
HAL Id: tel-04516398
https://theses.hal.science/tel-04516398v1

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

DNA fragment assembly, graph structures and
chloroplast genome scaffolding : comparative analyses,

formulations and implementations
Victor Epain

To cite this version:
Victor Epain. DNA fragment assembly, graph structures and chloroplast genome scaffolding : com-
parative analyses, formulations and implementations. Other [cs.OH]. Université de Rennes, 2023.
English. �NNT : 2023URENS083�. �tel-04516398�

https://theses.hal.science/tel-04516398v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

·······
·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Informatique

Par

Victor EPAIN
Assemblage de fragments ADN : structures de graphes et écha-
faudage de génomes de chloroplastes

Analyses comparatives, formulations et implémentations

Thèse présentée et soutenue à Centre Inria de l’Université de Rennes, le 27 novembre 2023
Unité de recherche : Inria / IRISA UMR 6074

Rapporteurs avant soutenance :

Éric ANGEL Professeur des universités, IBISC, Université Paris-Saclay
Annie CHÂTEAU Maitresse de conférence - HDR, LIRMM, Université de Montpellier

Composition du Jury :

Président : Élisa FROMONT Professeure des universités, IRISA, Université de Rennes
Examinateurs : Éric ANGEL Professeur des universités, IBISC, Université Paris-Saclay

Annie CHÂTEAU Maitresse de conférence - HDR, LIRMM, Université de Montpellier
Élisa FROMONT Professeure des universités, IRISA, Université de Rennes
Camille MARCHET Chargée de recherche CNRS, CRIStAL, Lille
Mathias WELLER Professor, Institut für Softwaretechnik und Theoretische Informatik, Berlin
Dominique LAVENIER Directeur de recherche CNRS, IRISA, Rennes

Dir. de thèse : Rumen ANDONOV Professeur des universités, IRISA, Université de Rennes
Co-dir. de thèse : Jean-François GIBRAT Directeur de recherche, INRAe, Université Paris-Saclay

REMERCIEMENTS

En fonction des personnes que je remercie, ces mots sont écrits en français ou en
anglais / Depending on whom I am addressing, I am writing these acknowledgements
in French or in English.

Merci à Annie Château et Éric Angel qui ont évalué et validé ce manuscrit pour
me permettre de soutenir. Vos remarques positives et de fond m’ont encouragé pour
l’oral et m’ont permis de bien préparer les questions. Merci à Elisa Fromont d’avoir
présidé le jury, composé des rapporteurices, de Camille Marchet et de Mathias
Weller. Je les remercie tou·te·s de s’être déplacé·es à Rennes pour assister en
présence à ma soutenance, en particulier Annie qui venait de Montpellier, Mathias
de Berlin, Camille de Lille et Éric de Paris. Nos échanges ont été plaisants, et je
peux affirmer que ma soutenance a été un très beau moment de ma vie.

Lors de ma dernière année de prépa maths-
physique au Lycée Dupuy de Lôme de Lorient (2017),
j’ai assisté à une conférence donnée par Pierre-Henri
Gouyon pour introduire son livre Le Fil de la vie, La
face immatérielle du vivant, coécrit avec Jean-Louis
Dessalles et Cédric Gaucherel. Leur livre illustrait
entre autres comment les mathématiques et les mo-
dèles de la physique du signal permettaient d’appré-
hender des logiques et des tendances biologiques. À

l’issue de la conférence, P-H Gouyon m’encourageait à revenir vers la biologie (voir
son autographe en figure ci-contre).

J’ai ainsi souhaité continuer en master bioinformatique à Rennes, et la transition
était toute trouvée : une licence d’informatique à l’Université de Rennes 1. Rumen
Andonov m’a d’abord accueilli pour un stage de deux mois. À ce moment-là,
Sébastien Letort me poussait à la rigueur même si je programmais en Python,
chose que j’ai gardé, merci à toi. Rumen et Dominique Lavenier m’ont de nouveau
intégré dans l’équipe GenScale pour le stage de M1. Cette fois-ci, nous nous sommes
envolés pour Los Alamos, première fois que je prenais l’avion, première fois que je
traversais l’Atlantique. Merci Rumen pour ce mois de cohabitation, de travail et de
voyages. Thank you Hristo Djidjev for having welcomed us into your laboratory
(LANL) and for the valuable discussions about graph partitioning. Jamais deux
sans trois, mon dernier stage d’étude s’est fait… à GenScale !

i

REMERCIEMENTS

Rumen et Dominique m’ont alors présenté Jean-François Gibrat avec qui nous
avons préparé le sujet d’une thèse que nous souhaitions soumettre à concours. À
l’origine, le titre était : Développement de méthodes efficaces, précises et conviviales
pour corriger, assembler et aligner des lectures issues des technologies de séquençage
troisième génération.

Merci à Olivier Dameron, Annabelle Monnier et Sophie Schbat d’avoir soutenu
ma candidature. Merci aux membres du CSID, Guillaume Fertin et Christophe
Klopp, pour les discussions scientifiques et leur vérification en faveur du bon
déroulement de la thèse. Rumen, tu m’as toujours dit : « l’important, c’est que tu te
fasses plaisir dans ta recherche ». Merci infiniment à toi, Dominique et Jean-François
pour votre confiance, les très nombreuses discussions scientifiques, et de m’avoir
permis d’exercer mes premiers pas de chercheur librement.

Durant mes deux premières années de thèse, j’ai eu l’occasion et la chance
d’enseigner dans les matières qui me tenaient à cœur : méthodes algorithmiques sur
les graphes et programmation linéaire. Merci Rumen, Kerian Thuillier et Arthur
Gontier d’avoir été une super équipe pédagogique. Merci aux étudiant·es pour
leurs retours alors que l’on enseignait en hybride, puis à distance confiné·es : leurs
messages m’ont confirmé ma volonté d’enseigner. Merci à Pauline Hamon-Giraud
pour son travail à nos côtés en stage de M1.

Thank you, Gunnar Klau and Sven Schrinner from the HHU ALBI team in
Düsseldorf, for welcoming me during two months while we were threatened by
the lockdown due to COVID-19, for your valuable discussions about integer linear
programming and problem complexity.

Merci beaucoup Nicolas Buton, Garance Gourdel, Matthieu Bouguéon et Lucas
Robidou d’avoir formé l’équipe de doctorant·es que nous avons été : nous garderons
de très bons souvenirs de la réalisation de notre court métrage pour Sciences en
Cour[t]s, de l’organisation du même festival l’année suivante, de la gestion de
l’association Nicomaque. Merci pour votre soutien au quotidien.

Merci à Clara Delahaye, Olivier Dennler, Grégoire Siekaniec et Téo Lemane, nos
ainé·es, de nous avoir accompagné·es dans la recherche, dans Sciences en Cour[t]s
et Nicomaque.

Elisa Fromont, merci pour ta confiance et de m’avoir laissé la liberté de ton
pour l’organisation des séminaires annuels DKM 2023. Un grand merci également à
Marie Farge pour nos discussions concernant l’éthique de la publication scientifique

ii

REMERCIEMENTS

et tes encouragements pour la suite.

Merci Ambre Ayat pour ton aide dans l’organisation et l’animation de l’atelier
éthique dans l’ESR. Merci Bernard Friot et Enka Blanchard pour les échanges
autour du productivisme dans la recherche et les moyens d’en sortir.

To my (the best) office colleagues, Nicolas Guillaudeux, Khodor Annoush and
Arya Kaul: thank you for the discussions and your cheerfulness.

Un merci chaleureux aux personnes des équipes Symbioses, pour les discussions
sérieuses aux rires béats – parfois les deux en même temps, à table comme aux
pauses : merci à Samuel, François C., Konogan, Meven, Pierre, Stéphanie, Catherine,
Émeline, Claire, Emmanuelle, Jacques, Jeanne, Roland, Sandra, Baptiste, Victor,
Camille, Riccardo, Olivier B., Sarah, Thomas R., Thomas C., Gildas, Gaëtan,
Grégoire P., François M., Karel, Julien, Florian. Merci Marie et Gaëlle pour votre
travail de support quotidien à la recherche et les rigolades. Laurence, Sawako,
Charles, Anne-Claire et Maeva de la cafétéria de l’Inria, et à l’équipe du restaurant
de CentraleSupélec : merci pour votre bonne humeur de tous les jours.

Merci à mes ami·es de Lorient et à ma famille pour leur soutien, leurs en-
couragements et leur patience quand je m’exerçais à la vulgarisation de sujet de
thèse.

Merci aux ami·es du master bioinformatique pour cette amitié que nous avons
su garder malgré les éloignements, et pour la plupart, malgré les thèses que vous
prépariez aussi. Je souhaite que l’on puisse exercer nos recherches en assumant nos
responsabilités éthiques.

iii

RÉSUMÉ EN FRANÇAIS

Séquençage ADN et Assemblage de génomes
La molécule d’ADN est le support universel de l’information génomique chez tous
les organismes vivants. Étudier in silico l’information qu’elle porte permet de mettre
en exergue l’effet de son expression sur le fonctionnement des organismes, de les
classifier, de connaitre l’histoire qui lie les êtres vivants entre eux. La molécule
d’ADN est double brin. Chaque brin est un long mot formé de quatre lettres, les
nucléotides : A,C,G, T . Les deux brins sont complémentaires : un nucléotide A
fait face à T , C fait face à G — et vice-versa. Les nucléotides vont par paires,
appelées comme paires de bases (pb). De plus, les deux brins sont transcrits dans
des sens opposés. Ils sont par conséquent inverses-complémentaires. Pour connaitre
sa composition en nucléotides, la molécule d’ADN est fragmentée en plusieurs
morceaux chevauchants lors du séquençage. Ces fragments, appelés lectures sont
assemblées pour obtenir la séquence nucléotidique d’un seul brin, l’autre brin
s’obtenant en inversant et en complémentant la séquence du premier.

Les technologies de séquençage ne permettent toujours pas de séquencer en
une seule fois la totalité d’une molécule ADN quand elle excède une certaine taille.
À la fin des années 70, les recherches de Sanger permettent de séquencer des
fragments dont les tailles des lectures approchent le millier de paires de bases. Ce
processus est toutefois long et couteux. Les technologies de séquençage connaissent
un développement important lors de la première décennie du 21e siècle. Des millions
de lectures sont produites en une seule exécution de séquençage. Elles sont courtes
(de l’ordre de la centaine de paires de bases), et leur taux d’erreur de séquençage
atteint au mieux 0,1%, un ordre de grandeur en dessous de celui des technologies de
Sanger. Depuis 2010, une troisième génération de technologies produit des longues
lectures (de l’ordre de la dizaine de milliers de paires de bases) mais fortement
bruitées (de quelques pourcents).

L’assemblage de génomes ou assemblage de fragments est le processus visant à
reconstruire les plus longues sous-séquences des molécules ADN séquencées (sinon
leur séquence entière) à partir de leurs lectures. Plusieurs facteurs rendent le
problème de l’assemblage de fragments non trivial. Les erreurs de séquençage
obligent à la correction au préalable des lectures, sinon à la production d’une
séquence consensus à partir des lectures assemblées. Un plus grand nombre de
courtes lectures augmente la consommation en mémoire et en temps des algorithmes
d’assemblage. Les fragments séquencés proviennent de copies des deux brins. Par
conséquent, chaque lecture doit être considérée sous ses deux orientations exclusives :

v

RÉSUMÉ EN FRANÇAIS Graphes de fragments ADN

soit sa séquence inchangée participe à l’assemblage (orientation directe), soit sa
séquence inverse-complémentaire (orientation inverse), sinon aucune des deux.
Le plus difficile étant la résolution des régions répétées dans les génomes. Les
occurrences d’une région répétée se distinguent en fonction des régions adjacentes.
Plus les lectures sont longues, plus il est probable que les occurrences et leurs régions
adjacentes soient couvertes. À l’inverse, si aucune lecture ne couvre entièrement les
occurrences et leurs adjacences, leur ordre ne pourra pas être inféré. La résolution
des régions répétées est ainsi fonction de la longueur des lectures et des longueurs
des régions répétées – par exemple longues de plusieurs milliers de paires de bases
dans le génome du mais.

Deux grandes étapes composent l’assemblage de fragments. (i) L’assemblage
des lectures à partir de leurs chevauchements (le début d’une lecture s’aligne sur la
fin d’une autre). Il en résulte un ensemble de plus longues séquences, les contigs,
qui peuvent se retrouver en plusieurs copies dans le génome. (ii) L’échafaudage des
contigs (scaffolding en anglais) consistant à les orienter et les ordonner pour former
des échafaudages (scaffolds en anglais) grâce à des données supplémentaires. Les
contigs d’un échafaudage peuvent être éloignés par une distance nucléotidique.

La thèse présentée ici s’est concentrée sur deux problématiques. La première
porte sur l’analyse et la comparaison de structures de graphes utilisées tout au
long des étapes de l’assemblage de fragments. Le deuxième consiste en une formu-
lation originale du problème de l’échafaudage dédié aux génomes d’un organisme
particulier, les chloroplastes, et à sa résolution.

Graphes de fragments ADN
Un graphe est une structure mathématique utilisée pour rendre compte de relations
entre des objets. Ces derniers sont représentés par des sommets reliés par des arêtes
(graphe non orienté) ou par des arcs (graphe orienté). L’assemblage des lectures
s’appuie sur les chevauchements entre elles. Ainsi, il existe un lien permettant de
passer d’une première lecture orientée vers une deuxième. De même, l’échafaudage
des contigs dépend des liens entre deux contigs orientés. Ces liens proviennent
souvent de paires de lectures séparées par une distance (connue ou non) s’alignant
sur deux contigs (paired-end reads en anglais). Pour généraliser, nous utilisons le
terme générique fragment. Dans le cas de l’assemblage de lectures, il désigne les
lectures. Dans celui de l’échafaudage, il désigne les contigs. Dans ces deux cas, un
graphe permet de représenter les liens entre deux fragments orientés.

Trois structures de graphes émergent de la littérature. La première représente
chacune des deux orientations de chaque fragment par un sommet. Parce que les
liens sont des paires ordonnées de fragments orientés, ils définissent alors des arcs
dans un graphe orienté (GO). Kececioglu (1991) l’employa pour la première fois. Les

vi

Échafaudage de génomes de chloroplastes RÉSUMÉ EN FRANÇAIS

objets y semblent redondants, car les sommets vont par pairs (deux orientations),
ainsi que les arcs (les liens peuvent aussi être munis d’une orientation). Myers (1995)
propose de fusionner les deux orientations d’un fragment en un seul sommet, ainsi
qu’un lien et son inverse en une seule arrête. L’arrête doit alors être pondérée par
un couple d’orientations. La première correspond à celle du premier fragment, par
exemple celui d’identifiant lexicographiquement inférieur. La seconde orientation
est celle du fragment défini comme étant le deuxième. Le graphe est biorienté
(GB). Enfin, pour leur méthode d’échafaudage, Huson et al. (2002) simplifient la
représentation en associant deux sommets pour chaque fragment, un pour chacune
des deux extrémités d’un fragment : la tête et la queue. Ces deux sommets sont
reliés par une arête (arrête-fragment). Passez de la tête à la queue correspond à
choisir le fragment inverse. Ici, les liens sont des arêtes reliant l’extrémité d’un
fragment à un autre (arrêtes-liens). Un chemin valide dans ce graphe non orienté
(GN) commence et termine par une arête-fragment et alterne entre les deux types
d’arêtes.

L’emploi de l’une ou l’autre structure de graphe varie entre les méthodes pour les
étapes d’assemblage de fragments. Bien que leurs différences de conceptions soient
parfois décrites, ces structures n’ont jamais été comparées théoriquement ni en
pratique. Aucune base d’implémentation pour GO, GB et GN pour comparaison n’a
donc été proposée. En réponse, nous avons proposé des implémentations s’appuyant
sur des listes d’adjacence qui tirent bénéfice de la symétrie impliquée par l’inverse-
complémentarité des deux brins. Les implémentations sont comparées en terme
d’usage théorique en mémoire, et au travers du coût temporel des algorithmes pour
réaliser des opérations élémentaires : itérer sur les liens, ajouter et supprimer un
fragment ou un lien.

Bien que les coûts des implémentations ne diffèrent que de facteurs linéaires,
nous concluons sur quelques recommandations. En particulier, nous avons mis en
évidence que GB est à privilégier si la mémoire fait défaut, puisque deux fois moins
de pointeurs sont requis, ou quand il s’agit de supprimer des fragments du graphe.
L’implémentation ne décrivant que les successeurs dans GO est la meilleure pour
itérer sur les voisins d’un fragment orienté, ajouter ou supprimer un lien. Une
implémentation de GO, qui ne garde que les voisins des fragments orientés directs,
est disponible pour Python3 sur PyPI sous le nom de revsymg.

Échafaudage de génomes de chloroplastes
Résultat d’endosymbioses entre des bactéries et des cellules eucaryotes, les chlo-
roplastes sont des organites de cellules de plantes et d’algues. Ils produisent des
molécules carbonées à partir du CO2 dans l’air grâce au processus biologique de la
photosynthèse. Les chloroplastes possèdent leur propre génome en plus de celui de la

vii

https://pypi.org/project/revsymg/

RÉSUMÉ EN FRANÇAIS Échafaudage de chloroplastes

plante (dans le noyau) et de celui des autres organites (comme des mitochondries).
Les plantes sont des êtres pluricellulaires, et chacune des cellules de leurs feuilles
possèdent plusieurs chloroplastes.

La structure et la répartition du génome des chloroplastes sont particulières. La
structure la plus étudiée est un génome circulaire quadriparti, séparée en quatre
régions : une Longue Région Unique (LRU), une Courte Région Unique (CRU) et
une paire de régions inverse-complémentaires (RI). Chaque chloroplaste possède
plusieurs copies de son génome, qui peuvent différer en formes. La présence des RI
entraîne l’inversion-complémentaire d’une des régions uniques lors de la réplication
qui s’opère sur les deux brins à partir d’un point d’origine. Ainsi, des haplotypes
structuraux réversibles coexistent dans un même chloroplaste.

Plusieurs approches ont déjà été proposées pour l’assemblage spécifique d’orga-
nites et de chloroplastes. Certaines sont des suites (pipeline en anglais) de méthodes
génériques appliquées sur des données de séquençage filtrées (Ankenbrand et al.,
2018). D’autres profitent de la faible taille des génomes de chloroplastes et ont dé-
veloppé des algorithmes de graine-et-extension (seed-and-extend en anglais) visant
un assemblage circulaire (Coissac et al., 2016 ; Dierckxsens et al., 2017). Jin et al.
(2020) estiment les multiplicités des contigs afin qu’elles soient au plus proche des
observations des alignements des lectures sur les contigs et que le graphe de contigs
multipliés contienne un chemin circulaire. Les chemins circulaires représentant
des RI identiques sont marqués comme solutions. Seule cette approche et celle de
Andonov et al. (2019) (un échafaudeur appliqué sur des données chloroplastiques)
tiennent compte de solutions multiples correspondant à des haplotypes structuraux.
Toutes ces approches ne modélisent pas explicitement l’assemblage ou l’échafaudage
d’un génome de chloroplaste (et de ses différentes formes), mais procèdent à des
filtres a priori et a posteriori des assemblages.

Ici, nous proposons de nous appuyer sur les caractéristiques des structures de
leur génome pour formuler l’échafaudage de génome de chloroplaste en un problème
d’optimisation combinatoire. Cette formulation se centre sur la reconstruction des
régions répétées et des régions uniques, pour ensuite déduire les différentes formes de
génomes. Nous démontrons que ce problème est NP-complet. Nous le décomposons
en trois sous-formulations (pour les RI, RU, et régions répétées directes), et pour
chacune nous proposons un modèle linéaire en nombre entier. Ces modèles sont
implémentés dans un unique programme qui les hiérarchise. Nos résultats sont
encourageants sur des données synthétiques, choisies en fonction de la variété des
difficultés génomiques structurales qu’elles présentent. La méthode est disponible
sous le module PyPI Python3 khloraascaf, et les résultats sont reproductibles
(voir https://khloraascaf-results.readthedocs.io/en/latest/).

viii

https://pypi.org/project/khloraascaf/
https://khloraascaf-results.readthedocs.io/en/latest/

Conclusions et perspectives RÉSUMÉ EN FRANÇAIS

Conclusions et perspectives
L’assemblage de fragments est un problème abstrait difficile à formaliser dans le
cas général. Découpé en sous-étapes, leurs approches de résolution dépendent de
la nature des données en entrée et des spécificités des génomes des organismes
à assembler. Les problèmes d’optimisation combinatoire sous-jacents gagnent en
pertinence lorsque leur modélisation rend compte de ces complexités.

Le graphe est une structure mathématique utilisée tout le long du processus
d’assemblage de fragments : des lectures jusqu’aux échafaudages. Trois structures
émergent de la littérature. Bien qu’elles soient comparées dans leur conception
abstraite, elles n’avaient jamais été comparées sur la base d’une implémentation de
graphe. Nous proposons dans cette thèse une base commune de leur formalisation
en proposant une implémentation sous la forme de listes d’adjacences. Le cout
de stockage en mémoire et le coût temporel des algorithmes d’itération sur les
données, d’ajout ou de suppression d’informations sont calculés pour chacune des
implémentations. Une des implémentations est disponible via un module Python3.

Nous envisageons d’implémenter les graphes sous Rust ou sous un langage
de programmation compilé équivalent pour comparer les implémentations expéri-
mentalement et confirmer les calculs théoriques. De même, puisque le choix d’une
structure de graphe influence les modélisations ultérieures pour l’assemblage de
fragments, nous souhaitons proposer, pour chaque structure, des modèles linéaires
en nombres entiers de recherches de chemins ou de couvertures, les analyser et les
comparer en théorie et en pratique.

Nous nous sommes ensuite penchés sur le problème de l’échafaudage dans le
contexte des génomes de chloroplastes. La communauté travaille depuis maintenant
une vingtaine d’année sur le problème de l’échafaudage dans le cas général, et
depuis une dizaine d’années particulièrement sur les génomes de chloroplastes.
Les méthodes diffèrent grandement sur les heuristiques utilisées ainsi que sur
les stratégies de sous-échantillonnage des données concernant les outils les plus
complets. L’intérêt du génome de chloroplaste pour son assemblage réside dans
sa structure génomique particulière et dans l’existence de plusieurs formes au
sein d’un même organite. Sa petite taille de génome se traduit par un jeu de
données dont la taille permet de résoudre le problème de l’échafaudage par des
méthodes exactes. Ainsi, nous posons une formulation du problème que nous
résolvons au moyen d’une décomposition en sous-problèmes, modélisés et résolus
par programmation linéaire en nombres entiers. À travers elle, nous couvrons de
nombreuses spécificités du génome de chloroplaste, de l’agencement des régions
génomiques jusqu’à l’existence d’haplotypes structuraux. Notre méthode produit
des solutions multiples corrélées avec le phénomène d’inversion-complémentaire de
certaines régions au cours de la réplication ADN. Enfin, nous avons implémenté ces

ix

RÉSUMÉ EN FRANÇAIS Conclusions et perspectives

approches en un module Python3, testé sur des données synthétiques aux difficultés
hétérogènes. Les résultats sont reproductibles.

L’échafaudage n’étant qu’une sous-étape du processus d’assemblage, nous sou-
haitons injecter notre approche dans une suite permettant d’assembler les génomes
de chloroplastes à partir des lectures. Dans un souci de comparaison pertinente,
nous envisageons d’injecter notre partie dans la suite GetOrganelle, à l’endroit où
l’on identifie une équivalence d’objectif, entrées et sorties. Cela nous permettra de
nous comparer avec l’état de l’art. Les chloroplastes ne sont pas les seuls organites
en présence dans les cellules de plantes. Les mitochondries par exemple partagent
des caractéristiques génomiques communes avec celles des chloroplastes. Nous
envisageons d’investiguer dans quelle mesure notre approche peut-être adaptée
pour l’assemblage de génomes mitochondriaux.

x

CONTENTS

Remerciements i

Résumé en français v

Séquençage ADN et Assemblage de génomes. v
Graphes de fragments ADN . vi
Échafaudage de génomes de chloroplastes. vii
Conclusions et perspectives . ix

Contents xi

List of Figures xvii

List of Tables xix

I Introduction 1

1 DNA overview . 2
1.1 A recipe for cellular mechanisms 3
1.2 On the motivations for knowing the whole DNA sequence 3
1.3 Various molecular conformations structure the genome 4

2 Chloroplast genome. 4
2.1 Genome division . 5
2.2 Repeats and single-copy regions. 5
2.3 Structural haplotypes . 7
2.4 Genome evolution . 8

xi

CONTENTS

3 DNA sequencing . 8
3.1 The Shotgun sequencing approach 9
3.2 First generation: Sanger and BAC technologies 9
3.3 Second generation: high-throughput sequencing 10
3.4 Third generation: single molecule run time 11
3.5 Supplementary sequencing data 12

4 The challenges of fragment assembly 13
4.1 Read sequence alignment . 13
4.2 Unknown fragment orientations 14
4.3 Sequence similarity: single-copy or repeat? 14
4.4 True sequence divergences or sequencing errors?. 15

5 Fragment assembly approaches 15
5.1 The Shortest Common Superstring 15
5.2 Overlap-Layout-Consensus . 17
5.3 De Bruijn Graph approach . 18
5.4 Breaking down the fragment assembly problem 20

6 Addressed research topics . 21
6.1 Graph structure for read assembly and scaffolding stages 22
6.2 Scaffolding of chloroplast structural haplotypes 22

II State-of-the-art 23

1 Graph structure for fragment assembly 24
1.1 Notations and fundamental definitions 24
1.2 Directed graph (DG): oriented fragments based 27
1.3 Bidirected graph (BG): oriented walk based 30
1.4 Undirected graph (UG): tail-head fragments based. 33

2 Scaffolding the contigs . 37
2.1 Scaffolding input data . 38
2.2 Subsampling the input data . 40
2.3 Orienting the contigs . 44
2.4 Ordering the oriented contigs 46
2.5 Orienting and ordering the contigs simultaneously 47
2.6 Solving approaches . 49

3 Chloroplast genome assembly 51
3.1 Chloroplast sequence extraction 51
3.2 Chloroplast reads assembly . 53

xii

CONTENTS

3.3 Chloroplast scaffolding . 54
3.4 Chloroplast assembly validation 55

III Fragment graph implementations and comparison 57

1 Implementations . 58
1.1 Directed graph (DG): oriented fragments based 59
1.2 Bidirected graph (BG): oriented walk based 66
1.3 Undirected graph (UG): tail-head fragments based. 68
1.4 Fragment graph map . 70

2 Algorithms for DGS, DGF and BGU 72
2.1 Subfunctions . 72
2.2 Iterating over the predecessors 73
2.3 Iterating over the successors 74
2.4 Adding a vertex . 75
2.5 Adding an edge. 76
2.6 Deleting a vertex . 78
2.7 Deleting an edge . 81

3 Time costs . 82
4 Memory and time cost comparisons 84
5 Conclusions and perspectives 85

IV Global exact optimisations for chloroplast structural
haplotype scaffolding 87

1 Introduction . 88
1.1 Chloroplast genome specificities 88
1.2 State-of-the-art. 89
1.3 Our approach. 89

2 Input data and notation . 90
2.1 Set of contigs C . 90
2.2 Set of links L . 91
2.3 Mathematically defining genomic regions 91

3 Chloroplast scaffolding problem formulations 92
4 Graph and repeated fragment sets 96

4.1 Graph structure . 97

xiii

CONTENTS

4.2 Repeated fragment sets. 98
5 Integer Linear Programming (ILP) formulation 102

5.1 Circuit constraints . 103
5.2 Repeated regions constraints 104
5.3 Fixing regions constraints . 107
5.4 Speed-up constraints . 108
5.5 Scaffolding problems ILP . 108

6 Hierarchical problem succession 109
7 From an ILP solution to a genome structure 110
8 Multiple genome forms. 114
9 NP-completeness . 117
10 Numerical results . 121

10.1 Complexity validation on artificial data 122
10.2 Synthetic chloroplast input data. 123

11 Conclusion . 130
12 Discussion and perspectives . 131

V Conclusions and perspectives 133

Fragment graph . 134
Thesis contribution . 134
Short-term future work . 135
Long-term future work . 135

Chloroplast genome scaffolding . 136
Thesis contribution . 136
Short-term future work . 137
Long-term future work . 138

Bibliography 139

Appendix A1

1 Repeated fragment set functions A1

xiv

CONTENTS

2 Reduction of the repeated fragment sets A2
2.1 Repeated fragment set reductions A2
2.2 Pairs of repeated fragment set reductions A5
2.3 Adjacent repeated fragment set reductions A8

3 Metrics . A17
3.1 Quast metrics . A17

4 Supplementary results . A18
4.1 v1 scaffolding benchmark . A18
4.2 v2 scaffolding benchmark . A20

Acronyms G1

Symbols G3

Computational terms G7

Glossary G11

xv

LIST OF FIGURES

I Introduction 2

1 DNA double-strand molecule 3
2 Different DNA conformations 4
3 Simplified DNA distribution in a plant’s cell. 5
4 DNA repeats. 6
5 Common chloroplast genome’s architectures. 7
6 Inverted repeats causing structural haplotypes: flip-flop inversion

during the DNA replication. 8
7 The shotgun sequencing approach. 10
8 Sequencing error types. 11
9 Paired-end sequencing. 12
10 Sequence alignments. 14
11 Unknown fragment’s orientation. 15
12 Impact of the genome repeats on the fragment sequencing. 16
13 OLC versus DBG fragment assembly approaches. 19

II State-of-the-art 26

14 Examples of links 26
15 Fragment and link sets with functions 27
16 Link cases in DG. 28
17 A path in DG. 29
18 Link cases in BG. 31
19 A path in BG. 33
20 Link cases in UG. 35
21 A path in UG. 36
22 Overview of all the fragment graph structures. 37

xvii

LIST OF FIGURES

23 Scaffolding input data. 41
24 Bidirected and undirected graph cycles. 45

III Fragment graph implementations and comparison 59

25 DGA implementation. 60
26 DGS implementation. 62
27 DGF implementation. 64
28 BGU implementation. 67
29 UGA implementation. 69
30 Graph structures and their implementations. 70

IV Global exact optimisations for chloroplast structural
haplotype scaffolding 93

31 Repeat degeneration and region orders. 93
32 Chloroplast repeat scaffolding. 96
33 MDCG example. 97
34 Repeated fragment sets illustration for two contigs c and d. 99
35 Adjacent repeated fragment sets examples. 101
36 Non-exhaustive illustrations for authorised and forbidden order

cases for two repeated fragments ((i, j), (k, l)) ∈ PRepF . 105
37 Extracting the genome architecture in MDCG from a CHSP

solution. 111
38 Region graph for the toy example. 115
39 From a digraph G for LPSTP to a digraph G′ for IRP . 120
40 Solver running time distributions for perfect artificial data. 123

xviii

LIST OF TABLES

II State-of-the-art 38

1 Non-exhaustive categorised list of methods and approaches for
the scaffolding stage. 39

2 Scaffolding input data properties. 40
3 Chloroplast genome assembly approaches. 52

III Fragment graph implementations and comparison 82

4 Calculus detail of basic operations costs. 83
5 Algorithmic costs for subfunctions. 83
6 Algorithmic costs of iterating over the neighbours. 83
7 Algorithmic costs of adding a vertex or an edge. 84
8 Algorithmic costs of deleting a vertex. 84
9 Algorithmic costs of deleting an edge. 84
10 Comparison between DGS, DGF and BGU. 85

IV Global exact optimisations for chloroplast structural
haplotype scaffolding 90

11 Toy example of input data. 90
12 ILP sets and functions corresponding table. 105
13 Problem code combinations 110
14 Gurobi solver metrics on perfect artificial growing data. 124
15 Gurobi solver metrics on noisy artificial growing data. 125
16 Sequence and Quast metrics for the initial synthetic data version. 128

xix

LIST OF TABLES

17 Sequence and Quast metrics for the modified synthetic data
version. 130

Appendix A18

18 Benchmark 3 v1 contig Quast A18
19 Benchmark 3 v1 ILP stats A19
20 Benchmark 3 v2 ILP stats A20

xx

I INTRODUCTION

Joe Hisaishi. (1999). Inner Voyage [Song]. On The
Universe Within, Vol.1 & 2. PONY CANYON

In this chapter

1 DNA overview 2
1.1 A recipe for cellular mechanisms 3
1.2 On the motivations for knowing the whole DNA sequence 3
1.3 Various molecular conformations structure the genome 4

2 Chloroplast genome 4
2.1 Genome division . 5
2.2 Repeats and single-copy regions. 5
2.3 Structural haplotypes . 7
2.4 Genome evolution . 8

3 DNA sequencing 8
3.1 The Shotgun sequencing approach 9
3.2 First generation: Sanger and BAC technologies 9
3.3 Second generation: high-throughput sequencing 10
3.4 Third generation: single molecule run time 11
3.5 Supplementary sequencing data 12

4 The challenges of fragment assembly 13
4.1 Read sequence alignment . 13
4.2 Unknown fragment orientations 14
4.3 Sequence similarity: single-copy or repeat? 14
4.4 True sequence divergences or sequencing errors?. 15

5 Fragment assembly approaches 15
5.1 The Shortest Common Superstring 15
5.2 Overlap-Layout-Consensus . 17
5.3 De Bruijn Graph approach . 18
5.4 Breaking down the fragment assembly problem 20

1

https://musicbrainz.org/release/f191b872-9b14-4fac-a3ba-3dd58d5dcde1

I INTRODUCTION DNA overview 1

6 Addressed research topics 21
6.1 Graph structure for read assembly and scaffolding stages 22
6.2 Scaffolding of chloroplast structural haplotypes 22

This chapter presents general and basic knowledge on the subject of genome
assembly. Deoxyribonucleic acid (DNA) and genomic information studies have
known great development since the 20th century. They impact many areas, from
ecological understanding to economics, through agronomics and medicine.

We first give a quick overview on what DNA is and the information the molecule
holds in Section 1. Section 2 describes the particularities of the chloroplast genome
we exploit to formalise their assembly in Chapter IV. Then, we describe sequencing
methods to obtain a DNA sequence through its fragmentation (Section 3) and the
challenges it raises (Section 4). Section 5 gives the background of the approaches
enabling to retrieve the sequence from fragments. Finally, we address the topics
this thesis focuses on in Section 6.

1 DNA overview
DNA molecules are the support of the genomic information contained in each cell
of living organisms. Studies in DNA have been developed since the beginning of
the 50s, when X-ray pictures shot by Gosling while he was supervised by Franklin
(Franklin and Gosling, 1953) lead to the double-strand model proposed by Watson
and Crick in 1953. Each strand is a sequence of four nucleotides, adenine (A),
cytosine (C), guanine (G) and thymine (T) that are organic molecules considered
as elementary subunits.

We denote by Σnuc = {A,C,G, T} the nucleotide alphabet, where A and T
are complementary nucleotides as well as C and G. Each strand has a reading
direction from the defined 5’ extremity to the 3’ one. One strand is the complement
of the other, and the 5’ 3’ extremities are reversed. As an example, if AATGCCA
is a strand (or a DNA sequence), then TGGCATT is its reverse-complement as
illustrated in Figure 1. For the sake of clarity, the reverse-complement word is
shortened to the reverse.

As the DNA molecule is double-stranded, the nucleotides are said to be paired,
and the length of a DNA molecule is measured in base pairs (bp). The DNA
molecules among the living organisms vary in forms and in length: from millions of
base pairs for bacteria (Trevors, 1996) to billions for eukaryotes (Kidwell, 2002).
This double-strand specificity contributes to chemical stability as well as enabling
replication and repairing mechanisms. These mechanisms are the key to sharing
genomic information through generations.

2

1 DNA overview INTRODUCTION I

� Figure 1 – DNA double-strand molecule
5’ and 3’ extremities give the reading direction of each DNA
strand, illustrated by the two arrows. One strand is the
reverse-complement (or the reverse) of the other. Thus,
AATGCCA is the reverse of TGGCATT , and vice-versa.
This DNA molecule’s length is 7 bp.

1.1 A recipe for cellular mechanisms
DNA operates as both an archive and a recipe for cellular machinery, through
hierarchical processes of synthesis. The DNA molecule can be divided into gene
regions separated by intergenic regions. Particularly, enzymes read the DNA
molecule from the 5’ extremity to the 3’ one, and synthesise RNA single-strand
molecules from the genes (transcription stage). RNA molecules are then translated
to proteins that can form protein-complexes performing different functions such as
the catalytic function of enzymes. Especially during the translation stage of the
RNA (denoted mRNA, standing for “messenger RNA”) the nucleotide alphabet
is translated to the amino-acid alphabet, where three consecutive nucleotides
correspond to one amino-acid. Specific molecular biology research fields focus on
each molecule and the synthesis processes. Various types of RNA cover different
functions: messenger, participating in the translation stage, silencing genes etc.

1.2 On the motivations for knowing the whole DNA sequence
Uniquely studying proteins is insufficient to understand all the cellular mechanisms
and their influences on phenotypes. Studying how DNA transitions into mRNA
or tRNA completes knowledge of the DNA’s 3D behaviour, helping researchers
to understand life processes. Similarly, gene sequence analysis alone cannot fully
explain the functioning of living organisms. Whole genome sequencing provides
supplementary results compared to protein, gene or RNA studies. The interested
reader is referred to the review by Rice and Green (2019) from which the following
derives.

Without specifically studying the function of the genomic regions, a whole
genome can serve as a reference sequence on which other sequences are aligned
or mapped in order to infer history, timing or location of events based on edition
distances. Gene expression (reading a gene results in the production of a mRNA)
can be affected over large genomic regions: a gene can be silenced or over-expressed
due to inhibitor/enhancer genomic regions. Indeed, while it is expected that gene
expression is affected by genomic regions near to the gene in the DNA sequence, these

3

I INTRODUCTION Chloroplast genome 2

regions can also be near in space because of DNA molecular folding mechanisms.
Some phenotypes are multifactorial corresponding to polygenic traits (e.g. gene
co-expression), and it can be valuable to know the location order of the gene of
interest. Also related to gene expressions, during the meiosis stage (cell division of
germ cells for the production of gametes) chromosome recombination sometimes
occur. Finally, changes in chromosomes can result in the emergence of new species.

Therefore, having the complete genome sequence influences biochemistry, im-
munology, evolution and ecological sciences.

1.3 Various molecular conformations structure the genome
The DNA or genomic information is differently organised across living organisms.
The genomic information can be organised along one molecule or split into several
ones. It can also be multiplied in the genomic container (e.g. in the cell’s nucleus for
eukaryotes). When multiple copies coexist in the container, they can be grouped:
they are paired for humans (diploid species), or grouped by more than two, e.g. by
6-uplet as for the wheat (hexaploid). The DNA molecules supporting the whole or
a part of the genomic information also differ in topology: they can be linear (as
for humans) or circular (as for the Escherichia coli bacteria). Figure 2 illustrates
divers DNA molecule conformations.

(a) (b) (c)

� Figure 2 – Different DNA conformations
Each figure represents chromosomes, which are compressed DNA (double-stranded)
molecules. ax = b means that b chromosomes are grouped in a-uplet: (a) haploid
linear DNA 1x = 1; (b) haploid circular DNA 1x = 1; (c) diploid linear DNA 2x = 2.

2 Chloroplast genome
Chloroplasts are plant and algae cell organelles. They are the result of endosymbi-
osis between bacteria and eukaryotic cells (Gould, 2012). They produce carbon
compounds from CO2 in the air through the photosynthesis biological process.
Mitochondria are other organelles in endosymbiosis with plants and algae. In

4

2 Chloroplast genome INTRODUCTION I

1986, the first chloroplast genomes were sequenced and assembled. Those are
chloroplasts of a liverwort, Marchantia polymorpha (Ohyama et al., 1986), and of a
tobacco plant, Nicotiana tabacum (Shinozaki et al., 1986). Knowing the sequence
of organelle genomes allows performing ecological, phylogenetic and evolutionary
studies (Daniell et al., 2016; Sun et al., 2020; Long et al., 2023).

2.1 Genome division
Plants are multicellular organisms. As eukaryotes, the genomic information of
the plants is hosted in the nucleus of their cells, noted nucDNA. Chloroplasts
and mitochondria, possess their own genomic material (respectively cpDNA and
mtDNA), and each plant’s cell can host several organelles possessing the same
genomic material. Furthermore, each chloroplast has multiple copies of its genome
(Bendich, 1987; Kobayashi et al., 2002). The number of copies have been shown to
decrease with the leaf age (Kumar et al., 2014). Figure 3 schematises the genome
distribution in a plant cell.

Plant cell's
nucleus

Mitochondrion

Chloroplast

nucDNA

mtDNA

cpDNA

Organelles DNA

Multigenome
cpDNA

� Figure 3 – Simplified DNA distribution in a plant’s cell.
The grey octagon container represents a plant’s cell. The purple, blue and green oval
shapes are respectively the plant cell’s nucleus, mitochondria and chloroplasts. There
are several mitochondria and chloroplasts in a same cell. Each of them possesses its
own genomic material: in the nucleus, for this artificial example, the plant is diploid
(2x = 4); each mitochondrion has several copies of its genome; each chloroplast has
multiple forms of its own genome, linear, circular and multigenomes.

2.2 Repeats and single-copy regions
Genomic regions can be classified according to whether their sequence is found
approximately elsewhere in the genome, regardless of their functions. In this case,

5

I INTRODUCTION Chloroplast genome 2

the classification depends on two main factors:
— the minimum length of a sequence to consider it as a repeat (otherwise, a

sequence of size one could be said to be repeated);

— an acceptable number of word editions (such as substitutions, insertions and
deletions) to pass from one sequence to another.

The difficulty with these factors lies in the fact that they are left to the discretion
of the researchers analysing them, and therefore suffer from a certain subjectivity.
For the chloroplast we will focus on two types of repeats.
Direct Repeat (DR) The sequences are highly similar;

Inverted Repeat (IR) One sequence is the reverse of the other.
Figure 4 gives two examples of perfect repeats.

(a) Direct Repeat (DR) (b) Inverted Repeat (IR)

� Figure 4 – DNA repeats.
A blue subsequence is the reverse-complement of a green subsequence, i.e. GCAA is
the reverse of TTGC. (a) GCAA is direct repeated in the top strand, thus TTGC
is direct repeated in the bottom strand. (b) GCAA is inverted repeated in the top
strand, thus TTGC is inverted repeated in the bottom strand.

One of the most studied chloroplast genome architectures is the circular DNA
molecule whose quadripartite sequence includes a pair of highly similar (or identical)
reversed nucleotide subsequences (Inverted Repeat (IR)) separated by a Long Single-
Copy (LSC) and a Short Single-Copy (SSC) sequences (Bock and Knoop, 2012).
Figure 5a illustrates IR-quadripartite chloroplast genome. For example, Thode et al.
(2021) show that IRs in Mikania plastomes have length around 25 kbp. However, an
example of the difficulties in discriminating what is a repeat is highlighted by Kim
and Lee (2005). The latter studies quadripartite chloroplast genomes described as
above, where inversions can be found in LSC because of small IRs. The structures
are still described as quadripartite because the IRs in the LSC are smaller than the
IRs considered in the structure. Quadripartite structures with Direct Repeat (DR),
generally shorter than the IRs, can also be found (Palmer, 1985), as well as more
complex structure involving both type of repeats (Tsai and Strauss, 1989). Figure 5
summarises the main chloroplast genome structures found in the literature.

6

2 Chloroplast genome INTRODUCTION I

(a) (b) (c)

� Figure 5 – Common chloroplast genome’s architectures.
The most studied chloroplast genome form is circular and very often quadripartite. For
each of the figures (a), (b) and (c), coloured arrows represent nucleotide sequences.
LSC and SSC stand for Long Single-Copy and Short Single-Copy (purple and red),
respectively. They correspond to regions (subsequences) that are not repeated in the
genome. On the opposite, IR and DR stand for Inverted Repeat and Direct Repeat
(green and blue), respectively. (a) This architecture is the most common one and is
defined as a quadripartite architecture. The two green IR arrows face each other that
illustrates one is the reverse-complement sequence of the other; (b) the two blue DR
arrows are in the same direction that illustrates both have the same nucleotide sequence;
(c) the two types of repeat can simultaneously exist in the chloroplast genome, and
DRs are shorter than IRs.

2.3 Structural haplotypes
The molecular form of the copies of chloroplast genomes differ (Bendich, 2004), but
the circular form has been mainly studied. For example Seyer et al. (1981) give an
electron micrograph of a circular cpDNA from Nicotiana tabacum. Although the
circular structures are a minority, and multigenomes can be found (linear genomes
combined in a tree-like structure due to recombination-dependent replication), the
circularity property is less sensitive to virus interactions and thus is dominantly
transmitted to the next generation (Bendich, 2004).

For this reason, in this manuscript we focus on the chloroplast circular genome
copies. During the DNA molecular replication of one cpDNA molecule, flip-flop
inversions can occur so that the resulting replicated molecules’ form differs. This
transformation is due to the presence of IRs, where the DNA subsequence between
them is reversed. Inversions during the replication phase were also studied for
bacteria, and they are considered as reversible operations. The copies of a genome,
exact or obtained by inversions, are denoted as structural haplotypes (Palmer,
1983; Deng et al., 1989; Wang and Lanfear, 2019). Figure 6 schematises a flip-flop

7

I INTRODUCTION DNA sequencing 3

inversion for a chloroplast genome with IRs.

Flip-flop
inversion

� Figure 6 – Inverted repeats causing structural haplotypes: flip-flop inversion
during the DNA replication.
During the DNA replication of the chloroplast genome, one of the region between the
inverted repeats can be reversed (here the red region SSC). This provokes the existence
of several forms of the genome in the same chloroplast (heteroplasmy).

2.4 Genome evolution
Chloroplasts and mitochondria in endosymbiosis with eukaryotic cells have gradually
become the organelles of plant cells. As a result, organelles no longer need specific
genomic traits, leading to a loss of genes and a reduction of their genome size
(Xiao-Ming et al., 2017). Horizontal transfers (a transfer of genes not by heredity)
were also studied from the plant to its organelles.

3 DNA sequencing
DNA sequencing aims to obtain the nucleotide sequence of a DNA molecule for
downstream analyses. The sequence of only one DNA strand is sufficient because
retrieving its complementary is immediate (c.f. Figure 1). Since the 1960s, it has
been necessary to sequence subpart of molecules, corresponding to a few nucleotides.
Although fragment lengths in 2023 could exceed the megabase range, sequencing
the entire DNA molecule of most living organisms in one run remains unfeasible.

In some papers presenting sequencing results, the term sequencing refers both
to the genome fragmentation and the assembly of the fragments. Here we separate
the two procedures. Sequencing is the process of fragmenting DNA and obtaining
their sequences using a sequencer . The fragment assembly solves the fragment
puzzle with computational methods.

8

3 DNA sequencing INTRODUCTION I

In the late 1960s, the available techniques were restricted to employing digestion
enzymes which split the sequence at specific base positions. As a result, they output
very short fragments, denoted as digests, sometimes of length two and generally
limited to length eight. Sequencing DNA molecules of several kilobases was therefore
impossible, and the digest sequencing technology was limited to sequence protein
or RNA sequences.

3.1 The Shotgun sequencing approach
Since the 1970s, sequencing technologies have known continuous development and
fast improvement leading to various data types. In the following, a read refers to a
sequence obtained by these technologies, while a fragment refers to a partial or a
whole sequence of a DNA molecule. The main approach to sequence a genome is
proceeding to a shotgun sequencing: the reads are obtained from the sequencing
of fragments randomly sampled from copies of the genome. This strategy was
firstly proposed by Staden (1979) and is illustrated in Figure 7. It is based on
the fact that a fragment from a copy of the genome may overlap fragments from
other copies. Since the reads are subsequences of the fragments, they also overlap,
enabling to retrieve a continuous sequence.

The next sections summarise the main sequencing technologies, inspired by the
reviews written in Mehdi et al. (2017) and Pervez et al. (2022).

3.2 First generation: Sanger and BAC technologies
In the late 1970s Sanger’s research succeeded in sequencing much longer fragments
(Sanger et al., 1977). Their length increases from 8 bp up to one thousand (400 bp
to 900 bp). The process is denoted by Sequencing By Synthesis (SBS): it consists
in completing a single-strand DNA molecules from a fragment (a template) with
denatured nucleotides. Each nucleotide addition is marked along a gel thanks to
electrophoresis. The gel can be seen as an n× 4 boolean matrix, where n is the
fragment’s length and each of the four columns corresponds to one nucleotide. If
there is a band at the cell (i, j), then there is the jth nucleotide at the ith position
of the fragment.

The Bacterial Artificial Chromosome (BAC) benefits from a bacterial DNA
molecule as a vector to amplify inserted fragments of interest (O’Connor et al.,
1989). Venter et al. (1996) suggested sequencing them at both ends. Thanks to
adaptors at both extremities of the fragments, two reads are sequenced from the
5’ extremity of the two complementary strands (Denoted as paired-end data, in
opposition to single-end, c.f. Figure 9). As the length of the vector is known, BAC
technology provides an approximated distance between the two paired-read.

9

I INTRODUCTION DNA sequencing 3

Coverage

Duplication
+

Fragmentation

Fragment
sequencing

� Figure 7 – The shotgun sequencing approach.
From the bottom to the top of the figure: the reads (in blue) are sequenced from
longer fragment (in green) randomly sampled from copies of the genome (in orange).
Based on the overlapping reads, the assembly process aims to retrieve the genome.
The coverage counts the average number of times a base in the genome is covered by
the reads.

Although the fragments are long and the accuracy can reach 99.99%, the Sanger
technology suffers from low throughput and high costs. Since the beginning of the
21th century it has been supplanted by high-throughput technologies, even if it is
still used for validating DNA sequence and for target resequencing.

3.3 Second generation: high-throughput sequencing
As mentioned above, the first decade of the 21st century witnessed the emergence
of new sequencing technologies. Refered to as Next Generation Sequencing tech-
nologies (NGS), they produce millions of short reads at low prices allowing the
sequencing of numerous organisms.

Illumina sequencing (2000) The Illumina/Solexa sequencing technology is also an
SBS technology. Adaptors are attached to the extremities of the double-strand
fragments. The two strands are separated, the adaptors find their complementary
on a flow cell, and the single-strand fragments are then amplified by Polymerase
Chain Reaction (PCR). As modified nucleotides complete the strands, a laser emits

10

3 DNA sequencing INTRODUCTION I

(a) (b) (c)

� Figure 8 – Sequencing error types.
Three types of errors can occur during the sequencing of DNA fragments. For each
subfigure, the top sequence is the original/template sequence and the bottom sequence
is the sequenced one. (a) Substitution: one nucleotide is changed to another one; (b)
insertion: there is one extra nucleotide; (c) deletion: there is one missing nucleotide.
The first error type is someone noted as a mismatch, and the two latters are categorised
as indels.

a light signal that is detected by a camera and interpreted by a computer. The
best machines are able to sequence millions of reads at a reduced cost, by providing
a 0.1% to 1% error rate in favour of substitutions (Figure 8a). However, the read
lengths are in the range of 100 bp to 300 bp.

454 sequencing (2005) Similarly to Illumina technology, the 454 sequencing is
labelled SBS, it needs PCR amplification and nucleotide additions are detected by
light emission. It produces reads with lengths from 100 bp up to 700 bp with a 1%
error rate mainly caused by homopolymers errors. Homopolymers are repetitions
of the same nucleotide, and their misdetection leads to insertions and deletions
(indels) in the reads (Figures 8b and 8c).

Ion Torrent (2011) SBS technology, it measures the PH variation to detect nuc-
leotides. It produces reads with lengths from 200 bp up to 400 bp, with 1% error
type mainly due to indels.

Paired-end data Analogously to the BAC technology, it is possible to sequence
short reads by pairs. For Illumina, the distances are short (100 bp – 300 bp), while
for mate-pair data (circularised fragments generating paired reads, Korbel et al.
2007), they reach the kilobases at the expense of accuracy.

3.4 Third generation: single molecule run time
The Third Generation Sequencing technologies (TGS) refer to Single Molecule Run
Time technologies (SMRT) that have emerged in the last decades. They produce
fewer but longer reads without PCR. The procedure is shorter and less costly.

11

I INTRODUCTION DNA sequencing 3

� Figure 9 – Paired-end sequencing.
The two main grey lines are the two strands of a fragment. The two reads r1 and r2
are sequenced by pairs distanced by d nucleotides (inner distance).

Although they first suffered from relatively high error rate with indel error types,
these technologies have made significant advances in lowering the error rate in
recent years.

Pacific biosciences SMRT sequencing (2010) Each DNA fragment passes into a cell
that contains a DNA polymerase. When the single-strand fragment passes through
the polymerase, fluorescent labelled nucleotides complete the strand and release
light signals. The average read length is 10 kbp and can reach 60 kbp. The first
error rate was measured to 13% but more recent HiFi technology would decrease
the rate to 0.5% (according to PacBio, Hon et al. 2020).

Oxford nanopore sequencing (2014) In Oxford Nanopore Technology (ONT), the
DNA fragments pass though a pore (made by a protein complex). The passage
of the molecule through the pore generates a variation in the ionic current. The
variations are recorded and translated to the nucleotide alphabet. The average read
length is 10 kbp and can reach 150 kbp, and even 4Mbp for PromethION machine.
Because controlling the speed at which the fragment enters the pore is challenging,
the initial error rates are approximately 12%. According to the firm, they can
obtain reads with less than 1% error rate. However, Delahaye and Nicolas (2021)
measure it to 5% – 8% but remark that the base-caller (the software interpreting
ionic signals) is upgrading fast.

3.5 Supplementary sequencing data
The following new data type can help to assemble, finish or correct an assembly of
the reads, but at a supplementary cost.

12

4 The challenges of fragment assembly INTRODUCTION I

10x linked read 10x linked read is a sequencing technology permitting to label
the reads that come from the same fragment. It generates short reads that can be
assembled by groups.

Hi-C protocol Hi-C is a technology highlighting physical contact between two
regions in the genomes. It generates Illumina paired reads coming from two close
genomic regions due to chromosome conformation. While two close regions during
one conformation can be far away from each other along the genome, it is possible
to prevent the compaction of the DNA in such a way that contacts only occur
between two regions close to each other in the sequence. Such contacts are not
very accurate and provide a square matrix (each side the length of the genome)
with a strong diagonal and a lot of noise around.

Optical map Finally, optical mapping is a process of partitioning copies of the
genome at specific known subsequence site thanks to nicking enzyme. For each copy
a specific enzyme is associated. As a result, the positions of several subsequences
are known, which helps for mapping and ordering fragments along the genome.

4 The challenges of fragment assembly
The fragment assembly problem began in the late 1960s with the assembly of
digests. As the fragments are just a few base lengths (up to 8 bp) it raises the issue
of the unicity of their assembly. Shapiro (1967) proposes an algorithm for RNA
and protein assembly based on the digest overlap, and gives sufficient conditions
for the unicity. Since 1977, more fragments are produced thanks to the Sanger
sequencing technology, and has become necessary to use computers to assemble
them. The first assemblers were proposed by Gingeras et al. (1979) and Staden
(1980). They enable the first shotgun assembly project with the assembly of the
50 kbp virus λ using reads of length 200 bp (Sanger et al., 1982).

4.1 Read sequence alignment
Read sequences can be compared by sequence alignment algorithms. Figure 10
schematises three types of read alignment. (a) Overlapping sequences in different
reads enable the algorithm to reconstruct the original DNA sequence. However,
because of sequencing errors, two reads sequenced at the same genome region can
differ in sequence, so it is necessary to find approximated overlaps. (b) Reads that
are contained in others are useful to correct the sequencing errors by producing a
consensus from the alignments. (c) Reads sharing a part of their sequence, and

13

I INTRODUCTION The challenges of fragment assembly 4

whose alignment does not fall into the previous categories, can be considered as
detecting repeats because the flanking regions are not aligned.

(a) Overlap (b) Containment (c) Share

� Figure 10 – Sequence alignments.
Sequence alignments distributed into three categories. u and v are two sequences.
The arrows give their orientation (tail: 3’, head: 5’). The blue lines between them
correspond to aligned nucleotides. (a) Overlap: the head of u is aligned with the tail
of v. (b) Containment: u is containing v. (c) Share: a subpart of u is aligned with
a subpart of v, and at least one of the subpart does not begin from or finish to an
extremity (here each subpart respects the statement).

4.2 Unknown fragment orientations
As the DNA is double-stranded, and the reads are sequenced from DNA fragments,
two reads can be sequenced from the two different strands. This introduces the
notion of sequence orientations. Each read must be considered in two orientations:
the one given by the technologies (defined as the forward orientation), and its
reverse-complement (defined as the reverse orientation). As a consequence, (i) both
the direct and its reverse must be considered when searching for read overlaps and
(ii) at most one orientation must be chosen for the reads when assembling them.
Figure 11 illustrates the fragment orientation issue.

4.3 Sequence similarity: single-copy or repeat?
The main challenge of genome assembly is the genome repeats resolution. The
definition of a repeat depends on the length of the reads and the similarity between
the repeats in the genome. Indeed, if reads are longer than the repeats, there are
some reads that contains them with their non identical flanking sequences. Note
that some repeats can exceed kilobases (e.g. long transposable elements in the
maize genome or in bacteria genomes Kidwell 2002). Raising the threshold to
accept overlaps is not sufficient as some repeats are very similar in sequence, and
because of sequencing error the alignments must be flexible such as not losing true
overlaps. Figure 12 illustrates the genome repeats impact on the reads’ assembly in

14

5 Fragment assembly approaches INTRODUCTION I

Fragment 1 Fragment 2

� Figure 11 – Unknown fragment’s orientation.
Raw is the set of sequenced reads. Reads uf and vf have been sequenced from two
different fragments of the same genome, but they do not come from the same strand.
ur and vr are respectively the reverse of uf and vf . An assembly should either consider
uf followed by vr, or vf followed by ur.

the case of two direct repeats. Furthermore, the overlapping of the reads must also
take into account inverted repeats because both orientations must be considered.

4.4 True sequence divergences or sequencing errors?
As previously mentioned, the repeats can slightly differ in sequence. Sequencing
errors can hide the signal of a true difference. Although a substitution can be
resolved by consensus, indel errors are more difficult to solve, and have the worse
consequence as they can shift the protein reading phase (three nucleotides are
translated into one amino acid). It is thus necessary to have a sufficient sequencing
depth to counterbalance the errors. These errors are supposed to be randomly
distributed along the genome (which is not really the case, e.g. for ONT). Identi-
fying true biological signals is a prior step to further separating heterozygotes
regions for polyploid organisms or splitting close ones shared by different species in
metagenomic samples.

5 Fragment assembly approaches

5.1 The Shortest Common Superstring
Peltola et al. (1984) tackle the problem of fragment assembly with the Shortest
Common Superstring (SCS) algorithm. Given an error ratio δ, each read must
participate in the superstring F , in only one orientation, modified in sequence with
an edit distance less than δ times the length of the read. F must be as short as
possible, and this makes the problem mathematically non-trivial, although it is not

15

I INTRODUCTION Fragment assembly approaches 5

(a) Solved repeats

(b) Unsolved repeats

� Figure 12 – Impact of the genome repeats on the fragment sequencing.
The two subfigures show the same genome sequenced respectively with long and short
reads. The genome possesses a repeated region R (in red) and three single-copies
(resp. yellow, blue and green). (a) Reads b and d are covering the repeats entirely: the
assembly gives abcde. (b) Reads c and f are subsequence of the repeats: the assembly
can give abcdefgh, or abfdecgh (if the repeats are not exactly the same, switching c
and f can misassemble the genome), or even abcgh that shortens the genome.

necessarily a biologically meaningful requirement (parsimony principle).

Assembling the fragments by choosing the longest overlaps first gives a heuristic
to solve the SCS but does not guarantee the optimal solution. Räihä and Ukkonen
(1981) have previously modelled SCS as the search for a Hamiltonian path in
a directed graph (digraph) that represents overlaps. In that case, the fragment
assembly problem is NP-hard.

Li (1990) provided hypotheses that support the SCS modelling: the DNA
molecule is assumed to be a random nucleotide sequence and the reads are uniformly
sampled. However, these hypotheses do not reflect genomic complexity. Finally,
Myers (1995) found that the SCS can wrongly make the genome shorter by merging
the repeats.

16

5 Fragment assembly approaches INTRODUCTION I

5.2 Overlap-Layout-Consensus
To address the sequencing errors and the repeat issues, Kececioglu and Myers
introduced the Overlap-Layout-Consensus (OLC) approach. It consists of three
stages: (i) computing approximated overlaps between the reads; (ii) finding a layout
on the overlaps to partition them into parts classified as single-copy and repeated
regions; (iii) producing consensus sequences for each part.

The overlaps computed in stage (i) can be represented in a digraph denoted
as the overlap graph. Kececioglu (1991) defined it as G = (V,E), where V is the
set of oriented reads and E is the set of arcs (u, v), u and v are two overlapping
oriented reads (Figure 13b).

The fragment orientation and the maximum-weight dovetail-chain branching problems
The premise formulations are given in Kececioglu (1991) and Kececioglu and Myers
(1995). At this time, the orientation of the reads and the ordering of the oriented
reads are separated in two global optimisation formulations: first, choose a subset of
the overlaps that maximises the sum of their lengths and assign only one orientation
for each read; then, find a non-branching path that maximises the overlap length.
The authors observed that with known orientations and without errors, the latter
corresponds to the SCS.

The string graph formulation To overcome the SCS shortened repeats, Myers
(1995) proposed the maximum likelihood ε-valid layout formulation. It consists
in preserving the read coverage along the assembly. Indeed, the coverage rate of
compressed repeat regions should be abnormally higher than that of single-copy
regions in the assembly. This leads to the string graph layout: the overlap graph
is transformed to a string graph. (i) The contained reads are removed from V
(criticised in Jain 2023); (ii) the graph is simplified by transitive edge removal (in
pseudo-linear time complexity, Myers 2005); (iii) the single paths are collapsed.
It results in a string graph for which, theoretically, edges correspond to genomic
regions and the vertices are the junctions between them. Each edge is weighted by
the number of times it may participate in a walk representing the genome. Celera
implemented this approach and enabled to assemble the genome of Drosophila
melanogaster (Myers et al., 2000).

Local and variant approaches The string graph formulation has inherited many
variants. Some of them are focused on data cleaning strategies and successive local
corrections, as introduced by ARACHNE (Batzoglou et al., 2002) for BAC data, and
done in Canu (Koren et al. 2017, Celera’s successor) for TGS data. Some adopt
aggressive strategies such as the Best Overlap Graph (BOG), which keeps only the

17

I INTRODUCTION Fragment assembly approaches 5

highest-quality extending overlap for each orientation of each read. Introduced in
CABOG, a software dedicated to Roche 454 and Illumina paired-end reads (Miller
et al., 2008), the BOG strategy is part of hifiasm (Cheng et al., 2021) which is
dedicated to haplotype resolving thanks to HiFi long reads.

OLC complexity In Myers (2005), a valid assembly of the genome is equivalent to
finding a cyclic walk respecting the number of times it passes through each edge
in the string graph. According to the parsimony principle, this walk minimises
the genome length the assembly produces. In this case, Medvedev et al. (2007)
proved the problem to be NP-hard. Nevertheless, due to the plethoras of heuristics
in the current methods (e.g. in Canu and hifiasm), the actual complexity of the
algorithms is highly correlated to the computation of the overlaps, a quadratic
procedure.

5.3 De Bruijn Graph approach
New approaches have emerged to handle the millions of reads produced by NGS.
Sequencing-by-Hybridisation (SBH) was the name of a left-behind sequencing
technology that indicated the presence of sequences of size k among a set in the
genome. It inspired the De Bruijn Graph (DBG) assembly approach. In 1989,
Pevzner introduced the use of a partial de Bruijn graph (dbgraph) to assemble the
genome. This approach first decomposes each read in words of length k (k-mers)
overlapping by k − 1 nucleotides. Then it builds a dbgraph G = (V,E) of all the
k-mers of all the reads is built: each vertex in V corresponds to a k − 1 overlap
between two k-mers, and each edge in E is a k-mer. Each read corresponds to a walk
in G, and the genome corresponds to a superwalk (a walk of walks) (Figure 13c).

As for the OLC approach, it consists in reducing G: (i) Each path of vertices
that do not have more than one in-edge and one out-edge are collapsed in one edge
(unitig); (ii) branching vertices are resolved with read mapping on the paths. Idury
and Waterman (1995) associated the genome as a double-Eulerian superwalk in G.
If the Eulerian superwalk is unique, it should correspond to the genome. The first
motivation was the analogy with the search for an Eulerian path, which is simpler
than the search for a Hamiltonian path. Furthermore, it reduces the consensus
phase to find paths through the k-mers.

Size of k and solid k-mers However, as the overlaps between the k-mers are exact,
G is sensible to sequencing errors. In fact, each substitution in a k-mer forms a
bubble (two paths starting from and ending to the same k-mers). For a small value
of k, the graph is more connected but more branching, while for a larger value the
graph branches out less but suffers from bubbles and can be partitioned into several

18

5 Fragment assembly approaches INTRODUCTION I

(a) Read sequencing

String graph
simplification

(b) OLC approach

de Bruijn graph
simplification

(c) DBG approach

� Figure 13 – OLC versus DBG fragment assembly approaches.
(a) The genome possesses a repeated region R. The sequencing produces nine reads.
For the example, reads 3 and 7 are exactly the same and are contained in R. (b) From
the overlap of the read (at least two bases), the string graph is built. Note that neither
read 3 nor read 7 are removed because no one is longer than the other while they are
mutually contained each other. (c) The reads are split into k − 1 overlapping words of
length k (k-mers). In the (partial) edge-centric dbgraph, vertices are the k − 1 exact
overlaps and edges are the k-mers. Here k = 3. For (b) and (c): unique paths are
collapsed to form unitigs. The over-simplified illustrations for the OLC and respectively
the DBG approaches suggest that the genome can be found by solving a Hamiltonian
path through the simplified string graph resp. an Eulerian path through the simplified
dbgraph.

connected components. One strategy is to compute the number of occurrences a
k-mer appears in the set of reads, and only use those associated with a sufficiently
large occurrence value to build the graph (solid k-mer, Pevzner et al. 2001).

19

I INTRODUCTION Fragment assembly approaches 5

Local and variant approaches Many DBG variant algorithms have implemented
their own heuristic for specific targets. Velvet and SOAPdenovo merge bubbles
thanks to a Dijkstra-like Breadth-First Search (BFS) algorithm (Zerbino and
Birney, 2008; Li et al., 2010). SPAdes applies the DBG approach with different
values of k and iteratively merges the results (Bankevich et al., 2012). While the
latter software are suitable for short paired-end reads, the DBG principle inspires
methods for long erroneous reads. Flye first generates a draft assembly without
considering misassemblies, and detects repeats by aligning the draft against itself
(Kolmogorov et al., 2019). While wtdbg2 follows the OLC approach, it does not
compute the overlap precisely: it partitions the reads in K groups (bin) of 256 bp
(K-bin) so that two K-bin are the same if they share enough k-mer (Ruan and Li,
2020). Finally, mdBG, for Minimiser dbgraph, represents the reads as sequence of
minimiser (in a minimiser alphabet), that are a subset of all possible k-mers (Ekim
et al., 2021).

DBG complexity Pevzner (1989) has proposed two dbgraphs: the one described
in this section is edge-centric (the k-mers are the edges), while the other one is
vertex-centric (the k-mers are the vertices). Pevzner abandoned the latter because
he associated it with the Hamiltonian path problem that is NP-complete and for
which no algorithm had been proposed. On the other hand, finding an Eulerian
path can be done in linear time on the number of vertices and edges under the
Euler hypothesis on even degrees (Hierholzer and Wiener, 1873). However, DBG
corresponds to finding a super-walk. Medvedev and Brudno (2009) associate DBG
with the Chinese postman problem (that echoes the SCS approach) on bidirected
graphs, and propose an exact polynomial time algorithm. They next link DBG to
a maximum-likelihood problem to avoid compressing the repeat at the opposite of
the SCS, similar to the Myers’ propositions concerning the near-constant coverage
of the reads on the assembly. In the latter case, they prove DBG to be in P .

5.4 Breaking down the fragment assembly problem
Because of sequencing errors and the difficulties of defining repeats in OLC or
dbgraphs, formulating the fragment assembly problem as a global optimisation
problem sounds unreachable. The literature suggests splitting the fragment assembly
problem into several stages. The development of stage-dedicated methods and
software has enabled researchers to create their pipelines depending on the available
sequencing data. Here we present a list of hierarchical stages:

Filtering and correcting the sequencing data Reads associated with a low sequencing
quality score can be partially or entirely removed from the read set. Multiple align-

20

6 Addressed research topics INTRODUCTION I

ment techniques can also produce a self-correction of the reads before assembling
them.

Assembling the reads into contigs Contigs are nucleotide sequences longer than
the read. While unitigs correspond to unambiguous paths in the string and the
dbgraphs, contigs result from resolving branches thanks to read alignment or
paired-end data.

Scaffolding the contigs Scaffolds are sequences of oriented contigs with potential
gaps between them. In Chapter II, Section 2, we describe several approaches for
orienting and ordering the contigs.

Gap-filling the scaffolds The gaps between the oriented contig in each scaffold are
filled thanks to overlapping reads joining the two contigs’ extremities.

Haplotyping Generating consensus sequence on unitig in the OLC approach does
not handle heterozygosity for polyploid organisms. Similarly, it does not address
the difference between near-genome regions shared between two organisms in
metagenomic samples. Read alignment can differentiate a sequencing error from a
true signal. Finally, each group is assigned to homologous chromosomes or specific
organisms (phasing). Concerning the DBG approach, the separation can use k-mer
counting between the paths in bubbles.

Generating a consensus sequence Multiple alignment is the main approach to
produce consensus sequences. The final nucleotide bases result from a weighted
vote.

Evaluating the assembly The assembly evaluations focus on the number of contigs,
their length distribution and their cumulative length. A reference genome enables
mapping the contigs to measure mismatch and indel mapping error rates. It may
be necessary to split the contigs in order to compare them to the reference: the
number of breakpoints denotes the number of misassemblies. One can also compute
the number of genes present in the assembly.

6 Addressed research topics
In this thesis we focus mainly on two aspects of genome assembly.

21

I INTRODUCTION Addressed research topics 6

6.1 Graph structure for read assembly and scaffolding stages
Chapter II, Section 1, and Chapter III concern graph data structure for storing
and iterating over links between oriented DNA fragments. In the read assembly
stage, the links are the overlaps between the reads in the OLC approach (overlap
graph). In the scaffolding stage, they often correspond to paired-end information
between two reads, translated to link between oriented contigs (scaffolding graph).
The overlap graph or the scaffolding graph are fundamental data structure in
read assembly and scaffolding stages. Furthermore, their descriptions and their
representations influence methods.

In the literature, the graph structures are described mathematically in the best
cases, very often commented and illustrated, and sometimes suffer from confused
description. To the best of our knowledge, no one has compared the impact of the
different representations and especially their implementations.

In this thesis we analyse different representations and propose suitable imple-
mentations that we organise in a graph and implementation map. We then design
associated algorithms to iterate over the vertices and the edges, and to dynamically
maintain them.

6.2 Scaffolding of chloroplast structural haplotypes
Chapter II, Sections 2 and 3, and Chapter IV focus on the assembly and the
scaffolding of chloroplast genomes. We first summarise the scaffolding problem
formulations and strategies in the general case, mixed with the read assembly stage
or as independent stages. We then describe the whole fragment assembly process
approaches dedicated to chloroplast genome from the literature.

As we consider that the dedicated approach does not appropriately handle
the particularities of the chloroplast genome structure, we translate the biological
knowledge into mathematical properties. We then formulate the scaffolding problem
in the case of chloroplasts and model it as a global optimisation problem. We
prove the decision version of the problem to be NP-complete. Furthermore, our
formulation enables us to tackle the presence of chloroplast structural haplotypes.
Finally, we have implemented our approach and have tested it with synthetic data
in order to measure the time complexity in practice and the robustness.

22

II STATE-OF-THE-ART

Richard Galliano & Miran Vaupotic & Czech Phil-
harmonic Quartet. (2023). Petite Suite Française:
III. Espiègle [Song]. On Madreperla. Navona Re-
cords

In this chapter

1 Graph structure for fragment assembly 24
1.1 Notations and fundamental definitions 24

1.1.1 Fragment set . 24
1.1.2 Link set. 26

1.2 Directed graph (DG): oriented fragments based 27
1.3 Bidirected graph (BG): oriented walk based 30
1.4 Undirected graph (UG): tail-head fragments based. 33

2 Scaffolding the contigs 37
2.1 Scaffolding input data . 38
2.2 Subsampling the input data . 40

2.2.1 Bundling the links . 42
2.2.2 Removing paired-end reads 42
2.2.3 Removing contigs . 42
2.2.4 Removing links . 43
2.2.5 Partitioning the instances. 44

2.3 Orienting the contigs . 44
2.3.1 Maximising the sum of used link weights. 45
2.3.2 Remove the minimum number of contigs and links to avoid odd

reversal cycles . 46
2.3.3 Maximum log-likelihood function 46

2.4 Ordering the oriented contigs 46
2.4.1 Maximising the sum of used distances bunches’ weights 46
2.4.2 Minimum spanning tree 47
2.4.3 Contig positioning only. 47

2.5 Orienting and ordering the contigs simultaneously 47
2.5.1 Maximising the sum of distance bundles’ weights to order linearly

the contigs . 47
2.5.2 The heaviest matching, paths and cycles 48

23

https://musicbrainz.org/release/c97da39b-9408-4d0f-baf6-836dade9ac0a

II STATE-OF-THE-ART Fragment graph 1

2.5.3 The maximum (weighted) matching and spanning tree 48
2.6 Solving approaches . 49

2.6.1 Greedy approaches . 49
2.6.2 Fix parameters dynamic programming 50
2.6.3 Mathematical programming. 50

3 Chloroplast genome assembly 51
3.1 Chloroplast sequence extraction 51

3.1.1 Filtering the reads . 52
3.1.2 Filtering the contigs . 53

3.2 Chloroplast reads assembly . 53
3.2.1 De Bruijn graph approach 53
3.2.2 Seed-and-extend . 54

3.3 Chloroplast scaffolding . 54
3.4 Chloroplast assembly validation 55

1 Graph structure for fragment assembly
Succession relationships between oriented reads are the keys to assembling them
into contigs. Those between oriented contigs are necessary to assemble them into
scaffolds. Those between oriented scaffolds enable a chromosome-scale assembly.
All over the fragment assembly process, from the read assembly to the gap-filling
through the scaffolding stages, it is fundamental to use suitable data structures to
store and query these succession relationships between oriented fragments.

Most of the OLC approaches for the read assembly stage, and most of the
scaffolding methods use graph structures to address the above issues. In this section,
we present the underlying graph structures. We denote the graphs representing the
fragments by abstraction of their sequence as fragment graphs, at the opposite of
the dbgraph for which the vertices and the edges represent words. For example,
two fragments with identical sequences may have several vertices in the fragment
graph, while they will be compressed in the same path in the dbgraph.

1.1 Notations and fundamental definitions
1.1.1 Fragment set
A DNA fragment can either be a read resulting from the sequencing, a contig from
the assembly of the reads, or a scaffold from the scaffolding of the contigs. The
below definition serves to rigorously define an oriented fragment afterwards.

24

1 Fragment graph STATE-OF-THE-ART II

I Definition 1.1: Unoriented fragment set

Denote by Fun the set of unoriented fragments, in bijection with the set of
integer label ΣFun = J0, |Fun|J, and denote by unfid : Fun ↪→→ ΣFun the la-
belling function. Let Σnuc = {A, T,G,C} be the nucleotide alphabet and
unseq : Fun → Σnuc

+ the function that associates a fragment with its nucleotide
sequence.

Because of the double-strand sequencing, illustrated in Figure 11, each fragment
must be considered in two orientations: the original nucleotide sequence (forward),
and the reverse-complemented nucleotide sequence (reverse):

I Definition 1.2: Fragment orientation set

Denote by {f, r} the set of orientations, where f and r stand for the forward
and the reverse orientation, respectively. Those orientations are complementary.
The overline function · gives the complementary orientation (its reverse), i.e.
f = r and r = f .

The set of oriented fragments results from the Cartesian product of Fun and
{f, r}:

I Definition 1.3: Oriented fragment sets

Let F = Fun × {f, r} = Ff t Fr be the set of oriented fragments, associated
with the projection functions πFun : F →→ Fun and for : F →→ {f, r}, ΣF =
J0, 2|Fun|J be the set of fragment integer identifiers and fid : F ↪→→ ΣF be the
associated labelling function. Let denote by seq : F → Σnuc

+ the function that
gives the nucleotide sequence of an oriented fragment. It holds that:

— Ff is the set of forward fragments, such that for each af ∈ Ff :

– for(af) = f ;
– seq(af) = unseq(πFun(af)).

— Fr is the set of reverse fragments, such that for each ar ∈ Fr:

– for(ar) = r;

– seq(ar) = unseq(πFun(ar)).

Where · gives the reverse-complement of a given nucleotide sequence.

25

II STATE-OF-THE-ART Fragment graph 1

Unless stated otherwise, we will use the term fragment to denote an oriented
fragment and precise when talking about an unoriented one.

I Definition 1.4: The fragment reverse operation

For a given fragment a ∈ F , a denotes its reverse, where:

—
∣∣fid(a)− fid(a)

∣∣ = 1;

— for(a) = for(a) (a and a have complementary orientations in {f, r});

— seq(a) = seq(a) (the nucleotide sequence of a is the reverse of this of a).

Figure 15 illustrates the fragment sets and their associated functions.

1.1.2 Link set
We denote by the links the succession relationships between the oriented fragments.
Figure 14 gives three examples of links exploited in the fragment assembly stages.

I Definition 1.5: Link set

Denote by L = (L′,mL) the multiset of ordered pairs of fragments, where
L′ ⊂ F2 is a finite set, and mL : L′ → N>0 gives the multiplicity of each element
of L′ in L. Also let linkp : L →→ L′ be the function that gives the fragment
couple associated with a link. Denote by ΣL = J0, |L|J the set of link integer
labels and its associated function lid : L ↪→→ ΣL.

(a) Overlap (b) Paired-end (c) Hi-C

� Figure 14 – Examples of links
Three examples of links. u and v are two fragments. The arrows give their orientation
(tail: 5’, head: 3’). (a) The head of u overlaps the tail of v. (b) Paired-end: u is
linked with v, separated by a distance approximately of d nucleotides. (c) Hi-C: u is
linked with v, separated by an unknown distance.

26

1 Fragment graph STATE-OF-THE-ART II

I Property 1.1: Link reverse symmetry

One link between two fragments implies one link between the reversed fragments:

∀ (u, v) ∈ F2, mL((u, v)) = mL(
(
v, u

)
)

i.e. (u, v) ∈ L′ ⇐⇒
(
v, u

)
∈ L′

Analogously to Definition 1.4, Definition 1.6 extends the reverse operation to
the links:

I Definition 1.6: The reverse operation for links

For a given link l ∈ L, where linkp(l) = (u, v), l denotes its reverse such that
linkp(l) =

(
v, u

)
= (u, v) = linkp(l).

Fun Σnuc
+ {f, r}

ΣFun Fun × {f, r} = F = Ff t Fr ΣF

Ff L′ ⊂ F2 Fr

ΣL L N>0

unseq

unfid

fid

for
seqπFun

mLlid

linkp

� Figure 15 – Fragment and link sets with functions
Top left, in green: unoriented fragment sets. Middle, in blue: oriented fragment
sets. Bottom, in yellow: Link (multi)sets.

Figure 15 illustrates the link sets and their associated functions. In Sections 1.2
to 1.4 we describe the three graph structures for the fragments and their links.
They are loopless multigraphs.

1.2 Directed graph (DG): oriented fragments based
The directed graph (digraph) structure (DG) was the first idea to represent frag-
ments and their links. As far as we know, this structure was first mentioned by
Kececioglu (1991).

27

II STATE-OF-THE-ART Fragment graph 1

For the read assembly stage, DG is described in FALCON (Chin et al., 2016),
HINGE (Kamath et al., 2017), Shasta (Shafin et al., 2020) and hifiasm (Cheng
et al., 2021). Concerning the scaffolding stage, GAT refers to an unitig graph
(Andonov et al., 2019).

I Definition 1.7: Oriented fragments based directed multigraph (DG)

Let DG = (V ,E,Φ) be a directed multigraph (multidigraph) such that:

— V is the set of vertices, where each v ∈ V represents one of the two
orientations for a fragment in F ;

— E is the multiset of edges, where each e ∈ E represents one link in L;

— Φ: E → {(u, v) | u, v ∈ V , u 6= v} is the incidence function that associates
an edge with an ordered pair of vertices.

Denote by frag : V ↪→→ F the bijective function that associates each vertex
with one and only one fragment, and by link : E ↪→→ L the bijective function
that associates each edge with one and only one link.

Figure 16 illustrates the link case representations in DG.

(a) (af , bf) ∈ L′ (b) (bf , af) ∈ L′ (c) (af , br) ∈ L′ (d) (br, af) ∈ L′

� Figure 16 – Link cases in DG.
Fragments af , bf and their reverse ar, br can link in four manners. Their associated
vertices are uf , vf , ur and vr, respectively. Each subfigure illustrates one link in DG.

I Property 1.2: Sizes of DG

For DG = (V ,E,Φ), |V | = |F| and |E| = |L|.

Since one vertex is associated with only one fragment, Definition 1.8 extends
the reverse operations given in Definitions 1.4 and 1.6 for DG.

28

1 Fragment graph STATE-OF-THE-ART II

I Definition 1.8: The reverse operation in DG

For each vertex v ∈ V and edge e ∈ E, v ∈ V and e ∈ E denote their reverse.
From the bijective properties of functions frag and link, it holds that:

— frag(v) = frag(v);

— link(e) = link(e).

Definition 1.9 specifies the conditions for a valid path in DG.

I Definition 1.9: Path in DG

A path p = (v0, v1, . . . , vn−1) ∈ V n, n ∈ N in DG = (V ,E,Φ) is valid if the
following two properties hold:

Contiguity
∀ i ∈ J0, n− 1J,∃ e ∈ E | Φ(e) = (vi, vi+1)

Exclusive orientation
∀ v ∈ p, v /∈ p

Note that a path in DG satisfies the same properties as for a generic multidi-
graph, except that a vertex and its reverse cannot both participate in the path.
Figure 17 gives an example of a valid path in DG.

� Figure 17 – A path in DG.
p = vfufxr is a valid path coloured in red. p = xfurvr is its reverse and is also valid.
However, p and p are exclusive.

Finally, Property 1.3 defines the reverse symmetry in DG, that inherits from
Property 1.1 and illustrated in Figure 16.

29

II STATE-OF-THE-ART Fragment graph 1

I Property 1.3: Reverse symmetry in DG

— ∀ a ∈ F ,∃! v ∈ V | frag(v) = a.a

— ∀ l ∈ L,∃! e ∈ E | link(e) = l.
a∃! x ∈ X means “there is a unique x in X”.

B Proof

From Definition 1.7, frag : V ↪→→ F and link : E ↪→→ L are bijective.
C

1.3 Bidirected graph (BG): oriented walk based
The bidirected graph (bigraph) was introduced by Edmonds and Johnson (1970).
Myers (1995) is the first to suggest a bigraph structure (BG) to store the links
exploiting the reverse symmetry of the fragment and the link sets F and L.
The key idea is to represent both a fragment and its reverse by only one vertex.
Because the links are ordered pairs of oriented fragments, the edges are bidirected.
Definition 1.10 provides a formal description, simpler than the one given in Gritsenko
et al. (2012) and suggested by Myers (1995).

For the read assembly stage, BG is described in Bambus (Pop et al., 2004),
Minimus (Sommer et al., 2007) and in Edena (Hernandez et al., 2008). Concerning
the scaffolding stage, BG is found in SOPRA (Dayarian et al., 2010), Bambus 2
(Koren et al., 2011), MIP (Salmela et al., 2011), Opera (Gao et al., 2011), SSPACE
(Boetzer et al., 2011), GRASS (Gritsenko et al., 2012), BOSS (Luo et al., 2017),
LACHESIS (Burton et al., 2013), ScaffoldScaffolder (Bodily et al., 2016) and
SLR (Luo et al., 2019).

I Definition 1.10: Oriented walk based bidirected multigraph (BG)

Let BG = (V ,E,Φ, attre) be a bidirected multigraph (multibigraph) such that:

— V is the set of vertices, where each v ∈ V represents the two orientations
for a fragment in F ;

— E is the multiset of edges, where each e ∈ E represents one link and its
reverse in L;

— Φ: E → {{u, v} | u, v ∈ V , u 6= v} is the incidence function that associates
an edge with a pair of vertices;

30

1 Fragment graph STATE-OF-THE-ART II

— attre : E → {f, r}2 gives the orientations of the vertices in the associated
link, and in the lexicographic order of the unoriented fragment identifiers.

Denote by unfrag : V ↪→→ Fun the bijective function that associates each
vertex with one and only one unoriented fragment, and by:

link : {(u, v, e) | e ∈ E,Φ(e) = {u, v}} ↪→→ L

the bijective function that associates each edge and its ordered vertices with one
and only one link.

While visually each edge has two extremities in the multibigraph, Definition 1.10
describes the graph as an undirected multigraph (multiungraph). Figure 18 provides
the link representation in BG, where each subfigure gives the multibigraph and
the multiungraph view.

(a) (af , bf) ∈ L′ (b) (bf , af) ∈ L′

(c) (af , br) ∈ L′ (d) (br, af) ∈ L′

� Figure 18 – Link cases in BG.
Fragments af , bf and their reverse ar, br can link in four manners. Their associated
vertices are u and v. For each subfigure, the first graph has bidirected edges and the
second presents the same information but with undirected edges where the attributes
are given by the function attre. Here we assume that unfid(a) < unfid(b). In (a)
and (c), attre gives the orientations in the order of the fragments in the described link.
In (b) and (d), attre gives the orientations in the order of the fragment in the reverse
of the described link ({r, r} for (ar, br) and {r, f} for (ar, bf), respectively).

I Property 1.4: Sizes of BG

For BG = (V ,E,Φ, attre), |V | = 1
2
|F| and |E| = 1

2
|L|.

31

II STATE-OF-THE-ART Fragment graph 1

Less explicitly than in Definition 1.8, Definition 1.11 extends the reverse opera-
tions given in Definitions 1.4 and 1.6 for BG.

I Definition 1.11: The reverse operation in BG

Let e ∈ E be an edge, Φ(e) = {u, v}, a = unfrag(u) and b = unfrag(v).
Assume that unfid(a) < unfid(b). As function link is bijective, it holds that:

— link(v, u, e) = link(u, v, e);

— attre(e) = (for(a), for(b)) and attre(e)
[

0 ·
· 0

]
=
(
for(b), for(a)

)
.

Definition 1.12 specifies the conditions for a path in BG to be valid, illustrated
in Figure 19.

I Definition 1.12: Path in BG

A path p = (v0, v1, . . . , vn−1) ∈ V n, n ∈ N in BG = (V ,E,Φ, attre) is valid if
the following two properties hold:

Contiguity ∀ i ∈ J0, n− 1J,∃ ei, ei+1 ∈ E s.t.:

— Φ(ei) = {vi−1, vi} ∧ Φ(ei+1) = {vi, vi+1}
— link(vi−1, vi, ei)[1]

a = link(vi, vi+1, ei+1)[0]

Exclusive orientation ∀ vi, vj ∈ p, vi = vj =⇒ i = j

aThe notation x[i] denotes the ith element in x.

Finally, Property 1.5 defines the reverse symmetry in BG, that inherits from
Property 1.1.

I Property 1.5: Reverse symmetry in BG

∀ l ∈ L,∃! e ∈ E,Φ(e) = {u, v} | link(u, v, e) = l Y link(v, u, e) = l.a

aY is the exclusive disjunction notation.

B Proof

From Definition 1.10, link : {(u, v, e) | e ∈ E,Φ(e) = {u, v}} ↪→→ L is biject-
ive.

32

1 Fragment graph STATE-OF-THE-ART II

(a) bidirected graph view (b) undirected graph view

� Figure 19 – A path in BG.
A valid path is coloured in red. It can be read in two possible ways: from vertex v or
from vertex x. Let pv = vux be the one that begins from v and px = xuv be the one
that begins from x. Note that pv is valid if and only if px is valid. In (a) edges are
bidirected while in (b) they are undirected.

C

1.4 Undirected graph (UG): tail-head fragments based

Huson et al. (2002) first describe the undirect graph (ungraph) structure (UG) for
the fragment and their links, in the context of contig scaffolding. The idea is to
keep the merge of the two strands as in BG, but with a simpler description of the
orientations for the fragments. Each fragment is split by a tail and a head. Both
the tail and the head are vertices, and they are connected by an edge. Passing
through first the tail and then the head corresponds to choosing the fragment
in its forward orientation, while passing through first the head and then the tail
corresponds to choosing it in its reverse orientation. This new type of edges are
called fragment-edges, at the opposite of link-edges that correspond to the links. A
path in the graph must alternate between fragment-edges and link-edges.

The structure mainly appears in method for the scaffolding stage, as in SCARPA
(Donmez and Brudno, 2013), Scaftools (Briot et al., 2014), BESST (Sahlin et al.,
2014), fragScaff (Adey et al., 2014), in Chateau and Giroudeau (2015) and Weller
et al. (2015), ScaffMatch (Mandric and Zelikovsky, 2015), SALSA2 (Ghurye et al.,
2019), LRScaf (Qin et al., 2019), in Davot et al. (2022) and Aganezov et al. (2022).
Concerning the read assembly stage, UG can be found in Myers (2005) and Li
(2016).

33

II STATE-OF-THE-ART Fragment graph 1

I Definition 1.13: Tail-head fragments based undirected multigraph
(UG)

Let UG = (V ,EF , EL,ΦL) be an multiungraph such that:

— V is the set of vertices, where each v ∈ V represents the tail or the head of
a fragment;

— EF = {{vt, vh} | vt, vh ∈ V , vt 6= vh} is the set of fragment-edges (vt for the
tail, vh for the head), where each e ∈ EF represents both the forward and
the reverse orientation of one fragment;

— EL is the multiset of link-edges, where each e ∈ EL represents both one link
and its reverse;

— ΦL : EL → {{u, v} | u, v ∈ V , u 6= v} is the incidence function that associ-
ates a link-edge with two vertices that are not connected by a fragment-edge.

Denote by:
frag : {(u, v) | {u, v} ∈ EF} ↪→→ F

the bijective function that associates each ordered fragment-edge with one and
only one (oriented) fragment, and by:

link : {(u, v, e) | e ∈ EL,ΦL(e) = {u, v}} ↪→→ L

the bijective function that associates each edge and its ordered vertices with one
and only one link.

To complete Definition 1.13, as in Chateau and Giroudeau (2015), we can define
the set EF of fragment-edges as a perfect matching of the vertices. Figure 20
illustrates each link case in UG.

I Property 1.6: Sizes of UG

For UG = (V ,EF , EL,ΦL), |V | = |F|, EF = 1
2
|F| and |EL| = 1

2
|L|.

Analogously to Definitions 1.8 and 1.11, Definition 1.14 formalises the reverse
operation in UG.

34

1 Fragment graph STATE-OF-THE-ART II

(a) (af , bf) ∈ L′ (b) (bf , af) ∈ L′ (c) (af , br) ∈ L′ (d) (br, af) ∈ L′

� Figure 20 – Link cases in UG.
ut, uh and vt, vh are the tail and the head of fragments a and b, respectively. The double
edges correspond to fragment-edges while the plain edges correspond to link-edges.
Each subfigure illustrates one link case in UG.

I Definition 1.14: The reverse operation in UG

— Let {u, v} ∈ EF . Hence frag(v, u) = frag(u, v).

— Let e ∈ EL,ΦL(e) = {u, v}. Hence link(v, u, e) = link(u, v, e).

Definition 1.15 specifies the conditions for a path in UG to be valid, illustrated
in Figure 21.

I Definition 1.15: Path in UG

A path p = (v0, v1, . . . , v2k−1) ∈ V 2k, k ∈ N in UG = (V ,EF , EL,ΦL) is valid
if the following two properties hold:

Contiguity fragment-edges and link-edges alternate in the path:

— odd-numbered edges in the path are fragment-edges:

∀ i ∈ J0, kJ, {v2i, v2i+1} ∈ EF

— even-numbered edges in the path are link-edges:

∀ i ∈ J1, kJ,∃ e ∈ EL | ΦL = {v2i−1, v2i}

Exclusive orientation ∀ vi, vj ∈ p, vi = vj =⇒ i = j

Note that walking in UG is not similar that walking in a classic ungraph, because
a valid walk must alternate between fragment-edges and link-edges. Figure 21 gives

35

II STATE-OF-THE-ART Fragment graph 1

an example of a valid path in UG.

� Figure 21 – A path in UG.
A valid path is coloured in red. As UG is undirected, the resulting path can be read in
two possible ways: from vertex vt or from vertex xt. Let pv = vtvhutuhxhxt the one
that begins from vt, and px = xtxhuhutvhvt the one that begins from xt. Note that
pv is valid if and only if px is valid.

Finally, Property 1.7 defines the reverse symmetry in UG, that inherits from
Property 1.1.

I Property 1.7: Reverse symmetry in UG

— ∀ a ∈ F ,∃! {u, v} ∈ EF s.t.:

frag(u, v) = a Y frag(v, u) = a

— ∀ l ∈ L,∃! e ∈ EL,ΦL(e) = {u, v} s.t.:

link(u, v, e) = l Y link(v, u, e) = l

B Proof

From Definition 1.13, frag : {(u, v) | {u, v} ∈ EF} ↪→→ F and link : {(u, v, e) |
e ∈ EL,ΦL(e) = {u, v}} ↪→→ L are bijective.

C

Quick reference
For a quick overview of the different fragment graph structures, the readers can
refer to Figure 22.

36

2 Scaffolding the contigs STATE-OF-THE-ART II

DG BG UG

� Figure 22 – Overview of all the fragment graph structures.
Let a and b two fragments. Each vertical dashed line separates two graph structures.
Each colour is associated with an link case (and its reverse): (af , bf) ∈ L′ in blue,
(bf , af) ∈ L′ in green, (af , br) ∈ L′ in yellow and (br, af) ∈ L′ in violet. DG Directed
fragment graph. Each fragment is represented by two vertices for the two orientations.
BG Bidirected fragment graph. Each fragment is represented by only one vertex. The
first column gives the bidirected view while the second provides the undirected graph
view with edge attributes (described at the bottom). UG Undirected fragment graph.
Each fragment is represented by two vertices for its tail and its head, connected by a
fragment-edge (double edges). Link-edges are simple edges.

2 Scaffolding the contigs
Recall from Chapter I, Section 5.4 that the first step of fragment assembly is to
produce contigs from the reads. The second stage, the scaffolding, aims to orient
and order the contigs. It results in a set of scaffolds, such that each of them is an

37

II STATE-OF-THE-ART Scaffolding the contigs 2

order of oriented contigs separated by gaps, with possible known nucleotide length.
We first categorise the type of scaffolding input data in Section 2.1 and their

subsampling strategies in Section 2.2. In Sections 2.3 to 2.5 we describe the
scaffolding formulations proposed in the literature and the approaches to solve
them, exactly or heuristically.

As the scaffolding stage was originally designed to use the mate-pair and paired-
end data (see Chapter I, Section 3 and Figure 9), the latter sections are especially
focusing on methods that take them as input. Nevertheless, the way they address
the scaffolding problem formulations enables to generalise the orienting and the
ordering of the contigs, under the assumption that different sequencing data can
provide the same link information, as discussed in the first section. Table 1 lists
the scaffolding methods described in this section. The three graph representations
(DG, BG, UG) can be compared in Figure 22.

2.1 Scaffolding input data
We propose to discriminate the scaffolding input data according to two properties.
The first one is a link property: the data consist in a (multi)set of ordered pairs
of oriented contigs (c.f. Section 1.1.2). The second one is a nucleotide distance
property: in addition to their order, the oriented contigs are spaced appart by an
estimated nucleotide distance.

As the contigs are the read assembly results, it is necessary to align the reads
(or the sequencing data) against the contigs. In fact, especially with the DBG read
assembly approach, the reads permitting to build a contig are unknown. Figure 23
illustrates the two properties with a sequencing data centric point of view, while
Table 2 provides a property centric view.

Paired-end and Hi-C reads The reads come by pairs and are sequenced from the
two different strands. The reads are mapped against the contigs. Consider ri, rj to
be two paired-end reads such that ri maps on contig ci and rj maps on contig cj.
Therefore, oriented contig ci is before cj. Two cases:

i. The two reads map two different contigs. The orientation of ci is given by the
one of ri in the mapping, and the orientation of cj is the reverse of this of rj
in the mapping. In the case of paired-end read and mate-pair reads (not for
Hi-C), the distance between the oriented contig is determined according the
mapping coordinates of the reads on the contigs and the distance between
the paired reads.

ii. The two reads map the same contig. To be consistent, the reads must map
in different orientations, otherwise it may indicate a misassembly of the two

38

2 Scaffolding the contigs STATE-OF-THE-ART II

� Table 1 – Non-exhaustive categorised list of methods and approaches for
the scaffolding stage.
Each row corresponds to a method dedicated to the scaffolding stage in the fragment
assembly process. In the Graph column, DG, BG and UG respectively stand for
directed, bidirected and undirected graphs.

Dedicated input data Approach Software Graph
Paired-end/Mate-pair Huson et al. (2002) – UG

Pop et al. (2004) Bambus BG
Dayarian et al. (2010) SOPRA BG
Koren et al. (2011) Bambus 2 BG
Salmela et al. (2011) MIP BG
Gao et al. (2011) Opera BG
Boetzer et al. (2011) SSPACE BG??

Roy et al. (2012)? SLIQ –
Gritsenko et al. (2012) GRASS BG
Donmez and Brudno (2013) SCARPA UG
Sahlin et al. (2014) BESST UG
Mandric and Zelikovsky (2015) ScaffMatch UG
Luo et al. (2017) BOSS BG
Andonov et al. (2019) GAT DG

Hi-C Burton et al. (2013) LACHESIS BG
Ghurye et al. (2019) SALSA2 UG

Long reads Qin et al. (2019) LRScaf UG
Luo et al. (2019) SLR BG

Linked reads Adey et al. (2014) fragScaff UG
Coombe et al. (2018)? ARKS –

Generic link Briot et al. (2014) Scaftools UG
Chateau and Giroudeau (2015) – UG
Weller et al. (2015) – UG
Davot et al. (2022) – UG

?SLIQ and ARKS are pre-scaffolder methods.??Suggested in supplementary method.

strands. For paired-end data, if the distance between the reads and the
absolute difference of the two mapping coordinates do not coincide, then it
also suggest a misassembly (insertion or deletion).

39

II STATE-OF-THE-ART Scaffolding the contigs 2

Long reads and reference The order and the orientations of the contigs is determined
according their mapping against a longer sequence (a long read or a reference).

Optical map The genome is cut multiple times by a specific restriction site. Each
cut produces a map that consists in a list of distances between the same nucleotide
site. The same process is artificially produced for the contigs. Then, the merged
maps of a contig is aligned with the merged maps given by the optical map. This
produce an order between the oriented contig.

Linked reads Each pair of reads is tagged with a barcode. Two pairs with the
same barcode means they come from the same fragment. It enables to cluster the
contigs, without orienting or ordering them. One way to find an order between two
oriented contigs is to split each contig in two, and check which half parts of the
contigs are covered by the reads with the same barcode.

� Table 2 – Scaffolding input data properties.
Each sequencing data is provided with at most the two properties, link and nucleotide
distance.

Sequencing data Link Distance
Paired-end? X X
Mate pair? X X
Hi-C X
Long reads X X
Reference X X
Optical mapping X X
Linked reads?? X

?Paired-end and mate pair data provide the same type of data except that the distances are
larger for the second one but less confident. ??The barcoding feature of linked read itself does

not provide distance information. However, each paired-end read is barcoded.

2.2 Subsampling the input data
Several difficulties arise for the scaffolding problem. First, the number of links
between the contigs is the main factor for the complexity of orienting and ordering
them. Merging several links into one drops the computational time and memory
use. Moreover, the presence of sequencing error suggests filtering the result of the
alignments, or the sequencing data themselves. Even after a filtering step, artefact
alignments may occur because of repeats in the genome, and consequently may
produce links resulting in misassemblies if they are chosen.

40

2 Scaffolding the contigs STATE-OF-THE-ART II

(a) Paired-end (b) Hi-C

(c) Long reads (d) Reference

(e) Optical mapping (f) Linked reads

� Figure 23 – Scaffolding input data.
For each subfigure, ci and cj are two contigs and the vertical grey lines represent
nucleotide alignment. (a) The two paired-reads ri and rj map on two different contigs.
It implies that ci forward is followed by cj forward, separated by a nucleotide distance
d′. (b) This case is the same as (a) except that for Hi-C data, the distance d is
unknown, implying an unknown distance d′. (c) ci and cj map on two overlapping long
reads lri and lrj. It implies that ci forward is followed by cj forward, separated by an
approximated nucleotide distance d′. (d) G is a reference genome (e.g. of a species
near to the organism of interest). Mapping ci and cj on G provides an orientation of
the contigs and an order with a distance d′. (e) OPM is an optical map with three
markers (yellow square, green diamond and purple circle). Finding the same markers
orders in ci and cj enables to estimate their orientation and their order with a distance
d′. (f) ri, rj , and rk, rl are two paired-end reads with the same barcode (yellow circle),
so they are sequenced from the same fragment. Because ri, rj map on the head of ci,
and rk, rl map on the tail of cj, it is possible to orient and order ci and cj.

41

II STATE-OF-THE-ART Scaffolding the contigs 2

2.2.1 Bundling the links
When several alignments produce the same ordered pair of oriented contigs, they
can be bundled. Thus, only one link represents them. This is the strategy that
Huson et al. (2002), Dayarian et al. (2010), Koren et al. (2011), Gao et al. (2011),
Gritsenko et al. (2012), Salmela et al. (2011), Donmez and Brudno (2013), Briot
et al. (2014), Mandric and Zelikovsky (2015) and Luo et al. (2017) adopt with
paired-end data, Burton et al. (2013) and Ghurye et al. (2019) for Hi-C data, and
Adey et al. (2014) and Coombe et al. (2018) for linked reads. The link representing
the bundle is weighted proportionally to the number of links supporting the bundle.
In the case of distances, the mean and the standard deviation is computed.

2.2.2 Removing paired-end reads
Detecting artefact data Low mapping score are ignored, as Luo et al. (2017) does.
If only one read of the pair is aligned, the whole pair is ignored (Burton et al., 2013;
Coombe et al., 2018). Mandric and Zelikovsky (2015) and Luo et al. (2017) remove
paired-end alignments from the bundle if the distance they provide between the
contigs is over a confident interval. Luo et al. (2017) compute the distance between
the reads if the two contigs are concatenated, and remove the alignment of the pair
if the distance is too long. Finally, because of the nature of Hi-C paired-end reads,
Ghurye et al. (2019) trim the reads that are aligned after a ligation.

Detecting repeats When one of the two paired reads maps on distinct contigs,
Mandric and Zelikovsky (2015), Burton et al. (2013) and Ghurye et al. (2019) do
not consider the pair. Luo et al. (2017) ignore the paired-end reads when they map
to a highly covered contig.

2.2.3 Removing contigs
Detecting artefact data Dayarian et al. (2010) remove a contig on which the two
reads of a pair are mapped on it with the same orientations. They also compute
the standard deviation of all the distances in all the contigs and remove those for
which the reads’ distance is out of the deviation. For Hi-C data, Burton et al.
(2013) remove a contig if it does not contain enough restriction sites (only for
their clustering step). In the long read scaffolding method of Luo et al. (2019),
short contigs are ignored. Finally, Qin et al. (2019) only consider contigs that are
contained in long reads.

Detecting repeats A contig is dismissed if its alignment coverage is over a threshold
of beyond a distribution’s confidence interval (Gao et al., 2011; Sahlin et al., 2014;

42

2 Scaffolding the contigs STATE-OF-THE-ART II

Mandric and Zelikovsky, 2015; Qin et al., 2019). For Hi-C data, Burton et al.
(2013) identify a contig as a repeat if the number of restriction sites is high. Luo
et al. (2019) remove a contig if it maps in the middle of different long reads, and
if its neighbour contigs differ. Koren et al. (2011) computes all the shortest path
between two contigs: a contig appearing in too many paths is dismissed.

2.2.4 Removing links

Detecting artefact data A bundle with a low confidence is not considered. The
lower threshold can be a fixed value, or based on the distribution of the confidence
over all the bundles (Gao et al., 2011; Gritsenko et al., 2012; Donmez and Brudno,
2013; Luo et al., 2017; Qin et al., 2019). Note that in Gao et al. (2011) this
threshold is the result of a simulation. If the distribution of the distances on a
link significantly differs from the distribution over all the bundles, then the link
is dismissed (Sahlin et al., 2014; Qin et al., 2019) In Ghurye et al. (2019), the
confidence of neighbours links is compared, and only the “best buddy weighted”
link is kept (a O(|L|) procedure). In addition, as they take in input an assembly
graph, the authors remove Hi-C links if there is no link in the assembly graph that
match the contig orientations. Qin et al. (2019) dismiss a contig alignment if the
long read is contained in the contig.

Reducing redundant links As proposed for read assembly OLC approach, Huson
et al. (2002), Koren et al. (2011) and Qin et al. (2019) compute a transitive
reduction of the links based on their distance distribution.

Aggressive removing Roy et al. (2012) predict the orientations based on the links
for which the two contigs have the same orientation. A common aggressive link
removing is to consider only one link between two contigs of the four cases. Dayarian
et al. (2010), Luo et al. (2017) and Qin et al. (2019) keep the maximum-weighted
link, in addition, Koren et al. (2011) remove the smallest number of unconfident
alignments in the bundle according the distance distribution. Coombe et al. (2018)
keep only one link if it passes a binomial test of being the real link among the
others. Ghurye et al. (2019) compute all the shortest path between two contigs
and keep only a link if its ratio of presence in the paths is significantly greater than
the presence of the other links involving the two same contigs (a O(|L|(|C|+ |L|))
procedure). Finally, if two contigs are aligned against the same end coordinate of a
long read, the best mapping is kept in Luo et al. (2019).

43

II STATE-OF-THE-ART Scaffolding the contigs 2

2.2.5 Partitioning the instances
Biconnected components can be solved independently For BG and UG fragment
graphs (Sections 1.3 and 1.4), finding articulation edges and removing them enables
to partition the graph into biconnected components. Dayarian et al. (2010) show
that each component can be solved independently without a loss of optimality.
Salmela et al. (2011) and Donmez and Brudno (2013) also apply this divide and
conquer strategy. Finding all the articulation points can be done in O(|C|2)

Clustering according to the number of chromosomes In the Burton et al. (2013) Hi-C
scaffolding method, the number of chromosomes N is an input. Based on the links’
weight, the contig set is partitioned in N parts with a hierarchical agglomerative
clustering approach. Note that the clustering does not take into consideration the
relative orientations of the contigs.

2.3 Orienting the contigs
Here we present the methods that focus on the contig orientation problem inde-
pendently of their ordering. Kececioglu and Myers (1995) have already defined it in
the context of the read assembly. It consists in removing links or contigs in order
to find only two orientation assignments, where one is the reverse of the other. A
link set over a contig set is defined as an orientation-valid layout if it respects the
latter definition.

I Definition 2.1: Orientation-valid layout

Denote by C⊂ = {c0, . . . , cn−1} a subset of the contig set C and by L⊂ a subset
of the link set L. Without considering an ordering of the contigs in C⊂, L⊂

is an orientation-valid layout if and only if there are exactly two orientation
assignments o = (o0, . . . , on−1) ∈ {f, r}|C

⊂| and o =
(
o0, . . . , on−1

)
and there

exists a balanced partition of L⊂ = L⊂
f t L⊂

r such that:

—
∣∣L⊂

f

∣∣ = |L⊂
r | and ∀ l ∈ L⊂

f , l ∈ L⊂
r ;

— o and o are respectively consistent in L⊂
f and L⊂

r , i.e. ∀ l ∈ L⊂
f where

linkp(l) = (a, b), and so l ∈ L⊂
r where linkp(l) =

(
b, a
)

, ∃! i, j ∈
J0, nJ, i 6= j such that:

– a = (ci, oi) ⇐⇒ a = (ci, oi);

– b = (cj, oj) ⇐⇒ b = (cj, oj).

44

2 Scaffolding the contigs STATE-OF-THE-ART II

Figure 24 illustrates Definition 2.1 for the bigraph (BG) and for the ungraph
(UG) as defined in Sections 1.3 and 1.4, and illustrated in Figure 22.

(a) BG even reversal edge cycle (b) BG odd reversal edge cycle

(c) UG even vertex cycle (d) UG odd vertex cycle

� Figure 24 – Bidirected and undirected graph cycles.
(a) and (c): there are exactly two vertex orientation assignments (o = {uf , vr, wf},
and the reverse orientations o) such all the valid paths assign vertex orientations
respecting o, otherwise o. (b) and (d): there are at least two valid paths that imply
two different orientation assignments with a non-null intersection, e.g. o = {uf , vr, wf}
and o′ = {vr, wf , ur}. It is sufficient to remove one of the red or the yellow link to get
a valid-orientation layout.

2.3.1 Maximising the sum of used link weights
As originally proposed by Kececioglu and Myers (1995), the orientation problem
consists in removing links in order to get an orientation-valid layout that maximising
the sum of the remaining links’ weight. Here, no one of the contigs is removed,
i.e. C ′ = C. Equivalently, it consists in minimising the sum of removed links’
weight. Kececioglu (1991) reduced this formulation to the maximum-weight cut
problem whose decision version is NP-complete. Pop et al. (2004) consider the
weight proportional to the number of supporting paired-end reads in the bundle,
or inversely proportional to the nucleotide distance of the bundle. Dayarian et al.
(2010) aim to minimise a cost function (simply, the sign of the weight is inverse
comparing to the other methods). In Bambus 2 (Koren et al., 2011) (as for its
predecessor Bambus), the problem consists in removing the minimum number of
reversal links, i.e. links where the two contigs in the pair are not identically oriented.

Luo et al. (2017) solve the problem iteratively by increasing cleaned subgraph.
The first subgraph contains the heaviest links, and after resolving it for the

45

II STATE-OF-THE-ART Scaffolding the contigs 2

orientation, lighter links are added etc. Luo et al. (2019) maximise the sum of
remaining links’ weight, where the weights correspond to the number of aligned
long reads.

2.3.2 Remove the minimum number of contigs and links to avoid odd
reversal cycles

Donmez and Brudno (2013) remark that the contig can be misassembled and
conclude that the orientation problem should consider removing the contig and
the links. Consequently, they associate the orientation problem with finding a
minimum odd cycle traversal in a transformed UG. Indeed, to generalise with the
removing of contigs, they transform each link-edge (u, v) into a path uu′v′v where
u′ and v′ are two new artificial vertices. Although finding a minimum odd cycle
traversal is a NP-hard problem, Lokshtanov et al. (2009) propose a fixed-parameter
tractable algorithm in O(3kk|E||V |), where k is the number of vertices to suppress,
and V and E are respectively the vertex and the edge sets.

2.3.3 Maximum log-likelihood function
At the opposite of the previous methods, Burton et al. (2013) first order the contig.
Then, they orient the contig according to a maximum log-likelihood function, where
each edge weight equals to the inverse of the number of Hi-C links normalised by
the number of fragment sites per contig.

2.4 Ordering the oriented contigs
Once an orientation assignment is determined for the contigs, the next step is
ordering them and positioning them when nucleotide distances are provided.

2.4.1 Maximising the sum of used distances bunches’ weights
Pop et al. (2004) reduce the ordering problem to the optimal linear arrangement
problem. It consists in assigning a coordinate on an axe to each contig, a NP-hard
problem. As for the orientation problem, they consider to be the best weights either
the number of supporting links in a bundle, or the smallest distances. However,
they do not position the contigs by satisfying the distances, as done in Luo et al.
(2019) for long read based scaffolding.

Donmez and Brudno (2013) refer to the feedback arc set problem (NP-hard,
Karp 1972) and define the contig ordering problem as finding a minimal set of

46

2 Scaffolding the contigs STATE-OF-THE-ART II

edges whose removal leads to a directed acyclic graph. Koren et al. (2011) position
the contigs in confidence intervals of three times the standard deviation.

2.4.2 Minimum spanning tree
For Hi-C data, Burton et al. (2013) first order the contig. Recall that each link
weight equals to the inverse of the number of Hi-C links normalised by the number
of fragment sites per contig. They define the ordering problem as a sequence of
process: (i) finding a minimum weight spanning tree; (ii) extracting the longest
path (a trunk) to get a first order; (iii) ordering the branching contigs according to
the trunk, from the longest to the smallest, with maximising the number of links
in the bundle.

2.4.3 Contig positioning only
Donmez and Brudno (2013) define the positioning problem as a sub-step of the
scaffolding problem following the ordering of the contigs. According to the distance
distribution in each bundle, they aim to give a nucleotide position for each contig,
such that it minimises the distance approximation in each link.

Gao et al. (2011) maximise a quadratic likelihood function on the distances to
estimate the gaps in each scaffold. A unique solution can be found thanks to the
Goldfarb-Idnani active-set dual method in polynomial time (Goldfarb and Idnani,
1983).

2.5 Orienting and ordering the contigs simultaneously
Already for the read assembly stage, Kececioglu (1991) has suggested combining
both the orienting and the ordering/positioning problems in one step. The purpose
is to seek a global optimisation approach. Here we enumerate the scaffolding
methods that follow this approach.

2.5.1 Maximising the sum of distance bundles’ weights to order linearly
the contigs

Huson et al. (2002) aim to maximise the sum of weights of happy mate-edges in
UG. A mate-edge (a bundle of paired-end links) is happy if the orientations of its
contigs respect it, and if the interval of the contigs’ coordinates is in a confidence
interval of three times the standard deviation from the distances median provided
by the edges. They prove the corresponding decision problem to be NP-complete
by reducing the bandwidth problem to it.

47

II STATE-OF-THE-ART Scaffolding the contigs 2

Gao et al. (2011) focus on a bounded version of the graph bandwidth problem,
for which the complexity is in O(|C|w|L|p+1) where w is the fixed width, and there
are at most p discordant edges in a scaffold.

In their Mixed-Integer Linear Programming (MILP) approach, Salmela et al.
(2011) model if a link is kept by real variables between 0 and 1 instead of binaries.
A value that approaches 1 indicates that two contigs’ positions are close to the
distance median provided by the link, while a value that approaches 0 indicates
that the contigs’ positions are far from the median. In the objective function, the
links’ weights are multiplied by these reals.

Gritsenko et al. (2012) combine three goals in a single objective function:
minimising the cost of orientation, minimising the orientation and the distance
cost, and minimising the orientation and the order cost.

2.5.2 The heaviest matching, paths and cycles
Briot et al. (2014) maximise the weight of the remaining links such that at most
one link connects each contig’s end in UG. This approach can result in several
paths. Building on this, Weller et al. (2015) are looking for at most σp paths and
σc cycles (where σp, σc are parameters) that cover all the contig-edges in UG. They
follow the scaffolding definition given in Chateau and Giroudeau (2014), where
the authors study the complexity of the problem on several classes of graphs and
according to the number of contigs (n). In their paper, they are looking for exactly
σp paths and σc cycles. Except in the case where n = σp + 2σc, for which the
problem is in P , the scaffolding problem (decision version) remains NP-complete.

In the global Integer Linear Programming (ILP) formulation of Andonov et al.
(2019), the objective function aims to find the longest nucleotide sequence that
maximises the number of satisfied distances. It consists in searching for an element-
ary path in DG. Combining these two objectives in one linear function echoes the
SCS criticisms formulated in the case of read assembly (see Chapter I, Section 5.1).
Note that the paired-end links are not especially bundled, and each of them are
two links in DG. At the opposite of the other approaches, here the contigs are
unitigs associated with a multiplicity, which is an upper bound of its use. The
model is enough general to integrate other weight definitions (both on the overlaps
and on the unitigs).

2.5.3 The maximum (weighted) matching and spanning tree
Mandric and Zelikovsky (2015) reduce the scaffolding problem to the Maximum-
Weight Acyclic 2-Matching (MWA2M) problem on the link-edges in UG. The
latter one’s decision version is NP-complete.

48

2 Scaffolding the contigs STATE-OF-THE-ART II

In their Hi-C scaffolding method, Ghurye et al. (2019) iteratively find the
maximum-weighted matching of the link-edges. Then, they remove the lightest
links to eliminate the cycle in the matching to order and orient the covered contigs.
Finally, the covered vertices are removed and they re-iterate on the resulting
subgraph. The whole procedure is in O(|L||C|3).

Concerning the scaffolding with linked read, Adey et al. (2014) adopt a similar
strategy as in Burton et al. (2013) for Hi-C data by finding a maximum-weighted
minimum spanning tree, extract the longest path (trunk), and add the branching
contigs to the linear ordering.

Finally, for long reads, Qin et al. (2019) only extract valid simple paths in UG
and return them as scaffolds.

2.6 Solving approaches
2.6.1 Greedy approaches
As in the majority of the cases the scaffolding problem (orienting and ordering
separately or in the same time) is NP-hard, in practice some authors develop
greedy algorithm to solve large instances.

Mate-pair in decreasing order of weight The main greedy strategy consists in
prioritising the heaviest links. Huson et al. (2002) are the first to present the
greedy path merging algorithm. Koren et al. (2011) adopt this strategy for the
orienting and the ordering of the contigs separately. They use the same algorithm
as in Kececioglu and Myers (1995): a O(|C| + |L|) complexity algorithm on BG.
Mandric and Zelikovsky (2015) propose a greedy heuristic for the MWA2M problem
that chooses the heaviest feasible link-edge in UG. A link-edge is said feasible
if it does not make a vertex degree higher than two and does not form cycles
with the previously chosen edges. Their algorithm is in O(|C|log(|C|)) with a max
heap implementation. In the continuity of Chateau and Giroudeau (2015), Davot
et al. (2022) propose a O(|C||L|σ2

c) 3-approximation algorithm for connected cluster
graphs (UG), where σc is the upper bound of cycles.

Seed-and-extend As for the read assembly stage, Seed-and-Extend (S&E) al-
gorithms have been developed for the scaffolding stage. They ensure to form long
scaffolds through the extension of the current paths. Boetzer et al. (2011) start with
the largest contig and extend it with links supporting at least a given threshold.
In the case of alternative links, they try to find an ordering of all the alternative
adjacent contigs with the distance attributes. If it fails, they compute a ratio of
the weight of the alternatives, and choose the best link if its ratio is above a fixed

49

II STATE-OF-THE-ART Scaffolding the contigs 2

threshold. As in Pop et al. (2004), Luo et al. (2017) first order the longest contigs
and connect them with a linear BFS procedure.

Simulated annealing Dayarian et al. (2010) use a simulated annealing which is
a Monte Carlo approach. By decreasing a parameter (the temperature) in the
sample’s weight, if the energy of the system reaches a value close to the minimum,
most of the constraints are solved. This approach is applied for both the orientation
and for the ordering, independently.

Spanning tree As described in the previous sections, Roy et al. (2012) implement
a spanning tree algorithm for the orienting of the contigs while Adey et al. (2014)
implement it for both the orienting and the ordering of the contigs.

Majority voting on predictions For the positioning of the contigs, Roy et al. (2012)
employ a majority voting on the ordering predictions based on inequalities.

Randomised Greedy Algorithms for the maximum matching problem Finally, Ghurye
et al. (2019) benefiting from the algorithm proposed in Poloczek and Szegedy
(2012) running in O(|L|) with UG. The total complexity of their approach raises
to O(|C||L|).

2.6.2 Fix parameters dynamic programming

Gao et al. (2011) propose a O(|C|w|L|p+1) procedure, where w is the width and
p is the upper bound of discordant edges in BG. They increase the parameters
until a solution is found. Weller et al. (2015) give an exact algorithm in O(|C|σ2

p)
for trees (UG graph), where σp is the maximum number of paths to cover with
the matching. By extension, they describe an exact tree decomposition algorithm
in O(twtwσpσc|C|), where tw is the tree width for the decomposition, and σc is
equivalent to σp for cycles.

2.6.3 Mathematical programming
Mathematical programming enables to model and to solve complex optimisation
problems by using dedicated solvers.

Mixed Integer Linear Programming (MILP) Salmela et al. (2011) use a MILP
approach on BG, where the link-choice variables are not binaries but are reals
between 0 and 1. It enables to model the uncertainty of the link during the
positioning of the contigs. Recall that they use MILP on each bi-connected

50

3 Chloroplast genome assembly STATE-OF-THE-ART II

component found by removing articulation vertices. Briot et al. (2014) however
model the link choice variables as binaries and connect a vertex with at most
one link in UG. Luo et al. (2017) maximise the sum of weights of used links for
orienting the contigs on iteratively increasing subgraphs. Andonov et al. (2019)
model in one objective function the longest path and the maximum number of
satisfied constraints on distances. Luo et al. (2019) apply the same strategy as in
Luo et al. (2017) on both the orienting and the ordering problems.

Mixed Integer Quadratic Programming (MIQP) Gritsenko et al. (2012) are the only
ones that use Mixed-Integer Quadratic Programming (MIQP) by merging orienting
and ordering the contigs in one objective function.

Linear Programming (LP) Donmez and Brudno (2013) use linear programming to
position the oriented and ordered contigs to minimise the positioning approximation
according to the distance distributions on the links.

3 Chloroplast genome assembly
As the chloroplast is one of several living organelles in the same plant cell, the DNA
sequencing process produces reads from chloroplasts, other organelles and nuclear
DNA. Consequently, methods have been developed to produce a separate assembly
of the chloroplasts. They mainly consist in an assembly pipeline and adopt various
strategies in the filtering of the data during the whole assembly process.

In the following, all the described methods, listed in Table 3, are based on short
paired-end read data. Recently, Freudenthal et al. (2020) have compared some of
them on several criteria, from user-friendly aspects to assembly qualities. Here, we
decompose the dedicated chloroplast genome methods that solve the whole or a
part of the fragment assembly process.

Three major issues arise from the literature: (i) How to extract the chloroplast
data from the mixture of genomic material in the sequencing output? (ii) What
is the most suitable assembly formulation for the chloroplast genomes? (iii) How
to deal with the structural haplotypes in the assembly results? Section 3.1 covers
point (i), Sections 3.2 and 3.3 cover point (ii) and Section 3.4 covers point (iii).

3.1 Chloroplast sequence extraction
Although there are routine data filters, as in Bakker et al. (2016) and McKain and
afinit (2017), here we discuss specific approaches to identifying chloroplast data
(original and transformed) and extracting them.

51

II STATE-OF-THE-ART Chloroplast genome assembly 3

� Table 3 – Chloroplast genome assembly approaches.
Approach: the main contribution given in the paper. By Seed-and-Extend we mean
a read assembly method. Filter: an arbitrary score (from 0, no filter, to 3 bullets)
equivalent to the number of filter steps and the variability of their strategies. Structural
haplotypes: if the method is chloroplast structural haplotypes aware, i.e. if it addresses
the issue of several chloroplast forms in the sequencing data.

Paper and software Approach Filter Structural
haplotypes

Coissac et al. (2016)? Seed-and-Extend ? ?
ORG.Asm

Bakker et al. (2016) Pipeline ••
IOGA

Dierckxsens et al. (2017) Seed-and-Extend •
NOVOPlasty

McKain and afinit (2017) Pipeline ••
Fast-Plast

Ankenbrand et al. (2018) Pipeline ••
chloroExtractor

Sancho et al. (2018) Pipeline •
Chloroplast assembly protocol

Andonov et al. (2019) Scaffolding X
GAT

Jin et al. (2020) Pipeline ••• X
GetOrganelle + Scaffolding

?Cannot find a description of the method, software manual not found.

3.1.1 Filtering the reads

De novo filtering Before any assembly of the raw data, Ankenbrand et al. (2018)
assume that the chloroplast (and mitochondria) reads outnumber the nuclear reads.
Therefore, they keep reads for which the k-mer distribution is higher comparing to
the other reads (thanks to Jellyfish, Marçais and Kingsford 2011).

Genome reference-based filtering McKain and afinit (2017) and Sancho et al. (2018)
align the reads against one reference chloroplast genome, Ankenbrand et al. (2018)
against several closely related species, Bakker et al. (2016) against several but not

52

3 Chloroplast genome assembly STATE-OF-THE-ART II

necessarily closely related. Jin et al. (2020) in addition align the reads against
organelle subsequences. In the latter, they denote the reads they extract as seed
reads. Note that in Sancho et al. (2018) the use of a reference genome is optional.

Baiting new reads from assembly Some methods continue to filter the data after
assembling a subset of the reads into contigs. Bakker et al. (2016) iteratively align
the previously unaligned reads to a running read assembly. Then they compute a
new assembly on the larger read subset and repeat the process until no new read is
extracted. Jin et al. (2020) extend the seed contigs (from the assembly of the seed
reads) with the remaining reads.

3.1.2 Filtering the contigs
Similarly to the reads, the contig filters follow two approaches.

De novo filtering McKain and afinit (2017) and Jin et al. (2020) keep the con-
tigs with a high read mapping coverage. Especially, the latter authors partition
the contig set in parts representing each organelle type according to a coverage
distribution described by a Gaussian mixture.

Label database filtering In addition, Jin et al. (2020) align each contig to a label
database, where each sequence (e.g. of a gene, a protein or a conserved region) is
associated with a specific organelle (e.g. chloroplasts). They only keep the contigs
that match the label database.

3.2 Chloroplast reads assembly
The assembly of the read is the first stage of the fragment assembly process.
However, as we have seen in the previous subsection, assembling the reads often
enables to bait more reads and thus raise the chances to have a complete chloroplast
assembly.

3.2.1 De Bruijn graph approach
Recall that DBG is a dbgraph read assembly approach.

Baiting assemblies As mentioned before, Bakker et al. (2016) iteratively produce
several read assemblies with several sizes of k-mer (recall Chapter I, Section 5.3)
thanks to SOAPdenovo2 (Luo et al., 2012). At each iteration they keep the assemblies

53

II STATE-OF-THE-ART Chloroplast genome assembly 3

where the N50 criterion is high, and bait new reads on selected assemblies (i.e.
contigs).

Assembling the reads Sancho et al. (2018) use Velvet (Zerbino and Birney, 2008),
whereas Bakker et al. (2016), Ankenbrand et al. (2018) and Jin et al. (2020) prefer
SPAdes that internally tests different size of k-mer (Bankevich et al., 2012). Unlike
the latter that use paired-end for the read assembly, McKain and afinit (2017)
use SPAdes without the paired-end option. Indeed, paired-end data are further
exploited during the scaffolding stage.

3.2.2 Seed-and-extend
The S&E approach is a local assembling approach adapted for “simple” genomes,
particularly with few repeats. Coissac et al. (2016) implement a S&E whose
description could not be found at the time of writing this thesis. The S&E strategy
in Dierckxsens et al. (2017) consists in: (i) extending the seed until a circularity
is found; (ii) verifying the paired-end distance constraint at each extension; (iii)
identifying repeats when extensions are not overlapping. In the case it cannot
resolve the repeats based on more stringent extension parameters, the extension is
cut, and it begins a new seed.

3.3 Chloroplast scaffolding
The scaffolding stage follows the assembly of the reads. Few chloroplast assembly
tools tackle this stage.

Paired-end scaffolding McKain and afinit (2017) and Sancho et al. (2018) use the
paired-end based scaffolder SSPACE (Boetzer et al., 2011). Finally, the latter fill the
gap in the scaffolds with GapFiller (Boetzer and Pirovano, 2012). Andonov et al.
(2019) test their scaffolder on chloroplast data. As described in Section 2.5.1, they
aim to find the longest DNA sequence by finding a unitig path that maximises the
number of satisfied distance constraints.

Estimating contig multiplicities to obtain a circular pattern Jin et al. (2020) aim to
determine the multiplicity of each contig such that Eulerian circuits are found in
the resulting graph. They use a MIQP aiming to minimise the squared difference
between the observed and the variable multiplicities. Each equation expresses the
multiplicity of a contig’s end with those of its adjacent contigs’ ends. They compute
the observed multiplicities according to the contigs’ coverages.

54

3 Chloroplast genome assembly STATE-OF-THE-ART II

3.4 Chloroplast assembly validation
Validation of assemblies can be carried out either by conventional evaluation
processes, or by processes more specific to chloroplasts. Furthermore, this last
stage can enable to detect multiple solutions especially corresponding to structural
haplotypes.

De novo evaluation Bakker et al. (2016) select the best assemblies according to
the Assembly Likelihood Estimation (ALE) (Clark et al., 2013). The assembly
candidates come from both the final assemblies during the iterative read baiting
step and the final step.

Reference genome evaluation Ankenbrand et al. (2018) keep the contigs that align
sufficiently against reference genomes.

Multiple solutions Andonov et al. (2019) detect in the DG path, representing
the scaffold, pairs of subpaths p = (v0, . . . , vn−1), p′ =

(
v′0, . . . , v

′
n−1

)
such that:

∀ i ∈ J0, nJ, frag(vi) = frag(vn−1−i), i.e. they detect subpaths that represent
inverted repeats (IR). They cut the scaffold at the beginning and at the end
of these subpaths in order to consider alternative paths representing structural
haplotypes. They prove the alternative paths to be optimal. Jin et al. (2020)
produce all the paths consuming all the multiplied contigs. They keep the paths
that represent iso-IR, i.e. paths that have the same property as in Andonov et al.
(2019).

55

III FRAGMENT GRAPH
IMPLEMENTATIONS AND
COMPARISON

David Krakauer & Kathleen Tagg. (2020). The
Geyser [Song]. On Breath & Hammer. Table
Pounding Records

In this chapter

1 Implementations 58
1.1 Directed graph (DG): oriented fragments based 59

1.1.1 All oriented fragments directed graph (DGA) 59
1.1.2 Oriented fragments’ successors directed graph (DGS) 61
1.1.3 Forward fragments directed graph (DGF) 63

1.2 Bidirected graph (BG): oriented walk based 66
1.2.1 Unoriented fragments bidirected graph (BGU) 66
1.2.2 Transformation to DGF 68

1.3 Undirected graph (UG): tail-head fragments based. 68
1.3.1 All oriented fragments undirected graph (UGA). 68
1.3.2 Transformation to DGS 70

1.4 Fragment graph map . 70
2 Algorithms for DGS, DGF and BGU 72

2.1 Subfunctions . 72
2.2 Iterating over the predecessors 73
2.3 Iterating over the successors 74
2.4 Adding a vertex . 75
2.5 Adding an edge. 76
2.6 Deleting a vertex . 78
2.7 Deleting an edge . 81

3 Time costs 82
4 Memory and time cost comparisons 84

57

https://musicbrainz.org/release/edc70d00-a490-4a3d-b256-28f02eb6ea06

III FRAGMENT GRAPHS Implementations 1

5 Conclusions and perspectives 85

Section 1 describes several graph implementations for each structure from Chapter II,
Section 1 (see the fragment graph structures overview in Figure 22). For the most
interested ones, Section 2 provides algorithms to explore the graph, to add or to
delete vertices and edges. Finally we conclude on the memory and the time costs
of the proposed implementations and their associated algorithms. For a quick
overview, Figure 30 is a map that groups the graph implementations according to
their structures, and summarises their properties.

1 Implementations
The implementations should satisfy both querying and dynamic updating require-
ments:

Querying requirements
— given an (oriented) fragment, getting all the fragments linking it;
— given a link, answering true if it is represented in the graph.

Dynamic updating requirements
— adding a fragment/link;
— deleting a fragment/link.

A square matrix can represent the fragments and their links. The matrix is
sparse in practice, e.g. in the read assembly stage, the reads are overlapping only
if they are sequenced from closed genomic region or from repeats. A Compressed
Sparse Row (CSR) or a Compressed Sparse Column (CSC) is suitable to address
the sparsity. It also enables fast link querying. However, dynamic operations are
costly. Thus, we implement the graphs with adjacency lists. They are suitable for
both the sparsity and the efficiency of addition or deletion operations. However, as
the number of neighbours is not a priori known, adjacency lists require the use of
pointers to memory address, that are costly in memory.

The implementations require suitable graph labelling strategies: the vertices
and the edges are labelled with indices, such that their ranges are minimised
according to our purpose. For the sake of clarity, in the next sections we consider
all the fragments and links are represented. Since for each graph structure there
are bijective functions to the fragment set F and to the link set L, there must be
bijective functions from the implementations to the graph structure. In that case,
we will ensure the implementations represent the data.

58

1 Implementations FRAGMENT GRAPHS III

Common notations
Canonical link We described what a forward and a reverse fragments are (F =
Ff t Fr) but we have not yet split the link set into two. Analogously to the
fragment set, we partition the link set in two, L = Lf t Lr. Lf contains the
links for which in the pair, the fragment with the smallest ΣF label is in forward
orientation, i.e. Lf =

{
l ∈ L | for(a) = f, fid(a) = minx∈linkp(l) fid(x)

}
. Similarly

to the unoriented fragment label set ΣFun , let ΣLcan = J0, 1
2
|L|J be the label

set of canonical links and canlid : L →→ ΣLcan its associated function, such that
∀ l ∈ L, canlid(l) = canlid(l). In this chapter, a link label represents both a
link and its reverse, i.e. a canonical link. The order of the fragments enables
distinguishing if the link label corresponds to a link in Lf or in Lr.

Adjacency list notation The adjacency lists are represented by functions f : N→ X,
where X can be the set of neighbour lists (themselves represented by functions)
or the set of neighbours. From a programming point view, f [i] is the object at
the ith position in the list f . Here we denote this object by f(i) except in the
pseudocodes. We denote by NV and Nv the adjacency lists for all the vertices and
for the particular vertex v, respectively. N− and N+ stand for the predecessor and
the successor lists.

In/out degrees For a vertex v ∈ V , we denote by dv = d−v + d+v its total degree
equals to the sum of the number of its predecessors and successors.

Octet-isation For n ∈ N, oct(n) =
⌈
log2 n

8

⌉
gives the number of octets necessary to

memorise an integer between 0 and n− 1.

1.1 Directed graph (DG): oriented fragments based
Section 1.1.1 describes the first implementation for DG, while Sections 1.1.2
and 1.1.3 propose clever implementations thanks to the reverse symmetry. Recall
from Definition 1.7 that DG = (V ,E,Φ).

1.1.1 All oriented fragments directed graph (DGA)
DGA is a classical multidigraph implementation with both the predecessor and the
successor lists. For each vertex (oriented fragment), we associate a unique label.
We do the same for the edges (the links). Figure 25 illustrates each link case in
DGA.

59

III FRAGMENT GRAPHS Implementations 1

LEGEND

� Figure 25 – DGA implementation.
Each squared mathematical formula provides the link case and its reverse (in parentheses).
The left and the right lists are the predecessor and the successor lists for all the vertices.
For each v ∈ V , vind(v) = vf if frag(v) ∈ Ff , vr otherwise. For each link and its
reverse, e is their canonical label.

I Definition 1.1: DGA labels and functions

Let vind : V ↪→→ ΣV and eind : E →→ ΣE, where ΣV = ΣF and ΣE = ΣLcan are
the label sets for the vertices and the edges, respectively. The predecessor and
the successor lists are defined by two functions:

predl : ΣV → N−
V =

{
N−

v , ∀ v ∈ V | N−
v : J0, d−v J→ ΣV × ΣE

}
succl : ΣV → N+

V =
{
N+

v ,∀ v ∈ V | N+
v : J0, d+v J→ ΣV × ΣE

}
For each vertex v ∈ V , N−

v : J0, d−v J→ ΣV ×ΣE and N+
v : J0, d+v J→ ΣV ×ΣE

give its predecessors and its successors, respectively. The following property

60

1 Implementations FRAGMENT GRAPHS III

holds:

∀ e ∈ E,Φ(e) = (u, v),∃! n ∈ J0, d+u J, ∃!m ∈ J0, d−v J s.t.
succl(vind(u))(n) = (vind(v), eind(e))

predl(vind(v))(m) = (vind(u), eind(e))

Definition 1.2 provides the logic between the label functions and the reverse
properties of the vertices and the edges.

I Definition 1.2: DGA reverse labels

Given two fragments af ∈ Ff and ar = af ∈ Fr and their associated vertices
vf and vr (frag(vf) = af , frag(vr) = ar), the labels of vf and vr respect
vind(vr) − vind(vf) = 1. For each edge e ∈ E, its label respects eind(e) =
eind(e).

Proposition 1.1 gives the amount of octet DGA consumes.

I Proposition 1.1: DGA memory consumption

The memory size Mem(DGA) of DGA (in octets) is equal to:

Mem(DGA) = 2P(|F|+ 1) + 2|L|
(
oct(|F|) + oct

(
1

2
|L|
))

where P is the memory size of a memory address.

B Proof

There is one pointer for the predecessor and the successor lists, and two for
each fragment, i.e. 2P(|F|+ 1). Then, for each link, for each predecessor
and for each successor, the neighbour’s label and the edge’s label are provided,
i.e. 2|L|

(
oct(|F|) + oct

(
1
2
|L|
))

.
C

1.1.2 Oriented fragments’ successors directed graph (DGS)
DGS corresponds to DGA without the predecessor lists. The property at the end
of Definition 1.3 show how to get the predecessors of a vertex (note the d+

v
). The

reverse of the successors of the reverse are the predecessors of the vertex. Figure 26
illustrates each link case in DGS.

61

III FRAGMENT GRAPHS Implementations 1

LEGEND

� Figure 26 – DGS implementation.
Each squared mathematical formula provides the link case and its reverse (in parentheses).
The list bellow is the successor list for all the vertices. The labels uf , ur, vf and vr are
the ones of the vertices associated to two forward and reverse fragments. For each link
and its reverse, e is their canonical label.

I Definition 1.3: DGS labels and functions

Let vind : V ↪→→ ΣV and eind : E →→ ΣE, where ΣV = ΣF and ΣE = ΣLcan are
the label sets for the vertices and the edges, respectively. The successor list is
defined by:

succl : ΣV → N+
V =

{
N+

v ,∀ v ∈ V | N+
v : J0, d+v J→ ΣV × ΣE

}
For each vertex v ∈ V , N−

v : J0, d−v J→ ΣV ×ΣE and N+
v : J0, d+v J→ ΣV ×ΣE

give its predecessors and its successors, respectively. The following property

62

1 Implementations FRAGMENT GRAPHS III

holds:

∀ e ∈ E,Φ(e) = (u, v),∃! n ∈ J0, d+u J, ∃!m ∈ J0, d+
v
J s.t.

succl(vind(u))(n) = (vind(v), eind(e))

succl(vind(v))(m) =
(
vind(u), eind(e)

)
Definition 1.4 provides the logic between the label functions and the reverse

properties of the vertices and the edges.

I Definition 1.4: DGS reverse labels

Given two fragments af ∈ Ff and ar = af ∈ Fr and their associated vertices
vf and vr (frag(vf) = af , frag(vr) = ar), the labels of vf and vr respect
vind(vr) − vind(vf) = 1. For each edge e ∈ E, its label respects eind(e) =
eind(e).

Proposition 1.2 gives the amount of octet DGS consumes.

I Proposition 1.2: DGS memory consumption

The memory size Mem(DGS) of DGS (in octets) is equal to:

Mem(DGS) = P(|F|+ 1) + |L|
(
oct(|F|) + oct

(
1

2
|L|
))

where P is the memory size of a memory address.

B Proof

There is one pointer for the successor lists, and one for each fragment, i.e.
P(|F|+ 1). Then, for each link, for each successor, the neighbour’s label and
the edge’s label are provided, i.e. |L|

(
oct(|F|) + oct

(
1
2
|L|
))

.
C

1.1.3 Forward fragments directed graph (DGF)
DGF is DGA only for the forward fragments. The neighbours of a reverse, are the
reverse neighbours of the forward. The vertex label range is divided by two, so the
adjacency lists must provide both the label of the neighbours and their orientation.
Figure 27 illustrates each link case in DGF .

63

III FRAGMENT GRAPHS Implementations 1

LEGEND

� Figure 27 – DGF implementation.
Each squared mathematical formula provides the link case and its reverse (in parentheses).
The left and the right lists are the predecessor and the successor lists for the forward
vertices. A vertex and its reverse have the same label (v). For each link and its reverse,
e is their canonical label. The orientation set {f, r} is binarised (f = 0, r = 1).

I Definition 1.5: DGF labels and functions

Let vind : V →→ ΣVf
and eind : E →→ ΣE, where ΣVf

= ΣFun and ΣE = ΣLcan

are the label sets for the forward vertices and the edges, respectively. The
predecessor and the successor lists are defined by two functions:

predl : ΣV → N−
Vf

=
{
N−

v ,∀ v ∈ Vf | N−
v : J0, d−v J→ ΣVf

× {f, r} × ΣE

}
succl : ΣV → N+

Vf
=
{
N+

v ,∀ v ∈ Vf | N+
v : J0, d+v J→ ΣVf

× {f, r} × ΣE

}
where Vf = {v ∈ V | frag(v) ∈ Ff}. For each forward vertex v ∈ Vf , N−

v : J0, d−v J→
ΣVf
× {f, r} ×ΣE and N+

v : J0, d+v J→ ΣVf
× {f, r} ×ΣE give its predecessors

64

1 Implementations FRAGMENT GRAPHS III

and its successors, respectively. The following property holds:

∀ e ∈ E,Φ(e) = (u, v),

frag(u) ∈ Ff =⇒ ∃! n ∈ J0, d+u J s.t.
succl(vind(u))(n) = (vind(v), for(frag(v)), eind(e))

frag(u) ∈ Fr =⇒ ∃! n ∈ J0, d+
u
J s.t.

predl(vind(u))(n) =
(
vind(v), for(frag(v)), eind(e)

)
frag(v) ∈ Ff =⇒ ∃!m ∈ J0, d−v J s.t.

predl(vind(v))(m) = (vind(u), for(frag(u)), eind(e))

frag(v) ∈ Fr =⇒ ∃!m ∈ J0, d−
v
J s.t.

succl(vind(v))(m) =
(
vind(u), for(frag(u)), eind(e)

)

Definition 1.6 provides the logic between the label functions and the reverse
properties of the vertices and the edges.

I Definition 1.6: DGF reverse labels

For each vertex v ∈ V , its label respects vind(v) = vind(v). For each edge
e ∈ E, its label respects eind(e) = eind(e).

Proposition 1.3 gives the amount of octet DGF consumes.

I Proposition 1.3: DGF memory consumption

The memory size Mem(DGF) of DGF (in octets) is equal to:

Mem(DGF) = P(|F|+ 2) + |L|
(
oct(|F|) + oct

(
1

2
|L|
))

where P is the memory size of a memory address.

B Proof

There is one pointer for the predecessor and for the successor lists, and two for
each forward fragment, i.e. P(|F|+ 2). Then, for each link, for each forward
predecessors and successors, the neighbour’s label, combined with a binary
value (f or r), and the edge’s label are provided, i.e. |L|

(
oct(|F|) + oct

(
1
2
|L|
))

.

65

III FRAGMENT GRAPHS Implementations 1

C

1.2 Bidirected graph (BG): oriented walk based
Section 1.2.1 describes the first implementation for BG and Section 1.2.2 de-
scribes how to transform BGU to DGF . Recall from Definition 1.10 that BG =
(V ,E,Φ, attre).

1.2.1 Unoriented fragments bidirected graph (BGU)
BGU is a classical multiungraph implementation with neighbour lists. The at-
tributes on the edges are stored in a attribute list. For each vertex (unoriented
fragment), we associate a unique index. We do the same for the edges (a links and
its reverse). Figure 28 illustrates each link case in BGU .

I Definition 1.7: BGU labels and functions

Let vind : V ↪→→ ΣV and eind : E ↪→→ ΣE, where ΣV = ΣFun and ΣE = ΣLcan

are respectively the label sets for the vertices and the edges. The neighbour and
the edge attribute lists are defined by two functions:

nborl : ΣV → NV = {Nv, ∀ v ∈ V | Nv : J0, dvJ→ ΣV × ΣE}

attrel : ΣE → {f, r}2

For each vertex v ∈ V , Nv : J0, dvJ → ΣV × ΣE gives its neighbours. The
following property holds:

∀ e ∈ E,Φ(e) = {u, v},∃! n ∈ J0, duJ,∃!m ∈ J0, dvJ s.t.
nborl(vind(u))(n) = (vind(v), eind(e))

nborl(vind(v))(m) = (vind(u), eind(e))

attrel(eind(e)) = attre(e)

Proposition 1.4 gives the amount of octet BGU consumes.

I Proposition 1.4: BGU memory consumption

The memory size Mem(BGU) of BGU (in octets) is equal to:

Mem(BGU) = P

(
1

2
|F|+ 1

)
+ |L|

(
oct

(
1

2
|F|
)
+ oct

(
1

2
|L|
))

+ oct(|L|)

66

1 Implementations FRAGMENT GRAPHS III

LEGEND

� Figure 28 – BGU implementation.
Each squared mathematical formula provides the link case and its reverse (in parentheses).
The left and the right lists are the neighbour for all the vertices and the edge attribute
list, respectively. For each fragment and its reverse v is their canonical index. For
each link and its reverse, e is their canonical index. Eattr provides the orientations
associated with the vertices, in the lexicographical order of their label (here u < v).

where P is the memory size of a memory address.

B Proof

There is one pointer for each vertex and one for the edge attribute list, i.e.
P
(
1
2
|F|+ 1

)
. Each vertex is associated with its neighbours and the edge’s label.

Each edge is stored twice (|L|). So it gives |L|
(
oct
(
1
2
|F|
)
+ oct

(
1
2
|L|
))

. Fi-
nally, Eattr provides for each edge two binary values (one bit per orientation),
i.e. oct(|L|).

C

67

III FRAGMENT GRAPHS Implementations 1

1.2.2 Transformation to DGF
It is possible to transform BGU to DGF . For each u ∈ ΣV , for each (v, e) ∈ ΣV×ΣE

in cod nborl(u) (cod is the codomain of function nborl) such that u < v implying
attrel(e) = (uor, vor):

— if uor = f , then append (v, vor, e) to the successor list N+
u ;

— else if uor = r, then append (v, vor, e) to the predecessor list N−
u ;

— if vor = f , then append (u, uor, e) to the predecessor list N−
v ;

— else if vor = r, then append (u, uor, e) to the successor list N+
v .

1.3 Undirected graph (UG): tail-head fragments based
Section 1.3.1 describes the first implementation for UG and Section 1.3.2 de-
scribes how to transform UGA to DGS. Recall from Definition 1.13 that UG =
(V ,EF , EL,ΦL).

1.3.1 All oriented fragments undirected graph (UGA)
UGA is a classical multiungraph implementation with neighbour lists. Each
fragment is associated with two vertices corresponding to the two extremities (5’
and 3’). We provide a unique label for each vertex. There is one neighbour list for
the fragment-edges and another one for the link-edges. Figure 29 illustrates each
link case in UGA.

I Definition 1.8: UGA labels and functions

Let vind : V ↪→→ ΣV , and eind : EL ↪→→ ΣE
a, where ΣV = ΣF and ΣE = ΣLcan

are the label sets for the vertices and the link-edges, respectively. The fragment-
neighbour function is denoted by nborlf : ΣV ↪→→ ΣV . For each vertex v ∈ V ,
nborlf(v) gives the other extremity of the fragment. The link-neighbour list is
defined by:

nborll : ΣV → NL
V =

{
NL

v ,∀ v ∈ V | NL
v : J0, dLv J→ ΣV × ΣE

}
For each vertex v ∈ V , NL

v : J0, dLv J → ΣV × ΣE provides its link-neighbours.
The following property holds:

∀ e ∈ EL,ΦL(e) = {u, v},∃! n ∈ J0, dLuJ,∃!m ∈ J0, dLv J s.t.
nborll(vind(u))(n) = (vind(v), eind(e))

nborll(vind(v))(m) = (vind(u), eind(e))

68

1 Implementations FRAGMENT GRAPHS III

aWe do not provide edge labels for fragment-edges.

Definition 1.9 provides the logic between the label functions and the reverse
properties of the vertices.

I Definition 1.9: UGA reverse labels

Given a fragments af ∈ Ff and its reverse ar = af ∈ Fr and their associated
vertices {vt, vh} ∈ EF (frag(vt, vh) = af , frag(vh, vt) = ar), the label of vt

LEGEND

� Figure 29 – UGA implementation.
Each squared mathematical formula provides the link case and its reverse (in parentheses).
The violet list is not stored in memory because it does not depend of the link case.
It corresponds to nborlf function. The NL

V green list provides the link-neighbours.
Vertices vt and vh correspond to the tail and the head of a fragment. For each link
and its reverse, e is their canonical index.

69

III FRAGMENT GRAPHS Implementations 1

and vh respect vind(vh)− vind(vt) = 1.

Proposition 1.5 gives the amount of octet UGA consumes.

I Proposition 1.5: UGA memory consumption

The memory size Mem(UGA) of UGA (in octets) is equal to:

Mem(UGA) = P(|F|+ 1) + |L|
(
oct(|F|) + oct

(
1

2
|L|
))

where P is the memory size of a memory address.

B Proof

There is one pointer for the link-neighbour lists and one for each fragment
extremity, i.e. P(|F|+ 1). Then, for each link, for each extremity, the neigh-
bour’s label and the edge’s label are provided, i.e. |L|

(
oct(|F|) + oct

(
1
2
|L|
))

.
C

1.3.2 Transformation to DGS
UGA can easily be adapted to obtain DGS. For each v ∈ ΣV , for each n ∈ J0, dLv J
where nborll(v)(n) = (w, e), replace w by nborlf(w). In a valid path, a link-edge
is followed by a fragment-edge, which is unique for each vertex (see Definition 1.15).
Finally, to exactly match DGS, the order of the index for the extremities is reversed,
i.e. vind(vt)− vind(vh) = 1.

1.4 Fragment graph map

� Figure 30 – Graph structures and their implementations.
Blue boxes: they correspond to graph structures. They are described by the type of
graph they represent, the theoritical number vertices and edges. Green boxes: they
correspond to discussed graph implementations. After their name, the second line gives
the adjacency list(s) definition and the last line gives the length of the adjacency list(s)
(i.e. the number of vertices for which the neighbours are given).

70

1 Implementations FRAGMENT GRAPHS III

DG: oriented Fragments
based

Directed

Graph structure
chronology

C
la

ss
ic

al
 d

ig
ra

ph

R
ev

er
se

 s
ym

m
et

ry
w

ith
 fo

rw
ar

d
fo

cu
s

DGA: all oriented fragments DG DGF: forward fragments DG

C
la

ss
ic

al
 u

ng
ra

ph

BGU: unoriented fragments BG
(weighted edges UG)

BG: oriented Walk
based

Bidirected (Undirected)

A
dj

ac
en

cy
 li

st
 s

pl
itt

ed
by

 v

al
ue

s

UG: tail-head Fragment
based

Undirected

C
la

ss
ic

al
 u

ng
ra

ph
 w

ith
se

pa
ra

te
d

ed
ge

 ty
pe

s

UGA: all fragments' extremities
UG

R
ea

d-
ed

ge
s

ju
m

p
op

er
at

io
n

DGS: oriented fragments
successors DG

P
re

de
ce

ss
or

s
lis

t r
em

ov
al

1991

1995

2002

LEGEND

Graph structures
ordered chronologically

Graph implementations
linked by transformations

Oriented fragment set

Vertex set

Graph structure

Theoritical graph type

Theoritical number of vertices and edges

integer of range

Adjacency lists

integer of range

boolean value

Graph implementation

Lists of predecessors
and successors

Sets of vertices for all the
oriented fragments
and for only the forward

Lists of link-edges
and fragment-edges

integer of range

1991

Link set

Edge set

71

III FRAGMENT GRAPHS Algorithms for DGS, DGF and BGU 2

2 Algorithms for DGS, DGF and BGU
In this section, we give elementary operation algorithms for DGS, DGF and BGU
graph implementations. To respect the computing notations, NV , N−

V and N+
V

are the neighbour, predecessor and successor lists, respectively, codomains of the
functions nborl, predl and succl. Similarly, for any vertex v we denote by Nv, N−

v

and N+
v the neighbour, predecessor and successor lists of v, respectively. Iterating

over one of these lists is equivalent to increasing an integer k from 0 to the length
of the list minus one and peek the kth element.

2.1 Subfunctions
The following subfunction algorithms are often subparts of the next algorithms.
Algorithm 1 is usefull for DGS. Algorithms 2 and 3 are usefull when deleting
vertices or edges.

I Algorithm 1: Reverse operation on index

Require: Integer ind.
Ensure: Returns 2

⌊
ind
2

⌋
+ 1− (ind mod 2).

1: function rev(ind)
2: if ind | 2 then
3: return ind+ 1
4: return ind− 1

For the sake of clarity, rev(ind) = ind.

I Algorithm 2: Find place of edge index in the neighbour list

Require: List of tuple list, edge index e, index t of the place of the edge indices
in the tuples contained in list. The edge index must be in a tuple.

Ensure: Returns the index ind of the tuple containing e in list.
1: function get_index(list, e, t)
2: ind← 0
3: while list[ind][t] 6= e and ind < |list| − 1 do
4: ind← ind+ 1
5: return ind

72

2 Algorithms for DGS, DGF and BGU FRAGMENT GRAPHS III

I Algorithm 3: Delete an entry in a list and arrange it

Require: List list, an entry index ind ∈ J0, |list|J.
Ensure: Only the element in list[ind] is removed, and |list| decreases by one.

1: function delete_list_entry(list, ind)
2: if ind = |list| − 1 then . Just delete the last element
3: list.pop()
4: else . Replace the element of interest by the last one
5: list[ind]← list.pop()

2.2 Iterating over the predecessors
Given a fragment, we aim to return the fragments linking it upstream associated
with the canonical link labels.

I Algorithm 4: Iterate over the predecessors for DGS

Require: A vertex label v ∈ ΣV .
Ensure: Returns a list containing tuples in ΣV × ΣE representing the predecessors

of the vertex labelled by v.
1: function dgs_preds(v)
2: preds← empty_list()
3: for (u, e) ∈ N+

v
do

4: preds.append(u, e)
5: return preds

I Algorithm 5: Iterate over the predecessors for DGF

Require: A vertex label v ∈ ΣV associated with an orientation vor ∈ {f, r}.
Ensure: Returns a list containing tuples in ΣV × {f, r} × ΣE representing the

predecessors of the vertex labelled by v with fragment orientation vor.
1: function dgf_preds(v, vor)
2: preds← empty_list()
3: if vor = f then . Forward fragment
4: for (u, uor, e) ∈ N−

v do
5: preds.append(u, uor, e)
6: else . Reverse fragment
7: for (u, uor, e) ∈ N+

v do

73

III FRAGMENT GRAPHS Algorithms for DGS, DGF and BGU 2

8: preds.append(u, 1− uor, e)
9: return preds

I Algorithm 6: Iterate over the predecessors for BGU

Require: A vertex label v ∈ ΣV associated with an orientation vor ∈ {f, r}
representing the predecessors of the vertex labelled by v and with fragment
orientation vor.

Ensure: Returns a list containing tuples in ΣV × {f, r} × ΣE representing the
predecessors of the vertex labelled by v with the fragment orientation
vor.

1: function bgu_preds(v, vor)
2: preds← empty_list()
3: for (u, e) ∈ Nv do
4: if u < v ∧ Eattr[e][1] = vor then
5: preds.append(u,Eattr[e][0], e)
6: else if 1− Eattr[e][0] = vor then
7: preds.append(u, 1− Eattr[e][1], e)
8: return preds

2.3 Iterating over the successors

Given a fragment, we aim to return the fragments linking it downstream associated
with the canonical link labels.

I Algorithm 7: Iterate over the successors for DGS

Require: A vertex label v ∈ ΣV .
Ensure: Returns a list containing tuples in ΣV × ΣE representing the successors

of the vertex labelled by v.
1: function dgs_succs(v)
2: succs← empty_list()
3: for (w, e) ∈ N+

v do
4: succs.append(w, e)
5: return succs

74

2 Algorithms for DGS, DGF and BGU FRAGMENT GRAPHS III

I Algorithm 8: Iterate over the successors for DGF

Require: A vertex label v ∈ ΣV associated with an orientation vor ∈ {f, r}.
Ensure: Returns a list containing tuples in ΣV × {f, r} × ΣE representing the

predecessors of the vertex labelled by v with fragment orientation vor.
1: function dgf_succs(v, vor)
2: succs← empty_list()
3: if vor = f then . Forward fragment
4: for (w,wor, e) ∈ N+

v do
5: succs.append(w,wor, e)
6: else . Reverse fragment
7: for (w,wor, e) ∈ N−

v do
8: succs.append(w, 1− wor, e)
9: return succs

I Algorithm 9: Iterate over the successors for BGU

Require: A vertex label v ∈ ΣV associated with an orientation vor ∈ {f, r}
representing the successors of the vertex labelled by v and with fragment
orientation vor.

Ensure: Returns a list containing tuples in ΣV × {f, r} × ΣE representing the
predecessors of the vertex labelled by v with the fragment orientation
vor.

1: function bgu_succs(v, vor)
2: succs← empty_list()
3: for (w, e) ∈ Nv do
4: if v < w ∧ Eattr[e][0] = vor then
5: succs.append(w,Eattr[e][1], e)
6: else if 1− Eattr[e][1] = vor then
7: succs.append(w, 1− Eattr[e][0], e)
8: return succs

2.4 Adding a vertex

The following algorithms allocate a place for new vertices by providing their label.

75

III FRAGMENT GRAPHS Algorithms for DGS, DGF and BGU 2

I Algorithm 10: Add a new vertex in the graph for DGS

Ensure: The length of N+
V is increased by two and returns the last vertex label in

fragment orientation forward.
1: function dgs_add_vertex()
2: N+

V .append(empty_list())
3: N+

V .append(empty_list())
4: return

∣∣N+
V

∣∣− 2

I Algorithm 11: Add a new vertex in the graph for DGF

Ensure: The lengths of N−
V and N+

V are increased by one and returns the last
vertex label.

1: function dgf_add_vertex()
2: N−

V .append(empty_list())
3: N+

V .append(empty_list())
4: return

∣∣N+
V

∣∣− 1

I Algorithm 12: Add a new vertex in the graph for BGU

Ensure: The length of NV is increased by one and returns the last vertex label.
1: function bgu_add_vertex()
2: NV .append(empty_list())
3: return |NV | − 1

2.5 Adding an edge
The following algorithms append new edges by providing their label.

I Algorithm 13: Add a new edge and its reverse in the graph for DGS

Require: Two vertex labels u and v.
Ensure: Returns the new edge index e such that (u, e) ∈ preds(v) and (v, e) ∈

succs(u).
1: function dgs_add_edge(u, v)
2: . ind_edges is the number of edges. It is always even. /
3: N+

u .append(v, ind_edges)
4: N+

v
.append(u, ind_edges)

76

2 Algorithms for DGS, DGF and BGU FRAGMENT GRAPHS III

5: ind_edges← ind_edges+ 1
6: card_edges← card_edges+ 2
7: return ind_edges− 1

I Algorithm 14: Add a new edge and its reverse in the graph for DGF

Require: Two vertex labels u and v, associated with their respective fragment
orientation uor and vor.

Ensure: Returns the new edge index e such that (u, uor, e) ∈ preds(v, vor) and
(v, vor, e) ∈ succs(u, uor).

1: function dgf_add_edge(u, uor, v, vor)
2: . ind_edges is the number of edges. It is always even. /
3: if uor = f then . uf → vf or uf → vr
4: N+

u .append(v, vor, ind_edges)
5: else . uf ← vf or uf ← vr
6: N−

u .append(v, 1− vor, ind_edges)
7: if vor = f then . uf → vf or ur → vf
8: N−

v .append(u, uor, ind_edges)
9: else . uf ← vf or ur ← vf

10: N+
v .append(u, 1− uor, ind_edges)

11: ind_edges← ind_edges+ 1
12: card_edges← card_edges+ 2
13: return ind_edges− 1

I Algorithm 15: Add a new edge and its reverse in the graph for BGU

Require: Two vertex labels u and v, associated with their respective fragment
orientation uor and vor.

Ensure: Returns the new edge index e such that (u, uor, e) ∈ preds(v, vor) and
(v, vor, e) ∈ succs(u, uor).

1: function bgu_add_edge(u, uor, v, vor)
2: Nu.append(v, ind_edges)
3: Nv.append(u, ind_edges)
4: if u < v then
5: Eattr.append(uor, vor)
6: else
7: Eattr.append(1− vor, 1− uor)
8: ind_edges← ind_edges+ 1
9: card_edges← card_edges+ 1

77

III FRAGMENT GRAPHS Algorithms for DGS, DGF and BGU 2

10: return ind_edges− 1

2.6 Deleting a vertex
The following algorithms delete a vertex (and its reverse where appropriate) and
all their edges.

I Algorithm 16: Delete a vertex for DGS

Require: A vertex label v such that v | 2.
Ensure: The edges containing the vertex or its reverse are deleted from the neigh-

bour lists. The length of N+
V is reduced by two.

1: function dgs_delete_vertex(v)
2: . Delete it from its predecessors /
3: v_rev ← v + 1
4: for (u_rev, e) ∈ N+

v_rev do
5: u← u_rev
6: adj_ind← get_index(N+

u , e, 1)
7: delete_list_entry(N+

u , adj_ind)
8: card_edges← card_edges− 2
9: delete(N+

v_rev)
10: . Delete it from its successors /
11: for (w, e) ∈ N+

v do
12: w_rev ← w
13: adj_ind← get_index(N+

w_rev, e, 1)
14: delete_list_entry(N+

w_rev, adj_ind)
15: card_edges← card_edges− 2
16: delete(N+

v)
17: . Delete the whole vertex /
18: if v =

∣∣N+
V

∣∣− 2 then
19: . It is the last, just pop it and its reverse /
20: N+

V .pop()
21: N+

V .pop()
22: else
23: . Replace it and its reverse by the last and its reverse /
24: N+

v_rev ← N+
V .pop()

25: N+
v ← N+

V .pop()
26: . Update the vertex index /

78

2 Algorithms for DGS, DGF and BGU FRAGMENT GRAPHS III

27: for (u_rev, e) ∈ N+
v_rev do

28: u← u_rev
29: adj_ind← get_index(N+

u , e, 1)
30: N+

u [adj_ind]← (v, e)
31: for (w_rev, e) ∈ N+

v do
32: w ← w_rev
33: adj_ind← get_index(N+

w , e, 1)
34: N+

w [adj_ind]← (v_rev, e)

I Algorithm 17: Delete a vertex for DGF

Require: A vertex label v.
Ensure: The edges containing the vertex or its reverse are deleted from the neigh-

bour lists. The lengths of N−
V and N+

V are reduced by one.
1: function dgf_delete_vertex(v)
2: . Delete it from its predecessors /
3: for (u, uor, e) ∈ N−

v do
4: if uor = f then
5: adj_ind← get_index(N+

u , e, 1)
6: delete_list_entry(N+

u , adj_ind)
7: else
8: adj_ind← get_index(N−

u , e, 1)
9: delete_list_entry(N−

u , adj_ind)
10: card_edges← card_edges− 2
11: delete(N−

v)
12: . Delete it from its successors /
13: for (w,wor, e) ∈ N+

v do
14: if wor = f then
15: adj_ind← get_index(N−

w , e, 1)
16: delete_list_entry(N−

w , adj_ind)
17: else
18: adj_ind← get_index(N+

w , e, 1)
19: delete_list_entry(N+

w , adj_ind)
20: card_edges← card_edges− 2
21: delete(N+

v)
22: . Delete the whole vertex /
23: if v =

∣∣N+
V

∣∣− 1 then
24: . It is the last, just pop it and its reverse /
25: N−

V .pop()

79

III FRAGMENT GRAPHS Algorithms for DGS, DGF and BGU 2

26: N+
V .pop()

27: else
28: . Replace it and its reverse by the last and its reverse /
29: N−

v ← N−
V .pop()

30: N+
v ← N+

V .pop()
31: . Update the vertex index /
32: for (u, uor, e) ∈ N−

v do
33: if uor = f then
34: adj_ind← get_index(N+

u , e, 1)
35: N+

u [adj_ind]← (v, f , e)
36: else
37: adj_ind← get_index(N−

u , e, 1)
38: N−

u [adj_ind]← (v, r, e)
39: for (w,wor, e) ∈ N+

v do
40: if wor = f then
41: adj_ind← get_index(N−

w , e, 1)
42: N−

w [adj_ind]← (v, f , e)
43: else
44: adj_ind← get_index(N+

w , e, 1)
45: N+

w [adj_ind]← (v, r, e)

I Algorithm 18: Delete a vertex for BGU

Require: A vertex label v.
Ensure: The edges containing the vertex or its reverse are deleted from the neigh-

bour lists. The length of NV is reduced by one.
1: function bgu_delete_vertex(v)
2: for (w, e) ∈ Nv do
3: adj_ind← get_index(Nw, e, 1)
4: delete_list_entry(Nw, adj_ind)
5: card_edges← card_edges− 1
6: delete(Nv)
7: . Delete the whole vertex /
8: if v = |NV | − 1 then
9: . It is the last, just pop it /

10: NV .pop()
11: else
12: . Replace it by the last /
13: Nv ← NV .pop()

80

2 Algorithms for DGS, DGF and BGU FRAGMENT GRAPHS III

14: . Update the vertex index /
15: for (w, e) ∈ Nv do
16: adj_ind← get_index(Nw, e, 1)
17: Nw[adj_ind]← (v, e)
18: if w > v then
19: . The last (the greatest) identifier becomes a fewer and breaks

the identifier order /
20: Eattr[e]← (1− Eattr[e][1], 1− Eattr[e][0])

2.7 Deleting an edge
The following algorithms delete an edge (and its reverse where appropriate).

I Algorithm 19: Delete an edge for DGS

Require: Two vertex labels u and v and a edge label.
Ensure: The edges are deleted for the two vertices.

1: function dgs_delete_edge(u, v, e)
2: . Remove v from u’s successors /
3: adj_ind← get_index(N+

u , e, 1)
4: delete_list_entry(N+

u , adj_ind)
5: . Remove u from v’s predecessors. /
6: v_rev ← v
7: adj_ind← get_index(N+

v_rev, e, 1)
8: delete_list_entry(N+

v_rev, adj_ind)
9: card_edges← card_edges− 2

I Algorithm 20: Delete an edge for DGF

Require: Two vertex labels u and v associated with their fragment orientation uor
and vor, respectively, and a edge label.

Ensure: The edges are deleted for the two vertices.
1: function dgf_delete_edge(u, uor, v, vor, e)
2: . Remove v from u’s successors /
3: if uor = f then
4: list_succs← N+

u

5: else
6: list_succs← N−

u

81

III FRAGMENT GRAPHS Time costs 3

7: adj_ind← get_index(list_succs, e, 2)
8: delete_list_entry(list_succs, adj_ind)
9: . Remove u from v’s predecessors. /

10: if vor = f then
11: list_preds← N−

v

12: else
13: list_preds← N+

v

14: adj_ind← get_index(list_preds, e, 2)
15: delete_list_entry(list_preds, adj_ind)
16: card_edges← card_edges− 2

I Algorithm 21: Delete an edge for BGU

Require: Two vertex labels u and v and a edge label.
Ensure: The edges are deleted for the two vertices.

1: function bgu_delete_edge(u, v, e)
2: . Remove v from u’s neighbours. /
3: adj_ind← get_index(Nu, e, 1)
4: delete_list_entry(Nu, adj_ind)
5: . Remove u from v’s neighbours. /
6: adj_ind← get_index(Nv, e, 1)
7: delete_list_entry(Nv, adj_ind)
8: card_edges← card_edges− 1

3 Time costs
In this section we provide the time costs for each of the algorithms in Section 2, in
the best, worst and average cases. In the average cases, we consider all the events
to be equiprobable. Table 4 details the cost for basic operations. In order to easily
compare the algorithms’ theoritical speed, we assume there is an even integer k
such that each fragment has k upstream and k downstream fragments linking it. It
holds if |F| >> k and |L| >> k.

Table 5 gives the algorithmic costs of subfunctions in Algorithms 1 and 2.
Table 6 provides the algorithmic costs for Algorithms 4 to 9. Table 7 gives the
algorithmic costs of Algorithms 10 to 15. Table 8 gives the algorithmic costs of
Algorithms 16 to 18. Table 9 gives the algorithmic costs of Algorithms 19 to 21.

82

3 Time costs FRAGMENT GRAPHS III

� Table 4 – Calculus detail of basic operations costs.
c(x) is the cost of operation x.

Operation Cost Description
x 0 Memory access
x± y 1 + c(x) + c(y) Basic operation
x← y 1 + c(y) Affectation
|x| 1 + c(x) Absolute value or element’s length
if x S y 1 + c(x) + c(y) Conditional
empty_list() 1 Empty list constructor
list.append(x) 1 + c(x) Add x to the end of the list list
list.pop() 1 Delete the last element of the list list
delete(list) |list| Delete all the list
for i ∈ Ja, bK do x (b− a+ 1)× c(x) For loop

� Table 5 – Algorithmic costs for subfunctions.
|list| is the length of the input list.

Best Worst Average
rev 2

get_index 4 1 + 5|list| 1 + 5

⌈
|list|
2

⌉
delete_list_entry 3 4 4− 1

|list|

� Table 6 – Algorithmic costs of iterating over the neighbours.

(a) Iterating over the predecessors

Best Worst Average
DGS 3k + 4

DGF k + 3 2k + 3 3
2
k + 3

BGU 6k + 2 12k + 2 17
2
k + 2

(b) Iterating over the successors

Best Worst Average
DGS k + 2

DGF k + 3 2k + 3 3
2
k + 3

BGU 6k + 2 12k + 2 17
2
k + 2

83

III FRAGMENT GRAPHS Memory and time cost comparisons 4

� Table 7 – Algorithmic costs of adding a vertex or an edge.

(a) Adding a vertex

Best Worst Average
DGS 5

DGF 5

BGU 3

(b) Adding an edge

Best Worst Average
DGS 11

DGF 9 11 10

BGU 9 11 10

� Table 8 – Algorithmic costs of deleting a vertex.

Best Worst Average

DGS 28k + 6 20k2 + 36k + 8 10 |F|−1
|F| k2 + 36

|F|− 2
3

|F| k + 1−|F|
|F|

DGF 24k + 4 20k2 + 28k + 6 10 |F|−1
|F| k2 + 28

|F|− 4
7

|F| k + 4 |F|−1
|F|

BGU 22k + 3 40k2 + 38k + 7 20 |F|−1
|F| k2 + 24

|F|− 1
2

|F| k + 11
2

|F|− 14
11

|F|

� Table 9 – Algorithmic costs of deleting an edge.

Best Worst Average
DGS 21 10k + 17 5k + 17− 2

k

DGF 22 10k + 18 5k + 18− 2
k

BGU 18 20k + 14 10k + 14− 1
k

4 Memory and time cost comparisons
Table 10 provides memory consumption and elementary operation time cost com-
parisons between DGS, DGF and BGU . Each row presents a score ranging from
one to three stars for the three implementations, simplifying the comparison under
specific conditions. In the same row, the cost functions of DGS, DGF and BGU
are all polynomial functions with the same degree. The polynomial function with
the smallest coefficient on the highest degree is used as the basis for comparison.
Let fmin be this function, and g and h be the two others. Let c = limx→∞

g(x)
fmin(x)

and d = limx→∞
h(x)

fmin(x)
be the results of the asymptotic comparisons. The scores

are determined whether c and d belong to the following intervals: ??? [1, 1.2]; ??
[1.2, 2[; ? [2,+∞[.

84

5 Conclusions and perspectives FRAGMENT GRAPHS III

� Table 10 – Comparison between DGS, DGF and BGU.
Each implementation is associated with starred scores equal to 1 (bad, in red), 2
(medium, in orange) or 3 (good, in green). Two implementations can have the same
score if their memory or algorithmic costs are near-equal, and if the third one’s cost is
far away from them. For each elementary graph operation, for each of the three cases
(best, worst, average), the stars correspond to a score.

DGS DGF BGU
Memory consumption

? ? ???
Iterating over the predecessors

Best ? ??? ?
Worst ?? ??? ?
Average ? ??? ?

Iterating over the successors
Best ??? ??? ?
Worst ??? ? ?
Average ??? ?? ?

Adding a vertex
Best ?? ?? ???
Worst ?? ?? ???
Average ?? ?? ???

Adding an edge
Best ?? ??? ???
Worst ??? ??? ???
Average ??? ??? ???

Deleting a vertex
Best ?? ??? ???
Worst ??? ??? ?
Average ??? ??? ?

Deleting an edge
Best ??? ?? ???
Worst ??? ??? ?
Average ??? ??? ?

5 Conclusions and perspectives
Graphs are mathematical structures that are useful to store links between two
fragments. Two main stages of the fragment assembly employ graphs to handle

85

III FRAGMENT GRAPHS Conclusions and perspectives 5

the input data or to output the result. In the read assembly stage, especially in
the OLC approach, the fragments correspond to the reads and the links are the
overlaps between two reads. In the scaffolding stage, the fragments represent the
contigs and links can come from paired-end read or long read alignments against
the contigs.

The literature describes three graph structures: a digraph, a bigraph and an
ungraph. While the first one highlights visually the double-strand sequencing, its
weakness is that it requires two vertices for each read (Kececioglu, 1991). Myers
(1995) is the first to employ a bigraph to store overlaps. The key idea is to aggregate
the two orientations of a read into only one vertex, a link and its reverse into
only one edge. Finally, the ungraph structure associates one vertex for each of
the two extremities of a fragment to simplify the graph traversal (Huson et al.,
2002). The ungraph handles two sets of edges. A fragment-edge connects the
two vertices corresponding to the two extremities of a fragment (the tail and the
head). Two vertices representing the extremities of a fragment are connected by a
fragment-edge. The second one is the multiset of link-edges. A link-edge represents
both a link and its reverse.

Although some authors have provided conceptual descriptions of these graph
structures, the latter have never been compared before from an implementation
stat point of view. In this thesis, we have proposed an implementation design based
on adjacency lists for each graph structure. At the opposite of a compressed sparse
row or column, the adjacency lists are more suitable for adding or deleting vertices
or edges in the graphs. We have also described transformation processes to pass
from one implementation to another. We then have visualised the graph structures
and their implementations in a map.

We have retained three implementations: DGS and DGF for the multidigraph
and BGU for the multibigraph. After we have compared their memory consumption,
we theoretically measure the cost function for each of their algorithm on elementary
operations, such as iterating over the neighbours, adding or deleting a vertex or
an edge. We come to the conclusion that if memory is the critical issue, then
the BGU implementation should be preferred. Otherwise, we recommend DGS
and DGF for iterating over the neighbours and for deleting a vertex or an edge.
BGU is preferable for adding vertices or edges. To conclude, DGF proves to be
well-balanced and ideally tailored for dynamic graph operations. DGF is available
in a Python3 package named revsymg1 and is easily installable via PyPI.

1https://pypi.org/project/revsymg/

86

https://pypi.org/project/revsymg/
https://pypi.org/project/revsymg/

IV GLOBAL EXACT
OPTIMISATIONS FOR
CHLOROPLAST
STRUCTURAL HAPLOTYPE
SCAFFOLDING

Bebo & Chucho. (2008). Tres Palabras [Song].
On Juntos Para Siempre. Sony Music | Latin

In this chapter

1 Introduction 88
1.1 Chloroplast genome specificities 88
1.2 State-of-the-art. 89
1.3 Our approach. 89

2 Input data and notation 90
2.1 Set of contigs C . 90
2.2 Set of links L . 91
2.3 Mathematically defining genomic regions 91

3 Chloroplast scaffolding problem formulations 92
4 Graph and repeated fragment sets 96

4.1 Graph structure . 97
4.2 Repeated fragment sets. 98

5 Integer Linear Programming (ILP) formulation 102
5.1 Circuit constraints . 103
5.2 Repeated regions constraints 104
5.3 Fixing regions constraints . 107
5.4 Speed-up constraints . 108
5.5 Scaffolding problems ILP . 108

87

https://musicbrainz.org/release/62e758e1-dd7f-4ba1-a431-6c2bb9d6d96e

IV CHLOROPLAST SCAFFOLDING Introduction 1

6 Hierarchical problem succession 109
7 From an ILP solution to a genome structure 110
8 Multiple genome forms 114
9 NP-completeness 117
10 Numerical results 121

10.1 Complexity validation on artificial data 122
10.1.1 Perfect artificial data. 122
10.1.2 Noisy artificial data . 122

10.2 Synthetic chloroplast input data. 123
10.2.1 Input data generation 123
10.2.2 The evaluation’s metrics 125
10.2.3 Initial version . 126
10.2.4 Modified version . 129

11 Conclusion 130
12 Discussion and perspectives 131

In this chapter, we focus on the scaffolding problem specific to chloroplast genomes.
We first recall the specificities of these genomes as described in the introduction
(Chapter I, Section 2), highlight the state-of-the-art in chloroplast genome assembly
(Chapter II, Section 3) and present our approach.

1 Introduction

1.1 Chloroplast genome specificities
Chloroplasts are plants’ organelles derived from the integration of a cyanobacterium
in an eukaryotic host. They conduct photosynthesis, a process to convert light
energy into chemical energy. Over the evolution time, the chloroplast genome
has reduced in length and loosed in terms of complexity (Xiao-Ming et al., 2017).
As a result, chloroplast genomes possess few repeats that are usually identical
in nucleotide sequences. One the most studied forms of chloroplast genome is a
circular quadripartite DNA molecule. It consists of four regions: two identical
(or highly similar) nucleotide subsequences, separated by two single-copies (Long
Single-Copy, LSC, and Short Single-Copy, SSC) (Palmer, 1985; Bock and Knoop,
2012). There are two types of repeats: (i) the Direct Repeat (DR), where the
sequences are highly similar; (ii) the Inverted Repeat (IR), where one sequence is

88

1 Introduction CHLOROPLAST SCAFFOLDING IV

the reverse-complement of the other. Figure 5 illustrates the common chloroplast
genome architectures.

Furthermore, each chloroplast has multiple copies of its genome, and the
molecular forms of the copies differ (structural haplotypes leading to heteroplasmy,
and multigenomic structures – not discussed here, Palmer 1983; Bendich 2004).
This phenomenon can be induced by flip-flop inversion: one subsequence is reverse-
complemented (reversed) during the DNA replication. This inversion is provoked by
the existence of facing inverted repeats on either side of the reversed subsequence.

1.2 State-of-the-art
Although there are chloroplast genome assemblers and scaffolders, they do not fully
exploit the chloroplast genome’s specificities. Some of them are pipelines of generic
methods applied on cleaned input dataset (Ankenbrand et al., 2018), or based on
locally approaches as seed-and-extend algorithms (Coissac et al., 2016; Dierckxsens
et al., 2017). Jin et al. (2020), in GetOrganelle, statistically compute the contigs’
multiplicities by minimising the squared distance between them and the mapping
coverage by the reads.

Concerning the handling of the distinct genome forms, GetOrganelle returns
several solutions and explores in post-process the corresponding architectures. In
Andonov et al. (2019) the flip-flop inversion breakpoints are detected in a post-
scaffolding-process, and new optimal solutions can be constructed in polynomial
time.

1.3 Our approach
We raise the following two questions: (i) how to mathematically model chloroplast
genomic biological knowledge? (ii) How to reveal the structural haplotypes through
the scaffolding problem formulation?

To formalise the scaffolding by integrating the structural haplotypes in its core,
we postulate on the particularities of the chloroplast genome: (i) repeats are pairs
of regions; (ii) the two regions of a repeat have identical (or reversed) nucleotide
sequence; (iii) structural haplotypes can be seen as permutations in a sequence of
oriented contigs.

We first describe the input data for our approach and provide mathematical
definitions (Section 2). Based on the above three assumptions, we propose a new
formulation for scaffolding chloroplast genomes without requiring any distances
(Section 3). Our approach is region-driven and focuses on retrieving the repeats
first. We model the optimisation problem on a digraph where we apply several ILP
(Sections 4 and 5). We then detail how we combine the ILP solutions (Section 6).

89

IV CHLOROPLAST SCAFFOLDING Input data and notation 2

The ILP’s solutions and the digraph correspond to an oriented contig sequence
representing one genome’s form (Section 7). We partition this sequence into genomic
regions we express in a region graph. This graph enables us to return multiple
genome forms (Section 8).

We prove the decision version of the chloroplast genome scaffolding problem to
be NP-complete (Section 9). However, we exactly solve the problem by profiting
from the small size of the chloroplast instances and providing some numerical
results (Section 10). We finally conclude (Sections 11 and 12).

2 Input data and notation

� Table 11 – Toy example of input data.
(a) Set of contigs C. (b) Set of links L. Each row represents a link. For the sake of
space, for no one of the links in the table, its reverse is given, although it belongs to L.

(a) Contig set C

contig mult wex

a 1 0.70
b 2 0.83
c 2 0.17
d 1 0.43

(b) Link set L

contig orient contig orient
a f c r
a r c r
b r c f
b f d f
b f d r

2.1 Set of contigs C
Contigs are words in the nucleotides DNA alphabet Σnuc

+. A contig can occur
in the genome up to an integer called multiplicity. Function mult : C → N>0

provides its value. Any of contig’s occurrence can appear in one of two possible
reverse-complementary and mutually exclusive orientations: forward (f = 0) and
reverse (r = 1). Each contig is provided with an existence-weight in R≥0 given by
the function wex. The weight is proportional to the number of times a contig aligns
with chloroplast sequences from a given set (from related or unrelated species).
Finally, one contig in this set is defined as the starter (s) that must uniquely
participate in the genome (mult(s) = 1). The starter is a contig whose sequence
matches a sequence shared by most chloroplast genomes in a single-copy. Table 11a
gives an example of contig set.

90

2 Input data and notation CHLOROPLAST SCAFFOLDING IV

2.2 Set of links L
Each link is an ordered pair of oriented contigs. We denote by L ⊂ (C × {f, r})2 the
link set1. The nature of the double-strands DNA requires that ∀ (c, d) ∈ L, (d, c) ∈
L, where c and d denote the oriented contigs c and d in their reverse orientation,
respectively (note that c = c). The links between two oriented contigs c and d are
valid for all occurrences of c and d respecting the same orientations. Table 11b
gives an example of link set.

2.3 Mathematically defining genomic regions
We aim to order oriented occurrences of the contigs based on their links. Each
genome form corresponds to a sequence of oriented contigs. Not all contigs or their
occurrences are included. Indeed, the contig set may contain contigs belonging to
the plant genome or other organelles. The link set may also contain artefact links.
Definition 2.1 provides the properties the sequence of oriented contigs must respect.

I Definition 2.1: Sequence of oriented contigs

Let SOC = (c0, c1, . . . , cn−1) be a sequence of oriented contigs:

— ∀ i ∈ J0, n− 1J, (ci, ci+1) ∈ L;

— ∀ c ∈ C,
∑

ci∈SOC|ci=c 1 ≤ mult(c).

Based on the biological knowledge, we address the dedicated chloroplast scaf-
folding problem as a region-driven scaffolding, such that specific regions fit into
a circular structure. We identify three types of regions to scaffold: the Inverted
Repeat (IR), the Direct Repeat (DR) and the Single-Copy (SC).

I Definition 2.2: Region

A region r = (c0, c1, . . . , cn−1) is a sequence of oriented contigs. Each region is
oriented. Let r =

(
cn−1, . . . , c1, c0

)
be the reverse region of r. It is composed

of the oriented contigs of r, considered in their reverse orientation, and given
in the reversed order. According to the reverse symmetry in the links, r also
respects Definition 2.1.

1In Chapter II, Section 1, L is a multiset while in this chapter, L is a set.

91

IV CHLOROPLAST SCAFFOLDING Scaffolding formulations 3

I Definition 2.3: Direct repeat (DR)

A DR is a couple of regions (dri, drj) where dri = drj.

I Definition 2.4: Inverted repeat (IR)

An IR is a couple of regions (irk, irl) where irl = irk .

I Definition 2.5: Repeat

A repeat is the generic term to denote either DR or IR. The length replen(R) of
a repeat R = (ri, rj) equals the lengths of ri and rj (replen(R) = |ri|+ |rj|).

I Definition 2.6: Single-copy (SC)

A SC is a region that is not part of a repeat.

I Definition 2.7: Region weight

The weight rwex(r) of a region r is defined as rwex(r) =
∑

c∈r wex(c).

A chloroplast genome consists of a sequence of oriented regions. A genome form
is a result of iterative transformations of an initial one. Section 8 introduces the
region graph to model multiple genome forms (sequences of oriented contigs).

I Definition 2.8: Sequence of oriented regions

Consider a sequence SOR = (r0, r1, . . . , rn−1):

— ∀ i ∈ J0, n− 1J, (ri[|ri| − 1]a, ri+1[0]) ∈ L;

— ∀ c ∈ C,
∑

r∈SOR

∑
ci∈r|ci=c 1 ≤ mult(c).

aThe notation x[i] denotes the ith element in x.

3 Chloroplast scaffolding problem formulations
Solving the repeats is the most challenging task. A formulation that does not
restrict the occurrences can lead to misassemblies where the results are longer than

92

3 Scaffolding formulations CHLOROPLAST SCAFFOLDING IV

the solution genomes. Therefore, the use of an occurrence is limited to conformity
with the biological knowledge of genome forms. A contig should participate in the
sequence only if it enables the formation of pairs of repeated regions. In this case,
we would be inclined to assemble the minimum number of repeats.

However, in the case of repeat degeneration (e.g. two subsequences inside the
two regions of an identified repeat differ, note that some IR losses have been
reported in the chloroplast genomes of green algae – Turmel et al. 2017) finding
the minimum number of repeats is not an appropriate model. Figure 31 illustrates
the impact of degenerations on quadripartite structures. Indeed, in Figure 31b, we
cannot guaranty to find both IR1 and IR2, but perhaps only one of them. For each
repeat type, we address this issue by maximising the cumulative repeat lengths
only if their regions respect a specific order.

(a) Complete IR (b) IR degeneration (c) Complete DR (d) DR degeneration

� Figure 31 – Repeat degeneration and region orders.
With time, a repeat may degrade so that its occurrences differ. (a) and (c) show
two common quadripartite structures with an IR and a DR, respectively. (b) and (d)
highlight the impact of a degeneration on their structures. We give the bellow region
orders according to the LSC arrow’s direction. In (b), the degeneration results in two
IRs: IR1 = (i, j) and IR2 = (k, l), such that i is before k and l precedes j. In (d)
it results in two DRs: DR1 = (i, j) and IR2 = (k, l), such that i is before k and j
precedes l.

I Definition 3.1: Chloroplast scaffolding problem CHSP

Given a set of contigs with their multiplicities and their weights, a starting contig
and a link set. The aim is to obtain a circular sequence of oriented regions
maximising the cumulative repeat lengths and minimising the number of repeats,
with single-copies of maximum-weight.

For instance, let Cases (A) and (B) be two distinct and feasible sequences of
oriented contigs:
(A) (. . . , a, b, c, d, . . . , a, b, c, d, . . .) has one DR (i, j), where i = j = (a, b, c, d);

93

IV CHLOROPLAST SCAFFOLDING Scaffolding formulations 3

(B) (. . . , a, b, . . . , c, d, . . . , a, b, . . . , c, d, . . .) has two DRs (k, l) and (m,n), where
k = l = (a, b) and m = n = (c, d).

For Cases (A) and (B) the cumulative lengths are the same (replen((i, j)) =
replen((k, l)) + replen((m,n)) = 8). However, Case (A) has one less repeat, which
we prefer.
CHSP involves three subproblems, each one associated with a particular type

of region: (i) DRP for the direct repeats (Definition 3.2); (ii) IRP for the inverted
repeats (Definition 3.3) and (iii) SCP for the single-copies (Definition 3.4). We
tackle CHSP in a hierarchical succession of DRP , IRP and SCP (Definition 3.6).
Any intermediate problem must preserve the regions found by its predecessors
(Definition 3.5).
DRP and IRP constrain the number of occurrences to the structure of pairs of

repetitions. Indeed, each repeat type defines a valid repeat structure. The problems
consist in maximising the cumulative length of the minimum number of repeats.

I Definition 3.2: Chloroplast direct repeat scaffolding problem DRP

Consider a set of contigs, their multiplicities, a starting contig and a link set.
Find a circular sequence of oriented regions SOR, such that:

— it maximises the cumulative length of the minimum number of DRs, joined
by regions of any kind;

— for any couple of DRs (i, j) and (k, l) found in SOR such that their respective
positions in SOR given by function σ respect σ(i) < σ(j), σ(k) < σ(l), and
σ(i) < σ(k), then:

– Jσ(i), σ(j)K ∩ Jσ(k), σ(l)K = ∅;
– or Jσ(k), σ(j)K ⊂ Jσ(i), σ(l)K.

I Definition 3.3: Chloroplast inverted repeat scaffolding problem IRP

Consider a set of contigs, their multiplicities, a starting contig and a link set.
Find a circular sequence of oriented regions SOR, such that:

— it maximises the cumulative length of the minimum number of IRs, joined by
regions of any kind;

— for any couple of IRs (i, j) and (k, l) found in SOR such that that their
respective positions in SOR given by function σ respect σ(i) < σ(j), σ(k) <
σ(l) and σ(i) < σ(k), then:

94

3 Scaffolding formulations CHLOROPLAST SCAFFOLDING IV

– Jσ(i), σ(j)K ∩ Jσ(k), σ(l)K = ∅;
– or Jσ(k), σ(l)K ⊂ Jσ(i), σ(j)K.

Figure 32 provides examples of valid oriented contig positioning for each common
genome structure (Figure 5). Although Figure 36 illustrates the authorised and
forbidden positions for the latter defined repeated fragments, it is also applicable
for the DRP and IRP regions’ position cases.

I Definition 3.4: Chloroplast single-copy scaffolding problem SCP

Consider a set of contigs, their multiplicities, their weights, a starting contig
and a link set. Find a circular sequence of oriented regions such that all the
single-copies maximise their weights.

Note that in Definition 3.4, if they are no repeats, the problem is reduced to
find the maximum-weighted circuit of oriented contigs.

I Definition 3.5: Chloroplast scaffolding problem succession

DRP, IRP and SCP (Definitions 3.2 to 3.4) can also take as input a set of
fixed regions that must be preserved in the resulting sequence of oriented regions.

Our hierarchical approach prioritises the scaffolding of the repeats previously to
the SC regions. Indeed, scaffolding the repeats is the most difficult task as it can
lead to misassemblies (wrongly chosen links). Hence, a contig should only be used
as many times as possible if its occurrences enable the scaffolding of repeats that
most closely represent the architecture of the chloroplast genome, as illustrated in
Figures 5 and 32. We assume that the weights concern events that are less relevant
comparing to the genomes architecture. Also, the weights on the contigs are less
relevant than if they were weights on the links.

I Definition 3.6: Hierarchical problem succession

The form of each solution of CHSP satisfies one of the two problem successions:
DRP–IRP–SCP (h1) and IRP–DRP–SCP (h2).

The next question is how to prioritise DRP and IRP? We propose resolving
the order by comparing the scores defined in Section 5.5: if DRP score is better
than this of IRP , then the retained succession will be DRP–IRP–SCP , otherwise
it will be IRP–DRP–SCP . In the equality case, we discriminate at a further step
of the hierarchical successions. The process is detailed in Section 6.

95

IV CHLOROPLAST SCAFFOLDING Graph and repeated fragment sets 4

Finally, each hierarchical problem succession produces a circular sequence of
oriented regions. From the obtained sequence it is possible to extract a set of
ordered pairs of oriented regions. This procedure allows the building of several
circular sequences of oriented regions of the same length. Each of them represents
one possible chloroplast genome form. This all-equivalent-form process is described
in Section 8.

(a) (b) (c)

� Figure 32 – Chloroplast repeat scaffolding.
Each subfigure is a common chloroplast genome structure with its associated order of
oriented contigs (coloured arrows). The green and the blue sequences of arrows are IR
and DR, respectively. The purple and the red ones are single-copy regions. Contig s is
the starter, and the right side black arrow determines the contigs’ order. Contigs a0, a1,
b0, b1, c0, c1 and d0, d1 are two occurrences of four contigs a, b, c and d, respectively.
Each coloured dashed line links two occurrences of the same contig. (a) The order of
the occurrences is reversed, and their arrows are oppositely oriented. Visually, an IR
produces parallel dashed lines. (b) The order and the orientation of the occurrences
is preserved, revealing a DR. (c) A chloroplast genome can contain the two types of
repeats. Here, we will retain the hierarchical problem succession IRP–DRP–SCP
(h2) since the IR contains more contigs than the DR.

4 Graph and repeated fragment sets
In order to efficiently handle the multiplicities of the contigs, hence of the links,
we need to build adapted data structures. On the one hand, finding a sequence of
oriented contigs, when the links correspond to ordered pairs of oriented contigs,
justifies the use of a directed graph to represent the oriented contigs and their links.
Section 4.1 defines such a directed graph structure. On the other hand, scaffolding
the repeats requires choosing pairs of contigs occurring several times in the oriented
contig sequence. Section 4.2 defines the sets of such repeat contig candidates.

96

4 Graph and repeated fragment sets CHLOROPLAST SCAFFOLDING IV

4.1 Graph structure
Here we describe a directed graph suitable for further algorithms and the mathem-
atical formulation of the scaffolding problems from Definitions 3.2 to 3.4.

I Definition 4.1: Multiplied Doubled Contig Graph – MDCG

Given a set of contigs C, their multiplicities and the link set L, the multiplied
doubled contig graph MDCG = (V ,E, vwex) is defined such thata:

— V = {vf,0, . . . , vf,n−1, vr,0, . . . , vr,n−1 | c ∈ C, n = mult(c)} is the set of all
the forward an reverse occurrences of all the contigs (|V | = 2

∑
c∈C mult(c)).

The vertices are associated with four functions:

– contig : V →→ C provides the contig associated with a vertex;
– vor : V →→ {f, r} provides the orientation of the contig;
– vocc : V → N>0 provides the occurrence number of the contig;
– vwex : V → R≥0 provides the weight of each vertex such that ∀ v ∈
V, vwex(v) = wex(contig(v)).

— E = {(u, v) ∈ V 2 | ((contig(u), vor(u)), (contig(v), vor(v))) ∈ L} is the
set of multiplied links (|E| =

∑
(c,d)∈Lmult(c)mult(d)).

aMDCG is a digraph, not a multidigraph as DG.

Figure 33 illustrates the MDCG representing the example data given in
Table 11.

� Figure 33 – MDCG example.
Each vertex is associated with an occurrence of an oriented
contig, and each contig is represented by an even number
of vertices. For example, vertex labelled cr,1 means that it
comes from contig c = contig(cr,1), in its reverse orientation
(vor(cr,1) = r), and in its second occurrence (vocc(cr,1) = 1).
The colours are the same as the ones in Figure 5a to relate
the input data with the IR architecture. The bold red edges
draw a circuit corresponding to an IR scaffolding where af,0
is the starter.

97

IV CHLOROPLAST SCAFFOLDING Graph and repeated fragment sets 4

4.2 Repeated fragment sets

A repeat is a couple containing two identical (or reverse for IR) sequences of
oriented contigs (Definitions 2.3 and 2.4). Therefore, a repeat consists of couples
containing two identical (or reverse) contigs. In the context of MDCG, this leads
to the concept of repeated fragments.

I Definition 4.2: Repeated fragment

A repeated fragment is an unordered pair of vertices such that one of the
corresponding oriented contig belongs to the first region of a repeat, while
the other belongs to the second region. The vertices are associated with the
same contig but their occurrences differ, i.e. for each repeat (ri, rj), ∃ u, v ∈
V, c ∈ C where contig(u) = contig(v) = c and vocc(u) 6= vocc(v) such that
(c, vor(u)) ∈ ri and (c, vor(v)) ∈ rj.

For example, (cf,0, cr,1) is a repeated fragment for the IR in Figure 33. We
then precise the set of repeated fragments for each repeat type. Denote by R =
{c ∈ C |mult(c) > 1} the set of contigs candidate to be part of repeats. For the
sake of clarity, for each vertex v ∈ V , we note ctgv = contig(v), orv = vor(v),
occv = vocc(v), wexv = vwex(v) and multv = mult(contig(v)). We also assume
there is an arbitrary strict total order on C, i.e. ∀ c, d ∈ C, c 6= d ⇐⇒ c < dY c > d.

I Definition 4.3: Set of direct fragments DirF

A direct fragment (u, v) ∈ V 2 is a repeated fragment, such that u and v have
the same orientation.

DirF =
⋃
c∈R

(i, j) ∈ V 2 s.t.
ctgi = ctgj = c

∧ ori = orj ∈ {f, r}
∧ occi = occj − 1 = 2k

0 ≤ k <

⌊
mult(c)

2

⌋

I Definition 4.4: Set of inverted fragments InvF

An inverted fragment (u, v) ∈ V 2 is a repeated fragment, such that the orienta-

98

4 Graph and repeated fragment sets CHLOROPLAST SCAFFOLDING IV

(a) Direct fragments and their pairs (b) Inverted fragments and their pairs

� Figure 34 – Repeated fragment sets illustration for two contigs c and d.
In the two subfigures, mult(c) = 4 and mult(d) = 2, so that contig(uor,occ) = c
and contig(vor,occ) = d. Two vertices coming from the same contig are respectively
direct/inverted fragments if they are in the same coloured box, and so they belong
to DirF/InvF . A tight grey line connects two direct/inverted fragments if their
pair belong to PDirF/PInvF . (a) |DirF | = 6, and, e.g. (uf,0, uf,1) ∈ DirF
so dirfrag (uf,0) = dirfrag (uf,1) = (uf,0, uf,1). |PDirF | = 12, and, e.g.
((uf,0, uf,1), (ur,2, ur,3)) ∈ PDirF . (b) |InvF | = 3, and, e.g. (uf,2, ur,3) ∈ InvF
so invfrag (uf,2) = invfrag (ur,3) = (uf,2, ur,3). |PInvF | = 3, and, e.g.
((uf,2, ur,3), (vf,0, vr,1)) ∈ PInvF .

tions of u and v differ.

InvF =
⋃
c∈R

(i, j) ∈ V 2 s.t.
ctgi = ctgj = c

∧ ori = f ∧ orj = r

∧ occi = occj − 1 = 2k

0 ≤ k <

⌊
mult(c)

2

⌋

Figure 34 illustrates DirF and InvF sets. In addition, we add two functions

to retrieve the repeated fragments from the vertices in Θ(1): dirfrag : V ′ ⊂ V →
DirF and invfrag : V ′ ⊂ V → InvF (abstracted with the repfrag function, c.f.
Appendix 1 for their definitions).

Furthermore, Definitions 3.2 and 3.3 constrain the order between the repeated
fragments. Hence, they respectively require comparing pairs of direct/inverted

99

IV CHLOROPLAST SCAFFOLDING Graph and repeated fragment sets 4

fragments, that must be defined:

I Definition 4.5: Set of pairs of direct fragments

PDirF =

(
(i, j), (k, l)

)
∈ DirF 2 s.t.

ctgj < ctgk

∨
ctgj = ctgk ∧ occj < occk

I Definition 4.6: Set of pairs of inverted fragments

PInvF =

(
(i, j), (k, l)

)
∈ InvF 2 s.t.

ctgj < ctgk

∨
ctgj = ctgk ∧ occj < occk

Figure 34 illustrates PDirF and PInvF sets. The constraints defining DirF ,
InvF , ADirF , AInvF , PDirF and PInvF are explained in details in Appendix 2
where we proof they are the smallest sets enabling to find all the distinct solutions.

Furthermore, a repeat is a couple of regions (Definition 2.5), themselves defined
as oriented contig sequences (Definition 2.2). We need to define the edges connecting
two repeated fragments.

I Definition 4.7: Set of adjacent repeated fragments

An adjacent repeated fragment is an edge (u, v) ∈ E such that u and v participate
in two distinct repeated fragments.

I Definition 4.8: Set of adjacent direct fragments

An adjacent direct fragment is an edge between two direct fragments. Let

100

4 Graph and repeated fragment sets CHLOROPLAST SCAFFOLDING IV

(a) Adjacent direct fragments (b) Adjacent inverted fragments

� Figure 35 – Adjacent repeated fragment sets examples.
The two subfigures represent the multiplied link (and its reverse) ((c, f), (d, f)) ∈ L,
where mult(c) = 2 and mult(d) = 2, so that contig(uor,occ) = c and contig(vor,occ) =
d. Two vertices of the same colour visualise a repeated fragment. Bold edges (ca-
nonical) are the ones that belong to the adjacent repeated fragments sets. The
functions diradj/invadj enable to retrieve the normal edges with the bold ones,
and vice-versa. Dashed edges do not participate in ADirF/AInvF . Remem-
ber that ∀ (u, v) ∈ E,

(
v, u

)
∈ E. (a) diradj (uf,0, vf,0) = (uf,1, vf,1); (b)

invadj (uf,0, vf,0) = (vr,1, ur,1).

ADirF be the set of adjacent direct fragments:

ADirF =

(u, v) ∈ E s.t.
ctgu 6= ctgv

∧ occu = 2k

0 ≤ k <

⌊
multu

2

⌋
∧ occv = 2k′

0 ≤ k′ <

⌊
multv

2

⌋

⋃

(u, v) ∈ E s.t.
ctgu = ctgv

∧ (oru = f ∨ orv = f)

∧ occu = 2k

∧ occv = 2k′

0 ≤ k < k′ <

⌊
multu

2

⌋

I Definition 4.9: Set of adjacent inverted fragments

An adjacent inverted fragment is an edge between two inverted fragments. Let

101

IV CHLOROPLAST SCAFFOLDING ILP Scaffolding 5

AInvF be the set of adjacent inverted fragments:

AInvF =

(u, v) ∈ E s.t.
ctgu < ctgv

∧ occu = 2k + oru

0 ≤ k <

⌊
multu

2

⌋
∧ occv = 2k′ + orv

0 ≤ k′ <

⌊
multv

2

⌋

⋃

(u, v) ∈ E s.t.
ctgu = ctgv

∧ (oru = f ∨ orv = f)

∧ occu − oru = 2k

∧ occv − orv = 2k′

0 ≤ k < k′ <

⌊
multu

2

⌋

Edges in ADirF and AInvF play the role of canonical edges between two

adjacent repeated fragments, see Figure 35. In addition, we add two functions to
retrieve the adjacent repeated fragments from the edges in Θ(1): diradj : E → E
and invadj : E → E (abstracted with the repadj function, c.f. Appendix 1 for their
definitions).

5 Integer Linear Programming (ILP) formulation
Modelling DRP , IRP and SCP from Definitions 3.2 to 3.4 requires finding a valid
circuit in MDCG.

I Definition 5.1: Valid circuit in MDCG

Given a graph MDCG = (V,E) and a starting vertex s, where ctgs is the
starting contig, ors = f and occs = 0. A circuit cp in MDCG is valid if:

— it starts and ends with s;

— ∀ v ∈ cp, v /∈ cp, where ctgv = ctgv , orv = 1− orv and occv = occv ;

— consecutive vertices u and v in cp are connected by an edge (u, v) ∈ E.

First we describe common constraint blocks in Sections 5.1 to 5.3 for ILPs
formulations, and then we give the DRP , IRP and SCP scaffolding problems ILP
in Section 5.5.

Let M =
∑

c∈C mult(c) be a constant, N−
v and N+

v be the sets of predecessors
and successors of vertex v ∈ V , respectively.

102

5 ILP Scaffolding CHLOROPLAST SCAFFOLDING IV

5.1 Circuit constraints
The following set of constraints defines a valid circuit of oriented contig in MDCG,
and is defined with a flow formulation as in Andonov et al. (2019) instead of using
Miller-Tucker-Zemlin constraints to avoid cycles (Miller et al., 1960).

Binary variables

— xe encodes if the edge e ∈ E participates in the circuit.

Continuous variables

— iv ∈ [0, 1] encodes if the vertex v ∈ V \
{
s, s
}

participates in the circuit.
Although it is a continuous variable, it acts as a binary one as proven in
(François et al., 2018).

— fe ∈ R≥0 is the positive flow on the participating edge e ∈ E in the circuit (zero
otherwise).

Constraint C1 defines the flow. The circuit must start and end with the starter
in its forward orientation (Constraints C2 to C5). If a vertex participates, its
reverse cannot (Constraint C6). Defining a circuit is equivalent to requiring an
edge to exit a vertex if it has an incoming one (Constraint C7). Constraint C8
forces the flow to be monotonically increasing. This property avoids cycles.

CCircuit constraints

xe ≤ fe ≤ Mxe ∀ e ∈ E (C1)∑
v∈N+

s

xsv =
∑
v∈N−

s

xvs = 1 (C2)

∑
v∈N+

s

fsv = 1 (C3)

xvs = 0 ∀ v ∈ N−
s

(C4)

xsv = 0 ∀ v ∈ N+

s
(C5)

103

IV CHLOROPLAST SCAFFOLDING ILP Scaffolding 5

∀ v ∈ V \
{
s, s
}
:

iv + iv ≤ 1 (C6)∑
u∈N−

v

xuv ≤ iv ≤
∑

w∈N+
v

xvw (C7)

∑
w∈N+

v

fvw −
∑
u∈N−

v

fuv = iv (C8)

xe ∈ {0, 1} ∀ e ∈ E

iv ∈ [0, 1] ∀ v ∈ V \
{
s, s
}

fe ∈ R≥0 ∀ e ∈ E

5.2 Repeated regions constraints
The following constraints are general to define ILPs for DRP and IRP. Defin-
itions 3.2 and 3.3 define the repeated regions according to the positions of the
oriented contig in them. It follows that some order of the vertices in the pairs of
repeated fragments are allowed, and some others are forbidden. We decide to write
the constraints for the forbidden cases because they are fewer than the allowed
ones. To model the forbidden orders between 4 vertices, we compare the positions
between two.

Specifically for IRP , modelling the forbidden orders echoes the approach for
the RNA folding problem (Gusfield, 2019), except that the positions of the RNA’s
nucleotides are known.

According to Definitions 3.2 and 3.3, and given PDirF and PInvF (Defini-
tions 4.5 and 4.6), denote by ForbidDR and ForbidIR the sets of forbidden quartet
vertices for the DRs and IRs, respectively:

ForbidDR =

{
(i, k, l, j)

(k, i, j, l)

∣∣∣∣∣ i, j ∈ p, i 6= j ∧ k, l ∈ q, k 6= l

∀ (p, q) ∈ PDirF

}

ForbidIR =

{
(i, k, j, l)

(k, i, l, j)

∣∣∣∣∣ i, j ∈ p, i 6= j ∧ k, l ∈ q, k 6= l

∀ (p, q) ∈ PInvF

}

Figure 36 illustrates the authorised and forbidden positions for DRP and IRP .
To know if we are in the forbidden cases described in these two sets, we propose

to compare the vertices two-by-two. Denote by AlphaDR and AlphaIR the sets
containing the couples of vertices to be compared to determine the forbidden cases

104

5 ILP Scaffolding CHLOROPLAST SCAFFOLDING IV

(a) DR OK (b) DR forbidden (c) IR OK (d) IR forbidden

� Figure 36 – Non-exhaustive illustrations for authorised and forbidden order
cases for two repeated fragments ((i, j), (k, l)) ∈ PRepF .
(a) and (b) Authorised and forbidden orders for PDirF ; (c) and (d) Authorised and
forbidden orders for PInvF .

respectively associated with ForbidDR and ForbidIR sets, such that:

AlphaDR =

(i, j), (k, l), (i, k),

(j, l), (i, l), (j, k)

s.t. ((i, j), (k, l)) ∈ PDirF

AlphaIR =

{
(i, k), (i, l), (j, k), (j, l)

s.t. ((i, j), (k, l)) ∈ PInvF

}
In the following, the sets of repeated fragments and these for the forbidden orders

are abstracted to generalise DRP and IRP . Table 12 gives the correspondence of
the sets depending on the problem to solve.

� Table 12 – ILP sets and functions corresponding table.

ILP RepF PRepF ARepF Forbid Alpha repfrag repadj

DRP DirF PDirF ADirF ForbidDR AlphaDR dirfrag diradj
IRP InvF PInvF AInvF ForbidIR AlphaIR invfrag invadj

Binary variables

— mij encodes if the repeated fragment (i, j) ∈ RepF is a part of a repeat.

105

IV CHLOROPLAST SCAFFOLDING ILP Scaffolding 5

— isadje encodes if two repeated fragments connected by the edge e ∈ ARepF
(and repadj(e) ∈ E) are adjacent in the circuit.

— forbidijkl encodes whether we are in the forbidden vertices order (i, j, k, l) ∈
Forbid.

— αuv encodes whether the vertex u is before the vertex v in the circuit. Since
αuv = 1−αvu, even if (v, u) /∈ Alpha, for clarity we write αvu instead of 1−αuv.

Continuous variables

— iv ∈ [0, 1] encodes if the vertex v ∈ V \
{
s, s
}

participates in the circuit, and
acts as a binary variable.

— fe ∈ R≥0 is the positive flow on the participating edge e ∈ E in the circuit (zero
otherwise). We use the exiting flow to define the position pos(v) of a vertex
v ∈ V , i.e. pos(v) =

∑
w∈N+

v
fw.

The vertices of participating repeated fragments must be in the circuit (Con-
straints C9 and C10). Constraints C11 to C13 implement with linear constraints
the αuv definition. Constraints C14 to C16 implement the forbidijkl definition.
Constraints C17 to C20 implement the isadje definition.

CRepeat constraints

Add the set of constraints CCircuit

∀ (i, j) ∈ RepF :

mij ≤ ii (C9)
mij ≤ ij (C10)

∀ (u, v) ∈ Alpha :

pos(v)− pos(u) ≤ Mαuv (C11)
pos(u)− pos(v) ≤ M(1− αuv) (C12)
pos(u) + pos(v) ≥ αuv (C13)

106

5 ILP Scaffolding CHLOROPLAST SCAFFOLDING IV

∀ (i, j, k, l) ∈ Forbid :

3forbidijkl ≤ αij + αjk + αkl (C14)
2 + forbidijkl ≥ αij + αjk + αkl (C15)

∀ (p, q) ∈ PRepF :

mp +mq ≤ 2−
∑

(i,j,k,l)
∈Forbid
s.t. (p,q)

forbidijkl (C16)

∀ (u, v) ∈ ARepF :

isadjuv ≤ xuv (C17)
isadjuv ≤ xrepadj(u,v) (C18)
isadjuv ≤ mrepfrag(u) (C19)
isadjuv ≤ mrepfrag(v) (C20)

mp ∈ {0, 1} ∀ p ∈ RepF

isadje ∈ {0, 1} ∀ e ∈ ARepF

forbidijkl ∈ {0, 1} ∀ (i, j, k, l) ∈ Forbid

αuv ∈ {0, 1} ∀ (u, v) ∈ Alpha

5.3 Fixing regions constraints
When repeats are previously scaffolded, the involved regions are fixed as input for
the next problems. Let ADirF ∗, DirF ∗, AInvF ∗ and InvF ∗ respectively be the
sets of (adjacent) direct and (adjacent) inverted fragments composing the direct
and inverted repeats that have been scaffolded.

CFixRegions constraints

∀ (u, v) ∈ DirF ∗ ∪ InvF ∗ :

iu = 1 (C21)
iv = 1 (C22)

∀ (u, v) ∈ ADirF ∗ ∪ AInvF ∗ :

xuv = 1 (C23)

107

IV CHLOROPLAST SCAFFOLDING ILP Scaffolding 5

xdiradj(u,v) = 1 ∀ (u, v) ∈ ADirF ∗ (C24)
xinvadj(u,v) = 1 ∀ (u, v) ∈ AInvF ∗ (C25)

5.4 Speed-up constraints
Constraints C26 and C27 prevent the solver to loop on strictly equivalent solutions,
e.g. solutions that differ according to a permutation of the occurrences. Denote by
ConsOcc the set of occurrence-consecutive vertices, such that:

ConsOcc =

(u, v) ∈ V 2

∣∣∣∣∣∣∣
ctgu = ctgv

∧ oru = orv = f

∧ occu = occv − 1

Also, denote by ConsRepF the set of consecutive repeated fragments, such that:

ConsRepF =

((i, j), (k, l)) ∈ RepF 2 s.t.
ctgi = ctgj = ctgk = ctgl

∧ ori = ork ∧ orj = orl

∧ occi = occk − 2

∧ occj = occl − 2

iv + iv ≤ iu + iu ∀ (u, v) ∈ ConsOcc (C26)
mq ≤ mp ∀ (p, q) ∈ ConsRepF (C27)

5.5 Scaffolding problems ILP
Finally, it is possible to define the ILP formulations for the DRP , IRP and SCP
scaffolding problems as a union of the constraints described before.

For DRP and IRP the ILP formulations are the same, and it is sufficient to
choose the sets RepF , PRepF , ARepF , Alpha, Forbid and ConsRepF according
to the repeats the problems scaffold. We aim to maximise the cumulative length of
the minimum number of repeats. The objective value corresponds to:∑

r∈Repeats

replen(r)− |Repeats|

=
∑

p∈RepF

2mp −

(∑
p∈RepF

mp −
∑

e∈ARepF

isadje

)
=

∑
p∈RepF

mp +
∑

e∈ARepF

isadje

where Repeats is the set of repeats.

108

6 Hierarchical problem succession CHLOROPLAST SCAFFOLDING IV

DRP and IRP models

max
∑

p∈RepF

mp +
∑

e∈ARepF

isadje

s.t. CCircuit

CRepeat

(C26)
(C27) if no repeats to fix
CFixRegions otherwise

Traditionally, SCP finds the maximum weighted circuit.

SCP model

max
∑

v∈V \{s,s}

wexviv

s.t. CCircuit

(C26)
CFixRegions if repeats to fix

Both for DRP and IRP, the number of variables and constraints are in
O(|V |2+ |E|). The number of variables and constraints for SCP are in O(|V |+ |E|).

6 Hierarchical problem succession
Finally, here we describe how we combine the DRP, IRP and SCP scaffolding
problems. As described in Definition 3.6, two problem combinations are opposed.
The combinations are kept depending on the value of the problems’ objective
functions.

I Definition 6.1: Hierarchical problem succession solutions

Denote by h1, h2 the two hierarchical problem successions DRP–IRP–SCP
and IRP–DRP–SCP . For each h ∈ {h1, h2}, denote by Z∗

h ∈ R≥0
3 the vector

containing the values of the objective functions for each problem in the order of
the problem succession corresponding to h.

109

IV CHLOROPLAST SCAFFOLDING From ILP solution to genome 7

By S we denote the set of optimal problem successions, such that:

S =

{
s

∣∣∣∣ ∀ k ∈ J0, 2K, Z∗
s [k] = max

h∈{h1,h2}
Z∗

h[k]

}
Note that 0 ≤ |S| ≤ 2, and Definition 6.1 is stable for any problem with an

objective value equal to zero. For example, Z∗
h1
[1] = 0 means that there is no

inverted repeat. For an easier interpretation of the architecture, we adopt a problem
code combination, summarised in Table 13.

� Table 13 – Problem code combinations

Z∗
h h1 h2

[0] [1] [2] DRP–IRP–SCP IRP–DRP–SCP
0 0 – sc sc

> 0 0 – dr–sc ir–sc
> 0 > 0 – dr–ir–sc ir–dr–sc

7 From an ILP solution to a genome structure
From a solution found by the best hierarchical problem succession, we extract the
corresponding genome architecture. Let m,n ∈ N be the number of repeats (pair of
regions) and the number of single-copies, respectively. A genome contains 2m+ n
regions. Two items are sufficient to describe a genome with its regions:

— COR = (r0, r1, . . . , rm+n−1) contains the forward regions, i.e. it is a (m+n)-uplet
of m+ n oriented contig sequences.

— SOR = ((rid0, ror0), . . . , (rid2m+n−1, ror2m+n−1)) ∈ (N× {f, r})2m+n is a lin-
earised circular sequence of oriented regions. For each i ∈ J0, 2m + nJ, if
rori = f then SOR[i] represents the forward region COR[ridi], else if rori = r

then SOR[i] represents the reverse COR[ridi].

Figure 37 illustrates the regions extracted by Algorithm 25 in the toy example.
The key idea of such an extraction algorithm is to start from the starting vertex

s and walk over the chosen edges. During the walk, for each vertex we need to
identify the type of its region, and then add the vertex to the corresponding region
(to the corresponding region identifier ridr). Algorithm 22 aims to determine the

110

7 From ILP solution to genome CHLOROPLAST SCAFFOLDING IV

� Figure 37 – Extracting the genome architecture in
MDCG from a CHSP solution.
The illustrated CHSP solution consists of the red circuit
(af,0, cr,1, bf,0, df,0, br,1, cf,0) and of the two choosen inver-
ted fragments InvF ∗ = {(cf,0, cr,1), (bf,0, br,1)} (vertex pairs
linked by the green dashed lines). Algorithm 25 returns
four regions: m = 1 inverted repeat (the two green ar-
rows pointing downwards) and n = 2 single-copies (the
purple and the red arrows). COR = ((af), (cr, bf), (df))
and SOR = (0f , 1f , 2f , 1r), where xy = (x, y) for clarity.

region type for a given vertex. The sequence of oriented regions SOR begins by
the starter’s region that is necessarily a single-copy (because mult(contig(s)) = 1).
The first oriented contig may not be the starter. Algorithm 23 gives the initial
vertex associated to the first oriented contig of the starter’s region. During the
walk in the solution circuit from the initial vertex, a new region begins each time
the region type changes. When the current vertex participates in a repeat, we must
check if the next one participates in the same repeat, although the region type may
not change (Algorithm 24). At the end, Algorithm 25 builds COR and SOR from
an ILP solution.

To build the repeated regions, we use a First In First Out (FIFO) for the DRs,
and a Last In First Out (LIFO) for the IRs. Each queue rep_queue, is associated
with three methods:

rep_queue.put(x) append x to the FIFO/LIFO;

rep_queue.is_empty returns true if the queue is empty;

rep_queue.peek returns the first/last value in the FIFO/LIFO;

rep_queue.pop deletes the first/last value in the FIFO/LIFO and returns it.

In the following, the given time complexities are under the assumption that the
belonging test “is x ∈ X?” for an object x in a set X is in Θ(1). Algorithm 22 is in
Θ(1). Algorithm 23 is in O(|SCs|), where |SCs| is the number of contigs composing
the single-copy region that contains the starting vertex. Algorithm 24 is in Θ(1),
and so Algorithm 25 is in O(|V |+ |E|).

111

IV CHLOROPLAST SCAFFOLDING From ILP solution to genome 7

I Algorithm 22: Get the region type for a given vertex

Require: A vertex v, the chosen direct fragments DirF ∗ and the chosen inverted
fragments InvF ∗.

Ensure: Returns the region type of the vertex.
1: function get_region_code(v)
2: if dirfrag (v) ∈ DirF ∗ then
3: return DR
4: if invfrag (v) ∈ InvF ∗ then
5: return IR
6: return SC

I Algorithm 23: Get the initial vertex of the single-copy region containing
the starting vertex

Require: The starting vertex s, the set of fixed variable values x∗e, e ∈ E, the chosen
direct fragments DirF ∗ and the chosen inverted fragments InvF ∗.

Ensure: Returns the first vertex of the single-copy region containing the starting
vertex.

1: function initial_vertex()
2: v ← s
3: u← u | x∗us = 1
4: reg_code← get_region_code(u)
5: while u 6= s ∧ reg_code = SC do
6: v ← u
7: u← u | x∗uv = 1
8: reg_code← get_region_code(u)
9: if region_code = SC then . Special case of a unique single-copy region

10: return s
11: return v

I Algorithm 24: Is the repeat contiguous?

Require: Two vertices u, v ∈ V , the set of fixed variable values x∗e, e ∈ E, the
previous and current region codes prev_region_code and region_code.

Ensure: Returns true if the repeat is contiguous, else false.
1: function repeat_is_contiguous(u, v, prev_region_code, region_code)
2: if prev_region_code 6= region_code then
3: return False

112

7 From ILP solution to genome CHLOROPLAST SCAFFOLDING IV

4: if region_code = DR then
5: return x∗diradj(u,v) = 1
6: if region_code = IR then
7: return x∗invadj(u,v) = 1
8: return False

I Algorithm 25: ILP solution to regions

Require: Graph MDCG, the starting vertex s, the set of fixed variable values
x∗e, e ∈ E, the chosen direct fragments DirF ∗ and the chosen inverted
fragments InvF ∗.

Ensure: Returns the oriented region sequence SOR, and the oriented contig
sequence for each forward oriented region COR.

1: function ilp_solution_to_regions()
2: prev_region_code← SC
3: SOR← [0f] . Oriented region sequence, initialised by the single-copy in

forward orientation that contains the starting vertex
4: COR← [[]] . Oriented contig sequence for each forward region, initialised

for the first region
5: region_index← 0 . First region index
6: init_v← initial_vertex()
7: u← init_v; v ← init_v
8: rep_queue← hashtable() . For each repeat index is associated a queue

of vertices (FIFO for DR, LIFO for IR)
9: repf_rep← hashtable() . Each repeated fragment is associated with

its repeat index
10: repeat
11: region_code← get_region_code(v)
12: if region_code = SC then
13: if prev_region_code 6= region_code then . New single-copy
14: region_index← |COR|
15: SOR.append(region_indexf)
16: COR.append([])
17: COR[region_index].append(ctgv, orv)
18: else
19: repf ← dirfrag(v) if region_code = DR else invfrag(v)
20: if repf /∈ repf_rep then . Fist region of the repeat
21: if ¬repeat_is_contiguous(u, v, prev_region_code,

region_code) then

113

IV CHLOROPLAST SCAFFOLDING Multiple genome forms 8

22: region_index← |COR|
23: SOR.append(region_indexf)
24: COR.append([])
25: rep_queue[region_index]← fifo() if region_code = DR

else lifo()
26: COR[region_index].append(ctgv, orv)
27: rep_queue.put(dirfrag (v) if region_code =

DR else invfrag (v))
28: repf_rep[repf]← region_index
29: else . Second region of the repeat
30: if ¬repeat_is_contiguous (u, v, prev_region_code,

region_code) then
31: region_index← repf_rep[repf]
32: SOR.append(region_indexf if region_code =

DR else region_indexr)
33: assert v = rep_queue[region_index].pop()
34: prev_region_code← region_code
35: u← v
36: v ← v | x∗uv = 1
37: until v 6= init_v
38: return SOR,COR

8 Multiple genome forms
The sequence of oriented regions SOR represents one chloroplast genome form.
Recall that especially with the LSC-IR-SSC-IR architecture (Figure 5a), the SSC
can be reversed during the DNA replication phase. In the following, our goal is to
retrieve other forms from the one obtained by the hierarchical problem succession.

Towards this goal, we introduce a specific assembly graph: the region graph.
The discovery of multiple genome forms is associated with the search of Eulerian
circuits in this graph. Figure 38 illustrates the procedure for the toy example.

I Definition 8.1: Region graph RegGraph

Given the (m + n)-uplet COR of forward regions and the sequence SOR of
oriented regions, RegGraph = (V reg, Ereg,Φ) denotes a multidigraph named
the region graph, such that:

— V reg = {v0,f , . . . , vm+n−1,f , v0,r, . . . , vm+n−1,r | |COR| = m + n} is the

114

8 Multiple genome forms CHLOROPLAST SCAFFOLDING IV

(a) Artistic view (b) Multidigraph view

� Figure 38 – Region graph for the toy example.
The toy example’s solution given in Figure 37 results in the graph visualised in Figure 33
will give a region graph that shows an LSC-IR-SSC-IR architecture as the one given in
Figure 5a. Two oriented region sequences (genome forms) are obtained by finding the
Eulerian circuits: 0f → 1f → 2f → 1r and 0f → 1f → 2r → 1r. They correspond to
two structural haplotypes commonly found in the chloroplast cells, and described in
Figure 6. (a) Each arrow represents a region. Each link connects two arrows’ extremity.
Entering the tail/head and exiting the head/tail of an arrow corresponds to choosing
the region in its forward/reverse orientation. (b) The same information is visualised.
Each vertex is a region with a fixed orientation, and each edge connects two oriented
regions.

set of oriented regions (|V reg| = 2|COR|). For each vertex, bijective
function vreg : V reg ↪→→ {r ∈ COR} × {f, r} provides the oriented region
it represents.

— Ereg is the multiset of links between two oriented regions in SOR (including
between the last and the first regions). Note that ∀ e ∈ Ereg, e ∈ Ereg
denotes its reverse where Φ(e) = (u, v), Φ(e) =

(
v, u

)
(|Ereg| = 2|SOR|).

— Φ: Ereg → {(u, v) | u, v ∈ V reg} is the incident function, such that for
two consecutive oriented regions ri and rj in SOR (including the last and
the first ones), ∃! e ∈ Ereg | Φ(e) = (vreg−1(ri), vreg

−1(rj)).

Figure 38 illustrates the region graph for the toy example’s solution given in
Figure 37. Based on the above graph, we can find different sequences of oriented
regions. Each region, independently of its orientation, in each sequence, must
participate the same number of times.

115

IV CHLOROPLAST SCAFFOLDING Multiple genome forms 8

I Definition 8.2: Eulerian circuit in RegGraph

A circuit in RegGraph = (V reg, Ereg,Φ) is defined as Eulerian when:

— it begins from and ends with vertex 0f representing the region containing the
starter in forward orientation, i.e. vreg(0f) = COR[0];

— it passes through exactly one of the two versions of each edge (e ∈ Ereg
otherwise e ∈ Ereg).

I Proposition 8.1: An eulerian circuit is a valid oriented contig sequence
for RegGraph

An Eulerian circuit in RegGraph = (V reg, Ereg,Φ) provides a valid sequence
of oriented contigs (Definition 2.1).

B Proof

Let RegGraph = (V reg, Ereg,Φ) be a region graph. Denote by euc =
(v0, v1, . . . , v2m+n−1) an Eulerian circuit in RegGraph. For each two consec-
utive oriented regions vi, vj in euc, there exists an edge e ∈ Ereg such that
Φ(e) = (vi, vj). According to Definition 8.1, vreg(vi) = ri and vreg(vj) = rj
are also consecutive in the oriented region sequence that has originally built
RegGraph, otherwise in its reverse. Thus, according to Algorithm 25, there
is an edge (u, v) ∈ E in MDCG such that (ctgu, oru) and (ctgv, orv) equal
ri[|ri| − 1] and rj[0], respectively.

C

We can easily verify that the number of Eulerian circuits is bounded by O(2m
′
),

where m′ ≤ m is the number of inverted repeats.
Now, given a region graph RegGraph, finding all the Eulerian circuits is

equivalent to retrieve all the possible chloroplast genome forms. Each Eulerian
circuit traverses exactly the same regions, but not necessary in the same orientations.
Figure 38 gives the resulting region graph obtained from the input data given in
Table 11.

We accept all the Eulerian circuits, although they may contradict the repeated
region interval constraints given in Definitions 3.2 and 3.3. For example, the oriented
region sequence (0f , 1f , 2f , 3f , 1f , 3r) respects the definitions, where (1f , 1f) is a
DR and (3f , 3r) is an IR. One of the Eulerian circuit produces the oriented region
sequence (0f , 1f , 2f , 3f , 1r, 3r). Region 1f now evolves in a new IR (1f , 1r). The
order between the regions of the two IRs contradicts Definition 3.3.

116

9 NP-completeness CHLOROPLAST SCAFFOLDING IV

9 NP-completeness
To prove the NP-completeness of one of the two hierarchical problem successions
(decision version), it is sufficient to focus on only one scaffolding problem for the
repeat. Here, we will focus on the decision version of IRP (DIRP).

I Definition 9.1: IRP decision problem (DIRP)

Given a set of contigs C, their multiplicities, a set of links L, a starting contig s,
two integers k,m′ ∈ N, is there a valid sequence of oriented regions for IRP
with

∑
ir∈IR replen(ir) ≥ k and |IR| ≤ m′, where IR is the solution set of

inverted repeats?

I Proposition 9.1: DIRP is in NP

Given the input of DIRP , a sequence of oriented regions SOR, the sequence
of oriented contigs for each region COR, two integers k,m′ ∈ N. There is a
polynomial time algorithm that checks if the given solution is valid and if its
cumulative repeat length equals at least k and the number of repeats equals at
most m′.

B Proof

Algorithm 26 verifies if the sequence of oriented regions is valid. It requires
two traversals of SOR: (i) to identify which regions in the sequence form
IRs; (ii) to verify if the order between the IRs is valid (thanks to the use of
a LIFO). It also checks if the associated cumulative repeat length equals at
least k and the number of repeats equals at most m′.

A LIFO ir_lifo is associated with four methods:

ir_lifo.put(x) append x to the LIFO;

ir_lifo.is_empty returns true if the LIFO is empty;

ir_lifo.peek returns the last value in the LIFO;

ir_lifo.pop deletes the last value in the LIFO and returns it.

Algorithm 27 verifies if the corresponding sequence of oriented contigs is
valid. It first retrieves the total sequence of oriented contig SOC from the
sequence of oriented regions SOR and the sequence of each forward regions
COR. It traverses the oriented contigs in SOC, verify if each two consecutive

117

IV CHLOROPLAST SCAFFOLDING NP-completeness 9

oriented contigs are linked in the link set, and count the number of times a
contig occur. At the end, it checks if each contig does not appear more than
its multiplicity number of times.

It is straightforward to see that Algorithm 26 and Algorithm 27 are linear
according the size of SOR and COR. Remember we assume that the belonging
test “is x ∈ X?” for an object x in a set X is in Θ(1).

C

I Algorithm 26: Verify the validity of the sequence of oriented regions

Require: Input of DIRP , a sequence of oriented regions SOR, the sequence of
oriented contigs for each region COR, an integer k ∈ N.

Ensure: Returns True if the sequence of oriented regions is valid.
1: function is_sor_valid()
2: IR← { } . Set of inverted repeats
3: count_reg ← hashtable() . Keep the orientations of a region in a hash

table
4: . Identify the inverted repeats /
5: for (rid, ror) ∈ SOR do
6: if rid /∈ count_reg then
7: count_reg[rid]← [ror]
8: else
9: if |count_reg[rid] = 2| then

10: return False
11: if ror 6= count_reg[rid][0] then
12: IR.add(rid) . Repeats are pairs of regions
13: count_reg.append(ror)
14: . Verify parameters k and m′ /
15: if

∑
ir∈IR|COR[ir]| < k or |IR| > m′ then

16: return False
17: . Verify the order between IRs /
18: ir_lifo← lifo()
19: for (rid, ror) ∈ SOR do
20: if rid ∈ IR then
21: if ir_lifo.is_empty() ∨ rid 6= ir_lifo.peek() then
22: ir_lifo.put(rid)
23: else
24: ir_lifo.pop()
25: return ir_lifo.is_empty()

118

9 NP-completeness CHLOROPLAST SCAFFOLDING IV

I Algorithm 27: Verify the validity of the sequence of oriented contigs

Require: Input of DIRP , a sequence of oriented regions SOR, the sequence of
oriented contigs for each region COR.

Ensure: Returns True if the sequence of oriented contigs is valid.
1: function is_soc_valid()
2: Transform SOR in the sequence of oriented contigs SOC using COR.
3: contig_count← hashtable()
4: if SOC[0] 6= (s, f) then . The circuit must start with the starting contig

in forward orientation
5: return False
6: . Verify the links and count the occurrences /
7: (prev_c, prev_or)← SOC[|SOC| − 1]
8: . Count the contigs and verify the links /
9: for (c, or) ∈ SOC do

10: if ((prev_c, prev_or), (c, or)) /∈ L then
11: return False
12: if c /∈ contig_count then
13: contig_count[c]← 1
14: else
15: contig_count[c]← contig_count[c] + 1
16: (prev_c, prev_or)← (c, or)
17: . Verify the multiplicity /
18: for c ∈ contig_count do
19: if contig_count[c] > mult(c) then
20: return False

I Proposition 9.2: NP-hardness of IRP decision problem

DIRP is NP-hard.

B Proof

By reduction from the longest path decision problem from vertex s to vertex t
(LPST P), known to be NP-complete (Schrijver, 2003).

Consider an instance I ∈ LPST P composed of a directed graph G =
(V,E), two vertices s, t ∈ V and an integer k ∈ N (the hypothetical number
of vertices between s and t in the longest path). We shall build an instance
transform function tf such that I ∈ LPST P ⇐⇒ tf(I) ∈ DIRP. Function

119

IV CHLOROPLAST SCAFFOLDING NP-completeness 9

(a) Directed graph G (b) Directed graph G′

� Figure 39 – From a digraph G for LPSTP to a digraph G′ for IRP.
Bold red edges in both sub-figures correspond to the solution path for LPSTP and
IRP problems, respectively. (a) GV \{s,t} is the subgraph induced by the vertex set
V \ {s, t}. As the longest path exits s and enters t, dashed edges do not participate
in the solution. (b) Green dashed line between vertices in G′

f0 and G′
r1 visualise the

inverted fragments.

tf transforms graph G to graph G′ = (V ′, E ′), vertex s ∈ V to vertices
sf , s

′
f ∈ V ′, t ∈ V to tf , tr ∈ V ′, k to k′ = 2k, and fix parameter m′ = 1.

Figure 39 illustrates the transformation.
All four subgraphs G′

or,i in Figure 39b can be seen as copies of GV \{s,t} =(
V \ {s, t}, EV \{s,t}

)
(the subgraph induced by the vertex set V \ {s, t}) in

Figure 39a. For each or ∈ {f, r}, for each i ∈ {0, 1}, G′
or,i =

(
V ′
or,i, E

′
or,i

)
such that:

— there is a bijective function vtransor,i : V \{s, t} ↪→→ Vor,i, where ∀ v ∈ V ′
or,i,

vor(v) = or and vocc(v) = i;

— there is a bijective function etransor,i : EV \{s,t} ↪→→ E ′
or,i where ∀ (u, v) ∈

EV \{s,t},∃! (u′, v′) ∈ E ′
or,i such that:

vtransor,i(u), vtransor,i(v) =

{
u′, v′ if or = f

v′, u′ if or = r

There is a bijective function vsttransst : {s, t} ↪→→ {(sf , s′f), (tf , tr)}. There
is a function esttrans : {(s, w) ∈ E} ∪ {(u, t) ∈ E} → E ′ such that:

120

10 Numerical results CHLOROPLAST SCAFFOLDING IV

— ∀ (s, w) ∈ E:

esttrans(s, w) ={(sf , vtransf,i(w)) ∈ V ′2 | i ∈ {0, 1}}
∪ {(vtransr,i(w), s′f) ∈ V ′2 | i ∈ {0, 1}}

— ∀ (u, t) ∈ E:

esttrans(u, t) ={(vtransf,i(u), tf), (tf , vtransr,i(u)) ∈ V ′2 | i ∈ {0, 1}}
∪ {(vtransf,i(u), tr), (tr, vtransr,i(u)) ∈ V ′2 | i ∈ {0, 1}}

It is straightforward to see that there exists an algorithm in O(|V |+ |E|)
that computes this transform function.

The sets InvF , PInvF and AInvF are built based on G′
or,i graphs.

Inverted fragments are visualised by green dashed vertical lines in Figure 39b,
where InvF = {(i, j) ∈ Vf,0 × Vr,1 | vtransf,0(i) = vtransr,1(j)}.

As the adjacent inverted fragments associate only vertices in Vf,0 with
those in Vr,1, the path that maximises the number of contiguous inverted
fragments exits sf , goes through G′

f,0 to tf (or tr, it does not matter), and
passes through G′

r,1 to s′f .
Since G′

f,0 is a copy of GV \{s,t}, while G′
r,1 is its reverse graph, there is a

bijection between V ′
f,0 and V ′

r,1 vertices sets.
The way G′ is built implies only one IR is assembled (so parameter m′ = 1

is respected). The length of this IR (k′ = 2k) gives the hypothetical length of
the longest path in LPST P.

To conclude, as there is a linear time complexity transform function tf
such that I ∈ LPST P ⇐⇒ tf(I) ∈ DIRP, DIRP is at least NP-hard.

C

From Propositions 9.1 and 9.2 we conclude that DIRP is NP-complete.

10 Numerical results
We develop khloraascaf2, a python package that computes the scaffolding of
chloroplast contigs. It can either use Gurobi solver or CBC. All the following
runs have been executed on a Linux laptop computer (32GB RAM, Intel® Core™
i7–10610U CPU @ 1.80GHz ×8). Each time, we select Gurobi solver.

2https://khloraa-scaffolding.readthedocs.io/en/latest

121

https://khloraa-scaffolding.readthedocs.io/en/latest

IV CHLOROPLAST SCAFFOLDING Numerical results 10

10.1 Complexity validation on artificial data
khloraascaf is also accessible as an API, that permits in this section to study the
combinatorial behaviour of IRP .

We demonstrate in Section 9 that DIRP is in the general case NP-complete.
Furthermore, the heteroplasmy for the chloroplast genome is very often caused by
the presence of an inverted repeat, that reverses the region(s) between it.

Thus, we artificially build a contig set with the associated attributes, and a link
set, such that the genome architecture behind corresponds to the following circular
sequence of oriented regions: SC1 − IR − SC2 − IR. In the following, we run
what corresponds to IRP computation in khloraascaf on two types of growing
generated data: perfect and noisy artificial ones. To emphasise the effect of the
inverted repeats in the complexity of IRP , we fix the length of the single-copies,
i.e. |SC1| = |SC2| = |SC| = 20, and we incrementally raise the length of the
inverted repeat |IR| = 20k for k ∈ J1, 10K.

10.1.1 Perfect artificial data
The data generated for this section correspond to the smallest set of contigs, links,
and the smallest multiplicities to make sure that IRP is feasible. The multiplied
doubled contig graph associated with these perfect data has exactly the same
topology as the one illustrated in Figure 33. For instance, testing perfect artificial
data acts as a control for further tests. Table 14 gives some Gurobi metrics3.

Observe that the gap is equal to 0% and the problem is solved either during
the presolving or the linear relaxation. Indeed, for the class of graph that contains
only the perfect artificial data, there exist a polynomial algorithm. However, the
relaxation time seems to fit an exponential distribution as well as for the B&B
time, as shown in Figure 40, even though the distributions should be treated with
caution because of the limited number of points.

10.1.2 Noisy artificial data
Here we test the behaviour of the solver when we add noise to the perfect artificial
data. In that case, for each generated contig, the multiplicity has 25% chance
to be overestimated by one (that increases InvF , PInvF and possibly AInvF
sets). Similarly, for each contig, there is 25% of chance to create a new link to
another randomly chosen contig. This can generate more loops, and can increase

3To reproduce the results, please refer to https://khloraascaf-results.readthedocs.i
o/en/latest/benchmark_4/.

122

https://khloraascaf-results.readthedocs.io/en/latest/benchmark_4/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_4/

10 Numerical results CHLOROPLAST SCAFFOLDING IV

25 50 75 100 125 150 175 200
IR length

0

100

200

300

400

500

Pr
es

ol
ve

 +
 re

la
x

tim
e

Solver running time

25 50 75 100 125 150 175 200
IR length

0

200

400

600

800

1000

1200

1400

B&
B

tim
e

Solver running time

� Figure 40 – Solver running time distributions for perfect artificial data.
Points are measured times, the red curves correspond to the best aebx function applied
on IR length axis.

the AInvF set4.
As expected, now the gap is not ensured to be null, and some instances are not

solved at the presolving or at the linear relaxation steps.
These numerical results corroborate the NP-complete demonstration for a more

general class of graphs.

10.2 Synthetic chloroplast input data
In this section, we aim to validate experimentally the relevance of our scaffolding
problem definition by running khloraascaf on synthetic data.

10.2.1 Input data generation
Here we briefly describe our protocol for input data generation5. 200 chloroplast
genomes (selected in CpGDB6) were downloaded from the NCBI7. For each of them,

4To reproduce the results, please refer to https://khloraascaf-results.readthedocs.i
o/en/latest/benchmark_5/.

5For more details, please refer to https://khloraascaf-results.readthedocs.io/en/lat
est/benchmark_3/

6CpGDB: A Comprehensive Database of Chloroplast Genomes http://www.gndu.ac.in/CpG
DB/index.aspx

7NCBI: The National Center for Biotechnology Information advances science and health by
providing access to biomedical and genomic information https://www.ncbi.nlm.nih.gov/

123

https://khloraascaf-results.readthedocs.io/en/latest/benchmark_5/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_5/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/
http://www.gndu.ac.in/CpGDB/index.aspx
http://www.gndu.ac.in/CpGDB/index.aspx
https://www.ncbi.nlm.nih.gov/

IV CHLOROPLAST SCAFFOLDING Numerical results 10

� Table 14 – Gurobi solver metrics on perfect artificial growing data.
|V|, |E|, |SC|, |IR| and |L| respectively stand for the number of vertices, edges, contigs
in each single-copy region, contigs in each region of the inverted repeat, and links;
Time: the presolve time plus the relaxation time (above) and the B&B time (below);
Opt.: the linear relaxation bound UB (above) and the integer optimal value Opt

(below); % Gap: the MIP gap equals 100× (UB−Opt)
UB

; Nodes: number of explored
B&B nodes; Iter.: number of iterations for the LP relaxation (above) and for the B&B
phase (below).

|V| |E| |SC| |IR| |L| Time Opt. % Gap Nodes Iter.

160 244 20 20 122 0.25 39.00 0.00 1 1242
0.48 39.00 2944

240 404 20 40 162 1.23 79.00 0.00 1 4690
2.54 79.00 10 946

320 564 20 60 202 4.27 119.00 0.00 1 8945
10.45 119.00 23 864

400 724 20 80 242 12.15 159.00 0.00 1 15 196
26.29 159.00 39 562

480 884 20 100 282 13.46 199.00 0.00 1 23 109
66.28 199.00 68 740

560 1044 20 120 322 22.91 239.00 0.00 1 44 048
110.98 239.00 97 646

640 1204 20 140 362 35.68 279.00 0.00 1 46 071
80.26 279.00 125 084

720 1364 20 160 402 56.89 319.00 0.00 1 75 371
376.74 319.00 256 831

800 1524 20 180 442 321.52 359.00 0.00 1 71 971
634.01 359.00 196 905

880 1684 20 200 482 488.74 399.00 0.00 1 88 157
1458.66 399.00 236 406

a set of reads was generated. The contigs were generated with Minia (Chikhi and
Rizk, 2012), a de Bruijn graph assembly approach. The links correspond to k-mer
paths in the resulting compacted de Bruijn graph (cDBG) that connect two contigs.
Finally, 31 instances were selected for which various difficulties have been detected,
e.g. extra-links in the link set or combination of repeats.

The starter is the contig for which the matK gene, usually found in a single-copy
region, maps on.

To obtain the multiplicity of a given contig c, we sum the length of the alignments
of the reads mapping on c (we denote by MapRc the set containing the reads that
map on c). This sum is defined as the coverage covc of the contig c by the reads:

covc =
∑

read∈MapRc

∣∣alignread
c

∣∣
124

10 Numerical results CHLOROPLAST SCAFFOLDING IV

� Table 15 – Gurobi solver metrics on noisy artificial growing data.
The column descriptions are the same as the one in Table 14. Except that because of
the noise on multiplicities, the sum of contig multiplicity for each region can change:
this is the value below the number of contig in columns |SC1|, |SC2| and |IR|. Similarly,
because of the noise on the number of links, the below value for L corresponds to the
number of noisy links.

|V| |E| |SC1| |SC2| |IR| |L| Time Opt. % Gap Nodes Iter.

186 372 20 20 20 152 1.01 39.00 0.00 1 2862
26 24 43 30 5.16 39.00 6888

280 688 20 20 40 212 6.89 79.00 0.00 1 6727
28 23 89 50 12.26 79.00 19 930

366 946 20 20 60 262 42.52 123.50 3.64 1 16 821
25 26 132 60 79.28 119.00 50 246

452 1208 20 20 80 320 90.06 161.50 1.55 1 27 822
22 23 181 78 295.22 159.00 129 174

556 1366 20 20 100 322 196.04 199.00 0.00 1 42 292
23 24 231 40 244.41 199.00 92 009

662 1804 20 20 120 412 1007.59 242.50 1.44 1 84 639
29 26 276 90 1434.16 239.00 210 798

736 1946 20 20 140 454 1108.09 283.00 1.41 1 228 198
24 26 318 92 3540.79 279.00 691 619

822 2212 20 20 160 514 1118.76 323.00 1.24 1 86 592
26 27 358 112 2449.55 319.00 287 146

902 2362 20 20 180 542 1591.18 363.00 1.10 1 91 936
26 27 398 100 2576.60 359.00 269 958

996 2656 20 20 200 602 2294.85 404.00 1.24 1 116 315
26 26 446 120 3747.02 399.00 351 501

Where alignread
c is the sequence representing the alignment of the read read on the

contig c. Its length equals the number of nucleotides of read that match on c (iden-
tity or substitution). Then the multiplicity mult(c) of c is obtained by normalising
its coverage covc by this of the starter s, covs: mult(c) = max(1, dcovc/covs − 0.1e).
As the multiplicity is an upper-bound of the usage of contig, we prefer to round up
the normalisation only if the decimal part is greater than 0.1.

The existence-weight wex(c) for a contig c is computed by counting the number
of nucleotides of c that are covered by at least a gene of protein from a chloroplast
near-species, normalised by the length of c.

10.2.2 The evaluation’s metrics
For each synthetic instance, we know the sequence of the oriented contigs and the
sequence of the oriented regions we search for. In the sequel we test our scaffolding

125

IV CHLOROPLAST SCAFFOLDING Numerical results 10

approach and evaluate the obtained region graph. For each instance, for each
optimisation problem combination, we provide the following metrics:

— the total number of eulerian circuits in the region graph (genome forms);

— how many of them coincide with the sequence of oriented contigs we search for;

— how many of them coincide with the sequence of oriented regions we search for.

Evaluating the sequence of the oriented contigs is stringent. On the other hand,
although a result can be evaluated as a false one, we can still retrieve the sequence
of the chloroplast genome by applying an alternative sequence. As a consequence,
for each instance we use Quast (Gurevich et al., 2013) to evaluate the sequences
associated to each genome form. As the genome reference is known, Quast tries to
find the minimum number of differences (relocation, inversion, indels) between the
reference and the sequence we provide. Three metrics are chosen to evaluate the
best genome form for each problem succession:

— the genome fraction of the reference;

— the number of misassemblies;

— the number of local misassemblies.

For more detailed descriptions of Quast metrics, you can refer to Appendix 3.1.
It would be expected that Quast metrics illustrate wrong assembly for the

instances for which the sequence of the contigs, and a fortiori this of the regions,
are not retrieved. Analogously, the instance that truthfully retrieves the sequences
would have good Quast metric. However, these assertions may be contradicted
because of the contig and the link sequences generation.

In Section 10.2.3, we provide the two metric sets when khloraascaf is applied
to the original synthetic data, while in Section 10.2.4 the metrics are reported for
a subset of modified synthetic data.

10.2.3 Initial version
Table 16 provides all the metrics defined above for the 31 instances. The instances
are solved very quickly (solver times < 4.5 sec., Table 19). khloraascaf successfully
founds the sequence of the oriented contigs in 20 of them and retrieves the sequence
of the oriented regions in 28 of them8. Three categories of failures are identified.

8For more details on the result for the initial version of the synthetic data, please refer to https:
//khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_order_analysis/
and https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_quast_a
nalysis/.

126

https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_order_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_order_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_quast_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v1_quast_analysis/

10 Numerical results CHLOROPLAST SCAFFOLDING IV

Wrong starting contig and multiplicities estimations This is the category for which
our approach is dependent and sensible. In the presented version, we have used
a given starting contig, and a wrong one can lead to reduce all the multiplicities.
This is the case for Begonia_pulchrifolia and Lamprocapnos_spectabilis for which
the starters are contigs that normally participate into an IR, that contradicts our
assumption that the starter participates in an SC.

Independently of a right starting contig, the multiplicity computation is sens-
ible from the noise on the contig coverage by the reads. Agathis_dammara and
Pelargonium_nanum both suffer from only one contig under-estimated multiplicity.

IRP ’s objective: maximising the cumulative length of the minimum number of repeats
The sequence of oriented regions for the Cucumix_hystrix’s reference contains the
following sub-sequences:

(
. . . , IR, IR′, . . . , IR′, SC, IR

)
. As IRP also aims to

minimise the number of repeats, it results in the merge of IR−IR′ and consequently
does not retrieve SC, normally inserted between IR′ and IR.

Model’s robustness While the sequences of oriented contigs for the repeats are
retrieved, the ones of the single-copies suffer from extra-links combined with low,
sometimes null, weights. On the one hand, in case of null weights, the circuits in
Lathyrus_pubescens and Triosteum_pinnatifidum do not pass through contigs that
must participate in the SCs. On the other hand, Podocarpus_totara possesses two
objective-equivalent subpaths in an SC.

Surprisingly, our tool khloraascaf reversed some subparts of single-copies.
This is due to extra-links, but they are specifically caused by the existence of very
short IRs hidden in them (remember that the links correspond to paths between
pairs of contigs in the cDBG). This behaviour is observed in Carpodetus_serratus,
Jasminum_tortuosum and Lophocereus_schottii.

Nucleotide sequences misassemblies To avoid confusion, we always use nucl. seq.
to denote “nucleotide sequence” to contrast with sequences of contigs/regions. In
the following we analyse the instances presenting an unexpected behaviour for
the Quast metrics, regarding if the sequences are found. Supplementary Table 18
permits verifying if the contigs that participate in the sequence have been correctly
assembled. Except for Lathyrus_pubescens where one local misassembly is due to the
missing contig in the sequence, all the (local) missassemblies in Commiphora_foliacea,
Eucommia_ulmoides, Juniperus_scopulorum, Musa_ornata, Sciadopitys_verticillata,
Taxus_baccata, Welwitschia_mirabilis provided by Quast are found in the nucl. seq.
of links.

127

IV CHLOROPLAST SCAFFOLDING Numerical results 10

� Table 16 – Sequence and Quast metrics for the initial synthetic data version.
For each instance in the column Instance: ILPs provides the optimal (at most two)
hierarchical problem successions; Total reports the number of eulerian circuits in the
region graph (genome forms); SOC is the number of oriented contig sequences that
equal to the reference oriented contig sequence; SOR is the number of oriented region
sequences in bijection with the reference oriented region sequence; %gnm is the
genome fraction of the best sequence produced by one of the genome forms; #mis are
the number of misassemblies (left) and of local misassemblies (right).

Successful Quast

Instance ILPs Total SOC SOR %gnm #mis

Abies_alba dr-sc 1 0 0 99.88 3 0
ir-sc 2 1 2 100.00 0 0

Acorus_americanus ir-sc 2 1 2 99.99 0 0
Agathis_dammara dr-ir-sc 10 0 2 80.51 1 2

ir-dr-sc 6 0 0 80.94 2 2
Azima_tetracantha ir-sc 2 1 2 99.99 0 0
Begonia_pulchrifolia — — — — — — —
Carpodetus_serratus ir-sc 2 0 2 100.00 2 0
Circaeaster_agrestis ir-sc 2 1 2 99.99 0 0
Clematis_repens ir-sc 2 1 2 100.00 0 0
Commiphora_foliacea ir-sc 4 1 4 98.82 0 5
Cucumis_hystrix ir-sc 2 0 0 100.00 0 0
Eucommia_ulmoides ir-sc 2 1 2 99.99 0 2
Jasminum_tortuosum ir-sc 2 0 2 99.99 2 0
Juniperus_scopulorum sc 1 1 1 99.72 0 1
Lamprocapnos_spectabilis dr-sc 1 0 0 35.86 3 0
Lathyrus_pubescens dr-sc 1 0 0 98.47 2 2

ir-sc 2 0 2 98.50 0 2
Lophocereus_schottii sc 1 0 1 99.88 1 0
Musa_ornata ir-sc 2 1 2 99.97 0 2
Oenothera_glazioviana ir-sc 2 1 2 100.00 0 0
Pelargonium_nanum ir-sc 2 0 2 96.44 4 0
Podocarpus_totara sc 1 0 1 99.71 4 0
Porphyra_purpura dr-sc 1 1 1 100.00 0 0
Sagittaria_trifolia ir-sc 2 1 2 100.00 0 0
Sciadopitys_verticillata dr-sc 1 0 0 98.99 6 3

ir-sc 2 1 2 99.00 1 4
Sciaphila_densiflora sc 1 1 1 100.00 0 0
Selaginella_kraussiana dr-sc 1 1 1 100.00 0 0
Selaginella_vardei dr-sc 1 1 1 100.00 0 0
Taxus_baccata sc 1 1 1 99.77 0 2
Triosteum_pinnatifidum ir-dr-sc 2 0 2 99.28 0 2
Uvaria_macrophylla ir-sc 2 1 2 99.90 0 0
Welwitschia_mirabilis ir-sc 2 1 2 100.00 0 1

(the table continues on the next page)

128

10 Numerical results CHLOROPLAST SCAFFOLDING IV

Table 16, continued

Successful Quast

Instance ILPs Total SOC SOR %gnm #mis

Wolffia_australiana ir-sc 4 1 4 99.99 0 0

10.2.4 Modified version
In this section, we present a manually changed synthetic data version to succeed
the scaffolding. The goal is to precisely evaluate the robustness of khloraascaf.
We detail the modifications bellow9:

Agathis_dammara The multiplicity of contig 1 is raised to be equal to 3.

Begonia_pulchrifolia Contig 4 becomes the starter. So according to the multiplicity
computation described in Section 10.2.1, the multiplicities of contigs 1 to 5
become 1, while this one of contig 0 raises to 2.

Carpodetus_serratus Link (10r, 11f) is deleted.

Jasminum_tortuosum Link (6f , 4f) is added.

Lamprocapnos_spectabilis Contig 8 becomes the starter. So the multiplicities of
contigs 2, 4, 6, 10 and 11 increase by one, while the ones of contigs 0, 1 and
3 increase by two.

Lathyrus_pubescens The weight of contig 12 raises to 0.01.

Lophocereus_schottii Link (10f , 3f) is deleted.

Pelargonium_nanum The multiplicity of contig 2 raises from 3 to 4, without re-
specting the computation of the multiplicity described in Section 10.2.1.

Podocarpus_totara Link (6f , 11r) is deleted.

Triosteum_pinnatifidum The weight of contig 7 raises to 0.01.

Table 17 provides all the metrics obtained by running khloraascaf. The
instances are also solved very quickly (solver times < 3 sec., Table 20). It truthfully
finds all the sequences for the modified synthetic data except for Agathis_dammara
instance. Although all the repeats (both the direct and the inverted ones) have been

9For more details, please refer to https://khloraascaf-results.readthedocs.io/en/lat
est/benchmark_3/synthetic_data_v2/.

129

https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/synthetic_data_v2/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/synthetic_data_v2/

IV CHLOROPLAST SCAFFOLDING Conclusion 11

retrieved, one of the single-copy region has not been found. It can be explained
by extra-links that create alternative paths with the same optimal value for SCP .
Note that the oriented region sequence has been still retrieved.

All the (local) misassemblies provided by Quast for Carpodetus_serratus, La-
thyrus_pubescens, Pelargonium_nanum and Triosteum_pinnatifidum just concern the
nucl. seq. of links that is not a khloraascaf issue10.

� Table 17 – Sequence and Quast metrics for the modified synthetic data
version.
The caption is the same as in Table 16.

Successful Quast

Instance ILPs Total SOC SOR %gnm #mis

Agathis_dammara dr-ir-sc 10 0 2 99.97 3 2
ir-dr-sc 6 0 0 99.99 2 2

Begonia_pulchrifolia ir-sc 2 1 2 99.99 0 0
Carpodetus_serratus ir-sc 2 1 2 100.00 0 1
Jasminum_tortuosum ir-sc 2 1 2 99.99 0 0
Lamprocapnos_spectabilis ir-sc 2 1 2 99.63 0 3
Lathyrus_pubescens dr-sc 1 0 0 99.01 2 4

ir-sc 2 1 2 99.73 0 1
Lophocereus_schottii sc 1 1 1 100.00 0 0
Pelargonium_nanum ir-sc 2 1 2 97.66 1 2
Podocarpus_totara sc 1 1 1 99.75 0 0
Triosteum_pinnatifidum ir-dr-sc 2 1 2 99.53 0 2

11 Conclusion
While the scaffolding problem is traditionally defined with distances data between
the contigs, we show it is possible to avoid them in the case of the well-studied cir-
cular chloroplast genomes. Based on their specificities, we provide a new scaffolding
formulation focused on revealing structural haplotypes.

Under the assumption that chloroplast genomes possess few repeats, we formalise
their architectures as combinations of direct and inverted repeats, joined by single-
copies, where the repeats are couples of identical (or reversed) nucleotide sequences.
We tackle the chloroplast genome scaffolding as a discrete optimisation problem

10For more details on the results for the cleared version of the synthetic data, please refer to
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_order_analy
sis/ and https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_qua
st_analysis/.

130

https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_order_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_order_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_quast_analysis/
https://khloraascaf-results.readthedocs.io/en/latest/benchmark_3/v2_quast_analysis/

12 Discussion and perspectives CHLOROPLAST SCAFFOLDING IV

that yields three suboptimisation ones. We split the inherent multi-objective
problem into one optimisation problem per region type. As a consequence, it
is necessary to choose the order of subproblem resolutions as a function of the
results of previously solved problems. This is what has been addressed through the
hierarchical combination strategy. We model each subproblem with an ILP.

As our dedicated chloroplast scaffolding definition is a region-scaffolding-driven,
the region graph is a natural data structure to reveal distinct genome forms that
can coexist in a same cell. Indeed, particularly due to an IR flip-flop mechanism,
regions between the IRs can be reversed during the genome replication process.

Moreover, we prove the decision version of the Chloroplast Scaffolding Problem
(CHSP) to be NP-complete in the general case, even though numerical results
on perfect artificial data suggest there is a class of MDCG graphs where the
problem is in P. Without surprise, the noisy artificial data benchmark confirms
the theoretical complexity.

We have implemented our approach and the ILP formulations in a Python3
package, khloraascaf11, that we test on synthetic chloroplast contigs and links
data. When the input data permit finding the solution, khloraascaf successfully
retrieves the genome forms. Even if the decision problem is NP-complete, the
small size of the input data enables to quickly solve optimally CHSP .

Our results show that the scaffolding-repeat problem formulations DRP and
IRP seem to be sufficient to scaffold the repeats. This tends to validate our
assumptions on the small number of repeats, and especially on the sufficiency of
defining the repeats as pairs of equal (reversed) nucleotide sequences.

12 Discussion and perspectives
While our scaffolding problem formulation seems to be sufficient to retrieve the
repeats, it seems it is not fully suitable for single-copies. If we have applied
the maximum-weighted circuit problem to scaffold the single-copies after having
scaffolded the repeats, it was only with the intention of staying in the context of
global optimisation. On the one hand, having weights on links may have been more
appropriate than just considering weights on the contigs: in some sense, that is the
purpose of distances. On the other hand, khloraascaf could initially scaffold the
repeats and then propose several solutions to link them, e.g. scored by the weights.

Concerning the tests on synthetic data, we should use a more traditional
assembly graph input: in fact, as revealed by comparing the khloraascaf results
with the reference genomes, the used link generation suffers from local, or worse,
global, misassemblies. As next step, we plan to inject khloraascaf into a state-of-

11https://pypi.org/project/khloraascaf/

131

https://pypi.org/project/khloraascaf/
https://pypi.org/project/khloraascaf/

IV CHLOROPLAST SCAFFOLDING Discussion and perspectives 12

the-art chloroplast genome pipeline, like GetOrganelle, and substitute what can
be identified as the scaffolding part by our method. Hence, we should be able to
relevantly compare khloraascaf approach with the state-of-the-art.

khloraascaf is sensible to the contig multiplicity computation. For now, a
contig multiplicity is obtained by normalising its coverage by this of the starter. A
better strategy may be to choose the smallest coverage for the normalisation as we
expect the multiplicities to be upper-bounds of the contigs use.

Another issue concerns the choice of the starter: while it depends on the result
of the mapping of matK gene map on the contigs, DRP , IRP and SCP problems
may be adapted for a set of candidate for the starter.

To generalise CHSP on non-equally (reversed) pair of regions for the repeats,
two combining ideas are proposed: on the one hand, we can add pairs of contigs to
the repeated fragment sets from the user-input. On the other hand, CHSP should
be able to handle the case when a single-copy region is in only one of the regions
of a repeat: for now, the contiguity constraint and the objective exclude this case.
The contiguity constraint can be adapted to accept only one contiguous region out
of the two.

From a user-case perspective, the region graph data structure can be used to
determine what genome forms are present in the read set, and in which proportion.
Indeed, as the region graph explicitly describes the junctions between the regions,
especially between the inverted repeats, one may extract the nucleotide sequences
of these junctions to answer the existence of the forms in the read set.

132

V CONCLUSIONS AND
PERSPECTIVES

Michel Petrucciani. (1994). Estate [Song]. On
Live. Blue Note

In this chapter

Fragment graph 134
Thesis contribution . 134
Short-term future work . 135
Long-term future work . 135

Chloroplast genome scaffolding 136
Thesis contribution . 136
Short-term future work . 137
Long-term future work . 138

Since the 1980s, the fragment assembly’s aims and their formulations have evolved
following the development of sequencing technologies and the data characteristics
they produce. Two main stages compose the fragment assembly process. The
read assembly stage aims to assemble the reads into contigs based on sequence
overlaps. Then, the scaffolding stage evolves orienting and ordering the contigs to
form scaffolds. Finally, the scaffolds would represent the chromosomes with the
minimum number of gaps and the minimum number of nucleotide differences.

The literature describes numerous formulations of combinatorial optimisation
problems for the scaffolding problem, and as many approaches for dealing with
large, noisy datasets. In this thesis, we outline the subsampling strategies, the
combinatorial optimisation problem formulations and the solving approaches de-
scribed in the state-of-the-art methods. We analyse and compare the fragment
graph structures of the literature based on an implementation design. We then
propose a formulation for the specific scaffolding of chloroplast genome, which
we model with an Integer Linear Programming (ILP) and solve in Python3. In
subsequent sections, we combine the conclusions of Chapters III and IV to discuss

133

https://musicbrainz.org/release/2031225c-004e-4a94-b174-153f6cd0929d

V CONCLUSIONS AND PERSPECTIVES Fragment graph

their contribution to this thesis.

Fragment graph
Graphs are mathematical structures that are useful to store links between two
fragments. Two main stages of the fragment assembly employ graphs to handle
the input data or to output the result. In the read assembly stage, especially in
the OLC approach, the fragments correspond to the reads and the links are the
overlaps between two reads. In the scaffolding stage, the fragments represent the
contigs and links can come from paired-end read or long read alignments against
the contigs.

The literature describes three graph structures: a digraph, a bigraph and an
ungraph. While the first one highlights visually the double-strand sequencing, its
weakness is that it requires two vertices for each read (Kececioglu, 1991). Myers
(1995) is the first to employ a bigraph to store overlaps. The key idea is to aggregate
the two orientations of a read into only one vertex, a link and its reverse into
only one edge. Finally, the ungraph structure associates one vertex for each of
the two extremities of a fragment to simplify the graph traversal (Huson et al.,
2002). The ungraph handles two sets of edges. A fragment-edge connects the
two vertices corresponding to the two extremities of a fragment (the tail and the
head). Two vertices representing the extremities of a fragment are connected by a
fragment-edge. The second one is the multiset of link-edges. A link-edge represents
both a link and its reverse.

Thesis contribution
Although some authors have provided conceptual descriptions of these graph
structures, the latter have never been compared before from an implementation
stat point of view. In this thesis, we have proposed an implementation design based
on adjacency lists for each graph structure. At the opposite of a compressed sparse
row or column, the adjacency lists are more suitable for adding or deleting vertices
or edges in the graphs. We have also described transformation processes to pass
from one implementation to another. We then have visualised the graph structures
and their implementations in a map.

We have retained three implementations: DGS and DGF for the multidigraph
and BGU for the multibigraph. After we have compared their memory consumption,
we theoretically measure the cost function for each of their algorithm on elementary
operations, such as iterating over the neighbours, adding or deleting a vertex or
an edge. We come to the conclusion that if memory is the critical issue, then

134

Fragment graph CONCLUSIONS AND PERSPECTIVES V

the BGU implementation should be preferred. Otherwise, we recommend DGS
and DGF for iterating over the neighbours and for deleting a vertex or an edge.
BGU is preferable for adding vertices or edges. To conclude, DGF proves to be
well-balanced and ideally tailored for dynamic graph operations. DGF is available
in a Python3 package named revsymg1 and is easily installable via PyPI.

Short-term future work
We plan to implement DGS, DGF and BGU in Rust or an equivalent compiled
programming language to compare them experimentally and confirm the theoretic-
ally obtained costs. Similarly, as the selection of a graph structure impacts further
fragment assembly modelling, we aim to suggest integer linear models for path and
vertex or edge coverage searches in each graph, analyse them, and compare them
in theory and practice.

Long-term future work
This thesis is the first to propose fragment graph implementations for comparison.
The graphs are expressed as adjacency lists. It would be useful to propose imple-
mentations based on compressed matrices and compare them mutually and with
adjacency lists.

However, these structures are suitable for RAM storage. If the size of the
instances exceeds the RAM storage capacity, the entire or partial graph should
remain on disk. An efficient disk storage strategy may benefit from using the disk
or, even better, CPU caches.

The GFA2 and PAF3 file formats, which store assembly graphs and matches
between pairs of oriented fragments, could serve as a source of inspiration for disk
storage methods. They are reminiscent of bidirected or undirected graphs. One
strategy might be to keep the whole graph in this form on disk and convert a part
of interest into a DGS or DGF in RAM.

This strategy may rely on neighbourhood analyses or the specific topology of
fragment graphs. It should therefore be related to the research on graph algorithms,
partitioning and matrix computation.

Although this work illustrates the use of fragment graphs for the assembly
process, other areas involving nucleotide sequences may benefit from this work. For
instance, genome graphs only represent variation between genomes of individuals
of the same species, but the presence of complementary reverse regions implies

1https://pypi.org/project/revsymg/
2https://github.com/GFA-spec/GFA-spec
3https://github.com/lh3/miniasm/blob/master/PAF.md

135

https://pypi.org/project/revsymg/
https://github.com/GFA-spec/GFA-spec
https://github.com/lh3/miniasm/blob/master/PAF.md
https://pypi.org/project/revsymg/
https://github.com/GFA-spec/GFA-spec
https://github.com/lh3/miniasm/blob/master/PAF.md

V CONCLUSIONS AND PERSPECTIVES Chloroplast genome scaffolding

double-stranded behaviour. In this context, one could examine the adaptation of
fragment graphs.

Chloroplast genome scaffolding
While the scaffolding problem is traditionally defined with distances data between
the contigs, we show it is possible to avoid them in the case of the well-studied cir-
cular chloroplast genomes. Based on their specificities, we provide a new scaffolding
formulation focused on revealing structural haplotypes.

Thesis contribution
Under the assumption that chloroplast genomes possess few repeats, we formalise
their architectures as combinations of direct and inverted repeats, joined by single-
copies, where the repeats are couples of identical (or reversed) nucleotide sequences.
We tackle the chloroplast genome scaffolding as a discrete optimisation problem
that yields three suboptimisation ones. We split the inherent multi-objective
problem into one optimisation problem per region type. As a consequence, it
is necessary to choose the order of subproblem resolutions as a function of the
results of previously solved problems. This is what has been addressed through the
hierarchical combination strategy. We model each subproblem with an ILP.

As our dedicated chloroplast scaffolding definition is a region-scaffolding-driven,
the region graph is a natural data structure to reveal the distinct genome forms that
can coexist in a same cell. Indeed, particularly due to an IR flip-flop mechanism,
regions between the IRs can be reversed during the genome replication process.

Moreover, we prove the Chloroplast Scaffolding Problem (CHSP) to be NP-
complete in the general case, even though numerical results on perfect artificial
data suggest there is a class of MDCG graphs where the problem is in P . Without
surprise, the noisy artificial data benchmark confirms the theoretical complexity.

We have implemented our approach and the ILP formulations in a Python3
package, khloraascaf4, that we test on synthetic chloroplast contigs and links
data. When the input data permit finding the solution, khloraascaf successfully
retrieves the genome forms. Even if the decision problem is NP-complete, the
small size of the input data enables to quickly solve optimally CHSP .

Our results show that the scaffolding-repeat problem formulations DRP and
IRP seem to be sufficient to scaffold the repeats. This tends to validate our
assumptions on the small number of repeats, and especially on the sufficiency of
defining the repeats as pairs of equal (reversed) nucleotide sequences.

4https://pypi.org/project/khloraascaf/

136

https://pypi.org/project/khloraascaf/
https://pypi.org/project/khloraascaf/

Chloroplast genome scaffolding CONCLUSIONS AND PERSPECTIVES V

Short-term future work

While our scaffolding problem formulation seems to be sufficient to retrieve the
repeats, it seems it is not fully suitable for single-copies. If we have applied
the maximum-weighted circuit problem to scaffold the single-copies after having
scaffolded the repeats, it was only with the intention of staying in the context of
global optimisation. On the one hand, having weights on links may have been more
appropriate than just considering weights on the contigs: in some sense, that is
the purpose of distances. On the other hand, khloraascaf could initially scaffold
the repeats and then propose several solutions to link them, e.g. scored by the
existence-weights.

Concerning the tests on synthetic data, we should use a more traditional
assembly graph input: in fact, as revealed by comparing the khloraascaf results
with the reference genomes, the used link generation suffers from local, or worse,
global, misassemblies. As next step, we plan to inject khloraascaf into a state-of-
the-art chloroplast genome pipeline, like GetOrganelle, and substitute what can
be identified as the scaffolding part by our method. Hence, we should be able to
relevantly compare khloraascaf approach with the state-of-the-art.

khloraascaf is sensible to the contig multiplicity computation. For now, a
contig multiplicity is obtained by normalising its coverage by this of the starter. A
better strategy may be to choose the smallest coverage for the normalisation as we
expect the multiplicities to be upper-bounds of the contigs use.

Another issue concerns the choice of the starter: while it depends on the result
of the mapping of matK gene map on the contigs, DRP , IRP and SCP problems
may be adapted for a set of candidate for the starter.

To generalise CHSP on non-equally (reversed) pair of regions for the repeats,
two combining ideas are proposed: on the one hand, we can add pairs of contigs to
the repeated fragment sets from the user-input. On the other hand, CHSP should
be able to handle the case when a single-copy region is in only one of the regions
of a repeat: for now, the contiguity constraint and the objective exclude this case.
The contiguity constraint can be adapted to accept only one contiguous region out
of the two.

From a user-case perspective, the region graph data structure can be used to
determine what genome forms are present in the read set, and in which proportion.
Indeed, as the region graph explicitly describes the junctions between the regions,
especially between the inverted repeats, one may extract the nucleotide sequences
of these junctions to answer the existence of the forms in the read set.

137

V CONCLUSIONS AND PERSPECTIVES Chloroplast genome scaffolding

Long-term future work
There are numerous generic methods for genome assembly and scaffolding in the
literature. When applying generic methods to the genomes of specific organisms, the
application often results in data subsampling strategies and hyper-parameterisation.
We aimed to develop a scaffolding method that is aware of the specific characteristics
of the data at the core of the problem formulation.

The challenge lies in the mathematical formalisation of biological knowledge.
It is a matter of clearly postulating the knowledge behind the specific method.
Postulating provides a solid basis for developing an approach to solve the problem,
and facilitate discussion.

As we succeeded in formulating the scaffolding for chloroplast genomes, we
would be able to propose a specific formulation for the other organelles in a plant
cell. Mitochondria, for instance, are likely to have the same genomic structures as
the chloroplasts. The next step could be to combine the dedicated formulations. If
they each represent one objective, future work will involve multi-objective studies.

We can also adapt our scaffolding formulation for the repeats to identify the
regions resulting from an event of repeat degeneration. In this case, we could apply
our methods to genomes of different organisms, such as bacterial, plant or animal
genomes, without the need to assemble them.

138

BIBLIOGRAPHY
Adey, A., Kitzman, J. O., Burton, J. N., Daza, R., Kumar, A., Christiansen, L.,

Ronaghi, M., Amini, S., Gunderson, K. L., Steemers, F. J., and Shendure, J.
(2014). In vitro, long-range sequence information for de novo genome assembly
via transposase contiguity. Genome Research, 24(12):2041–2049.

Aganezov, S., Avdeyev, P., Alexeev, N., Rong, Y., and Alekseyev, M. A. (2022).
Orienting Ordered Scaffolds: Complexity and Algorithms. SN Computer Science,
3(4):308.

Andonov, R., Djidjev, H., François, S., and Lavenier, D. (2019). Complete assembly
of circular and chloroplast genomes based on global optimization. Journal of
Bioinformatics and Computational Biology, 17(3):1950014.

Ankenbrand, M. J., Pfaff, S., Terhoeven, N., Qureischi, M., Gündel, M., Weiß, C. L.,
Hackl, T., and Förster, F. (2018). chloroExtractor: Extraction and assembly
of the chloroplast genome from whole genome shotgun data. Journal of Open
Source Software, 3(21):464.

Bakker, F. T., Lei, D., Yu, J., Mohammadin, S., Wei, Z., van de Kerke, S.,
Gravendeel, B., Nieuwenhuis, M., Staats, M., Alquezar-Planas, D. E., and
Holmer, R. (2016). Herbarium genomics: Plastome sequence assembly from a
range of herbarium specimens using an Iterative Organelle Genome Assembly
pipeline. Biological Journal of the Linnean Society, 117(1):33–43.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov,
A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V.,
Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A.
(2012). SPAdes: A new genome assembly algorithm and its applications to single-
cell sequencing. Journal of Computational Biology: A Journal of Computational
Molecular Cell Biology, 19(5):455–477.

Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger,
B., Mesirov, J. P., and Lander, E. S. (2002). ARACHNE: A whole-genome
shotgun assembler. Genome Research, 12(1):177–189.

Bendich, A. J. (1987). Why do chloroplasts and mitochondria contain so many
copies of their genome? BioEssays, 6(6):279–282.

Bendich, A. J. (2004). Circular chloroplast chromosomes: The grand illusion. The
Plant Cell, 16(7):1661–1666.

139

BIBLIOGRAPHY

Bock, R. and Knoop, V., editors (2012). Genomics of Chloroplasts and Mitochondria,
volume 35 of Advances in Photosynthesis and Respiration. Springer Netherlands,
Dordrecht.

Bodily, P. M., Fujimoto, M. S., Snell, Q., Ventura, D., and Clement, M. J. (2016).
ScaffoldScaffolder: Solving contig orientation via bidirected to directed graph
reduction. Bioinformatics, 32(1):17–24.

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. (2011).
Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27(4):578–579.

Boetzer, M. and Pirovano, W. (2012). Toward almost closed genomes with GapFiller.
Genome Biology, 13(6):R56.

Briot, N., Chateau, A., Coletta, R., de Givry, S., Leleux, P., and Schiex, T. (2014).
An integer linear programming approach for genome scaffolding. In WCB:
Workshop on Constraint-Based Methods for Bioinformatics, 10th Workshop on
Constraint-Based Methods for Bioinformatics (WCB), 2014, page 16 p., Lyon,
France.

Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R., Kitzman, J. O., and Shendure,
J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on
chromatin interactions. Nature Biotechnology, 31(12):1119–1125.

Chateau, A. and Giroudeau, R. (2014). Complexity and Polynomial-Time Ap-
proximation Algorithms around the Scaffolding Problem. In Dediu, A.-H.,
Martín-Vide, C., and Truthe, B., editors, Algorithms for Computational Biology,
Lecture Notes in Computer Science, pages 47–58, Cham. Springer International
Publishing.

Chateau, A. and Giroudeau, R. (2015). A complexity and approximation frame-
work for the maximization scaffolding problem. Theoretical Computer Science,
595:92–106.

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-
resolved de novo assembly using phased assembly graphs with hifiasm. Nature
Methods, 18(2):170–175.

Chikhi, R. and Rizk, G. (2012). Space-Efficient and Exact de Bruijn Graph
Representation Based on a Bloom Filter. In Raphael, B. and Tang, J., editors,
Algorithms in Bioinformatics, Lecture Notes in Computer Science, pages 236–248,
Berlin, Heidelberg. Springer.

140

BIBLIOGRAPHY

Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum,
A., Dunn, C., O’Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., Cramer,
G. R., Delledonne, M., Luo, C., Ecker, J. R., Cantu, D., Rank, D. R., and Schatz,
M. C. (2016). Phased diploid genome assembly with single-molecule real-time
sequencing. Nature Methods, 13(12):1050–1054.

Clark, S. C., Egan, R., Frazier, P. I., and Wang, Z. (2013). ALE: A generic
assembly likelihood evaluation framework for assessing the accuracy of genome
and metagenome assemblies. Bioinformatics, 29(4):435–443.

Coissac, E., Hollingsworth, P. M., Lavergne, S., and Taberlet, P. (2016). From
barcodes to genomes: Extending the concept of DNA barcoding. Molecular
Ecology, 25(7):1423–1428.

Coombe, L., Zhang, J., Vandervalk, B. P., Chu, J., Jackman, S. D., Birol, I., and
Warren, R. L. (2018). ARKS: Chromosome-scale scaffolding of human genome
drafts with linked read kmers. BMC Bioinformatics, 19(1):234.

Daniell, H., Lin, C.-S., Yu, M., and Chang, W.-J. (2016). Chloroplast genomes:
Diversity, evolution, and applications in genetic engineering. Genome Biology,
17(1):134.

Davot, T., Chateau, A., Fossé, R., Giroudeau, R., and Weller, M. (2022). On
a greedy approach for genome scaffolding. Algorithms for Molecular Biology,
17(1):16.

Dayarian, A., Michael, T. P., and Sengupta, A. M. (2010). SOPRA: Scaffolding
algorithm for paired reads via statistical optimization. BMC Bioinformatics,
11(1):345.

Delahaye, C. and Nicolas, J. (2021). Sequencing DNA with nanopores: Troubles
and biases. PLOS ONE, 16(10):e0257521.

Deng, X.-W., Wing, R. A., and Gruissem, W. (1989). The chloroplast genome
exists in multimeric forms. Proceedings of the National Academy of Sciences,
86(11):4156–4160.

Dierckxsens, N., Mardulyn, P., and Smits, G. (2017). NOVOPlasty: De novo
assembly of organelle genomes from whole genome data. Nucleic Acids Research,
45(4):e18.

Donmez, N. and Brudno, M. (2013). SCARPA: Scaffolding reads with practical
algorithms. Bioinformatics, 29(4):428–434.

141

BIBLIOGRAPHY

Edmonds, J. and Johnson, E. L. (1970). Matching: A well-solved class of integer
linear programs. In In: Combinatorial Structures and Their Applications (Gordon
and Breach, pages 89–92.

Ekim, B., Berger, B., and Chikhi, R. (2021). Minimizer-space de Bruijn graphs:
Whole-genome assembly of long reads in minutes on a personal computer. Cell
Systems, 12(10):958–968.e6.

François, S., Andonov, R., Lavenier, D., and Djidjev, H. (2018). Global Optimiza-
tion for Scaffolding and Completing Genome Assemblies. Electronic Notes in
Discrete Mathematics, 64:185–194.

Franklin, R. E. and Gosling, R. G. (1953). The structure of sodium thymonucleate
fibres. I. The influence of water content. Acta Crystallographica, 6(8):673–677.

Freudenthal, J. A., Pfaff, S., Terhoeven, N., Korte, A., Ankenbrand, M. J., and
Förster, F. (2020). A systematic comparison of chloroplast genome assembly
tools. Genome Biology, 21:254.

Gao, S., Nagarajan, N., and Sung, W.-K. (2011). Opera: Reconstructing Optimal
Genomic Scaffolds with High-Throughput Paired-End Sequences. In Bafna,
V. and Sahinalp, S. C., editors, Research in Computational Molecular Biology,
Lecture Notes in Computer Science, pages 437–451, Berlin, Heidelberg. Springer.

Ghurye, J., Rhie, A., Walenz, B. P., Schmitt, A., Selvaraj, S., Pop, M., Phillippy,
A. M., and Koren, S. (2019). Integrating Hi-C links with assembly graphs for
chromosome-scale assembly. PLOS Computational Biology, 15(8):e1007273.

Gingeras, T., Milazzo, J., Sciaky, D., and Roberts, R. (1979). Computer programs
for the assembly of DNA sequences. Nucleic Acids Research, 7(2):529–543.

Goldfarb, D. and Idnani, A. (1983). A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming, 27(1):1–33.

Gould, S. B. (2012). Algae’s complex origins. Nature, 492(7427):46–48.

Gritsenko, A. A., Nijkamp, J. F., Reinders, M. J., and de Ridder, D. (2012).
GRASS: A generic algorithm for scaffolding next-generation sequencing assem-
blies. Bioinformatics, 28(11):1429–1437.

Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: Quality
assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075.

142

BIBLIOGRAPHY

Gusfield, D. (2019). The RNA-Folding Problem. In Gusfield, D., editor, Integer
Linear Programming in Computational and Systems Biology: An Entry-Level
Text and Course, pages 105–121. Cambridge University Press, Cambridge.

Hernandez, D., François, P., Farinelli, L., Østerås, M., and Schrenzel, J. (2008).
De novo bacterial genome sequencing: Millions of very short reads assembled on
a desktop computer. Genome Research, 18(5):802–809.

Hierholzer, C. and Wiener, C. (1873). Ueber die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen,
6(1):30–32.

Hon, T., Mars, K., Young, G., Tsai, Y.-C., Karalius, J. W., Landolin, J. M.,
Maurer, N., Kudrna, D., Hardigan, M. A., Steiner, C. C., Knapp, S. J., Ware,
D., Shapiro, B., Peluso, P., and Rank, D. R. (2020). Highly accurate long-read
HiFi sequencing data for five complex genomes. Scientific Data, 7(1):399.

Huson, D. H., Reinert, K., and Myers, E. W. (2002). The greedy path-merging
algorithm for contig scaffolding. Journal of the ACM, 49(5):603–615.

Idury, R. M. and Waterman, M. S. (1995). A New Algorithm for DNA Sequence
Assembly. Journal of Computational Biology, 2(2):291–306.

Jain, C. (2023). Coverage-preserving sparsification of overlap graphs for long-read
assembly. Bioinformatics, 39(3):btad124.

Jin, J.-J., Yu, W.-B., Yang, J.-B., Song, Y., dePamphilis, C. W., Yi, T.-S., and Li,
D.-Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo
assembly of organelle genomes. Genome Biology, 21(1):241.

Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A., and Tse, D. N. (2017).
HINGE: Long-read assembly achieves optimal repeat resolution. Genome Re-
search, 27(5):747–756.

Karp, R. M. (1972). Reducibility among Combinatorial Problems. In Miller,
R. E., Thatcher, J. W., and Bohlinger, J. D., editors, Complexity of Computer
Computations: Proceedings of a Symposium on the Complexity of Computer
Computations, Held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and Sponsored by the Office of Naval
Research, Mathematics Program, IBM World Trade Corporation, and the IBM
Research Mathematical Sciences Department, The IBM Research Symposia Series,
pages 85–103. Springer US, Boston, MA.

143

BIBLIOGRAPHY

Kececioglu, J. D. (1991). Exact and Approximation Algorithms for DNA Sequence
Reconstruction. PhD thesis, The University of Arizona.

Kececioglu, J. D. and Myers, E. W. (1995). Combinatorial algorithms for DNA
sequence assembly. Algorithmica, 13(1):7.

Kidwell, M. G. (2002). Transposable elements and the evolution of genome size in
eukaryotes. Genetica, 115(1):49–63.

Kim, K.-J. and Lee, H.-L. (2005). Widespread Occurrence of Small Inversions in
the Chloroplast Genomes of Land Plants. Molecules and Cells, 19(1):104–113.

Kobayashi, T., Takahara, M., Miyagishima, S.-y., Kuroiwa, H., Sasaki, N., Ohta,
N., Matsuzaki, M., and Kuroiwa, T. (2002). Detection and Localization of a
Chloroplast-Encoded HU-Like Protein That Organizes Chloroplast Nucleoids.
The Plant Cell, 14(7):1579–1589.

Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P. A. (2019). Assembly of long,
error-prone reads using repeat graphs. Nature Biotechnology, 37(5):540–546.

Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons,
J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., Taillon, B. E., Chen, Z.,
Tanzer, A., Saunders, A. C. E., Chi, J., Yang, F., Carter, N. P., Hurles, M. E.,
Weissman, S. M., Harkins, T. T., Gerstein, M. B., Egholm, M., and Snyder,
M. (2007). Paired-End Mapping Reveals Extensive Structural Variation in the
Human Genome. Science, 318(5849):420–426.

Koren, S., Treangen, T. J., and Pop, M. (2011). Bambus 2: Scaffolding metagenomes.
Bioinformatics, 27(21):2964–2971.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: Scalable and accurate long-read assembly via adaptive
k-mer weighting and repeat separation. Genome Research, 27(5):722–736.

Kumar, R. A., Oldenburg, D. J., and Bendich, A. J. (2014). Changes in DNA
damage, molecular integrity, and copy number for plastid DNA and mito-
chondrial DNA during maize development. Journal of Experimental Botany,
65(22):6425–6439.

Li, H. (2016). Minimap and miniasm: Fast mapping and de novo assembly for
noisy long sequences. Bioinformatics, 32(14):2103–2110.

Li, M. (1990). Towards a DNA sequencing theory (learning a string). In Proceedings
[1990] 31st Annual Symposium on Foundations of Computer Science, pages
125–134 vol.1.

144

BIBLIOGRAPHY

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan,
G., Kristiansen, K., Li, S., Yang, H., Wang, J., and Wang, J. (2010). De
novo assembly of human genomes with massively parallel short read sequencing.
Genome Research, 20(2):265–272.

Lokshtanov, D., Saurabh, S., and Sikdar, S. (2009). Simpler Parameterized Al-
gorithm for OCT. In Fiala, J., Kratochvíl, J., and Miller, M., editors, Combin-
atorial Algorithms, Lecture Notes in Computer Science, pages 380–384, Berlin,
Heidelberg. Springer.

Long, L., Li, Y., Wang, S., Liu, Z., Wang, J., and Yang, M. (2023). Complete
chloroplast genomes and comparative analysis of Ligustrum species. Scientific
Reports, 13(1):212.

Luo, J., Lyu, M., Chen, R., Zhang, X., Luo, H., and Yan, C. (2019). SLR:
A scaffolding algorithm based on long reads and contig classification. BMC
Bioinformatics, 20(1):1–11.

Luo, J., Wang, J., Zhang, Z., Li, M., and Wu, F.-X. (2017). BOSS: A novel
scaffolding algorithm based on an optimized scaffold graph. Bioinformatics,
33(2):169–176.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q.,
Liu, Y., Tang, J., Wu, G., Zhang, H., Shi, Y., Liu, Y., Yu, C., Wang, B., Lu, Y.,
Han, C., Cheung, D. W., Yiu, S.-M., Peng, S., Xiaoqian, Z., Liu, G., Liao, X., Li,
Y., Yang, H., Wang, J., Lam, T.-W., and Wang, J. (2012). SOAPdenovo2: An
empirically improved memory-efficient short-read de novo assembler. GigaScience,
1(1):18.

Mandric, I. and Zelikovsky, A. (2015). ScaffMatch: Scaffolding algorithm based on
maximum weight matching. Bioinformatics, 31(16):2632–2638.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6):764–770.

McKain, M. and afinit (2017). Mrmckain/Fast-Plast: Fast-Plast v.1.2.6. Zenodo.

Medvedev, P. and Brudno, M. (2009). Maximum Likelihood Genome Assembly.
Journal of Computational Biology, 16(8):1101–1116.

Medvedev, P., Georgiou, K., Myers, G., and Brudno, M. (2007). Computability of
Models for Sequence Assembly. In Giancarlo, R. and Hannenhalli, S., editors,
Algorithms in Bioinformatics, Lecture Notes in Computer Science, pages 289–301,
Berlin, Heidelberg. Springer.

145

BIBLIOGRAPHY

Mehdi, K., Gibrat, J.-F., and Elloumi, M. (2017). Generations of Sequencing
Technologies: From First to Next Generation. Electromagnetic Biology and
Medicine, 9(3):8 p.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer Programming
Formulation of Traveling Salesman Problems. Journal of the ACM, 7(4):326–329.

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley,
A., Johnson, J., Li, K., Mobarry, C., and Sutton, G. (2008). Aggressive as-
sembly of pyrosequencing reads with mates. Bioinformatics (Oxford, England),
24(24):2818–2824.

Myers, E. W. (1995). Toward simplifying and accurately formulating fragment
assembly. Journal of Computational Biology: A Journal of Computational
Molecular Cell Biology, 2(2):275–290.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics,
21(suppl_2):ii79–ii85.

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan,
M. J., Kravitz, S. A., Mobarry, C. M., Reinert, K. H., Remington, K. A., Anson,
E. L., Bolanos, R. A., Chou, H. H., Jordan, C. M., Halpern, A. L., Lonardi,
S., Beasley, E. M., Brandon, R. C., Chen, L., Dunn, P. J., Lai, Z., Liang, Y.,
Nusskern, D. R., Zhan, M., Zhang, Q., Zheng, X., Rubin, G. M., Adams, M. D.,
and Venter, J. C. (2000). A whole-genome assembly of Drosophila. Science (New
York, N.Y.), 287(5461):2196–2204.

O’Connor, M., Peifer, M., and Bender, W. (1989). Construction of Large DNA
Segments in Escherichia coli. Science, 244(4910):1307–1312.

Ohyama, K., Fukuzawa, H., Kohchi, T., Shirai, H., Sano, T., Sano, S., Umesono,
K., Shiki, Y., Takeuchi, M., Chang, Z., Aota, S.-i., Inokuchi, H., and Ozeki,
H. (1986). Chloroplast gene organization deduced from complete sequence of
liverwort Marchantia polymorpha chloroplast DNA. Nature, 322(6079):572–574.

Palmer, J. D. (1983). Chloroplast DNA exists in two orientations. Nature,
301(5895):92–93.

Palmer, J. D. (1985). Comparative Organization of Chloroplast Genomes. Annual
Review of Genetics, 19(1):325–354.

Peltola, H., Söderlund, H., and Ukkonen, E. (1984). SEQAID: A DNA sequence
assembling program based on a mathematical model. Nucleic Acids Research,
12(1 Pt 1):307–321.

146

BIBLIOGRAPHY

Pervez, M. T., ul Hasnain, M. J., Abbas, S. H., Moustafa, M. F., Aslam,
N., and Shah, S. S. M. (2022). A Comprehensive Review of Performance
of Next-Generation Sequencing Platforms. BioMed Research International,
2022:e3457806.

Pevzner, P. A. (1989). L-Tuple DNA Sequencing: Computer Analysis. Journal of
Biomolecular Structure and Dynamics, 7(1):63–73.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach
to DNA fragment assembly. Proceedings of the National Academy of Sciences of
the United States of America, 98(17):9748–9753.

Poloczek, M. and Szegedy, M. (2012). Randomized Greedy Algorithms for the
Maximum Matching Problem with New Analysis. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 708–717.

Pop, M., Kosack, D. S., and Salzberg, S. L. (2004). Hierarchical Scaffolding With
Bambus. Genome Research, 14(1):149–159.

Qin, M., Wu, S., Li, A., Zhao, F., Feng, H., Ding, L., and Ruan, J. (2019). LRScaf:
Improving draft genomes using long noisy reads. BMC Genomics, 20(1):955.

Räihä, K.-J. and Ukkonen, E. (1981). The Shortest Common Supersequence
Problem over Binary Alphabet is NP-Complete. Theor. Comput. Sci.

Rice, E. S. and Green, R. E. (2019). New Approaches for Genome Assembly and
Scaffolding. Annual Review of Animal Biosciences, 7:17–40.

Roy, R. S., Chen, K. C., Sengupta, A. M., and Schliep, A. (2012). SLIQ: Simple
Linear Inequalities for Efficient Contig Scaffolding. Journal of Computational
Biology, 19(10):1162–1175.

Ruan, J. and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2.
Nature Methods, 17(2):155–158.

Sahlin, K., Vezzi, F., Nystedt, B., Lundeberg, J., and Arvestad, L. (2014). BESST
- Efficient scaffolding of large fragmented assemblies. BMC Bioinformatics,
15(1):281.

Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., and Ukkonen, E. (2011). Fast
scaffolding with small independent mixed integer programs. Bioinformatics,
27(23):3259–3265.

147

BIBLIOGRAPHY

Sancho, R., Cantalapiedra, C. P., López-Alvarez, D., Gordon, S. P., Vogel, J. P.,
Catalán, P., and Contreras-Moreira, B. (2018). Comparative plastome gen-
omics and phylogenomics of Brachypodium: Flowering time signatures, intro-
gression and recombination in recently diverged ecotypes. New Phytologist,
218(4):1631–1644.

Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., and Petersen, G. B. (1982).
Nucleotide sequence of bacteriophage λ DNA. Journal of Molecular Biology,
162(4):729–773.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with
chain-terminating inhibitors. Proceedings of the National Academy of Sciences,
74(12):5463–5467.

Schrijver, A. (2003). Combinatorial Optimization: Polyhedra and Efficiency.
Springer Science & Business Media.

Seyer, P., Kowallik, K. V., and Herrmann, R. G. (1981). A physical map of Nicotiana
tabacum plastid DNA including the location of structural genes for ribosomal
RNAs and the large subunit of ribulose bisphosphate carboxylase/oxygenase.
Current Genetics, 3(3):189–204.

Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H. E., Bosworth, C.,
Armstrong, J., Tigyi, K., Maurer, N., Koren, S., Sedlazeck, F. J., Marschall, T.,
Mayes, S., Costa, V., Zook, J. M., Liu, K. J., Kilburn, D., Sorensen, M., Munson,
K. M., Vollger, M. R., Monlong, J., Garrison, E., Eichler, E. E., Salama, S.,
Haussler, D., Green, R. E., Akeson, M., Phillippy, A., Miga, K. H., Carnevali,
P., Jain, M., and Paten, B. (2020). Nanopore sequencing and the Shasta toolkit
enable efficient de novo assembly of eleven human genomes. Nature Biotechnology,
38(9):1044–1053.

Shapiro, M. B. (1967). An Algorithm for Reconstructing Protein and RNA Se-
quences. Journal of the ACM, 14(4):720–731.

Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi,
T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C.,
Torazawa, K., Meng, B., Sugita, M., Deno, H., Kamogashira, T., Yamada, K.,
Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, N., Shimada, H., and Sugiura, M.
(1986). The complete nucleotide sequence of the tobacco chloroplast genome: Its
gene organization and expression. The EMBO Journal, 5(9):2043–2049.

Sommer, D. D., Delcher, A. L., Salzberg, S. L., and Pop, M. (2007). Minimus: A
fast, lightweight genome assembler. BMC bioinformatics, 8:64.

148

BIBLIOGRAPHY

Staden, R. (1979). A strategy of DNA sequencing employing computer programs.
Nucleic Acids Research, 6(7):2601–2610.

Staden, R. (1980). A new computer method for the storage and manipulation of
DNA gel reading data. Nucleic Acids Research, 8(16):3673–3694.

Sun, J., Wang, Y., Liu, Y., Xu, C., Yuan, Q., Guo, L., and Huang, L. (2020).
Evolutionary and phylogenetic aspects of the chloroplast genome of Chaenomeles
species. Scientific Reports, 10(1):11466.

Thode, V. A., Oliveira, C. T., Loeuille, B., Siniscalchi, C. M., and Pirani, J. R.
(2021). Comparative analyses of Mikania (Asteraceae: Eupatorieae) plastomes
and impact of data partitioning and inference methods on phylogenetic relation-
ships. Scientific Reports, 11(1):13267.

Trevors, J. T. (1996). Genome size in bacteria. Antonie van Leeuwenhoek,
69(4):293–303.

Tsai, C.-H. and Strauss, S. H. (1989). Dispersed repetitive sequences in the
chloroplast genome of Douglas-fir. Current Genetics, 16(3):211–218.

Turmel, M., Otis, C., and Lemieux, C. (2017). Divergent copies of the large inverted
repeat in the chloroplast genomes of ulvophycean green algae. Scientific Reports,
7(1):994.

Venter, J. C., Smith, H. O., and Hood, L. (1996). A new strategy for genome
sequencing. Nature, 381(6581):364–366.

Wang, W. and Lanfear, R. (2019). Long-Reads Reveal That the Chloroplast
Genome Exists in Two Distinct Versions in Most Plants. Genome Biology and
Evolution, 11(12):3372–3381.

Watson, J. D. and Crick, F. H. C. (1953). The Structure of Dna. Cold Spring
Harbor Symposia on Quantitative Biology, 18:123–131.

Weller, M., Chateau, A., and Giroudeau, R. (2015). Exact approaches for scaffolding.
BMC Bioinformatics, 16(14):S2.

Xiao-Ming, Z., Junrui, W., Li, F., Sha, L., Hongbo, P., Lan, Q., Jing, L., Yan,
S., Weihua, Q., Lifang, Z., Yunlian, C., and Qingwen, Y. (2017). Inferring the
evolutionary mechanism of the chloroplast genome size by comparing whole-
chloroplast genome sequences in seed plants. Scientific Reports, 7(1):1555.

Zerbino, D. R. and Birney, E. (2008). Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research, 18(5):821–829.

149

APPENDIX

In this chapter

1 Repeated fragment set functions A1
2 Reduction of the repeated fragment sets A2

2.1 Repeated fragment set reductions A2
2.2 Pairs of repeated fragment set reductions A5
2.3 Adjacent repeated fragment set reductions A8

3 Metrics A17
3.1 Quast metrics . A17

4 Supplementary results A18
4.1 v1 scaffolding benchmark . A18
4.2 v2 scaffolding benchmark . A20

1 Repeated fragment set functions

dirfrag : V → DirF

v 7→

(v, v′) if occv | 2
where occv′ = occv + 1

(v′, v) else occv - 2
where occv′ = occv − 1

orv = orv′

invfrag : V → InvF

v 7→

(v, v′) if orv = 0

where orv′ = 1 ∧ occv′ = occv + 1

(v′, v) else orv = 1

where orv′ = 0 ∧ occv′ = occv − 1

A1

APPENDIX Set reductions 2

diradj : E → E

(u, v) 7→ (u′, v′)

ctgu′ = ctgu

oru′ = oru

occu′ =

{
occu + 1 if occu | 2
occu − 1 otherwise

ctgv′ = ctgv

orv′ = orv

occv′ =

{
occv + 1 if occv | 2
occv − 1 otherwise

invadj : E → E

(u, v) 7→ (v′, u′)

ctgv′ = ctgv

orv′ = 1− orv

occv′ = 2
⌊occv

2

⌋
+ (1− orv)

ctgu′ = ctgu

oru′ = 1− oru

occu′ = 2
⌊occu

2

⌋
+ (1− oru)

2 Reduction of the repeated fragment sets
In this section, we give prove the minimality and the sufficiency of the repeated
fragment sets (RepF , PRepF ,ARepF) definitions.

2.1 Repeated fragment set reductions
Here we consider the reduction operations for DirF and InvF , and conclude
on their minimality. Only two vertices i, j ∈ V with the same identifier, i.e.
ctgi = ctgj can form a repeated fragment. The relative orientations between i and
j is determined according to the type of the repeat the fragment is associated to.
The occurrences of the two vertices in a repeated fragment must differ.

A2

2 Set reductions APPENDIX

Two combinatorial reductions are necessary — commutative and pairing reduc-
tions:

i. commutative reduction means that ∀ (i, j) ∈ RepF , (j, i) /∈ RepF ;

ii. pairing reduction means that it is not necessary to pair all the occurrences
cross all the occurrences, and we can group by consecutive occurrences without
any intersection.

Reminder of the DirF definition:

DirF =
⋃
c∈R

(i, j) ∈ V 2 s.t.
ctgi = ctgj = c

∧ ori = orj ∈ {f, r}
∧ occi = occj − 1 = 2k

0 ≤ k <

⌊
mult(c)

2

⌋

I Proposition 2.1: Commutative reduction for DirF

∀ (i, j) ∈ DirF , (j, i) /∈ DirF

B Proof

Let (i, j) ∈ DirF . occj = occi + 1 so (j, i) /∈ DirF
C

I Proposition 2.2: Pairing reduction for DirF

The direct fragment set contains a sufficient number of direct fragments to form
all the solutions.

B Proof

The idea is to find the minimum occurrence difference between two direct
fragments such that they can both be chosen to form DRs. Let (i, j) ∈ DirF
be a direct fragment and suppose that it is chosen to participate into a DR.
Let k, l ∈ V | ctgk = ctgl = ctgi = ctgj ∧ ork = orl = ori = orj be a candidate
for the next direct fragment:

— the occurrences of k and l must differ from the ones of i and j, as a
vertex can occupy at most one position, so occj < occk;

A3

APPENDIX Set reductions 2

— according to Proposition 2.1, occk < occl and since occurrences are integers,
occk = occl − 1.

So occi = occj − 1 ≤ occk − 2 = occl − 3 =⇒ occi + 3 ≤ occl. The smallest
possible values for occk and occl equal occi + 2 and occj + 2.

C

I Proposition 2.3

Direct fragment set DirF is a minimal set for DRP .

B Proof

Firstly, we must keep the direct fragment for both the forward (ori = orj = 0)
and the reverse orientations (ori = orj = 1) as the scaffolding problem aims
to order and orientate the contigs, so by definition we cannot determine which
orientation will participate in the order. Secondly, making step bigger than
2k prevents to use all the occurrences of a contig, so it contradicts the contig
multiplicity definition.

C

Reminder of the InvF definition:

InvF =
⋃
c∈R

(i, j) ∈ V 2 s.t.
ctgi = ctgj = c

∧ ori = f ∧ orj = r

∧ occi = occj − 1 = 2k

0 ≤ k <

⌊
mult(c)

2

⌋

I Proposition 2.4: Commutative reduction for InvF

∀ (i, j) ∈ InvF , (j, i) /∈ InvF

B Proof

Let (i, j) ∈ InvF . occj = occi + 1 so (j, i) /∈ InvF
C

A4

2 Set reductions APPENDIX

I Proposition 2.5: Pairing reduction for InvF

The inverted fragment set contains a sufficient number of inverted fragments to
form all the solutions.

B Proof

The idea is to find the minimum occurrence difference between two inverted
fragments such that they can both be chosen to form IRs. Let (i, j) ∈ InvF
be an inverted fragment and suppose that it is chosen to participate into an
IR. Let k, l ∈ V | ctgk = ctgl = ctgi = ctgj ∧ ork 6= orl be a candidate for the
next direct fragment:

— to respect the property given by Proposition 2.4, ork = 1− orl = 0

— the occurrences of k and l must differ from the ones of i and j when
their orientations are matching, as a vertex can occupy at most one
position. Furthermore, for a given occurrence and a given identifier, the
two orientations are mutually exclusive, so occj < occk;

— according to Proposition 2.4, occk < occl and since occurrences are integers,
occk = occl − 1.

So occi = occj − 1 ≤ occk − 2 = occl − 3 =⇒ occi + 3 ≤ occl. The smallest
possible values for occk and occl equal occi + 2 and occj + 2.

C

I Proposition 2.6

Inverted fragment set InvF is a minimal set for IRP .

B Proof

Step bigger than 2k prevents to use all the occurrences of a contig, so it
contradicts the contig multiplicity definition.

C

2.2 Pairs of repeated fragment set reductions
Here we consider the reduction operations for PDirF and PInvF , and conclude
on their minimality. Just the commutative reduction is necessary.

A5

APPENDIX Set reductions 2

Reminder of pairs of direct fragments set definition:

PDirF =

(
(i, j), (k, l)

)
∈ DirF 2 s.t.

ctgj < ctgk

∨
ctgj = ctgk ∧ occj < occk

I Proposition 2.7: Commutative reduction for PDirF

∀ ((i, j), (k, l)) ∈ PDirF , ((k, l), (i, j)) /∈ PDirF

B Proof

Let ((i, j), (k, l)) ∈ PDirF :

— if ctgj < ctgk thus ctgl > ctgi so ((k, l), (i, j)) /∈ PDirF

— else ctgj = ctgk ∧ occj < occk thus occl > occi so ((k, l), (i, j)) /∈ PDirF

C

I Proposition 2.8

Pair of direct fragment set PDirF is a minimal set for DRP .

B Proof

By reductio ad absurdum: if PDirF can be minimised to a PDirF ′ set,
then there exists a pair of direct fragments (p, q) ∈ PDirF | (p, q) /∈ PDirF ′.

Let p = (i, j) and q = (k, l), and let q2 = (m,n) | (p, q2) ∈ PDirF ′ ∧
(q, q2) ∈ PDirF ′. i, j, k, l,m, n vertices can simultaneously participate in the
solution.

Let build a counter-example: suppose that we have the order i k l j mn.
This implies the direct fragments p and q fall into a forbidden case for DRP,
but this is not detected by Constraints C14 and C15 because (p, q) /∈ PDirF ′.
According to Constraint C16, the direct fragments p and q2 can both match,
and direct fragments q and q2 too. So mp = mq = mq2 = 1: absurd because p
and q are nested so mp and mq should be equal to 0.

C

A6

2 Set reductions APPENDIX

Reminder of pairs of inverted fragments set definition:

PInvF =

(
(i, j), (k, l)

)
∈ InvF 2 s.t.

ctgj < ctgk

∨
ctgj = ctgk ∧ occj < occk

I Proposition 2.9: Commutative reduction for PInvF

∀ ((i, j), (k, l)) ∈ PInvF , ((k, l), (i, j)) /∈ PInvF

B Proof

Let ((i, j), (k, l)) ∈ PInvF :

— if ctgj < ctgk thus ctgl > ctgi so ((k, l), (i, j)) /∈ PInvF

— else ctgj = ctgk ∧ occj < occk thus occl > occi so ((k, l), (i, j)) /∈ PInvF

C

I Proposition 2.10

Pair of inverted fragment set PInvF is a minimal set for IRP .

B Proof

By reductio ad absurdum: if PInvF can be minimised to a PInvF ′ set, then
there exists a pair of inverted fragments (p, q) ∈ PInvF | (p, q) /∈ PInvF ′.

Let be p = (i, j) and q = (k, l), and let q2 = (m,n) | (p, q2) ∈ PInvF ′ ∧
(q, q2) ∈ PInvF ′. i, j, k, l,m, n vertices can simultaneously participate in the
solution.

Let build a counter-example: suppose that we have the order i k j l mn.
This implies the inverted fragments p and q fall into a forbidden case for DRP,
but this is not detected by Constraints C14 and C15 because (p, q) /∈ PInvF ′.
According to Constraint C16, the inverted fragments p and q2 can both match,
and inverted fragments q and q2 too. So mp = mq = mq2 = 1: absurd because
p and q intersect so mp and mq should be equal to 0.

C

A7

APPENDIX Set reductions 2

2.3 Adjacent repeated fragment set reductions

Here we consider the reduction operations for ADirF and AInvF , and conclude
on their minimality.

Reminder of adjacent direct fragments set definition:

ADirF =

(u, v) ∈ E s.t.
ctgu 6= ctgv

∧ occu = 2k

0 ≤ k <

⌊
multu

2

⌋
∧ occv = 2k′

0 ≤ k′ <

⌊
multv

2

⌋

⋃

(u, v) ∈ E s.t.
ctgu = ctgv

∧ (oru = 0 ∨ orv = 0)

∧ occu = 2k

∧ occv = 2k′

0 ≤ k < k′ <

⌊
multu

2

⌋

This set is the minimum exhaustive set of canonical edges which represent
adjacent direct fragments. Two combinatorial reductions are necessary — canonical
reduction for different identifiers (Propositions 2.11 and 2.12) and same identifiers
occurrences reductions (Propositions 2.13 and 2.14).

I Proposition 2.11: Canonical reductions for ADirF for different identi-
fiers

ADirF set contains only two of the eight edges that exist between two adjacent
direct fragments when the vertex’ identifiers are different, i.e.

A8

2 Set reductions APPENDIX

∀ (i, j) ∈ DirF , ∀ (k, l) ∈ DirF | ctgi 6= ctgk:

(i, k) ∈ E
⇐⇒ (i, l) ∈ E
⇐⇒ (j, k) ∈ E
⇐⇒ (j, l) ∈ E

⇐⇒

(i, k) ∈ ADirF

∧(k, i) ∈ ADirF
∧(i, l) /∈ ADirF

∧(l, i) /∈ ADirF
∧(j, k) /∈ ADirF

∧(k, j) /∈ ADirF
∧(j, l) /∈ ADirF

∧(l, j) /∈ ADirF

(k, i) ∈ E
⇐⇒ (k, j) ∈ E
⇐⇒ (l, i) ∈ E
⇐⇒ (l, j) ∈ E

⇐⇒

(k, i) ∈ ADirF

∧(i, k) ∈ ADirF
∧(k, j) /∈ ADirF

∧(j, k) /∈ ADirF
∧(l, i) /∈ ADirF

∧(i, l) /∈ ADirF
∧(l, j) /∈ ADirF

∧(j, l) /∈ ADirF

B Proof

The reciprocal are trivial as ADirF ⊂ E.
All the edges using only i, i, k or k belong to ADirF as all the vertex’

occurrences are even. While all the edges using j, j , l or l cannot belong to
ADirF as one of the vertex’ occurrence is odd.

C

I Proposition 2.12: Minimum ADirF set for different identifiers

When the vertex’ identifiers are different, it is not possible to reduce the number
of canonical edges based on occurrences comparisons.

B Proof

In order to reduce ADirF when the vertex’ identifiers are different, we have
to be more restrictive on the occurrences constraints. To reduce the loops on
k and k′, we have to find an order between the occurrences of u and v.

A9

APPENDIX Set reductions 2

However, for each order relation between the occurrences (occu ≤ occv
and occu ≥ occv), we can find two associated counter-examples. For the sake
of clarity, we will find a counter-example for the case occu ≤ occv. The
reasoning is analogous for the second case.

Let a, b and c be three contigs in C such that all their identifiers are
different, multa = 2, multb = mult(c) = 1, and (af , bf) ∈ L, (bf , af) ∈ L
and (af , cf) ∈ L.

Let fa1 = (i, j), fa2 = (i′, j′) be the two direct fragments associated to a
and fb = (k, l), fc = (m,n) the two respectively associated to b and c. The
idea behind the proof is to know if the adjacent direct fragments fa1 fb fa2 fc
can participate into a solution path Path. In such a case, Path is sub-defined
by edges i→ k → i′ → m (and j → l→ j′ → n). Remark that k can permute
with l, and m with n.

According to ADirF set definition, (i, k) ∈ ADirF , (k, i′) ∈ ADirF and
(i′,m) ∈ ADirF . If we constrain the occurrences by the relation occu ≤ occv,
it implies that:

occi ≤ occk(= occl − 1)

occl − 1 ≤ occi′ − 1

occi′ ≤ occm

As fa1 6= fa2, occi 6= occi′ − 1:

if occi < occi′ − 1 then when we focus on the first edges path (in the “best”
case n permutes with m) occk(= 0) ≤ occi′(= 2) ≤ occn(= 1), so it is
absurd;

else occi > occi′ − 1 then when we focus on the first edges path, you can
permute i′ and i and you fall into the same absurd implication as above.

C

I Proposition 2.13: Occurences reduction for equal identifiers in ADirF

There exists an order between the occurrences of the vertices of an edge between
two direct fragments that does not reduce the number of feasible and distinct
solutions when the vertex’ identifiers are equal.

A10

2 Set reductions APPENDIX

B Proof

Let u1, u2, . . . , un, n = 2
⌊
multu

2

⌋
be same identifiers vertices participating in

a solution path for IRP, in this order (i.e. ∀ k ∈ J1, nJ, uk is before uk+1 in
the solution path).

It can be provena that: regardless the equation set of k − 1 order relation
Rk,k+1 ∈ {<,>} between two vertices ctguk and ctguk+1 (i.e. ctgukRk,k+1ctguk+1, ∀ k ∈
J1, nJ), there exists a permutation between all distinct occurrences of u such
that all the relations Rk,k+1 are satisfied. Thus, let defined the following
equation set (used in ADirF):

Rk,k+1 :=

{
< if oruk = 0 ∨ oruk+1 = 0

> else oruk = oruk+1 = 1

Have we got enough edges to build a path with n
2

adjacent direct frag-
ments? On the one hand, the maximum number of edges we would need
is: 2

(⌊
multu

2

⌋
− 1
)

(the 2 is caused by direct fragments). On the other hand,
ADirF provides:

2

⌊
multu

2

⌋
−1∑

k′=1

1 = 2

(⌊
multu

2

⌋
− 1

)
edges, (the 2 is caused by diradj function).

C
aWith Lucas Robidou we are currently writing a paper and an associated algorithm

I Proposition 2.14: Canonical reductions for ADirF for equal identifiers

ADirF set contains only one of the eight edges that exist between two adjacent
direct fragments when the vertex’ identifiers are equal, i.e.

A11

APPENDIX Set reductions 2

∀ (i, j) ∈ DirF , ∀ (k, l) ∈ DirF | ctgi = ctgk ∧ occi < occk:

(i, k) ∈ E
⇐⇒ (i, l) ∈ E
⇐⇒ (j, k) ∈ E
⇐⇒ (j, l) ∈ E

⇐⇒

(i, k) ∈ ADirF

∧(k, i) /∈ ADirF
∧(i, l) /∈ ADirF

∧(l, i) /∈ ADirF
∧(j, k) /∈ ADirF

∧(k, j) /∈ ADirF
∧(j, l) /∈ ADirF

∧(l, j) /∈ ADirF

(k, i) ∈ E
⇐⇒ (k, j) ∈ E
⇐⇒ (l, i) ∈ E
⇐⇒ (l, j) ∈ E

⇐⇒

(k, i) /∈ ADirF

∧(i, k) ∈ ADirF
∧(k, j) /∈ ADirF

∧(j, k) /∈ ADirF
∧(l, i) /∈ ADirF

∧(i, l) /∈ ADirF
∧(l, j) /∈ ADirF

∧(j, l) /∈ ADirF

B Proof

The reciprocals are trivial as ADirF ⊂ E.
Only (i, k) ∈ ADirF and (i, k) ∈ ADirF as the occurrences of i, i, k or

k are even, and occi = occ
i
< occk = occ

k
.

For the other cases, either they contradict the even-occurrences constraint
or the constraint on the occurrences order.

C

A12

2 Set reductions APPENDIX

Reminder of adjacent inverted fragments set definition:

AInvF =

(u, v) ∈ E s.t.
ctgu < ctgv

∧ occu = 2k + oru

0 ≤ k <

⌊
multu

2

⌋
∧ occv = 2k′ + orv

0 ≤ k′ <

⌊
multv

2

⌋

⋃

(u, v) ∈ E s.t.
ctgu = ctgv

∧ (oru = 0 ∨ orv = 0)

∧ occu − oru = 2k

∧ occv − orv = 2k′

0 ≤ k < k′ <

⌊
multu

2

⌋

This set is the minimum exhaustive set of canonical edges which represent adja-
cent inverted fragments. Two combinatorial reductions are necessary — canonical
reduction for different identifiers (Propositions 2.15 and 2.16) and same identifiers
occurrences reductions (Propositions 2.17 and 2.18).

I Proposition 2.15: Canonical reductions for AInvF for different identi-
fiers

AInvF set contains only one of the four edges that exist between two adjacent
inverted fragments when the vertex’ identifiers are different, i.e.
∀ (i, j) ∈ InvF , ∀ (k, l) ∈ InvF | ctgi < ctgk:

(i, k) ∈ E ⇐⇒

(i, k) ∈ AInvF

∧(k, i) /∈ AInvF
∧(l, j) /∈ AInvF

∧(j, l) /∈ AInvF

(k, i) ∈ E ⇐⇒

(k, i) /∈ AInvF

∧(i, k) /∈ AInvF
∧(j, l) ∈ AInvF

∧(l, j) ∈ AInvF

(i, l) ∈ E ⇐⇒

(i, l) ∈ AInvF
∧(k, j) /∈ AInvF

∧(l, i) /∈ AInvF

∧(j, k) /∈ AInvF

A13

APPENDIX Set reductions 2

(j, k) ∈ E ⇐⇒

(j, k) ∈ AInvF

∧(k, j) /∈ AInvF
∧(l, i) /∈ AInvF

∧(i, l) /∈ AInvF

B Proof

The reciprocals are trivial as AInvF ⊂ E.
Let (i, j) ∈ InvF , (k, l) ∈ InvF be two adjacent inverted fragments such

that ctgi < ctgk. We will focus on demonstrating the case (i, k) ∈ E. The
others follow the same logics.

— (i, k) ∈ AInvF as ∃ n ∈ J0,
⌊
multi

2

⌋
J such that occi = 2n+ ori = 2n, and

∃ n′ ∈ J0,
⌊
multk

2

⌋
J such that occk = 2n′ + ork = 2n′ + 1;

— (k, i) /∈ AInvF as ctg
k
> ctg

i
;

— (l, j) /∈ AInvF as ctgl > ctgj;

— (j, l) /∈ AInvF as or
j
= 0 and occ

j
- 2 so @n ∈ J0,

⌊
multj

2

⌋
J such that

occ
j
= 2n.

C

I Proposition 2.16: Minimum AInvF set for different identifiers

When the vertex’ identifiers are different, it is not possible to reduce the number
of canonical edges based on occurrences comparisons.

B Proof

In order to reduce AInvF when the vertex’ identifiers are different, we have
to be more restrictive on the occurrences constraints. To reduce the loops on
k and k′, we have to find an order between the occurrences of u and v.

However, for each order relation between the occurrences (occu ≤ occv
and occu ≥ occv), we can find two associated counter-examples. For the sake
of clarity, we will find a counter-example for the case occu ≤ occv. The
reasoning is analogous for the second case.

Let c and d be two contigs in C such that ctgc < ctgd, mult(c) = 4 and

A14

2 Set reductions APPENDIX

multd = 2, and (cf , df) ∈ L and (df , cf) ∈ L. Let p1 = (i, j), p2 = (i′, j′) be
the two inverted fragments associated to c and q = (k, l) the one associated
to d. The idea behind the proof is to know if the adjacent inverted fragments
p1 q p2 can participate into a solution path Path. In such a case, Path is
sub-defined by edges i→ k → i′ and j′ → l→ j.

According to AInvF set definition, (i, k) ∈ AInvF and (j′, l) ∈ AInvF .
If we constrain the occurrences by the relation occu ≤ occv, thus on the one
hand, occi ≤ occk(= occl− 1), and on the other hand occl− 1 ≥ occj′ − 1. As
p1 6= p2, occi 6= occj′ − 1:

if occi < occj′ − 1 then occk(= 0) > occi(= 0) so it is absurd;

else occi > occj′ − 1 then occi(= 2) ≤ occk(= 0) so it is absurd.

C

I Proposition 2.17: Occurences reduction for equal identifiers in AInvF

There exists an order between the occurrences of the vertices of an edge between
two inverted fragments that does not reduce the number of feasible and distinct
solutions when the vertex’ identifiers are equal.

B Proof

Let u1, u2, . . . , un, n = 2
⌊
multu

2

⌋
be same identifiers vertices participating in

a solution path for IRP, in this order (i.e. ∀ k ∈ J1, nJ, uk is before uk+1 in
the solution path).

It can be provena that: regardless the equation set of k − 1 order relation
Rk,k+1 ∈ {<,>} between two vertices ctguk and ctguk+1 (i.e. ctgukRk,k+1ctguk+1, ∀ k ∈
J1, nJ), there exists a permutation between all distinct occurrences of u such
that all the relations Rk,k+1 are satisfied. Thus, let define the following
equation set (used in AInvF):

Rk,k+1 :=

{
< if oruk = 0 ∨ oruk+1 = 0

> else oruk = oruk+1 = 1

Have we got enough edges to build a path with n
2

adjacent inverted
fragments? On the one hand, the maximum number of edges we would need
is: 2

(⌊
multu

2

⌋
− 1
)

(the 2 is caused by inverted fragments). On the other

A15

APPENDIX Set reductions 2

hand, AInvF provides:

2

⌊
multu

2

⌋
−1∑

k′=1

1 = 2

(⌊
multu

2

⌋
− 1

)
edges, (the 2 is caused by invadj function).

C
aWith Lucas Robidou we are currently writing a paper and an associated algorithm

I Proposition 2.18: Canonical reductions for AInvF for equal identifiers

AInvF set contains only one of the four edges that exist between two adjacent
inverted fragments when the vertex’ identifiers are different, i.e.
∀ (i, j) ∈ InvF , ∀ (k, l) ∈ InvF | ctgi = ctgk ∧ occi < occk:

(i, k) ∈ E ⇐⇒

(i, k) ∈ AInvF

∧(k, i) /∈ AInvF
∧(l, j) /∈ AInvF

∧(j, l) /∈ AInvF

(i, l) ∈ E ⇐⇒

(i, l) ∈ AInvF
∧(k, j) /∈ AInvF

∧(l, i) /∈ AInvF

∧(j, k) /∈ AInvF

(j, k) ∈ E ⇐⇒

(j, k) ∈ AInvF

∧(k, j) /∈ AInvF
∧(l, i) /∈ AInvF

∧(i, l) /∈ AInvF

Nota bene (k, i) ∈ E case is not here because (i, k) does not change the solu-
tion as their sequences are equal. This non-redundancy advantage
is allowed by occurrence reduction in Proposition 2.17.

B Proof

The reciprocals are trivial as AInvF ⊂ E.
Let (i, j) ∈ InvF , (k, l) ∈ InvF be two adjacent inverted fragments such

A16

3 Metrics APPENDIX

that ctgi = ctgk and occi < occk. We will focus on demonstrating the case
(i, k) ∈ E. The others follow the same logics.

— (i, k) ∈ AInvF as ∃ n ∈ J0,
⌊
multi

2

⌋
J such that occi = 2n+ ori = 2n, and

∃ n′ ∈ J0,
⌊
multk

2

⌋
J such that occk = 2n′ + ork = 2n′ + 1;

— (k, i) /∈ AInvF as occ
k
> occ

i
;

— (l, j) /∈ AInvF as occl > occj;

— (j, l) /∈ AInvF as or
j
= 0 and occ

j
- 2 so @n ∈ J0,

⌊
multj

2

⌋
J such that

occ
j
= 2n.

C

3 Metrics
3.1 Quast metrics
Quast metric descriptions can be found at https://quast.sourceforge.net/do
cs/manual.html#sec3.1. Here we adapt the description of the ones we use in
this paper.

misassemblies is the number of positions in the contigs (breakpoints) that satisfy
one of the following criteria:

— the left flanking sequence aligns over 1 kbp away from the right flanking
sequence on the reference;

— flanking sequences overlap on more than 1 kbp;
— flanking sequences align to different strands.

local misassemblies is the number of positions in the contigs (breakpoints) that
satisfy the following conditions:

— the gap or overlap between left and right flanking sequences is less than 1
kbp, and larger than 200 bp (the maximum indel length);

— the left and right flanking sequences both are on the same strand.

Genome fraction (%) is the percentage of aligned bases in the reference genome. A
base in the reference genome is aligned if there is at least one contig with at

A17

https://quast.sourceforge.net/docs/manual.html#sec3.1
https://quast.sourceforge.net/docs/manual.html#sec3.1

APPENDIX Supplementary results 4

least one alignment to this base. Contigs from repetitive regions may map to
multiple places, and thus may be counted multiple times.

4 Supplementary results
4.1 v1 scaffolding benchmark

� Table 18 – Benchmark 3 v1 contig Quast

Instance ILPs %gnm #mis

Abies_alba dr-sc 99.32 0 0
ir-sc 99.32 0 0

Acorus_americanus ir-sc 99.52 0 0
Agathis_dammara dr-ir-sc 80.19 0 0

ir-dr-sc 80.19 0 0
Azima_tetracantha ir-sc 99.93 0 0
Begonia_pulchrifolia — — — —
Carpodetus_serratus ir-sc 98.61 0 0
Circaeaster_agrestis ir-sc 99.56 0 0
Clematis_repens ir-sc 99.93 0 0
Commiphora_foliacea ir-sc 98.34 0 0
Cucumis_hystrix ir-sc 99.49 0 0
Eucommia_ulmoides ir-sc 99.01 0 0
Jasminum_tortuosum ir-sc 99.77 0 0
Juniperus_scopulorum sc 98.82 0 0
Lamprocapnos_spectabilis dr-sc 35.11 0 0
Lathyrus_pubescens dr-sc 98.20 0 0

ir-sc 98.20 0 0
Lophocereus_schottii sc 98.63 0 0
Musa_ornata ir-sc 99.08 0 0
Oenothera_glazioviana ir-sc 98.50 0 0
Pelargonium_nanum ir-sc 96.04 0 0
Podocarpus_totara sc 98.76 0 0
Porphyra_purpura dr-sc 99.95 0 0
Sagittaria_trifolia ir-sc 98.55 0 0
Sciadopitys_verticillata dr-sc 96.24 0 0

ir-sc 96.24 0 0
Sciaphila_densiflora sc 99.87 0 0
Selaginella_kraussiana dr-sc 99.84 0 0
Selaginella_vardei dr-sc 99.98 0 0
Taxus_baccata sc 98.07 0 0
Triosteum_pinnatifidum ir-dr-sc 98.30 0 0
Uvaria_macrophylla ir-sc 98.35 0 0

(the table continues on the next page)

A18

4 Supplementary results APPENDIX

Table 18, continued

Instance ILPs %gnm #mis

Welwitschia_mirabilis ir-sc 99.17 0 0
Wolffia_australiana ir-sc 99.83 0 0

� Table 19 – Benchmark 3 v1 ILP stats

Instance |C| |L| |V| |E| Time

Abies_alba 9 28 20 36 0.02
0.02

Acorus_americanus 5 16 16 40 0.04
0.05

Agathis_dammara 20 54 50 96 0.20
0.64

Azima_tetracantha 7 20 16 28 0.00
0.00

Begonia_pulchrifolia 6 14 12 14 0.00
0.00

Carpodetus_serratus 13 44 36 76 0.14
0.21

Circaeaster_agrestis 13 36 44 112 0.37
4.06

Clematis_repens 6 16 18 38 0.04
0.04

Commiphora_foliacea 16 38 38 58 0.04
0.04

Cucumis_hystrix 9 22 22 40 0.02
0.03

Eucommia_ulmoides 13 32 32 52 0.03
0.05

Jasminum_tortuosum 10 26 30 68 0.07
0.13

Juniperus_scopulorum 10 28 20 28 0.00
0.00

Lamprocapnos_spectabilis 12 36 26 46 0.00
0.00

Lathyrus_pubescens 17 44 36 52 0.02
0.02

Lophocereus_schottii 12 36 24 36 0.00
0.00

Musa_ornata 15 32 46 82 0.24
0.87

Oenothera_glazioviana 11 30 30 56 0.07
0.08

Pelargonium_nanum 11 32 34 108 0.17

(the table continues on the next page)

A19

APPENDIX Supplementary results 4

Table 19, continued

Instance |C| |L| |V| |E| Time

0.43
Podocarpus_totara 13 42 26 42 0.00

0.03
Porphyra_purpura 3 8 8 16 0.00

0.00
Sagittaria_trifolia 15 32 34 46 0.02

0.02
Sciadopitys_verticillata 25 70 52 78 0.02

0.04
Sciaphila_densiflora 4 8 8 8 0.00

0.00
Selaginella_kraussiana 5 12 14 26 0.01

0.01
Selaginella_vardei 3 8 8 16 0.00

0.00
Taxus_baccata 17 42 34 42 0.00

0.00
Triosteum_pinnatifidum 13 40 32 66 0.07

0.15
Uvaria_macrophylla 13 30 42 86 0.24

0.84
Welwitschia_mirabilis 13 34 30 48 0.02

0.03
Wolffia_australiana 10 28 24 44 0.02

0.02

4.2 v2 scaffolding benchmark

� Table 20 – Benchmark 3 v2 ILP stats

Instance |C| |L| |V| |E| Time

Agathis_dammara 20 54 52 108 0.22
0.83

Begonia_pulchrifolia 6 14 14 22 0.00
0.00

Carpodetus_serratus 13 42 36 74 0.13
0.20

Jasminum_tortuosum 10 28 30 70 0.08
0.13

Lamprocapnos_spectabilis 12 36 48 180 0.68
2.67

(the table continues on the next page)

A20

4 Supplementary results APPENDIX

Table 20, continued

Instance |C| |L| |V| |E| Time

Lathyrus_pubescens 17 44 36 52 0.02
0.02

Lophocereus_schottii 12 34 24 34 0.00
0.00

Pelargonium_nanum 11 32 36 128 0.33
0.84

Podocarpus_totara 13 40 26 40 0.00
0.00

Triosteum_pinnatifidum 13 40 32 66 0.07
0.18

A21

ACRONYMS

A | B | C | D | F | I | L | M | N | O | P | S | T

A

ALE Assembly Likelihood Estimation 55

B

BAC Bacterial Artificial Chromosome 9, 11, 17

BFS Breadth-First Search 20, 50

BOG Best Overlap Graph 17, 18

C

CSC Compressed Sparse Column 58

CSR Compressed Sparse Row 58

D

DBG De Bruijn Graph 18–21, 38, 53

DNA Deoxyribonucleic acid 2–4, 6–9, 11–14, 22, 24, 51, 54

DR Direct Repeat 6, 7, 88, 91–93, 111

F

FIFO First In First Out 111

I

ILP Integer Linear Programming 48, 89, 90, 131, 133, 136

IR Inverted Repeat 6–8, 88, 91–93, 111, 116, 117, 136

L

LIFO Last In First Out 111, 117

G1

ACRONYMS

LSC Long Single-Copy 6, 7, 88, 93

M

MILP Mixed-Integer Linear Programming 48, 50

MIQP Mixed-Integer Quadratic Programming 51, 54

MWA2M Maximum-Weight Acyclic 2-Matching 48, 49

N

NGS Next Generation Sequencing technologies 10, 18

O

OLC Overlap-Layout-Consensus 17–22, 24, 43, 86, 134

ONT Oxford Nanopore Technology 12, 15

P

PCR Polymerase Chain Reaction 10, 11

S

S&E Seed-and-Extend 49, 52, 54

SBH Sequencing-by-Hybridisation 18

SBS Sequencing By Synthesis 9–11

SC Single-Copy 91, 92

SCS Shortest Common Superstring 15–17, 20, 48

SMRT Single Molecule Run Time technologies 11

SSC Short Single-Copy 6, 7, 88

T

TGS Third Generation Sequencing technologies 11, 17

G2

SYMBOLS

Fragment | Graph | Common sets

Fragment

C Set of contigs 43–45, 48–50, 90–92, 97, 98, 102, 117, A21

f Forward orientation 25, 28, 29, 31, 35, 37, 59, 64, 65, 68, 73, 75, 77, 79–82, see
also forward & {f, r}

Ff Set of forward fragments 25, 59–61, 63–65, 69

Fr Set of reverse fragments 25, 59, 61, 63, 65, 69

F Set of fragments 25–28, 30, 31, 34, 36, 58, 59, 61, 63, 65–67, 70, 82, 84

Lf (Multi)set of forward links 59, see also L & Lr

L′ Underlying set of the multiset L 26–28, 31, 35, 37, see also L & F

Lr (Multi)set of reverse links 59, see also L & Lf

L (Multi)set of links 26–28, 30–32, 34, 36, 43, 44, 48–50, 58, 59, 61, 63, 65–68, 70,
82, 90–92, 97, 101, 117, 119, 124, 125, A19, G3, see also L′ & F

{f, r} Set of orientations 25, 26, 31, 44, 64, 66, 73–75, 91, 97, 98, 110, 115, 120, A3

r Reverse orientation 25, 28, 29, 31, 35, 37, 64, 65, 68, 77, 80, see also reverse &
{f, r}

Raw Set of raw reads 15

· Reverse operation 25–27, 29, 32, 35, 44, 45, 55, 59, 61, 63, 65, 68, 69, 72, 73, 76,
78, 79, 81, 91, 92, 101–104, 106, 108–110, 115, 116, 122, 127, A17, see also
reverse

ΣF Fragment label set 25, 59, 60, 62, 68

ΣFun Unoriented fragment label set 25, 59, 64, 66

ΣL Link label set 26

ΣLcan Canonical link label set 59, 60, 62, 64, 66, 68

G3

SYMBOLS

Fun Set of unoriented fragments 25, 31

Graph

G Generic graph see also undirected graph, directed graph, bidirected graph, vertex &
edge

DG Directed fragment multigraph, DG = (V ,E,Φ) 27–29, 38, 39, 48, 55, 59, 97,
see also directed graph

BG Bidirected fragment multigraph, BG = (V ,E,Φ, attre) 30–33, 38, 39, 44, 49,
50, 66, see also bidirected graph

UG Undirected fragment multigraph, UG = (V ,EF , EL,ΦL) 33–36, 38, 39, 44,
46–51, 68, see also undirected graph

V Vertex set 28–32, 34, 35, 46, 59, 60, 62, 64–66, 68, 69, 72, 76, 78–80, 97, G4, see
also vertex

Vf Forward vertex set 64, see also vertex & forward

E Edge set 28–32, 46, 59–66, 97, G4, see also edge

EF Fragment-edge set 34–36, 68, 69, G4, see also edge, fragment & UG

EL Link-edge set 34–36, 68, G4, see also edge, link & UG

Φ Incidence function 28–32, 59, 61, 63, 65, 66, 114–116, G5, see also edge

ΦL Incidence function for link-edges 34–36, 68, G4, see also edge, link & UG

N Neighbour set 59, 66, 72, 74–77, 80–82, see also edge

N− Predecesor set 60, 62, 64, 68, 72, 73, 75–77, 79–82, see also edge, N & N+

N+ Successor set 60, 62, 64, 68, 72–82, see also edge, N & N−

NF Fragment extremity neighbour set see also edge, N & UGA

NL Link neighbour set 68, 69, see also edge, N & UGA

ΣV Vertex label set 60, 62, 64, 66, 68, 70, 73–75, see also vertex

ΣVf
Forward vertex label set 64, see also vertex

ΣE Edge label set 60, 62, 64, 66, 68, 73–75, see also edge

G4

SYMBOLS

DGA All oriented fragments multidigraph 59, 61, 63, see also DG & directed multi-
graph

DGS Oriented fragments’ successors multidigraph 61, 63, 68, 70, 72, 84, 86, 134,
135, see also DG & directed multigraph

DGF Forward fragments multidigraph 63, 65, 66, 68, 72, 84, 86, 134, 135, see also
DG & directed multigraph

BGU Unoriented fragments multibigraph 66, 68, 72, 84, 86, 134, 135, see also BG
& bidirected multigraph

UGA All fragments’ extremities undirected graph multiungraph 68, 70, see also UG
& undirected multigraph

MDCG Multiplied doubled contig graph, MDCG = (V ,E, vwex) 97, 98, 102, 103,
113, 116, 131, 136, see also DG, directed graph, contig & link

RegGraph Region graph, RegGraph = (V reg, Ereg,Φ) 114, 116, see also DG &
directed multigraph

V reg Set of oriented region 114–116, G5, see also RegGraph & V

Ereg Multiset of links between two oriented regions 114–116, G5, see also RegGraph
& E

Common sets

{0, 1} Set of binaries 104, 107

N The set of natural (positive) integer 26, 29, 32, 35, 59, 90, 97, 110, 117–119

R The set of real numbers 90, 97, 103, 104, 106, 109

Σnuc Nucleotide alphabet set Σnuc = {A,C,G, T} 2, 25, 90

G5

SYMBOLS

G6

COMPUTATIONAL TERMS

Complexity | Database | File formats | Programs and packages

Complexity

NP Nondeterministic polynomial time 117

NP-complete Nondeterministic polynomial-time complete 20, 22, 45, 47, 48, 90, 119,
121–123, 131, 136

NP-hard Nondeterministic polynomial-time hardness 16, 18, 46, 49, 119, 121

P Contains all decision problems that can be solved by a deterministic Turing machine
using a polynomial amount of computation time 20, 48, 131, 136

Database

CpGDB Chloroplast Genome Database 123

NCBI National Center for Biotechnology Information 123

PyPI Python Package Index vii, viii, 86, 135

File formats

GFA Graphical Fragment Assembly (GFA) Format 135

PAF Pairwise mApping Format 135

Programs and packages

ARACHNE A whole-genome shotgun assembler 17

ARKS Alignment-free linked read genome scaffolding methodology 39

Bambus General-purpose scaffolder based on paired-reads 30, 39, 45

Bambus 2 Metagenome scaffolder 30, 39, 45

BESST Scaffolder based on paired-end data 33, 39

BOSS Scaffolder based on paired-end or mate-pair read set 30, 39

G7

COMPUTATIONAL TERMS

CABOG Celera Assembler with the Best Overlap Graph 18

Canu Canu is a fork of the Celera Assembler, designed for high-noise single-molecule
sequencing 17, 18

CBC Open-source mixed integer linear solver 121

Celera A whole genome assembler originally developed at Celera Genomics for the
assembly of the human genome 17

chloroExtractor Pipeline for DNA extraction of chloroplast DNA from whole genome
plant data 52

Chloroplast assembly protocol A set of scripts for the assembly of chloroplast
genomes out of whole-genome sequencing reads 52

Edena De novo assembler for Illumina reads 30

FALCON Diploid aware genome assembler designed for Pacific Biosciences long read
data 28

Fast-Plast Chloroplast short-read assembly pipeline 52

Flye De novo assembler for single-molecule sequencing reads, such as those produced
by PacBio and Oxford Nanopore Technologies 20

fragScaff Scaffolder based on linked-read data 33, 39

GapFiller Paired-read based gap filler 54

GAT Scaffolder based on paired-reads and global optimisation method 28, 39, 52

GetOrganelle Organelle genome assembly toolkit x, 52, 89, 132, 137

GRASS Generic short-read scaffolder based on paired-reads or on a reference genome
30, 39

Gurobi Linear, integer and non-linear solver 121, 122

hifiasm Haplotype-resolved de novo assembler initially designed for PacBio HiFi reads
18, 28

HINGE OLC long read assembler based on an idea called hinging 28

IOGA Iterative organellar genome assembly 52

Jellyfish k-mer counting tool 52

G8

COMPUTATIONAL TERMS

khloraascaf Chloroplast contig scaffolder aware of structural haplotypes based on
several integer linear programs viii, 121–123, 126, 127, 129–132, 136, 137

LACHESIS Chromosome-scale scaffolder based on chromatin interactions 30, 39

LRScaf Hybrid scaffolder based on long reads 33, 39

mdBG Minimizer-space de Bruijn graphs for whole-genome assembly 20

Minia Short-read assembler based on a de Bruijn graph 124

Minimus Assembly pipelines designed specifically for small data-sets, such as the set
of reads covering a specific gene 30

MIP Paired-read scaffolder based on mixed integer programming 30, 39

NOVOPlasty De novo assembler and heteroplasmy/variance caller for short circular
genomes 52

Opera Paired-end read scaffolder based on the graph bandwidth problem 30, 39

ORG.Asm Organellar read assembler 52

Quast Quality assessment tool for genome assemblies 126, 127, 130, A17

revsymg Python implementation of DNA fragment graph vii, 86, 135

SALSA2 Hi-C scaffolder 33, 39

ScaffMatch Short read scaffolding tool based on Maximum-Weight Matching 33, 39

ScaffoldScaffolder Scaffolder based on a bidirected to directed graph reduction 30

Scaftools Integer linear programming approach for genome scaffolding 33, 39

SCARPA Scaffolder which combines fixed-parameter tractable and bounded algorithms
with linear programming 33, 39

Shasta De novo assembler for long reads, optimized for Oxford Nanopore (ONT)
reads 28

SLIQ Simple linear inequalities based mate-pair reads filtering and scaffolding 39

SLR Hybrid scaffolder based on long reads 30, 39

SOAPdenovo Short-read assembly method that can build a de novo draft assembly for
the human-sized genomes 20, G10

G9

COMPUTATIONAL TERMS

SOAPdenovo2 Successor of SOAPdenovo 53

SOPRA Scaffolding algorithm for paired reads via statistical optimisation 30, 39

SPAdes St. Petersburg genome assembler — is an assembly toolkit containing various
assembly pipelines 20, 54

SSPACE Paired-read scaffolder 30, 39, 54

Velvet Short read de novo assembler using de Bruijn graphs 20, 54

wtdbg2 De novo sequence assembler for long noisy reads produced by PacBio or Oxford
Nanopore Technologies 20

G10

GLOSSARY

A | B | C | D | E | F | G | K | L | M | N | O | P | R | S | U | V | W

A

alignment Nucleotide comparison between at least two sequences

assembly graph One of the output of genome assembly method see also read assembly

B

bidirected graph Graph that contains three edge types 30, 45, 86, 134

bidirected multigraph A graph where the same bioriented edge between the same
two vertices can occur several times 30, 31, 86, 134, see also multigraph &
bidirected graph

C

chloroplast Organelle in the plants’cells specialised in the photosynthesis process 2,
4–8, 22, 51, 90, 93, 133

chromosome A chromosome is a DNA molecule that contains the genetic information
for an organism 4, 13, 21, 24, 133, see also genome & DNA

contig Result of the assembly of the reads, nucleotide sequence longer than the reads
21, 22, 37, 38, 46–48, 50, 54, 86, 90, 130, 133, 134, 136, see also read assembly
& scaffolding

D

de Bruijn graph Graph structure where the vertices are word of length k, and edges
are overlaps of length k − 1. Can be vertex-centric or edge-centric. 18–21, 24,
53, see also k-mer

directed graph Graph where the edges are directed 16, 17, 27, 86, 89, 90, 97, 134

directed multigraph A graph where the same oriented edge between the same two
vertices can occur several times 28, 29, 59, 86, 97, 114, 134, see also multigraph
& directed graph

E

G11

GLOSSARY

edge Component of a graph that connects two vertices 17, 22, 28–31, 33–35, 46, 48,
49, 58–67, 69, 70, 72, 76–82, 86, 134, 135, see also graph & vertex

F

forward Original nucleotide sequence orientation 14, 25, 33, 34, 59, 62–65, 73, 75,
76, 90, see also reverse

fragment Generic nucleotide sequence 2, 8–10, 12–14, 22, 24–28, 30, 31, 33–35, 58,
59, 61–63, 65–70, 73–77, 81, 82, 85, 86, 133, 134

fragment assembly Generic term for the DNA fragment assembly, can also denote
the whole process of assembling the reads to obtain the whole DNA sequences 8,
13, 15, 16, 22, 37, 51, 133, see also read assembly & scaffolding

fragment-edge Component of a graph that connects two vertices 33–35, 68–70, 86,
134, see also graph & vertex

fragment-neighbour Vertex connected to a given one forming a fragment-edge 68,
see also neighbour, fragment-edge & UG

G

genome Entire set of DNA instructions found in a cell 2–10, 13–17, 22, 90, 133, see
also DNA

graph Object composed of vertices connected by edges 22, 28, 58, 70, 72, 85, 86,
133–135, see also vertex & edge

K

k-mer Word of lenght k 18–21, 52–54, 124, see also read assembly, SBH, DBG & de
Bruijn graph

L

link Ordered pair of oriented fragment 22, 28, 30, 33, 34, 38, 58–70, 73, 74, 86, 91,
134, see also fragment

link-edge Component of a graph that connects two vertices 33–35, 46, 48, 49, 68,
70, 86, 134, see also graph & vertex

link-neighbour Vertex connected to a given one forming a link-edge 68–70, see also
neighbour, link-edge & UG

G12

GLOSSARY

M

mitochondrion Organelle found in the cells of most eukaryotes specialised in the
aerobic respiration 4, 5, 8

multigraph A graph where there can be several edges between the same two vertices,
see also graph

N

neighbour Vertex connected to a given one 58, 61, 63, 65–68, 70, 72, 78–80, 86, 134

nucleotide Basic building block of nucleic acids (RNA and DNA) 2, 3, 6, 8–12, 16,
38, see also DNA

O

organelle Specialised subunit, usually within a cell, that has a specific function 4, 5, 8

overlap Suffix-prefix alignment type between two sequences 9, 13, 14, 16–18, 48, 86,
133, 134, see also alignment & link

overlap graph Graph structure that stores overlaps between reads 17, 22, see also
overlap

P

path A sequence of vertices such that two consecutive vertices are connected by an
edge in the graph 17, 29, 32, 33, 35, 36, see also walk, graph, vertex & edge

predecessor In-vertex of one edge of one given vertex 59–62, 64, 65, 68, 72–75, see
also successor

R

read DNA fragment from one DNA’s strand, output by a sequencer 9–18, 20, 21, 24,
37, 38, 51–53, 58, 86, 133, 134, see also sequencer

read assembly Fragment assembly stage to obtain longer nucleotide sequence (con-
tigs) from the reads 22, 28, 33, 38, 47, 48, 53, 133, see also fragment assembly
& contig

reverse Reverse-complement nucleotide sequence orientation 2, 3, 14, 25–31, 33, 34,
59–64, 66, 67, 69, 73, 75, 78–81, 86, 90, 134, see also forward

G13

GLOSSARY

S

scaffold Sequence of oriented contigs separated by gap 21, 37, 133, see also scaffolding

scaffolding Orienting and ordering the contigs 22, 28, 33, 37, 38, 86, 133, 134, see
also fragment assembly, read assembly, contig & scaffold

sequencer Sequencing technology machine 8

sequencing Method to generate nucleotide fragments 2, 8–11, 13, 15, 24, 51

strand The DNA molecule is made up of two strands, each of which has a comple-
mentary sequence to the other 2, 3, 8–10, 12

string graph Graph structure where vertices are genomic regions, and edges overlaps
between them 17, see also overlap graph & overlap

structural haplotype Copies of the genome with different structures 7, 22, 51, 55,
136

successor Out-vertex of one edge of one given vertex 59–65, 68, 72, 74, 75, see also
predecessor

U

undirected graph Graph where the edges are undirected 33, 35, 45, 86, 134

undirected multigraph A unoriented graph where there can be several edges between
the same two vertices 31, 34, 66, 68, see also multigraph & directed graph

unitig Special case of a contig, it represents a non-ambiguous assembled sequence 18,
19, 21, 28, 48, 54, see also contig, read assembly & scaffolding

V

vertex Component of a graph 17, 22, 28–31, 33, 34, 36, 46, 49, 51, 58–70, 72–82,
86, 134, 135, see also graph & edge

W

walk A sequence of vertices such that two consecutive vertices are connected by an
edge in the graph 35, see also path, graph, vertex & edge

G14

Titre : Assemblage de fragments ADN : structures de graphes et échafaudage de génomes
de chloroplastes

Mot clés : Assemblage de génomes, Programmation linéaire en nombres entiers, Répétitions

génomiques, Haplotypes structuraux

Résumé : L’obtention de la séquence nucléo-
tidique d’une molécule ADN nécessite sa frag-
mentation par des technologies de séquen-
çage et l’assemblage des fragments. Ces frag-
ments sont appelés lectures. Elles souffrent
d’erreurs de séquençage et sont considérées
sous deux orientations : celle de leur brin
ADN d’origine ou l’inverse-complémentaire
pour l’autre brin. L’assemblage se base sur
des chevauchements deux à deux entre des
lectures orientées, et est composé de trois
phases : l’assemblage des lectures pour obte-
nir des contigs (des séquences plus longues
que les lectures), l’échafaudage des contigs,

pour obtenir des échafaudages (des ordres de
contigs orientés), et la complétion des écha-
faudages (trouver les séquences de nucléo-
tides séparant les contigs orientés dans les
échafaudages).

Dans ce manuscrit, nous comparons des
structures de graphes représentant des re-
lations de successions entre des séquences
ADN orientées, utiles à différentes phases
de l’assemblage. Puis, nous nous penchons
sur le problème de l’échafaudage dédié aux
génomes de chloroplastes en proposant une
nouvelle formulation, une résolution exacte et
une implémentation.

Title: DNA fragment assembly: graph structures and chloroplast genome scaffolding

Keywords: Genome assembly, Integer linear programming, Genome repeats, Structural hap-

lotypes

Abstract: To obtain the nucleotide sequence
of a DNA molecule, the molecule is frag-
mented using a sequencing technology and
the fragments are assembled. These frag-
ments are called reads. They are subject to
sequencing errors and must be considered
in two orientations: that of their original DNA
strand, or the reverse-complementary for the
other strand. Assembly is based on pairwise
overlaps between oriented reads and con-
sists in three phases: assembling the reads
to obtain contigs (sequences longer than the
reads), scaffolding the contigs to obtain scaf-

folds (orders of oriented contigs), and com-
pleting the scaffolds (finding the nucleotide se-
quences separating the oriented contigs in the
scaffolds).

In this manuscript, we compare graph
structures representing succession relations
between oriented DNA sequences, useful at
different phases of assembly. Then, we ad-
dress the scaffolding problem dedicated to
chloroplast genomes by proposing a new for-
mulation, an exact resolution and an imple-
mentation.

	Remerciements
	Résumé en français
	Séquençage ADN et Assemblage de génomes
	Graphes de fragments ADN
	Échafaudage de génomes de chloroplastes
	Conclusions et perspectives

	Contents
	List of Figures
	List of Tables
	Introduction
	DNA overview
	A recipe for cellular mechanisms
	On the motivations for knowing the whole DNA sequence
	Various molecular conformations structure the genome

	Chloroplast genome
	Genome division
	Repeats and single-copy regions
	Structural haplotypes
	Genome evolution

	DNA sequencing
	The Shotgun sequencing approach
	First generation: Sanger and BAC technologies
	Second generation: high-throughput sequencing
	Third generation: single molecule run time
	Supplementary sequencing data

	The challenges of fragment assembly
	Read sequence alignment
	Unknown fragment orientations
	Sequence similarity: single-copy or repeat?
	True sequence divergences or sequencing errors?

	Fragment assembly approaches
	The Shortest Common Superstring
	Overlap-Layout-Consensus
	De Bruijn Graph approach
	Breaking down the fragment assembly problem

	Addressed research topics
	Graph structure for read assembly and scaffolding stages
	Scaffolding of chloroplast structural haplotypes

	State-of-the-art
	Graph structure for fragment assembly
	Notations and fundamental definitions
	Fragment set
	Link set

	Directed graph (DG): oriented fragments based
	Bidirected graph (BG): oriented walk based
	Undirected graph (UG): tail-head fragments based

	Scaffolding the contigs
	Scaffolding input data
	Subsampling the input data
	Bundling the links
	Removing paired-end reads
	Removing contigs
	Removing links
	Partitioning the instances

	Orienting the contigs
	Maximising the sum of used link weights
	Remove the minimum number of contigs and links to avoid odd reversal cycles
	Maximum log-likelihood function

	Ordering the oriented contigs
	Maximising the sum of used distances bunches' weights
	Minimum spanning tree
	Contig positioning only

	Orienting and ordering the contigs simultaneously
	Maximising the sum of distance bundles' weights to order linearly the contigs
	The heaviest matching, paths and cycles
	The maximum (weighted) matching and spanning tree

	Solving approaches
	Greedy approaches
	Fix parameters dynamic programming
	Mathematical programming

	Chloroplast genome assembly
	Chloroplast sequence extraction
	Filtering the reads
	Filtering the contigs

	Chloroplast reads assembly
	De Bruijn graph approach
	Seed-and-extend

	Chloroplast scaffolding
	Chloroplast assembly validation

	Fragment graph implementations and comparison
	Implementations
	Directed graph (DG): oriented fragments based
	All oriented fragments directed graph (DGA)
	Oriented fragments' successors directed graph (DGS)
	Forward fragments directed graph (DGF)

	Bidirected graph (BG): oriented walk based
	Unoriented fragments bidirected graph (BGU)
	Transformation to DGF

	Undirected graph (UG): tail-head fragments based
	All oriented fragments undirected graph (UGA)
	Transformation to DGS

	Fragment graph map

	Algorithms for DGS, DGF and BGU
	Subfunctions
	Iterating over the predecessors
	Iterating over the successors
	Adding a vertex
	Adding an edge
	Deleting a vertex
	Deleting an edge

	Time costs
	Memory and time cost comparisons
	Conclusions and perspectives

	Global exact optimisations for chloroplast structural haplotype scaffolding
	Introduction
	Chloroplast genome specificities
	State-of-the-art
	Our approach

	Input data and notation
	Set of contigs C
	Set of links L
	Mathematically defining genomic regions

	Chloroplast scaffolding problem formulations
	Graph and repeated fragment sets
	Graph structure
	Repeated fragment sets

	Integer Linear Programming (ILP) formulation
	Circuit constraints
	Repeated regions constraints
	Fixing regions constraints
	Speed-up constraints
	Scaffolding problems ILP

	Hierarchical problem succession
	From an ILP solution to a genome structure
	Multiple genome forms
	NP-completeness
	Numerical results
	Complexity validation on artificial data
	Perfect artificial data
	Noisy artificial data

	Synthetic chloroplast input data
	Input data generation
	The evaluation's metrics
	Initial version
	Modified version

	Conclusion
	Discussion and perspectives

	Conclusions and perspectives
	Fragment graph
	Thesis contribution
	Short-term future work
	Long-term future work

	Chloroplast genome scaffolding
	Thesis contribution
	Short-term future work
	Long-term future work

	Bibliography
	Appendix
	Repeated fragment set functions
	Reduction of the repeated fragment sets
	Repeated fragment set reductions
	Pairs of repeated fragment set reductions
	Adjacent repeated fragment set reductions

	Metrics
	Quast metrics

	Supplementary results
	v1 scaffolding benchmark
	v2 scaffolding benchmark

	Acronyms
	Symbols
	Computational terms
	Glossary

