
HAL Id: tel-04517581
https://theses.hal.science/tel-04517581

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vérification déductive de programmes Rust
Xavier Denis

To cite this version:
Xavier Denis. Vérification déductive de programmes Rust. Programming Languages [cs.PL]. Univer-
sité Paris-Saclay, 2023. English. �NNT : 2023UPASG101�. �tel-04517581�

https://theses.hal.science/tel-04517581
https://hal.archives-ouvertes.fr

T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
3
U
P
A
S
G
1
0
1

Deductive Verification of Rust
Programs

Vérification déductive de programmes Rust

Thèse de doctorat de l'Université Paris-Saclay

École doctorale n◦ 580, sciences et technologies de l'information et de la
communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et Sciences du Numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée dans l'unité de recherche LMF (Université Paris-Saclay, CNRS, ENS
Paris-Saclay),

sous la direction de Claude MARCHÉ, directeur de recherche,
et le co-encadrement de Jacques-Henri JOURDAN, chargé de recherche

Thèse soutenue à Paris-Saclay, le 18 Décembre 2023, par

Xavier DENIS

Composition du jury

Membres du jury avec voix délibérative

François POTTIER President

Directeur de Recherche, INRIA

Sylvain BOULMÉ Rapporteur & Examinateur

Maître de Conférences (HDR), Université Grenoble Alpes

Peter MÜLLER Rapporteur & Examinateur

Professor, ETH Zürich

Claire DROSS Examinatrice

Docteure, AdaCore

Ralf JUNG Examinateur

Assistant Professor, ETH Zürich

Mihaela SIGHIREANU Examinatrice

Professor, Université Paris-Saclay

Titre: Vérification déductive de programmes Rust
Mots clés: Rust, appartenance, vérification, itérateurs, clôtures
Résumé: Rust est un langage de programmation in-
troduit en 2015, qui apporte au programmeur des élé-
ments de sûreté concernant l’utilisation de la mémoire.
Le but de cette thèse est le développement d’un outil
de vérification déductive pour le langage Rust, en ex-
ploitant les spécificités de son système de types afin no-
tamment de simplifier la gestion de l’aliasing mémoire.
Une telle approche de vérification permet de s’assurer de
l’absence d’erreurs à l’exécution des programmes consid-
érés, ainsi que leur conformité vis-a-vis d’une spécifica-
tion formelle du comportement fonctionnel attendu. Le
fondement théorique de l’approche proposé dans cette
thèse est d’utiliser une notion de prophétie qui permet
d’interpréter les emprunts mutables du langage Rust en
une valeur courante et une valeur future cet emprunt.

L’assistant de preuve Coq a été utilisé pour formaliser
cet encodage prophétique et prouver la correction de la
génération d’obligation de preuves associée. Par ailleurs
l’approche a été mise en œuvre dans une implémenta-
tion d’un logiciel de vérification pour Rust qui automa-
tise la génération des obligations de preuve et fait appel
à des solveurs externes pour valider ces obligations. Afin
de supporter les itérateurs de Rust, une extension a été
développée pour manipuler les clôtures ainsi qu’une tech-
nique de vérification pour les itérateurs et combinateurs.
L’implémentation a été évaluée expérimentalement sur
des exemples d’algorithmes et structures de données per-
tinentes. Elle a été également validée par une étude de
cas conséquente: la vérification d’un solveur de satisfia-
bilité modulo theories (SMT).

Title: Deductive Verification of Rust Programs
Keywords: Rust, ownership, verification, iterators, closures

Abstract: Rust is a programming language introduced
in 2015, which provides the programmer with safety fea-
tures regarding the use of memory. The goal of this thesis
is the development of a deductive verification tool for the
Rust language, by leveraging the specificities of its type
system, in order to simplify memory aliasing manage-
ment, among other things. Such a verification approach
ensures the absence of errors during the execution of the
considered programs, as well as their compliance with a
formal specification of the expected functional behavior.
The theoretical foundation of the approach proposed in
this thesis is to use a notion of prophecy that interprets
the mutable borrows in the Rust language as a current
value and a future value of this borrow. The Coq proof

assistant was used to formalize this prophetic encoding
and prove the correctness of the associated proof obli-
gation generation. Furthermore, the approach has been
implemented in a verification software for Rust that au-
tomates the generation of proof obligations and relies
on external solvers to validate these obligations. In or-
der to support Rust iterators, an extension has been de-
veloped to manipulate closures, as well as a verification
technique for iterators and combinators. The implemen-
tation has been experimentally evaluated on relevant al-
gorithm and data structure examples. It has also been
validated through a significant case study: the verifica-
tion of a satisfiability modulo theories (SMT) solver.

Résumé Français

La vérification formelle des logiciels système à grande échelle reste aujourd’hui un défi. Une partie
de cette difficulté découle des langages traditionnels (C/C++) utilisés pour ces tâches, qui obligent
à considérer des défis supplémentaires liés à la sureté de la mémoire. En 2015, le langage de
programmation Rust a été publié avec l’objectif de résoudre les problèmes de sureté de la mémoire
dans les logiciels système. Pour ce faire, Rust utilise un nouveau système de types de possession
capable de raisonner statiquement sur la sureté des pointeurs et de la mémoire. En gérant cela au
niveau du système de types, Rust peut alléger la charge de la vérification, lui permettant d’atteindre
une plus grande échelle et complexité. Cette thèse explore cette possibilité en développant un
vérificateur formel appelé Creusot, qui tire parti des invariants du système de types Rust pour
pousser la vérification vers des programmes plus grands et plus complexes.

Le reste de cette thèse décrit la conception, la mise en œuvre et l’utilisation du vérificateur
Creusot. À ce stade de la thèse, Creusot peut vérifier du code Rust sûr en utilisant la majorité
des fonctionnalités de langage disponibles. Creusot est distribué sous forme de logiciel libre sous
une licence LGPL et peut être trouvé en ligne1.

Le reste de ce manuscrit est structuré de la manière suivante. Après un aperçu des concepts
de base dans Chapter 2, nous présentons Creusot du point de vue de l’utilisateur, en parcourant la
preuve d’une petite routine dans le Chapter 3.

Dans Chapter 4, nous présentons une description complète de l’approche de Creusot pour la
génération de conditions de vérification. Nous essayons de ne pas simplifier la traduction mais de
décrire précisément ce qui est implémenté. Cette traduction est le cœur de Creusot et constitue
la contribution la plus significative de cette thèse. Nous présentons également les défis associés
à diverses fonctionnalités avancées de Creusot comme le reborrowing logique et les problèmes
d’implémentation rencontrés lors de la manipulation du système de traits et des fermetures de Rust.

Dans Chapter 5, nous discutons de la formalisation d’une partie centrale de la traduction de
Creusot à travers le projet RustHornBelt. Ce travail étend le projet précédent RustBelt pour
raisonner sur la correction des programmes Rust lorsqu’ils sont équipés de spécifications. RustHorn-
Belt fournit une preuve sémantique et extensible de la validité et justifie l’utilisation des spécifi-
cations de Creusot pour les bibliothèques implémentées en utilisant du code non sécurisé. Nous
discutons de la connexion entre Creusot et RustHornBelt dans § 5.5.

Chapter 6 montre comment en utilisant Creusot, nous pouvons fournir une spécification puis-
sante et flexible pour le trait Iterator, qui est à la base des boucles for de Rust. La contribu-
tion significative de ce chapitre est de montrer comment cette spécification peut gérer des effets
secondaires complexes comme l’itérateur IterMut, qui renvoie des pointeurs mutables vers un con-
teneur. Le chapitre se termine en présentant une preuve de correction pour l’itérateur Map, qui
applique une fermeture aux éléments d’un autre itérateur ; cette fermeture peut capturer à la fois
des éléments mutables et effectuer des effets secondaires.

1https://github.com/xldenis/github

3

https://github.com/xldenis/github

4

Enfin, dans Chapter 7, nous présentons une preuve d’un solveur SMT écrit en Rust. Ce solveur
met en œuvre l’algorithme SMT de pointe CDSAT [15], que nous décrivons et formalisons dans le
cadre du travail de vérification. Bien que ce solveur soit inefficace, l’architecture globale de la preuve
ouvre la voie à une vérification plus complète et performante d’un solveur SMT. L’évaluation pour
cette preuve comprend un rapport d’expérience décrivant l’expérience subjective de l’utilisation de
Creusot pour vérifier un programme Rust étendu.

Acknowledgements

When I started my thesis in 2020, I had no idea I would not meet my advisors for the first six
months nor be allowed into my lab for the first year due to the pandemic. These initial solitary
months were challenging, but thanks to my advisors, they were made bearable.

Thus, first, I would like to thank my advisors Jacques-Henri Jourdan and Claude Marché, for
their invaluable support and guidance, especially considering the challenges of supervising during
a pandemic. Jacques-Henri’s unrelenting attention to detail and deep insights into programming
language semantics made me a much more rigorous researcher and forceed me to develop my skill
as a writer of proofs. Additionally, Jacques-Henri was always available and ready to discuss any
problem. We often hear about the perils of advisors who ask their students to work at all hours of
the day; perhaps we should talk more about advisees who torture their supervisors at 2 AM. Thank
you, Jacques-Henri, for answering my many late-night questions, your patience, and our many
discussions on Framateam. Claude provided the perspectives and balances needed to progress with
my PhD and always seemed to have a perfect paper to tackle any new issue. Claude supervised my
work with equanimity, counteracting my anxious tendencies. I would also like to thank him for his
“Proofs of Programs” course at the MPRI without which I may never have begun this PhD.

Further, I would like to thank my referees, Sylvain Boulmé and Peter Müller for reading my
thesis and providing me with valuable feedback to highlight the results of these past three years.
I would also like to thank the rest of my fantastic jury, who took the time to read my thesis and
attend my defense: Ralf Jung, Francois Pottier, and Mihaela Sighireanu. My defense will always
be a fond memory, and I am grateful to you all for your role in making it so.

I had the incredible luck of being a member of the TOCCATA team at the then-newly formed
LMF, a group of fascinating people. Our discussions at lunch and the ensuing coffee breaks were
among the highlights of my time there, whether discussing pastries, woodworking, or the latest
math challenge Jean-Christophe had cooked up for us. Thank you to Andrei, Jean-Christophe,
Guillaume, Sylvie, Kim, and Armael. A research group is incomplete without its students, post-
docs, and engineers. Thank you to all I had the pleasure of sharing my time with, among others,
Houda, Clément, Josué, Paul, Paul, Matteo. Perhaps my favorite parts of my PhD were the
opportunities to collaborate with fascinating and brilliant people, so I would like to thank my
co-authors Yusuke Matsushita and Derek Dreyer.

An unexpected development of the thesis was that it attracted the attention of terrific students
who wanted to base their work on my highly unfinished, experimental project. Particularly, Sarek
who wrote his master thesis using a tool that could not even handle a ‘Hello World’ program.
His energy and willingness to play the guinea pig for my experiments was an invaluable help to
my thesis. Similarly, I would like to thank Johannes and David, who used Creusot as a basis for
their work and provided valuable feedback. Finally, thank you to Dominik, who came to spend
four months with Jacques-Henri and me in Paris. Who was the ‘simple’ task of developing type
invariants in Creusot, “It should only take two weeks,” we said until Dominik unearthed the many
finer points of the problem. Thank you all for being willing to put your diplomas on my work. I

5

6

feel honored for the trust and responsibility you placed in me.
I had the pleasure of organizing the Rust Formal Methods Interest Group during my thesis, and

I would like to thank all the participants for their enthusiasm and the many exciting discussions we
had. Through the Rust formal methods community, I met many people, some of whom I can now
consider my friends: Sacha, Andrea, Vytautas, Frederico, Nico, and many others; thank you all.

Taking a small step away from academics, thank you to the “Verif’ Squad” Denis, Son and
Aymeric for the evenings and drinks philosophizing about the nature of verification, computing and
the world’s future. I still remember the first time Denis invited me to have lunch outside INRIA
Paris where he encouraged me to start my PhD and introduced me to the rest of the squad. Denis
remains an inspiration for his humanistic approach to computer science, always seeking to apply
it for the betterment of all society. Somehow, after all his brilliant research, he finds time to read
and write, and I hope to be half as good a writer as he is one day. Son has always been someone I
admire, an incredibly brilliant and prolific researcher who is always focused on the most important
problems. I hope one day be able to collaborate with him.

I want to thank my friends from the MPRI, who were there from the start and with whom I
had the ‘misfortune’ of starting our PhDs in the middle of a pandemic: Pablo and Ada. Thank
you also to Pablo for introducing me to the ReFL, and its members: Boris, Tito, Valentin, Sidney,
Davide, Jérémy, Kostia, and the others.

A thesis is a marathon; reaching the end requires many people’s encouragement. Some of
my friends, some more recent and some less so, have provided me with that support. I want to
distinguish Bouke, who has traveled with me since our meeting in Mexico and for the past 8 years
has been forced to listen to my endless rants on so many topics. By accepting this burden, you
have spared many others. You and Ellen have always provided a reprieve from the various anxieties
of academia. So, where are we going for our next trip?

Thank you to Camille, Erik, Mattie, Lauren, Esther, Meg, and Ian. My evenings would have
been much less enjoyable without you, and I look forward to sharing many more now that I’m freed
of this manuscript.

My PhD would have been entirely impossible without the help and support of my family, who
have been forced to sit through innumerable and interminable explanations of my work. I hope to
repay you for all my absences and half-presences soon. To Syd, Daphnée, and Milena, I am so glad
that doing my Ph.D. in Paris allowed me to spend more time with you, and I hope to continue to
do so. Those who know me also know that my family is huge and very important to me, I will spare
you the list of names, but know that I am individually grateful to every one of you. However, I
would like to thank my aunt Isabelle, with whom I lived upon arriving in Paris and who has always
been present and supportive of me.

I would not be here without my parents, who have always nurtured my love of learning and
knowledge. Their eternal support and encouragement (and occasional home-cooked meal) made
this possible, so thank you to my mother and father. The same applies to my siblings: Agathe,
Étienne, and Antoine.

Finally, I would like to thank Natasha, who brings me joy every day. She has put up with
evening after evening of late work and frustrations and agreed to apply her much greater literary
talents to the editing of my more pedestrian academic treatise. I’m lucky to have you by my side.

Contents

1 Introduction 11
1.1 The challenges of systems software verification . 12
1.2 Verifying Rust programs . 13
1.3 Contributions . 13

2 Background 15
2.1 Program Verification . 15

2.1.1 Hoare Logic . 16
2.1.2 Predicate Transformers . 17

2.2 The Why3 verification environment . 17
2.2.1 WhyML . 18

2.3 Rust . 20
2.3.1 Ownership . 21
2.3.2 Unsafe Code . 23
2.3.3 Traits . 24
2.3.4 Closures . 25

2.4 Prophetic verification . 27

3 Introduction to the Creusot verifier 31
3.1 First steps with Creusot . 31

3.1.1 Proving functional correctness . 32
3.2 The Pearlite specification language . 32
3.3 Proving ‘Gnome Sort’ correct . 35
3.4 Working with traits . 37
3.5 Verifying a generic program . 37
3.6 Higher-order functions . 39

3.6.1 Specifying clients of closures . 40
3.7 Interfacing with the real world . 43
3.8 Evaluation . 44

3.8.1 Discussion . 44
3.8.2 Limitations & Unsupported Features . 46

4 Implementing a Rust verifier 49
4.1 The MIR language . 49

4.1.1 Syntax . 50
4.1.2 Informal semantics for MIR . 50

4.2 The MLCFG language . 51
4.2.1 Syntax . 52

7

8 CONTENTS

4.3 Translation from Rust to MLCFG . 53
4.3.1 Interpretation of Rust Types . 53
4.3.2 Translation of MIR . 54
4.3.3 Handling polymorphism . 60
4.3.4 Translating traits declarations . 62
4.3.5 Translating traits implementations . 62
4.3.6 Closures in Rust . 63

4.4 Translation of Pearlite . 63
4.4.1 Translating the old pseudo-function . 64
4.4.2 Logical Reborrowing . 65
4.4.3 Correspondence between Rust and Pearlite semantics 65

4.5 From MLCFG to WhyML . 66
4.5.1 CFG reconstruction . 66
4.5.2 Subregion analysis . 67

4.6 Related Works . 67

5 Soundness of Rust verification 69
5.1 The λRust language . 70

5.1.1 The syntax of λRust . 70
5.1.2 The λRust type-spec system . 71
5.1.3 Example: Decrementing a reference . 73

5.2 Soundness of Type-Specs . 79
5.2.1 Parametric Prophecies . 82
5.2.2 Semantic interpretation of Rust types . 84
5.2.3 Soundness of the RustHornBelt type-spec system 87
5.2.4 Proving Soundness of Type-Spec Rules . 87

5.3 Rust APIs with Unsafe Code . 89
5.3.1 Proving specifications for APIs with unsafe code 92

5.4 Implementation and Evaluation . 92
5.5 Correspondence with Creusot . 94
5.6 Related Work . 95

6 Iterators 97
6.1 Reasoning about Iteration . 99

6.1.1 Specifying Iterators . 99
6.1.2 Structural Invariant of for Loops . 100

6.2 Examples of Specifications of Simple Iterators . 101
6.2.1 The Range Iterator . 101
6.2.2 IterMut: Mutating Iteration Over a Vector 102
6.2.3 Iterator Transformers . 103
6.2.4 Fuse . 103

6.3 A Higher-order Iterator Combinator: Map . 104
6.4 Evaluation . 107
6.5 Related Works . 108

CONTENTS 9

7 Verifying an SMT solver 109
7.1 A mechanized theory of CDSAT . 109

7.1.1 First-order Theories & Modules . 110
7.1.2 The CDSAT Trail . 112
7.1.3 The CDSAT Algorithm . 113
7.1.4 A proof of soundness . 116

7.2 A verified implementation of CDSAT . 116
7.2.1 The concrete trail . 116
7.2.2 The concrete algorithm . 117

7.3 Evaluation . 123
7.3.1 Testing Sprout . 123
7.3.2 Experience Report . 124

7.4 Related Works . 126

8 Conclusions 129
8.0.1 Collaborations . 130

8.1 Future Work . 130

Chapter 1

Introduction

In 1843, Ada Lovelace published her notes on the Analytical Engine; in those notes, she corrected a
mistake in the program for calculating Bernoulli numbers, the first software bug. Almost a century
before the first computer ever ran, programmers were locked in struggle with their nemesis: their
own programs.

Fast forward a century, and the father of modern computer science, Alan Turing, proposes a
solution: apply mathematics and logic to formally demonstrate the correctness of programs. His
1949 paper ‘Checking a large routine’ [22] exemplifies this approach through a ‘large’ function for
calculating the factorial of a number n. Yet, by the time of Turing’s paper, programs were already
thousands of lines long, and his example was already a toy. In that juxtaposition is found the
essential tension of program verification: the programs we want to verify are too large and complex
to verify.

Like Tantalus reaching for the fruit that always eludes him, researchers have striven to expand
the scope of program verification to encompass the programs of their day. The works of Floyd [37],
Hoare [44], Dijkstra [29] and others transformed the fastidious manual calculations of Turing into
a systematic and automated process. Yet, each time the scope of program verification expanded,
the day’s programs had already outgrown it.

Not everything is hopeless, however. Part of the reason programs have been able to grow so
large is due to the development of better, safer programming languages. From machine code to
assembler to FORTRAN to C, Java, and Haskell, languages have developed ways to make it easier
to write safe programs. At each stage of evolution, the invariants introduced by newer languages
provide leverage for verification by reducing the number of possible states a program can be in. We
can help the programmer and the verifier reach new heights through careful language design.

The advances in language development have not affected all programmers equally. The field
of systems programming, which encompasses everything from firmware to operating systems is
characterized by its heavy usage of languages like C and C++. These languages offer features
crucial to systems programmers like low-level memory management and direct access to hardware.
However, these features come at the cost of extreme unsafety. Microsoft estimates that 70% of their
security vulnerabilities are due to memory safety issues [1], a class of bugs that is pervasive in C
and C++. Despite providing a perfect opportunity for program verification to make a meaningful
impact on the safety of software, systems software has stayed out of reach: the programs are too
large and their memory behavior too complex to verify.

The solution came in 2015 with the 1.0 release of the Rust [82] programming language. Rust
is a safe systems programming language, which, despite providing the low-level control of memory
expected by systems programmers, makes the memory safety bugs of C/C++ impossible to write.

11

12 CHAPTER 1. INTRODUCTION

This feat is achieved through a powerful ownership type system, which enables the compiler to
statically verify the memory behavior of programs. Borrows – the safe pointers of Rust – are
tracked by the compiler, which ensures that they always point to initialized memory and that
mutable borrows do not alias with other borrows. Ensuring the non-aliasing of mutable borrows
makes programs more predictable by avoiding ‘spooky action at a distance’ in which parts of a
program can affect each other unexpectedly.

A safer language can alleviate the burden placed on verification, enabling it to reach greater
scale and complexity. The type system of Rust provides the ideal opportunity to finally achieve
systems software verification.

1.1 The challenges of systems software verification
Systems software forms a prime candidate for software verification: it encompasses software whose
failure could lead to loss of life or massive property damage. Though not universally so, systems
software is often relatively stable, undergoing few changes (thus needing comparatively less re-
verification). However, verified systems software projects are few and far between.

A reason for this can be found in the widespread usage of pointers in systems software languages.
Pointers are essential for efficiently implementing data structures and are used to communicate and
share data between software components. However, pointers also introduce many new ways for
bugs to creep into software. Memory safety bugs in which uninitialized memory is accessed are a
common source of crashes and security vulnerabilities. Historically, they have also been challenging
to eliminate because pointers can go to arbitrary destinations in the heap. Reasoning about memory
safety required untangling the webs of memory indirection and forced reasoning about the entire
heap at once. Without first establishing memory safety, it is impossible to prove further the correct
properties of software, as we cannot determine their behavior if they are unsafe.

In 2002, the introduction of separation logic [76] provided a theoretical solution to this problem.
Separation logic is constructed around the idea of ownership; individual variables can exclusively
own the memory that backs them. This ownership makes it possible to separate the heap into
independent chunks that cannot affect each other. Separation logic allows recasting the global
property of memory safety into a local one; each variable can be reasoned about individually.
Despite providing the correct vocabulary for expressing the safety of C-like programs, that very
safety remains fiendishly challenging to state. When combined with various forms of aliasing or
sharing in which multiple parts of a program may modify a common data structure, stating the
specification in separation logic can introduce a zoo of new mathematical terminology.

This leads to an observation certain readers of this thesis may find objectionable: separation
logic is too hard to read and write. The relative paucity of separation logic literate people, especially
compared to the number of systems programmers, places a natural upper limit on the impact of
separation logic on verified systems software. From this, we can glean an initial requirement: a tool
for the verification systems software must have concise and readable specifications. The overhead
of specifying code should ideally be less than one line of specification per line of code, and more
subjectively, the vocabulary of the specifications should be unsurprising and require (relatively)
little specialized training to understand.

A second major contributing factor to the paucity of verified software is the economic cost of
verification, which we can quantify by considering the invested workforce effort. The seL4 [55]
kernel, one of the flagship accomplishments of formal verification, estimated the cost of verification
at 11 person-years compared to approximately 2.2 person-years for the writing of the kernel itself.
This materialized itself in roughly 200,000 lines of proofs verifying the correctness of 8,700 lines of
C code. If formal verification is to find purchase in systems software, the benefit it brings must

1.2. VERIFYING RUST PROGRAMS 13

be commensurate to its cost. The high proof burden has other second-order effects; when a proof
takes a long time to write and verify, experimentation becomes less frequent as validating changes
takes longer. This leads to a second requirement for verification: proof effort should be low, and
proofs should be verified rapidly to allow faster incremental iteration and evolution of code and
verification.

1.2 Verifying Rust programs
The requirements set above are nothing new, and of course, no one sets out to create a slow tool
with illegible specifications and a proof burden that would make the most Kafkaesque bureaucrat
blush. These tools are developed in reaction to the existing systems software and the languages
they are written in. The flexibility and unreliability of the C language have forced verifiers into this
position.

Rust promises to eliminate the safety issues of C through its strong, static type system while
preserving the useful flexibility. The borrow checker of Rust ensures that borrows (safe pointers) are
guaranteed to point to initialized memory, and that mutable borrows are unique. In C, establishing
these properties would require significant specification and verification work; in Rust, they are
provided out of the gate. If a verifier can trust and leverage the borrow checker, it could avoid the
need to prove memory safety entirely. The uniqueness of mutable borrows opens up the possibility
that a Rust verifier could avoid separation logic entirely, as they already guarantee the locality
of reasoning. A Rust verifier would benefit from the more powerful automation and familiarity of
classical logic by avoiding separation logic.

This possibility is complicated by the presence of unsafe Rust. The reality of systems pro-
gramming occasionally requires going beyond what Rust can statically verify. Unsafe code allows a
programmer to lift restrictions of the Rust type system and is an essential component for the core
libraries of Rust.

If Rust is to change the fate of systems program verification, a tool must reconcile the safe and
unsafe. It should leverage the safety guarantees of Rust to provide efficient verification of safe code,
while accounting for the presence of unsafe code. The tool, Creusot, is a complete verification
environment for safe Rust with strong theoretical foundations that allow soundly integrating unsafe
libraries. Creusot supports the verification of real world Rust programs, supporting the myriad of
complex, and essential features of Rust like traits, closures, and iterators. The design of Creusot
is centered around a type-driven, compositional approach to Rust. We believe that this approach
produces a more predictable tool; when something is possible in one situation, it is usable every-
where in Creusot. Leveraging the type-system of Rust allows Creusot to provide powerful proof
automation, shortening the iteration cycles of verification.

1.3 Contributions
The rest of this thesis describes the design, implementation, and usage of the Creusot verifier. As
of this thesis, Creusot can verify safe Rust code using the majority of available language features.
Creusot is distributed as free software under an LGPL license and can be found online1. A short
overview of key concepts needed throughout the thesis can be found in Chapter 2.

We start with dessert in Chapter 3 by showing how Creusot can be used today to verify
a simple Rust program. We introduce Creusot from a user’s perspective, showing the various
functionalities available for specification and verification of Rust programs.

1https://github.com/xldenis/github

https://github.com/xldenis/github

14 CHAPTER 1. INTRODUCTION

In Chapter 4 we present a complete description of Creusot’s approach to verification conditions
generation. We try not to simplify the translation but to describe precisely what is implemented.
This translation is the core of Creusot and is the most significant contribution of this thesis.
We also present the challenges associated with various advanced features of Creusot like logical
reborrowing and the implementation issues encountered when dealing with Rust’s trait system and
closures.

In Chapter 5 we discuss the formalization of a core portion of Creusot’s translation through
the RustHornBelt project. This work extends the prior RustBelt project to reason about the
correctness of Rust programs when equipped with with specifications. RustHornBelt provides a
semantic, extensible proof of soundness and justifies the usage of Creusot specifications for libraries
implemented using unsafe code. We discuss the connection between Creusot and RustHornBelt
in § 5.5.

Chapter 6 shows how using Creusot we can provide a powerful and flexible specification for
the Iterator trait, which is the basis for Rust’s for loops. The significant contribution of this
chapter is showing how this specification can handle complex side-effects like the IterMut iterator,
which returns mutable pointers into a container. The chapter concludes by presenting a proof of
correctness for the Map iterator, which applies a closure to the elements of another iterator; this
closure can have both mutable captures and perform side effects.

Finally, in Chapter 7 we present a proof of an SMT solver written in Rust. This solver imple-
ments the state-of-the-art SMT algorithm CDSAT [15], which we describe and formalize as part of
the verification work. While this solver is inefficient, the overall proof architecture opens the door
to a more complete and performant verification of an SMT solver. The evaluation for this proof
includes an experience report describing the subjective experience of using Creusot to verify an
extensive Rust program.

Publications The preparation of this thesis included the publication of several articles in peer-
reviewed conferences and journals.

• “The Creusot Environment for the Deductive Verification of Rust programs” [27], appeared
at ICFEM 2022, and introduced Creusot.

• “RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with
Unsafe Code” [70], appeared at PLDI’22 and won Distinguished Paper. This work forms the
basis for Chapter 5.

• “Specifying and Verifying Higher-Order Rust Iterators” [26], appeared at TACAS’23. The
work in Chapter 6 is a significantly revisited and expanded version of this article.

Chapter 2

Background Materials on
Program Verification, Rust and
Prophecies

Before introducing how we can verify Rust programs, we will provide an overview of both program
verification and Rust independently. The remainder of this chapter will be structured as follows:
§2.1 will briefly overview Hoare logic, the weakest precondition calculus, and predicate transformers.
§ 2.2 introduces Why3, the program verification framework we will use later in this thesis. § 2.3
introduces the Rust programming language and its ownership system. Finally, § 2.4 presents an
overview of prophetic verification, the technique we will use to verify Rust programs.

2.1 Program Verification
The field of program verification is concerned with showing that programs are correct for a spec-
ification, often with the aid of a computer. Many different kinds of specifications and techniques
can be used to verify them. We concern ourselves exclusively with the functional correctness of
programs: establishing that a program produces the correct outputs for all possible inputs.

From a technique standpoint, we will focus on deductive verification. In deductive verification,
we interpret the correction of a program as a logical statement, and we then construct a proof of
that statement’s validity. In practice, we construct dedicated logics for reasoning about individual
languages and use (semi) automated tools to discharge the obligations. We will follow the classic
route by introducing a simple imperative language and then exploring how to verify programs in
that language.

Definition 1 (IMP). The following grammar defines the IMP language:

s 3 Stmt ::= x← e | s1; s2 | if e then s1 else s2 fi | while e1 do s done | skip | panic
e 3 Exp ::= x | n | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2 | e1 ≤ e2 | e1 = e2 | true | false

where x is a variable and n is an integer. The following big-step semantics are given to expressions:

JxKΣ = Σ(x) JnKΣ = n Je1 + e2KΣ = Je1KΣ + Je2KΣ Je1 − e2KΣ = Je1KΣ − Je2KΣ
Je1 ∗ e2KΣ = Je1KΣ ∗ Je2KΣ Je1/e2KΣ = Je1KΣ/Je2KΣ Je1 ≤ e2KΣ = Je1KΣ ≤ Je2KΣ

Je1 = e2KΣ = Je1KΣ = Je2KΣ JtrueKΣ = true JfalseKΣ = false

15

16 CHAPTER 2. BACKGROUND

while statements are given a small-step semantics, where the state Σ is a mapping from variables
to either booleans or integers.

〈Σ | x← e〉 〈Σ[x 7→ JeKΣ] | skip〉 〈Σ | skip; s〉 〈Σ | s〉
〈Σ | s1〉 〈Σ′ | s′1〉

〈Σ | s1; s2〉 〈Σ′ | s′1; s2〉

JeKΣ = true
〈Σ | if e then s1 else s2 fi〉 〈Σ | s1〉

JeKΣ = false
〈Σ | if e then s1 else s2 fi〉 〈Σ | s2〉

JeKΣ = true
〈Σ | while e do s done〉 〈Σ | s; while e do s done〉

JeKΣ = false
〈Σ | while e do s done〉 〈Σ | skip〉

The IMP language is a simple imperative language with variables, integers, and arithmetic
expressions. It has the usual control flow constructs: assignment, sequencing, conditionals, and
while loops. We have also added a panic statement representing a program that crashes. Our
objective will be to prove that panic does not occur, so do not give it a step, causing evaluation to
get stuck.

We use boolean-typed expressions as our assertion language to write our specifications. Let P
be an assertion, we say that a state Σ satisfies P (denoted Σ |= P) if JP KΣ = true.

2.1.1 Hoare Logic
There are many varying grades of safety properties we can establish for our programs. The simplest
one is ensuring panic safety, that is demonstrating that a panic never occurs. This may require
establishing functional correctness which establishes the input-output relation for a program. We
may be unable to correctly execute our program for every possible input state, like in the program if
x 6= 0 then x ← 10 / x else panic fi, which will panic if x = 0. To handle this, we consider
the correctness of a program relative to a precondition P and postcondition Q. A program is correct
if, given a state satisfying P , it will produce a state satisfying Q.

Definition 2 (Hoare Triples). A Hoare Triple {P } s {Q} is defined as follows:

J{P } s {Q}K = ∀Σ Σ′, 〈Σ | s〉 ∗ 〈Σ′ | skip〉 → Σ |= P → Σ′ |= Q.

To prove the validity of such a triple, we can construct a derivation of the triple using a Hoare
logic composed of atomic rules for each statement in our language.

Definition 3 (Axiomatic Semantics of IMP). The following rules define the axiomatic semantics
of IMP:

{P } skip {P } {false} panic {Q} {Q[x 7→ e]}x← e {Q}

{P } s1 {Q} {Q} s2 {R}
{P } s1; s2 {R}

{P ∧ e} s1 {Q} {P ∧ ¬e} s2 {Q}
{P } if e then s1 else s2 fi {Q}

{P ∧ e} s {P }
{P } while e do s done {P ∧ ¬e}

P → P ′ {P ′} s {Q′} Q′ → Q

{P } s {Q}

The rules of Definition 3 cover each syntactic case of IMP, with one extra rule for consequence,
which allows us to strengthen the precondition and weaken the postcondition of a triple.

Using these rules, we can prove the correctness of simple programs:

if x 6= 0 then x← 10/x else panic fi

2.2. THE WHY3 VERIFICATION ENVIRONMENT 17

Specifically, we want to show that the following triple holds:

{x 6= 0} if x 6= 0 then x← 10/x else panic fi {x = 10/x}

which we can do by applying the If rule, and then the Assign rule:

IF

ASGN
{x 6= 0 ∧ x 6= 0} x← 10/x {x = 10/x} {x 6= 0 ∧ x = 0} panic {x = 10/x}

PANIC

{x 6= 0} if x 6= 0 then x← 10/x else panic fi {x = 10/x}

The derivation above establishes the validity of the triple, but apart from intuition, nothing
relates this to the semantics of the program. The missing property is a proof that our axioms
are sound, that if a triple {P } s {Q} is provable, then given an input state satisfying P , all states
produced by executing s satisfy Q. This is the usual definition of partial correctness; it does not
require the existence of the output state s; the program could diverge instead.

With this notion of semantics for our triples, we can state the soundness theorem for our Hoare
logic:

Theorem 2.1.1 (Soundness of IMP Logic). If {P } s {Q} is provable, then J{P } s {Q}K holds.

We do not go over the proof of this theorem, but a version can be found in Software Foun-
dations [78]. Often, we may also prove the converse completeness theorem, which states that if
J{P } s {Q}K then {P } s {Q} is provable.

2.1.2 Predicate Transformers
Though we have constructed a sound (and complete) logic for IMP programs, how do we know
it is the ‘best’ one? There are many possible sets of axioms for a language, but generally, we are
interested in the most flexible and least constraining ones. One way to achieve this is to find the
weakest precondition for a program. The Weakest Precondition Calculus, written wp(s,Q) takes as
input a program s and a postcondition Q and transforms it into a precondition for s.

For example, we can easily define wp for simple commands:

wp(skip, Q) , Q

wp(panic, Q) , false

while more complex definitions like while are more complex and cannot be given a functional
form in first-order logic. Instead, while requires the introduction of an invariant which must be
user-provided.

The WP calculus is one example of the more general technique of predicate transformers. An
instance of wp(s,Q) transforms the postcondition Q into a precondition by examining the program
s. Other possible systems exist, such as the dual strongest postcondition calculus.

2.2 The Why3 verification environment
Why3 applies the ideas for deductive verification we have discussed until now to a more complete and
realistic language. It is designed both as an intermediate language for other verification tools and
as a tool to directly write verified programs in. Internally, Why3 uses a mix of weakest-precondition

18 CHAPTER 2. BACKGROUND

1 let divide (x : int)
2 requires {x <> 0}
3 ensures {result = 10 / x}
4 = 10 / x

(a) A simple WhyML function

Sub-goal
Check division by zero of goal divide'vc.

Prover result is: Valid (0.01s, 497 steps).

Sub-goal
Postcondition of goal divide'vc.

Prover result is: Valid (0.01s, 889 steps).

(b) Output from why3 prove

Figure 2.1: A simple WhyML function and its proof using Why3

and strongest-postondition calculi to generate the verification conditions for a program. These can
then be discharged with the help of automated solvers like satisfiability modulo theory (SMT) solvers
or other Automated Theorem Provers (ATP). In Figure 2.1 run the program on the left-hand side
through Why3 to obtain the result on the right-hand side.

Why3 has several features that clearly distinguish it from its contemporaries (Dafny [60],
Viper [74], Boogie [8]). While most tools of this class are developed around one specific solver
backend, usually the Z3 [73] SMT solver, Why3 is foundationally based on the opposite notion.
Why3 currently supports 15 or more different backend solvers including major SMT solvers (Z3,
CVC4 [10], CVC5 [6], Alt-Ergo [23]), first-order and higher-order logic solvers (Eprover [84], Vam-
pire [57]) and interactive theorem provers (ITP) like Coq [24] and Isabelle [77]. This is possible
through a driver mechanism that allows quickly adding new provers. When performing proofs with
Why3, it is common – expected even – to use multiple provers simultaneously. Combining provers
in a ‘portfolio’ allows them to compensate for each other’s weaknesses and provide a more consistent
overall experience.

The second significant difference when compared to similar tools is Why3’s interface. Why3
is most directly comparable to tools like Dafny or Viper, which facilitate ‘auto-active’ verification.
These tools allow users to write programs and assertions and attempt to verify them in the back-
ground, providing a binary ‘yes/no’ with the verification results. In this interaction model, a user’s
primary tool is the assertions they write; if a proof fails, they must write a series of assertions,
which should entail the failing assertion. Why3 takes a different perspective on interaction, similar
to ITPs like Coq. Individual proof obligations are visible in a ‘Task Tree’ (Figure 2.2a) where users
can apply transformations, which perform various simplifications and steps of logical deduction.
Each proof obligation can also be displayed as a ‘Task’ (Figure 2.2a) showing the hypotheses and
required conclusion.

While sometimes awkward to use, tasks and transformation add much flexibility to Why3 and
help place users in control of the automation; they have the agency to interrupt, explore, and guide
the automated solvers.

2.2.1 WhyML
Why3 is built around the WhyML language, the primary input format. WhyML is an ML-family
language designed for program verification; it includes several concepts that serve only to facilitate
verification. As we will use WhyML later in this thesis (Chapter 4), we will briefly introduce some
of the more relevant features now. At the highest level, it supports the usual features of a functional
language: algebraic data types, pattern matching, and polymorphism. Though it does not fully
support higher-order functions, they are limited to pure functions, which do not have any side

2.2. THE WHY3 VERIFICATION ENVIRONMENT 19

(a) Why3 task tree and transformation (b) Why3 Task view

Figure 2.2: The Why3 IDE GUI

effects. Why3 has a region typing system [40], which enables the usage of mutable fields, so long as
they are not recursive and are not aliases. Mutable fields allow defining types like OCaml’s arrays
and references.

To support verification, WhyML functions can be given contracts through requires and ensures
clauses; we showed an example of these in Figure 2.1a. Additionally, loops can be given invariant
clauses to express the invariants in the sense of §2.1. Types can also be given invariants, a property
that must be maintained by values at function entrance and exit.

1 type positive = { x : int } invariant { x > 0}
2
3 let dec (a : positive) : positive
4 requires { a.x > 1 }
5 ensures { result.x < a.x }
6 = { x = a.x - 1 }

We may need to use auxiliary logical definitions in contracts; these can be defined using the
function and predicate keywords. These definitions must be pure and can be used in contracts and
other logical definitions. Interestingly, these definitions are total, even things like division-by-zero
are allowed; such operations return an unspecified value instead.

1 function divides0 (x : int) : int = x / 0

We can use ghost code to help guide the proof when proving code, especially loop invariants.
Ghost code is only visible to the verifier and does not affect the execution of the program. It allows
the user to spell out steps of reasoning which are implicitly happening in the program and help the
solvers find a proof.

Modules and Cloning

Code and proof organization in WhyML is handled using modules [35]. A module contains definitions
and declarations, including types, functions, and predicates. Modules can include declarations:
definitions without a body.

1 module Sort
2 type t
3 function le (x y : t) : bool
4 axiom le_trans : forall x y z. le x y -> le y z -> le x z
5 axiom le_refl : forall x. le x x
6 predicate sorted (a : array t) =
7 forall i j. 0 <= i <= j < length a -> le a[i] a[j]

20 CHAPTER 2. BACKGROUND

8
9 let sort (a : array t) : unit

10 ensures { sorted a }
11 = { ... }
12 end

The module Sort above defines a generic procedure for sorting arrays. It is parameterized with
the type of elements t (line 2) and the comparison function le (line 3). The module assumes two
axioms about the provided comparison function, and using those can define a procedure sort, which
sorts an array in place and ensures that the array is sorted.

A module can be used through cloning, which copies the contents of a module into the current
environment. A clone can apply a substitution, instantiating some or all declarations in the cloned
module:

1 clone Sort with type t = int, function le = (<=)

During this clone, axioms are turned into proof obligations, and the user must provide proof of
them. This mechanism allows for high-level modularity in proofs as work can be split into different
modules and then composed together. It is important to note that cloning is generative: performing
the exact clone twice will introduce duplicate definitions, declarations, and types, which Why3
cannot understand as identical. Cloning is a fully manual process: Why3 cannot automatically
determine what to clone and what substitutions to apply.

2.3 Rust
First publicly released in 2015, Rust is a systems programming language that provides the same
control as C or C++ but guarantees memory safety without introducing a runtime or garbage
collector. Rust combines a novel ownership type system with strong encapsulation. The ownership
system ensures each value has a single, exclusive owner at any time and thus can free memory
when that owner is dropped. Seemingly restrictive, the ownership discipline is often unobtrusive.
However, sometimes it becomes a problem, like when handling cyclic data. For these cases, Rust
provides interior mutability, types that allow various forms of aliased mutable states like mutexes.

Interior mutable types are implemented using Rust’s unsafe features that allow bypassing the
ownership system. However, this does not give library authors carte blanche; using unsafe code to
implement a safe API comes with responsibilities: no undefined behavior (UB) can be exposed to
the user. Despite being partially a social convention, this feature is perhaps the most critical driver
to Rust’s success; unlike its competitors, C/C++, there is no ‘wrong way to hold the stick.’ Rust
provides a strong nominative type system to help the authors of unsafe code uphold their promise
of UB-free interfaces. By encapsulating their unsafe code carefully, authors can ensure that clients
will always maintain the invariants of their types.

Below, we show a simple example of Rust code, which we will use to introduce some of the
language’s features.

1 enum X { A(usize), B { x : bool }, C }
2
3 fn match_X(x: X) {
4 let mut a = 0;
5 match x {
6 X::A(_) => a = 1,
7 X::B { .. } => a = 2,
8 X::C => a = 3,
9 }

2.3. RUST 21

10 println!("{}", a);
11 }

As shown in the code above, Rust has an ALGOL-inspired syntax similar to that of C-family
languages. However, beyond superficialities, Rust has many syntactic features usually found in
functional languages. On line 1, we declare a new enum or tagged union, X with three variants, A,
B, and C, which may contain fields. We can also declare struct types containing multiple possibly
named fields. On line 3, we declare a function match_X, which takes a value of type X and prints
a number depending on the variant. We declare a new local, mutable variable on line 4 with the
syntax let mut. Bindings are immutable by default in Rust and have inferred types. On line 5,
we exhaustively evaluate the possible values of x through a match expression, storing a different
value into a as a function of x. The Rust compiler checks the exhaustiveness of match expressions,
raising an error if a case is forgotten. Finally, on line 10, we call a macro to print the value stored
in a. Rust includes an extensively used powerful macro system: even printing output goes through
a macro.

2.3.1 Ownership
As mentioned earlier, Rust has a notion of ownership; each variable has exclusive control of its
contents: no other alias can exist. This has immediate consequences on the semantics of common
operations:

1 let mut x = Vec::new();
2 let y = x;
3 x.push(0); // ERROR: `x` has been moved into `y`

To preserve ownership, Rust uses move semantics, so when we assign x to y, we move the contents
out of the name x and thus can no longer use x. This applies even to functions:

1 fn do_something<T>(mut v : Vec<T>) { v.push(4); }
2
3 fn main() {
4 let x = vec![1,2,3];
5 do_something(x);
6 assert_eq!(x[3], 4); // ERROR `x` has been moved
7 // during call to `do_something`
8 }

On line 4, we create a vector containing the elements 1, 2, 3 we then call do_something using
it. From main, we can no longer observe that do_something appended a new element to x as we no
longer own the value. In the parlance of imperative programming, Rust employs pass-by-value.

Certain types like integers can be declared as copyable, in which case the ownership discipline
is lifted and, instead of moving assignments and function calls, will perform a byte-by-byte copy of
the value:

1 let x = 1;
2 let y = x;
3 assert!(x == y);

Types with enjoyable ownership like Vec or HashMap cannot be made copyable as copies would
share underlying memory, which could lead to double-free or other errors.

A consequence of this strict ownership discipline is that Rust types can only naturally express
tree-like structures; anything more complex must rely on unsafe code or libraries like Rc (reference
counted pointers, implemented with unsafe code).

22 CHAPTER 2. BACKGROUND

Borrowing & Lifetimes

Though surprisingly expressive, as shown, the ownership disciple of Rust would be overly restrictive:
it is not even possible to just read a value, and even operations like indexing an array are impossible
to express. To solve this, Rust uses safe pointers called borrows, objects which temporarily borrow
the ownership of a value, and after their lifetime ends restore that ownership to the lender. Borrows
come in two flavors: immutable (&) and mutable (&mut), characterized by the idiom “Aliasing XOR
Mutation” (AXM). At any time, we can either create a unique mutable borrow to a value, or we
can create arbitrary amounts of immutable borrows:

1 let mut a = 0;
2 assert_eq!(&a, &a); // OK
3 let b = &mut a; // OK, previous borrows are ended
4 *b = 5;
5 assert_eq!(&mut a, &mut a) // ERROR

As the name implies, borrows are temporary; each has a lifetime by which they must be dropped so
permissions can be restored. A borrower’s lifetime must be shorter than the lifetime of the lender,
thus ensuring it always points to initialized memory. Lifetimes are inferred by the Rust compiler,
which also checks the AXM discipline.

Rust borrows are flexible; we can use them to create interior pointers to types:

1 struct Pair<A, B>{a : A, b: B }
2 ...
3
4 fn split(x : &mut Pair<A, B>) -> (&mut A, &mut B) {
5 (&mut x.a, &mut x.b)
6 }

On line 5, we reborrow our borrow x into disjoint borrows for each field of our type Pair.
We can give explicit lifetimes to borrows using the syntax &'a mut T (or &'a T) where 'a is the

lifetime of the borrow. Reborrowing can be used to shorten lifetimes:

1 fn shorten<'b, 'a : 'b, T>(a : &' a mut T) -> &'b mut T { &mut * a }

The syntax 'a : 'b is an outlives constraint, it requires that 'a is some lifetime which is longer
than 'b.

Interior Mutability

There are situations where even the flexibility of borrows is insufficient, where we need to mutate
through a shared borrow. For example, consider a multi-threaded application using a mutex to
synchronize shared values. Each thread must have a reference to the mutex, but then no thread
can fully own the mutex and thus mutate the stored values. Instead, a mutex can be mutated with
only a shared borrow as the mutex dynamically guarantees the uniqueness of mutable borrows: only
one thread at a time can lock the mutex and mutate the shared value.

This behavior is called interior mutability and provides an escape hatch for the cases where
the borrowing rules are too restrictive. Rust provides types for interior mutability: Cell<T> and
RefCell<T>1. These types represent shared mutable memory and enforce the safety properties of
Rust at runtime. The Cell<T> type allows you to store and read values of copyable types. The
get function returns a copy of the value in the cell, and the API provides no mechanism to obtain
a borrow. The RefCell<T> type is more flexible; it provides two methods borrow and borrow_mut,

1These are implemented using a primtive UnsafeCell<T> type, but we will ignore this.

2.3. RUST 23

which return immutable borrows or mutable borrows, respectively, subject to runtime checks. The
program will panic if a mutable borrow is attempted while an immutable borrow is active (and
vice-versa).

By combining RefCell with duplicable pointers like Rc (reference counted values), we can recover
the mutable, aliasable memory of other languages, and use this to create cyclic data structures,
ordinarily impossible in safe Rust:

1 struct Node {
2 next : Option<Rc<RefCell<Node>>>,
3 }
4
5 fn main() {
6 let a = Rc::new(RefCell::new(Node { next : None }));
7 let b = Rc::new(RefCell::new(Node { next : Some(a.clone()) }));
8 a.borrow_mut().next = Some(b.clone());
9 let a = (a.borrow_mut(), a.borrow_mut()); // ERROR: 'already borrowed'

10 }

Because line 11 has no active borrow of the cell in a, we can safely mutate it to point to b. In
contrast, line 9 attempts to create two mutable borrows of a, and thus panics.

Despite the presence of this escape hatch, which would free programmers from the constraints
of ownership, interior mutability is a niche (but essential) feature in Rust. It finds usage in syn-
chronization primitives (like Mutex<T>), in asynchronous programming (again for synchronization),
and in memoization (for caching expensive computations). The relatively limited usage of interior
mutability is a testament to the flexibility of the ownership system and the power of the Rust type
system.

2.3.2 Unsafe Code
Unsafe code is an often misunderstood feature of Rust. A common view is that unsafe is a keyword
that gives programmers carte blanche, freeing them from the onerous restrictions of the type system.
In fact, unsafe code is subject to the same typing and ownership rules as safe code, but it permits
additional operations that cannot be statically checked by the compiler. The need for unsafe arises
from the conservative nature of the Rust compiler: it is impossible to prove the safety of all programs
statically.

When a library author uses unsafe, they pass a contract with the compiler to avoid the undefined
behavior the compiler cannot statically eliminate and are granted permission to use additional
operations. They are expected to package this unsafe code behind a safe abstraction with a safe
API that respects the invariants of the unsafe code. Though this contract is not formally enforced,
it delineates responsibility for bugs between library authors and users. If a Rust programmer
encounters a segfault in safe code, the problem lies with the libraries used, not their code, no
matter how torturous.

Unsafe code is declared through the unsafe keyword which appears in two principal places:

• Unsafe blocks: The most common usage of unsafe is to declare an unsafe block, which allows
performing unsafe operations in a safe function. Of particular importance, it is possible to
use raw pointers in unsafe blocks, which are not tracked for ownership by the type system.

• Unsafe functions: A function may be marked unsafe, which indicates that the caller must
uphold additional invariants. Calling an unsafe function is always an unsafe operation. It
is expected that unsafe functions are accompanied by a SAFETY comment explaining the
additional invariants expected of the caller.

24 CHAPTER 2. BACKGROUND

In all of these cases, the authors of unsafe code must keep in mind Rust’s undefined behaviors so
they may successfully avoid them. This task is complicated by the lack of a comprehensive list of
undefined behaviors, though it is actively being worked on [88]. Though Rust’s UB is still in flux,
the Rust project provides Miri [81], an interpreter for Rust, which can detect some UB in unsafe
code.

2.3.3 Traits
Industrial languages need to be able to abstract common behaviors, and Rust is no exception.
Consider an equality function: We cannot write a single function that works for all types, as we
must know how to compare the values. We also do not want to rely on an ad-hoc collection of
monomorphic functions, as this would be inflexible and hard to extend. Instead, we use a single
function eq for which the compiler can determine the appropriate implementation. This problem of
ad-hoc polymorphism is solved in Rust through traits, also known as typeclasses [93] in Haskell. A
trait associates a set of functions and types to a subject type. For example, the Eq trait is defined
as follows:

1 trait Eq {
2 fn eq(&self, other : &Self) -> bool;
3 }

The first argument of a trait function can use the special self name, designating that function as
a method, which can be accessed through the dot-syntax a.eq(..). The self parameter can come
in three different forms: self, &self, and &mut self describing the different ways of referring to
values in Rust. As the name implies, the self argument is of the same type as the trait subject.
In a trait, the Self type refers to the subject of the trait or implementation.

To state that a type T implements Eq, we must provide an implementation. For example, we
could provide an implementation for bool:

1 impl Eq for bool {
2 fn eq(&self, other : &Self) -> bool {
3 match (*self, *other) {
4 (true, true) => true,
5 (false, false) => true,
6 _ => false
7 }
8 }
9 }

Instances do not need to be monomorphic; we can also provide implementations for generic types
by using constraints to specify that the type parameter must implement specific traits, e.g., on
generic pairs:

1 impl<T : Eq, U : Eq> Eq for (T, U) {
2 fn eq(&self, other : &Self) -> bool {
3 self.0.eq(&other.0) && self.1.eq(&other.1)
4 }
5 }

Then when, if we call (true, false).eq(&(true, false)), the solver will know how to construct
an instance for (bool, bool) from the previous implementations. Constraints can also be added
to ordinary functions, allowing us to write generic functions which can only be called on types that
implement specific traits:

2.3. RUST 25

1 fn neq<T : Eq>(x : T, y : T) -> bool { !x.eq(&y) }

Coherence Because the mechanism to pick which trait implementation is out of the user’s
control, it must remain predictable, it would be problematic if equality for pairs of booleans meant
two things in different contexts. This requirement extends to an ecosystem level, where libraries
may provide traits and implementations. It is desirable that adding or removing a library does not
change the behavior of unrelated code. To solve this, Rust uses a coherence rule; there must be at
most one instance applicable to a type for any given trait. This rule is verified through an overlaps
check, which ensures that no two implementations are unifiable. This would mean that we cannot
also provide an implementation of Eq just for (bool, bool).

2.3.4 Closures
Like most contemporary languages, Rust supports closures, functions that can capture variables
from their environment. Closures are a powerful tool for abstraction and find frequent usage in
Rust code bases. They can be used to transform, filter, or select from streams of data using map,
filter, and fold, respectively, or used to encode callbacks. Rust closures are written using the
syntax |a,...,z| { ... }, the braces are optional if the body is a simple expression.

For users of traditional functional programming languages, the closures of Rust can be a little
disorienting. Unlike most other higher-order languages, Rust does not use a universal ‘arrow’ or
‘function’ type to describe closures. Instead, every closure has a unique, anonymous type, which
users cannot write. This is a consequence of Rust’s compilation and ownership models.2

Rust uses trait bounds to write higher-order functions that accept closure arguments. A function
accepts a closure as an argument by accepting a generic parameter of type F, which implements
an Fn-trait. There are three such traits FnOnce, FnMut and Fn, which each contain a single call_*
method that invokes the closure function while accepting the environment by value, mutable and
immutable borrow respectively. The Fn traits form a hierarchy: every Fn is an FnMut, and every
FnMut is an FnOnce. The different steps in the Fn-hierarchy trade-off restrictions on the closure with
flexibility in how it can be called.

For example, we can implement Option::map as follows:

1 impl<T, U> Option<T> {
2 fn map<F : Fn(T) -> U>(self, f : F) -> Option<U> {
3 match self {
4 Some(x) => Some(f(x)),
5 None => None
6 }
7 }
8 }

The map function above accepts a variable of type F which can be called as a function from T
to U (i.e. F implements the Fn-trait). The expression f(x) is desugared by rust into f.call(x)
invoking the method of the Fn trait. The syntax Fn(T) -> U is a sugar for the trait bound Fn<T,
Output = U>, available in Rust to make closures more intuitive.

When we attempt to call Option::map with a closure, Rust will automatically provide the
appropriate definitions of Fn, FnMut, or FnOnce as appropriate.

2Rust compiles closures via closure conversion, generating a struct for each closure holding its captured
variables and a function for each closure method. Two closures with the same method signature can have
entirely different captures and, thus, different sizes. Rust requires each type to have a single size, so it cannot
use a universal ‘arrow’ type for closures.

26 CHAPTER 2. BACKGROUND

1 fn maybe_mod(o : Option<u32>, n : &u32) -> Option<bool> {
2 o.map(|x| x % n == 0) // OK
3 }

The closure above would generate an environment struct like the one below:

1 struct ClosureEnv<'a> {
2 n : &'a u32
3 }

The closure function body will then determine how the environment needs to be passed, either
by value, mutable borrow, or immutable borrow. In this case, as we only need to read the value of
n, the closure can be called with an immutable borrow, making it Fn.

The FnOnce trait At the top of the hierarchy is the FnOnce trait. This trait accepts the closure
environment by value, consuming it during the closure call. This trait is the most flexible for the
closure as it can manipulate its environment however it wants. In contrast, it is the most restrictive
for the client as the closure is consumed during the call. Below we define the FnOnce trait:

1 trait FnOnce<Args : Tuple> {
2 type Output;
3 extern fn call_once(self, args : Args) -> Self::Output;
4 }

It is parameterized with a type Args, which captures the function arguments of a closure as a
tuple. The associated type Output is the return type of the closure. The single method call_once
consumes the closure environment and returns the result of the closure call.

To understand what we can do with this, consider the example below:

1 fn ex_call_once<F : FnOnce(u32) -> bool>(f : F) -> bool {
2 f.call_once(0)
3 }
4
5 fn client() {
6 let v = Vec::new();
7 ex_call_once(|x| {drop(v); true}) // OK
8 }

In our small client example, we drop a vector v during the closure call. Dropping requires full
ownership over the value, thus forcing the closure to capture v by value. Since drop consumes v,
calling it twice would be a use-after-free, so the compiler must ensure that the closure is only called
once.

The FnMut trait Often, we do not need to consume the closure environment, but we still want
to mutate it. For example, consider a closure, which counts the number of times it is called. We can
implement this using the FnMut trait, which accepts the closure environment by mutable borrow.

1 trait FnMut<Args> : FnOnce<Args> {
2 fn call_mut(&mut self, a : Args) -> Self::Output;
3 }

The trait inherits from FnOnce, the closure function itself has the same Args to Output
signature as FnOnce, the only change is that self is passed behind a mutable bor-
row. In the following example, we use this to determine our closure was called twice:

2.4. PROPHETIC VERIFICATION 27

1 fn ex_call_mut<F : FnMut(u32) -> bool>(mut f : &mut F) -> bool {
2 f.call_mut(0); f.call_mut(0); f.call_mut(0)
3 }
4 fn client_mut() {
5 let mut cnt = 0;
6 ex_call_mut(&mut |x| {cnt += 1; true}) // OK
7 assert_eq!(cnt, 3);
8 }

In

this example, our closure captures cnt by mutable borrow and thus can be made FnMut: we do not
need to consume cnt entirely.

Note, that since every instance of FnMut is also an instance of FnOnce we could also pass this
closure to the prior ex_call_once function:

1 fn client_mut_as_once() {
2 let mut cnt = 0;
3 let mut c = |x| {cnt += 1; true}
4 ex_call_once(c) // OK
5 // ex_call_once(c); // ERROR
6 assert_eq!(cnt, 1);
7 }

The call to ex_call_once consumes the closure; uncommenting the second call would be an error.
This highlights a key detail of Rust closures: their kind (FnOnce, FnMut, Fn) does not determine
how their captures are made, but only how the environment is handled during the call.

The Fn trait The final kind of closure is Fn, which accepts the closure environment by immutable
borrow. An Fn closure places the most significant restrictions on the closure’s environment but
provides the caller the greatest flexibility. Fn closures are often used whenever a predicate-like
function is needed, such as filtering or searching a collection.

1 fn contains<T, F : Fn(T) -> bool>(x : Option<T>, f : F) -> bool {
2 match x {
3 Some(x) => f(x),
4 None => false
5 }
6 }
7 fn client_mut() {
8 let r = contains(None, |x| x % 2 == 0); // OK
9 assert!(r);

10
11 let mut cnt = 0;
12 let r = contains(Some(0), |x| {cnt += 1; x % 2 == 0}); // ERROR
13 }

In the example above, we implement a function contains, which checks if an Option contains
a value satisfying a predicate. The second call to contains raises an error as it attempts to mutate
cnt, which would require the environment to be mutably borrowed.

2.4 Prophetic verification
Compared to the IMP language covered in § 2.1, Rust’s borrows introduce a complication. Bor-
rows inherently cause aliasing, as there are now two names that can refer to a value: the borrow

28 CHAPTER 2. BACKGROUND

and the original variable from which the borrow was created. Many techniques exist for handling
this difficulty, most notably separation logic, which was made explicitly for this case. These ap-
proaches ignore everything about the ownership system of Rust, and we must encode and verify all
the properties usually provided by the Rust type system, significantly increasing the difficulty of
verification.

If we could lean the other way and leverage the ownership guarantees, we might simplify verifica-
tion. RustHorn[69] proposed a method to accomplish just this in 2020 by introducing the technique
of prophetic verification for mutable borrows. In this approach, each borrow is represented by a
pair of values: its current value, and its prophecized final value. Before we explain the prophecies’
details, let us explore their motivation and how they fit into Rust. We need to find a specification for
three operations: creating a borrow, writing to a borrow, and dropping a borrow. When a borrow
is created, it holds the value it was lent. Then, while the borrow is active, it has exclusive access to
that value; any mutations to it must go through the borrow. Finally, when the borrower’s lifetime
ends, the lender recovers its permissions and can observe the mutations made by the borrower.

α

x

y , &mutα x

That final step implies a form of synchronization between the borrow and lender, which is
problematic because when a borrow expires, we may not know which variable it was obtained from,
and thus, not who should be updated with a new value.

This is where RustHorn’s prophecies intervene. Rather than trying to update the lender when
the borrow is dropped, we instead prophecize the value it will have after the lifetime and update
it when the borrow is created. Then the borrow merely needs to fulfill its prophecy; it suffices to
observe that when it falls out of scope, its current value must be equal to its prophecized final value.
We call this resolving the prophecy.

A reasonable reaction to learning about prophetic verification is suspicion: How can it possibly
work? While the more formal answer is provided in Chapter 5, let’s begin by considering a simple
example.

1 let mut x = 0; x 7→ 0
2 let y = &mut x; x 7→ β, y 7→ 〈0, β〉
3 *y = 1; x 7→ β, y 7→ 〈1, β〉
4 drop(y); x 7→ β, y 7→ 〈1, β〉, 1 = β
5 assert_eq!(x, 1);

To the right of each line of code, we annotate the program’s state seen using RustHorn’s prophe-
cies. On line 2 we create a borrow and update the lender to point to the prophecy of the borrow.
Then, on line 3, we update the borrow with a new value. Finally, on line 4, we drop the borrow
and resolve the prophecy. At this point, we learn that the current value of the prophecy is equal to
its final value and thus can prove the assertion on line 5.

By using a prophetic encoding in our example, the reasoning performed about the memory
is purely local: manipulations to the borrow only affect the borrow’s value. The resolution of
the borrow introduces an equality that can be propagated until it encounters the lender, without
requiring the knowledge of who the lender is to perform resolution.

Rust’s borrows include operations other than merely writing: we can split them and reborrow
them. Both these operations are naturally expressed in the vocabulary of prophecies. Splitting a
borrow of a pair produces a pair of borrows; this operation can be expressed as the natural extension
of splitting an owned pair: we split both the current and final values.

2.4. PROPHETIC VERIFICATION 29

1 let x : &mut (T, U) = ..; x 7→ 〈(x1, x2), (α1, α2)〉
2 let (y, z) : (&mut T, &mut U) = z; y 7→ 〈x1, α1〉, z 7→ 〈x2, α2〉

Reborrowing is a more complex operation in Rust. It can do many things, from shortening a
borrow’s lifetime to collapsing levels of indirection in nested borrows. Both patterns can be captured
in prophetic reasoning:

1 let x = &'a mut T = ... ; x 7→ 〈x, α〉
2 let y : &'b mut T = &mut * x; y 7→ 〈x, β〉, x 7→ 〈β, α〉

Shortening the lifetime can be treated the same way as borrowing the value pointed to by the
original borrow x. When y expires, we recover x which will point to whatever the last value written
by y was.

Collapsing indirection through a reborrow is a more complex operation, for which we will give
interpretations in Chapter 4 and Chapter 5.

Hoare rules for prophecies We can make a step towards formalizing the prophetic reasoning
we introduced by giving Hoare triples for the core operations of borrows in Rust.

Borrow

{∀α, Q[y 7→ 〈x, α〉, x 7→ α]} y = &mut x {Q}

Resolve

{x.1 = x.0→ Q} drop(x) {Q}
Write

{Q[x 7→ 〈y, x.1〉]} * x = y {Q}

Split

{Q[a 7→ 〈x.0.0, x.1.0〉, a 7→ 〈x.1.0, x.1.1〉]} let (a, b) = x {Q}

Shorten

{Q[y 7→ 〈x, β〉, x 7→ 〈β, α〉]} let y = &mut * x {Q}

Combined with standard rules like those of IMP for basic operations, we are provided with a
deductive system for core Rust. However, proving the soundness of these additional rules is signif-
icantly trickier and requires demonstrating that there exists a possible prophecy for the quantifier
in Borrow. Proving this will be the subject of Chapter 5, which provides a fully mechanized proof
of these rules.

Chapter 3

Introduction to the Creusot
verifier

Creusot is a deductive verifier for Rust programs; it attempts to establish that a program is
correct according to its specification. It receives as input a Rust library, which may feature custom
annotations and generates a series of verification conditions meant to be verified with SMT and
other automated verifiers. It builds upon the pre-existing Why3 verification platform by targetting
an input format of Why3 called MLCFG. Why3 then generates the verification conditions and calls
out to an extensive array of solvers for verification.

While in Chapter 4 and Chapter 5 we cover the mechanics of Creusot’s translation and its
soundness, in this chapter, we will focus on its usage and interface. In § 3.1 we introduce the basic
usage of Creusot and its interface. Then § 3.2 introduces the Pearlite language Creusot uses
to write specifications. In § 3.3 we use Pearlite to prove the functional correctness of a simple
program. § 3.4 covers how to specify and prove properties of code involving traits. § 3.6 discusses
the particularities of closures in Rust and Creusot. § 3.7 introduces external specifications which
can be used to specify code belonging to external libraries. Finally, § 3.8 gives an initial evaluation
of Creusot’s performance on small benchmarks.

3.1 First steps with Creusot
We will consider an implementation of ‘Gnome Sort’, given in Figure 3.1. The Gnome Sort algorithm
sorts an array using a single loop; it scans it from left to right, and whenever an element is out of
order, it swaps it with its predecessor and then works from right to left until the element is in its
place. This algorithm is inefficient but has the advantage of being relatively simple to implement.

To verify the program, we open our program in VSCode with the WhyCode1 extension installed
along with the configuration for VSCode provided with Creusot. When we open our file, we see
the verification conditions generated by Why3 underlined in red in Figure 3.2a. Saving the file will
launch automated provers on each obligation, proving them valid.2

When we run an unannotated Rust program through Creusot, it checks the panic safety of
the program; in the case of our Gnome Sort, this means ensuring that the arithmetic does not

1Why3 also has a custom IDE built in GTK, which is more stable but offers a less beginner-friendly
introduction to verification.
2Why3 features transformations (proof tactics), which can be manually applied to help verification when
automated approaches stumble.

31

32 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 fn gnome_sort(v: &mut [i32]) {
2 let mut i = 0;
3 while i < v.len() {
4 if i == 0 || v[i - 1] <= v[i] {
5 i += 1;
6 } else {
7 v.swap(i - 1, i);
8 i -= 1;
9 }

10 }
11 }

Figure 3.1: Gnome Sort

overflow and that the slice accesses are in-bounds. The Rust language helps us through its strict
type system, which ensures slice indices are always of type usize and that only v can mutate the
slice. Leveraging these guarantees and combining them with the loop guard is sufficient to prove
the safety of this program.

In contrast, a similar proof in C would require additional specifications to guarantee properties
not provided statically by the language.

3.1.1 Proving functional correctness
The current proof of Figure 3.1 shows the absence of panics but says nothing about what gnome_sort
does. Proving the semantic properties of our function will require adding preconditions and post-
conditions to the function, constraining the circumstances in which it can be called. In Creusot,
we provide the requires and ensures clauses for this purpose. These clauses contain Pearlite
expressions, a specification language provided by Creusot. Before we describe how to specify
Figure 3.1, we will look at some simpler uses of Pearlite.

3.2 The Pearlite specification language
Pearlite is a non-executable, ownership-free specification language for Rust, its background logic
is a classical, first-order, multi-sorted logic. Each Rust type corresponds to a sort in this logic.
The logical connectives denoted by &&, || and ! mirror their Rust counterparts, but Pearlite
also introduces ==> for implication, and the quantifiers forall<v:t> formula and exists<v:t>
formula. Atomic predicates can be built using custom logic functions and predicates, constant
literals, variables, and built-in symbols, a central case being the logical equality denoted by a
double equal sign (==) and defined on any sort. This logical equality is the symbol interpreted to
the set-theoretic equality in a set-based semantics. This distinguishes it from the program equality
of Rust, which is sugar for PartialEq::eq. To reason about mutable borrows Pearlite introduces
the final operator (^), which provides access to the prophecy of a mutable borrow. Using this
operator, we could give and prove the following specification

1 #[ensures(^x == *x)]
2 fn drop_mut_bor(x : &mut T) { }

stating that the final value of x equals its initial value.

3.2. THE PEARLITE SPECIFICATION LANGUAGE 33

(a) Gnome Sort before verification

(b) Gnome Sort after verification

Figure 3.2

34 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

Pearlite has support for logical sorts that do not exist in Rust, like Int, the unbounded
mathematical integers, or like Seq<T>, the generic sort of mathematical sequences. A syntactically
valid formula is thus, for example:

1 forall<x: Int> x >= 0 ==> exists<y: Int> y >= 0 && x * x == x + 2 * y

Pearlite formulas are type-checked by the Rust compiler’s front end but not borrow-checked.
Hence, values can be used in logic functions or predicates, even if the Rust ownership rules forbid
copying them.

Contract Clauses Pearlite can be used in several specification clauses:

1. requires: Attached to functions or closures, allows specifying a precondition to function
calls. This clause is evaluated in the prestate of the function. When attached to a trait
declaration, this specifies the strongest precondition that implementations can require. Each
trait implementation must refine this precondition.

2. ensures: Attached to functions or closures, specifies the postcondition of a function call.
Unlike in many other verification tools, this clause is also evaluated in the prestate of the
function3. When attached to a trait declaration, this specifies the weakest postcondition that
implementations can provide.

3. variant: Used to prove the termination of functions in both Rust and Pearlite, it accepts
an expression whose result must be a strictly decreasing well-founded order. The variant
clause can be attached to loops and functions to show their termination.

4. trusted: Indicates that a contract should be assumed, and that Creusot should not generate
any proof obligations.

The decr_even function below uses a requires and ensures clause to decrement an integer if
it contains an even value:

1 #[requires(x % 2 == 0)]
2 #[ensures(result == x - 1)]
3 fn decr_even(x : i32) -> i32 { x - 1 }

Other Pearlite clauses Besides contracts of declarations, Pearlite can be used within defi-
nitions to help in the proof of properties, in particular:

1. invariant: Can be attached to loops and states a property that must be valid before each
iteration.

2. proof_assert: Inserts a ghost assertion which is checked for validity. This assertion does not
exist in the compiled binary.

3. ghost: Inserts a ghost expression in the code, which can be used in further ghost expressions,
assertions or invariants. This expression does not exist in the compiled binary.

The proof_assert annotation is often used to debug proofs; it allows the user to verify that
intermediate properties hold at specific program points and is a reasonable manner of understanding
why a specific proof is not passing.
3An interesting consequence of the Rust type system is that since function arguments are passed by value
and with ownership, they are effectively consumed by the function. Given a function fn omg(x: T) x does
not meaningfully exist at the end of the execution of omg, in fact, x may have been moved or dropped at an
arbitrary point in omg’s execution. The primary manner of performing or observing side-effects in Rust is
through mutable borrows, and when using those, Pearlite offers the ^ operator to speak of the final value
of a borrow. This property is equally valid before or after function execution.

3.3. PROVING ‘GNOME SORT’ CORRECT 35

Pearlite definitions Finally, we often wish to write auxiliary definitions in Pearlite to be
used in the previous clauses. For this reason, we can write a function with the predicate or logic
attribute to state that these definitions are Pearlite symbols and not Rust functions. In particular,
these symbols can use Pearlite constructs like quantifiers and mathematical types.

1 #[logic]
2 fn sqr(x: Int) -> Int { x * x }
3
4 #[logic]
5 #[variant(x)]
6 fn sum_of_odd(x: Int) -> Int {
7 if x <= 0 {
8 0
9 } else {

10 sum_of_odd(x - 1) + 2 * x - 1
11 }
12 }

Pearlite definitions must be total, and thus we must provide a variant clause for the
sum_of_odd example above.

Lemmas A useful feature of Pearlite is the introduction of user lemmas using the so-called
lemma function construction. To achieve this, one provides a contract to a logical function. By
proving the contract valid, one obtains a lemma stating that for all values of arguments, the pre-
conditions imply the postconditions. This construction is even able to prove lemmas by induction.
Here is an example:

1 #[logic]
2 #[requires(x >= 0)]
3 #[variant(x)]
4 #[ensures(sum_of_odd(x) === sqr(x))]
5 fn sum_of_odd_is_sqr(x:Int) { if x > 0 { sum_of_odd_is_sqr(x-1) } }

This code is automatically proven to conform to its contract. A user can then use the lemma inside
of a ghost or proof assertion to introduce a new hypothesis: ∀x, x ≥ 0 ⇒ sum_of_odd(x) = x2 in
the current proof context. Lemma functions allow users to provide specific hints to the verifiers,
which can be used to prove more complex properties.

3.3 Proving ‘Gnome Sort’ correct

Using Pearlite we can state what it means for gnome_sort to be correct. An essential, expected
property of a sorting function is that after a call, the array is sorted. We start by defining a predicate
sorted_range as follows:

36 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 #[predicate]
2 fn sorted_range(s: Seq<i32>, l: Int, u: Int) -> bool {
3 pearlite! {
4 forall<i : Int, j : Int> l <= i && i < j && j < u ==> s[i] <= s[j]
5 }
6 }
7
8 #[predicate]
9 fn sorted<(s: Seq<i32>) -> bool {

10 sorted_range(s, 0, s.len())
11 }

The predicate sorted_range states that any two ordered pairs of indices i, j are ordered in
the sequence s. A sequence is a mathematical array type with Int length. Recall that Pearlite
functions are total, and there is no requirement to check that sequence accesses are in bounds, if
the index i is out of bounds, then s[i] produces an unspecified value. We then define the sorted
predicate using sorted_range, providing the lower and upper bounds.

In both these definitions, we used mathematical sequences, but in our gnome_sort function, we
use a slice. We distinguish the two types in Creusot, but we can convert a slice into a sequence
using a model function. Given a slice [T], we can canonically build a sequence Seq<T>, which is
just a direct mapping of the slice. Lifting program types into their mathematical abstractions is an
essential operation of verification in Creusot and Pearlite provides a dedicated, post-fix operator
for this @ (pronounced model). On line 1, we use this to convert the final value of v into a sequence
in the code below:

1 #[ensures(sorted((^v)@))]
2 #[ensures((^v)@.permutation_of(v@))]
3 pub fn gnome_sort(v: &mut [i32])
4 {
5 let old_v = ghost! { v };
6 let mut i = 0;
7 #[invariant(sorted_range(v, 0, i@))]
8 #[invariant(v@.permutation_of(old_v@))]
9 while i < v.len() {

10 if i == 0 || v[i - 1] <= v[i] {
11 i += 1;
12 } else {
13 v.swap(i - 1, i);
14 i -= 1;
15 }
16 }
17 }

We must also use a loop invariant, a property maintained by each loop iteration, to prove this
postcondition. On line 7, our invariant is that v is sorted from index 0 to i. To prove this invariant
valid, we must first ensure it is true when we enter the loop (also called initialization); here, it is
trivially the case when i = 0 as the interval [0, 0) is empty. Then, the invariant must also be upheld
by each iteration of the loop (called preservation); we have two cases:

1. If i was 0, then after one iteration the singleton slice v[0..1] will be sorted. Otherwise,
if v[i - 1] <= v[i], then given sorted_range(v, 0, i@) (from the previous iterations),
sorted_range(v, 0, i@ + 1) must also be sorted, since v[i] must be bigger than all previ-
ous elements.

3.4. WORKING WITH TRAITS 37

2. Otherwise, we’ve found a pair v[i-1] > v[i]. In this case, we swap both values, restoring
the sorted property between them and decrement i. Since sorted_range(v, 0, i@), we also
have sorted_range(v, 0, i@ - 1).

On line 2, we state the second fundamental property of a sorting algorithm: that it does not
delete or duplicate elements. To prove this, we use a second invariant, which relates the state of v at
each iteration to old_v, a ghost copy of v at the start of the function. Because the only modification
we make to v is swapping elements, proving that we always have a permutation is easy.

The ghost! macro allows us to insert additional ghost code [34] to help with verification. Ghost
code and ghost values must satisfy an erasure property: the program’s behavior with the ghost code
removed must be identical to the program with ghost code. Ghost code can be used to construct
values of mathematical types like Int and Seq. The ghost!{x} macro evaluates to values of type
Ghost<T> where T is the type of x. This can store ghost values inside types and variables, a valuable
feature for more considerable verification efforts (Chapter 7).

3.4 Working with traits
Rust traits can be specified like normal Rust functions and include logical predicates and functions.
Any contract provided to a trait will generate refinement obligations for individual implementations.
They must demonstrate that the implementation’s contract is at least as strong as the generic one
given to the overarching trait. This contract does not have to be identical; we can give more robust
contracts or contracts stated in a manner easier to work with for a specific type.

Traits are often used to abstract over operations that should respect specific identities, like
Ord [86], which is expected to implement a total order. Users should be allowed to rely on these
properties for correctness, even in generic contexts. In a trait definition, we can include lemma
functions to require specific behaviors from the implementations of traits.

1 trait Ord {
2 fn cmp(&self, rhs: &Self) -> Ordering;
3
4 #[law]
5 #[requires(a.cmp(b) == o && b.cmp(c) == o)]
6 #[ensures(a.cmp(c) == o)]
7 fn transitivity(a : &Self, b : &Self, c : &Self, o : Ordering);
8
9 // ...

10 }

To avoid increasing the size of contexts, Creusot will only include a lemma if it is called at least
once in the verified function. However, when working generically with traits like Ord, we want to
ensure that the transitivity (line 7) is always available. Creusot allows specifying these identities
or laws in traits by through #[law] definitions. Laws are particular kinds of logic functions that
are auto-loaded by Creusot when a trait is used.

3.5 Verifying a generic program
Let’s consider the verification of a more challenging program than gnome_sort: a different, generic
version of find on a singly linked-list. Our find_mut_tail function accepts a list of type List<T>
and an element of T and returns a mutable pointer to the first cell containing this element if any is

38 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 enum List<T> {
2 Cons(T, Box<List<T>>),
3 Nil,
4 }
5
6 impl<T> List<T> {
7 #[logic] fn get(self, i: Int) -> Option<T> { .. }
8
9 #[logic] fn len(self) -> Int {

10 match self {
11 Nil => 0,
12 Cons(_, tl) => tl.len() + 1,
13 }
14 }
15 }
16
17 use List::*;
18
19 fn find_mut_tail<'a, T: Eq>(list: &'a mut List<T>, x: &T) -> Option<&'a

mut List<T>> {
20 match list {
21 Nil => None,
22 Cons(y, _) if y == x => Some(list),
23 Cons(_, tl) => find_mut(tl, x),
24 }
25 }

Figure 3.3: Generic find on a linked list

3.6. HIGHER-ORDER FUNCTIONS 39

1 trait PartialEq<Rhs> {
2 #[ensures(result == (self.deep_model() == rhs.deep_model()))]
3 fn eq(&self, rhs: &Rhs) -> bool
4 where Self: DeepModel,
5 Rhs: DeepModel<DeepModelTy = Self::DeepModelTy>;
6 }
7
8 trait DeepModel {
9 type DeepModelTy;

10 #[logic] fn deep_model(self) -> Self::DeepModelTy;
11 }

Figure 3.4: The specification of PartialEq

present. The code can be found in Figure 3.3. As with gnome_sort, passing this program through
Creusot will only check the absence of panics, and does so automatically.

Note, we also define a few logical functions, get (line 7) and len (line 9), which we will use
in the specification of find_mut_tail. We provide the code for illustration for len, showing how
we treat List as the ordinary list type in our logic. The definition for get is analogous; it is the
standard form of get on a list.

The implementation of find_mut_tail is generic over the element type T, but requires that
T implements Eq. The specification of PartialEq is given in Figure 3.4, and makes use of the
DeepModel trait. In Creusot, the DeepModel trait is used to describe the view of Rust types
taken by PartialEq, PartialOrd, and Hash. To help implement these traits, Creusot provides a
#[derive(DeepModel)] macro, which automatically generates a DeepModel implementation for a
type.

Using DeepModel, we can give a generic specification for this function. We provide the complete
specification in Figure 3.5, which we will now cover in detail. First, if the result was None (line 4),
then no element in the list can have a deep model equal to our target x. The specification is more
interesting when the result is Some(n). Then, we state that the first element of n is equal to x
(line 8). We then state that the initial elements of n are a suffix of our input list (line 12). Finally,
we also state that the final elements of n are a suffix of the final elements of list (line 14).

This specification, especially the Some case, highlights one of the unique aspects of proving pro-
grams using Creusot: we never reason about pointer values themselves, but exclusively about their
contents at different points in the program. With this specification, the proof passes automatically.

3.6 Higher-order functions
Closures can be specified using #[requires] and #[ensures] attributes like other functions.

1 iter.map(#[requires(x <= 10)] |x| { x + 1 })

These pre and postconditions can refer to the closure’s arguments, return value, and captures.
Unlike the parameters of standard functions, the captures of a closure alias their environment. In
particular, all modifications to a captured variable are visible outside the closure. Consider a normal
Rust function fn inc(mut x: i32) { x += 1; }, the modification to the parameter x is not visible
in the callee as Rust uses call-by-value semantics. However, in the closure || { x += 1; }, the
modification to the capture x is visible outside of the closure.

40 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 #[ensures(match result {
2 None => ^list == *list &&
3 (forall<i : _> 0 <= i && i < list.len() ==>
4 list.get(i).deep_model() != Some(x.deep_model())),
5 Some(n) => {
6 let offset = list.len() - n.len();
7 n.len() <= list.len() &&
8 n.get(0).deep_model() == Some(x.deep_model()) &&
9 (forall<i : _> 0 <= i && i < offset ==>

10 list.get(i) == (^list).get(i)) &&
11 (forall<i : _> 0 <= i && i < n.len() ==>
12 list.get(i + offset) == n.get(i)) &&
13 (forall<i : _> 0 <= i && i < (^n).len() ==>
14 (^list).get(i + offset) == (^n).get(i)) &&
15 },
16 })]
17 fn find_mut<'a, T: Eq + DeepModel>(list: &'a mut List<T>, x: &T) ->

Option<&'a mut List<T>> { .. }

Figure 3.5: Specification of find_mut_tail

This behavior unique to closures requires introducing a new contract operator to distinguish
the value of a closure capture before and after the call. Creusot uses the old pseudo-function
for this role.. The prior closure could be given the specification #[ensures(old(x) + 1 == x)] to
state that the closure increments its argument by one. When used in a postcondition of a closure
old(x) refers to the value of x upon entry to the closure call.

3.6.1 Specifying clients of closures
The consumers of closures also need a mechanism to reason about the behavior of the closures they
receive. Closures can have arbitrary preconditions or postconditions, and the clients must ensure
they have sufficient permissions to call the closure. Earlier, in § 2.3.4, we showed how Rust uses
the Fn-traits to abstract over closures. In Creusot, we extend those traits to abstract over the pre
and postconditions of closures.

For example, suppose we wish to call a mutable closure with negative integer values; we can
write the following function:

1 #[requires(forall<f : F, x: i32> x < 0 ==> f.precondition((x,)))]
2 fn call_with_neg<F: FnMut(i32)>(mut f: F) {
3 f(-1);
4 }

We use the precondition predicate to state that all values of the closure type F must accept negative
values. Note, precondition accepts the arguments of the closure as a tuple (even if the closure only
has one argument), we use (x,) to create a 1-tuple.

Handling the converse is more complicated: as covered in § 2.3.4, there are three different ways
to call a closure, each manipulating the environment differently. In consequence, we do not have a
single postcondition predicate but three, one for each of the Fn-traits.

3.6. HIGHER-ORDER FUNCTIONS 41

1 trait FnOnce<Args> {
2 type Output;
3
4 #[predicate] fn precondition(self) -> bool;
5
6 #[predicate] fn postcondition_once(self) -> bool;
7
8 #[requires(self.precondition(args))]
9 #[ensures(self.postcondition_once(args))]

10 fn call_once(self, args: Args) -> Self::Output;
11 }

Figure 3.6: FnOnce extended with specifications

We implemented these additional predicates by extending the Fn-trait hierarchy, beginning with
FnOnce in Figure 3.6. We introduce two predicates: precondition capturing the precondition of the
closure, and postcondition_once, which describes the postcondition of calling a closure through
call_once. Creusot automatically provides the bodies of these predicates for closures using the
requires and ensures clauses the user provided. The bodies of these predicates are precisely the
contents of the clauses.

The FnMut trait (Figure 3.7) introduces another two predicates- postcondition_mut
and unnest, along with several laws, including fn_mut_once relating postcondition_mut to
postcondition_once. The contract of an FnMut closure has two possible interpretations, depending
on whether it is called through call_mut or call_once. However, these specifications should be
compatible, we link them through the fn_mut_once law:

1 self.postcondition_once(args, res) ==
2 exists<s: &mut Self> *s == self &&
3 s.postcondition_mut(args, res) && (^s).resolve()

This law states that calling an FnMut closure through call_once is equivalent to calling it through
call_mut and then resolving (throwing away) the closure state.

The second part of FnMut is the unnest predicate. This predicate captures a property unique to
closure types: we can only mutate the values pointed by the captures, not the captures themselves.
Consider the following simple example:

1 let mut cnt = 0;
2 let mut c = || { cnt += 1;};
3 c();
4 c();
5 assert!(cnt == 2);

The closure cnt borrows the variable c, and its value is tested on line 5. If Creusot treats the
closure in a fully opaque manner, it has no way of knowing that after each call the environment
holds a reference to the same variable cnt. To work around this, for each FnMut we generate an
unnesting predicate which relates the mutable captures of the closure before and after the call.
This predicate allows Creusot to know that the closure is mutating the same variable at each call.

The unnesting predicate is essential to link closure states throughout repeated calls. Without it,
we would lose track of the contained mutable borrows. This property is an example of a historical
invariant [94], a property that holds throughout the lifetime of a closure, and thus we impose that
this predicate is reflexive and transitive using two laws: unnest_refl and unnest_trans.

42 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 trait FnMut<Args>: FnOnce<Args> {
2 #[predicate]
3 fn postcondition_mut(&mut self, _: Args, _: Self::Output) -> bool;
4
5 #[predicate]
6 fn unnest(self, _: Self) -> bool;
7
8 #[law]
9 #[requires(self.postcondition_mut(args, res))]

10 #[ensures((*self).unnest(^self))]
11 fn postcondition_mut_unnest(&mut self, args: Args, res:

Self::Output);
12
13 #[law]
14 #[ensures(self.unnest(self))]
15 fn unnest_refl(self);
16
17 #[law]
18 #[requires(self.unnest(b))]
19 #[requires(b.unnest(c))]
20 #[ensures(self.unnest(c))]
21 fn unnest_trans(self, b: Self, c: Self);
22
23 #[law]
24 #[ensures(
25 self.postcondition_once(args, res) ==
26 exists<s: &mut Self> *s == self &&
27 s.postcondition_mut(args, res) && (^s).resolve()
28)]
29 fn fn_mut_once(self, args: Args, res: Self::Output);
30
31 #[requires(self.precondition(args))]
32 #[ensures(self.postcondition_mut(args))]
33 fn call_mut(&mut self, args: Args) -> Self::Output;
34 }

Figure 3.7: The FnMut trait extended with specifications

3.7. INTERFACING WITH THE REAL WORLD 43

1 trait Fn<Args>: FnMut<Args> {
2 #[predicate]
3 fn postcondition(&self, _: Args, _: Self::Output) -> bool;
4
5 #[law]
6 #[ensures(self.postcondition_mut(args, res) == (self.resolve() &&

self.postcondition(args, res)))]
7 fn fn_mut(&mut self, args: Args, res: Self::Output);
8
9 #[law]

10 #[ensures(self.postcondition_once(args, res) == (self.resolve() &&
self.postcondition(args, res)))]

11 fn fn_once(self, args: Args, res: Self::Output);
12 }

Figure 3.8: The Fn trait extended with specifications

Finally, Fn (Figure 3.8) imposes that the closure is immutable and introduces the final form of
postcondition- postcondition.

In a Fn closure, we can no longer use old as the closure is immutable.
Two laws, fn_mut and fn_once relate postcondition to each of postcondition_mut and

postcondition_once respectively. These state that the postconditions of FnMut and FnOnce closures
are equivalent to the postcondition of Fn closures, but only if the closure is resolved.

3.7 Interfacing with the real world
Creusot uses a modular approach to verification, meaning it cannot look inside the bodies of
functions during calls. This means the behavior of functions is solely modeled by the contract
attached to that function. However, to verify real-world Rust code, we must at least be able to call
standard library functions, for which we cannot (directly) prove a specification. To attach contracts
to standard library functions, Creusot provides the extern_spec! macro.

The extern_spec! macro allows users to write contracts for arbitrary Rust functions, which will
be used by Creusot in the translation. The argument to extern_spec! is a forest of Rust paths,
eventually ending in Rust functions. Each function can be given a contract, which the translation
will use by Creusot. Below, we show an example of a specification for Vec::new:

1 extern_spec! {
2 mod std {
3 mod vec {
4 impl<T, A: Allocator> Vec<T, A> {
5 #[ensures((@result).len() == 0)]
6 fn new() -> Self;
7 }
8 }
9 }

10 }

Simply attaching a contract to a function is often insufficient; we may also need to require trait
implementations for generic parameters. Consider the case of the function

44 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

1 fn binary_search<T : Ord>(self: &[T], x: &T) -> Result<usize, usize>

from std::slice. For this function to work correctly, it needs a precondition that the slice is
sorted. However, since this function is generic over T, we need a way to express a generic order over
T. In §3.4 we showed how to provide a specification to Ord. Thus, to write our extern specification,
we must have a T that satisfies our Ord specification trait. For this reason, when a user writes an
extern_spec, we allow the bounds to be stronger than for the original function. We check that the
bounds in the extern_spec imply the original bounds. Additionally, we verify that these additional
bounds are satisfied each time the specification is used (at call sites).

3.8 Evaluation
With Creusot, we value verification performance; a short verification time allows faster iteration
on proofs and verified code. We ran Creusot on a wide range of benchmarks to demonstrate
that our approach allows efficient verification4. These benchmarks use polymorphism and traits.
We adapted and generalized programs from the Prusti [4] benchmark suite, strengthening the
verified properties. Other examples were inspired from the Why3 gallery [12], Rosetta Code [71]
or RustHorn [69].

Proof Strategy Note that Why3 supports a wide range of manual proof tactics that allow users
to set up the proof structure before handing off obligations to provers. As these can dramatically
help verification, we avoid them in our evaluation and instead apply a standard proof strategy
to all examples. Each example is proved using Why3’s “Auto Level 3” strategy, a common first
step when verifying programs with Why3. One benchmark required a small number of additional
manual proof steps, “Sparse Array”, to prove a complex lemma about injections between sequences.

Our evaluation used a 2016 Macbook Pro running macOS 11.6 installation with an Intel Core
i7-7920HQ CPU and 16GB of RAM. We relied on a combination of Alt-Ergo 2.4.1, Z3 4.8.17, and
CVC4 1.8 as back-ends to Why3.

3.8.1 Discussion
The selected results are presented in Table 3.1, where benchmarks are grouped by origin. The first
group comes from RustHorn’s evaluation [69, §4.3], where we added specifications of the intended
functional behavior. The second group of benchmarks is adapted from Prusti’s evaluation [4, §7.2].
The third group is novel examples contributed as part of Creusot’s test suite. “Filter Vector” is a
challenging example regarding reasoning on memory separation [45]. “Sparse Array” is an example
from the VACID-0 benchmarks [61]. The proof involves a mathematical lemma with a few steps
of manual proof [25] before sending the sub-goals to SMT solvers. “In Place List Rev.” is the
in-place linked-list reversal procedure classically used to illustrate reasoning in separation logic.
Remarkably, the Rust code for that can be verified without separation logic.

Our RustHorn tests show that we maintain the verification performance of RustHorn, as our
provers rapidly verify these examples. While some manual annotation is required, even for safety,
the overhead is low and primarily consists of stating the properties we wanted to prove in the first
place.

The Prusti examples listed here are derived from their introductory paper in 2019 [4]. Their
paper provides two versions for their functions, the first proving only safety while the second proving
portions of functional correctness.
4The benchmarks can be found at https://github.com/xldenis/creusot/tree/master/creusot/tests/
should_succeed

https://github.com/xldenis/creusot/tree/master/creusot/tests/should_succeed
https://github.com/xldenis/creusot/tree/master/creusot/tests/should_succeed

3.8. EVALUATION 45

Spec. # of Additional
Name LOC LOC VCs Time (s) Properties

Inc Some List 25 22 4 0.98 Func. correctness
Inc Max 12 3 2 0.53 Func. correctness
Inc Max Many 13 3 2 0.74 Func. correctness

Binary Search 21 20 31 2.15 Func. correctness
Knapsack 0/1 32 52 81 3.94 —
Knapsack 0/1 32 106 113 5.96 Func. correctness
Knuth Shuffle 9 11 1 0.30 Permutation
100 doors 18 6 3 1.08 —
Heap Sort 30 71 125 14.6 Func. correctness
Selection Sort 15 27 30 2.14 Func. correctness

Gnome Sort 11 17 31 2.06 Func. correctness
Filter Vector 21 39 6 0.98 —
Sparse Array† 47 75 37 4.86 Func. correctness
In place List Rev. 12. 10 1 0.55 Func. correctness
All Zero List 11 10 1 0.64 Func. correctness
Index Mut List 18 53 3 0.59 Func. correctness
Swap Pair 9 3 2 0.48 Func. correctness
HashMap 50 111 71 5.43 Func. correctness
Red Black Tree 275 596 1029 31.27 Func. correctness

Table 3.1: Selected results of our evaluation. The column “LOC” indicates the lines of
program code (excluding blank lines) we verify. The column “Spec. LOC” measures the lines
of specifications (excluding blank) used. “# of VCs” measures the number of verification
conditions sent to CVC4 or Z3 as proof tasks. “Time (s)” measures the time Why3 takes
to run the provers. Tests marked with † required manual proof steps in Why3 IDE [25].

The difference in verification performance is evident by the “Knapsack 0/1” example of Prusti.
This example solves the 0/1-Knapsack problem using the traditional dynamic programming ap-
proach. Prusti takes over 2 minutes to verify the safety of the problem, whereas our proof of safety
passes in approximately 4 seconds. This difference in performance helps us go further; checking
proofs rapidly allows for faster iteration, which enabled us to extend this example with a complete
proof of functional correctness. Our version of the Knapsack Problem with functional correctness
takes longer to verify, with the proof passing in approximately 6 seconds.

The ‘Index Mut List’ Benchmark

The benchmark ‘Index Mut List’ is a simple example that demonstrates the power of Creusot’s
prophecies. It traverses a singly-linked list, returning a borrow to the ix-th element. The code is
shown below:

1 pub struct List(u32, Option<Box<List>>);

46 CHAPTER 3. INTRODUCTION TO THE CREUSOT VERIFIER

2
3 pub fn index_mut(mut l: &mut List, mut ix: usize) -> &mut u32 {
4 while ix > 0 {
5 l = l1.as_mut_ref().unwrap();
6 ix -= 1;
7 }
8
9 &mut l.0

10 }

The specification of this function seems rather simple, the returned borrow should correspond
to the ‘projection’ of the ix-th cell of the borrow on the whole list. Specifically, the client should be
able to modify the returned value, and when that borrow is dropped recover the original list with
the modification. We can state these properties with the Pearlite specification below:

1 #[requires(ix@ < l.len())]
2 #[ensures(Some(*result) == l.get(ix@))]
3 #[ensures(Some(^result) == (^l).get(ix@))]
4 #[ensures((^l).len() == (*l).len())]
5 #[ensures(forall<i:Int> 0 <= i && i < l.len() && i != ix@ ==> l.get(i) ==

(^l).get(i))]

Proving this specification however is subtle, due to the usage of a loop. Let’s consider the sim-
plest case: we wish to establish that the loop leaves the list’s length unchanged, that is: (*l).len()
== (^l).len(). Unlike a normal loop invariant, this property depends on future information, prov-
ing this true requires knowledge of the value of ^l. Supposing this property is true for the following
iterations, we can establish it for the current one. We formalize this through an implication: if the
property holds for the current value of l then it also holds for the orignal one.

1 let old_l = ghost! { l };
2 #[invariant((^l).len() == l.len() ==> (^old_l).len() == old_l.len())]
3 while ix > 0 {
4 l = l1.as_mut_ref().unwrap();
5 ix -= 1;
6 }

At the entry of the loop, we can initialize the invariant since l = old_l. Then we must establish
the preservation of this invariant. Since we peeled off one element of the list, we know that the length
of l has decreased by one. By supposing the property holds for the tail of the list (the antecedent
of the invariant), we can demonstrate that it must have held at the start of the iteration, and thus
can prove the property.

This sort of backwards reasoning is commonly found when working with separation logic as
a magic wand. The magic wand P −∗ Q encodes the idea of a property Q with a P shaped
hole, exactly like the kind of reasoning we were just performing. The approach Creusot uses to
verification effectively subsumes magic wands within safe Rust, turning them into a design pattern
for specifications. The remaining postconditions can be proved through similar invariants.

3.8.2 Limitations & Unsupported Features
Just as important as the features Creusot does support are those that are not yet implemented
or otherwise unsupported:

1. Drop: Creusot does not yet support reasoning about the Drop trait. The challenge of drop
is two-fold: 1) the Rust borrow checker special-cases certain behaviors in the presence of drop
(also called the ‘dropck eyepatch’), and 2) the specification to give Drop is unclear.

3.8. EVALUATION 47

2. Mutually recursive functions: Though Creusot has long supported simple recursive func-
tions, there are engineering challenges to supporting mutually recursive functions.

3. Trait Objects: Currently, trait objects can be present in functions, but we cannot meaningfully
specify them; as such, they can only be used in traits with no specification like Display or
Debug.

4. Async: Though we support the similar notion of iterators, Creusot does not yet support
futures or async/await.

5. Unsafe Code: As we have already stated, Creusot is a verifier for safe Rust and crucially
leverages the safety guarantees of the Rust type system for its soundness.

Chapter 4

Implementing a Rust verifier

This chapter is based on the “Creusot: A Foundry for the Deductive Verication of Rust
Programs” article about Creusot, but the content has been significantly expanded
and revisited.

This chapter presents the design and implementation of Creusot, a verifier for Rust programs
built on top of the Why3 [31] verification platform. It uses a prophetic approach inspired by
RustHorn [69] but targets pure, functional languages rather than predicate transformers. Despite its
academic origins, the purpose of Creusot is not merely to demonstrate the possibility of verifying
Rust programs but to provide a practical tool for verifying real-world Rust programs. Much work
has gone into expanding the subset of Rust supported by Creusot, allowing more idiomatic Rust
code to be used.

The remainder of the chapter will be structured in the following manner. In § 4.1, we will
introduce MIR, the source language of Creusot, and the kernel language of Rust. In § 4.2, we will
introduce MLCFG, the target language of Creusot. With the source and destination defined, we
will present the translation of Creusot in §4.3. We will focus on Creusot’s handling of prophecies
(§ 4.3.2) and traits (§ 4.3.4). We finish by discussing related projects (§ 4.6).

4.1 The MIR language

Despite being a Rust verifier, Creusot does not start its work from the source Rust code. Instead,
it uses the Mid-Level Intermediate Representation (MIR) as the source language for our translation.
This language can be considered the ‘kernel’ language of Rust; it has a drastically simplified syntax,
is structured as a CFG, and makes the semantics of Rust programs explicit1. In particular, the
flagship analysis of ‘borrow checking,’ responsible for enforcing Rust’s ‘Mutability XOR Aliasing’
discipline, is performed on the MIR. Since the introduction of non-lexical lifetimes, it is not clear
that reasoning about borrows could be performed on a more traditional tree-structured language.
Furthermore, the Rust project has strongly indicated that MIR should be considered the interface
for tools external to the compiler.2

1This is a white lie, as there remain open questions about many details of MIR semantics, which the Rust
project is actively working on closing.
2The ‘Stable MIR’ project aims to officialize this by offering an official, public API that permits reading
the MIR of Rust programs.

49

50 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

Place 3 p ::= ` | * p | p [`] | (p as C).f
Operand 3 o ::= move p | copy p | n

RValue 3 r ::= o | & p | &mut p | o⊕ o | C o
Statement 3 S ::= p = r

Terminator 3 T ::= switch o C → BBk | goto BBk | assert o→ BBk
| call f(o) → BBk | return | unreachable

BasicBlock 3 B ::= BBk {S; T}
VarDecl 3 V ::= let ` : τ ; | let mut ` : τ ;

Function ::= fn φ<α, ξ>(b : τ) → τ = V B

Figure 4.1: Syntax of MIR (simplified)

4.1.1 Syntax
We present a slimmed-down version of MIR, used by Creusot as its source language. The MIR
language contains additional syntactic constructs used for error reporting, type inference, and dy-
namic analysis, which are irrelevant to the translation. One simplification is made by Creusot: it
does not support call-stack unwinding (used in the implementation of panics), and thus all relevant
control-flow edges are removed. The other significant simplification is drop, the Rust destructor
function, Creusot does not support drop, and thus we erase the relevant terminators from MIR.
The remaining language is presented in Figure 4.1.

A MIR function (fn φ<α, ξ>(b : τ)→ τ1) has a name (φ), a set of lifetime parameters (α), a set
of type parameters (ξ), a set of function parameters (b : τ) and produces a value of an output type
τ1. Each function has a series of local variables (V) and a series of basic blocks (B). Local variables
are either mutable (let mut ` : τ) or immutable (let ` : τ), and their scope ranges over the whole
function. A basic block (BBk {S; T}) is composed of assignments S, a terminator T, and labeled with
a unique identifier k. By convention, the entry point to a function is BB0. Assignments are of the
form p = r, where p is place and r is a right-hand side value (RValue). A place (p) is either a local
variable (`), a dereference (* p), an array access (p [`]) or a field access ((p as C).f) where C
is a constructor name and f is a field index within that constructor. An RValue (r) is either an
operand (o), an immutable borrow (& p), a mutable borrow (&mut p), a primitive binary operation
(o⊕ o) which includes arithmetic and comparison, or a constructor (C o). An operand (o) is either
a move (move p), a copy (copy p) or a constant (n).

4.1.2 Informal semantics for MIR
We will not present formal semantics for MIR here because the official semantics are under active
development, and the fragment we are considering in Creusot has unsurprising semantics. MIR is
a call-by-value language; calling a function with an argument of type τ requires handing ownership
of the value to the callee. This remains true for pointer types: calling a function that takes a &mut T
argument transfers ownership of the borrow. A place evaluates to an address in memory reachable
from a local variable. When a move operand is used, the source of the move is uninitalized. Using
a copy operand, the bytes of the variable are duplicated into the destination, leaving the source
intact. By convention, MIR uses the variable _0 to hold the function’s return value.

4.2. THE MLCFG LANGUAGE 51

Example: Incrementing a Borrow To illustrate the syntax and semantics of MIR, we
consider the following simple incr function.

1 fn incr(_1 : &mut i32) {
2 let mut _0 : ();
3 let _1 : &mut i32;
4 BB0 {
5 *_1 = (copy *_1) + 1;
6 _0 <- ();
7 return;
8 }
9 }

Upon entry, it copies the value pointed to by i32, adds one, and then writes back into *_1. The
place *_1 occurs on both the left and right-hand sides of the assignment, but all places occurring
as rvalues must be prefixed by either move or copy. Only Copy types may occur behind a copy
operator; the MIR type checker ensures this property.

4.2 The MLCFG language
Rather than translate directly from MIR into WhyML, Creusot makes an intermediate step by
targetting MLCFG. The MLCFG language is syntactic sugar over WhyML, allowing inputting
programs in the form of control-flow graphs (CFGs) rather than classic functional programs. This
is a natural fit for MIR, which is already structured as a CFG and allows Creusot to focus on
other aspects of the translation. We present the syntax of MLCFG and the WhyML fragment we
use in Figure 4.2.

Expr 3 e ::= x | n | e⊕ e | let ρ = e in e | C e | (e, e) | e.0 | e.1
| match e with ρ→ e end | any

Term 3 t ::= x | n | t⊕ t | t = t | t ∧ t | t ∨ t | t⇒ t | ∀x, t | ∃x, t
| let ρ = t in t | C t | match t with ρ→ t end

Pattern 3 ρ ::= C(ρ) | x | -
Statement 3 S ::= x← e | x← call φ(e) | assert t | assume t | invariant t

Terminator 3 T ::= goto BBk | switch e with ρ→ BBk | return e | absurd

BasicBlock 3 B ::= BBk {S; T}
VarDecl 3 V ::= var x : τ

Cfg ::= let cfgφ (b : τ) : τ

requires t
ensures t

= V B

Figure 4.2: Syntax of MLCFG

52 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

4.2.1 Syntax

We let identifiers (x), constructor names (C) and block identifiers (k) range over an infinite set.
The class Expr contains arithmetic, comparisons, constructors, let bindings, and match expressions.
These are used as program expressions in MLCFG to perform individual atomic operations. The
class Term describes logical terms used in specifications; it includes arithmetic, constructors, let
bindings, and match expressions but also universal and existential quantifiers and propositional
operators for conjunction, disjunction, and implication. The class of Pattern includes standard
functional pattern matching forms: constructor patterns, variable bindings, and wildcards.

Now we consider the syntax unique to MLCFG; programs are structured as a series of basic
blocks consisting of zero or more statements followed by a single terminator. A statement (State-
ment) can either evaluate an expression and store it in a local variable, assert the truth of a term,
or assert a cycle invariant. A cycle invariant works like a loop invariant in a structured language,
except it refers to cycles in the graph rather than while-loops. A terminator can either uncondi-
tionally jump to a block, conditionally jump, return from the function, or assert unreachability. A
basic block (BasicBlock) is a series of statements followed by a terminator. Variable declaration
(VarDecl) introduces a new variable whose scope ranges over the whole function. Finally, an ML-
CFG function (Cfg) assembles these components; the signature consists of a name, arguments, and
a contract, while the body is a series of variable bindings followed by a series of blocks.

Informal Semantics for MLCFG As MLCFG is defined purely as an alternate syntax for
WhyML, its semantics are inherited from WhyML. Apart from generalities, we will not present the
semantics of MLCFG here: it is call-by-value and supports mutable regions, though we will not use
those in Creusot. In Figure 4.3, we give an example MLCFG program for calculating Fibonacci
numbers.

1 let cfg fib (n : int) =
2 requires { n >= 0 }
3 var x : int; var y : int; var z : int; var t : int;
4 BB0 { x <- n; y <- 1; z <- 0;
5 goto BB0
6 }
7 BB1 { switch x with
8 | 0 -> goto BB2
9 | _ -> goto BB3

10 };
11 BB2 { return y };
12 BB3 { t <- y;
13 y <- y + z;
14 z <- t;
15 x <- x - 1;
16 goto BB1
17 }

Figure 4.3: MLCFG program for computing Fibonacci numbers

4.3. TRANSLATION FROM RUST TO MLCFG 53

rustc Creusot Why3

Rust MIR MLCFG WhyML

Figure 4.4: The verification pipeline of Creusot

4.3 Translation from Rust to MLCFG
Creusot is a toolchain for verifying Rust programs operating on the MIR level. It hooks into
the Rust compiler to extract the MIR form of programs and translates those to MLCFG, an input
language for Why3. In turn, Why3 will translate MLCFG to its internal language and then pass it
to various backends. The connection between these different stages is recapitulated in Figure 4.4.
The primary contribution of this chapter is the translation from MIR to MLCFG. At the very core
of Creusot is the prophetic translation of mutable borrows, pioneered by RustHorn [69]. This
model represents mutable borrows as pairs of a current and final (prophetic) value. When a borrow
is created, the prophecy is given to the lender, and when the borrow expires, that prophecy is then
resolved, fixing a specific value for the prophecy. This is made possible by the ownership typing of
Rust: mutable borrows have exclusive permissions to mutate their borrowed resource, meaning if
we have b = &mut a, then only b can modify the value of a, and when b is thrown away, we know
that a must have whatever the final value of b was. In Creusot, this approach is encoded through
any/assume non-determinism: any is used to create a prophecy, and assume is used to resolve it.

To perform this encoding, Creusot’s translation operates in two phases: the first is a dataflow
analysis used to identify the resolution points of every borrow, and the second is a syntax-directed
translation of MIR to MLCFG, which uses the dataflow analysis to insert resolutions at the appro-
priate positions. On top of this kernel, Creusot also includes several extensions to support more
idiomatic Rust code; in particular, we support traits, generic functions, and closures.

4.3.1 Interpretation of Rust Types
Before explaining how to translate Rust code, it is essential to understand how to translate types.
Each Rust type will be interpreted as a specific MLCFG type; in most cases, it is straightforward,
with the only exceptions being for pointer types. Base types are given their natural interpretations:

bboolc , bool bu32c , uint32 bf32c , float32 ...

Creusot always uses machine arithmetic to interpret Rust integer types. Additionally, for float
types, we use Why3’s theories for IEEE floats. Type constructors are given their natural interpre-
tation: structs as products and enums as sums.

bstruct X(T, U)c , type X = X bTc bUc benum X { T, U }c , type X = |bTc |bUc

The interpretation of pointers is how Creusot avoids the need for an explicit heap model.

54 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

bBox<T>c , bTc b&'a Tc , bTc b&'a mut Tc , (bTc,bTc)

Boxes and immutable borrows are interpreted as their underlying type, while mutable borrows
are interpreted as a pair of the underlying type and a prophecy. Mutations to mutable borrows
are interpreted as local updates to the current value. When the borrow is dropped, the prophecy
is resolved, synchronizing the value with the original lender. This approach is made possible by
the ownership typing of Rust, in particular, the uniqueness of mutable borrows combined with the
existence of lifetimes for these borrows, ensuring prophecies are always well-formed.

4.3.2 Translation of MIR

The translation consists of five families of rules, all parameterized by a MIR typing context T
binding locals to types. The simplest family is for place reading (T ` p pl

↪→ e), found in Figure 4.5,
accesses the value in a MIR place. This operation distinguishes accesses to mutable borrows from
those to other pointer types. The dual place writing judgment (T ` S ←↩ p/e) writes an MLCFG
expression e into a MIR place p, producing a MLCFG statement S encoding the update. In
Figure 4.6 operand judgments (T ` o op

↪→ e/S) use the place reading judgments to translate operands
into pure expressions. The operand jugements return a list of statements that clear any places
that were moved by the operand. The translation of RValues (T ` r rval

↪→ e/S) is also found in
Figure 4.5. As RValues contain operands, they forward the auxiliary statements the operands
produce. The statement judgment (T ` S stmt

↪→S) handles assignments. The final family in Figure 4.7
is for terminators (T ` T term

↪→ S;T) includes match expressions, function calls, and Rust assertions.
During this translation, we interpret MIR locals, blocks, and function names as MLCFG vari-

ables, basic blocks, and functions of the same name.

Simple example

To illustrate the translation, we will consider the following simple example:

1 fn main(x, y) -> ()
2 let _0 : ()
3 let mut x : (T, bool)
4 let y : (u32, T)
5 BB0 {
6 x.0 = move y.1;
7 _0 <- ();
8 return
9 }

1 let cfg main x y =
2 var x : (T, bool) = x;
3 var y : (u32, T) = y;
4 BB0 {
5 x <- let (_, a) = x in
6 (let (_, b) = y in (b, a));
7 y <- let (a, _) = y in (a, any);
8 return ()
9 }

On line 6, we move the second component of y into x’s first component. The expressions x.0
and y.1 are place expressions and are used to access the first and second components of the tuple.
The move operand allows us to use a place expression on the right-hand side of an assignment by
specifying the desired semantics for the read, either by move or copy.

The resulting MLCFG on the right-hand side is obtained by applying the rules S-Assign with
R-Use and Op-Move. Place expressions are interpreted as functional lenses: places on the left-
hand side of an assignment become setters, while those on the right are getters. Because we move
y.1, after updating x, we empty the corresponding place in y by assigning it a fresh value any.

4.3. TRANSLATION FROM RUST TO MLCFG 55

Place Reading T ` p pl
↪→ e

Rd-Deref-Mut
T ` p pl

↪→ e T ` p : &'a mut τ

T ` * p pl
↪→ e.0

Rd-Deref-Imm
T ` p pl

↪→ e T ` p : &'a τ

T ` * p pl
↪→ e

Rd-Field
T ` p pl

↪→ e

T ` (p as C).f pl
↪→ let C(..,f,..) = e in f

Rd-Index
T ` p pl

↪→ e

T ` p[`] pl
↪→ (e) [`]

Rd-Var

T ` ` pl
↪→ `

Place Writing T ` S ←↩ p/e

Wrt-Deref-Mut
T ` S ←↩ p/(e, e′.1) T ` p pl

↪→ e′ T ` p : &'a mut τ

T ` S ←↩ * p/e
Wrt-Field
T ` S ←↩ p/let C(xs, f, ys) = e2 in C(xs, e, ys) T ` p pl

↪→ e2

T ` S ←↩ (p as C).f/e
Wrt-Var

T ` `← e←↩ `/e

Figure 4.5: Translation of MIR to MLCFG: Place Reading and Writing

Operand T ` o op
↪→ e/S

Op-Copy
T ` p pl

↪→ p

T ` copy p op
↪→ p/ε

Op-Move
T ` p pl

↪→ p S ←↩ p/any
T ` move p op

↪→ p/S

Op-Const

T ` n op
↪→ n/ε

RValue T ` r rval
↪→ e/S

R-Use
T ` o op

↪→ e/S

T ` o rval
↪→ e/S

R-Ref-Imm
T ` p pl

↪→ e

T ` & p rval
↪→ e/ε

R-BinaryOp
T ` o1 op

↪→ e1/S1 T ` o2 op
↪→ e2/S2

T ` o1 ⊕ o2
rval
↪→ e1 ⊕ e2/S1 · S2

R-Aggregate
∀o ∈ o,T ` o op

↪→ e/M

T ` C o rval
↪→ C e/M

R-Ref-Mut
T ` p2

pl
↪→ e T ` b←↩ p1/(e, any) T ` p1

pl
↪→ p T ` S ←↩ p2/p.1

T ` p1 = &mut p2
stmt
↪→ b/S

Figure 4.6: Translation of MIR to MLCFG: Operands and RValues

56 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

Statement T ` S stmt
↪→ S

S-Assign
T ` r rval

↪→ e/S T ` p←↩ p/e
T ` p← r stmt

↪→ p;S

Terminator T ` T term
↪→ S;T

T-goto

T ` goto BBk
term
↪→ goto BBk

T-switch
T ` o op

↪→ o/S ρi contains _ for each field in Ci

T ` switch o C → BBk
term
↪→ switch o of C(ρ) → S; goto BBk

T-Call
∀ o ∈ o, T ` o op

↪→ o/M

T ` ` = φ(o) → BBk
term
↪→ `← call φ(o);M ; goto BBk

T-Assert
T ` o op

↪→ o/S
T ` assert o → BBk

term
↪→ assert o;S; goto BBk

T-Return

T ` return term
↪→ return _0

T-Unreachable

T ` unreachable term
↪→ absurd

Figure 4.7: Translation of MIR to MLCFG: Rvalues and Terminators

4.3. TRANSLATION FROM RUST TO MLCFG 57

Mutable borrows

The previous example showed how to translate trivial Rust code, but any real-world code will require
dealing with mutable borrows. Creusot uses a prophetic encoding similar to the one presented in
§2.4; each mutable borrow is encoded as a pair of a current and final value. The final value is given
to the lending variable at creation. When the borrow is resolved, we ensure that the final value
is correct and thus indirectly update the lender. This highly compositional approach allows us to
handle the various borrowing operations found in Rust easily.

Creation To create a mutable borrow in MLCFG, we use R-Ref-Mut (repeated below for
convenience):

R-Ref-Mut
T ` p2

pl
↪→ e T ` b←↩ p1/(e, any) T ` p1

pl
↪→ p T ` S ←↩ p2/p.1

T ` p1 = &mut p2 stmt
↪→ b/S

This rule does two things: first, it creates the borrow in p1, giving it a pair of the value currently
in p2 and a fresh prophecy. We then prepare a statement S which will write this prophecy into the
borrowed place p2. The rule R-Ref-Mut allows us to make arbitrary borrows, including reborrows
(borrowing from a pre-existing borrow) and is lifetime-independent: it requires no information
coming from the Rust borrow checker to be correctly implemented.

Resolution The second part of the borrow translation: resolution is more subtle. In particular,
it is essential to determine the location and order in which borrows should be resolved; getting either
wrong leads to unsoundness. Informally, Creusot resolves borrows when they ‘fall out of scope,’
but there is no notion of scope because we operate on a CFG. By combining primitive analyses,
we can recreate the notion of scope and thus determine the correct location to insert resolution
statements. We construct the relation IsResolved(−) : Loc × Var → B which characterizes the
places at which a variable has already been resolved3.

Is-Resolved(G) = ¬Live(G) ∧ Initialized(G)

The relation is the intersection between a standard liveness analysis and initialization analysis
(the Rust compiler provides both). The resolution points are where Is-Resolved changes value from
false to true. By using this analysis, we end up with a more fine-grained notion of scope than mere
lexical scope; consider the following example:

1 let mut x = 0;
2 let y = &mut x;
3 * y = 10;
4 assert!(x == 10);
5 x += 1;
6 assert!(x > 10);

The lexical scope of y continues for the entire block, while the resolution point of y ends at
the first assertion. Once the resolution point of a borrow p has been determined, Creusot can
instrument MLCFG code with resolution statements:

1 assume { p.0 = p.1 };

3During the preparation of this thesis, the characterization of resolution points was changed to accommodate
the presence of type invariants. As this is not the subject of the author’s work, we use the older interpretation
of the resolution point here.

58 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

The semantics of assume statements ensure that only traces in which we non-deterministically chose
the correct value can proceed with execution, effectively constraining the past non-deterministic
choice made at borrow creation.

Why not lifetimes? A reader familiar with Rust may wonder why we cannot use the lifetimes
provided by the Rust compiler to determine resolution points. To understand why lifetimes are
insufficient to perform resolution, suppose we have two borrows x, y : &'a mut T in the following
example:

1 if b { z = x } else { z = y }

The lifetime ends at the end of the if expression, but which borrow needs to be resolved will
depend on the execution of the program. While the lifetime provides an upper bound on where the
borrow can be resolved, it is not enough to determine the exact position. It does not allow us to
disambiguate the order between two borrows of the same lifetime.

Putting it into practice To better illustrate the handling of mutable borrows, let us consider
the case of the following simple Rust program:

1 #[ensures(^x == *x && ^y == 0 || ^x == 0 && ^y == *y)]
2 fn clear_max(x: &mut u32, y: &mut u32) {
3 if *x > *y {
4 *y = 0;
5 } else {
6 *x = 0;
7 }
8 }

We want to prove that either x is unchanged and y is zero, or y is unchanged and x is zero.
First, the Rust program is lowered into MIR, shown on the left-hand side of Figure 4.8. Then,

on the right-hand side, we have the output MLCFG code. Note that upon entry to BB1, we resolve x,
and upon entry to BB2, we resolve y. Then, after the update to the corresponding variable, we resolve
the remaining borrows before jumping to the exit block. Thus, we can prove the postcondition we
desire: if we passed through BB1, then x is unchanged and y is zero, and if we passed through BB2,
then y is unchanged and x is zero.

Generalized Resolution

We have shown how Creusot handles the resolution of simple mutable borrows. However, we
cannot yet resolve the borrows in a variable of type Vec<&mut T>. To address this, we would like to
generalize the resolution of borrows to assume an arbitrary predicate depending on a type T. Then,
we could ensure that resolving a vector resolves every element in the vector:

resolveVec<&mut T>(v) , ∀ i, 0 ≤ i < |v| → resolveT(vi)

In Rust, to define properties in terms of types, we typically use traits, and thus, in Creusot, we
introduce a Resolve trait for this reason:

4.3. TRANSLATION FROM RUST TO MLCFG 59

1 #[ensures(
2 ^x == *x && ^y == 0
3 || ^x == 0 && ^y == *y
4)]
5 fn clear_max(x, y)
6 let _0 : ()
7 let x : &mut u32
8 let y : &mut u32
9 let _1 : bool

10 BB0 {
11 _1 <- *x > *y;
12 switch _1 {
13 | true -> BB1
14 | false -> BB2
15 }
16 }
17 BB1 {
18 *y <- 0;
19 goto BB3
20 }
21 BB2 {
22 *x <- 0;
23 goto BB3
24 }
25 BB3 {
26 _0 <- ();
27 return
28 }

1 let cfg main x y =
2 ensures {
3 x.1 = x.0 && y.1 = 0
4 || x.1 = 0 && y.1 = y.0
5 }
6 var x : (u32, u32) = x;
7 var y : (u32, u32) = y;
8 var _1 : bool;
9 BB0 {

10 _1 <- x.0 > y.0;
11 match _1 with
12 | True -> goto BB1
13 | False -> goto BB2
14 }
15 BB1 {
16 assume { x.0 = x.1 };
17 y <- (0, y.1);
18 assume { y.0 = y.1 };
19 goto BB3
20 }
21 BB2 {
22 assume { y.0 = y.1 };
23 x <- (0, x.1);
24 assume { x.0 = x.1 };
25 goto BB3
26 }
27 BB3 {
28 return ()
29 }

Figure 4.8: MIR representation of clear_max and its MLCFG translation.

60 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

1 #[trusted] trait Resolve {
2 #[predicate] fn resolve(self) -> bool;
3 }
4
5 #[trusted] impl Resolve for T {
6 #[predicate]
7 default fn resolve(self) -> bool {
8 true
9 }

10 }

This trait definition uses the #[trusted] annotation, Creusot’s equivalent to Rust’s unsafe
keyword. While unsafe is used to indicate that the implementation of a trait may violate memory
safety, #[trusted] indicates that the implementation of a trait may violate logical soundness. The
following implementation would allow us to prove false but violates the contract the library and
author and Creusot have passed:

1 struct Evil;
2
3 #[trusted] impl Resolve for Evil {
4 #[predicate] fn resolve(self) -> bool {
5 false
6 }
7 }
8
9 #[ensures(false)]

10 fn boom(x: Evil) {}

To help users avoid jeopardizing the soundness of their verified code, Creusot offers a derive
macro for the Resolve trait, which is guaranteed to generate a sound implementation for the types
it is applied to.

We use Rust’s experimental specialization to define Resolve, providing a default implementa-
tion for every type. The implementation of resolve on T is marked as default, meaning that we
are allowed to write alternative instances that refine this definition, so long as the refining imple-
mentation is ‘more specific.’ For example, we can refine the implementation on T by providing one
for &mut T:

1 #[trusted] impl Resolve for &mut T {
2 #[predicate]
3 fn resolve(self) -> bool {
4 pearlite! { ^ self == * x }
5 }
6 }

The usage of specialization is critical to the usability of Creusot to verify real Rust code; we
would otherwise be required to leak Resolve into the bounds of every function. Using specialization,
we can resolve variables of any type, extending the language with a new primitive operation.

4.3.3 Handling polymorphism
To encode Rust-level polymorphism, Creusot uses the module system (introduced in § 2.2.1) of
Why3. Each function becomes an independent module in this approach, and it clones any symbols
it needs into its local context. This approach allows Creusot to control each function’s proof
context precisely and simplifies encoding traits in § 4.3.4.

4.3. TRANSLATION FROM RUST TO MLCFG 61

However, modules are not a silver bullet, clones introduce the problem of generativity. A clone
is equivalent to copy-pasting the cloned module source with the relevant substitution applied. This
becomes a problem if we accidentally clone the same symbol twice like in the example below:

1 module Cmp
2 type t
3 function cmp : t -> t -> ordering
4 end
5 module User
6 clone Cmp with type t = int as Cmp0
7 clone Cmp with type t = int as Cmp1
8
9 (* unprovable *)

10 goal : forall i . Cmp0.cmp i = Cmp1.cmp i
11 end

The clones performed on lines 6 and 7 introduce two distinct symbols cmp; their results and types
are incomparable. If cmp corresponds to a Rust function, this is a problem: in Rust two identical
instantions of the same function should be identical. This problem can become more problematic
when working with nested definitions. In the example below, though both UserA and UserB use cmp
instantiated with int, the postcondition of userb is unprovable.

1 module UserA
2 clone Cmp with type t = int as Cmp0
3 val usera a b
4 ensures { Cmp0.cmp a b = Cmp0.cmp b a}
5 end
6 module UserB
7 clone Cmp with type t = int as Cmp0
8 clone UserA as UserA
9 val userb a b = UserA.usera a b

10 ensures { Cmp0.cmp a b = Cmp0.cmp b a}
11 end

To work around this problem, we show Why3 that there is only one cmp for int by applying an
appropriate substitution to clones and deduplicating identical clones.

Clone Graph For each Rust function f, we construct a clone graph in which nodes are instantia-
tions of Rust functions (pairs of a function and type substitution) and edges represent dependencies.
An edge a → b means that b was used inside of a. The substitutions are all relative to the root
function. We perform an in-depth traversal of the call graph to construct the graph, adding depen-
dency edges and nodes as needed. Once the graph has been generated, we can perform a topological
traversal to generate the sets of clones for f; each dependency edge indicates a substitution that
must be provided to guarantee sharing.

Frequently, it is necessary to hide the body of a Rust definition from its clients. To make this
possible, we translate Rust functions using two modules, an ‘interface’ module containing only the
symbol and its contract and a ‘body’ module containing its definition. An interface module only
refers to further interface modules; it does not attempt to perform substitutions on its symbols;
those will be formed by the root function using this module. When constructing the clone graph,
we use the appropriate ‘view’ of the Rust symbol; by using an interface module, we can avoid
introducing dependencies on symbols that appear exclusively in the body.

This approach to handling polymorphism has the benefit of eliminating polymorphism from
Why3, all usages of types monomorphic instances of types. Avoiding polymorphism allows Why3

62 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

1 trait Index<I> {
2 type Item = T;
3
4 #[predicate] fn in_bounds(self, i : I) -> bool;
5
6 fn index(&self, ix: I) -> &Self::Item;
7 }
8
9 impl<T> Index<usize> for Vec<T> {

10 type Item = T;
11
12 #[predicate] fn in_bounds(self, i : usize) -> bool { i < self@.len() }
13
14 #[requires(ix < self@.len())]
15 fn index(&self, ix: usize) -> &Self::Item {
16 &self[ix]
17 }
18 }

Figure 4.9: A simplified Index and accompanying implementation

to use a more efficient encoding into SMT.

4.3.4 Translating traits declarations
The cloning mechanism used to handle polymorphism in Creusot naturally extends to handling
traits and their functions. Rather than considering traits as objects in their own right, Creusot
only considers the individual items making up the trait declaration: the functions, constants, or
associated trait types. These items can be translated in the same way as any other Rust item.
When code uses a method a trait provides, Creusot clones that specific method, not the trait
itself. Creusot attempts to resolve trait methods at each call-site, replacing the generic method
with a concrete method provided by an implementation, if possible.

4.3.5 Translating traits implementations
Traits in Creusot can be given contracts, including logical functions and default definitions. Im-
plementations must then refine those contracts and ensure they remain correct, even if they only
changed some of the default definitions. This is a form of behavioral subtyping ; we must ensure
that implementations weaken preconditions and strengthen the postconditions. For each implemen-
tation, we generate refinement obligations verifying this property.

To illustrate this, in Figure 4.9, we have a simplified Index trait and an implementation for
Vec<T>. For this trait implementation to be valid, we must show that it refines the trait contract.
We achieve this by generating a module for each implementation containing the trait contract
and the implementation contract, then proving that the implementation contract refines the trait
contract. In the case above, we would generate the following refinement condition:

1 self.in_bounds(ix) ==> ix < self@.len()

4.4. TRANSLATION OF PEARLITE 63

More generally, for a trait method {P } f {Q}, and an implementation {P ′} f ′ {Q′}, we generate
the following goal:

∀ a, P (a)→ (P ′(a) ∧Q′(a)→ Q(a))

where a is the parameters to f and f ′.

Default methods and Specialization The Rust trait system also allows for default and
specializable definitions. We can provide definitions that further trait implementations can override.
When dealing with these definitions, generating the correct verification conditions is subtle: we must
ensure that the default definition is correct for all possible implementations, including those that
may override it. Consider the following example with a default implementation of foo which is used
in the contract for the law less_than_ten

1 trait DefaultMethod {
2 #[logic]
3 fn foo() -> Int { 5 }
4
5 #[law]
6 #[ensures(Self::foo() <= 10)]
7 fn less_than_ten() { }
8 }
9

10 impl DefaultMethod for () {
11 #[logic]
12 fn foo() -> Int { 15 }
13 }

Contracts are proved at the definition site, meaning that for less_than_ten we prove it at the
trait declaration site. Since later implementation on line 10 doesn’t redefine the method, we won’t
generate fresh proof obligations for it. However, that implementation does change the definition of
foo, which is used in the contract for less_than_ten.

Creusot treats all default and specializable methods as opaque during verification, forcing
proofs to reason generically over the possible implementations of these methods. This ensures that
the correctness of less_than_ten cannot depend on the implementation of foo.

4.3.6 Closures in Rust
Building off our support for traits and polymorphism, closures pose no challenge to Creusot.
However, interpreting their specifications is slightly more subtle (§ 4.4.1).

4.4 Translation of Pearlite
We have established how to translate Rust programs to WhyML but have not yet attacked the
question of their specifications. While the interpretation of Pearlite is simple in WhyML, em-
bedding it into Rust is another matter. The primary difficulty is the ownership typing of Rust.
Pearlite terms denote formulas in a classical, first-order logic; this means that within Pearlite,
we are free to duplicate values, even mutable borrows. This flexibility is essential for giving compact
specifications and allows for an efficient encoding into SMT logic. If Pearlite were subjected to
the ownership discipline of Rust, it would be impossible to state simple properties like the reflexiv-
ity of equality, and would have wide-ranging consequences across all of Creusot’s logic, including
forbidding the usage of multiple contract clauses which involve a non-copy variable.

64 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

Embedding Pearlite functions and terms into Rust programs requires disabling the Rust bor-
row checker and move checker. Since both of these operations are performed on the MIR represen-
tation of a function, we ensure that Pearlite code is never translated to MIR. Instead, Creusot
recovers THIR, an intermediate form used by the Rust compiler before MIR, and translates that
into WhyML. As the Rust compiler will request the MIR of all functions anyway, we also patch the
compiler to emit an empty MIR for Pearlite functions, avoiding spurious borrow-checking errors.

With few exceptions, the translation of Pearlite is straightforward; each syntactic case is
lowered to its WhyML equivalent: quantifiers to quantifiers, implication to implication, etc. The
current operator (* x) is lowered either to the current value of a mutable borrow or erased (for
immutable borrows and boxes). The final operator (^ x) is lowered to the final value of a mutable
borrow and is unusable for any other type.

4.4.1 Translating the old pseudo-function
In Pearlite specifications, the old pseudo-function can only appear in the contracts of closures.
It is used to describe the modifications made by a closure to its captured variables; the only place
in Creusot’s interpretation of Rust where a notion of post-state exists. Because a old is used
to describe mutation, it can only be used in the contracts of FnOnce or FnMut closures, and only
for variables captured by mutable borrow. The old pseudo-function has a different desugaring,
based on whether the closure is being treated as FnOnce or FnMut, accounting for the extra layer of
indirection introduced by call_mut.

Consider the following code:

1 let mut x = 0;
2 let b = vec![b];
3 let mut c = #[ensures(x == old(x) + 1)] || {x += 1; drop(b)};
4 c();
5 assert_eq!(x, 1);

We use a vector b to force the closure to be FnOnce rather than FnMut. By dropping b it becomes
impossible to call c again. However, the capture x is taken by mutable borrow, and x is usable after
c has been disposed of. The closure’s environment is compiled to a type resembling:

1 struct Closure<'a> { x : &'a mut i32, b : Vec<i32> }

To compile the closure contract, we must interpret x == old(x) + 1 in terms of this closure envi-
ronment. We translate the x to ^self.x and old(x) to *self.x, giving us the following contract:
^self.x == *self.x + 1.

For an FnMut closure the interpretation of old changes, consider the following example.

1 let mut x = 0;
2 let mut c = #[ensures(x == old(x) + 1)] || {x += 1};
3 c();
4 c();
5 assert_eq!(x, 2);

The

closure c is now FnMut, and we call it twice. The closure environment is now compiled to a type
resembling:

1 struct Closure<'a> { x : &'a mut i32 }

The contract must be elaborated to function taking Closure<'a> by mutable borrow (as
call_mut does). In this circumstance, we interpret old(x) as **self.x, the value of the cap-
ture x at the entrance of the call. An occurence of x would instead be interpreted as * (^self).x,
the value of x held in self when the borrow of self expired, producing the contract:

4.4. TRANSLATION OF PEARLITE 65

1 *(^self).x == *(*self).x + 1

Combined with the unnesting § 3.6.1 predicate of the closure, this contract allows us to prove that
successive calls to the same closure increment the same counter

4.4.2 Logical Reborrowing
A significant complication in the lowering of Pearlite to WhyML is a feature called logical re-
borrowing. Rust allows reborrowing portions of borrows to composite types, for example, given
x : &mut (T, U), the expression &mut x.0 will have type &mut T. This feature is critical to the
ergonomics of borrows in Rust. By analogy, logical reborrowing allows the same functionality to be
used in specifications. Consider a function like the following:

1 fn proj<T, U>(x : &mut (T, U)) -> &mut T {
2 &mut x.0
3 }

With the functionality we have seen until now, we could give it the following specifications:

1 #[ensures(^result == (^x).0)]
2 #[ensures(*result == (*x).0)]

This specification is unsatisfactory; it is unnecessarily repetitive and exposes the implementation
details of borrows in Creusot. In more complex situations, this can quickly become unmanageable
and sometimes not directly expressible, requiring quantifiers. With logical reborrowing, we can
directly state the property we meant to express as the following:

1 #[ensures(result == &mut x.0)]

This is a simple example, but in § 6.2.2, we will see more complex uses of logical reborrowing.

4.4.3 Correspondence between Rust and Pearlite semantics
The logical reborrowing we introduced has an unexpected issue. It can sometimes have different
behavior than the equivalent Rust expression. This tension is introduced by Pearlite allowing
*x as an expression, while Rust would ordinarily complain about dereferencing borrows in this
manner. The expression &mut ** (x : &mut &mut T) has a value equivalent to (**x, ^*x) in
Pearlite but (**x, *^x) in Creusot’s interpretation of the Rust code. Having identical syntax
with subtly different semantics is a recipe for confusion. The overlap is not limited to reborrowing:
Pearlite functions are total, meaning that machine addition is well-defined even for values that would
overflow.4 Worse yet, the symbol == has different interpretations: in Rust, it just corresponds to
an implementation of PartialEq::eq, which should be an equivalence relation, while in Pearlite,
it corresponds to mathematical set-equality.

An interesting question is raised: if a syntactic expression is valid in both Rust and Pearlite,
should they have the same semantics? The roles of Pearlite and Rust are different, and they each
operate under different constraints. In particular, Pearlite needs to be efficiently translatable to
Why3 and SMT, which both use total functions and distinguish equality as a special symbol.

Unifying the semantics of Rust and Pearlite would have many advantages. Users would be able
to apply their understanding of Rust to Pearlite expressions. It could feasibly allow interoperation
with other Rust verifiers as every verifier must agree on the semantics of Rust itself. Finally, it
would also allow defining pure functions, simultaneously Rust and Pearlite, a pattern which occurs
frequently and requires duplication today.
4Currently, Pearlite does not support machine arithmetic at all; all operations must be performed on their
mathematical counterparts.

66 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

4.5 From MLCFG to WhyML
At the start of this chapter, we stated that Creusot targets a pure, functional language, and yet
we have just presented semantics for an imperative language with a local mutable state. Of course,
MLCFG is a very mild imperative language; the only mutation is to local variables, and no reference-
taking operations could cause aliasing or indirection. MLCFG programs can be given denotations
as WhyML programs, making it evident that MLCFG is nothing more than a convenient syntax
for WhyML. This has the added benefit of allowing us to reuse Why3’s existing infrastructure for
verification, avoiding the need to implement a precondition calculus of our own. While we will
not present the complete translation to WhyML, we will highlight two crucial points: control-flow
reconstruction and ‘subregion’ analysis.

4.5.1 CFG reconstruction
Prior work [7, 33, 75] shows how to generate verification conditions for unstructured control-flow
graphs (CFGs) through an extended WP calculus. While these approaches handle the translation
of general CFGs, the generated verification conditions can be unintuitive for users. The calculus
generates proof obligations for each possible path through the graph, often leading to seemingly
duplicated VCs. The explainability of these conditions is also degraded: loops in source code will
not lead to clearly visible ‘loop invariant initialization’ and ‘loop invariant preservation’ obligations.

In one of the great original papers of programming language theory, it was established that
programs can be reconstructed from control flow graphs [14, 5].5 When a CFG is reducible, as is
the case for structured programs like Rust, this reconstruction is linear in the size of the CFG and
often quite close to the original program in structure, introducing no auxiliary variables.

We implemented a variant of the algorithm described in “An Algorithm for Structuring Flow-
graphs” [5] as a backend for MLCFG. Our implementation is based on the notion of Bourdoncle
Orderings [18], which conveniently capture the nesting structure of loops in a CFG. Given the
following program:

1 if a then foo else while b do c done

After compilation to CFG, the reconstruction will provide the following program:

1 if a then
2 foo
3 else
4 while true do
5 match b with
6 | True -> c
7 | False -> break
8 end
9 done

While not syntactically identical, the reconstructed program is semantically equivalent and is
quite close to the original program in structure. More importantly, the verification conditions
generated from the reconstructed program are more intuitive to end users when compared to direct
WP calculation on the CFG along the lines of Nguyen [75].

5While true, this specific result is also a classic example of a ‘Folk Theorem’ [42], as the original result
by Böhm and Jacopini [14] merely demonstrates that every CFG can be expressed as a series of sequences,
choices, and loops. Over the following years, many papers refined this result, and in 1977 Baker [5] provided
the proper description of an algorithm that produces structurally equivalent programs to the input CFG.

4.6. RELATED WORKS 67

4.5.2 Subregion analysis
Why3 uses region typing to determine which variables are affected by loops and thus need
to be havok’ed. Our translation cannot take advantage of these regions, and as a result,
Why3 is overly conservative and forgets information about variables that were not modified.
This issue commonly occurs when manipulating mutable borrows like the following example:

1 fn foo(v : &mut Vec<T>) {
2 let old_v = ghost! { v };
3 let mut i = 0;
4 #[invariant(^old_v == ^v)]
5 while i < v.len() {
6 v[i] = 0;
7 i += 1;
8 }
9 }

We must add the invariant on line 4 to remember that the prophecy of v has not changed despite
never modifying the prophecy of v in the generated MLCFG code.

To address this, we use a simple static analysis, which infers the unmodified portions of variables
and makes that information available to the verification condition generation. This analysis is not
specific to Creusot or MLCFG, though it is only enabled by default in Creusot. The analysis
operates within loops, identifying which paths reachable from a variable are identical at the entrance
and exit of the loop and in those cases, instrumenting the loop to preserve the value of these paths.

4.6 Related Works
Verus [58] is a Rust verifier descended from the work on Linear Dafny [65], and its translation
is similar to Creusot. However, Verus does not fully account for mutable borrows; instead, specific
support is provided for mutable borrows in the argument position and functions like index_mut
cannot be handled in the Verus approach. Rather than attempting to support the whole Rust
language, Verus targets the efficient verification of low-level concurrent software and has added
specific features to help engineers and verifiers achieve this. The essential addition of Verus is
a stratified logic: rather than having a single level of non-linear classical ghost code for their
specifications, they introduce an additional linear ghost-code layer (called #[proof] mode). In
particular, #[proof] mode allows the creation of linear ghost tokens, which can be used to encode
protocols or to share access to cells safely à la GhostCell [95]. Another critical feature of Verus
is performance and the predictability of that performance. Significant effort has been put into
tuning the SMT queries generated by Verus and avoiding features that can cause solvers to take
unpredictable amounts of time.

Prusti [4] is another deductive verifier for Rust based on the Viper separation logic platform. It
does not use a prophetic encoding, instead modeling ownership using permissions. Like Creusot,
Prusti has a specification language that can be used to give contracts and invariants. Because
Prusti has no notion of prophecy, it does not use the final operator (^) to specify mutable borrows,
instead using pledges. A pledge is an assertion guaranteed to hold when the borrow expires, which
is not necessarily in the function’s body. When lifted into pure contracts, the semantics of Prusti
specifications were designed to preserve the behavior of program assertions. In particular, arithmetic
in Prusti’s specifications is machine arithmetic and has to be checked for overflow. Creusot takes
a different approach by using a more abstract specifications language (Pearlite), which has a

68 CHAPTER 4. IMPLEMENTING A RUST VERIFIER

more straightforward encoding in SMT. A consequence of this difference is that Pearlite logical
functions may not necessarily be executable, while Prusti’s pure functions can be used in programs.
While Prusti’s permission system supports the common borrowing patterns of Rust, it struggles
with patterns like reborrowing in a loop (e.g., “List Index Mut” § 3.8.1), with data structures
containing borrows like pairs of mutable borrows, or with nested borrows. In contrast, Creusot’s
translation of Rust types using prophecies for mutable borrows is general, and compositional: we
place no restrictions on using mutable borrows or their position within types. Another noticeable
difference with Prusti lies in the choice of the underlying logic. Prusti encodes specifications
into separation logic and delegates verification to Viper, whereas Creusot encodes them into FOL
and delegates verification to SMT solvers via Why3. Prusti chooses to verify Rust’s ownership
discipline with Viper. At the same time, Creusot depends on Rust’s borrow checker for that,
which means Creusot relies on the soundness of Rust’s type system and its implementation. We
believe this difference explains the significant blow-up in verification times: on simple examples,
verification takes an order of magnitude more time than with Creusot. The simpler underlying
logic in Creusot allows it to benefit from Why3’s mature infrastructure to manage a herd of
automated provers and a tactic system to provide guidance when they go astray.

Aeneas [43] is a verifier for Rust targeting interactive verification of programs in established
proof assistants like F∗ or Coq. They also translate Rust programs to functional programs using
a State-Error Monad. Instead of using prophecies, they use backward functions to reconstruct the
value of a lender after the borrow’s expiry. This approach appears to have a deep and close link to
prophecies as used by Creusot, instead of using non-determinism to pull the value out of thin air,
Aeneas constructs the actual witness of this value. The constructive approach that Aeneas takes
may be better suited to interactive provers that traditionally prefer constructive logic. Aeneas also
chooses to use so-called extrinsic proofs; all specification and proof work is done in the prover, with
no annotations in Rust. While this allows them to leverage all the existing tools in the underlying
prover, the proof engineer must manually sync these proofs and specifications with the Rust code
as it evolves. This attests to the different audiences targeted by the tools. Aeneas seeks to enable
the users of existing advanced verification tools to perform more ergonomic verification using their
traditional toolkits, while Creusot seeks to bring verification to regular engineers.

Chapter 5

Soundness of the prophetic
approach to Rust verification

The work in this chapter results from a collaboration with Yusuke Matsushita, Jacques-
Henri Jourdan, and Derek Dreyer and is adapted from our PLDI paper ‘“RustHorn-
Belt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe
Code”’. We elaborate upon many details not covered in the original paper.

In the previous chapter, we showed how to leverage Rust’s type system to simplify the verification
of safe Rust code. In particular, we can lean on the ownership typing and the uniqueness of mutable
borrows to eliminate the need for separation logic. We demonstrated how prophecies can predict
the mutations that will occur to a borrow and be encoded into first-order logic (FOL).

However, as we alluded, this approach has several key limitations, the first being that prophetic
reasoning is limited to safe Rust code. In Rust, unsafe code is allowed to manipulate raw pointers,
which can violate the mutable aliasing policy of the Rust type system, at least locally. However,
such code is often in the implementation of safe primitives like Vec<T>. Consider the following
implementation of the push [87] function from Vec

1 pub fn push(&mut self, value: T) {
2 if self.len == self.buf.capacity() {
3 self.buf.reserve_for_push(self.len);
4 }
5 unsafe {
6 let end = self.as_mut_ptr().add(self.len);
7 ptr::write(end, value);
8 self.len += 1;
9 }

10 }

On lines 6-8, we perform pointer arithmetic to recover a pointer to uninitialized memory, which
we use to store our new vector value. However, as a safe function, push pledges that these operations
cannot lead to undefined behavior; from the outside, we should not be able to determine the presence
of unsafe code. Moreover, it should be possible to use prophetic reasoning to reason about the clients
of push; to them we are merely adding an element to the end of the sequence already held by the
vector.

However, proving that push behaves according to its prophetic specification is challenging. The
proof must be able to reason about both prophecies and unsafe code and provide the link between

69

70 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

the two aspects.
This brings us to the second challenge for prophetic reasoning: the proof of soundness for the

whole approach. While prophecies are a natural tool to write Rust specifications, it’s not obvious
why we should be allowed to use them; after all, they rely on being able to pull a value out of a future
that has not yet occurred. Furthermore, the traditional syntactic approach to proofs of soundness
is insufficient to handle unsafe code. The core of those proofs is an enumeration of syntax: we
consider each syntactic form that can produce a given type and argue for its soundness. However,
with unsafe code, we cannot do such an enumeration: the set of (safe) types is fundamentally open.

In this chapter, we address both these challenges by introducing RustHornBelt, a formaliza-
tion of prophetic reasoning in Rust. However, the key of RustHornBelt will be its extensible,
semantic proof of soundness, which can reason about unsafe code. The whole proof has been mech-
anized in Coq [24] using the Iris [51] separation logic framework. We will explain the high-level
ideas of the proof and approach; for the full details, consult the Coq proof development1. In § 5.1,
we present the λRust language and type-spec system. Then, in § 5.2, we describe the Iris model of
RustHornBelt, the interpretation of judgments and types, and the corresponding proof of sound-
ness. In §5.3, we show how to use RustHornBelt to prove specifications about unsafe code. Finally,
in § 5.4, we present an evaluation of our mechanization.

5.1 The λRust language
The Rust language is hard to study formally; its syntax is large and redundant, obscuring important
and interesting semantic questions. The λRust language is an idealized kernel language for Rust. It is
modeled heavily after the Mid-Level Intermediate Representation (MIR) used during the compilation
of Rust. During the rest of this chapter, we will use λRust as our language of study.

5.1.1 The syntax of λRust

λRust programs are composed of a series of atomic instructions structured in continuation passing
style. To simplify the presentation, we removed sums from the language, though they are in the
mechanized version. The grammar of λRust is included below; its entry point is Instr.

Path 3 p ::= a | p.n
Instr 3 I ::= false | true | z | funrec f(a) ret k := F

| p | p1 + p2 | p1 − p2 | p1 ≤ p2
| new(n) | delete(n, p) | ∗p | p1 := p2

| p1 :=n
∗p2

FuncBody 3 F ::= let a = I inF | letcont k(a) := F1 inF2

| newlft;F | endlft;F | resolve p;F

| if p thenF1 elseF2 | assert p;F

| jump k(a) | call f(p) ret k

Offsets n and numeric literals z range over the integers, while the indices of sums i range over
the naturals. λRust programs can be broken down into three different syntactic categories. Paths
are either program variables a or offsets from one p.n. Instructions form the core of λRust, and
include base constants (false, true, z), arithmetic, function definition (funrec f(a) ret k := F)
and impure memory operations:
1https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt

https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt

5.1. THE λRUST LANGUAGE 71

• We can allocate new memory (new(n)),

• deallocate it (delete(n, p)),

• dereference it (∗p),

• assign untagged values (p1 := p2)

• Finally, a memcpy-like primitive is included (p1 :=n
∗p2).

Instructions are glued together using Function Bodies, which create local variables (let a = I inF),
introduce and call continuations (letcont k(a) := F1 inF2 and jump k(a)), create and end life-
times (newlft;F and endlft;F), resolve mutable borrows (resolve p), perform control flow
(if p thenF1 elseF2, assertions (assert p), and finally call functions (call f(p) ret k).

Differences from Rust In the interest of simplicity, λRust has several key deviations from Rust.
In particular, local variables are not mutable, unlike what can be done in Rust. Instead, we box
every variable by convention, which dramatically simplifies aspects of the formalization: it means all
variables are the same size, eliminating the need for mutable locals and a stack. Structurally, λRust

is organized in continuation-passing style; this allows a simpler formalization of the control-flow
graph structure used in MIR during Rust compilation.

Differences from RustBelt As mentioned earlier, the syntax presented in this chapter ex-
cludes sums, the match construct, though it is present in the mechanized Coq implementation. The
syntax of λRust presented here contains a minor extension of the one found in “RustBelt: Securing
the Foundations of the Rust Programming Language”2: we add a assert and a ghost resolve
statement.

The semantics of assert true and resolve p are the same as skip, while assert false causes
execution to get stuck.

5.1.2 The λRust type-spec system
In RustBelt [53], the authors presented a novel semantic type system for λRust modeling the Rust
type system and validating the ‘safe abstractions’ used as the foundations of Rust’s safety guar-
antees. As a result, they demonstrated that well-typed Rust programs will not exhibit undefined
behavior, even when some portions are implemented using unsafe code.

In RustHornBelt, we developed a novel ‘type-spec’ system that integrates verification condi-
tions into the typing judgments of RustBelt, ensuring well-typed programs are also well-behaved.
Judgments relate an instruction to its type and specification, written as a predicate transformer.
Our system keeps the generality of RustBelt; it can still express the complex (re)borrowings found
in Rust and can reason about the presence of unsafe code in a program. We begin by laying out
the vocabulary to introduce our system.

Definition 4 (Representation Type). For each Rust type T, we define a representation type bTc,
which is defined as follows:

bintc , Z bboolc , B bT× T′c , bTc × bT′c

bbox Tc , bTc b&α
shr Tc , bTc b&α

mut Tc , bTc × bTc

2We strongly recommend consulting Jung et al. [52] which includes the complete set of judgments for
RustBelt

72 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

In RustHornBelt, each type is associated with a representation, a form of refinement with
peculiar handling of pointers. In particular, a mutable reference &'a mut T, (&α

mut T in λRust) is
represented as the pair of the current and final value of the pointed object. On the other hand,
other pointers like Box<T> and shared references &'a T are erased and represented as their pointed
objects.

Representation types are used in the specifications of individual instructions to relate the pre-
and post-states logically using predicate transformers. Specifically, we introduce a type-spec system
in which each typing judgment is augmented with a predicate transformer, which takes a (typed)
postcondition and transforms it into a (typed) precondition.

The type-spec relation contains six different forms of judgments; we detail judgment for instruc-
tions I:

E;L | T0 ` I a a.T1 Φ

The external E and local lifetime contexts L manage lifetime information; later we use the
judgment E;L ` α alive, to show that the lifetime α is alive (i.e., has not ended).

A type context T is an ordered list of items of the form either p C T or p C†α T. In a type
context, we primarily use the former p C T, which means that we have an object of type T with the
name p. The latter p C†α T is a more Rust-y concept: it means that an object of type T assigned
to p is borrowed (or blocked) until the lifetime α ends.

An instruction I performs a simple operation like addition x+ y.
At the most basic level, like in RustBelt the judgment relates the typing contexts before T0

and after T1 instruction evaluation. New to the type-spec relation added in RustHornBelt is the
predicate transformer Φ, the specification of the program fragment.

For this judgment, it has the following type:

Φ: (bT1c → Prop)→ bT0c → Prop

It transforms a postcondition over the output T1 into a precondition over the input T0. Here, a
type context’s representation type bTc for T = p C? T (each p C? T is p C T or p C†α T) is defined
as the ordered, heterogeneous list type [bTc], consisting of the representation type of each element
type T in the type context.

Now we consider the second significant kind of judgment, those of function bodies F :

E;L | K;T ` F Φ

As the name indicates, a function body is used for a function’s body or control flow and ends by
returning from the function. This is why this judgment does not have the output type context. For
this judgment, the predicate transformer Φ is typed as follows, where T is the return type of the
function that F belongs to:

Φ: (bTc → Prop)→ bTc → Prop

In λRust, we can introduce new continuations to form complex control flows. A continuation
(cont(L; a.T; Φ)) resembles a function in many respects; it has a lifetime context L describing the
lifetimes and constraints which must be true when jumping to the continuation, it may accept
arguments a, whose types are described in a typing context T, along with any ‘captured’ variables.
Compared to RustBelt, we extend continuations with a predicate transformer Φ which describes
the continuation’s specification. The continuation context K holds all continuations accessible when
we enter F . At function entry, we only have one continuation, the return continuation, which only
inputs the return value. The continuation context K associates each continuation k with a predicate
transformer, which transforms the function’s postcondition into a precondition for the continuation.

5.1. THE λRUST LANGUAGE 73

The return continuation is associated with the transformer λΨ, [a].Ψ a, asserting that the function’s
postcondition Ψ has to hold when applied to the return value a.

The type system includes several other kinds of judgments, primarily structural ones such as
type context inclusion, which we can use in between instructions to perform operations such as
borrowing or splitting pointers to structs into pointers on the elements of the struct. The set of
judgments is included in Figures 5.1 to 5.5, but we will repeat relevant rules inline throughout
the rest of the chapter. The type context unblocking and continuation context inclusion judgments
are inherited from the original RustBelt work. Note that we do not include rules for sums in these
figures, we also excluded the rule for subtyping functions, though all of these judgments were proved
in the Coq mechanization.

Definition 5 (Syntactic Typing Judgement). We call the smallest relation engendered by the rules
of Figures 5.1 to 5.5 the type-spec relation of λRust.

5.1.3 Example: Decrementing a reference

To demonstrate the function of RustHornBelt, we will type and prove the specification of a simple
Rust program:

1 fn decr_positive(x: &mut u32) {
2 assert!(*x > 0);
3 *x -= 1;
4 }

The function decr_positive will take a mutable reference to a positive integer and decrement its
value. It should panic otherwise.

We will call decr_positive from a main function like below:

1 fn main() {
2 let mut y = 43;
3 decr_positive(&mut y);
4 assert!(y == 42);
5 }

We wish to prove that the main function will terminate without failing its assertion. We will prove
both functions using the RustHornBelt type-spec system to do this.

Formally, this can be written as ensuring that the following judgment holds for decr_positive:

∅; ∅ | ∅; ∅ ` decr_positive a f. f C ∀α. fn(ϝ : ∅;&α
mut int)→ ()

λΨ (x, x′), x > 0 ∧ (x′ = x− 1→ Ψ ())

In an empty context, the body of decr_positive types as a function taking a borrow and returning
nothing and has a behavior described by the predicate transformer:

λΨ (x, x′), x > 0 ∧ (x′ = x− 1→ Ψ ())

The inputs of the transformer are the postcondition Ψ and the input borrow to the function (x, x′)

(recall that the representation of a borrow is a pair). The body of the transformer can be read as
a precondition x > 0 along with a postcondition x′ = x− 1.

74 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

Subtyping Γ | E;L ` T1 ⇒ T2 f

T-refl
E;L ` T⇒ T id

T-trans
E;L ` T⇒ T′ f E;L ` T′ ⇒ T′′ g

E;L ` T⇒ T′′ g ◦ f
T-bor-lft

E;L ` α v α′

E;L ` &α′

µ T⇒ &α
µ T id

T-uninit-prod-1
E;L ` Σn ⇒ Π n λa, ()

T-uninit-prod-2
Π n ⇒ E;L ` Σn λa, ()

T-own
E;L ` T1 ⇒ T2 f

E;L ` ownn T1 ⇒ ownn T2 f

T-bor-shr
E;L ` T1 ⇒ T2 f

E;L ` &α
shr T1 ⇒ &α

shr T2 f

T-bor-mut
E;L ` T1 ⇔ T2 id

E;L ` &α
mut T1 ⇔ &α

mut T2 id

T-prod
∀i.E;L ` Ti ⇒ T′i fi

E;L ` Π T⇒ ΠT′ λai, fi ai

Type context unblocking Γ ` T1 ⇒†α T2

∅ ⇒†α ∅
T1 ⇒†α T2

T1, p C T⇒†α T2, p C T

T1 ⇒†α T2

T1, p C
†α T⇒†α T2, p C T

T1 ⇒†α T2

T1, p C
†α′

T⇒†α T2, p C
†α′

T

Continuation context inclusion Γ | E ` K1 ⇒ K2

K′ is a permutation of K
E ` K⇒ K′ E ` K,K′ ⇒ K

Γ | E ` K⇒ K′ Γ, a : val | E;L ` T′ ctx⇒ T Φ

Γ | E ` K, k C cont(L; a.T; Φ′)⇒ K′, k C cont(L; a.T′; Φ ◦ Φ′)

Figure 5.1: Type-spec rules for subtyping, type context unblocking, and continuation context
inclusion

5.1. THE λRUST LANGUAGE 75

Type context inclusion Γ | E;L ` T1
ctx⇒ T2 Φ

C-perm
f is a permutation from T′ to T

E;L ` T ctx⇒ T′ λ Ψ [a], Ψ (f a)

C-weaken
E;L ` T,T′ ctx⇒ T λ Ψ (a ++ b), Ψ (b)

C-frame
E;L ` T1

ctx⇒ T2 Φ

E;L ` T′,T1
ctx⇒ T′,T2 λ Ψ (a ++ b), Φ (λ b2, Ψ (a ++ b2)) b

C-copy
T copy

E;L ` p C T ctx⇒ p C T, p C T λΨ [a], Ψ [a, a]

C-subtype
E;L ` T⇒ T′ f

E;L ` p C T ctx⇒ p C T′ λΨ [a], Ψ [f a]

C-share
E;L ` α alive

E;L ` p C &α
mut T

ctx⇒ p C &α
shr T λΨ [(a, a′)], a = a′ → Ψ [a]

C-split-own-1
T 6= [] ∀i.mi =

∑
j<i

size(Tj)

E;L ` p C ownn Π T ctx⇒ p.m C ownn T λΨ [(a0, .., ai)], Ψ [a0, .., ai]

C-split-own-2
T 6= [] ∀i.mi =

∑
j<i

size(Tj)

p.m C ownn T ctx⇒ E;L ` p C ownn Π T λΨ [a0, .., ai], Ψ (a0, .., ai)

C-split-bor-immut
T 6= [] ∀i.mi =

∑
j<i

size(Tj)

E;L ` p C &α
µ Π T ctx⇔ p.m C &α

µ T λΨ [(a0, ..ai)], Ψ [a0 :: .. :: ai]

C-split-bor-mut-1
T 6= [] ∀i.mi =

∑
j<i

size(Tj)

E;L ` p C &α
mut Π T ctx⇒ p.m C &α

mut T λΨ [(ai, a′i)], Ψ [(ai, a′i)]

C-split-bor-mut-2
T 6= [] ∀i.mi =

∑
j<i

size(Tj)

p.m C &α
mut T

ctx⇒ E;L ` p C &α
mut Π T λΨ [(ai, a′i)], Ψ [(ai, a′i)]

C-borrow
E;L ` p C ownn T ctx⇒ p C &α

mut T, p C
†α ownn T λΨ [a], ∀a′, Ψ [(a, a′), a′]

C-reborrow-mut
E;L ` α′ v α

E;L ` p C &α
mut T

ctx⇒ p C &α′

mut T, p C
†α′

&α
mut T λΨ [(a, a′)], ∀a′′, Ψ [(a, a′′), (a′′, a′)]

Figure 5.2: Type-spec rules for type context inclusion

76 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

Well-typed function bodies Γ | E;L | K;T ` F Φ

F-consequence
L⇒ L′ E;L ` T ctx⇒ T′ A E ` K⇒ K′

E;L′ | K′;T′ ` F Φ ∀ Ψ T,Φ′ Ψ T → Φ Ψ (A T)

E;L | K;T ` F Φ′

F-equalize
E, β ve α, α ve β;L | K;T ` F Φ

E;L, β vl [α] | K;T ` F Φ

F-let
Γ | E;L | T1 ` I a a.T2 Φ1

Γ, a : val | E;L | K;T2,T ` F Φ2

Γ | E;L | K;T1,T ` let a = I inF λΨ (T1 ++ T), Φ1 (λT2, Φ2(T2 ++ T)) T1

F-letcont
Γ, k, a : val | E;L1 | K, k C cont(L1; a.T′; Φ1);T′ ` F1 Φ1

Γ, k : val | E;L2 | K, k C cont(L1; a.T′; Φ1);T ` F2 Φ2

Γ | E;L2 | K;T ` letcont k(a) := F1 inF2 Φ2

F-if
E;L | K;T ` F1 Φ1 E;L | K;T ` F2 Φ2

E;L | K;T, p C bool ` if p thenF1 elseF2 λΨ (a :: T), (a→ Φ1 Ψ T) ∧ (¬a→ Φ2 Ψ T)

F-jump
E;L ` T ctx⇒ T′[b/a] f k C cont(L; a.T′,Φ) ∈ K

E;L | K;T ` jump k(b) λΨ b, Φ Ψ (f b)

F-call
E;L ` α alive Γ, ϝ : lft | E, ϝ ve α;L ` E′

k C cont(L; b. b C own T,T′,Φ) ∈ K Γ | E;L ` T ctx⇒ p C T,T′ ΦT

Γ | E;L | K
; f C fn(ϝ : E′; T)→ T,T ` call f(p) ret k

λΨ Φ′ T,ΦT (λ (p ++ T ′), Φ (λ b,Φ Ψ(b :: T ′)) p) T

F-newlft
Γ, α : lft | E;L, α vl α | K;T ` F Φ

Γ | E;L | K;T ` newlft;F Φ

F-endlft
E;L | K;T′ ` F Φ T⇒†α T′

E;L, α vl α | K;T ` endlft;F Φ

F-assert
E;L | K;T ` F Φ

E;L | K; p C bool,T ` assert p;F λΨ p :: T, p ∧ Φ Ψ T

F-resolve
E;L ` α alive E;L | K;T ` F Φ

E;L | K; p C &α
mut T,T ` resolve p;F λΨ (p, p′) :: T, p = p′ → Φ Ψ T

Figure 5.3: Type-spec rules for well-typed functions

5.1. THE λRUST LANGUAGE 77

Type writing Γ | E;L ` T1(T T2 ν, u

Twrite-own
size(T) = size(T′)

E;L ` ownn T′(T ownn T id, (λa b. b)

Twrite-bor
E;L ` α alive

E;L ` &α
mut T(

T &α
mut T π1, (λ v w . (w, π2 v))

Type reading Γ | E;L ` T1

(T T2 ν, u

Tread-own-copy
T copy

E;L ` ownn T

(T ownn T id, id

Tread-own-move
n = size(T)

E;L ` ownm T (T ownm n id, (λa. ())

Tread-bor
T copy E;L ` α alive

E;L ` &α
µ T

(T &α
µ T π1, id

Figure 5.4: Type-spec rules for type writing and reading

We begin by applying S-fn, which opens the function body and introduces our initial typing
contexts:

E = {ϝ ve α}
L = {ϝ v []}
K =

{
k C cont(ϝ v []; a.a C own() ;λΨ (), Ψ ())

}
T = {x C own &α

mut int}

The external lifetime context E expresses that the borrow’s lifetime α is longer than the function
call’s lifetime ϝ. The (internal) lifetime context L is used to track lifetimes that occur within the
function. The continuation context K only contains the return continuation we use to exit the
function. Finally, our type context T contains a binding for x.

In Figure 5.6, we provide a step-by-step typing for decr_positive. Because λRust is much
simpler than Rust, many seemingly atomic steps in the source Rust have been broken down, par-
ticularly the dereferencing of the mutable borrow. Next to each line of code is the set of typing
rules applied to type that instruction, apart from structural rules like weakening. Below, we show
the state of any contexts in which this rule has changed. We also show the predicate transformer
for the rest of the program; these can be read like a Hoare weakest-precondition calculus.

Because all local variables are boxed in λRust, we must first unbox x, which we do by performing
a S-deref and moving the borrow out of our box with Tread-own-move. Doing this changes the
type of x, making the box’s contents uninitialized (). We must update the transformer each time
a rule is used, like Dijkstra’s predicate-transformer semantics [28].

By applying each set of rules, we can straightforwardly type the program until we get to the
more unique resolve instruction of λRust. This ghost instruction is used to syntactically mark the
resolution of mutable borrows, at which point the prophecy becomes fixed. The point of resolution
is not the same as the lifetime’s end: the lifetime α of the borrow is longer than the function call.

78 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

Well-typed instructions Γ | E;L | T1 ` I a a.T2 Φ

S-true
E;L | ∅ ` true a a. a C bool λΨ [], Ψ [true]

S-false
E;L | ∅ ` false a a. a C bool λΨ [], Ψ [false]

S-num
E;L | ∅ ` z a a. a C int λΨ [], Ψ [z]

S-fn
T′ copy T′ send
Γ, α, ϝ : lft, f, a, k : val | E,E′; ϝ vl [] | k C cont(ϝ vl []; b. b C own T;λΨ [a], Ψ [a]);

p C T′, a C own T, f C ∀α. fn(ϝ : E; T)→ T ` F Φ

Γ | E′;L′ | p C T′ ` funrec f(a) ret k := F a f. f C ∀α. fn(ϝ : E; T)→ T Φ

S-path
E;L | p C T ` p a a. a C T λΨ p, Ψ p

S-nat-op
E;L | p1 C int, p2 C int ` p1 {+,−} p2 a a. a C int λΨ [n,m], Ψ [n {+,−}m]

S-nat-leq
E;L | p1 C int, p2 C int ` p1 ≤ p2 a a. a C boolz λΨ [n,m], Ψ [n ≤ m]

S-new
E;L | ∅ ` new(n) a a. a C ownn n λΨ [], Ψ [()]

S-delete
n = size(T)

E;L | p C ownn T ` delete(n, p) a ∅ λΨ [a], Ψ []

S-deref
E;L ` T1

(T T′1 ν, u size(T) = 1

E;L | p C T1 ` ∗p a a. p C T′1, a C T λΨ [a], Ψ [ν a, u a]

S-deref-shr-bor-own
E;L ` α alive

E;L | p C &α
shr ownn T ` ∗p a a. a C &α

shr T λΨ [a], Ψ [a]

S-deref-shr-bor-bor
E;L ` α alive E;L ` α v α′

E;L | p C &α
shr &α′

shr T ` ∗p a a. a C &α
shr T Ψ [a], Ψ [a]

S-deref-mut-bor-own
E;L ` α alive

E;L | p C &α
mut ownn T ` ∗p a a. a C &α

mut T λΨ [(a, a′)], a = a′ → Ψ [a]

S-deref-mut-bor-bor
E;L ` α alive E;L ` α v α′

E;L | p C &α
mut &α′

mut T ` ∗p a a. a C &α
mut T λΨ [((v, w), (v′, w′))], w′ = w → Ψ [(v, v′)]

Figure 5.5: Type-spec rules for well-typed instructions

5.2. SOUNDNESS OF TYPE-SPECS 79

S-assgn
E;L ` T1(T T′1 ν, u

E;L | p1 C T1, p2 C T ` p1 := p2 a p1 C T′1 λΨ [a, b]. u a b

S-memcpy
size(T) = n E;L ` T1(T T′1 νa, ua E;L ` T2

(T T′2 νb, ub

E;L | p1 C T1, p2 C T2 ` p1 :=n
∗p2 a p1 C T′1, p2 C T′2 λΨ a b, Ψ(ua a (νb b)) (ub b)

Figure 5.5: Type-spec rules for well-typed instructions (cont)

Instead, this resolution corresponds to where x′ falls out of scope. In surface Rust this could also
be called the ‘precise drop’ of the borrow.

Because resolve consumes the borrow being resolved, it cannot be placed too early: if the borrow
was needed later in the program this would lead to a typing error. However, if a resolve is forgotten
the program will still type, however certain specifications may no longer be provable.

Finally, the atypical jump instruction calls a continuation, the return continuation, and exits
the function.

The main function As we will see in Theorem 5.2.2, RustHornBelt doesn’t provide a proof
of soundness for standalone functions like decr_positive, instead the key theorem only applies
to closed, well-typed programs. For this reason, we also provide the typing of a main function,
which calls decr_positive. The λRust code is provided in Figure 5.7, and the judgment we wish to
establish for this code is:

∅; ∅ | ∅; ∅ ` main a f. f C ∀α. fn(ϝ v []; own ())→ () λΨ (), Ψ ()

Like decr_positive, this translation involves a certain amount of ceremony and boilerplate, we
are obligated to box variables before borrowing or writing to them. Similarly, to call a function we
must provide a return continuation, which requires us to allocate a continuation inside of main. We
focus on a few salient details of this program.

On line A, we use C-borrow to create a borrow from b. Unlike Rust, λRust performs borrowing
as part of type-context inclusion. This operation introduces a new prophecy for the mutable borrow.
Note that the code also is free of any resolve statements; the unique borrow will be consumed
by decr_positive, and thus cannot be resolved within the scope of main. On the other hand, the
associated lifetime α will be resolved here. On line 9, we create the return continuation for the
call; this continuation requires the value of x to be 42 as a precondition to running. We perform
the actual call on line 16. At this point, we can instantiate the postcondition in the transformer of
decr_positive with the one provided to r, allowing us to establish the postcondition we sought.

Combined with Theorem 5.2.2, the judgment for main tells us the program will not get stuck;
in particular, the assert statement must succeed, finally establishing the safety property we sought.

5.2 Soundness of Type-Specs
Traditionally, the purpose of a type-system is to avoid ‘bad’ behaviors; it should have a concomitant
notion of safety. At a base level, we should ensure that well-typed programs do not exhibit undefined
behavior, a property that was ensured by the prior work RustBelt. In RustHornBelt, we extended
λRust with assertions, allowing us to extend our notion of safety to ensure that programs do not
fail their assertions. The traditional approach to proving the safety of a type-system uses syntactic

80 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

funrec decr_positive(x) ret k :=
{E : ϝ ve α;L : ϝ v [] | K : k C cont(ϝ v []; a.a C own ();Ψ);T : x C own &α

mut int}
{x.0 > 0 ∧ (x.1 = x.0 − 1→ Ψ ())}

letx′ = ∗x in {F-let, S-deref, Tread-own-move}
{T : x′ C &α

mut int, x C own } {x′
.0 > 0 ∧ (x′

.1 = x′
.0 − 1→ Ψ ())}

letx′′ = ∗x′ in {F-let, S-deref, Tread-own-copy}
{T : x′′ C int, x′ C &α

mut int} {x′′ > 0 ∧ (x′
.1 = x′′ − 1→ Ψ ())}

let c = x′′ > 0 in {F-let, S-nat-leq}
{T : c C bool, x′′ C int, x′ C &α

mut int} {c ∧ (x′
.1 = x′′ − 1→ Ψ ())}

assert c; {F-assert}
{T : x′′ C int, x′ C &α

mut int} {x′
.1 = x′′ − 1→ Ψ ()}

let v = x′′ − 1 in {F-let, S-nat-op}
{T : v C int, x′ C &α

mut int} {x′
.1 = v → Ψ ()}

x′ := v; {F-let, S-assgn, Twrite-bor}
{T : x′ C &α

mut int} {x′
.1 = x′

.0 → Ψ ()}
resolvex′; {F-resolve}
{T : ∅} {Ψ ()}
jump k() {F-jump}

Figure 5.6: Annotated body of decr_positive

5.2. SOUNDNESS OF TYPE-SPECS 81

funrec main() ret k :=
{E = ∅;L = ϝ v [] | K : k C cont(ϝ v []; a.a C own ();λΨ (), Ψ ());T = ∅} {Ψ ()}
let decr_positive = funrec decr_positive(..) ret k := ... in {...}
− {Ψ ())}

{F-consequence}
− {∀y′, 43 > 0 ∧ (y′ = 43− 1→ y′ = 42 ∧ Ψ ())}
letx = 43 in {F-let, S-num}
{T : x C int} {∀y′, x > 0 ∧ (y′ = x− 1→ y′ = 42 ∧ Ψ ())}
let y = new(1) in {F-let, S-new}
{T : y C own , x :C int} {∀y′, x > 0 ∧ (y′ = x− 1→ y′ = 42 ∧ Ψ ())}
y := x {F-let, S-assgn,Twrite-own}
{T : y C own int} {∀y′, y > 0 ∧ (y′ = y − 1→ y′ = 42 ∧ Ψ ())}
let b = new(1) in {F-let, S-new}
{T : b C own , y C own int} {∀y′, y > 0 ∧ (y′ = y − 1→ y′ = 42 ∧ Ψ ())}

(A) newlft α; {F-newlft,C-borrow}{
L = α v [ϝ], ϝ v []T : b C own , y C &α

mut int, y C†α own int
}

{y.0 > 0 ∧ (y.1 = y.0 − 1→ y.1 = 42 ∧ Ψ ())}
b := y; {F-let, S-assgn,Twrite-own}{

T : b C own &α
mut int, y C†α own int

}
 {b.0 > 0 ∧ (b.1 = b.0 − 1→ b.1 = 42 ∧ Ψ ())}

letcont r(()) =
endlft α; {F-endlft}
{y C own int} {y = 42 ∧ Ψ ()}
letx = ∗y in {F-let, S-deref, Tread-own-move}
{x C int} {x = 42 ∧ Ψ ()}
let c = x = 42 in {F-let, S-nat-leq}
{T : c C bool} {c ∧ Ψ ()}
assert c; {F-assert}
{T = ∅} {Ψ ()}
jump k() {F-jump}

in {F-letcont}{
K : r C cont(α v [ϝ], ϝ v []; a.a C own (), y C†α own int;λΨ [(), y], y = 42 ∧ Ψ ()),

k C cont(ϝ v []; a.a C own ();λΨ (), Ψ ())

}
call decr_positive(b) ret r {F-call}

Figure 5.7: Annotated body for main

82 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

approach. This technique has enjoyed tremendous popularity due to the mechanistic nature of the
proofs involved, which are often not much more than ‘symbol pushing.’ However, syntactic proofs
are fundamentally non-modular: each new construct added to a language requires redoing all the
proofs and may introduce complex interactions with other proof cases.

This non-modularity is a problem when working with a language like Rust, which features
a notion of unsafe code, whose safety cannot be determined solely from the syntax of the code.
Consider the case of Vec, which can be represented as a triplet (len, cap, ptr), where ptr is a raw
machine pointer to a memory allocation. Indexing our vector requires taking an offset from ptr,
which is an unsafe operation; if the offset we asked for is greater than len we would potentially
be reading uninitialized memory! Because we cannot write judgments that would suffice to ensure
the safety of an implementation of Vec, to add it to our language, we would have to axiomatize it,
extending our type with new hardcoded judgments for various vector operations. This approach is
unsatisfying, especially because Vec behaves safely: using its public (safe) APIs, we cannot cause
undefined behavior.

Accounting for and reasoning about unsafe code was one of the primary motivations of RustBelt
and the semantic typing approach taken to prove soundness. Rather than proving the soundness of
Definition 5 directly, we will define a new semantic judgement:

E;L | T � I �r. T′ Φ

as a logical relation in the separation logic Iris. We then show two properties: first, this relation
subsumes the syntactic one previously used, and second, that this relation is adequate (i.e., that
well-typed functions do not get stuck). In this section, we will start by introducing a new model of
prophecies in Iris (§ 5.2.1), then we will define our new relation (§ 5.2) and show how we can prove
the existence of core rules (§ 5.2.4). Finally, in § 5.3, we will show how semantic typing gives us
greater flexibility when dealing with unsafe code.

5.2.1 Parametric Prophecies
The support for mutable borrows is the critical challenge of RustHornBelt, particularly in providing
a semantic accounting of the RustHorn-style prophecies that appear in our specifications. We
developed a novel prophecy framework in Iris called parametric prophecies to solve this. Its key
idea is to consider all possible futures simultaneously. This is achieved through the clairvoyant
monad Clair A , ProphAsn → A, a reader monad over a prophecy assignment π ∈ ProphAsn
modeling one possible future (i.e., mapping of prophecy variables to values). By embedding our
reasoning about prophecies (especially the spec Φ) within this monad—i.e., parameterizing over
every future π—we can refer to prophesied values while staying parametric w.r.t. what they are
until we are ready to resolve them. In particular, when proving C-borrow, parametric prophecies
will enable us to instantiate a′ with a freshly chosen prophecy variable in the domain of π, without
having to commit to how it is resolved until the borrow is dropped.

Basics Formally, let a prophecy (variable) x ∈ ProphVar A be simply a wrapper around a natural
number n ∈ N. As ProphVar A is infinite, we can at any point create a prophecy token [x]1 for a
fresh prophecy x. This token signifies that x has not yet been resolved. Ownership of prophecy
tokens can be fractionally split and merged:

proph-intro
True V ∃x. [x]1

proph-frac
[x]q+q′ a` [x]q ∗ [x]q′

A prophecy assignment π ∈ ProphAsn, modeling one possible future, is a dependent map that
assigns a value π x ∈ A to every prophecy x ∈ ProphVar A for any type A. Now we have the

5.2. SOUNDNESS OF TYPE-SPECS 83

clairvoyant monad Clair A , ProphAsn→ A, parameterized over every future π.

Syntactic Conventions We use the syntax ↑x , λπ.π x to lift a prophecy x ∈ ProphVar A
into a clairvoyant value (i.e., values of sort Clair A). We mark clairvoyant values with a hat ˆ

(e.g., â). Also, we use the following functorial notations with a star ?: φ̂ ?∧ ψ̂ , λπ.φ̂ π ∧ ψ̂ π,
â ?= b̂ , λπ.â π = b̂ π, p̂?.1 , λπ.(p̂ π).1 (similarly for ?.2), ?(â, b̂) , λπ.(â π, b̂ π), and ?[â1, . . . , ân] ,
λπ.[â1 π, . . . , ân π].

A prophecy observation 〈φ̂〉 (where φ̂ ∈ Clair Prop), asserts that a pure proposition φ̂ π holds
for every valid future π (i.e., for every π that respects the prophecy resolutions that have occurred
so far). The rules for reasoning about observations are fairly straightforward:

proph-impl
∀π. φ̂ π → ψ̂ π

〈φ̂〉 ` 〈ψ̂〉

proph-merge
〈φ̂〉 ∗ 〈ψ̂〉 ` 〈φ̂ ?∧ ψ̂〉

proph-true
∀π. φ̂ π
〈φ̂〉

Definition 6 (Dependencies). The dependencies Y of a clairvoyant value â are defined as the set
of prophecy variables that occur in â. Equivalently,

dep(â, Y) , ∀π, π′. (∀z ∈ Y. π z = π′ z)→ â π = â π′.

We can define the key resolution rule of prophecy observations, allowing us to resolve each x

exactly once.

proph-resolve
dep(â, Y)

[x]1 ∗ [Y]q V 〈↑x ?= â〉 ∗ [Y]q

Consuming the full token [x]1, we can finally fix the value of the prophecy x to an arbitrary
clairvoyant value â, getting an observational equality: 〈↑x ?= â〉. Internally, we prune away all the
futures in which x is not equal to â.

Notably, the rule proph-resolve allows the clairvoyant value â to depend on other prophecies
(the ones in the set Y). This is essential in RustHornBelt to model borrow splitting. For example,
in Vec’s index_mut (§5.3), the input v : &α mut Vec<T>’s prophecy x should be partially resolved to
a value depending on the output &mut T’s prophecy y, observing 〈↑x ?= ?[. . . , âi−1, ↑y, âi+1, . . .]〉.

Crucially, however, proph-resolve also imposes the condition that the prophecies in Y (i.e.,
the ones â depends on) must all be unresolved. This is ensured by consuming (and then immediately
returning) fractional tokens for the prophecies in Y—i.e., [Y]q ,∗y∈Y [y]q. We need this condition
to prevent prophecy resolution from causing a paradox where there are no valid futures. To see
how this might happen, suppose we have [x]1 and [y]1; if proph-resolve did not impose the
“[Y]q” condition, we could use it to first resolve x to ↑y, and then resolve y to λπ.↑xπ + 1, which
put together would yield the impossible observation 〈↑x ?= λπ.↑xπ + 1〉. Thanks to the “[Y]q”
condition, however, such a paradox is ruled out. As a result, we can additionally prove the following
rule, which establishes that reasoning within the clairvoyant monad remains consistent (i.e., there
always exists some valid π under which our observations hold):

proph-sat
〈φ̂〉 V ∃π. φ̂ π

When dealing with prophecies, we may need to resolve a prophecy where we cannot provide all
the dependency tokens at the moment of resolution. To work around this, we can use a prophecy
equalizer to delay the full resolution of a prophecy.

84 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

Definition 7 (Prophecy Equalizer). For â, b̂ ∈ Clair A, the prophecy equalizer â :≈ b̂ is defined as
the proposition dep(â, Y)→ [Y]q V 〈λπ.â π = b̂ π〉

The rules for prophecy equalizers slightly generalize those for observations:

proph-eqz-tok
[x]1 ` ↑x :≈ â

proph-eqz-mod
〈â ?= b̂〉 ∗ â :≈ ĉ ` b̂ :≈ ĉ

proph-eqz-app
f injective

â :≈ b̂ ` f ◦ â :≈ f ◦ b̂

5.2.2 Semantic interpretation of Rust types
Like the prior work RustBelt, we model Rust types using a pair of Iris predicates, one describing
the ownership of that type and one which captures its behavior when shared.

JTK.own : Clair bTc × ThrId × ListVal → iProp
JTK.shr : Clair bTc × Lft × ThrId × Loc→ iProp

The ownership predicate JTK.own models what it means to own an object of type T, including
the ownership of resources (e.g., memory) granted to the object. Like RustBelt the predicate is
parametrized over the list of low-level values v ∈ ListVal, describing the sequence of values stored
in the memory for the object, and the thread identifier t ∈ ThrId, used when modeling concurrency.
We extend it with a clairvoyant representation value â ∈ Clair bTc, relating the logical values of the
type to their memory representations.

The second sharing predicate allows Rust types to behave differently when shared. For example,
the cell type Cell<T> is equivalent to T when fully owned, but it becomes a shared mutable state
when put under a shared reference. To model such behaviors, RustBelt associates with each type
a sharing predicate JTK.shr. The predicate JTK.shr(α, t, `) is meant to model J&α

shr TK.own(t, [`]), the
ownership predicate of a shared reference to T. Thus, the predicate also has a location (aka address)
` ∈ Loc to represent where the object is stored.

Like RustBelt, each type must also ensure these predicates satisfy several properties, ensuring
they are well-behaved, like the ability to convert an owning predicate into a sharing one:

ty-share
&α(∃v. ` 7→ v ∗ JTK.own(â, t, v)

)
∗ [α]q V JTK.shr(â, α, t, `) ∗ [α]q

RustHornBelt adds several additional properties that each type must satisfy, like the ability to
retrieve the prophecies contained within a value of a given type:

ty-own-proph
JTK.own(â, t, v) ∗ [T.lft]q′ V
∃ Y x q, dep(â, Y) ∗ [Y]q ∗ ([Y]q V JTK.own(â, t, v) ∗ [T.lft]q′)

Given the ownership predicate for a type T, and a token witnessing that the lifetimes appearing in
T are alive, we can temporarily extract fragments of the prophecies appearing in the value â3.

3The full version of this rule, present in the Coq development must also account for step-indexing, a
complication required for soundness in Iris.

5.2. SOUNDNESS OF TYPE-SPECS 85

Booleans The Boolean type bool, written bool in λRust, is one of the simplest types in Rust.
Its ownership predicate is defined as follows:

JboolK.own(b̂,_, [v]) , (λx.v) = b̂

This is just the equality v = b, but we must also account for the prophecy assignment in b̂. The
sharing predicate JboolK.shr is derived from JboolK.own, just as in RustBelt. The integer type int
is also interpreted similarly.

Products In Rust, we can make new types out of existing types in many ways. A simple example
of that is the product type τ0 × τ1 (written (T0, T1) in Rust). The ownership predicate of the
product type can be derived from τ0 and τ1’s ownership predicates as follows:

Jτ0 × τ1K.own(p̂, t, v) , ∃ v0, v1 s.t. v = v0 ++ v1. Jτ0K.own(p̂?.0, t, v0) ∗ Jτ1K.own(p̂?.1, t, v1)

The representation value is set to the pair of those of the two components, Moreover, the list of
low-level values is set to concatenation. The sharing predicate of τ0 × τ1 is similarly derived from
τ0 and τ1’s sharing predicates.

Box The Rust type Box<T> is an owned pointer to a type T. This pointer behaves in a manner
equivalent to values of type T but with a level of indirection in memory. In particular, because the
box owns its contents, there is no aliasing: it has exclusive control over its contents. This means
that in RustHornBelt, we can represent a box solely as the value of its pointed object. Note, in
RustHornBelt, we call Box own. The ownership predicate of a box thus is a wrapper around the
ownership predicate for the pointed type:

Jown TK.own(â, t, v) , ∃ ` s.t. v = [`]. ∃w. ` 7→ w ∗ . JTK.own(â, t, w) ∗ Dealloc(`, size(T))

As a pointer, the low-level value should be a location `. We own the points-to token ` 7→ w and the
pointed object JTK.own(· · ·) as well as the right to deallocate Dealloc(· · ·). The representation value
a of an owned pointer is the same as that of the pointed object. The sharing predicate for owned
pointers is tricky in this model (due to delayed sharing [50, §12.2]), so we omit it.

Shared Borrows We conclude our overview of simple Rust types by considering another form
of pointer. As we described earlier, each Rust type is given a sharing predicate, representing its
behavior when put inside a shared borrow; this allows us to capture interior mutability. We define
the ownership predicate like boxes:

J&α
shr TK.own(â, t, v) , ∃ ` s.t. v = [`]. JTK.shr(â, α, t, `)

The borrow’s value is a location `, where a shared instance of T can be found.

Mutable Borrows

Now for the pièce de résistance, we model &α mut T, the type of mutable references, as follows:

J&α mut TK.own(p̂, t, [`]) , ∃x s.t. p̂?.2 = ↑x.
VOx(p̂

?.1) ∗ &α(∃â, v. ` 7→ v ∗ JTK.own(â, t, v) ∗ PCx(â)
)

A lot is going on here. First of all, as expected, the RustHorn-style representation p̂ of a mutable
reference is a clairvoyant pair of the current and final states of the borrow, where the latter is some
prophecy x (hence, p̂?.2 = ↑x).

86 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

The other key difference from the RustBelt model of mutable references is the presence of two
ghost state assertions: the value observer VOx(p̂

?.1) and the prophecy controller PCx(â). These
assertions aim to make it possible to refer to the current state of the borrow both inside and outside
of the borrow proposition. In particular, note that, on the one hand, we need to existentially quantify
over that current state inside the borrow proposition because otherwise, the borrower would not be
able to change it when they mutate `; but on the other hand, we also need to be able to connect
the current state to the first component of the representation value p̂?.1. The VO and PC assertions
make this possible using a fairly typical Iris-style “linked ghost state” construction, whereby two
separately ownable propositions can independently assert the identity of some shared state, with
the assurance that (a) their assertions must agree and (b) they can be updated, but only jointly.
Formally, we have:

mut-agree
VOx(â) ∗ PCx(â

′) ` â = â′
mut-update
VOx(â) ∗ PCx(â) V VOx(â

′) ∗ PCx(â
′)

Interpreting RustHornBelt Judgments

Using the model of types, we can build up interpretations for the more complex constructs of
RustHornBelt, starting with typing contexts:

Jp C TK , ∃â, JTK.own(â, t, [JpK])
Jp C†α TK , ∃â, [†α] ∃b̂, .(â :≈ b̂) ∗ JTK.own(b̂, t, [JpK])

This interpretation is a natural extension of the original RustBelt one: we existentially quantify
the representation of values in the context. For frozen values after the end of α, we get back
ownership of the object of type T, whose actual value is b̂, together with the knowledge that the
prophesied value â (typically of the form ↑x) is equivalent to b̂, via a prophecy equalizer â :≈ b̂.

The interpretations of the external and local lifetime contexts are unchanged from RustBelt.
Using these contexts, we can define the interpretation of our judgments.

E;L | T � I �r. T′ Φ ,

∀Ψ̂ , t.
{
∃ â. [Na : t] ∗ 〈λπ.Φ(Ψ̂ π) (â π)〉 ∗ JLK ∗ JTK(â, t)

}
I

{
r. ∃ b̂. [Na : t] ∗ 〈λπ.(Ψ̂ π) (b̂ π)〉 ∗ JLK ∗ JT′K(b̂, t)

}
Just like in the original RustBelt, we interpret the judgment for an instruction as a Hoare triple

over an instruction I. The key addition to our definition is the presence of prophecy observations in
the pre- and post-conditions of the triple. We quantify over all possible postconditions Ψ̂ , capturing
the behavior of all following code. Note that the post-condition is clairvoyant, allowing it to capture
prophetic information. In the postcondition of I we assert that the the post condition must hold
(〈λπ.(Ψ̂ π) (b̂ π)〉), and use the predicate transformer Φ to turn that into the appropriate precondi-
tion (〈λπ.Φ(Ψ̂ π) (â π)〉). The token [Na : t] is used to govern concurrent behavior, specifically the
non-atomic borrows of RustBelt.

Below, we also include the interpretation of type-context inclusion, which expresses the property
that T2 can be obtained from T1:

Γ | E;L � T1
ctx⇒ T2 Φ ,

∀t â Ψ̂ , JEK ∗ JLK ∗ JT1K(â, t) ∗ 〈λ π,Φ (Ψ π) (â π)〉

∃b̂, JLK ∗ JT2K(b̂, t) ∗ 〈λ π, Ψ̂ π (b̂ π)〉

5.2. SOUNDNESS OF TYPE-SPECS 87

This interpretation also extends the RustBelt original, associating a predicate transformer Φ̂

relating a predicate Ψ̂ over the output context T2 to the input context T1. Both the transformer
and predicate are clairvoyant allowing them to depend on prophetic information. On the right-hand
side of the wand, we require an observation for Ψ̂ when applied to the values of T2, while on the
left-hand side, we provide an observation over the transformed postcondition Φ̂ · Ψ̂ . This judgment
is of particular importance in RustHornBelt as borrowing is done through type-context inclusion
(C-borrow).

5.2.3 Soundness of the RustHornBelt type-spec system
In prior sections, we have shown how to define and interpret the various judgments of RustHornBelt.
We now sketch the proof of soundness for this system. Proving the soundness of a semantic typing
system is traditionally done using two lemmas. The first establishes the property that the semantic
type system subsumes the original syntactic one, that is:

Theorem 5.2.1 (Fundamental Theorem of Logical Relations). Given a valid syntactic rule of the
RustHornBelt type-spec system, the resulting semantic rule holds in Iris if we replace each ` with
|=.

This theorem shows that the semantic type-spec system subsumes the syntactic one and that
we can thus ignore the syntactic system going forward. In fact, in the actual implementation of
RustHornBelt, we never explicitly defined the syntactic type system, and instead directly defined
all the syntactic rules as their semantic equivalents.

Then the safety of the semantic type system is shown through an adequacy lemma.

Theorem 5.2.2 (Adequacy). For any λRust function F such that ∅; ∅ | ∅; ∅ |= F |=f. f C ∀α. fn()→
() λΨ [].Ψ () holds, no execution of F (with the trivial continuation) ends in a stuck state.

Our adequacy theorem is quite similar to the original form found in RustBelt. However, because
we have extended our language with assertions, proving this theorem amounts to demonstrating
that no assertion can be violated during execution, thus proving the panic-safety of our programs.

This theorem is stated using our semantic type system and amounts to showing the validity of
an Iris proposition. The proof proceeds by unfolding the definitions and applying the Iris adequacy
theorem. Since we phrase the statement in terms of semantic typing, we do not commit to the
specific set of typing rules allowed. We can always independently prove the soundness of a new
semantic typing rule without affecting the adequacy theorem, giving a more extensible and modular
foundation for our type system.

5.2.4 Proving Soundness of Type-Spec Rules
To demonstrate how we can extend our type-spec system with new rules, we will give an overview
of how we can prove the core rules for manipulating mutable borrows. Before we start with the
proofs, we recall two rules of RustBelt’s lifetime logic.

LftL-borrow
.P V &α P ∗

(
[†α] .P

) LftL-bor-acc
&α P ∗ [α]q V .P ∗

(
.P &α P ∗ [α]q

)
The rule LftL-borrow allows us to create a borrow (in Iris) from a proposition P , while

LftL-bor-acc lets us temporarily open up a borrow, requiring us to replace .P to close the
borrow again.

88 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

Borrow creation

First, let us tackle the creation of a mutable borrow (C-borrow):

E;L �p C ownn T ctx⇒ p C &α
mut T, p C

†α ownn T λΨ [a], ∀a′, Ψ [(a, a′), a′]

Unfolding the semantics of the type-spec judgment, we reach the following implication:

∀ t â a Ψ̂ , Jownn TK.own(â, t, a) ∗ 〈λπ, ∀a′, Ψ̂ π [(â π, a′), a′]〉
∃ b̂ ĉ, (∃ a, J&α

mut TK.own(b̂, t, a)) ∗ 〈λπ, Ψ̂ π [b̂ π, ĉ π]〉∗
(∃c , [†α] ∃d̂, .(ĉ :≈ d̂) ∗ Jownn TK.own(d̂, t, c))

Our proof must use the resources from Jownn TK.own(...) to construct the ownership predicate
for the borrow and have enough leftover to create the wand, which will restore ownership when the
borrow expires. We proceed as follows.

First, we create a prophecy x and get the value observer VOx(â) and the prophecy controller
PCx(â) for x:

mut-intro
True V ∃x. VOx(â) ∗ PCx(â)

Pick ĉ , ↑x and b̂ , ?(â, ↑x). From the input observation, we immediately get the output observation
simply by instantiating a′ into the prophecy’s value ↑x π:

〈λπ.∀a′. (Ψ̂ π) [a′, (â π, a′)]〉 ` 〈λπ.(Ψ̂ π) [ĉ π, b̂ π]〉

We then unfold the model of Jownn TK.own(â, t, a) to get:

a 7→ v ∗ Dealloc(a, |T|) ∗ .JTK.own(â, t, v)

And let P be ∃â′, v. a 7→ v ∗ JTK.own(â′, t, v) ∗ PCx(â
′).

By LftL-borrow, constructing and depositing .P , we create a borrow proposition &α P and
its inheritance [†α] .P . Now we have all we need to construct the required resources for the
mutable reference b:

VOx(â) ∗ &α P ` J&α mut TK.own
(?(â, ↑x), t, b)

We use the remaining resources for the frozen box:

([†α] .P) ∗ Dealloc(a, |T|) ` [†α] ∃d̂, .(ĉ :≈ d̂) ∗ Jownn TK.own(d̂, t, c)

To prove this, we “execute” the given view-shift wand with [†α] to get .P . Take out the value â′

out of P . We chose d̂ = â′. The rule proph-ctrl-eqz allows us to transform a prophecy controller
PCx(â

′) into an equalizer ↑x :≈ â′, effectively denying future mutations to this borrow.

proph-ctrl-eqz
PCx(â) V ↑x :≈ â

Consuming PCx(â
′) inside P , we get the desired ↑x :≈ â′. Using the remaining parts of P and

Dealloc(a, |T|), we can construct the box.

Write To write to a mutable reference *b = c (S-assgn, Twrite-bor), we get access to the bor-
row proposition’s content by LftL-bor-acc and update it, Moreover, renew the observed current
state by mut-update.

5.3. RUST APIS WITH UNSAFE CODE 89

Borrow dropping Consider dropping off a mutable reference (F-resolve).
First, by LftL-bor-acc, we get temporary access to the borrow proposition’s content, which

contains the prophecy controller PCx(â). We can use ty-own-proph to recover the prophecy tokens
for the dependencies of the pointed type. These dependencies allow us to use the following ghost
update rule to resolve the prophecy x, disposing of the value observer in the process (as we should
only be able to resolve once!):

mut-resolve
dep(â, Y)

VOx(â) ∗ PCx(â) ∗ [Y]q V 〈↑x ?= â〉 ∗ PCx(â) ∗ [Y]q

Now we get an observation 〈↑x ?= â〉, which makes the prophecy’s value ↑x effectively equal to the
current state â. We can use it for the postcondition to satisfy the rule’s spec λΨ,[b]. b.2 = b.1→ Ψ [].

Unfreezing Unfreezing of objects at a lifetime’s end (F-endlft) can be proved easily. We
first get a dead-lifetime token [†α] by consuming [α]1 in the lifetime context. With this token we
“execute” the view-shift wand of each frozen object [†α] ∃b̂. â :≈ b̂ ∗ JTK.own(b̂, t, a), to get an
active object JTK.own(b̂, t, a). Using this object, we can apply ty-own-proph to recover the tokens
that we need to turn our equalizer â :≈ b̂ into an observation 〈b̂ ?= â〉 for each object. Combining
these observations, we can prove the specification to the rule λΨ, a.Ψ a.

5.3 Rust APIs with Unsafe Code
So far, we discussed Rust’s safe features. Now, we present RustHorn-style specs for various Rust
APIs with unsafe implementations, which we have verified in RustHornBelt.

Vec API One common use of unsafe code in Rust APIs is to provide a more efficient implemen-
tation than Rust’s safe typing rules allow. A canonical example of this is the ubiquitous vector (or
growable array) type Vec<T>. The Vec API manages a dynamically allocated memory block to store
and provide access to an unbounded number of objects of the type T, which it achieves through
the effective use of raw pointers. Raw pointers are Rust pointers whose aliasing is untracked by
the type system and potentially unsafe to use. The Vec API supports a variety of operations; for
RustHorn-style verification, we are particularly interested in those that perform destructive state
mutation.

First, let us consider the following operations:

1 fn push<T>(v: &mut Vec<T>, a: T)
2 fn pop<T>(v: &mut Vec<T>) -> Option<T>

They both destructively update a vector through a mutable reference v: &mut Vec<T> to it. The
operation push adds an element a: T to the end of the vector (and returns nothing), and pop
removes the last element a from the vector, returning Some(a) (and None if the vector is empty).

Before describing the behavior of these operations, we must first choose a representation for
the type Vec<T>. Naturally, we represent a vector as a list of its contents: bVec<T>c , List bTc.
Correspondingly, the push and pop operations get the following specs:

v.2 = v.1 ++ [a] → Ψ []

if v.1 = [] then v.2 = [] → Ψ [None]
else v.2 = last v.1 → Ψ [Some(init v.1)]

90 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

where lastw is the last element of the list w, and initw is w without its last item. In the case of both
functions, v.1 represents the initial state of the mutable reference v; and since v is dropped before
the function returns, we also learn that the prophesied “final” value of v (i.e., v.2) is precisely the
state of v at the end of the function. Thus, v.1 and v.2 act like just an input and output.

Things get more interesting when an operation not only inputs but also outputs a mutable
reference. Let us consider the following operation for random access:

1 fn index_mut<α,T>(v: &α mut Vec<T>, i: int) -> &α mut T

Physically, it is just an address calculation: get the head address of the buffer of a vector and add
the offset of i blocks. In Rust, however, such addresses are linked with ownership. In index_mut,
the mutable borrow over a vector is subdivided into a smaller borrow over a specific element of the
vector, inheriting the lifetime α.

We give to index_mut the following RustHorn-style spec:

0 ≤ i < |v.1| ∧ ∀a′. v.2 = v.1{i := a′} → Ψ [(v.1[i], a′)]

The precondition 0 ≤ i < |v.1| is for the bounds check. In addition, we prophecy the final state
a′ of the new, subdivided borrow for the output. Now the old borrow’s prophesied final state v.2
is partially determined with respect to a′ (an example of partial prophecy resolution). It is set to
v.1{i := a′}, which can be read as v.1 with the i-th element’s determination left to the prophesied
value a′.

IterMut API Rust’s IterMut API for mutable iterators—though implemented with unsafe
code—exemplifies how Rust’s type system provides stronger guarantees than those of “safe” lan-
guages like Java, leveraging ownership to eliminate common pitfalls like iterator invalidation. In
Chapter 6, we will show how to generalize this specification to reason about abstract compositions
of iterators.

With iter_mut, you can create a mutable iterator out of a mutable reference to a vector:

1 fn iter_mut<α,T>(v: &α mut Vec<T>) -> IterMut<α,T>

As the lifetime parameter α of IterMut indicates, a mutable iterator is an advanced form of mutable
borrow, having temporary ownership of some memory sequence. Rust’s type system ensures that,
while the iterator IterMut<α,T> is active, the ownership of the iterated vector is frozen, preventing
the vector from being modified while it is being iterated over—a phenomenon known as iterator
invalidation.

With next, you can perform one step of mutable iteration:

1 fn next<α,T>(it: &mut IterMut<α,T>) -> Option<&α mut T>

This yields a mutable reference to the head element a: &α mut T, moving the focus to the next
element and returning Some(a) (or None if the iterator has reached the end).

With the iterated application of next, it is possible to convert the mutable iterator into a bunch
of mutable references to the individual elements of the vector, which can all be used simultaneously—
i.e., one need not give up the mutable reference to one element to obtain a mutable reference to
the next. Hence, in RustHornBelt, we naturally represent a mutable iterator as a list of mutable
references to each element of the iterated container, setting bIterMut<α,T>c , List (bT c × bT c).
This leads to the following straightforward specification for next:

if it.1 = [] then it.2 = [] → Ψ [None]
else it.2 = tail it.1 → Ψ [Some(head it.1)]

5.3. RUST APIS WITH UNSAFE CODE 91

We can also give the following spec to iter_mut, which might look tricky at first:

|v.2| = |v.1| → Ψ [zip v.1 v.2]

Essentially, what we are doing is an elementwise split of the mutable borrow over the vector (one
example of borrow subdivision, like Vec’s index_mut). The borrow’s final state v.2 is split element-
wise into a list of prophesied values v.2[0], v.2[1], · · · , v.2[|v.1| − 1], and the length (|v.2| = |v.1|) is
guaranteed to stay constant. The output iterator works as if it were a list of mutable references to
each vector element. The function zip works like zip [a, b, c] [a′, b′, c′] = [(a, a′), (b, b′), (c, c′)].

Combining iter_mut and next, we can write and functionally verify various programs that
iteratively mutate vectors. For example, let us consider the following function:

1 fn inc_vec(v: &mut Vec<int>) { for a in v.iter_mut() { *a += 7; } }

This uses a mutable iterator, v.iter_mut(), to increment each element of the vector *v by 7. The
for statement is syntactic sugar for repeatedly calling the next method and unwrapping the result
to get a: &mut int until None is returned. Using the specs of iter_mut and next, we can derive
the following spec on inc_vec: v.2 = map (+ 7) v.1→ Ψ [].

Cell API Though helpful in avoiding memory safety bugs and data races, Rust’s prohibition
of aliased mutable state is too restrictive in many situations, such as implementing cyclic data
structures. Rust also provides several APIs with interior mutability to meet such needs, allowing
mutation even through a shared reference, albeit in carefully controlled ways.

Arguably the most straightforward such API is Cell, whose safety is guaranteed by various
restrictions (e.g., it can only be used within a single thread). It provides the following operations:

1 fn new<T>(a: T) -> Cell<T>
2 fn get<T: Copy>(c: &Cell<T>) -> T
3 fn set<T>(c: &Cell<T>, a: T)

You can convert a T to a cell Cell<T> by calling new. Then, using a shared reference to a cell
&Cell<T> with copyable content, you can both read from the cell by get and write a new value to
the cell by set.

Such interior mutability helps write code but makes functional verification (especially in the
RustHorn style) more challenging. RustHornBelt proposes a straightforward approach to solve this
problem: invariants.

Concretely, we represent Cell<T> as an invariant predicate, with bCell<T>c , bTc → Prop. For
get, we know that the real value a satisfies the invariant, which amounts to the following spec:
∀a. c(a) → Ψ [a], where c is the invariant representing the cell, of sort bTc → Prop. For set, we
promise that writing to the cell will preserve the invariant, hence the following spec: c(a)∧Ψ []. For
new, we choose the cell’s invariant Φ, which should be satisfied by the initial value. Thus, we give
new the following spec, for any Φ: Φ(a) ∧ Ψ [Φ].

Using these specs, we can do some functional verification. For example, let us consider the
following function:

1 fn inc_cell(c: &Cell<int>, i: int) { c.set(c.get() + i); }

We should ensure that the update by set does not invalidate the cell’s invariant. That is achieved
with the following spec for inc_cell:

(
∀n. c(n)→ c(n+i)

)
∧ Ψ []. Before ∧ is the main precondition,

which is satisfied if, for example, c = λn.(n is odd) and i = 4.
RustHornBelt allows the invariant Φ for a cell to depend on runtime values. For example, we

can call inc_cell with the invariant λn. n mod k = 1, where k represents another program variable
k : int. We restrict this dependency to non-prophesied values: we cannot choose an invariant that

92 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

depends on the prophecy of a mutable borrow. To this day, we do not know if extending our
approach to allow such invariants is possible. However, this does not prevent common use cases
Cell like memoization, which does not generally require storing mutable borrows in the memoized
cache.

Finally, we have also proven sound similar invariant-based specs for the Mutex API, a thread-safe
variant of Cell, which uses a lock to control mutable access to the shared cell.

5.3.1 Proving specifications for APIs with unsafe code
We can also semantically verify all our RustHorn-style specs for safe Rust APIs with unsafe imple-
mentations.

For an interesting example, let’s consider the iter_mut method for converting a mutable refer-
ence &α mut Vec<T> into a mutable iterator IterMut<α,T> (§5.3). To verify the method, it suffices
to prove the following Hoare triple:{ 〈

λπ. |↑xπ| = |v̂ π| → (Ψ̂ π) [zip (v̂ π) (↑xπ)]
〉
∗

[α]q ∗ J&α mut Vec<T>K.own
(?(v̂, ↑x), t, v) }

iter_mut(v)
{
it. ∃ b̂. 〈λπ.(Ψ̂ π) [b̂ π]〉 ∗

[α]q ∗ JIterMut<α,T>K.own(b̂, t, it)
}

Here, we sketch the proof. By Vec<T>’s semantics, the vector’s value v̂ decomposes into ?[â1, . . . , ân].
Now we create new prophecies y1, . . . , yn along with a value observer VOyi(âi) and a prophecy con-
troller PCyi(âi) for each i. We then pick b̂ , ?[?(â1,↑y1), . . . ,?(ân,↑yn)], and construct the mutable
iterator JIterMut<α,T>K.own(b̂, t, it), which is equivalent to iterated separating conjunction of the
(imaginary) mutable reference J&α mut TK.own

(
?(âi,↑yi), t, [` + i · |T|]

)
to the i-th element, over

i ∈ 1..n (where ` is the head location). Also, we need the observation 〈↑x ?= ?[↑y1, . . . ,↑yn]〉. To
achieve this, we should split the borrow proposition of &α mut Vec<T> to get the borrow propositions
for IterMut<α,T>, partially resolving the old prophecy x. Although we omit details, our semantic
model can verify even borrow subdivision like this.

5.4 Implementation and Evaluation
We evaluated our approach discussed in § 5.2 by fully mechanizing the semantic soundness proof of
the type-spec system in the Coq proof assistant, verifying various safe Rust APIs that encapsulate
unsafe code.

We built RustHornBelt’s Coq development by extending that of RustBelt [53]. It has ~19kLOC
of Coq code in total. We were able to reuse the key sub-components, the lifetime logic (~2kLOC)
and the untyped core calculus (λRust) (~3kLOC), as well as the overarching proof structure for
verifying the type system. The development took two implementors ~six months to complete,
adding ~7kLOC to the final proofs.

We first modeled basic Rust types and verified type-spec rules for operations on them, extending
RustBelt with functional specs. The verified basic types include: box pointer Box<T>, shared and
mutable references &α (mut) T, tuple (T1,. . .,Tn), sum T1 + · · · + Tn4, array [T;n], integer int,
boolean bool, function fn(T) -> T', and recursive types5.

Then we also modeled advanced Rust types and verified type-spec rules for key API functions
encapsulating unsafe code, including:
4 This amounts to Rust’s enum type.
5 This supports non-covariant recursion, e.g., recursion with a self reference under the mutable reference
&α mut.

5.4. IMPLEMENTATION AND EVALUATION 93

LOC

API #Funs Type Code Proof

Vec 9 147 59 459
SmallVec 9 209 75 619
&α (mut) [T] / Iter(Mut) 9 253 38 428
Cell 8 102 20 188
Mutex / MutexGuard 7 258 30 222
JoinHandle 2 73 12 52
MaybeUninit 5 140 8 108
Misc 3 0 14 85

Figure 5.8: Coq mechanization of Rust APIs. #Funs: Number of the functions verified.
Type: LOC of the semantic model and proof for the type(s). Code: LOC of the λRust
implementation of the functions. Proof: LOC of the verification proof of the type-spec
rules.

• Vector Vec<T> — new, drop, len, push, pop,
index(_mut), as_(mut_)slice/iter(_mut)6

• Small-vector SmallVec<T,n> — new, drop, len, push,
pop, index(_mut), as_(mut_)slice/iter(_mut)6

• Shared/mutable slice &α (mut) [T] — len,
split_at(_mut), [T;n]::as_(mut_)slice

• Shared/mutable iterator Iter(Mut)<α,T>7 —
Iter(Mut)::next, Iter(Mut)::next_back

• Cell Cell<T> — new, into_inner, from_mut,
get_mut, get, set, replace

• Mutex Mutex<T> — new, into_inner, get_mut, lock

• Mutex guard MutexGuard<α,T> — deref(_mut), drop

• Thread / JoinHandle<T> — spawn, join

• Maybe-uninitialized MaybeUninit<T> — new,
uninit, assume_uninit(_ref, _mut)

• Misc — swap, panic!,8 assert!8

We implemented each function in the core calculus λRust. As in RustBelt, our λRust implementation
of each function is meant to extract the essence of the real-world Rust implementation, simplifying
away uninteresting details. For example, our λRust version of Vec::push uses a simpler reallocation
strategy than the original Rust version.

In Fig. 5.8, we report the code size of the implementation and proof of a selection of Rust APIs.
A function with a large implementation involving mutable borrows tends to require a larger code

6 We equate the two methods because we used the same model for the shared/mutable slice and iterator.
7 For simplicity, for the shared/mutable iterator Iter(Mut)<α,T>, we used the same model as the shared/-
mutable slice &α (mut) [T].
8 Abortion is implemented just as a stuck term.

94 CHAPTER 5. SOUNDNESS OF RUST VERIFICATION

size and more significant proof effort. Roughly speaking, modeling a Rust type took ~1 hour, and
verifying each function took about 10 minutes–2 hours for us. We still need a large amount of
boilerplate code for the proof. Further automation of this part is left to future work.

We also validated our type-spec system by (somewhat manually) verifying small Rust programs
with ~800 LOC of Coq code. The verified programs include what correspond to inc_vec and
inc_cell shown in § 5.3, demonstrating the Rust APIs Vec, IterMut and Cell.

5.5 Correspondence with Creusot
We claim that RustHornBelt (this chapter) provides strong evidence for the soundness of the ap-
proach used in Creusot (Chapter 4), but there are essential differences between the two. At first
glance, the two are different: in RustHornBelt, we relate λRust programs to predicate transformers;
in Creusot, we translate MIR programs to functional ones. However, those functional programs
are then turned into first-order logical formulas through a verification condition generator similar
to what RustHornBelt is doing. Thus, discussing the similarities and differences between the two
approaches still makes sense.

Of course, as we discussed in Chapter 5, λRust makes many simplifications to MIR in the
interest of more straightforward modeling, and these carry over to Creusot, which works with MIR.
However, more subtle differences also exist, leaving a formalization gap between the two approaches.
Perhaps the most significant difference is related to the use of places and resolution. RustHornBelt
distinguishes between reborrowing, which shortens the lifetime of a borrow, and unnesting, which
squashes a level of indirection in nested pointers:

C-reborrow-mut
E;L ` α′ v α

E;L ` p C &α
mut T

ctx⇒ p C &α′
mut T, p C

†α′
&α

mut T Ψ [(a, a′)], ∀a′′, Ψ [(a, a′′), (a′′, a′)]

S-deref-bor-bor
E;L ` α alive E;L ` α v α′

E;L | p C &α
µ &α′

mut T ` ∗p a a. a C &α
µ T Ψ [((v, w), (v′, w′))], w′ = w → Ψ [(v, v′)]

The formalization goes so far as to place these rules in entirely different categories, with the
first being purely structural while the second is an actual statement.

In MIR (and Creusot), both of these are subsumed by place expressions and the Ref rvalue.
Place expressions allow us to arbitrarily dereference and destruct a type behind a Ref. A reborrow
is equivalent to the place expression &mut * x while an unnest is &mut ** x. Creusot unifies
and generalizes the RustHornBelt rules for unnesting and resolution. Instead of using rules for
borrowing, reborrowing, and unnesting, Creusot uses a single R-Ref-Mut, below:

R-Ref-Mut
T ` p2

pl
↪→ e T ` b←↩ p1/(e, any) T ` p1

pl
↪→ p T ` S ←↩ p2/p.1

T ` p1 = &mut p2 stmt
↪→ b/S

which performs all three by allowing borrows of place expressions. An unnesting is then expressed
by a literal interpretation of its Rust syntax &mut ** x as:

1 b = { cur = x.cur.cur; fin = any };
2 x = { cur = { cur = b.fin ; fin = x.cur.fin } ; fin = x.fin };

An observant reader will observe that this translation is not equivalent to the RustHornBelt
specification; we do not have x.cur.fin = x.fin.fin (w = w′) or b.fin = x.fin.cur (v = v′).

5.6. RELATED WORK 95

The missing parts come from Creusot’s resolution mechanism (§ 4.3.2). Since we are done with
x, we will resolve its value after the unnesting, adding: x.cur = x.fin. By substitution and
simplification, we can derive the missing equalities.

5.6 Related Work
Formalized proofs of verifiers Outside of Rust, there is a long lineage of foundational tools
for program verification. Cao et al. [19] is a toolchain for verifying C programs built on top of
the certified CompCert [62] C compiler. It provides its own separation logic as an alternative to
Iris. More recently, Sammler et al. [83] provides a semi-automated tool for verifying C code in Coq,
based on Iris. As the name suggests, it is a predecessor to RefinedRust. RefinedC uses ownership
typing to verify C programs but does not include a borrowing mechanism like Rust or RefinedRust.

Prophecies First introduced to prove refinement between state machines [2], prophecies have
been studied for decades, although they remain a somewhat exotic technique.

Jung et al. [54] modeled prophecies in Iris (influenced by existing literature [91, 96]), mainly to
prove logical atomicity of tricky concurrent data structures (though there have been other appli-
cations [92]). In their approach, prophecy creation and resolution take the form of ghost program
instructions to ensure consistency of prophecy reasoning, which provide a sort of “ground truth” for
the prophecy but also require cumbersome user annotations. Moreover, their prophecies distinguish
between the name of a prophecy and the value it resolves to (mediated by a kind of “prophecy heap”
mapping prophecy names to values). As such, they do not provide a way to resolve a prophecy
to a value that mentions the values of other (as yet unresolved) prophecy variables—a feature we
require in RustHornBelt to model nested borrows and subdivisions.

For separation logic verification of fine-grained concurrency like Jung et al. aimed at, Turon et al.
[90] and Liang and Feng [66] employed a technique of speculation. Their approach allows the proof
to speculate about multiple possible logical states, combine them through the “speculative choice”
connective P ⊕Q, and then cull the set of possible states once more information becomes available
later in the proof. However, it does not provide an analog of prophecy variables. In contrast, our
prophecy framework provides persistent observations 〈φ̂〉, which can express knowledge of prophecy
variables’ values that hold under all possible futures.

Chapter 6

Iterators

This chapter is based on the article ‘“Specifying and Verifying Higher-order Rust Iter-
ators”’ published in TACAS’23 [26]. The presentation has been significantly extended
from the original publication.

Rust empowers systems software programmers by offering them safe and powerful linguistic
abstractions to solve their problems. Rust’s borrowing mechanism is the most notorious of these
abstractions, enabling safe usage of pointers without a garbage collector or performance penalty. A
close second is perhaps Rust’s iterator system, through which Rust provides composable mechanisms
to express the traversal and modification of collections. Iterators also underlie Rust’s for loop syntax
and are thus the primary manner Rust developers write loops or interact with data structures. It
is, therefore, essential for a verification tool for Rust to provide good support for iterators.

Rust iterators generate sequences of values. More concretely, they are objects providing a
method fn next(&mut self) -> Option<Self::Item>. This method takes a mutable reference
(&mut self) to the iterator, allowing it to change its internal state, and optionally returns a value
of type Self::Item, the type of the values generated by the iterator. If the iterator returns None
instead of returning such a value, it means iteration has finished for now, though it may resume
later. Rust’s for loops are just syntactic sugar for repeatedly calling next at the beginning of each
iteration until such a call returns None. For example, the following two pieces of code present a
Rust loop for iterating over integers between 0 (included) and n (excluded), using a range iterator:

1 for i in 0..n { <body> }

1 let mut iter = Range { start: 0, end:
n };

2 loop { match iter.next() {
3 None => break,
4 Some(i) => <body>
5 } }

The code on the left-hand side uses an idiomatic for loop, while the other shows its desugared
version.

Iterators present unique challenges for verification tools: indeed, because the use of iterators is
pervasive in Rust, it is necessary to allow code verification using iterators with as little interaction
as possible. In particular, the most common patterns, such as iterating over integers in a given
range or reading the elements of a vector should not need any annotation other than the loop
invariants the user would write if not using iterators. On the other hand, Rust’s iterator library is
complex, with many features representing as many challenges for verification: iterators can be built
from various data structures and modified through iterator combinators, which makes it possible

97

98 CHAPTER 6. ITERATORS

to create iterators from simpler ones, by, e.g., skipping the first few elements or applying a given
function to each of the elements. These challenges are exemplified by Example 1, presented below:

Example 1 (Our Target).

1 let mut cnt = 0;
2 let w = vec![1,2,3].iter().map(|x|{cnt += 1; x + 1}).collect();
3 assert_eq!(w, vec![2,3,4]);
4 assert_eq!(cnt, 3);

On line 2, quite a lot happens simultaneously. First, we produce an iterator over the elements
of the vector vec![1,2,3] with the syntax .iter(), which we transform through a call to map.
The method map is an iterator combinator: it returns a new iterator that calls the given closure on
each of the elements generated by the underlying iterator and forwards the value returned by the
closure. Interestingly, the closure we pass to map captures mutable state: it modifies the variable
cnt. Finally, the method collect gathers the elements generated into a new vector w.

We aim at requiring only lightweight annotations for verifying this kind of code: the appeal
of iterator chains like on line 2 are the ergonomics; they are compact and highly readable. For
verification of iterator-based code to be successful, it must preserve this ergonomics. However,
despite its apparent simplicity, this code is challenging to verify: it combines higher-order functions
and mutable state, uses potentially overflowing integers, and assertions on line 4 check full functional
behavior.

More generally, to support iterators, a verification tool for Rust needs to provide a specification
scheme that both provides good ergonomics and overcomes the following technical challenges:

• Strong Automation: for verification to be used, it must require little to no user interaction
and lead to good verification performance.

• Interruptibility: iterators can produce infinite sequences of values and be interrupted before
completion. Thus, specification and verification must happen as the iterator is used and not
at completion.

• Non-Determinism: iterators can feature both specification or implementation non-
determinism, so the sequence of known values might not be known in advance to the verifier.
For example, the order of elements generated by an iterator over a hash table may be left
unspecified for a client.

• Compositionality: iterators can be consumed by combinators, so their specifications need to
follow a general pattern which makes them composable. For example, the specification of
a combinator such as skip(n), which skips the first n elements of a given iterator, should
accept the specification of any iterator and provide a sound and useful specification for the
combined iterator.

• Higher-Order & Effects: some iterator combinators, such as map, are higher-order, they take a
closure as parameter. To verify programs using these combinators, a verification tool should
overcome the challenges of higher-order functions, which potentially capture mutable states.

Contributions
In order to reach this goal, we propose a new specification scheme for iterators in Rust. Our
contributions can be summarized as follows:

• In § 6.1, we provide a general specification scheme for Rust iterators in first-order logic.
It supports possibly non-deterministic, infinite, and interruptible iterators. It is inspired by

6.1. REASONING ABOUT ITERATION 99

Filliâtre and Pereira’s specification of iterators in Why3 [32], but it is adapted to the prophetic
semantics of Creusot.

• In § 6.2.1, we show that this scheme can be trivially instantiated for basic iterators such as a
range of integers.

• In §6.2.2, we show how this scheme can be instantiated to give full functional specification to
mutating iterators. These iterators allow mutating the content of a data structure by iterating
over mutable references pointing to the content of the data structure.

• In §6.2.3, we show that our specification scheme is composable so that it can be used to specify
iterator combinators transforming arbitrary iterators into more complex ones. We give two
examples: take, which truncates an iterator to, at most, a given number of elements, and
skip, which skips a given number of elements at the beginning of iteration.

• In § 6.3, we explain how we can combine the techniques presented in previous sections to
specify higher-order iterator combinators by taking map as an example. This provides a way
to verify the functional correctness of programs using higher-order iterators while requiring
lightweight annotations.

• We implement our specification scheme in Creusot. This implementation extends
Creusot’s handling of for loops to benefit from structural invariants provided by the spec-
ification of iterators. We evaluate it on several benchmarks in § 6.4.

6.1 Reasoning about Iteration
In this section, we present the general mechanism we use to specify iterators (§6.1.1) and how these
kinds of specifications are used in a for loop (§ 6.1.2). Before going in-depth into these definitions,
we introduce the style of specification we use in this chapter.

6.1.1 Specifying Iterators
In Rust, the mechanism of iterators is captured by a trait named Iterator, whose simplified defi-
nition can be given as:

1 trait Iterator {
2 type Item;
3 fn next(&mut self) -> Option<Self::Item>;
4 }

This trait describes the interface an iterator should implement: an iterator should give a type
Item of generated elements and should implement a method next which optionally returns the next
generated element, and possibly mutates in place the internal state of the iterator through the
mutable reference &mut self.

As can be seen in Figure 6.1, we extend1 the iterator trait with the purely logical predicates
produces and completed. We require that any implementation of this trait satisfies the laws
produces_refl and produces_trans. Thanks to the two predicates, the next method is speci-
fied. Any implementation of the Iterator trait needs to give a logical definition of produces and
completed predicates, prove the laws, give a program definition for next, and finally prove that it
satisfies its specification.
1In our implementation, to keep better compatibility with existing Rust code, we choose to define the iterator
specification as a sub-trait of the Iterator trait from Rust’s standard library and to give the specification
of next using Creusot’s extern_spec! mechanism. For simplicity, we present it here as a unique trait- the
main idea of the specification is the same.

100 CHAPTER 6. ITERATORS

1 trait Iterator {
2 type Item;
3 #[predicate] fn completed(&mut self) -> bool;
4 #[predicate] fn produces(self, visited: Seq<Self::Item>, _: Self)
5 -> bool;
6 #[law] // I.e., ∀ a, a ε

 a
7 #[ensures(a.produces(Seq::EMPTY, a))]
8 fn produces_refl(a: Self);
9

10 #[law] // I.e., ∀ a b c, a
v
 b ∧ b

w
 c⇒ a

v·w
 c

11 #[requires(a.produces(ab, b) && b.produces(bc, c))]
12 #[ensures(a.produces(ab.concat(bc), c))]
13 fn produces_trans(a: Self, ab: Seq<Self::Item>,
14 b: Self, bc: Seq<Self::Item>, c: Self);
15
16 #[ensures(match result {
17 None => self.completed(),
18 Some(v) => (*self).produces(Seq::singleton(v), ^self)})]
19 fn next(&mut self) -> Option<Self::Item>;
20 }

Figure 6.1: Iterator trait extended with the specification.

Iterators are specified as state machines: a value of an iterator type is seen as a state, and the
predicate produces defines the transition relation (noted a

s
 b). The predicate completed (noted

completed(r)) gives the set of final states. The completed predicate takes a mutable reference
&mut self, which allows us to specify mutations that happen when an iterator returns None. This
added expressivity in the specification allows us to express properties of unfused iterators, which
may intermittently produce None during iteration. The produces transition relation is annotated
with sequences of generated values rather than with unique values so that a user can reason about
interesting properties of sequences as a whole rather than directly reasoning about the notion of
transitive closure, which the automated solvers don’t handle well. The price to pay is the laws of
reflexivity and transitivity, which the implementors of iterators have to prove.

6.1.2 Structural Invariant of for Loops
Part of the appeal of for loops is the structure they provide over the looping process. When a
programmer sees a for, they can conclude that the body will be executed at most once for each
element in the iterator. Unlike with while loops, it is impossible to decrease the loop index or
otherwise perform unpredictable looping patterns. This informal reasoning can be formalized as
a loop invariant, provided structurally by the for loop itself. The iterator at the i-th iteration
is the result of calling next exactly i times on some initial state. In our formalism, given an
initial iterator state initial and a current iterator state iter, we can state this invariant as
∃ p, initial p

 iter. This invariant holds for any for loop over any iterator: it can be derived
from the laws produces_refl and produces_trans.

When using Creusot, every for loop benefits from this structural invariant: we change the
way these loops are desugared into the more primitive loop construct by adding ghost variables

6.2. EXAMPLES OF SPECIFICATIONS OF SIMPLE ITERATORS 101

1 let mut count = 0;
2 #[invariant(count_is_n, @count == produced.len())]
3 for i in 0..n { count += 1; assert!(0 <= i && i < n); }
4 assert!(n < 0 || count == n);
5

Figure 6.2: A simple for loop using ranges.

init_iter and produced and the new structural invariant init_iter.produces(produced, iter).
More precisely, a simple for loop for x in iter {<body>} is desugared into:

1 let init_iter = ghost! { iter };
2 let mut produced = ghost! { Seq::EMPTY };
3 #[invariant(structural, init_iter.produces(produced, iter))]
4 loop { match iter.next() {
5 None => break,
6 Some(x) => {
7 produced = ghost! { produced.concat(Seq::singleton(x)) };
8 <body> },
9 } }

Interestingly, the ghost variable produced can be referred to in a user invariant to relate the
state of the loop with the iteration state.

In the piece of code in Figure 6.2, we use a variable count to count the number of elements
generated by an iterator and use such an invariant to verify its intended meaning.

6.2 Examples of Specifications of Simple Iterators
In §6.1, we have presented a general framework to specify iterators and use them in for loops. This
section presents several simple examples of iterators defined in this framework.

6.2.1 The Range Iterator
We start with a simple Range iterator, whose purpose is to iterate over the integers in a given
range. The notation a..b used idiomatically in Rust is syntactic sugar for this kind of iterator.
The original definition from the Rust standard library is generic over the type of integers used, but
for the sake of simplicity, we use a monomorphic version here:

1 struct Range { start: usize, end: usize }

If self.start ≥ self.end, the next method returns None. Otherwise, it increments self.start
and returns the initial value of Some(self.start). Note that the upper bound of the range, end,
is excluded in the iteration.

In order to instantiate our iterator specification scheme with Range, we use the produces and
completed predicates defined by:

r
v
 r′ , |v| = r′.start− r.start ∧ r.end = r′.end

∧ |v| > 0⇒ r′.start ≤ r′.end
∧ ∀ i ∈ [0, |v| − 1], v[i] = r.start + i

completed(r) , *r = ^r ∧ (*r).end ≥ (*r).start

102 CHAPTER 6. ITERATORS

Transitivity and reflexivity are easily verified.
Rust’s standard library also contains ranges whose upper bound is included rather than excluded

and ranges without an upper bound. They can all be specified using similar techniques.
Note that with these definitions, the structural invariant of for loops directly implies that the

loop index (the last produced value) is in the range. In addition, if the range is non-empty, one can
deduce that the last iterated value is end − 1. These two properties usually require an additional
invariant if the loop is encoded using the while construct. For an illustration, consider Figure 6.2.

6.2.2 IterMut: Mutating Iteration Over a Vector
Our approach to iterators can be used to iterate over vector elements. But instead of presenting the
simple case of a read-only vector iterator, we study a more general iterator, IterMut, permitting
both read and write vector elements while iterating; the simpler case of the read-only iterator uses
the same ideas.

This iterator produces mutable references for each element of a vector in turn. The state of this
iterator is a mutable reference to the slice (i.e., a fragment of a vector) of elements that remain to
be iterated:

1 struct IterMut<'a, T> { inner: &'a mut [T] }

To define the production relation of IterMut, we use a helper function:

tr : &mut Seq<T>→ Seq<&mut T>

which transposes a mutable reference to a slice into a sequence of mutable references to its elements.
Its defining property is:

|tr(s)| = |*s| ∧ ∀ i ∈ [0, |*s| − 1], tr(*s)[i] = *s[i] ∧ tr(^s)[i] = ^s[i]

With the help of tr, the produces and completed relations of IterMut are simple to express:

it
v
 it′ , tr(it.inner) = v · tr(it′.inner)

completed(it) , *r = ^r ∧ |*r| = 0

It means that the iterator it produces a sequence of mutable references, which must be the initial
segment of tr(it.inner), into a final state it′ such that tr(it.inner) is the sequence of mutable
references that are left to be generated. Such an iterator is completed when the inner slice is empty.

This compact specification is enough to reason about mutating through the returned pointers,
as in the following example:

1 #[invariant(all_zero, forall<i: Int> 0 <= i && i < produced.len()
2 ==> @^produced[i] == 0)]
3 for x in v.iter_mut() { *x = 0; }
4 proof_assert!{
5 forall<i: Int> 0 <= i && i < (@v).len() ==> @(@^v)[i] == 0
6 }

That is, we can prove with a simple loop invariant that this loop sets to 0 all the elements of the
vector.

The reasoning that occurs to prove this program is as follows. First, at the end of a loop
iteration, we know that the final value of the borrow x is equal to 0 since we have just written
0, and this value will not change since x goes out of scope. Together with the invariant of the
preceding iteration, this is enough to prove that the invariant is maintained. Second, after the loop
has been executed, the final iterator state is empty, so we know produced contains the complete
sequence of borrows to elements of v. However, thanks to the loop invariant, the prophetic value
of each of these borrows is 0. So, we can deduce that the final content of v is a sequence of zeros.

6.2. EXAMPLES OF SPECIFICATIONS OF SIMPLE ITERATORS 103

6.2.3 Iterator Transformers
Because all iterators implement the same trait Iterator, which gives them a specification, we can
quickly build combinators that wrap and transform the behavior of an iterator.

It is important to note that, following Rust’s standard library, these transformers are generic
over the type of the underlying iterator; individual values of a type cannot have different predicates.
While the verification tool cannot know the concrete definitions of produces or completed for the
wrapped iterator, it knows it must satisfy the Iterator trait interface.

The simplest example is Take<I> (where I is another iterator), which truncates an iterator to
produce at most n elements. The state of Take<I> is a record with two fields: a counter n for
the remaining elements to take and an iterator iter to take from. The specification predicates of
Take<I> are defined as follows:

it
v
 it′ , it.iter v

 it′.iter ∧ it.n = it′.n + |v|
completed(it) , (*it).n = 0 ∧ *it = ^it

∨ (*it).n > 0 ∧ (*it).n = (^it).n + 1 ∧ completed(it.iter)

The subtle definition here is completed(it): if the counter is 0, then next does nothing. However,
following Rust’s implementation, if the counter is not 0, it is first decremented even if the call to
the underlying iterator returns None.

Again, when instantiated to a specific underlying iterator type, we can substitute the definitions
of () and completed(−) for the underlying iterator to get a concrete definition of these predicates
for Take<I>, which are easier to handle by automated solvers.

Another common transformer is Skip<I>, whose goal is to skip the first n elements of an iterator.
Similarly to Take<I>, the state is a record with two fields: a number n of elements to skip and an
underlying iterator iter.

The relation of Skip<I> is defined as follows:

it
v
 it′ , v = ε ∧ it = it′

∨ it′.n = 0 ∧ |v| > 0 ∧ ∃w, |w| = it.n ∧ it.iter w·v
 it′.iter

The first disjunct is needed to ensure reflexivity of (). The second disjunct describes what happens
after a non-empty sequence of calls. If we produced some sequence of elements v, we must have
been able to skip n elements first, which we existentially quantify over.

If the Skip<I> iterator is completed, the underlying iterator has also completed, but potentially
after having generated some skipped elements that we existentially quantify over:

completed(it) , ∃w i, (^it).n = 0 ∧ |w| ≤ (*it).n

∧ (*it).iter w
 *i ∧ completed(i) ∧ ^i = (^it).iter

Using Skip<I> and Take<I>, we can prove an algebraic property of iterators: if we take n

elements and skip n elements from that iterator, we must necessarily get the empty iterator.

1 proof_assert!(iter.take(n).skip(n).next().is_none())

This property is easy to prove from the composition of both production relations.

6.2.4 Fuse
Iterators in Rust have an unusual wrinkle: an iterator that has completed (by returning None) can
resume producing values at a later point. Because this behavior is unintuitive and often undesired,

104 CHAPTER 6. ITERATORS

Rust provides a key iterator, ensuring that an iterator will never return a value after the first None.
This combinator, called fuse by analogy to electric circuits, is an oft-overlooked component to the
correctness of iterator code. The type of Fuse is defined as Option<I>, either there is an active
iterator I or None to indicate iteration has finished. Using this, we can specify the production
relation as follows:

iter
v
 iter′ , (∀a, iter = Ok(a)⇒ i

v
 iter′)

∧ (iter = None⇒ v = ε ∧ iter = iter′)

It can produce normal values if the iterator is still in the Ok state. When it is in the Err state, it
can only produce the empty sequence and must remain in the same state, thus fusing.

The completed(−) relation is defined as follows:

completed(it) , it = None

The iterator is completed if it is in the None state. While unfused iterators are rare in practice and
application, this combinator demonstrates the generality of our specification.

6.3 A Higher-order Iterator Combinator: Map

The Map iterator applies an arbitrary closure of type F with mutable state to the successive elements
of an arbitrary iterator I.

1 struct Map<I, F> {
2 iter: I,
3 func: F,
4 }

The challenge with Map is handling the preconditions of the closure being called. The function
provided could have arbitrary preconditions; even worse, those preconditions could depend on the
closure’s captured (mutable) state. As shown in § 3.6, mutable closures can use precondition and
postcondition_mut to refer to the precondition and postconditions of the closure. At all times,
Map must retain knowledge that the precondition is satisfied and accumulate the output of the
postconditions to provide that information to the client of the iterator.

To help work through this, we use a thought experiment where we see Map implemented as a
loop with a yield instruction to generate elements in the style of e.g., Python generators:

1 fn map<I : Iterator, B, F: FnMut(I::Item) -> B>(iter: I, f: F) {
2 for a in iter { yield (f)(a) }
3 }

To verify it, we need f.precondition(a) to be true at each iteration, so we need an invariant
that implies it. This exposes the fundamental property that must be true of our closure: the
postcondition at iteration n must be able to establish the precondition for iteration n + 1. In the
vocabulary of iterators:

it
s·e1·e2 i′ → pre(*f, e1)→ post(f, e1, r)→ pre(^f, e2)

expresses that if we eventually produce an element e1 which satisfies the precondition of the initial
closure *f , then combined with the postcondition of f , we must be able to establish the precondition
for the final closure ^f with the following element e2. Quantifying over a prefix s in the iteration
from a known initial state i ensures this property holds for all subsequent iterations.

6.3. A HIGHER-ORDER ITERATOR COMBINATOR: MAP 105

To encode this property in Map, we use a type invariant2, which allows specifying a property
that values of a type must uphold. Here, the invariant states that (1) the precondition for the next
call will be verified; (2) the preservation property above holds for the current state it; (3) these two
invariants are reestablished if the underlying iterator returns None (this is usually trivial since the
underlying iterator is often fused: it cannot generate new elements once it returns None); and (4)
the type invariant of the underlying iterator holds.

These invariants are initially required as a precondition of the map method used to create the
Map iterator. To be tackled by automated solvers, this verification condition needs to be unfolded;
therefore, closures and their pre and post-conditions must be statically resolved thanks to Rust’s
unique anonymous closure types.

The specification predicates for Map can now be stated:

it
v
 it′ , ∃v′ fs, |v′| = |fs| = |v| ∧ it.iter v′

 it′.iter

∧ (it.func = *fs[0] ∧ ^fs[0] = *fs[1] ∧ .. ∧ ^fs[n] = it′.func)

∧ ∀ i ∈ [0, |v| − 1], pre(*fs[i], v′[i]) ∧ post(fs[i], v′[i], v[i])
∧ unnest(it.func, it′.func)

completed(it) , completed(it.iter) ∧ (*it).func = (^it).func

In , we quantify existentially over two pieces of information: the sequence of values v′ produced by
the underlying iterator and the sequence of mutable references of states fs that the closure traverses.
We require that fs forms a chain, the final state of each element being the same as the current value
of the following one. Finally, we require the closure pre- and post-conditions for every iteration and
that the unnesting relation relates to the first and last states. On the other hand, the definition of
completed(−) straightforwardly states that the underlying iterator is completed.

Interestingly, the user of this specification can use the precondition of the closure to encode
closure invariants that she wishes to maintain along the iteration (as with loop invariants). This
specification for Map allows us to specify many use cases, so long as the supplied closure is “history-
free”: its specification does not depend on the sequence of previously generated values, like in
x.map(|a : u32| a + 5). While this is undoubtedly the most common usage of map, we sometimes
need a more robust specification.

Extending Map With Ghost Information. If we attempt to use the previous specification
of Map to verify Example 1, we would rapidly struggle to prove that cnt matches the length of the
vector. This happens because with Map the closure can only specify the behavior of a single call in
isolation: all we can state is that cnt was incremented once. Deducing that we called the closure
the appropriate number of times would require an induction over the iteration. Compared to a
for loop, Map has lost some expressivity, and we have no mechanism like produced to specify the
behavior of iteration.

To simplify the verification of this kind of code, we extend the signature of Map to provide the
closure of the sequence of elements generated by the underlying iterator since the creation of the
mapping iterator object. This information does not change the behavior of the program: we make
it ghost, so it can only be used in specifications:

1 struct MapExt<I : Iterator, F> {
2 iter: I,
3 produced: Ghost<Seq<I::Item>>,
4 func: F,

2At the time this work was performed, we simulated type invariants by manually adding the required pre
and post-conditions. Today, type invariants are a first-class feature of Creusot.

106 CHAPTER 6. ITERATORS

5 }
6
7 fn map_with_past<I, B, F>(i: I, f: F) -> MapExt<I, F>
8 where I: Iterator,
9 F : FnMut(Ghost<Seq<I::Item>>, I::Item) -> B

10 {
11 MapExt { iter: i, produced: ghost! { Seq::EMPTY }, func: f }
12 }

The extended map, MapExt, is thus given an additional ghost field containing this sequence,
produced. The relation () is extended to account for this ghost information by adding a con-
junct stating that it′.produced = it.produced · v′ and passing the additional ghost parameter
it.produced · v′[0..i − 1] to the pre- and post- conditions. The completed(−) relation is extended
by adding the conjunct (^it).produced = ε (the produced field is reset when the iterator returns
None):

it
v
 it′ , ∃v′ fs, |v′| = |fs| = |v| ∧ it.iter v′

 it′.iter

∧ it.produced · v′ = it′.produced

∧ (it.func = *fs[0] ∧ ^fs[0] = *fs[1] ∧ .. ∧ ^fs[n] = it′.func)

∧ ∀ i ∈ [0, |v| − 1], pre(*fs[i], v′[i], it.produced · v′[0..i])∧
post(fs[i], v′[i], it.produced · v′[0..i], v[i])

∧ unnest(it.func, it′.func)
completed(it) , completed(it.iter) ∧ (*it).func = (^it).func ∧ (^it).produced = ε

The type invariants are adapted accordingly.
This extra information avoids the need for an explicit induction to establish that we have

correctly counted the number of iterations. It suffices to look at the postcondition of the last call to
next. While this example only uses the length of the sequence, this ghost information is helpful in
various situations. Using this extended version of map we can prove Example 1 with the following
code:

1 let w: Vec<u32> = vec![1,2,3]
2 .iter()
3 .map(
4 #[requires(cnt@ == _prod.len() && cnt < usize::MAX)]
5 #[ensures(cnt == old(cnt) + 1u32 && cnt@ == prod.len() + 1 && result ==

*x+1u32)]
6 |x, prod| {
7 cnt += 1;
8 *x+1
9 },

10)
11 .collect();

This specification explcitly tracks the fact that cnt is the same as the length of prod, the
sequence of elements already produced. After the call to collect, we can thus conclude that cnt is
the same as the length of the iterated vector.

6.4. EVALUATION 107

Iterator LOC Spec Time Fully auto.

Range 13 39 0.40 X

IterMut 12 34 0.61 X

Map 23 46 0.89 7

MapExt 42 115 1.06 7

Skip<I> 20 53 0.51 7

Take<I> 17 43 0.40 X

Fuse 29 51 0.52 7

Figure 6.3: Evaluation results for the implementations of iterators. “LOC” counts the lines
of program code, while “Spec” counts specification code and assertions. “Time” measures
in seconds the time taken to solve the proofs. “Fully auto.” determines whether manual
tactics were used.

6.4 Evaluation
In this section we measure the performance of both the proofs of iterators and their clients, using
Creusot [27]. The results in Figure 6.3 and Figure 6.4, were gathered using a Macbook Pro with
an M1 Pro CPU and 32 GB of RAM, running macOS 12.2. Why3 was limited to running four
prover instances simultaneously, using Z3 4.11.2, CVC5 1.0.2, and Alt-Ergo 2.4.1.

Why3 supports proof transformations: manual tactics that can be combined with automated
solvers. We minimize their use because we wish to obtain ergonomic specifications that work well
with automation. Nevertheless, certain complex proofs required minor manual work, which we
indicate.

The table in Figure 6.3 contains a selection of the iterators and combinators we have verified.
The Range, IterMut, Skip and Take iterators are implementations of the iterators described in
§§ 6.2.1 to 6.2.3. The Fuse combinator is responsible for transforming any iterator into a fused one,
which will always return None after the first, never resuming iteration. Two versions of Map are
provided; the first is the standard library Map, which is restricted to closures whose preconditions
are ‘history-free’, and the version in MapExt is provided with ghost information about previous calls
as explained in § 6.3.

Some manual proof steps were required to prove several iterators. For Skip<I> and Fuse, the
manual tactics only tell Why3 to access lemmas about sequences. For Map, and MapExt, tactics were
used to instantiate the existential quantifiers within the production relation.

Correspondence of IterMut with RustHornBelt In § 5.3, we presented a different spec-
ification for IterMut. The primary difference occurs in the model of the iterator itself. RustHorn-
Belt represents the iterator as a sequence of borrows, baking in the equivalent to our transpose
operation tr. Outside of this difference, our specifications are equivalent, but we provide a larger
framework within which IterMut fits in and can interact with other iterators.

We also verified several clients of iterators, particularly featuring combinations of several itera-
tors. The example decuple_range maps a Range, multiplying elements by 10, collecting the results
into a vector, and verifying functional correctness; counter is an annotated version of the example
in the introduction, verifying we can use the mutable state to count the elements of an iterator;
concat_vec uses extend to append an iterator to the end of a vector; all_zero is uses IterMut to

108 CHAPTER 6. ITERATORS

Benchmark LOC Spec Time Fully auto. Used Iterators

all_zero 5 3 0.43 X IterMut
skip_take 3 2 0.40 X Skip, Take
counter 12 4 0.55 X Map, Iter
concat_vec 3 3 0.41 X IntoIter
decuple_range 9 3 0.64 X Map, Range
hillel 89 109 0.86 X Range, Iter, IterMut
knights_tour 89 55 1.15 X Range, IntoIter

Figure 6.4: Selected results of iterator clients. “LOC” counts the lines of program code,
while “Spec” counts specification code and assertions. “Time” measures in seconds the time
taken to solve the proofs. “Fully auto.” determines whether manual tactics were used.

zero every cell of a vector; take_skip checks that if we take n elements and then skip the n next
elements of the resulting iterator, we must get None. hillel is a port of a prior Creusot solution
to Hillel Wayne’s verification challenges [85]. knights_tour is a port of a prior solution to the
Knight’s Tour problem. In both cases, updating the code to use for-loops and iterators actually
reduced the number of specification lines.

Because our lines of specification include the assertions that test functional properties, we
believe the resulting overhead is reasonable, especially in our client examples. Additionally, our
specifications for iterators seem to have a low impact on verification times. We compared hillel
and knights_tour with alternative versions that only differ by using traditional while loops instead
of iterators; verification times are 0.91 and 1.14, respectively. This provides evidence that integrating
our iterators does not cause prohibitive increases in verification time.

6.5 Related Works
The formalization of iterators is a well-studied subject with implementations in a variety of im-
perative and functional languages: WhyML [32], Eiffel [79], Java [72], and OCaml [80]. Of par-
ticular relevance is the approach developed by Filliâtre and Pereira [32], which specifies iterators
in WhyML using a ghost field visited : seq 'a and two predicates permitted : cursor 'a ->
bool and completed : cursor 'a -> bool where cursor 'a is an iterator for values of type 'a.
This work leverages Why3’s region system to distinguish individual cursors over time. In contrast,
in our context, we lose object identity: there is no way to identify that two iterator values are two
successive states of the same iterator. We thus generalize this approach to our setting by explicitly
providing pre- and post-states in produces. Our work is also more expressive: we specify and verify
higher-order iterators using potentially mutable closures ruled out by Why3’s region system. The
framework of iteration described by Polikarpova, Tschannen, and Furia [79] is limited to finite,
deterministic iteration: the user must provide upfront the sequence of abstract values the iterator
will produce. Pottier [80] presents an implementation of iterators for a hash map written in OCaml.
They do this by working in the separation logic CFML [21], utilizing Coq’s powerful but manual
reasoning mechanisms for theorem proving. While Pottier does not provide a general specification
of iterators (cascades) with mutable state, CFML should permit it, though usage may require a
challenging proof.

Chapter 7

Verifying an SMT solver

In parallel to Creusot’s development, we have verified programs of increasing complexity as a stress
test and objective setting method. In 2022, Høverstad Skotåm used Creusot to verify a competitive
Boolean Satisfiability (SAT) solver [46] with performance approaching the fastest unverified solvers.
This proof effort motivated the development of many features of Creusot and provided insight into
problematic aspects of the verification workflow. The evolution of the CreuSAT work and the last
chapter of this thesis is on the verification of Sprout, a solver based on the CDSAT [15] algorithm
for Satisfiability Modulo Theory (SMT) solving.

An SMT solver tries to answer the question: Does a model exist for a first-order formula Φ?
The ability of modern solvers to answer this question rapidly for a large variety of formulas has led
to them becoming essential parts of many key algorithms – including deductive verifiers – and often
constitute part of their Trusted Code Base (TCB). Their importance and simple specifications make
them prime candidates for verification. However, SMT algorithms have also resisted verification
because they lie at the awkward intersection between deep semantic reasoning and highly mutable
imperative data structures.

In the rest of this chapter, we will present the implementation and proof of Sprout1, the first
verified SMT solver written in Rust. We begin by introducing the CDSAT algorithm presented by
Bonacina, Graham-Lengrand, and Shankar, along with its formalization in Pearlite (§7.1). Then,
we present the architecture of Sprout and its verification by refinement (§7.2). Finally, we present
an evaluation of Sprout and the verification results in § 7.3.

7.1 A mechanized theory of CDSAT
Ever since the introduction of SMT [9], a key challenge has been finding a way to replicate the
success that conflict-driven reasoning has had in SAT solving. When a Conflict Driven Clause
Learning (CDCL) [68] algorithm gets stuck, it launches an analysis examining the decisions that
led to the current state and explains them with a learned clause, which avoids repeating the same
mistakes. Learned clauses prune the search space, and their introduction has led to order-of-
magnitude improvements in SAT solving.

In SMT, problems no longer consist solely of propositional formulas but can integrate reasoning
about theories like linear rational arithmetic (LRA). Though a conflict-driven procedure for LRA
exists, the most common SMT algorithm, DPLL(T) [39], treats the theory as a black box and only
uses it to check the validity of assignments. Any information derived by a conflict-driven procedure

1The codebase can be found at https://github.com/xldenis/cdsat

109

https://github.com/xldenis/cdsat

110 CHAPTER 7. VERIFYING AN SMT SOLVER

for LRA remains internal and cannot constrain the overall search for a solution. Furthermore, the
problems considered often are combining multiple theories using techniques like Nelson-Oppen [89]
equality sharing.

The problem of combining CDCL with a single conflict-driven theory was solved by MCSAT [48].
In MCSAT, conflict reasoning is lifted to the level of the theory T , no longer occurring purely
in boolean terms. However, while further work was conducted on instantiations of MCSAT for
specific combinations of theories [13, 49, 41], it remained insufficiently general. CDSAT [15] is
the successor to this work, generalizing MCSAT and extending the conflict-driven satisfiability to
generic combinations of disjoint theories.

To verify Sprout, we developed a mechanized theory of CDSAT in Pearlite. This mecha-
nization elaborates the key concepts of CDSAT and proves the soundness of the abstract CDSAT
algorithm presented by Bonacina, Graham-Lengrand, and Shankar. Defining everything in terms of
mathematical structures allows the mechanization to focus on the semantic aspects of the algorithm;
it does not specify data structures or even a deterministic process for execution.

7.1.1 First-order Theories & Modules
In this section we summarize the concepts and background of CDSAT, for more details
we encourage readers to refer to the original article: Bonacina, Graham-Lengrand, and
Shankar [15].

The signature Σ is a pair (S, F) of sorts S and symbols F . The elements of F include an equality
∼=s for every s ∈ S and consist of n-ary S sorted functions. We call V = (Vs)s∈S as a collection
of variables where Vs is the set of variables of sort s. Elements of Vs (for all s ∈ S) are called
Σ[V]-terms of sort s, and forall f ∈ F : (s1 × ..× sn)→ s and t1 : s1, ..tn : sn we have f(t1, ..tn) is
a Σ[V]-term of sort s. We can obtain the formulas of multi-sorted first-logic by taking the closure
of the set of Σ[V]-terms under Boolean connectives and quantifiers. We call Σ-sentences the set of
boolean Σ[V]-terms with no free variables.

Definition 8 (Theory). A theory T is a pair (Σ,A) of a signature and a set of Σ-sentences A
called axioms. Given a set of disjoint theories T 1, ..T n, the theory T∞ is the union of the component
theories.

Example 2 (Theory of Linear Rational Arithmetic). The theory (Σ,A) of LRA has the following
signature Σ = (Q, {0, 1,+, <}). As our axioms A, we take the standard model of linear arithmetic.

CDSAT solves T∞-satisfiability problems seen as sets of assignments to terms. The assignments
in a problem may be of any given sort and the assignable values may not be in the theory’s signature.
We thus extend the signature of theories to distinguish the set of assignable values for any given
theory.

Definition 9 (Conservative theory extensions). Let T = (Σ,A) be a theory with Σ = (S, F) then
T + = (Σ+,A+) is an extension if Σ+ = (S, F] F+) and A+ = A] C, where F+ is a set of
constant symbols and C is a set of Σ+-sentences. We call F+ the set of T -values. An extension T +

is conservative if every T +-unsatisfiable set is a T -unsatisfiable.

A sort s ∈ S is called T -public if there are T -values of sort s.
The semantics of a theory T are characterized by their models, which interpret the sentences

of T in some mathematical domain. A Σ[V]-interpretation M interprets each sort s in S as a
non-empty domain sM, with the Boolean sort interpreted in the usual manner, each variable in V
as an element of the appropriate sort, each symbol f in F as a function in the appropriate domains

7.1. A MECHANIZED THEORY OF CDSAT 111

and ∼=s as the equality relation in the appropriate domain. A T [V]-model is a Σ[V]-interpretation
where ignoring the interpretations of variables yields a T -model.

A T -assignment u← v is a pair of a T∞-term u and a T -value v. We use > and ⊥ as symbols
for true and false respectively. We abbreviate an assignment u← > as u for convenience. Similarly,
we abbreviate u← ⊥ as u. An assignment of non-Boolean sort is called first-order. By convention,
we use L to refer to Boolean-sorted assignments and A to refer to either Boolean or first-order
assignments.

Theory Modules

Theory modules are abstractions of decision procedures for individual theories. A theory module I
is an inference systems composed of I-inferences J ` L where J is a set of T -assignments and L is
a Boolean assignment. Theory modules are not required to understand arbitrary T∞-assignments.
Instead, they must only understand the portions relevant to their theory. A theory view is the lens
through which a module views an arbitrary T∞-assignment.

Definition 10 (Theory view). A T -view of a set of T ∞-assignments A is the set of T -assignments
AT given by the union of the following:

1. {u← v | u← v is a T -assignment in A}

2.
⋃n

k=1{u1
∼=s u2 | u1 ← v, u2 ← v are T k-assignments in A of the same sort}

3.
⋃n

k=1{u1 6∼=s u2 | u1 ← v, u2 ← w, v 6= w are T k-assignments in A of the same sort}

An inference J ` L is sound if all T +[V]-models which endorse J also endorse L, and by
extension a theory module is sound if all its inferences are.

The Bool theory module Propositional reasoning is not built-in to CDSAT, though the
Boolean sort is. The Bool theory module provides the rules of propositional logic we expect.

It introduces the usual boolean connectives ∧,∨,¬ and, at a minimum, must provide an evalu-
ation rule for formulas composed of boolean sub-formulas. In practice, it also includes additional
rules for negation, conjunction, and unit propagation

¬u ` u u1 ∨ ... ∨ un ` ui u1 ∨ ... ∨ un, { uj | j 6= i } ` ui

¬u ` u u1 ∧ ... ∧ un ` ui u1 ∧ ... ∧ un, { uj | j 6= i } ` ui

The LRA theory module Linear rational arithmetic (LRA) considers formulas composed of
linear (in)equalities. It introduces the sort Q of rational numbers, along with the symbols +,−, <;
we also generally admit scalar multiplication and ≤ as convenient shorthands.

Like Bool, it provides an evaluation rule that determines the value of a boolean LRA formula
u from the values of its sub-formulas. However, the completeness of LRA requires more than just
evaluation and includes several bookkeeping rules:

u1 < u2 ` u2 ≤ u1 u1 ≤ u2 ` u2 < u1 u1
∼=Q u2 ` u1 ≤ u2, u2 ≤ u1

u1 ≤ x, x ≤ u2, u1
∼=Q u0, u2

∼=Q u0, x 6∼=Q u0 ` ⊥

The most important rule of LRA is the Fourier-Motzkin Elimination rule, which removes elim-
inates a variable from a pair of inequalities:

112 CHAPTER 7. VERIFYING AN SMT SOLVER

u1 l1 x, xl2 u2 ` u1 l3 u2

where l1,l2,l3 ∈ {<,≤} and l3 is < if and only if either of l1 or l2 is <.

7.1.2 The CDSAT Trail
The input to CDSAT is a set of T∞-assignments like the example below:

{x < 10, a ∧ b, b⇒ x > 15} (7.1)

It then applies a series of deductions to produce a model or, like the example above, the non-
existence of one. Like other SAT and SMT solvers, the CDSAT algorithm maintains a trail of
assignments, which it uses to reason about the current state of the search.

Definition 11 (Trail). A trail Γ is a sequence of T∞-assignments and a reason for addition,
written either as A? for a decision, A`J for a justified assignment with justification J , or an input
assignment A∅.

In the trail, decisions are arbitrary choices made when the search got stuck, while justified
assignments are logical deductions made by a dedicated theory solver.

We formalize the notion of the trail using a list type in Creusot.

1 pub enum Trail {
2 Empty,
3 Assign(Assign, Int, Box<Trail>),
4 }
5
6 pub enum Assign {
7 Decision(Term, Value),
8 Justified(FSet<(Term, Value)>, Term, Value),
9 Input(Term, Value),

10 }

The type FSet is a Creusot type for finite sets, while Term is a type for T∞-terms and Value is
a type for T∞-values. Each entry in the trail also stores its level as an Int, representing how many
decisions an assignment depends on.

Definition 12 (Level). Given an assignment Ai ∈ Γ, the level of A is:

1. levelΓ(Ai) = 0 if A is an input assignment

2. levelΓ(Ai) = levelΓ(H) if Ai is a justified assignment with justification H where the level of
H is the maximum of the levels of its elements.

3. levelΓ(Ai) = 1 + max{levelΓ(Aj) | j < i} if Ai is a decision

Unlike the notion of the level found in SAT or DPLL(T) solvers, the level is not monotonic
over a CDSAT trail. Due to late propagations, a justified assignment may be added later during
the search that does not depend on high-level values.

The restriction of a trail Γ≤n = {A | levelΓ(A) ≤ n} is used to perform backtracking by forgetting
elements of a level greater than n, and is similarly non-monotonic.

The trail’s level and restriction are formalized as methods on our Trail type.

7.1. A MECHANIZED THEORY OF CDSAT 113

1 impl Trail {
2 #[logic] pub fn level(self) -> Int { ... }
3 #[logic] pub fn restrict(self, level: Int) -> Trail { ... }
4 }

As deductions and calculations are made, the trail should remain plausible, it should not contain
any immediate contradictions. To enforce this, CDSAT introduces the notion of acceptability, which
constrains theories from making arbitrary deductions.

Theory modules are responsible for the ‘reasoning’ of CDSAT; given their T -view understanding
of Γ, they must decide which u ← v should be added to the trail. Such assignments should be
relevant to T , either consisting of T public sorts or equality (shared between all theories). Moreover,
proposed assignments should be acceptable, they should maintain plausibility, if u← true ∈ Γ then
we should not propose u ← false. Finally, a theory module should not propose assignments that
lead to self-contradiction; if a module proposes L, then there should be no inference such that Γ ` L.

Definition 13 (Relevance). A term u is relevant to T in Γ if (i) u has a T -public sort and occurs
in Γ, or (ii) u is an equality u1

∼=s u2 where u1, u2 occur in Γ and s is not T -public.

Definition 14 (Acceptability). An assignment u← v is acceptable for a trail Γ when:

1. u is relevant to T ∈ T∞
2. Γ does not assign a value to u

3. u← v is first-order, there are no IT -inferences J ∪ {u← v} ` L with J ⊆ Γ and L ∈ Γ

Acceptability is formalized as a predicate on the trail and used as a precondition for adding an
assignment to the trail. Additionally, we require that added deductions are sound.

1 impl Trail {
2 #[predicate] pub fn acceptable(self, assign: Assign) -> bool;
3
4 #[requires(self.acceptable((term, value)))]
5 #[logic] pub fn add_decision(self, term: Term, value: Value) -> Trail;
6
7 #[requires(self.acceptable((term, value)))]
8 #[requires(Assign::justified(justification, term, value).sound())]
9 #[logic] pub fn add_justified(self,

10 term: Term, value: Value, justification: FSet<(Term, Value)>) -> Trail;
11 }

Finally, the trail offers membership testing and accessors:

1 impl Trail {
2 #[predicate] pub fn contains(self, assign: (Term, Value)) -> bool;
3
4 #[requires(self.contains(assign) && self.is_justified(assign))]
5 #[logic] pub fn justification(self, assign: (Term, Value))
6 -> FSet<(Term, Value)>;
7 }

7.1.3 The CDSAT Algorithm
As presented by Bonacina, Graham-Lengrand, and Shankar, CDSAT is a non-deterministic transi-
tion system over a trail Γ. The eight rules of CDSAT are spread in two groups. The normal rules

114 CHAPTER 7. VERIFYING AN SMT SOLVER

Decide
A is an acceptable Tk-assignment in Γ

Γ −→ Γ, A?

Deduce
J ` L J ⊆ Γ L /∈ Γ L /∈ Γ

Γ −→ Γ, L`J

Fail
J ⊆ Γ L /∈ Γ L ∈ Γ

J ` L levelΓ(J ∪ {L}) = 0

Γ −→ unsat

ConflictSolve
J ` L J ⊆ Γ L /∈ Γ L ∈ Γ

levelΓ(J ∪ {L}) > 0 〈Γ; J ∪ {L}〉 =⇒∗ Γ′

Γ −→ Γ′

UndoClear
A is a first-order decision
m = levelΓ(A) > levelΓ(E)

〈Γ;E] {A}〉 =⇒ Γ≤m−1

Resolve

AH` ∈ Γ
@ A′ ∈ H, A′ first order
levelΓ(A′) = levelΓ(E] {A})

〈Γ;E] {A}〉 =⇒ 〈Γ;E ∪H〉

Backjump
levelΓ(L) > m = levelΓ(E)

〈Γ;E] {L}〉 =⇒ Γ≤m, LE`

UndoDecide
LH` ∈ Γ A ∈ H A is a first-order decision

levelΓ(E) = levelΓ(L) = levelΓ(A) = m

〈Γ;E] {L}〉 =⇒ Γ≤m−1, L?

Figure 7.1: The CDSAT transition system

Γ→ Γ′, and the conflict rules 〈Γ;E〉 ⇒ Γ where E is a set of assignments called a conflict-set. Both
are listed in Figure 7.1.

The Decide rule is used when modules can no longer make inferences and no contradiction has
been found. It adds an arbitrary acceptable decision A to the trail. When a theory module I finds
an acceptable inference J `I L for J ⊆ Γ, one of the three remaining rules applies:

1. If L /∈ Γ, then we can perform a Deduce and continue with reasoning. In the original
paper [15] this rule also has a side-condition that the deduced term is part of the ‘finite basis’
of the theory. This serves only to establish the termination of the algorithm, a property we
are not interested in proving in this work.

2. If L ∈ Γ and levelΓ(J ∪ {L}) = 0, then we have found a contradiction in the input clauses
and can Fail.

3. If L ∈ Γ and levelΓ(J∪{L}) > 0, then we have found a conflict in the deductions and decisions
we have made, which we can explain through ConflictSolve.

When a ConflictSolve is applied, CDSAT enters conflict resolution, which will use resolution
to generalize and explain the conflict. The Resolve rule is the primary explanatory mechanism,
replacing an element of the conflict with its logical antecedents. This process deconstructs the
conflict, generalizing it and thus learning a more robust explanation.

Once the conflict has been simplified, we can explain it through one of the remaining three rules.
These rules backtrack the trail to a state before the conflict occurs and ensure the same mistake will
not be repeated. The simplest of these rules is Backjump, which can be applied when the conflict
contains a Boolean decision L of maximal level. Because the decision is Boolean we can negate it,
and thus we learn that the remainder of the conflict must imply L.

If the conflict instead contained a maximal first-order decision A = u ← v, negation is im-
possible. It could be possible to learn that the rest of the conflict implies u 6= v, but this is

7.1. A MECHANIZED THEORY OF CDSAT 115

counterproductive when working with infinite sorts; in the case of the rational numbers, we would
eliminate precisely one rational number, hardly a helpful deduction. Instead, UndoClear back-
tracks the trail to a state before the decision A was made, but after the rest of the conflict, E
was introduced. Despite not learning a lemma, we avoid falling into a loop because A is no longer
acceptable in the resulting trail.

The final conflict resolution rule UndoDecide occurs when the maximal decision A is contained
in the justification of another assignment. In this circumstance, the trail is backtracked, and the
assignment is negated, but the remainder of the conflict is not learned.

An Example To better understand how CDSAT functions, let us consider how it would solve
Problem (7.1):

{x < 10, a ∧ b, b⇒ x > 15}

When CDSAT starts, the LRA theory cannot progress: the only relevant assignment is x < 10, but
there is no way to deduce anything from it. Instead, the Boolean theory eliminates the conjunction
a ∧ b, deducing (Deduce) b with justification a ∧ b.

{x < 10, a ∧ b, b⇒ x > 15, b}

Then the Bool theory makes further a deduction, learning x > 15 justified by b⇒ x > 15 and b.

{x < 10, a ∧ b, b⇒ x > 15, b, x > 15}

The LRA now notices a problem, signaling a conflict that x < 10 and x > 15 can’t both be true.
Because levelΓ(x > 15) = 0, we conclude that the whole formula is unsatisfiable.

Formalizing the CDSAT algorithm

Our formalization of CDSAT represents each rule as a function from a state to its successor. The
various side-conditions of each rule are represented as preconditions on the function. For example,
the Decide rule is formalized as follows:

1 #[requires(inp.acceptable(tv))]
2 #[logic] fn decide(inp: Trail, tv : (Term, Value)) -> Trail {
3 inp.add_decision(tv.0, tv.1)
4 }

The conflict rules operate on a state struct Conflict(FSet<(Term, Value)>, Trail), which
represents a conflict set and the trail at the time of the conflict. The Resolve rule is formalized as
follows:

1 #[requires(inp.0.contains(tv))]
2 #[requires(inp.1.is_justified(tv))]
3 #[logic] fn resolve(inp : Conflict, tv : (Term, Value)) -> Conflict {
4 let justification = inp.1.justification(tv);
5 let new_conflict = inp.0.remove(tv).union(justification);
6 Conflict(new_conflict, trail)
7 }

When we later prove the soundness of CDSAT, we will individually prove that each function
maintains soundness by adding the relevant pre and postconditions.

116 CHAPTER 7. VERIFYING AN SMT SOLVER

7.1.4 A proof of soundness
The original CDSAT algorithm has been proven sound, complete, and terminating by the original
authors [15]. In this work, we only consider soundness; the remaining properties rely on complex
arguments about theory modules that we have not mechanized. Soundness establishes that if a
CDSAT responds with unsat, then there exists no model for the input trail Γ, that is @M, M |= Γ.

Definition 15 (Ground Entailment). A ground entailment Γ ⇒≤0 Γ′ is a semantic entailment
between two trails restricted at level 0.

Γ⇒≤0 Γ′ , ∀M, M |= Γ≤0 →M |= Γ′≤0

It is easy to see that if a given trail Γ is unsatisfiable, then any trail Γ′ which entails it must also
be unsatisfiable, as any model of Γ′ would also be a model of Γ. Ground entailment is transitive,
and thus, by establishing that each rule of CDSAT maintains this property between its input and
output states, we can establish that when CDSAT returns unsat, the input trail is unsatisfiable.

We achieve this by instrumenting each of the CDSAT transitions with
#[ensures(inp.entails(result))]. The exceptions are the Resolve and Fail rules. Both
rules leave the trail unchanged; instead, Resolve demonstrates that the conflict set remains con-
flictual, and Fail demonstrates that the produced conflict is sufficient to conclude unsatisfiability.

Theorem 7.1.1 (Soundness of CDSAT). Given Γ −→∗ unsat, then Γ is unsatisfiable.

Proof. The proof proceeds by induction on the transitions of CDSAT.

7.2 A verified implementation of CDSAT
What we have shown until now remains a mechanization of the theory of CDSAT; it does not provide
us with an executable implementation to solve SMT problems. Sprout is a verified implementation
of CDSAT using the mechanization developed in § 7.1. It instantiates CDSAT with two theories:
Bool and LRA and provides a deterministic algorithm to implement the rules of CDSAT. The
architecture of Sprout is intentionally kept unsophisticated to ease verification of the code. For
the same reason, no optimizations were made in implementing theory solvers, even though they
are critical to the performance of a solver. As explained earlier, the proof of Sprout proceeds by
refinement; at each step, it maintains a correspondence between the data in the concrete trail and
the abstract definition provided in § 7.1.2.

7.2.1 The concrete trail
The Sprout trail is implemented as a vector of vectors of assignments, with the outer vector
representing the trail levels and the inner vector representing the assignments at that level.

1 struct Trail { assignments: Vec<Vec<Assign>>, ghost: theory::Trail }

The trail also stores an abstract trail as a ghost field, which will not exist at runtime but can be
used in specifications. Indices into the trail (TrailIndex) are represented as pairs of a level and an
index into the inner vector.

1 struct TrailIndex(usize, usize);

Because the only way to create a new level is by making a decision, the lexicographic ordering of
TrailIndex ensures that a decision is always the smallest element at a given level. We rely on this
property during the implementation of conflict resolution. On this concrete data structure, we can

7.2. A VERIFIED IMPLEMENTATION OF CDSAT 117

define a membership test A ∈ Γ verifying that an assignment is contained within the nested vector
assignments.

This ghost field allows the concrete trail to be kept in relation to the abstract trail through a
predicate:

abs-conc(self) ,
(∀A ∈ self.ghost, A ∈ self) ∧
(∀A ∈ self, A ∈ self.ghost → levelself(A) = levelself.ghost(A))

(∀A ∈ self, A ∈ self.ghost → reasonself(A) = reasonself.ghost(A))

This property ensures that the elements of the concrete trail can be found in the abstract trail
with the same level and reason, and vice-versa. Maintaining this property allows us to transport
properties from the abstract trail to the concrete trail. This kind of predicate is often known as
a type invariant, a property which all valid instances of a type must maintain. Though Creusot
has recently gained support for this functionality, the work on Sprout predates it. Instead, we
simulate invariants by adding pre- and post-conditions to all functions that modify the trail.

The complete invariant for the trail includes abs-conc along with several other properties, most
notably that the first element of each level is a decision:

invariant(self) ,
abs-conc(self) ∧
(∀V ∈ self.assignments, V (0) is a decision) ∧
(∀V ∈ self.assignments, V 6= ∅)

The concrete trail offers the same API as the abstract trail: membership tests, restriction, and
insertion of decisions and justified assignments.

These last two functions correspond to the implementation of the Decide and Deduce transi-
tions, respectively and their specifications are shown in Figure 7.2. The add_decision only requires
that the provided term and value are acceptable in the current trail, and produces an output trail
which is ground entailed by the input one.

The add_justified specification is necessarily more complicated. It requires that the justifica-
tion – provided as a vector of trail indices – is a justification for the proposed assignment. This uses
a helper function to_abstract_assign which converts a vector of trail indices into a set of abstract
assignments.

7.2.2 The concrete algorithm
As defined in Figure 7.1, the transitions of CDSAT are non-deterministic; nothing specifies when
a decision or deduction must be made. Sprout chooses to make maximal deductions and only
perform decisions when stuck. The core loop of Sprout is described in Algorithm 1.

The algorithm keeps track of two pieces of state, which theories are saturated (have made
maximal deductions) and a potential next decision. At each iteration, it chooses an unsaturated
theory (line 5). If no such theory exists, all theories are saturated (i.e., have no deductions to
make), meaning either we must make a choice (line 10) or are satisfied (line 8).

Otherwise, we extend the trail with the chosen theory (line 14). The Extend function is the
only interface with theory solvers in Sprout; it is provided by the Theory trait with the following
signature and contract:

118 CHAPTER 7. VERIFYING AN SMT SOLVER

Algorithm 1 CDSAT core loop

1: function Solve(Γ)
2: Saturated ← {(T ,⊥) | T ∈ T ∞}
3: NextDecision ← None
4: loop
5: T ← T such that Saturated(T) = ⊥
6: if T = None then
7: if NextDecision = None then
8: return Sat
9: else

10: Γ← Decide(Γ,NextDecision)
11: NextDecision← None
12: Saturated← {(T ,⊥) | T ∈ T ∞}
13: continue
14: r ← Extend(T ,Γ)
15: if Γ changed then
16: NextDecision← None
17: Saturated← {(T ,⊥) | T ∈ T ∞}
18: if r is conflict then
19: if Level(r) = 0 then
20: return unsat
21: else
22: Γ← ResolveConflct(Γ, r)
23: NextDecision← None
24: Saturated← {(T ,⊥) | T ∈ T ∞}
25: continue
26: if r is a decision then
27: NextDecision← r
28: Saturated(T) ← >

7.2. A VERIFIED IMPLEMENTATION OF CDSAT 119

1 impl Trail {
2 #[requires(self.invariant())]
3 #[ensures((^self).invariant())]
4 #[requires(self.ghost.acceptable(term, val))]
5 #[ensures(self.ghost.entails((^self).ghost))]
6 pub(crate) fn add_decision(&mut self, term: Term, val: Value) { .. }
7
8 #[requires(self.invariant())]
9 #[ensures((^self).invariant())]

10 #[requires(self.contains(just))]
11 #[requires(
12 Assign::Justified(self.to_abstract_assign(just), term@, val@)
13)]
14 #[requires(self.ghost.acceptable(term, val))]
15 #[ensures(self.ghost.entails((^self).ghost))]
16 pub(crate) fn add_justified(&mut self,
17 just: Vec<TrailIndex>, term: Term, val: Value) { .. }
18 }

Figure 7.2: The signatures and contracts of add_decision and add_justified.

1 enum ExtendResult {
2 Conflict(Vec<TrailIndex>),
3 Decision(Term, Value),
4 Satisfied,
5 }
6 trait Theory {
7 #[ensures(match result {
8 ExtendResult::Satisfied => true,
9 ExtendResult::Decision(t, v) => (^trail).acceptable(t, v),

10 ExtendResult::Conflict(c) => {
11 !c.is_empty() && (^trail).contains(c)
12 && Model::unsatisfiable(tl.to_abstract_assign(c))
13 }
14 })]
15 #[ensures(trail.ghost.entails((^trail).ghost))]
16 fn extend(&mut self, tl: &mut Trail) -> ExtendResult;
17 }

This makes use of a helper function to_abstract_assign which converts the vector of trail indices
into a set of abstract assignments.

The theory solver may add justified assignments by directly manipulating the trail, and must
return one of three statuses. A ExtendResult::Satisfied indicates the trail is satisfactory for this
specific theory; when all theories simultaneously return Satisfied, the solver can return Sat as an
overall answer. The correctness of this result is established by showing completeness, and thus, we
do not specify anything for it.

A result of ExtendResult::Decision(t, v) occurs when the theory has made the maximal
amount of deductions possible but still cannot determine the trail to be satisfactory. It thus proposes
a potential decision that would unblock further reasoning. For this decision to be used, the result

120 CHAPTER 7. VERIFYING AN SMT SOLVER

must be acceptable, or it would be impossible for the main loop to be used.
Finally, a ExtendResult::Conflict(c) is returned when a theory has identified a set of con-

flicting clauses. In this case, the theory must demonstrate the conflict’s validity: the values in the
trail are jointly unsatisfiable.

Suppose the theory solver made deductions during the call to Extend. Other theories may
have their interpretations of the trail affected, so we reset the saturated state and the next decision.
For example, given the trail {x < 15, b← >, b⇒ x > 15}, the Bool could decide to deduce x > 15,
which would make the trail {x < 15, b ← >, b ⇒ x > 15, x > 15}, that LRA would conclude is
unsatisfiable.

After extending the trail, we check if the result is a conflict (line 18). If so, we check if the
conflict is at level 0 (line 20), concluding that we have found a contradiction in the input clauses.
Otherwise, we resolve the conflict (line 22) and reset the saturated state and the next decision.

Finally, if the result is a decision, we store it as a candidate decision (line 26), and mark T as
saturated.

Proving the soundness of this algorithm is straightforward; it is a direct consequence of the
soundness of the individual theories. The two difficulties in this code lie in the proof of conflict
resolution (ResolveConflict) and ensuring that all decisions are acceptable. To preserve the
acceptability of decisions, we aggressively clear out candidates if the trail is changed in any way,
even if the change is not related to the candidate decision.

Conflict Resolution

Most proof and implementation effort went into the design and proof of the conflict resolution pro-
cedure, resulting in Algorithm 2. Due to this procedure’s implementation, verifying the soundness
of conflict resolution first requires establishing the completeness of the same process. Each itera-
tion of the loop attempts to apply one of the conflict resolution rules; if none is applied, the loop
would enter an undetermined state, which would not be proven sound. Proving conflict resolution
required clarifying several ambiguities in the original definitions and multiple auxiliary lemmas to
materialize that understanding. The final algorithm is described in Algorithm 2.

Algorithm 2 Conflict Resolution procedure for Sprout
1: function ResolveConflict(Γ, C)
2: while C 6= ∅ do
3: A ← PopMax(C)
4: if A is boolean sort and Level(A) > Level(C) then
5: return Γ≤Level(C) ∪A`C

6: if A is a first-order decision then
7: return Γ≤Level(C)−1

8: for B ∈ Justification(A) do
9: if B is a first-order decision and Level(B) = Level(C) then

10: return Γ≤Level(C)−1 ∪A?

11:
12: C ← C ∪ Justification(A)

At each iteration of conflict resolution, the algorithm attempts to apply each of the four conflict
resolution rules. Ensuring that the assignment being considered at each iteration can always be
applied to one of the rules was a primary source of difficulty in the proof. The key lies in the
PopMax function, which returns the most significant element according to the lexicographic order

7.2. A VERIFIED IMPLEMENTATION OF CDSAT 121

on TrailIndex. This order ensures that we always consider deductions before making decisions.
Failure to do so could have meant selecting a Boolean decision, which does not have a greater level
than the rest of the conflict. This would prevent applying Backjump, and none of the remaining
rules could be applied as they only concern first-order and justified assignments.

The second subtlety occurs at line 7. A not immediately apparent property is that the assign-
ment under consideration must be justified at this point. The first test on line 4 eliminates any
Boolean decision, as we could only consider one if it was the last element of the maximal level.
Similarly, the test on line 6 eliminates any first-order decision. The only possibility is that the
assignment is justified; thus, we can safely iterate over its justification. Finally, the side condi-
tions of UndoDecide and Resolve are complementary, and thus we can safely apply Resolve if
UndoDecide does not apply.

Concrete theory implementations

The final component to the soundness of Sprout are the implementations of the Bool and LRA
theories. As mentioned earlier, these implementations are intentionally kept simple to ease verifi-
cation. In each case, we must ensure that any proposed deductions are sound and that returned
decisions and conflicts are valid.

The Boolean theory As stated in the original CDSAT paper [15], only the evaluation rule is
necessary for completeness, and the unit propagation rules are only used to improve performance.

Thus our naive implementation of the Boolean theory is a simple interpreter, provided by the
function

1 fn eval(&mut self, tl: &Trail, tm: &Term) -> (Vec<TrailIndex>, Result<Value,
Term>);

which evaluates each boolean clause in the trail and either returns a value or a subterm of unknown
value. Along with this result, the evaluator returns the set of trail indices that were used to evaluate
the term tm. This value is compared to the expected value for each assignment, if there is a mismatch
this indicates a conflict, justified by the vector of trail indices provided by the evaluator.

The specification of this evaluator is:

1 #[requires(tl.invariant())]
2 #[requires(tm@.well_sorted())]
3 #[requires(tm@.is_bool())]
4 #[ensures(forall<ix : _> result.0@.contains(ix) ==> tl.contains(ix))]
5 #[ensures(match result.1 {
6 Ok(v) => { v@.is_bool() &&
7 Assign::justified(tl.to_abstract_assign(result.0), tm@, v@)
8 }
9 Err(t) => { tl.acceptable(t, Value::Bool(true)) }

10 })]
11 fn eval(&mut self, tl: &Trail, tm: &Term) -> (Vec<TrailIndex>, Result<Value,

Term>) { .. }

Given a valid trail and and boolean term, the returned vector of indices are all contained within
the trail. If the second portion of result is a value, then the vector justifies the evaluation of tm
to that value. However, if instead, we returned a stuck term, that term must be acceptable for the
trail. This specification is sufficient to derive the soundness of the complete boolean theory.

122 CHAPTER 7. VERIFYING AN SMT SOLVER

The LRA theory The LRA theory is significantly more complex than the boolean theory;
its completion requires the implementation of all the rules listed in § 7.1.1. While this theory is
implemented and has been informally demonstrated both sound and complete, the proof is unfin-
ished. However, we will still present the high-level structure of this theory and our approach to its
verification.

The approach taken to implementing LRA is quite similar to the Boolean theory: evaluate each
term in the trail, attempting to detect contradictions, however, the details are more complex. The
pseudocode for this theory is provided in Algorithm 3.

The LRA theory considers as ‘variables’ all subterms of real sort but consisting of symbols, not
from the LRA signature, and for each tracks an interval of possible values with a set of excluded
points. We evaluate each LRA-relevant assignment in the trail, but unlike the boolean theory, the
return value has three possible values. We distinguish situations where an assignment A evaluates
to a value, a unit clause with exactly one undecided LRA-variable, or a clause with more than
one undecided LRA-variable. Like the boolean theory, we return a vector of trail indices used to
evaluate the assignment.

If the evaluation produced a value, we check that it matches the expected value for A, and if not,
we return a conflict. If the evaluation produced a unit clause, we use it to update the interval for the
relevant LRA-variable, and check if this introduces any contradictions. Two possible contradictions
are:

1. The interval is empty, indicating no possible value for this value. In this case, we perform
Fourier-Motzkin resolution using the interval bounds to produce an assignment witnessing
the conflict.

2. The second conflict occurs when all possible values are within our forbidden set. Forbidden
values are obtained from dis-equalities in assignments. When they prevent us from choosing
a variable we introduce a witness for disequality-elimination and return a conflict.

When evaluation produces a clause with more than one undecided LRA-variable, we ignore it.
These clauses would serve to implement a watch-literal data structure like for CDCL solvers.

Finally, if we found no conflicts in the trail, we attempt to find possible decisions by iterating
over the LRA-variables in our domain map and proposing a decision if possible. If no decision is
possible, the theory is satisfied with the current state of the trail.

To verify the soundness of this algorithm, there are several properties we must establish:

1. The soundness of the evaluator. This is similar to the boolean case, but involves proofs about
arithmetic which despite concerning linear arithmetic will involve non-linear reasoning at the
Creusot level. However, apart from this wrinkle, the evaluator is a standard function.

2. The soundness of the domain map. The domain map needs to maintain an invariant that each
entry is a sound approximation of the values of the LRA-variables. This is primarily derived
from the correctness of the LRA-evaluator, though correctly specifying the case handling
forbidden values is a moderate complication.

3. The soundness of the Fourier-Motzkin and Dis-equality resolutions. To trigger a conflict the
LRA theory needs to construct a term witnessing the conflict, and this is done by either
Fourier-Motzkin or Dis-equality resolution. Proving that the resolvents are sound deductions
of their inputs is tricky, and we have not yet completed this proof.

Though the LRA theory is not yet proven sound, the modular structure of CDSAT allows the
other components to be proven sound independently of LRA.

7.3. EVALUATION 123

Algorithm 3 LRA theory implementation
1: function LRA(Γ)
2: Domain ← ∅
3: for A ∈ Γ do
4: (U, r) ← Eval(A)
5: if r is a value then
6: if r 6= Value(A) then
7: return Conflict(U ∪ {A})
8: else if r is a unit clause then
9: Domain ← Update(Domain, r)

10: x ← Domain(r)
11: if x is an empty interval then
12: R ← FourierMotzkin(Domain, r)
13: return Conflict(U ∪R)
14: else if all valid values are forbidden elements then
15: R ← DisEquality(Domain, r)
16: return Conflict(U ∪R)

17: for A ∈ Domain do
18: if IsDecision(A) then
19: return Propose(A)

20: return Sat

7.3 Evaluation
In this chapter, we have presented the design, implementation, and formalization of Sprout, a
prototype SMT solver. The work on Sprout served as a test case for Creusot, pushing the
complexity and scale of reasoning beyond our previous work with CreuSAT and our test cases.
As a result, we uncovered limitations in the current implementation of Creusot, particularly at
the level of specifications and UI. In this section, we will first present the empirical results of our
verification, then discuss the limitations of Creusot from the author’s perspective.

In Figure 7.3, we present the results of verifying Sprout. The times were measured on a 2021
Macbook Pro with an Apple M1 Pro and 32 GB of RAM. We used Alt-Ergo 2.4.2, Z3 4.11.2, CVC5
1.0.5 and CVC4 1.8 as the SMT solvers.

Note that the current numbers do not include results the LRA theory, which can be expected
to take a significant amount of time to verify. The proof uses Why3 transformations at several
critical stages, as a proof stabilization technique. These transformations are mainly used in the
conflict resolution proof and a couple instances in the Trail module. Excluding the unverified LRA
module, we obtained a proof overhead of roughly 1.2:1, though the proof of LRA theory modules is
expected to increase this overhead. Finally, very little cleanup work was done on the proofs; there
are dead lemmas, extraneous assertions, and specifications. From the author’s cursory inspection,
there appears to be significant room for improvement, especially in the Trail module.

7.3.1 Testing Sprout
Donald Knuth once said: “Beware of bugs in the above code; I have only proved it correct, not
tried it.” [56]. Despite the additional guarantees provided by mechanization, the quote still stands.
To validate that Sprout can solve SMT problems, we ran it against a series of simple benchmarks.

124 CHAPTER 7. VERIFYING AN SMT SOLVER

Component LOC SpecLOC Time

Theory – 1030 21s
Trail 288 409 10s
Term 210 69 2.5s
Core loop 212 115 25s
Bool 139 53 10s
LRA 565 35 –

Total 1414 1701 68.5s

Figure 7.3: Results for the verification of Sprout. Components are disjoint portions of the
code. LOC is the number of lines of code, SpecLOC is the number of lines of specification,
and Time is the time taken to verify the component. Note: THe number for LRA may
change by the date of the defense if the proof is finished.

Benchmark # Solved # Failed # Timeout

Boolean 50 0 0
Arithmetic 50 0 0
Mixed 50 0 0

Figure 7.4: Results of running Sprout on a series of randomly generated benchmarks. Each
problem had up to 50 constraints, with a depth of up to 10. Mixed problems contained up
to 50 variables of each sort, while the theory-specific problems contained up to 100 variables.
The timeout was 1s. Failures were due to the solver crashing in theory modules.

Given the project’s limited scope, we did not attempt to compare the performance of Sprout
against other SMT solvers.

In Figure 7.4 we can see the results of a brief evaluation of a mixed set of SMT benchmarks.
The benchmarks were generated using a custom harness, and composed of arbitrary constraints
of Boolean and linear arithmetic sorts. The expected answer was obtained by running Z3 and
CVC5 on the same problems. The benchmarks were run with a 1s timeout; timeouts exclusively
happened due to arithmetic constraints. Investigation of the timing out problems indicates that
the LRA theory is incomplete: certain deductions are not made, occasionally preventing concluding
unsatisfiability.

7.3.2 Experience Report
Work on Sprout first started during two months of the summer of 2022 during an internship at
SRI International in collaboration with Maria Paola Bonacina and Stéphane Graham-Lengrand.
After this initial period, work was halted until February 2023, at which point the author spent
approximately a day a week working on the project through July 2023. This would lead to a lower
bound of 3 person-months of work on the project, providing a 100% margin for error, leading to a
six-person-month estimate for this project.

Though most of this time was spent addressing the inherent complexity of the verification, a
non-negligible amount of time and effort can be attributed to the incidental complexity of Creusot

7.3. EVALUATION 125

and its tooling. These can be divided into two categories: (1) interface issues and (2) implementation
issues in Creusot.

Interface issues The interface of Creusot is still highly underdeveloped and causes friction
in the verification process by breaking the flow of reasoning. Currently, Creusot does not offer a
continuous, automatic mechanism to verify code. Instead, the Creusot tool should be run on Rust
code and separately loaded into an IDE for verification. This process is cumbersome and counter-
productive, forcing the developers out of their verification flow and preventing them from rapidly
adding logical assertions or specifications to test their impact. While automation can be cobbled
together in an ad-hoc manner, the primary interface through which proofs can be discharged, the
Why3 IDE, is not designed for this purpose.

The Why3 IDE suffers from performance issues when working on more extensive proofs like
Sprout, which may generate hundreds or thousands of proof obligations and reference many dif-
ferent source Rust files. The UI suffers from stuttering and freezing, contributing to frustration
and breaking the iteration cycle. To work around this, it is possible to divide the proof into several
independent segments, but this ad-hoc workaround introduces problems of staleness; it becomes
easy for part of the proof to fall out of sync with the rest as the author no longer has a view of the
entire proof at once.

The Why3 transformations present in the IDE were also a significant source of frustration.
This comes from two aspects: (1) transformations can only be applied through the graphical UI
of Why3 and lack basic editing features like editing a prior transformation, and more importantly,
(2) transformations operate over the compiled intermediate representation of Creusot and not
the source Rust code. For example, the following transformation is extracted from the proof of
resolve_conflict:

1 assert (exists ix . contains2 (shallow_model8 just1) ix &&
2 index_logic3 (* trail) ix = t)

The symbols shallow_model8, index_logic3, and contains2 are all generated by Creusot and
are not part of the source code. Understanding and manipulating the proof at this stage requires a
deep understanding of Creusot’s compilation, which fortuitously is the author’s area of expertise.

These interface issues can be addressed through engineering efforts and form perhaps the princi-
pal hurdle to the usability of Creusot. Providing a fully automatic verification loop would enable
much faster iteration and exploration. Having Creusot implicitly split proofs into smaller chunks
while presenting a unified view would keep UI performance acceptable even for large proofs. Fi-
nally, allowing transformations and tasks to be presented in Rust syntax would make them more
accessible to users and easier to maintain.

Implementation issues Beyond issues in the interface of Creusot and Why3, problems arise
from the nature of auto-active verification. This mode of verification heavily relies on automated
reasoning to discharge proof obligations, and as these procedures are incomplete, they may fail to
discharge valid obligations. A common source of problems is the presence of quantifiers, as provers
may end in ‘matching loops’ in which they repeatedly instantiate the same set of quantifiers, failing
to make progress while blowing up the size of the proof context. To help avoid leading provers astray,
we can control the contents of the context by hiding irrelevant and private definitions. During the
development of Sprout, Creusot did not yet have an opacity functionality that allowed this.
By making definitions opaque, we can hide their bodies from provers and thus prevent the proof
search from getting distracted by irrelevant details. A second tool is to provide explicit triggers
for quantifiers, instructing the prover to instantiate quantifiers in specific manners. Currently,
Creusot does not support triggers, but they could be added.

126 CHAPTER 7. VERIFYING AN SMT SOLVER

Finally, the last source of complexity is more fundamental to the design of Creusot. The
most significant issue is the semantics of function calls in Creusot’s logic. Logical functions are
considered to be total though they may be under-specified. When a logical function is provided
a contract, the preconditions are not checked at the call site. Instead, the contract generates a
quantified lemma stating that a valid call to the function will satisfy the postcondition. This allows
for a natural encoding into SMT logic but leads to unintuitive behavior when debugging proofs.
Often, proofs fail because a lemma cannot be applied due to a missing precondition, but there is
no mechanism to surface this information to the user. Verus [58] showed a possible solution to this
challenge through recommends clauses. If a proof fails, Verus will attempt to assert the validity
of relevant logical function preconditions, and if they fail, it will suggest them as possible sources
of proof failure. Solving this challenge completely is complex and may involve making tradeoffs in
performance and expressivity.

7.4 Related Works
Verified Rust programs Due to the relative youth of Rust verification, few large-scale projects
have been undertaken. CreuSAT [46] was a prior inspiration for this work, demonstrating it was
possible to verify an optimized SAT solver written entirely in Rust within a short time frame.
Unlike our work, CreuSAT follows a ‘bottom-up’ approach to specification, which, while allowing
for more immediate feedback and iteration, renders the broader architecture of the proof complex
and challenging to understand. In “Flux” [59], the authors use liquid typing to verify the memory
safety of the WaVe [47] Web Assembly sandbox. The more limited expressivity of the Flux liquid
types limits this work to basic safety properties. The authors demonstrate the usefulness of Flux
by applying it to consequential Rust programs.

Verification of automated solvers Though most industrial SAT and SMT solvers prefer to
use certificates as their approach to verification, a few projects have nonetheless endeavored to verify
their implementations directly. The IsaSAT [11] solver is an optimized and verified implementation
of a CDCL solver verified in Isabelle/HOL. Like our work, the IsaSAT proof includes an abstract
formalization of the CDCL algorithm, progressively refined into a concrete, optimized implemen-
tation. In “A Verified SAT Solver with Watched Literals Using Imperative HOL”, the authors
advocate for the benefits of a refinement based approach to verification, which we also use in our
work. Isabelle’s support for refinement is much more developed and automated than Creusot’s,
but this could indicate future directions for the project. The authors also remark on the challenge
of working with a longer ‘edit-compile-verify’ loop like the one we evoked in § 7.3.2, driving home
the importance of short iteration cycles. CoqSolverFD [20] is a verified Coq implementation of a
finite domain constraint solver. They establish the soundness and completeness of their solver and
obtain an executable Coq program through extraction.

The work most directly comparable to Sprout is found in “Formalizing and Implementing a
Reflexive Tactic for Automated Deduction in Coq” [63], which introduces a formalization of the
algorithms from the SMT solver Alt-Ergo, mechanized in Coq. The author formalizes a DPLL(T)
theory, including soundness, completeness, and termination. They also introduce a novel algorithm
CC(X), permitting the combination of the theory of Equality and Uninterpreted Functions (EUF)
with another solvable theory. The solver is instantiated as a tactic in the Coq [24] proof assistant,
allowing it to be used to discharge proof obligations in Coq. It can also be extracted [64] and run
as an OCaml program.

The formalization work undertaken in this project far exceeds that of Sprout, including proofs
of completeness, which requires reasoning about theory combinations under schemes like Nelson-

7.4. RELATED WORKS 127

Oppen [89]. As Why3 permits using Coq as a verification backend, it may be possible to reuse
portions of this formalization in future extensions of Sprout. Because Lescuyer’s work is written
in Coq, the proof is significantly more manual than ours; the authors estimate the total size at
approximately 47kloc, though this includes the development of several stand-alone libraries. In
comparison, Sprout comes out at approximately 2kloc, including auxiliary proofs and specifica-
tions.

The more common and practical approach to verifying the results of SMT solvers is through
certificates. When a solver produces unsat, it also emits a proof of unsatisfiability that can be
checked independently. SMTCoq [30] can load these certificates into Coq and check their validity.
This approach lifts the verification burden from SMT solver s; they can use any technique they
wish so long as the produced certificate is valid. Instead of verifying a certificate checker, it is also
possible to ‘generate’ ‘certificates’ using a verified LCF-style kernel, this approach shrinks the size
of the verified code base and enables the usage of untrusted operations in the solver. This approach
was used in the Verified Polyhedral Library (VPL) [17] to establish the correctness of a domain
of abstract polyhedrons, which poses similar challenges to the LRA domain found in Sprout. In
this model [16], the untrusted oracles build their result by invoking the verified LCF-primitive
operations. Through polymorphism and its accompanying parametricity, it becomes possible to
prevent ‘cheating’ by the oracles.

Chapter 8

Conclusions

In this dissertation, we have attempted to answer the eternal question of the field ‘Is formal verifi-
cation of software tractable?’. Software verification has haunted the field of programming languages
ever since the first program was written [3, 22]. While the question is still not solved, we have
shown that we have made concrete steps to answering the affirmative.

As evidence for this claim, we have provided an existential witness by constructing a complete
Rust verification platform Creusot and applying it to the verification of novel large-scale Rust
programs and libraries. In Chapter 5, we formalize a verification procedure that leverages the Rust-
type system’s ownership properties to simplify the complexity of program verification fundamentally.
While in Chapter 4, we apply and extend this scheme to handle actual Rust code, with all its
complexities. The opportunities presented by the notion of ownership serve to belie the notion
that programming languages are all equal, demonstrating the importance of language design in the
context of verification.

The rest of this work applies Creusot to the verification of complex patterns of iteration, and
we present a novel specification schema for higher-order iterators with side-effects. Our proofs
of iterators like IterMut served to drive home the importance of language on verification, as our
natural and concise specifications emerge directly from the design of Pearlite, the specification
language of Creusot.

Finally, we demonstrate that Creusot enables the verification of actual, complex software
beyond what has been previously accomplished. We presented the implementation and verification
of an SMT solver based on a modern SMT algorithm, a task we accomplished with a very modest
workforce investment. An SMT solver is a notoriously challenging piece of software that uses
imperative structures to perform semantically complex operations; after all, it solves a fragment
of first-order logic. Perhaps more substantial evidence for the improvements to verification made
possible by Creusot is found in CreuSAT [46]. This project implemented and verified a SAT solver
in Rust using Creusot, competitive with but slower than state-of-the-art unverified solvers. More
importantly, the author, Høverstad Skotåm, was unfamiliar with formal verification and Rust when
starting the project. Over approximately six months, they taught, learned to use, and apply
Creusot, and produced CreuSAT. The state of the art for verified SAT solvers is IsaSAT [11], the
product of a Ph.D. thesis and several years of work. While both works are not direct comparisons, we
believe that the comparison illustrates the improvements to verification made possible by Creusot.

129

130 CHAPTER 8. CONCLUSIONS

8.0.1 Collaborations
Additionally, beyond publications, Creusot has been featured in several masters’ theses and in-
ternships. Each of these cases involved collaboration with the student(s) in question and served as
a source of feedback and improvements to Creusot. As a way of thanking these students for their
time, commitment and trust, we list their works below:

• “CreuSAT Using Rust and CREUSOT to Create the World’s Fastest Deductively Verified
SAT Solver” written in 2022 by Sarek Høverstad Skotåm, presents the implementation of
a verified SAT solver in Rust. The resulting solver is highly optimized and closely trails
IsaSAT [11] – the other major verified SAT solver – in performance. 1

• “Verifying the Rust Runtime of Lingua Franca” written by Johannes Hayeß in 2022 uses
Creusot to verify parts of the Lingua Franca [67] runtime. By verifying a pre-existing Rust
program, Johannes highlights the real issues in integrating Creusot into a real-world project.
His work included specifying new libraries and developing proof for key data structures of
Lingua Franca.

• “Type invariants and ghost code for deductive verification of Rust code” written in 2023
Dominik Stolz is the result of an internship at the Laboatoires Méthodes Formelles in which
he implemented type invariants in Creusot. This work had many unexpected and subtle
consequences on critical aspects of Creusot’s translation. The consequences of this work
were not presented in this thesis.

8.1 Future Work
Naturally, the work is not over; each proof done with Creusot highlights new areas of difficulty,
and each new Rust feature added to Creusot drives demand for two more.

Rust Verification The subfield of Rust verification has exploded in the last few years [59, 43,
58], but there are still many areas of Rust with no satisfactory verification story. We believe that
Creusot provides a compelling answer to the verification of safe programs abiding by ownership
discipline, but many Rust programs (locally) break one or both of these constraints. Verifying
programs with Interior Mutability is an exciting area of future work. Interior mutability is used
for synchronization with Mutex but also to implement memoization or to construct cyclic data
structures. While RustHornBelt includes a model of interior mutability, in practice, this has been
insufficient and cumbersome to use. Extending the approach of Creusot to co-exist with a model
of interior mutability is a crucial direction for future work, as it will help open the door to verifying
concurrent programs. Many applications for formal verification of Rust lie in domains (e.g., em-
bedded systems) where concurrency is a fundamental concern. Proofs of concurrent programs are
notoriously difficult, but unlike other languages, the Rust-type system provides a strong foundation
for simplifying concurrent reasoning by enforcing data-race freedom. Developing a framework for
verifying safe concurrent programs would help Creusot make another step towards real-world veri-
fication. Finally, verifying unsafe programs has preoccupied many researchers [70, 58, 38]. Finding
a way to bridge the gap between the techniques used when verifying low-level unsafe fragments
with the more significant, safe proofs performed by Creusot can be considered a ‘holy grail.’ The
ideal approach enables Pay-As-You-Go verification, where verification’s complexity is directly pro-
portional to the code’s complexity. Given that Creusot is intrinsically limited to safe code, this

1When this work started, Creusot did not even support Vec<T>! The work Sarek did was invaluable in
making Creusot usable at all for real verification

8.1. FUTURE WORK 131

would mean marrying it with another technology capable of verifying unsafe code while ensuring
both tools can interact seamlessly.

Rust Specification The Rust community has a solid cooperative and centralizing streak fos-
tered by the organization around the Rust Project. Rust verifiers are no exception, and the possi-
bility of having verification tools interact and collaborate to verify more significant properties has
existed since the start. Accomplishing this requires a common specification language with a shared
semantics. The existing specification languages of projects like Verus, Prusti, and Creusot are scat-
tered across the semantic spectrum. Where Creusot interprets logical symbols as total functions,
Prusti interprets them as partial; where Verus distinguishes between linear and non-linear specifi-
cations, Creusot makes no such distinction. Designing a specification language to replace Pearlite
that reconciles these differences without overly constraining the research projects that would use it
would also help build a shared community around Rust verification, furthering our goal of making
verification tractable.

Verification Experience While adequate formalism can vastly simplify the challenge of verifi-
cation – like the prophetic approach does for mutable borrows in Rust – it is just the first ingredient
in the verification experience. Experience using Creusot highlights the importance of ‘secondary’
factors in verification: the design of the specification language, the modalities of user interaction,
and the tools for ‘debugging’ proofs. These are the facets through which users directly interact with
the verification process, and yet their development and design are usually ad-hoc and ungrounded
in a formal investigation.

Assertions of intuitivity are common between authors of verification tools, but what do users
consider intuitive? Few studies have been performed on this subject; a better understanding of
how engineers and programmers informally reason about and state the properties of their programs
would help us design better specification languages. In the design of Pearlite, this would help settle
questions about its semantics: Should functions be partial? Should specifications be executable?

‘Intuition’ has also been a guide in the design of verifier interfaces. Many verifiers believe proofs
should be fully automatic and the only user interaction should be assertions. This style of auto-
active verification is appealing; it avoids forcing the user to learn a tool, but what happens when it
fails to prove? Creusot, which is based on Why3, inherits its notion of transformations and task
view, which allow users to run custom tactics and inspect the state of the proof. These features
are powerful, allowing expert users to extend their capabilities, but are poorly integrated into the
program verification process. They hint at a different verification experience, where, despite high
automation, the user can be provided tools to understand failures and debug proofs.

Bibliography

[1] A Proactive Approach to More Secure Code | MSRC Blog | Microsoft Security Re-
sponse Center. url: https://msrc.microsoft.com/blog/2019/07/a-proactive-
approach-to-more-secure-code/ (visited on 08/23/2023).

[2] Martín Abadi and Leslie Lamport. “The Existence of Refinement Mappings”. In: Pro-
ceedings of the Third Annual Symposium on Logic in Computer Science (LICS). IEEE
Computer Society, 1988, pp. 165–175. isbn: 0-8186-0853-6. doi: 10.1109/LICS.1988.
5115. url: https://doi.org/10.1109/LICS.1988.5115.

[3] William Aspray. “Difference and Analytical Engines”. In: Computing before Computers.
[4] Vytautas Astrauskas et al. “Leveraging Rust Types for Modular Specification and

Verification”. In: Proceedings of the ACM on Programming Languages 3.OOPSLA
(2019), 147:1–147:30. doi: 10.1145/3360573. url: https://doi.org/10.1145/
3360573.

[5] Brenda S. Baker. “An Algorithm for Structuring Flowgraphs”. en. In: Journal of
the ACM 24.1 (Jan. 1977), pp. 98–120. issn: 0004-5411, 1557-735X. doi: 10.1145/
321992.321999.

[6] Haniel Barbosa et al. “Cvc5: A Versatile and Industrial-Strength SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Dana
Fisman and Grigore Rosu. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2022, pp. 415–442. isbn: 978-3-030-99524-9. doi: 10.1007/978-
3-030-99524-9_24.

[7] Mike Barnett and K Rustan M Leino. “Weakest-Precondition of Unstructured Pro-
grams”. In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. 2005, pp. 82–87.

[8] Mike Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented Pro-
grams”. In: Formal Methods for Components and Objects. Ed. by Frank S. Boer et al.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 364–387.
isbn: 978-3-540-36750-5. doi: 10.1007/11804192_17.

[9] Clark Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”. In: Handbook of
Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International Pub-
lishing, 2018, pp. 305–343. isbn: 978-3-319-10575-8. doi: 10.1007/978-3-319-10575-
8_11. url: https://doi.org/10.1007/978-3-319-10575-8_11 (visited on
08/23/2023).

133

https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1145/321992.321999
https://doi.org/10.1145/321992.321999
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11

134 BIBLIOGRAPHY

[10] Clark W. Barrett et al. “CVC4”. In: Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by
Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Sci-
ence. Springer, 2011, pp. 171–177. isbn: 978-3-642-22109-5. doi: 10.1007/978-3-
642-22110-1_14. url: https://doi.org/10.1007/978-3-642-22110-1_14.

[11] Jasmin Christian Blanchette et al. “A Verified SAT Solver Framework with Learn,
Forget, Restart, and Incrementality”. In: Journal of Automated Reasoning 61.1 (June 1,
2018), pp. 333–365. issn: 1573-0670. doi: 10.1007/s10817-018-9455-7. url: https:
//doi.org/10.1007/s10817-018-9455-7 (visited on 08/18/2023).

[12] François Bobot et al. “Let’s Verify This with Why3”. In: Int. J. on Software Tools for
Technology Transfer 17.6 (2015), pp. 709–727. doi: 10.1007/s10009-014-0314-5.

[13] François Bobot et al. “Centralizing Equality Reasoning in MCSAT”. In: 16th Interna-
tional Workshop on Satisfiability Modulo Theories (SMT 2018). Ed. by R. Dimitrova
and V. D’Silva. Oxford, United Kingdom, July 2018. url: https://hal.science/
hal-01935591 (visited on 08/23/2023).

[14] Corrado Böhm and Giuseppe Jacopini. “Flow Diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules”. en. In: Communications of the ACM 9.5
(May 1966), pp. 366–371. issn: 0001-0782, 1557-7317. doi: 10.1145/355592.365646.

[15] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar.
“Conflict-Driven Satisfiability for Theory Combination: Transition System and Com-
pleteness”. In: Journal of Automated Reasoning 64.3 (Mar. 2020), pp. 579–609. issn:
0168-7433, 1573-0670. doi: 10.1007/s10817-018-09510-y. url: http://link.
springer.com/10.1007/s10817-018-09510-y (visited on 05/30/2022).

[16] Sylvain Boulmé. “Formally Verified Defensive Programming (efficient Coq-verified
computations from untrusted ML oracles)”. PhD thesis. Université Grenoble-Alpes,
2021.

[17] Sylvain Boulmé et al. “The verified polyhedron library: an overview”. In: 2018 20th In-
ternational Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC). IEEE. 2018, pp. 9–17.

[18] François Bourdoncle. “Efficient Chaotic Iteration Strategies with Widenings”. In: For-
mal Methods in Programming and Their Applications. Ed. by Dines Bjørner, Man-
fred Broy, and Igor V. Pottosin. Vol. 735. Berlin/Heidelberg: Springer-Verlag, 1993,
pp. 128–141. isbn: 978-3-540-57316-6. doi: 10.1007/BFb0039704. url: http://link.
springer.com/10.1007/BFb0039704 (visited on 06/14/2023).

[19] Qinxiang Cao et al. “VST-Floyd: A Separation Logic Tool to Verify Correctness of
C Programs”. In: Journal of Automated Reasoning 61.1 (June 1, 2018), pp. 367–422.
issn: 1573-0670. doi: 10.1007/s10817-018-9457-5. url: https://doi.org/10.
1007/s10817-018-9457-5 (visited on 08/23/2023).

[20] Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. “A Certified Constraint
Solver over Finite Domains”. In: FM 2012: Formal Methods. Ed. by Dimitra Gian-
nakopoulou and Dominique Méry. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2012, pp. 116–131. isbn: 978-3-642-32759-9. doi: 10.1007/978-3-
642-32759-9_12.

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10817-018-9455-7
https://doi.org/10.1007/s10009-014-0314-5
https://hal.science/hal-01935591
https://hal.science/hal-01935591
https://doi.org/10.1145/355592.365646
https://doi.org/10.1007/s10817-018-09510-y
http://link.springer.com/10.1007/s10817-018-09510-y
http://link.springer.com/10.1007/s10817-018-09510-y
https://doi.org/10.1007/BFb0039704
http://link.springer.com/10.1007/BFb0039704
http://link.springer.com/10.1007/BFb0039704
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-642-32759-9_12
https://doi.org/10.1007/978-3-642-32759-9_12

BIBLIOGRAPHY 135

[21] Arthur Charguéraud. “Characteristic Formulae for the Verification of Imperative Pro-
grams”. In: Proceedings of the 16th ACM SIGPLAN International Conference on Func-
tional Programming. ICFP ’11. New York, NY, USA: Association for Computing Ma-
chinery, Sept. 19, 2011, pp. 418–430. isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.
2034828. url: https://dl.acm.org/doi/10.1145/2034773.2034828 (visited on
08/23/2023).

[22] Checking a Large Routine | The Early British Computer Conferences. url: https:
//dl.acm.org/doi/abs/10.5555/94938.94952 (visited on 08/23/2023).

[23] Sylvain Conchon et al. “Alt-Ergo 2.2”. In: SMT Workshop: International Workshop on
Satisfiability Modulo Theories. July 12, 2018. url: https://inria.hal.science/
hal-01960203 (visited on 09/01/2023).

[24] Coq Community. The Coq Proof Assistant. 2021. url: https://coq.inria.fr/.
[25] Sylvain Dailler, Claude Marché, and Yannick Moy. “Lightweight Interactive Proving

inside an Automatic Program Verifier”. In: Formal Integrated Development Environ-
ment. 2018. doi: 10.4204/EPTCS.284.1.

[26] Xavier Denis and Jacques-Henri Jourdan. “Specifying and Verifying Higher-order Rust
Iterators”. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2023, pp. 93–110.

[27] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. “Creusot: A Foundry for
the Deductive Verication of Rust Programs”. In: ICFEM. Vol. 13478. LNCS. 2022.
doi: 10.1007/978-3-031-17244-1_6.

[28] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. isbn:
013215871X. url: https://www.worldcat.org/oclc/01958445.

[29] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of
Programs”. In: Communications of the ACM 18.8 (Aug. 1, 1975), pp. 453–457. issn:
0001-0782. doi: 10.1145/360933.360975. url: https://dl.acm.org/doi/10.1145/
360933.360975 (visited on 08/23/2023).

[30] Burak Ekici et al. “SMTCoq: A Plug-In for Integrating SMT Solvers into Coq”. In:
Computer Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. Vol. 10427.
Cham: Springer International Publishing, 2017, pp. 126–133. isbn: 978-3-319-63389-3
978-3-319-63390-9. doi: 10.1007/978-3-319-63390-9_7. url: https://link.
springer.com/10.1007/978-3-319-63390-9_7 (visited on 09/12/2023).

[31] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 - Where Programs Meet
Provers”. In: Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP. Ed. by Matthias Felleisen and Philippa Gardner. Vol. 7792. Lec-
ture Notes in Computer Science. Springer, 2013, pp. 125–128. isbn: 978-3-642-37035-9.
doi: 10.1007/978-3-642-37036-6_8. url: https://doi.org/10.1007/978-3-
642-37036-6_8.

[32] Jean-Christophe Filliâtre and Mário Pereira. “A Modular Way to Reason About Iter-
ation”. In: NASA Formal Methods. Ed. by Sanjai Rayadurgam and Oksana Tkachuk.
Vol. 9690. Cham: Springer International Publishing, 2016, pp. 322–336. isbn: 978-3-
319-40647-3 978-3-319-40648-0. doi: 10.1007/978-3-319-40648-0_24. (Visited on
10/10/2022).

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://dl.acm.org/doi/10.1145/2034773.2034828
https://dl.acm.org/doi/abs/10.5555/94938.94952
https://dl.acm.org/doi/abs/10.5555/94938.94952
https://inria.hal.science/hal-01960203
https://inria.hal.science/hal-01960203
https://coq.inria.fr/
https://doi.org/10.4204/EPTCS.284.1
https://doi.org/10.1007/978-3-031-17244-1_6
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1145/360933.360975
https://dl.acm.org/doi/10.1145/360933.360975
https://dl.acm.org/doi/10.1145/360933.360975
https://doi.org/10.1007/978-3-319-63390-9_7
https://link.springer.com/10.1007/978-3-319-63390-9_7
https://link.springer.com/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-40648-0_24

136 BIBLIOGRAPHY

[33] Jean-Christophe Filliâtre. “Formal Verification of MIX Programs”. In: Journ
’ees en l’honneur de Donald E. Knuth.
urlhttp://knuth07.labri.fr/exposes.php. Bordeaux, France, 2007. url: [http://www.
lri.fr/~filliatr/publis/verifmix.pdf](http://www.lri.fr/~filliatr/
publis/verifmix.pdf).

[34] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. “The Spirit of
Ghost Code”. In: Formal Methods in System Design 48.3 (June 2016), pp. 152–174.
issn: 0925-9856, 1572-8102. doi: 10.1007/s10703-016-0243-x. url: http://link.
springer.com/10.1007/s10703-016-0243-x (visited on 06/08/2023).

[35] Jean-Christophe Filliâtre and Andrei Paskevich. “Abstraction and Genericity in
Why3”. In: Leveraging Applications of Formal Methods, Verification and Validation:
Verification Principles. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 12476.
Cham: Springer International Publishing, 2020, pp. 122–142. isbn: 978-3-030-61361-
7 978-3-030-61362-4. doi: 10.1007/978-3-030-61362-4_7. url: http://link.
springer.com/10.1007/978-3-030-61362-4_7 (visited on 09/12/2023).

[36] Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. “A Verified SAT
Solver with Watched Literals Using Imperative HOL”. In: Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs. CPP ’18: Cer-
tified Proofs and Programs. Los Angeles CA USA: ACM, Jan. 8, 2018, pp. 158–171.
isbn: 978-1-4503-5586-5. doi: 10.1145/3167080. url: https://dl.acm.org/doi/
10.1145/3167080 (visited on 08/18/2023).

[37] Robert W. Floyd. “Assigning Meanings to Programs”. In: Program Verification: Fun-
damental Issues in Computer Science. Ed. by Timothy R. Colburn, James H. Fetzer,
and Terry L. Rankin. Studies in Cognitive Systems. Dordrecht: Springer Netherlands,
1993, pp. 65–81. isbn: 978-94-011-1793-7. doi: 10.1007/978-94-011-1793-7_4. url:
https://doi.org/10.1007/978-94-011-1793-7_4 (visited on 08/23/2023).

[38] Nima Rahimi Foroushaani and Bart Jacobs. Modular Formal Verification of Rust
Programs with Unsafe Blocks. Dec. 25, 2022. doi: 10.48550/arXiv.2212.12976.
arXiv: 2212.12976 [cs]. url: http://arxiv.org/abs/2212.12976 (visited on
08/18/2023). preprint.

[39] Harald Ganzinger et al. “DPLL(T): Fast Decision Procedures”. In: Computer Aided
Verification. Ed. by Rajeev Alur and Doron A. Peled. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2004, pp. 175–188. isbn: 978-3-540-27813-9. doi:
10.1007/978-3-540-27813-9_14.

[40] Léon Gondelman. “Un système de types pragmatique pour la vérification déductive
des programmes. (A Pragmatic Type System for Deductive Verification)”. PhD thesis.
University of Paris-Saclay, France, 2016. url: https://tel.archives-ouvertes.fr/
tel-01533090.

[41] Stéphane Graham-Lengrand, Dejan Jovanović, and Bruno Dutertre. “Solving Bitvec-
tors with MCSAT: Explanations from Bits and Pieces”. In: Automated Reasoning.
Ed. by Nicolas Peltier and Viorica Sofronie-Stokkermans. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 103–121. isbn: 978-3-030-
51074-9. doi: 10.1007/978-3-030-51074-9_7.

[42] David Harel. “On Folk Theorems”. In: Communications of the ACM 23.7 (July 1,
1980), pp. 379–389. issn: 0001-0782. doi: 10.1145/358886.358892. url: https:
//dl.acm.org/doi/10.1145/358886.358892 (visited on 09/05/2023).

http://www.lri.fr/~filliatr/publis/verifmix.pdf
http://www.lri.fr/~filliatr/publis/verifmix.pdf
http://www.lri.fr/~filliatr/publis/verifmix.pdf
https://doi.org/10.1007/s10703-016-0243-x
http://link.springer.com/10.1007/s10703-016-0243-x
http://link.springer.com/10.1007/s10703-016-0243-x
https://doi.org/10.1007/978-3-030-61362-4_7
http://link.springer.com/10.1007/978-3-030-61362-4_7
http://link.springer.com/10.1007/978-3-030-61362-4_7
https://doi.org/10.1145/3167080
https://dl.acm.org/doi/10.1145/3167080
https://dl.acm.org/doi/10.1145/3167080
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.48550/arXiv.2212.12976
https://arxiv.org/abs/2212.12976
http://arxiv.org/abs/2212.12976
https://doi.org/10.1007/978-3-540-27813-9_14
https://tel.archives-ouvertes.fr/tel-01533090
https://tel.archives-ouvertes.fr/tel-01533090
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1145/358886.358892
https://dl.acm.org/doi/10.1145/358886.358892
https://dl.acm.org/doi/10.1145/358886.358892

BIBLIOGRAPHY 137

[43] Son Ho and Jonathan Protzenko. “Aeneas: Rust Verification by Functional Transla-
tion”. In: ICFP. 2022. doi: 10.1145/3547647.

[44] Tony Hoare. An Axiomatic Basis for Computer Programming | Communications of
the ACM. url: https://dl.acm.org/doi/abs/10.1145/363235.363259 (visited on
08/23/2023).

[45] Thierry Hubert and Claude Marché. “Separation Analysis for Deductive Verification”.
In: Heap Analysis and Verification. 2007, pp. 81–93. url: https://hal.inria.fr/
hal-03630177.

[46] Sarek Høverstad Skotåm. “CreuSAT Using Rust and CREUSOT to Create the World’s
Fastest Deductively Verified SAT Solver”. University of Oslo. url: https://sarsko.
github.io/_pages/SarekSkot%C3%A5m_thesis.pdf.

[47] Evan Johnson et al. “WaVe: A Verifiably Secure WebAssembly Sandboxing Runtime”.
In: 2023 IEEE Symposium on Security and Privacy (SP). 2023 IEEE Symposium on
Security and Privacy (SP). May 2023, pp. 2940–2955. doi: 10.1109/SP46215.2023.
10179357.

[48] Dejan Jovanovic, Clark Barrett, and Leonardo Moura. “The Design and Implementa-
tion of the Model Constructing Satisfiability Calculus”. In: 2013 Formal Methods in
Computer-Aided Design. 2013 Formal Methods in Computer-Aided Design. Oct. 2013,
pp. 173–180. doi: 10.1109/FMCAD.2013.7027033.

[49] Dejan Jovanović. “Solving Nonlinear Integer Arithmetic with MCSAT”. In: Verifica-
tion, Model Checking, and Abstract Interpretation. Ed. by Ahmed Bouajjani and David
Monniaux. Lecture Notes in Computer Science. Cham: Springer International Publish-
ing, 2017, pp. 330–346. isbn: 978-3-319-52234-0. doi: 10.1007/978-3-319-52234-
0_18.

[50] Ralf Jung. “Understanding and Evolving the Rust Programming Language”. PhD the-
sis. Saarland University, Saarbrücken, Germany, 2020. url: https://publikationen.
sulb.uni-saarland.de/handle/20.500.11880/29647.

[51] Ralf Jung et al. “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL. 2015, pp. 637–650. doi: 10.1145/
2676726.2676980. url: https://doi.org/10.1145/2676726.2676980.

[52] Ralf Jung et al. RustBelt: Securing the Foundations of the Rust Programming Language
— Technical Appendix. 2018. url: https://plv.mpi-sws.org/rustbelt/popl18/
appendix.pdf.

[53] Ralf Jung et al. “RustBelt: Securing the Foundations of the Rust Programming Lan-
guage”. In: Proceedings of the ACM on Programming Languages 2.POPL (2018), 66:1–
66:34. doi: 10.1145/3158154. url: https://doi.org/10.1145/3158154.

[54] Ralf Jung et al. “The Future is Ours: Prophecy Variables in Separation Logic”. In:
Proceedings of the ACM on Programming Languages 4.POPL (2020), 45:1–45:32. doi:
10.1145/3371113. url: https://doi.org/10.1145/3371113.

[55] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”. In: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles. SOSP09: ACM
SIGOPS 22nd Symposium on Operating Systems Principles. Big Sky Montana USA:
ACM, Oct. 11, 2009, pp. 207–220. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.
1629596. url: https://dl.acm.org/doi/10.1145/1629575.1629596 (visited on
09/01/2023).

https://doi.org/10.1145/3547647
https://dl.acm.org/doi/abs/10.1145/363235.363259
https://hal.inria.fr/hal-03630177
https://hal.inria.fr/hal-03630177
https://sarsko.github.io/_pages/SarekSkot%C3%A5m_thesis.pdf
https://sarsko.github.io/_pages/SarekSkot%C3%A5m_thesis.pdf
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1109/SP46215.2023.10179357
https://doi.org/10.1109/FMCAD.2013.7027033
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-319-52234-0_18
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://plv.mpi-sws.org/rustbelt/popl18/appendix.pdf
https://plv.mpi-sws.org/rustbelt/popl18/appendix.pdf
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://dl.acm.org/doi/10.1145/1629575.1629596

138 BIBLIOGRAPHY

[56] Knuth: Frequently Asked Questions. url: https://www-cs-faculty.stanford.edu/
~knuth/faq.html (visited on 08/17/2023).

[57] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”. In:
Computer Aided Verification. Ed. by Natasha Sharygina and Helmut Veith. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 1–35. isbn: 978-3-
642-39799-8. doi: 10.1007/978-3-642-39799-8_1.

[58] Andrea Lattuada et al. “Verus: Verifying Rust Programs Using Linear Ghost Types”.
In: Proceedings of the ACM on Programming Languages 7 (OOPSLA1 Apr. 6, 2023),
85:286–85:315. doi: 10.1145/3586037. url: https://dl.acm.org/doi/10.1145/
3586037 (visited on 05/16/2023).

[59] Nico Lehmann et al. “Flux: Liquid Types for Rust”. In: Proceedings of the ACM on
Programming Languages 7 (PLDI June 6, 2023), pp. 1533–1557. issn: 2475-1421. doi:
10.1145/3591283. url: https://dl.acm.org/doi/10.1145/3591283 (visited on
08/18/2023).

[60] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Cor-
rectness”. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by
Edmund M. Clarke and Andrei Voronkov. Vol. 6355. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 348–370. isbn: 978-3-642-17510-7 978-3-642-17511-4. doi:
10.1007/978-3-642-17511-4_20. url: http://link.springer.com/10.1007/978-
3-642-17511-4_20 (visited on 09/01/2023).

[61] K. Rustan M. Leino and Michał Moskal. “VACID-0: Verification of Ample Correctness
of Invariants of Data-structures, Edition 0”. In: Verified Software, Tools, Techniques
and Experiments. 2010.

[62] Xavier Leroy et al. “CompCert - A Formally Verified Optimizing Compiler”. In: ().
[63] Stephane Lescuyer. “Formalizing and Implementing a Reflexive Tactic for Automated

Deduction in Coq”. These de doctorat. Paris 11, Jan. 4, 2011. url: https://www.
theses.fr/2011PA112363 (visited on 08/18/2023).

[64] Pierre Letouzey. “Extraction in Coq: An Overview”. In: Logic and Theory of Algo-
rithms. Ed. by Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008, pp. 359–369. isbn:
978-3-540-69407-6. doi: 10.1007/978-3-540-69407-6_39.

[65] Jialin Li et al. “Linear Types for Large-Scale Systems Verification”. In: Proceedings of
the ACM on Programming Languages 6 (OOPSLA1 Apr. 29, 2022), pp. 1–28. issn:
2475-1421. doi: 10.1145/3527313. url: https://dl.acm.org/doi/10.1145/
3527313 (visited on 05/16/2023).

[66] Hongjin Liang and Xinyu Feng. “Modular Verification of Linearizability with Non-
Fixed Linearization Points”. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI. Ed. by Hans-Juergen Boehm and Cormac
Flanagan. ACM, 2013, pp. 459–470. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.
2462189. url: https://doi.org/10.1145/2491956.2462189.

[67] Marten Lohstroh et al. “Toward a Lingua Franca for Deterministic Concurrent Sys-
tems”. In: ACM Transactions on Embedded Computing Systems 20.4 (May 18, 2021),
36:1–36:27. issn: 1539-9087. doi: 10.1145/3448128. url: https://dl.acm.org/doi/
10.1145/3448128 (visited on 08/23/2023).

https://www-cs-faculty.stanford.edu/~knuth/faq.html
https://www-cs-faculty.stanford.edu/~knuth/faq.html
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1145/3586037
https://dl.acm.org/doi/10.1145/3586037
https://dl.acm.org/doi/10.1145/3586037
https://doi.org/10.1145/3591283
https://dl.acm.org/doi/10.1145/3591283
https://doi.org/10.1007/978-3-642-17511-4_20
http://link.springer.com/10.1007/978-3-642-17511-4_20
http://link.springer.com/10.1007/978-3-642-17511-4_20
https://www.theses.fr/2011PA112363
https://www.theses.fr/2011PA112363
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1145/3527313
https://dl.acm.org/doi/10.1145/3527313
https://dl.acm.org/doi/10.1145/3527313
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/3448128
https://dl.acm.org/doi/10.1145/3448128
https://dl.acm.org/doi/10.1145/3448128

BIBLIOGRAPHY 139

[68] Joao Marques-Silva, Ines Lynce, and Sharad Malik. “Chapter 4. Conflict-Driven Clause
Learning SAT Solvers”. In: Handbook of Satisfiability. IOS Press, 2021, pp. 133–182.
doi: 10.3233/FAIA200987. url: https://ebooks.iospress.nl/doi/10.3233/
FAIA200987 (visited on 08/23/2023).

[69] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. “RustHorn: CHC-based
Verification for Rust Programs”. In: Programming Languages and Systems - 29th Eu-
ropean Symposium on Programming, ESOP. Ed. by Peter Müller. Vol. 12075. Lecture
Notes in Computer Science. Springer, 2020, pp. 484–514. isbn: 978-3-030-44913-1. doi:
10.1007/978-3-030-44914-8_18. url: https://doi.org/10.1007/978-3-030-
44914-8_18.

[70] Yusuke Matsushita et al. “RustHornBelt: A Semantic Foundation for Functional Veri-
fication of Rust Programs with Unsafe Code”. In: PLDI. 2022. doi: 10.1145/3519939.
3523704.

[71] Michael Mol and other contributors. The Rosetta Code Chrestomathy of Programs.
url: http://rosettacode.org (visited on 10/01/2021).

[72] João Mota, Marco Giunti, and António Ravara. On Using VeriFast, VerCors, Plural,
and KeY to Check Object Usage. Sept. 2022. arXiv: 2209.05136 [cs]. (Visited on
10/10/2022).

[73] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes
in Computer Science. Springer, 2008, pp. 337–340. isbn: 978-3-540-78799-0. doi: 10.
1007/978-3-540-78800-3_24. url: https://doi.org/10.1007/978-3-540-
78800-3_24.

[74] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A Verification
Infrastructure for Permission-Based Reasoning”. In: Verification, Model Checking, and
Abstract Interpretation - 17th International Conference, VMCAI. 2016, pp. 41–62.
doi: 10.1007/978-3-662-49122-5_2. url: https://doi.org/10.1007/978-3-
662-49122-5_2.

[75] Thi Minh Tuyen Nguyen. “Taking Architecture and Compiler into Account in Formal
Proofs of Numerical Programs”. These de doctorat. Paris 11, June 11, 2012. url:
https://www.theses.fr/2012PA112090 (visited on 06/14/2023).

[76] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. “Local Reasoning about
Programs that Alter Data Structures”. In: Computer Science Logic, 15th International
Workshop, CSL 2001. 10th Annual Conference of the EACSL. Ed. by Laurent Fribourg.
Vol. 2142. Lecture Notes in Computer Science. Springer, 2001, pp. 1–19. isbn: 3-540-
42554-3. doi: 10.1007/3-540-44802-0_1. url: https://doi.org/10.1007/3-540-
44802-0_1.

[77] Lawrence C. Paulson, ed. Isabelle. Vol. 828. Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer-Verlag, 1994. isbn: 978-3-540-58244-1. doi: 10 . 1007 /
BFb0030541. url: http://link.springer.com/10.1007/BFb0030541 (visited on
09/01/2023).

[78] Benjamin C Pierce. “Software Foundations”. In: ().

https://doi.org/10.3233/FAIA200987
https://ebooks.iospress.nl/doi/10.3233/FAIA200987
https://ebooks.iospress.nl/doi/10.3233/FAIA200987
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
http://rosettacode.org
https://arxiv.org/abs/2209.05136
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://www.theses.fr/2012PA112090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541
http://link.springer.com/10.1007/BFb0030541

140 BIBLIOGRAPHY

[79] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. “A Fully Verified Container
Library”. In: Formal Aspects of Computing 30.5 (Sept. 2018), pp. 495–523. issn: 0934-
5043, 1433-299X. doi: 10.1007/s00165-017-0435-1. (Visited on 10/10/2022).

[80] François Pottier. “Verifying a Hash Table and Its Iterators in Higher-Order Separation
Logic”. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs. Paris France: ACM, Jan. 2017, pp. 3–16. isbn: 978-1-4503-4705-1. doi:
10.1145/3018610.3018624. (Visited on 10/10/2022).

[81] Ralf Jung and The MIRI developers. MIRI. url: https://github.com/rust-lang/
miri.

[82] Rust Community. Rust Programming Language. 2021. url: https://www.rust-
lang.org/.

[83] Michael Sammler et al. “RefinedC: automating the foundational verification of C code
with refined ownership types”. In: PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 20211. Ed. by Stephen N. Freund and Eran Yahav. ACM, 2021,
pp. 158–174. isbn: 978-1-4503-8391-2. doi: 10.1145/3453483.3454036. url: https:
//doi.org/10.1145/3453483.3454036.

[84] Stephan Schulz. “E – A Brainiac Theorem Prover”. In: ().
[85] The Great Theorem Prover Showdown. Hillel Wayne. url: https : / / www .

hillelwayne.com/post/theorem-prover-showdown/ (visited on 10/14/2022).
[86] The Rust Community. The std::cmp::Ord trait of Rust. Version 1.0.0. Oct. 29, 2021.

url: https://doc.rust-lang.org/std/cmp/trait.Ord.html.
[87] The Rust Community. The std::vec::Vec::push method of Rust. Version 1.0.0.

Oct. 29, 2021. url: https://doc.rust-lang.org/std/vec/struct.Vec.html#
method.push.

[88] The Rust UCG Working Group. Unsafe Code Guidelines. url: https://rust-lang.
github.io/unsafe-code-guidelines/.

[89] Cesare Tinelli and Mehdi Harandi. “A New Correctness Proof of the Nelson-Oppen
Combination Procedure”. In: Frontiers of Combining Systems: First International
Workshop, Munich, March 1996. Ed. by Frans Baader and Klaus U. Schulz. Applied
Logic Series. Dordrecht: Springer Netherlands, 1996, pp. 103–119. isbn: 978-94-009-
0349-4. doi: 10.1007/978-94-009-0349-4_5. url: https://doi.org/10.1007/978-
94-009-0349-4_5 (visited on 08/23/2023).

[90] Aaron Joseph Turon et al. “Logical Relations for Fine-Grained Concurrency”. In:
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL. Ed. by Roberto Giacobazzi and Radhia Cousot. ACM, 2013,
pp. 343–356. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429111. url: https:
//doi.org/10.1145/2429069.2429111.

[91] Viktor Vafeiadis. “Modular Fine-Grained Concurrency Verification”. PhD thesis. Uni-
versity of Cambridge, UK, 2008. url: http://ethos.bl.uk/OrderDetails.do?uin=
uk.bl.ethos.612221.

[92] Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan. “Spy Game:
Verifying a Local Generic Solver in Iris”. In: Proceedings of the ACM on Programming
Languages 4.POPL (2020), 33:1–33:28. doi: 10.1145/3371101. url: https://doi.
org/10.1145/3371101.

https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1145/3018610.3018624
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://doc.rust-lang.org/std/cmp/trait.Ord.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
https://doc.rust-lang.org/std/vec/struct.Vec.html#method.push
https://rust-lang.github.io/unsafe-code-guidelines/
https://rust-lang.github.io/unsafe-code-guidelines/
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101

BIBLIOGRAPHY 141

[93] P. Wadler and S. Blott. “How to Make Ad-Hoc Polymorphism Less Ad Hoc”. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages - POPL ’89. The 16th ACM SIGPLAN-SIGACT Symposium.
Austin, Texas, United States: ACM Press, 1989, pp. 60–76. isbn: 978-0-89791-294-5.
doi: 10.1145/75277.75283. url: http://portal.acm.org/citation.cfm?doid=
75277.75283 (visited on 02/14/2023).

[94] Fabian Wolff et al. “Modular specification and verification of closures in Rust”. In:
Proceedings of the ACM on Programming Languages 5.OOPSLA (2021), pp. 1–29.

[95] Joshua Yanovski et al. “GhostCell: Separating Permissions from Data in Rust”. In:
Proceedings of the ACM on Programming Languages 5 (ICFP Aug. 22, 2021), pp. 1–
30. issn: 2475-1421. doi: 10.1145/3473597. url: https://dl.acm.org/doi/10.
1145/3473597 (visited on 05/16/2023).

[96] Zipeng Zhang et al. “A Structural Approach to Prophecy Variables”. In: Theory and
Applications of Models of Computation - 9th Annual Conference, TAMC. Ed. by
Manindra Agrawal, S. Barry Cooper, and Angsheng Li. Vol. 7287. Lecture Notes in
Computer Science. Springer, 2012, pp. 61–71. isbn: 978-3-642-29951-3. doi: 10.1007/
978-3-642-29952-0_12. url: https://doi.org/10.1007/978-3-642-29952-
0_12.

https://doi.org/10.1145/75277.75283
http://portal.acm.org/citation.cfm?doid=75277.75283
http://portal.acm.org/citation.cfm?doid=75277.75283
https://doi.org/10.1145/3473597
https://dl.acm.org/doi/10.1145/3473597
https://dl.acm.org/doi/10.1145/3473597
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-642-29952-0_12

	Introduction
	The challenges of systems software verification
	Verifying Rust programs
	Contributions

	Background
	Program Verification
	Hoare Logic
	Predicate Transformers

	The Why3 verification environment
	WhyML

	Rust
	Ownership
	Unsafe Code
	Traits
	Closures

	Prophetic verification

	Introduction to the Creusot verifier
	First steps with Creusot
	Proving functional correctness

	The Pearlite specification language
	Proving `Gnome Sort' correct
	Working with traits
	Verifying a generic program
	Higher-order functions
	Specifying clients of closures

	Interfacing with the real world
	Evaluation
	Discussion
	Limitations & Unsupported Features

	Implementing a Rust verifier
	The MIR language
	Syntax
	Informal semantics for MIR

	The MLCFG language
	Syntax

	Translation from Rust to MLCFG
	Interpretation of Rust Types
	Translation of MIR
	Handling polymorphism
	Translating traits declarations
	Translating traits implementations
	Closures in Rust

	Translation of Pearlite
	Translating the old pseudo-function
	Logical Reborrowing
	Correspondence between Rust and Pearlite semantics

	From MLCFG to WhyML
	CFG reconstruction
	Subregion analysis

	Related Works

	Soundness of Rust verification
	The lambda-Rust language
	The syntax of lambda-Rust
	The lambda-Rust type-spec system
	Example: Decrementing a reference

	Soundness of Type-Specs
	Parametric Prophecies
	Semantic interpretation of Rust types
	Soundness of the RustHornBelt type-spec system
	Proving Soundness of Type-Spec Rules

	Rust APIs with Unsafe Code
	Proving specifications for APIs with unsafe code

	Implementation and Evaluation
	Correspondence with Creusot
	Related Work

	 Iterators
	Reasoning about Iteration
	Specifying Iterators
	Structural Invariant of [language=rust,basicstyle=]for Loops

	Examples of Specifications of Simple Iterators
	The [language=rust,basicstyle=]Range Iterator
	IterMut: Mutating Iteration Over a Vector
	Iterator Transformers
	Fuse

	A Higher-order Iterator Combinator: Map
	Evaluation
	Related Works

	Verifying an SMT solver
	A mechanized theory of CDSAT
	First-order Theories & Modules
	The CDSAT Trail
	The CDSAT Algorithm
	A proof of soundness

	A verified implementation of CDSAT
	The concrete trail
	The concrete algorithm

	Evaluation
	Testing Sprout
	Experience Report

	Related Works

	Conclusions
	Collaborations
	Future Work

