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Résumé 

Contexte/objectifs : La radiothérapie et la chimiothérapie sont couramment utilisées dans les 

traitements anticancéreux à visée curative. Cependant, les effets secondaires, parfois graves, 

qui y sont associés empêchent souvent de mener à bien le plan de traitement initial. Bien que 

les normes de soins actuelles aient réduit la fréquence des lésions graves, leur efficacité reste 

sous-optimale. Des études antérieures ont révélé qu'AsiDNA™, une courte molécule d'ADN 

double brin capable d'interférer avec la machinerie de réparation de l'ADN, sensibilise les 

cellules tumorales in vitro et in vivo à la chimio- et radio-thérapie, sans augmenter la sensibilité 

des tissus normaux. Ces observations nous ont amenés à évaluer le potentiel d'AsiDNA™ à 

protéger les tissus sains des toxicités induites par les radiations et à explorer son 

comportement dans les cellules normales. 

Méthodes : In vitro, nous avons combiné des analyses par cytométrie de flux, par Western blot, 

par immunofluorescence et par invalidation de l’expression de certains gènes dans des cellules 

normales et tumorales pour étudier l’impact d’un traitement par AsiDNA™ sur l’arrêt du cycle 

cellulaire. En outre, nous avons étudié la survie des cellules normales et tumorales en réponse 

à une chimiothérapie ou une irradiation combinée ou non à AsiDNA™ pour évaluer un rôle 

protecteur d’AsiDNA™. Nous avons utilisé un biomarqueur de l’activité d’AsiDNA™ (γ-H2AX) 

pour explorer l'activité d’AsiDNA™ dans les différentes phases du cycle cellulaire et dans des 

cellules en prolifération ou quiescentes. In vivo, nous avons combiné le traitement par 

AsiDNA™ avec la radiothérapie FLASH et conventionnelle (FLASH-RT versus CONV-RT) sur des 

souris C57BL6/J. La toxicité aiguë radio-induite a été examinée en quantifiant la survie des 

cryptes de l'intestin après une irradiation abdominale. La toxicité tardive radio-induite a été 

examinée par le suivi de la survie des animaux au cours du temps et l’apparition de la fibrose 

pulmonaire après une irradiation du thorax. En parallèle, le niveau d’expression de cytokines 

inflammatoires dans le plasma sanguin a été mesuré de 2 semaines à 5 mois après l'irradiation 

du thorax des souris, et une étude préliminaire de séquençage de l'ARN sur cellule unique 

menée pour identifier les signatures génétiques pro-fibrotiques des poumons irradiés. Enfin, 

des coupes histologiques de l'intestin de souris C57BL6/J sauvages ainsi que des coupes ex 

vivo de poumons issus de souris C57BL6/J délétées ou non pour p53 ont été utilisés pour 

identifier le mécanisme de radio-protection par AsiDNA™ dans les modèles de réponse 

précoce et tardive. 
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Résultats : In vitro, AsiDNA™ pénètre dans les cellules normales et tumorales mais n’induit un 

arrêt du cycle cellulaire en G1/S que dans les cellules normales. Nous avons révélé que cet 

arrêt est dépendant des protéines DNA-PK/p53/p21 et qu'il est absent dans les cellules 

tumorales. Nous montrons que si la phosphorylation de l’histone H2AX, un biomarqueur de 

l’activité d’AsiDNA™ dans les cellules, est détectée assez rapidement après l’ajout d’AsiDNA™ 

aux cellules, celle-ci n’a lieu qu’en phase G1 du cycle cellulaire, bien qu’AsiDNA™ pénètre dans 

toutes les cellules. En outre, l’arrêt en G1/S est indépendant de la phosphorylation d’H2AX. Par 

ailleurs, nous montrons que l’activité d’AsiDNA™ est fortement réduite dans les cellules 

quiescentes par rapport aux cellules en division. Le mécanisme sous-jacent est toujours en 

cours d’étude. In vitro, l'association d'AsiDNA™ à de la chimiothérapie ou de la radiothérapie 

augmente la survie des cellules saines et prolifératives, ce qui n'est pas le cas des cellules 

tumorales ou des cellules normales déficientes en p53. In vivo, nous montrons un rôle 

radioprotecteur d’AsiDNA™. En effet, l’association d’AsiDNA™ avec CONV-RT a retardé 

l'apparition de la fibrose pulmonaire et augmenté la survie des cryptes dans l'intestin par 

rapport à CONV-RT seule. Un effet protecteur est aussi observé avec FLASH-RT seul qui n’est 

pas amélioré si AsiDNA™ est associée à FLASH-RT. Le séquençage de l'ARN en cellule unique 

du poumon irradié a révélé une signature génétique pro-fibrotique présente dans les 

fibroblastes et les macrophages alvéolaires en réponse à la radiothérapie CONV. Cette 

signature est réduite lors de la radiothérapie CONV combinée au traitement AsiDNA™ et au 

traitement radiothérapeutique FLASH seul. L'activation des cytokines inflammatoires observée 

dans le plasma sanguin après l'irradiation du thorax a révélé une synergie unique entre la 

radiothérapie combinée au traitement AsiDNA™, avec une augmentation de l'IFN-γ, du TNF-

α et du GM-CSF. En outre, un mécanisme d’arrêt de cycle en phase G1/S impliquant DNA-PK, 

p53 et p21 a été observé dans les modèles in vivo de l'intestin et ex vivo de coupes de poumon, 

comparables à celui identifié in vitro.  

Conclusion : Ces résultats suggèrent que, grâce à l'arrêt du cycle cellulaire en G1/S induit par 

AsiDNA™ sur des cellules normales en division in vivo, la combinaison d'AsiDNA™ avec 

diverses modalités d'irradiation réduit la toxicité induite par l'irradiation. Ce mécanisme est 

absent dans les cellules tumorales, dans lesquelles AsiDNA™ fonctionne comme un 

radiosensibilisateur, offrant ainsi une opportunité unique d’utiliser AsiDNA™ en oncologie 

pour une augmentation bilatérale de la fenêtre thérapeutique.  
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Summary 

Background/Aims: Radiotherapy and chemotherapy are customary implemented in cancer 

treatments with curative intent. However, the associated severe side effects often interfere with 

the completion of the initial treatment plan. Although the current standard of care reduced 

the frequency of severe injuries, their efficacy is still suboptimal. Previous studies have 

uncovered that AsiDNA™, a short double-stranded DNA molecule able to interfere with the 

DNA repair machinery, chemo- and radio-sensitizes tumour cells in vitro and in vivo, with no 

increased normal tissue sensitivity. These observations led us to assess the potential of 

AsiDNA™ to protect healthy tissues from radiation induced toxicities and explore its behaviour 

in normal cells. 

Methods: In vitro, we combined flow cytometry, Western blot, immunofluorescence, and gene 

expression invalidation analyses in normal and tumour cells to study the impact of AsiDNA™ 

treatment on cell cycle arrest. In addition, we studied the survival of normal and tumour cells 

in response to chemotherapy or irradiation combined or not with AsiDNA™ to assess a 

protective role of AsiDNA™. We used a biomarker of AsiDNA™ activity (γ-H2AX) to explore 

AsiDNA™ activity in different phases of the cell cycle and in proliferating or quiescent cells. In 

vivo, we combined AsiDNA™ treatment with FLASH and conventional radiotherapy (FLASH-RT 

versus CONV-RT) in C57BL6/J mice. Acute radiation-induced toxicity was examined by 

quantifying the survival of intestinal crypts after abdominal irradiation. Late radiation-induced 

toxicity was examined by monitoring animal survival over time and the appearance of 

pulmonary fibrosis after thoracic irradiation. In parallel, the level of inflammatory cytokine 

expression in blood plasma was measured from 2 weeks to 5 months after all thorax irradiation 

of mice, and a preliminary single-cell RNA-sequencing study was conducted to identify pro-

fibrotic genetic signatures of irradiated lungs. Finally, histological sections of the intestine of 

wild-type C57BL6/J mice, as well as ex vivo sections of lungs from p53-deficient and wild-type 

C57BL6/J mice were used to identify the mechanism of radioprotection by AsiDNA™ in early 

and late responding models. 

Results: In vitro, AsiDNA™ penetrates normal and tumour cells, however, induces G1/S cell 

cycle arrest only in normal cells. We reveal that this arrest is DNA-PK/p53/p21-dependent and 

absent in tumour cells. We show that while phosphorylation of histone H2AX, a biomarker of 

AsiDNA™ activity in cells, is detected quickly after AsiDNA™ is added to cells, this only occurs 
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in G1 phase of the cell cycle. Moreover, G1/S arrest is independent of H2AX phosphorylation. 

Furthermore, we show that AsiDNA™ activity is strongly reduced in quiescent cells compared 

to dividing cells, and the underlying mechanism is still under investigation. In vitro, the 

combination of AsiDNA™ with chemotherapy or radiotherapy increases the survival of healthy, 

proliferative cells, which is not the case for tumour cells or normal p53-deficient cells. In vivo, 

we show a radioprotective role of AsiDNA™. Indeed, the combination of AsiDNA™ with CONV-

RT delayed the onset of pulmonary fibrosis and increased crypt survival in the intestine 

compared with CONV-RT in standalone. A protective effect was also observed with FLASH-RT 

alone, which was not enhanced if AsiDNA™ was combined with FLASH-RT. Single-cell RNA 

sequencing of irradiated lung revealed a pro-fibrotic genetic signature present in fibroblasts 

and alveolar macrophages in response to CONV radiotherapy. This signature is reduced in 

response to CONV-RT combined with AsiDNA™ and FLASH-RT. The activation of inflammatory 

cytokines observed in blood plasma after thorax irradiation revealed a unique synergy 

between radiotherapy combined with AsiDNA™ treatment, with an increase in IFN-γ, TNF-α 

and GM-CSF. In addition, a G1/S phase cycle arrest mechanism involving DNA-PK, p53 and 

p21 was detected in vivo in gut and ex vivo in precision cut lung slices, comparable to that 

identified in vitro. 

Conclusion: These results suggest that due to the G1/S cell cycle arrest induced by AsiDNA™ 

on dividing normal cells in vivo, the combination of AsiDNA™ with various irradiation 

modalities reduces irradiation-induced toxicity. This mechanism is absent in tumour cells, in 

which AsiDNA™ functions as a radiosensitizer, offering a unique opportunity to use AsiDNA™ 

in oncology for a bilateral increase in the therapeutic window.  
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1. Standard of care 

1.1. The status of cancer incidences within the population  
 

Worldwide, the second biggest mortality cause is cancer. It is estimated that global cancer 

rates will increase 47% by 2040, paired with an alarming increase in the need for preventive 

measures, treatment availability, and increased cancer-related mortality rates [1]. Following 

the information provided by the world health organization, the estimated age-standardized 

cancer incidence worldwide in 2020 identified an incidence rate above 250 cases per 100.000 

citizens in the western world (Figure 1A). In Europe, the estimated mortality rate in 2020 

reached almost 2 million people, of which 19.6% lung cancer, 12.5% colorectal cancer, 7.3% 

breast cancer and 6.8% pancreatic cancer (Figure 1B-C). The demographic changes estimated 

that by 2040 the incidence of new cancer cases in Europe will rise from 4.4M up to 5.32M. 

(Figure 1D). This stresses the emerging cancer related mortality rates that society will 

encounter in the future, underlining the importance of enhancing cancer treatment modalities 

and improving the standard of care.   

 

Figure 1: Global and European statistics on current and future estimations of cancer incidences. 

Incidence rates are presented for all cancers, both sexes and of all ages. (a) Global map estimated age-

standardized incidence rates in 2020 presented in age-standardised rate (ASR) per 100.000 citizens per 

country. (b) Pie chart representing estimated number of cancer related deaths in 2020 in Europe, including 

lung, colorectum, breast, pancreas, prostate, stomach, liver, and other cancers. (c) Histogram representing 
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estimated number of cancer related incidences and deaths in 2020 in Europe represented in ASR (World) 

per 100.000 citizens, including breast, prostate, colorectum, lung, corpus uteri, skin, bladder, cervix uteri, 

kidney, and ovary. (d) Visual illustration of estimated number of overall new cancer cases from 2020 to 

2040 in Europe. (Data provided by World Health Organization, Global Cancer Observatory: 

https://gco.iarc.fr/, accessed August 2023) 

 

1.2. Standard of Care 
Standard of care refers to the developed and published evidence-based standards that are at 

the base of the treatment modality and are different for every cancer type. Most standard of 

care protocols use combined treatments of chemotherapy, radiotherapy, and surgery. As 

scientific research is continuously enhancing aspects within the treatment modalities, changes 

can be made to the standard of care. For this, new methods or drugs need to prove to be 

beneficial combined with the standard of care in clinical trials compared to the standard of 

care standalone. 

 

1.2.1. Chemotherapy 

Chemotherapy is perhaps the most known therapy in cancer treatment. During chemotherapy, 

chemotherapeutic agents are given to the patient as neoadjuvant, before surgery or 

radiotherapy, and/or as adjuvant, after surgery or radiotherapy. Chemotherapeutic agents can 

be administered by intravenous (IV) or oral administration, depending on the drug and is 

overall considered a systemic treatment. The agents can be divided in 4 classes of 

chemotherapy depending on its mechanism of action: antimicrotubular agents, 

antimetabolites, topoisomerase inhibitors including anthracyclines and alkylating agents. 

Overall, chemotherapeutic agents impact cell growth and tumour cell division, striving for 

elimination of tumour invasion or metastasis. By affecting cell growth, normal dividing cells 

are also injured by the treatment, and chemotherapy is therefore often accompanied with 

severe adverse effects [2]. Although effective in decreasing tumour volume and affecting 

possible escaped tumour cells, the treatment alone is often not enough for complete tumour 

control and chemotherapeutics are combined with surgery and radiotherapy. 

 

1.2.2. Surgery 

Surgical resection is the most effective treatment modality in the removal of cancer and is 

necessary for approximately 80% of diagnosed cancer patients [3]. During surgical resection, 

https://gco.iarc.fr/
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the tumour and its nearby surrounding is manually removed. The resection edges of the 

removed mass are assessed using histology to ensure that all edges are clean, limiting the 

possibility of incomplete tumour removal [4]. However, some tumour locations are difficult or 

impossible to undergo operations, for example the brain and the brain stem, with radiotherapy 

treatment as only available local treatment modality.  

 

1.2.3. Radiotherapy 

Over half of diagnosed cancer patients will receive radiotherapy in their treatment plan, this 

can increase to 83% of patients for breast cancer and 92% with tumours in the central nervous 

system [5]. The local treatment is essential for cancer treatment and greatly contributes to 

patients cure and palliative care. In the next chapters we will unravel the structure of an 

ionization event, different radiation modalities, the impact of radiotherapy to the normal tissue 

and how to implement drug treatments to decrease normal tissue toxicity while maintaining 

tumour control or enhance tumour radiosensitivity with limiting the affects to the normal 

tissue.  
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2. The different phases of an ionizing radiation event 

Most cancer patients receive radiotherapy during their treatment regimen. It is a common 

practice and categorized as a local treatment. However, ionization events during radiotherapy 

treatment are not simple events and consist of a complex multidisciplinary occurrence. When 

dissecting the different aspects of radiation events, we encounter physics, chemistry, and 

biology.  

2.1. Physics 
Ionizing radiation applied to a subject or matter results in the release of large quantities of 

energy that is transferred to electrons, ejecting them from their atomic orbital. This process is 

known as an ionization event. Radiation classification can be divided into electromagnetic and 

particle radiation. Electromagnetic radiation consists of waves or bundles of energy identified 

as X-or γ-rays. Although the consistency of X- and γ-ray photons are identical, their origins 

differ. Gamma-rays are produced from within an atom’s nucleus after a radioactive decay, 

whereas X-rays are emitted when orbital electrons rearrange or through the interaction of a 

free electron with the atom. In the latter case, X-rays can be produced in linear accelerators, 

with high energy electrons striking a high Z metal target [6]. X- and γ-rays are massless bundles 

or waves of energy that can be deposited all at once in matter to produce charged particles 

that, in turn, can result in an indirect ionization event. Particulate radiation comprises of 

particles with a mass and include protons (positively charged), α-particles (positively charged), 

electrons (negatively charged), heavy ions (positively charged) and neutrons (uncharged). 

Charged particles deposit small fractions of their energy regularly along their path, creating 

(direct) ionization tracks. The track structure and therefore the energy deposition per unit 

distance differs for each particle, with average low linear energy transfer (LET, expressed in 

keV/µm) for electrons and high LET for alpha particles (Figure 2). 
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Figure 2: Low and high LET tracks. 

Illustration of secondary electrons from γ-ray low LET tracks and α-particle high LET tracks in a cell nucleus 

scale representation (left, 1 µm scale bar) and chromatin fibre scale representation (right, 25nm fibre) [7]. 

 

2.2. Chemistry 
A large fraction of the interaction events of radiation with living matter results in the breakage 

of water molecules (a process known as water radiolysis), generating free radicals, including 

the primary production of H2O
●, H2O

+ and e-, secondary production of H●, HO●, H2, H3O
+ and 

e-aq, and tertiary production of H2O2, H2, H3O
+, OH-, HO2●, HO●, H● and e-aq (Figure 3). The 

radiolytic products can interact with oxygen creating additional radiolytic products together 

with Reactive Oxygen species (ROS) HO2
-, O2

- and O2
●- [8], [9]. All generated radicalized species 

have their own unique diffusion rate and lifetime. An important reaction is the interaction of 

●OH with a carbon-centred substrate, resulting in the release of a H● and a carbon-centred 

radical. In turn, carbon-centred radicals can interact with oxygen molecules, resulting in 

peroxyl radical (ROO●) formation. This radical is relatively long lived and therefore is 

susceptible to reach DNA molecules, proteins, and lipids within cells, to which they can create 

substantial damages [9]. 
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Figure 3: Schematic presentation of the radiolysis of water. 

The radiolysis of water separated by physical, physico-chemical, and chemical stage. The illustration 

represents the primary, secondary, and tertiary production of free radicals with a time scale is represented 

from 0 – 10-6 seconds [8]. 

 

2.3. Biology 
The interaction between ROS or additional radicals, such as peroxyl radicals, and DNA 

molecules result in damage, characterized as indirect damage. The direct deposit of energy to 

DNA molecules during an ionization event is characterized as direct damage. Both damages 

contribute to the formation of complex clustered DNA damages. On average, 1 Gy of photon 

irradiation can induce 40 double stranded breaks (DSBs), 1000 single stranded breaks (SSBs), 

over 2000 base damages and 30 DNA-DNA crosslinks, per cell [10]. High-LET particles are 

more prone to create clustered direct damages (by definition). The complex clustered DNA 

damage is challenging to repair and can result in mutation formation or cell death by apoptosis 

[11], necrosis [12], autophagy [13], senescence [14], or mitotic catastrophe [15].  

A secondary response to induce cell death is through the bystander effect. Cells directly 

damaged by the initial ionization event can communicate the magnitude of its injury to 
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surrounding cells, mainly through gap-junctions [16]. The communication to non-irradiated 

cells has been demonstrated to result in mutations, modifications in gene expression, 

induction of chromosomal aberrations and even cell death [17], [18].  

 

2.4. The linear quadratic model 
An aspect used in the measurement of tissue and tumour response following radiotherapy is 

the concept of the linear quadratic model providing the α/β ratio. The simplified model uses 

two components of cell killing, one depending on the dose (αD) and one depending on the 

square of the dose (βD2). The model uses the formula:  

S = e−αD −βD2 

where S is the cell survival rate after a dose D in the context of clonogenic assays. Additionally, 

if the linear and the quadratic contribution to the killing of the cell are equal at a specific dose, 

this dose is the α/β ratio. With the implementation in biological experiments, it has been 

proposed that α represents the proportion of cell deaths caused by a single, lethal, DSB event, 

whereas β represents the proportion of cell deaths originated from the combination by two 

sublethal events, for instance SSBs forming a DSB together (Figure 4) [6], [19]. The sublethal 

events may however be repairable if the treatment is fractionated and protracted. 

Within that framework, we can easily calculate the dose D for which lethal events and sublethal 

events contribute equally to cell death: αD = βD2
 

implies D = α/β. Indicating that for any dose 

> α/β, the accumulation of sublethal damages contribute more to cell killing, and vice versa. 

The threshold value of α/β depends on the cell type and on the radiation type, ranging typically 

from 1 to 15 Gy. When the typical dose of 2 Gy/fraction is used:  

- In low α/β tissues, α/β < 2 Gy, and lethal, unrepairable events are mostly responsible 

for cell death [19].  

- In high α/β tissues, α/β > 2 Gy, and sublethal repairable events are mostly responsible 

for cell death [19].  
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Figure 4: The linear quadratic dose response model. 

The one hit linear component α is represented with the dotted line and the two-hit quadratic component 

β is represented in gray. The data is represented in Surviving fraction vs. dose in Gy with an α/β ratio of 5 

Gy [19]. 

 

  



38 

 

  



39 

 

3. Radiotherapy modalities 

The implementation of radiation to fight cancer differs with treatment regimes, particles used, 

type of tumour, its location and additional patient characteristics. The choice of particles used 

depends on the locations of the organs at risk, the type of tumour and unfortunately often on 

the feasibility of the radiation types.  

 

3.1. Internal radiotherapy 
During internal radiotherapy, radioactive isotopes are inserted to deposit locally their energy 

over short distances. Common applications for this, is the use of radioactive iodine to treat 

hyperthyroidism and thyroid cancer, where radioactive iodine is supplemented to patients 

through ingested supplements, absorbed into the blood, filtered from the blood by the 

cancerous thyroid, and when stored deposits gamma irradiation [20]. Due to its 8-day physical 

half-life, patients undergo internal radiotherapy, isolated but often within the comfort of their 

home. Another conventional internal radiotherapy treatment is brachytherapy. Here, 

radioactive seeds are manually inserted into the tumour and have been implemented for the 

treatment of prostate cancer, skin cancers, breast cancer and ovarian cancer. Various isotopes 

have been used depositing decay of electron capture of β- creating γ-rays with energy ranging 

from 21 up to 970 keV and half-lives from 10 days up to 28 years [21]. Internal radiotherapy is 

limited in its usability merely for reachable tumours or organs accumulating unique 

substances, and in most cases, external radiotherapy is implemented. 

 

3.2. External radiotherapy  
Particles or electromagnetic radiation, implemented during external radiotherapy, all have 

their own characteristic dose distribution as visible in Figure 5 [22]. Low energy electrons 

interact rapidly with the encountered matter, diffusing their dose and are therefore low in a 

dose-depth deposition in tissues. Electrons allocate the dose to the skin surface and tissues 

close underneath and are therefore applicable for the treatment of melanomas and 

subcutaneous located tumours. Although still in the early phases of development, current 

research is ongoing in creating accelerators capable of generating high energy electrons, 

enhancing the tissue depth of the particles to reach deep seated tumours [23]. As protons are 

bundles or waves of energy, interaction is needed for the reaction of free electrons. The dose 
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is distributed further in the tissue with a long dose delivery tail. Photon irradiation can reach 

deep seated tissues and can therefore reach tumours located throughout the body. However, 

the extended tail of additional dose increases the radiation dose delivered to the normal tissue. 

 

Figure 5: Dose distribution of various radiation modalities.  

Distribution of 20 MeV Electron, 18 MV Photon, 130 MeV Proton and 300 MeV Carbon ion represented 

with depth in cm and expressed in relative radiation dose [22]. 

 

3.3. Photon Radiotherapy 
Since the discovery of x-rays by Wilhelm Rontgen in 1895, and its immediate first application 

for medical imaging and therapeutic use in 1896, imaging and radiation therapy have been 

inseparably intertwined. Early radiotherapy treatment based its localization on bone structure 

as it was the only clear detectible imaging available at that time and with improvements in 

imaging, radiotherapy advances were made in parallel. The progression made in the delivery 

of external radiotherapy has been focused on reducing the dose to the normal tissue while 

delivering the optimum dose to the tumour. With this, technology has improved enabling the 

application of radiation from different angles and based its target on previously collected 

tumour imaging, identifying the location and shape of the tumour. 
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3.4. From tumour reconstruction to 360 arc rotations 
The implementation of modern-day computer power was quickly implemented in treatment 

planning by utilizing CT, magnetic resonance imaging (MRI), positron emission tomography 

(PET) or PET-CT imaging to generate a 3-dimensional (3D) reconstruction of the tumour shape, 

its location, and nearby organs at risk (OARs). By utilizing this generated 3D model, a highly 

accurate delivery plan can be designed, known as 3D conformal radiotherapy (3D-CRT). The 

method has made it possible to increase radiation doses, and improve tumour control [24], 

[25]. 3D-CRT can deliver radiation from various angles but requires forward treatment 

planning. With this, beam parameters and radiation set-up are designed and calculated with 

a uniform dose. With this method, normal toxicity was reduced compared to standard 

conventional radiotherapy. However, OARs close to the tumour were often unavoidable in the 

treatment delivery.  

To reduce radiation dose delivered to the OARs, intensity modulated radiotherapy (IMRT) was 

introduced. With the identical core principles to 3D-CRT, IMRT uses furthermore inverse 

treatment planning where firstly the desired dose to the target and normal tissue is set. 

Secondly, the radiation field is altered to achieve the desired doses using a rotating gantry and 

multileaf collimator. The collimator can alter its shape during the radiation, creating a pencil 

beam, able to precisely deliver the desired dose [26], [27]. Using IMRT instead of 3D-CRT, OARs 

closer located to the tumour receive less dose and this resulted in improved treatment 

outcomes in numerous studies [28]–[32]. Optimizations of IMRT resulted in helical 

tomotherapy (HT) and volumetric modulated arc therapy (VMAT). HT uses an increased 

number of independent beam angles for treatment delivery and a movable bed, resulting in a 

smoother and more precise dose coverage of the tumour [33]. VMAT uses a single radiation 

beam in a 360-degree rotation of the arc in which the radiation continuously rotates around 

the patient and is therefore quicker in delivery [34]. The implications of IMRT, HT and VMAT 

all have reduced normal tissue toxicity and optimum dose coverage of tumours. However 

clinical trials revealed variable benefits or disadvantages, depending on the treatment delivery 

variables and additional complications with increased low dose baths to the normal tissue and 

increased dosimetry complexity [35]–[38]. Overall, it is evident that the decision for its 

implementation will depend on individualized patient care, selecting the most suitable 

treatment to achieve the desired dose coverage and on the accessibility and coverage of the 

machines that have the capacity to conduct the treatment protocols.  
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3.5. Particle radiotherapy 
Protons and heavy ions, including carbon ions, are quite interesting with its representation of 

a Bragg peak. The loaded particles travel at a high speed through the tissue and upon 

interaction slow down. Only once the particles are decelerated enough, they distribute the 

dose in the tissue in vast amounts with a sharp dose cut off, identified as the Bragg peak, 

reducing radiation to the tissue located behind the tumour.  

The implementation of proton beam therapy (PBT) for cancer treatment utilizes the Bragg peak 

into a spread-out Bragg peak, where different proton energies are generated correlated to 

different depths, covering the tumour (Figure 6) [39]. Its first use was implemented for 

treatments of unrespectable cancers or tumours in proximity with organs at risk, often in 

children, and draws upon its advantage of the sharp dose cut off after the Bragg peak. PBT has 

similar beam implementations as photon irradiations including IMRT based Intensity-

Modulated Proton Therapy (IMPT). IMPT implements functions identical to those of IMRT but 

with the use of protons instead of photons. Recent studies have revealed that IMPT decreased 

the probability of normal tissue toxicity compared to IMRT in patients treated with stage III 

non-small cell lung cancer and revealed to significantly reduce dose delivery to various organs 

compared to 3D-CRT [40], [41]. 

 

Figure 6: Dose depth distribution of various external beam radiation modalities.  

Dose depth distribution of the spread-out Bragg peak (SOBP, red) containing proton induced Bragg peaks 

with a range of energies (blue) and a 10 Mv photon beam (black). Dose is presented in percentage and 

depth in mm [39] . 
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However, the accelerators required for the generation of these particles are big, expensive, 

and therefore often inaccessible. Another matter of concern with respect to proton and heavy 

ion therapy compared to photon therapy, is that the high precision of dose delivery result in 

high doses to the tumour but are therefore sensitive to the delivery of high doses to the normal 

tissue if the target moves. Overall, the delivery of external radiotherapy has tremendously 

progressed over the decades, due to the implications of various treatment delivery techniques. 
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4. Novel developments in radiotherapy 

Radiotherapy has evolved drastically over the decades providing big advances in tumour 

control and reduced normal tissue toxicity. Although less severe than decades ago, normal 

tissue radiation toxicity still occurs frequently, affecting patients’ welfare and reducing the 

change of completing the initial treatment plan. Recent studies have therefore been focussing 

on changes in dose delivery to reduce normal tissue toxicity while maintaining or enhancing 

tumour control. 

 

4.1. The peaks and valleys of minibeam radiotherapy 
A novel radiotherapy approach is the use of distinct spatial distributions, identified as 

minibeam and microbeam radiotherapy [42], [43]. Minibeam radiotherapy (MBRT) consist of 

delivering the radiation in spatial fractions of 500-700µm in field size with 1 to 3 mm spacing 

in between the beams. This creates a dose distribution over the tumour known as the peaks 

and valleys. Tissue within the peaks receive a direct fraction of radiation and are exposed to 

the maximum dose given, the tissue in the valleys do not receive radiation from the initial 

beam but do receive a minimum amount of scattered radiation from the peak areas [43], [44]. 

Although it has been proven to function with x-ray irradiation, the maintaining of peaks and 

valleys is difficult due to increased scattering and error prone irradiation due to increased 

geometry complexity. Therefore, the implementation of MBRT is currently focussed on proton 

therapy (pMBRT) using pencil beam scanning or passive scattering. Interestingly, this method 

of radiotherapy delivery revealed to decrease normal tissue toxicity while maintaining control 

of tumour growth [42], [44], [45]. The study of Prezado et al (2017) [46] revealed that rats 

receiving whole brain irradiation using pMBRT displayed a significant decrease in brain 

damage compared to standard PRT. In parallel, an increase in tumour control was achieved 

using pMBRT in glioma bearing rats in comparison to standard PRT [47]. Evidence have been 

provided that different biological mechanisms parallel to physical parameters such as dose 

volume effects, are involved in the development of the minibeam reduced normal tissue 

toxicity including cell signalling, the bystander effect, vascularisation and even the involvement 

of the immune system [48]–[52]. Nevertheless, the biological response to spatial fractionation 

remains to be fully identified. 
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4.2. Ultra-high dose rates in FLASH radiotherapy 
Another novel radiotherapy technique that has recently emerged as a novel field within the 

radiation research community is ultra-high dose rate radiotherapy, identified as FLASH 

radiotherapy. FLASH radiotherapy is characterised by the application of an ultra-high dose 

rate, almost instantaneously (within milliseconds) unlike low dose rate (within min) used in 

conventional radiotherapy (CONV-RT). Various studies of FLASH-RT have revealed a 

tremendous diminishment of normal tissue toxicities together with maintaining equal tumour 

control, compared to CONV-RT [53]. 

The concept first arose from preliminary research conducted in the 60s and was rediscovered 

by Favaudon et. al. (2014), providing in addition evidence for equal tumour control [54]. Within 

this research, the recurrence of lung fibrosis was examined in C57BL/6J mice after receiving 

CONV or FLASH irradiation. Mice underwent thoracic irradiation using a single fraction of 17 

Gy or the CONV-RT equivalent of 17 Gy with a dose-rate of 0.03 Gy/sec. CONV-RT resulted in 

a severe increase in pulmonary fibrosis 36 weeks post radiotherapy (Figure 7A). In comparison, 

FLASH-RT with an average dose rate of 40-60 Gy/s (in-pulse dose-rate ≈ 106 Gy/s) resulted in 

low to zero induction of pulmonary fibrosis in the irradiated mice [54]. The decrease in normal 

tissue toxicity was further examined using FLASH-electrons and FLASH-x-rays, both reporting 

a neuroprotective effect after FLASH-RT in mice compared to CONV-RT [55], [56]. The FLASH 

effect, described as the sparing of healthy tissue after FLASH-RT, has been identified in 

numerous additional tissues including the skin and the intestine of mice (Figure 7B-D). The 

initial studies were conducted using FLASH-RT with low energy electrons, and similar normal 

tissue protection were later confirmed using FLASH-RT with proton irradiation [57]–[63]. 

Translation was made to larger in vivo models using mini-pigs, and cats diagnosed with 

squamous cell carcinoma of the nasal planum [64]. A protection of the normal tissue was 

observed in pig skin characterised by a lack of fibronecrosis development after FLASH-RT 

compared with CONV-RT. FLASH-RT applied to cat’s squamous cell carcinoma resulted in mild 

mucositis, no acute toxicity and progression free survival above 80% at 16 months’ post 

treatment [64]. However, optimisation of radiation delivery is required to prevent later 

identified chronic toxicities. 
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Figure 7: Identification of the FLASH effect in the lung and intestine.  

(A) C57BL/6J mice received thorax irradiation of 17 Gy CONV/FLASH-IR or 30 Gy FLASH-IR, delivered in 

a single fraction. Hematoxylin-eosin staining of lungs performed on lung sections 8-, 24- and 36-weeks 

following radiotherapy. Arrows are indicating subpleural fibrosis regions and stars indicating 

intraparenchymal fibrosis regions [54]. C57BL/6J mice received abdominal irradiation of 16 Gy 

CONV/FLASH-IR (B) with example Hematoxylin-eosin staining of jejunal sections 96h following 

irradiation, arrows indicating healthy crypts and (C) quantification of average remaining crypts. (D) 

Kaplan-Meier survival curve of mice following radiotherapy [59].  

 

4.2.1. Radiation parameters and mechanism identification 

Recent studies have been dedicated to identifying the physical and biological parameters 

needed to generate the FLASH effect. The study of Montay-Gruel et al. (2017) pioneered by 

identifying the importance of the dose rate. Whole brain irradiation was performed with mean 
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dose rates of 100 Gy/s down to 0.1 Gy/s. Decrease in recognition ratio was observed below a 

dose rate of 30 Gy/s at 2 months following RT [55]. 

Additional research identified evidence for the dependency of the FLASH effect on oxygen 

concentrations in the normal tissue. Mice received CONV or FLASH-RT on oxygen breathing, 

resulting in a loss of the FLASH effect when oxygen breathing was combined with FLASH-RT 

[65]. The results gave rise to the oxygen depletion hypothesis. This hypothesis states that the 

fast delivery of radiation during FLASH-RT results in a temporary hypoxia explicitly in the 

normal tissue, resulting in increased radio resistance. Continuing research did identify oxygen 

depletion following FLASH-RT, but the depletion level was not significantly different from that 

expected from the known radiolytic yield of oxygen consumption by H● and e-aq radicals. The 

depletion was too small to be responsible for a clinically relevant hypoxic scenario and for the 

solitary source of the FLASH effect [66]. The theoretical physiochemical model of Labarbe et. 

al. (2020) [9] also argued against the oxygen depletion hypothesis, highlighted the role of 

peroxyl radical ROO● production and supported free radical recombination as the source of 

the FLASH effect [9].  

Additional examination revealed an impact on water hydrolysis following electron and proton 

FLASH-RT. The study identified significant decrease in H2O2 production after FLASH proton 

and electron irradiation in water [67]. However, there is a general agreement among 

radiobiologists that sub-millimolar amounts of H2O2 are not harmful to cells and tissues, and 

the physical and physico-chemical parameters for FLASH-RT are still far from identified. 

As the FLASH effect is identified as an in vivo normal tissue response, the involvement of the 

immune system has been hypothesized. This hypothesis was rapidly disproven with a FLASH 

effect observed in both immunocompetent [54], [59], [68], [69], immunodeficient mice [69] and 

nude mice [69], [70] and is therefore not dependent on the immune response. However, the 

immune system of tumour-bearing mice and rats does reveal a differential response following 

FLASH-RT compared to CONV-RT, providing evidence of a possible beneficial impact of 

FLASH-RT on tumour control through the immune system [71]–[73]. This was exploited in the 

study of Eggold at al. (2022) [74]. Tumour bearing mice were treated with the combination of 

FLASH-RT and αPD-1 antibody, blocking the Programmed cell death protein 1 (PD-1)/ 

Programmed death-ligand 1 (PD-L1) immune checkpoint. FLASH-RT revealed an increased 

infiltration of antitumoral T cells and enhanced the efficacy of the αPD-1 antibody while 

maintaining the FLASH effect in the normal tissue [74]. Nevertheless, the study of Cunningham 
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et al. 2021 [68] revealed no difference in tumour response of CD8+ infiltrated and non-

infiltrated oral carcinoma tumours following FLASH-or CONV-RT. Despite the repeatable 

promising in vivo results displayed after FLASH-RT, the immune system does not indicate to 

play a major role in the FLASH effect (i.e. sparing of the healthy tissue), while its contribution 

to tumour control following FLASH-RT needs further investigation. 

 

4.2.2. Translation to the clinic 

With the convincing results observed in pre-clinical research the connection was made in 2019 

for the first patient to receive FLASH irradiation [75]. The patient suffered from CD30+ T-cell 

cutaneous lymphoma and agreed to receive FLASH radiotherapy on the 3.5-cm ulcero-

infiltrated tumour located on the forearm by applying 15 Gy in 10 pulses of 1 us. The treatment 

revealed a mild epithelitis (grade 1) and grade 1 oedema together with a complete tumour 

response 36 days after FLASH-RT, compared to the average complete response 5 months after 

CONV-RT [75]. In addition, the first clinical trial using proton FLASH for palliative treatment of 

patients bearing bone metastasis was concluded in 2022 [76]. The study identified the 

feasibility and safety of FLASH-RT use for patients with equal efficacy and adverse effects 

following FLASH-RT compared to the standard of care. These promising results support the 

development of FLASH-RT from pre-clinical to clinical applications.  

Moreover, research by Montay-Gruel et al. [70] and Alaghband et al. [77], showed that FLASH 

hypo-fractionated treatment plans resulted in maintaining the FLASH effect. Interestingly, 

recent work of Limoli at al. (2023) pioneered in applying hyper fractionated radiotherapy in 

FLASH settings, where the FLASH effect, identified by preservation of cognitive functions, 

remained with 10 fractions of 3 Gy [78]. These studies provide evidence that both hypo- and 

hyper-fractionated radiotherapy can produce the FLASH effect, giving rise to an optimistic 

outlook in its potential for future clinical applications. Nevertheless, the current standard of 

care using CONV dose rates does not only use fractionated radiotherapy, but also exploits 3D 

imaging, rotating gantries, image-guided radiotherapy with possible tracking of tumour and 

organ movements, and millimetre thin radiation beams that are all still absent in current 

FLASH-RT treatments. Another vital aspect where any knowledge is still completely lacking is 

treatment modalities of FLASH-RT combined with commonly used chemotherapies. It is crucial 

to add combined treatment modalities and the current additional CONV-RT parameters to 

FLASH-RT to be applicable in future clinical settings. 
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5. Normal tissue toxicities in response to Ionizing radiation 

Radiation can induce significant damage to tissues and organs in the human body. The toxicity 

exhibited post radiotherapy is derived from post radiation induced cell damage. Minutes to 

days following irradiation, DNA and additional cellular damage results in cell cycle arrest and 

the induction of the DNA repair machineries. Successful repair results in cell survival and no 

additional implications. However, ineffective, or inaccurate repair can result in mutation 

formation with the cell transformation at long term to a malignant subtype, although rarely 

observed [79]. Additionally, unsuccessful repair can result in senescence or cell death. Within 

days to weeks post radiation exposure, the loss of cells or their function in the normal tissue 

leads to the loss of epithelial and mucosal barriers, an acute inflammatory response, and a 

severe decrease in blood cell count. Months to years post radiation exposure, late vascular 

damage and atrophy can occur as well as the continuation of the acute inflammation 

developing into chronic inflammation supporting fibrosis formation and loss of organ 

functions (Figure 8).  

 

Figure 8: Schematic illustration of normal tissue toxicity following a radiation event. 

Damage is induced on the DNA followed by a DNA damage response within minutes. Cells will undergo 

cell cycle arrest to attempt repair of the damage resulting in senescence or cell death by apoptosis or 

mitotic catastrophe following unsuccessful repair or cell survival following successful repair, hours after 



52 

 

radiotherapy. Days to weeks following irradiation, tumour and early normal tissue responses occur with 

loss of epithelial integrity, acute sterile inflammation, decrease in blood cell counts, decrease in stem cells, 

breakdown of mucosal barriers and antitumour immune responses. Months to years following irradiation, 

late normal tissue responses can appear with chronic inflammation, fibrosis formation, late vascular 

damage, atrophy, chronic organ, and tissue dysfunction and possible development of second malignancies 

[80]. 

 

The response of the normal tissue to radiation varies depending on the tissue type, patient’s 

characteristics, radiotherapy parameters and additional treatment modalities. The 

identification of the tissue type depends on various characteristics and can have an acute or 

late response to radiotherapy. An acute response is directly correlated to cell death, identified 

with early effects. Acute responses can be found in vast dividing tissues including the intestine, 

and upon stem cell survival, full recovery can be expected. Late response is dependent on 

various mechanisms including fibrosis formation and vascular damage and occurs in tissues 

with low to absence of cell division, including the lung, making tissue repair improbable. These 

late effects appear months to years post radiotherapy [81]. Nevertheless, severe damage to 

early responding tissues can furthermore result in a consequential late response. If early 

responding tissues are unable to fully repair, this results in chronic deteriorating toxicity [81]. 

An overview of organs and their relative radiation-induced toxicities can be found in table 1.  

 

5.1. Organs at risk 
An organ located near a tumour that holds the capacity of developing normal tissue toxicities 

following radiation exposure, is classified as an organ at risk (OAR). During treatment planning, 

OARs are identified and considered during the treatment design to limit the radiation delivered 

to the OARs [82].  The acute or late response and the hierarchical structure of the identified 

OAR is important to determine what dose and radiation treatment regime is best tolerated by 

this organ. Acute responding tissues have a high α/β ratio (> 7 Gy). They are therefore less 

sensitive to the implementation of fractionated therapy and more sensitive to the total 

duration of the treatment plan. In contrast, late responding tissues have a low α/β ratio (< 7 

Gy). They are therefore more sensitive to fractionated radiotherapy and less sensitive to the 

duration of the complete treatment plan [19], [83]. 
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5.2. Functional subunits 
Organs can have different structure hierarchies that have an additional impact on their 

radiation toxicity. The structure hierarchy has been categorized as serial organs, parallel 

organs, and complex organs, all composed of functional subunits (FSU). Each functional 

subunit consists of a stem cell maintaining the tissue generation of this subset of cells. If 

treatment results in the loss of the stem cell, the FSU will become inactive. The structuring of 

the FSUs in tissues therefore impacts the maintenance or loss of organ function upon damage. 

Serial organs, including the spinal cord, will undergo a complete loss of organ function if one 

FSU is inactive. High doses to small volumes should therefore be avoided. In parallel organs, 

including the lung, a loss of one FSU merely results in the inactivation of the FSU with minimum 

loss of organ function. High doses to small volumes are therefore well tolerated within these 

organs. Some tissues, including the skin, are more complex and therefore are characterized by 

a complex hierarchy. However, categorized complex organs generally display comparable 

behaviour as the parallel organ response [84]. Although in current treatment planning the 

structural hierarchy of OARs are implemented by allocated maximum doses allowed to deliver 

to the identified OARs, there is still no applied model available that can accurately predict the 

normal tissue toxicity. The current knowledge regarding normal tissue radiation toxicity is far 

from complete and further research is crucial to establish noticeable differences for patients’ 

well-being. 
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Table 1: Normal tissue toxicity categorized per organ, response and α/β ratio  

The table is adapted from Kehwar et al. (2005) [83].  

Organ α/β 

(Gy) 

[83]   

Early/late 

responding 

Toxicity  

Kidney 2.5-3.5 late Nephropathy and nephrosclerosis [85] 

Brain and 

brain stem 

2.1 late vascular abnormalities resulting in infarction, necrosis, 

cognitive impairment, and gliosis 

[86] 

Ear 3 intermediate Stenosis, otitis media with effusion, fibrosis, necrosis, 

hearing loss, and Meneire syntrome 

[87] 

Oesophagus 3 early/late esophagitis, ulceration, and dysphagia [88] 

Heart 2 late coronary artery disease, pericarditis, cardiac conduction 

abnormality, cardiomyopathy, and valvular heart disease 

[89] 

Bladder 3.4-6 early/late necrosis, haemorrhages, urethral stenosis, haematuria, 

contracture, nocturia, erectile dysfunction and incontinence 

[90] 

Larynx 3.8 late oedema, loss of vocal function, fibrosis, difficulty swallowing [91] 

Liver 1.5 intermediate fibrosis and hepatic injury [92] 

Lung 3.8-6.9 late pneumonitis and pulmonary fibrosis [93] 

Skin 1.9-2.3 early Inflammation with telangiectasia, oedema, erythema, 

radiation dermatitis, atrophy, ulceration, and necrosis  

[94] 

Small 

intestine 

6.0-8.3 early/late nausea, vomiting, abdominal pain, diarrhoea, haemorrhage, 

epithelial atrophy, ischemia, anorexia, fibrosis, and intestinal 

obstructions 

[95] 

Colon 3.1-5 early/late diarrhoea, rectal and abdominal pain, haemorrhage, 

tenesmus, urgency, incontinence, sepsis, fistulation, 

perforation, and rectal discharge 

[95] 

Spinal cord <3.8 late neural toxicity, infarction, necrosis, Lhermitte syndrome, 

paraesthesia, and myelopathy 

 

[96] 

Stomach 7.0-10.0 early Nausea, vomiting, abdominal pain, dyspepsia, haemorrhage, 

ulceration and rarely fibrosis 

[95] 

eye/eye lens 1.2 late ocular dryness, damaged meibomian glands, fibrosis, 

epiphora, blepharitis, ciliary disease, madarosis, iritis, corneal 

oedema, cataracts, and blindness 

[97] 

optic nerve 3 late Neuritis and optic neuropathy [97] 

retina 3 late macular oedema, papillary inflammation, retinopathy, and 

hard exudates 

[97] 

rectum 3.9 late diarrhoea, rectal and abdominal pain, haemorrhage, 

tenesmus, ulceration, incontinence, sepsis, fistulation, 

stenosis, and perforation 

[95] 

Parotid 

glands 

3 late Xerostomia, decreased saliva production, ulceration, and 

indirectly mucositis in the oral cavity 

[98] 
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Thyroid gland 3 late hypothyroidism [99] 

bone 1.8-2.8 intermediate decrease bone density, increased osteoclast activity, 

pathologic fractures, osteoradionecrosis, and pancytopenia 

[100] 

Testis 
 

intermediate seminiferous tubule atrophy, oligospermia, azoospermia and 

infertility 

[101] 

ovaries 10 early/late vasculature damage, atrophy, fibrosis, acceleration of 

reproductive aging, sub- and infertility (depending on 

growth phase of oocyte), pregnancy complications 

[102]–

[104] 
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6. The lung, a model for late radiation toxicity 

6.1. The anatomy of the lung 
 

The human lung contains 5 lobes, all connected by the trachea. The left lung consists of the 

superior and inferior lobe and has a cardiac notch to encompass the heart. The right lung 

contains the superior lobe, the middle lobe, and the inferior lobe. The trachea starts from the 

Larynx and splits up into 2 primary bronchi and branches into the secondary bronchi, the 

tertiary bronchi, bronchioles, and the small nodules of the alveoli (Figure 9). The grape-like 

structures are tightly surrounded by capillaries and are responsible for the O2-CO2 gas 

exchange with the cardiovascular system (Figure 9) [105]. A simplified composition of the 

alveoli consists mainly of ciliated cells, club cells, fibroblasts, alveolar type 1 (AT1) cells, alveolar 

type 2 (AT2) cells, endothelial cells, alveolar M1 and M2 macrophages, mesenchymal alveolar 

niche cells (MANC), mesenchymal Wnt2+/ Platelet-derived growth factor receptor α+ 

(PDGFRα+) cells and Axin2 myofibrogenic progenitor (AMP) cells (Figure 9). AT1 cells are the 

main cells facilitating the gas-exchange while AT2 cells excrete surfactant to maintain surface 

tension homeostasis [106]. Ciliated cells contain small cilia, enabling it to function in clearance. 

The cilia traffic mucus and various other debris upstream of the lungs for removal [107]. Club 

cells are responsible for the protection of the lining of the lung by secreting a mucus-like layer 

that can degrade inhaled toxins, supports the surfactant, and ensures a barrier between the 

lung microbiota and alveolar lining, limiting infections [108]. Fibroblasts are responsible for 

the maintenance of the extracellular matrix (ECM) homeostasis in between the alveoli and the 

capillary [109]. Endothelial cells (EC) form the lining of the capillary and form a semipermeable 

barrier, facilitating gas-exchange, fluid exchange and enabling the accessibility of immune cells 

to the alveoli if needed [106]. The alveolar macrophages, M1 and M2, are responsible for the 

maintenance of a healthy lung environment by supporting lung microbiota and removing 

additional contaminations [110]. Mesenchymal MANC and Wnt2+/PDGFRα+ cells support the 

alveolar growth and its regeneration, and act in stimulating repair following tissue injury. 

Finally, AMP cells support airway smooth muscle cells and can contribute to myofibroblast 

development following injury [111]. Recent studies have found, using single cell RNA 

sequencing, that the lung consists of at least 58 different molecular cell types, highlighting the 

fact that there is still much unknown about this vast complex organ and its response to injury 

[112]. 
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Figure 9: Illustration of the lung composition.  

(A) The different lobes of the human lung. (B) Small airways lead to individual alveoli, each enclosed with 

a capillary plexus. (C) Alveoli cell composition containing AT2, AT1, Endothelial cells, Macrophages, MANC, 

WNT2-Pa and AMP cells [113], [114]. 

 

6.2. Radiation-induced lung injury 
Radiation-induced lung injury (RILI) is one of the most common normal tissue toxicities 

observed in patients post lung irradiation and consists of 3 distinctive phases: the 

asymptomatic early/latent phase, the acute reversible phase, and the irreversible late phase 

[115]. During the early phase, the initial direct and indirect radiation damage causes cell death, 

and the activation of epithelial and endothelial cells, releasing inflammatory cytokines, and 

triggering the recruitment of immune cells.  

 

A. B. 

C. 
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6.2.1. Radiation pneumonitis 

Radiation pneumonitis is characterized by the loss of alveolar barrier function, resulting in 

changes within the microenvironment, immune activation through inflammatory cytokine 

activation and fibrotic cytokine activation, additional ROS production, and cell damage. 

Radiotherapy to the normal tissue creates tissue damage, mimicking a wound, and causing an 

imbalance of the cytokine equilibrium. Numerous cytokines have been highlighted to function 

in contributing to a pro-fibrotic environment including numerous interleukins (IL-1α, IL-1β, IL-

4, IL-5, IL-6, IL-8, IL-11, IL-13, IL-17α, IL-18, IL-23, IL-25 and IL-33), tumour necrosis factor- α 

(TNF-α) and transforming growth factor-β (TGF-β). TNF-α promotes the pneumonitis phase 

and is secreted upon damage by various immune cells. The cytokine stimulates apoptosis, 

necrosis and activates nuclear factor-kappa B (NF-κB), resulting in increased inflammation 

[116]. However, in later stages of RILI, TNF-α indicates to have an opposite effect in which 

inhibition of the TNF pathway increased collagen production, promoting a pro-fibrotic 

environment and expression of the TNF pathway resulted in limiting fibrosis development 

[117]. A vast recruitment of immune cell infiltration occurs together with increase exhaustion 

of the alveolar space, resulting in partial loss of tissue integrity [118]. In addition, there is an 

alteration in cell-cell interaction and decrease in lung perfusion [119]–[122]. In addition, the 

early onset of myofibroblasts occurs. Myofibroblasts can derive from fibroblasts, circulating 

fibroblasts fibrocytes or AT2 cells after endothelial-mesenchymal transition (EMT) [123]. 

Myofibroblasts have a high affinity to produce collagen and additional ECM proteins, 

remodelling the tissue structure. The severity and onset of pneumonitis depends on numerous 

factors including the radiation volume, dose, dose delivery and patient risk factors [124]. Its 

diagnosis exclusively depends on general respiratory symptoms, lung biopsy and the early 

onset of lung structural changes detected with computed tomography (CT) imaging. To fight 

pneumonitis symptoms, steroid treatment can be administered. Nevertheless, a loss of 

symptoms does not decrease the development of later onset of pulmonary fibrosis [125], [126].  

 

6.2.2. Radiation fibrosis 

Finally, the irreversibility of pulmonary fibrosis characterizes the lung as a late responding 

radiation toxicity organ [118]. Fibroblasts and AT2 cells continue in the transitioning to 

myofibroblast, resulting into a vast increase in collagen production, production of ECM protein 

and, ultimately a modification of the ECM. There is furthermore a continuation of additional 
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immune cell infiltration, stimulating a pro-inflammatory environment. Eventually, the distinct 

alteration of the ECM transforms the flexible lung tissue into rigid ‘’scar-like’’ tissue, resulting 

in a complete and irreversible loss of the organ function in the affected area. The current 

diagnosis of pulmonary fibrosis is established in detecting clear structural changes in lung 

density using CT images.  

Cytokine TGF-β fulfils numerous roles in driving RILI during fibrosis development by promoting 

deposition of ECM and collagen [127]. The main isoform, TGF-β1, stimulates fibroblasts, 

neutrophils, monocytes and T-cells to secrete TNF-α, IL-1, fibroblast growth factor and 

additional TGF-β1 protein secretion together with directly stimulation of ECM protein release 

by fibroblasts [128]. The inflammatory cytokine is furthermore responsible for the stimulation 

of the fibroblast myofibroblast transition through Smad-mediated signalling [129]. It functions 

in remodelling of the ECM and the alveoli structure, partly through Rho kinase activation, 

promoting fibrosis [130]. A loss of functioning Smad3 resulted in a decrease in fibrosis 

formation following radiation exposure in mice and could be an interesting target to reduce 

radiation induced toxicity [131]. In addition, the cytokine has an impact on the immune 

response by inhibiting the activation of lymphocytes and leukocytes and enables further 

production of ROS [132]. Increased level of TGF-β protein in the serum has therefore been 

identified as a poor prognosis for the development of pulmonary fibrosis. As TGF-β has been 

linked in promoting both lung fibrosis formation and tumour progression, targeting of the 

TGF-β pathway is currently a favourable approach in reducing lung fibrosis. Previous clinical 

trials include the targeting of protein angiotensin II, an important regulator of both TGF-β and 

α- smooth muscle actin. Within these trials, grade 2 and higher pneumonitis was reduced after 

treatment with Angiotensin II receptor blocker ACE in non-small cell lung cancer patients 

treated with thoracic radiotherapy [133]. Similarly, patients treated with scavenging agent 

ambroxol displayed an inhibition of TGF- β1 and TNF-α and successfully reduced the loss of 

lung diffusion capacity in patients receiving radiotherapy [134].  
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7. The small intestine, a model for acute radiation toxicity 

7.1. The anatomy of the small intestine  
 

The small intestine starts from the duodenum, continuing into the jejunum and finally the 

Ileum, before reaching the appendix (Figure 10, left panel). The structure of the intestine is 

characterized by crypts and villi, specially intended to increase the surface for maximum 

nutrient uptake. The villi consist mainly of enterocytes and some additional goblet, 

enteroendocrine and tuft cells (Figure 10, right panel) [135]. This layer of the villi mainly 

contains enterocytes, responsible for the exchange of nutrients between the intestine space 

and the blood, supported by a stromal cell layer. The goblet cells are responsible for the 

production of the mucus layer that covers both the villi as well as the crypts. This layer protects 

the single cell layer against infiltration of gut bacteria that can lead to infections [136], [137]. 

The enteroendocrine cells are responsible for the production of various hormones, responsible 

for stimulating the nutrient transport and the scarce tuft cells facilitate the monitoring of the 

intestinal substance [137]. The top of the crypts, connecting the villi to the crypts, contains a 

layer of transit-amplifying (TA) cells. These cells still maintain limited cell divisions before they 

differentiate into the various cells in the villi. The base of the crypt contains paneth cells 

together with intestinal stem cells. Paneth cells, characterized by its granules in the cytoplasm, 

are activated upon bacterial stimuli. Paneth cells can release their granule content, containing 

antimicrobial proteins, ensuring the homeostasis of the gut microbiota [137]. Finally, the 

intestinal stem cells are responsible for the regeneration of the intestine and villi. The stem 

cells are identified as Lgr5 stem cells, located in position 1-4 and responsible for homeostasis 

regeneration together with Bmi1 stem cells, located in position +4 and only functional 

following intestinal damage [137], [138]. The study of Barker et al. (2007) identified that the 

Lgr5 positive stem cells crypt-base-columnar cells (CBCs) in position +1-3 can generate all 

epithelial differentiated cells present within the intestinal villi [139]. The cells can divide 

unconditionally, generating a limitless supply of TA cells. It is therefore crucial that after 

damage implication, like radiotherapy, these cells survive to restore the intestinal wall. The 

lamina propria connects the intestinal lumen with the muscle layer below and consists of 

fibroblasts, ECM and hosts immune cells (Figure 10, right panel).  
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Figure 10: Illustration of the small intestine of mice.  

The small intestine divided into the duodenum, jejunum, and Ileum (left) is constructed of crypts and villi, 

containing stem cells, enterocytes, goblet cells, mucus membrane, inflammatory cells, lamina propria, 

lymph nodes and lacteal with capillaries (right) [135], [140]. 

 

7.2. Radiation-induced intestine toxicity 
Toxicity to the intestine is a relative common normal tissue radiation injury. During 

radiotherapy of the abdominal space, pelvic area or thoracic area, the intestine is often an 

organ at risk, receiving a considerable amount of undesired treatment [141]. Up to 90% of 

patients, with the intestine as an organ at risk, experience symptoms of which 15% develop 

severe chronic complications years after radiotherapy [142]–[144]. The intestine toxicity is 

depending on numerous factors including the dose, radiation type, the tissue volume, and the 

treatment protocol. Recently, age has furthermore indicated to contribute to the severity of 

the intestine toxicity [145]. Generally, the intestine is considered early responding tissue, 

however, its toxicity is also presented in late responding irreversible chronic injuries [143]. 

In acute radiation intestine toxicity, known as radiation enteropathy, patients present with 

mucositis symptoms including diarrhoea, constipation, and haemorrhages. The symptoms 

appear within hours or days post radiotherapy, vastly impacting patients’ welfare [142], [146]. 

During radiotherapy, direct and indirect events through direct ionization and indirect damage 

through ROS, results in damage to the DNA, proteins, and additional changes in the rapidly 
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dividing intestinal epithelium. If repaired improper, this leads to senescence, compensatory 

proliferative reactions, or cell death, leading to mucositis, a complete destruction of the 

epithelial barrier characterized as the mucosal breakdown [142]. Gut microbiota can obtain 

direct contact with the lamina propria, resulting in a severe inflammatory response [147]. In 

parallel, the damaged vascular epithelium initiates the production of inflammatory cytokines 

including TGF-β and TNF-α [148], [149]. This collectively recruits T lymphocytes, macrophages, 

neutrophils, leukocytes, and monocytes, further activating the inflammatory response, 

increased ROS production, resulting in additional tissue damage and even degradation of the 

lamina propria [147], [150], [151]. The intestine is considered an early responding tissue, 

however the sensitivity against radiation induced toxicity varies depending on the cell type 

within the crypt. Intestinal stem cells at position +4 are very sensitive and undergo rapid 

apoptosis (4-6h) that occurs at exposure to 1 Gy IR [152]. In parallel, Lgr5+ stem cells revealed 

to be radioresistant. The crucial aspect to enable any intestine recovery is the survival of the 

stem cells, known as the Lgr5+ CBC cells, at the bottom of the crypts. The study of Hua et al. 

(2012) revealed that Lgr5+ CBC cells contain a DNA repair-mediated resistance against 

radiation induced toxicity. The study displayed in vivo a faster clearance of histone 2AX at 

serine 139 (termed γH2AX), Breast cancer susceptibility protein 1 (BRCA1), RAD51 and DNA-

dependent protein kinase (DNA-PK) foci in the CBCs compared to villus cells or TA cells, 

indicating increased repair capacities in both the homologous recombination (HR) and NHEJ 

repair pathways [153]. Following radiation exposure, only high doses of exposure (8-15 Gy) are 

correlated with a depletion of CBCs, resulting in abandoned gastrointestinal (GI) toxicity [154]. 

The depletion of Intestinal stem cells located on +4 (ISCs) at lower doses did not result in 

intestinal injury [154]. Strikingly, it has recently been discovered that following the depletion 

of CBC cells, daughter cells of Lgr5+ CBCs can de-differentiate to create a new group of Lgr5+ 

CBC cells in order to maintain homeostasis and reduce GI toxicity [155]–[157].  

If tissue recovery is unsuccessful, the additional inflammatory response, ROS production and 

tissue damage continues, resulting in chronic toxicity. Late toxicity occurs months to years after 

radiotherapy, is progressive and chronic. During this phase, there is a depletion of stem cells, 

continued proliferation and inflammatory response leading to drastic changes in the ECM. This 

results in loss of GI function, fibrosis, intestinal dysmotility, vascular sclerosis, mucosal 

dysfunction, irreversible mucosal atrophy, and chronic radiation enteritis [142].  Radiation 

enteritis is driven by an imbalance in proinflammatory cytokines IL-1b, TNF-a and IL-6 within 
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the muscularis layer. Consequently, this results in expression of IL-8 by the surrounding cells, 

resulting in neutrophil recruitment and accumulation [158]. The treatment for chronic intestine 

toxicity is surgical removal, accompanied by high mortality rate and the increase in early 

injuries has been linked to higher probability of late toxicity [159], [160]. The radiation regimen 

of commonly used hypofractionation containing 2 Gy per fractions given up to 7 weeks, results 

in recurring injuries causing a continues recruitment of immune cells, direct tissue damage and 

pathophysiologic responses [142]. TGF-β expression, as described priorly in chapter 5.2.2., 

promotes fibroblast in deposition of ECM and collagen, driving fibrosis formation. 

Interestingly, radiation-induced enteropathy is not correlated to the activation of the Smad 

pathway as described in lung fibrosis. It is however a result of low levels of TGF-β1 that activate 

the Rho/ROCK pathway, resulting in increased CCN2 gene expression and fibrosis [161].  

Categorizing the intestine as an early responding tissue needs to be reconsidered to limit the 

ignorance of acute damage on the tremendous complications it has for patients’ long term. 

Currently, no clinically approved drugs against GI toxicity are available. However, some 

promising results have been obtained in the decrease of acute GI toxicity following 

radiotherapy treatment in patients by using statins or statins with ACE inhibitors [162]. The 

standard diagnosis of acute intestine injury remains far from optimal, and solitary based on 

symptoms. Interestingly, recent studies have found that citrulline detection in plasma can be 

a suitable tool for diagnosis [163]. Citrulline is produced by enterocytes and therefore citrulline 

detection in plasma is a direct measure for the intestinal enterocyte population. Increased 

intestinal damage results in less enterocytes, decreasing the citrulline concentration. This can 

be used for damage observation and exploited to monitor drug effectiveness against intestine 

toxicity in a relative non-invasive manner. 
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8. The cell cycle of the normal tissue and the impact of 

radiotherapy 

8.1. The cell cycle mechanism 
 

The human body is composed of dividing and non-dividing cells, but the vast majority are 

non-dividing cells that sustain outside of an active cell cycle. Certain non-dividing cells (e.g. 

senescent or terminally differentiated cells) are irreversibly arrested (e.g. erythrocytes). In 

contrast, a subset of non-dividing cells, quiescent cells are arrested in G0 phase of the cell 

cycle and are capable of reactivation, entering the proliferative cell cycle in response to 

physiological growth signals [164]. The division and proliferation of tumour and normal cells 

are identified in 4 stages (G1, S, G2, and M phases), collectively known as the cell cycle (Figure 

11). In the first stage G1, supported by cyclin D, cells synthesize the required material for DNA 

replication, expands its size and examines if the environment is desirable to facilitate cell 

division. To continue to the second division state S, a checkpoint examines the environment 

including growth factor and nutrient availability, DNA damage, the expansion of the cell and 

the necessary synthesized proteins. The G1/S checkpoint is regulated by cyclin D and cyclin 

dependent kinases (Cdk) 4/6 where the complex phosphorylates and inactivate the 

retinoblastoma protein (Rb), resulting in the release of transcription factor E2F, promoting 

transcription of S phase transition proteins including cyclin E. Cyclin E activates Cdk2 resulting 

in degradation of p27 and synthesis of cyclin A, ensuring S phase transition. As the cell cycle 

progresses from late G1 to early S-phase, cyclin E is degraded, cyclin A and cdk2 form the 

cyclin A-Cdk2 complex, resulting in the promotion of DNA replication [165]–[168]. During S-

phase, the complete genome is duplicated [169]. 

As DNA replication in eukaryotes is achieved by the activation of multiple replication origins, 

which needs to be precisely coordinated in space and time, there is a tight interplay between 

the DNA replication program and the intra-S-phase checkpoint. This intra-S-phase checkpoint 

monitors the integrity of DNA synthesis and is activated when replication forks are stalled 

[170], [171].  

In the G2 phase, the cell undergoes extended cell growth and protein synthesis to accompany 

the 2 formed daughter cells. Cyclin A forms a complex with Cdk1 ensuring the stabilization of 

cyclin B-Cdk1 complex. This complex is necessary to ender cells into the M-phase, and it 

promotes the expression of maturation/mitosis promoting factors [172], [173]. Here, the G2/M 
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checkpoint is in place to ensure that no incomplete DNA replication or additional DNA damage 

is present that can interfere with mitosis. G2/M arrest is commonly observed after irradiation 

[174]. If the repair is unsuccessful, this will result in cell death. However, if the repair is 

successful, cells can enter mitosis. 

The M-phase/mitosis is responsible for the separation of the chromosomes and the final 

formation of the new daughter cells. The mitosis is divided into prophase, metaphase, 

anaphase, telophase, and cytokinesis. During prophase the chromosomes condenses, forming 

per chromosome the 2-sister chromatid connected by the centromere and the cell starts the 

formation of the mitotic spindle containing centrosomes and the growth of microtubules. 

During the prometaphase the nucleus is opened, exposing the chromosomes to the mitotic 

spindle. The mitotic spindle becomes attached to the kinetochores on the centromeres. During 

the metaphase, the mitotic spindle and the chromosomes are organized and in an equilibrium 

with both centromeres on opposite cell poles and the arranged chromosomes forming the 

metaplate plate in the centre of the cell [175]. The M checkpoint ensures that each sister 

chromatid is connected to the correct part of the mitotic spindle to allow the correct 

segregation of the sister chromatins. The cell will go into the anaphase where protein Esp1 

separates the sister chromatids from each other by cleaving of the connective cohesions. This 

is followed by the pulling of each chromatid towards the centromere and elongation of the 

cell itself. During the final stages of telophase and cytokinesis new nuclei are formed and the 

cytoplasm is divided using the cleavage furrow, eventually resulting in the complete formation 

of 2 new daughter cells [176], [177]. 

In 2006 a new cytokinesis checkpoint was discovered by Norden at all. in S. cerevisiae, 

regulated by Aurora-B kinase [178]. The checkpoint examines the development of any 

chromosome bridges that could result in aneuploid cell progeny or introducing abscission 

resulting in genomic instability [178]–[180].  
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Figure 11: Cell cycle progression.  

Cell cycle progression from G1-phase, facilitated by cyclin D/CDK4/6 and cyclin E/CDK2 followed by S-

phase with cyclin A/CDK2, G2-phase with cyclin A/CDK1 and M-phase with cyclin B/CDK1 together with 

its allocated checkpoints. (Created with BioRender.com) 

 

8.2. Cell cycle sensitivity to radiotherapy 
As the DNA content of cells, and therefore also its utilized DNA repair pathway, drastically 

changes throughout the cell cycle, the sensitivity of cells to radiation-induced damage can 

fluctuate depending on the cell phase. This was tested in early research by Sinclair and later 

by Vos where the studies examined the radiation sensitivity of cells depending on the cell cycle 

phase [181]–[184]. Chinese hamster cells and human kidney cells were synchronized and 

irradiated at different phases of the cell cycle (Figure 12). Sinclair published in 1968 extensive 

research displaying the cell phase sensitivities following radiation of various cell lines [181]. 

The research concluded the following points on the cell survival in various cell cycle phases 

that are still highlighted in scientific texts today. First, on average mitosis appears to be the 

most radiosensitive phase. Second, if G1 in the cells occurs for a longer period, radio resistance 

is on average observed in early G1 phase. Third, overall highest radio resistance is observed in 

mid S-phase. Lastly, G2 phase and mitosis carry equally high radiosensitivity (Figure 12) [181]–

[184]. However, in the observation of the cell phase sensitivities of the different cell lines, it 

appears that the degree of radiosensitivity in the cell phases is cell line specific. Although 

current research repeating the experiments is lacking, with current knowledge of the 
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complexity of both tumour and normal cells, it is hypothesized that similar results will obtain 

to be cell line specific. Nevertheless, it can be concluded that the sensitivity of cells following 

radiation is influenced by the cell cycle state of the cell following irradiation. 

 

Figure 12: Cell survival sensitivities throughout the cell cycle. 

Synchronized Chinese hamster cells displayed changes in cell survival depending on the cell cycle phase 

during irradiation. Late S phase displayed least sensitive, with G1 phase as moderate sensitivity and G2 

phase and mitosis as highly sensitive following radiotherapy [182]. 

 

8.3. Exploiting the cell cycle arrest for protection against 

toxicities 
Cancer cells multiply faster than normal cells in the body. Because radiation is most harmful 

to quickly growing cells, radiation therapy is more detrimental to cancer cells than normal cells. 

Furthermore, with radiosensitivity variable through the cell cycle and commonly lack of 

sufficient cell cycle checkpoints in tumour cells, it is interesting to exploit this difference to 

enhance the therapeutic window. The study of Chen et al (2000) revealed preliminary data on 
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exploiting the G1 arrest for normal tissue protection in vitro [185].  Normal and cancer 

epithelial cells were treated with low doses of staurosporine (non-selective protein kinase 

inhibitor) introducing G0/G1 arrest explicitly in normal cells. Cells were thereafter treated with 

lethal doses of doxorubicin, an anthracycline drug, resulting in tumour cells toxicity. However, 

normal epithelial cells resumed proliferation after the drug was removed with little to no 

toxicity. Similar results were obtained by Price et al (2004) [186]. Mouse kidney proximal tubule 

cells were treated with p21-adenovirus or Cdk2/5 inhibitor Roscovitine resulting in G1/S and 

G2/M arrests. Lower cisplatin-induced cell death was observed in treated cells compared to 

untreated cells. However, the study indicated that the protection against cisplatin induced 

toxicity is through reduction of apoptosis and not the cell cycle arrest. Interesting in vivo results 

were obtained by the study of Mull et al (2019) [187]. Using BrdU incorporation and western 

blot analysis, the authors showed that the compound UCN-01 induced a reversible G1 arrest 

in the small intestine of nude mice. Interestingly, the combined treatment of UCN-01 and 

chemotherapeutic 5-fluoruracil (5-FU) resulted in a significant increase in the survival of mice, 

while it triggered a significant decrease in tumour control on mice bearing MDA-MB-468 

tumours. Further research described protection of normal fibroblasts from polyploidy and 

nuclear morphology abnormalities induced by the aurora kinase inhibitor VX-680, if the cells 

were pre-treated with the potent p53 activator, actinomycin D [188]. However, p53 proficient 

tumour cells also displayed some degree of protection [188]. In vivo administration of G1T28 

to mice, a potent and selective Cdk4/6 inhibitor that inhibits the phosphorylation of RB 

inducing an exclusive, reversible G1 arrest, resulted in the inhibition of bone marrow cell 

proliferation [189]. Pre-treatment of mice with G1T28 allowed a faster recovery of complete 

blood counts while maintaining tumour control following 5-FU treatment [189]. 

The progress in reducing radiation-induced toxicity by exploiting normal cells cell cycle arrest 

was achieved by Johnson in 2010 and Tian in 2013 [190], [191]. The research of Tian et al. 

(2013) demonstrated that pre-treatment of prostate cancer-bearing mice with the drug 

darinaparsin (DPS), which arrests the cell cycle of crypts epithelial cells (CECs) at both G1/S and 

G2/M checkpoints, improved intestinal function as evidenced by increased body weight and 

animal survival while sensitizing prostate cancer cells [190]. The authors suggested that DPS-

activated cell cycle arrest in CECs may be at least one of the mechanisms responsible for DPS-

mediated radioprotection. In another study, Johnson et al. (2010) revealed similar 

radioprotection of proliferating hematopoietic stem/progenitor cells (HSPCs) in vivo by 
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Cdk4/6 inhibitors. The combined radiation and inhibitor treatment resulted in a decrease in 

hematopoietic toxicity with increased survival compared to standalone irradiation, providing 

evidence of a protection by normal cell cycle arrest [191]. This research provides preliminary 

evidence that the cell cycle can be exploited to reduce normal tissue toxicity while maintaining 

tumour control. 
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9. P53, the guardian of the genome 

The p53 protein was first discovered as co-immunoprecipitating with large T-antigen when 

examining the mechanism in which large T-antigen simian virus 40 (SV40) can transform 

normal cells into malignant cells, explaining that for a long time, the p53 gene was thought to 

be an oncogene [192], [193]. The research of Donehower et al (1992) revealed that p53 knock-

out mice did not display any development defects but developed tumours early on [194]. It is 

therefore not surprising that p53 is mutated in over 50% of human cancers [195]. The gaining 

of a p53 mutation is highly favourable for tumour cells, the p53 pathway loss results in a 

survival advantage where tumour cells can bypass cell cycle checkpoints for DNA damage and 

oncogenic signals and can undergo unlimited cell divisions. Eventually, the research of Baker 

in 1989 identified p53 as a tumour suppressor gene [196], [197]. 

 

9.1. The structure of the p53 protein 
The p53 protein contains 5 regions of main importance, the DNA binding, the transactivation, 

the tetramerization, the proline-rich and the regulatory domains (Figure 13) [198]. The 

transactivation domain is divided into Transactivation domain (TAD) 1 and 2, located at the N-

terminus of the protein and binds to various cofactors required for the suppression of 

tumorigenesis, including mouse double minute 2 homolog (MDM2). Mutations in TAD1 

modify the p53 protein drastically resulting in a loss of function. Modifications in TAD2 are less 

severe and the p53 protein remains almost to complete capacity [199]. 

The proline-rich domain is needed for p53s capacity to bind to DNA and for the protein’s 

stability. Deletions within this domain destabilizes the protein, making it prone for degradation 

[200]. The central core region of the protein contains the DNA-binding domain (DBD), allowing 

p53 to function as a transcription factor. The DNA-binding domain can recognize a specific 

sequence on the DNA identified as the p53 responsive element [201]. The tetramerization 

domain is located at the c-terminus of the p53 protein and is required to generate a 

homotetrameric complex that binds to the p53 responsive elements [202]. Finally, a recent 

study has shown that the regulatory domain is involved in stabilizing p53 by an inter-monomer 

interaction with the DBD of another subunit in the tetramer leading to an additional 

connection of all subunits in the tetramer [203]. With the enormous variety of functions that 

p53 holds, a strict regulatory and communication system is in place using post translational 
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modifications (PTMs). At different locations on its protein sequence, p53 can receive 

phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, or glycosylation [204]. 

Together, the location, type of modification and occasionally protein modifiers or cofactors 

convey one message that results in a specific p53 pathway activation [205].  

 

 

Figure 13: The structure of the p53 protein from n-terminal to c-terminal.  

The 5 domains range from n-terminal transactivation domain (NTD), proline-rich domain (PR), DBD, 

oligomerization domain (OD) to the c-terminal domain (CTD). Below represents the amino acid sequence 

of human p53 at the CTD with its function in protein stability DNA binding and co-factor recruitment 

[206].  
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9.2. The power of p53 within the cell 
Nicknamed the guardian of the genome, p53 is involved in many mechanisms throughout the 

cell. External stress signals including, irradiation, ultraviolet (UV), genotoxic drugs, nutrition 

deprivation, heat or cold shock or internal stress including replication or translation stress, 

metabolic changes or oncogene activation including MYC, E2F1, Ras or BCR-ABL gene 

expression results in the activation of p53. Irradiation, UV, and genotoxic drugs result in DNA 

damage, recognised by ATM or ATR, phosphorylating, and activating Checkpoint kinase 1 

(Chk1) or Checkpoint kinase 2 (Chk2), resulting in p53 phosphorylation. Additionally, proto-

oncogenes converted to oncogenes by mutations or accidental activation are detected by 

p14ARF [207]. This protein inhibits MDM2 resulting in release and activation of p53. Activation 

of the target genes including p21, p53 upregulated modulator of apoptosis (PUMA), 

Phosphatase and tensin homolog (PTEN), plasminogen activator inhibitor (PAI) and tumour 

suppressor activated pathway-6 (TSAP6) result in cell cycle arrest with possible cellular 

senescence, apoptosis, angiogenesis, and metastasis inhibition, mammalian target of 

rapamycin (mTOR) pathway inhibition, exosome mediated secretion or the activation of a 

negative p53 feedback signal (Figure 14).  

Phosphorylation has been mainly linked to the transcriptional activation of the p53 proteins. 

For example, the phosphorylation of Thr18 results in increased interaction between p53 and 

the transcription factor p300 and decreases the p53-MDM2 interaction, promoting the release 

and activation of p53 [208], [209]. Moreover, phosphorylation of Ser20 in response to DNA 

damage results in the transcription activation of p21 while the phosphorylation of Ser15 by 

Ataxia-telangiectasia mutated (ATM) or Ataxia telangiectasia and Rad3 related (ATR) promotes 

p53 stabilization and phosphorylation of Ser46 revealed to contribute to apoptosis induction 

[210]–[213]. The acetylation of p53 has been linked to apoptosis and cell cycle arrest in 

response to genotoxic stress [214]. C-terminus acetylation protects the protein from 

ubiquitination and degradation, acetylation of K382 by p300 promotes oligomerization and 

acetylation of K120 after DNA damage results in the transcription of apoptosis genes [215]. 

The ubiquitination PTM is required for returning to cell homeostasis after a stress event has 

been resolved. Monoubiquitination of p53 transports the protein from the nucleus into the 

cytoplasm. Here, polyubiquitination occurs, labelling the protein for degradation by proteases 

[216]. Although relatively less known, methylation on arginine or lysine residues and 
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SUMOylation on lysine residues has been linked to both p53 inhibition and activation following 

cellular stress [216]–[219]. 

 

Figure 14: p53 activation and its downstream effects. 

External factors can result in DNA damage or are promoted through hypoxia and nitric oxide, results in 

the phosphorylation and activation of p53. MDM2 can inhibit the activity of p53 by binding and 

inactivating the protein. Oncogene activation results in the release of p53 from MDM2 by inhibiting MDM2. 

Following phosphorylation, p53 is activated and can induce gene transcription of proteins driving cell cycle 

arrest, senescence, apoptosis, inhibition of angiogenesis and metastasis, DNA repair and damage 

prevention, inhibition of IGF-1/mTOR pathways, exosome mediated secretion and its own p53 negative 

feedback signalling. (Adapted from Kaneshia laboratories, created with BioRender.com) 

 

9.3. The function of p53 in cell cycle arrest 
During cell cycle progression multiple checkpoints are in place to ensure faithful DNA 

replication and proper chromosome segregation, and cell cycle arrest is among p53 proteins 

many pathway functions. Upon damage, the DNA damage response (DDR) is activated, which 

is controlled by three related kinases: ATM, ATR and DNA-PK [220]. Recruitment of those 

kinases at the chromatin depends on the nature of the damage and the phase of the cell cycle. 

The ATM-dependent pathway is essentially involved for the repair of DSBs, while the ATR-
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dependent pathway is activated in response to replication stress generating single-stranded 

DNA (ssDNA) regions. Nevertheless, the roles of ATM and ATR are heavily intertwined in 

response to DSBs [221]. The third component, DNA-PK, is also recruited at sites of DSBs and 

its major role is to promote non-homologous end-joining (NHEJ) [220]. It is to note that most 

(≈ 80%) IR-induced DSBs outside of S-phase are repaired by NHEJ independently of ATM. 

Once activated, these 3 kinases can phosphorylate a variety of substrates, among them p53 

and the histone variant H2AX, a marker of DNA damage and further explained in section 

Biomarkers of AsiDNA™ activity and sensitivity.  

Activation of p53 in response to DNA damage is associated with a rapid increase in its levels 

and ability of p53 to bind DNA and mediate transcriptional activation. This activation is 

primarily mediated by several PTMs, among them phosphorylation essentially in the N-

terminal domain of p53 [222]. Phosphorylation at ser15 and 20 disrupt the interaction of p53 

with MDM2, prolonging the half-life of p53 through the incapability of degradation in a 

MDM2-dependent manner. In vivo, both ATM and ATR can phosphorylate p53 on ser15 in 

response to IR and UV, while p53 phosphorylation on ser20 is also dependent on two 

checkpoint kinases 1 and 2 (Chk1 and Chk2), acting downstream of ATM and ATR, respectively 

[222]. Although in vitro studies have shown that DNA-PK can phosphorylate p53 on ser15 and 

ser37, which disrupts the interaction of p53 with MDM2, this was not proven to occur in vivo 

[222], [223]. 

P53 transcribes the CDKN1A gene encoding for the Cdk inhibitor 1 p21 protein, that can inhibit 

and inactivate cyclin D-Cdk4/6 and cyclin E-Cdk2 complexes. The protein interferes with the 

phosphorylation of the Rb protein ensuring the prevention of E2F release for continued 

transcriptions of cell cycle progression genes, resulting in a G1/S cell cycle arrest [224], [225]. 

Research has furthermore identified that senescence is dependent on the p53 cell cycle arrest 

as knock out of p21 resulted in a loss of senescence capabilities [226]. Although lower in 

affinity, p21 can also induce a G2/M arrest by inhibition of the cyclin B-Cd1 complex [227]. 

Additional less explored p53 driven cell cycle arrests are the interaction with proliferating cell 

nuclear antigen (PCNA) and 14-3-3δ, blocking DNA replication and inducing a G2/M arrest 

and the transcription of target gene GADD45. This induces a G1/S or G2/M arrest through the 

interaction with CR6-CRIF1 inhibiting Chk1 and Chk2, or by direct inhibition of Chk1 [228], 

[229]. If the damage repair was unsuccessful, p53 will induce premature senescence or 

apoptosis [230], [231]. Interestingly, research of Li et al. (2012) revealed that mice bearing 
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mutations on the p53 acetylation sites responsible for p21 and PUMA activation, driving cell 

cycle arrest and apoptosis, did not result in spontaneous tumour development [232]. The 

mutations maintained the ability of p53 to control antioxidant response and regulate energy 

metabolism, identifying unique mechanisms of p53 outside of the cell cycle control and 

apoptosis induction to ensure tumour repression [232]. 

 

9.4. P53 activation following radiation exposure 
DNA damage introduced by ionizing radiation results in increased translation of the p53 

protein and the inhibition of the proteins degradation followed by the activation of various 

downstream pathways, including apoptosis and senescence [233]–[236]. The complexity of an 

organism results in p53 responses that vary between normal tissues. Within the following 

chapter, the contribution of p53 to tissue specific radiation toxicity responses are explored. 

9.4.1. Vascular endothelial cells 

 

The radiation induced damage to vascular endothelial cells is a contributor to the development 

of both early and late toxicities. Cell death occurs similarly as in other cell types through mitotic 

catastrophe, senescence, or apoptosis [237], [238]. Radiation exposure results in endothelial 

degeneration and decrease in the density of micro vessels within the myocardium. The p53 

status of endothelial cells plays a crucial role in reducing radiation induced cardiac injury.  The 

study of lee et al (2012) and reconfirmed by Kuo et al. (2022) revealed that the loss of p53 

function by mutation of the TAD1 domain, complete loss of p53 or p21 in endothelial cells 

increased radiation-induced cardiac injury, accompanied with systolic dysfunction, cardiac 

hypertrophy, myocardial necrosis, and fibrosis [239], [240].  In addition, the loss of p53 resulted 

in increased hypoxia and disorganisation of the vasculature of the heart. The research revealed 

that the presence of p53 in endothelial cells protects the cell from radiation-induced mitotic 

catastrophe.  

9.4.2. The hematopoietic system 

Cells within the hematopoietic systems, including both differentiated and progenitor cells, are 

sensitive to radiotherapy treatment, where exposure results in anaemia and leukopenia [241]–

[243]. The acute toxicity revealed to be induced by increased apoptosis. Mice with a deficiency 

in p53 downstream proteins PUMA or BAX, responsible in the p53 mediated apoptosis 

activation, displayed increased progenitor cells with resistance against acute radiation-induced 
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hematopoietic toxicity [244]–[246]. In contrary, late radiation-induced hematopoietic toxicity 

is associated with senescence induced in hematopoietic stem cells, independent of apoptosis. 

Various studies have examined the p53 dependency on late radiation induced hematopoietic 

toxicity by depletion of p53 pathways, resulting in senescence. The depletion of CDK inhibitor 

2A gene, responsible for the transcription of p16INK4a and p19ARF, resulted in increased 

progenitor and hematopoietic stem cell division, leading to a decrease in senescence [247]. 

However, within the same population of progenitor and stem cells, the depletion of 

downstream p53 protein p21 resulted in increased stem cell toxicity, losing the capacity of p21 

to reduce p53 activation in hematopoietic stem cells, promoting apoptosis [248]. This is in 

correlation with the results obtained by Mohrin et al (2010) where hematopoietic stem cells 

have increased resistance to p53 mediated apoptosis by promoting increased NHEJ to repair 

DSBs [249]. Blocking of p53 has been proposed as a tool to reduce normal tissue toxicity. 

However, this needs to be approached with caution as for some tissues it can further enhance 

the sensitivity of the tissue to radiation-induced toxicities. 

9.4.3. The gastrointestinal system 

As described earlier in chapter 4 intestine toxicity, the sensitivity against radiation damage 

varies per cell type throughout the intestinal crypt. Overall, the dependency of p53 activity to 

radiation-induced GI toxicity is contradictory to the hematopoietic system. Following 

abdominal irradiations in p53 knock out mice, increased radiation-induced GI toxicities was 

observed [246]. Stem cells in the crypt first respond with a delayed progression and late S-

phase arrest and mitotic arrest together with epithelial cell migration along the crypt axis and 

exiting from the tip of the villus resulting in severe shrinking of the intestinal crypts [250]–

[252]. The release back into the cell cycle results in hyperproliferation of the stem cells and 

eventually results in death by mitotic catastrophe [251]. In addition, radiotherapy can activate 

apoptosis in the radiosensitive GI epithelial cells 4 hours following radiation exposure that is 

dependent on active p53. A decrease in apoptosis and increased resistance to radiation-

induced apoptosis was observed in epithelial cells within p53 knock out mice [253]. However, 

this resistance to apoptosis does not result in a decrease of cell death. Radiation exposure 

following the loss of p53 activity results in a delay in the cell death of epithelial cells from 4h 

to 24h post exposure resulting in death by mitotic catastrophe [254], [255]. In addition, the 

study of Kirsch et al. (2010) displayed that the loss of apoptosis, through knock out of BAX, 
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did not result in an impact on radiation induced GI toxicity. In addition, loss of p53 resulted in 

increased GI damage while overactivation of p53 had the capacity to protect against radiation 

induced toxicity [246]. Although the depletion of Bax did not impact the GI toxicity, the 

depletion of upstream protein PUMA did result in decreased GI toxicity correlated to increased 

p21 activity [256], [257]. In correlation, the depletion of p21 resulted in increased radiation 

induced GI toxicity [256]. Interestingly, p53 also has a contributed factor in late toxicity within 

the intestine following radiotherapy. The study of Lee et al. (2019) revealed that the loss of p53 

in vascular endothelial cells did not impact acute radiation-induced GI toxicity but did greatly 

contribute to late radiation-induced enteropathy. The study revealed in p53 deficient vascular 

endothelial cells following abdominal irradiation increased intestinal injury occurring at late 

timepoints, accompanied with increased microvessel damage and hypoxia [258]. Finally, the 

preprint publication of Morral et al. (2023) revealed that the recently discovered de-

differentiation of CBC daughter cells to Lgr5+ CBCs is dependent on p53 activity. The research 

identified the need of p53 activation to promote the de-differentiation of revival stem cells 

through Yap-dependent reprogramming with its main contributor of Clu+ cells as revival stem 

cells. The study furthermore identified that p53 inhibition impairs the de-differentiation. 

Similarly, continues p53 activation following the inhibition of mdm2 resulted again in impaired 

de-differentiation, striking an important feedback loop of p53-mdm2 to maintain homeostasis 

for de-differentiation following GI toxicity. Surprisingly, the study of Plant et al. (2019) did 

identify that the loss of MDM2 increased p53 activity, resulting in decreased radiation-induced 

GI toxicity [257]. These results provide evidence that the regulation of the radiation-induced 

GI toxicity is independent of apoptosis but dependent on functioning p53 and p21. The 

presence of the MDM2 feedback mechanism appears to be important in maintaining de-

differentiation but its loss does not enhance radiation-induced GI toxicity if p53 remains 

functional.  
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10. Radioprotectors to reduce radiation induced toxicities 

The development of the first radiosensitizer was pioneered by Patt. et al. in 1949 [259]. His 

research identified that mice receiving cysteine displayed a significant increase in survival 

following total body irradiation. Cysteine was identified to contain a sulfhydryl (SH) group, that 

can donate a hydrogen atom to a radicalized DNA molecule, resulting in chemical DNA repair, 

or donate a hydrogen atom to oxygen-based radicals, eliminating the oxygen based radical 

[260]. The identification of the radioprotective capacities of cysteine sparked interest at the 

U.S. army. With the chance of possible nuclear attacks and the visible damage inflicted in Japan 

at the end of the second world war, the U.S. introduced a drug development program to screen 

the capacity of substances to protect the healthy tissue against radiation-induced toxicity. Over 

4000 chemical substances were screened within this program and gave rise to the first FDA 

approved radioprotection drug, amifosine, also known as WR-2721 [261]. 

 

10.1. FDA approved radioprotectors 
The radiation protection of compounds containing the SH group is enhanced by adding 

phosphate to the SH group, creating a prodrug. The phosphate group ensures less toxicity 

and is stripped off the prodrug in the blood by alkaline phosphatase, exposing the drug with 

the SH group for diffusion into the cells. The chemical radioprotector amifosine as prodrug 

WR-1065, contains a phosphate group [262]. Several animal studies revealed a rapid increase 

of amifosine in normal tissue compared to tumour cells caused by the poor vasculature in 

tumours and less availability of enzyme alkaline phosphatase [263]. With the aim of reducing 

radiation-induced toxicity, amifosine treatment resulted in radioprotection in numerous 

normal tissues when combined to radiotherapy together with maintaining equal tumour 

control [264]. However, its application is limited due to the common occurrence of severe side 

effects including hypotension, fatigue, and somnolence in up to 20% of patients [265]. The 

drug received FDA approval only for its application in preventing xerostoma in head and neck 

cancers. 

The keratinocyte growth factor (KGF) resides in the family of fibroblast growth factor (FGF). 

The drug palifermin is a human truncated and recombinant form of KGF. Palifermin can 

activate the KFG receptors on epithelial cells stimulating survival, division, and differentiation 

of the cells. The KFG receptor activation results in Th2 cytokinesis, reorganization of the tissue, 
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decrease in induced DNA damage and inhibition of cell apoptosis [266]. Although tumour cells 

contain KFG receptors and treatment could enhance tumour growth or secondary 

malignancies, long term observations of patients receiving Palifermin did not result in increase 

of secondary malignancies [267]. The drug is furthermore well tolerated with limited adverse 

effects. However, the drug received FDA approval only for its application in reducing radio- or 

chemotherapy induced mucositis in patients undergoing bone marrow transplantation [268], 

[269]. However, chemically derived radioprotectors, including amifostine, are accompanied 

with severe side effects and complexity in its delivery route. 

 

10.2. Radioprotectors and the DNA damage repair 
An interesting finding identified in various preclinical and clinical radioprotectors, is the 

capacity to enhance the DNA repair machinery, reducing radiation-induced damage and 

radiation-induced toxicity. Among these radioprotectors are ferulic acid, Genistein, tyrosine 

kinase inhibitors, sesamol, troxerutin, quercetin, parathyroid hormone, and the previously 

described Palifermin [270]–[277]. The combination of radiotherapy with ferulic acid [270], 

sesamol [272], [278], troxerutin [273], [279] or quercetin [274], [280], displayed a decrease in 

damaged DNA fragments and y-H2AX foci, compared to standalone radiotherapy. In addition, 

various radioprotectors displayed an upregulation of repair proteins such as ATM [281], 53BP1 

[281], ATR signalling [275], Ku70 [276], or DNA-PK [277] in response to combined treatment 

with radiotherapy, displaying a direct enhancement of the DNA repair mechanisms. 

Corresponding, no research has identified DNA repair inhibitors to function in radioprotection. 

However, DNA repair inhibitors function as suitable radiosensitizers. The next chapter will 

explore the different methods of radio sensitization and radiosensitizers, including the unique 

radiosensitizer AsiDNA™.  
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11. Enhance tumour radiosensitivity with radiosensitizers 

To enhance curing chances, research has been focusing on the development of compounds 

that, once combined with radiotherapy, can increase tumour control.  

 

11.1. The use of nanoparticles  
One approach to sensitize tumours is by using nanoparticles. The particles can have central 

elements containing noble metals, heavy metals, or non-metallic as functioning units. 

Examples that have been implemented in nanoparticles include gold, AGulX, Hafnium or 

Nano-C60 [282]–[285]. The high Z number of the particles absorb energy from the x ray and 

can locally emit various electron types, creating a local irradiation. Its specificity for tumours is 

solidary based on the lack of a complete vasculature system. Nanoparticles get stuck and 

accumulate therefore in tumour areas [286]. The local tumour irradiation deposits its energy 

to the nanoparticles, causing the main dose and radio sensitizing properties of these noble or 

metal nanoparticles to be allocated to the tumour [287], [288]. Additionally, research is 

ongoing examining the use of nanomaterials to transport radioactive or chemotherapeutic 

content. Materials including silica have been indicated to function as successful vessels for the 

transport and accumulation of chemotherapeutic tirapazimine in tumours [289]. Although 

promising, the adverse effects of nanoparticles need to be determined and will vary depending 

on their structure and implemented functioning unit.   

 

11.2. Targeting of hypoxia 
A more familiar approach of enhancing tumours radiosensitivity is by affecting the hypoxic 

tumour core. Many tumours experience chronic and acute lesions of hypoxia. Due to the 

absence of oxygen, hydrolysis following radiation creates less ROS, resulting in less damage, 

depending on the radiation modality. This results in an increase up to 3-fold in tumour survival 

following radiotherapy known as the Oxygen Enhancement Ratio (OER). Removal of the 

hypoxic margins from tumours will decrease tumour cell survival. Interesting research replaced 

air with 100% oxygen known as hyperbaric oxygen, resulting in a saturation of oxygen 

availability, and reducing the hypoxic core [290]. However, the treatment can be accompanied 

by complications and is impractical as optimum conditions require the implementation of 

hyperbaric oxygen during irradiation. Another promising approach is the use of oxygen 
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mimetics. These compounds are presented with equal properties of oxygen in the radiation 

hydrolysis and chemical fixation of DNA damage, but have better diffusion rates and often 

contain nitrogen or nitric oxide (NO) components [291]–[293]. First generation oxygen mimetic 

drugs have been accompanied with moderate toxicity; however, progress was achieved in the 

second-generation oxygen mimetic drugs. The second generation nimorazole has been 

confirmed successfully in clinical trials and is currently included in the standard of care and 

administered prior to each radiotherapy session of head and neck squamous cell carcinoma in 

Denmark [294]–[296]. Additional promising research was obtained by Coates et al. (2020), 

revealing the unique properties of malaria drug atovaquone in eliminating hypoxia cores [297]. 

Atovaquone enables the overall decrease of oxygen consumption by targeting of the tumour 

mitochondrial metabolism within oxygen rich layers. This results in increased oxygen 

availability, further diffusion of oxygen into the tumours, and reducing the hypoxic core. 

Patients bearing NSCLC tumours received treatment with atovaquone which resulted in the 

increase in tumour oxygenation and decrease of hypoxic tumour areas [298]. Interestingly, 

upon combined treatment of carboplatin or cisplatin with atovaquone, a significant decrease 

in cell and spheroid survival was observed in vitro [297]. The efficacy and adverse effects of 

combined treatment of atovaquone and radiotherapy in patients with NSCLC is currently being 

explored in an ongoing phase I clinical trial (OCTO_088). 

 

11.3. Targeted radio sensitization by pathway inhibition 
The use of inhibitors targeting pathways of proliferation, division, migration, and DNA repair 

has been widely explored to enhance tumour radiosensitivity. The inhibition of the Wnt 

pathway, important in cell migration and proliferation, has revealed in several studies to 

increase antitumour efficacy by improved the immune response in tumour microenvironment 

together with increasing radiation induced complex lesions on the DNA [299], [300]. Similarly, 

inhibition of the Mitogen-activated protein kinases (MAPK) or P13K-Akt-mTOR pathway, 

important in cell proliferation and differentiation, resulted in increased antitumour efficacy 

resulting in increased apoptosis and inhibition of DSB repair following radiotherapy [301], 

[302]. The increased genomic instability in tumour cells or its dependency on specific repair 

mechanisms can be used as a target for reducing tumour resistance. A possible target is repair 

protein ATM, important for the detection of the initial DSB and introducing the signalling to 

activate DNA repair. The research of Durant et al. (2018) revealed that inhibition of ATM by 
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AZD1390 resulted in hypersensitivity of tumours following radiotherapy in vitro and in vivo 

[303]. The ATM inhibition resulted in a decrease of ATM activity, changes in DNA damage 

repair (DDR) that ultimately resulted in increased radiosensitivity. The presence of a mutation 

in p53, causing improper cell cycle arrest after treatment, resulted in synergy in decreased cell 

survival following AZD1390 treatment. Similar promising results are obtained by Fok et al. 

(2019) where DNA-PK inhibition resulted in increased antitumour efficacy [304]. DNA-PK 

inhibitor AZD7648 significantly decreased cell survival fractions in vitro, and increased in 

tumour control in vivo, following combined AZD7648 and radiotherapy treatment compared 

to irradiation standalone [304]. DNA-PK is an important participant in DNA repair through 

non-homologous end joining (NHEJ), binding to the DSB ends using Ku70/Ku80, recruiting 

and activating additional repair proteins. Its inhibition results in a severe decrease in NHEJ 

activity resulting in inefficient DNA repair following radiotherapy and ultimately, cell death. 

Conversely, the developed inhibitors are not tumour specific, and the proteins remain of 

utmost importance to normal cells which can result in adverse effects. In addition, the 

inhibition of a single protein has resulted in vast resistance mechanism development in the 

past. Parallel pathway targeting as revealed by the radiosensitizer AsiDNA™, might resolve this 

issue. 

 

11.4. AsiDNA™, a unique radiosensitizer mimicking a double 

stranded break 
 

The effectiveness of a single protein inhibition in cancer treatment is often short-lived as 

cancer cells can develop resistance through the development of mutations within the protein 

target that disrupt protein-drug interaction [305], the gained ability to transport drugs out of 

cells [306], and utilization of additional repair or signalling routes that remain functional and 

are not inhibited using the drug treatment [307]. In addition, the activity of inhibitors is 

unspecific to cell types and can therefore cause major complications in healthy cells. The 

development of new agents, interacting and interfering with cellular mechanisms that have 

not been exploited before, could be a suitable direction for future treatment modalities. 

Targeted DNA repair proteins has gained particular interest as cancer cells are more 

susceptible to DNA damage than normal cells, and they rely on specific functional repair 

pathways to survive [308]. The laboratory of Marie Dutreix has successfully developed a new 
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class of DNA repair inhibitors, Dbait, able to simultaneously interfere with numerous DNA 

repair pathways. 

 

11.4.1. Dbait mimics a double stranded break 

The Dbait molecule was primarily designed to mimic a DSB. DSBs are considered as the most 

toxic lesion on the DNA and will result in cell death if repair is unsuccessful. By designing a 

novel agent mimicking a DSB, both DSB repair pathways, NHEJ and HR, can be affected, 

rendering the cells more sensitive to physical and chemical agents producing DSBs. In detail, 

Dbait consists of two complementary DNA sequences of 32 nucleotides that are connected 

through a 1,19-bis (phosphor)-8-hydraza-2-hydroxy-4-oxa-9-oxo-nonadecane linker [309], 

[310]. The blunt end was protected from exonuclease attack by substituting the three 3’ and 

5’ terminal nucleotide residues with phosphorothioate nucleotides. The base-pair sequence 

revealed to have no beneficial impact on the drug’s activity and currently consists of 5’-GsCsTs 

GTG CCC ACA ACC CAG CAA ACA AGC CTA GA -H- TCT AGG CTT GTT TGC TGG GTT GTG GGC 

AC sAsGsC -3’ where H is the hexaethylene glycol linker, and s the phosphorothioate linkages 

[311]. Dbait binds and activates DNA-PK and poly(ADP-ribose) polymerase (PARP) [309], [311], 

[312] which leads to γH2AX and heat shock protein 90 (HSP90-p) [311], [313], [314] and to 

parylation [309] in cells. In fact, Dbait revealed to activate a pan-nuclear yH2AX signal resulting 

from an overactivation of DNA-PK and confirmed to disorganize the repair mechanisms by 

additional ATM phosphorylation and KU protein activation. Phosphorylation of Chk2, Chk1, 

Rpa32, Nbs1 and p53 appeared to also occur upon Dbait treatment [311], [313]. Continued 

research revealed that Dbait treatment increases foci formation of X-ray repair cross-

complementing protein (XRCC) 1 and PCNA after standalone treatment, but prevented Rad51, 

XRCC1 and PCNA foci formation at laser-induced damage sites following Dbait treatment 

[309]. 

 

11.4.2. From Dbait to AsiDNA™, the molecular design and function 

One of the major limitations of the use of Dbait in pre-clinical studies arose from the fact that 

Dbait cannot diffuse into the cells without the help of a transfection agent. Therefore, for 

transition to clinical applications, an additional linker containing a cholesteryl 

tetraethyleneglycol group was added at the 5’-end to Dbait, creating AsiDNA™ (Figure 15) 

[310], [312], [315]. The uptake of AsiDNA™ has been linked to low-density lipoprotein receptor 
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(LDL-R) activation and is completely independent of transfection agents. Evaluation of cell 

membrane LDL-R concentration revealed a correlation between LDL-R concentration and 

intracellular AsiDNA™ levels without any correlation to cellular resistance to AsiDNA™ [316]. 

 

Figure 15: Chemical structure of AsiDNA™.  

The molecule consists of two complementary DNA sequences of 32 nucleotides that are connected through 

a 1,19-bis (phosphor)-8-hydraza-2-hydroxy-4-oxa-9-oxo-nonadecane linker containing a cholesterol at 

the 5’-end together with three phosphorothioate nucleotides at both 3’ and 5’ terminal [317]. 

 

11.4.3. The AsiDNA™ molecule, DSB decoy with unique properties  

Identical to Dbait, AsiDNA™ activity results in the inappropriate activation of ATM, PARP and 

DNA-PK. The phosphorylation of ATM appears within an hour upon AsiDNA™ treatment and 

resolves within 10 hours while DNA-PK induced γH2AX displays maximum signal at 24h of 

AsiDNA™ treatment. Strikingly, PARylation displays a maximum level at 48h of AsiDNA™ 

treatment and remains consistently high for days [318]. The hyperactivation of these proteins 

results in pan-nuclear γH2AX and HSP90-p, and finally generate a false DNA damage signal 

[318], [319]. Consequently, the activated and modified repair proteins are unable to produce 

foci at the initial site of damage on the genomic DNA and the induction of pan-nuclear γH2AX 

further encourages the disorganization of the repair signals. The interference of the various 

repair proteins results in both the impairment of homologous recombination [319] as well as 

non-homologous end joining [318]. As PARP is a key protein in base excision repair and single-

stranded break repair, the autoPARylation by PARP1 upon AsiDNA™ activity impairs likewise 

these repair mechanisms [318]. Overall, numerous repair factors have been examined that 

revealed a dysregulation or complete absents of IR- or laser-induced foci formation in the 
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presence of AsiDNA™ including NHEJ and homologous recombination (HR) proteins ATM, 

NBS1, RAD51, DNA-PK, BRCA1, XRCC4, RPA and 53BP1, and repair proteins functioning in 

single-stand break repair (SSBR) including PARP [315], [319]. Tumour cells will expectantly 

undergo mitotic catastrophe after damage accumulation. 

 

11.4.4. Biomarkers of AsiDNA™ activity and sensitivity  

The pan-nuclear γH2AX staining induced by DNA-PK upon AsiDNA™ treatment has been 

clearly observed in all cell lines including healthy and tumour cell lines, with the only exception 

of DNA-PK deficient cells. The AsiDNA™-induced DNA-PK activity furthermore results in a pan-

nuclear HSP90-p staining and forms, together with the phosphorylation of histone 2AX at 

serine 139 and PARylation, simple biomarkers of AsiDNA™ activity in cells (Figure 16) [318], 

[319]. The γH2AX is primarily mediated by ATM in response to DSBs, and ATR-dependent in 

responsγγe to ssDNA generated by replication stress or UV radiation [220], [320], [321]. In 

addition, IR-induced H2AX phosphorylation can be conducted by ATM and DNA-PK in a 

redundant, overlapping manner [322]–[324]. DNA-PK is solely responsible for H2AX 

phosphorylation during apoptosis while ATM is dispensable for the process [325]. 

Furthermore, H2AX phosphorylation is only dependent on DNA-PK activity in response to 

AsiDNA™ treatment (Figure 16C) [318]. γH2AX forms discrete nuclear foci in response to IR, 

which is indicative of DSBs [326]. However, in response to replicative stress [327], UV radiation 

[328], clustered DNA lesions [322], AsiDNA™ [318], and in cells undergoing apoptosis [329], 

γH2AX has a pan-nuclear staining. The activity of these biomarkers represented by pan-nuclear 

staining’s have been shown after AsiDNA™ treatment compared to various DNA repair 

inhibitors and chemotherapeutics [319]. The capacity of AsiDNA™ to cause cell toxicity 

standalone can be evaluated by micronuclei formation and large genome rearrangements, 

depending on the endogenous level of genomic instability of the tumour cells. Increased 

micronuclei formation upon AsiDNA™ treatment signifies increased toxicity and can therefore 

function as biomarker for AsiDNA™ sensitivity [317]. 
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Figure 16: Biomarkers of AsiDNA™ activity.  

(A) PARP activation following AsiDNA™ treatment on SK28 tumour cells detected in the nucleus (dark 

gray), cytoplasm (black) and total PARylation (light gray). (B) Kinetics of PARP activation following 

AsiDNA™ treatment with (black) or without (grey) 1h pre-treatment of Olaparib on SK28 tumour cells. (C) 

Immunofluorescence staining of γH2AX following 24h of AsiDNA™ treatment in tumour cell lines SK28, 

AT5BI, MO59K, MO59J, Hela with or without inhibition of ATR, ATM, DNA-PK or PARP1. Represented scale 

bar of 30 µm [318]. 

 

11.4.5. Lack of tumour resistance 

Recent studies have examined the impact of repeatable AsiDNA™ treatment in a broad variety 

of cell lines and demonstrated a complete absence of any resistance development against 

AsiDNA™ treatment. Likewise, the cyclic treatment identified sensitive cell lines that were 

unable to recover and resistant cell lines that represented an increase in sensitization up to a 

minimum survival threshold. This increase in sensitivity was correlated with the downregulation 

of genes coded for proteins in the DNA-PK pathway. Interestingly, treatment of KMB7 tumour 

cells with PARP inhibitors Imatinib, Olaparib or chemokinetic 6-thioguanine, all displayed a rise 
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of tumour resistant clones whereas AsiDNA™ treatment displayed a complete absence of 

AsiDNA™ resistance clones [330]. AsiDNA™’s unique ability to impact numerous repair 

pathways in parallel results in the complete lack of any possible flexibility of tumour cells to 

develop any resistance mechanism. 

 

11.4.6. Pharmacokinetics of AsiDNA™ 

Pharmacokinetics of AsiDNA™ revealed a severe reduction of AsiDNA™ in mouse plasma 

within 2 hours following AsiDNA™ administration with both intraperitoneal and intravenous 

injection. Moreover, an accumulation of AsiDNA™ was observed in liver, intestines, and kidneys 

with a vast increase in γH2AX, explicitly in liver tumours. AsiDNA™ significantly chemo 

sensitized liver metastasis in the colorectal cancer model, represented by a shrinkage in 

tumour volume and increase in necrosis [331], [332]. Likewise, preclinical toxicology studies of 

AsiDNA™ performed in wistar rats and cynomolgus monkeys’ solitary revealed a maximum 

plasma concentration between 2 and 4 hours after administration together with a reversible 

inflammatory response at the site of injection and no observed adverse effects, providing 

evidence of the safety of AsiDNA™ [332], [333]. Within the conducted first phase I dose 

escalation study (DRIIM), patients received intratumoral and peritumoral injections ranging 

between 16 and 96 mg AsiDNA™, three times a week over 2 weeks, 3-5h prior to radiotherapy 

of 30 Gy delivered in 10 fractions over 2 weeks. The half-life of AsiDNA™ detected within the 

serum of patients ranged from 2.4 to 4.9 hours and no dose-limiting toxicity was observed 

[334]. During the second phase I dose escalation study (DRIIV-1), patients received intravenous 

injections to reach deep seeded tumours with concentrations ranging between 200 and 1800 

mg AsiDNA™ [335]. The drug was administered daily for 3 days within the first week, followed 

by weekly treatment thereafter, with treatment cycles of 21 days per cycle. Treatment cycles 

were continued up to disease progression or unacceptable toxicity. The half-life of AsiDNA™ 

detected within the serum of patients ranged from 3 to 5 hours with increased dose 

proportional and consistent to the AsiDNA™ dose delivered. Dose-limiting toxicity was 

observed in only 2 patients receiving AsiDNA™ doses above 900mg. 
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11.4.7. The additive or synergistic effect of combined treatment with 

AsiDNA™ and additional therapies 

Deliberately induced DNA damage by chemo- or radiotherapy can result in tumour cell death. 

AsiDNA™ does not induce damage standalone and is therefore dependent on endogenous 

damage arising from genomic instability or damage induced by an additional therapy [317], 

[319]. 

 

11.4.7.1. Combined AsiDNA™ chemotherapy treatment 

The study of Jdey et al. (2017) [319] revealed that the combination of AsiDNA™ treatment with 

PARP inhibitor, Olaparib, influences the DNA repair by independent pathways, resulting in a 

supra-additive effect. Indeed, the inhibition of PARP by Olaparib inhibits base excision repair, 

represented by a decrease of XRCC1 recruitment upon treatment, whereas AsiDNA™ interferes 

with homologous recombination repair, characterised by a decrease in Rad51 and 53BP1 

recruitment. The combination of AsiDNA™ and Olaparib therefore caused a proliferated 

accumulation of damage [319]. Similar results can be obtained by exploiting synthetic lethality 

dependencies, including the well-known BRCA deficiency [319]. 

Likewise, the publication of Herath et al. (2017) combined trans arterial chemoembolization 

(TACE) using doxorubicin with AsiDNA™ treatment, in a liver tumour model [336]. AsiDNA™ 

enhanced the efficacy of TACE in the treatment of human hepatocellular carcinoma (HCC) 

observed by a compelling increase in necrosis and decrease in proliferation and tumour 

growth reduction. Moreover, the results displayed an inhibition of neo-angiogenesis by 

specific Vascular endothelial growth factor receptor 2 (VEGFR2) suppression, reduced tumour 

volume together with histological changes, in the primary hepatocellular carcinoma model 

[336]. 

 

11.4.7.2. Combined AsiDNA™ radiotherapy treatment 

The capacity of Dbait molecules to radio sensitize tumour cells in mouse models was initially 

established by Quanz et al. (2009) where the survival fraction of tumour cells decreased upon 

combined Dbait and radiotherapy treatment [311]. Implementing in vitro and in vivo combined 

therapy on melanoma models revealed similar capacities of Dbait (in vitro) / AsiDNA™ (in vivo) 

to radio sensitize tumours. The research displayed an additive effect on survival reduction of 

SK28 and 501mel tumour cells upon the combined radiotherapy AsiDNA™ treatment. The 
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introduction of AsiDNA™, priorly known as DT01, appeared in vivo where every other day 

AsiDNA™ administration was combined with fractionated radiotherapy consisting of 10 times 

3 Gy daily fractions. The combined therapy revealed a significant decrease in tumour growth 

together with increased survival (Figure 17) [332]. 

 

Figure 17: AsiDNA™ (DT01) radiosensitizes SK28 tumours in vivo.  

Mice bearing SK28 tumours received no treatment (NT), 10 fractions of 3 Gy divided over 4 weeks (RT4w), 

or AsiDNA™ combined with fractionated radiotherapy (RT4w + DT014w). (A) Treatment schedule of 4 weeks 

with black triangles representing a 3 Gy radiation fraction and gray triangles representing an AsiDNA™ 

treatment. (B) Tumour growth curve in days after treatment completion. (C) Percentage of surviving mice 

in in days after treatment completion. Endpoint of 1500mm3 tumour size [332]. 

 

A major obstacle in drug delivery is the ability of the supplemented agents to reach and 

infiltrate in tumours. With respect to brain tumours, an additional line of defence, the blood 

brain barrier (BBB), results in the inaccessibility of many drugs to reach the region of interest. 

Promising results obtained by Coquery et al. (2012) revealed the ability of AsiDNA™ to cross 

the BBB, infiltrate within glioma tumours. AsiDNA™ was administered, combined with 

radiotherapy, resulting in an increase in tumour response, increase inflammation, and 

destabilization of the microenvironment without changes in angiogenesis in rats with RG2-
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glioma [315]. Identical results were obtained recently by the research of Ferreira et al. (2020) 

revealing AsiDNA™ infiltration within medulloblastoma tumours and radio sensitization of the 

tumours upon single and fractionated radiotherapy [337]. Strikingly, AsiDNA™ treatment did 

not introduce an added toxicity and upon combined AsiDNA™ treatment with brain irradiation, 

there was an increase in survival compared to standalone radiotherapy. The absence of added 

toxicity to normal tissues has been reported priorly with combined Dbait and oxaliplatin, 5-

fluorouracil [338] or radiotherapy [332] treatment along with combined AsiDNA™ and 

radiotherapy [315], doxorubicin [336], [339] or carboplatin [340]. However, a reduction of 

normal tissue toxicity has not been formerly reported in those studies. 

 

11.4.8. AsiDNA™ in clinical applications 

The first phase 1 trial (DRIIM) was performed on patients with skin metastasis from melanoma. 

Patients were treated with radiotherapy in combination with intra- and peri-tumoral AsiDNA™ 

injections, 3 times a week. The results reported no dose-limiting toxicities, and the maximum-

tolerated dose was not reached. Antitumour activity was similarly observed in non-injected 

tumours and is expected to be caused by a systemic distribution of AsiDNA™ after local 

injection or an activation of the immune response, indicating a form of abscopal effect [334]. 

The second phase 1 trial dose escalation study (DRIIV-1) was performed on patients with a 

variety of solid tumour. Patients were treated for three consecutive days with IV administration 

of AsiDNA™ and continued treatment once a week in the following weeks. Tumour biopsies 

revealed increased AsiDNA™ activity in the tumour as revealed by the biomarkers γH2AX and 

HSP90 phosphorylation (Figure 18).  

 

Figure 18: AsiDNA™ biomarker detection in patients’ biopsies.  

Tumour biopsies from patients pre- and post- treatment with AsiDNA™ with immunohistochemistry 

detection of AsiDNA™ biomarkers γH2AX and pHSP90 [335].  
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Remarkably, the optimum tolerated dose was concluded at 600mg while no AsiDNA™-induced 

toxicity limiting the dose was observed, and the maximum tolerated dose was not reached 

[335]. In recent case studies the lack of toxicity was not only reconfirmed, but AsiDNA™ 

treatment enabled a vast increase in the total of endured cycles of carboplatin -/+ paclitaxel, 

by delay of the chemotherapy-induced treatment toxicities, in the majority of patients [341]. 

Collectively, the phase 1 clinical trials together with the case studies and the pre-clinical 

research of Ferreira et al. (2020) revealed an entirely unexplored abundant impact of AsiDNA™ 

on normal tissue toxicity, paving the way to examine the molecular and cellular impact of 

AsiDNA™ treatment on normal cells.  
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II. THESIS PROJECT 

The DNA repair inhibitor AsiDNA™ has been designed and developed within Institut Curie to 

widen the therapeutic window of both radiotherapy treatments and chemotherapeutic 

treatments. The AsiDNA™ molecule was identified in various studies to radio- and chemo-

sensitize tumours, in vitro and in vivo, following combined treatment [319], [332], [336]. In 

addition, AsiDNA™ revealed no increase in toxicity to normal cells or tissue in vitro, in vivo, in 

phase I clinical trials and in case reports [334], [335], [341]. Remarkably, case reports revealed 

a strong delay in the onset of chemotherapeutic toxicities while maintaining tumour control 

once patients received AsiDNA™ treatment in combination with the allocated 

chemotherapeutics [341]. Collectively, these observations sparked the interest to examine the 

impact of AsiDNA™ treatment on normal cells by identifying, in greater detail, the mechanism 

driving the lack of AsiDNA™ toxicity in normal cells. 

The aim of the work presented in this thesis will reveal a novel mechanism of AsiDNA™ 

explicitly in normal cells and normal tissue. In addition, the research revealed a possible 

utilization of this novel AsiDNA™-induced mechanisms to protect normal tissue against 

radiation induced toxicity, expanding the therapeutic window. In the following chapters, the 

novel research we have conducted on exploring the behaviour of AsiDNA™ in normal cells, the 

mechanisms involved in normal cells and its capacity to protect against normal tissue toxicity 

will be further discussed.  
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III. RESULTS 
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12. Article I:  

The following research is of both fundamental and translational nature. In this study we 

examined and identified the impact of AsiDNA™ treatment on normal epithelial cells and 

fibroblasts and its impact on reducing radiation toxicities to the normal tissue of the lung and 

intestine. We have identified the capabilities of AsiDNA™ treatment to explicitly activate 

cellular pathways in normal cells, translatable to preclinical models of radiation-induced 

toxicity in which AsiDNA™ treatment impacts the severity of the induced toxicity. The 

preclinical experiments conducted within this study (early radiation-induced intestine toxicity 

and late radiation-induced lung fibrosis) can be translated to other models of radio- or chemo-

induced toxicities and furthermore can be utilized to examine the mechanisms driving 

radiation responses in the normal tissue. Here we present the work in the form of an article 

that was submitted to NAR cancer (Manuscript ID NARC-2023-079) and received revisions of 

which responses to the revisions are currently ongoing.  
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ABSTRACT 

AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, 

was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a 

decoy hijacking the DNA damage response. Previous studies have demonstrated that 

standalone AsiDNA™ administration is well tolerated with no additional adverse effects when 

combined with chemo- and/or radiotherapy. This lack of normal tissue complication 

encouraged further examination into the role of AsiDNA™ in normal cells. This research 

demonstrates the radioprotective properties of AsiDNA™.  In vitro, AsiDNA™ induces a DNA-

PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in 

tumour cells. This cell cycle arrest improved survival after irradiation or pharmacological drug 

treatment, only in p53 proficient epithelial cells. Combined administration of AsiDNA™ with 

conventional radiotherapy in mouse models of late and early radiation toxicity resulted in 

decreased onset of lung fibrosis and increased crypt survival in the intestine. Similar results 

were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. 

Furthermore, mechanisms comparable to those identified in vitro were detected both in vivo, 

in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that 

AsiDNA™, can partially protect healthy tissues from radiation toxicity by triggering a G1/S 

arrest in normal epithelial cells and fibroblasts.  

INTRODUCTION 

Radiotherapy and chemotherapy are customarily implemented in cancer treatments with 

curative intent; however, these therapies are often accompanied by the development of 

moderate to high levels of treatment-related toxicity. Radiotherapy frequently results in loss 

of epithelial integrity, tissue senescence, and cell death. Fibrosis formation, vascular damage 

with the potential development of secondary malignancies, and cardiac arrhythmia can all 

develop in the long term (1,2). Toxicities correlated to chemotherapy depend on the type of 

chemotherapeutic administered. These injuries range from anorexia, vomiting, and 

gastrointestinal toxicities to neurotoxicity (3). Consequently, treatment-induced toxicities 

often interfere with the completion of the initial treatment plan. To enhance treatment effect, 

it is crucial to alleviate treatment-related toxicities to both improve post-treatment outcomes  
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and advance patients’ welfare. This can be achieved by expanding the therapeutic index 

using sensitizers or protective treatment modalities to shift the normal tissue complication 

probability or the tumour control probability (4). The DNA repair inhibitor AsiDNA™ has 

previously been validated as a suitable treatment agent to enhance this index. The active 

part of the molecule consists of two complementary oligonucleotides of 32 bases stabilized 

at one blunt end by a hexaethyleneglycol linker (5). The functionalization of a cholesterol 

group at the other blunt-end of the molecule allows its cellular uptake via LDL receptors 

expressed at the cell membrane both in vitro and in vivo. (6,7). AsiDNA was designed to 

mimic double-stranded breaks, triggering deceptive signalling of DNA damage and 

impairing DNA repair of chromosomes damaged by radiation or chemical treatments (8,9). 

Indeed, AsiDNA™ binds both DNA-dependent protein kinase (DNA-PK) and PARP enzymes, 

activating their kinase and polymerase activity, respectively, and consequently leading to 

modification of numerous proteins in the cell [see (10) and references therein]. The 

characteristic substrates phosphorylated by AsiDNA™-dependent DNA-PK activation are, 

histone H2AX and heat shock protein 90 (HSP90) (6,9,11,12). 

Several preclinical studies have demonstrated an additive or synergistic tumour control effect 

of AsiDNA™ combined with radiotherapy or chemotherapy, without any added toxicity. 

(10,13-17). These observations are further supported by in vitro data, revealing no additional 

toxicity after continuous or cycling treatment of AsiDNA™ on normal cell models, while 

simultaneously increasing tumour cell sensitivity with no acquired resistance (7,8,18). In 

addition, human clinical trials have failed to show any dose-limiting toxicity, with none 

reaching the maximum-tolerated dose (19,20). Recently, AsiDNA™ treatment in combination 

with carboplatin +/- paclitaxel was tested in patients bearing solid tumours (21). These case 

reports showed no increased toxicity of combined carboplatin and AsiDNA™ treatment. 

Moreover, combined treatment allowed the dose delivery times of carboplatin to be 

exceeded before the occurrence of toxicities (21). Taken together, these pre-clinical and 

clinical studies suggest that AsiDNA™ can increase the therapeutic window by radio- or 

chemo-sensitizing tumour cells upon treatment, while minimizing normal tissue injuries. 

However, the mechanism of normal tissue resistance remains still poorly understood. 
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To address this knowledge gap, in the present study, we aimed to characterize the molecular 

mechanism underlying the potential normal tissue protection capacities of AsiDNA™ and to 

demonstrate its radioprotective potential in vivo. To evaluate if the radioprotection property 

of AsiDNA™ is retained or enhanced with different modes of radiation, we combined 

AsiDNA™ with conventional radiotherapy (CONV-RT) or FLASH radiotherapy (FLASH-RT). 

FLASH-RT is based on dose rates delivery over 1000 times higher (≥ 40 Gy/s) compared to 

CONV-RT (22). Numerous studies have demonstrated that FLASH-RT diminishes the severity 

of radiation-induced toxicities in normal tissues that remains present in CONV-RT, while 

maintaining an equivalent anti-tumour response (23-29).  

Herein, we report that AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest 

specifically in normal epithelial cells and fibroblasts, referred to as normal cells, resulting in 

improved survival following ionizing radiation and treatment with pharmacologic drugs. This 

research provides evidence that this mechanism could account in mouse models for reduced 

early toxicity in the small intestine and reduced late toxicity in lung, demonstrating the 

potential benefit of the association of AsiDNA™ to standard radiotherapy in cancer 

treatment.  

 

MATERIAL AND METHODS 

Cell culture and transfection 

Immortalized retinal pigment epithelial cell line hTERT (RPE-hTERT, kindly provided by A. 

Londono, Institut Curie, France), RPE-hTERT with shp53 (kindly provided by D. Fachinetti, 

Institut Curie, France), primary human skin fibroblasts (NHSF: BJ, ATCC CRL-2522), primary 

human lung fibroblasts (MRC-5, kindly provided by P. Jeggo, GDSC, Brighton, U.K.), and 

SV40-transformed MRC-5 fibroblasts (MRC-5v1, kindly provided by P. Jeggo, GDSC, 

Brighton, U.K.) were cultured in DMEM/F12 glutamax™ supplement medium (Thermo Fisher 

Scientific, France) supplemented with 10% fetal calf serum (FCS, Eurobio, France) and 

100U/ml penicillin 100 µg/ml streptomycin (P/S, Thermo Fisher Scientific, France). A549 lung 

carcinoma cells (ATCC CCL-185), HCT116 colon carcinoma cells (ATCC CCL247) and U-2 OS  
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osteosarcoma cells (ATCC HTB-96) were cultured in DMEM/F12 glutamax™ supplement 

medium supplemented with 10% FCS, P/S and 1x Non-Essential Amino Acids (MEM NEAA 

100X, Thermo Fisher Scientific, France). All cell lines were maintained in a humidified 

atmosphere at 37°C with 5% CO2. The absence of Mycoplasma contamination was 

determined in-house by using LookOut Mycoplasma PCR (Sigma-Aldrich). Transfection of 

cell lines are described in the Supplementary Materials and Methods. 

Molecules 

AsiDNA™ (MW = 20931.4 g/mol) is a 64-nucleotide (nt) oligodeoxyribonucleotide consisting 

of two 32 nt strands of complementary sequence connected through a 1.19bis (phospho)-8-

hydraza-2-hydroxy-4-oxa-9-oxo-nonadecane linker with cholesterol at the 5’-end and three 

phosphorothioate internucleotide linkages at each of the 5’ and the 3’ ends. The sequence is: 

5’-X GsCsTs GTG CCC ACA ACC CAG CAA ACA AGC CTA GA L-CL TC TAG GCT TGT TTG CTG 

GGT TGT GGG CAC sAsGsC-3’, where L is an amino linker, X a cholesteryl tetraethylene 

glycol, CL a carboxylic (hydroxyundecanoic) acid linker, and s is a phosphorothioate linkage. 

AsiDNA™ was synthesized and purified by LGC (U.K) and kindly provided by Wael Jdey 

(Valerio Therapeutics). The stock concentration of AsiDNA™ dissolved in water was at 40 

mg/mL. Nol8 (MW = 6005.8 g/mol) has the same chemical structure as AsiDNA™ with the 

exception that it consists of two 8 nt strands of complementary sequence and was 

synthesized and purified by Eurogentec (Belgium). The stock concentration of Nol8 dissolved 

in water was at 61 mg/mL.  

In vitro treatments 

Cell culture medium was supplemented with AsiDNA™ at concentrations of 5, 10, 20 or 40 

µmol/L 24 or 48 h prior to drug or IR treatment. In vitro irradiation was conducted using the 

GSR D1 (GSM) 137Cs unit with the dose rate of 0.8-1.1 Gy/min, or the ElectronFLASH (S.I.T., 

Vicenza, Italy) at a dose rate of 0.4 Gy/sec. 

Cell cycle analysis 

Complete medium with total 10 µmol/L BrdU (Merck, France) was added to cells for a 40 min 

incubation either pre- or post-AsiDNA™ treatment, under standard culture conditions. For  
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drug treatment, cells were exposed to 1 µM Olaparib (AZD-2281, Roowin chemicals), 10 µM 

NU7026 (Merck, France), and 1µM p21 inhibitor UC2288 (Merck, France) 1 h prior to 

AsiDNA™ treatment. Cells were harvested, fixed in cold 70% EtOH, and permeabilised in 1x 

PBS / 0.5% BSA / 0.1% Tween-20. BrdU detection was performed using FITC mouse anti-BrdU 

antibody (BD biosciences, France, #51-33284X). Following 1 h incubation, the cells were 

centrifuged and resuspended in 1x PBS containing 0.5% BSA, 10 g/mL propidium iodide 

(Merck, France) and 0.5 mg/mL RNAse A (Merck, France). FACS analysis was performed using 

the LSRFortessa™ X-20 Cell Analyzer (BD biosciences, France). 

ATP based cell viability assay 

Cell viability was measured using the CellTiter-Glo® luminescent assay (Promega, France), 

which assesses the relative mitochondrial capacity of surviving cells. Cells were treated for 24 

h with 20 µmol/L AsiDNA™ followed by chemotherapy treatment of Carboplatin (10 mg/mL, 

Accord), Olaparib, or Etoposide (20 mg/mL, Accord) at increasing doses of 0, 1, 10 and 100 

µmol/L, or irradiated with doses of 0, 2, 4, 6, 8, and 10 Gy. The cell culture medium was 

removed 24 h post co-treatment and replaced by drug-free medium, and the mitochondrial 

capacity of surviving cells was measured 6 days post chemotherapeutic exposure, following 

the manufacturer’s instructions. 

Western blot analysis 

Cell pellets were lysed in lysis buffer [10 mM Hepes, pH 7.5, 100 mM NaCl, 300 mM sucrose, 

3 mM MgCl2, 1 mM EGTA, 50 mM NaF, 20 mM ß-glycerophosphate, 0.3% Triton X-100, 0.1 

mM sodium orthovanadate, and complete mini EDTA-free protease inhibitors (Roche 

Diagnosis)] on ice for 5 min. Following centrifugation at 240 rcf 4°C, supernatants were 

transferred into 1.5 mL Eppendorf tubes and protein concentration determined using 

Bradford assay (Bio-Rad). Twenty to thirty micrograms of protein extracts were separated on 

4–15% Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad) and transferred onto 

PROTRAN® nitrocellulose membrane (Whatman) using a Mini Trans-Blot Cell (Bio-Rad). 

Membranes were probed overnight at 4°C with the following primary antibodies diluted in 

Intercept blocking buffer (LI-COR Biosciences – GmbH): anti-p53 (R&D systems, AF1355-sp, 

dil. 1:500), anti-p21 (Waf/Cip (12D1), Cell Signaling Technologies, 2947s, dil. 1:1000), anti- 
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hsp90-p (T5/7, Cell Signaling Technologies, 3488s, dil. 1:1000), anti-DNA-PK (Thr2609, Novus 

Biologicals, dil. 1:1000), and anti-β-actin (Signa, A1978, dil. 1:2000). The membranes were 

probed with the appropriate secondary antibodies diluted in Intercept blocking buffer: IRDye 

800CW goat anti rabbit (LI-COR 926-32211, dil. 1:15000), IRDye 680RD goat anti mouse (LI-

COR 926-32220, dil. 1:5000), IRDye 800CW goat anti mouse (LI-COR 926-32210, dil. 1:5000), 

IRDye 800CW donkey anti goat (LICOR 926-32214, dil. 1:5000). Direct infrared fluorescence 

was detected on the Odyssey Infrared Imaging System (LI-COR Biosciences – GmbH). 

Ex vivo and In vivo experimentation 

Studies were performed in accordance with the recommendations of the European 

Community (2010/63/UE) or UK Home Office guideline for the care and use of laboratory 

animals. Experimental procedures were explicitly approved by the ethics committee of 

Institut Curie CEEA-IC #118 (Authorization numberAPAFIS#5479-201605271 0291841 given 

by National Authority), or by the University of Oxford’s Animal Welfare and Ethical Review 

Body (under project licenses PP8415318), in compliance with the international guidelines. All 

animals used within this research were acclimated for at least 1 week prior to 

experimentation. Mice were housed under pathogen-free conditions in cages containing 

sawdust with a maximum of six animals per cage, under a controlled 12 h light/dark cycle, a 

relative humidity of 55%, and a controlled temperature of 21°C. Food and sterile water were 

provided ad libitum. All experiments were conducted on C57BL/6J mice (Charles River, 

France) at 8-9 weeks of age, unless otherwise indicated in the corresponding materials and 

methods. 

Precision-cut lung slices (PCLS) 

PCLS were obtained from the lungs of female C57BL/6J mice (Charles River, France) or male 

and female C57BL/6J p53 Knock-out mice (Curie collection), at 4-6 months old, as described 

in the Supplementary Materials and Methods. AsiDNA™ or Nol8 treatment of 5 μmol/L was 

performed for 48 h in 24-well plates, followed by a 24 h co-incubation with 10 µmol/L EdU. 

EdU positive cells were revealed using EdU DetectPro Imaging kit Imaging (647 nm, BCK-

EdUPro-IM647/BCK488-IV-IM-S, Baseclick), and visualized with the Inverted spinning disk-

TIRF-FRAP (Nikon) with a 300 ms emission and 30% laser, DAPI (405 nm), 400 ms emission  
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and 70% laser, 10X objective with 50 stacks of 3 µm. Data analysis was performed using 

IMARIS with spot function and PRISM software. 

Animal irradiation and fibrosis analysis 

The female C57BL6/J mice model of radiation induced lung fibrosis was used (23,30). Mice 

were irradiated after 2 consecutive days of intraperitoneal AsiDNA™ injections (100 mg/kg), 

followed by a third day with intraperitoneal AsiDNA™ injection (200 mg/kg) and 

FLASH/CONV irradiation. Bilateral thorax irradiation of 13 Gy was performed using the 

ElectronFLASH (S.I.T., Vicenza, Italy), including a CONV dose rate of 0.4 Gy/sec and a FLASH 

dose rate of >100 Gy/s (beam parameters are described in Supplementary data Table 1). 

Animals were immobilized under anaesthesia (2.5% Isoflurane in air) and positioned vertically 

with lead shielding designed to protect the entire body excluding the thorax. GAFchromic™ 

EBT-XD film (Ashland Inc., Wayne, NJ, USA) was used for the dosimetry of entrance and exit 

dose at each irradiation. Animals were examined for weight loss and respiratory distress daily 

post IR. High resolution Micro-CT imaging (Molecubes), 100 µm FDK reconstruction, was 

performed to examine lung fibrosis development each month from 4 months post 

irradiation. The 3D lung reconstruction and fibrosis classification (24) were performed using 

VivoQuant 2021 (VivoQuant) and ImageJ/FIJI (ImageJ) software. For the 3D lung 

reconstruction, connected Hounsfield Units between -800 and -100 (bottom), detection of 

the lung volumes, were detected. Upon reaching the ethical endpoint, mice were 

anesthetized (2.5% Isoflurane in air) and underwent CT scanning prior to euthanasia by 

cervical dislocation. Lungs were isolated and histology was performed to detect areas of 

affected lung by pulmonary fibrosis.  

Single cell RNA sequencing 

Single cell RNA sequencing was performed on 3 controls provided by Curras et al. (31), 1 

CONV, 1 CONV AsiDNA™, and 1 FLASH female C57BL6/J mice 5 months post 13 Gy thorax 

irradiation. The protocol and data processing procedures were performed as previously 

described (31). In brief, following lung tissue dissociation, single cell samples for RNA 

sequencing were prepared using the droplet based scRNA-seq system (10x GENOMICS) 

followed by lysis of encapsulated single cells, RNA capturing, cDNA production,  
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amplification, purification, library preparation, and sequencing. scRNA-seq data analysis was 

processed through the creation of a count matrix table suitable for R (4.0.5) and analysed 

using Seurat package (v4.0.1.). 

Histology 

For histological analysis, the lungs were removed, and gently inflated in 4% 

paraformaldehyde (PFA) under mild vacuum pressure (25 Torr, 1 h at room temperature). 

Lungs were fixed for 24 h at RT, after which they were embedded in paraffin and cut into 7-

mm thick slices. The preparations were stained with hematoxylin–eosin or Masson trichrome 

(R.A.L Diagnostics, #361350). 

Animal irradiation and intestine analysis 

Female C57BL6/J mice were irradiated and treated as previously described (29). Lower body 

irradiation of 10 Gy was performed using the linear accelerator described in Ruan J. et al. 

(2021), including CONV dose rate of 0.1 Gy/min and FLASH dose rate of 3000 Gy/s with 

beam parameters described in Supplementary data Table 2. Animals were immobilized under 

anaesthesia in a cradle exposing the lower body. Brass shielding was used to protect the 

entire animal’s body excluding the abdominal region. GAFchromic™ EBT-XD film was used 

for the dosimetry of the exit dose for each irradiation. Animals were examined for weight loss 

with the endpoint set at 4 days post IR. The jejunum of the small intestine was isolated using 

the swiss roll technique followed by intestine histology with haematoxylin and Eosin staining 

as previously described (32). The count of intestinal crypts was performed over a length of 

3mm for each sample and conducted twice by independent researchers.  

In vivo detection of EdU, Ki67 and p21 

Female C57BL6/J mice received intraperitoneal AsiDNA™ injections (100 mg/kg) for 2 

consecutive days, followed by a third day with intraperitoneal AsiDNA™ injection (200 

mg/kg). EdU (100 mg/kg) was injected 4 h prior to euthanasia at 0, 24, 48, and 72 h post 

AsiDNA™ injection. The small intestine was isolated from 3 cm after the stomach, with a total 

length of 10 cm intestine isolated overall, using the swiss roll technique (33). Samples were 

fixed in 4% PFA for 36 h, embedded in parafilm, and cut into 4 µm thick slices. These slices  
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were then deparaffinized and hydrated following a standard protocol. DAPI (0.5 μg/mL) 

staining and EdU detection were performed using BaseClick EdU IV Imaging kit 488 M in 

accordance with the manufacturer’s protocol. EdU positive cells were detected using the 3D 

SIM Upright Widefield microscope (Leica), and quantified using a nuclear segmentation 

algorithm (Cellpose) and MIC-MAQ macro (supplementary Materials and methods), applied 

on nuclear DAPI signal and the individual EdU cell signal. Furthermore, standard 

immunofluorescence was conducted to detect Ki-67 (FISHER, MA5-14520, 1:200) and 

immunohistochemistry staining to detect p21 (Tebu-Bio, E-AB-70068, 1:200). 

Statistical analysis 

All statistical analyses were performed using GraphPad Prism (v 7.03). Statistical significance 

was set at * < 0.05, ** < 0.01, *** < 0.001 and, **** < 0.0001. All statistical information is 

presented in the figures and figure legends. 

RESULTS 

AsiDNA™ induces a G1/S arrest in normal proliferating epithelial cells and fibroblasts 

The adverse side effects induced by radio- and chemo-therapies are derived from damage to 

dividing normal cells, resulting in cell death within the healthy tissue (34,35). Cell cycle arrest 

has previously been demonstrated to protect normal cells against cytotoxic radio- and 

chemo-therapies (36,37). Consequently, in the present study, we assessed cell cycle 

progression in a panel of normal human cells treated with AsiDNA™. For this, primary 

fibroblasts (NHSF and MRC5), and immortalized normal epithelial cells (RPE-hTERT) were 

exposed to 20 and 40 µM of AsiDNA™ for 24 and 48 h, followed by cell cycle analysis using 

PI-BrdU bivariate flow cytometric dot plots (Figure 1A and 1B, Supplementary Figure 1SA). 

The corresponding histograms showing cell cycle analysis (Figure 1C and 1D) allow 

quantification of the number of cells in each cell cycle phase (Figure 1E and 1F). Analysis of 

these results indicated significant cell cycle arrest at the G1/S boundary, which implies an 

accumulation of cells in G1 and a strong decrease of S-phase cells (Figure 1E and 1F, 

Supplementary Figure S1B). In contrast, MRC-5V1 cells (MRC-5 SV40-transformed cells),  
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which are p53-defective, do not arrest at the G1/S boundary upon AsiDNA™ treatment 

(Supplementary Figure S1C,D). 

A functional DNA-PK/p53/p21 pathway is required to promote AsiDNA™-induced G1/S 

arrest in normal proliferating epithelial cells and fibroblasts 

Nol8, which is structurally similar to AsiDNA™ but with an 8 bp instead of 32 bp nucleotide 

strand, showed no capacity to activate PARP and DNA-PK (Supplementary Figures S2A and 

S2B). Furthermore, treatment with Nol8 induced only a moderate G1/S arrest, although not 

significant, with no p21 induction (Supplementary Figures S2C-E). These results prompted 

us to investigate the role of PARP and DNA-PK in AsiDNA-induced cell cycle arrest. PARP and 

DNA-PKcs activity were inhibited using olaparib (38), and NU7026 (39), respectively, and cell 

cycle progression was examined upon combined treatment with AsiDNA™. The inhibition of 

DNA-PK activity, but not of PARP, was able to prevent AsiDNA™-induced G1/S arrest in RPE-

hTERT and NHSF (Figure 2A and Supplementary Figure S3A). This dependency on DNA-PK 

activation was further confirmed using cells in which the expression of DNA-PK was down-

regulated (Figure 2B and Supplementary Figure S3B). In support of this, previous research 

has shown that the p53-p21 axis is an important pathway controlling G1/S arrest upon 

activation of the DNA damage response (40). Comparable results were obtained following 

the downregulation of p21 expression (Figures 2B) in RPE-hTERT cells. Efficient down-

regulation of DNA-PKcs, p53, and p21 expression was confirmed by western blot analysis 

(Supplementary Figure S3C). In addition, the expression level of p53 and p21 in response to 

24h and 48h of AsiDNA™ treatment was examined by western blot analysis in RPE-hTERT, 

RPE-hTERT shp53, and RPE-hTERT cells treated with NU7026. These results revealed that 

AsiDNA™ exposure triggered p21 induction in RPE-hTERT, but not in RPE-hTERT shp53 

(Supplementary S3E) or RPE-hTERT cells treated with NU7026 (Supplementary Figure 

S3D). Collectively, these results demonstrate that DNA-PK activity is required to promote the 

p53-dependent transcriptional activation of p21 which leads to the G1/S arrest induced by 

AsiDNA™. Furthermore, AsiDNA™-induced G1/S arrest was reversible. Following the removal 

of AsiDNA™ treatment, cells restarted their cell cycle, and p21 expression returned to basal 

level (Supplementary Figure S4). 
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P53-proficient tumour cells show no G1/S arrest upon AsiDNA™ treatment  

Standalone AsiDNA™ treatment has previously been demonstrated to cause toxicity in 

malignant cells, irrespective of their p53 status, and exerted no toxicity against normal cells 

(7,8,18,41). As such, we subsequently investigated AsiDNA™-induced cell cycle arrest in p53 

proficient tumour cells (U2OS, A549, and HCT116). All assessed tumour cells within this study 

displayed no G1/S arrest after AsiDNA™ treatment, suggesting that this only occurs in 

normal cells (Figure 3). This was confirmed with the absence of p21 induction upon 

AsiDNA™ treatment in the tumour cell lines (Supplementary Figure S5)   

AsiDNA™-induces G1/S arrest promotes cell survival in response to ionizing radiation 

and chemotherapies in normal cells  

The G1/S cell cycle checkpoint primarily prevents damaged DNA from being replicated 

during the S phase, which can be either mutagenic or lethal for cells. It is therefore 

hypothesized that AsiDNA™-dependent G1/S arrest could protect healthy cells from chemo- 

or radio-induced toxicity. To test this hypothesis, normal human cell lines (NHSF and RPE-

hTERT) were treated with AsiDNA™ prior to radiation or chemotherapy (olaparib, carboplatin, 

etoposide) exposure. An increase in cell survival of AsiDNA™-treated normal cells upon 

combined treatment with genotoxic agents or radiation was compared to AsiDNA™-free 

cells (Figure 4A, and Supplementary Figure S6A). Importantly, there was no protection 

from these genotoxic agents in cells lacking AsiDNA™-induced G1/S arrest such as in RPE-

hTERT shp53 cells or in tumour cells (A549 and HCT116) (Figure 4B, and Supplementary 

Figure S6B-C). These in vitro results demonstrate the crucial role of AsiDNA™-induced G1/S 

arrest in protecting cells against the cytotoxicity and radiotoxicity of DNA damaging 

treatments. 

AsiDNA™ alleviates radiation-induced lung fibrosis in mice 

To demonstrate that AsiDNA™ is similarly able to induce normal tissue protection against 

radiation-induced toxicity in vivo, radiation-induced lung fibrosis in C57BL/6J mice, a well-

established model of late-responding radiation toxicity, was used (42). As using FLASH-RT 

instead of CONV-RT similarly alleviates radiation-induced lung fibrosis in mice (23,24), we  
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examined the possible gain of combined AsiDNA™ and FLASH-RT treatment on the 

protection of healthy tissue. Thirty mice were equally divided into 5 groups (n = 6), sham-

irradiated or exposed to 13 Gy CONV +/- AsiDNA™ or 13 Gy FLASH +/- AsiDNA™, through 

bilateral thorax irradiation. Lung fibrosis was evaluated using computed tomography (CT) 

from 4 months post-irradiation. Each lobe of the lung was collected for histopathological 

analysis and single cell RNA sequencing, immediately after euthanasia (Figure 5A). 

CT scans taken five months post irradiation revealed increased levels of fibrosis in the CONV-

RT treated group, while fibrosis was absent in the mock-treated group and much less 

pronounced in the CONV-RT + AsiDNA™ treated group (Figure 5B). As expected, FLASH-RT 

also reduced the occurrence of lung fibrosis, while combined treatment with AsiDNA™ 

appears to further reduce the development of fibrosis (Figure 5B). Long-term follow-up of 

survival post irradiation demonstrated that AsiDNA™ delayed the onset of lethal lung fibrosis 

when combined with CONV-RT (Figure 5C). We also confirmed the FLASH effect as 

previously reported (23). However, AsiDNA™ combined with FLASH-RT did not seem to 

further improve survival (Figure 5C). Histopathological analyses of the lobes collected at the 

day of euthanasia confirmed the onset of lung fibrosis by detection of fibrotic masses, 

indicated with black arrows (Figure 5D and Supplementary Table 3). 

A decreased myofibroblast gene profile is observed in fibroblasts upon AsiDNA™ 

treatment  

To characterize the similarity in cellular changes and expression signatures in lungs 5 months 

post CONV-RT, FLASH-RT, AsiDNA™ + CONV-RT or non-irradiated (Control) treatment, 

single cell suspensions were created and analysed using scRNA sequencing. By exploiting 

previously published single-cell datasets and known identifying markers (31), the identity of 

the various cell clusters was determined (Figure 6A). This analysis detected 21 distinct 

clusters: alveolar macrophages (AM), proliferating AM, AT1, AT2, B-cells, basophils, ciliated 

cells, ciliated club cells, club cells, dendritic cells (DC), endothelial cells (EC), fibroblasts, 

interstitial macrophages (IM), mesitheliocytes, monocytes, neutrophils, natural killer cells (NK 

cells), NK-T-cells, smooth muscle cells (SMC), T-cells and proliferating T-cells (Figure 6B-D). 

All cell types were identified independently of the received treatment modality but a  
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radiation-induced cell proportion shift was detected in the AT2, B-cells, IM,  and NK-T cells 

(Figure 6D). Additionally, the AM, DC, Monocytes and NK-cells populations displayed altered 

cell proportions following CONV-RT compared to the other conditions (figure 6D). Recent 

findings by Curras et al. (2023) (31) have identified a unique fibroblast subcluster exclusively 

present in irradiated mice lungs. In response to irradiation, fibroblasts can transition into 

myofibroblasts which are known to secrete and modify the extracellular matrix (ECM), 

including altering the collagen production, which in turn contributes to pulmonary fibrosis 

formation (43). To identify the contribution of fibroblasts in the development of, or the lack 

of, pulmonary fibrosis formation after CONV-RT, CONV AsiDNA™ treatment and FLASH-RT, 

myofibroblast markers expression, collagen homeostasis, fibroblast activation and EMC 

remodelling markers were examined within the fibroblast cell cluster. Clustering of the 

fibroblast resulted in the detection of a total of 891 cells, divided over the different treatment 

conditions (Figure 6E). Myofibroblast markers Hp and Pla1a, previously identified in Curras 

et al. (2023) (31), revealed to be substantially increased after CONV-RT standalone (Figure 

6F-G). Remarkably, Nr1d1 gene expression, linked to healthy collagen homeostasis (44), was 

found to be significantly decreased in CONV-RT compared to the control or FLASH-RT 

(Figure 6H). 

These results reveal an increase in fibroblast activation and myofibroblast transition together 

with an impact on the ECM, including collagen homeostasis, in the fibroblast cell cluster 

following CONV-RT standalone. This observed altered gene expression in CONV-RT exposed 

fibroblast was decreased or absent in fibroblasts exposed to CONV AsiDNA™ or FLASH-RT, 

and supports the increased pathway activation known to play an essential role in the 

development of pulmonary fibrosis. 
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AsiDNA™ induces cell cycle arrest in ex vivo precision cut lung slices involving DNA-PK 

and p53 

To investigate AsiDNA™-induced cell cycle arrest in the lung, ex vivo precision cut lung slices 

(PCLS) were used. Untreated C57BL6/J mice were sacrificed, and agarose inflated lungs were 

isolated and cut. The PCLS were treated for 24h with AsiDNA™ or Nol8, and EdU (a marker of 

replicative cell division) was co-incubated for an additional 24h. Cell nuclei were then stained 

for EdU incorporation (Figure 7A). There was a significant loss of EdU positive cells following 

AsiDNA™ treatment compared to both untreated and Nol8 treated PCLS (Figure 7B) 

suggesting that DNA-PK activation by AsiDNA™ also triggered cell cycle arrest, likely at the 

G1/S border, in PCLS. To further support this conclusion, PCLS were derived from wild-type 

C57BL6/J mice and p53 knock out (p53-/-) mice. Upon AsiDNA™ treatment in wild-type (WT) 

mice, a significant decrease in EdU positive cells was detected compared to the untreated 

conditions (Figures 7C and 7D). Additionally, the incorporated EdU positive cells of 

untreated PCLS in WT and in KO were similar. Strikingly, p53 KO PCLS treated with AsiDNA™ 

resulted in no significant decrease in the EdU incorporation (Figure 7D). Collectively, these 

results strongly support the activation of G1/S arrest induced by AsiDNA™ treatment in PCLS 

requiring the activation of DNA-PK and p53. 

AsiDNA™ alleviates radiation-induced intestine toxicity in mice 

To study the capacity of AsiDNA™ to protect normal tissue from early responding radiation 

toxicity, a model of acute intestinal toxicity after whole abdominal irradiation in mice was 

used (29). The possible gain-of-protection by AsiDNA™ was examined in combination with 

CONV-RT and FLASH-RT (Figure 8A). For crypts analysis, intestine was isolated at 4 days 

post treatment, and the jejunum was further processed for histochemistry analyses (Figure 

8B). The number of damaged crypts in each condition was normalized to the number of 

crypts present in the non-irradiated mice. More crypts remained after CONV-RT combined 

with AsiDNA™ compared with CONV-RT alone (P < 0.0018) (Figure 8C). Similarly, FLASH-RT 

resulted in less toxicity, preserving more of the intestinal crypts than CONV-RT (P < 0.006). 

Additionally, there was no difference detected in the percentage of remaining crypts  
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between FLASH-RT and FLASH-RT combined with AsiDNA™ (Figure 8C). Collectively, these 

results showed a gain-of-protection for AsiDNA™ only when combined with CONV-RT.  

AsiDNA™ induces a reversible cell cycle arrest in vivo 

To demonstrate the capacity of AsiDNA™ treatment to arrest normal cell division in vivo, we 

used a well-established intestine model which exhibits a high rate of cell proliferation within 

the small intestinal crypts (45,46). EdU incorporation in intestine crypt cells of C57BL6/J mice 

was examined at 0, 24, 48 and 72h post AsiDNA™ treatment, and the small intestine was 

isolated for immunohistochemistry analyses 4h after EdU incorporation (Figure 9A). A 

significant loss of EdU positive cells without any decrease in Ki67 was observed immediately 

following the final AsiDNA™ injection, compared to the untreated group at time 0 h or 72h 

(Figures 9B and 9C, Supplementary Figure S7). However, this reduction was only transient, 

as the level of EdU positive cells has recovered at 24h, 48h and 72h post AsiDNA™ treatment. 

Strikingly, this level exceeds that of the control groups suggesting a boost of cell 

proliferation upon release from AsiDNA™ (Figure 9C). As the reported in vitro G1/S arrest 

relies on p21 induction, p21 initiation in the small intestinal crypts in response to AsiDNA™ 

treatment was monitored. The number of p21 positive (p21+) cells was reduced in untreated 

groups (average of 8 and 13 p21+ cells per 100 cells at 0h and 72h, respectively) but 

significantly increased upon AsiDNA™ treatment (average of 64 p21+ cells per 100 cells, 0h 

post AsiDNA™) (Figures 9D and 9E). Most importantly, the number of p21 positive cells 

decreased rapidly at 24h post treatment (average of 20 p21+ cells per 100 cells, 24h post 

AsiDNA™) reaching a basal level at 48h and 72h post treatment (average of 13 p21+ cells per 

100 cells, 48h and 72h post AsiDNA™) (Figure 9D). Taken together, these results 

demonstrated that the loss of DNA replication following AsiDNA™ treatment, as revealed by 

the decline of EdU incorporation, correlates with p21 induction, while recovery of EdU 

incorporation post-treatment correlates with a decrease in p21 initiation. 
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DISCUSSION 

The capacity of radiotherapy to damage and eradicate tumour cells comes at the expense of 

toxicity to the normal tissue, causing severe patient distress and leads to critical conditions in 

the treatment delivery. One approach to reduce or mitigate these toxic side-effects is to 

utilise chemical or biological agents as radioprotectors, administered in parallel to 

radiotherapy delivery (47). The ideal radioprotector exhibits low toxicity and exclusive 

protection of normal cells against the harmful effects of radiation, without compromising the 

cytotoxic effects on cancer cells. In recent years, our laboratory has developed a new class of 

drugs mimicking DNA DSBs that can disrupt the DNA repair machinery of cancer cells, 

thereby enhancing the antitumoral action of radiation (9,48). The leading molecule used in 

pre-clinical and clinical studies, termed AsiDNA™, is well tolerated, does not induce normal 

tissue toxicity, and allows increased treatment duration, (17,19-21) all indicating its suitability 

as a radioprotector. AsiDNA™ was designed based on its ability to bind and activate PARP 

and DNA-PK, with the aim of destabilizing the DNA repair machinery (9). Although activation 

of DNA-PK occurs in tumours as well as in normal cells, only tumour cells are sensitive to 

AsiDNA™ treatment (7,49). 

The G1/S cell cycle checkpoint is responsible for ensuring that the optimum conditions are 

reached for a cell to undergo successful cell division, through the sensing of both mitogens 

and DNA damage (50). One of the key players of this checkpoint is the transcription factor 

p53 (51). p53 transactivates numerous target genes involved in the induction of cell cycle 

arrest and/or apoptosis (52). In the present study, we demonstrated that in p53 proficient 

normal cells, AsiDNA™ treatment results in p53 activation, leading to p21 induction which, in 

turn, initiates a reversible G1/S cell cycle arrest. Normal cells deficient in either DNA-PK, p53, 

or p21 are unable to arrest at the G1/S boundary following AsiDNA™ treatment. Pull-down 

experiments with biotinylated AsiDNA™ have revealed that DNA-PK binds to AsiDNA™ in 

cellulo (M. Dutreix, unpublished results). Several studies have shown that structured DNA, 

single-stranded DNA, and damaged DNA promote the interaction of DNA-PK with p53 (53-

55). We propose that AsiDNA™ can serve as a platform to connect DNA-PK and p53, 

resulting in p53 activation. In line with this assumption, our results revealed that MRC-5  
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primary cells can arrest at the G1/S boundary in response to AsiDNA™ treatment, while 

MRC-5V1 cells failed to do so. MRC-5V1 are SV40-transformed cells instigating p53 protein 

blockage by the SV40 large T antigen (56), which abrogates the DNA binding activity and 

transcriptional activity of p53. These results are in agreement with a previous report showing 

the absence of p21 induction and G1/S arrest in MRC-5V1, that was present in MRC-5 

primary cells, in response to ionizing radiation (57).  

The p53 proficient tumour cell lines used within this study (A549, U-2 OS, and HCT116) did 

not arrest at the G1/S boundary upon AsiDNA™ treatment, correlated with a lack of p21 

induction. However, a p53- and p21-dependent G1/S arrest in tumour cells has been 

observed in the past, in response to chemical compounds (58-60) and ionizing radiation (61-

63). Regardless, a radiation-induced G1/S arrest is ATM/Chk2/p53/p21-dependent (64) 

whereas the AsiDNA™-induced G1/S arrest, identified within this study, revealed its 

dependency on DNA-PK/p53/p21. As outlined in (65), in order for p53 to accumulate in cells 

and to transactivate target genes, the degradation of p53 must be inhibited, the p53 protein 

must accumulate in the nucleus and the sequence-specific binding activity must be induced. 

As DNA-PK is recruited, and consequently activated, in response to AsiDNA™ in all cell lines 

examined so far, revealed by phosphorylation of H2AX ((7,9)}, and unpublished data), it 

suggests that the recruitment of p53 to the AsiDNA™/DNA-PK complex and downstream 

transactivation of p21 is impaired in p53 proficient tumour cells, unlike p53 proficient normal 

cells. Normal and cancer cells differ by several phenotypic and genotypic modifications very 

well documented in ((66) and references therein).  Among them, it is well described that the 

metabolism of cancer cells differs from that of normal cells (67). We have previously 

demonstrated that PARP is another important protein that is activated by AsiDNA™ (9). High 

PARP activity leads to energy exhaustion in part due to NAD depletion (68). Notably, p53 is 

not only a key metabolic regulator, including NAD metabolism (69), but there is a cross-talk 

between p53, NAD homeostasis and PARP (70). Whether there is a competition between p53 

recruitment at AsiDNA™/DNA-PK complex involving its role in NAD homeostasis in tumour 

and not normal cells, remains to be demonstrated. 
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In the present study, we confirmed the presence of the activated G1/S checkpoint in complex 

ex vivo and in vivo biological models. The ex vivo PCLS model retains comparable viability 

and tissue homeostasis during a cultivation period of 1 to 3 days (71), and can be used to 

monitor cell proliferation using EdU incorporation (M. Dubail and C. Fouillade, submitted 

manuscript). AsiDNA™-treated PCLS derived from p53 WT mice revealed a severe decrease 

of EdU positive cells, while this decrease was absent in PCLS derived from p53 knock-out 

mice, or in PCLS p53 WT treated with Nol8, an AsiDNA™-like molecule unable to activate 

DNA-PK (5). This provides further evidence that AsiDNA™ treatment in PCLS results in DNA-

PK/p53-dependent G1/S arrest. Additional conformation was observed in vivo where the 

capacity of AsiDNA™ to induce the G1/S arrest in the intestine was demonstrated with a 

severe decrease of EdU incorporation in the intestinal crypts of mice directly after AsiDNA™ 

treatment. It furthermore disclosed a full recovery of crypt division 24-48h post-AsiDNA™ 

treatment, verifying the reversibility of the G1/S arrest. Remarkably, the decrease of EdU 

incorporation immediately after AsiDNA™ and its recovery post treatment, were both 

concomitantly associated with an increase of p21 expression, followed by its decrease. This 

provides further evidence that AsiDNA™ can activate a reversible G1/S checkpoint in PCLS.  

Moreover, the recovery of cell division in the crypt is associated to an excess in EdU-positive 

dividing cells from 24h post AsiDNA™ treatment. This boost in normal cell proliferation post 

drug treatment is a phenomenon that has been previously identified (72,73). As AsiDNA™ 

has widely been identified to not result in toxicity, this compensation occurrence might 

accompany the contribution to improved tissue recovery. 

In response to DNA damaging agents, dividing cells stall or arrest their cell cycle progression 

to detect and repair DNA damage before they can resume the cell cycle (64). This contributes 

to the maintenance of both genome integrity, and overall survival. The results within this 

research revealed a significant increase of in vitro cell survival, in normal cells upon chemo- 

or radiotherapy combined with AsiDNA™, compared to standalone treatment. This increase 

in cell survival was absent in tumour cells, independent of the p53 status, as well as in normal 

cells with a p53 deficient status. This confirms the necessity of an active and intact DNA-

PK/p53/p21 cascade to exploit the normal tissue protection properties of AsiDNA™. The 

protective capacities of AsiDNA™ were similarly identified in vivo in the intestine crypt  
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survival, as early model of radiation induced toxicity (29), and in the radiation-induced lung 

fibrosis, as late model of radiation induced toxicity (23). CONV-RT + AsiDNA™ resulted in an 

increase in crypt survival, compared to CONV-RT standalone, confirming the capacity of 

AsiDNA™ to protect against radiation induced toxicity in vivo. The intestinal epithelium 

regenerates itself through the proliferation and differentiation of stem cells (74). The 

intestine can therefore fully regenerate from any type of damage if the stem cells remain 

functional, revealing the capacity of AsiDNA™ to protect the stem cells in the crypts by 

acting at the G1/S transition. Remarkably, pharmacologic inhibition of the G1/S transition by 

CDK4/6 inhibitors prior to radiation (75), or by UCN-01 prior to chemotherapy (37) also 

protect the gastrointestinal epithelium in mice. The protective capacities of AsiDNA™ 

treatment were confirmed in vivo, with similar results obtained on the late radiotoxicity 

model of radiation-induced pulmonary fibrosis. Here, once again, AsiDNA™ combined with 

CONV-RT revealed increased protection of the lung to radiation toxicity presented by a delay 

in the onset of radiation induced fibrosis, compared to CONV-RT standalone. 

Finally, the combination of AsiDNA™ with FLASH-RT, a RT modality that has been shown to 

alleviate radiation-induced toxicity (23,29), was explored. In one respect, FLASH-RT was 

shown to be less toxic, with decreased early (intestine model) and late (lung model) toxicity 

compared with CONV-RT, thereby reconfirming the FLASH effect. However, AsiDNA™ 

combined with CONV-RT did not result in the same delay in the onset of fibrosis compared 

to FLASH radiotherapy standalone, while AsiDNA™ CONV-RT was as efficient as FLASH-RT at 

protecting intestinal crypts. This may be explained by the possible limitations in the capacity 

of AsiDNA™ to interfere with the complex, and still relatively unknown, mechanism driving 

fibrosis in late responding tissues (76). Moreover, AsiDNA™ combined with FLASH-RT 

treatment did not result in any additive effect on the protection of toxicity in the intestinal 

crypts nor the lung, compared to FLASH-RT as standalone treatment. Interestingly, single cell 

RNA sequencing of irradiated lungs revealed a closer resemblance between CONV AsiDNA™ 

and FLASH-RT in profibrotic gene signatures within the fibroblast population, in comparison 

to CONV-RT standalone. Similar results on profibrotic gene signatures were observed in the 

alveolar macrophages population (A. Sesink, and P-M. Girard, unpublished results). 

Collectively, all results indicate that the activity of AsiDNA™ and FLASH-RT could draw upon  
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identical mechanism interference to result in the protective capacities within the normal 

tissue. Currently, additional research is in progress to explore the spatio-temporal dynamics 

of mechanisms leading to radiation-induced pulmonary fibrosis (31). 

In summary, we have identified an AsiDNA™-induced reversible G1/S-arrest dependent on 

the DNA-PK/p53/p21 activation cascade exclusively in healthy normal cells. The activation 

cascade can be exploited to protect the normal tissue against radiation induced toxicity 

while maintaining tumour control, thereby acting as a unique bilateral agent. 
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  Supplementary Figure S7
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13. Additional results 

The following research is ongoing work that resulted from observations made during the 

conducted study described in paper 1. Here, we aim to further identify the impact of AsiDNA™ 

treatment combined with radiotherapy in correlation with radiation-induced late toxicity at a 

cellular level, by examining the lung cell populations, and at a systemic level, by examining 

inflammatory markers. In addition, we further examined the behaviour of AsiDNA™ within 

normal cells, in particular its behaviour within dividing and non-dividing normal cells. 

Additional results I describes changes in gene transcription in fibrosis associated cell types of 

fibroblasts and alveolar macrophages after AsiDNA™ and radiotherapy exposure. Followed by 

additional results II, describing the increase in inflammatory cytokine activity following 

AsiDNA™ treatment and thorax irradiation. Finally, additional results III will further explore the 

mechanism of action of AsiDNA™ in normal cells and provide preliminary results in an ongoing 

study. The materials and methods utilized throughout the additional results are combinedly 

described in the methods section below. 
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13.1. Methods  
 

In vitro cell culture 

Normal tissue cell lines, hTERT-immortalized retinal pigment epithelial cell line (RPE-hTERT), 

RPE-hTERT with shp53 (Curie collection) and normal human skin fibroblasts (NHSF) were 

cultured in DMEM/F12 medium (Gibco) supplemented with 10% fetal calf serum (FCS, 

Eurobio), 100U/ml penicillin/100 µg/ml streptomycin (P/S, Gibco). All cell lines were 

maintained in a humidified atmosphere at 37°C with 5% CO2. The absence of mycoplasma 

contamination was determined in-house by using LookOut Mycoplasma PCR (Sigma-Aldrich). 

 

In vitro treatments 

AsiDNA™ molecules concentrated at 10 or 20 µmol/L were supplemented to the medium 24 

or 48 hours prior to drug treatment.  

 

FACS analysis 

Cells were harvested following AsiDNA™ treatment, fixed in 70% EtOH, and suspended in 1 x 

PBS-BSA 0.5%-Tween-20 0.1%. γH2AX-PI detection was performed using AlexaFluor647 

Mouse anti-H2AXpS139 (BD Pharmingen cat° 560447), 10 g/ml propidium iodide (Sigma 

Aldrich) and 0.5 mg/ml RNAse A (Merck-Sigma Aldrich). FACS analysis occurred using Analyzer 

LSR Fortessa X-20 (BD biosciences). 

 

Pan-nuclear detection assay 

Dividing and confluent cells were fixed and preparation for immunofluorescence (IF) were 

performed as described in Ferreira et. al. 2020 [337]. Antibodies used were: γH2AX (Millipore, 

05-636, 1:500) and HSP90 phosphorylation (cell signalling, 3488s, 1:1000) together with DAPI 

staining (0.5 μg/ml in PBS 1x, F6057, Sigma-Aldrich). Positive pan-nuclear cells were detected 

on the 3D SIM Upright Widefield microscope (Leica) and compared to overall detected cell 

number. 
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ELISA PARylation measurement 

The detection of Poly (ADP-Ribose) (PAR) polymers was performed on dividing and confluent 

cells using a sandwich ELISA as described in Berthault et al. 2022  [318]. Antibodies used were 

capture antibody (mouse anti-PAR at 4 μg/ml, Trevigen 4335 1:1000), detection antibody 

(Poly/Mono-ADP Ribose (E6F6A) Rabbit mAb, Cell signaling, 83732, 1:1000) and secondary 

antibody HRP-conjugated anti-rabbit (Abcam, ab97085, 1:5000).  

 

Quantitative Image-Based Cytometry (QIBC) analysis 

Cell culture medium, containing or not 10% FCS, with total 10 µmol/L BrdU (Invitrogen) was 

prepared and supplemented to the dividing and serum starved cells for 40 min of incubation 

prior to AsiDNA™ or AsiDNA™-Cya5.5 treatment, under culturing conditions. QIBC 

experiments were conducted and analysed following the protocol described in Besse et al. 

2023 [342]. In short, cells were fixed, permeabilizated, EdU positive cells revealed using EdU 

DetectPro Imaging kit Imaging (488nm EdU kit, BCK-EdUPro-IM488, Baseclick) and γH2AX 

visualized using anti-phospho-Histone H2AX (S139) (JBW301 05-636, Merck, 1:40) followed by 

secondary antibody Donkey Alexa Fluor mouse (594nm, A-21203, Thermofisher Scientific, 

1:500). Nuclei were stained with DAPI. Images were obtained using a DMi6000B inverted 

widefield Microscope (Leica) using a x 40 Plan Apochromat dry objective (Leica, NA: 0.95). 

Fluorescence signal was documented using two fast filter wheels (Lambda 10-3, Sutter 

Instrument ®). The nD-SCAN module (Gataca Systems®) was implemented for automatic 

acquirement of fields for the coverage of at least 5000 nuclei. 

 

In vivo experimentation  

Studies were performed in accordance with the recommendations of the European Community 

(2010/63/UE) for the care and use of laboratory animals as previously described in III. Results, 

12. Article 1. In short, experimental procedures were approved by the ethics committee of 

Institut Curie CEEA-IC #118 (Authorization number APAFIS#5479-201605271 0291841 given 

by National Authority), in compliance with the international guidelines. All animals used within 

this research were acclimated for at least 1 week prior to experimentation, housed under 

pathogen-free conditions, under a controlled 12h light/dark cycle, a relative humidity of 55%, 
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and a controlled temperature of 21°C. Food and sterile water were provided ad libitum. All 

experiments were conducted on C57BL/6J mice (Charles River, France) at 8-9 weeks of age.  

 

Animal irradiation 

The female C57BL6/J mice model of radiation-induced lung fibrosis was used as previously 

described in III. Results, 12. Article 1. In short, mice were irradiated after 2 consecutive days of 

AsiDNA™ or Nol8 injections (100mg/kg), followed by a third day with AsiDNA™ or Nol8 

injection (200mg/kg) and 13 Gy of bilateral thorax irradiation FLASH/CONV irradiation. 

Animals were immobilized under anaesthesia and positioned vertically. GAFchromic™ EBT-XD 

film were used for the dosimetry of entrance and exit dose at each irradiation.  

 

Single cell RNA sequencing (scRNA-seq)  

ScRNA-seq was performed on 3 controls provided by Curras et al. [343], 1 CONV, 1 CONV 

AsiDNA™, and 1 FLASH female C57BL6/J mice, 5 months post 13 Gy thorax irradiation as 

described in III. Results, 12. Article 1. The protocol and data processing procedures were 

performed as previously described [343]. In short, single cell samples for RNA sequencing were 

prepared using the droplet based scRNA-seq system (10x GENOMICS) following lung tissue 

dissociation and lysis of encapsulated single cells, RNA capturing, cDNA production, 

amplification, purification, library preparation, and sequencing. ScRNA-seq data analysis was 

processed through the creation of a count matrix table suitable for R (4.0.5) and analysed using 

Seurat package (v4.0.1.). Cell-type markers for each identified cluster were explored by using 

FindAllMarkers of Seurat followed by naming of cell clusters by utilizing previous published 

data [112], [344], [345]. Violin plots were generated using Seurat for significant differentially 

expressed genes of significance to fibrosis development.  

 

Inflammatory marker detection 

Serum for cytokine detection were obtained from female C57BL/6J mice 2 weeks post thorax 

irradiation, as described under animal irradiation, followed by collection every month up to 

the ethical endpoint. Blood samples were obtained by retro-orbital blood sampling and 

recovered in Eppendorf tubes. Serum was recovered through centrifugation at RT and stored 

at -80°C. Cytokine detection was performed using the LEGENDplex Mouse inflammation Panel 
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(Biolegend) following manufacturer’s instructions. LEGENDplex bead analysis was performed 

using the LSRFortessa™ X-20 Cell Analyzer (BD biosciences) followed by concentration 

calculations using LEGENDplex FlowVigene™ V10 software.   
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13.2. Additional results I: Changes in gene transcription in 

fibrosis-associated cell types may reveal signature for 

maintaining of healthy lung following CONV-RT and 

AsiDNA™ exposure. 
 

The delayed development of pulmonary fibrosis after FLASH-RT compared to CONV-RT might 

be a known phenomenon but the complexity behind this specific tissue response is completely 

unidentified. Radiation has been shown to impact various cell types present in the lung, 

resulting in changes in cellular activity and numerous pathway activations [343]. Current 

unpublished data from the laboratory suggest a clear variety between the CONV and FLASH-

RT gene signatures examined using scRNA-seq. As the combined treatment of AsiDNA™ with 

CONV-RT resulted in a delay in radiation induced lung fibrosis compared to CONV-RT 

standalone, it is to be questioned if the signature of combined AsiDNA™ CONV-RT treatment 

is rather similar to FLASH-RT or CONV-RT. To characterize the similarity in cellular changes and 

expression signatures in lungs 5 months post CONV-RT, FLASH-RT, combined AsiDNA™ 

CONV-RT or non-irradiated (Control) treatments, single cell suspensions were created 

followed by scRNA-seq using the 10x Genomic platform. The results displayed below are an 

extension of the briefly described scRNA-seq results described in III. Results, 12. Article 1. 

 

The identification of 21 main cell populations using scRNA-seq. 

By exploiting previously published single-cell datasets and known identifying markers [343], 

the identity of the various cell clusters was determined (figure 19A). The identification resulted 

in the detection of 21 distinct clusters: alveolar macrophages (AM), proliferating AM, AT1, AT2, 

B-cells, basophils, ciliated cells, ciliated club cells, club cells, dendritic cells (DC), endothelial 

cells (EC), fibroblasts, interstitial macrophages (IM), mesotheliocyetes, monocytes, neutrophils, 

natural killer cells (NK cells), NK-t-cells, smooth muscle cells (SMC), t-cells and proliferating t-

cells (figure 19B-D). All cell types were identified independently of the received treatment 

modality but in the AT2, B-cells, IM and NK-t cells, a shift in the radiation-induced cell 

proportion was detected (figure 19D). Additionally, the AM, DC, monocytes, and NK-cells 

populations displayed altered cell proportion post CONV-RT in comparison to the additional 

conditions (figure 19D). 

  



174 

 

 

Figure 19: Identification of cell populations.  

(A) Dot plot of marker expression utilized for cell populations identification. (B) UMAP visualizing the 

identified cell clusters separating representation of the Control (red), CONV (green), AsiDNA™ CONV 

(blue) and FLASH (purple) treated samples. (C) UMAP visualizing the identified cell types in all samples. 

The individual dots signify single cells, additionally the created clusters are established on transcriptome 

resemblances. (D) Cell population proportions after Control, CONV, AsiDNA™ CONV and FLASH 

treatment.  
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The identification of reduced radiation-induced toxicity at the cellular level 

Fibroblasts 

Fibroblast can transition into myofibroblast in response to radiation. Myofibroblasts are known 

to secrete and modify the ECM, including changing the collagen production, which in turn 

results in the contribution to pulmonary fibrosis formation [346]. To investigate the 

contribution of this cell type in the development of pulmonary fibrosis formation after CONV-

RT, combined AsiDNA™ CONV-RT treatment, and FLASH-RT, myofibroblast marker expression, 

collagen homeostasis, fibroblast activation and EMC remodelling markers were examined 

within the fibroblast cell cluster.  

 

Clustering of the fibroblasts resulted in the detection of a total of 891 cells, divided over the 

different treatment conditions (Figure 20A). Myofibroblast markers Hp, Pla1a and Ltbp2, 

previously identified in Curras et al. (2023) [343], revealed to be substantially increased after 

CONV-RT standalone (Figure 20B-D). Fibroblast activation marker Fn1 [347], and ECM 

remodelling marker Tnc [347], [348], revealed a similar exclusive increase in gene expression 

only after CONV-RT standalone compared to the additional treatment groups (Figure 20E-F). 

Remarkably, Nr1d1 gene expression, linked to healthy collagen homeostasis [349], revealed to 

be significantly decreased in CONV-RT compared to the control or FLASH-RT, further 

supporting the loss of healthy and gain of damaged profile (Figure 20G). 

These results reveal an increase in fibroblast activation, increased myofibroblast transition 

together with an impact on the ECM, including collagen homeostasis, in the fibroblast cell 

cluster after CONV-RT standalone. This observed altered gene expression was decreased or 

absent in fibroblasts exposed to combined AsiDNA™ CONV-RT or FLASH-RT treatments and 

supports an essential role of this pathway activation in the development of pulmonary fibrosis. 
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(A) UMAP visualizing the identified fibroblast cluster separating 

representation of the Control (red), CONV (green), AsiDNA™ 

CONV (blue) and FLASH (purple) treated samples. Violin plots 

myofibroblast signature genes; Hp (B), Pla1a (C) and Ltbp2 (D), 

fibroblast activation; Fn1 (E), EMC remodeling; Tnc (F), and 

healthy collagen homeostasis; Nr1d1 (G). CONV irradiation 

upregulates the expression of Hp, Pla1a, Ltbp2 and Fn1 and Tnc 

and decreased the expression of Nr1d1 compared to FLASH, 

CONV-AsiDNA™ and NI control, significance given by Wilcox 

test.  (NS, p-value > 0.05; *, p-value < 0.05; **, p-value < 0.01; 

***, p-value < 0.001; ****, p-value < 0.0001). 

Figure 20: Pro-fibrotic markers in Fibroblasts. 
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Alveolar macrophages (AM) 

In the complexity of radiation-induced lung injury, various cell types, including alveolar 

macrophages (AM), have revealed to contribute to its development and severity. Several 

previous research has observed an accumulation of AM cells in the lung following irradiation 

together with increased Th2-related cytokine expression, the promotion of wound healing and 

tissue regeneration. This increase in pro-fibrotic factors by AM cells, ultimately, greatly 

contributes to fibrosis formation [350]–[352].  

Clustering of the AM resulted in the detection of a total of 3381 cells, divided over the different 

treatment conditions (Figure 21A). To identify an indication of any profibrotic contribution of 

AM to the development of pulmonary fibrosis, previous discovered profibrotic markers and 

Th2 cytokine receptor markers were examined. Profibrotic genes Lipa, Lpl and Spp1 have been 

priorly linked to pulmonary fibrosis formation [343], [353]–[358] and revealed a significant 

upregulation after CONV-RT standalone compared to the additional conditions (Figure 21B-

D). Additionally, Th2 cytokine reception markers, linked to increased inflammation and fibrosis 

development [359]–[361], revealed significant gene upregulation of Il10rb, but not Il4ra, after 

CONV-RT compared to the additional conditions (Figure 21E-G). Strikingly, the upregulation 

of Il13ra1 was observed in all irradiated conditions equally (Figure 21F). 

These results revealed a compelling increased pro-fibrotic gene signature and response of AM 

after CONV-RT, that was decreased or completely absent in the control group, after AsiDNA™ 

CONV-RT treatment or after FLASH-RT. Strikingly, AsiDNA™ CONV-RT treatment and FLASH-

RT revealed similar levels of profibrotic signatures in the AM cell cluster. The results insinuate 

an AM response between the combined AsiDNA™ CONV-RT and FLASH-RT treated groups, 

resulting in decreased pro-fibrosis signalling and, possibly, decreased normal tissue toxicity 

after radiotherapy, that was maintained upon CONV-RT.  
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(A) UMAP visualizing the identified AM cluster separating 

representation of the Control (red), CONV (green), AsiDNA™ CONV 

(blue) and FLASH (purple) treated samples. Violin plots of pro-

fibrotic markers; Lipa (B), Lpl (C) and macrophage fibrosis marker 

Spp1 (D) together with Th1 cytokine receptor genes; Il4ra (E), Il13ra1 

(F) and Il10rb (G). CONV irradiation upregulates the expression of 

Lipa, Lpl, Il4ra, Il10rb and Spp1 compared to FLASH, CONV-

AsiDNA™ and NI control, significance given by Wilcox test.   (NS, p-

value > 0.05; *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 

0.001; ****, p-value < 0.0001).  

Figure 21: Pro-fibrotic markers in Alveolar Macrophages. 
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13.3. Additional results II: Unique increase in inflammatory 

cytokine activity post combined AsiDNA™ treatment and 

thorax irradiation 
 

Cytokines are important contributors to numerous functions within the body including 

maintaining homeostasis, promoting development, nociception, cell activation and immune 

activation. Modified levels of inflammatory markers participate greatly in the development of 

lung fibrosis through the regulation of inflammation and response, inducing senescence, 

changes of the EMT and inhibiting autophagy [362]. To unravel the complexity of the delay in 

the onset of radiation-induced lung fibrosis observed after combined AsiDNA™ CONV-RT 

treatment, the impact of the various treatments upon inflammatory cytokine homeostasis was 

examined. Additionally, it enabled to examine if cytokine concentration could be used to 

function as biomarkers for treatment activity. For this, a panel of inflammatory cytokines were 

examined monthly following irradiation. Blood sampling was conducted at 0.5, 1, 2, 3, 4 and 5 

months on mice receiving three consecutive days of AsiDNA™ treatment with or without 13 

Gy thorax CONV/FLASH irradiation. Note that in these experiments, Nol8 was used as negative 

control (with a similar chemical structure as AsiDNA™ however, with lack of PARP and DNA-

PK activation) to identify the specific capacity of AsiDNA™ to trigger a biological response. 

Following AsiDNA™ combined with CONV- or FLASH-RT treatments, a clear increase from 1-

month following treatment of inflammatory cytokines Granulocyte-macrophage colony-

stimulating factor (GM-CSF), TNF-α and IFN-γ was observed (Figure 22). This synergistic effect 

was stable up to 5 months following treatment, and peaks at 1 month following treatment. 

AsiDNA™ treatment, CONV-RT or FLASH-RT standalone resulted in no increase of GM-CSF, 

TNF-α and IFN-γ inflammatory cytokines (Figure 22). 
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Figure 22: Cytokine GM-CSF, TNF-α and IFN-γ serum analysis. 
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diamond), 13 Gy FLASH with AsiDNA™ treatment (blue diamond) and AsiDNA™ treatment standalone 

(black square), underwent blood collection 0.5-, 1-, 2-, 3-, 4- and 5-months post treatment. Data is 

expressed in pg/ml of cytokines to months following irradiation (IR). 1-3 months N=6, 4-5 months N=1-

6, representing the mean ± SEM. 

The inflammatory cytokines IFN-β, IL-12p70, IL-1β, IL-17α and IL-27 revealed to be activated 

following AsiDNA™ treatment standalone and in combination with CONV- or FLASH-RT 

(Figure 23). This AsiDNA™-dependent cytokine activation was induced from 1-month 

following treatment. This was sustained up to 5 months following treatment only for the 

combined treatment conditions, with its peak of cytokine production at 1- and 2-months 

following treatment. Radiotherapy standalone did not reveal any changes in IFN-β, IL-12p70, 

IL-1β, IL-17α or IL-27 cytokine production (Figure 23). 
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Figure 23: Cytokine IFN-β, IL-12p70, IL-1β, IL-17α and IL-27 serum 

analysis.  
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Notably, for cytokines IL-10, IL-6, MCP-1, IL-1α and IL-23 no clear interpretation can be driven 

from the shape of the curves (Figure 24). A minor increase at 1- and 2-months following 

treatment is observed in cytokine expression of IL-6 in AsiDNA™ standalone or AsiDNA™ 

combined with CONV- or FLASH-RT treatments, IL-10 at 1- and 2-months following AsiDNA™ 

combined with CONV- or FLASH-RT treatments, and for IL-1α at 1- and 2-months following 

AsiDNA™ standalone treatment (Figure 24). Additionally, MCP-1 and IL-23 exhibit a peak of 

production at 0.5 months only following AsiDNA™ CONV-RT treatment (Figure 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mice administered with Saline (NT, black dot), 13 Gy CONV (pink square), 13 Gy CONV with AsiDNA™ 

treatment (green triangle), 13 Gy CONV with Nol8 treatment (purple triangle), 13 Gy FLASH (violet 

diamond), 13 Gy FLASH with AsiDNA™ treatment (blue diamond) and AsiDNA™ treatment standalone 

(black square), underwent blood collection 0.5-, 1-, 2-, 3-, 4- and 5-months post treatment. Data is 

expressed in pg/ml of cytokines to months following irradiation (IR). 1-3 months N=6, 4-5 months N=1-

6, representing the mean ± SEM. 

 

These results disclose a synergistic effect in inflammatory cytokine activation following 

AsiDNA™ combined with CONV- or FLASH-RT treatments, with a possible impact on the 

development of pulmonary fibrosis through increased IFN-γ. It furthermore revealed a set of 

inflammatory cytokines singly activated upon AsiDNA™ treatment that persist up to 5 months 

post treatment, qualifying it to possibly function as biomarkers for AsiDNA™ activity in vivo. 
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Figure 24: Cytokine IL-10, IL-6, MCP-1, IL-1α and IL-23 serum analysis. 
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13.4. Additional results III: Exploring the mechanism of action of 

AsiDNA™ in normal epithelial cells and fibroblasts 
 

The anti-cancer drug AsiDNA™, mimicking a double stranded break, has been identified as a 

chemo- and radiosensitizer with no impact to the normal tissue. The previous study, found in 

III. Results, 12. Article 1, revealed that AsiDNA™ treatment results in a DNA-PK/p53/p21 

dependent G1/S arrest, explicitly in epithelial cells and fibroblasts, characterised in this chapter 

as normal cells. The study furthermore revealed that the AsiDNA™-induced G1/S arrest in 

normal cells is accompanied with the induction of normal tissue protection against radiation-

induced toxicity. In this study, we aim to further identify the normal cell response to AsiDNA™ 

treatment and examine the distinctive response of dividing and non-dividing healthy cells in 

response to AsiDNA™ treatment.   

 

Loss of DNA-PK-induced markers post AsiDNA™ activity in normal non-dividing 

epithelial cells and fibroblasts 

The characteristic markers of AsiDNA™ activity that have been identified in dividing normal 

cells and tumour cells, linked to DNA-PK activation, are the phosphorylation of HSP90 and the 

phosphorylation of H2AX, represented as a pan-nuclear signal. In vivo, the pan-nuclear 

staining of γH2AX following AsiDNA™ treatment was present in tumours and severely 

decreased or completely absent in the normal tissue [331], [337]. This initiated the question of 

differential AsiDNA™ activity in dividing compared to non-dividing healthy cells. NHSF and 

RPE-hTERT cells were treated in dividing and non-dividing confluent state for 24 and 48h with 

20 µM AsiDNA™ followed by the examination of pan-nuclear yH2AX and HSP90-p. Pan-

nuclear staining of yH2AX and HSP90-p was detected in both cell lines post AsiDNA™ 

treatment with a peak at 24h of AsiDNA™ treatment (Figure 25A,C). Both biomarkers revealed 

a significant decrease once the normal cells reached confluency and stalled its capacity to 

divide (Figure 25B-D). The significant decrease in pan-nuclear yH2AX following AsiDNA™ 

treatment in confluent normal cells was confirmed using flow cytometry analysis (Figure 25E-

F).  
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Figure 25: Loss of AsiDNA™ activation markers in non-dividing normal cells.  

Representative immunofluorescence imaging of (A) pan-nuclear yH2AX or (C) HSP90-p in dividing and 

non-dividing RPE-hTERT cells. Quantitative histogram representing the percentages of 

immunofluorescence detected (B) pan-nuclear yH2AX positive cells or (D) HSP90-p positive cells in RPE-

hTERT cells and NHSF in dividing and non-dividing state. (E) Representative flow cytometry imaging of 

pan-nuclear yH2AX and PI staining in dividing and non-dividing RPE-hTERT cells. (F) Quantitative 

histogram representing the percentages of flow cytometry detected pan-nuclear yH2AX positive cells in 

RPE-hTERT cells and NHSF in dividing and non-dividing state. Data are expressed as mean ± standard 

deviation (n=2-3) with significance given by two-way ANOVA, Tukey’s multiple comparison tests, and 

represented above the bar plots. 
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AsiDNA™ can enter healthy epithelial cells and fibroblasts, independent on the 

state of cell division 

To determine if AsiDNA™ is unable to enter non-dividing normal cells or unable to enter the 

nucleus to activate DNA-PK, AsiDNA™-induced PARP activation was examined. PARP 

activation upon AsiDNA™ treatment have been identified to occur mainly in the cytoplasm 

[318]. NHSF and RPE-hTERT cells were treated in a dividing and non-dividing confluent state 

with 20µM of AsiDNA™ for 24 and 48h followed by PARylation ELISA. Both cell lines revealed 

a strong PARylation after both 24 and 48h of AsiDNA™ treatment. The increase in PARylation 

was present in both dividing and non-dividing normal cells, independent on the status of the 

cell division (Figure 26A). The presence of AsiDNA™ was confirmed in RPE cells treated for 12h 

with AsiDNA™-Cy5.5 followed by QIBC single cell analysis. A severe decrease of yH2AX was 

reconfirmed after the cells lost its dividing state (Figure 26B-C) However, the presence of 

AsiDNA™-Cy5.5 in the nucleus was present in both dividing and non-dividing cells with 

measured AsiCy5.5 intensities of 1200 a.u. in dividing cells and 1205 a.u. in non-dividing cells. 

Remarkably, the AsiDNA™-induced yH2AX is explicitly occurring in the G1 phase (Figure 26B). 

Similar pattern of γH2AX was also observed using p53 proficient and deficient tumour cells 

(data not shown). 

Currently, research is ongoing in examining the mechanism driving the G1 specific yH2AX 

following AsiDNA™ treatment and the strong reduction of γH2AX staining in non-dividing 

cells. 
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Figure 26: Dividing and non-dividing normal cells have similar AsiDNA™ uptake.  

(A) Quantitative histogram representing the percentage of PARylation activity of RPE-hTERT and NHSF 

following AsiDNA™ treatment in dividing and non-dividing state. Data are expressed as mean ± standard 

deviation (n=2-3) with significance given by two-way ANOVA, Tukey’s multiple comparison tests, and 

represented above the bar plots. (B) QIBC representation of RPE-hTERT cells following AsiDNA™ or 

AsiCy5.5 treatment for the detection of yH2AX and Cy5.5 nuclear intensity with values represented in table 

(C). 
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Discussion 

Unravelling the cellular and molecular consequences of AsiDNA™ treatment to the normal 

tissue exposed unique capacities of AsiDNA™ to the normal tissue that have never been 

identified in prior research. In the discussion below, the various results that are described in 

the result section will be discussed.   

 

The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation 

toxicity through a DNA-PK/p53/p21-dependent G1/S arrest: a summary. 

 

To reduce toxic side-effects, chemical or biological agents can be implemented as 

radioprotectors, administered in parallel to radiotherapy delivery [363]. AsiDNA™ is a drug 

mimicking DNA DSBs and can disrupt the DNA repair machinery of cancer cells, thereby 

enhancing the antitumoral action of radiation [318], [364]. The leading molecule used in pre-

clinical and clinical studies, termed AsiDNA™, is well tolerated indicating its suitability as a 

radioprotector [334], [335], [337], [341]. Although activation of AsiDNA™ occurs in both 

tumour and normal cells, only tumour cells are sensitive to the treatment [316], [317]. The G1/S 

cell cycle checkpoint is responsible for ensuring that the optimum conditions are reached for 

a cell to undergo successful cell division, by sensing of both mitogens and DNA damage, using 

key player protein p53 [365]. We demonstrated that explicitly in p53 proficient normal cells, 

AsiDNA™ treatment results in p53 activation, leading to p21 induction, and initiation of a 

reversible G1/S cell cycle arrest. Normal cells deficient in either DNA-PK, p53, or p21 are unable 

to arrest at the G1/S boundary following AsiDNA™ treatment. We propose that AsiDNA™ can 

serve as a platform to connect DNA-PK and p53, resulting in p21 activation. 

We confirmed the presence of the activated G1/S checkpoint in complex ex vivo and in vivo 

biological models. AsiDNA™-treated PCLS derived from p53 WT mice revealed a decrease of 

EdU positive cells, that was absent in PCLS derived from p53 knock-out mice, or in PCLS p53 

WT treated with Nol8, an AsiDNA™-like molecule unable to activate DNA-PK [311]. 

This supports that AsiDNA™ treatment in PCLS results in DNA-PK/p53-dependent G1/S arrest. 

In addition, the capacity of AsiDNA™ to induce the G1/S arrest was observed in vivo in the 

intestine, demonstrated with a severe decrease of EdU incorporation in the intestinal crypts of 

mice directly after AsiDNA™ treatment. This was accompanied with a full recovery of crypt 
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division 24-48h post-AsiDNA™ treatment, and increased p21 expression following AsiDNA™ 

treatment that decreased similarly with the recovery of crypt proliferation.  

The results within this research revealed a significant increase of in vitro cell survival, in normal 

cells upon chemo- or radiotherapy combined with AsiDNA™, compared to standalone 

treatment. This increase in cell survival was absent in tumour cells, independent of the p53 

status, as well as in normal cells with a p53 deficient status. This confirms the necessity of an 

active and intact DNA-PK/p53/p21 cascade to exploit the normal tissue protection properties 

of AsiDNA™. The protective capacities of AsiDNA™ were similarly identified in vivo in the 

intestine crypt survival, and in the radiation-induced lung fibrosis when combining CONV-RT 

with AsiDNA™ treatment compared to CONV-RT standalone. The intestine can fully regenerate 

from any type of damage if the stem cells remain functional [366], revealing the capacity of 

AsiDNA™ to protect the stem cells in the crypts by acting at the G1/S transition. Remarkably, 

inhibition of the G1/S transition prior to radiation or chemotherapy also protect the GI 

epithelium in mice [187], [367]. Similar results obtained in radiation-induced pulmonary 

fibrosis where AsiDNA™ combined with CONV-RT revealed increased protection of the lung 

to radiation toxicity, presented by a delay in the onset of radiation-induced fibrosis, compared 

to CONV-RT standalone. 

Finally, the combination of AsiDNA™ with FLASH-RT, a RT modality that has been shown to 

alleviate radiation-induced toxicity [54], [60], was explored. FLASH-RT was less toxic in vivo 

compared with CONV-RT, reconfirming the FLASH effect. However, AsiDNA™ combined with 

CONV-RT did not result in the same delay in the onset of fibrosis compared to FLASH 

radiotherapy standalone, while AsiDNA™ CONV-RT was as efficient as FLASH-RT at protecting 

intestinal crypts. This may be explained by the possible limitations in the capacity of AsiDNA™ 

to interfere with the complex mechanism driving fibrosis in late responding tissues [368]. 

Moreover, AsiDNA™ combined with FLASH-RT treatment did not result in any additive effect 

in vivo compared to FLASH-RT as standalone treatment. Collectively, all results indicate that 

the activity of AsiDNA™ and FLASH-RT could draw upon identical mechanism interference or 

epistatic interaction, to result in the protective capacities within the normal tissue.  

The full discussion of the AsiDNA™ decoy mimicking DSBs protects the normal tissue from 

radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest can be found in III. 

Results, 12. Article 1. 
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Enhanced DNA repair and de-differentiation as possible hypothesis for normal 

tissue protection 

The introduction of a G1/S cell cycle arrest has been indicated priorly to protect normal cells 

in vivo against chemotherapeutic-induced toxicity [187] and has been observed to go through 

the identical p53 dependent route [257]. However, one aspect that was not discussed before 

is the explanation why AsiDNA™ treatment is explicitly able to protect normal cells against 

toxicities. One hypothesis is that the AsiDNA™-induced cell cycle arrest increases the DNA 

repair capacities of normal cells. The intestine can fully regenerate from damage if the stem 

cells survive or the possibility of de-differentiation remains [155], [257], [366]. Remarkably, 

previous research by Hua et al. (2012) revealed that the stem cell population, at position +1-3 

within the crypts, have the capability to increase their DNA repair capacities to survive 

genotoxicity induced by chemotherapeutics or radiation [153]. In addition, mice with a DNA-

PK or p53 deficiency displayed an increase in radiation induced GI toxicity [246], [369]. 

Similarly, enhancing p53 activity by the addition of extra p53 gene copies resulted in a 

significant decrease in GI injury and enhanced DNA damage response with increased p21 

expression following radiotherapy, compared to p53 wild-type mice [246]. In addition, the 

inhibition of the G1/S transition, prior to radiation or chemotherapy, has indicated to reduce 

the GI toxicity in mice and enhancing Lgr5+ stem cell survival with dependency on active p53 

and p21 and increased repair capacities [187], [367]. These findings suggest that the capacity 

of AsiDNA™ to activate the DNA-PK, p53 and p21 cascade to induce the G1/S transition, 

enhances the DNA damage response, boosting crypt cell regeneration and supports de-

differentiation, resulting in enhancing the intestinal stem cell survival and decreasing radiation 

induced toxicity.  
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Changes in gene transcription in fibrosis-correlated cell types may reveal similar 

decreased fibrosis signature after combined AsiDNA™ CONV-RT and FLASH-RT 

exposure. 

The delayed development of pulmonary fibrosis after FLASH-RT compared to CONV-RT might 

be a known phenomenon but the complexity behind this specific tissue response is completely 

unidentified. Radiation has been shown to impact various cell types present in the lung, 

resulting in changes in cellular activity and numerous pathway activations [343]. As the 

combined treatment of AsiDNA™ with CONV-RT resulted in a delay in radiation-induced lung 

fibrosis compared to CONV-RT standalone, it is to be questioned if the signature of combined 

AsiDNA™ CONV-RT treatment is similar to FLASH-RT or CONV-RT standalone treatment. By 

exploiting previously published single-cell datasets [343], cell populations within the lung were 

clearly detected and fibroblasts and AM clusters were identified.  

Fibroblast can transition into myofibroblast in response to radiation, modifying the ECM, 

increasing collagen production, which in turn results in the contribution to pulmonary fibrosis 

formation, and has recently been identified as the main effector cells of pulmonary fibrosis 

[346], [370]. Our research revealed similar results with gene expression of myofibroblast 

markers previously identified in Curras et al. (2023) [343], increased fibroblast activation marker 

[347], and increased ECM marker [347], [348] after CONV-RT standalone. In addition, the gene 

expression of healthy collagen homeostasis [349], revealed to be significantly decreased in 

CONV-RT standalone compared to the control or FLASH-RT standalone. The difference 

between the gene expression profiles of CONV-RT standalone compared to the control 

condition, FLASH-RT standalone or combined CONV-RT with AsiDNA™ treatment, suggests 

that AsiDNA™ treatment could have an adverse impact on myofibroblast formation following 

radiotherapy, decreasing the onset of pulmonary fibrosis formation.  

Comparable to fibroblasts, accumulation of AM cells in the lung following irradiation has been 

linked to an increase in pro-fibrotic factors generated by AM cells that contribute to fibrosis 

formation [350]–[352]. Within the AM population, profibrotic genes revealed to be significantly 

upregulated after CONV-RT standalone compared to the additional conditions. However, this 

increase was absent in some of the examined Th2 cytokine reception markers, priorly identified 

to enhanced inflammation and fibrosis development [359]–[361]. The results highlight the 

complexity of radiation-induced lung fibrosis and could explain the observed survival of mice 
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following CONV-RT standalone, combined AsiDNA™ with CONV-RT and FLASH-RT standalone 

treatments. Here, AsiDNA™ treatment combined with CONV-RT revealed a delay in the onset 

of lung fibrosis compared to CONV-RT standalone but not as significant as FLASH-RT 

standalone. 

Notably, during the obtaining of gene expression results in both the fibroblasts and the AM, 

no sub clustering was performed of these cell populations. Prior scRNA-seq research of mice 

lungs following radiotherapy revealed a myofibroblast subcluster within the fibroblast 

population. This subcluster was present only following radiotherapy treatment and absent in 

control mice [343]. Furthermore, additional AM subclusters were identified that underwent a 

significant shift following radiotherapy treatment. Future sub-clustering of the fibroblast and 

AM populations can provide a stronger view of the impact of AsiDNA™ treatment and FLASH-

RT on its difference compared to CONV-RT standalone, and perhaps provides more 

explanation on the mechanism behind both AsiDNA™-and FLASH-RT-induced delay of 

radiation-induced lung fibrosis. 

 

Inflammatory cytokines in response to AsiDNA™ treatment 

Changes in inflammatory cytokines that lead to macrophage activation and changes in 

immune cell activity, contribute to pulmonary fibrosis formation in the lung and is 

hypothesized as the phago-cytosis-secretion immunity network. The pro- and anti-

inflammatory cytokines function in an equilibrium and issues are developed once this 

equilibrium is disturbed [362]. At a first glance, this equilibrium appears to be disturbed within 

mice receiving AsiDNA™ treatment. However, the inflammatory cytokines that are exclusively 

activated post AsiDNA™ treatment (IFN-β, IL-12p70, IL-1β, IL-17α and IL-27) cover both pro 

and anti-inflammatory cytokines, suggesting that the equilibrium might be maintained. 

Nonetheless, AsiDNA™ standalone treatment resulted in an increase in IL-12. This cytokine is 

known to activate Th1 cells, leading to the production of IFN-γ, GM-CSF and TNF-α  [362]. 

Surprisingly IFN-γ, GM-CSF or TNF-α activation was not detected following AsiDNA™ 

standalone treatment, indicated that Th1 cells are likely not activated in this condition.  It is 

important to note that AsiDNA™ standalone treatment does not induce lung fibrosis. 

Consequently, any change observed in the cytokine’s expression in response to AsiDNA™ 

treatment standalone likely reflects a physiological response to a non-damaging stress. In 

contrast, following combined AsiDNA™ with CONV-RT or FLASH-RT treatment, a severe 
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increase in all IFN-γ, GM-CSF and TNF-α was detected. The AsiDNA™-induced IL-12 

accompanied by radiotherapy damage resulted in the activation of Th1 cells and the 

production of IFN-γ, GM-CSF and TNF-α. Increased IFN-γ revealed to significantly inhibit the 

collagen production in fibroblasts, inhibiting fibrosis formation [371]. The IFN-γ cytokine 

increase only upon combined AsiDNA™ with radiotherapy treatments and could therefore 

function as a contributor to the delay in the onset of radiation-induced lung fibrosis observed 

following combined AsiDNA™ with CONV-RT treatment. Additionally, both TNF-α and IFN-γ 

have been identified as players in anti-cancer mechanisms. Studies revealed that TNF-α can 

damage neovascular endothelia, inducing broad scale cancer apoptosis signalling, impacting 

sites of metastasis, and combined TNF-α chemotherapy treatment can induce a synergy in 

tumour control [372], [373]. Additionally, IFN-γ can reduce tumour angiogenesis by inhibition 

of VEGF expression in the tumour microenvironment, and directly activate arrest of cell growth 

and apoptosis in ovarian cancer [374], [375]. It is to be speculated that this unique activation 

can, therefore, not only contribute to decreasing fibrosis formation, but also increasing tumour 

control, supporting the unique bilateral capacities of AsiDNA™. 

 

Exploring the mechanism of action of AsiDNA™ in normal cells 

The unique characteristics of AsiDNA™ activity have been used in vitro and in vivo for the 

identification and activation of AsiDNA™ in tumours and normal cells. There is however a 

distinct difference that appeared in previous conducted research of AsiDNA™ activity in 

normal cell. In vitro, normal cell lines that underwent treatment of AsiDNA™ exhibit the 

characteristic AsiDNA™ activity markers of pan nuclear γH2AX and HSP90-p equally to tumour 

treated cells [319]. Nevertheless, in vivo a clear difference appeared where AsiDNA™ activity 

detected through the pan-nuclear γH2AX staining revealed to be highly detectable in pre-

clinical tumours and even in clinical tumours of patients receiving IV treatments of AsiDNA™ 

[335], [337]. In parallel, the detection of pan-nuclear γH2AX in normal tissue is severely 

decreased. The conducted research identified that normal cells respond differently to 

AsiDNA™ exposure depending on the division state of the cell. Our research revealed that 

non-dividing cells have a severe decrease of the standard AsiDNA™ activation markers γH2AX 

and HSP90-p that are activated following the inappropriate activation of DNA-PK by AsiDNA™, 

occurring in the nucleus. Our results furthermore illustrated that AsiDNA™ can enter both 

epithelial cells and fibroblasts, independent of their division state, evidenced by PARylation 
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following AsiDNA™ treatment in a dividing and quiescent cell state. AsiDNA is therefore In 

addition, AsiCy5.5 was detected in the nucleus of non-dividing and dividing cells, indicating 

that AsiDNA™ can enter the nucleus of both dividing and non-dividing cells. However, 

AsiDNA™ is unable to activate DNA-PK explicitly in the nucleus of non-dividing cells (G0/G1-

phase cells). A possible explanation for this is the need for the cells to go through the cell cycle 

for AsiDNA™ to be activated. More evidence for this can be found in the appearance of the 

AsiDNA™ induced pan-nuclear staining explicitly in the G1-phase following M-phase 

progression. This appeared to be present in both normal and tumour cells (data not shown). 

More strikingly, γH2AX appears in G1 cells within hours post AsiDNA™ treatment, and the 

signal progressively increases with the incubation time, while AsiDNA™ can enter irrespectively 

of the phase of the cell cycle. One hypothesis that could explicitly link the pan-nuclear 

activation in G1-phase, is AsiDNA™’s dependency for cells to progress through cytokinesis 

allowing it to activate DNA-PK. It can be speculated that, in interphase and before cytokinesis, 

AsiDNA™ is not able to bind and activate DNA-PK or is able to bind and activate DNA-PK, but 

the latter cannot phosphorylate its substrates (H2AX and HSP90). During mitosis, the genome 

is tightly packed to facilitate smooth division of the chromosomes into the daughter cells and 

the nuclear membrane dissembled [376]. These structural changes may be required to form 

an AsiDNA™/DNA-PK complex which becomes fully active, after division, within the daughter 

cells. Future research is allocated to identify the mechanism driving the specific AsiDNA™-

induced G1 phase pan-nuclear γH2AX. 

 

In summary, the conducted research within this thesis has identified an AsiDNA™-induced 

reversible G1/S-arrest dependent on the DNA-PK/p53/p21 activation cascade exclusively in 

normal epithelial cells, fibroblasts, and intestinal crypt cells. The activation cascade can be 

exploited to protect intestine and lung against radiation-induced toxicity while maintaining 

tumour control, thereby acting as a unique bilateral agent. Additional studies revealed the 

possibility of the impact of AsiDNA™ treatment on tumour control through changes in 

inflammatory cytokine expression and the potential to exploit alterations in inflammatory 

cytokine expression for late responding biomarkers of AsiDNA™ activity. Finally, combined 

treatment of AsiDNA™ and FLASH radiotherapy indicate a potential similar mechanism 

through which the treatment modalities protect the normal tissue, uncovering a possible novel 

biological contributor to the FLASH effect. 
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Résumé 

Titre : Conséquences moléculaires et cellulaires d’AsiDNA™ combinée à la radiothérapie sur les 

tissus sains  

Mots clés : AsiDNA™, tissue normal, radiothérapie, FLASH, radioprotection, cycle cellulaire 

 

Résumé : La radiothérapie et la chimiothérapie 

sont couramment mises en œuvre dans les 

traitements du cancer à visée curative. 

Cependant, les effets secondaires sévères qui y 

sont associés interfèrent souvent avec 

l'achèvement du plan de traitement initial. Des 

études antérieures ont révélé que le 

radiosensibilisateur AsiDNA™ n'augmentait pas 

la sensibilité des tissus normaux, ce qui nous a 

amenées à évaluer le potentiel d'AsiDNA™ à 

protéger les tissus sains des toxicités induites 

par les radiations et à explorer son 

comportement dans les cellules normales. 

Nos recherches ont révélé qu'in vitro, AsiDNA™ 

pénètre dans les cellules normales et tumorales 

avec une phosphorylation de H2AX se 

produisant uniquement dans la phase G1 du 

cycle cellulaire avec une forte réduction dans 

les cellules quiescentes par rapport aux cellules 

en division. AsiDNA™ induit un arrêt du cycle 

cellulaire G1/S dépendant de DNA-PK/p53/p21 

uniquement dans les cellules normales. Un arrêt 

G1/S similaire a été identifié à la fois ex vivo et 

in vivo. 

La combinaison d'AsiDNA™ avec la 

chimiothérapie ou la radiothérapie augmente 

la survie des cellules prolifératives saines in 

vitro et la radioprotection in vivo en réponse 

à la radiothérapie conventionnelle, sans 

impact additif une fois combinée avec la 

radiothérapie FLASH. Le séquençage de l'ARN 

sur cellule unique de poumon irradié a révélé 

une signature génétique pro-fibrotique 

présente dans les fibroblastes et les 

macrophages alvéolaires en réponse à la 

radiothérapie CONV qui a été réduite une fois 

combinée avec AsiDNA™. 

Ces résultats suggèrent qu'en raison de l'arrêt 

du cycle cellulaire G1/S induit par AsiDNA™™ 

sur des cellules normales en division in vivo, 

la combinaison d'AsiDNA™ avec diverses 

modalités d'irradiation réduit la toxicité, 

offrant une opportunité unique d'utiliser 

AsiDNA™ en oncologie pour une 

augmentation bilatérale de la fenêtre 

thérapeutique. 
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Abstract 

Title : The molecular and cellular consequences of AsiDNA™ combined with radiotherapy on 

healthy tissue 

Keywords : AsiDNA™, Healthy tissue, radiotherapy, FLASH, radioprotection, cell cycle 

 

Abstract : Radiotherapy and chemotherapy 

are customary implemented in cancer 

treatments with curative intent. However, the 

associated severe side effects often interfere 

with the completion of the initial treatment 

plan. Previous studies have uncovered that 

radiosensitizer AsiDNA™ displayed no 

increased normal tissue sensitivity, leading us 

to assess the potential of AsiDNA™ to protect 

healthy tissues from radiation-induced 

toxicities and explore its behaviour in normal 

cells. 

Our research revealed that in vitro, AsiDNA™ 

penetrates normal and tumour cells with 

phosphorylation of H2AX only occurring in G1 

phase of the cell cycle with strong reduction in 

quiescent cells compared to dividing cells. 

AsiDNA™ induces a DNA-PK/p53/p21-

dependent G1/S cell cycle arrest only in normal 

cells. A similar G1/S arrest was identified both 

ex vivo and in vivo. 

The combination of AsiDNA™ with 

chemotherapy or radiotherapy increases the 

survival of healthy proliferative cells in vitro 

and radioprotection in vivo in response to 

conventional radiotherapy with no additive 

impact once combined with FLASH 

radiotherapy. Single-cell RNA sequencing of 

irradiated lung revealed a pro-fibrotic genetic 

signature present in fibroblasts and alveolar 

macrophages in response to CONV 

radiotherapy which was reduced once 

combined with AsiDNA™. 

These results suggest that due to the G1/S cell 

cycle arrest induced by AsiDNA™ on dividing 

normal cells in vivo, the combination of 

AsiDNA™ with various irradiation modalities 

reduces toxicity, offering a unique 

opportunity to use AsiDNA™ in oncology for 

a bilateral increase in the therapeutic window. 

 

 

 

 

 

 


