasticity
In fact, with the RAN evolution, the next generation NodeB (gNB) is no longer a monolithic entity where
intelligence and functions are difficult to be added and updated. It will be decomposed tomultiple entities
where each entity is responsible of a specific function and protocol layer. This decomposition of the gNB
is proposed as part of the O-RAN architecture.
1.3.2 O-RAN Architecture
The RAN architecture proposed by O-RAN is represented in Fig. 1.7.
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Figure 1.7: O-RAN Architecture [4]

There are several entities in that architecture where each is responsible of a specific function in the
RAN. The most important ones that involve the radio resource allocation process are the following:

• The Non-Real Time RAN Intelligent Controller (Non-RT RIC): This entity is responsible of policies and
control loops within a time scale larger than 1 s. Artificial Intelligence (AI), Machine Learning (ML),
optimization, or game theory algorithms can be implemented at this level for policy optimization.
An application running at this level is called rApp.

• The near-Real Time RAN Intelligent Controller (near-RT RIC): This entity is responsible of policies and
control loops within an interval of 10 ms to 1 s. The model that was trained offline in the Non-RT
RIC can be executed at the level of the near-RT RIC based on the network KPIs and other inputs. An
application running at this level is called xApp.

• The O-RAN Distributed Unit (O-DU): It is the entity responsible of the higher physical layer, Medium
Access Control (MAC) and Radio Link Control (RLC) layers. MAC layer is where the scheduler operates
in order to perform radio resource allocation every TTI. Scheduling algorithms with a control loop
smaller than 10 ms can be implemented at this level.

This RAN evolution will help solving radio resource optimization by the implementation of intelligent
resource allocation algorithms.

1.4 Radio Resource Optimization
In this slicing and RAN evolution context, radio resource optimization remains a paramount challenge for
a mobile network operator. In fact, the latter owns a limited amount of band which is its scarce resource.
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Therefore, the partitioning and allotment of this band among the different slices and users should be per-
formed efficiently and astutely. This particular problem is at stake since it will affect users’ performance
and services’ KPIs. Additionally, a static slicing scheme (where the amount of resources attributed to each
slice is fixed) is not an efficient solution due to the sporadic nature of traffic. Therefore, a dynamic slicing
algorithm taking into account the users’ KPIs, traffic and radio conditions is required especially when mul-
tiple parameters come into play such as the numerology, INI and incurred monetary cost. Also, the type
of service should be considered as resources may be attributed differently depending on the service.
1.4.1 Radio Resource Allocation for eMBB and URLLC
From a radio resource management perspective, eMBB requires high throughput for its high payload.
Therefore, a larger bandwidth should be attributed for this service. The higher the number of PRBs at-
tributed to the user, the higher its QoS satisfaction. This is not the case for the URLLC service which re-
quires a low latency and has a small payload. Therefore, the availability of PRBs is only required for this
service instead of the high number of offered PRBs to ensure prompt service. In fact, 3GPP proposes two
scheduling options for the coexistence of these 2 services to satisfy their KPIs [30]:

• Orthogonal scheduling where the resources for eMBB and URLLC are separated and an amount of
bandwidth is dedicated to the URLLC service as displayed in Fig. 1.8. This option is possible thanks to
slicing and radio resource partitioning where each service has dedicated radio resources. The use
of multiple numerologies for each service is possible with this option since each service may have
a different bandwidth part and a higher numerology can be used for URLLC bandwidth. With this
option, two reservation mechanisms are considered: semi static where the Base Station (BS) inter-
mittently broadcasts the frame structure including the numerology and dynamic where the frame
structure is updated regularly. The drawback of this approach is that it can lead to a waste of radio
resources in the absence of an efficient radio resource allocation when there are no active URLLC
users. Hence, dynamic slicing should be considered.

• Preemptive scheduling where the URLLC packets are scheduled on top of ongoing eMBB transmis-
sions to ensure prompt service and low latency using sTTI as can be seen in Fig. 1.9. Hence, some
eMBB users’ transmission will be interrupted for short TTIs to schedule URLLC packets. Two mech-
anisms are considered for this approach: puncturing where eMBB transmissions are allocated zero
power when URLLC traffic is overlapped and superposition where the BS chooses non-zero trans-
mission powers for eMBB and URLLC users. Since the URLLC scheduling occurs on top of eMBB
transmission, a single numerology should be used for both services as they are sharing the same
PRBs and therefore the same BWP. The drawback of this option is the degradation of eMBB perfor-
mance with URLLC prioritization.

Figure 1.8: Orthogonal Scheduling for eMBB and URLLC coexistence
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Figure 1.9: Preemptive Scheduling for eMBB and URLLC coexistence
Hence, both these options should be considered when managing radio resources.

1.4.2 Radio Resource Allocation for mMTC
As for the mMTC service, it is not demanding from a radio resource management perspective and it only
requires a high connection density and number of connected devices [31]. In fact, the mMTC service toler-
ates a lower throughput than eMBB and a higher latency than URLLC as specified in Table 4 from the work
in [16]. Furthermore, the main requirements for mMTC are low energy consumption and high connection
density which can be better tackled from an energy efficiency perspective which is not the main focus of
this thesis. Therefore, taking into account this class is not complicated.
1.4.3 Users connected to multiple slices
Other aspects that should be considered when allocating radio resources include users connected to mul-
tiple slices as they should be treated differently from users connected to a single slice due to additional
complexity. Practically, one user can be associated to eight different slices. Hence, a one-to-M mapping
between one user and different slices is possible whereMmax = 8 [24]. In fact, users connected tomultiple
services may be configured withmultiple BWPs as each service may use a different numerology. Nonethe-
less, since only one BWP can be active at a time and scanned by the UE, a frequent BWP switching should
be performed for these UEs to retrieve the data for each service or slice if these services use different
numerologies. Therefore, two BWP configuration options are envisaged for these users:

• Single numerology and BWP where all services use the same numerology and BWP. This option
avoids complex BWP switching and additional delays and is currently adopted as the baseline ap-
proach for these users in the standard. Nevertheless, it is not optimal to use the same numerology
for all services as heterogeneous services may requires different numerologies to optimize perfor-
mance for each service. For example, URLLC requires a higher numerology. Also, since a single BWP
is scanned by the UE, this option may reduce energy consumption when a narrow BWP is selected
for all services.
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Table 1.3: DCI-Based BWP Switching Delay
Switch Delay Switch Delay

SCS (kHz) Slot Duration in time slots in time slots
(ms) UE type 1 UE type 2

15 1 1 3
30 0.5 2 5
60 0.25 3 9
120 0.125 6 18

• Multi-numerology where each service may use a different numerology to optimize its QoS perfor-
mance but at the cost of additional delays due to BWP switching. In addition, this option may in-
crease energy consumption due to scanning different and wider BWPs.

When adopting the multi-numerology option, multiple ways can be used to perform a BWP switch includ-
ing:

• The BWP inactivity timer where a BWP switch to the default BWP is performed after a certain time
of inactivity by the UE.

• The Downlink Control Information (DCI)-Based BWP Switch which is the fastest method to perform
a BWP switch where the DCI indicates a change of BWP [18].

The DCI is a set of information transmitted by the BS to the terminal through the Physical Downlink Control
Channel (PDCCH) including information about users’ scheduled data in the frequency and time domain,
BWP indicator, and modulation and coding scheme [32]. It has multiple formats including DL, UL, reduced
overhead and can be used to indicate a change of BWP after a modification of the BWP indicator which is
included in the DCI destined for the UE. When this happens, a BWP switch is performed with a predefined
switching delay given by Table 1.3 [18][33]. An additional note is that when the BWP switching requires a
change of numerology (SCS), the switching delay is determined based on the smaller numerology or SCS
from the table. Additionally, for the inactivity timer BWP switching, the switching delay to the default BWP
after the expiry of BWP inactivity timer is the sameas theDCI-basedBWP switching delay [18]. Furthermore,
the current baseline process for multi-slice users adopting the multi-numerology option is to perform a
DCI-Based BWP Switch each time the UE is retrieving its data from different services as can be seen in Fig.
1.10. Hence, the UE retrieves its eMBB data on BWP 1 after decoding its first DCI. Afterwards, it decodes the

Figure 1.10: Current BWP Switching Process for Users Connected to Multiple Slices
second DCI specifying a BWP Switch and retrieves its URLLC data on BWP 2. Therefore, the UE must wait
for the next DCI to perform the BWP switch, which could occur after multiple time slots (multiple ms) [34],
incurring an additional delay that could violate the maximum tolerated latency of 1 ms for URLLC services
[6]. Hence, the radio resource allocation problem is challenging for these users depending on whether to
prioritize QoS performance or reduce additional delays and energy consumption.
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1.4.4 Modeling Tools for the Radio Resource Allocation Problem
In the literature, a variety of tools are used to model the radio resource allocation problem ranging from
simple heuristics and game theory to complex optimization problems and Artificial Intelligence (AI) and
Machine Learning (ML) techniques. Thus, we introduce key concepts of the tools mostly used in the scope
of this thesis tomodel the various problems. These tools rely on optimization problems, Deep-QNetworks
(DQN) and game theory presented hereafter.
Optimization Problems

An optimization problem is a problem where we define a certain objective function that should be max-
imized or minimized by choosing adequate decision variables. The defined problem can be subject to
certain equality and inequality constraints. The decision variables can be either continuous or discrete
and the devised problem can be either linear or non-linear depending on the objective function and con-
straints.

For non-linear convex problems (where the objective function and the constraints are convex), we can
use the Karush-Kuhn-Tucker (KKT) conditions to find the optimal decision variables. These KKT conditions
are first-order derivative tests where first-order derivatives as well as equality and inequality constraints
are taken into account.

Another form of optimization problems is Integer Linear Programming (ILP) where the variables take
integer values and the objective function and constraints are linear. For these ILP problems, we can use
the CPLEX solver to solve them. The CPLEX solver can be downloaded and integrated in programming
platforms such as Matlab and Python.
DQN Background

Deep Q-Networks is a ML method where a certain agent takes an action which moves the state of the
environment from one to another while generating a certain reward to assess the benefit of the action.
Each state has a value function which is the expected return or estimate of future rewards that can be
received from that state. Hence, it evaluates and measures the benefit of ending up in the latter state.
Consequently, it is also important to evaluate the effectiveness of a state-action pair which is also called
Q-value and is none other than the value function of the state-action pair. The relationship between the
state value function and action-state value function is expressed in the following equation (1.1):

V (s) = max
a

Q(s, a) (1.1)
In this equation, V (s) is the value function of state s and Q(s, a) is the value function of the state s and
action a pair.

The learning process of the agent is based on a trial-and-error process where the agent interacts and
explores the environment to take the most adequate decision and follow the best policy. The optimal
decisions can be taken thanks to these Q-values which are learned by the agent using this formula:

Qnew(s, a) = Qold(s, a) + αt[R+ γmax
a∗

Q(s′, a∗)−Qold(s, a)] (1.2)
where αt is the learning rate and γ is the discount factor. Based on Equation (1.2), the Q-value of an
action-state pair (s, a) is obtained via bootstrapping by adding the Q-value of the previous iteration to
the temporal difference multiplied by the learning rate. The temporal difference is none other than the
immediate reward R from moving from state s to state s′ to which we add the estimate of the value
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function of state s′ multiplied by a discount factor and then subtract the Q-value of the previous iteration.
Additionally, neural networks are used with DQN to find the approximate values of Q-values. In that case,
the states are the inputs for the neural networks and the outputs are the corresponding Q-values per
action that will be determined via training. To enhance the training data set and avoid any correlation of
the data, DQN uses experience replay which relies on storing and sampling the data randomly to have
appropriate Q-values. Once these Q-values are learned, the optimal strategy and policy can be followed
after finding a balance between exploration of the unknown and exploitation of known results which is
done using an ϵ-greedy strategy where the agent chooses a random action with probability ϵ and the best
learned action with probability 1 − ϵ. By fine-tuning ϵ, the algorithm converges to the optimal strategy
based on the Q-values.

Thus, the following elements should be defined in a DQN context:
• The agent taking the decisions.
• The environment and its states.
• The possible actions taken by the agent.
• The reward function used to assess the benefits of the actions.

Non-Cooperative Games

Non-Cooperative Games are a branch of game theory mainly used to model a competition between ratio-
nal players where each player seeks to select a strategy that optimizes its cost or utility function in a selfish
and autonomous manner. In a non-cooperative game, it is important to define:

• The set of players.
• The set of strategies or actions of each player.
• The set of objective functions (utility or cost functions) that the players attempt to optimize.
In these games, we seek the Nash Equilibrium (NE) which is an equilibrium state where each of the

players attains its optimum in response to other players’ strategies and where no player profits from de-
viating from such an equilibrium unilaterally. Some games may possess mixed NEs instead of a Pure NE
(PNE). With Mixed NEs, the players randomize and mix between different actions depending on a prob-
ability distribution. This is different from Pure NEs where players select a single action. Therefore, the
existence of the PNE and the way to attain it depend on the devised game. In fact, finite games (games
that should end after a finite number ofmoves) are guaranteed to possess at least onemixedNE. Nonethe-
less, in most of our contributions, we were able to prove the existence of a PNE for these games thanks
to the Finite Improvement Path (FIP) property [35]. In fact, these types of games feature the existence of a
potential function which commonly represents the quality of the different strategy profiles for all players
[36]. Hence, the change of a user strategy leads to a change in its cost function equal to the change in the
potential function, leading to convergence to a PNE.

When a game G is an unweighted non-cooperative game where players only have 2 strategies, it has
the FIP property according to [37]. In an unweighted game G, users share a common set of actions and
the cost function of a player after its strategy selection is specific to that user only and is non-decreasing in
the number of players selecting the same strategy. Moreover, games with FIP are guaranteed to converge
to PNE through Best Response dynamics [38].

A possible implementation of the Best Response algorithm is as follows:
13



Each player in turn, will choose the strategy minimizing its cost function in response to other players’
strategies till convergence is reached where the chosen strategies of each player are the same from the
previous round.

Thus, once we prove that the targeted game has the FIP property, we can resort to the best response
dynamics to attain the PNE.
Stackelberg Game

A Stackelberg Game is a two-stage non-cooperative game which also belongs to a game theory branch.
In the first stage, a certain player or a leader moves first by selecting a certain strategy that optimizes its
utility or cost function. Afterwards, in the second stage, other players or followers move after this leader
by selecting their adequate strategies following the leader’s action in a non-cooperative manner. In this
type of game, we seek the Stackelberg Equilibrium (SE) which is a NE between the leader and the followers.
To reach this state, certain game conditions should be met to prove its existence and uniqueness. Addi-
tionally, we can use the backward induction method to find the SE where we first find the optimal solution
of the second stage and use it to find the optimal solution of the first one at the level of the leader.

Finally, all of these tools are the most important ones that are used in our thesis work to model the
radio resource allocation problem in the context of slicing and RANevolution. This problem is an important
topic for a mobile network operator. For this reason, it is the main focus of this thesis whose objectives
are detailed in the next section.

1.5 Thesis Objectives
Asmentioned, this thesis focuses on the radio resource optimization in the context of slicing and RAN evo-
lution which will help a mobile network operator to improve users’ KPIs and services’ QoS. This facilitates
the support of multiple slices. Thus, the main objectives of our work are the following:

• Propose innovative radio resource allocation mechanisms while benefiting from open interfaces of
the O-RAN architecture and slicing

• Identify the necessary KPIs needed for the radio resource allocation problem
• Model the radio resource allocation problem while considering all the mobile network’s constraints
• Simulate the proposed solutions and compare them to other solutions from the state-of-the-art
To attain these objectives, many algorithms andmechanisms are proposed in this context through our

thesis contributions which are presented in the next section.

1.6 Thesis Contributions
There aremany aspects to consider for the radio resource allocation problem in amulti-slice setting includ-
ing the multi-Virtual Operator (VO) aspect, the services heterogeneity and KPIs, the multiple numerologies
and users’ multi-slice connectivity. For this reason, we propose new algorithms taking into account these
aspects. We start by a general approach and then we zoom into the specifics by adding recursively a layer
of complexity to the problem. Hence, our first contribution tackles the radio resource allocation problem
for a multi-VO context where we aim to determine the band allotted to each VO from the Infrastructure
Provider (I-P)’s radio resources depending on the incurred monetary cost. Next, our second and third
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contributions tackle this problem at the level of a single VO for users connected to a single slice where
we distribute dynamically the radio resources of the VO between heterogeneous slices. The second con-
tribution proposes a slicing radio resource management algorithm for the eMBB and URLLC slices but
without taking into account the numerology, the mMTC slice and users’ radio conditions and arrival pro-
cess whereas the third contribution considers these missing aspects. Finally, we conclude our work with
the fourth and fifth contributions where the radio resource allocation problem takes into account users
connected to multiple slices. Particularly, the fourth contribution considers this problem from a latency
perspective where we aim to reduce it by proposing new BWP switching schemes and the fifth contribu-
tion tackles it from an energy efficiency perspective where we dynamically choose for each user the BWP
configuration (multi-numerology or single numerology) based on energy efficiency and QoS parameters.
AMulti-Slice Multi-Operator Dynamic Weighted Fair Queuing RAN Schedul-
ing in a Game Theoretic Framework
In our first contribution, we tackle the problem from a general and simple perspective where multiple
VOs compete over radio resources provided by an I-P. Each VO is identified by its Public Land Mobile
Network Identity (PLMN ID) and the total band owned by the I-P is divided statically between multiple
slices. In each slice, the VOs share the radio resources where each is attributed a specific portion and
number of PRBs based on its PLMN-ID and S-NSSAI. A lot of works from the State-Of-The-Art (SOTA) focus
on the dynamic resource allocation between slices. However, less focus is put on the resource allocation
at the slice level, particularly when multiple VOs are sharing the resources within a slice [39][40][41][42].
Therefore, the objective of this work is to optimize resource allocation among competing VOs in a slice
using two approaches:

• A centralized approach based on a Stackelberg game steered by the I-P that seeks to maximize the
monetary revenue provided by VOs whereas the latter try to strike a balance between maximizing
the obtained slice throughput and reducing the cost incurred by the I-P.

• A distributed approach based on a non-cooperative game where VOs compete over radio resources
in a way that reduces the incurred cost to be paid to the I-P while maximizing their slice throughput.

The scheduling of VOs in a slice is based on the Dynamic Weighted Fair Queuing (DWFQ) algorithm which
was previously used for scheduling multiple services with different throughput requirements in a single
network [43]. In fact, Weighted Fair Queuing (WFQ) [44] is a General Processor Sharing (GPS)-like schedul-
ing algorithm known to guarantee a fraction of the total capacity deemed "weight". It is envisaged to
provide a set of Application Programming Interfaces (APIs) to regulate the WFQ weights dynamically in
accordance to the VOs fluctuating needs per slice. Therefore, the objective of this work is to propose
an algorithm that determines the optimal weights and monetary cost to be paid by the VOs using both
approaches while aligning this solution with the O-RAN architecture.
Crowding Game and Deep Q-Networks for Dynamic RAN Slicing in 5G Net-
works
After proposing an algorithm that determines the amount of portion allotted to each VO by the I-P, we fo-
cus on a single VO where the radio resource allocation between its slices is dynamically tackled specifically
for two heterogeneous services eMBB and URLLC since the slices were not differentiated in the previous
contribution. In this contribution, a single numerology is considered and a dynamic RAN resource allo-
cation algorithm is proposed based on traffic engineering. It efficiently attributes resources to each slice
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depending on the slice’s SLA by affecting users to slices that may differ from their service types if their
performance target is met. Hence, a user can be attributed PRBs dedicated to another service. Further-
more, the resource allocation between slices is adjusted based on the slice load and users’ performances
admitted in the slice. This algorithm is applied via two approaches: a distributed approach based on a
non-cooperative crowding game and a centralized approach based on Deep-Q Networks (DQN) where the
slice allocation to users of any service type is performed by an intelligent entity depending on the QoS
constraints. Both schemes are compared against one another and against another work from the SOTA
and the implementation of both schemes in the O-RAN architecture is discussed.

A Three-Level Slicing Algorithm in a Multi-Slice Multi-Numerology Context
In the third contribution, the numerology aspect, the mMTC slice, preemptive and orthogonal scheduling,
the radio conditions of users as well as their traffic conditions are added to the previous problem for a
single operator. Therefore, a three-level slicing algorithm that allocates resources to each of the three 5G
classes (eMBB, URLLC and mMTC) is proposed in this context where:

• The first level selects the numerology-specific BWP that will serve URLLC users between two BWPs:
one that is shared with eMBB users using a lower numerology and where preemptive scheduling
occurs and the second is dedicated to URLLC users using a higher numerology. This level uses game
theory.

• The second level allots the band for each BWP to determine the number of resources attributed to
each slice using heuristics.

• The third level uses DQN to dimension a guard band between BWPs using different numerologies
to avoid INI and radio resource wastage.

This algorithm is compared to the previous work and to another work from the SOTA. Its implementation
in the O-RAN architecture is also discussed.

Novel BWPSchemes forMulti-NumerologyandMulti-SliceRadioAccessNet-
works
In the fourth contribution, attention is brought to users connected to multiple slices which are rarely con-
sidered in the SOTA. For these users, the multi-numerology BWP configuration improves slice’s QoS per-
formance since each slice will use its appropriate numerology but at the cost of inflicting additional delays
due to BWP switching. For this reason, we propose three novel BWP switching schemes that help reduce
overall latency:

• The first solution relies on the DCI format modification to include multiple BWPs to be scanned by
the UE.

• The second solution adjusts the DCI frequency by increasing it for users connected tomultiple slices.
• The third solution adjusts the BWP inactivity timer and default BWP to prioritize a premium service
over another.

These three solutions are compared against each other and against the current BWP switching (baseline)
process.
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Energy efficient BWP Configuration for Multi-Slice Users
For the fifth and final contribution, the same type of users as the previous work are studied but from an
energy efficient perspective. Therefore, we propose two algorithms: a distributed one based on a conges-
tion game and a centralized one based on an optimization problem where we select for each multi-slice
user the appropriate BWP configuration between the multi-numerology and single numerology configu-
ration depending on the users’ battery level and other energy efficiency parameters. Both algorithms are
compared against each other and against the standardized BWP configuration for these users.

1.7 Thesis Organization
The remaining of this thesis is organized as follows: the radio ressource allocation problem in the con-
text of RAN evolution and slicing is surveyed in chapter 2. In this chapter, a wide review on the existing
approaches in the SOTA is detailed, after which we summarize the existing works. Chapter 3 presents
the radio resource allocation problem in a multi-slice and multi-VO context. Performance evaluation of
the proposed algorithms is discussed along with the implementation of these solutions in the O-RAN ar-
chitecture. Then, the next chapters focus on radio resource allocation for users connected to a single
slice. In chapter 4, we focus on a single VO and propose dynamic slicing algorithms using two approaches
that efficiently attribute the radio resources for two slices eMBB and URLLC without consideration of the
numerology. The efficiency of these algorithms compared to another work from the SOTA and their im-
plementation in the O-RAN architecture are discussed. Chapter 5 describes a three-level slicing algorithm
solution that allocates the radio resources for three slices: eMBB, URLLC andmMTC in amulti-numerology
setting while taking into account users’ radio conditions, INI and traffic arrival which were not considered
in previous contributions. Therefore, the complexity of the problem is increased with the numerology and
users’ aspects. This algorithm is evaluated in both low and high trafficmodes and compared to otherworks
from the SOTA including our previous work. Additionally, its compliance with the O-RAN architecture is
discussed.

In chapter 6, we shift our attention from users connected to a single slice to the radio resource al-
location problem for users connected to multiple slices where we propose three different solutions to
improve the BWP switching process for these users by reducing overall latency and improving the slices’
QoS specifically for the multi-numerology scenario. The proposed solutions are compared against each
other and against the baseline BWP switching process.

In chapter 7, the same multi-slice users are studied from an energy efficiency perspective where the
radio resource allocation is based on a dynamic selection between the single and multi-numerology BWP
configuration options using a centralized and distributed approach. These approaches are compared
against each other and against the baseline approach.

Chapter 8 concludes the thesis and enlists the short, medium and long term perspectives for future
work.
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Chapter 2

Radio Resource Allocation in the Context
of Slicing and RAN Evolution in the
Literature

Given that radio resource allocation is an important topic to improve users’ performance, dynamic slicing where
resources attributed to each slice are dynamically adjusted has been widely studied in the literature in various
contexts: multi-numerology, heterogeneous services, downlink, uplink, etc. These works also use many tools
from game theory and ML methods to simple heuristics. This chapter focuses on the SOTA existing solutions
in the same context of our work while providing an overview of the dissimilarities of these works compared to
ours. First, a survey on radio resource allocation in a multi-VO context is presented. Next, the works tackling this
problem in the context of heterogeneous services are discussed. Then, works taking into account the numerology
aspect are detailed. Afterwards, the radio resource allocation problem for users connected to multiple slices in
the SOTA is explored. Finally, we conclude with a highlight on the differences of these works from ours.

2.1 Radio Resource Allocation for Multi-VO
A number of works in the literature propose a solution for the allocation of a bandwidth to each VO by
the I-P. For example, the proposed solution in [45] takes into account the interaction between the I-P and
the VOs according to a Stackelberg Game. With this solution, the I-P seeks to maximize its monetary profit
while the VOs try to maximize their bandwidth allocation. Another work [46] in the same vain uses amulti-
leader multi-follower Stackelberg game where the leaders are the wireless backhaul providers and the
followers are the wireless access providers. Additionally, optimization techniques were used in [47] to
allocate the radio resources among different operators while taking into account the channel conditions
constraints.

In the scope of this thesis, we adopt the same approach to represent the radio resource allocation
problem for multiple VOs while adding the slicing context which was missing from the mentioned works
except the work in [47]. Nonetheless, in our work, channel conditions are not considered to determine
the resources for each VO since this problem is tackled from a higher level whereas radio conditions are
considered at a lower level when solving the resource attribution for each service at the level of a single VO.
Therefore, we first determine the band allotted to each VO by the I-P to decide later on how to distribute
this VO allotted band between its different services and slices. Particularly for the band attribution to each
VO, a Stackelberg game where a sole leader is the I-P and the VOs are the followers and a non-cooperative
crowding game are used to model the problem in a multi-slice setting. In addition, unlike these works, the
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DWFQ scheduling algorithm is used to dynamically partake the slice capacity according to weights tasked
by the different VOs. In fact, DWFQ has been previously used for scheduling of different types of services
with different QoS constraints ([44],[43]), whereas in the scope of our work, it is used for the allocation of
slice resources among different VOs depending on the monetary cost which is rarely taken into account.

2.2 Radio Resource Allocation in a Single VO Multi-Slice Con-
text

Radio resource attribution to different slices or RAN dynamic slicing [26] has been widely tackled in the
SOTA using many techniques. For example, the work in [48] focused on the dynamic RAN slicing for elastic
types of services. Authors in [49] propose a dynamic RAN slicing solution for radio resource allocation
between slices based on networks’ KPIs and traffic classification. Game theory was used to address the
dynamic RAN slicing problem for inelastic services in some works such as the work in [50]. Many other
works used ML and Reinforcement Learning (RL) techniques for resource allocation between slices such
as the works in [51], [52], [53]. In [51] and [53], Multi-Agent Reinforcement Learning (MARL) was used to
dynamically allocate the slice resources based on the SLA satisfaction per capacity utilization. Particularly
for [51], the solution has been aligned with 3GPP and O-RAN specifications. In other works such as [52],
Neural Networks were used to dynamically allocate the resources based on KPIs and to calibrate the QoS
parameters as agreed upon in the SLA. Other tools were witnessed in some works including [54] where
authors solved the RAN slicing resource allocation and admission control optimization problem using Lya-
punov Optimization while the work in [55] tackled this problem using fuzzy logic. Different from our work,
the previously cited works were based only on bandwidth allocation adjustment for each slice whereas in
our work, traffic engineering is used where the slice serving the user is selected in addition to a dynamic
readjustment of slice resources.

Some works ([56], [57]) tackled this problem in a multi-cell context using game theoretic solutions for
resource allocation in amulti-cell context whereas other works such as [58] considered a single BS and ad-
dressed the resource allocation problem considering two services URLLC and eMBB. In fact, many works
tackle this problem for two slices eMBB and URLLC as these two services are the most demanding from a
radio resource allocation perspective and where both orthogonal and preemptive scheduling are investi-
gated. Some tackle it via preemptive scheduling such as [58] where it is settled by solving an optimization
problem modelling the assignment of a mini-slot to URLLC users inside a PRB allocated to eMBB users.
Similarly, the work in [59] tackles this preemptive scheduling approach by applying Deep Reinforcement
Learning (DRL) to improve eMBB performance while taking into account the URLLC constraints. Also, au-
thors in [60] propose an optimal approach for preemptive scheduling using amulti-objective Integer Linear
Programming (ILP) problem formulation. Others tackle it via orthogonal scheduling such as the work in
[61] where the resources of each service were separated thanks to slicing and a two-timescale algorithm
based on Lyapunov Optimization was introduced to efficiently allocate the bandwidth for each slice on a
long-timescale and to control the power consumption and user satisfaction on a short-timescale. Another
example of orthogonal scheduling is the work in [62] which proposes a proactive resource reservation
mechanism for URLLC users in a multi-cell context taking into account multiple factors including eMBB
performance. Furthermore, the work in [63] proposed a dynamic RAN virtual resource allocation scheme
for sub-channel allocation and power control based on a Constrained Markov Decision Process (CMDP) to
allocate these resources between three slices. However, these works focus only on one option (orthogonal
scheduling or preemptive scheduling) while we factor in our work both options.

Other interesting approaches to tackle this problem are a RAN slice selection algorithm which are
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used in [64] and [65]. In [64], a RAN slice selection algorithm is proposed based on throughput, delay and
blocking rate satisfaction degrees. The problem was settled by solving a Knapsack problem. Nonetheless,
the authors did not consider a resource allocation scheme based on the slice monetary cost and service
type. Additionally, an adjustment of the resource allocation between slices was not taken into account as
the bandwidth for each slice was fixed. This is not the case for the work in [65] which tackles the dynamic
RAN slicing problembased on both a slice selection process and a resource allocation adjustment between
slices using a non-cooperative crowding game and its alignment with the O-RAN architecture. In the scope
of this thesis, similar to the work in [65], we use both traffic engineering based on a slice selection process
similar to the work in [64] and a dynamic readjustment of slice resources. We also extended the work in
[65] by proposing a redefined game theoretic algorithm and a centralized DQN algorithmwhile adding the
numerology aspect as well as users’ radio conditions.

Additionally, few works have mapped their solution with an existing O-RAN architecture ([66],[51]). In
fact, thework in [66] discussed themain challenges that should be standardized inO-RAN, while evaluating
the performance of a dynamic resource allocation algorithm that selects the best-suited scheduling algo-
rithm from a predefined set of scheduling algorithms using DRL while authors in [51] use ML to propose
an O-RAN compliant solution for the inter-slice radio resource allocation problem. Also, the work in [67]
proposes a RL-based framework that adapts the radio resource scheduling. This solution is also deployed
as an xApp in the near-RT RIC. Another work in [68] mitigates the conflicts between multiple xApps to en-
hance the performance of power allocation and radio resource management thanks to a team learning
approach which improves cooperation between these xApps. Nonetheless, these works only consider the
throughput and bit rate as KPIs and they are based only on re-dimensioning the slices by increasing the
allocated bandwidth instead of better using the available bandwidth through savvy traffic engineering. In
addition, these works did not address the multi-numerology problem between different services which is
considered in the scope of the thesis.

In fact, in the scope of our work, we first tackle the radio resource allocation problem between slices
at the level of a single VO by considering only eMBB and URLLC. The problem is solved by proposing an
algorithm using traffic engineering and a dynamic readjustment of slice resources based on users’ KPIs.
The proposed algorithm is tackled via two approaches: a distributed one based on a congestion game and
a centralized one based on DQN. Afterwards, we propose another solution where we add to this problem
themMTC slice, the numerology aspect, users’ radio conditions and users’ arrival process. In addition, both
options preemptive and orthogonal scheduling are taken into account in this work. This is done by consid-
ering a BWP that is shared between eMBB and URLLC slices using the same numerology with preemptive
scheduling and another BWP dedicated solely for the URLLC slice using a higher numerology (orthogo-
nal scheduling). In addition, instead of studying and optimizing the scheduling of URLLC packets on top
of eMBB transmissions, we rather focus on the selection of the numerology-specific BWP that should be
scanned by each URLLC user in a way that improves eMBB performance which might be impacted by the
preemptive scheduling.

2.3 Radio Resource Allocation in a Multi-Slice
Multi-Numerology Context

Since we consider the numerology aspect in our work, works tackling this concept in the literature should
be reviewed. In fact, several works in the SOTA delve in the numerology selection problem. For example, in
[15], authors use ML to select the most suitable TTI for eMBB and URLLC services. Authors in [14] propose
a numerology selection algorithm based on the varying channel conditions including the radio conditions,
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doppler spread and delay spread for Vehicle-to-Everything (V2X) services. Nonetheless, these works use a
dynamic approach for the numerology selection problem where the numerology used throughout the en-
tire bandwidth is modified based onmultiple KPIs and channel criteria. This is different from the approach
used in our work where multiple numerologies are used on the same band and a dynamic numerology
selection process is performed for URLLC users.

Since the use of multiple numerologies on the same band causes INI, some works focus on this prob-
lem. For example, authors in [69] propose a Guard Band (GB) implementation to reduce INI without spec-
tral efficiency loss. Moreover, the work in [70] reduces the need for adaptive GBs by proposing an astute
interference-aware scheduling algorithm. This is similar to a part of the problem tackled in our work with
the proposal of a three-level algorithm. Nonetheless, in our work, we select a GB from a predefined list
from the 3GPP standards [12] using a DQN reward function that depends on the BWP band attributions,
network parameters, and users’ KPIs. Finally, the work in [71] derives an analytical model for the Inter-
Numerology Interference. In our work, we use these findings to formulate the problem and set the hy-
pothesis taking into account the INI as well as using the formulated analytical expressions to measure the
INI and propose ways to reduce it through smart radio resource allocation.

In fact, in our work, we focus on the radio resource allocation between different slices in a multi-
numerology setting while mitigating the INI and selecting the appropriate numerology-specific BWP for
URLLC users. A number of similar works from the literature tackle the radio resource allocation problem
for eMBB and URLLC in a multi-slice and multi-numerology context. For example, the work in [72] studies
the performance of two scenarios, with and without slicing, while selecting the optimal numerology and
packet scheduler. However, the INI and dynamic resource allocation between slices were not addressed.
In another work, [73], the authors propose a radio resource allocation algorithm for eMBB and URLLC
based on Branching Dueling Q-networks (BDQ) in a multi-slice multi-numerology context. In this work,
the algorithm consists of allocating a part of the spectrum, designated by BWP, to a user belonging to a
certain type of service (eMBB or URLLC) while mitigating the INI. However, the proposed model in [73]
slightly differs from the one defined by 3GPP where a BWP is shared between users and was introduced
to support multiple services and energy efficiency whereas in [73], a BWP is a radio resource allocation
unit (a part of the spectrum) allotted exclusively to each user. Furthermore, unlike our work, the mMTC
service, the preemptive scheduling problem and the dimensioning of a guard band between BWPs using
different numerologies to mitigate the INI are not addressed.

Therefore, what distinguishes the approaches used in our work from other works is the consideration
of both preemptive and orthogonal scheduling, the adjustment of the radio resources of each slice using
users’ KPIs, and implementing a guard band between BWPs using different numerologies to mitigate the
INI. All of these aspects are considered in the same algorithm instead of focusing on a sole problem. Hence,
this is done by the proposal of a three-level slicing algorithm for users connected to a single slice where:

• The first level of the algorithm focuses on an efficient BWP selection for the URLLC users based on
two possible options (the one shared with the eMBB slice and the other exclusively dedicated to the
URLLC slice) in order to mitigate the eMBB performance degradation from preemptive scheduling
while taking into account the URLLC latency and energy efficiency constraints. This is realized using
a Game theoretical approach.

• The second level of the algorithm proposes a heuristic approach that adjusts the radio resources
of each BWP and slice based on users’ KPIs including URLLC latency which is rarely considered in
the SOTA. Hence, this level helps mitigating radio resource wastage in presence of traffic variation
especially for orthogonal scheduling.

• The third level of the algorithm focuses on reducing the INI effect induced by the use of multiple
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numerologies. This is done by carefully dimensioning a guard band between BWPs using differ-
ent numerologies to improve users’ performance hindered by the INI. The guard band is carefully
dimensioned using DQN.

2.4 Radio Resource Allocation for Multi-Slice Users
The previously mentioned works focus on users connected to a single slice. In fact, users connected to
multiple slices are rarely considered. Therefore, very few works consider the radio resource allocation
problem for users connected to multiple slices. This is the case of the work in [31] where DRL is used
to schedule radio resources to users that can be connected to multiple slices, each dedicated to a certain
service in amulti-numerology context, where the algorithm also selects an appropriate numerology. Addi-
tionally, the work in [74] extends the work in [31] using Mixed-Integer Linear Programming. Nevertheless,
the BWP Switching and energy efficiency aspects are not considered in these works which is the focus of
our work. BWP switching is a very important point to consider for users connected to multiple slices with
different numerologies requirements as it affects these users’ performancewith additional latency. In fact,
BWP switching is studied in the SOTA such as the work in [75] where the impact of BWP switching on net-
work performance is evaluated. Also, authors in [76] propose a method to handle BWP Inactivity Timer to
reduce latency and increase throughput especially when there is a large measurement gap performed by
the UE. Nevertheless, these works do not consider the slicing context or users withmulti-slice connectivity.

In this thesis, multi-slice users are considered from two perspectives:
• That of latency, where we aim to reduce it by enhancing the BWP switching mechanism which is
ignored for these users in the SOTA. This is done by proposing three innovative BWP switching
schemes that help reduce overall latency.

• That of energy efficiency (which is rarely considered for these users), where we propose a scheme
that flexibly selects either a single numerology BWP configuration or multi-numerology BWP config-
uration for each multi-slice UE depending on the UE characteristics since resorting to a single choice
is detrimental to UEs performances in terms of QoS satisfaction and energy efficiency.

2.5 Conclusion
To conclude, Tables 2.1, 2.2, 2.3 and 2.4 summarize the difference between the scope of our work with
existing works in the SOTA in the different radio resource optimization problems for slicing.

In fact, in this thesis, we first tackle the radio resource allocation problem in a multi-slice multi-VO
setting where we use the DWFQ algorithm to schedule the resources among VOs. After determining the
share of resources for each VO, we focus on a single VO and on users connected to a single slice where we
aim to solve the resource allocation problem in a multi-slice context. We propose a first O-RAN compliant
solution where only eMBB and URLLC are considered and the numerology aspect is ignored. With this
solution, the algorithm is based on both traffic engineering and a dynamic re-adjustment of slice resources
contrarily to existing works where only one option is considered. Afterwards, the numerology, mMTC
slice and users’ radio conditions are considered in a second single VO multi-slice solution. This solution
relies on a three-level slicing algorithm in a multi-slice and multi-numerology context where the first level
selects the appriopriate numerology-specific BWP for URLLC users using a crowding game, the second
level adjusts the band for each slice based on users’ KPIs using heuristics and the third level dimensions
a GB between BWPs using different numerologies with DQN to reduce INI. This is different from other
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existing works where some aspects of the problem are missing (INI consideration, adjustment of slice
resources, numerology selection...) and only one topic is focused on. Additionally, this solution considers
both orthogonal and preemptive scheduling for eMBB andURLLC coexistencewhereas existing works only
focus on a single scheduling solution for optimization. Finally, in the last part of the thesis, we focus on
users connected to multiple slices. In the SOTA and for these users, the problem is focused only on radio
resource allocation to optimize QoS satisfaction without taking into account additional latency due to BWP
switching which decreases QoS satisfaction and energy efficiency aspect. For this reason, we propose a
first solution for these users where we aim to reduce the latency due to BWP switching by enhancing
this process. The second solution relies on the selection of an energy-efficient BWP configuration (multi-
numerology or single numerology) in order to reduce energy consumption and optimize QoS satisfaction
at the same time. All proposed solutions are compared to other solutions from the SOTA and/or the legacy
standardized scheme whenever possible.

The next chapter formulates the first contribution which is the radio resource allocation problem in a
Multi-Slice Multi-VO context.

Problem Context Existing Works Our Work
Multi-Slice and

Multi-VO • Multi-leader/Single-leader Multi-followerStackelberg game tosolve the problem
• Slicing rarely consid-ered
• Optimization tech-niques to allocateresources usingradio conditionsamong VOs
• No alignment with O-RAN architecture

• Use of DWFQ scheduling algorithm
• Two approaches: distributed andcentralized
• Distributed approach based on acrowding game
• Centralized based on a Stackelberggame with a sole leader (I-P)
• Only monetary cost and throughputtaken into account at this level
• O-RAN compliant solution

Table 2.1: Differences between our approaches and existing works related to Multi-Slice Multi-VORadio Resource Optimization Problem
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Problem Context Existing Works Our Work
Single VO and
Multi-Slice • Dynamic adjustmentof slice resources us-ing different KPIs andmultiple tools includ-ing game theory andDRL

• Slice selection fora UE depending onQoS satisfaction
• Focus only on eMBBand URLLC whileconsidering eitherpreemptive or or-thogonal scheduling
• O-RAN alignment so-lution rarely consid-ered

• Two solutions proposed
• First solution based on traffic en-gineering (Slice selection) and adynamic readjustment of slice re-sources for eMBB and URLLC
• Two approaches for first solution:distributed based on a crowdinggame and centralized based onDQN
• First solution is compared with an-other SOTAwork and legacy scheme
• Second solution is a three-level algo-rithm that considers eMBB, URLLCand mMTC slices, both preemp-tive and orthogonal scheduling foreMBB and URLLC and numerologyaspect
• Second solution compared to firstsolution and another SOTA work
• O-RAN compliant solution

Table 2.2: Differences between our approaches and existing works related to Multi-Slice SingleVO Radio Resource Optimization Problem

Problem Context Existing Works Our Work
Multi-Slice and

Multi-Numerology • Numerology se-lection algorithmsdepending on multi-ple factors
• INI-aware scheduling
• Scheduling based onBWP (numerologyand amount of PRBs)attribution to eachuser without INIconsideration

• Proposal of a three-level solutionfor three slices: eMBB, URLLC andmMTC and using three different nu-merologies
• First level selects the numerology-specific BWP for URLLC users usinga crowding game
• Second level adjusts slices’ re-sources based on users’ KPIs andusing heuristics
• Third level mitigates INI by settinga GB between BWPs using differentnumerologies using DQN
• O-RAN compliant solution

Table 2.3: Differences between our approaches and existing works related to Multi-Slice Multi-Numerology Radio Resource Optimization Problem
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Problem Context Existing Works Our Work
Users connected to
multiple slices • Solution using DRL toattribute resourcesfor users connectedto multiple sliceswith different nu-merologies

• BWP switching is nottaken into account
• Energy efficiency isnot taken into ac-count

• Two solutions
• First solution relies on reducing la-tency for multi-slice users by en-hancing BWP switching process
• First solution compared to standardBWP switching process
• Second solution selects the BWPconfiguration (single numerology ormulti-numerology) to enhance en-ergy efficiency for multi-slice users
• Two approaches for second solu-tion: centralized using an optimiza-tion problem and distributed usinga congestion game
• Second solution compared withlegacy scheme

Table 2.4: Differences between our approaches and existing works related to Multi-Slice UsersRadio Resource Optimization Problem
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Chapter 3

A Multi-Slice Multi-Operator Dynamic
Weighted Fair Queuing RAN Scheduling in
a Game Theoretic Framework

In our first contribution, the radio resource allocation problem is tackled in a multi-slice multi-VO context. There-
fore, this chapter focuses on scheduling the slices’ radio resources among VOs. Two approaches are considered:
a distributed one based on a non-cooperative game where VOs compete to obtain their resources by minimiz-
ing their incurred monetary cost and increasing their throughput and a centralized one based on a Stackelberg
Game where the I-P seeks to maximize its monetary profit and the VOs seek to strike a balance between in-
curred monetary cost and attributed band. This is different from existing works where the DWFQ was not used
in such a context and was previously used to allocate resources among flows from different classes of service.
Particularly, for the distributed approach, two models are used: a linear model and a proportional fairness
model where both models are compared against each other. Moreover, for the centralized approach, a global
approach is also portrayed to compare it with the Stackelberg Game approach. Additionally, we aim to find the
optimal weights and monetary cost set by the I-P. Both centralized and distributed approaches are detailed and
evaluated for performance analysis. Finally, the implementation of these algorithms in the O-RAN architecture
is also discussed.

3.1 Introduction
The radio resource allocation problem is a major challenge for the mobile network operator especially in
the context of slicing and RAN evolution. Therefore, it is important to address this problem in a multi-
VO context since multiple VOs may share an I-P’s radio resources. For this reason, we propose a DWFQ
scheduling algorithm that allocates the share of resources to each VO which is different from SOTA works
where DWFQ was used to schedule flows from different classes of service. In this chapter, only the parti-
tioning of the I-P band between the VOs is considered depending on the incurred monetary cost. There-
fore, the attached users and the scheduling at the level of each VO remain outside the scope of this work.
This problem can be tackled through a distributed and centralized approach. In the distributed approach,
the problem is represented as a crowding game where the VOs compete over the share of resources.
With this approach, two models are considered: a linear model and a Proportional Fairness (PF) model.
These models are evaluated and compared against each other. As for the centralized approach, a global
approach is discussed first where the I-P aims to maximize the utility function of each VO. Afterwards, this
approach is represented as a Stackelberg Game where the I-P seeks to maximize its monetary profit in the
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first stage and the VOs strive to strike a balance between the monetary cost to be paid and the share of
resources obtained in the second stage. This contributionmakes a way for the I-P to control the attributed
DWFQ weights to each VO. The rest of this chapter is organized as follows:

Section 3.2 introduces the system model of the addressed problem. Afterwards, Sections 3.3 and 3.4
detail the distributed approach of the proposed solution and its performance evaluationwhile Sections 3.5
and 3.6 discuss the centralized approach and its performance evaluation. The alignment of the solution
with the O-RAN architecture is examined in Section 3.7. Finally, Section 3.8 concludes the chapter.

3.2 System Model
The system model of the radio resource allocation problem in a multi-slice and multi-VO context is repre-
sented in Fig. 3.1.

Figure 3.1: System Model for Multi-Slice Multi-VO context
As can be seen, we consider an I-P owning a certain spectrum and a set of Virtual Operators I with

VO i ∈ I and a set of Slices S with slice s ∈ S. The I-P spectrum is divided between the multiple existing
slices. Therefore, each slice s has a capacity (in PRBs) ρs and the VOs coexist on each slice where each VO
i is given a share of resources, namely a weight as an input for the WFQ scheduler. We denote by wis theweight of VO i in slice s such as 0 < wis < 1 ∀i ∈ I and∑

iwis ≤ 1. Hence, the whole slice capacity may not
be completely utilized, in that case, the surplus amount might be used for provisioning (arrival of a new
operator, traffic fluctuation of admitted operators ...). Therefore, the capacity of VO i in slice s is given by
[44]:

CV O
is =

wisρs
wis +

∑
j ̸=iwjs

(3.1)
where κis is the monetary cost that VO i has to pay in slice s to the I-P for using the infrastructure.

Accordingly, we consider that the utility function of VO i in slice s has the following form:
Uis =

wis

wis +
∑

j ̸=iwjs
− αswisκisρs (3.2)

with αs a normalizing factor. In this equation, the first term corresponds to the band and throughput of VO
i given by (3.1) and the second term corresponds to the cost inflicted by the I-P for asking for a sharewis ofthe slice s capacity. The VO will try to increase its throughput while paying attention to the incurred cost.
The higher the weight, the higher the share of resources, and hence the higher the cost to be paid. Note
that each VO i needs to get a minimal share of resources denoted by wmin

is to satisfy its SLA requirements
in terms of throughput, latency, and capacity demands. Since all operators have a minimum share of
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resources given by the SLA, they are able to maximize their weights without deteriorating other operators’
conditions.

3.3 Distributed Approach
In this approach, each VO selfishly and autonomously strives to increase its utility function. Therefore,
the problem is portrayed as a competition among greedy VOs for shared capacity with a non-cooperative
game G. The game framework is presented as follows:

• The set of players is the set of VOs I.
• The set W = {wis with 0 < wis < 1 ∀i ∈ I , wis ≥ wmin

is and ∑
i∈I wis < 1} is the set of strategies

since each player will strive to obtain the highest weight for a higher share of resources.
• A set of utility functions Uis that quantify the players’ profitability over the possible outcomes of the
game. Each VO imaximizes its utility function by choosing the appropriate strategywis for each slice
s.

As for the utility function, we consider twomodels: the first is a Linear modelwhere the utility of any VO
i is the sum of its utilities per slice while the secondmodel is a Proportional Fairness (PF) model that imposes
proportional fairness among slices. We will target the Nash Equilibrium (NE) which is an equilibrium state
that was already presented in Chapter 1 in subsection 1.4.4.

3.3.1 Linear Model
In this model, we consider the following utility function:

Ui =
∑
s∈S

wis

wis +
∑

j ̸=iwjs
−
∑
s∈S

αswisκisρs (3.3)

Proposition 1. The utility function is strictly concave.

Proof. The first derivative of the utility function is:
∂Uis

∂wis
=

∑
j ̸=iwjs

(wis +
∑

j ̸=iwjs)2
− αsκisρs (3.4)

The second derivative of the utility function is:
∂2Uis

∂w2
is

=
−2

∑
j ̸=iwjs

(wis +
∑

j ̸=iwjs)3
(3.5)

We can see from (3.5) that the second derivative is strictly negative which means that the utility function
is strictly concave.
Proposition 2. The NE exists and can be attained.

Proof. Since the utility function is strictly concave according to Proposition 1 and continuous in wis andsince the set of strategiesW is convex and compact, NE exists and is unique as proven by [77]. Further, as
the utility functions are strictly concave, the unique NE can be attained by Best Response Dynamics.
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The best response dynamics consist in each VO maximizing in turn its own utility function in response
to other VO strategies. It amounts for each VO to solving the following optimization problem:

max
wis

Uis

subject to: 0 < wis < 1∑
i∈I

wis < 1

wis ≥ wmin
is

(3.6)

Since the optimization problem (3.6) is convex, the Karush-Kuhn-Tucker (KKT) conditions enable deter-
mining the optimum for each VO i (i.e. the NE at convergence). Therefore, the NE is the solution of the
following KKT conditions:

∂Uis

∂wis
− γ =

∑
j ̸=iwjs

(wis +
∑

j ̸=iwjs)2
− αsκisρs − γ = 0 (3.7)

γ · (1−
∑
j ̸=i

wjs − wis) = 0 (3.8)

wis ≥ wmin
is (3.9)

If γ = 0, from (3.7), we can find wis:

wis =

√∑
j ̸=iwjs

αsκisρs
−
∑
j ̸=i

wjs (3.10)

If γ ̸= 0, from (3.8) and (3.9), we can find wis:
wis = max(1−

∑
j ̸=i

wjs;w
min
is ) (3.11)

At each round, each VO will calculate the weight based on (3.10) and (3.11) until convergence is reached
when all VOs choose the same strategies as in the previous round. This behavior is described in the fol-
lowing algorithm (Algorithm 1).

Input :Monetary cost κis, Slice Capacity ρs, Minimal values of wis

Output: Optimal Weight wis

1 Initialize wis = wmin
is ;

2 repeat
3 Each VO calculates its weight that obeys w∗

is = argmaxwis∈WUis given the other VOsstrategies;
4 until Attaining Nash Equilibrium;

Algorithm 1:Weight Calculation based on Best Response Dynamics
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3.3.2 PF Model Among Slices
In this model, we enforce Proportional Fairness among the slices as follows:

UPF
i = α

∑
s∈S

ln
wisρs

wis +
∑

j ̸=iwjs
−
∑
s∈S

βswisκisρs (3.12)
With α and βs normalizing factors.
Proposition 3. The utility function is strictly concave.

Proof. The first derivative of the utility function is:
∂UPF

is

∂wis
=

α
∑

j ̸=iwjs

wis(wis +
∑

j ̸=iwjs)
− βsκisρs (3.13)

The second derivative of the utility function is:
∂2UPF

is

∂w2
is

=
−α

∑
j ̸=iwjs(2wis +

∑
j ̸=iwjs)

w2
is(wis +

∑
j ̸=iwjs)2

(3.14)
We can see from Equation (3.14) that the second derivative is strictly negative which means that the utility
function is strictly concave.

Similarly to the previousmodel, the uniqueNE can be attained by Best Response Dynamics where each
VO solves the optimization problembymaximizing in turn its utility function to obtain its weight and repeat
the round until convergence as explained in Algorithm 1. Since the optimization problem at each round is
convex, the KKT conditions determine the optimum at each best response (hence the Nash Equilibrium at
convergence) and is given by the following:

∂UPF
is

∂wis
− γ =

α
∑

j ̸=iwjs

wis(wis +
∑

j ̸=iwjs)
− βsκisρs − γ = 0 (3.15)

γ · (1−
∑
j ̸=i

wjs − wis) = 0 (3.16)
wis ≥ wmin

is (3.17)
If γ = 0, from (3.15), we can find wis which is the solution of the second-degree equation:

w2
is + wis

∑
j ̸=i

wjs −
α
∑

j ̸=iwjs

βsκisρs
= 0 (3.18)

Equation (3.18) leads us to finding wis:
wis =

∑
j ̸=iwjs

2
(−1 +

√
1 +

4α

βsκisρs
∑

j ̸=iwjs
) (3.19)

If γ ̸= 0, from (3.16) and (3.17), we can find wis:
wis = max(1−

∑
j ̸=i

wjs, w
min
is ) (3.20)

3.4 Performance Evaluation of the Distributed Approach
We implemented Algorithm 1 with both models using CVX Mosek in Matlab to calculate the weights at NE.
We assume that the I-P holds a spectrum of 50 MHz with a SCS of 15 KHz. Thus, the maximum number of
PRBs offered by the I-P is 270 [78]. Simulation parameters are provided in Table 3.1.
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Table 3.1: Simulation Parameters for Multi-Slice Multi-VO Problem
Parameter Description Value
|I| Number of operators 4
|S| Number of slices 3
ρs Capacity per slice (in PRBs) 80, 90, 60
wmin

is The minimum weight attributed 0.1 ∀i ∀s
αs (Linear model) Normalizing factor ≈ 10−4

α (PF model) Normalizing factor ≈ 0.5
βs (PF model) Normalizing factor ≈ 10−2

Cost per slice per VO
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Figure 3.2: Cost input values for each VO in each Slice

Regarding the monetary cost that the VO has to pay for the I-P, we attributed different values for each
VO in each slice to better assess its impact. We consider that the cost unit is the local currency of the
I-P and the maximum price used to charge the VO is 100. Figure 3.2 shows the values of cost attributed
for each operator in each slice. We calculated the weights using both models and obtained the results
depicted in Fig. 3.3 and Fig. 3.4.
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Weight per slice per VO
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Figure 3.3: Weights at Nash Equilibrium using the Linear model
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Figure 3.4: Weights at Nash Equilibrium using the PF model

From the obtained results, we can see that the weight attributed is inversely proportional to the cost in
bothmodels which is logical according to Equations (3.10) and (3.19). Also, when there is a big gap between
the cost values as can be seen in slice 1, that gap transfers to the weight values of the linear model where
the VO having the lowest cost is being attributed the highest weight while the other VOs with a higher cost
are being attributed the minimal weight. With the PF model, the weights are closer in values and the gap
is reduced compared to the linear model while the minimal weight value is not reached in the PF model.
This can be explained by the fact that the PF model tries to ensure fairness among VOs by attributing
closer values while maintaining an inversely proportional relation with the cost. However, it is more useful
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for the infrastructure operator to control the gap among the attributed weights values by fine-tuning the
monetary cost. Therefore, we will adopt the linear model and further add a differentiating factor βis tocontrol the cost among the VOs. Accordingly, the utility function of the linear model (3.3) becomes:

Uis =
wis

wis +
∑

j ̸=iwjs
− αβiswisκisρs (3.21)

And equation (3.10) becomes:
wis =

√∑
j ̸=iwjs

αβisκisρs
−

∑
j ̸=i

wjs (3.22)

3.5 Centralized Approach

3.5.1 Global Approach
In this approach, the I-P will maximize in a centralized fashion the sum of the utility functions of all the
serviced VOs in each slice. The used utility function is the one using the linear model from the distributed
approach. Accordingly, we will maximize the following function:

U s
tot(wi1, ..., wi|S|) =

∑
i

Uis = 1− αsκisρs
∑
i

wis (3.23)
It corresponds to solving the following optimization problem:

max
wis

U s
tot

subject to: 0 < wis < 1∑
i∈I

wis < 1

wis ≥ wmin
is

(3.24)

The optimization problem is convex as the objective function as well as all constraints are linear. Maxi-
mizing the objective function, withwis as the decision variables boils down tominimizingwis whichmeans
setting the weights to their minimal values wis = wmin

is . This can be explained by the fact that with the
global approach, the optimal solution would be that each VO uses its minimum of share of resources to
avoid disturbing the other VOs.

The same analysis cannot be applied to the PF model as the global utility is not a concave function.
For these reasons, we tackle the centralized approach from a different perspective with a Stackelberg

Game.
3.5.2 Stackelberg Game Approach
Another way tomodel the centralized approach is to formulate the interaction between the cost set by the
provider on allotted capacity and the capacity share needed by the VOs as a two-stage Stackelberg Game.
In the first stage, the infrastructure operator announces the monetary cost of resources, followed by the
second stage where each VO determines its needed share of resources as a weight of the WFQ algorithm
to strike a balance between a satisfactory throughput and an affordable cost paid to the I-P. Therefore,
the infrastructure provider is the leader while the VOs are the followers. Note that the second stage is a
non-cooperative game played for a given instance of monetary cost outputted by the I-P.
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Stage 1: The Leader Stage

At the leader stage, the I-P aim is to maximize its total revenue and hence we consider for the I-P the
following utility function:

UI−P =
∑
s

ρs
∑
i

κiswis (3.25)
This leads to the following optimization problem for the leader:

max
κis

UI−P

subject to: 0 < κis ≤ κmax

(3.26)

Therefore, the I-P will maximize its utility function with the cost as the optimization variable while avoiding
exceeding a maximal cost κmax.
Stage 2: The Followers Stage

At the followers’ stage, we consider the utility functionwith the differentiated linearmodel defined in (3.21).
Each of the VOs try to maximize its utility function with the constraints defined in (3.6). The solution for
this optimization problem is already defined in equation (3.22) when γ = 0 and in equation (3.11) when
γ ̸= 0.
Stackelberg Equilibrium

In a Stackelberg Game, we try to find the Stackelberg Equilibrium (SE) where no player has profit in devi-
ating unilaterally as explained in subsection 1.4.4 of Chapter 1.

Accordingly, a SE is an equilibrium point (w∗
is, κ∗is) defined as follows:

UI−P (w
∗
is, κ

∗
is) ≥ UI−P (w

∗
is, κis), ∀κis (3.27)

Uis(w
∗
is, κ

∗
is) ≥ Uis(wis, κ

∗
is),∀wis (3.28)

We derive the SE of the devised Stackelberg game by using the backward induction method. For that aim,
we first derive the optimal weight shares (w∗

is) of VO i ∈ I and ∀s ∈ S in Stage 1, obtained from equations
(3.22) and (3.11) and inject them in equation (3.25) to obtain the optimal solution of Stage 1 (i.e. κ∗is).
Optimal Solution for Stage 1

As previously stated, we inject (3.22) if γ = 0 and (3.11) if γ ̸= 0 in equation (3.25). Accordingly, we will obtain
the following utility function for the I-P when γ = 0:

UI−P =
∑
s

ρs
∑
i

κis(

√∑
j ̸=iwjs

αβisκisρs
−
∑
j ̸=i

wjs)

=
∑
s

∑
i

√
κisρs

∑
j ̸=iwjs

αβis
− κisρs

∑
j ̸=i

wjs

(3.29)

Proposition 4. The utility function is strictly concave.
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Proof. The first derivative of the utility function of the I-P is:
∂UI−P

∂κis
=

1

2

√
ρs

∑
j ̸=iwjs

κisαβis
− ρs

∑
j ̸=i

wjs (3.30)

The second derivative of the utility function is:
∂2UI−P

∂κ2is
=

−1

4

√
ρs

∑
j ̸=iwjs

κ3isαβis
(3.31)

We can see from Equation (3.31) that the second derivative is strictly negative which means that the utility
function is strictly concave.

In that case, as (3.26) is a convex optimization problem, the KKT conditions enable determining a global
optimum which is the Stackelberg Equilibrium. The KKT conditions are:

∂UI−P

∂κis
− θ =

1

2

√
ρs

∑
j ̸=iwjs

κisαβis
− ρs

∑
j ̸=i

wjs − θ = 0 (3.32)

θ(κis − κmax) = 0 (3.33)
If θ = 0, from (3.32), we can find κis:

κis =
1

4αβis
∑

j ̸=iwjsρs
(3.34)

If θ ̸= 0, from (3.33), we can find κis:
κis = κmax (3.35)

When γ ̸= 0, we obtain the following utility function for the I-P when injecting (3.11) in equation (3.25):
UI−P =

∑
s

ρs
∑
i

κis(1−
∑
j ̸=i

wjs)

=
∑
s

∑
i

ρsκis −
∑
s

∑
i

ρsκis
∑
j ̸=i

wjs

(3.36)

As (3.36) is a linear function in κis, therefore the optimal solution would be to use themaximum cost which
leads back to (3.35).
SE Algorithm

The algorithm used to obtain the Stackelberg Equilibrium is represented in Algorithm 2.
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Input : Slice capacity ρs, beta factor βis, random values of wis and κis

Output: Optimal monetary cost κis and weights wis

1 Initialize wis;
2 repeat
3 The I-P calculates κis based on (3.26), (3.29), (3.36);
4 Each VO calculates its weight based on maximizing the utility function (3.21);
5 until Attaining weights and costs stabilization;
Algorithm 2: Stackelberg Equilibrium Algorithm for Multi-VO Weight and Cost Calculations
First, we initialize the weights to random values obeying the constraints in setW . Then, we repeat the

costs and weights values computation based on the optimization problems of the leader and followers
stages until convergence when costs and weights no longer vary.
Proposition 5. The iterative update of Algorithm 2 converges to a unique fixed point which is the unique SE.

To that end, we prove that the updating function P (w) based on (3.22) obeys specific criteria [46]:

w
(t+1)
is = P h

is(w
(t)
−is) =

√
w

(t)
−is

αβisκisρs
− w

(t)
−is ∀i ∈ I ∀s ∈ S (3.37)

where w
(t)
−is are the weights at iteration t of other VOs in slice s (w(t)

−is =
∑

j ̸=iw
(t)
js ).

These criteria are as follows:
• Positivity: P (w) > 0

• Monotonicity: if w ≥ w′ then P (w) ≥ P (w′)

• Scalability: ∀µ > 1, µP (w) ≥ P (µw)

• Two-sided Scalability: ∀µ > 1, 1
µw ≤ w′ ≤ µw results in 1

µP (w) < P (w′) < µP (w)

We show in Appendix A.1 that P (w) verifies all these conditions.

3.6 Performance Evaluation for Centralized Approach
We implemented Algorithm 2 using CVX Mosek in Matlab to calculate the weights and costs at SE. We list
the numerical values for our simulations in Table 3.2. Figures 3.5 and 3.6 show the values of the beta factor
that we used as an input for Algorithm 2 in presence of 2 and 4 operators, respectively.
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Table 3.2: Numerical values for simulations for Centralized Approach Multi-Slice Multi-VO
Parameter Description Value
|I| Number of operators 2 or 4
|S| Number of slices 3
ρs Capacity per slice (in PRBs) 60, 70, 80
wmin

is The minimum weight attributed 0.1 ∀i ∀s
α Normalizing factor ≈ 10−4

κmax Maximum Cost 100
Beta per slice per VO
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Figure 3.5: Beta factors for each operator in each slice for 2 operators
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Figure 3.6: Beta factors for each operator in each slice for 4 operators
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Cost per slice per VO
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Figure 3.7: Cost values at SE for 4 operators
We find that at convergence, the optimal solution for the cost is to use the maximum cost κmax for anynumber of operators. This can be seen in Fig. 3.7.
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Figure 3.8: Weight values at SE for 2 operators
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Weight per slice per VO
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Figure 3.9: Weight values at SE for 4 operators

As for the weights, they converge to values that are inversely proportional to the beta factors as seen
in Fig. 3.8 and Fig. 3.9. Since the cost becomes equal for all operators in all slices, the only differentiating
factor between operators is the beta factor. The weights and beta have an inversely proportional relation
as can be seen from equation (3.22). It can also be noted that the weight at convergence is also inversely
proportional to the capacity of the slice (also evident by equation (3.22)).
We can also point out that in the case of 2 operators, there is a direct inverse proportionality relation
between the beta factors and weights, proven mathematically as follows:
Proposition 6. The weight is directly inversely proportional to the beta factor in case of two operators.

Proof. The weight of the first operator in any slice s has the following expression from equation (3.22):
w1s =

√
w2s

αβ1sκ1sρs
− w2s (3.38)

Similarly, the weight of the second operator in the same slice has the following expression from equation
(3.22):

w2s =

√
w1s

αβ2sκ2sρs
− w1s (3.39)

From (3.38), we find that:
w1s + w2s =

√
w2s

αβ1sκ1sρs
(3.40)

From (3.39), we deduce:
w1s + w2s =

√
w1s

αβ2sκ2sρs
(3.41)

From (3.40) and (3.41), we can find that:√
w2s

αβ1sκ1sρs
=

√
w1s

αβ2sκ2sρs
(3.42)
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From (3.42), since the cost for both operators at SE is equal to κmax, it leads to:
w2s

w1s
=

β1s
β2s

(3.43)

Therefore, the beta factor can be a parameter that can be used by the I-P to control the weights at-
tributed to the VOs while maintaining maximal revenues.

Figure 3.10: Slice Capacity input for 4 operators
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Figure 3.11: Weight values at SE for 4 operators without Beta Factor

In fact, without the use of a beta factor, weights at convergence are the same for every operator and
are inversely proportional to the slice capacity as proven by Equation (3.22) since the cost for all operators
at SE is equal to κmax and the slice capacity is the only differentiating factor when the beta factor ismissing.
This is clear in Figs. 3.10 and 3.11 that represent the slice capacity as an input for 4 operators and theweights
at SE for 4 operators without a beta factor respectively.

3.7 Implementation in O-RAN
In this section, we discuss how we envision the implementation of the proposed algorithms in the O-RAN
architecture [4].

Both Algorithms 1 and 2 take approximately several minutes (more than 1 s) to reach Nash and Stack-
elberg Equilibria. With a confidence level of 95% and for 4 operators, it takes on average up to 9 iterations
per slice to attain the NE (≈ 20 s per slice) and up to 12 iterations per slice to attain the SE (≈ 30 s per
slice). Therefore, these algorithms will be implemented at the Non-RT RIC level to calculate the adequate
monetary cost and weights for the slice scheduling. The latter weights will be given to the O-DU over O1
interface to allocate the resources in the RAN according to the DWFQ scheduler. To summarize, the Non-
RT RIC will determine, according to Algorithms 1 and 2, the weights of the DWFQ Scheduler that operates
at the O-DU.

3.8 Concluding Remarks
In this chapter, a dynamic WFQ scheduler was proposed to allocate resources in amulti-slice andmulti-VO
context orchestrated by the infrastructure provider. The weights of theWFQ scheduler for each VO in each
slice were determined via two main approaches, a distributed one based on a non-cooperative game and
a centralized one based on a Stackelberg game:
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• For the concave non-cooperative game, we proved the existence of the unique NE attained by best-
response dynamics for a given resource cost.

• In the Stackelberg game approach, the I-P is the leader whose strategy is the resource monetary
cost while the VOs are the followers whose strategy is the resource share of WFQ scheduler.

• Extensive simulations highlighted the significance of the devised algorithms that enable the I-P to
control the attributed weight and apply service differentiation among VOs thanks to fine-tuning the
preset incurred monetary cost in the distributed approach and a VO differentiating factor in the
centralized approach.

• The implementation of the proposed approaches in the O-RAN architecture was also discussed.
After proposing an algorithm to attribute radio resources between multiple VOs, we focus on a sin-

gle VO to determine its radio resource allocation between its multiple slices and services in an efficient
manner. This particular problem is analyzed in the following chapter.
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Chapter 4

Crowding Game and Deep Q-Networks for
Dynamic RAN Slicing in 5G Networks

The previous chapter focused on the radio resource allocation problem in a multi-slice multi-VO setting to deter-
mine the share of each virtual operator. Next, we focus on the partitioning of the VO attributed band between its
slices. Therefore, this chapter tackles the problem in a single virtual operator and multi-slice context particularly
for two slices: eMBB and URLLC. In this problem, a single numerology and a fixed number of users connected
to a single slice with average radio conditions are considered. Two approaches are proposed: a centralized one
based on Deep-Q Networks and a distributed one based on a crowding game. Both approaches rely on a dy-
namic adjustment of slice resources and on traffic engineering where the slice serving the user is selected based
on the user’s KPI (throughput or delay) that depends on the selected slice. Both approaches are compared against
each other and against a state-of-the-art work considering solely the slice selection aspect without a dynamic
adjustment of radio resources. Also, our dynamic approach is compared to the legacy scheme where users’ as-
sociation to their respective slice remains unchanged. Results prove high efficiency of our proposed approaches.
Their implementation in the O-RAN architecture is also discussed.

4.1 Introduction
Following the determination of the band attributed to each VO, it is up to each VO to decide how to at-
tribute the radio resources for each serviced slice. Therefore, we propose a dynamic slicing algorithm that
allocates the radio resources to each slice depending on users’ KPI: throughput and delay. The proposed
solution may be centralized or distributed and combines traffic engineering and a dynamic adjustment
of slice resources contrarily to other SOTA works focusing on one option especially the latter. This work
proposes a new coexistence method for eMBB and URLLC services that is different from existing methods
such as orthogonal and preemtive scheduling thanks to traffic engineering. Also, average radio conditions
and a fixed number of users are considered. The mMTC slice, users’ radio conditions and arrival process
and the numerology aspect are left for consideration in the next chapter which is an extension of the work
tackled in this chapter. The distributed approach of the proposed solution is represented as a crowding
game where each user selects its slice selfishly and autonomously to satisfy its KPI. This is different from
the centralized approach that uses DQN where an agent chooses the slice for each user using a global
reward function. Both approaches are compared against each other and against a SOTA work [64] that
focuses only on a slice selection scheme and overlooks dynamic adjustment of resources between slices.
In addition, we compare results to the legacy scheme where the association between users and slices
remains invariant. The rest of this chapter is organized as follows:
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Section 4.2 establishes the system model of the problem. The distributed and centralized approaches
tackling this problem along with their performance evaluation are discussed in Sections 4.3, 4.4, 4.5 and
4.6. Section 4.7 goes through the compliance of the proposed solutions with the O-RAN architecture while
Section 4.8 compares both distributed and centralized approaches. Finally, concluding remarks are en-
listed in Section 4.9.

4.2 System Model
As can be seen in Fig. 4.1 that represents the system model, we consider a single gNB and a set of Nusersusers connected to a single slice. Consequently, a user cannot be served by more than one slice since it
only has one type of communication service. Additionally, only two services are studied: URLLC and eMBB.
We consider an operator havingNRBtot PRBs that are shared among two slices, namely an URLLC slice and
an eMBB slice. Hence, the total number of resources is divided into two subsets with NRBE the number
of PRBs for the eMBB slice and NRBU for the URLLC slice.

Figure 4.1: System Model for Dynamic Slicing Algorithm for eMBB and URLLC
In our approach, the resource allocation is performed dynamically which is different from the legacy

scheme where users are associated with their "natural" slice (e.g. an eMBB (resp. URLLC) type user is
serviced by the eMBB (resp. URLLC) slice). In our proposal, the user belonging to a given service type
may be attributed resources endowed to other service types depending on its cost function, for increased
flexibility and effectiveness. In other words, an URLLC type user has the flexibility to choose the eMBB slice
and vice versa if the user gets a lower cost from an alternate slice. This can happen for instance in case
the user’s natural slice is too crowded, or when the alternate slice offers good performances at a lower
monetary cost. Note that the proposed solution is not necessarily compliant with current 3GPP standards
in terms of user-slice association procedure. In 3GPP standards, the latter is managed by the base station
and the user is associatedwith a slice identified by its unaltered S-NSSAI [25] as done by the legacy scheme.
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Nevertheless the goal of this work is to investigate a novel concept based on traffic engineering that can
inspire future standardization, where the UE gets involved in slice selection process; therefore, pushing
network intelligence down to the end devices while proving its efficiency.

As for the URLLC general requirements as stated by the 3GPP, the latency should not exceed 1ms for
a reliability of 1− 105 [6][7][8]. Hence, as an URLLC service requires a maximum tolerated delay, we adopt
the assumption that the availability of one PRB per user with a duration of 1 ms is sufficient to fulfill these
requirements and any additional PRBs allocated may not be beneficial to the URLLC type user contrary
to an eMBB user requiring a minimum guaranteed throughput at the cost of increased delay. In other
words, one PRB per user in the URLLC slice ensures minimal delay for all users. Therefore, in the URLLC
slice, a resource allocation scheme is applied to ensure minimal delay that does not exceed the maximum
tolerated delay, whereas for the eMBB slice, a resource allocation scheme is applied to ensure maximal
throughput that surpasses the minimum guaranteed throughput.

We will use the following notations displayed in Table 4.1 for ease of comprehension:

Table 4.1: Symbol Description for Dynamic Slicing Problem
Symbol Description
NURLLC Number of URLLC type users
NeMBB Number of eMBB type users
Nusers Total number of users within the system and equal to NURLLC +NeMBB

NU Number of users that selected the URLLC slice(attributed resources based on the minimal delay scheme algorithm)
NE Number of users that selected the eMBB slice(attributed resources based on the maximal throughput scheme algorithm)

NRBU Number of PRBs initially allocated for the URLLC slice
NRBE Number of PRBs initially allocated for the eMBB slice
NRBtot Total number of PRBs and equal to NRBE +NRBU

Initially, we apply the legacy scheme from the state-of-art: NU = NURLLC and NE = NeMBB . Duringthe dynamic resource allocation process, a user can be served by a slice that does not necessarily corre-
spond to its S-NSSAI type if that strategy optimizes its cost/reward function. As previously mentioned, in
each slice, a resource allocation scheme compliant with its service type is applied. For the URLLC slice,
a minimal delay scheme is sought for and thus, each user linked to this scheme is granted only 1 PRB
which ensures sufficient throughput. In fact, the KPI in this slice is immediate service and low latency,
hence, bestowing additional PRBs to a user does not impact positively the user’s KPI. This is applied when
NU ≤ NRBU . Otherwise, the resource allocation is based on a fair resource sharing scheme. For the
eMBB slice, the fair resource scheme is always applied for all users: in turn, every user gets all available
PRBs. Furthermore, the unused PRBs linked with the URLLC slice are allocated to the eMBB slice (when
NU ≤ NRBU ) to ensure an efficient resource allocation between the slices. This is due to the fact that
additional PRBs are beneficial for the performance of eMBB users (requiring high throughput) which is
not the case for URLLC users that require a prompt service but low throughput. Thus, an eMBB user will
select its natural eMBB slice when the latter provides a high throughput.

For the sake of simplicity in this work, average radio conditions are considered and only the bandwidth
partitioning between slices is considered rather than the PRB scheduling at the slice level. We denote by
Ck
ap the average rate achieved by one PRBwith the considered average radio conditions. A user k having itsresources attributed by the eMBB slice (where maximal throughput is sought for) will have its throughput
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Thrk calculated as follows:
ThreMBB

k =

{
Ck
ap ·

(NRBE+(NRBU−Nusers+NE))
NE

if NU < NRBU

Ck
ap ·

(
NRBE/NE

) Otherwise
In fact, when NU < NRBU , users in the eMBB slice profit from unused PRBs from the URLLC slice.

Otherwise, PRBs dedicated for the eMBB slice are equally shared among users that selected the latter.
A user k having its resources attributed by the URLLC slice (whereminimal delay is sought for) will have

throughput Thrk, calculated as follows:
ThrURLLC

k =

{
Ck
ap if NU ≤ NRBU

Ck
ap ·

(
NRBU/NU

) Otherwise
Additionally, the performance of the eMBB user is characterized by the realized throughput while the

performance of the URLLC user is characterized by the endured delay.
The delay of a user k associated with eMBB slice is calculated as DeleMBB

k = 1/ThreMBB
k inspired by

the work in [79], whereas the endured delay by user k in the URLLC slice is calculated as follows:
DelURLLC

k =

{
0 if NU ≤ NRBU(

NU

NRBU ·Ck
ap

) Otherwise
In fact, whenNU ≤ NRBU , a user is guaranteed one PRB which leads to minimal cost for a URLLC user.

Otherwise, PRBs are equally shared among users in the URLLC slice and the cost equals the ensuing delay.

4.3 Distributed Dynamic RAN Slicing for eMBB and URLLC
In the distributed approach, the dynamic RAN Slicing scheme is portrayed as a non-cooperative game
where players compete over a shared resource. Thus, it is defined as a multi-player game G where the
players are the users competing over the allocated PRBs (the resource) in any slice. The framework of the
game is presented as follows:

• The set K is the set of players (mobile users)
• The set S = {e, u} is the set of strategies where e and u designate the slice selection action for the
eMBB and URLLC slices respectively. Let yk denote the strategy of user k and whose components
are the binary variables yk,s equal to 1 when user k chooses the slice s. Hence, y = (yk)k∈K ∈ S is a
pure strategy profile, and S = S1 × S2...× SK is the space of all profiles

• The set of cost functions {C1, C2, ..., CK} quantify the players’ profitability over the possible out-
comes of the game and are given by Equation (4.1).

4.3.1 Game objectives and cost functions
The objective of each user is to minimize its cost function by selecting the appropriate strategy which
corresponds to the appropriate slice. The cost function is defined based on the user type. Consequently,
an eMBB user has a cost function which takes into account the throughput whereas the cost function of
the URLLC user accounts for the experienced delay. We consider the following cost function for a user k
selecting a given slice:

Cslice
k =

{ (
Dk/Thr

slice
k

)
+ cslice if user k is of type eMBB(

Delslicek /Tk

)
+ cslice if user k is of type URLLC (4.1)

where:
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• Dk denotes the comfort rate of an eMBB type user as defined in the SLA.
• Tk coins the acceptable delay of an URLLC type user as defined in the SLA.
• cslice is the monetary cost of selecting the slice (eMBB or URLLC).

4.3.2 Choice of parameters

The cost function parameters (Dk, Tk, ceMBB , cURLLC ) should be well defined which is discussed in this
subsection.

The more PRBs are allocated to the eMBB slice, the greater is the user satisfaction. Therefore, it can
be considered thatDk ≥ n ·Ck

ap where n > 1. Consequently, the eMBB user will select the service offering
more PRBs. As for the acceptable delay, since the URLLC user is satisfied with one PRB, this leads to
Tk = 1/Ck

ap which makes the URLLC user more likely to choose the slice guaranteeing one PRB in each
scheduling epoch. 0 ≤ ceMBB ≤ cURLLC is a condition that should be applied to push eMBB users towards
slice e as long as their throughput is acceptable in order to protect slice u from overload. However, when
slice e is too overloaded, an eMBB user might accept to pay "more" in slice u in order to get at least Ck

ap.As for URLLC users, slice u is largely preferred whenNU ≤ NRBU as they are granted 1 PRB leading to zero
delay (which is strictly lower than the delay realized in slice e), as long as cURLLC is not prohibitive.

The convergence to the Pure Nash Equilibrium (PNE) is examined in the next subsection 4.3.3 where
the PNE is defined and convergence to it is proven.

4.3.3 The Pure Nash Equilibrium

The Pure NE is the state sought to be attained in a non-cooperative game which was already defined in
Chapter 1 in subsection 1.4.4. In this state, each player would have chosen an optimal strategy in response
to other players’ strategies. Our game G is a finite game which is guaranteed to possess a mixed NE but
not Pure NEs. The former leads to a continuous change of strategy according to a probability distribution
which can be cumbersome. Nonetheless, G has the Finite Improvement Path (FIP) property which proves
the existence of PNE [35]. The proof of this property is given by the following:
Proposition 7. G has the FIP property.

Proof. G is an unweighted non-cooperative game since it is a game where users share a common set of
actions and the cost function of a user after selecting a particular action is specific to that user only and
is non-decreasing in the number of users choosing that same action. These types of games (Unweighted
games) have the FIP property when players only have 2 strategies (e and u) according to [37].

Finally, G is guaranteed to converge to the PNE through the Best Response dynamics [38].
Hence, at each round of the Best Response, a user k goes through all available strategies and chooses

the strategy (i.e, s ∈ S) that provides it the lowest cost.
The behavior of the Best Response is described in Algorithm 3.
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Input : Slice cost
Output: Slice selection based on lowest cost

1 Slice u is selected for URLLC users;
2 Slice e is selected for eMBB users;
3 repeat
4 Calculation of cost slice CeMBB

k and CURLLC
k by each user;

5 Slice with lowest cost is selected by the user;
6 until Same slice as previous round is selected by the user;

Algorithm 3: Dynamic Slicing Best Response Dynamics Algorithm
In the next section, the convergence time of the algorithm and its comparison with the legacy scheme

and SOTA algorithm in [64] are discussed.

4.4 Performance Evaluation of the Distributed Game based
Algorithm

For the simulation results, we used Matlab to assess a variety of KPIs given the number of URLLC users
NURLLC for our proposed solution, a SOTA algorithm in [64] taking into account only the slice selection
aspect without a dynamic readjustment of resources, as well as the legacy scheme. The different KPI
metrics used to evaluate the performance are the following:

• The service reliability of the URLLC slice which is defined as follows:{
100 if NURLLC ≤ NRBU
NRBU

NURLLC
× 100 Otherwise

Therefore, the service reliability is equal to 100% if all URLLC users are guaranteed to have at least
1 PRB. Otherwise, it will be equal to the percentage of time where a user meets its required delay
when a fair resource time sharing is applied.

• The throughput of all eMBB users
• The resource utilization efficiency of the URLLC Slice
As for the parameters, Table 4.2 displays the used simulation parameters.

Table 4.2: Dynamic slicing distributed approach simulation parameters
Parameter Description Value
Ck

ap Throughput per PRB 1Mb/s
NRBtot Total number of PRBs 50 PRB
Nusers Total number of users 40 users
Dk The comfort rate of an eMBB user 2 · Ck

ap

Tk The comfort delay of an URLLC user 1/Ck
ap

ceMBB The cost of selecting the eMBB slice 1
cURLLC The cost of selecting the URLLC slice 1.677
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We consider thatNRBU = 20 PRB are initially allocated for the URLLC slice andNRBE = 30 PRB for the
eMBB slice. As opposed to our algorithm, for the Legacy Scheme and SOTA algorithm in [64], NRBU and
NRBE are fixed and do not change. The reason for this assignment is that we consider that more PRBs are
needed for the eMBB slice to ensure a good throughput while less PRBs are required for the URLLC slice
since 1 PRB is sufficient to satisfy the QoS of one user.

Figure 4.2 shows the variation of the throughput of all eMBB users when NURLLC changes for our
proposed algorithm, the SOTA slice selection algorithm [64] and legacy scheme.

The total throughput realized by our proposed approach is higher than in the Legacy scheme when
NURLLC ≤ 20. The opposite happens when NURLLC > 20. This is because the resources for the URLLC
slice are allocated to the eMBB slice when there are few URLLC users. However, the fact that the Legacy
scheme outperforms the dynamic scheme when NURLLC > 20 is due to the allocation of the eMBB slice
resources to the URLLC slice to satisfy their QoS requirements and reduce their cost functions. Addition-
ally, our dynamic RAN slicing algorithm gives precedence to the URLLC slice performances over the eMBB
slice. Compared to the SOTA slice selection algorithm [64], our algorithm always realizes better eMBB
throughput results for any number of URLLC users with a maximum gain of 20%. This is due to the ad-
justment of the resource allocation between slices in our algorithm which is not taken into account in the
SOTA algorithm that only provides the best slice selection for each user based on realized throughput and
delay.
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Figure 4.2: Total Throughput of eMBB type Users (Mb/s)
Figure 4.3 displays the variation of the Resource Utilization efficiency of the URLLC Slice as a function of

NURLLC . As can be seen, the utilization efficiency is 100% for all values ofNURLLC in our proposeddynamic
scheme and SOTA algorithm [64] as opposed to the legacy scheme where there is an under-utilization of
resources when NURLLC ≤ 20 and an over-utilization of resources when NURLLC > 20. This is due to the
adaptability of our dynamic slice selection algorithms to the varying demands of users and its endeavour
to grant theURLLC users one PRB, which is necessary to satisfy their QoS requirements. The legacy scheme
fails to do this. Consequently, the efficiency of both dynamic algorithms over the legacy scheme is proven
when resources are over-provisioned for NURLLC ≤ 20 and under-provisioned for NURLLC > 20.
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In Fig. 4.4, the URLLC Service Reliability is represented as a function of NURLLC where our algorithm
is compared against the legacy scheme and SOTA slice selection algorithm [64]. Recall that NeMBB =

Nusers − NURLLC . The advantage of both our proposed and SOTA algorithms is clear over the legacy
scheme since both our proposition and the SOTA algorithm provide the same result, which is 100% of reli-
ability for any number of URLLC users whereas this is only the case for the legacy schemewhenNURLLC ≤
20. This proves the adaptability of these algorithms when faced with a service load variation and the abil-
ity of the solution to provide constant reliability regardless of the URLLC load conditions even with a high
resource utilization rate (as can be seen in Fig. 4.3). Conversely, the legacy scheme which always provides
20 PRBs for the URLLC slice shows a performance degradation for the URLLC slice when NURLLC > 20

since it will not be able to guarantee 1 PRB in that case for all URLLC users. Additionally, when the number
of URLLC users reaches its maximum (40), the service reliability plummets down to 50%. This can be ex-
plained by the fact that these 40 URLLC users are sharing 20 PRBs and each user gets its required service
only half of the time. Therefore, our algorithm is adapted in a way to satisfy the increasing demand of the
URLLC slice which is not the case for the Legacy scheme where the URLLC slice performance deteriorates
in case of overload.
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Finally, our algorithmprovides better throughput results for eMBBusers than the SOTA algorithmwhile
ensuring simultaneously a high URLLC service reliability and high resource utilization efficiency, which are
two advantages shared with the SOTA algorithm over the legacy scheme.

4.5 Centralized Dynamic RAN Slicing
The slicing algorithm which was tackled in the previous section with a distributed non-cooperative crowd-
ing game is tackled in this section using a DQN algorithm. DQN was already introduced and detailed in
Chapter 1 in subsection 1.4.4. Consequently, it is important to define the state, actions and rewards of the
problem which will be discussed in the next subsections.
4.5.1 The agent, environment and states
In our algorithm, the environment is none other than the number of URLLC and eMBB users along with
their slice selection distribution between the URLLC slice and eMBB slice. The states can be identified as
the association between the users and their choice of slice that will serve them (u or e). Therefore, each
time a slice selection is changed for a user, the state of the environment is changed. It is also worth noting
that the agent is none other than the Base Station controllers that collect the appropriatemetrics from the
mobile users and take the appropriate actions by adjusting the slice selection for each user. Consequently,
it is important to pinpoint the actions that change the state of the environment and the reward functions
used during each change of state.
4.5.2 The actions
Initially, we consider that each user is linked to their "natural" slice as is done in the state-of-art. Therefore,
the URLLC users are associated to the URLLC slice while the eMBB users are associated to the eMBB slice.
Subsequent to these initial conditions, two possible actions can be taken for each user: either switch the
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user to another slice (from u to e or vice-versa) or keep the user in its current slice. Therefore, the action
taken by the agent is either to keep or change the slice selection for each user. Each action taken by the
agent will move the environment from a state to another while generating a reward that is used by the
agent to assess the benefit of this action. The choice of this set of actions (keep or change slice per user)
is to reduce the number of possible actions which in turn reduces the complexity of the algorithm. In a
classic approach, the number of possible actions is 2Nusers since two slices are considered. Therefore, the
complexity is reduced from 2Nusers to 2 × Nusers when narrowing down the overall actions to a per user
action.
4.5.3 The reward function
As statedbefore, the crowding game is a decentralized approachwhere anyuser selfishly and autonomously
selects a strategy that improves its own cost function. The DQN algorithm is a centralized approach as the
reward function is global and takes into account all users KPIs to decide the optimal apportionment of
users over the slices.

After taking an action for a given user to keep or modify its slice selection, the reward of this action
takes into account the KPIs specific to each user. If the user is of type eMBB, its KPI is the ratio of the
user throughput over its comfort throughput (Thrk

Dk
). The higher this ratio, the more beneficial it is to the

system. This leads to counting it as a positive reward. If the user is of type URLLC, its KPI is the ratio of the
user delay over its comfort delay (Delk

Tk
). The higher this ratio, the less beneficial it is to the system. This

leads to counting it as a negative reward (in other words, a penalty). Moreover, an additional reward is
considered to motivate users to favor the slice matching their service type.

Therefore, if the action is to keep the slice selection, the reward is expressed as follows where Radd isthe bonus reward:
Rkeep =

∑
k∈eMBB

Thrk
Dk

−
∑

k∈URLLC

Delk
Tk

+Radd (4.2)
If the action is to change the slice for the user, the bonus reward is not taken into account and the reward
is expressed as follows:

Rchange =
∑

k∈eMBB

Thrk
Dk

−
∑

k∈URLLC

Delk
Tk

(4.3)
Note that Thrk andDelk are the same as previously defined in the system model in section 4.2.
4.5.4 The DQN AlgorithmWorkflow
The DQN algorithm is described in Algorithm 4.

As seen in the algorithm, first we create the DQN agent with the definition of its number of inputs
and outputs to retrieve the Q-values based on neural networks. Afterwards, for any given number of
URLLC and eMBB users simulating the distribution of the users among the slices, we initialize the latter
and associate them with their natural slice which is e for the eMBB slice and u for the URLLC slice. In the
next step, we repeat the process where either a random action is taken with probability ϵ or an action
with the highest Q-value is executed with probability 1 − ϵ. The action is either to keep or modify the
slice selection for each user. In that process, we calculate the throughput and delay for users to retrieve
the reward following the taken action which will be stored along with the newly reached state to find the
optimal Q-values based on gradient descent. Once convergence is reached, the optimal policy is retrieved
and the appropriate decisions are taken. The whole process is represented in Fig. 4.5 where the Non-Real
Time RIC and near-Real Time RIC are the Base Station controllers.
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Input : Q-values
Output: Slice selection action based on optimal Q-values

1 DQN inputs (states, discount factor...) and outputs (actions) are defined;
2 repeat
3 Slice e is selected for eMBB users;
4 Slice u is selected for URLLC users;
5 repeat
6 Take a random action with probability ϵ or highest Q-value action with probability

1− ϵ to keep or change the slice selection for each user;
7 Calculate throughput and delay for users;
8 Calculate the reward generated following the action taken;
9 Calculate the Q-values;
10 Update these values by gradient descent;
11 until Optimal Q-values and policy are found;
12 until All users distributions among service types have been simulated;

Algorithm 4: Dynamic Slicing for eMBB and URLLC DQN Algorithm

Figure 4.5: Dynamic Slicing for eMBB and URLLC DQN Process

4.6 Performance Evaluation of the Centralized DQN based Al-
gorithm

For the algorithm implementation, we used Python with the Pytorch library. We also used the parameters
in Table 4.3 for Algorithm 4.3. The same parameters for the distributed crowding game are used for the

55



Table 4.3: DQN Dynamic Slicing Algorithm parameters
Parameter Description Value
Ck

ap Throughput per PRB 1Mb/s
NRBtot Total number of PRBs 50 PRB
Nusers Total number of users 40 users
Dk Comfort rate of an eMBB user 2 · Ck

ap

Tk Comfort delay of an URLLC user 1/Ck
ap

ReMBB
add Reward for keeping eMBB slice 1.3

RURLLC
add Reward for keeping URLLC slice 1

centralized DQN algorithm. As for ReMBB
add and RURLLC

add which denote the bonus reward, they are fine-
tuned to obtain logical rewards and reach fast convergence for the agent training. Note that the condition
ReMBB

add > RURLLC
add ensures that changing the assigned slice for URLLC users can be more rewarding since

a change of slice is required for these users when the attributed resources are not sufficient.
Initially, similar to the crowding game, we consider 20 PRBs to be allocated for the URLLC slice and 30

PRBs for the eMBB slicewith theminimal delay scheme applied to all URLLC users andmaximal throughput
scheme applied to all eMBB users. Hence,NRBU = 20 andNRBE = 30. As for the KPIs used to evaluate the
efficiency of the algorithm, we used the same KPIs as the crowding game algorithm: the service reliability,
the total throughput, the resource utilization efficiency. Additionally, the required number of iterations to
reach convergence is assessed.

With theDQNapproach, a learning phase of theQ-values is required to attain convergence and take the
appropriate decisions. This phase depends onmultiple parameters including the discount factor, learning
rate, the ϵ-greedy strategy affecting the balance between the exploration and exploitation of the environ-
ment, and the number of episodes required to train the agent.

Figure 4.6: Learning phase with random DQN parameters
Figure 4.6 represents the learning phase of the Q-values as a function of the number of episodes with

random parameters (learning rate, ϵ-greedy strategy ...) for a certain distribution of users between eMBB
and URLLC services. We can see that a high number of episodes is required to reach convergence since
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the agent requires to explore the environment. Nevertheless, we repeated the simulations multiple times
with different combinations of parameters leading to the finding of an astute choice of these parameters
requiring less number of episodes and less learning time. The algorithmwas also adapted to stop the train-
ing once the state of the environment stabilizes after a certain number of episodes (due to convergence)
which helps reducing the offline training time.

Figure 4.7: Learning phase with optimized DQN parameters
Therefore, Fig. 4.7 represents the learning phase of the Q-values as a function of the number of

episodes with the optimized parameters. We can see that the number of episodes required to reach
convergence is greatly reduced. Thanks to this fine-tuning of parameters and algorithm adaptation, the
performance results improved significantly as we can see in Figs. 4.8 and 4.9.

Figure 4.8: Total Throughput for eMBB users with Centralized and Distributed algorithms with randomDQN parameters
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Figure 4.9: Total Throughput for eMBB users with Centralized and Distributed algorithms with fine-tunedDQN parameters

In both figures, we visualize the total throughput for eMBB users as a function of the number of URLLC
users using both the centralized and distributed algorithms after convergence. Nevertheless, Fig. 4.8 dis-
plays the performance with random DQN parameters while fine-tuned parameters are considered in Fig.
4.9. In both figures, the eMBB total throughput has almost the same performance for both the centralized
and distributed approach. However, with the fine-tuned parameters (Fig. 4.9), the curves almost match
for the distributed and centralized approaches and realize the same performances indicating equivalent
results. This is due to the fact that with fine-tuned parameters, both centralized and distributed algorithms
converge to the same strategy (slice selection for user) leading to the same performance results. Hence,
both algorithms outperform the legacy scheme when the number of URLLC users is below 20 which is not
the case when it is above 20 owing to the algorithms adaptability to fulfill the URLLC QoS requirements
by shifting the resources from the eMBB slice to the URLLC slice to attenuate any performance deteriora-
tion. For this reason as well, both our distributed and centralized algorithms outperform the SOTA slice
selection [64] with a maximum gain of 20 %.
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Figure 4.10: Service Reliability for URLLC users using DQN (centralized) and crowding game (distributed)approaches

Figure 4.11: Resource utilization efficiency with centralized and distributed algorithms

59



Figure 4.12: Maximum number of iterations to reach convergence for DQN and Crowding game algorithms

As for the URLLC Service Reliability and Resource Utilization efficiency, both algorithms also achieve
the same results with a value of 100% (Figs. 4.10 and 4.11).

Figure 4.12 displays the maximum number of iterations required to attain convergence for both the
DQN (after fine-tuning the parameters) and Crowding game algorithms. We can conclude that for a given
distribution of the users among the service types, the number of iterations required to achieve that con-
vergence does not exceed 500 for the DQN algorithmwhich is much greater than the number of iterations
needed for the crowding game algorithm to converge (only 2 iterations). With a confidence interval of 95%,
the training time needed with 40 users and for all combinations of users between URLLC and eMBB types
of users is around 6 minutes instead of several hours thanks to this astute parameters adjustment and
algorithm adaptation as well as the drastic reduction of the number of actions (from exponential to linear
in the number of users) which reduces notably the algorithm complexity.

4.7 Algorithm Implementation in O-RAN Architecture

4.7.1 Distributed Dynamic RAN Slicing Algorithm in the O-RAN
The Best Response algorithm is to be executed at the level of the near-real-time RIC since convergence is
attained swiftly.

In our case, the time spent for slice selection is equivalent to one time slot. After the slice selection, the
calculated KPI in terms of throughput or delay is sent to the near-RT RICwhich is the entity thatwill calculate
the cost functions for each user and store the appropriate strategy in each round. During each round, we
have a certain number of users coinedNusers where each user needs TS time slots to select all strategies.
Consequently, the time needed to reach the Best Response Algorithm convergence isNusers×TS×Rmaxwhere Rmax is the maximum number of rounds for convergence. Since Rmax is as low as 2 rounds and
with Nusers and TS having assigned values in normal conditions, the Best Response Dynamics algorithm
converges within a time range of 10 ms to 1 s and therefore can be implemented at the level of the near-
RT RIC. This is not the case of RL based algorithms that usually take several minutes to converge. In that
case, these types of algorithms are best implemented at the level of the Non-RT RIC which will find the
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best policy needed by the near-RT RIC to execute the appropriate action based on certain calculations and
decisions transmitted over the A1 interface connecting the Non-RT RIC to the near-RT RIC.

4.7.2 Centralized Dynamic RAN Slicing Algorithm in the O-RAN

The DQN algorithm requires a training phase where learning of the Q-values is done to take appropriate
actions. This training may require several hours to find the best policy. In our case, the training requires
around 6 minutes as was previously mentioned. Consequently, the training phase which is done offline
will take place at the level of the Non-RT RIC which acts beyond 1 s. Once the training phase is finished and
the appropriate actions are learned based on the KPIs of users, the appropriate decisions and model to
be executed are transmitted to the near-RT RIC over the A1 interface. Therefore, it is the near-RT RIC that
adjusts the resource sharing between the slices. During the training phase, the agent in the Non-RT RIC
will explore the environment and take random actions to assess the consequences and find the Q-values.
Upon the termination of the training phase, the near-RT RIC executes the decisions of the slice selection
for each user based on the network inputs (i.e. number of users) which is fast enough and within the time
range of the near-RT RIC (between 10 ms and 1 s).

4.8 Comparison between the distributed and centralized Dy-
namic RAN Slicing algorithms

Both approaches achieve the same results since we obtained the same KPIs after convergence which
proves the efficiency and adaptability of both algorithms to satisfy and prioritize the users’ needs. This
is due to the fact that both algorithms converge to the same strategy. In fact, the PNE in the game theory
based approach is theminimum of the game potential function. The latter scales with the reward function
adopted in the DQN approach. That is why both approaches reach the same strategy set at convergence.
Nevertheless, the crowding game approach is much faster in terms of convergence. Therefore, the imple-
mentation of this algorithm only involves the near-RT RIC of the O-RAN architecture. However, a crowding
game algorithm requires to meet certain criteria and properties to reach the PNE. In fact, existence of PNE
is no longer guaranteed if users need to choose betweenmore than two strategies (URLLC slice and eMBB
slice), contrarily to the centralized scheme that can scale with any number of slices. However, increasing
the number of available slices directly impacts the convergence of the underlying DQN algorithm. Addi-
tionally, even though the solution for the game based approach can be centralized in a certain entity, its
solution is not global. The approach is rather autonomous and selfish with regards to each user or player
of the game. This is not the case for the DQN based algorithm. In fact, the reward function can be defined
with more liberty without meeting stringent requirements. Therefore, the approach is more global and
takes into account the benefits and KPIs of all users. While it is true that convergence is much slower with
the DQN algorithm, it only concerns the training phase which can be done offline in the Non-RT RIC. Once
the training phase is over, the execution of decisions by the near-RT RIC can be fast enough similarly to
the crowding game algorithm. It is also worth to note that both algorithms are executed swiftly compared
to other works in the state of art using ML methods [66][51][52]. Also, an additional benefit for the DQN is
its adaptability to changes in the hypothesis and inputs which will require additional training but fast de-
cision making time once the training is done. Finally, the entities of the O-RAN architecture, the flexibility
of the solution and the convergence time needed must be considered when implementing any of these
algorithms. Table 4.4 summarizes the comparison.
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Table 4.4: Comparison of both centralized and distributed dynamic slicing approaches
Centralized DistributedURLLC Reliability 100% 100%Resource Utilization 100% 100%eMBB Throughput Same results Same resultsConvergence Swift after offline training Attained swiftlyApproach Global and scalable SelfishO-RAN components Non-RT and near-RT RIC near-RT RIC

4.9 Concluding Remarks
In this chapter, a dynamic slicing algorithm for eMBB and URLLC in a single VO context was proposed via
a distributed crowding game solution and a centralized DQN solution where:

• Both approaches achieve the same performance in terms of eMBB throughput and URLLC reliability
and resource utilization efficiency thanks to the defined cost and reward functions.

• Results show the efficiency of our dynamic RAN slicing algorithm and its adaptability against the
variation of load conditions that avert the need to increase the available bandwidth.

• The proposed solution achieves better eMBB throughput compared to the SOTA work in [64] thanks
to the dynamic readjustment of slice resources whilemaintaining a high reliability and high resource
utilization efficiency compared to the legacy scheme.

• The alignment of this solution with the O-RAN architecture is also discussed.
• The distributed approach may reach faster convergence than the centralized one. Nonetheless, the
distributed solution lacks scalability.

However, this contribution does not consider the numerology, users’ radio conditions and arrival process
and the mMTC slice. Therefore, these aspects are considered in the next chapter with a three-level algo-
rithm solution.
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Chapter 5

A Three-Level Slicing Algorithm in a
Multi-Slice Multi-Numerology Context

In this chapter, we propose a solution that extends the previous work to include the numerology, the mMTC slice,
both preemptive and orthogonal scheduling for eMBB and URLLC coexistence as well as users’ radio conditions
and arrival process. The numerology is a paramount factor that should be considered in the radio resource
allocation problem since different services and slices may require different numerologies. In this work, three
numerologies and four BWPs are considered where we have a BWP for each slice (eMBB, URLLC and mMTC) and
one that is shared between eMBB and URLLC services under preemptive scheduling. The proposed solution is
a three-level algorithm that selects the BWP serving URLLC users (choice between preemptive and orthogonal
scheduling), attributes resources to each slice and BWP and dimensions a Guard Band (GB) between BWPs using
different numerologies. Therefore, various tools are used to tackle each problem from game theory and heuristics
to DQN. Also, users’ KPI such as throughput, delay and Signal-to-Interference-plus-Noise Ratio (SINR) as well as
the Inter-Numerology Interference (INI) are taken into account in order to take the appropriate decisions at each
level. The advantages brought by this solution compared to the previous contribution and another SOTA work
are also highlighted along with the alignment of this solution with the O-RAN architecture.

5.1 Introduction
The previous chapter introduced a novel dynamic slicing algorithm specifically for eMBB and URLLC. De-
spite its efficiency and simplicity, this solution disregards some important aspects such as the numerology,
themMTC class of service and the users’ radio conditions. In fact, heterogeneous services may require dif-
ferent numerologies. For example, the URLLC service requires a higher numerology to attain lower latency
while the eMBB service requires a lower one since it offers a higher payload. However, the use of multiple
numerologies on the same band causes INI which is an additional challenge. In such a multi-slice multi-
numerology context, the radio resource allocation problem is very challenging since multiple parameters
come into play such as thwarting the INI, reducing the URLLC latency, increasing the eMBB Throughput,
and ensuring high Signal-to-Interference-plus-Noise Ratio (SINR). To that aim, we propose a three-level
scheme that takes into accountmultiple performancemetrics complimentary to the SLA fulfillment where:

• The first level selects the numerology-specific BWP to serve URLLC users using game theory.
• The second level adjusts the dedicated band for each slice using heuristics.
• The third level performs the dimensioning of the guard band separating the BWPs using different
numerologies to curb the impact of INI using DQN.
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This three-level algorithmdeals with all possible challenges induced fromamulti-numerology settingwhile
considering both preemptive and orthogonal scheduling for eMBBandURLLC coexistence. This is different
from certain SOTAworks which consider a single challenge while ignoring others and other works focusing
on a single scheduling option for eMBB and URLLC coexistence. Simulations results prove the efficiency
of our solution compared to our previous contribution and another SOTA work [73] that disregards the
addition of aGBbetweenBWPsusing different numerologies. The organization of this chapter is as follows:

Section 5.2 presents the system model of the targeted problem. Sections 5.3, 5.4, and 5.5 describe
each level of our three-level scheme as well as the problem to be solved at each stage while Section 5.6
summarizes the overall process. Section 5.7 provides simulation results and performance evaluation of
our proposed solution. Section 5.8 discusses the implementation feasibility and mapping of the solution
in an O-RAN architecture. The conclusion of this chapter is drawn in Section 5.9.

5.2 System Model

Figure 5.1: The System Model for Multi-Numerology Multi-Slice Context
As represented in Fig. 5.1, we consider a single gNB with Btotal = 90MHz bandwidth divided between

four BWPs. The gNB covers an area with radiusR. This gNB operates on the foperator = 3.5 GHz frequency
(FR1) in Time-Division Duplex (TDD) mode. In the case of low traffic load, the whole operator bandwidth
may not be entirely allocated and the surplus remains unused for energy efficiency and for BWPs sepa-
ration to curb the INI. Additionally, only the downlink is taken into account in this work as the INI effect is
magnified in this case. Moreover, to avoid inter-cell interference (as the main focus is inter-numerology
interference), we consider that the neighboring gNBs are using orthogonal bands.

Note that since a high number of symbols are used, Table 5.1 displays the most important ones with
their description.
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5.2.1 The Slices
The three considered slices for each service are the following:

• The eMBB slice eMBB where all eMBB users are attached.
• The URLLC slice URLLC where all URLLC users are attached.
• The mMTC slicemMTC where all mMTC users are attached.

5.2.2 Choice of numerology and Bandwidth Parts
Three different numerologies and four BWPs are considered as follows:

• The mMTC BWP (denoted MP) is the one dedicated for the mMTC slice and allocated to mMTC users
which can be IoT devices. This BWP is associated with µ = 0 (SCS=15 kHz) and a fair resource scheme
scheduler is used for its users.

• The eMBB Premium BWP (denoted EP) is the one dedicated for the eMBB slice and allocated to
eMBB users paying the operator a higher monetary cost than other users for a higher throughput
guarantee in return. This BWP is associated with µ = 1 (SCS=30 kHz) and a fair resource scheme
scheduler is used for its users.

• The Non-Premium BWP (denoted NP) is the one shared between eMBB and URLLC slices and al-
located to both eMBB and URLLC users paying the operator a lower monetary cost than other
premium users. Consequently, the operator provides lower throughput for these eMBB users and
higher latency for these URLLC users. This BWP is also linked to µ = 1 (SCS=30 kHz), and preemptive
scheduling is applied where URLLC packets are scheduled on top of on-going eMBB transmissions.
The latter fairly share the remaining PRBs that are not endowed to URLLC users.

• The URLLC Premium BWP (denoted UP) is the one dedicated for the URLLC slice and allocated to
URLLC users paying a higher monetary cost for a lower latency guarantee in return. This BWP is
linked to µ = 2 (SCS=60 kHz). In this BWP, the PRBs are attributed based on each user’s demand
using a weighted fair queuing scheme.

Each BWP can have a maximum and a minimum band defined depending on the operator’s traffic expec-
tations. Additionally, the attributed band to each BWP along with the used numerology determine the
number of PRBs available at the level of each BWP.

Additionally, when the whole operator band is used, a guard band between the BWPs using different
numerologies is configured. Therefore, since the eMBB Premium and Non-Premium BWPs are using the
same numerology, no guard band is required between them as the INI effect is absent and the addition
of one leads to radio resource wastage. As for the choice of numerology, µ = 0 should be selected for
mMTC according to Table 4 from the work in [16]. Regarding eMBB and URLLC, a lower numerology should
be selected for eMBB while a higher numerology should be selected for URLLC as explained previously.
Since we are using the sub-6 GHz frequency range, we are limited to numerologies 0, 1 and 2 as advocated
by 3GPP specifications [12]. The highest one (µ = 2) is selected for URLLC Premium BWP to provide lower
latency. As for the Non-Premium BWP, we chose µ = 1 since the INI effect will be reduced when the SCS
gap is smaller meaning that the use of µ = 1 with µ = 2 causes less INI than the use of µ = 0 with µ = 2

for the adjacents BWPs NP and UP . Also, µ = 1 provides lower latency than µ = 0 for URLLC users
associated with the Non-Premium BWP. As for the eMBB Premium BWP, a wide band may be attributed
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to this BWP since it requires a high throughput and the used bandwidth may be higher than 50 MHz.
However, according to 3GPP specifications, the use of µ = 0 with a total bandwidth higher than 50 MHz
is not possible [12]. For this reason and in order to allow all eMBB users to use the same numerology
regardless the BWP, we resort to µ = 1 for the eMBB Premium BWP as well.

5.2.3 Users and Traffic Distribution
We consider a number of usersNbUsers randomly distributed in the gNB coverage area within the radius
R with each user associated to one type of service (one slice) exclusively. For eMBB and URLLC users, the
users’ arrival to the network follows a Poisson process, and these users are divided between three sets:

• The eMBB Premium users attached to the eMBB slice and linked to the eMBB PremiumBWP arriving
to the network following a Poisson process with a mean of λEP users/sec.

• The eMBB Non-Premium users attached to the eMBB slice and linked to the Non-Premium BWP
arriving to the network following a Poisson process with a mean of λENP users/sec.

• TheURLLC users attached to theURLLC slice and thatwill be associated to either theURLLC premium
BWP or Non-Premium BWP depending on the BWP assignment algorithm in the first level. These
users arrive to the network following a Poisson process with a mean of λU users/sec.

The eMBB users have a given amount of data VeMBB to download, drawn randomly. Once the data is fully
downloaded, they leave the network. The URLLC users remain active in the network for a fixed period of
time where a number of packets are generated continuously following a Poisson process with a mean of
λPktU packets/s with a fixed size. As for mMTC users, we consider that we have a fixed number of IoT
devices IoTNodes distributed in the coverage area and hence they do not follow an arrival process. These
users are actively receiving a fixed number of packets per second PktIoT with a fixed size of a few bytes.

5.2.4 Computing the network parameters and KPIs
We use the analytical formula for the INI resulting from the simultaneous use of multiple numerologies as
proposed in [73] based on [71]. In fact, the INI affecting BWP k using a narrow numerology and caused by
BWP k′ using a wider numerology is expressed as follows:
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The INI inflicted on BWP k′ by BWP k is expressed as follows:
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where:
• Nk denotes the total number of subcarriers of BWP k

• N
(T )
k denotes the total number of subcarriers of BWP k including those employed for cyclic prefix

• Pk is the transmitted power of BWP k
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• gk is the channel gain over BWP k

• w( i, j) corresponds to the spectral distance between subcarriers i and j of different numerologies
• δ is the number of OFDM symbols of the higher numerology that are transmitted within the time
transmission window of one OFDM symbol of the lower numerology

After retrieving the INI, the SINR in dB of user u with its resources allocated from BWP k is calculated as
follows:

SINR_dBu = Pt+Gt+Gr − PL−M_shadow − I_dBu( k, k
′) (5.3)

where:
• Pt is the transmit power of the gNB in dB
• Gt denotes the antenna gain at transmission in dBi
• Gr denotes the antenna gain at reception in dBi
• PL is the channel Path Loss in dB
• M_shadow corresponds to the shadowing effect in dB with a standard deviation of ShadSD
• I_dBu( k, k

′) denotes the INI in dB impacting user u having resources from BWP k affected by BWP
k′

Once the SINR is computed, the modulation orderMOu and coding rate CRu of user u are retrieved froma Channel Quality Indicator (CQI) table used in the literature [80]. As for the KPIs, we chose the throughput
for eMBB users, the latency for URLLC users and the SINR for mMTC users. The throughput of eMBB user
u is computed as follows:

Thru =
AllocatedPRBu ×Bits_Per_PRB

TTIduration
(5.4)

where AllocatedPRBu is the number of PRBs allocated to the user u during a TTI, Bits_Per_PRB is the
number of bits per PRB and TTIduration is the duration of the TTI corresponding to 0.5ms for numerology
1. In fact, the number of bits in a PRB is determined below based on the channel conditions of the user:

Bits_Per_PRB = 12× 14× log2(MOu) × CRu (5.5)
where 12 and 14 represent the number of subcarriers and OFDM symbols respectively in a PRB since the
latter is considered to be composed of 12 subcarriers in the frequency domain and 14 OFDM symbols in
the time domain. MOu and CRu are the modulation order and coding rate selected for user u based on
its SINR. Moreover, AllocatedPRBu is determined by the fair resource scheme scheduler which is:

AllocatedPRBu = ⌈Tot_PRBBWP

NbUsersBWP
⌉ (5.6)

where ⌈.⌉ is the ceiling function, Tot_PRBBWP is the total number of PRBs available at the BWP scanned
by the user and NbUsersBWP is the number of users linked to this BWP.

Note that Tot_PRBBWP is determined by Table 5.3.2-1 from [12] depending on the attributed band
and numerology.
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To determine the latency of URLLC users which are served based on a weighted fair queuing algorithm
based on their demand, the number of PRBs required by each URLLC user should be determined first. In
fact, the number of PRBs required by a user of any type u is determined using the following expression:

RequiredPRBu = ⌈Pktu × PktSize

Bits_Per_PRB
⌉ (5.7)

where ⌈.⌉ is the ceiling function, Pktu is the number of packets to be received by user u and PktSize is the
packet size in bits. Bits_Per_PRB is none other than the number of bits in a PRB determined previously
by Equation (5.5) that takes into account the channel and radio conditions of user u. Consequently, the
number of PRBs required by user u is its number of packets to be received multiplied by the packet size
in bits and divided by the number of bits in a PRB. Then, the total number of PRBs required by the URLLC
users linked to a specific BWP is computed as follows:

Tot_ReqURLLCBWP =
∑

u∈BWP u∈URLLC

RequiredPRBu (5.8)
In the next step, we compare Tot_ReqURLLCBWP to the total number of PRBs available at the BWP
(Tot_PRBBWP ) to verify availability:

• If Tot_ReqURLLCBWP ≤ Tot_PRBBWP , this means that the BWP is sufficient to satisfy all URLLC
users demands and a weighted fair queuing scheduler is applied based on each user’s demand
with the weight wu = RequiredPRBu

Tot_ReqURLLCBWP
and the number of allocated PRBs to each URLLC user is

AllocatedPRBu = ⌈wu × Tot_PRBBWP ⌉ with ⌈.⌉ the ceiling function.
• Otherwise, when the BWP is unsufficient to fulfill all its served users’ requirements, a weighted fair
queuing scheduler is still appliedwhere the available resources are divided between the users based
on their original demand and the number of allocated PRBs to each user is
AllocatedPRBu = ⌈wu × Tot_PRBBWP ⌉ with ⌈.⌉ the ceiling function.

Subsequently, the latency of URLLC user u is expressed as follows:
Lu = dt + dal + due + dbs (5.9)

where:
• dt is the transmission delay in ms
• dal = 1 TTI is the packet alignment time in ms according to [81]
• due is the UE processing time equal to 4.5 OFDM symbols according to [81]
• dbs is the BS processing time equal to 2.75 OFDM symbols according to [81]

Hence, in this equation, since the URLLC users are served promptly based on their demands, only the
transmission delay is considered and the queuing delay is not taken into account. Note that due, dbs and
dal depend on the numerology used since they depend on the TTI and OFDM symbol duration. As for the
transmission delay, it is determined as follows:

dt =

{
0 if Tot_ReqURLLCBWP ≤ Tot_PRBBWP
PktLength

Thru
Otherwise (5.10)

We consider that the transmission delay is null if there are enough PRBs available in the BWP
(Tot_ReqURLLCBWP ≤ Tot_PRBBWP ) since users are served promptly. Otherwise, the transmission
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time is the ratio of packets length in bits PktLength = Pktu × PktSize over the URLLC user throughput
Thru (determined similarly to eMBB users by using equation (5.4)).

Note that for the Non-Premium BWP, the number of PRBs available for the eMBB users is given by:
Tot_PRBeMBBNP = Tot_PRBNP − Tot_ReqURLLCNP (5.11)

which is the difference between the total number of PRBs available at the Non-Premium BWP
Tot_PRBNP and the total number of PRBs required by the URLLC users linked to the Non-Premium BWP
Tot_ReqURLLCNP which are served immediately on top of eMBB Non-Premium users’ transmissions.
Those PRBsTot_PRBeMBBNP are shared equitably among the eMBBusers using a fair resource scheme.

RegardingmMTC users, this type of users is contented with a low throughput and can tolerate a higher
delay than URLLC. Hence, they are less demanding than the other two classes of services. Therefore,
the main concern for these users is to allot them an appropriate bandwidth for their assigned BWP. To
that aim, their BWP size is selected based on the bandwidth that offers a number of PRBs higher than
what is requested by mMTC users. Therefore, with the assumption that all mMTC users receive the same
number of packets and have the same packet size, only the number of mMTC users and the required PRBs
per mMTC user are required to determine the appropriate band. For the required number of PRBs per
mMTC user, it is determined thanks to equation (5.7) under the worst radio conditions where the user is
considered to be located at the edge of the cell.

In addition, the chosen KPI for mMTC users is the SINR which is calculated thanks to equation (5.3)
due to the fact that the higher their SINR, the less power they consume which is an important aspect for
these users as energy efficiency is paramount for the mMTC class. In fact, when the SINR is low, power
consumption should be increased to improve the SINR.

These network parameters and KPIs, which are summarized in Table 5.1, are essential for the execution
of our algorithm operating on three levels: the first level assigns the BWP for each URLLC user, the second
level adjusts the BWP size, and the third level configures an appropriate guard band to reduce the INI
between BWPs using different numerologies.

Table 5.1: Symbol Description for Multi-Slice Multi-Numerology Problem Context
Parameter DescriptionMP, EP, NP, UP mMTC, eMBB Premium, Non-Premium, URLLC Premium BWPs
AllocatedPRBu Allocated PRBs for user u
Bits_Per_PRB Number of bits per PRB
TTIduration Duration of a TTI
MOu Modulation Order of user u
CRu Coding Rate of user u
Lu Latency of user u and URLLC KPI
Thru Throughput of user u and eMBB KPI
SINRu SINR of user u and mMTC KPI
Tot_PRBBWP Total Number of PRBs available at the BWP
NbUsersBWP Number of Users linked to BWP
RequiredPRBu Required number of PRBs for user u
Pktu Number of Packets to be received by user u
PktSize Packet size
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5.3 The First Level: URLLC BWP Selection
The first level of the algorithm consists of the BWP selection for URLLC users between the Non-Premium
BWP andURLLC premiumBWP. For this level, we resort to non-cooperative game theory since the problem
can be modeled as a competition between self-interested users for limited resources. Therefore, this
problem is tackled as a non-cooperative game G where the players are the URLLC users competing over
common PRBs resources available in the mentioned BWPs. The game framework is presented as follows:

• The set U is the set of players (URLLC users).
• The set S = {np, up} is the set of strategies where np and up designate the Non-Premium BWP
and URLLC Premium BWP respectively. The vector yu is the strategy vector of URLLC user u whose
components are the binary variables yu,bwp equal to 1 when URLLC user u chooses the BWP bwp.
Hence, y = (yu)u∈U ∈ S is the strategy profile, and S = S1 × S2...× SU is the space of all profiles.

• The set of cost functions {C1, C2, ..., CU} quantify the players’ profitability over the possible out-
comes of the game.

5.3.1 The Cost function
In this game G, each player (URLLC user) aims at minimizing its cost function by selecting the appropriate
strategy (BWP) as portrayed in Fig. 5.2.

Figure 5.2: URLLC BWP Selection Game representation
The cost function is carefully defined to take into account all network aspects including theURLLCusers’

latency, energy efficiency and incurred monetary cost. Hence, the following cost function is considered
when an URLLC user u selects BWP bwp:

Cbwp
u = a · L

bwp
u

Lcu
+ b ·Kbwp + c · αbwp (5.12)

where a, b and c are normalizing factors and:
• Lbwp

u is the latency of user u when selecting the numerology-specific BWP bwp using Equation (5.9)
depending on the numerology and transmission delay
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• Lcu is the maximum latency tolerated by user u. For this target KPI, we draw a random value for
each user between 0.8 and 1 ms as the URLLC latency should not exceed 1 ms with a reliability of
1− 105 [6]

• Kbwp is the incurred monetary cost to be paid by the user when selecting BWP bwp which is higher
for the URLLC Premium BWP compared to the Non-Premium BWP

• αbwp is a parameter representing the user energy consumption. It depends on the scannedBWP bwp.
Hence, if the user selects the smaller BWP, αbwp = 0 since the energy consumption would be lower
reducing the cost function. Otherwise, if the user selects the larger BWP, the energy consumption
is higher and αbwp = 0.2

Note that the latency provided by the URLLC Premium BWP is lower owing to the higher numerology
used. Moreover, the transmission delay goes to zero if the BWP has enough PRBs. Consequently, users are
more likely to choose this BWP to avoid deteriorating eMBB Non-Premium users’ performance. However,
by astutely fine-tuning the incurred monetary cost (which will be set higher for the Premium BWP), we
can load balance users among BWPs to avoid overcrowding the URLLC Premium BWP and disrupting Non-
PremiumeMBB users. In non-cooperative games, Pure Nash Equilibria are sought after andwewill discuss
how to attain them in the next subsection.

5.3.2 Reaching the Pure Nash Equilibrium
In this non-cooperative game, we seek the NE in a similar manner to the crowding game of the previous
chapter. We show that G has the FIP property which guarantees the existence of PNE [35] for our BWP
selection game.
Proposition 8. G has the FIP property.

Proof. The game G is an unweighted crowding game. In fact, although the cost function is player specific,
it is non-decreasing in the number of players that selected the same strategy (BWP). The latter property is
because the latency Lbwp

u is non-decreasing in the number of players that selected the same BWP. Accord-
ing to [37], player specific unweighted games with only two strategies have the FIP property which is the
case for our game with two strategies np and up.

Games with FIP are guaranteed to converge to PNE through simple Best Response dynamics [38] pre-
sented in Algorithm 5. In this algorithm, each player in turn, will choose the strategy minimizing its cost

Input: BWP cost
Output: BWP selection based on lowest cost

1 repeat
2 Calculation of BWP cost Cnp

u and Cup
u by each user;

3 BWP with lowest cost is selected by the user;
4 until BWP selection is the same as previous iteration;

Algorithm 5: Level 1: URLLC BWP Selection Best Response Dynamics Algorithm
function in response to other players’ strategies till convergencewhen the chosen strategy of each player is
the sameas in the previous round. Therefore, the complexity of this algorithm isO(NbUsersU×NbBWP×
NbIterations) whereNbUsersU is the number of URLLC users,NbBWP is the number of BWPs that can
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be selected for these users, and NbIterations is the number of iterations till convergence is reached. Its
duration is later discussed in Section 5.8.

In the next section, the second level of the algorithm is discussed.

5.4 The Second Level: Dynamic Slicing
The aim of the second level of our proposed algorithm is to determine the adequate amount of bandwidth
for each BWP based on the users’ KPIs and network conditions to eventually determine the slice bands. To
that end, we rely on smart heuristics to strike a good balance between high performance efficiency and
low computational cost. In fact, this simple algorithm uses the users’ KPIs in order to immediately adjust
the band.

5.4.1 Heuristic algorithm inputs and outputs
The second level algorithm requires specific inputs in order to dimension the BWP size. In fact, for the
eMBB and URLLC services, computing a certain ratio for each BWP ratioBWP based on the users’ KPIs as
input, the algorithm should compute the amount of bandwidth for each BWPBBWP . Thus, it requires com-
puting the throughput of eMBB users and the latency of URLLC users. Once these KPIs are obtained, the
algorithm calculates the number of unsatisfied users: unsatisfied eMBB Premium users are those whose
throughput is below βEP = 10 Mb/s, unsatisfied eMBB Non-Premium users are those whose throughput
is below βENP = 5Mb/s, and unsatisfied URLLC users are those whose delay is beyond βU = 1ms. These
threshold values are used as an example for simulations but can be set freely by the operator. After-
wards, the ratios for each BWP (ratioBWP ) are computed based on the ratio of unsatisfied users of each
BWP URBWP along with the ratio of allocated PRBs to URLLC users particularly in the Non-Premium BWP
PRBR_URLLCNP . Finally, these parameters are used to decide if the BWP band should be increased
or not and set it accordingly. The band is increased by 5 MHz in our case but this value can be freely
determined by the operator.

Hence for eMBB and URLLC services, the algorithm input which is the ratio for each BWP (ratioBWP )is defined below:
• For the eMBB Premium (EP) BWP, it is the ratio of unsatisfied eMBB Premium users denoted by
UREP (ratioEP = UREP ) which is the number of eMBB Premium users with a throughput lower
than a threshold set to βEP = 10Mb/s divided by the number of users linked to this BWP.

• For the Non-Premium (NP) BWP, it is the ratio of unsatisfied Non-Premium users denoted by URNP(ratioNP = URNP ) which is the number of eMBB Non-Premium users with a throughput lower than
a threshold set to βENP = 5 Mb/s and the number of URLLC Non-Premium users having a delay
surpassing the limit of βU = 1ms divided by the total number of users linked to this BWP.

• For the URLLC Premium (UP) BWP, the ratio is composed of the below two parameters (ratioUP =

(URUP , PRBR_URLLCNP )):
– The ratio of unsatisfiedURLLC Premiumusers denoted byURUP which is the number of URLLC
Premium users enduring a delay higher than a threshold set to βU = 1ms divided by the total
number of users linked to this BWP.
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– The ratio of allocated PRBs to the URLLC service in the Non-Premium BWP denoted by
PRBR_URLLCNP which is the number of allocated PRBs to the URLLC service in the Non-
Premium BWP divided by the total number of PRBs available at this BWP. The higher this ratio
is, the more severe the degradation of eMBB Non-Premium throughput.

As for themMTC service, since all users have the same requirements (number of packets to be received
and packet size), only the number of PRBs required per user and the number of active users are sufficient
to determine the required band of the mMTC BWP.

The outputs of the algorithm are the computed BWP bands and size denoted by BMP for the mMTC
BWP,BNP for the Non-Premium BWP,BEP for the eMBB Premium BWP andBUP for the URLLC Premium
BWP.

5.4.2 Algorithm workflow and process
First, we start by determining the mMTC BWP. For this type of service, we need the number of PRBs re-
quired by all users which is determined by the following equation:

Tot_ReqmMTC = IoTNodes×RequiredPRBmMTCu (5.13)
Where Tot_ReqmMTC is the total number of PRBs required by the service, IoTNodes is the total number
of mMTC users connected to the MP BWP and RequiredPRBmMTCu is the number of required PRBs of
a mMTC user u with the worst radio conditions located at the edge of the cell. After determining the total
number of PRBs required for mMTC, the smallest band from Table 5.3.2-1 in [12] that offers a number of
PRBs higher than the one requested is selected for the mMTC BWP. Hence, the mMTC BWP band BMP is
determined in a simple way since this class of service is not demanding in terms of throughput nor latency.

Afterwards, the bands for the BWPs dedicated for eMBB, and for URLLC and the one shared between
them should be determined. Therefore, for eMBB and URLLC services, the whole process is described in
Algorithm 6. As can be seen in the latter, we start by attributing theminimal bands to each BWP as defined
by the operator’s strategywhich is set to null to circumvent allocating a band to a BWPwith no active traffic.
The next step is to calculate the ratios for each BWP ratioBWP (UREP , URNP , (PRBR_URLLCNP and
URUP )) and check if any ratio violates the corresponding limit value lratio. If that happens for a given BWP,
a BWP-specific flag is raised and increasing the BWP band is considered if the maximum band per BWP
(set to 90MHz in simulations) is not reached and if the total operator band is not used. Otherwise, the flag
is lowered. For example, if UREP > 0 (with lUREP

= 0) meaning that at least one eMBB Premium user is
unsatisfied, an eMBB Premium flag is raised to increase this BWP band. If the maximum band per BWP is
not reached (90MHz), the algorithm moves on to the next step. Otherwise, the flag is lowered. The same
process is done for the other two BWPs. A Non-Premium BWP flag is raised if URNP > 0 (with lURNP

= 0).
As for the URLLC Premium BWP, since two parameters are considered for ratioUP , the URLLC Premium
BWP flag is raised if URUP > 0 (with lURUP

= 0) or PRBR_URLLCNP > 0.5 (with lPRBR_URLLCNP
= 0.5).

The first action is set to increase the URLLC Premium BWP band when at least one URLLC Premium user
is unsatisfied. As for the second condition, when the ratio of Non-Premium BWP PRBs allocated to the
URLLC service is higher than 0.5, the URLLC Premium BWP band is increased in order to push URLLC users
to choose this Premium BWP. In that case, the first-level BWP selection algorithm is run again to avoid
deteriorating the performance of eMBB Non-Premium users, that would otherwise suffer from starvation.
The next step is to verify if the whole operator band is fully used. If this is the case, all BWP-specific flags are
lowered as it is no longer possible to further increase any BWP band. Otherwise, the algorithm increases
the BWP band by 5 MHz. Once this is done, the following step is to update the BWP bands and network

73



Input: ratioBWP : UREP , URNP , URUP , PRBR_URLLCNP

Output: BBWP : BNP , BEP , BUP

1 Attribute minimal bands to each BWP (BBWP = Bmin = 0MHz);
2 repeat
3 Calculation of UREP , URNP , URUP , PRBR_URLLCNP ;
4 for BWP in {EP, NP, UP} do
5 if ratioBWP > lratio then
6 Raise BWP-specific flag;
7 if BBWP = Bmax = 90 MHz then
8 Lower flag;
9 else
10 if Operator band fully used then
11 Lower all flags;
12 else
13 Increase BWP band by 5MHz;
14 Update BWP band and size and recalculate network parameters;
15 end
16 end
17 else
18 Lower flag;
19 end
20 end
21 until No remaining flag is raised;
Algorithm 6: Second-level: BWP size adjustment and band attribution heuristic algorithm foreMBB and URLLC services

parameters such as the number of PRBs available at each BWP, the INI and the aforementioned ratios.
Afterwards, an additional verification step is performed to check if any flag is still raised. If this is the case,
thewhole process is repeatedwhere the ratio conditions are checked again. Otherwise, the BWPbands are
successfully determined. Regarding the algorithm complexity, it isO(NbUsers×NbBWP×NbIterations)

withNbUsers the total number of users,NbBWP the number of BWPs, andNbIterations the number of
iterations till convergence is reached where no flag is still raised.

As for the BWP order, the algorithm starts with the eMBB Premium BWP, then the Non-Premium BWP
to prioritize them and finally considers the URLLC Premium BWP. The reason behind this choice is the fact
that the eMBB Premium and Non-Premium BWPs serve eMBB users requiring high throughputs, there-
fore wider bands. Thus, the algorithm tends first to the needs of the eMBB Premium BWP and the Non-
Premium BWP. As for the URLLC Premium BWP, it is kept for last since its users do not require a high
amount of resources and, in case of overload, URLLC users can turn to the Non-Premium BWP.

5.5 Third Level: Guard Band Dimensioning
The final stage of the overall algorithm is to select the suitable guard bands that mitigate the INI without
reducing the spectral efficiency. To that aim and due to the complexity of finding an appropriate guard
band, we have recourse to DQN by taking as input the users’ KPIs and radio conditions as well as the INI
value. Thanks to DQN, we can determine the adequate guard bands that should be used by defining an
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astute reward function which is used by an agent to assess the benefits of the selected action. This stage is
only required when the whole operator band is used causing INI between the adjacent BWPs. Otherwise,
this level is not executed as BWPs with different numerologies are sufficiently set apart. To note that
the algorithm at this third level is run twice as we have 2 guard bands to determine. In the first run, we
determine GB1 between the BWPs using µ = 0 and µ = 1. In the second run, GB2 is dimensioned between
the BWPs using µ = 1 and µ = 2. Since we are using DQN for this level (which was already introduced
in Chapter 1), the tackled problem is represented by Fig. 5.3. Hence, it is important to define the state,
environment, actions and rewards of the problem which will be discussed in the next subsections.

Figure 5.3: Third level DQN Process

5.5.1 The agent, environment and states

In our algorithm, the agent is the intelligent entity of the RAN which is none other than the gNB controllers
collecting the adequate metrics that are used to take the appropriate actions. As for the environment, it
is the gNB with its configured slices and attached users where the gNB’s total band is divided between
the BWPs and the guard bands used to reduce the INI between the BWPs using different numerologies.
Moreover, the state of the environment is identified as the band attribution to the BWPs using different
numerologies as well as the selected GB to separate them. Therefore, to determine the first guard band
(GB1), the state of the environment is composed of the band occupied by the BWP linked to µ = 0 (MP),
the band occupied by the BWPs linked to µ = 1 (EP and NP) and the assigned guard band (GB1) separating
them. As for the second guard band determination (GB2), the state of the environment is composed of
the band occupied by the BWPs linked to µ = 1 (EP and NP), the band occupied by the BWP linked to µ = 2

(UP) and the assigned guard band separating them (GB2). To note that the band occupied by each BWP is
variable depending on the second level of the algorithm where each band is adjusted. In addition, each
time the guard band value and the BWP bands are modified, the INI level and number of PRBs available at
the level of BWPs are also changed (since some PRBs will remain unused). This also affects the users’ KPI
and the state of the environment. Thus, it is important to pinpoint these actions that change the state of
the environment.
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5.5.2 The actions
In this problem, the aim is to find the appropriate guard band separating BWPs using different numerolo-
gies which could take any value. In order to limit the number of possible actions and reduce the algorithm
complexity, the system can choose whether to increase, decrease or maintain the selected guard band.
Therefore, the set of actions is limited to these three actions. However, the guard band value cannot
increase or decrease indefinitely and should be restrained to a certain range of values bounded by a mini-
mumandmaximumvalue (GBmin andGBmax). In fact, 3GPP standards recommend the use of aminimum
guard band depending on the selected numerology and channel bandwidth. From Table 5.3.3-1 in [12], the
recommendedminimumguard bands can be found. Hence, for GB1, the selectedminimumandmaximum
values for µ = 0 (SCS=15 kHz) are 242.5 and 692.5 kHz respectively. As for GB2, the selected minimum and
maximum values for µ = 2 (SCS=60 kHz) are 990 and 1630 kHz respectively. Subsequently, when the se-
lected guard band reaches the value of either 242.5 for GB1 or 990 kHz for GB2 (resp. 692.5 for GB1 or 1630
kHz for GB2), the possible actions are reduced to increase (resp. decrease) the bandwidth allocation or
maintain it as is. As for the increase/decrease actions, the step value chosen is 5 kHz. Hence, the possible
GB values for each guard band are predefined.
5.5.3 The reward function
Subsequently to the action selection, the guard band value can change and affect the users’ KPI and INI
level. Hence, to assess the quality of the selected action, a reward function for each guard band is defined.
For GB1, the reward function is defined as follows:

Raction =
∑

u∈eMBB

Thru
Thrcu

+ αSINR × IoTNodes× SINRmMTCu − αINI × IdB − αGB ×GB (5.14)
where

• Thru is the throughput achieved by eMBB user u.
• Thrcu is the comfort throughput of eMBB user u randomly defined for each user with a value be-
tween 8 and 10Mb/s for eMBB Premium users and a value between 4 and 5Mb/s for Non-Premium
eMBB users. This parameter plays also the role of a normalizing factor for Thru.

• IoTNodes is the number of mMTC users.
• SINRmMTCu is the SINR in dB for mMTC user u with the worst radio conditions located at the
edge of the cell.

• IdB = IdB(k, k
′) + IdB(k

′, k) is the total INI level in dB affecting the BWPs using different numerolo-
gies.

• GB is the selected GB1 in kHz.
• αSINR = 0.1, αINI = 10−2 and αGB = 10−4 are normalizing factors for the SINR, INI level and guard
band value respectively.

For GB2, it is defined as follows:
Raction =

∑
u∈eMBB

Thru
Thrcu

+
∑

u∈URLLC

αSINR × SINRu − αINI × IdB − αGB ×GB (5.15)
where
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• SINRu is the SINR in dB for URLLC user u.
• GB is the selected GB2 in kHz.

Therefore, both reward functions used to calculate the Q-values take into account the ratio of achieved
throughput over comfort throughput for all eMBB users. Since the higher this ratio is, the more advanta-
geous it is for the system, it is counted as a positive reward. Additionally, both functions take into account
the INI level and guard band values. The higher these values, the more severe the users’ performance
degradation is, since we have a higher interference level with higher INI and less spectral efficiency with
a higher GB. Hence, these parameters are considered to wreak negative rewards in both functions. Also,
both reward functions consider the SINR of the second class of users (mMTC or URLLC). However, for the
first reward function for GB1 determination, instead of checking the SINR for each mMTC user, we simply
take the SINR of a mMTC user under the worst radio conditions located at the edge of the cell and we
multiply it by the number of mMTC users as a substitute to considering all users’ SINR individually. This
is due to the fact that the mMTC slice has a high number of connected devices and checking the SINR of
each device will increase the algorithm complexity. Moreover, the SINR is counted as a positive reward
since increasing the SINR is rewarding for the system. As for the second reward function for GB2, the SINR
of each URLLC user is taken into account.

Moreover, the devised reward functions require a high computation time, especially for computing the
INI values. Nonetheless, at the beginning of this stage, the INI values are calculated offline with all possible
combinations of predefined guard band values and stored in a table based on Equations (5.1) and (5.2).
In these equations, the GB value is included in the term w( i, j) . Therefore, instead of calculating the INI
each time the action is changed, it is computed in a single run and stored in a table. Subsequently, the
reward functions take the INI value from the table depending on the selected guard band which reduces
the algorithm computation time and complexity.

5.5.4 DQN Algorithm Workflow
The DQN algorithm that determines each guard band (GB1 or GB2) is described in Algorithm 7.

Input: Q-values based on the defined reward function
Output: Optimal Guard Band

1 Define DQN inputs (states, discount factor...) and outputs (actions) ;
2 Calculate and store INI values in a table for all possible guard band values ;
3 repeat
4 Take a random action with probability ϵ or highest Q-value action with probability

1− ϵ to increase, decrease or maintain guard band within range ;
5 Retrieve INI value from table ;
6 Calculate KPIs: throughput and SINR values of users based on equations (5.4)(5.3);
7 Calculate the reward generated following the action taken;
8 Calculate the Q-values ;
9 Update these values by gradient descent ;
10 until Convergence of Q-values;

Algorithm 7: Third level: DQN Guard band determination Algorithm
As seen in this algorithm, the DQN agent is created at first with the definition of its number of inputs

and outputs used to retrieve the value function based on neural networks. Afterwards, the INI values
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are calculated for every possible guard band value based on Equations (5.1) and (5.2) and stored after-
wards in a table to reduce complexity. In the next step, the process is repeated where either a random
action is taken with probability ϵ or an action with the highest Q-value is executed with probability 1 − ϵ.
The action is either to increase the guard band by a fixed step value, decrease it or keep it unchanged,
while maintaining it in a range of minimum and maximum value. Subsequently to the action taken, the
INI value is retrieved from the INI table and used to calculate the throughput and SINR for active users.
Afterwards, the reward is calculated and stored along with the newly reached state to update the Q-values
based on gradient descent. This process is repeated until convergence is reached where the optimal pol-
icy is found and the appropriate decisions can be taken. As for the algorithm complexity, it is reduced to
O(NbUsers × NbIterations) where NbUsers is the total number of users and NbIterations is the total
number of iterations till convergence of Q-Values.

5.6 The Three-Level Algorithm Process
After detailing each level of the algorithm, the whole three-level algorithm process is discussed in this
section. This algorithm is run periodically by the operator and it combines the three levels discussed
earlier in sections 5.3, 5.4 and 5.5. The whole process is depicted in Fig. 5.4.

Figure 5.4: Three-Level Process
In fact, the initial phase consists of attributing random bands to each BWP with random guard band

values between the definedminimum andmaximum ranges. Afterwards, the active users’ information will
be retrieved (distance from gNB, user type, needed KPI, etc.) along with the updated users’ information
that have newly arrived to the network following the Poisson process as well as users leaving the network.
The eMBB Premium users and eMBB Non-Premium users are immediately attached to the eMBB slice and
linked to the Premium andNon-PremiumBWPs respectively. As for the URLLC users, the BWP selection for
these users between the Non-Premium BWP and URLLC Premium BWP is performed according to the first
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level best response algorithm (Algorithm5)which is executed in the next stepwhere the users’ KPIs are also
updated. Subsequently, the band adjustment for each BWP is performed according to the second level
heuristic algorithm (mMTC band determination and Algorithm 6) where KPIs are also updated. Afterwards,
if the total operator band is used, the third level DQN algorithm is executed to re-calibrate appropriately
the guard bands. Otherwise, the third level is skipped. After termination, the three-level algorithm is re-
executed according to a period T set by the operator mainly depending on the users’ traffic arrival rates.
This period can be also implemented in an adaptive fashion depending on themeasurement transmission
period. The three-level algorithm is briefly explained in Algorithm 8.

Input: Active Users’ Information (distance from gNB, type...) and KPIs
Output: URLLC user BWP selection, slice and BWP bands, guard band, users’ KPIs

1 Start with random BWP bands and guard band ;
2 repeat
3 Retrieve attached users’ information and KPIs ;
4 Execute first level URLLC BWP selection Best Response Algorithm ;
5 Execute second level BWP band adjustment heuristic Algorithm ;
6 if Operator band fully used then
7 Execute third level DQN guard band determination Algorithm ;
8 else
9 Skip third level DQN Algorithm ;
10 end
11 Sleep for period T set by operator ;
12 until After T ;

Algorithm 8: The Three-Level Slicing Algorithm

5.7 Performance Evaluation
All simulations including the DQN training were conducted on a machine with a Core i5 CPU at 2.50 GHz,
8GB RAM. To setup the simulation environment, basic functions were coded in Python to retrieve and
calculate the KPIs and other necessary parameters using the standard library. As for the DQNenvironment
which was also coded in Python, we used the Pytorch library. To assess the performance of the algorithm,
it was run 100 times for every value of the number of users. As for the DQN, the number of iterations
set to perform the training was 5000. We display the most remarkable results for two important traffic
conditions: low traffic load and high traffic load. In the case of low traffic load, the operator total band is
not fully used and the INI effect is negligeable. In the case of high traffic loadwhere congestion is inevitable,
the operator band is entirely exerted and the INI effect appears which requires the use of a guard band.
The used simulation parameters are shown in Table 5.2.
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Table 5.2: Simulation parameters for three-level slicing algorithm
Parameter Description Value
foperator Operator Frequency 3.5 GHz TDD
Btotal Operator bandwidth 90MHz
BBWP BWP bandwidth 0-90MHz
Bmin Minimum BWP bandwidth 0MHz
Bmax Maximum BWP bandwidth 90MHz
Lcu URLLC Comfort Latency 0.8-1ms
ThrcEP,u eMBB Premium Comfort rate 8-10Mb/s
ThrcNP,u eMBB Non-Premium Comfort rate 4-5Mb/s
R Coverage area 300m
IoTNodes Number of IoT Nodes (mMTC) 100
PktIoT Number of Packets to be received by IoT Node 1 packet/s
PktSizeIoT IoT Node (mMTC) packet size 80 bits
λEP eMBB Premium arrival rate 1 user/s
λENP eMBB Non-Premium arrival rate 2 users/s
λU URLLC arrival rate 1 user/s
λPktU URLLC packet rate 1.5 packets/s
PktSizeU URLLC packet size 96 bits
VeMBB eMBB data volume 60-90Mbits
KNP Non-Premium monetary cost 0.1
KUP URLLC Premium monetary cost 0.68
Pt Transmission power 50 dBm
Gt Transmission antenna gain 12 dBi
Gr Reception antenna gain 3 dBi
PL Path loss model Work in [73]
ShadSD Shadowing standard deviation 4 dB
αbwp Normalized energy efficiency term for BWP selection cost function 0 or 0.2
βEP Minimum Throughput satisfaction for eMBB Premium users 10Mb/s
βENP Minimum Throughput satisfaction for eMBB Non-Premium users 5Mb/s
βU Maximum Latency satisfaction for URLLC users 1ms
lURBWP

URBWP Ratio Threshold limit 0
lPRBR_URLLCNP

PRBR_URLLCNP Ratio Threshold limit 0.5
GBmin1 Minimum Selected Guard Band 1 242.5 kHz
GBmax1 Maximum Selected Guard Band 1 692.5 kHz
GBmin2 Minimum Selected Guard Band 2 990 kHz
GBmax2 Maximum Selected Guard Band 2 1630 kHzLow Traffic Mode 10 users without mMTC usersHigh Traffic Mode 47 users without mMTC users

80



As can be seen, the operator has a bandwidth of 90 MHz which corresponds to the normal amount
of bandwidth usually owned by an operator in 5G and working on the 3.5 GHz frequency in TDD mode
covering a radius of 300 meters. The BWP bandwidth for the eMBB Premium, Non-Premium and URLLC
Premium BWPs can take any value between 0 (the minimum BWP band) and 90MHz (the maximum BWP
band) depending on the traffic load and second level algorithm. The number of mMTC users (IoT nodes)
is fixed to 100 and each node will receive 1 packet/s with a fixed size of 80 bits. URLLC users arrive in a
Poisson process with a rate of 1 user/s while generating packets also following a Poisson process with a
mean of 1.5 packets/s with a fixed packet size of 96 bits. The maximum latency of these users is a random
value between 0.8 and 1ms. As for eMBB users arriving following a Poisson process, eMBB Premium users
have an arrival rate of 1 user/s while eMBB Non-Premium users have an arrival rate of 2 users/s. These
users have a given volume of data to download which is determined randomly between 60 and 90Mbits.
The comfort throughput for these users is also determined randomly between 8 and 10Mb/s for Premium
users and between 4 and 5 Mb/s for Non-Premium users. Regarding the normalized incurred monetary
cost used in the first level of the algorithm, the URLLC Premiummonetary cost is set to 0.68which is higher
than the Non-Premium monetary cost set to 0.1. The choice behind these values is to load-balance the
URLLC traffic between the designated BWPs to avoid overcrowding a given BWP. The transmission power,
shadowing standard deviation, transmission and reception antenna gains values are also shown in Table
5.2. As for the Path Loss model, the model used is that of the work in [73] where PL = 36.7 log10 d+33.05.
In this equation proposed by [82], the Path Loss is in dB and d is the distance separating the user from the
gNB in km.

In Table 5.3, the chosen DQN parameters are displayed. Note that the input size corresponds to the
number of parameters considered for the environment state which is composed of the selected GB and
the bandwidths of the BWPs using different numerologies. Thus, the input size is 3. As for the output size,
it refers to the number of actions possible which is three: increase, decrease or maintain the GB. For the

Table 5.3: DQN parameters for three-level slicing algorithm
DQN Parameter ValueInput size (State parameters) 3Hidden Layers 1Hidden Nodes 3Output size (Number of actions) 3Discount factor 0.7Experience replay buffer size 100000Mini batch size 100Learning rate 0.001

performance results, the chosen parameters are the eMBB Satisfaction Degree Cumulative Distribution
Function (CDF), the URLLC latency Complementary Cumulative Distribution Function (CCDF), SINR CDF for
all users which can also serve as a KPI for mMTC, and URLLC user distribution between the Non-Premium
and URLLC Premium BWPs. The eMBB satisfaction degree of eMBB user u is computed as follows:

Sdegu =

{
100% if Thru ≥ Thrcu
Thru
Thrcu

× 100 Otherwise (5.16)
Therefore, if the eMBB user achieves a throughput higher than its comfort throughput, the satisfaction
degree is 100%. Otherwise, it is the percentage of its achieved throughput over its comfort throughput.
The simulations are run and compared for three different scenarios:
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• Single-numerology (our previous contribution in the previous chapter). In this scenario, no mMTC
users are considered since only µ = 1 is used in the system even for the URLLC Premium BWP. This
numerology is chosen instead of µ = 2 or µ = 0 since µ = 1 is more adapted to both URLLC and
eMBB services and offers a higher number of PRBs for the same bandwidth.

• Multi-numerology which is our proposed three-level algorithm.
• The multi-numerology scenario where no guard band dimensioning (third level of algorithm) is per-
formed (such as the work in [73]) to highlight its importance. Hence, only the first two levels of the
algorithm are run.

5.7.1 Low Traffic Load
We begin by gauging performances in the low traffic load. The bandwidth reserved for mMTC BWP after
the second level algorithm is 5MHz which does not change during simulations.

Figure 5.5: URLLC users distribution between the Non-Premium BWP and URLLC Premium BWP using aMulti-Numerology solution with low traffic load
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Figure 5.6: URLLC users distribution between the Non-Premium BWP and URLLC Premium BWP using aSingle-Numerology solution with low traffic load

Figure 5.7: URLLC latency CCDF in low traffic load scenario
In Fig. 5.5 and Fig. 5.6, the number of URLLC users distributed between the Non-Premium and Pre-

mium BWPs is represented for the multi-numerology and single-numerology scenarios respectively after
the first level of the algorithm in the case of low traffic load with 10 users (non-mMTC). The vertical black
line represents the confidence interval of the obtained results.

From these figures, it can be concluded that in the multi-numerology scenario, URLLC users are in-
clined to select the URLLC Premium BWP even though it has a higher monetary cost owing to the lower
latency it provideswith its wider numerology aswell as the energy efficiency criteria. Whereas in the single-
numerology scenario, all URLLC users select the Non-Premium BWP due to the lower monetary cost. In
fact, with a single numerology, both BWPs offer the same latency.

Figures 5.7 and 5.8 illustrate the URLLC Latency CCDF and eMBB Non-Premium Satisfaction Degree
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Figure 5.8: eMBB Non-Premium users’ satisfaction degree CDF in low traffic load scenario

CDF respectively in the case of low traffic load. The dotted curves represent the confidence interval of the
obtained results. In these low traffic load conditions, there are around 10 non-mMTC users in the system
divided between the eMBB and URLLC slices. It is evident from Fig. 5.7 that with the multi-numerology
solution, URLLC users are bound to have a lower latency with a gain of 37.5% while the single-numerology
solution inflicts higher latency on these users. In both cases, the latency does not exceed 1 ms. As for
the eMBB Non-Premium Satisfaction Degree, Fig. 5.8 shows that we have the same satisfaction degree of
100% for all users meaning that the comfort throughput is guaranteed for the Non-Premium users. As for
the eMBB Premium satisfaction degree and SINR values, they are the same for both themulti-numerology
and single-numerology cases with low traffic load, and with a satisfaction degree of 100% for Premium
users.

Hence, with the multi-numerology solution, URLLC users tend to have lower latency since most users
choose the Premium BWP with numerology 2 while with the single-numerology solution, all URLLC users
operate on numerology 1 that leads to a higher latency. Furthermore, with our multi-numerology solution,
URLLC users have a lower latency while maintaining a satisfaction degree of 100% for eMBB users. As for
mMTC users, a satisfactory bandwidth is granted for them.
5.7.2 High Traffic Load
When the number of non-mMTC users becomes greater than 47 users, this causes congestion in the net-
work. Figures 5.9-5.12 represent the SINR CDF for all users, SINR of a mMTC user under the worst radio
conditions, URLLC Latency CCDF, and eMBBNon-PremiumSatisfaction Degree CDF respectively in the high
traffic scenario.
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Figure 5.9: SINR CDF for all users in the high traffic load scenario

Figure 5.10: SINR of a mMTC user under the worst radio conditions with and without GB dimensioning

85



Figure 5.11: URLLC latency CCDF in the high traffic load scenario

Figure 5.12: eMBB Non-Premium users’ Satisfaction Degree CDF in the high traffic load scenario

Figure 5.9 depicts the SINR CDF with high traffic load for all users. Without guard band dimensioning,
the INI level is high which deteriorates the users’ SINR and leads to the lowest values with this scenario.
As for the single and multi-numerology solutions, higher values are observed with a faint enhancement
with the single-numerology due to the absence of INI in that scenario while the multi-numerology scheme
manages to mitigate its effect owing to the sagacious band guard dimensioning that is set by the third
level of the algorithm. Particularly for mMTC users, as displayed in Fig. 5.10 where the SINR of a mMTC
user under the worst radio conditions is reported with and without GB, the importance of the third level
of the algorithm with guard band dimensioning is highlighted where a better SINR is observed with our
multi-numerology solution compared to the scenario with "no guard band".

Regarding the URLLC user distribution between the BWPs, it remains the same with a preference for
the Premium BWP with multi-numerology while all users choose the Non-Premium BWP with the single-
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numerology scheme.
Figure 5.11 shows that URLLC users’ latency with multi-numerology is still lower than the values with

single-numerology. In both single-numerology and multi-numerology solutions, the latency does not ex-
ceed 1ms as recommended by the 3GPP standards even with high traffic load which proves the efficiency
of our solution. However, without a proper guard band dimensioning, the URLLC latency becomes high,
exceeding the 1 ms threshold as all users in the figure have a latency higher than 1.5 ms. This is due to
the combination of high URLLC traffic load and high INI which leads to decreased SINR values for URLLC
users and consequently to a higher PRB demand. The latter can not be met because of traffic congestion,
which results in a higher latency.

Regarding the Non-Premium users in the high traffic load scenario, Fig. 5.12 shows that both single
andmulti-numerology solutions are able to ensure users’ requirements with a satisfaction degree of 100%
even with high traffic load. Nonetheless, this is not the case for the "no guard band" solution where the
satisfaction degree for Non-Premium users starts to decrease due to SINR degradation with a high INI
level. As for the eMBB Premium satisfaction degree, the same performances are observed as for the
eMBB Non-Premium class in high traffic load.

Therefore, even in the case of congestion, our multi-numerology solution provides a lower latency for
URLLC users. It also keeps eMBB users entirely satisfied and guarantees better SINR values for mMTC
users.
5.7.3 Use of Numerology 0 for eMBB Premium and Non-Premium BWPs
For the sake of completeness, we have also performed some additional simulations where the eMBB Pre-
mium and Non-Premium BWP use numerology 0 while the URLLC Premium BWP use numerology 2 to
highlight our choice of numerology for each BWP and to confirm why numerology 0 is not recommended.
The results are displayed in Figs. 5.13, 5.14 and 5.15.

Figure 5.13: URLLC User Distribution Between URLLC Premium andNon-PremiumBWPswithoutmonetarycost adjustment
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Figure 5.14: URLLC User Distribution Between URLLC Premium and Non-Premium BWPs with monetarycost adjustment

Figure 5.15: URLLC Latency CCDF with monetary cost adjustment

From Fig. 5.13 which represents the URLLC user distribution between the URLLC Premium and Non-
PremiumBWPs, we can see that all URLLC userswill select the PremiumBWP since it offers amuch reduced
latency compared to the Non-PremiumBWP using numerology 0. Hence, this will cause a saturation of this
BWP as the number of users becomes high unless an adjustment of the BWPmonetary cost is done. When
we adjust the BWP monetary costs to perform a load-balancing between these BWPs as can be seen in
Fig. 5.14, some users may select the Non-Premium BWP. However, the latency of these users will be higher
than 1ms as can be seen in Fig. 5.15 where the URLLC latency will surpass 1ms for some users. Therefore,
the use of numerology 0 is not recommended to improve the performance of URLLC users.
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5.7.4 Results highlight
From all these results, the following conclusions can be drawn:

• Under any traffic load condition, our proposedmulti-numerology solution outperforms our previous
contributionwith the single-numerology solution in terms of URLLC latencywhilemeeting eMBB and
mMTC users’ requirements. This is achieved owing to our three leveled solution as the first level
ensures low URLLC latency, the second level allots the appropriate band for each BWP depending
on the service’s requirements, while the third level mitigates the INI effect that could deteriorate
users’ performance. This proves the high efficiency of our devised solution (Figs. 5.7, 5.8, 5.10, 5.11,
5.12).

• With the single-numerology scheme, a small SINR improvement is noticed with high traffic load due
to the absence of INI in that scenario (Fig.5.9).

• The multi-numerology solution always provides better URLLC latency thanks to the wider numerol-
ogy used with a significant gain compared to the single-numerology scheme while both maintain a
latency lower than 1ms (Figs. 5.7 and 5.11).

• Compared to thework in [73], our solution provides a lower URLLC latency below 1mswhich is lower
than the one considered in the cited work (4ms) even in high traffic load conditions. Simultaneously,
our solution is able to provide high eMBB throughput and satisfaction degrees with values higher
than the reference value of the work in [73] which is set to 1.25Mb/s for eMBB users. Furthermore,
we outperform the cited work even in presence of congestion and when the number of users (> 30

non-mMTC users) is much higher than the one used in [73] (12 users) (Figs. 5.7, 5.8, 5.11, 5.12).
• Ignoring the choice of an appropriate guard band ([73]) leads to degraded radio conditions and
users’ performance including mMTC due to the highly unmitigated INI effect. This results in the
deterioration of users’ KPIs in the high traffic load scenario. Therefore, the importance of the third
level of our algorithm is highlightedwhen the proposedmulti-numerology scheme still achieves high
SINR and KPI results when the INI is high (Figs. 5.9 and 5.10).

• The use of numerology 0 for the eMBB Premium and Non-Premium BWPs is not recommended as
it inflicts a higher latency for URLLC users with preemptive scheduling (Figs. 5.13, 5.14, 5.15).

5.8 Solution alignment with the O-RAN architecture
In this section, we discuss the alignment of this solution with the O-RAN architecture where we focus on
where the algorithms can be implemented in this architecture depending on the corresponding timescale.
The integration and testing of this solution in a real O-RAN architecture is outside the scope of this thesis
but may become a part of a future work where a collaboration with an integration team will take place.

Therefore, to implement our three-level algorithm in the O-RAN architecture, its duration should be
assessed as well as its required time scale loop and period. Consequently, for each level of this algorithm,
we discuss its duration as well as the overall time execution. In fact, Algorithm 5 in the first level requires
a maximum of 2 iterations to converge while Algorithm 6 in the second level requires a maximum of 10
iterations. With a fast processor such as a Core i5 machine, these algorithms can converge within a time
range of 60 and 80ms. Hence, the first and second levels of the three-level algorithm can be implemented
at the level of the near-RT RIC. However, it is not required to run these algorithms within this time range
since the URLLC BWP selection process can be run whenever the number of users changes. The latter
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changes depending on the Poisson arrival process which varies within a time range above or equal to 1

s. The same applies to the BWP band adjustment as it can be run within a time range above 1 s without
affecting users’ performance. Consequently, these algorithms are to be implemented at the level of the
Non-RT RIC.

As for the guard band dimensioning, Algorithm 7 in the third level requires a training phase taking
several iterations to find the optimal policy, which takes around 6 minutes to be executed on a machine
with a Core i5 CPU at 2.50 GHz with 8GB RAM. Additionally, the requirement to change the guard band
does not have to occur at the time range of the near-RT RIC but at the level of the Non-RT RIC.

Regarding the overall three-level algorithm, for 1 iteration, it requires between 6 and 7 minutes (on a
machine with a Core i5 CPU at 2.50 GHz with 8GB RAM) when taking into account the training phase of
the DQN algorithm which is above 1 s. Hence, this algorithm cannot be implemented at the level of the
near-RT RIC operating within a time range of 10ms and 1 s. In addition, the need to launch it is within the
control loop of the Non-RT RIC (above 1 s) as the traffic variation occurs within a time range above 1 s.
Hence, it is best to implement it at the level of the Non-RT RIC.

5.9 Concluding Remarks
A three-level slicing algorithm was proposed in this chapter to efficiently allocate radio resources for the
three 5G classes: eMBB, URLLC andmMTC in amulti-numerology context. This solution is 3GPP-compliant
and the following key points summarize the chapter:

• The first level of the solution allots the BWP serving the URLLC users between the URLLC Premium
BWP with a high numerology, dedicated solely for URLLC users, and a Non-Premium BWP with a
low numerology, shared with eMBB users but where preemptive scheduling favors URLLC users.
This is done thanks to a non-cooperative game where a well-defined cost function is set to take into
account the users’ latency, incurred monetary cost and BWP occupation.

• The second level tackles the BWP band adaptation for the four BWPs (mMTC, eMBB Premium, Non-
PremiumandURLLC Premium)where the band is dynamically adjusted using smart heuristics based
on users’ KPIs: throughput for eMBB users, SINR for mMTC users and latency for URLLC users.

• The third level resorts to a DQN-based scheme to dimension the guard band among BWPs using
different numerologies in order to mitigate the ensuing INI effect while avoiding loss of spectral
efficiency.

• Performance analysis demonstrate the efficiency of our proposed three-level multi-numerology
multi-slice solution providing better URLLC latency while maintaining high eMBB satisfaction and
high SINR for mMTC users compared to the previous single-numerology solution and a work from
the SOTA [73] that overlooked the guard band dimensioning to curb the INI effect.

• The alignment of our devised solution with the O-RAN architecture is thoroughly discussed where
we pinpoint the level of implementation of the algorithm.

The previous chapters focused on users connected to a single slice. Nonetheless, users with multi-
slice connectivity require attention as their consideration in the radio resource allocation problem brings
additional challenges from a latency and energy efficiency perspective. Consequently, the next chapters
revolve around this type of users.
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Chapter 6

Novel BWP Schemes for Multi-Numerology
and Multi-Slice Radio Access Networks

For this chapter, focus is shifted to users connected to multiple slices. The radio resource allocation problem
for this type of users is quite challenging especially when the connected slices require different numerologies.
In that case, to improve radio resource allocation and KPI satisfaction, we tackle the targeted problem from a
latency perspective. In fact, adopting the multi-numerology BWP configuration for these users is refrained by
BWP switching which inflicts additional latency. The latter is detrimental for services requiring low latency such
as URLLC. For this reason, we propose in this chapter three innovative BWP switching mechanisms for multi-slice
users where only eMBB and URLLC services are considered. The proposed schemes are based on the Downlink
Control Information (DCI)-based BWP switch. In fact, the DCI is a message sent by the gNB to the UE through
the Physical Downlink Control Channel (PDCCH) that includes information such as the user’s scheduled data and
BWP indicator. When the latter is modified, a BWP switch is performed known as the DCI-based BWP switch
which is the fastest existing method for a BWP switch. In addition, one of these proposed mechanisms uses the
BWP Inactivity Timer that triggers a Default BWP switch as well. We evaluate the performance of the proposed
solutions which prove to be efficient in terms of latency and we compare them against each other and against
the current baseline approach.

6.1 Introduction
Previous chapters concentrated on users connected to a single slice. Nonetheless, users connected to
multiple slices should also be considered especially when the slices require different numerologies. In
that case, a multi-numerology BWP configuration should be applied for these users and BWP switching
should be performed frequently for these users to retrieve the data of each slice since only one BWP can
be active at a time. Frequent BWP switching induces additional latency due to the BWP switching delay
and the waiting time to indicate a change of BWP. This can cause QoS degradation for delay-stringent ser-
vices such as URLLC. Moreover, in the literature, these users are rarely considered and in the few works
tackling them, the BWP switching process is overlooked. A patented solution in [83] aims to avoid BWP
switching for these users by proposing the use of multiple active bandwidth parts. In the proposed ap-
proach, multiple active BWPs may be a solution for UEs linked to multiple slices where each slice requires
a different numerology. With their devised solution, a primary and secondary BWPs are activated through
a DCI field. In addition, these BWPs may be switched using other fields in the DCI. However, this solution
may not be feasible with the current UE limitation where a UE cannot support receiving signals using dif-
ferent numerologies each linked to a different BWP, simultaneously. Also, in current standards, a UE may
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be configured to multiple BWPs but only one is active at a time [18]. Therefore, BWP switching is inevitable
for these users. Thus, in this work, we focus on the BWP switching aspect by proposing three innovative
andUE-compatible BWP switching schemes that help improve performance ofmulti-slice users configured
with multiple BWPs. For each solution, a patent is submitted. To note that only eMBB and URLLC slices are
considered. Nevertheless, the proposed solutions can be applied to any number of slices. In fact, these
solutions mainly rely on the DCI-based BWP switch which is the fastest method of BWP switching, taking
between 1-3ms [33]. With this BWP switch method, the DCI indicates a change of BWP thanks to the BWP
indicator field in the DCI. Particularly, the third solution uses the BWP inactivity timer in addition to the
DCI-based method where a default BWP is activated after the expiry of a certain inactivity timer.

Furthermore, the three devised solutions that aim to enhance BWP switching are as follows:
• The first technique consists ofmodifying theDCI format to support userswithmulti-slice connectivity
to have an improved DCI-based BWP switching.

• The second technique aims atmodifying the DCI frequency dynamically to ensure a faster DCI-based
BWP switching and reduce overall latency.

• The third technique relies on selecting an appropriate default BWP related to a service with a higher
priority while modifying dynamically the BWP inactivity timer to prioritize delay sensitive services
(such as URLLC) over others (such as eMBB) to ensure for the former a lower latency.

These techniques are compared against each other and against the baseline approach represented
in Fig. 1.10 from Chapter 1 where a DCI-based BWP switch is performed thanks to a single BWP indicator
in the DCI and where the DCI frequency is not adjusted. Simulation results prove the efficiency of these
schemes especially in terms of URLLC latency. The rest of this chapter is organized as follows:

Section 6.2 details the three devised schemes. Section 6.3 discusses our system model. Section 6.4
provides simulation results of the proposed solutions. Section 6.5 describes concisely the solutions imple-
mentation feasibility in the 5G architecture. Finally, Section 6.6 concludes this chapter.

6.2 The Proposed Solutions for BWP Switching
Our three devised techniques are thoroughly explained for users connected to URLLC and eMBB slices
simultaneously.
6.2.1 First Solution: DCI Format Modification
Instead of using the same numerology (or BWP) for multiple services or waiting for the next DCI occurring
after multiple time slots to perform a BWP Switch, the first solution consists of a DCI adaptation to contain
additional fields for UEs having multiple slices. Currently, the DCI contains only one BWP indicator indi-
cating the BWP that should be scanned by the UE. However, we propose to add in the DCI multiple BWPs
indicators related to each service or slice that the UE should scan in turn to retrieve its slice-specific data.
Furthermore, additional fields should also include the instants or locations in the time domain where the
BWP switching should occur between these multiple BWPs.
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Figure 6.1: DCI Format Modification

Figure 6.1 represents the first solution in the case of two slices: eMBB with BWP 1 and URLLC with BWP
2. Receiving the first DCI that includes the additional fields: BWP 1, BWP 2 and J0, the UE scans first BWP 1
and then switches to BWP 2 after a certain time J0 as indicated by the DCI. After multiple slots (or ms), it
can receive another DCI indicating other BWPs to be scanned in turn along with predefined instants where
the BWP switch should occur. With this solution, the waiting time for the UE to be served by the BWP with
the optimal numerology is greatly reduced since all the information is included in a single DCI instead
of waiting for the next one that occurs after multiple ms as seen in Fig. 1.10 from Chapter 1. Moreover,
this format is well adapted for a UE connected to multiple slices and retrieving its slice-specific data from
multiple BWPs where BWP switching is frequent. Even though it requires a change in the standards, this
solution is feasible since it only requires the modification of the DCI format by adding additional fields.

6.2.2 Second Solution: Dynamic DCI Frequency Adjustment
With this second solution, instead of modifying the DCI format to include multiple BWPs indicators, the
timing of the next DCI is adjusted to be as small as possible to quickly perform a BWP Switch by adapting
the PDCCH frequency that carries the DCI for UEs having multiple slices.

Figure 6.2: DCI Frequency Adjustment
Figure 6.2 portrays the second solution in the case of two slices: eMBB with BWP 1 and URLLC with

BWP 2. With the PDCCH channel being more frequent, the UE is able to switch BWPs more frequently
to retrieve its incoming data from multiple slice-related BWPs. With this solution, the waiting time for
the UE to be served by the BWP with the optimal numerology is reduced since the PDCCH carrying the
DCI indicating a BWP change is more frequent which in turn allows more frequent BWP switching when
compared to the standard scenario in Fig. 1.10 from Chapter 1. This solution is also feasible since it only
requires themodification of the PDCCH frequency which is configurable by the network withoutmodifying
the UE capability and DCI format. We resort to a simple yet efficient approach for the dynamic adjustment
of the DCI/PDCCH frequency. Accordingly, the PDCCH period is automatically reduced to be as minimal
as possible which is 2 time slots using numerology 1 (equivalent to 1ms) whenever the UE is connected to
multiple slices simultaneously. This choice is explained by the fact that the UE needs 1 time slot to receive
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the DCI and another to retrieve its data. When the UE is solely connected to a single slice and no BWP
switching is required, the PDCCH period is brought back to 3 time slots using numerology 1 (1.5 ms) to
reduce power consumption which corresponds to the baseline approach.
6.2.3 Third Solution: Dynamic Selection of Default BWP and BWP Inactivity

Timer
The third solution uses both BWP Inactivity Timer Switching andDCI-based BWP Switchingwhile optimizing
the default BWP and inactivity timer to prioritize a Premium service such as URLLC over a Non-Premium
one such as eMBB.

Figure 6.3: Default BWP Selection and BWP Inactivity Timer Adjustment
Figure 6.3 depicts this solution where the URLLC slice associated with BWP 2 (set as default BWP) is

prioritized over the eMBB slice associated with BWP 1. As can be seen, the BWP Inactivity Timer Switching
is used to select a default BWP which corresponds to the BWP associated with the Premium service (the
URLLC service requiring stringent delays) and a DCI-Based BWP switching is used to switch to any other
BWP which can be the Premium BWP or BWP associated to a Non-Premium service like eMBB as it is more
delay tolerant. After a preset inactivity timer expires, the BWP reverts automatically to the default BWP. The
latter is scanned to retrieve data for the Premium service. Thus, by selecting the default BWP as the one
used by the Premium URLLC service, URLLC traffic can be scheduled immediately without enduring any
BWP switching delay. Only the eMBB service will endure such a delay as it can cope with it. Furthermore,
when traffic of the eMBB service arrives, the BS will send a DCI at an appropriate time slot to switch back to
the BWP associated to the Non-Premium service for the UE to retrieve its data. Additionally, the inactivity
timer is determined astutely in order to reduce the time necessary to switch back to the default BWP.
Accordingly, the inactivity timer is reduced to 2 time slots when using numerology 1 (1 ms) whenever the
UE is connected to at least two slices. Finally, this third solution is also feasible since it only requires the
combined use of existing mechanisms.

6.3 System Model
As seen in Fig. 6.4, we consider a single gNB with Btotal = 100 MHz bandwidth which corresponds to the
normal amount of bandwidth usually owned by an operator in 5G. The gNB covers an area with radius R.
Two slices are considered: eMBB and URLLC. Each slice will have a dedicated number of radio resources.
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Figure 6.4: System Model for Novel BWP Switching Schemes

Additionally, two bandwidth parts are considered for each slice where each BWP is associated with a
numerology. The first BWP, denoted by BWP 1, consists of the band attributed to the eMBB slice and uses
numerology 1 (the lower numerology) with a value of BeMBB = 60 MHz. The second BWP, denoted by
BWP 2, is the band attributed to the URLLC slice using numerology 2 (higher numerology) with a value of
BURLLC = 20MHz. The remainder amount of the total bandwidth remains unused.

As for the UEs, we consider an initial number of users Nusers = 20 of type 1 or 2 (Table 1.3) with no
mobility randomly distributed in the gNB coverage area within the radiusR where each user is connected
to both slices. In addition to these users, others arrive to the network following a Poisson process with a
mean of λusers users/sec. Users remain active in the network for a fixed period of time where packets are
generated continuously for either eMBB, URLLC or both services following a Poisson process with a mean
of NPktservice packets/s with a fixed size PktSizeservice.Regarding the resource allocation, the scheduler serves and addresses the URLLC demand of the UE
first to ensure lower latency and then schedules the demands of eMBB. Thus, at each TTI, the following
process is applied by the scheduler:

• If not activated, a BWP switch is performed to activate the BWP associated to URLLC and a switching
delay is required where no PRB is allocated for the concerned UE till the switch is complete.

• If the BWP switch for a user is being performed, the scheduling of this user is put on hold and the
ensuing switching delay is taken into consideration. Otherwise, the scheduler allocates the UE a
number of PRBs based on its demand and the PRB availability at the current TTI. When there are
no sufficient PRBs, the amount of PRBs to be scheduled is queued for the next TTI with the ensuing
queuing delay taken into consideration.

• If all URLLC packets for the concerned user are scheduled and the remaining amount is null, it per-
forms a BWP switch to the BWP associated to eMBB and repeats the previous steps for the eMBB
service.

This process is repeated each TTI for a certain period T till the arrival of new packets. This period has a
duration of Tduration = 1 s since new packets arrival for each service is set to 1 s as a simulation parameter.
As for the KPIs assessment, throughput is chosen for the eMBB slice and latency for the URLLC slice. The
throughput of UE u is computed in a similar manner as the previous chapter as follows:

Thru =
AllocatedPRBu ×Bits_per_PRB

Tduration
(6.1)
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where AllocatedPRBu is the number of allocated PRBs to the UE during a period T considered over a
duration Tduration. Further, Bits_per_PRB is the number of bits per PRB that is determined similarly to
the previous chapter using Equation (5.5).

As for the number of allocated PRBs to the UE, it depends on the number of PRBs required by the user
and the number of PRBs available at the level of the scheduler depending on the band allotted for the
selected slice.

The number of PRBs required by UE u for a specific service is determined using the following expres-
sion:

ReqPRBservice,u =
NPktservice,u × PktSizeservice

Bits_per_PRB
(6.2)

where NPktservice,u is the number of packets transmitted by UE u for the corresponding service and
PktSizeservice is the packet size in bits. As for the URLLC latency of UE u, it is calculated at each period T

before the arrival of new packets and it is expressed as follows:
Lu = dq + dswitch + dal + due + dbs (6.3)

where:
• dq is the queuing delay in ms.
• dswitch is the BWP switching delay based on Table 1.3 whenever a BWP switch from a service to
another is performed.

• dal = 1 TTI is the packet alignment time in ms according to [81]
• due is the UE processing time equal to 4.5 OFDM symbols according to [81]
• dbs is the BS processing time equal to 2.75 OFDM symbols according to [81]

The queuing delay dq is increased by the value of a TTI duration at each TTI where the remaining amount
of PRBs to be scheduled for the UE is not null. In addition, the queuing delay is also increased by the value
of a TTI if at this TTI, a BWP switch is required to be performed but the scheduler is unable to execute it,
due to the absence of a DCI indicating a BWP switch. Note that due, dbs and dal depend on the numerology
used since they depend on the TTI and OFDM symbol duration.

As for the total number of PRBs available for each slice, it is determined by Table 5.3.2-1 from [12]
depending on the attributed slice band and numerology.

These KPIs are used to determine the performance of our devised techniques which will be discussed
in the next section.

6.4 Performance Evaluation
We used Python for simulations to assess the performance of our solutions where the same users’ KPIs
were assessed for every given solution. Also, the unspecified and additional simulation parameters from
the system model are shown in Table 6.1.

As for the performance indicators, we represent the URLLC latency CCDF, the eMBB throughput CDF,
and the number of DCIs scanned per UE in a frame to have a sort of representation of the power con-
sumption by the UE for each solution and the baseline solution. With the latter, we consider that the DCI is
sent every 3 time slots using numerology 1 (every 1.5ms) to reduce power consumption of the UE and for
the latter to retrieve its data after at least 1 time slot fromDCI reception. As for the DCI frequency solution,

96



Table 6.1: Simulation parameters for Novel BWP Switching Schemes
Parameter Description Value
R Coverage area 300m
λusers Users arrival rate 2 users/s
NPktURLLC URLLC packet rate 2 packets/s
PktSizeURLLC URLLC packet size 256 bits
NPkteMBB eMBB packet rate 10 packets/s
PktSizeeMBB eMBB packet size 12000 bits

the DCI frequency is set to 2 times slots (1 ms) to reduce it when the UE is connected to multiple slices.
Finally, for the BWP inactivity timer solution, the inactivity timer is set to 1ms and the DCI frequency is set
to 3 time slots (1.5ms) similar to the baseline scheme.

Figure 6.5: URLLC Latency CCDF
Figure 6.5 represents the URLLC latency CCDF for our three solutions and the baseline scheme. As can

be seen, all three solutions provide a reduced latency compared to the baseline with the best performance
recorded by the first solution. This is because the BWP switch can be performed immediately when nec-
essary for the first solution as indicated by the new DCI format instead of waiting for the next DCI (second
solution and baseline) or the inactivity timer (third solution).
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Figure 6.6: eMBB Throughput CDF
Figure 6.6 displays the eMBB throughput CDF for the three solutions and the baseline approach. We

note that we have the same eMBB throughput performance for all solutions with the exception of the
third solution with the BWP inactivity timer where a degradation is recorded. This can be explained by the
fact that this solution prioritizes the URLLC service at the cost of degrading the eMBB service. Hence, this
solution is not recommended for stringent eMBB services.

Figure 6.7: Number of DCIs scanned per UE per frame
Figure 6.7 shows the number of DCIs scanned by the UE in a frame for the three solutions and the

baseline approach to gauge the power consumption of such schemes. The best performance is attributed
to the first solution with the new DCI format modification since the BWP switching information can be
sent using a single DCI in a frame at a low frequency. The worst performance is displayed by the second
solution with the DCI frequency adjustment since when we increase the PDCCH and DCI frequency, the
number of DCIs scanned by the UE will increase.
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To summarize, the first solution modifying the DCI format realizes the best performance in terms of
latency, throughput and number of DCIs scanned compared to the other approaches. All other solutions
show better performances in terms of latency (but with a higher number of DCIs scanned for the second
solution because of increased DCI frequency) compared to the baseline scheme.

6.5 Solution Implementation Feasibility
In this section, we briefly discuss the implementation feasibility of the proposed solutions in the 5G archi-
tecture.

Figure 6.8: Sequence Diagram for Solution Implementation
Figure 6.8 displays the sequence diagram of the involved entities for the solution implementation.

First, as we can see, during the establishment of a radio bearer for a terminal via Radio Resource Control
(RRC) reconfiguration or setup, the RAN intelligent entity (which is the BS) retrieves information about the
allowed S-NSSAI or slices per UE from the Access and Mobility Function (AMF) entity of the core network.
Therefore, the BS is aware of the configured slices and services per terminal. Once the BS detects that the
terminal is connected to multiple slices, it can apply one of the proposed solution by either constructing
the appropriate DCI message or by adjusting the PDCCH frequency or the BWP inactivity timer and default
BWP. Afterwards, the BS sends the appropriate configurations to the UE via a RRC or a DCI message. A RRC
message is a signalling message sent by the gNB to the UE to configure certain radio parameters which
include the PDCCH monitoring frequency, the default BWP and the BWP inactivity timer. Finally, the UE
applies these configurations.

6.6 Concluding Remarks
To conclude, three patented solutions that help optimizing the BWP switching process for multi-slice users
were proposed in this chapter. The examined scenarios were set particularly for eMBB and URLLC services
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and the following key points can be drawn for this contribution:
• The first solution relies on a DCI format modification to include multiple BWP indicators and the
instants where the BWP switching should occur. This solution has the best performance in terms
of URLLC latency reduction, eMBB throughput satisfaction and power consumption (DCI scanning)
reduction.

• The second solution aims to adjust the DCI frequency for multi-slice users by increasing PDCCH
frequency. With this solution, the latency is reduced, the eMBB throughput is not impacted but the
power consumption due to DCI scanning is increased with increased DCI frequency.

• The third solution dynamically adjusts the BWP inactivity timer while selecting the BWP for the delay
sensitive premium service as the default BWP. Simulation results prove the reduction of latency with
this solution while maintaining the same usual number of DCIs scanned. Nonetheless, an eMBB
throughput degradation is observed due to the prioritization of the URLLC service over the eMBB
service.

• The feasibility of these solutions is also discussed.
After dealing with the latency aspect for these multi-slice users, the next chapter focuses particularly

on the energy efficiency aspect.
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Chapter 7

Energy efficient BWP Configuration for
Multi-Slice Users

The study of multi-slice users is carried on in this chapter. However, energy efficiency is the main focus in this
contribution for the radio resource allocation problem. In fact, users connected to multiple slices may scan
multiple BWPs consecutively with amulti-numerology BWP configuration to retrieve their slice-specific data when
these slices use different numerologies. This can be time-consuming and energy intensive. Another option is to
use a single numerology BWP configuration for all slices whichmay not be optimal but helps reducing complexity.
Therefore, we propose two energy efficient algorithms that select the appropriate BWP configuration, among
the multi-numerology and single numerology, depending on the battery level and QoS satisfaction. The first
algorithm is a distributed one based on a congestion game and the second one is a centralized one based on an
optimization problem. Both solutions are compared against each other and against the legacy solution applied
today in the standards.

7.1 Introduction
This chapter tackles the same problem as the previous chapter which is the radio resource allocation
problem for multi-slice users but from an energy efficiency perspective. As specified before, multi-slice
users are rarely considered in the literature and those few works who take them into account focus on
the PRB scheduling and attribution. Hence, energy efficiency is disregarded. Instead of tackling the same
problem as the one studied in the SOTA, we rather focus on the BWP configuration for these users from
an energy efficiency perspective. In fact, multi-slice users face two options. The first option consists of a
multi-numerology BWP configuration where each slice requires a different numerology (a different BWP).
With this option, frequent BWP switching is required to retrieve the data of each slice which can be time
and energy consuming. The second option is to use a single numerology and BWP for all slices. This option
is currently used for these users in the standards (legacy scheme) since it reduces complex signalling due
to BWP switching but at the cost of degrading the slices’ QoS. Thus, we devise a sagacious and flexible
scheme that selects the most appropriate BWP configuration for each UE among the two previously men-
tioned solutions: either the Multi-Numerology BWPs per UE slice or a single numerology BWP for all the
UE slices, depending on the UE battery level and QoS strictness. This scheme relies on two approaches: a
distributed approach using non-cooperative game theory where every UE autonomously selects the BWP
configuration (multi-numerology or single numerology) that strikes a good balance between improving its
QoS and reducing its battery consumption; and a centralized approach where UEs are assigned optimally
to the most adequate BWP configuration. The performances of both approaches are assessed through
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extensive simulations where they are compared against each other and against the legacy scheme using
a single numerology BWP configuration which they largely surpassed. The organization of the rest of this
chapter is as follows:
Section 7.2 discusses our systemmodel. Sections 7.3 and 7.4 tackle the proposed distributed and central-
ized approaches. Section 7.5 provides simulation results of the proposed solutions. Section 7.6 presents
the proposed patents following this contribution. Finally, Section 7.7 summarizes the chapter.

7.2 System Model
We consider a fixed random number of users Nusers and a single gNB with a total band Btotal which cor-responds to the amount of bandwidth owned by a 5G operator. The gNB covers an area with radius R.
These users are randomly distributed in the gNB coverage area within the radius R where each user is
connected to two slices: eMBB and URLLC. Each slice will have a dedicated number of radio resources as
seen in Fig. 7.1.

Figure 7.1: System Model for Energy Efficient BWP Configuration Algorithm for Multi-Slice Users
Additionally, three bandwidth parts are considered for each slice. The first BWP, denoted by BWP 1,

consists of the band attributed to the eMBB slice and uses numerology 1 (the lower numerology) with a
bandBeMBB . The second BWP, denoted by BWP 2, is the band attributed to theURLLC slice using numerol-
ogy 2 (a higher numerology) with a bandBURLLC . To note that users selecting the multi-numerology BWP
configurationwill scan both these BWPs (BWP 1 andBWP 2) consecutively to retrieve the data for each slice.
The third BWP, denoted by BWP 3, is the one shared between both slices using numerology 1 with a band
Bmixed withBeMBB+BURLLC +Bmixed ≤ Btotal. This particular BWP (BWP 3) is scanned by users affected
with a single numerology for both services. Each UE u has a given volume of data Vu,s to retrieve for eachservice s and remains in the network till the total data volume for both services is consumed. A fair queu-
ing scheduling is applied at the level of each BWP where the BWP radio resources are attributed equally
among users. For each user, we calculate the throughput to determine at a later stage the user’s sojourn
time in the network. The throughput of UE u for service s is computed similarly to previous chapters as
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follows:
Thru,s =

AllocPRBu,s ×Bits_per_PRBu

D
(7.1)

where AllocPRBu,s is the number of allocated PRBs to UE u for service s from its attached BWP during
a TTI with duration D. Furthermore, Bits_per_PRBu is the number of bits per PRB that depends on the
modulation and coding rate of the UE based on Equation (5.5) from Chapter 5.

As for the number of allocated PRBs to the UE for service s, it depends on the total number of PRBs
TotPRBbwp allotted to its attached BWP bwpwhich is linked to service s and the total number of connected
users to this particular BWP Nusers,bwp since a fair resource scheduling is applied:

AllocPRBu,s =
TotPRBbwp

Nusers,bwp
(7.2)

As for the total number of PRBs available at each BWP, it is determined by Table 5.3.2-1 from [12] de-
pending on the attributed BWP band and numerology.

Such performance indicators will be used to devise the cost function presented hereafter and used to
stir adequately the BWP selection configuration in centralized and distributed approaches.
7.2.1 The Cost function
The cost function for UE u selecting BWP configuration strategy c is given by:

Cu,c =
∑

s∈{eb,uc}

αu,s ·DST u,s,c + θc · SwDlu + βu ·Bc (7.3)
where:

• DSTu,s,c is the sojourn time of UE u for retrieving the data of a particular service s when selecting
strategy c. The service s can be either eMBB denoted by eb or URLLC denoted by uc.

• SwDlu is the BWP switching delay of UE u (also a part of the user’s overall sojourn time).
• Bc is the total band scanned by the user depending on its devised strategy c.
• αu,s and βu are normalizing factors. The former reflects the class of service s for UE u and the latter
represents the battery level of UE u.

• θc is an indicator variable that equates to one in presence of BWP switching delay, and to zero oth-
erwise and hence depends on the selected strategy.

In the cost function (7.3), the first term represents the UE’s sojourn time in the network, necessary for
retrieving the data of all its services. That first term is used as aQoS indicator as the higher the user sojourn
time, the lower its QoS. In fact, the user will endure a higher delay and will stay active in the network longer
whichmay increase its energy consumption. Hence, a higher sojourn time increases the cost function. The
second term is the BWP switching delay (when applicable) which is also a part of the user’s sojourn time in
the network. The third term of the cost function represents the scanned BWPs by the UE. The higher this
band, the higher the energy consumed by the user for scanning a larger band. In fact, if UE u chooses the
multi-numerology strategy MN , it will scan consecutively BWP 1 and BWP 2 to retrieve the data of each
service s and the corresponding sojourn time for service s is determined by the following equation:

DSTu,s,MN =
Vu,s

Thru,s
(7.4)

where:
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• Vu,s is the volume of data to be retrieved by UE u for service s.
• Thru,s is the throughput of UE u for service s.

Additionally, with the Multi-Numerology scheme, the BWP switching delay is taken into account (θMN = 1)
and the total scanned band by the user is the sum of BWP 1 and BWP 2 (BMN = BBWP1 + BBWP2).When UE u selects the Single Numerology configuration SN , it will scan BWP 3 solely to retrieve the data
of both services. Therefore, it will have the same achieved throughput for both services since the same
number of PRBs is allocated to the user for each service s. Therefore, Thru is independent of the type
of service in that case and DSTu,s,SN =

Vu,s

Thru
. Also, θSN = 0 and BSN = BBWP3 as only one BWP is

scanned which prevents BWP switching. Choosing the multi-numerology configuration will improve user’s
KPIs and QoS and will increase user’s throughput. This in turn will reduce the user’s sojourn time (first
term) but at the cost of adding a BWP switching delay (second term) and increasing the BWP scanned by
the user (third term) and hence the ensuing energy consumption. Contrarily, a single numerology avoids
BWP switching (second term) and reduces the energy consumption as the BWP scanned by the user (third
term) is narrower but it increases the user’s sojourn time (first term). Additionally, the user sojourn time
increases when the number of users choosing the same BWP increases as users share the limited amount
of resources, which reduces their achieved throughput. Hence, an astute load-balance of users among
available configurations (single or multi-numerology) must be attained.

This cost function is used in both the centralized and distributed approaches, which are detailed in
subsequent sections.

7.3 Distributed Approach: Congestion game
Users connected to multiple slices strive to choose between the multi-numerology (MN) and single nu-
merology (SN) BWP configurations in order to curb their energy consumption without sacrificing their QoS.
We have recourse to non-cooperative game theory since the problem can be modeled as a game where
the players are autonomous UEs competing over limited radio resources, which are the PRBs available in
the BWPs. The corresponding non-cooperative game G is presented as follows:

• The set of players is the set U of UEs connected to multiple slices.
• The set S = {MN,SN} is the set of strategies where MN and SN designate the
multi-numerology and single numerology BWP configurations respectively. The vector yu is the strat-egy vector of UE u whose components are the binary variables yu,c equal to 1 when UE u chooses
the BWP configuration c. Hence, y = (yu)u∈U ∈ S is the strategy profile, and S = S1 × S2... × SU is
the space of all profiles.

• The set of cost functions {C1, C2, ..., CU} based on equation (7.3) quantify the players’ profitability
over the possible outcomes of the game.

Like all previous non-cooperative games, we seek to find the NE (the state where each player has
selected an optimal strategy in response to other players’ strategies).

Similar to the games from Chapters 4 and 5, the game G is guaranteed to have a mixed NE since it is a
finite game. However, resorting to mixed NEs is burdensome as they represent a probability distribution
over available actions. Nevertheless, the defined G has the FIP property which guarantees the existence
of PNE [35].
Proposition 9. The game G has the FIP property.
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Proof. We show first that G is an unweighted congestion game. In fact, although the cost function is player
specific, it is non-decreasing in the number of players that selected the same strategy (BWP configuration).
This is because the sojourn time Vu,s

Thru,s,bwp
is non-decreasing in the number of players that selected the

same strategy as the throughput is inversely proportional to the number of users selecting the same BWP
configuration. According to [37], player specific unweighted games with only two strategies have the FIP
property which is the case for our game with two strategiesMN and SN .

Games with FIP are guaranteed to converge to PNE through simple Best Response dynamics [38] pre-
sented in the below Algorithm 9. In this algorithm, each player in turn, will choose the strategy minimizing

Input: BWP configuration cost
Output: BWP configuration selection based on lowest cost

1 repeat
2 Calculation of BWP configuration cost Cu,MN and Cu,SN by each UE u;
3 BWP configuration with lowest cost is selected by the user;
4 until BWP configuration selection is the same as previous iteration;
Algorithm 9: Distributed BWP Configuration Selection Best Response Dynamics Algorithm
its cost function in response to other players’ strategies till convergence, when the chosen strategy of each
player is the same as in the previous round.

In the next section, the same problem is tackled in a centralized approach.

7.4 Centralized Approach: Optimization Problem
In the centralized approach, a central entity takes the decision of the BWP configuration selection for each
user by solving an optimization problem corresponding to minimizing the total cost for all users.

7.4.1 The Objective Function
The optimization problem is the following:

min
A1,A2

∑
u∈U

Cu,MN (A1) +
∑
u∈U

Cu,SN (A2)

subject to:
a1u, a2u ∈ {0, 1},∀u ∈ U and a1u + a2u = 1,∀u ∈ U

(7.5)

where:
• A1 = (a1u)∀u∈U is the vector of binary decision variable a1u which is equal to 1 when UE u has the
MN strategy configured and equal to 0 otherwise.

• A2 = (a2u)∀u∈U is the vector of binary decision variable a2u which is equal to 1 when UE u has the
SN strategy configured and equal to 0 otherwise.

• Cu,MN and Cu,SN are the cost functions when UE u is configured with the MN and SN strategy
respectively and are determined in the below equations (7.6) and (7.7).
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Cu,MN (A1) = a1u ·
αu,eb · Vu,eb ·D1 · (

∑
k ̸=u a1k + 1)

TotPRBBWP1 ·Bits_per_PRBu

+a1u ·
αu,uc · Vu,uc ·D2 · (

∑
k ̸=u a1k + 1)

TotPRBBWP2 ·Bits_per_PRBu

+a1u · (θMN · SwDlu + βu ·BMN )

(7.6)

Cu,SN (A2) = a2u ·
αu,eb · Vu,eb ·D3 · (

∑
k ̸=u a2k + 1)

TotPRBBWP3 ·Bits_per_PRBu

+a2u ·
αu,uc · Vu,uc ·D3 · (

∑
k ̸=u a2k + 1)

TotPRBBWP3 ·Bits_per_PRBu

+a2u · (βu ·BSN )

(7.7)

withD1,D2 andD3 are the duration of the TTI when UE u is served by either BWP 1, 2 or 3 respectively.
Equations (7.6) and (7.7) are derived from equations (7.1), (7.2), (7.3) and (7.4) after replacing each term.

To note that the number of users attached to each BWP are determined by the sum of the binary decision
variables which leads to Nusers,BWP1 = Nusers,BWP2 =

∑
k ̸=u a1k + 1 and Nusers,BWP3 =

∑
k ̸=u a2k + 1.

Therefore, the aim of this optimization problem is to minimize the cost function of all users globally by
choosing for every user the adequate binary variables a1u and a2u. Note that the constraint a1u + a2u =

1,∀u ∈ U is added to limit the user’s selection to only one strategy.
The optimization problemdefined in Equation (7.5) is non-convex since it is an integer (binary variables)

non-linear problem due to the product of the decision variables with a1u ·(
∑

k ̸=u a1k) and a2u ·(
∑

k ̸=u a2k).Therefore, exhaustive search may be used to solve this problem. With exhaustive search, all possible
combinations for user distributions among the BWPs are assessed to choose the one with the lowest cost
function as seen in the below Algorithm 10.

Input: Cost function for all (a1u, a2u)∀u∈U combinations possible (2Nusers combinations)
Output: Combination of (a1u, a2u)∀u∈U with the lowest cost function for all users

1 repeat
2 Calculation of BWP configuration cost function for all users∑u∈U Cu,MN + Cu,SN ;
3 Store the combination of (a1u, a2u)∀u∈U with the calculated BWP configuration costfunction for all users ;
4 until Every combination of (a1u, a2u)∀u∈U is executed;
5 Select (a1u, a2u)∀u∈U with the lowest BWP configuration cost function for all users ;

Algorithm 10: BWP Configuration Selection Exhaustive Search Algorithm
Nonetheless, this approach is highly time consuming with a complexity of 2Nusers . For this reason, we

transform the non-linear integer optimization problem in (7.5) to a linear one by replacing the multiplica-
tive decision variables in what follows.

7.4.2 Integer Linear Programming Formulation

The non-linear terms a1u · a1k and a2u · a2k from (7.5) are replaced by the linear decision variables π1u,kand π2u,k. Additionally, inequality constraints are added to ensure that the new variables are behaving the
sameway as the replaced non-linear terms. Also, π1u,u is none other than a1u since π1u,u = a1u · a1u = a1usince a1u is binary. The same applies for π2u,u. Therefore, our Integer Linear Programming (ILP) problem
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is formulated as follows:
min
Π1,Π2

∑
u∈U

Cu,MN (Π1) +
∑
u∈U

Cu,SN (Π2)

subject to:
π1u,u, π2u,u ∈ {0, 1}, ∀u ∈ U , π1u,u + π2u,u = 1,∀u ∈ U
π1u,k − π1u,u ≤ 0,∀u, k ∈ U , π2u,k − π2u,u ≤ 0,∀u, k ∈ U
π1u,k − π1k,k ≤ 0,∀u, k ∈ U , π2u,k − π2k,k ≤ 0, ∀u, k ∈ U
π1u,u + π1k,k − π1u,k ≤ 1, ∀u, k ∈ U , π2u,u + π2k,k − π2u,k ≤ 1, ∀u, k ∈ U

(7.8)

where:
• Π1 = (π1u,k)∀u,k∈U is the vector of binary decision variable π1u,k which is equal to 1when both users
u and k have theMN strategy configured and equal to 0 otherwise.

• Π2 = (π2u,k)∀u,k∈U is the vector of binary decision variable π2u,k which is equal to 1when both users
u and k have the SN strategy configured and equal to 0 otherwise.

• π1u,u and π2u,u are the same as a1u and a2u respectively.
• The first two constraints replace the ones defined in the previous problem and the additional ones
ensure that the new decision variables behave correctly with π1u,k = a1u · a1k and π2u,k = a2u · a2k.

• Cu,MN andCu,SN are the same cost functionswhenUE u is configuredwith theMN andSN strategy
respectively but taking into account the new decision variables as shown in the below equations (7.9)
and (7.10).

Cu,MN (Π1) =
αu,eb · Vu,eb ·D1 ·

∑
k∈U π1u,k

TotPRBBWP1 ·Bits_per_PRBu

+
αu,uc · Vu,uc ·D2 ·

∑
k∈U π1u,k

TotPRBBWP2 ·Bits_per_PRBu

+π1u,u · (θMN · SwDlu + βu ·BMN )

(7.9)

Cu,SN (Π2) =
αu,eb · Vu,eb ·D3 ·

∑
k∈U π2u,k

TotPRBBWP3 ·Bits_per_PRBu

+
αu,uc · Vu,uc ·D3 ·

∑
k∈U π2u,k

TotPRBBWP3 ·Bits_per_PRBu

+π2u,u · (βu ·BSN )

(7.10)

Therefore, this ILP problem can be solved with CPLEX solver, achieving the same optimal result as the
exhaustive search algorithm but much more swiftly.

7.5 Performance Evaluation
We used Python for simulations to compare both approaches against each other and against the legacy
scheme where all users are configured with a single BWP for both services with a band Blegacy. CPLEXsolver was used to solve the ILP problem in the centralized approach. Simulations were run several times
(≈ 100 times) with a different number of users each time. We put focus on the scenario with Nusers = 20.
The simulation parameters from the system model are shown in Table 7.1.
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Table 7.1: Simulation parameters for Energy Efficient BWP Configuration
Parameter Description Value
R Coverage area 300m
VURLLC URLLC volume of data 2-15Mbits
VeMBB eMBB volume of data 5-50Mbits
SwDlu User’s BWP Switching Delay 1ms [33]
Btotal Operator band 100MHz
BeMBB eMBB BWP band 40MHz
BURLLC URLLC BWP band 20MHz
Bmixed Mixed BWP band 30MHz
Blegacy Legacy BWP band 60MHz
PBWP1 Power consumption for scanning BWP 1 (eMBB) 1000mW
PBWP2 Power consumption for scanning BWP 2 (URLLC) 500mW
PBWP3 Power consumption for scanning BWP 3 (mixed) 750mW
Plegacy Power consumption for scanning legacy BWP 1500mW
αu,eMBB Normalizing factor for cost function 1
αu,URLLC Normalizing factor for cost function 2
βu Normalizing factor for cost function 0.001-0.099

As for the results, we display the Energy Efficiency CDF for all users and the users’ overall sojourn time
in the network CDF for all users. The energy efficiency of UE u selecting the strategyMN is computed as
follows:

EEu,MN =
Thru,eb + Thru,uc
PBWP1 + PBWP2

(7.11)
where:

• EEu,MN is the Energy Efficiency of UE u selecting theMN strategy.
• Pbwp is the UE power consumption for scanning BWP bwp.

When UE u selects the SN strategy, its energy efficiency is EEu,SN = Thru
PBWP3

.
As for the overall sojourn time of UE u, it is calculated as follows:

STu,MN =
∑

s∈{eb,uc}

Vu,s

Thru,s
+ SwDlu (7.12)

STu,SN =

∑
s∈{eb,uc} Vu,s

Thru
(7.13)
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Figure 7.2: User Distribution among strategies with centralized solution algorithm for 20 users
Figure 7.2 displays the number of users associated with each strategy using the centralized solution

algorithm for 20 users. Results show that a higher number of users prefer the Single Numerology scheme
as it is more adapted to these users from an energy efficiency perspective since users scan a single and
narrower BWP without BWP switching. Therefore, a leaning towards this scheme is envisaged in both
approaches. Additionally, the Single Numerology strategy is mainly selected for users with a low battery
level on average whereas the Multi-Numerology scheme is chosen for users with a high battery level on
average. This is due to the fact that users with a low battery level require more energy savings which
explains why they favour the single numerology scheme.

Figure 7.3: Energy Efficiency CDF for 20 users
Figure 7.3 represents the users’ Energy Efficiency CDF for the centralized, distributed and legacy schemes

for 20 users. It can be concluded that both proposed solutions - centralized and distributed - realize a
higher energy efficiency than the legacy scheme thanks to the astute cost function that helped strike a
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nice balance between energy efficiency and QoS. Moreover, the centralized scheme performs slightly bet-
ter than the distributed scheme.

Figure 7.4: Sojourn Time CDF for 20 users
Figure 7.4 shows the users’ Sojourn Time CDF for the centralized, distributed and legacy schemes for

20 users. The three schemes realize very close performances which means that the proposed solutions
aim to reduce the network’s sojourn time to a minimum.

Figure 7.5: User Distribution among strategies with centralized solution algorithm for 30 users
As the number of users increases, the number of userswith theMNBWPconfiguration is also increased

to ensure a balance between both options with an inclination towards the SN BWP configuration. This can
be seen in Fig. 7.5 that represents the user distribution among strategies for 30 users.
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Figure 7.6: Energy Efficiency CDF for 30 users

As for the Energy Efficiency CDF, Fig. 7.6 displays it for 30 users where we can see that both solutions
still provide better energy efficiency than the legacy scheme. However, the performance of these solutions
becomes closer to the legacy scheme performance as the number of users increases since the network
becomes saturated. For the Sojourn Time CDF for 30 users, the same results are observed as the scenario
of 20 users.

Thus, we deduce that the proposed solutions (centralized and distributed) achieve better energy effi-
ciency which in turn helps improving the users’ battery life span while ensuring the same sojourn time as
the legacy scheme.
7.5.1 The Price of Anarchy
To adequately compare the centralized and distributed approaches, we have recourse to the well-known
Price of Anarchy (PoA), computed as follows:

PoA =
GlobalCostoptimal

GlobalCostNE
(7.14)

Therefore, it is the ratio of the sum of all users’ costs obtained with the optimal centralized approach and
the sum of all users’ costs at NE for the distributed approach. The PoA is between 0 and 1 and the higher
its value, the closer the performances of the distributed approach to the optimal centralized one.
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Figure 7.7: Price of Anarchy as a function of the number of users

Figure 7.7 displays the PoA as a function of the number of users. As can be seen, the PoA is≈ 1 regard-
less of the number of users. This explains why the distributed approach attains very close performances
to the centralized one.

As for the convergence time of each approach, it is represented in Fig. 7.8 for the distributed approach
with the Best Response algorithm and the centralized approach with CPLEX solver for the ILP problem.

Figure 7.8: Convergence Time as a function of the number of users
In fact, the number of iterations to reach convergence for the best response algorithm is

Niterations = 2 regardless of the number of users, which is ≈ 0.01 s. The centralized solution with the
ILP problem takes a slightly higher computation time of ≈ 10 s when Nusers ≤ 20 but starts to increase
exponentially whenNusers > 20. It is important to note that for the centralized approach, the ILP problem
solver CPLEX remains much faster than the exhaustive search algorithm where the convergence time is
≈ 300 s for Nusers = 20.
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We conclude that the distributed approach is able to achieve almost optimal results with amuch lesser
computational time compared to the optimal centralized approach where the convergence time becomes
significantly important with increasing number of users.

The final results also inspired the submission of two patents related to this contribution which will be
discussed in the next section.

7.6 Proposed Patents
Following the performance evaluation results, we submit two new patents related to this contribution. The
first patent consists of a BWP configuration method for multi-slice users. The BWP configuration whether
multi-numerology or single numerology is selected based on the UE battery level, the Discontinuous Re-
ception (DRX) activation and the overheating indicator. The UE battery level is selected as a parameter
since we can optimize the slices’ QoS when the battery level is high by choosing the multi-numerology
BWP configuration. Nonetheless, when the battery becomes low, battery life is prioritized by selecting the
single numerology BWP configuration. As for the DRX activation and overheating indicator, these param-
eters are also indicators of power consumption. In fact, the DRX was introduced in LTE and is a feature
available in 5G [84]. Thanks to it, the UE does not have to be awake all the time to monitor the PDCCH
which carries the DCI. In fact, the UE enters periodically a sleep mode (called “OFF” duration period) where
the PDCCH is not monitored to reduce power consumption. The UE also wakes up to monitor the PDCCH
periodically for a certain time called “On” duration period. This reduces power consumption but at the
cost of increasing latency. It is the gNB that configures the UE with DRX via a MAC entity through RRC
layer. Also, the overheating indicator is a parameter of the UE assistance information [85]. The UE assis-
tance information is a special RRC message sent by the UE to the gNB that includes several information
such as the DRX parameters and overheating indicator so that the gNB can take the appropriatemeasures
accordingly. The overheating indicator stipulates that the terminal is overheating due to high power con-
sumption. Therefore, combining these three parameters will help the gNB to select the appropriate BWP
configuration for the UE whether single or multi-numerology to prioritize slices’ QoS or battery life.

Nonetheless, in current standards, the UE battery level is not a parameter transmitted by the UE. An-
other patent [86] proposes the addition of this parameter in the UE assistance information. However,
this patent does not take into account the battery consumption fields per slice, BWP or application over
a certain period of time. In fact, the patent [86] considers only the overall battery consumption. For this
reason, we propose a second patent to add these fields in the UE assistance information.

7.7 Concluding Remarks
To summarize, in this contribution, we propose a savvy and flexible scheme to select an appropriate BWP
configuration for users connected tomultiple slices that help such users reduce their energy consumption
without hindering their QoS where:

• The BWP configuration selection between a Multi-Numerology and Single Numerology BWP is as-
sessed for each user depending on multiple factors, including battery level and QoS satisfaction

• Two approaches are adopted:
– The first approach is a centralized one based on a global optimization problemwhere a central
entity minimizes the total cost of users by selecting for each user the most adequate BWP
configuration
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– The second approach is a distributed one based on non-cooperative game theory where each
user selects autonomously the BWP configuration that minimizes its own cost

• Extensive simulations prove the efficiency of our devised scheme against the static legacy scheme
• Evaluation of the price of anarchy proves the precedence of the distributed approach over the cen-
tralized one as it combines fast convergence and near optimal performances

• Two patents are proposed following this contribution:
– The first patent proposes a method that selects the appropriate BWP configuration for multi-
slice users depending on battery level, DRX activation and overheating indicator

– The secondpatent proposes to add thebattery consumption fields per slice, BWPor application
over a certain period of time in the UE assistance information

This chapter marks the final contribution in the scope of this thesis. The next chapter summarizes all
the contributions and proposed solutions tackled in this thesis and provides an overview on the short,
medium and long-term perspectives.
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Chapter 8

Conclusion

In this chapter, the summary of our contributions is presented, and the short, mediumand long termperspectives
of the thesis work are provided.

8.1 Summary of Contributions
In this thesis, the radio resource allocation problem in the context of RANevolution and slicing is addressed
through a series of contributions tackling this issue at many levels with many aspects considered. This will
open the road for a better multi-slice support. Therefore, many algorithms were proposed and evaluated
to prove their efficiencywhile being compared to salient SOTAworks and existing schemes in the standard.

In the first contribution, the problem is addressed from a higher level where multiple VOs compete
over an infrastructure provider’s radio resources in a multi-slice context. Thus, an algorithm based on
DWFQ that determines the portion of radio resources attributed to each VO is devised. The objective
of this contribution is to determine the weights of the WFQ scheduler that partitions the infrastructure
provider’s radio resources between the VOs. This is done via two main approaches: a distributed ap-
proach based on a non-cooperative game and a centralized approach based on a Stackelberg game. For
the distributed approach, VOs competed over I-P resources in a non-cooperative game setting where the
VO utility function strikes a balance between increasing slice throughput and reducingmonetary cost. This
utility function was defined using two models to attribute the VO’s radio resources: a linear model and a
proportional fairness model. The best response dynamics was used to attain the unique NE whose exis-
tence was proven mathematically and through simulations where the optimal weights were determined
given the input monetary cost. Additionally, both utility function models were compared against each
other. In the centralized approach, a Stackelberg game is used to represent the problem where the I-P is
the leader whose strategy is the resource monetary cost while the VOs are the followers whose strategy
is the resource share of the available bandwidth. The Stackelberg Equilibrium was proven mathematically
and through extensive simulations. The latter determined the optimal monetary cost and weights and
highlighted the significance of the devised algorithms. Simulations also showed how our solution enabled
the I-P, through fine tuning of a differentiating factor, to apply service differentiation among VOs. Finally,
we discussed the implementation of the proposed solution in an O-RAN-compliant architecture.

The second contribution extends the first one, while focusing on the partitioning of the attributed band
to a single VO between its slices. Particularly, two slices are considered: eMBB and URLLC. Therefore, a
novel dynamic RAN slicing algorithm is proposed. This solution is based on both traffic engineering and
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a dynamic adjustment of slice resources. To this aim, two main approaches are envisaged: a distributed
approach based on a crowding game and a centralized approach based on DQN. With the distributed
approach, cost functions were defined with a well-thought choice of parameters such as throughput and
delay for an adequate slice selection for the user. The latter is performed to satisfy each user’s QoS re-
quirements and improve the global resource utilization in the devised problem. For the centralized DQN
approach, the state, reward functions and actions are defined in a similar manner as the distributed ap-
proach and take into account the same parameters globally for every user. Performance analysis and time
convergence of both algorithms alongside the alignment of these solutions with the O-RAN specifications
are discussed. Additionally, both approaches are compared against each other and their efficiency is as-
sessed over the legacy scheme where a user is assigned to its natural slice according to its service type.
Also, a comparison is done with a SOTA slice selection algorithm [64] where a slice selection scheme is
devised for each user depending on its KPIs (such as the throughput, delay and blocking rate). Results
show the efficiency of our proposed solution and its adaptability against the variation of load conditions
without increasing the needed bandwidth.

The third contribution extends the previous problem by taking into account additional and more com-
plex aspects such as the numerology, the mMTC slice and users’ radio conditions. Therefore, the same
problem at the level of the VO is tackled in a multi-numerology and multi-slice context. For this reason, a
3GPP-compliant three-level slicing algorithm for the eMBB, URLLC andmMTC services is introduced. In this
context, three numerologies, three slices and four BWPs (one for each slice and one that is shared between
the eMBB and URLLC slices) are considered. The first level of this algorithm allots the BWP serving the
URLLC users between the URLLC dedicated Premium BWP with a high numerology and the Non-Premium
BWP that uses a lower numerology and is shared with eMBB users where preemptive scheduling favoring
URLLC users is applied. A non-cooperative game is modeled at this level where a BWP is selected for each
URLLC user that minimizes a well defined cost function that considers users’ latency, BWP occupation and
the incurredmonetary cost. The second level of the algorithm dynamically adjusts the BWP band for every
BWP (mMTC, eMBB Premium, Non-Premium and URLLC Premium) using smart heuristics depending on
users’ KPIs: throughput for eMBB users, SINR for mMTC users and latency for URLLC users. The third and
final level resorts to DQNwhere the dimensioning of a guard band is performed among BWPs using differ-
ent numerologies in order to mitigate the INI effect while avoiding radio resource wastage. Performance
results prove the efficiency of our proposed three-level solution that ensures lower URLLC latency while
maintaining high eMBB satisfaction and high SINR for mMTC users compared to our previous contribution
and a SOTA solution [73] that misses the guard band dimensioning. Also, the compliance of our devised
solution with the O-RAN architecture is detailed.

The fourth contribution shifts the focus to users connected to multiple slices. These types of users
require frequent BWP switching when their connected slices require different numerologies. Therefore,
three patented solutions are proposed to enhance the BWP switching for these multi-slice users. The first
solution relies on the Downlink Control Information format modification which carries the BWP indicator
to include multiple BWPs and the time instants where the BWP switch should be performed to ease the
process. The second solution is based on adjusting dynamically the DCI frequency by increasing it to have
more frequent BWP Switching when multiple services come into play. The third solution uses both the
DCI-based and inactivity timer BWP switching methods and dynamically adjusts the BWP inactivity timer
while selecting the BWP for the delay sensitive premium service as the default BWP. Performance evalua-
tion shows that these solutions help reducing latency compared to the baseline approach. Particularly, it
is shown that the first solution has the best performance in terms of URLLC latency and number of DCIs
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scanned while maintaining eMBB throughput satisfaction. The other two solutions help reducing overall
latency without the need to change the DCI format but at the cost of higher energy consumption (second
solution) and eMBB throughput degradation (third solution).

The fifth and final contribution also tackles the radio resource allocation problem for multi-slice users
but from an energy efficiency perspective. Thus, an energy-efficient scheme is proposed to select an ad-
equate BWP configuration for users connected to multiple slices to help them reduce their energy con-
sumption without hindering their QoS. This selection is based on a cost function that includes multiple
factors such as battery level and QoS satisfaction. For this reason, two approaches are adopted. The
first one is a centralized approach that aims to solve a global optimization problem so that the central
entity minimizes the total cost of users by selecting for each user the most appropriate BWP configura-
tion. The second approach is distributed and uses non-cooperative game theory where each user selects
autonomously the BWP configuration that minimizes its own cost. The efficiency of our solution is also
assessed through extensive simulations which display the advantages brought by our solution compared
to the legacy scheme in terms of energy efficiency. Also, the evaluation of the price of anarchy shows that
the distributed approach is more favorable than the centralized one since it reaches faster convergence
with near optimal performances. Two patents inspired from this contribution are submitted where the
first adequately chooses the BWP configuration for a UE depending on the battery level, DRX activation
and overheating indicator and the second proposes to add the battery consumption fields per slice, appli-
cation or BWP in the UE assistance information.

To highlight further the advantages brought by the contributions, Table 8.1 summarizes these advan-
tages of each contribution in the context of a mobile network operator wishing to implement them.
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Contribution Advantages for the Mobile Network OperatorDWFQ Algo-rithm for Multi-Slice Multi-VOApproach
• Efficient radio resource algorithm which grantsthe I-P the ability to control theweight of each VOdepending on certain criteria such as monetarycost
• Can be implemented in the Non-RT RIC after re-trieval of necessary inputs

Dynamic RANSlicing Algo-rithm for eMBBand URLLC
• Maintains a URLLC Reliability and Resource Uti-lization Rate of 100%
• Provides better eMBB Throughput
• Can be implemented in the Non-RT RIC after re-trieval of necessary inputs

Three-Level Slic-ing Algorithmin a Multi-Slice Multi-NumerologyContext

• Ensures lower URLLC Latency and higher SINRfor mMTC users
• Maintains high eMBB throughput satisfaction
• Can be implemented in the Non-RT RIC after re-trieval of necessary inputs

Novel BWPSwitchingMechanismsfor Multi-SliceUsers
• Three patents that help reducing latency due toBWP switching for multi-slice users

Energy-EfficientBWP Configura-tion Algorithmfor Multi-SliceUsers
• Improves energy efficiency for multi-slice users
• Maintains QoS satisfaction
• Two patents related to this contribution are sub-mitted

Table 8.1: Advantages of the proposed approaches brought to the Mobile Network Operator
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After detailing the advantages of each solution, we further discuss the future perspectives of these
contributions in the next section.

8.2 Future Perspectives
We present our vision for the future perspectives of our thesis work in the next subsections 8.2.1, 8.2.2 and
8.2.3, exposing short, medium and long term perspectives respectively.

8.2.1 Short-Term
For short-term perspectives, we aim to include some overlooked aspects in our contributions. These as-
pects include the multi-cell context and inter-cell interference, uplink slicing and the consideration of ad-
ditional services for multi-slice users. Additionally, we plan to push in the standardization bodies one of
our patented solutions.
Multi-Cell and Inter-Cell Interference

As all our contributions tackle the radio resource allocation problem with a single gNB and cell, we would
like to exploit this problem in a multi-cell context. In this context, harmful inter-cell interference incom-
ing from neighboring cells should be considered. For this reason, we propose to examine the inter-cell
interference problem by using a multi-agent Deep Reinforcement Learning algorithm similar to the work
in [87] where an agent is placed at the level of each gNB to reduce its effect. This can be an extension to
our third contribution with the three-level slicing algorithm by including an additional level that treats this
problem.
Uplink Slicing

Uplink slicing was overlooked in this thesis since all our contributions focused on the downlink slicing and
resource attribution. In fact, the same approaches can be used on the UL. However, the problem of users’
multiple access is present on the uplink contrarily to the downlink where only the gNB is the central entity
that is involved in the packet transmission. The work in [88] tackles this specific problem where Multi-
Agent DRL is used to manage multiple access for the uplink slicing problem specifically for delay-sensitive
services such as URLLC. We can propose an incremental solution that builds on the work in [88] in the
context of our third contribution.
Consideration of Additional Slices for Multi-Slice Users

In the last contribution, we can add additional slices such as mMTC where multi-slice users can be con-
nected to this slice in addition to other slices such as URLLC and eMBB. To this aim, we can repeat simu-
lations in this context to see if it brings any changes to the algorithm performance evaluation results.
Standardization of Optimized BWP Switching Patent for Multi-Slice Users

The standardization of the patented solutions related to multi-slice users is very advantageous. Partic-
ularly for the fourth contribution, we can push the 3GPP standardization of the first patented solution
with the Downlink Control Information format modification since it had the best performances in terms of
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eMBB throughput, URLLC latency and energy efficiency. Thus, it brings many benefits to multi-slice users
if standardized.

8.2.2 Medium-Term
For medium-term perspectives, we aim to test our proposed algorithms in a real O-RAN testbed [4] which
brings additional benefits to the mobile network operator.
Full Solution Compliance with O-RAN Architecture

The O-RAN architecture leverages many benefits thanks to its openness and intelligence which reduce the
CAPEX and OPEX associated to RAN initial deployment and network operations. In our work, we discussed
the alignment of our solutions with the O-RAN architecture. However, the full integration with open in-
terfaces compatibility and solution testing in a real O-RAN testbed were not part of the objectives of our
contributions. Therefore, assessing the feasibility of the proposed solutions and checking their full com-
pliance with the O-RAN architecture (thanks to a collaboration with an integration team in Orange’s O-RAN
Test and Integration Center) can be a promising future work bringing many advantages. However, we are
currently limited by the maturity of the open interfaces and their support to our required parameters.
Thus, testing our solutions may be done incrementally after resolving current limitations.

8.2.3 Long-Term
For long-term perspectives, the radio resource allocation problem should take into account the emerging
features of future mobile networks such as satellite systems, new types of supported services, future
generation mobile networks and newly developed AI tools.
Satellite Systems

The radio resource allocation problem in the context of O-RAN can also be tackled in a satellite system.
In fact, some works such as [89] are beginning to take interest in this complex problem due to additional
challenges such as the satellite orbit mobility and coverage area, the different requirements of users’ de-
mands and KPIs, spectrum sharing between operators and interference incoming from terrestrial base
station and other satellites. In such a context, it is important to study this problem in the future.
New Types of Services

New categories of services may appear in the future in addition to the traditional eMBB, URLLC andmMTC
services. These new services (which may include sensing, imaging and cognition applications) will require
the consideration of different constraints and KPIs. This will impact the radio resourcemanagement when
the operator decides to support these novel services with the rise of the Internet of Everything. The latter
aims to connect things, people and data [90] which leads to the emergence of new classes of services. The
necessary KPIs for these services may include the priority and severity level for a certain type of service.
For example, a service linked to critical applications such as threat detection and healthmonitoring should
be treated differently compared to other less critical services. Therefore, further classification of services
can be done for an extended differentiation among them. Thus, the radio resource allocation problem
should be adapted continuously to meet these new requirements and challenges.
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Future Generation Mobile Networks

Attention is currently being brought to 6G mobile networks (the planned successor of 5G) even though
its standardization and release remain years away. In fact, 6G is becoming a trending topic where some
researchers are detailing their vision for the next generation of mobile networks [91]. The expectations of
6G aremore green solutions, higher data rates and lower latency than the ones provided by 5G. With each
new generation of mobile networks, new features and enhancements are added. Hence, the modelling
of the radio resource allocation problem will be different from generation to generation depending on
the new features. With 6G, new frequencies will be used along with enhanced features from 5G such as
beamforming where the transmitted signals are targeted to a specific location to improve SINR and avoid
interference. For this reason, it would be compelling to study this problem while taking into account these
new various concepts. Additionally, 6G is expected to include new AI techniques.
New Artificial Intelligence Techniques

With the advent of Artificial Intelligence, networks are becoming more intelligent and autonomous facing
the new brought challenges. 6G networks are planned to include AI as a feature. Additionally, AI is be-
coming a hot topic in the research community and new tools and techniques are being developed and
examined to be deployed later on in a real network. These enhanced AI tools will help networks to fur-
ther take appropriate decisions and drastic measures with a faster convergence time. Therefore, many
applications will be improved thanks to AI implementation such as traffic prediction, clustering of users
and data scheduling. These applications will be considered in the radio resource allocation problem to en-
sure a satisfactory QoS for each user. Also, this will facilitate the proposal of proactive resource allocation
algorithmswhere radio resources are reserved beforehand for a certain service owing to traffic prediction.
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Appendix A

Appendix for Multi-Slice Multi-VO Radio
Resource Allocation Problem

A.1 Proof of SE Algorithm Convergence for Multi-Slice Multi-
VO Context

A.1.1 Positivity of P(w)
Recall that we have the following iterative function:
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A.1.2 Monotonicity of P(w)
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P ′(w) > 0 is the condition proving the monotonicity of P (w).
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A.1.3 Scalability of P(w)
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A.1.4 Two-Sided Scalability of P(w)
For 1

µw ≤ w′ ≤ µw with µ > 1, P (w) should obey to 1
µP (w) < P (w′) < µP (w). From the monotonicity

and scalability properties of P (w), for w′ ≤ µw, P (w′) < P (µw) < µP (w). Since µ > 1, 1
µ < 1 leading

to 1
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P (w).
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